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Advanced Micro Devices, Inc. 
AMD I/O Virtualization Technology (IOMMU) Specification License Agreement

AMD I/O Virtualization Technology (IOMMU) Specification License Agreement (this “Agreement”) is a legal 
agreement between Advanced Micro Devices, Inc., Sunnyvale CA ("AMD") and the recipient of the AMD I/O 
MMU Specification (any version) (the “Specification”), whether an individual or an entity ("You"). If you have 
accessed this Agreement as part of the Specification, or in the process of downloading the Specification from 
an AMD web site, by clicking an “I Accept” or similar button, or otherwise in the process of acquiring the 
Specification, or by using or providing feedback on the Specification, You agree to these terms. If this Agree-
ment is attached to the Specification, by accessing, using or providing feedback on the Specification, You 
agree to these terms. 

For good and valuable consideration, the receipt and sufficiency of which are acknowledged, You and AMD 
agree as follows:

1. You may review the Specification only (a) as a reference to assist You in planning and designing Your prod-
uct, service or technology ("Product") to interface with an AMD or third-party Product as described in the 
Specification; and (b) to provide Feedback (defined below) on the Specification to AMD. All other rights are 
retained by AMD; this agreement does not give You rights under any AMD patents. You may not (i) duplicate 
any part of the Specification, (ii) remove this agreement or any notices from the Specification, or (iii) give any 
part of the Specification, or assign or otherwise provide Your rights under this Agreement, to anyone else.

2. The Specification may contain preliminary information or inaccuracies. The Specification is provided 
entirely "AS IS." To the extent permitted by law, AMD MAKES NO WARRANTY OF ANY KIND, DIS-
CLAIMS ALL EXPRESS, IMPLIED AND STATUTORY WARRANTIES, AND ASSUMES NO LIABIL-
ITY TO YOU FOR ANY DAMAGES OF ANY TYPE IN CONNECTION WITH THESE MATERIALS OR 
ANY INTELLECTUAL PROPERTY IN THEM.

3. If You are an entity and (a) merge into another entity or (b) a controlling ownership interest in You changes, 
Your right to use the Specification automatically terminates and You must destroy it.

4. You have no obligation to give AMD any suggestions, comments or other feedback ("Feedback") relating to 
the Specification. However, any Feedback you voluntarily provide may be used by AMD without restriction 
including the use in any revision or update to the Specification. Accordingly, if You do give AMD Feedback on 
any version of the Specification, You agree: (a) AMD may freely use, reproduce, license, distribute, and other-
wise commercialize Your Feedback in any product made or distributed by or for AMD (an “AMD Product”); 
(b) You also grant third parties, without charge, only those patent rights necessary to enable other products to 
use or interface with any specific parts of an AMD Product that incorporates Your Feedback or Your Product; 
and (c) You will not give AMD any Feedback (i) that You have reason to believe is subject to any patent, copy-
right or other intellectual property claim or right of any third party; or (ii) subject to license terms which seek to 
require any product incorporating or derived from Your Feedback, any AMD Product or other AMD intellec-
tual property, to be licensed to or otherwise provided to any third party.

5. This Agreement is governed by the laws of the State of Texas without regard to its choice of law principles. 
Any dispute involving it must be brought in a court having jurisdiction of such dispute in Travis County, Texas, 
and You waive any defenses allowing the dispute to be litigated elsewhere. If there is litigation, the losing party 
must pay the other party’s reasonable attorneys’ fees, costs and other expenses. If any part of this agreement is 
unenforceable, it will be considered modified to the extent necessary to make it enforceable, and the remainder 
shall continue in effect. This agreement is the entire agreement between You and AMD concerning the Specifi-
cation; it may be changed only by a written document signed by both You and AMD.
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1 Overview

The I/O Memory Management Unit (IOMMU) is a system function that translates addresses used in DMA 
transactions, protects memory from disallowed access by I/O devices, and remaps peripheral interrupts.

The IOMMU can be used to:
• Replace the existing GART mechanism.
• Remap addresses above 4GB for devices that do not support 64-bit addressing.
• Allow a guest OS running under a VMM to have direct control of a device.
• Provide page granularity control of device access to system memory.
• Allow a device direct access to user space I/O.
• Filter and remap interrupts.

1.1 Intended Audience

This document provides the IOMMU behavioral definition and associated design notes. It is intended for the 
use of system designers, chipset designers, and programmers involved in the development of low-level BIOS 
(basic input/output system) functions, drivers, operating system kernel modules, and hypervisors. The intended 
user should have prior experience in personal computer design, microprocessor programming, and legacy x86 
and AMD64 microprocessor architecture. 

1.2 Definitions

• Accessed bit (A). A bit in the page table that indicates the corresponding memory has been read or written. 
Usually set to 1 by hardware.

• ACPI. Advanced Configuration and Power Interface, a specification of industry-standard interfaces enabling 
OS-directed configuration and other management.

• APIC. Advanced programmable interrupt controller (see specifications under the model numbers 82093AA 
and 82489DX).

• ARI. Alternative Routing Information is a PCI-SIG specification that allows a PCI Device to have more than 
eight PCI Functions but no more than 256.

• ATS. Address translation service, a PCI-SIG specification, allows a PCI peripheral to request virtual-to-
physical address translation from an IOMMU or TA. The resulting translation may be stored in an IOTLB. 
ATS is optional on a peripheral. This specification requires the Address Translation Services 1.1 
Specification or later. See http://www.pcisig.com/specifications/iov/ats/ .

• BAR. PCI-defined base address register.
• BIOS. Refers to the platform firmware (Basic Input/Output Services).
• Bounce Buffer. A buffer located in low system memory for DMA traffic from devices that do not support 

64-bit addressing. The OS copies the DMA data to or from the buffer to the real buffer in high memory used 
by the driver.

• Cold Reset. A reset generated by removing and reapplying power to the device.
• Dirty bit (D). A bit in the page table that indicates the corresponding memory has been written. Usually set 

to 1 by hardware.
• Device Exclusion Vector (DEV). Contiguous arrays of bits in physical memory. Each bit in the DEV table 

represents a 4KB page of physical memory (including system memory and MMIO). The DEV table is 
packed as follows: bit[0] of byte 0 controls the first 4K bytes of physical memory; bit[1] of byte 0 controls 
the second 4K bytes of physical memory; etc. 

• DeviceID. A 16 bit device identification number consisting of the Bus number, Device number and Function 
number. Used by an IOMMU to select the nested mapping tables for an address translation or interrupt 
remapping operation.

• Device Processing Complex. A computational unit on the peripheral such as a dedicated function (e.g., NIC, 
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encryption engine), a graphics processing unit (GPU), or an accelerated computing element (AC)
• Device Table. A table in system memory that maps DeviceIDs to DomainIDs and page table root pointers.
• Device Table Entry (DTE). An entry in the device table.
• Device Virtual Address. The untranslated address used by a device in a DMA transaction. If the IOMMU is 

not enabled this address corresponds to the system physical address.
• Direct Memory Access (DMA). A feature that enables a peripheral to access memory without intervention 

by the central processor.
• Domain. See Protection Domain.
• DomainID. A 16-bit number chosen by software to identify a domain.
• GART. Graphics Address Remapping Table.
• GPU. Graphical processing unit, usually used for graphics-specific computation.
• GPGPU. A GPU used for general-purpose computation.
• Guest. An application or OS run by the host in its own virtual environment.
• Guest address translation. Translation for GVA to GPA. May be serviced by an IOMMU or by a private 

MMU on the peripheral.
• Guest Physical Address (GPA). The x86-canonical virtual address used by a guest operating system in a 

VM. A GPA is created by using the guest page tables to translate a guest virtual address. The GPA may be 
further translated to a System Physical Address. 

• Guest Virtual Address (GVA). The virtual addresses used by a guest application. A GVA may be translated 
into a Guest Physical Address. Guest virtual addresses are treated as canonical x86 addresses.

• Guest Virtual APIC. The IOMMU (Revision 2) can support the delivery of interrupts to guest VMs without 
hypervisor intervention.  The guest APIC is described in the AMD Virtual Interrupt Controller Specification, 
Revision 1.0 or newer.

• Host Data Path (HDP). A functional unit that can convert CPU linear addressing to GPU-style tiled or 
rectangular addressing for improved performance. Often found in advanced graphics processing peripherals.

• High memory. In the x86 architecture, this is memory with addresses at or above 4G bytes.
• Host. The system software layer responsible for running guests. See also Nested paging and Nested address 

translation.
• Hypervisor. See VMM, Virtual Machine Monitor.
• IOMMU. Refers to the I/O Memory Management Unit defined by this specification.
• IOTLB. Refers to the I/O Translation Buffer on a peripheral; sometimes called a “remote IOTLB” because it 

is on the peripheral, remote from the processor.
• IVHD. I/O Virtualization Hardware Definition block, an ACPI table defined in Section 5.3.3 [I/O 

Virtualization Hardware Definition (IVHD) Block].
• IVMD. I/O Virtualization Memory Definition block, an ACPI table defined in Section 5.3.9 [I/O 

Virtualization Memory Definition (IVMD) Block].
• IVRS. I/O Virtualization Reporting Structure block, an ACPI table defined in Section 5.3.1 [I/O 

Virtualization Reporting Structure (IVRS)].
• LMA. Local Memory Address; corresponds to the physical address space used on the peripheral to access 

on-board or private memory. In some peripherals, aperture hardware maps some or all of the local memory 
address space into the system physical address space. The aperture hardware is usually managed by a device 
driver in an operating system.

• Local Memory. Memory on the peripheral that is typically accessed more quickly than system memory and 
is usually not coherent with system memory. Part of the local memory may be addressable from the CPU 
(called "public") and part may be inaccessible from the CPU (called "private"). An aperture mechanism is 
commonly used to select the portion of local memory that is public.

• Local Memory Protection Map. A hardware component that enforces the separation of virtual machine 
contexts within the local memory of a peripheral.

• Low memory. Memory with addresses below 4G bytes.
• MMIO. Read or write access to memory mapped resources provided by devices.
• MMU. Memory Management Unit. 
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• Message Signalled Interrupt (MSI). An interrupt that is signalled by generating a posted write to a system-
defined physical address.

• Nested address translation. Translation for GPA to SPA. May be serviced directly by an IOMMU or by a 
remote IOTLB. Use of an IOTLB requires ATS and/or PRI.

• Nested paging. An optional feature in AMD64 processors, the nested paging feature provides for two levels 
of address translation, thus eliminating the need for the virtual machine manager to maintain shadow page 
tables. See AMD64 Architecture Programmer’s Manual, Volume 2: System Programming, AMD publication 
number 24593 (APM Volume 2).

• NW. A PCI-SIG term (bit) used to signal lack of intent to perform write operations.
• OpenCL. A general-purpose parallel programming language for heterogeneous systems such as graphics 

processing units. See http://www.khronos.org/opencl/ .
• Page Tables. A table structure in main memory used to translate an address from one representation to an 

alternate representation.
• PASID. The Process Address Space ID used to identify the application address space within a x86-canonical 

guest virtual machine. It is used on a peripheral to isolate concurrent contexts residing in shared local 
memory. Together, PASID and DeviceID uniquely identify an application address space. See PASID TLP 
prefix.

• PASID TLP prefix. The IOMMU requires that a virtual address with a PASID carry the PASID value using 
the PASID TLP prefix. See also PASID and TLP. See the PCI-SIG PASID TLP Prefix ECN specification.

• PCI, PCI-SIG, PCIe, PCI-X. The PCI-SIG is an industry standards body that defines I/O connection 
technology, including PCI, PCI-X, and PCIe. See http://www.pcisig.com/home for more information.

• PDE. Page directory entry for address translation (see example in Figure 10).
• Pinned memory. Memory pages that are to be maintained in real memory all the time. Pinning a memory 

page prevents the page management software from using it for other purposes. A memory page must 
typically be pinned before DMA starts and may be unpinned when DMA completes.

• Platform firmware. The firmware or software that controls startup and configuration of the platform. 
Platform firmware is commonly implemented as BIOS or UEFI.

• PPR. Peripheral Page Service Request. When the IOMMU receives a valid PRI request, it creates a PPR 
message to request changes to the virtual address space.

• PR or P: present. The present bit in the page table entries as shown in Figure 8, Figure 9, Figure 10, 
Figure 22, Figure 23, Figure 24, and Figure 25.

• Pretranslated address. An address that has been translated to an SPA by a peripheral with an IOTLB.
• Page Request Interface (PRI). The Page Request Interface is a PCI-SIG specification that defines how a 

peripheral requests memory management services from a host OS or hypervisor (e.g., page fault service for 
the peripheral). PRI is optional on a peripheral, but if PRI is implemented, ATS is required.

• Private MMU. A peripheral-specific mechanism to translate addresses generated on the peripheral. In the 
simplest case, it generates a single bit to indicate the input address is an access to peripheral local memory or 
to system memory. When present, the private MMU provides guest address translation. On a GPU, a private 
MMU is often referred to as the VM component of the memory controller.

• Protection Domain. A set of address mappings and access rights that can be shared by multiple devices.
• Page Table Entry, PTE. A page table translation entry controls virtual-to-physical address translation and 

memory page access (see example in Figure 9).
• System Physical Address (SPA). The address used by the DRAM controller to specify a specific memory 

location or the address given to a MMIO device to specify a specific MMIO register.
• System software. The software that controls the normal operation of the platform. System software is 

commonly implemented as a hypervisor or an operating system.
• TA. Translation Agent is a PCI-SIG term to refer to the IOMMU table walker.
• TLB. Translation Look-aside Buffer is a cache of address translation information usually implemented 

within an MMU to improve translation speed.
• TLP. Transaction Layer Packet is a PCIe term for non-control packets. The TLP packet may have a prefix.
• UEFI. Refers to the “Unified Extensible Firmware Interface” specification for platform firmware. See 
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http://www.uefi.org/home/ .
• Untranslated address. A virtual address (GVA or GPA) issued by a peripheral that will be translated to an 

SPA by the IOMMU. The handling of an untranslated address on a peripheral is outside the scope of this 
specification.

• User, U/S, User/Supervisor level. The IOMMU can provide privilege-level information to a peripheral. The 
value 0b means supervisor level access is allowed, and 1b means user and supervisor access are allowed. The 
terms User and U/S are used, depending on the context.

• VM. A virtual machine is created and managed by a hypervisor so that multiple virtual machines can share a 
single hardware system and run independent operating system instances.

• VMM, Virtual Machine Monitor. A VMM is the controlling software for a computer. It manages the 
physical hardware and VMs to allow multiple operating systems to run concurrently on a computer system. 
Also known as a hypervisor.

1.3 Bit Attributes

All bit attributes used in this specification are defined in Table 1. These attributes apply to register definitions, 
device table entries, page table entries, command buffer entries and event log entries.

Table 1: Bit Attribute Definitions

Attribute Description
HwInit Hardware Initialized: Register fields are initialized by firmware or hardware mechanisms such 

as pin strapping or serial EEPROM. Fields are read-only after initialization and can only be reset 
(or write-once by firmware) with a cold reset.

Ignored
Ign

Ignored or Ign: For an IOMMU register, the state of the field is ignored by the IOMMU, writes 
may be discarded and reads return undefined results. For a memory location, the contents of the 
field is ignored by the IOMMU when read, but the value is preserved when the memory location 
is written by the IOMMU. Note that some ignored fields may be used by other system 
components (e.g., a memory field in a page table entry that is ignored by the IOMMU may be 
used by the processor).

RO Read-only register: Register fields are read-only and cannot be altered by software.
RW Read-Write register: Register fields are read-write and may be either set or cleared by software 

to the desired state.
RW1C Read-only status, Write-1-to-clear status register: Register bits indicate status when read, a set 

bit indicating a status event may be cleared by writing a 1. Writing a 0 to RW1C bits has no effect.
RW1S Write-1-to-set register: Register bits indicate status of an operation when read, setting the bit 

initiates the operation. Hardware clears the bit when the operation completes. Writing a 0 to 
RW1S bits has no effect.

Reserved
Resv
Res

Reserved, Resv, or Res: Reserved for future implementations. Reserved fields in a register must 
be implemented as read-only zero. Reserved fields in a memory location must be zero.

Unused
Un

Unused or Un: Field is not used by hardware. Software is allowed to use the field for its own 
purposes.
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2 IOMMU Overview

The I/O Memory Management Unit (IOMMU) extends the AMD64 system architecture with support for 
address translation and access protection on DMA transfers by peripheral devices. The IOMMU enables 
several significant enhancements to system-level software:

• Legacy 32-bit I/O device support on 64-bit systems (generally without requiring bounce buffers and 
expensive memory copies).

• More secure user-level application access to selected I/O devices.
• More secure virtual machine guest operating system access to selected I/O devices.

The IOMMU can be thought of as a combination and generalization of two facilities included in the AMD64 
architecture: the Graphics Aperture Remapping Table (GART) and the Device Exclusion Vector (DEV). The 
GART provides address translation of I/O device accesses to a small range of the system physical address 
space, and the DEV provides a limited degree of I/O device classification and memory protection. In 
combination with appropriate software manipulation of processor nested page tables, the IOMMU can provide 
GART or DEV functionality.

2.1 Architecture Summary

The detailed architecture of the IOMMU is discussed in Section 3 [Architecture]. The remainder of Chapter 2 
consists of a brief summary of the architecture of the IOMMU along with a discussion of some anticipated 
usage models.

The IOMMU extends the concept of protection domains (domains for short) first introduced with the DEV. The 
IOMMU allows each I/O device in the system to be assigned to a specific domain and a distinct set of I/O page 
tables. When an I/O device attempts to read or write system memory, the IOMMU intercepts the access, 
determines the domain to which the device has been assigned, and uses the TLB entries associated with that 
domain or the I/O page tables associated with that I/O device to determine whether the access is to be permitted 
as well as the actual location in system memory that is to be accessed.

The IOMMU may include optional support for remote IOTLBs. An I/O device with IOTLB support can 
cooperate with the IOMMU to maintain its own cache of address translations. This creates a framework for 
creating scalable systems with an IOMMU in which I/O devices may have different usage models and working 
set sizes. IOTLB-capable I/O devices contain private TLBs tailored for their own needs, creating a scalable 
distributed system of TLBs. The performance of IOTLB-capable I/O devices is not limited by the number of 
TLB entries implemented in the IOMMU. A peripheral with an IOTLB may issue untranslated addresses or 
pretranslated addresses that are determined from IOTLB entries. Pretranslated addresses are not checked by the 
IOMMU except to validate that the peripheral has the IOTLB enable bit set (I=1) in the corresponding DTE 
(see Figure 7 and Table 5).

Revision 2: The IOMMU may include optional support for peripheral page service requests (PPR) for 
peripherals that use ATS. This creates a mechanism for peripherals and software to reduce the need for pinned 
pages during I/O. The IOMMU may include optional support for interrupt virtualization. This uses a 
virtualized guest APIC with memory tables to deliver interrupts to guest VMs. 

Major system resources provided by the IOMMU include:
• I/O page tables which the IOMMU uses to provide permission checking and address translation on memory 

accesses by I/O devices.
• Revision 2: I/O page tables using the AMD64 long format.
• A device table that allows I/O devices to be assigned to specific domains and contains pointers to the I/O 
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devices’ page tables.
• An interrupt remapping table which the IOMMU uses to provide permission checking and interrupt 

remapping for I/O device interrupts. 
• Revision 2: A guest virtual APIC mechanism which the IOMMU uses to deliver interrupts to guest VMs. 
• Memory-based queues for exchanging command and status information between the IOMMU and the 

system processor(s). The command queue and event log are implemented by each IOMMU. 
• Revision 2: a peripheral page service request queue is optionally implemented by an IOMMU.

In summary, the IOMMU is very similar to the processor's MMU, except that it provides address translation 
and page protection to memory accesses by peripheral devices rather than memory accesses by the processor 
and that it provides an interrupt remapping capability. However, compared to the processor's MMU, the 
IOMMU has a few differences.

The first difference is that the IOMMU provides no direct indication to an I/O device of a failed translation 
when processing an untranslated posted request.

A second difference is related to the organization of the AMD64 system architecture. AMD64 systems can 
consist of a number of processor and device nodes connected to each other by HyperTransport™ links. The 
IOMMU can only process memory transactions that are routed through its node in the system fabric. In a 
system with multiple links and buses to I/O devices (see Figure 1), multiple IOMMUs are required to ensure 
that each I/O link or bus has appropriate protection and translation applied. Figure 1 shows the IOMMU 
implemented in an I/O Hub as one example selected from many possibilities.

Figure 1: Example Platform Architecture
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A third difference is that the IOMMU uses a command queue in memory to accept translation buffer 
invalidations while the system processors in an SMP use an interrupt synchronization method (the so-called 
TLB shoot-down interprocessor interrupt).

Revision 2: A fourth difference is that the IOMMU optionally provides a request queue in memory to service 
peripheral page requests while the system processor uses a fault mechanism.

Revision 2: The IOMMU optionally supports two-level address translation for nested page tables. The nested 
translations are managed according to the Revision 1 definition and the guest translations are an extension that 
is available as shown in Table 3. The guest translations are directly compatible with AMD64 long page tables 
supporting 4K byte, 2M byte, and 1G byte pages. The guest address space is flat, has no special ranges or 
properties, and Table 2 does not apply to guest virtual addresses.

Revision 2: The IOMMU has architectural features designed to support the virtualized guest APIC. 

2.2 Usage Models

Six models are discussed to highlight potential uses of the IOMMU in conventional and virtualized systems. 
These usage models can enhance system security and stability.

2.2.1 Replacing the GART

The GART is a system facility that performs physical-to-physical translation of memory addresses within a 
graphics aperture. The GART was defined to allow complex graphical objects, such as texture maps, to appear 
to a graphics co-processor as if they were located in contiguous pages of memory, even though they are 
actually scattered across randomly allocated pages by most operating systems. The GART translates all 
accesses to the graphics aperture, including loads and stores executed by the host processor as well as memory 
reads and writes performed by I/O devices. Only accesses whose system physical addresses are within the 
GART aperture are translated; however, the results of the translation can be any system physical address.

Unlike the GART, the IOMMU translates only memory accesses by I/O devices. However, with appropriate 
programming, a host OS can use the IOMMU as a functional equivalent of the GART. First, the host OS must 
set up its own page tables to perform translations of host processor accesses formerly translated by the GART. 
Then, to set up the equivalent translations for I/O device-initiated accesses, the host OS must:
• Construct I/O page tables that specify the desired translations.
• Make an entry in the device table pointing to the newly constructed I/O page tables.
• Notify the IOMMU of the newly updated device table entry if NPcache=1.

At this point, all accesses by both the host processor and the graphics device are mapped to the same pages as 
they would have been by the GART.

If the host OS changes the page protection or translation, it must update both the processor page tables and, if 
not shared, the I/O page tables, and issue appropriate page-invalidate commands to both the processor and the 
IOMMU. Unlike the processor, the IOMMU may require page-invalidate commands after any change to the 
I/O page tables. (AMD64 processors do not require page-invalidate operations after changes to leaf page table 
entries that add permission and make no change to translation.) Sharing of page tables is discussed in Section 
3.2.1 [Updating Shared Tables] and Section 3.2.4 [Sharing AMD64 Processor and IOMMU Page Tables - 
GPA-to-SPA].

Eventually the host OS may have to tear down the mappings when they are no longer used (e.g., removed from 
the system). The procedure is similar to setup:
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• Mark the device table entry as not valid by setting V=1b, IV=0b, and IntCtl=00b in the device table entry. If 
transaction pass-through is acceptable, set V=0b and IV=0b.

• Notify the IOMMU of the newly invalidated device table entry.
• Wait for the IOMMU to indicate that the invalidation is complete.
• Finally, de-allocate the I/O page tables.

Since the IOMMU offers no facilities for restarting device accesses to unmapped or protected addresses, all 
pages that the device might access must be mapped with appropriate permissions. In this respect the IOMMU 
is similar to the GART.

The IOMMU cannot be used to emulate the GART if processor paging is not enabled; in that case host 
processor accesses are not translated. This should not be a problem in practice, however, since historically the 
GART has been used by systems that enable paging on the processor.

In the foregoing procedures for setup and teardown of IOMMU page tables, the order of operations is chosen to 
prevent the IOMMU from ever looking at device or page table contents before they are initialized. During 
setup, the I/O page tables are constructed before the pointers are installed, and in teardown the pointers are 
cleared before the page table is deleted. Similar principles apply to the other applications in this chapter.

2.2.2 Substituting for the DEV

The Device Exclusion Vector is a basic security mechanism that was introduced with Secure Virtual Machine 
Architecture. Like the IOMMU, the DEV allows I/O devices to be classified into different domains. Associated 
with each domain is a bit vector, indexed by physical page address, indicating whether I/O devices in that 
domain are allowed to access the corresponding physical page. 

The IOMMU provides protection and translation. If only protection is needed, software can create identity-
mapped I/O page tables that specify the desired protection.

2.2.3 32-bit to 64-bit Legacy I/O Device Mapping

With the advent of large physical memories, legacy 32-bit devices that rely on DMA can no longer access 
arbitrary system memory. This complicates operating systems, which must introduce a distinction between low 
memory and high memory, and perform appropriate bookkeeping to ensure that legacy I/O devices are only 
commanded to perform transfers using low memory. The cost is not just complexity: to perform a transfer from 
a legacy I/O device to high memory, for example, the operating system typically allocates a bounce buffer in 
low memory, performs the transfer in low memory, and then copies the result to the real destination in high 
memory. For high-bandwidth I/O devices like disk controllers and network interfaces, the performance cost of 
bounce buffer allocation and copying can be large.

In some operating systems, the GART has been used to work around this problem. When the OS wishes to 
perform a transfer between a legacy I/O device and high memory, it allocates a portion of the GART aperture 
and maps those pages to high memory. It then commands the I/O device to execute the transfer using the 
address within the GART aperture, which must be located in low memory. Although this approach avoids the 
cost of bounce buffer copies, it is less than desirable, since the relatively small GART aperture must be shared 
by all legacy I/O devices and any graphics processors in the system. The device drivers have additional locking 
and synchronization overhead associated with page allocation and de-allocation in the GART aperture and 
system performance may be degraded due to serialization waiting for the GART aperture to become available.

The IOMMU provides a better solution. First, IOMMU translation applies to the full range of addresses an I/O 
device can generate, rather than requiring high-memory transfers to be mapped only within the narrow range of 
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GART addresses. Moreover, the IOMMU's ability to assign each I/O device to a different domain means that 
heavily used I/O devices can be given their own sets of I/O page tables, and do not have to contend with other 
I/O devices for allocation and de-allocation of I/O pages.

2.2.4 User Mode Device Accesses

The IOMMU plays a crucial role in allowing arbitrary I/O devices to be safely controlled by user-level 
processes, since I/O devices whose memory accesses are translated by the IOMMU can only access pages that 
are explicitly mapped by the associated I/O page tables. The I/O devices' access can therefore be limited to 
those pages to which the user processes legitimately have access.

Setting up the IOMMU for user-level I/O to an I/O device may be set up similarly to GART emulation with 
two differences: first, the mappable address range is the entire range of I/O device-generatable addresses, and 
secondly the operating system is not necessarily required to make exactly equivalent mappings in the processor 
page tables (although most likely it will).

Even with the help of the IOMMU, enabling user level I/O device access involves many design considerations. 
Protecting and remapping DMA is one part of the problem; the other part is interrupt management, for which 
the IOMMU provides help.

As was the case with GART emulation, system software must assess the need to lock in memory all pages that 
might ever be accessed by an I/O device controlled by a user-level process. Peripherals that implement an 
IOTLB or use ATS can use the peripheral page service request mechanism optionally implemented by an 
IOMMU. 

2.2.5 Virtual Machine Guest Access to Devices

The IOMMU can be used to allow unmodified virtual machine guest operating systems to directly access I/O 
devices. This is really just a special case of allowing user-level access to I/O devices, but there are a few 
considerations that warrant separate mention.

First of all, a non-VM-aware guest has no current way of informing its Virtual Machine Monitor (VMM) which 
pages an I/O device might access, so the VMM must lock the entire guest in memory. The VMM’s I/O page 
tables for the guest should then simply map guest physical addresses to system physical addresses. If the VMM 
is running the guest under nested paging and is using nested page tables built to be compatible with the 
IOMMU, then the IOMMU can directly share the host page tables for the guest.

Often a single VM guest has direct access to multiple I/O devices. By design, all I/O devices in the guest that 
need to see exactly the same I/O page translations can share a DomainID. If all the I/O devices belonging to a 
given VM guest are assigned to the same domain then the IOMMU can share translation cache entries among 
any of the guest’s I/O devices.

Finally, guest I/O throughput is often significantly enhanced when guest memory is allocated using large pages 
on the host system. Then the I/O page tables can similarly use large pages and the IOMMU is more likely to 
avoid thrashing in its translation cache.

2.2.6 Virtualizing the IOMMU

The IOMMU has been designed so that it can be emulated in software by a VMM that wishes to present its VM 
guests the illusion that they have an IOMMU.
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VMMs that run non-VM-aware guests already intercept and emulate attempts by their guests to access PCI 
configuration space. Therefore, emulation of the IOMMU configuration registers is straightforward; the 
emulation can be hooked directly to the existing facilities of the VMM for intercepting PCI configuration space 
accesses.

The VMM must also arrange to intercept and emulate guest accesses to the IOMMU's MMIO-mapped 
command registers. Since the overhead of each VMM intercept is high, guest operating systems accessing the 
IOMMU have better performance when they enqueue batches of commands in the IOMMU's (DRAM-based) 
command buffer prior to initiating IOMMU command processing via an MMIO register access. 

Since an untrusted guest OS cannot be allowed to write in the real device table, the VMM must maintain 
shadow entries in the real table on behalf of the guest. The IOMMU architecture requires software to issue 
invalidate-entry commands to the IOMMU after updating device table entries. The VMM can intercept these 
invalidate commands, look up the corresponding entries in the guest's simulated device table, and make 
shadow entries in the real device table on behalf of the guest. Note that the DeviceIDs as seen by the guest need 
not be the same as the real DeviceIDs, and the DomainIDs used by the guest are almost certainly not the same 
as the DomainIDs used by the VMM in the real device table.

In addition, for each guest VM I/O page table, the VMM must construct a shadow I/O page table. This shadow 
I/O page table is the page table that is given to the real IOMMU. Unfortunately, since an incomplete I/O device 
access cannot be restarted, the VMM must construct each guest domain's complete shadow I/O page tables 
eagerly as soon as the guest enables paging for that domain. The VMM must write-protect guest I/O page 
tables from the guest in order to intercept all guest updates and propagate the updates to the shadow I/O page 
tables.

Revision 2: The hypervisor can implement a subset of the IOMMU Revision 2 features by reporting that subset 
via the IOMMU Extended Feature Register [MMIO Offset 0030h]. The subset of additional features can be 
implemented using the same techniques described above. 

2.2.7 Virtualized User Mode Device Accesses

An IOMMU with two-level translation enforces system protection policies while allowing arbitrary I/O 
devices to be properly controlled by user-level processes in a virtualized system. As noted in Section 2.2.4 
[User Mode Device Accesses], I/O devices whose memory accesses are translated by the IOMMU can only 
access pages that are explicitly mapped by the associated I/O page tables as granted by the hypervisor and 
operating system. The I/O devices' access can therefore be limited to only those pages to which the user-level 
processes legitimately have access when the device supplies PASID information. This means I/O operations 
can be initiated without hypervisor or operating system intervention.

In addition to address translation, enabling user level I/O device access involves other design considerations 
such as remapping interrupts.

System software must assess the need to lock in memory all pages that might ever be accessed by an I/O device 
controlled by a user-level process. Peripherals that use ATS can use the peripheral page service request 
mechanism when implemented by an IOMMU. 

2.3 Revision 2 Additions

Revision 2 of the IOMMU adds:
• guest address translation capabilities while retaining backwards compatibility;
• AMD64 long page-table compatibility;
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• performance features; and
• PCI-SIG PRI and PASID TLP prefix ECN support.

To identify a Revision 2 IOMMU, software must check that Capability Offset 00h[EFRSup]=1b and IOMMU 
Extended Feature Register [MMIO Offset 0030h] is non-zero.

2.3.1 Two-level Translation for Guest and Host Address Spaces

Revision 1: one level of address translation is supported. Revision 2: The IOMMU adds an optional layer of 
guest address translation similar to the processor nested paging capability. The layered address translation may 
be viewed as a nested address spaces as illustrated in Figure 2. Each address space has a set of address 
translation tables. The IOMMU can provide guest-physical-to-system-physical address translation as specified 
in Revision 1 and managed by the hypervisor (sometimes called “L2 translation”). The device table entry is 
extended to include optional address translation information for guest-virtual-to-guest-physical address 
translation managed by the guest operating system (sometimes called “L1 translation”).  This allows for 
advanced computation architectures in virtualized systems such as compute-offload, user-level I/O, and 
accelerated I/O devices. The IOMMU indicates that two-level translation is supported via MMIO Offset 
0030h[GTSup]. When supported, two-level translation is activated by programming the appropriate device 
table entries.

Figure 2: Nested Address Spaces
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manages the nested translation tables and the IOMMU hardware provides mechanisms to keep the tables 
synchronized and to handle exception conditions. The IOMMU automatically walks address translation tables 
based on control bits set by the system software. 

The IOMMU may be used in three operational modes to do legacy one-level translation, guest and nested 
translation, and one-level translation with AMD64 long page tables. These three modes may be used 
concurrently for different peripherals.
• For legacy operation, software programs GV=0 in the DTE.
• For guest and nested two-level translation, software checks MMIO Offset 0030h[GTSup]=1. Software is 

then able to program device table entries for two-level translations. 
• For one-level translation with AMD64 long page tables, software programs the IOMMU for guest and 

nested translation but programs DTE[Mode]=000b for the nested translation.

2.3.2 Enhanced AMD64 long Page Table Compatibility

Revision 1: The IOMMU can share nested (host) page tables with the processor when the Reserved fields are 
programmed to zeros. In contrast to the AMD64 CPU, the IOMMU does not rewalk page tables when an 
access violation is detected using cached information. When the IOMMU detects an access violation in a 
nested transaction, either from a TLB hit or from a page-table walk (TLB miss), it blocks the access or returns 
an ATS response with the calculated access privileges. When the IOMMU determines the proper access 
privileges are present, it allows the requested access or returns an ATS response with the calculated access 
privileges. 

Revision 2: The compatibility of the IOMMU with AMD64 long page tables is enhanced. The IOMMU can 
directly share AMD64 long page tables with the processor for guest address translations. The guest page 
translation tables are strictly compatible with the AMD64 long format and semantics, including IOMMU 
updates to the Accessed and Dirty bits (see Section 3.2.6 [I/O Page Tables for Guest Translations] and Section 
3.2.7.4 [Updating Accessed and Dirty Bits in the Guest Address Tables]).  When guest translation is used, the 
IOMMU follows the AMD64 long address translation requirements for guest virtual addresses and thus 
software is not required to issue an invalidation command when it promotes guest access privileges; only when 
software demotes guest access privileges or removes the guest page (“present to not-present”) must software 
issue an invalidation. Therefore an ATS request or DMA reference that results in insufficient guest privileges 
calculated from a TLB entry may be based on stale information. To determine current permissions, the 
IOMMU must rewalk the guest page tables to recompute access permission using information read from 
memory.  The nested page tables may be read as a consequence of the guest table rewalk. The IOMMU 
determines the results of the access based on the newly read page table information. The rewalk may require a 
full walk of both guest and nested translations. Details are in Section 3.2.7 [Guest and Nested Address 
Translation]).  The AMD64 long page tables contain information about memory types (PAT); the IOMMU 
can provide memory type information to a peripheral but does not interpret or validate the information.

2.3.3 Performance Features

Revision 1: Performance counters are implementation-specific. 

Revision 2: Three performance-oriented features are available: performance counters, the PREFETCH 
command, and the FLUSH_ALL command.

2.3.3.1 Performance Counters

Revision 1: Performance counters may be supported by an implementation but are not required in the 
architecture. 
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Revision 2: To provide system software with consistent performance monitoring and evaluation mechanisms, 
an optional set of performance counters are defined (see MMIO Offset 0030h[PCSup]). An implementation 
may provide additional counters. The counters run independent of processor activity. The counters are 
organized into counter banks that fit in a 4K byte page so they can be used by a hypervisor or assigned to a 
guest operating system. The number of counters and counter banks are reported to system software (see 
Section 3.7.2 [IOMMU MMIO Registers] and Section 5.3.3 [I/O Virtualization Hardware Definition (IVHD) 
Block]). Each counter bank has controls that filter for devices and event sources of interest. Each event counter 
is programmed to count events or the duration of the events, and each counter register has an optional signal 
for thresholding purposes (see Section 3.4.10 [EVENT_COUNTER_ZERO Event]). 

2.3.3.2 Loading the IOMMU TLB

Revision 1: The IOMMU loads the TLB in response to peripheral interrupts or accesses to memory. 

Revision 2: The PREFETCH_IOMMU_PAGES command gives system software the ability to load the 
IOMMU TLB with relevant translation information (see Section 3.3.6 [PREFETCH_IOMMU_PAGES]), 
especially error processing information (Section 3.3.6.1 [Event Processing for 
PREFETCH_IOMMU_PAGES]). 

Support for the prefetch feature is indicated by MMIO Offset 0030h[PreFSup]. If PreFSup=0, a 
PREFETCH_IOMMU_PAGES command causes the IOMMU to create an error event (Section 3.4.5 
[ILLEGAL_COMMAND_ERROR Event]). Because a TLB is a caching structure, the prefetch command must 
be considered advisory. Even if the IOMMU were to fetch the address translation information for every 
prefetch command, the TLB entry may be overwritten by other translation information before it is ever used 
and an attempt to use the translation information would cause a page table walk after all. 

The PREFETCH_IOMMU_PAGES command is a hint to the IOMMU that the associated translation records 
will be needed relatively soon and that the IOMMU should execute a page table walk to load the translation 
information. Based on internal status and workloads, the IOMMU may fetch the translation information into a 
TLB. If an entry is already in the TLB, the IOMMU may adjust LRU or other control tags to lengthen cache 
residency. 

2.3.3.3 Flushing the IOMMU TLB

Revision 1: System software flushes the IOMMU caches using the INVALIDATE_DEVTAB_ENTRY 
command (per DeviceID), the INVALIDATE_IOMMU_PAGES command (per DomainID), and the 
INVALIDATE_INTERRUPT_TABLE command (per DeviceID). 

Revision 2: The INVALIDATE_IOMMU_ALL command may simplify trusted boot, error recovery, and 
resumption from low-power states (see Section 3.3.8 [INVALIDATE_IOMMU_ALL]). At the completion of 
an INVALIDATE_IOMMU_ALL command, all IOMMU TLBs are empty, including cached portions of the 
device table, guest CR3 table, page directory entries, page table entries, and interrupt remapping entries 
(including the Guest APIC Table Root Pointer). Section 3.3.9 [IOMMU Ordering Rules] describes how 
outstanding operations must be handled.  The operational status of the IOMMU is not affected so translations, 
command- and event-processing, address translation requests, and peripheral page service request processing 
continue normally. The contents of the MMIO registers are not affected except to advance the Command 
Buffer Head Pointer Register [MMIO Offset 2000h] beyond the INVALIDATE_IOMMU_ALL command. The 
IOMMU may start reloading internal caches with information at any time after the 
INVALIDATE_IOMMU_ALL command completes. The INVALIDATE_IOMMU_ALL command guarantees 
ordering as described in Section 3.3.9 [IOMMU Ordering Rules].
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2.3.4 Address Translation Services for Guest Virtual Addresses

Revision 1: Address translation services can be used by a peripheral to translate a GPA to an SPA. To translate 
a GPA to an SPA, a PCIe-connected peripheral issues an ATS request lacking a PASID TLP prefix recognized 
by the IOMMU (see Section 3.2.7.7 [PCIe TLP PASID Prefix]). The IOMMU evaluates access privileges 
using cached information and walks the page tables when required. The resulting access privileges are returned 
in the ATS response. 

Revision 2: Address translation services can be used by a peripheral to translate a GVA or GPA to an SPA. To 
translate a GVA to an SPA, a peripheral connected by PCIe issues an ATS request containing a valid PASID to 
present flags and a canonical virtual address (see Section 2.3.6 [Selecting Translation Tables in a Memory 
Transaction] and Section 3.2.7.7 [PCIe TLP PASID Prefix]). An integrated peripheral may use means other 
than the ATS protocol to present flags and the virtual address, such as wire signals. . The IOMMU evaluates 
access privileges using cached information for efficiency and walks the page tables when required.  To match 
AMD64 semantics, the IOMMU must rewalk the guest page tables if previously cached information indicate 
insufficient privileges for the access (see Section 3.2.7.1 [Combining Guest and Host Address Translation] and 
Table 27).  The resulting access privileges are returned in the ATS response. To carry the additional 
information for a guest address, the IOMMU uses a PCIe TLP prefix containing a valid PASID (see Section 
3.2.7.7 [PCIe TLP PASID Prefix]).

The IOMMU must update the Accessed and Dirty bits in the GVA page table while servicing an ATS request as 
if the peripheral had actually accessed memory (see Section 3.2.7.4 [Updating Accessed and Dirty Bits in the 
Guest Address Tables]). For the purpose of evaluating GVA Accessed and Dirty bits, the IOMMU must use the 
access level indicated in the ATS packet. An ATS request for read-only access determines the Accessed bit 
setting and an ATS request for read-write access determines the Dirty bit setting (see Table 27). When 
processing a GPA, the IOMMU treats the page tables as read-only.  

Software note: Software must issue an invalidation command when it changes A or D bits in a page table entry 
to 0 from 1. This requirement allows the IOMMU to cache the A & D bits in a TLB for higher performance.

Software issues an INVALIDATE_IOTLB_PAGES command to cause the IOMMU to generate an invalidation 
request to the peripheral (see Section 3.3.4 [INVALIDATE_IOTLB_PAGES]). An invalidation request sent 
downstream to the device lacks a valid PASID prefix when the contents are a GPA. An invalidation request 
sent downstream to the device has a valid PASID prefix when the contents are a GVA and the PASID is in the 
PASID TLP prefix.

The conditions under which a peripheral with an IOTLB must invalidate a cached translation entry that caused 
an insufficient-privilege check and obtain a fresh translation using ATS are in Section 3.1.4.8 [Discarding 
IOTLB Information to Rewalk Page Tables]. 

2.3.5 Peripheral Page Service Request Support Compatible with PCI-SIG PRI

Revision 1: The IOMMU does not support the PCI-SIG Page Request Interface (PRI) specification.

Revision 2: An IOMMU optionally supports the PCI-SIG PRI specification as a complement to PCI-SIG 
Address Translation Service (ATS) specification (see Section 3.1.1 [Normal Operation]). The IOMMU support 
for PRI is called the peripheral page request (PPR) service (see Section 3.5 [Peripheral Page Service Request 
(PPR) Logging]). 

The operating system is usually required to pin memory pages used for I/O; the pinned pages are often 
allocated from a separate memory pool of limited capacity. ATS and PRI can be used together to enable the 
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peripheral to use unpinned pages for I/O. When processing ATS requests, the IOMMU does not signal events 
when insufficient access privileges or not-present pages are detected; instead it returns the permissions 
calculated from the page tables.  The peripheral examines the response to determine an appropriate action (e.g., 
use PRI to request system software to service a page table entry). Use of PPR/PRI allows a peripheral to 
request the operating system to change the access privileges of the page. Use of ATS with PPR can allow a 
system to operate efficiently in a reduced memory footprint.

2.3.6 Selecting Translation Tables in a Memory Transaction

Revision 1: A PCIe packet contains a GPA and the originating BDF is used to select GPA-to-SPA translation 
tables. A PCI-SIG TLP prefix is not interpreted by the IOMMU. 

Revision 2: The PCI-SIG defined a method to add information to a transaction called the TLP prefix. The TLP 
prefix carries added information for a transaction that bears an x86-canonical GVA. When a PCIe transaction 
has a TLP prefix, the packet contains a GVA and the TLP prefix selects the guest tables for GVA-to-GPA 
translation; when a PCIe transaction has no TLP prefix, the packet contains a GPA. The originating BDF is 
used to select GPA-to-SPA translation tables. Details are in Section 3.2.7.7 [PCIe TLP PASID Prefix].

2.3.7 Implementation Considerations to Guarantee Memory Isolation

Revision 1: The IOMMU does not support guest address translation. 

Revision 2: With the introduction of guest address translation, there are two implementation considerations 
discussed in this section: process address space IDs (PASID) and peripheral local memory protection.

The hypervisor typically uses the nested translation layer to separate and isolate guest virtual machines. A 
peripheral that is directly assigned to the guest VM is contained to the memory space of that virtual machine. 
The peripheral is unable to change or inspect memory or peripherals belonging to the hypervisor or another 
virtual machine. Within the guest virtual machine, there are a kernel address space and several process (user) 
address spaces. Using just nested translation information, a peripheral is usually granted kernel privileges so 
that it has relatively free access to the entire contents of the guest virtual machine memory. To enable user-level 
(process) I/O and advanced computation models, the guest translation layer is introduced for separation and 
isolation of guest processes and I/O. Using guest translation in the IOMMU, a peripheral can be directly 
assigned to a process in a guest virtual machine or a GPU can run computations in the same address space as a 
user process. This requires that the process address space be identified to the IOMMU so that the proper 
translation tables will be used. In other words, each memory transaction must be tagged with the PASID. This 
architectural specification does not define how the PASID is carried in the system in the general case because 
each implementation will have different requirements.

In a system that connects a peripheral using an I/O bus, the bus protocol can be extended to carry the 
originating PASID as well as DeviceID, address, and access type. In the PCI-SIG PCIe specification, the 
PASID TLP prefix of the bus packet carries the PASID information which is then used by the IOMMU to select 
the appropriate guest CR3 table (see Section 2.3.4 [Address Translation Services for Guest Virtual Addresses] 
and Section 3.2.6 [I/O Page Tables for Guest Translations]).  This provides memory isolation among processes 
and virtual machines.

In a system that integrates peripherals and graphics units onto the processor die, it is not necessary to use an 
I/O bus to connect peripherals to memory. In this case, the PASID can simply be carried on wires or as a tag 
between the integrated peripheral and the integrated IOMMU. For software compatibility, it is recommended 
that integrated peripherals emulate ATS behavior and semantics.  This provides memory isolation among 
processes and virtual machines.
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Sophisticated, multi-context peripherals that require local memory for performance or security need to offer 
memory isolation and separation features similar to those provided by the IOMMU. The general architecture of 
such a device is illustrated in Figure 3. The system (CPU/Chipset, including an IOMMU) is drawn in the upper 
part of the figure and a multi-context peripheral is drawn in the lower part. Many parts of the peripheral are 
optional so multiplexors are shown where functions can be by-passed. For example, on the right side of the 
figure, an access to the system address space may either flow through an IOTLB working with an ATS/PRI 
unit, or it may flow directly to an IOMMU for service. The device processing complex may represent a 
GPGPU or other specialized computational engine. It may even represent an advanced peripheral controller 
such as a NIC with extensive off-load capabilities.

Figure 3: General Architecture of a Sophisticated Peripheral 

There are four basic access flows to consider. A data access may originate with the CPU or with the device 
processing complex and it may terminate in a local memory access or in a system access. Regardless of the 
source or destination, system guarantees must be honored. The IOMMU and the local memory protection map 
are used to provide basic enforcement. A peripheral designer may add IOTLB functionality that uses ATS for 
translation efficiency; PPR/PRI support may be added for advanced function and efficiency. A peripheral may 
provide a private MMU function for custom address translation and access control.

2.3.8 Interrupt Virtualization (Guest Virtual Interrupt Controller)

Revision 1: Interrupt remapping is supported.
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Revision 2: The IOMMU optionally supports interrupt virtualization. Device interrupts can be delivered 
directly to running guest virtual machines without hypervisor intervention when interrupts are virtualized (see 
MMIO Offset 0030h[GASup] and MMIO Offset 0018h[GAEn]). This can reduce the delivery latency and 
overhead of guest VM interrupts. This feature requires compatible APIC virtualization support in the 
processor. The processor and the IOMMU coordinate to maintain interrupt state in the Guest Virtual APIC 
Table when delivering interrupts. Interrupt remapping and interrupt virtualization may be enabled 
independently. See Section 3.2.8 [Guest Virtual APIC Table for Interrupt Virtualization]. 
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3 Architecture

This chapter describes the IOMMU's architecture mainly from a system software point of view. The discussion 
starts with the normal steady state behavior of the IOMMU once it has been set up, focusing on how the 
IOMMU handles various device transactions. The following section describes the in-memory data structures 
used to control the IOMMU, together with the procedures software must follow to correctly update these 
(shared) data structures. Finally, the chapter concludes with a description of the PCI resources that must be 
initialized at system startup time to configure the IOMMU.

3.1 Behavior

When the IOMMU is disabled it simply passes all bus traffic through without alteration.

When the IOMMU is enabled, it intercepts requests arriving from downstream devices (which may be 
HyperTransport™ link or PCI based), performs permission checks and address translation on the requests, and 
sends translated versions upstream via the HyperTransport™ link to system memory space. Other requests are 
passed through unaltered (details in Section 3.1.1 [Normal Operation]). PCI devices serviced by a single 
IOMMU must be on the same PCI Segment Group (see PCI Firmware specification for further details of PCI 
Segment Groups).

The IOMMU reads three tables in system memory to perform its permission checks, interrupt remapping, and 
address translations. To avoid deadlock, memory accesses for device tables, page tables, and interrupt 
remapping tables by the IOMMU use an isochronous virtual channel and may only reference addresses in 
system memory. Other memory reads originated by the IOMMU to command buffers, event log entries, and 
optional request queue entries use the normal virtual channel. System performance could be substantially 
reduced if the IOMMU performed the full table lookup process for every device request it handled. Therefore, 
implementations of the IOMMU are expected to maintain internal caches for the contents of the IOMMU's in-
memory tables, and correct operation of the IOMMU requires system software to send appropriate invalidation 
commands to the IOMMU when it updates table entries that may have been cached by the IOMMU.

The IOMMU writes to the event log in system memory using the normal virtual channel. The IOMMU can 
optionally write to the peripheral page service request queue in system memory; these writes use the normal 
virtual channel.

The IOMMU signals interrupts using standard PCI INTx, MSI, or MSI-X interrupts. 

3.1.1 Normal Operation

The typical flow of requests through the IOMMU is as follows:
• Read, write and interrupt transactions generated by the IOMMU are not translated by the IOMMU.
• Transactions arriving from upstream must be passed downstream unaltered.
• Transactions arriving from downstream that are response, fence, or flush commands must be passed 

upstream unaltered.
• Transactions arriving from downstream that reference addresses within the IOMMU exclusion range must be 

passed upstream unaltered.
• Memory read and write transactions from downstream result in table lookups in the device table to obtain the 

DomainID of the requesting I/O device and to locate I/O page tables, and then further table lookups in I/O 
page tables to perform address translation and permission checking. After performing permission checks and 
address translation, the IOMMU forwards the resulting transactions upstream if the transaction is allowed 
from the I/O device.

• Address translation requests from downstream result in table lookups as for memory read and write 
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transactions. Translated address and access permission information is returned to the requesting peripheral. 
Software is required to invalidate address translation mappings cached by a peripheral.

• Peripheral page service requests from downstream result in an event log entry if not supported, or result in a 
peripheral page service request queue entry written to system memory.

• Interrupt addresses are never translated to system memory addresses, but other special address ranges may be 
optionally treated as memory addresses for translation.

• Interrupts from downstream result in table lookups in the device table and then in the interrupt remapping 
tables to remap the interrupt. After performing checks and interrupt remapping, the IOMMU forwards the 
resulting interrupts upstream if the interrupt is allowed from the I/O device.

• Port I/O space transactions from downstream devices result in a device table lookup to determine if the I/O 
device is allowed to access port I/O space.

• The IOMMU maintains an event log in system memory containing the details of transactions that do not 
complete normally.

• The IOMMU does not further translate pretranslated memory read and write requests from devices if the I/O 
device is marked as being able to generate pretranslated addresses.

• The IOMMU processes commands from the command queue.

In addition to passing on transactions from downstream devices, the IOMMU inserts transactions of its own to 
perform reads to and writes from system memory and to signal interrupts.

The IOMMU is allowed to cache page table and device table contents to speed translations. An invalidation 
protocol is defined so that software can keep the cache contents consistent with memory when it updates the 
tables.  

3.1.2 IOMMU Logical Topology

Once configured, the IOMMU logically resides on the HyperTransport™ bus between the devices it translates 
for and the upstream interface. As a result of this logical topology the transactions seen by the IOMMU are 
defined in terms of HyperTransport™ transactions. Accesses to the HyperTransport™ address range 
FD_0000_0000h -FF_FFFF_FFFFh, inclusive, have special meanings. The meaning is encoded into various 
portions of the address as shown in Table 2 and Table 16; complete details are in the HyperTransport™ I/O 
Link Specification. Upstream transactions to these address ranges are controlled by device table control bits, 
page tables or the interrupt remapping tables. The special address controls do not apply to pretranslated 
addresses.

Revision 2: The special address controls in Table 2 are interpreted against upstream untranslated addresses 
(GPA) that lack a PASID TLP prefix.  The special address controls do not apply to intermediate translation 
results during the translation of a guest virtual address to a system physical address. 

Table 2: Special Address Controls (GPA)

Base Address Top Address Use Access controlled by

FD_0000_0000h FD_F7FF_FFFFh Reserved interrupt address 
space

See Section 3.4.8 
[INVALID_DEVICE_REQUEST 

Event]
FD_F800_0000h FD_F8FF_FFFFh Interrupt/EOI IntCtl, Interrupt Remapping Tables
FD_F900_0000h FD_F90F_FFFFh Legacy PIC IACK Page Tables
FD_F910_0000h FD_F91F_FFFFh System Management SysMgt, Page Tables
FD_F920_0000h FD_FAFF_FFFFh Reserved Page Tables
FD_FB00_0000h FD_FBFF_FFFFh Address Translation HtAtsResv, Page Tables
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During configuration, an IOMMU may appear connected in different topologies that are implementation 
dependent.

3.1.3 IOMMU Event Reporting

The IOMMU must detect and may report several kinds of events that may arise due to unusual hardware or 
software behavior. When the IOMMU detects an event of any kind and event logging is enabled, it writes an 
appropriate event entry into the event log located in system memory. In addition, it may optionally signal an 
interrupt when the event log is written. 

Events detected by the IOMMU include I/O page faults as well as hardware memory errors detected when 
walking the I/O page tables. A detected event may cause a page table or interrupt remapping table walk to 
terminate before reaching the final memory-translation or interrupt-remap entry. When a walk is terminated 
early, the event information reported is based on the results calculated in the completed portion of the walk, 
starting with the DTE.

Software note: the TLB caching behavior of the IOMMU is not defined for an entry causing an events; some 
implementations may insert an entry in the TLB cache before verifying that it causes no exceptions. System 
software should invalidate the address that caused the event.

3.1.3.1 IOMMU Event Responses

The IOMMU response to events depends on the type of event detected, the type of transaction that caused the 
event, and the state of the IOMMU at the time of the event. 

If an IOMMU is not enabled or does not support address translation requests, the IOMMU responds to 
translation requests with a master abort. 

If the IOMMU is enabled, it can have one of three event responses:
• For upstream transactions that are master aborted or target aborted, the PCI/Host bridge that is co-located 

with the IOMMU is the completer of the transaction. Transactions that are target aborted set the legacy 
Signaled Target Abort bit in a manner consistent with the bus specification over which the transaction was 
received (secondary port). These aborted transactions should not set any AER bits (if implemented and 
otherwise applicable). 

• Exceptions detected in transactions that target the IOMMU function are not logged in the IOMMU event log. 
The exceptions are signaled following the rules of the bus specification applicable to the primary bus with 
which the IOMMU function is associated.

• Exceptions detected in the transactions originating from the IOMMU function signal the event following the 
rules of the bus specification applicable to the primary bus with which the IOMMU is associated. 
Additionally, exceptions in command buffer and table walk reads are logged in the IOMMU event log.

A transaction that attempts to use a device table entry beyond the end of the device table is treated as in 

FD_FC00_0000h FD_FDFF_FFFFh I/O Space IoCtl, Page Tables
FD_FE00_0000h FD_FFFF_FFFFh Configuration Page Tables
FE_0000_0000h FE_1FFF_FFFFh Extended Configuration/

Device Messages
Page Tables

FE_2000_0000h FF_FFFF_FFFFh Reserved Page Tables

Table 2: Special Address Controls (GPA)

Base Address Top Address Use Access controlled by
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Table 40.  The size of the device table is defined by the Device Table Base Address Register, MMIO Offset 
0000h[Size].

3.1.3.2 I/O Page Faults

The IOMMU may detect page-fault conditions when processing peripheral requests and the response of the 
IOMMU depends on the type of the request and IOMMU control settings.

A peripheral’s memory transaction may result in an I/O page fault. These page faults can arise for a variety of 
reasons, such as I/O page table entries lacking sufficient permission or memory pages marked not-present. In a 
traditional processor virtual memory implementation, page faults activate an exception handler that has the 
option to correct the underlying problem and retry the faulting instruction. The IOMMU has no such option: 
the underlying HyperTransport™ and PCI bus protocols do not provide a means for the IOMMU to signal a 
device that it should attempt to retry an access. Consequently, when the IOMMU detects an I/O page fault, it 
target aborts the faulting request. The IOMMU sets the legacy PCI Signaled Target Abort bit, if appropriate, 
and records I/O page fault information in its event log when event logging is enabled

For an address translation request, the IOMMU returns the translation result and does not signal a fault (see 
also Section 3.1.4.5 [Address Translation Requests in the Special Address Range]). The peripheral can 
examine the translation response to determine if a particular memory transaction would cause an exception. 
Peripherals may request page fault service as described in Section 3.5 [Peripheral Page Service Request (PPR) 
Logging].

3.1.3.3 Memory Access Errors

The IOMMU's own memory accesses to its in-memory tables may themselves result in several kinds of errors, 
including:
• Accesses to nonexistent or non-DRAM addresses because the IOMMU's isochronous virtual channel is 

restricted to DRAM addresses only.
• Uncorrectable ECC errors.
• Use of reserved values, including invalid or unsupported type codes in device table entries and reserved bits 

in page table entries.

The IOMMU records all detected memory access errors in its event log when event logging is enabled. 
Revision 2: Hardware errors may also be stored in the error registers (see Section 3.4.11.2 [I/O Hardware 
Event Reporting Registers]).

3.1.4 Special Conditions

This section defines the behavior of the IOMMU for particular operating conditions.

3.1.4.1 Zero-byte Read Operations

In some bus architectures, a zero-byte read operation is defined as a special operation with well-defined side 
effects. Because of these side effects, the IOMMU must permit a zero-byte read operation when a page is 
marked to allow either read or write access. Further, because the zero-byte read operation returns undefined 
data in some bus specifications, protecting the contents of a non-readable memory location requires that the 
IOMMU obscure the returned data for a zero-byte read operation. 

Implementation note: methods to obscure the returned data in a zero-byte read operation include returning a 
constant, a random value, or a predictable value not based on the data contents such as the address.
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3.1.4.2 Interrupt Address Range

Accesses to the interrupt address range (Table 2) are defined to go through the interrupt remapping portion of 
the IOMMU and not through address translation processing. Therefore, when a transaction is being processed 
as an interrupt remapping operation, the transaction attribute of pretranslated or untranslated is ignored. 

Software note: The IOMMU should not be configured such that an address translation results in a special 
address such as the interrupt address range (see Table 2).

3.1.4.3 Multi-page Address Translation Requests Lacking a PDE

An address translation transaction to the IOMMU can request multiple pages. The page size (stride) is 
generally determined by the PDE used with level=0 or level=7. The page stride is always a power of two. For 
situations where there is no relevant PDE (within the IOMMU exclusion range or when the DTE Mode=0), the 
results returned by the IOMMU are implementation-specific. 

3.1.4.4 Address Translation Requests in the IOMMU Exclusion Range

Revision 1: I/O devices may request address translations for addresses in the IOMMU exclusion range, defined 
by IOMMU Exclusion Base Register [MMIO Offset 0020h] and IOMMU Exclusion Range Limit Register 
[MMIO Offset 0028h], and may cache the results. When software changes the exclusion range, it must 
invalidate remote IOTLBs that may contain affected translation entries. Address translation requests to the 
exclusion range always return permissions that allow reading and writing

Revision 2: An address translation request for a GPA within the exclusion range returns an implementation-
defined result.  

3.1.4.5 Address Translation Requests in the Special Address Range

I/O device address translation requests for a GPA within special address ranges in Table 2 are controlled by the 
SysMgt and IoCtl settings in the device table entry (see Section 3.2.2.1 [Device Table Entry Format]) and can 
either return a translation or cause a target abort. 

3.1.4.6 Page Translation Entries Spanning Memory and Special Address Ranges

An IOMMU address translation entry for a GPA may be constructed to cover both conventional memory 
addresses and special addresses (see Table 2). The DTE[IoCtl] and DTE[SysMgt] fields control IOMMU 
behavior. To translate a GPA address in a special address range, set the corresponding special address range 
control in the DTE to direct the IOMMU to translate the desired special address ranges as memory addresses. 

3.1.4.7 Discarding IOMMU TLB Information to Rewalk Page Tables

Revision 1: The IOMMU can use address translation information from the TLB or memory to determine 
access privileges.

Revision 2: When the IOMMU detects an access violation based on cached information, it discards the 
information in the IOMMU TLB and reloads the translation information from memory. Interrupt remapping 
information is only loaded from memory on a TLB miss. See Section 2.3.4 [Address Translation Services for 
Guest Virtual Addresses] for details.
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3.1.4.8 Discarding IOTLB Information to Rewalk Page Tables

Revision 1: The peripheral can use address translation information from the IOTLB or obtained via ATS to 
determine access privileges.

Revision 2: The peripheral can use address translation information from the IOTLB or obtained via ATS to 
determine access privileges for a nested (host) access. As an AMD extension, a peripheral with an IOTLB must 
invalidate a cached entry causing an insufficient-privilege failure when R=1 or W=1 in the IOTLB entry for a 
guest access. The peripheral must then request the guest translation information using ATS and retry the 
access. If the revised privileges are insufficient for the retry, the peripheral must take appropriate action to 
abandon the access or issue a PCIe PRI request for escalated privileges. 

3.1.4.9 Updating the Accessed and Dirty Bits in Guest Page Tables

Revision 1: The IOMMU does not write page tables so it never updates the Accessed or Dirty bits in the PTE. 
Software is responsible to manage these bits. It is recommended that a read-only page made available to the 
peripheral be marked “Accessed”, and that any write-able page made available to the peripheral be marked 
“Dirty”. 

Revision 2: The IOMMU must update the guest page table Accessed and Dirty bits in a manner compatible 
with the processor, so the IOMMU implements the equivalent of a locked-OR. Specifically, the IOMMU must 
set the Accessed bit in a locked operation, and it must set the Accessed and Dirty bits in a single locked 
operation. The IOMMU never clears the Accessed or Dirty bits; software is responsible to clear the bits. The 
IOMMU is allowed to cache these bits, so software must issue invalidation commands when it clears the bits in 
PTE.  See Section 3.2.7.4 [Updating Accessed and Dirty Bits in the Guest Address Tables] and Section 3.2.7.5 
[Clearing Accessed and Dirty Bits] for details.

3.1.4.10 Address Translation Response When DTE[Mode]=0

A peripheral can request address translations when DTE[Mode]=000b; the translated physical address is equal 
to the supplied virtual address (GPA). 

3.1.4.11 Page Splintering

Revision 1: The IOMMU never splinters TLB entries. 

Revision 2: When an address is mapped by guest and nested page table entries with different page sizes, the 
IOMMU TLB entry that is created matches the size of the smaller page (see also AMD64 Technology, AMD64 
Architecture Programmer’s Manual, Volume 2: System Programming, Page Splintering).

3.1.4.12 Atomic Operations Require Read and Write Permissions

Atomic operations both read and write a page. The IOMMU must permit atomic operations from the peripheral 
only when the page is marked to allow both read and write operations.

3.1.4.13 INVALIDATE_IOTLB_PAGES and Peripheral Reset

If a peripheral is reset while an INVALIDATE_IOTLB_PAGES command is being executed by the IOMMU 
(Section 3.3.4 [INVALIDATE_IOTLB_PAGES]), the peripheral may stop processing invalidations and 
software must process any IOTLB_INV_TIMEOUT events that result (Section 3.4.7 
[IOTLB_INV_TIMEOUT Event]).
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3.2 Data Structures

Host software must maintain up to seven in-memory data structures for use by the IOMMU. These data 
structures are:
1. The device table is a table indexed by DeviceIDs. Each device table entry contains mode bits, a pointer to 

the I/O page tables, a pointer to an interrupt remapping control table, a set of control bits, and a 16-bit 
DomainID. The DomainID acts as an address space identifier, allowing multiple devices sharing the same 
I/O page tables to share the same translation cache resources on the IOMMU. The page tables must be the 
same for all devices that share a DomainID.

2. The I/O page table(s): Each device table entry may specify a different I/O page table, or different device 
table entries may share the same I/O page tables. Each time the IOMMU processes a device access to 
memory, it looks up the device virtual address in its translation cache and/or the appropriate I/O page 
tables to determine whether the device has permission, as well as (if permitted) the system physical address 
to access.

3. The command buffer: The IOMMU accepts commands queued by the processor through a circular buffer 
located in system memory.

4. The event log: The IOMMU reports atypical events to the processor by means of another circular buffer, 
the event log, located in system memory.

5. The interrupt remapping table(s): Each device table entry may specify an interrupt remapping table. Each 
time the IOMMU processes a device interrupt request, it looks up the IRTE to remap the interrupt to the 
destination with a translated vector.

6. The peripheral page service request log: Revision 2. The IOMMU can accept requests from PRI-capable 
peripherals to service page change requests. These requests are reported in a circular buffer, the PPR log, 
located in system memory.

7. The Guest Virtual APIC tables. Revision 2. The IOMMU can update guest interrupt request status.

Figure 4 illustrates the relationships among the IOMMU data structures. Figure elements with dashed borders 
are new in IOMMU Revision 2.
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Figure 4: IOMMU Data Structures 

Revision 1: The IOMMU supports one-level translation tables for address translation and for interrupt 
remapping. The event log is the only data structures in system memory that is written by the IOMMU. The 
maximum size of a virtual address (GPA) is defined in Capability Offset 10h[VAsize] and the maximum size of 
a physical address (SPA) is defined in Capability Offset 10h[PAsize].

Revision 2: The IOMMU optionally supports both one-level and two-level translation tables (Table 3) as well 
as guest APIC virtualization, hardware error registers, performance counter registers, and peripheral page-
request services. An IOMMU can write to the event log, the peripheral page service request log, the guest 
virtual APIC tables, and the guest page tables. The maximum size of a guest virtual address (GVA) is defined 
in Capability Offset 10h[GVAsize]. 

3.2.1 Updating Shared Tables

The I/O page table structures have been designed so they can be shared among processors and IOMMUs. The 
table structures (interrupt remapping table, device table, and host I/O page tables) can be shared among 
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IOMMUs. The guest I/O page table structures are directly compatible with AMD64 long page table formats 
and the IOMMU (Revision 2) accesses and updates the tables so they can be shared with a processor. Shared 
tables have requirements for correct updates by system software.

When updating a table entry, system software is encouraged to use aligned 64-bit accesses although control bits 
are defined that allow system software updating a table to use byte accesses.

Each table can also have its contents cached by the IOMMU or peripheral IOTLBs. Therefore, after updating a 
table entry that can be cached, system software must send the IOMMU an appropriate invalidate command. 
Information in the peripheral IOTLBs must also be invalidated. 

Revision 2: The IOMMU adds support for hardware updates of Accessed and Dirty bits in page tables. The 
IOMMU is allowed to cache these bits, so software must issue invalidation commands when it clears the bits in 
memory.

3.2.2 Device Table

I/O devices that originate transactions are identified by a 16-bit DeviceID that is used to index the device table. 
The content of the DeviceID is fabric-dependent; for example, Figure 5 shows how PCIe® and PCI-X® 
RequesterIDs are mapped into IOMMU DeviceIDs, and Figure 6 shows how HyperTransport™ UnitIDs are 
mapped into IOMMU DeviceIDs. 

Software note: the mapping of DeviceID from one bus to another is platform specific; consult the platform 
documentation for details.

Figure 5: Example DeviceID Derived from Peripheral RequesterID

The number of bits allocated to the Bus, Device, and Function fields varies according to settings in the PCI 
configuration. The partitioning shown in Figure 5 is a typical example.

Figure 6: DeviceID Derived from Peripheral UnitID

The device table is represented as an array of 256-bit entries located in contiguous system memory. Since there 
are 64K possible DeviceIDs, the device table may be up to 2M bytes in length. The Device Table Base Address 
Register [MMIO Offset 0000h], controls the system physical address and size of the device table. The device 
table must be aligned at a 4K byte boundary in system memory, and must be a multiple of 4K bytes in length. 
The IOMMU must read the entire device table entry in two 128-bit transactions (as defined by the scope of the 
validity indicators) or a single 256-bit transaction.

When the IOMMU is enabled, any I/O device whose DeviceID is beyond the end of the device table is denied 
I/O permission (the IOMMU target aborts the access) and all attempted accesses by such I/O devices are 
logged when event logging is enabled. Revision 2: PRI requests are not validated using the device table and so 
the IOMMU may create a PPR log entry for an I/O device whose DeviceID is beyond the end of the device 
table when page requests are enabled (see MMIO Offset 0018h[PPREn]), so software must validate the 

15 8 7 3 2 0

Bus Device Function

15 8 7 3 2 0

Bus1 Unit ID 0

1. The HyperTransport™ bus number is located in the 
Slave/Primary Interface Block associated with the 
HyperTransport™ link that the traffic was received from.
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DeviceID as part of PPR processing.

If an I/O device uses PCI phantom functions, software must replicate device table entries such that index 
calculations retrieve the correct entries for any phantom function used by the I/O device.

3.2.2.1 Device Table Entry Format

Revision 1: Device table entries have an address translation portion and an interrupt remapping portion. 
Control bits independently govern the use of each portion for a given peripheral DeviceID. 

Revision 2: Device table entries have an address translation portion, an interrupt remapping portion, and an 
interrupt virtualization portion; control bits govern the use of each portion for a given DeviceID. The address 
translation portion has guest and nested translation portions that can be manipulated separately; guest 
translation cannot operate without nested translation. Consult Table 3 and Table 4 to determine if Revision 1 or 
Revision 2 functionality is available and enabled. The address translation features in Table 3 may be 
implemented separately from the interrupt remapping and virtualization features in Table 4; when 
implemented, address and interrupt features may be enabled and operated independently.

Table 3: Revision Feature Enablement for Address Translation

GTSup
(MMIO 
Offset 
0030h)

GTEn
(MMIO 
Offset 
0018h)

Device Table Entry 
Address Translation 

Settings
Revision 1 Address 

Translation Features 
Available for Use

Revision 2 Address 
Translation Features 

Available for UseV TV GV
0 X X X X Yes No
1 0 X X X Yes No

1 1 0 X X Available but not active for 
the DeviceID

Available but not active for 
the DeviceID.

1 1 1 0 X Yes Available but not active for 
the DeviceID.

1 1 1 1 0 Yes
Available but guest address 
translation is not active for 
the DeviceID.

1 1 1 1 1 Yes
Available and guest address 
translation is active for the 
DeviceID.

Table 4: Revision Feature Enablement for Interrupt Remapping and Virtualization

GASup
(MMIO 
Offset 
0030h)

GAEn
(MMIO 
Offset 
0018h)

Device Table Entry 
Interrupt Settings

Revision 1 Interrupt 
Features Available for Use

Revision 2 Interrupt 
Features Available for UseIV ZV

0 X X X Yes No
1 0 X X Yes No

1 1 0 0 Yes Available but not active for 
the DeviceID.
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The device table entry (DTE) format is shown in Figure 7.

Figure 7: Device Table Entry Fields

Fields in the device table entry are defined in Table 5. Where indicated in Table 5, events are reported as 
described in Section 3.4.1 [ILLEGAL_DEV_TABLE_ENTRY Event]. Shaded areas mark fields that are 
reserved; text in Italics mark fields that are Reserved in Revision 1 and have a function defined in Revision 2.

1 1 1 0 Yes
Interrupt remapping is active 
for the DeviceID but interrupt 
virtualization is not.

1 1 0 1 Yes
Interrupt virtualization is 
active for the DeviceID but 
interrupt remapping is not.

1 1 1 1 Yes
Interrupt remapping and 
virtualization are active for 
the DeviceID.
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Reserved Interrupt Table Root Pointer [51:32]

159  134 133 132 129 128

Interrupt Table Root Pointer [31:6] IG IntTabLen IV

127 107 106 105 104 103 102 101 100 99 98 97 96

GCR3 Table Root Pointer[51:31] Res SysMgt EX SD
C

ac
he IoCtl SA SE I

95 80 79 64

GCR3 Table Root Pointer[30:15] DomainID[15:0]

63 62 61 60 58 57 56 55 54 52 51 32

Res IW IR GCR3 
TRP[14:12] GLX GV Reserved Host Page Table Root Pointer [51:32]

31 12 11 9 8 2 1 0

Host Page Table Root Pointer [31:12] Mode[2:0] Reserved TV V

Table 5: Device Table Entry Field Definitions

Bits Description.
255:244 Reserved. Revision 1: Reserved. Non-zero bits in this field are reported as an event when IV=1. 

Revision 2: Reserved. Non-zero bits in this field are reported as an event when IV=1 and ZV=1.

Table 4: Revision Feature Enablement for Interrupt Remapping and Virtualization

GASup
(MMIO 
Offset 
0030h)

GAEn
(MMIO 
Offset 
0018h)

Device Table Entry 
Interrupt Settings

Revision 1 Interrupt 
Features Available for Use

Revision 2 Interrupt 
Features Available for UseIV ZV
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243:204 Guest Virtual APIC Table Root Pointer. Revision 1: Reserved. Non-zero bits in this field are 
reported as an event when IV=1. Revision 2: The guest virtual APIC table root pointer . The guest 
virtual APIC table root pointer is ignored by hardware when ZV=0.  When MMIO Offset 
0030h[GASup]=0, the Guest Virtual APIC Table Root Pointer field must be 0.

203:193 GVATlength: Guest virtual APIC table length. Revision 1: Reserved. Non-zero bits in this field 
are reported as an event when IV=1. Revision 2: GVATlength[10:0]. GVATlength is ignored by 
hardware when ZV=0. When MMIO Offset 0030h[GASup]=0, the GVATlength field must be 0.

192 ZV: Guest virtual APIC table valid. Revision 1: Reserved. A non-zero value in this field is 
reported as an event when IV=1. Revision 2: This field enables guest virtual interrupt controller 
processing and indicates that the guest virtual APIC table root pointer and GVATlength fields are 
meaningful. 0b=IOMMU does not perform guest virtual interrupt controller processing, and the 
guest virtual APIC table root pointer and GVATlength fields are ignored. 1b=IOMMU performs 
guest virtual APIC translation using the guest virtual APIC table root pointer and GVATlength fields. 
ZV and the fields it governs are independent of IV.  When MMIO Offset 0030h[GASup]=0, the ZV 
field must be 0.

191 Lint1Pass: LINT1 (legacy PIC NMI) pass-through. This bit enables device initiated LINT1 
interrupts to be forwarded by the IOMMU. 1=Device initiated LINT1 interrupts are forwarded 
unmapped. 0=Device initiated LINT1 interrupts are target aborted by the IOMMU. See Table 8.

190 Lint0Pass: LINT0 (legacy PIC ExtInt) pass-through. This bit enables device initiated LINT0 
interrupts to be forwarded by the IOMMU. 1=Device initiated LINT0 interrupts are forwarded 
unmapped. 0=Device initiated LINT0 interrupts are target aborted by the IOMMU. See Table 8.

189:188 IntCtl: interrupt control. This field controls how fixed and arbitrated interrupt messages are 
handled. Fixed and arbitrated interrupt messages use a HyperTransport™ special addresses as shown 
in Table 2 and Table 16.

00b=Fixed and arbitrated interrupts target aborted 
01b=Fixed and arbitrated interrupts are forwarded unmapped
10b=Fixed and arbitrated interrupts remapped 
11b=Reserved
See Table 7.

If IntCtl=10b, a valid interrupt table root pointer must be present; if !(IntCtl=10b) the interrupt table 
root pointer is ignored.
Note: IntCtl=11b is reported as an event when IV=1.

187 Reserved.
Note: Non-zero bits in this field are reported as an event when IV=1.

186 NMIPass: NMI pass-through. 1=pass through NMI interrupt messages unmapped. 0=NMI 
interrupt message is target aborted by the IOMMU. See Table 8.

185 EIntPass: ExtInt pass-through. 1=pass through ExtInt interrupt messages unmapped. 0=External 
interrupt message is target aborted by the IOMMU. See Table 8.

184 InitPass: INIT pass-through. 1=pass through INIT interrupt messages unmapped. 0=INIT interrupt 
message handling target aborted by the IOMMU. See Table 8.

183-180 Reserved.
Note: Non-zero bits in this field are reported as an event when IV=1.

179:134 Interrupt table root pointer. The interrupt table root pointer is only used when interrupt translation 
is enabled (IntCtl=10b). It contains the SPA of the base address of the interrupt remapping table for 
the I/O device. The interrupt remapping table must be aligned to start on a 128-byte boundary.

Table 5: Device Table Entry Field Definitions
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133 IG: ignore unmapped interrupts. 1=Supress event logging for interrupt messages causing 
IO_PAGE_FAULT events. 0=creation of event log entries for IO_PAGE_FAULT events is controlled 
by SupIOPF in the interrupt remapping table entry (see Section 3.2.5 [Interrupt Remapping Tables]).

132:129 IntTabLen: interrupt table length. This field specifies the length of the interrupt remapping table.
0000b = 1 entry 0001b = 2 entries
0010b = 4 entries  0011b = 8 entries
...
1010b = 1024 entries  1011b = 2048 entries
11xxb = reserved
Note: IntTabLen=11xxb is reported as an event when IV=1.

128 IV: interrupt map valid. Revision 1: 1=Interrupt map information in bits [255:129] is valid. 
0=Interrupt remapping information in bits [255:129] is not valid and interrupts are passed through 
the IOMMU unmapped. Revision 2: 1=Interrupt map information in bits [191:129] is valid. 
0=Interrupt remapping information in bits [191:129] is not valid and interrupts are passed through 
the IOMMU unmapped. See Table 7 and Table 8. IV and the fields it governs are independent of ZV.

127:107 GCR3 Table Root Pointer[51:31]. Revision 1: Reserved. Non-zero bits in this field are reported as 
an event when V=1. Revision 2: The guest CR3 table root pointer contains the SPA of the guest CR3 
table for the I/O device. The guest CR3 table root pointer may be used by hardware when V=1 and 
TV=1 and GV=1; it is ignored otherwise. See Section 3.2.6 [I/O Page Tables for Guest Translations].

106 Reserved.
105:104 SysMgt: system management message enable. Specifies whether device-initiated untranslated 

memory requests that target the system management address space in Table 2 are blocked, 
forwarded, or translated by the IOMMU. 
00b=Device initiated DMA transactions in the system management address range are return target 
abort status by the IOMMU. Translation requests return target abort status.
01b=Device initiated system management messages, including INTx messages, are forwarded 
untranslated by the IOMMU. Upstream reads or non-posted writes return target abort status. 
Translation requests return target abort status.
10b=Device initiated INTx messages are forwarded by the IOMMU untranslated; device initiated 
system management messages other than INTx messages return target abort status. Upstream reads 
and non-posted writes return target abort status. Translation requests return target abort status.
11b=Device initiated DMA transactions in the system management address range are translated by 
the IOMMU.

103 EX: allow exclusion. 1=Accesses from this device that address the IOMMU exclusion range are 
excluded from translation and access checks. 0=Accesses from this device to the IOMMU exclusion 
range are translated and checked for access rights. See IOMMU Exclusion Base Register [MMIO 
Offset 0020h] and IOMMU Exclusion Range Limit Register [MMIO Offset 0028h].

102 SD: snoop disable. 1=IOMMU page table walk transactions for this device are not snooped. 
HyperTransport™ transactions by an IOMMU must not set the coherent bit in page table walk 
requests for this device. 0=IOMMU page table walk transactions for this device are snooped. 
HyperTransport™ transactions by an IOMMU must set the coherent bit in page table walk requests 
for this device. See also the Coherent bit in the IOMMU Control Register [MMIO Offset 0018h].

Table 5: Device Table Entry Field Definitions
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101 Cache: IOTLB cache hint. Revision 1: 1=the IOMMU avoids caching GPA-to-SPA translation 
information obtained for ATS requests. 0=the IOMMU caches GPA-to-SPA translation information 
obtained for ATS requests when the peripheral is directed to issue untranslated addresses (see 
Table 10). Revision 2: For ATS requests containing a GVA, the IOMMU caches translation 
information and sets U=0 in an ATS response. 
Software note: It is recommended that software set Cache=0 for peripherals with an IOTLB.
1=Caching of translations for explicit translation requests is not recommended. See Section 3.2.7.3 
[Recalculating Present, Read, and Write Access Permissions].

100:99 IoCtl: port I/O control. Specifies whether device-initiated port I/O space transactions are blocked, 
forwarded, or translated. 
00b=Device-initiated port I/O is not allowed. The IOMMU target aborts the transaction if a port I/O 
space transaction is received. Translation requests are target aborted. 
01b=Device-initiated port I/O space transactions are allowed. The IOMMU must pass port I/O 
accesses untranslated. Translation requests are target aborted.
10b=Transactions in the port I/O space address range are translated by the IOMMU page tables as 
memory transactions.
11b=Reserved.
Note: IoCtl=00b and IoCtl=01b control the forwarding upstream of port I/O, if it is implemented.
Note: IoCtl=11b is reported as an event when V=1.

98 SA: suppress all I/O page fault events. 1=Suppress event logging for all IO_PAGE_FAULT events 
caused by memory accesses from this I/O device.
Note: SA does not affect events logged due to interrupts or IOMMU command processing.
Note: When V=0 the value of SA is ignored by the IOMMU.

97 SE: suppress I/O page fault events. Suppress event logging for IO_PAGE_FAULT events if an 
IO_PAGE_FAULT event has already been logged in the event log for this I/O device. 1=The 
IOMMU must only update the event log with an IO_PAGE_FAULT event for the first page fault seen 
for the device as long as the DeviceID remains in the IOMMU cache. The IOMMU clears all state 
associated with this bit when an INVALIDATE_DEVTAB_ENTRY command is received for the 
device or when the DeviceID is replaced in the cache by a different DeviceID. 
Software note: The SE bit controls a mechanism that reduces the number of event log entries on a 
per-device basis. The degree of filtering depends on the behavior of the device table cache. As such, 
software should not assume that only a single entry per device is made in the event log.
Note: SE does not affect events logged due to interrupts or IOMMU command processing.
Note: When V=0 the value of SE is ignored by the IOMMU

96 I: IOTLB enable. Controls IOMMU response to address translation requests from peripherals. 
0=IOMMU returns target abort status when it receives an ATS requests from the peripheral. 
1=IOMMU responds to ATS requests from the peripheral.
This bit does not affect interrupts from the peripheral. 
If I=1 when Capability Offset 00h[IotlbSup]=0, the results are undefined.

95:80 GCR3 Table Root Pointer[30:15]. Revision 1: Reserved. Non-zero bits in this field are reported as 
an event when V=1. Revision 2: The guest CR3 table root pointer contains the SPA of the top (or 
only) level of the guest CR3 table for the peripheral. The guest CR3 table root pointer may be used 
by hardware when V=1 and TV=1 and GV=1. See Section 3.2.6 [I/O Page Tables for Guest 
Translations]. Must be zero when MMIO Offset 0030h[GTSup]=0.

Table 5: Device Table Entry Field Definitions
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79:64 DomainID. The DomainID is a 16-bit integer chosen by software that the IOMMU must use to tag 
its internal translation caches and to mark event log entries. I/O devices with different page tables 
must be given different DomainIDs. I/O devices that share the same page tables may be given the 
same DomainID. I/O devices that share the same DTE[DomainID] must have the same settings in the 
DTE[Mode] and page table root pointer fields, however they may have different values in the DTE[I] 
and DTE[SysMgt] fields. If devices with the same DTE[DomainID] are given different non-zero 
values in the DTE[Mode] field or different page table root pointer values, the behavior of the 
IOMMU is undefined. The value of the DTE[DomainID] recorded in an event log entry is undefined 
when V=0 and IV=1.

63 Reserved.
Note: A non-zero value in this field is reported as an event when V=1.

62 IW: I/O write permission. Used in the calculation of effective write access with the permission bits 
in the page tables; if there are no page tables (DTE[Mode]=000b), then this bit defines the I/O write 
permission. 1=I/O device is allowed to perform DMA write transactions and 0-byte read transactions 
(see Section 3.1.4 [Special Conditions]); the I/O device is allowed to perform DMA atomic 
operations when IR is also programmed to allow read access. 0=Device initiated DMA write and 
atomic transactions are target aborted.

61 IR: I/O read permission. Used in the calculation of effective read access with the permission bits in 
the page tables; if there are no page tables (DTE[Mode]=000b), then this bit defines the I/O read 
permission. 1=I/O device is allowed to perform DMA read transactions; the I/O device is allowed to 
perform atomic transactions when IW is also programmed to allow write operations. 0=Device 
initiated DMA read transactions are target aborted. When both IW and IW are programmed to 0b, 
device-initiated 0-byte read transactions are target aborted.

60:58 GCR3 TRP: guest CR3 table root pointer[14:12]. Revision 1: Reserved. Non-zero bits in this field 
are reported as an event when V=1. Revision 2: The guest CR3 table root pointer contains the SPA of 
the top (or only) level of the guest CR3 table for the I/O device. The guest CR3 table root pointer 
may be used by hardware when V=1 and TV=1 and GV=1. See Section 3.2.6 [I/O Page Tables for 
Guest Translations]. Must be zero when MMIO Offset 0030h[GTSup]=0.

57:56 GLX: guest levels translated. Revision 1: Reserved. A non-zero value in this field is reported as an 
event when V=1. Revision 2: GLX[1:0] specifies the type of guest CR3 lookup performed by the 
IOMMU for the I/O device when the device presents an address with a valid PASID. 00b=GCR3 
table is single-level. 01b=GCR3 table is two-level. 10b=GCR3 table is three-level. 11b=reserved. 
The GLX value is ignored when GV=0. See Table 9 and Section 3.2.6.1 [Guest CR3 Table]. Must be 
zero when MMIO Offset 0030h[GTSup]=0.
Implementation note: Revision 2: The number of levels in a guest CR3 table supported by hardware 
is indicated by MMIO Offset 0030h[GLXSup].
Software note: Revision 2: For a peripheral using PASID values up to 9 bits, software may program 
GLX=00b and build one-level GCR3 tables. For a peripheral using PASID values that use more than 
9 bits but fewer than 19 bits, software must program GLX=01b and build two-level GCR3 base 
address tables. For a peripheral using PASID values that use 19 or 20 bits, software must program 
GLX=10b and build three-level GCR3 base address tables.

Table 5: Device Table Entry Field Definitions
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The interactions of the V, TV, IV, and IntCtl control bits are stated in Table 6 and Table 7. The interactions of 
IV and the pass control bits are defined in Table 8. The event log entries for operations causing a target abort 
are defined in Section 3.4 [Event Logging].

55 GV: guest translation valid. Revision 1: Reserved. A non-zero value in this field is reported as an 
event when V=1. Revision 2: This field controls guest-level translation. 0=IOMMU performs GPA-
to-SPA translation only; GLX and the GCR3 table root pointer fields are ignored. 1=IOMMU 
performs GPA-to-SPA translation or GVA-to-SPA when a valid PASID is provided; GLX and the 
GCR3 table root pointer values are used for GVA-to-GPA translations. Software programs this bit 
when guest page translation is available (see Table 3). This bit is meaningful when V=1 and TV=1 
and MMIO Offset 0030h[GTSup]=1. Must be zero when MMIO Offset 0030h[GTSup]=0.

54:52 Reserved.
Note: a non-zero value in this field is reported as an event when V=1.

51:12 Page Table Root Pointer. The page table root pointer contains the system physical address of the 
root page table for the I/O device for GPA-to-SPA translations. The pointer is only used in modes 
where GPA-to-SPA translation is enabled.

11:9 Mode: paging mode. Specify how the IOMMU performs GPA-to-SPA translation on behalf of the 
device. If GPA-to-SPA translation is enabled, this field specifies the depth of the host page tables 
associated with the device (see page table root pointer).

000b Translation disabled (Access controlled by IR and IW bits)
001b 1 Level Page Table (provides a 21-bit device virtual address space)
010b 2 Level Page Table (provides a 30-bit device virtual address space)
011b 3 Level Page Table (provides a 39-bit device virtual address space)
100b 4 Level Page Table (provides a 48-bit device virtual address space)
101b 5 Level Page Table (provides a 57-bit device virtual address space)
110b 6 Level Page Table (provides a 64-bit device virtual address space)
111b Reserved

Note: the page table root pointer for GPA-to-SPA translation is ignored when Mode=000b and when 
Mode=111b.
Note: Mode=111b is reported as an event when V=1 and TV=1. See also MMIO Offset 
0030h[HATS].

8:2 Reserved. Non-zero bits in this field are reported as an event when V=1. 
1 TV: translation information valid. 1=Page translation information is valid, specifically IW, IR, the 

page table root pointer, Mode, and GV. 0=Page translation information is not valid. TV is not 
meaningful when V=0. See Table 6.

0 V: valid. 1=Device table entry bits [127:1] are valid. 0=Device table entry bits [127:1] are invalid 
and transactions not intercepted by the interrupt remapping portion of the IOMMU are passed 
through. 
Note: The interrupt remapping portion of the device table entry is controlled by the IV bit. 
Software note: DomainID must be valid when V=1. See Table 6.

Table 5: Device Table Entry Field Definitions
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Table 6: V, TV, and GV Fields in Device Table Entry

V TV GV Description
0 X X All addresses are forwarded without translation; individual control fields are ignored.
1 0 0 The SysMgt, EX, SD, Cache, IoCtl, SA, SE, and I fields are valid. The value of 

DomainID is used for event log entries. If the request requires a table walk, the table 
walk is terminated. The Mode and Host Page Table Root Pointer fields are ignored. 
Revision 2: The GV, GLX, GCR3 Table Root Pointer fields are ignored.

1 0 1 Revision 1: causes ILLEGAL_DEV_TABLE_ENTRY event (Section 3.4.1 
[ILLEGAL_DEV_TABLE_ENTRY Event]). Revision 2: The SysMgt, EX, SD, 
Cache, IoCtl, SA, SE, and I fields are valid. The value of DomainID is used for event 
log entries. If the request requires a table walk, the table walk is terminated. The 
Mode, Host Page Table Root Pointer, GV, GLX, GCR3 Table Root Pointer fields are 
ignored.

1 1 0 All fields in bits [127:2] are valid and GPA-to-SPA translation is active (see Section 
3.2.6 [I/O Page Tables for Guest Translations]).

1 1 1 Revision 1: causes ILLEGAL_DEV_TABLE_ENTRY event. Revision 2: All fields 
in bits [127:2] are valid and GVA-to-SPA translation is active (see Section 3.2.6 [I/O 
Page Tables for Guest Translations]).

Table 7: IV and IntCtl Fields in Device Table Entry for Fixed and Arbitrated Interrupts

IV IntCtl Description
0 X All interrupts are forwarded without remapping.
1 00b All fixed and arbitrated interrupts are target aborted.
1 01b All fixed and arbitrated interrupts are forwarded without remapping.
1 10b All fixed and arbitrated interrupts are remapped.
1 11b Behavior undefined.

Table 8: IV and Pass Fields in Device Table Entry for Selected Interrupts

IV Pass Field 
Name

Pass Field=0b Pass Field=1b

0 X LINT0, LINT1, SMI, NMI, INIT, and ExtInt interrupts are passed through 
unmapped.

1 X SMI interrupts are passed through unmapped. There is no pass field to control SMI 
requests.

1 Lint0Pass LINT0 interrupts are target aborted. LINT0 interrupts are passed through 
unmapped.

1 Lint1Pass LINT1 interrupts are target aborted. LINT1 interrupts are passed through 
unmapped.

1 NMIPass NMI interrupts are target aborted. NMI interrupts are passed through 
unmapped.
46Advanced Micro Devices



PID 48882 Rev 2.00 - 3/24/11  IOMMU Architectural Specification
Although Table 9 defines the maximum PASID size that can be translated using a GCR3 table, MMIO Offset 
0030h[PASmax] defines the maximum PASID size that can be handled internally by the IOMMU. Figure 16 
and Figure 18 illustrate the structure of 1- and 2-level GCR3 tables, respectively. Guest address translation 
control fields are in Table 18.

Table 10: Cache bit and U bit for ATS requests

1 INITPass INIT interrupts are target aborted. INIT interrupts are passed through 
unmapped.

1 EIntPass ExtInt interrupts are target aborted. ExtInt interrupts are passed through 
unmapped.

Table 9: GLX and maximum translatable PASID size

MMIO Offset 
0030h

GTSup

DTE[GV]
(see Table 6)

MMIO Offset 
0030h GLXSup

DTE[GLX] Maximum 
translatable 
PASID size 

(bits)

Levels in GCR3 
table

0 X X XXb none -
1 0 X XXb none -
1 1 00b 00b 9 1
1 1 00b 01b, 10b not defined -
1 1 01b 00b 9 1
1 1 01b 01b 18 2
1 1 01b 10b not defined -
1 1 10b 00b 9 1
1 1 10b 01b 18 2
1 1 10b 10b 20 3
1 1 X 11b not defined -

U
(I/O PTE, 
Table 14)

Cache
(DTE, Table 5)

IOMMU 
behavior 
(advised)

Comments

0 0,1 IOMMU not 
advised to 
cache results 
from ATS 
request

The peripheral issues pretranslated addresses (SPA) for read, 
write, and atomic operations; the IOMMU is not likely to 
need translation information.

1 0 IOMMU is 
advised to 
cache results 
from ATS 
requests

The peripheral issues untranslated addresses (GVA or GPA) 
for read, write, and atomic operations; the IOMMU needs 
translation information to process the memory transactions.

Table 8: IV and Pass Fields in Device Table Entry for Selected Interrupts

IV Pass Field 
Name

Pass Field=0b Pass Field=1b
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Table 10 defines the caching behavior of the IOMMU based on the per-device Cache bit in the DTE and the 
per-page U bit in the PTE. In the PCI Address Translation Services 1.1 Specification, the U bit defines whether 
the peripheral can issue translated or untranslated addresses to access a page for read, write, or atomic 
operations. When PTE[U]=1, software can use the Cache bit in the DTE to provide a caching hint to the 
IOMMU.

3.2.2.2 Making Device Table Entry Changes

This section contains information for software that changes the IOMMU tables. Software should issue 
invalidate commands after certain types of changes to tables and note that I/O device accesses are neither 
queued nor throttled by the IOMMU. Software may change the interrupt remapping information independently 
of the address translation information in a device table entry. These operational sequences are general and 
system conditions may allow optimizations. 

Software may change the interrupt remapping information in a device table entry with a single 64-bit write. 
The change must be followed by an INVALIDATE_DEVTAB_ENTRY command when either the value of 
IV=1b or the value of V=1b before the change. If a 64-bit operation cannot be used, software may change the 
interrupt remapping information in the device table entry in the following manner, according to the value of IV 
before the change in the relevant device table entry. 
• If IV=0b before the change, changes can be made in any order as long as the last change is to set to IV=1b; 

an INVALIDATE_DEVTAB_ENTRY command is required when the V=1b before the change. 
• If IV=1b before the change, the following steps may be followed to change interrupt remapping information 

for fixed and arbitrated interrupts:
• Set IntCtl=00b in the device table entry to block interrupts; any device-initiated interrupts for the domain 

are target aborted and, when enabled, logged to the event log.
• Update the interrupt table root pointer, IG, and IntTabLen.
• Invalidate the interrupt table if the interrupt table root pointer or IntTabLen was changed (see Section 

3.3.5 [INVALIDATE_INTERRUPT_TABLE]).
• Change IntCtl to cease blocking interrupts from the device (set IntCtl=01b or 10b).
• Invalidate the device table entry (see Section 3.3.2 [INVALIDATE_DEVTAB_ENTRY]).

• If IV=1b before the change, the following steps change interrupt control information in the device table entry 
for NMI, Lint0, Lint1, Init, and ExtInt interrupts:

• Update Lint1Pass, Lint0Pass, IntCtl, NMIPass, EIntPass, and InitPass. The setting of IntCtl can be 
changed at the same time.

• Invalidate the device table entry for the device (see Section 3.3.2 [INVALIDATE_DEVTAB_ENTRY]).

Software may change the address translation information in a device table entry with a single 128-bit write 
operation followed by an INVALIDATE_DEVTAB_ENTRY command when either IV=1b or V=1b before the 

1 1 IOMMU not 
advised to 
cache results 
from ATS 
requests

The peripheral issues untranslated addresses (GVA or GPA) 
for read, write, and atomic operations. Note that the 
IOMMU is likely to walk page tables to obtain the needed 
translation information.

Implementation note: An ATS response for a GVA always returns U=0 (see Table 14) and software must 
account for this when deciding if an invalidation operation is required.
Note: For more information on the U bit, see the PCI Address Translation Services 1.1 Specification.

U
(I/O PTE, 
Table 14)

Cache
(DTE, Table 5)

IOMMU 
behavior 
(advised)

Comments
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change. If a 128-bit operation cannot be used, software may change the address translation information in the 
following ways, according to the values of V and TV before the change.
• If V=0b before the change, address translation changes can be made in any order as long as the last change is 

to set V=1b. An INVALIDATE_DEVTAB_ENTRY command is required if IV=1b before the change.
• If V=1b before the change, software can use the following steps to set the IOMMU to pass addresses 

untranslated with access controlled by IR and IW, depending on the value of TV. 
• If TV=0b before the change, set values for IW, IR, Mode=000b, and TV=1b (maintaining V=1b), then 

issue an INVALIDATE_DEVTAB_ENTRY command. If not done as a 64-bit write, the values of TV 
and V must be in the final change. Note that the DomainID and other values in bits [127:96] are already 
valid because V=1b. 

• If TV=1b before the change, software must change IW and IR concurrently with or before changing 
Mode, and the values of TV and V must be in the final change. Software then issues an 
INVALIDATE_DEVTAB_ENTRY command.

Revision 2: The IOMMU adds support for hardware updates of Accessed and Dirty bits in page tables. The 
IOMMU is allowed to cache these bits, so software must issue invalidation commands when it clears the A or 
D bit in memory.

3.2.2.3 Starting the IOMMU

To start the IOMMU and activate table walking, etc., use the following procedure after a system reset.
• If not previously set, initialize the following registers:

• the Device Table Base Address Register [MMIO Offset 0000h],
• the Command Buffer Base Address Register [MMIO Offset 0008h],
• the Command Buffer Head Pointer Register [MMIO Offset 2000h],
• the Command Buffer Tail Pointer Register [MMIO Offset 2008h],
• the IOMMU Exclusion Base Register [MMIO Offset 0020h] and the IOMMU Exclusion Range Limit 

Register [MMIO Offset 0028h], if used,
• the Event Log Base Address Register [MMIO Offset 0010h], the Event Log Head Pointer Register 

[MMIO Offset 2010h] and the Event Log Tail Pointer Register [MMIO Offset 2018h], if used.
• Write the IOMMU Control Register [MMIO Offset 0018h] with EventLogEn=1b (if used), CmdBufEn=1b, 

and IommuEn=1b. Other IOMMU Control Register [MMIO Offset 0018h] bits should be set as necessary.

The IOMMU is now operational; it processes device transactions and fetches command buffer entries. When 
enabled, the IOMMU creates event log entries as events occur.

Revision 2: If using peripheral page service requests, software must initialize the PPR queue registers in 
addition to the other registers before setting IommuEn=1b:
• the PPR Log Base Address Register [MMIO Offset 0038h],
• the IOMMU PPR Log Head Pointer Register [MMIO Offset 2030h], and
• the IOMMU PPR Log Tail Pointer Register [MMIO Offset 2038h].
Software must also write the IOMMU Control Register [MMIO Offset 0018h] with PPRLogEn=1b (if used).

3.2.2.4 Making Guest Interrupt Virtualization Changes

Revision 1: Guest interrupt virtualization is not supported.

Revision 2: Software may change the guest interrupt virtualization information in a device table entry with a 
single 64-bit write. The change must be followed by an INVALIDATE_DEVTAB_ENTRY command when 
the ZV=1 before the change. If a 64-bit operation cannot be used, software may change the guest interrupt 
virtualization information in the device table entry in the following manner, according to the value of ZV 
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before the change in the relevant device table entry. 
• If ZV=0 before the change, changes can be made in any order as long as the last change is to set ZV=1b.
• If ZV=1 before the change, the following steps may be followed to change interrupt virtualization 

information:
• Set ZV=0 in the device table entry to disable interrupt virtualization for the DeviceID; any device-

initiated interrupts for the DeviceID are processed using the controls in DTE[159:128].
• Update the guest APIC table root pointer and invalidate the interrupt table (see Section 3.3.5 

[INVALIDATE_INTERRUPT_TABLE]).
• Set ZV=1 to virtualize interrupts from the device.
• Invalidate the device table entry (see Section 3.3.2 [INVALIDATE_DEVTAB_ENTRY]).

3.2.3 I/O Page Tables for Host Translations

The IOMMU uses a new page table structure designed to support a full 64-bit device virtual address space 
while allowing faster translation in many common cases. The IOMMU page tables are a generalization of 
AMD64 long mode page tables. The IOMMU page tables are a multi-level tree of 4K tables indexed by 
groups of 9 virtual address bits (determined by the level within the tree) to obtain 8-byte entries. Each page 
table entry is either a page directory entry pointing to a lower-level 4K page table, or a page translation entry 
specifying a system physical page address. A page translation entry is a page table entry with the Next Level 
field set to 0h or 7h. A page directory entry is a page table entry with the Next Level field not equal to 0h or 7h. 
Revision 2: The maximum value of Next Level in a page directory entry is defined in MMIO Offset 
0030h[HATS]; exceeding this limit causes an IO_PAGE_FAULT. 

The first generalization in the IOMMU page tables compared to AMD64 processor page tables is that directory 
entries, in addition to specifying the address of the lower page table, also specify the level, or grouping of bits 
within the virtual address, that is used for the next page table lookup step. This allows the IOMMU to skip page 
translation steps in cases where the virtual address often contains long strings of 0 bits, such as software 
architectures that allocate virtual memory sparsely.

The second generalization in the IOMMU page tables is that page translation entries can specify the page size 
of the translation. The default page size of a translation can be overridden by setting the Next Level bits to 7h. 
When the Next Level bits are 7h, the size of the page is determined by the first zero bit in the page address, 
starting from bit 12 (illustrated in Table 11). The page size specified by this method must be larger than the 
default page size and smaller than the default page size for the next higher level.

The page addresses illustrated in Table 11 are 64-bit values that have been zero-extended from the 52-bit 
values specified in the DTE and page tables. 

Table 11: Example Page Size Encodings
Level Address Bits Page 

Size
Default 

Page Size63:52**, 
51:32*

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12

1 Page Address 0 8K 4K
1 Page Address 0 1 16K 4K
1 Page Address 0 1 1 1 1 1 1 1 1M 4K
2 Page Address 0 1 1 1 1 1 1 1 1 1 4M 2M

* Address bits 51:32 can be used to encode page sizes greater that 4G.
** Address bits 63:52 are zero-extended.
50Advanced Micro Devices



PID 48882 Rev 2.00 - 3/24/11  IOMMU Architectural Specification
Software Note: The page tables are required to have one PTE for each default page size (see Table 12). When 
the Next Level bits are equal to 7h, some of the least significant bits of the virtual address indexing the PTE are 
used for indexing the enlarged physical page, therefore those bits are not unique for indexing the PTE and the 
PTE must be repeated accordingly. For example, if the physical page is 32K bytes, the 3 least significant bits of 
the Page Table Level 1 virtual address cannot be used only for indexing within the page table and therefore the 
PTE must be repeated 8 times for each of the 64 unique PTEs given 4K byte page tables. Another example for 
4M byte pages is illustrated in Figure 12. The PTE in the Level-2 page table is replicated twice and bit 21 of 
the virtual address is used twice for indexing, first to index the Level-2 table of PTEs and again to index into 
the 4M byte page for the data. The replicated Level-2 PTEs have identical contents and follow the example in 
Table 11 for a page size of 4M bytes. For larger page sizes, the PTEs must be replicated an appropriate number 
of times so that more bits of the virtual address can be used for indexing.

Implementation Note: While IOMMU implementations are not strictly required to include translation caches, 
it is strongly recommended that they include at least a cache for translations of 4K page table entries. IOMMU 
implementations can cache translations of larger pages by splitting them into multiple 4K cache entries.

The page table pointer for each domain specifies the system physical address and level of the root page table 
for that domain. Translation of a device virtual address begins by comparing it to the root page table’s level. If 
the address contains any nonzero bits in bit positions higher than the range selected by the root page table’s 
level, translation terminates with an IO_PAGE_FAULT. Otherwise, the appropriate group of virtual address 
bits is used to fetch a page table entry from the root page table. If this entry is marked not present, translation 
terminates with an IO_PAGE_FAULT. Otherwise the entry may be a page directory entry pointing to a lower-
level page table (in which case the translation process repeats starting at the new page table using the 
remaining virtual address bits), or it may be a page translation entry containing the final system physical 
address (in which case the translation process terminates and the remaining device virtual address bits are 
concatenated with the translation entry’s physical address to obtain a translated address). If a translation skips 
levels and any of the skipped virtual address bits are non-zero, translation terminates with an 
IO_PAGE_FAULT.

Effective write permission is calculated using the IW bits in the DTE (see Table 5), the I/O PDEs, and the I/O 
PTE. Device accesses to translated addresses are first checked against these cumulative permissions before 
being allowed to proceed. IW and IR bits from skipped levels are treated as if they were 1s. For a discussion of 
guest and host permissions, see Section 3.2.7 [Guest and Nested Address Translation].

Table 12 specifies the virtual address bit groups used for indexing at each level of the page tables, as well as 
the default page sizes associated with page translation entries fetched from page tables at each level. Figure 8 
and Figure 9 illustrate the formats of page table entries. If a page table entry contains nonzero bits in any of the 
fields marked reserved, if the Next Level field is greater than or equal to the current page table entry table’s 
level, or if a page translation entry’s physical address is not aligned to a multiple of the appropriate page size 
for the current page table entry page table’s level, translation terminates with an IO_PAGE_FAULT.

3 Page Address 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4G 1G
6 7_FFFFh 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Entire 

cache
NA

6 F_FFFFh 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Undef Undef

Table 11: Example Page Size Encodings

* Address bits 51:32 can be used to encode page sizes greater that 4G.
** Address bits 63:52 are zero-extended.
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The layout of IOMMU page table entries has been chosen so that the IOMMU can use AMD64 long mode 
processor page tables, provided the Next Level fields (which occupy bit positions ignored by AMD64 
processors) are properly initialized according to their level within the processor page tables. (AMD64 
processors lack the IOMMU’s level skipping facility.) All other page table entry fields used by the IOMMU are 
either ignored by AMD64 processors, or have the same meaning to both the processor and the IOMMU. For 
more details on sharing page tables see Section 3.2.4 [Sharing AMD64 Processor and IOMMU Page Tables - 
GPA-to-SPA].

The U bit in the page tables is an attribute bit passed to peripherals in ATS responses. See Table 10 for the 
behavior of the IOMMU for settings of the DTE[Cache] and PTE[U] fields.

IOMMU implementations must zero-fill all high-order physical address (SPA).The IOMMU fields are 
architected to produce a physical address of up to 52 bits, thus physical address bits [63:53] are always zero. 

Table 12: Page Table Level Parameters
Page Table 

Level
Virtual address bits indexing 

table
Default Page size (bytes) for 

translation entries
6 63:57 NA
5 56:48 248

4 47:39 239

3 38:30 230

2 29:21 221

1 20:12 4096

63 32

Ignored

31 1 0

Ignored

PR
=0

Figure 8: I/O Page Table Entry Not Present (any level)

Table 13: I/O Page Table Entry Not Present Fields, PR=0

Bits Description
63:1 Ignored when PR=0. 

0 PR: Present. 0=the remainder of the I/O page table entry is ignored and the corresponding memory 
page is considered not-present (see Section 3.4.2 [IO_PAGE_FAULT Event]). When PR=1, see 
Table 14 and Table 15.

63 62 61 60 59 58 52 51 32

Ign IW IR FC U Reserved Page Address[51:32]

31 12 11 9 8 1 0

Page Address[31:12]
Next Level 
[2:0]=000b

or 111b
Ignored

PR
=1

Figure 9: I/O Page Translation Entry (PTE), PR=1
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Table 14: I/O Page Translation Entry (PTE) Fields, PR=1

Bits Description
63 Ignored.
62 IW: write permission. 1=write operations are allowed. 0=write operations are not allowed (see 

Section 3.4.2 [IO_PAGE_FAULT Event]). Effective write permission is calculated using the IW bits 
in the DTE (see Table 5), the I/O PDEs, and the I/O PTE. At each step of the translation process, I/O 
write permission (IW) bits from fetched page table entries are logically ANDed into cumulative I/O 
write permissions for the translation including the IW bit in the DTE. IW bits from skipped levels are 
treated as if they were 1s. For a discussion of guest and host permissions, see Section 3.2.7 [Guest 
and Nested Address Translation].

61 IR: read permission. 1=read operations are allowed. 0=read operations are not allowed (see Section 
3.4.2 [IO_PAGE_FAULT Event]). Effective read permission is calculated using the IR bits in the 
DTE (see Table 5), the I/O PDEs, and the I/O PTE. At each step of the translation process, I/O read 
permission (IR) bits from fetched page table entries are logically ANDed into cumulative I/O read 
permissions for the translation including the IR bit in the DTE. IR bits from skipped levels are treated 
as if they were 1s. For a discussion of guest and host permissions, see Section 3.2.7 [Guest and 
Nested Address Translation].

60 FC: Force Coherent. The FC bit in the page translation entry is used to specify if DMA transactions 
that target the page must clear the PCI-defined No Snoop bit. The state of FC is returned to a 
peripheral in an ATS response. 1=for an untranslated access, the IOMMU sets the coherent bit in the 
upstream HyperTransport™ request packet. 0=for an untranslated access, the IOMMU passes 
upstream the coherent attribute from the originating request. 

59 U. The U bit in the I/O page table entry is an attribute bit passed to a peripheral in an ATS response 
for a GPA-to-SPA translation. For a GVA-to-SPA translation, hardware must set U=0 in the ATS 
response. For details, see Table 10 and the PCI ATS Specification Version 1.1 or newer.

58:52 Reserved.
51:12 Page Address[51:12]: Specifies the SPA of the page.
11:9 NextLevel: next page translation level. Specifies the level of page translation as described in this 

section. The value of NextLevel cannot exceed the value of the Mode field in the DTE (Table 5).
8:1 Ignored.
0 PR: Present. 1=the remainder of the I/O PTE contains valid information. 0=see Table 13.

63 62 61 60 52 51 32

Ign IW IR Reserved Next Table Address [51:32]/Page Address[51:32]

31 12 11 9 8 1 0

Next Table Address [31:12]/Page Address[31:12]
Next Level 
[2:0]!=000b

or 111b
Ignored

PR
=1

Figure 10: I/O Page Directory Entry (PDE), PR=1

Table 15: I/O Page Directory Entry (PDE) Fields, PR=1

Bits Description
63 Ignored.
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62 IW: write permission. 1=write operations are allowed. 0=write operations are not allowed (see 
Section 3.4.2 [IO_PAGE_FAULT Event]). Effective write permission is calculated using the IW bits 
in the DTE (see Table 5), the I/O PDEs, and the I/O PTE. Effective write permission is calculated 
using the IW bits in the DTE (see Table 5), the I/O PDEs, and the I/O PTE. At each step of the 
translation process, I/O write permission (IW) bits from fetched page table entries are logically 
ANDed into cumulative I/O write permissions for the translation including the IW bit in the DTE. 
IW bits from skipped levels are treated as if they were 1s. For a discussion of guest and host 
permissions, see Section 3.2.7 [Guest and Nested Address Translation].

61 IR: read permission. 1=read operations are allowed. 0=read operations are not allowed (see Section 
3.4.2 [IO_PAGE_FAULT Event]). Effective read permission is calculated using the IR bits in the 
DTE (see Table 5), the I/O PDEs, and the I/O PTE. At each step of the translation process, I/O read 
permission (IR) bits from fetched page table entries are logically ANDed into cumulative I/O read 
permissions for the translation including the IR bit in the DTE. IR bits from skipped levels are treated 
as if they were 1s. For a discussion of guest and host permissions, see Section 3.2.7 [Guest and 
Nested Address Translation].

60:52 Reserved.
51:12 Next Table Address[51:12]/Page Address[51:12]: Specifies the SPA of the next page descriptor 

entry when NextLevel != 000b or 111b; specifies the SPA of the page when NextLevel = 000b or 
111b. See discussion in this section.

11:9 NextLevel: next page translation level. Specifies the level of page translation as described in this 
section. The value of NextLevel cannot exceed the value of the Mode field in the DTE (Table 5).

8:1 Ignored.
0 PR: Present. 1=the remainder of the I/O PTE contains valid information. 0=see Table 13.

Table 15: I/O Page Directory Entry (PDE) Fields, PR=1
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Figure 11: Address Translation Example with Skipped Level and 2M page

Revision 1: The input address in Figure 11 is a GPA from the peripheral. Revision 2: The input address in 
Figure 11 is a GPA that is supplied by the peripheral or translated from a GVA. 

Using the nested page tables, the IOMMU translates the input GPA to an SPA within a 2 Mbyte physical page. 
The input address is mapped into page table offsets for the levels of address translation. The level-4 page table 
offset is used to index into the level-4 page table. The level-3 table offset is zero, so the contents of the level-4 
page table entry points directly to a level-2 page table. The level-2 page table contains an entry with the next 
level=0, so that entry points directly to a 2M page and the physical page offset is the 21 low-order bits of the 
input address.

Input Address (GPA)

0_0000_0000b* Level-2 Page
Table Offset

0202129303839474863

Data
Byte

219

52

1251

Device Table Entry

Level-4
Page Table

2 Mbyte 
Physical 

Page

Physical-
Page Offset

Level 4 Page Table Address 4h

911

57 56

2h

Level-4 Page
Table Offset

9

52

Level-2
Page Table

0_0000_0000b*000_0000b*

* The Virtual Address bits associated with all skipped levels must be zero.

PDE 0hPTE

52
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Figure 12: Address Translation Example with Page Size Larger than Default Size

Revision 1: The input address in Figure 12 is a GPA. Revision 2: The top address in Figure 12 is a GPA that is 
supplied by the peripheral or translated from a GVA.

Using the nested page tables, the IOMMU translates the input GPA to an SPA within a 4 Mbyte physical page. 
The translations for level-4 and level-3 are conventional and the next level fields are used to indicate 
contiguous levels of translation with no level skipping. The level-2 table contains paired entries with the next 
level fields set to 7h; as a result, bit 21 of the input GPA can be treated as an additional offset bit within a larger 
physical page 4 Mbyte in size. The adjacent PTE values in the level-2 page table must be adjacent 2 Mbyte 
page base addresses, and the lower base address value must be set so that the page is 4 Mbyte aligned.

3.2.4 Sharing AMD64 Processor and IOMMU Page Tables - GPA-to-SPA

This section outlines the topics to be considered so that the host or GPA-to-SPA page tables may be shared with 
an IOMMU. A more complete discussion depends on many implementation factors.

AMD64 processors and the IOMMU treat upper virtual address bits [63:48] differently. The processor requires 
canonical addresses (in which address bits [63:48] are equal to bit 47). By contrast, the IOMMU is designed to 
support the full PCI 64-bit address space. If 6-level page tables are used, the IOMMU can map any 64-bit 
address. If fewer than 6 levels are used, the IOMMU requires upper virtual address bits (beyond the range 
mapped by the page tables) to be 0. This ensures that software can always add levels to page tables without 
changing the address space as seen by devices.

In AMD64 long mode level 4 page tables, the bottom 256 entries of the root page table correspond to positive 
virtual addresses with bits [63:47] all 0s, and the top 256 entries correspond to negative virtual addresses with 
bits [63:47] all 1s.

Input Address (GPA)

Level-3 Page Level-2 Page
Table Offset

0202129303839474863

Data
Byte

219

52

1251

Device Table Entry

Level-4
Page Table

4 Mbyte 
Physical 

Page

Physical-
Page Offset

Level 4 Page Table Address 4h

911

57 56

3h

Level-4 Page
Table Offset

9

52

Level-2
Page Table

0_0000_0000b*000_0000b*

* The Virtual Address bits associated with all skipped levels must be zero.

PDE 7hPTE

Level-3
Page Table

2hPDE
52

Table Offset

7hPTE

22

1

52
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For the IOMMU to directly share processor page tables, at a minimum the Next Level fields in all page table 
entries must be initialized with correct values for the IOMMU.

Once the Next Level fields are initialized, the IOMMU may directly share exactly the same page tables. In 
3-level 32-bit PAE mode this is all that's needed. However, in 4-level long mode software should be aware that 
processor virtual addresses in the range FFFF_8000_0000_0000h to FFFF_FFFF_FFFF_FFFFh correspond to 
I/O virtual addresses in the range 0000_8000_0000_0000h to 0000_FFFF_FFFF_FFFFh.

If software requires 64-bit processor virtual addresses to be identical to I/O virtual addresses, including 
negative addresses, software needs to configure the IOMMU with the 6-level paging structure illustrated in 
Figure 13, where 4 extra 4K byte page tables (shaded) at levels 6, 5, and 4 are used solely by the IOMMU, and 
sharing with processor page tables occurs only at levels 3 and below.

Figure 13: Sharing AMD64 and IOMMU Host Page Tables with Identical Addressing

3.2.5 Interrupt Remapping Tables

Interrupt messages use a HyperTransport™ interrupt special address range shown in Table 2. All fixed and 
arbitrated interrupt requests are mapped into the HyperTransport™ address space where they can be remapped 
by the IOMMU. Other interrupts are handled specially. Startup interrupts cannot originate from I/O devices 
thus the IOMMU cannot remap them. LINT0, LINT1, NMI, INIT, and External (ExtInt) interrupts are 
controlled individually using the device table entry control fields (see Table 8 and Table 16). The binary 
encodings listed in Table 16 are from the HyperTransport™ architecture specification for the MT field.

Revision 2: When interrupt remapping and interrupt virtualization are active (Section 3.2.8 [Guest Virtual 
APIC Table for Interrupt Virtualization]), interrupts are remapped using the remapping tables and then posted 
for delivery to a guest VM.

...0... 00

...0...

... ...... ...0... ...0... ...

(skip level)

IOMMU device table entry

CPU register CR3

4th level page 
tables

(CPU and 
IOMMU are 

separate)

3rd level page 
tables (shared 
by CPU and 

IOMMU)

5th level page table (used 
only by IOMMU)

6th level page table
(used only by IOMMU; 
only table entries 0 and 

127 are valid)

Shared page tables for “non-negative” 
virtual addresses

Shared page tables for “negative” 
virtual addresses

Host Page Table Root 
Pointer
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The IOMMU remaps HyperTransport™ addresses for fixed and arbitrated interrupts as shown in the 
concatenation in Figure 14. The offset created by this concatenation corresponds directly to data bits 10:0 in 
the originating MSI interrupt message. After reading the interrupt remapping table entry, the IOMMU creates a 
new interrupt message address by OR’ing IRTE[23:2] with bits [63:2] of HyperTransport™ interrupt address 
range base (FD_F800_0000h). Interrupt table walks are always coherent.

Table 16: IOMMU Interrupt Controls and Actions

Interrupt type 
(with MT encoding)

Destination Mode 
(DM)

Controlled by

0000b Fixed

0b

Device table entry and interrupt 
remapping table entry0001b Arbitrated

0010b SMI Forward unmapped
0011b NMI NMIPass
0100b INIT InitPass
0110b ExtInt EIntPass
1011b Lint1 Lint1Pass
1110b Lint0 Lint0Pass
0101b,
0111b,
1000b,
1001b, 
1010b,
1100b,
1101b,
1111b

Startup,
EOI,

EOI

Target abort

0000b-1111b 1b Device table entry and interrupt 
remapping table entry
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Figure 14: Interrupt Remapping Table Lookup for Fixed and Arbitrated Interrupts

3.2.5.1 Interrupt Remapping Tables

When MMIO Offset 0030h[XTSup]=0, the IOMMU remaps interrupts using the information from the interrupt 
remapping table entry shown in Figure 15. 

Figure 15: Interrupt Remapping Table Entry

31 24 23 16 15 8 7 6 5 4 2 1 0
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Table 17: Interrupt Remapping Table Fields

Bits Description
31:24 Reserved. 
23:16 Vector. Specifies the interrupt vector for the interrupt.
15:8 Destination. Specifies the APIC logical or physical address to send the interrupt to.

7 Reserved.
6 DM: destination mode. 1=Logical destination mode. 0=Physical destination mode.
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3.2.6 I/O Page Tables for Guest Translations

Revision 1: guest address translation is not supported. 

Revision 2: The use of guest address translation is controlled by values in the DTE (GV and GLX), MMIO 
Offset 0018h[GTEn], and MMIO Offset 0030h[GTSup, GLXSup]. Software can use guest address translation 
by programming hardware support as shown as in Table 3. The size of the guest address is defined by MMIO 
Offset 0030h[GATS]; exceeding this limit generates an IO_PAGE_FAULT.

When guest address translation is active, the IOMMU will process a guest virtual addresses when it has a valid 
PASID (see Section 3.2.7.7 [PCIe TLP PASID Prefix]).

3.2.6.1 Guest CR3 Table

When guest translation is active (see Table 18), the DTE contains an SPA pointer to a GCR3 table containing 

5 RqEoi: request EOI. 1=EOI cycle required. 
Software note: If RqEoi=1, software is responsible for performing the reverse mapping of the vector 
number.

4:2 IntType: interrupt type. This field specifies the type of interrupt message to deliver to the Local 
APIC.

000b Fixed 001b Arbitrated
010b Reserved 011b Reserved
100b Reserved 101b Reserved
110b Reserved 111b Reserved

1 SupIOPF: suppress IO_PAGE_FAULT events. 1=Supress logging when use of this remapping entry 
causes an IO_PAGE_FAULT. 0=Log event when this entry causes an IO_PAGE_FAULT. See the IG 
control bit in the device table entry (Section 3.2.2.1 [Device Table Entry Format]).

0 RemapEn. 1=Interrupt is remapped. 0=Interrupt is target aborted.
Note: SupIOPF is meaningful independent of the value of RemapEn.

Table 18: Guest Address Translation Controls

MMIO Offset 0030h
MMIO 
Offset 
0018h

Device Table Entry
Description

GTSup GLXSup GTEn GV GLX See also Table 9.

0 XXb X MBZ MBZ Guest translation is not supported by the 
IOMMU.

1 XXb 0 X XX Guest translation is not active for the IOMMU.
1 XXb 1 0 XX Guest translation is not active for the DeviceID.

1 00b, 01b 1 1 00b Guest translation is active. The GCR3 table is a 
one-level table in system physical memory. 

1 01b 1 1 01b Guest translation is active. The GCR3 table is a 
two-level table.

Table 17: Interrupt Remapping Table Fields
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GPA entries that are structured like processor CR3 values. The GCR3 table root pointer in the DTE is used 
when a transaction contains a valid PASID. When valid and present, the PASID is used to walk the guest CR3 
table. When MMIO Offset 0030h[GLXSup]=00b, hardware supports a one-level lookup table so the table must 
be a 4 Kbyte page and must be naturally aligned. Figure 16 illustrates a lookup for guest translation tables. 

Software note: IOMMU TLBs are not cleared when a value is changed in the guest CR3 table and software 
must issue invalidation commands (see Section 3.3 [Commands]). 

Figure 16: Guest CR3 Table, 1-level

Figure 16 shows how a DTE links to a guest page table using a guest CR3 level-1 table. When guest translation 
is active (see Table 18) with DTE[GLX]=00b and the peripheral supplies a valid PASID, the PASID[8:0] field 
is used to index the guest CR3 level-1 table to select a CGR3 base pointer that is the root of a guest page table. 
The IOMMU ignores PASID[19:9] when DTE[GLX]=01b. The GCR3 table root pointer in the DTE is the SPA 
of a guest CR3 level-1 table; each valid GCR3 base pointer in the guest CR3 level-1 table is the GPA of a guest 
page table; the guest page table is a level-4 page table and contains PML4E entries (see AMD64 processor 
architecture specification). Each valid PML4E in the guest page table is a GPA. The IOMMU translates a GPA 
in the GCR3 level-1 table and guest page table to a system physical address as needed. Each GCR3 base 
pointer in Figure 16 is structured as valid bit with a 4 Kbyte-aligned pointer to the guest page table using the 
formats specified in Table 19 and Figure 17.

Table 19: Guest CR3 Level-1 Table Format

Byte Offset Guest CR3 Base Table Contents
0 GCR3 Base Pointer entry for PASID0 (GPA)

8 CGR3 Base Pointer entry for PASID1 (GPA)

16 GCR3 Base Pointer entry for PASID2 (GPA)

... ...
4088 GCR3 Base Pointer entry for PASID511 (GPA)

Guest CR3
Level-1 
TableDevice Table

GCR3 
PML4E

DTE[GCR3 Table Root Pointer]

...

Base
Pointer

Device Table is indexed by DeviceID.

Guest Page
Table

PML4E

...

Guest Page
Table

GCR3 
Base
Pointer

Guest CR3 L1 Table is indexed by PASID[8:0].
Guest page tables are indexed by GVA.

DTE[GLX]=00b

DTE GCR3 Table Root Pointer is an SPA.
GCR3 Base Pointers and guest page table entries
are GPA.
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The structure in Figure 16 may be used for PASID values up to 9-bits long and software must program 
DTE[GLX]=00b. For larger PASID values up to 18-bits, the two-level structure in Figure 18 must be used and 
software must program DTE[GLX]=01b; for 19- and 20-bits, the three-level structure must be used and 
software must program DTE[GLX]=10b.  

63 52 51 32

Reserved GCR3 Base Page Pointer[51:32]

31 12 11 5 4 3 2 1 0

Guest Page Pointer[31:12] Reserved Ign Rsvd V

Figure 17: GCR3 Base Pointer Entry Format

Table 20: GCR3 Base Pointer Entry Fields

Bits Description
63:52 Reserved when V=1. Ignored when V=0. 
51:12 Guest Page Table Pointer. Specifies a GPA base table address when V=1.
11:5 Reserved when V=1. Ignored when V=0. 
4:3 Ignored. The PCD and PWT bits used in the processor CR3 register are ignored by the IOMMU.
2:1 Reserved when V=1. Ignored when V=0.
0 V: Valid. Valid bit for the GCR3 base table pointer. 0=the GCR3 base pointer is ignored by 

hardware. 1=the GCR3 base pointer is the GPA of the root page of a guest page table.
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Figure 18: Guest CR3 Table, 2-level

Figure 17 shows how a DTE links to a guest page table using a two-level guest CR3 table. When 
DTE[GLX]=01b and guest translation is active, the GCR3 table root pointer in the DTE is the SPA of a guest 
CR3 level-2 table; each valid GCR3 base table pointer in the guest CR3 level-2 table is the GPA of a guest CR3 
level-1 table; each valid GCR3 base pointer in the guest CR3 level-1 table is the GPA of a guest page table; the 
guest page table is a level-4 page table and contains PML4E entries (see the AMD64 processor architecture 
specification). The PML4E in the guest page table is a GPA. When a peripheral supplies an address with a valid 
PASID and DTE[GLX]=01b, the IOMMU translates the GPA in the GCR3 level-2, GCR3 level-1, and guest 
page table to an SPA as needed. The guest CR3 level-2 table is indexed using PASID[17:9]; the guest CR3 
level-1 table is indexed using PASID[8:0]; and the PASID[19:18] field is ignored. Each GCR3 level-2 base 
pointer in Figure 18 is structured as valid bit with a 4 Kbyte-aligned pointer to the guest page table using the 
formats specified in Table 21 and Figure 19; GCR3 level-1 tables use the format specified in Table 19 and 
Figure 17.

Table 21: Guest CR3 Level-2 Table Format

Byte Offset Guest CR3 Level-2 Table Contents
0 GCR3 Base Table Pointer to GCR3 Level-1 Table0 (GPA)

8 CGR3 Base Table Pointer to GCR3 Level-1 Table1 (GPA)

16 GCR3 Base Table Pointer to GCR3 Level-1 Table2 (GPA)

Guest CR3
Level-2 
Table

Device Table
GCR3 

PML4E

DTE[GCR3 Table Root Pointer]

...

Base Table
Pointer

Device Table is indexed by DeviceID.

Guest Page
TablePML4E

...

Guest Page
Table

GCR3 
Base Table
Pointer

Guest CR3 Level-2 Table and GCR3 Level-1 Table

Guest page tables are indexed by GVA.

DTE[GLX]=01b

Guest CR3
Level-1 
Table

GCR3 
Base
Pointer

GCR3 
Base
Pointer

Guest CR3
Level-1 
Table

GCR3 
Base
Pointer

are indexed using PASID.

PML4E

Guest Page
Table

...

DTE GCR3 Table Root Pointer is an SPA.

Guest CR3 Level-2 table is indexed by PASID[17:9]
Guest CR3 Level-1 table is indexed by PASID[8:0]

GCR3 Base Table Pointer, GCR3 Base
Pointer, and guest page table entries are GPA.
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Each GCR3 base table pointer in Table 21 is structured as a valid bit with a 4K-aligned GPA of a GCR3 table 
level-1 table.

... ...
4088 GCR3 Base Table Pointer to GCR3 Level-1 Table511 (GPA)

63 52 51 32

Reserved GCR3 Level-1 Base Table Pointer[51:32]

31 12 11 5 4 3 2 1 0

GCR3 Level-1 Base Table Pointer[31:12] Reserved Ign Rsvd V

Figure 19: Guest CR3 Level-2 Base Table Pointer Format

Table 22: Guest CR3 Level-2 Base Table Pointer Fields

Bits Description
63:52 Reserved when V=1. Ignored when V=0.
51:12 GCR3 Level-1 Base Table Address. Specifies a GPA base table address when V=1. Ignored when 

V=0.
11:5 Reserved when V=1. Ignored when V=0.
4:3 Ignored. The PCD and PWT bits used in the processor CR3 are ignored by the IOMMU.
2:1 Reserved when V=1. Ignored when V=0.
0 V: Valid. Valid bit for the GCR3 level-1 base table address. 1=the GCR3 base pointer points to a 

valid table of GCR3 level-1 pointer values. 0=the GCR3 base pointer is ignored by hardware.

63 62 61 60 59 58 52 51 32

Reserved Page-Map Level-Four Table Base Address [51:32]

31 12 11 5 4 3 2 1 0

Page-Map Level-Four Table Base Address [31:12] Reserved

PC
D

PW
T

Rsvd V

Figure 20: Guest CR3 Level-1 Entry Format

Table 23: Guest CR3 Level-1 Table Entry Fields

Bits Description
63:52 Reserved when V=1. Ignored when V=0. 
51:12 PML4 Base Address. Specifies the GPA base address of the page-map level-4 translation table 

when V=1. Ignored when V=0.
11:5 Reserved when V=1. Ignored when V=0. 

4 PCD: page-level cache disable bit. Indicates whether the highest-level page-translation table is 
cacheable. 1=highest-level table is not cacheable. 0=highest-table is cacheable. An IOMMU 
implemented outside the processor coherency domain ignores this bit. Used when V=1. Ignored 
when V=0.

Byte Offset Guest CR3 Level-2 Table Contents
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The IOMMU uses a guest CR3 level-3 table when DTE[GLX]=10b. The guest CR3 level-3 table is pointed to 
by the DTE and the structure is the same as the guest CR3 level-2 table. The guest CR3 level-3 table is indexed 
using PASID[19:18], thus it contains four entries and the remainder of the guest CR3 level-3 table is ignored. 

The AMD64 long page table structure is illustrated in Figure 21. The address translation page tables in 
Figure 21 contain guest physical addresses that must be translated by the IOMMU to access system memory 
(PML4E, PDPE, PDE, and PTE). A full nested translation is illustrated in Figure 33. The fields in the AMD64 
page table formats are the same for corresponding steps of a translation and are replicated here for clarity. 
Specifically, the PML4E formats are the same in Figure 22, Figure 27, and Figure 31; the PDPE formats are 
the same in Figure 23, Figure 28, and Figure 32; and the PDE formats are the same in Figure 24 and Figure 29.

3.2.6.2 AMD64 4K Page Translation

The 4 Kbyte page table formats are defined by the AMD64 processor architecture and interpreted by the 
IOMMU as in Figure 22, Figure 23, Figure 24, Figure 25, and Table 24. The Page-Map Level-4 Table 
Address, PML4E, PDPE, PDE, and PTE are guest physical addresses that must be translated by the IOMMU 
using nested page tables to be system physical addresses (see Section 3.2.3 [I/O Page Tables for Host 
Translations]).

3 PWT: page-level writethrough bit. Indicates whether the highest-level page-translation table has a 
writeback or writethrough caching policy. 1=highest-level table has a writethrough caching policy. 
0=highest-level table has a writeback caching policy An IOMMU implemented outside the processor 
coherency domain ignores this bit. Meaningful when V=1. Ignored when V=0.

2:1 Reserved when V=1. Ignored when V=0.
0 V: Valid. Valid bit for the PML4 base address. 1=the PML4 base address points to a valid address 

translation tree. 0=the PML4 base address is ignored.

Table 23: Guest CR3 Level-1 Table Entry Fields
65Advanced Micro Devices



PID 48882 Rev 2.00 - 3/24/11  IOMMU Architectural Specification
Figure 21: AMD64 Long Mode 4 Kbyte Page Address Translation

63 52 51 32

NX Available Guest-Physical Page-Directory-Pointer Base Address[51:32]

31 12 11 9 8 7 6 5 4 3 2 1 0

Guest-Physical Page-Directory-Pointer Base Address[31:12] AVL MBZ IG
N A

PC
D

PW
T

U
/S

R
/W P

Figure 22: AMD64 Long Mode 4-Kbyte PML4E Format

63 52 51 32

NX Available Guest-Physical Page-Directory Base Address[51:32]

31 12 11 9 8 7 6 5 4 3 2 1 0

Guest-Physical Page-Directory Base Address[31:12] AVL MBZ IG
N A

PC
D

PW
T

U
/S

R
/W P

Figure 23: AMD64 Long Mode 4-Kbyte PDPE Format

63 52 51 32

NX Available Guest-Physical Page-Table Base Address[51:32]

31 12 11 9 8 7 6 5 4 3 2 1 0

Guest-Physical Page-Table Base Address[31:12] AVL IG
N 0 IG
N A

PC
D

PW
T

U
/S

R
/W P

Figure 24: AMD64 Long Mode 4-Kbyte PDE Format
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63 52 51 32

NX Available Guest-Physical Page Base Address[51:32]

31 12 11 9 8 7 6 5 4 3 2 1 0

Guest-Physical Page Base Address[31:12] AVL G PA
T D A

PC
D

PW
T

U
/S

R
/W P

Figure 25: AMD64 Long Mode 4-Kbyte PTE Format

Table 24: IOMMU Interpretation of AMD64 Page Table Fields for 4 Kbyte Page Translation

Bits Description
63 NX: No execute. 0=fetch for execution is allowed. 1=fetch for execution is blocked. Ignored by the 

IOMMU if not implemented (see MMIO Offset 0030h[NXSup]). This bit controls the ability to 
execute code from all physical pages mapped by the table entry. The no-execute protection check 
applies to all privilege levels; it does not distinguish between supervisor and user-level accesses. 

62:52 Available. Ignored by the IOMMU.
51:12 Guest-Physical Page Base Address. IOMMU uses same meaning as AMD64 processor; specifies a 

guest-physical base address when P=1. For 4 Kbyte pages, bits 11:0 are assumed to be zero; for 
2 Mbyte pages, bits 20:0 are assumed to be zero; and for 1 Gbyte pages, bits 29:0 are assumed to be 
zero.

11:9 AVL: Available. Ignored by the IOMMU.
8 G: Global Page. For 4 Kbyte-page PTE this bit is ignored by the IOMMU.

IGN: Ignored. For 4 Kbyte-page PML4E, PDPE, and PDE this bit is ignored by the IOMMU.
7 PAT: Page-Attribute Table. For 4 Kbyte-page PTE this bit is ignored by the IOMMU.

MBZ: Must be zero. For 4 Kbyte-page PML4E, PDPE, and PDE this bit must be zero.
6 D: Dirty. For 4 Kbyte-page PTE this bit is present in the lowest level of the page-translation 

hierarchy. This bit indicates whether the page-translation table or the physical page to which this 
entry points has been written to by a peripheral. The D bit is set to 1 by the IOMMU the first time the 
a peripheral writes to the physical page. The D bit is never cleared by the IOMMU. See Section 3.2.7 
[Guest and Nested Address Translation]. 
IGN: Ignored. For 4 Kbyte-page PML4E, PDPE, and PDE this bit is ignored by the IOMMU.

5 A: Accessed. This bit indicates whether the page-translation table or the physical page to which this 
entry points has been accessed by an IOMMU or processor. The A bit is set to 1 by the IOMMU the 
first time the table or physical page is either read from or written to. The A bit is never cleared by the 
IOMMU. See Section 3.2.7 [Guest and Nested Address Translation].

4 PCD: Page-level Cache Disable. Ignored by the IOMMU. 
3 PWT: Page-level Writethrough. Ignored by the IOMMU.
2 U/S: User/Supervisor. IOMMU uses same meaning as AMD64 processor page tables. 0=access is 

restricted to supervisor level. 1=both user and supervisor access is allowed.
Software note: For a peripheral not using U/S, software should program the bit to signal user mode. 
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3.2.6.3 AMD64 2M Page Translation

The 2 Mbyte page table formats are defined by the AMD64 processor architecture and interpreted by the 
IOMMU as in Figure 27, Figure 28, Figure 29, and Table 25. 

Figure 26: AMD64 Long Mode 2 Mbyte Page Address Translation

1 R/W: Read/Write. This bit controls read/write access to all physical pages mapped by the table 
entry. 0=access is read-only. 1=access is either read or write. Actual permissions applied to a given 
page are cumulatively ORed during the page-table walk. The IOMMU converts this status to 
separate read- and write-enable bits where required.

0 P: Present. Present bit indicates whether the page-translation table or guest physical page is loaded 
in physical memory. 0=page is not present. 1=page is present. When P=0, all the remaining bits in 
this data structure entry are available to software and are not used by the IOMMU. Entries with P=0 
are never cached in an IOMMU TLB nor will the IOMMU set the Accessed or Dirty bit for the table 
entry. 

63 52 51 32

NX Available Guest-Physical Page-Directory-Pointer Base Address[51:32]

31 12 11 9 8 7 6 5 4 3 2 1 0

Guest-Physical Page-Directory-Pointer Base Address[31:12] AVL MBZ IG
N A

PC
D

PW
T

U
/S

R
/W P

Figure 27: AMD64 Long Mode 2-Mbyte PML4E Format

Table 24: IOMMU Interpretation of AMD64 Page Table Fields for 4 Kbyte Page Translation

AMD64 Virtual Address

Page-Directory- Page-Directory
Offset

0202129303839474863

Data
Byte
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CGR3 Table Entry
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Page Table

2 Mbyte 
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Page Offset

Page-Map Level-4 Table Address

11

Page-Map Level-4
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Level-2
Page Table
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PML4E PDE

Offset Pointer Offset

52

PDPE

Level-3
Page Table

9

P=1

0
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68Advanced Micro Devices



PID 48882 Rev 2.00 - 3/24/11  IOMMU Architectural Specification
63 52 51 32

NX Available Guest-Physical Page-Directory Base Address[51:32]

31 12 11 9 8 7 6 5 4 3 2 1 0

Guest-Physical Page-Directory Base Address[31:12] AVL MBZ IG
N A

PC
D

PW
T

U
/S

R
/W P

Figure 28: AMD64 Long Mode 2-Mbyte PDPE Format

63 52 51 32

NX Available Guest-Physical Page-Table Base Address[51:32]

31 21 20 13 12 11 9 8 7 6 5 4 3 2 1 0
Guest-Physical Page-Table Base 

Address[31:21] Reserved (MBZ) PA
T AVL G 1 D A

PC
D

PW
T

U
/S

R
/W P

Figure 29: AMD64 Long Mode 2-Mbyte PDE Format

Table 25: IOMMU Interpretation of AMD64 Page Table Fields for 2 Mbyte Page Translation

Bits Description
63 NX: No execute. 0=fetch for execution is allowed. 1=fetch for execution is blocked. Ignored by the 

IOMMU if not implemented (see MMIO Offset 0030h[NXSup]). 
62:52 Available. Ignored by the IOMMU.
51:21 Guest-Physical Page Base Address[51:21]. Specifies a guest-physical base address when P=1.
20:13 Guest-Physical Page Base Address[20:13]. For 2 Mbyte-page PML4E and PDPE, specifies a 

guest-physical base address when P=1.
Reserved. For 2 Mbyte-page PDE, must be zero.

12 Guest-Physical Page Base Address[12]. For 2 Mbyte-page PML4E and PDPE, specifies a guest-
physical base address when P=1.
PAT: Page Attribute Table. For 2 Mbyte-page PDE, this bit is ignored by the IOMMU.

11:9 AVL: Available. Ignored by the IOMMU.
8 G: Global Page. For 2 Mbyte-page PTE, this bit is ignored by the IOMMU.

MBZ. For 2 Mbyte-page PML4E, PDPE, and PDE, this bit must be zero.
7 1b. For 2 Mbyte-page PDE, this bit must be 1b.

MBZ: Must be zero. For 2 Mbyte-page PML4E and PDPE, this bit must be zero.
6 D: Dirty. For 2 Mbyte-page PDE, this bit is only present in the lowest level of the page-translation 

hierarchy. This bit indicates whether the page-translation table or the physical page to which this 
entry points has been written to by a peripheral. The D bit is set to 1 by the IOMMU the first time the 
a peripheral writes to the physical page. The D bit is never cleared by the IOMMU. See Section 3.2.7 
[Guest and Nested Address Translation].
IGN: Ignored. For 2 Mbyte-page PML4E and PDPE, this bit is ignored by the IOMMU.

5 A: Accessed. This bit indicates whether the page-translation table or the physical page to which this 
entry points has been accessed by an IOMMU or processor. The A bit is set to 1 by the IOMMU the 
first time the table or physical page is either read from or written to. The A bit is never cleared by the 
IOMMU. See Section 3.2.7 [Guest and Nested Address Translation].

4 PCD: Page-level Cache Disable. Ignored by the IOMMU. 
3 PWT: Page-level Writethrough. Ignored by the IOMMU.
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3.2.6.4 AMD64 1G Page Translation

The 1 Gbyte page table formats are defined by the AMD64 processor architecture and interpreted by the 
IOMMU as in Figure 31, Figure 32, and Table 26.

Figure 30: AMD64 Long Mode 1 Gbyte Page Address Translation

2 U/S: User/Supervisor. IOMMU uses same meaning as AMD64 processor. 0=access is restricted to 
supervisor level. 1=both user and supervisor access is allowed.
Software note: For a peripheral not using U/S, software should set the bit to signal supervisor mode. 

1 R/W: Read/Write. This bit controls read/write access to all physical pages mapped by the table 
entry. 0=access is read-only. 1=access is either read or write. Actual permissions applied to a given 
page are cumulatively ORed during the page-table walk. The IOMMU converts this status to 
separate read- and write-enable bits where required.

0 P: Present. Present bit indicates whether the page-translation table or guest physical page is loaded 
in physical memory. 0=page is not present. 1=page is present. When P=0, all the remaining bits in 
this data structure entry are available to software and are not examined by the IOMMU. Entries with 
P=0 are never cached in an IOMMU TLB nor will the IOMMU set the Accessed or Dirty bit for the 
table entry. 

63 52 51 32

NX Available Guest-Physical Page-Directory-Pointer Base Address[51:32]

31 12 11 9 8 7 6 5 4 3 2 1 0

Guest-Physical Page-Directory-Pointer Base Address[31:12] AVL MBZ IG
N A
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T

U
/S

R
/W P

Figure 31: AMD64 Long Mode 1-Gbyte PML4E Format

Table 25: IOMMU Interpretation of AMD64 Page Table Fields for 2 Mbyte Page Translation

AMD64 Virtual Address

Page-Directory-

029303839474863

Data
Byte
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Level-4
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Page-Map Level-4 Table Address
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Page-Map Level-4Sign-extend
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Offset Pointer Offset
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63 52 51 32

NX Available Guest-Physical Page-Directory Base Address[51:32]

31 12 11 9 8 7 6 5 4 3 2 1 0

[31] Reserved (MBZ) PA
T AVL G 1 D A

PC
D

PW
T

U
/S

R
/W P

Figure 32: AMD64 Long Mode 1-Gbyte PDPE Format

Table 26: IOMMU Interpretation of AMD64 Long Mode 1 Gbyte Page Table Fields

Bits Description from AMD64 processor specification
63 NX: No execute. 0=fetch for execution is allowed. 1=fetch for execution is blocked. Ignored by the 

IOMMU if not implemented (see MMIO Offset 0030h[NXSup]). 
62:52 Available. Ignored by the IOMMU.
51:31 Guest-Physical Page Base Address[51:31]. For 1 Gbyte PML4E and PDPE, specifies a guest-

physical base address when P=1.
30:13 Guest-Physical Page Base Address[30:13]. For 1 Gbyte PML4E, specifies a guest-physical base 

address when P=1.
Reserved. For 1 Gbyte-page PDPE, must be zero

12 Guest-Physical Page Base Address[12]. For 1 Gbyte PML4E, specifies a guest-physical base 
address when P=1.
PAT: Page Attribute Table. For 1 Gbyte-page PDPE this bit is ignored by the IOMMU.

11:9 AVL: Available. Ignored by the IOMMU.
8 G: Global Page. For 1 Gbyte-page PDPE this bit is ignored by the IOMMU.

MBZ. For 1 Gbyte-page PML4E this bit must be zero.
7 1b. For 1 Gbyte-page PDPE this bit must be 1b.

MBZ: Must be zero. For 1 Gbyte-page PML4E this bit must be zero.
6 D: Dirty. For 1 Gbyte-page PDPE, this bit is only present in the lowest level of the page-translation 

hierarchy. This bit indicates whether the page-translation table or the physical page to which this 
entry points has been written to by a peripheral. The D bit is set to 1 by the IOMMU the first time the 
a peripheral writes to the physical page. The D bit is never cleared by the IOMMU. See Section 3.2.7 
[Guest and Nested Address Translation].
IGN: Ignored. For 1 Gbyte-page PML4E, this bit is ignored by the IOMMU.

5 A: Accessed. IOMMU uses same meaning as AMD64 processor. This bit indicates whether the 
page-translation table or the physical page to which this entry points has been accessed by an 
IOMMU or processor. The A bit is set to 1 by the IOMMU the first time the table or physical page is 
either read from or written to. The A bit is never cleared by the IOMMU. See Section 3.2.7 [Guest 
and Nested Address Translation].

4 PCD: Page-level Cache Disable. Ignored by the IOMMU. 
3 PWT: Page-level Writethrough. Ignored by the IOMMU.
2 U/S: User/Supervisor. IOMMU uses same meaning as AMD64 processor. 0=access is restricted to 

supervisor level. 1=both user and supervisor access is allowed.
Software note: For a peripheral not using U/S, software should set the bit to select supervisor mode. 
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3.2.6.5 Nested Page Table Walks

A guest translation can require many page table entries to complete. Careful IOMMU cache design can 
significantly reduce the penalty of page table walks.

Figure 33: Complete GVA-to-SPA Address Translation

The notation in Figure 33 is adapted from the AMD64 processor architecture specification and uses the 
notation for processor nested paging. A GVA is shown at the top-left of the figure. The circles indicate GPA 
translation entries that use the host page table root pointer in the DTE (“DTE base pointer” in the figure). The 
square entries are GPA entries that are obtained using the guest translation tables pointed to from the GCR3 
Table. The square entries on the right edge of the figure correspond to Figure 22, Figure 23, Figure 24, and 
Figure 25. In the ideal case, an IOMMU TLB cache entry is found containing the required SPA and the 
translation is complete. 

1 R/W: Read/Write. This bit controls read/write access to all physical pages mapped by the table 
entry. 0=access is read-only. 1=access is either read or write. Actual permissions applied to a given 
page are cumulatively ORed during the page-table walk. The IOMMU converts this status to 
separate read- and write-enable bits where required.

0 P: Present. Present bit indicates whether the page-translation table or guest physical page is loaded 
in physical memory. 0=page is not present. 1=page is present. When P=0, all the remaining bits in 
this data structure entry are available to software and are not examined by the IOMMU. Entries with 
P=0 are never cached in an IOMMU TLB nor will the IOMMU set the Accessed or Dirty bit for the 
table entry. 

Table 26: IOMMU Interpretation of AMD64 Long Mode 1 Gbyte Page Table Fields
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If there is no TLB cache hit, the IOMMU must do a complete page table walk. The GVA must be processed 
through four layers of guest address translations in the guest physical address space; this is illustrated down the 
diagram. Each GPA must be translated into the system physical address space to obtain a series of intermediate 
translation records, illustrated across the diagram.

3.2.7 Guest and Nested Address Translation

Revision 1: Host nested address translation is supported. Guest address translation is not supported. 

Revision 2: Guest and nested address translation are supported.

3.2.7.1 Combining Guest and Host Address Translation

The guest and nested (host) translation can be operated in four basic combinations: disabled, together, and each 
independently. Interrupt remapping is controlled separately by programming DTE[IV].

1. IOMMU address translation is turned off by programming DTE[V]. When DTE[V]=0, no address transla-
tion or access checking is performed by the IOMMU for upstream operations from the device. Peripherals 
have full access to the entire system physical address space. ATS and PRI requests fail.

2. The IOMMU provides GPA-to-SPA address translation by programming DTE[V]=1 and DTE[GV]=0. 
This operational configuration offers address translation with features such as skip-level tables, large pages 
(e.g., 8 Kbytes, 16 Kbytes, etc.), and access control. ATS and PRI requests can be enabled.

The next two combinations require that guest address translation is supported by and enabled for the IOMMU 
(see MMIO Offset 0030h[GTSup] and MMIO Offset 0018h[GTEn]). 

3. The IOMMU provides AMD64 long compatible GPA-to-SPA address translation when software pro-
grams DTE[V]=1 and DTE[GV]=1 and DTE[Mode]=0, with DTE[IR] and DTE[IW] as desired. This con-
figuration enables the nested translation in pass-through mode with guest translation active. ATS and PRI 
requests can be enabled.

4. The IOMMU provides GVA-to-SPA translation similar to the nested paging provided by the processor. 
Software programs DTE[V]=1 and DTE[GV]=1 and the associated translation tables. Accesses are trans-
lated using the guest tables for GVA-to-GPA and the underlying nested tables for GPA-to-SPA. ATS and 
PRI can be enabled.

3.2.7.2 Calculating Page Table and Page Access Attributes

Revision 1: The IOMMU calculates read and write attributes as described in Section 3.2.3 [I/O Page Tables for 
Host Translations]. 

Revision 2: The IOMMU calculates guest access attributes and nested access attributes for read, write, 
executable, and user/supervisor permission, and for present, page-accessed and page-dirty attributes. Note that 
the updating of control bits in the page tables is visible to the CPU when the IOMMU is sharing guest page 
tables. 

• Read (R, IR) permission - The read permission for a page is calculated as a cumulative-AND of the read 
permission bits in the guest and nested page descriptors and the IR bit in the DTE. For merged R/W bits, the 
permission is considered “read allowed” when the page is marked “present”.

• Write (W, IW) permission - The write permission for a page is calculated as a cumulative-AND of the write 
permission bits in the guest and nested page descriptors and the IW bit in the DTE.

• Executable (NX) permission - The NX permission is calculated as a cumulative-OR of the NX permission 
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bits in the guest page descriptors. The NX permission is ignored when a peripheral supplies a GPA or SPA 
(i.e., when guest address translation is not used). When enabled, the NX permission bit applies to accesses 
from either the CPU or the peripherals. 

• User/supervisor (U/S) permission - The U/S permission is calculated as a cumulative-AND of the U/S 
permission bits in the guest page descriptors. The U/S permission is ignored when a peripheral supplies a 
GPA or SPA (i.e., when guest address translation is not used). When enabled, the U/S permission bit applies 
to accesses from either the CPU or the peripherals. 

• Page accessed (A) attribute - The Accessed attribute is not cumulative. The Accessed attribute bit applies to 
the page containing the next level of the translation table (PML4E[A] bit refers to the PDPE page, etc.), and 
the Accessed bit in the PTE refers to the data page.

• Page dirty (D) attribute - The Dirty attribute is not cumulative. The Dirty attribute bit applies to the page 
containing the next level of the translation table (PML4E[D] bit refers to the PDPE page, etc.), and the Dirty 
bit in the PTE refers to the data page.

• Present (P) attribute - The Present attribute bit applies to page containing the next level of the translation 
table (PML4E[P] bit refers to the PDPE page, etc.), and the Present bit in the PTE refers to the data page. The 
page-table walk terminates when the first non-present page is discovered.

Implementation note: As an optimization, a page table walk may be terminated early as long as the end state 
is not compromised. For example, a write operation to a memory location may be terminated 
(IO_PAGE_FAULT) at the first descriptor found for a read-only region.

3.2.7.3 Recalculating Present, Read, and Write Access Permissions

Revision 1: The IOMMU may calculate page-present, read, and write access status from cached or in-memory 
information. 

Revision 2: The IOMMU calculates page-present, read, and write access status from cached or in-memory 
information; if the result is access-denied using cached information, the IOMMU recalculates page-present, 
read, and write access status from in-memory information when guest address translation is used by the 
peripheral.

When guest translation is active (see MMIO Offset 0018h[GTEn]), the IOMMU follows the AMD64 long 
address translation requirements for guest virtual addresses and so software is not required to issue an 
invalidation command when it promotes guest access privileges or marks a not-present guest page as present. 
Software is required to issue an invalidation command when it demotes guest access privileges or removes the 
guest page (“present to not-present”). Therefore, an ATS request or memory reference that results in 
insufficient guest privileges drawn from a TLB entry may be based on stale information. When the IOMMU 
detects an access violation using cached guest translation information, it must rewalk the guest page tables to 
recompute access permission using fresh information read from memory, in the process replacing or discarding 
cached information. The nested page tables may be read as a consequence of the guest table rewalk. If the 
retrieved information contains permission control settings that disallow the access then the IOMMU blocks the 
access; else the IOMMU allows the requested access. An ATS translation request calculates access privileges 
the same way and returns the computed result. The rewalk may require a full walk of both guest and nested 
translations (see Section 3.2.7 [Guest and Nested Address Translation]). 

Software note: For a peripheral using ATS, software must determine the invalidation requirements and issue 
appropriate IOTLB invalidation commands. 

The AMD64 long page tables contain information about memory types (PAT) and the IOMMU ignores these 
bits when it is outside the coherence domain.
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3.2.7.4 Updating Accessed and Dirty Bits in the Guest Address Tables

Revision 1: The IOMMU does not modify Accessed (A) and Dirty (D) bits. 

Revision 2: The IOMMU updates A and D bits in guest page descriptors when guest address translation is used 
by the peripheral transaction. When the IOMMU updates A and D bits in the guest page descriptors, it uses 
interlocked operations compatible with the processor update operations; however the A and D bits are not 
defined in the nested page descriptors. Note that the setting of accessed and dirty status bits in the page tables is 
visible to both the CPU and the peripheral when sharing guest page tables. The IOMMU interlocked operations 
to update A and D bits must be 64-bit operations and naturally aligned on a 64-bit boundary.

When the IOMMU fetches each needed page table entry, it processes the descriptor differently for memory 
access requests and for translation requests. For a memory access request, the IOMMU processes the 
descriptor as follows:
1. Decodes the read and write intent from the memory access.
2. If P=0 in the page descriptor, fail the access.
3. Compare the A & D bits in the descriptor with the read and write intent in the request.
4. If the A or D bits need to be updated in the descriptor:

• Start atomic operation.
• Read the descriptor as a 64-bit access.
• If the descriptor no longer appears to require an update, release the atomic lock with no further action 

and continue to step 5.
• Calculate the new A & D bits.
• Write the descriptor as a 64-bit access.
• End atomic operation.

5. Continue to the next stage of translation or to the memory access.

For a translation request, the IOMMU processes the descriptor as follows:
1. Decode the read and write intent from the ATS request, including the ATS 1.1 NW bit.
2. If P=0 in the descriptor, return an ATS response with no access (R=W=0).
3. Check the A & D bits in the descriptor against the read and write intent in the translation request.
4. If the descriptor is obtained from the TLB (P=1) and permissions are not adequate to meet the request, dis-

card the TLB entry, rewalk the page table, and re-evaluate the request.
5. If the descriptor has been obtained from a page-table walk, return the indicated permissions.
6. If the A or D bits need to be updated in the descriptor:

• Start atomic operation.
• Read the descriptor as a 64-bit access.
• If the descriptor no longer appears to require an update, release the lock with no further action and 

continue to step 7.
• Update the A & D bits.
• Write the descriptor as a 64-bit access.
• End atomic operation.

7. Continue to the next stage of translation or return the translation result.

3.2.7.5 Clearing Accessed and Dirty Bits

To clear the Accessed bit in a descriptor, software must modify the PTE in memory and then invalidate the 
page table entry in the IOMMU for all devices using the translation table. For an example, see the pseudo-code 
in Section 6.2 [Clear Accessed Bit]. 

To clear the Dirty bit in a descriptor, software must mark the PTE in memory as not-present (PR=0) and 
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invalidate the page table entry in the IOMMU for all devices using the translation table. When the invalidation 
is complete, the Dirty bit may be examined or changed.

3.2.7.6 Calculating PCIe Read and Write Attributes for an ATS Response

When translating addresses, the IOMMU must convert between AMD64 long page table semantics and PCIe 
semantics using Table 27.

The page table contains a present bit (P) and a read/write bit (R/W), the ATS request includes a no-write hint, 
and the ATS response requires separate read (R) and write (W) permission bits. A key requirement is that the 
IOMMU provide an ATS response consistent with AMD64 long page table semantics for privilege 
promotions. In general, the IOMMU should return results based on the values found in the TLB. The special 
case for an ATS request are for pages for which the system software may have elevated the access permissions 
without issuing an invalidation command to the IOMMU. The system software is required to issue an 
invalidation command when it reduces access permissions (including marking the page not-present with P=0). 
Specifically, software must invalidate after removing write or execute permission, after changing P from 
present to not-present, or after changing U/S from user to supervisor.

3.2.7.7 PCIe TLP PASID Prefix

Revision 1: The PCI-SIG TLP prefix is not interpreted by the IOMMU. A PCIe packet contains a GPA and the 
originating BDF is used to select GPA-to-SPA translation tables.

Revision 2: The PCI-SIG defined a method to add information to a transaction called the TLP prefix. A PCI-
SIG ECN uses the TLP prefix to carry added information for a transaction that bears a GVA; this is called the 
PASID TLP prefix. The IOMMU inspects the TLP prefixes for a PASID TLP prefix when there are multiple 
and passes through any remaining TLP prefixes (excluding the PASID TLP prefix if one is found). The 
IOMMU processes memory transactions with a valid PASID TLP prefix; a PASID TLP prefix used with other 
types of cycles (e.g., configuration cycles, interrupts) may be ignored by the IOMMU. The IOMMU behavior 
is undefined when it receives a PASID TLP prefix in a downstream direction.When a PCIe transaction has a 
PASID TLP prefix containing PNP=0b (see Figure 34 and Table 28) and an untranslated address, the 
transaction is said to contain a valid PASID. 

The IOMMU processes the PASID TLP prefix when enabled and MMIO Offset 0018h[GTEn]=1b and MMIO 
Offset 0030h[GTSup]=1b. An upstream packet with a valid PASID in the PASID TLP prefix contains an x86-

Table 27: Access Privilege Conversion Table for ATS Request

PTE ATS Request: 
NW IOMMU Action

ATS Response
P RW R W

0 X X Issue ATS response. 0 0

1 0 0

If TLB hit, rewalk and reevaluate using 
in-memory page table entry. - -

If TLB miss, walk page table and issue 
ATS response. 1 0

1 0 1 Set A and issue ATS response. 1 0

1 1 0 Set A & D and issue ATS response. 1 1

1 1 1 Set A and issue ATS response. 1 0
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canonical GVA; an upstream packet without a valid PASID in the PASID TLP prefix or with no PASID TLP 
prefix and an untranslated address contains a GPA.  When the PASID TLP prefix contains a valid PASID, the 
IOMMU processes the packet using the PMR and Exe bits and the guest translation tables. When the PASID 
TLP prefix does not contain a valid PASID (PNP=1b), the IOMMU ignores the PASID, PMR, and Exe fields.

The PASID TLP prefix contains a 24-bit payload that is interpreted by the IOMMU in the following way, as 
specified by the PCI-SIG PCIe ECR for “Process Address Space Identifier Prefix”:

Figure 34: PCIe TLP PASID Prefix Payload Format

When a PCIe transaction contains a valid PASID, the packet contains a GVA: the BDF is used to select GPA-
to-SPA translation tables, and the PASID TLP prefix contains Exe, PMR, PNP, and PASID information. The 
PASID is used to select the GVA-to-GPA translation tables. When enabled (see MMIO Offset 0030h[GTSup] 
and MMIO Offset 0018h[GTEn]), the IOMMU processes the PASID TLP prefix on memory-access PCIe 
packets, PCIe ATS packets, and PCIe PRI packets. The IOMMU does not process the PASID TLP prefix on an 
MSI-X or MSI interrupt packet. If an I/O device supplies a PASID TLP prefix that the IOMMU does not 
process, the IOMMU reports an error in the event log (see Section 3.4.8 [INVALID_DEVICE_REQUEST 
Event]). When a PCIe memory transaction contains no valid PASID, the packet contains a GPA and the 
DeviceID is used to select GPA-to-SPA translation tables.

The PCI-SIG defines a TLP prefix as the 32-bit structure shown in Figure 35 and Table 29 and including the 
payload information from Figure 34.

Figure 35: PCI-SIG TLP Prefix Format
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Table 28: PCIe TLP Prefix Payload Fields

Bits Description
23 PMR: Privileged Mode Requested. 0=non-privileged (user) request. 1=privileged (supervisor) 

request.
22 Exe: execute requested. 0=no execute permission requested. 1=execute permission requested. 
21 PNP: PASID Not Present. 0=PASID field contains the PASID to use for the transaction. 1=PASID 

field is not valid.
20 Reserved. Note: although this bit is reserved, it is passed through the IOMMU as received from the 

peripheral.
19:0 PASID[19:0]: Guest process address space ID.

31 29 28 27 24 23 0

Fmt[2:0] 1b Type[3:0] TLP Payload[23:0]

Table 29: PCI-SIG TLP Prefix Fields

Bits Description
31:29 Fmt[2:0]: TLP Format. 100b=PASID TLP prefix is interpreted by the IOMMU. 000b-011b and 

101b-111b=TLP prefix is not interpreted by the IOMMU.
28 Must be 1b.
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When the IOMMU receives a TLP prefix with Fmt=001b and Type=100b, it is processed as a PASID TLP 
prefix and the TLP prefix payload is interpreted to extract the fields in Table 28. If the TLP Prefix 
Type !=100b, the IOMMU handles the TLP prefix as defined in the PCI-SIG PCIe specifications; see the PCI-
SIG TLP prefix definitions for details. 

3.2.7.8 Maximum PASID value (PASmax)

The maximum PASID value supported by the IOMMU is calculated as 2PASmax+1-1 (see MMIO Offset 
0030h[PASmax]). Each peripheral may support a smaller value. System software is required to program the 
guest CR3 tables so that PASID values out-of-range for the peripheral or for the IOMMU are marked not-valid 
(see Table 17 and Table 19).

3.2.8 Guest Virtual APIC Table for Interrupt Virtualization

Revision 1: The Guest Virtual APIC Table is not supported. Corresponding fields in the DTE must be zero (bits 
255:192, inclusive).

Revision 2: The Guest Virtual APIC Table is used to virtualize interrupts. When enabled, the IOMMU can 
cause interrupts to be delivered directly to running guests without hypervisor intervention for a device with 
DTE[ZV]=1. When interrupt remapping and interrupt virtualization are both enabled, an incoming device 
interrupt is first remapped using the IRTE and then delivered using the AMD virtual interrupt controller. 
Interrupt virtualization requires compatible support in the IOMMU and the processor. 

When MMIO Offset 0030h[GASup]=0, the IOMMU does not support interrupt virtualization using the Guest 
Virtual APIC Table. The Guest Virtual APIC Table and DTE[ZV] are reserved fields for all devices. 

When MMIO Offset 0030h[GASup]=1, device interrupt virtualization is enabled for the IOMMU by 
programming MMIO Offset 0018h[GAEn]=1, DTE[ZV] is programmed to 1 to activate interrupt virtualization 
for the device, and the Guest Virtual APIC Table Root Pointer in the DTE is programmed to the base address 
(SPA) of the domain scoreboard.  

Further information can be found in the AMD Virtual Interrupt Controller Specification, Revision 1.0 or newer.

3.3 Commands

The host software controls the IOMMU through a shared circular buffer in system memory. The host software 
writes commands into the buffer and then notifies the IOMMU of their presence by writing a new value to the 
tail pointer. The IOMMU then reads the commands and executes them at its own pace. The shared command 
buffer organization was chosen to allow the host software to send commands in batches to the IOMMU, while 
allowing the IOMMU to set the pace at which commands are actually executed.

27:24 Type[3:0]: TLP Type. 0001b=PASID type. 0000b and 0010b-1111b=ignored by the IOMMU. 
23:0 TLP Payload[23:0]. For an PASID TLP prefix, the contents are defined in Figure 34 and Table 28.

Table 29: PCI-SIG TLP Prefix Fields
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Figure 36: Circular Command Buffer in System Memory

The Command Buffer Base Address Register [MMIO Offset 0008h] is used to program the system physical 
base address and size of the command buffer. The command buffer occupies contiguous physical memory 
starting at the programmed base address, up to the programmed size. The size of the command buffer must be 
a multiple of 4K bytes (to facilitate "mod N" indexing for circularity), and can be as large as 32768 entries 
(corresponding to a 512 kilobyte buffer). The address of the command buffer must be aligned to a multiple of 
4K bytes.

In addition to the Command Buffer Base Address Register [MMIO Offset 0008h], the IOMMU maintains two 
other registers associated with the command buffer: the Command Buffer Head Pointer Register [MMIO 
Offset 2000h], an offset from the base address, which points to the next command that the IOMMU can fetch, 
and the Command Buffer Tail Pointer Register [MMIO Offset 2008h], an offset from the base address, which 
points to the next command to be written by software. These registers are located in IOMMU MMIO space. 
When the Command Buffer Base Address Register [MMIO Offset 0008h] register is written, the Command 
Buffer Head Pointer Register [MMIO Offset 2000h] and the Command Buffer Tail Pointer Register [MMIO 
Offset 2008h] are reset to the 0. When the Command Buffer Head Pointer Register [MMIO Offset 2000h] and 
the Command Buffer Tail Pointer Register [MMIO Offset 2008h] are equal the command buffer is empty. The 
Command Buffer Head Pointer Register [MMIO Offset 2000h] is incremented by the IOMMU after reading a 
command from the command buffer.

The IOMMU fetches commands in FIFO order from the command buffer. The IOMMU must never refetch a 
command. The IOMMU must set the Coherent bit in the HyperTransport™ packet when issuing command 
buffer read requests. Although the IOMMU fetches commands in order, it may execute them concurrently. 
Software may use the COMPLETION_WAIT command when synchronization is required.

All commands read by the IOMMU take the form of a 4-bit opcode together with two operands, which may be 
respectively 60 and 64 bits long, for a total of 128 bits (16 bytes) per command:

Figure 37: Generic Command Buffer Entry Format
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The COMMAND_HARDWARE_ERROR (Section 3.4.6 [COMMAND_HARDWARE_ERROR Event]) and 
ILLEGAL_COMMAND_ERROR (Section 3.4.5 [ILLEGAL_COMMAND_ERROR Event]) events cause the 
IOMMU to halt command processing. If a command buffer entry causes one of these errors, the command 
head pointer does not advance. Note that the head pointer may have advanced past the command in error. Other 
activities of the IOMMU, including translations, error logging, and table walks, continue to be processed. 
Software is required to examine the IOMMU status and event log information to resolve the situation. 
Command processing is restarted by using the CmdBufEn control bit in the IOMMU Control Register [MMIO 
Offset 0018h] and status may be determined from CmdBufRun in IOMMU Status Register [MMIO Offset 
2020h].

To restart the IOMMU command processing after the IOMMU has halted it, use the following procedure.
• Wait until CmdBufRun=0b in the IOMMU Status Register [MMIO Offset 2020h] so that all commands 

complete processing as the circumstances allow. CmdBufRun must be 0b to modify the command buffer 
registers properly.

• Set CmdBufEn=0b in the IOMMU Control Register [MMIO Offset 0018h].
• As necessary, change the following registers (e.g., to relocate the command buffer):

• the Command Buffer Base Address Register [MMIO Offset 0008h],
• the Command Buffer Head Pointer Register [MMIO Offset 2000h], and 
• the Command Buffer Tail Pointer Register [MMIO Offset 2008h].

• Any or all command buffer entries may be copied from the old command buffer to the new and software 
must set the head and tail pointers appropriately.

• Write the IOMMU Control Register [MMIO Offset 0018h] with CmdBufEn=1b and ComWaitIntEn as 
desired.

The IOMMU now processes command buffer entries.

3.3.1 COMPLETION_WAIT

The COMPLETION_WAIT command allows software to serialize itself with IOMMU command processing. 
The COMPLETION_WAIT command does not finish until all older commands issued since a prior 
COMPLETION_WAIT have completely executed.

Implementation note: The COMPLETION_WAIT command may wait to finish after all older commands 
complete, including prior COMPLETION_WAIT commands. If there are no prior COMPLETION_WAIT 
commands in the command buffer, the COMPLETION_WAIT command finishes after all older commands. 
See important considerations in Section 3.3.9 [IOMMU Ordering Rules].

For example, system software that wishes to reclaim pages formerly made available to devices should use the 
following procedure:
• Mark the page table entry (or entries) not present in the IOMMU's tables.
• Issue appropriate page invalidate commands to the IOMMU.
• Issue a COMPLETION_WAIT command to the IOMMU. When the COMPLETION_WAIT has finished, 

the IOMMU is designed to ensure that there are no transactions in flight anywhere in the system fabric that 
read or write the invalidated pages.

Both s=1 and i=1 may be specified in the same COMPLETION_WAIT command.
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Figure 38: COMPLETION_WAIT Command Format

3.3.2 INVALIDATE_DEVTAB_ENTRY

When system software changes a device table entry, it must instruct the IOMMU to invalidate that DeviceID 
from its internal caches. The IOMMU is then forced to reload the device table entry before DMA from the 
device is allowed. The IOMMU may reload the device table entry any time after the invalidation has 
completed.

When software invalidates a DeviceID corresponding to an IOMMU-aware device with its own IOTLB, it 
should immediately follow INVALIDATE_DEVTAB_ENTRY with an INVALIDATE_IOTLB_PAGES 
targeted at the same DeviceID and sized to invalidate the full 64-bit address space for the given DeviceID. 
(Note that on a multi-function device this need only invalidate IOTLB entries for the specified function.)

31 28 27 20 19 3 2 1 0

Store Address [31:3] f i s +00

01h Reserved Store Address [51:32] +04

Store Data [31:0] +08

Store Data [63:32] +12

Table 30: COMPLETION_WAIT Fields

Bits Description
31:3
+00

Store Address[31:3]. The lower portion of the SPA into which the IOMMU may store the Store 
Data. 

2
+00

f: flush queue. 0=execution of younger commands may begin at any time. 1=the IOMMU does not 
begin execution of any younger commands until COMPLETION_WAIT has finished.

1
+00

i: completion interrupt. 0=the IOMMU does not set MMIO Offset 2020h[ComWaitInt]. 1=the 
IOMMU sets MMIO Offset 2020h[ComWaitInt]. See Capability Offset 10h[MsiNum].

0
+00

s: completion store. 0=the IOMMU does not write the Store Data value to the Store Address. 1=the 
IOMMU writes the specified 64-bit Store Data value to the Store Address. Software can use this 
write to update a semaphore indicating to the waiting process that it can continue execution. The 
address written by the COMPLETION_WAIT must be located in system memory.
Implementation note: The write operation must be coherent and not in the isochronous channel. 
Hardware must not set the PassPw bit when performing this write.

31:28
+04

01h. COMPLETION_WAIT command number.

27:20
+04

Reserved.

19:0
+04

Store Address[51:32]. The lower portion of the SPA into which the IOMMU may store the Store 
Data.

31:0
+08

Store Data[31:0]. The lower portion of the Store Data.

31:0
+12

Store Data[63:32]. The upper portion of the Store Data.
81Advanced Micro Devices



PID 48882 Rev 2.00 - 3/24/11  IOMMU Architectural Specification
Note that this command does not invalidate translation cache entries, since they may be in use by other devices 
sharing the same DomainID. If the DomainID is not shared, software should issue 
INVALIDATE_IOMMU_PAGES for the DomainID.

Figure 39: INVALIDATE_DEVTAB_ENTRY Command Format

3.3.3 INVALIDATE_IOMMU_PAGES

The INVALIDATE_IOMMU_PAGES command instructs the IOMMU to invalidate a range of entries in its 
translation cache for the specified DomainID. The size of the invalidate command is determined by the S bit, 
and the address. The INVALIDATE_IOMMU_PAGES command must appear as a single atomic operation to 
the translation engine. 

Software note: When issuing INVALIDATE_IOMMU_PAGES commands, the size of each invalidate must 
be greater than or equal to the size of the largest page being invalidated.

Implementation note: IOMMU implementations are not required to provide optimal support for all of the 
possible invalidation request sizes. The IOMMU is free to invalidate more than just exactly the requested range 
of addresses, up to and including its entire translation cache if necessary. 

Implementation note: When a guest physical address translation is invalidated, the guest virtual address 
translations that depend on it must also be invalidated. The IOMMU is permitted to invalidate all guest virtual 
translations for the DomainID when a guest physical address translation is invalidated.  

Software note: To invalidate the guest translation information for a single process address space, issue an 
INVALIDATE_IOMMU_PAGES command with GN=1, PASID and DomainID as needed, PDE=1, S=1, and 

31 28 27 16 15 0

Reserved DeviceID[15:0] +00

02h Reserved +04

Reserved +08

Reserved +12

Table 31: INVALIDATE_DEV_TAB_ENTRY Fields

Bits Description
31:16
+00

Reserved. 

15:0
+00

DeviceID[15:0].

31:28
+04

02h. INVALIDATE_DEV_TAB_ENTRY command number.

27:20
+04

Reserved.

31:0
+08

Reserved.

31:0
+12

Reserved.
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Address[63:12]=7_FFFF_FFFF_FFFFh. The IOMMU invalidates all translation information associated with 
the DomainID for both nested and guest levels when S=1, PDE=1, GN=0, and 
Address[63:12]=7_FFFF_FFFF_FFFFh.

Software note: Revision 2: When the IOMMU is configured to update Accessed and Dirty bits, software must 
issue invalidation commands when it resets A or D from 1 to 0. 

Figure 40: INVALIDATE_IOMMU_PAGES Command Format

31 28 27 20 19 16 15 12 11 3 2 1 0

Reserved PASID[19:0] +00

03h Reserved DomainID[15:0] +04

Address [31:12] Reserved GN

PD
E S +08

Address [63:32] +12

Table 32: INVALIDATE_IOMMU_PAGES Fields

Bits Description
31:20
+00

Reserved. 

19:0
+00

PASID[19:0]. Revision 1: Must be zero. Revision 2: Must be zero when two-level translation is not 
enabled (see DTE[GV] in Table 5); ignored when GN=0.

31:28
+04

03h. INVALIDATE_IOMMU_PAGES command number.

27:16
+04

Reserved.

15:0
+04

DomainID[15:0].

31:12
+08

Address[31:12]. Address to invalidate.

11:3
+08

Reserved.

2
+08

GN: guest/nested. Revision 1: Must be zero. Revision 2: 0=Address[52:12] is a GPA so matching 
nested translations are invalidated and the dependent guest translations must be invalidated if guest 
address translation is active for any DeviceID within the domain.  1=Address[52:12] is a GVA and 
matching guest translations are invalidated for the specified PASID. No nested translations are 
invalidated. 
Note: When two-level translation is not enabled, GN must be zero (see DTE[GV] in Table 5).
Implementation note: When GN=0, the IOMMU must invalidate the specified guest translations, 
but it may invalidate more guest translations for the domain, up to and including all guest translations 
for the domain.

1
+08

PDE: page directory entries. 0=only the cached page translation entries are flushed. 1=the cached 
page directory and page translation entries are flushed. If the range of the 
INVALIDATE_IOMMU_PAGES command covers all of the pages in a page directory entry and 
PDE=1, the IOMMU must invalidate the page directory entry in the page directory cache. 
Revision 2: When GN=1, the dependent guest translation PDEs and PTE must be invalidated and 
PDE is ignored. 
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3.3.4 INVALIDATE_IOTLB_PAGES

The INVALIDATE_IOTLB_PAGES command is only present in IOMMU implementations that support 
remote IOTLB caching of translations (see Capability Offset 00h[IotlbSup]). This command instructs the 
specified device to invalidate the given range of addresses in its IOTLB. The size of the invalidate command is 
determined by the S bit and the address. 

Revision 1: The INVALIDATE_IOTLB_PAGES command does not support PASID. Software is required to 
program GN=0, PASID[15:0]=00h, and Address[63:12] must be a guest physical address.

Revision 2: The INVALIDATE_IOTLB_PAGES command optionally supports PASID and software may 
program GN=1 (see MMIO Offset 0030h[GTSup]) to specify that Address is a GVA to be translated using 
PASID. 

Software note: The IOMMU does not check the value of DTE[I] before sending the invalidation command to 
the peripheral.

For more information on the Maxpend and QueueID fields, refer to the PCI Address Translation Services 1.1 
Specification or newer and the peripheral documentation. 

Figure 41: INVALIDATE_IOTLB_PAGES Command Format

0
+08

S: size. 0=the size of the invalidation is 4K bytes. 1=the size of the invalidation is determined by the 
first zero bit in the address starting from Address[12] (see encoding in Table 11). 

31:0
+12

Address[63:32]. Address to invalidate.

31 28 27 24 23 16 15 12 11 3 2 1 0

Maxpend [7:0] PASID[7:0] DeviceID[15:0] +00

04h PASID[19:8] QueueID[15:0] +04

Address [31:12] Reserved GN

R
es

v

S +08

Address [63:32] +12

Table 33: INVALIDATE_IOTLB_PAGES Fields

Bits Description
31:24
+00

Maxpend[7:0]. The Maxpend field allows software to control the maximum number of 
simultaneously in-flight INVALIDATE_IOTLB_PAGES transactions that the IOMMU attempts to 
initiate with any one particular QueueID. The appropriate value for Maxpend is device-dependent 
and can be obtained from the device's IOTLB capability.

23:16
+00

PASID[7:0]. Revision 1: Must be zero. Revision 2: Must be zero when two-level translation is not 
enabled (see DTE[GV] in Table 5); ignored when GN=0.

15:0
+00

DeviceID[15:0].

31:28
+04

04h. INVALIDATE_IOTLB_PAGES command number.

Table 32: INVALIDATE_IOMMU_PAGES Fields
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Since both the IOMMU and the remote IOTLB(s) may contain cached translations for a domain, software must 
take care to perform invalidations in an order that ensures that no stale translations persist anywhere in the 
system. After updating a domain's page tables, software should first issue an INVALIDATE_IOMMU_PAGES 
command for the domain; then, if the domain contains any devices with their own IOTLBs, software should 
follow with INVALIDATE_IOTLB_PAGES commands for each such device.

Revision 2: When GN=0, Address is a guest physical address and PASID[15:0] is ignored by the IOMMU. The 
GPA is transmitted to the PCIe peripheral without a TLP prefix. When GN=1, Address is a guest virtual 
address and software programs PASID[15:0] to indicate the process address space to use. The GVA is 
transmitted to a PCIe peripheral using the TLP prefix.

27:16
+04

PASID[19:8]. Revision 1: Must be zero. Revision 2: Must be zero when two-level translation is not 
enabled (see DTE[GV] in Table 5); ignored when GN=0.

15:0
+04

QueueID[15:0]. The QueueID is used to limit the outstanding invalidations for all virtual devices 
sharing the queue for devices that implement multiple virtual functions sharing a single invalidation 
queue. Some devices implement a physical function and multiple virtual functions in which each 
physical and virtual function has a unique DeviceID. The QueueID is an abstract number 
representing the shared queue. When the IOMMU receives an invalidate IOTLB command, the 
command targets the DeviceID. An implementation may have a single queue (likely associated with 
the physical function) to receive invalidates for the physical function or any of its virtual functions. 
To manage the flow control of the unified device invalidate-queue, it is not sufficient to track the 
outstanding entries based on DeviceID.

31:12
+08

Address[31:12]. Address to invalidate.

11:3
+08

Reserved.

2
+08

GN: guest/nested. Revision 1: Must be zero. Revision 2: 0=Address[52:12] is a guest physical 
address and matching nested translations are invalidated, and the corresponding guest translations 
must be invalidated if guest address translation is active for any DeviceID within the domain. 
1=Address[52:12] is a guest virtual address and matching guest translations are invalidated for the 
specified PASID. No nested translations need to be invalidated. 
Note: When two-level translation is not enabled, GN must be zero (see DTE[GV] in Table 5).
Implementation note: When GN=0, the IOMMU must invalidate the affected guest translations, but 
it may invalidate more guest translations for the domain, up to and including all guest translations for 
the domain.

1
+08

Reserved.

0
+08

S: size. 0=the size of the invalidation is 4K bytes. 1=the size of the invalidation is determined by the 
first zero bit in the address starting from Address[12] (see encoding in Table 11). When S=1, the size 
of the invalidate is determined by the first zero bit in the address starting from Address[12]. To 
invalidate the entire contents of an IOTLB, set S=1 and Address[63:32]=7FFF_FFFFh and 
Address[31:12]=F_FFFFh in the INVALIDATE_IOTLB_PAGES command. When 
Address[63:32]=FFFF_FFFFh, the IOMMU behavior is undefined.

31:0
+12

Address[63:32]. Address to invalidate.

Table 33: INVALIDATE_IOTLB_PAGES Fields
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Implementation note: When issuing the completion notification (Section 3.3.1 [COMPLETION_WAIT]), the 
IOMMU must ensure that all DMA write transactions that have already been translated have been pushed to 
the host bridge. A way to meet this is:

• Prior to sending the invalidation completion indication (interrupt or status write) the IOMMU must:
• Send an upstream Fence command in the base channel if the channel is being used and if the 

IOMMU supports translating request for more than one upstream stream (more than one unitID is in 
use).

• Additionally send an upstream Fence command followed by a Flush command in the isochronous 
channel if the channel is being used and if the IOMMU supports translating requests in both the iso-
chronous and the base channels. The invalidation completion must wait for the Flush response to be 
received.

Software Note: In order to flow-control invalidations to functions that share a common invalidation queue, 
software must set the QueueID to a unique identifier that represents the shared queue. The DeviceID of the 
physical function associated with the virtual functions may be used as the QueueID to insure the IOMMU 
issues a limited number of outstanding invalidates to the given queue.

Software Note: To completely tear down address translation for a domain, software should: 
• update the IOMMU’s in-memory data structures,
• INVALIDATE_DEVTAB_ENTRY for all devices in the domain,
• INVALIDATE_IOMMU_PAGES for the domain, and
• INVALIDATE_IOTLB_PAGES for any IOTLB-capable devices that had been assigned to the domain.

3.3.5 INVALIDATE_INTERRUPT_TABLE

Revision 1: The INVALIDATE_INTERRUPT_TABLE command instructs the IOMMU to invalidate all 
cached interrupt remapping table entries for the device. 

Revision 2: The INVALIDATE_INTERRUPT_TABLE command instructs the IOMMU to invalidate all 
cached interrupt information for the device, including the guest virtual APIC table base pointer (if cached).

Figure 42: INVALIDATE_INTERRUPT_TABLE Command Format

31 28 27 16 15 0

Reserved DeviceID[15:0] +00

05h Reserved +04

Reserved +08

Reserved +12

Table 34: INVALIDATE_INTERRUPT_TABLE command Fields

Bits Description
31:16
+00

Reserved. 

15:0
+00

DeviceID[15:0].

31:28
+04

05h. INVALIDATE_INTERRUPT_TABLE command number.
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3.3.6 PREFETCH_IOMMU_PAGES

Revision 1: The 06h command is reserved and causes an ILLEGAL_COMMAND_ERROR.

Revision 2: When supported (MMIO Offset 0030h[PreFSup]=1), the PREFETCH_IOMMU_PAGES 
command instructs the IOMMU to load address translation information into its translation cache for the 
specified DeviceID. When not supported (MMIO Offset 0030h[PreFSup]=0), the 
PREFETCH_IOMMU_PAGES (06h) command is reserved and causes an ILLEGAL_COMMAND_ERROR. 

The PREFETCH_IOMMU_PAGES command is advisory so the IOMMU may fetch zero or more translation 
entries in response to the command, not to exceed the value of PFCount[7:0]. An IOMMU treats the 
PREFETCH_IOMMU_PAGES command as an invalid command when MMIO Offset 0030h[PreFSup]=0. 
Based on internal status and workloads, the IOMMU may defer fetching the translation information. If an entry 
is already in the TLB, the IOMMU may adjust LRU or other control tags to lengthen cache residency. The 
IOMMU calculates permissions for a PREFETCH_IOMMU_PAGES command as it would for a translation 
that was initiated by device action. Once a translation entry is loaded into the TLB cache by 
PREFETCH_IOMMU_PAGES, it is subject to ejection and invalidation like any other entry. A 
PREFETCH_IOMMU_PAGES command must be processed or discarded (ignored) before processing any 
following invalidation commands that affect the same virtual addresses. The PREFETCH_IOMMU_PAGES 
command does not affect the contents of remote IOTLB caches.

When GN=0, Address[63:12] is an GPA so the IOMMU walks nested page tables and PASID is ignored. When 
GN=1, Address[63:12] is a GVA so the IOMMU walks guest and nested page tables and PASID is used to 
select the guest table.

Figure 43: PREFETCH_IOMMU_PAGES Command Format

27:20
+04

Reserved.

31:0
+08

Reserved.

31:0
+12

Reserved.

31 28 27 24 23 20 19 16 15 12 11 5 4 3 2 1 0

PFCount[7:0] Reserved DeviceID[15:0] +00

06h Reserved PASID[19:0] +04

Address [31:12] Reserved

In
va

l

Res GN Res S +08

Address [63:32] +12

Table 35: PREFETCH_IOMMU_PAGES Fields

Bits Description
31:24
+00

PFCount[7:0]: prefetch count. Number of translations to prefetch. Zero is treated as a directive to 
fetch a single translation. 

Table 34: INVALIDATE_INTERRUPT_TABLE command Fields
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When Inval=1, the IOMMU must invalidate or replace any existing translation entries in its cache related to 
Address[63:12]; in effect, this combines an INVALIDATE_IOMMU_PAGES command with a following 
PREFETCH_IOMMU_PAGES command. When Repl=1, the IOMMU is advised to replace an existing 
translation entry in the case of a cache conflict. 

For a GVA, the PREFETCH_IOMMU_PAGES command is not supported and GN must be programmed to 0. .

For a GPA, software must program GN=0 and the PASID is ignored; the Address field contains a GPA. The 
size of the prefetch page is determined by the S bit and the Address. If S=0, the size of the prefetch page is 
4K bytes. If S=1, the size of the prefetch page is determined by the first zero bit in the address starting from 
Address[12]. The number of descriptors to fetch is determined by the value of PFCount[7:0]. The PFCount 
value is unsigned and a PFCount value of 0x00 is treated as 0x01.

3.3.6.1 Event Processing for PREFETCH_IOMMU_PAGES

Revision 1: The 06h command is reserved and causes an ILLEGAL_COMMAND_ERROR. 

Revision 2: The IOMMU checks for unusual conditions while processing a PREFETCH_IOMMU_PAGES 

23:16
+00

Reserved.

15:0
+00

DeviceID[15:0].

31:28
+04

06h. PREFETCH_IOMMU_PAGES command number.

27:20
+04

Reserved.

19:0
+04

PASID[19:0]. Must be zero when two-level translation is not enabled (see DTE[GV] in Table 5). 
Ignored when GN=0.

31:12
+08

Address[31:12]. Fetch the address translation information for addresses starting with this value. This 
is a guest virtual address when GN=1 and is a guest physical address when GN=0.

11:5
+08

Reserved.

4
+08

Inval: invalidate first. 0=Prefetch only. 1=Invalidate any matching entry, then prefetch. 
Implementation note: the IOMMU may ignore the prefetch portion of the operation but the 
invalidation is mandatory if Inval=1.

3
+08

Reserved. 

2
+08

GN: guest/nested. 0=Address[52:12] is a GPA to be processed through nested translations. 
1=reserved (must not be used by software; ignored by hardware).  

1
+08

Reserved.

0
+08

S: size. 0=the size of the prefetched page is 4K bytes. 1=the size of the prefetched page is determined 
by the first zero bit in the address starting from Address[12]. 

31:0
+12

Address[63:32]. Address to invalidate.

Table 35: PREFETCH_IOMMU_PAGES Fields
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command. Because such an event would originate as the result of a command in the command queue, neither a 
Master Abort nor a Target Abort can be caused by a PREFETCH_IOMMU_PAGES command. The 
PREFETCH_IOMMU_PAGES command never generates an event related to interrupts or interrupt tables. 

System hardware events are reported when detected and the IOMMU stops processing the command queue:
• Section 3.4.3 [DEV_TAB_HARDWARE_ERROR Event],
• Section 3.4.4 [PAGE_TAB_HARDWARE_ERROR Event], and
• Section 3.4.6 [COMMAND_HARDWARE_ERROR Event].

These events are reported as soon as detected in the IOMMU hardware event reporting registers (see Section 
3.4.11.2 [I/O Hardware Event Reporting Registers]). These events are also reported in the event queue when 
logging is enabled and an interrupt is signaled when enabled.

Other errors may be reported as soon as possible or postponed until a peripheral access uses the TLB entry:
• Section 3.4.1 [ILLEGAL_DEV_TABLE_ENTRY Event], 
• Section 3.4.2 [IO_PAGE_FAULT Event].

An IO_PAGE_FAULT event is not reported when processing an PREFETCH_IOMMU_PAGES command; 
reporting occurs when the entry is used by a peripheral transaction and is controlled by SA or SE in the 
corresponding DTE when DTE[V]=1. Table entries marked not-valid or not-present cannot cached by the 
IOMMU so no error is reported in these cases; the IOMMU will process any error when it rewalks the page 
tables later to service a peripheral transaction. A PREFETCH_IOMMU_PAGES command does not indicate a 
read, write, or execute attribute so the IOMMU cannot report an access violation error; the IOMMU will 
process an access violation when it later services a peripheral transaction. 

The following events are never reported as a result of a PREFETCH_IOMMU_PAGES command:
• Section 3.4.7 [IOTLB_INV_TIMEOUT Event], 
• Section 3.4.8 [INVALID_DEVICE_REQUEST Event]
• Section 3.4.9 [INVALID_PPR_REQUEST Event], and
• Section 3.4.10 [EVENT_COUNTER_ZERO Event].

If the IOMMU does not prefetch the page table information, a latent problem in the page table structures will 
not be reported by the IOMMU.

For the purposes of a COMPLETION_WAIT command (see Section 3.3.1 [COMPLETION_WAIT]), the 
IOMMU may determine that the PREFETCH_IOMMU_PAGES command with Inval=0 completes 
immediately when the prefetch hint is ignored. A COMPLETION_WAIT command must not signal 
completion before the completion of a PREFETCH_IOMMU_PAGES command with Inval=1. 

Software Note: When issuing PREFETCH_IOMMU_PAGES commands, the size of the prefetch must be 
greater than or equal to the size of the largest page being prefetched.

3.3.7 COMPLETE_PPR_REQUEST

Revision 1: The 07h command is reserved and causes an ILLEGAL_COMMAND_ERROR.

Revision 2: When supported, the COMPLETE_PPR_REQUEST command is used to instruct the IOMMU to 
issue a PCIe completion packet for the specified DeviceID with the supplied CompletionTag. When not 
supported, the COMPLETE_PPR_REQUEST command is reserved and causes an 
ILLEGAL_COMMAND_ERROR. See MMIO Offset 0030h[PPRSup] to determine if 
COMPLETE_PPR_REQUEST is supported.
89Advanced Micro Devices



PID 48882 Rev 2.00 - 3/24/11  IOMMU Architectural Specification
After software has processed a peripheral page service request (see Section 3.5 [Peripheral Page Service 
Request (PPR) Logging]), it must issue a COMPLETE_PPR_REQUEST command to the IOMMU for the 
originating DeviceID.

Figure 44: COMPLETE_PPR_REQUEST Command Format

31 28 27 20 19 16 15 12 11 3 2 1 0

Reserved DeviceID[15:0] +00

07h Reserved PASID[15:0] +04

Reserved GN Resv +08

Reserved CompletionTag[15:0] +12

Table 36: COMPLETE_PPR_REQUEST Fields

Bits Description
31:16
+00

Reserved.

15:0
+00

DeviceID[15:0].

31:28
+04

07h. COMPLETE_PPR_REQUEST command number.

27:20
+04

Reserved.

19:0
+04

PASID[19:0]. Must be zero when two-level translation is not enabled (see DTE[GV] in Table 5); 
ignored when GN=0.

31:3
+08

Reserved.

2
+08

GN: guest/nested. 0=PASID is ignored. 1=valid PASID. When two-level translation is not enabled, 
GN must be zero (see DTE[GV] in Table 5).

1:0
+08

Reserved.

31:16
+12

Reserved.

15:0
+12

CompletionTag[15:0]. For PCIe: 
CompletionTab[15:12] contains the PRI 
Response Code, CompletionTag[11:9] must be 
zero, and CompletionTag[8:0] contains the PRI 
Page Request Group Index taken from the PPRtag 
in the PAGE_SERVICE_REQUEST request entry 
(see Section 3.5.1 [Peripheral Page Service 
Request Entry]). For other bus types: Reserved.
Software note: The IOMMU does not validate 
the contents of the CompletionTag field. Software 
must use the PRI Page Request Group Index from 
the PPR request.

CompletionTag[15:0]. For HyperTransport: 
Reserved.
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For GVA transactions, software should program GN=1, DeviceID, CompletionTag, and PASID. When GN=1, 
the IOMMU will insert the PASID into the PCIe TLP prefix. For GPA transactions, software should program 
GN=0, DeviceID, and CompletionTag. When GN=0, the PASID field is ignored by the IOMMU and no PCIe 
TLP prefix is inserted.

If an error occurs while processing a COMPLETE_PPR_REQUEST command, it is reported in the event log 
(see Section 3.4.9 [INVALID_PPR_REQUEST Event]).The contents of CompletionTag[15:0] depend on the 
peripheral bus type; only transactions for the PCIe bus are defined.

3.3.8 INVALIDATE_IOMMU_ALL

Revision 1: The 08h command is reserved and causes an ILLEGAL_COMMAND_ERROR.

Revision 2: When supported, the INVALIDATE_IOMMU_ALL command instructs the IOMMU to clear all 
address translation and interrupt remapping information from its translation caches for the all DeviceIDs and 
all Domains. When not supported, the INVALIDATE_IOMMU_ALL command is reserved and causes an 
ILLEGAL_COMMAND_ERROR. See MMIO Offset 0030h[IASup].

The INVALIDATE_IOMMU_ALL command instructs the IOMMU to invalidate all cached information for 
interrupt remapping and address translation for guest and nested translations, including cached portions of the 
device table, the guest CR3 table, page directory entries, page table entries, and interrupt remapping entries. 
Use of this command generates an ILLEGAL_COMMAND_ERROR event when not supported by the 
IOMMU (see MMIO Offset 0030h[IASup] and Section 3.4.5 [ILLEGAL_COMMAND_ERROR Event]). The 
INVALIDATE_IOMMU_ALL command does not affect the contents of any remote IOTLB or IOMMU 
registers (see Section 3.7 [PCI Resources]) beyond routine command processing updates. Software must issue 
a INVALIDATE_IOTLB_PAGES command to flush a remote IOTLB. At the completion of an 
INVALIDATE_IOMMU_ALL command, all IOMMU caches are empty. The results of outstanding page table 
walks are discarded. Any pending update operations to the page tables for Accessed and Dirty bits must be 
completed normally. The operational status of the IOMMU is not affected so that translations, command- and 
event-processing, address translation service, and peripheral page service processing continue normally. The 
contents of the MMIO registers are not affected except to advance the Command Buffer Head Pointer Register 
[MMIO Offset 2000h] beyond the INVALIDATE_IOMMU_ALL command. The IOMMU may start reloading 
internal caches with information at any time after the INVALIDATE_IOMMU_ALL command completes. To 
invalidate the entire address space of an individual guest, see Section 3.3.3 
[INVALIDATE_IOMMU_PAGES].

Figure 45: INVALIDATE_IOMMU_ALL Command Format

31 28 16 15 3 2 1 0

Reserved +00

08h Reserved +04

Reserved +08

Reserved +12

Table 37: INVALIDATE_IOMMU_ALL Fields

Bits Description
31:0
+00

Reserved.
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3.3.9 IOMMU Ordering Rules

The IOMMU must ensure that proper ordering is maintained between invalidation command types and 
between invalidation commands and the translation process.

3.3.9.1 Invalidation Command Ordering Requirements

The IOMMU must ensure that the following command ordering rules are followed for invalidation commands:
• When an INVALIDATE_IOMMU_PAGES or INVALIDATE_INTERRUPT_TABLE command is received, 

the IOMMU must ensure that all cache entries associated with any prior INVALIDATE_DEVTAB_ENTRY 
commands are invalidated from the cache before executing the command.

• When an INVALIDATE_IOTLB_PAGES command is received, the IOMMU must ensure that all cache 
entries associated with any prior INVALIDATE_DEVTAB_ENTRY or INVALIDATE_IOMMU_PAGES 
commands are invalidated from the cache before executing the command.

3.3.9.2 Invalidation Commands Interaction Requirements

Invalidation commands are considered completed only when the IOMMU can ensure that there are no DMA 
transactions in flight anywhere in the system fabric that relied on translation cache contents prior to the 
invalidation. To ensure that this property is achieved, the IOMMU must follow the following rules:
• The IOMMU must ensure that read responses for all DMA outstanding read transactions that match the 

invalidation command have been received by the IOMMU. 
• HyperTransport™ tunnels that support address translation can achieve this property by maintaining a 

counter that is incremented when a non-posted transaction is forwarded to the processor through the 
tunnel and is decremented when a response is forwarded from the processor through the tunnel. The 
invalidation command can be considered complete when the counter reaches zero. 

• The tunnel may temporarily block upstream traffic to cause the counter to resolve to zero in a timely 
manner, ensuring that forward progress of the invalidation command is made.

• The IOMMU must ensure that all DMA write transactions that have already been translated have been 
pushed to the host bridge by:

• Prior to sending the invalidation completion indication (interrupt or status write) the IOMMU must:
• Send an upstream Fence command in the base channel if the IOMMU supports translating requests 

for more than one upstream stream (more than one unitID is in use). 
• Send an upstream Fence command followed by a Flush command in the isochronous channel if the 

IOMMU supports translating requests in both the isochronous and the base channels. The invalida-
tion completion must wait for the Flush response to be received.

The IOMMU must ensure that both of these requirements are met prior to executing a subsequent 

31:28
+04

08h. INVALIDATE_IOMMU_ALL command number.

27:0
+04

Reserved.

31:0
+08

Reserved.

31:0
+12

Reserved.

Table 37: INVALIDATE_IOMMU_ALL Fields
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COMPLETION_WAIT command.

An invalidation command matches an outstanding translation if the command:
• Invalidates the device table entry for the I/O device that caused a translation to be initiated, or 
• Invalidates the virtual address range being translated for a device.

3.4 Event Logging

The IOMMU reports events to the host software by means of a shared circular buffer in system memory. The 
IOMMU writes event records into the buffer. If the IOMMU needs to report an event but finds that the event 
log is already full, it sets MMIO Offset 2020h[EventOverflow]. The IOMMU can be configured to signal an 
interrupt whenever the event log is written or overflows using Capability Offset 10h[MsiNum]. The host 
software increments the IOMMU's head pointer to indicate to the IOMMU that it has consumed event log 
entries.

Revision 2: The IOMMU generates event log entries for guest translations as well as host translations using 
Capability Offset 10h[MsiNum]. Because some event reports are caused by hardware events that may make it 
impossible to update the event log, a set of MMIO registers has been defined to report selected event 
information. The IOMMU Hardware Event Upper Register [MMIO Offset 0040h] and IOMMU Hardware 
Event Lower Register [MMIO Offset 0048h] contain the same information found in an event log entry. The 
IOMMU Hardware Event Status Register [MMIO Offset 0050h] contains status bits that indicate that the 
information in the three registers is valid (HEV) and if an overflow has occurred (HEO). More information is 
contained in Section 3.4.11 [IOMMU Event Reporting]. 

Figure 46: Circular Event Log in System Memory

The Event Log Base Address Register [MMIO Offset 0010h] is used to program the system physical address 
and size of the event log. The event log occupies contiguous physical memory starting at the programmed base 
address, up to the programmed size. The size of the event log must be a multiple of 4K bytes (to facilitate "mod 
N" indexing for circularity), and can be as large as 32768 entries (corresponding to a 512 kilobyte buffer). The 
address of the event log must be aligned to a multiple of 4K bytes.

In addition to the Event Log Base Address Register [MMIO Offset 0010h], the IOMMU maintains two other 
registers associated with the event log: the Event Log Head Pointer Register [MMIO Offset 2010h] which 
points to the next event that software will read, and the Event Log Tail Pointer Register [MMIO Offset 2018h] 
which points to the next event to be written by the IOMMU. These registers are located in MMIO space. When 
the Event Log Base Address Register [MMIO Offset 0010h] register is written, the Event Log Head Pointer 
Register [MMIO Offset 2010h] and the Event Log Tail Pointer Register [MMIO Offset 2018h] are cleared to 0. 
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When the Event Log Head Pointer Register [MMIO Offset 2010h] and the Event Log Tail Pointer Register 
[MMIO Offset 2018h] are equal, the event log is empty. The Event Log Tail Pointer Register [MMIO Offset 
2018h] is incremented by the IOMMU after writing an event to the event log. The event log is full when all 
slots but one are used. The event log has overflowed when an event occurs that is to be logged and would 
otherwise consume the last unused slot. When the event log has overflowed, the EventOverflow bit is set in the 
IOMMU Status Register [MMIO Offset 2020h] and any data for new events is discarded. An interrupt can be 
configured to notify software of the new event using Capability Offset 10h[MsiNum]; software should check 
MMIO Offset 2020h[EventOverflow] to determine if the event log data was discarded. The host software must 
make space in the event log after an overflow by reading entries (by adjusting the head pointer) or by resizing 
the log, and event logging may then be restarted.

The IOMMU event logging is disabled after system reset and when the event log overflows. The IOMMU 
discards event reports until event logging is enabled, setting the EventOverflow bit in the IOMMU Status 
Register [MMIO Offset 2020h] to indicate the loss of event information. To restart the IOMMU event logging 
after the event log overflows, use the following procedure.
• Wait until EventLogRun=0b in the IOMMU Status Register [MMIO Offset 2020h] so that all log entries are 

completed as circumstances allow. EventLogRun must be 0b to modify the event log registers safely.
• Write EventLogEn=0b in the IOMMU Control Register [MMIO Offset 0018h].
• As necessary, change the following registers (e.g., to relocate or resize the event log).

• the Event Log Base Address Register [MMIO Offset 0010h],
• the Event Log Head Pointer Register [MMIO Offset 2010h], and 
• the Event Log Tail Pointer Register [MMIO Offset 2018h].

• Write the IOMMU Status Register [MMIO Offset 2020h] with EventOverflow=0b to clear the bit.
• Write the IOMMU Control Register [MMIO Offset 0018h] with EventLogEn=1b and EventIntEn as desired. 
The IOMMU now creates event log entries for new events.

Figure 47: Event log state diagram

All events recorded by the IOMMU consist of a 4-bit EventCode together with two operands, which may be 

Set EventOverflow=0

RESET
IommuEn=0
EventLogRun=0
EventLogInt=0
ComWaitInt=0
EventOverflow=0

IommuEn=1
EventLogRun=1
EventLogInt=Y
ComWaitInt=Z
EventOverflow=0

Program event registers
Set EventLogEn=1

IommuEn=1
EventLogRun=0
EventLogInt=Y
ComWaitInt=Z
EventOverflow=1

[Events are reported][Events discarded]

Event log overflows

Set EventLogInt=Y
Set ComWaitInt=Z
Set IommuEn=1

Set EventLogEn=1

[Events discarded]

Note: the values Y and Z are set by software
and preserved across event log overflows.
94Advanced Micro Devices



PID 48882 Rev 2.00 - 3/24/11  IOMMU Architectural Specification
respectively 60 and 64 bits long, for a total of 128 bits (16 bytes) per record. Events that are logged because of 
errors that occur while performing device table or page table walks always record the DeviceID and address 
from the transaction that was being translated.

The IOMMU must set the Coherent bit in the HyperTransport™ packet when generating writes to the event 
log.

Figure 48: Generic Event Log Buffer Entry

Events reported by the IOMMU are listed in Figure 38. The figures that follow give details for each event type 
with an EventCode as shown embedded in Figure 48.

31 28 27 0

First event code dependent operand [31:0] +00

EventCode[3:0] First event code dependent operand [59:32] +04

Second event code dependent operand [31:0] +08

Second event code dependent operand [63:32] +12

Table 38: Event Type Summary

EventCode Name Value General Error Type Details
Reserved 0000b Reserved. N/A
ILLEGAL_DEV_TABLE_ENTRY 0001b Non-zero reserved bit or reserved encoding in DTE. Table 39
IO_PAGE_FAULT 
(memory transaction or interrupt 
remapping)

0010b

DeviceID not in the range specified by the device 
table size.

Table 40IO_PAGE_FAULT 
(memory transaction)

PTE programming problems.
Virtual address problems.
Device attempts to violate page protection settings.

IO_PAGE_FAULT
(interrupt remapping)

IRTE programming problems.
Disallowed or malformed interrupt requests.

DEV_TAB_HARDWARE_ERROR 0011b Hardware problem as IOMMU reads device table. Table 41
PAGE_TAB_HARDWARE_ERROR 0100b Hardware problem as IOMMU accesses page table. Table 42
ILLEGAL_COMMAND_ERROR 0101b Invalid command buffer entry. Table 44

COMMAND_HARDWARE_ERROR 0110b Hardware problem as IOMMU reads command 
buffer. Table 43

IOTLB_INV_TIMEOUT 0111b Invalidation response not received from IOTLB 
device. Table 45

INVALID_DEVICE_REQUEST 1000b
Device attempts access to proscribed address range. Table 46, 

Table 47,
Table 58Device attempts prohibited access.
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In Table 39 through Table 49, each event type is marked to show that it can be caused only by host software or 
by hardware.

For details on ILLEGAL_DEV_TABLE_ENTRY events, see Section 3.4.1.

For details on IO_PAGE_FAULT events, see Section 3.4.2.

INVALID_PPR_REQUEST 1001b

Invalid or malformed PRI request from peripheral.

Table 48

Invalid or malformed 
COMPLETE_PPR_REQUEST command.
Note: the COMPLETE_PPR_REQUEST command 
may be treated as an 
ILLEGAL_COMMAND_ERROR (see Table 48 
for details).

EVENT_COUNTER_ZERO 1001b Informational. Table 61

Reserved 1010b-
1111b Reserved; not used. N/A

Table 39: ILLEGAL_DEV_TABLE_ENTRY Event Types

Event Type Cause IOMMU Response
Non-zero reserved bit in a device table entry. SW For a translation request or memory access, 

Target Abort transaction.
For a command, abort the command.
Create event log entry if enabled.
Signal interrupt if enabled (see Capability Offset 
10h[MsiNum]).

Reserved encoding in the IntTabLen field for a 
device table entry with IntCtl=10b. SW

Reserved encoding in the IoCtl field. SW
Reserved encoding in the IntCtl field. SW

Table 40: IO_PAGE_FAULT Event Types

Event Type Cause IOMMU Response
Memory transaction

Table 38: Event Type Summary

EventCode Name Value General Error Type Details
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Reserved paging mode in device table entry. SW

For an untranslated request, Target Abort 
transaction, and create event log entry if 
enabled. Signal interrupt if enabled (see 
Capability Offset 10h[MsiNum]).

For a translation request, return response with 
data and with R and W bits set to 0; no event log 
entry is created.

For a command, abort the command, and create 
log entry if enabled. Signal interrupt if enabled 
(see Capability Offset 10h[MsiNum]).

Page size encoding in a PTE that is smaller than 
the default page size of the PTE. SW

Page size encoding in a PTE that is larger than 
the default page size of the PTE. SW

Invalid level encoding in a page table entry, 
including exceeding limit specified by MMIO 
Offset 0030h[GATS, HATS].

SW

A non-zero bit in a bit position higher than root 
page table’s level in DTE. Virtual address bits 
associated with a skipped page level are not all 
zero.

SW

Non-zero reserved bit in a PTE. SW
Valid bit not set in page table entry. HW, SW
TV bit not set in device table entry for 
untranslated non-interrupt transaction. HW, SW

PASID is outside the range specified by MMIO 
Offset 0030h[PASmax]. HW, SW

Device attempts a read transaction to a read 
protected page. HW, SW For untranslated request, Target Abort 

transaction, and create event log entry if 
enabled. Signal interrupt if enabled (see 
Capability Offset 10h[MsiNum]).

For translation request, return response with data 
and with R and W bits from the page translation 
information; no event log entry is created.

Never generated by a command.

Device attempts a write transaction to a write 
protected page. HW, SW

Device attempts an instruction fetch from a no-
execute page.

HW, SW

Interrupt remapping
Interrupt request that addresses an IRTE that is 
beyond the end of the table. HW, SW

For interrupt transaction, Target Abort 
transaction. Create event log entry if enabled. 
Signal interrupt if enabled (see Capability Offset 
10h[MsiNum]).

Never generated by a command.

Non-zero reserved bit in an IRTE. SW
Interrupt request that targets an IRTE with 
RemapEn=0. HW, SW

Interrupt request that targets an IRTE with 
reserved IntType. SW

Interrupt request aborted by entry in Table 8 
(Pass fields) or Table 16 (entries causing target 
abort).

HW, SW

Interrupt transaction with PASID. HW

Table 40: IO_PAGE_FAULT Event Types

Event Type Cause IOMMU Response
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For details on DEV_TAB_HARDWARE_ERROR events, see Section 3.4.3.

For details on PAGE_TAB_HARDWARE_ERROR events, see Section 3.4.4.

Memory transaction or interrupt remapping
DeviceID not in the range specified by the 
device table size.

HW

For a translation request, Master Abort 
transaction.
For a memory transaction, Target Abort 
transaction.
For a command, abort the command.
Create event log entry if enabled.
Signal interrupt if enabled (see Capability Offset 
10h[MsiNum]).

Table 41: DEV_TAB_HARDWARE_ERROR Event Types

Event Type Cause IOMMU Response
Master abort received on device table read. HW For memory access or translation request, Target 

Abort transaction.

For command, abort the command.

Create event log entry if enabled. Log event 
information in the hardware event registers (see 
Section 3.4.11.2 [I/O Hardware Event Reporting 
Registers]). Signal interrupt if enabled (see 
Capability Offset 10h[MsiNum]).

Target abort received on device table read. HW

Poisoned data received on device table read. HW

Table 42: PAGE_TAB_HARDWARE_ERROR Event Types

Event Type Cause IOMMU Response
Master abort received on page table access. HW For memory access or translation request, Target 

Abort transaction.

For command, abort the command.

Create event log entry if enabled. Log event 
information in the hardware error registers (see 
Section 3.4.11.2 [I/O Hardware Event Reporting 
Registers]). Signal interrupt if enabled (see 
Capability Offset 10h[MsiNum]).

Target abort received on page table access. HW
Poisoned data received on page table access.

HW

Table 40: IO_PAGE_FAULT Event Types

Event Type Cause IOMMU Response
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For details on COMMAND_HARDWARE_ERROR events, see Section 3.4.6.

For details on ILLEGAL_COMMAND_ERROR events, see Section 3.4.5.

For details on IOTLB_INV_TIMEOUT events, see Section 3.4.7.

Table 43: COMMAND_HARDWARE_ERROR Event Types

Event Type Cause IOMMU Response
Master abort received on command buffer read. HW Halt command processing. Create event log 

entry if enabled. Log event information in the 
hardware event registers (see Section 3.4.11.2 
[I/O Hardware Event Reporting Registers]). 
Signal interrupt if enabled (see Capability Offset 
10h[MsiNum]).

Target abort received on command buffer read. HW

Poisoned data received on command buffer read. HW

Table 44: ILLEGAL_COMMAND_ERROR Event Types

Event Type Cause IOMMU Response
Non-zero reserved bit in a command buffer 
entry. HW, SW

Halt command processing. Create event log 
entry if enabled. Signal interrupt if enabled (see 
Capability Offset 10h[MsiNum]).

Unsupported command code in a command 
buffer entry.
Note: COMPLETE_PPR_REQUEST is treated 
as an ILLEGAL_COMMAND_ERROR if not 
supported (see MMIO Offset 0030h[PPRSup] 
and Table 48).

SW

IOMMU receives 
INVALIDATE_IOTLB_PAGES and does not 
support IOTLB commands (see Capability 
Offset 00h[IotlbSup]).

SW

Table 45: IOTLB_INV_TIMEOUT Event Types

Event Type Cause IOMMU Response

Invalidation response not received from IOTLB 
device. HW

Create event log entry if enabled. Signal 
interrupt if enabled (see Capability Offset 
10h[MsiNum]).

Never generated by a command.
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For details on INVALID_DEVICE_REQUEST events, see Section 3.4.8 and Table 58.

For details on INVALID_DEVICE_REQUEST events, see Section 3.4.8 and Table 58.

Table 46: INVALID_DEVICE_REQUEST Event Types (Access)

Event Type Cause IOMMU Response
Read request or non-posted write in the interrupt 
address range. HW

Target Abort transaction. Create event log entry 
if enabled. Signal interrupt if enabled (see 
Capability Offset 10h[MsiNum]).

Never generated by a command.

Pretranslated transaction received from an I/O 
device with I=0 or V=0. HW

Port I/O Space request from an I/O device with 
IoCtl=00b. HW

Posted write to the system management address 
space from an I/O device with SysMgt=00b, or 
with SysMgt=10b and the message is not an 
INTx message, or a posted write to the address 
translation range when Capability Offset 
10h[HtAtsResv]=1 (see Table 2). 

HW, SW

Read request or non-posted write in the system 
management address range (if SysMgt != 11b), 
or a read or a non-posted-write in the address 
translation range when Capability Offset 
10h[HtAtsResv]=1 (see Table 2). Revision 2: 
Also, a request with a PASID TLP prefix when 
Revision 2 features are not available or active 
for the DeviceID (see Table 3). 

HW, SW

Posted write to the Interrupt/EOI interrupt 
address range from an I/O device with 
IntCtl=00. 

HW, SW

Posted write to a reserved interrupt address 
range (see Table 2). HW, SW

Access to the system management address range 
when SysMgt=11b or to the port I/O space range 
when IoCtl=10b, while V=1 and TV=0. 

HW, SW

Table 47: INVALID_DEVICE_REQUEST Event Types (Translation Request)

Event Type Cause IOMMU Response
Translation request in the interrupt space, port 
I/O space (if IoCtl=0xb), or system management 
address range (if SysMgt != 11b).

HW Target Abort transaction. Create event log entry 
if enabled. Signal interrupt if enabled (see 
Capability Offset 10h[MsiNum]).

Never generated by a command.

Translation request in the system management 
address range when SysMgt=11b or in the port 
I/O space range when IoCtl=10b, while V=1 and 
TV=0. 

HW
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For details on INVALID_PPR_REQUEST events, see Section 3.4.9.

For details on EVENT_COUNTER_ZERO events, see Section 3.4.10.

3.4.1 ILLEGAL_DEV_TABLE_ENTRY Event

When the IOMMU performs a lookup in the device table and encounters a device table entry that it does not 
support or that is formatted incorrectly, the IOMMU writes an ILLEGAL_DEV_TABLE_ENTRY event to the 
event log as listed in Table 39.

Figure 49: ILLEGAL_DEV_TABLE_ENTRY Event Log Buffer Entry Format

Translation request with I=0 or V=0.

HW

Master Abort transaction. Create event log entry 
if enabled. Signal interrupt if enabled (see 
Capability Offset 10h[MsiNum]).

Never generated by a command.

DeviceID outside range.

Table 48: INVALID_PPR_REQUEST Event Summary

Event Type Cause IOMMU Response

PRI request received when 
Capability Offset 00h[EFRSup]=0 or 
MMIO Offset 0018h[PPREn]=0 or 
MMIO Offset 0018h[PPRLogEn]=0.

HW

Target Abort PRI transaction. Create event log 
entry if enabled. Signal an interrupt if enabled 
(see Capability Offset 10h[MsiNum]).

Never generated by a command.
COMPLETE_PPR_REQUEST command 
received with GN=1 when guest translation is 
not enabled.

SW
Create event log entry if enabled. Signal an 
interrupt if enabled (see Capability Offset 
10h[MsiNum]).

Note: COMPLETE_PPR_REQUEST is treated as an ILLEGAL_COMMAND_ERROR if PPR is not enabled 
(Capability Offset 00h[EFRSup]=0 or MMIO Offset 0018h[PPREn]=0 or 
MMIO Offset 0018h[PPRLogEn]=0). See also Table 44.

Table 49: EVENT_COUNTER_ZERO Event Types

Event Type Cause IOMMU Response

Informational; performance counter incremented 
to equal zero. SW

Create event log entry if enabled. Signal an 
interrupt if enabled (see Capability Offset 
10h[MsiNum]).

31 28 27 25 24 23 22 21 20 19 18 17 16 15 2 1 0

Reserved PASID[19:16] DeviceID[15:0] +00

0001b Reserved TR RZ ResRWRes I Res GN PASID[15:0] +04

Address[31:2] Res +08

Address[63:32] +12

Table 47: INVALID_DEVICE_REQUEST Event Types (Translation Request)

Event Type Cause IOMMU Response
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3.4.2 IO_PAGE_FAULT Event

When the IOMMU performs a lookup in the page tables for a device and encounters an error condition in 
Table 40, the IOMMU writes the event log with an IO_PAGE_FAULT event as controlled by the SA, SE, IG, 
and SupIOPF bits (see Figure 7 and Table 5 or Figure 15 and Table 8).

I/O page faults detected for translation requests return a translation-not-present response (R=W=0) to the 

Table 50: ILLEGAL_DEV_TABLE_ENTRY Event Log Buffer Entry Fields

Bits Description
31:20 
+00

Reserved. 

31:20 
+00

PASID[19:16]: process space ID. Revision 1: Reserved. Revision 2: The guest PASID[19:16] from 
the transaction when GN=1; 0h when GN=0.

15:0 
+00

DeviceID. Specifies the DeviceID that caused the device table lookup. The address of the malformed 
device table entry can be determined using the DeviceID field.

31:28 
+04

0001b. Specifies an ILLEGAL_DEV_TABLE_ENTRY.

27:25 
+04

Reserved.

24 
+04

TR: translation. 1=transaction that caused the device table lookup was a translation request. 
0=transaction that caused the device table lookup was a transaction request.

23
+04

RZ: reserved bit not zero or invalid level encoding. 1=I/O page fault was caused by a non-zero 
reserved bit in the device table entry. 0=I/O page fault was caused by an invalid level encoding in the 
device table entry.

22
+04

Reserved.

21
+04

RW: read-write. 1=transaction that caused the device table lookup was a write. 0=transaction that 
caused the device table lookup was a read. RW is only meaningful when TR=0 and I=0.

20
+04

Reserved.

19
+04

I: interrupt. 1=transaction that caused the device table lookup was an interrupt request. 
0=transaction that caused the device table lookup was a memory request.

18:17
+04

Reserved. 

16
+04

GN: guest/nested. Revision 1: Reserved. Revision 2: 0=Transaction contained a GPA. 
1=Transaction contained a GVA. See also PASID.

15:0
+04

PASID[15:0]: process space ID. Revision 1: Reserved. Revision 2: The guest PASID[15:0] from the 
transaction when GN=1; 0000h when GN=0.

31:2
+08

Address[31:2]. The Address field contains the device virtual address that the device was attempting 
to access.

1:0
+08

Reserved.

31:0
+12

Address[63:32]. The Address field contains the device virtual address that the device was 
attempting to access.
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device and are not logged in the event log. 

Figure 50: IO_PAGE_FAULT Event Log Buffer Entry Format

31 28 27 25 24 23 22 21 20 19 18 17 16 15 0

Reserved PASID[19:16] DeviceID[15:0] +00

0010b Reserved TR RZ PE RW PR I US NX GN D/P[15:0] +04

Address[31:0] +08

Address[63:32] +12

Table 51: IO_PAGE_FAULT Event Log Buffer Entry Fields

Bits Description
31:20
+00

Reserved.

31:20
+00

PASID[19:16]. Revision 1: Reserved. Revision 2: The guest PASID[19:16] from the PASID TLP 
prefix when GN=1; 0h when GN=0. See also D/P below.

15:0
+00

DeviceID. Specifies the DeviceID that caused the device table lookup. The address of the device 
table entry can be determined using the DeviceID field.

31:28
+04

0010b. Specifies an IO_PAGE_FAULT entry.

27:25
+04

Reserved.

24 
+04

TR: translation. 1=transaction that caused the device table lookup was a translation request. 
0=transaction that caused the device table lookup was a transaction request.

23
+04

RZ: reserved bit not zero or invalid level encoding. 1=I/O page fault was caused by a non-zero 
reserved bit in the entry. 0=I/O page fault was caused by an invalid level encoding. RZ is only 
meaningful when PR=1.

22
+04

PE: permission indicator. 1=peripheral did not have the permissions required to perform the 
transaction. 0=peripheral had the necessary permissions. PE is only meaningful when PR=1. Report 
PE using cumulative read and write permissions as determined during the page walk as 
accomplished.

21
+04

RW: read-write. 1=transaction was a write. 0=transaction was a read. RW is only meaningful when 
PR=1, TR=0, and I=0.

20
+04

PR: present. 1=transaction was to a page marked as present (including V=1b in DTE) or interrupt 
marked as remapped (RemapEn=1). 0=transaction was to a page marked not present or interrupt 
marked as blocked (RemapEn=0).

19
+04

I: interrupt. 1=transaction was an interrupt request. 0=transaction was a memory request.

18
+04

US: user-supervisor. Revision 1: Reserved. Revision 2: 0=Supervisor privileges were asserted. 
1=User privileges were asserted.

17
+04

NX: no execute. Revision 1: Reserved. Revision 2: NX bit as requested by peripheral when the 
upstream transaction has a PASID TLP prefix; 0 when the upstream transaction lacks a PASID TLP 
prefix.

16
+04

GN: guest/nested. Revision 1: Reserved. Revision 2: 0=Transaction used a nested address (GPA). 
1=Transaction used a guest address (GVA). See also PASID.
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An interrupt transaction that attempts to use a PASID is not allowed and the event is logged with I=1, GN=1, 
and the D/P and PASID[19:16] fields contain the PASID when event logging is enabled.

3.4.3 DEV_TAB_HARDWARE_ERROR Event

If the IOMMU triggers a hardware error (master abort, target abort, poisoned data, etc.) while accessing the 
device table, the IOMMU writes the event log with a DEV_TAB_HARDWARE_ERROR event (see Table 41). 
In this case the Address field does not contain the device virtual address the device was attempting to access, 
but instead contains the system physical address of the failed device table access. Revision 2: Information on 
the hardware error registers is contained in Section 3.4.11.2 [I/O Hardware Event Reporting Registers].

Figure 51: DEV_TAB_HARDWARE_ERROR Event Log Buffer Entry Format

15:0
+04

D/P[15:0]: DomainID/PASID[15:0]. Revision 1: The DomainID from the Device Table Entry. For 
error conditions that lack a valid DomainID, the reported DomainID is zero. Revision 2: The guest 
PASID[15:0] from the PASID TLP prefix when GN=1 (see also PASID[19:0] above); the DomainID 
from the DTE when GN=0. For error conditions that lack a valid PASID or DomainID, the reported 
value is zero.

31:0
+08

Address[31:0]. The Address field contains the device virtual address that the peripheral was 
attempting to access.

31:0
+12

Address[63:32]. The Address field contains the device virtual address that the peripheral was 
attempting to access.

Table 52: Event Log Type Field Encodings

Type Description
00b Reserved
01b Master Abort
10b Target Abort
11b Data Error

31 28 27 26 25 24 23 22 21 20 19 18 16 15 4 3 0

Reserved DeviceID[15:0] +00

0011b Res Type TR Res RWRes I Reserved +04

Address[31:4] Reserved +08

Address[63:32] +12

Table 53: DEV_TAB_HARDWARE_ERROR Event Log Buffer Entry Fields

Bits Description
31:16 
+00

Reserved. 

15:0 
+00

DeviceID. Specifies the DeviceID that caused the device table lookup. The address of the device 
table entry can be determined using the DeviceID field.

31:28 
+04

0011b. Specifies a DEV_TAB_HARDWARE_ERROR entry.

Table 51: IO_PAGE_FAULT Event Log Buffer Entry Fields
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3.4.4 PAGE_TAB_HARDWARE_ERROR Event

If the IOMMU detects a hardware error (master abort, target abort, poisoned data, etc.) while accessing the I/O 
page tables, the IOMMU writes the event log with a PAGE_TAB_HARDWARE_ERROR event (see 
Table 42). Revision 2: If the IOMMU detects a hardware error while accessing the guest CR3 table, the guest 
page tables, or the I/O page tables, the IOMMU writes the event log with a 
PAGE_TAB_HARDWARE_ERROR event (see Table 42). Data describing the 
PAGE_TAB_HARDWARE_ERROR event is also written to the hardware error registers (see in Section 
3.4.11.2 [I/O Hardware Event Reporting Registers]). 

Figure 52: PAGE_TAB_HARDWARE_ERROR Event Log Buffer Entry Format

27
+04

Reserved.

26:25
+04

Type. The Type field indicates the type of hardware error that occurred as listed in Table 52.

24 
+04

TR: translation. 1=transaction that caused the device table lookup was a translation request. 
0=transaction that caused the device table lookup was a transaction request.

23:22
+04

Reserved.

21
+04

RW: read-write. 1=transaction was a write. 0=transaction was a read. RW is only meaningful when 
TR=0 and I=0.

20
+04

Reserved.

19
+04

I: interrupt. 1=transaction was an interrupt request. 0=transaction was a memory request.

18:0
+04

Reserved. 

31:4
+08

Address[31:4]. The system physical address of the failed device table access. In this case the 
Address field does not contain the device virtual address the device was attempting to access.

3:0
+08

Reserved.

31:0
+12

Address[63:32]. The system physical address of the failed device table access. In this case the 
Address field does not contain the device virtual address the device was attempting to access.

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 3 2 0

Reserved DeviceID[15:0] +00

0100b Res Type TR Res RWRes I Rsvd GN D/P[15:0] +04

Address[31:3] Reserved +08

Address[63:32] +12

Table 53: DEV_TAB_HARDWARE_ERROR Event Log Buffer Entry Fields
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Software note, Revision 2: When GN=1, the problem may be in the GCR3 table or in the guest page tables.

3.4.5 ILLEGAL_COMMAND_ERROR Event

If the IOMMU reads an invalid command (including an unsupported command code, or a command that 
incorrectly has reserved bits set), the IOMMU writes the event log with an ILLEGAL_COMMAND_ERROR 

Table 54: PAGE_TAB_HARDWARE_ERROR Event Log Buffer Entry Fields

Bits Description
31:16 
+00

Reserved.

15:0 
+00

DeviceID. Specifies the DeviceID that caused the page table lookup. The address of the device table 
entry can be determined using the DeviceID field.

31:28 
+04

0100b. Specifies a PAGE_TAB_HARDWARE_ERROR entry.

27
+04

Reserved.

26:25
+04

Type. The Type field indicates the type of hardware error that occurred as listed in Table 52.

24 
+04

TR: translation. 1=transaction that caused the page table lookup was a translation request. 
0=transaction that caused the page table lookup was an untranslated request.

23:22
+04

Reserved.

21
+04

RW: read-write. 1=transaction was a write. 0=transaction was a read. RW is only meaningful when 
TR=0 and I=0.

20
+04

Reserved.

19
+04

I: interrupt. 1=transaction was an interrupt request. 0=transaction was a memory request.

18:17
+04

Reserved. 

16
+04

GN: guest/nested. Revision 1: Reserved. Revision 2: 0=The address being translated by the 
IOMMU is an SPA. 1=The address being translated by the IOMMU is a GPA. Must be zero when 
MMIO Offset 0030h[GTSup]=0.
Software note: when GN=1, the error could have been encountered in either the guest CR3 table or 
in the guest page tables.

15:0
+04

D/P: DomainID/PASID. Revision 1: The DomainID of the peripheral that caused the page table 
lookup. Revision 2: Contains the PASID when GN=1; the DomainID when GN=0.

31:4
+08

Address[31:4]. The address of the page table entry.

3:0
+08

Reserved.

31:0
+12

Address[63:32]. The SPA of the page table entry. The original address space used by the peripheral 
is indicated by DeviceID, GN, and PASID. The Address field does not contain the address that the 
device attempted to access.
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event (see Table 44). The IOMMU must stop fetching new commands from the command buffer if an 
ILLEGAL_COMMAND_ERROR event is detected.

3.4.6 COMMAND_HARDWARE_ERROR Event

If the IOMMU detects a hardware error (master abort, target abort, poisoned data, etc.) while accessing the 
command buffer, the IOMMU writes the event log with a COMMAND_HARDWARE_ERROR event (see 
Table 43). The IOMMU must stop fetching new commands from the command buffer if a 
COMMAND_HARDWARE_ERROR event is detected. Revision 2: Data describing the 
PAGE_TAB_HARDWARE_ERROR event is also written to the hardware error registers (see Section 3.4.11.2 
[I/O Hardware Event Reporting Registers]).

Figure 54: COMMAND_HARDWARE_ERROR Event Log Buffer Entry Format

31 28 27 4 3 0

Reserved +00

0101b Reserved +04

Address[31:4] Reserved +08

Address[63:32] +12

Figure 53: ILLEGAL_COMMAND_ERROR Event Log Buffer Entry Format

Table 55: ILLEGAL_COMMAND_ERROR Event Log Buffer Entry Fields

Bits Description
31:0 
+00

Reserved. 

31:28 
+04

0101b. Specifies an ILLEGAL_COMMAND_ERROR entry.

27:0
+04

Reserved.

31:4
+08

Address[31:4]. The system physical address of the invalid command.

3:0
+08

Reserved.

31:0
+12

Address[63:32]. The system physical address of the invalid command.

31 28 27 26 25 4 3 0

Reserved +00

0110b Res Type Reserved +04

Address[31:4] Reserved +08

Address[63:32] +12
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3.4.7 IOTLB_INV_TIMEOUT Event

If the IOMMU sends an invalidation request to a device and does not receive a response before the invalidation 
timeout timer expires, the IOMMU writes the event log with a IOTLB_INV_TIMEOUT event (see Table 45). 
See special considerations in Section 3.1.4.13 [INVALIDATE_IOTLB_PAGES and Peripheral Reset].

The Address field contains the system physical address of the invalidation command that timed out.

Figure 55: IOTLB_INV_TIMEOUT Event Log Buffer Entry Format

Table 56: COMMAND_HARDWARE_ERROR Event Log Buffer Entry Fields

Bits Description
31:0 
+00

Reserved. 

31:28 
+04

0110b. Specifies a COMMAND_HARDWARE_ERROR entry.

27
+04

Reserved.

26:25
+04

Type. The Type field indicates the type of hardware event that occurred as listed in Table 52.

24:0
+04

Reserved.

31:4
+08

Address[31:4]. The system physical address that the IOMMU attempted to access.

3:0
+08

Reserved.

31:0
+12

Address[63:32]. The system physical address that the IOMMU attempted to access.

31 28 27 16 15 4 3 0

Reserved DeviceID[15:0] +00

0111b Reserved +04

Address[31:4] Reserved +08

Address[63:32] +12

Table 57: IOTLB_INV_TIMEOUT Event Log Buffer Entry Fields

Bits Description
31:16
+00

Reserved. 

15:0
+00

DeviceID. Specifies the DeviceID that caused the invalidation timeout. The identity of the device 
causing the error can be determined using the DeviceID field.

31:28 
+04

0111b. Specifies a IOTLB_INV_TIMEOUT entry.
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3.4.8 INVALID_DEVICE_REQUEST Event

If the IOMMU receives a request from a device that the device is not allowed to perform, the IOMMU writes 
the event log with a INVALID_DEVICE_REQUEST event (see Table 46). Creation of event log entries for 
INVALID_DEVICE_REQUEST events is controlled by the IG bit in the device table entry (Figure 7 and 
Table 5). Depending on the type of the INVALID_DEVICE_REQUEST (Table 58), some of the fields in 
Figure 56 and Table 59 will not be meaningful. 

27:0
+04

Reserved.

31:4
+08

Address[31:4]. The system physical address of the invalidation command that timed out.

3:0
+08

Reserved.

31:0
+12

Address[63:32]. The system physical address of the invalidation command that timed out.

Table 58: INVALID_DEVICE_REQUEST Type Field Encodings

Type TR Description
000b 0b Read request or non-posted write in the interrupt address range (see Table 2).

001b 0b Pretranslated transaction received from an I/O device that has I=0 or V=0 in the device’s 
DTE.

010b 0b Port I/O space transaction received from an I/O device that has IoCtl=00b in the device’s 
DTE.

011b 0b
Posted write to the system management address range received from an I/O device that has 
SysMgt=00b, or with SysMgt=10b and the message is not a INTx message in the device’s 
DTE, or a posted write to the address translation range when HtAtsResv=1 (see Table 2).

100b 0b

Revision 1: Read request or non-posted write in the system management address range (if 
SysMgt=10b or 0xb), or a read request or a non-posted write in the address translation 
range when HtAtsResv=1 (see Table 2); GN=1 for these errors and PASID is ignored. 
Revision 2: Also, a transaction in any address range with a TLP prefix when Revision 2 
features are not available or not active for the I/O device (see Table 3); note that GN=1 for 
these errors and PASID is valid. 

101b 0b Posted write to the Interrupt/EOI range from an I/O device that has IntCtl=00b in the 
device’s DTE (see Table 2).

110b 0b Posted write to a reserved interrupt address range (see Table 2).

111b 0b Transaction to the system management address range when SysMgt=11b or to the port I/O 
space range when IoCtl=10b, while V=1 and TV=0. 

Table 57: IOTLB_INV_TIMEOUT Event Log Buffer Entry Fields
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Figure 56: INVALID_DEVICE_REQUEST Event Log Buffer Entry Format

000b 1b Translation request received from an I/O device that has I=0, or has V=0, or has V=1 and 
TV=0 in the device’s DTE. 

001b 1b

Translation request in the interrupt, port I/O space (if IoCtl=0xb), or system management 
address range (if SysMgt=0xb or 10b); or translation request in the system management 
address range when SysMgt=11b or in the port I/O space range when IoCtl=10b, while 
V=1 and TV=0.

010b 1b
Revision 1: Reserved. Revision 2: A translation request for any address with a TLP prefix 
when Revision 2 features are not available or are not active for the I/O device (see 
Table 3); note that GN=1 for these errors and PASID is valid. 

011b-111b 1b Reserved.

31 28 27 25 24 23 20 19 18 17 16 15 0

Reserved PASID[19:16] DeviceID[15:0] +00

1000b Type TR Reserved US GN PASID[15:0] +04

Address[31:0] +08

Address[63:32] +12

Table 59: INVALID_DEVICE_REQUEST Event Log Buffer Entry Fields

Bits Description
31:16 
+00

Reserved. 

PASID[19:16]: process address space ID. Revision 1: Reserved. Revision 2: The PASID[19:16] 
when GN=1; 0h when GN=0.

15:0
+00

DeviceID. Specifies the DeviceID that caused the page table lookup. The address of the device table 
entry can be determined using the DeviceID field.

31:28 
+04

1000b. Specifies an INVALID_DEVICE_REQUEST entry.

27:25
+04

Type. The Type field indicates the type of hardware event that occurred as listed in Table 58.

24
+04

TR: translation. 1=transaction that caused the page table lookup was a translation request. 
0=transaction that caused the page table lookup was a transaction request. See Table 58.

23:18
+04

Reserved.

17 US: user-supervisor. Revision 1: Reserved. Revision 2: 0=Supervisor privileges were asserted. 
1=User privileges were asserted.

16
+04

GN: guest/nested. Revision 1: Reserved. Revision 2: 0=Address is a GPA. 1=Address is a GVA.

15:0
+04

PASID[15:0]: process address space ID. Revision 1: Reserved. Revision 2: The PASID when 
GN=1; 0000h when GN=0.

Table 58: INVALID_DEVICE_REQUEST Type Field Encodings

Type TR Description
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3.4.9 INVALID_PPR_REQUEST Event

Revision 1: EventCode 1001b is reserved. 

Revision 2: An INVALID_PPR_REQUEST event log entry is generated when the peripheral page service 
request or the completion command has an problem (see Table 48). 

When Capability Offset 00h[EFRSup]=0 or MMIO Offset 0030h[PPRSup]=0, the PCIe page request interface 
(PRI) is not supported by an IOMMU implementation and a COMPLETE_PPR_REQUEST command will 
cause an ILLEGAL_COMMAND_ERROR event. When PRI is supported (MMIO Offset 0030h[PPRSup]=1), 
a PRI request from a peripheral is invalid when MMIO Offset 0018h[PPREn]=0 or MMIO Offset 
0018h[PPRLogEn]=0. 

When the IOMMU receives an invalid PPR request from a peripheral, it writes the event log with an 
INVALID_PPR_REQUEST event containing RX=0. For certain error conditions noted in Table 48, the 
IOMMU also target aborts the transaction. The IOMMU continues processing normally. Software is 
responsible to issue any COMPLETE_PPR_REQUEST command required by the peripheral. The values in the 
INVALID_PPR_REQUEST event log entry are obtained from the peripheral page service request when RX=0.

When the IOMMU detects an error while processing a COMPLETE_PPR_REQUEST command, the IOMMU 
writes the event log with an INVALID_PPR_REQUEST event containing RX=1. The DeviceID and PPRtag 
fields are extracted from the failed COMPLETE_PPR_REQUEST command and the address of the 
COMPLETE_PPR_REQUEST command is reported in Address[63:0]. When RX=1, the contents of the WP, 
RP, and NX fields are undefined and should be ignored by software. 

31:0
+08

Address[31:0]. The address that the device attempted to translate or access. See GN.

31:0
+12

Address[63:32]. The address that the device attempted to translate or access. See GN.

31 28 27 26 25 24 22 21 20 19 18 17 16 15 14 13 12 11 10 9 0

PASID[15:0] DeviceID[15:0] +00

1001b Rsvd GN Rsvd US WP Rsvd RP NX RX
=0b Rsvd PASID[19:16] PPRtag[9:0] +04

Address[31:12] Reserved +08

Address[63:32] +12

Figure 57: INVALID_PPR_REQUEST Event Log Buffer Entry Format, RX=0

31 28 27 26 25 24 22 21 20 19 18 17 16 15 14 13 10 9 4 3 0

PASID[15:0] DeviceID[15:0] +00

1001b Rsvd GN Rsvd RX
=1b Rsvd PASID[19:16] PPRtag[9:0] +04

Address[31:4] Reserved +08

Address[63:32] +12

Figure 58: INVALID_PPR_REQUEST Event Log Buffer Entry Format, RX=1

Table 59: INVALID_DEVICE_REQUEST Event Log Buffer Entry Fields
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Table 60: INVALID_PPR_REQUEST Event Log Buffer Entry Fields

Bits Description, RX=0 Description, RX=1
31:16 
+00

PASID[15:0]. Meaningful if GN=1; must be zero if GN=0.

15:0
+00

DeviceID[15:0]. DeviceID of the peripheral 
issuing the invalid PPR request.

DeviceID[15:0]. DeviceID of the target 
peripheral (see Section 3.3.7 
[COMPLETE_PPR_REQUEST]).

31:28 
+04

1001b. Specifies an INVALID_PPR_REQUEST entry.

27:26
+04

Reserved.

25
+04

GN: guest/nested. 0=Address is a GPA and PASID is not meaningful. 1=Address is a GVA and 
PASID contains the process address space ID.

24:23
+04

Reserved

22
+04

US. User/supervisor bit as received from the 
peripheral. See PMR in Table 28. Reserved.

21
+04

WP. Write permission request bit as received 
from the peripheral. Reserved.

20:19
+04

Reserved.

18
+04

RP. Read permission request bit as received from 
the peripheral.

Reserved.

17
+04

NX. No-execute permission request bit as 
received from the peripheral. See Exe in Table 28

Reserved.

16
+04

RX. 0=Invalid PAGE_SERVICE_REQUEST 
received (see Section 3.5.1 [Peripheral Page 
Service Request Entry]).

RX. 1=COMPLETE_PPR_REQUEST failed (see 
Section 3.3.7 [COMPLETE_PPR_REQUEST]).

15:14
+04

Reserved.

13:10
+04

PASID[19:16]. Meaningful if GN=1; must be zero if GN=0.

9:0
+04

PPRtag[9:0]. The PPRtag field as received from 
the peripheral. This field contains a protocol-
dependent tag. 
• When the PPR request originated as a PCIe 

page request message, PPRtag[9] is the L bit 
and PPRtag[8:0] is the PRG index.

PPRtag[9:0]. The PPRtag field as sent to the 
peripheral. This field contains a protocol-
dependent tag. 
• When the PPR completion targets a PCIe 

peripheral, PPRtag[9] is the L bit and 
PPRtag[8:0] is the PRG index.

• The PRI Response Code in is not reported (see 
Table 36).

31:12
+08

Address[31:12]. The page address as received 
from the peripheral. Address[31:4]. The SPA of the invalid PPR 

completion command.11:4
+08

Reserved.
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Software note: Software is responsible to take the PCI PRG index from the PPRtag field and use it in the PPR 
completion command (see Section 3.3.7 [COMPLETE_PPR_REQUEST]).

3.4.10 EVENT_COUNTER_ZERO Event

Revision 1: EventCode 1010b is reserved. 

Revision 2: When the IOMMU is programmed to count events and a counter increments to become equal to 
zero, the IOMMU generates an EVENT_COUNTER_ZERO event. The CounterNote field contains the 
CounterNote value programmed into the corresponding event register (see IOMMU Counter Report Register 
[MMIO Offset [40-7F][0-F]28h]). The EVENT_COUNTER_ZERO event log entry is managed by the same 
controls as other events (see MMIO Offset 0010h[MsiNum] and MMIO Offset 0018h[EventIntEn, 
EventLogEn]).

Figure 59: EVENT_COUNTER_ZERO Event Log Buffer Entry Format

3:0
+08

Reserved.

31:0
+12

Address[63:32]. The page address as received 
from the peripheral.

Address[63:32]. The SPA of the invalid PPR 
completion command.

31 28 27 20 19 0

Reserved +00

1010b Reserved +04

Reserved CounterNote[51:32] +08

CounterNote[31:0] +12

Table 61: EVENT_COUNTER_ZERO Event Log Buffer Entry Fields

Bits Description
31:00
+00

Reserved. 

31:28 
+04

1010b. Specifies a EVENT_COUNTER_ZERO entry.

27:0
+04

Reserved.

31:20
+08

Reserved.

19:0
+08 CounterNote[51:0]. The CounterNote value programmed into the corresponding Event Counter 

Register (see IOMMU Counter Report Register [MMIO Offset [40-7F][0-F]28h]).31:0
+12

Table 60: INVALID_PPR_REQUEST Event Log Buffer Entry Fields
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3.4.11 IOMMU Event Reporting

The IOMMU is designed to identify and report hardware events, software programming problems, completion 
events, and performance events. Hardware events are the highest priority, programming problems are reported 
when there are no hardware events detected, and completion and performance events are reported as soon as 
possible. The IOMMU reports one event for a given activity; because the IOMMU can be highly concurrent, 
multiple events may be reported in quick succession from different causes. The IOMMU checks for exceptions 
in a sequence designed to protect system integrity and described in Section 3.4.11.1 [IOMMU Data Validation 
Sequence]. 

Revision 2: Hardware events could prevent reporting events via the event log in memory and are reported in 
IOMMU registers (Section 3.4.11.2 [I/O Hardware Event Reporting Registers]).

3.4.11.1 IOMMU Data Validation Sequence

When the IOMMU processes an interrupt remapping or address translation operation, it follows the data 
validation sequence in Figure 60. The order of reported events can vary based on the nature of the events and 
cached information. In the case of multiple events, the IOMMU is only required to report a single event.
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Figure 60: Translation and Remapping Validation Sequence

• Note A: these checks may run in parallel and an implementation selects any event to report when it detects 
multiple events.

• Note B: INVALID_DEVICE_REQUEST and IO_PAGE_FAULT checks may run in parallel and an 
implementation selects any detected event to report when it identifies multiple errors.

The IOMMU initially uses architectural definitions and information programmed in the registers to validate the 
request (Table 2, Device Table Base Address Register [MMIO Offset 0000h], IOMMU Control Register 
[MMIO Offset 0018h], IOMMU Exclusion Base Register [MMIO Offset 0020h], IOMMU Exclusion Range 
Limit Register [MMIO Offset 0028h], and IOMMU Extended Feature Register [MMIO Offset 0030h]). Once 
the IOMMU has loaded a device table entry, it runs a series of checks. The IOMMU uses architectural 
definitions to determine if the request requires interrupt remapping or address translation (Table 2). For 
interrupt remapping, the DTE and IRTE are used with architectural definitions to check for exceptions in 
sequence (Table 7 and Table 8). For address translation, the IOMMU fetches a series of descriptors and checks 
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for exceptions in sequence. After reporting an event, the IOMMU terminates the translation process.

3.4.11.2 I/O Hardware Event Reporting Registers

Three types of event log entries are caused by memory faults:
• Section 3.4.3 [DEV_TAB_HARDWARE_ERROR Event], 
• Section 3.4.4 [PAGE_TAB_HARDWARE_ERROR Event], and 
• Section 3.4.6 [COMMAND_HARDWARE_ERROR Event]. 

Revision 1: All hardware events are written to the event log when logging is enabled. The IOMMU Hardware 
Event Status Register [MMIO Offset 0050h], IOMMU Hardware Event Upper Register [MMIO Offset 0040h], 
and IOMMU Hardware Event Lower Register [MMIO Offset 0048h] always read as zero.

Revision 2: Hardware event information is written to the hardware event registers by the IOMMU if MMIO 
Offset 0030h[HESup]=1. The event log information shown in Figure 48 for the hardware events listed in this 
section is reported in IOMMU Hardware Event Upper Register [MMIO Offset 0040h] and IOMMU Hardware 
Event Lower Register [MMIO Offset 0048h] where it can be extracted (e.g., for system diagnostic purposes 
when memory issues prevent updates to the event log). When logging is enabled, the IOMMU also creates an 
event log entry. When MMIO Offset 0018h[EventIntEn]=1, the IOMMU signals an interrupt. The hardware 
events are reported in the hardware event registers even when event logging to memory is not enabled. The 
information in the hardware event registers is meaningful when MMIO Offset 0050h[HEV]=1. The 
information in the hardware event registers has overwritten prior information when MMIO Offset 
0050h[HEO]=1. Hardware sets MMIO Offset 0050h[HEO]=1 if MMIO Offset 0050h[HEV]=1 when the 
IOMMU writes new information to IOMMU Hardware Event Upper Register [MMIO Offset 0040h] and 
IOMMU Hardware Event Lower Register [MMIO Offset 0048h]. HEO is informational and event register 
overflow does not, itself, cause an error. Software must clear HEV after reading the hardware event registers to 
prepare the registers to record new information. 

3.5 Peripheral Page Service Request (PPR) Logging

Revision 1: Not supported. 

Revision 2: Some ATS-capable peripherals can issue requests to the processor to service page service requests 
using PCIe PRI, the Page Request Interface (see the PCI Address Translation Services Revision 1.1 
specification). An IOMMU that supports peripheral page service requests (MMIO Offset 0030h[PPRSup]=1b) 
can report these requests to the host software by means of a shared circular buffer in system memory. The 
IOMMU writes peripheral page service request (PPR) records into the buffer when enabled by MMIO Offset 
0018h[PPREn]. The host software increments the IOMMU's PPR request log head pointer to indicate to the 
IOMMU that it has consumed PPR request log entries. When software has completed processing the PPR 
request, it uses the IOMMU COMPLETE_PPR_REQUEST command to inform the peripheral of the results 
(see Section 3.3.7 [COMPLETE_PPR_REQUEST]).

Software note: The IOMMU cannot service PRI requests without software intervention, so it converts them to 
PPR log entries for software to process. All PRI requests are converted to PPR log entries as long as there is 
room in the PPR log while MMIO Offset 0018h[PPRRun]=1. To stop the IOMMU from processing all PRI 
requests, software can program MMIO Offset 0018h[PPRRun]=0; this causes PRI requests to be discarded by 
the IOMMU. To stop an individual peripheral from issuing PRI requests, software must use the control fields 
in the peripheral registers.
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Figure 61: Circular Peripheral Page Service Request Log in System Memory

The PPR Log Base Address Register [MMIO Offset 0038h] is used to program the system physical address 
and size of the PPR log. The PPR log occupies contiguous physical memory starting at the programmed base 
address up to the programmed size. The size of the PPR log must be a multiple of 4K bytes (to facilitate "mod 
N" indexing for circularity), and can be as large as 32768 entries (corresponding to a 512 kilobyte buffer). The 
base address of the PPR log must be aligned to a multiple of 4K bytes.

In addition to the PPR Log Base Address Register [MMIO Offset 0038h], the IOMMU maintains two other 
registers associated with the PPR log: the IOMMU PPR Log Head Pointer Register [MMIO Offset 2030h] 
which points to the next PPR request that software will read, and the IOMMU PPR Log Tail Pointer Register 
[MMIO Offset 2038h] which points to the next PPR request to be written by the IOMMU. These registers are 
located in MMIO space. When the PPR Log Base Address Register [MMIO Offset 0038h] register is written, 
the IOMMU PPR Log Head Pointer Register [MMIO Offset 2030h] and the IOMMU PPR Log Tail Pointer 
Register [MMIO Offset 2038h] are cleared to 0. When the IOMMU PPR Log Head Pointer Register [MMIO 
Offset 2030h] and the IOMMU PPR Log Tail Pointer Register [MMIO Offset 2038h] are equal, the PPR 
request log is empty. The IOMMU PPR Log Tail Pointer Register [MMIO Offset 2038h] is incremented by the 
IOMMU after writing a PPR request to the log. If the IOMMU needs to report a service request but finds that 
the PPR log is already full, it sets MMIO Offset 2020h[PPROverflow]. The IOMMU can be configured to 
signal an interrupt using Capability Offset 10h[MsiNumPPR] whenever the PPR log is written or overflows by 
setting MMIO Offset 0018h[PPRIntEn]. The PPR request log is full when all slots but one are used. The PPR 
log has overflowed when a PPR request occurs that is to be logged and would otherwise consume the last 
unused slot. When the PPR log has overflowed, the MMIO Offset 2020h[PPROverflow] is set, any data for 
new PPR requests is discarded, and PPR logging is disabled. The host software must make space in the PPR 
log by reading entries (by adjusting the head pointer) or resizing the log. PPR request logging may then be 
restarted.

The IOMMU PPR logging is disabled after system reset and when the PPR log overflows. The IOMMU 
discards PPR requests until PPR logging is enabled, setting IOMMU Status Register [MMIO Offset 
2020h][PPROverflow] to indicate the loss of PPR request information. To restart the IOMMU PPR request 
logging after the PPR log overflows, use the following procedure.
• Wait until IOMMU Status Register [MMIO Offset 2020h][PPRLogRun]=0b so that all request entries are 

completed as circumstances allow. PPRLogRun must be 0b to modify the PPR log registers safely.
• Write IOMMU Control Register [MMIO Offset 0018h][PPRLogEn]=0b.
• As necessary, change the following registers (e.g., to relocate or resize the PPR log):

• the PPR Log Base Address Register [MMIO Offset 0038h],
• the IOMMU PPR Log Head Pointer Register [MMIO Offset 2030h], and 
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• the IOMMU PPR Log Tail Pointer Register [MMIO Offset 2038h].
• Write IOMMU Status Register [MMIO Offset 2020h][PPROverflow]=0b to clear the bit.
• Write IOMMU Control Register [MMIO Offset 0018h][PPRLogEn]=1b and IOMMU Control Register 

[MMIO Offset 0018h][PPRIntEn] as desired. 
The IOMMU now creates PPR request log entries for new requests.

Figure 62: PPR log state diagram

All PPR requests recorded by the IOMMU consist of a 4-bit PPRCode together with two operands, which may 
be respectively 60 and 64 bits long, for a total of 128 bits (16 bytes) per record.

The IOMMU must set the Coherent bit in the HyperTransport™ packet when generating writes to the PPR log.

Figure 63: Generic Peripheral Page Service Request Log Buffer Entry Format

3.5.1 Peripheral Page Service Request Entry

Revision 1: Not used. 

Revision 2: When a peripheral needs memory page services, it issues a special bus request to the IOMMU. If 
supported (see MMIO Offset 0030h[PPRSup] and MMIO Offset 0018h[PPREn]), the IOMMU converts the 
special bus request to the PAGE_SERVICE_REQUEST format. When peripheral page service is enabled for 
the device (see MMIO Offset 0018h[PPRLogEn]), the IOMMU creates a PAGE_SERVICE_REQUEST entry 

31 28 27 0

First event code dependent operand [31:0] +00

PPRCode[3:0] First event code dependent operand [59:32] +04

Second event code dependent operand [31:0] +08

Second event code dependent operand [63:32] +12

Set PPROverflow=0

RESET
IommuEn=0
PPRLogRun=0
PPRInt=0

PPROverflow=0

IommuEn=1
PPRLogRun=1
PPRInt=Y

PPROverflow=0

Program PPR registers
Set PPRLogEn=1

IommuEn=1
PPRLogRun=0
PPRInt=Y

PPROverflow=1

[PPR events are [PPR events discarded]

PPR log 

Set PPRInt=Y
Set IommuEn=1

Set PPRLogEn=1

[PPR events discarded]

Note: the value Y is set by software
and preserved across PPR log overflows.

overflows

IommuEn=1
PPRLogRun=0
PPRInt=Y

PPROverflow=0
[PPR events discarded]

Set PPRLogEn=0

Set PPRLogEn=1

reported]
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in the PPR log buffer. Certain types of ill-formed PCIe PRI requests are logged in the PPR request log with 
RZ=1 so that software may attempt recovery (e.g., reserved bit error in Figure 34). When peripheral page 
service is not enabled, the IOMMU creates an entry in the IOMMU event log to report the error (see Section 
3.4.9 [INVALID_PPR_REQUEST Event]). After processing the request, software issues a 
COMPLETE_PPR_REQUEST command to inform the peripheral that page service processing is complete 
(see Section 3.3.7 [COMPLETE_PPR_REQUEST]).

If the PCIe PRI request has a PASID TLP prefix with a valid PASID, it is a GVA request and the header 
contains a PASID. If the PRI request packet lacks a PASID TLP prefix with a valid PASID, it is a nested (GPA) 
request and the PASID in the log entry must be ignored by software. The presence of a valid PASID is 
indicated to software by the GN bit in the log entry.

Figure 64: PAGE_SERVICE_REQUEST PPR Log Buffer Entry Format

31 28 27 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 2 1 0

PASID[15:0] DeviceID[15:0] +00

0001b Reserved GN RZ US WP Resv RP NX Reserved PASID[19:16] PPRtag +04

Address[31:12] Reserved +08

Address[63:32] +12

Table 62: PAGE_SERVICE_REQUEST PPR Log Buffer Entry Fields

Bits Description
31:16 
+00

PASID[15:0]. Specifies PASID[15:0] that requested the page service. PASID is valid when GN=1 
and is ignored by software when GN=0.

15:0 
+00

DeviceID. Specifies the DeviceID that requested the page service. The IOMMU domain can be 
determined using the DeviceID field. The page to be serviced can be determined from the Address 
field.

31:28 
+04

0001b. Specifies a PAGE_SERVICE_REQUEST from the peripheral identified in the DeviceID 
field.

27:25 
+04

Reserved.

24
+04

GN: Guest/nested. 1=Address[63:12] is a GVA and PASID is valid. 0=Address[63:12] is a GPA and 
PASID should be ignored by software.

23
+04

RZ: reserved bit not zero or reserved encoding. 1=The received peripheral request had a non-zero 
reserved bit or used a reserved encoding. The rest of the request has been reported as it was received. 
Software may attempt recovery. 0=The received peripheral request passed all hardware validation 
checks.  

22
+04

US: User/Supervisor. The U/S request received from the peripheral.1=user and supervisor access 
are allowed. 0=supervisor access is allowed.

21
+04

WP: write permission requested. 1=peripheral is requesting write access. 0=write access may be 
denied.

20:19
+04

Reserved.

18
+04

RP: read permission requested. 1=peripheral is requesting read access. 0=read access may be 
denied.
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The log entry is designed to carry a full set of independent read-, write-, and execute-permission bits; any bits 
not provided by the underlying peripheral protocol are set to the “permitted” state by the IOMMU (see also 
MMIO Offset 0030h[NXSup]).

3.6 IOMMU Interrupt Support

The IOMMU uses standard PCI interrupt mechanisms to generate interrupts. The IOMMU must support 
signaling of either MSI or MSI-X interrupts. The MSI capability must support 64-bit addressing. The IOMMU 
must not set the PassPW bit when sending interrupts associated with the IOMMU over HyperTransport™ 
links.

Revision 1: The IOMMU supports generation of an interrupt when the event log is updated or overflows, and 
when a completion wait command completes (see Capability Offset 10h[MsiNum], MMIO Offset 
0018h[ComWaitEn], and MMIO Offset 0018h[EventIntEn]). 

Revision 2: The IOMMU supports generation of an interrupt when the event log is updated or overflows, and 
when a completion wait command completes (see Capability Offset 10h[MsiNum], MMIO Offset 
0018h[ComWaitEn], and MMIO Offset 0018h[EventIntEn]), and when the peripheral page service request log 
is updated or overflows (see Capability Offset 10h[MsiNumPPR] and MMIO Offset 0018h[PPRIntEn]). 

3.7 PCI Resources

The IOMMU must be implemented as an independent PCIe Function. Any PCIe Function containing an 
IOMMU capability block must be a PCIe Endpoint. A peripheral may implement more than one IOMMU 
within a single PCIe Function. Any PCIe Function containing an IOMMU capability block may not be used for 
any purpose other than containing an IOMMU. A PCIe Function containing an IOMMU capability block may 
not have any PCI BAR registers. Configuration and status information for the IOMMU are mapped into PCI 
configuration space using a PCI capability block. One or more IOMMU capability blocks may be implemented 
in a PCIe Function. If more than one IOMMU capability block is implemented in a PCIe Function, the 

17
+04

NX: execute permission requested. 1=peripheral is requesting NX handling of access requests 
(instruction fetch requests will be blocked, read requests are to be allowed when RP=1). 0=peripheral 
instruction fetch access should be handled as a read request.

16:14
+04

Reserved. 

13:10
+04

PASID[19:16]. Specifies PASID[19:16] that requested the page service. PASID is valid when GN=1 
and is ignored by software when GN=0.

9:0
+04

PPRtag: protocol tag. This field contains a protocol-dependent tag. 
When the PPR request originated as a PCIe page request message, PPRtag[9] is the PRI L bit and 
PPRtag[8:0] is the PRI PRG index; the IOMMU is required to return the PRG index in the response 
message (see Section 3.3.7 [COMPLETE_PPR_REQUEST]).

31:12
+08

Address[31:12]. The address field contains the device virtual address that the device was attempting 
to access. The minimum invalidation granularity is a 4K byte page so the address is truncated. See 
also GN and PASID fields.

11:0
+08

Reserved. 

31:0
+12

Address[63:32]. The Address field contains the device virtual address that the device was 
attempting to access. See also GN and PASID fields.

Table 62: PAGE_SERVICE_REQUEST PPR Log Buffer Entry Fields
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IOMMU must support generating MSI-X interrupts.

If a single IOMMU capability block is implemented in a PCIe Function, the IOMMU may support either MSI 
or MSI-X or both. The PCIe Function must assign a distinct interrupt vector to each interrupt that can be 
generated by each IOMMU capability block (i.e., two interrupts per IOMMU capability that has MMIO Offset 
0030h[PPRSup]=1 and one interrupt per IOMMU capability block that has MMIO Offset 0030h[PPRSup]=0).

The PCI class is System Base Peripheral (08h) with a subclass of IOMMU (06h) and a programming interface 
code of 00h, as issued by the PCI-SIG.

The HyperTransport™ UnitID used when an IOMMU generates requests must not be used for any other traffic. 
A HyperTransport™ UnitID can be shared by multiple IOMMUs within a physical component.

IOMMU registers not specified in Section 3.7 [PCI Resources] return 0s when read and ignore the data when 
written. 

3.7.1 IOMMU Capability Block Registers

The presence of an IOMMU capability block in a PCIe Function indicates the presence of an IOMMU. The 
IOMMU capability block contains various registers to control the IOMMU and to configure the location of the 
MMIO registers of the IOMMU.

When Capability Offset 04h[Enable] is written with a 1b, all RW capability registers defined in Section 3.7.1 
[IOMMU Capability Block Registers] are locked until the next system reset. This means the registers become 
read-only and attempts to write them are ignored.

Capability Offset 00h IOMMU Capability Header
This register indicates that this is an IOMMU capability block.

31 28 27 26 25 24 23 19 18 16 15 8 7 0

Reserved

EF
R

Su
p

N
pC

ac
he

H
tT

un
ne

l

Io
tlb

Su
p

CapRev CapType CapPtr CapID

Bits Description
31:28 Reserved.

27 EFRSup: IOMMU Extended Feature Register support. Revision 1: RO. Reset 0b. Reserved. The 
IOMMU Extended Feature Register [MMIO Offset 0030h] is not supported. Revision 2: RO. Reset 
Xb. 1=Indicates IOMMU Extended Feature Register [MMIO Offset 0030h] is supported. 0=MMIO 
Offset 0030h is Reserved.

26 NpCache: not present table entries cached. RO. Reset Xb. 1=Indicates that the IOMMU caches 
page table entries that are marked as not present. When this bit is set, software must issue an 
invalidate after any change to a PDE or PTE. 0=Indicates that the IOMMU caches only page table 
entries that are marked as present. When NpCache is clear, software must issue an invalidate after any 
change to a PDE or PTE marked present before the change.
Implementation note: For hardware implementations of the IOMMU, this bit must be 0b.

25 HtTunnel: HyperTransport™ tunnel translation support. RO. Reset Xb. Indicates that the device 
contains a HyperTransport™ tunnel that supports address translation on the HyperTransport™ 
interface.
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24 IotlbSup: IOTLB Support. RO. Reset Xb. Indicates the IOMMU will support ATS translation 
request messages as defined in PCI ATS 1.0 or later.

23:19 CapRev: capability revision. RO. Reset 0_0001b. Specifies the IOMMU interface revision. 
Software note: this value is changed when architectural changes cause an interface incompatibility.

18:16 CapType: IOMMU capability block type. RO. Reset 011b. Specifies the layout of the Capability 
Block as an IOMMU capability block. 

15:8 CapPtr: capability pointer. RO. Reset XXh. Indicates the location of the next capability block, or 
00h if this is the last capability block in the capability list.

7:0 CapId: capability ID. RO. Reset 0Fh. Indicates a Secure Device capability block.

Capability Offset 04h IOMMU Base Address Low Register
This register specifies the lower 32 bits of the base address (SPA) of the IOMMU control registers. This 
register is locked when IOMMU Base Address Low[Enable] is written with a 1b. Revision 1: the Base 
Address[31:14] may be set to any value; the Base Address is 16 Kbyte aligned. 

Revision 2: When MMIO Offset 0030h[PCSup]=1, the IOMMU event counters are supported therefore the 
Base Address[31:19] may be set to any value and Base Address[18:14] must be set to 0_0000b such that the 
Base Address is 512 Kbyte aligned (see Section 3.7.2.4 [MMIO Event Counter Configuration Registers]). 
When MMIO Offset 0030h[PCSup]=0, the IOMMU event counters are not supported therefore the Base 
Address[31:14] may be set to any value such that the Base Address is 16 Kbyte aligned. 

31 19 18 14 13 1 0

BaseAddress[31:19] BaseAddress[18:14] Reserved

En
ab

le

Bits Description
31:19  BaseAddress[31:19]. RW when Capability Offset 04h[Enable]=0. RO when Capability Offset 

04h[Enable]=1. Reset 0_0000_0000_0000b. Specifies lower bits of the base address of the IOMMU 
control registers. Base Address[31:19] may be set to any value.

18:14 BaseAddress[18:14]. RW when Capability Offset 04h[Enable]=0. RO when Capability Offset 
04h[Enable]=1. Reset 0_0000b. Specifies the lower bits of the base address of the IOMMU control 
registers. Revision 1: Base Address[18:14] may be set to any value. Revision 2: In order to use the 
IOMMU event counters Base Address[18:14] must be set to 0_0000b. See MMIO Offset 
0030h[PCSup].

13:1 Reserved.
0 Enable. RW1S. Reset 0b. 1=IOMMU accepts memory accesses to the address specified in the Base 

Address Register. When Enable is written with a 1, all RW capability registers defined in Section 
3.7.1 [IOMMU Capability Block Registers] are locked until the next system reset. 
Note: BaseAddress may be changed and locked with the same write operation that sets Enable=1b.

Capability Offset 08h IOMMU Base Address High Register
This register specifies the upper 32 bits of the base address of the IOMMU control registers. This register is 
locked when IOMMU Base Address Low[Enable] is written with a 1b.
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This register indicates the device and function numbers of the first and last devices associated with the 
IOMMU. This register is locked when IOMMU Base Address Low[Enable] is written with a 1. Root port 
devices that have device and function numbers between the first and last device numbers inclusive are 
supported by the IOMMU and provide full source identification to the IOMMU. Non-root port devices that 
have device and function numbers between the first and last device numbers inclusive are devices integrated in 
with the IOMMU and support address translation using the IOMMU. Integrated devices associated with the 
IOMMU must be located on the same logical bus.

31 0

BaseAddress[63:32]

Bits Description
31:0  BaseAddress[63:32]. RW when Capability Offset 04h[Enable]=0. RO when Capability Offset 

04h[Enable]=1. Reset 0000_0000h. Specifies the upper 32 bits of the base address of the IOMMU 
control registers.

Capability Offset 0Ch IOMMU Range Register

31 24 23 16 15 8 7 6 5 4 0

LastDevice FirstDevice BusNumber

R
ng

Va
lid

R
es

er
ve

d

UnitID

Bits Description
31:24 LastDevice: last device. RW when Capability Offset 04h[Enable]=0. RO when Capability Offset 

04h[Enable]=1. Reset XXh. Indicates device and function number of the last integrated device 
associated with the IOMMU. 
Note: an implementation may define this value as RO.

23:16 FirstDevice: first device. RW when Capability Offset 04h[Enable]=0. RO when Capability Offset 
04h[Enable]=1. Reset XXh. Indicates device and function number of the first integrated device 
associated with the IOMMU. 
Note: an implementation may define this value as RO.

15:8 BusNumber: Device range bus number. RW when Capability Offset 04h[Enable]=0. RO when 
Capability Offset 04h[Enable]=1. Reset XXh. Indicates the bus number that FirstDevice and 
LastDevice reside on.
Note: an implementation may define this value as RO.

7 RngValid: Range valid. RW when Capability Offset 04h[Enable]=0. RO when Capability Offset 
04h[Enable]=1. Reset Xb. 1b=the BusNumber, FirstDevice, and LastDevice fields are valid. Although 
the register contents are valid, software is encouraged to use I/O topology information as defined in 
Section 5 [I/O Virtualization ACPI Tables]. 0b=Software must use I/O topology information as 
defined Section 5 [I/O Virtualization ACPI Tables].
Note: an implementation may define this value as RO.

6:5 Reserved.
4:0 UnitID: IOMMU HyperTransport™ UnitID. RW when Capability Offset 04h[Enable]=0. RO 

when Capability Offset 04h[Enable]=1. Reset X_XXXXb. This field returns the HyperTransport™ 
UnitID used by the IOMMU. 
Note: an implementation may define this value as RO.
Note: this field is deprecated and may be set to 0_0000b.
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This register returns the size of virtual and physical addresses supported by the IOMMU, and the message 
number for MSI or MSI-X interrupts associated with the IOMMU.

Capability Offset 10h IOMMU Miscellaneous Information Register

31 27 26 23 22 21  15 14 8 7 5 4 0

MsiNumPPR Reserved

H
tA

ts
R

es
v

VAsize PAsize GVAsize MsiNum

Bits Description
31:27 MsiNumPPR: Peripheral Page Service Request MSI message number. Revision 1: RO. Reset 

0_0000b. Reserved. Revision 2: RO. Reset X_XXXXb. This field must indicate which MSI/MSI-X 
vector is used for the interrupt message generated by the IOMMU for the peripheral page service 
request log when MMIO Offset 0030h[PPRSup]=1. MsiNumPPR must be zero when PPRSup=0.
For MSI there can only be one IOMMU so this field must be zero (Section 3.7 [PCI Resources]).
For MSI-X, the value in this field indicates which MSI-X Table entry is used to generate the interrupt 
message.
Either MSI or MSI-X must be implemented, but not both. This interrupt is not remapped by the 
IOMMU. If neither MSI nor MSI-X are enabled and a PPR interrupt occurs, the interrupt is silently 
dropped.
Implementation note: INTx is not supported for the PPR interrupt.

26:23 Reserved.
22 HtAtsResv: ATS response address range reserved. RW when Capability Offset 04h[Enable]=0b. 

RO when Capability Offset 04h[Enable]=1b. Reset 0b. 1=The HyperTransport™ Address Translation 
address range for ATS responses is reserved and cannot be translated by the IOMMU. 0=The Address 
Translation address range can be translated by the IOMMU. See Table 2. 
Implementation note: This bit may be RO if ATS is not supported.

21:15 VAsize: Virtual Address size. RO. Reset XXXXXXb. This field must indicate the size of the 
maximum virtual address processed by the IOMMU. The value is the (unsigned) binary log of the 
maximum address size. Allowed values are 32, 40, 48, and 64; all other values are reserved.
010_0000b = 32 bits
010_1000b = 40 bits
011_0000b = 48 bits
100_0000b = 64 bits
Revision 2: This field defines the size of the GPA.

14:8 PAsize: Physical Address size. RO. Reset XXXXXXb. This field must indicate the size of the 
maximum physical address generated by the IOMMU. The value is the (unsigned) binary log of the 
maximum address size. Allowed values are 40, 48, and 52; all other values are reserved.
010_1000b = 40 bits
011_0000b = 48 bits 
011_0100b = 52 bits
Revision 2: This field defines the size of the SPA.
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3.7.2 IOMMU MMIO Registers

The IOMMU control registers are mapped using the IOMMU Base Address Low Register [Capability 
Capability Offset 04h] and IOMMU Base Address High Register [Capability Capability Offset 08h] specified 
in the IOMMU capability block. Software access to IOMMU registers may not be larger than 64 bits. Accesses 
must be aligned to the size of the access and the size in bytes must be a power of two. Software may use 
accesses as small as one byte.

3.7.2.1 MMIO Control and Status Registers

   

7:5 GVAsize: Guest Virtual Address size. Revision 1: RO. Reset 000b. Revision 2: RO. Reset XXXb. 
This field must indicate the size of the maximum guest virtual address processed by the IOMMU. The 
allowed size is 48 and all other values are reserved.
000b - 001b = Reserved.
010b = 48 bits
001b - 111b = Reserved.

4:0 MsiNum: MSI message number. RO. Reset XXXXXb. This field must indicate which MSI/MSI-X 
vector is used for the interrupt message generated by the IOMMU for the IOMMU event log.
For MSI there can only be one IOMMU so this field must be zero (Section 3.7 [PCI Resources]).
For MSI-X, the value in this field indicates which MSI-X Table entry is used to generate the interrupt 
message.
Either MSI or MSI-X can be implemented, but not both. If the MSI-X capability is not enabled, INTx 
is used to deliver the interrupt. This interrupt is not remapped by the IOMMU.
Revision 2: Either MSI or MSI-X must be implemented, but not both. This interrupt is not remapped 
by the IOMMU. Implementation note: INTx is supported for backwards compatibility with 
IOMMU Revision 1 but its use is discouraged in designs. 

MMIO Offset 0000h Device Table Base Address Register
This register specifies the system physical address of the device table.
63 52 51 32

Reserved DevTabBase

31 12 11 9 8 0

DevTabBase Reserved Size[8:0]

Bits Description
63:52 Reserved. 
51:12 DevTabBase: device table base address. RW. Reset 00_0000_0000h. Specifies the 4Kbyte-aligned 

base address of the first level device table. 
11:9 Reserved.
8:0 Size: size of the device table. RW. Reset 000h. This field contains 1 less than the length of the device 

table, in multiples of 4K bytes. A minimum size of 0 corresponds to a 4K byte device table and a 
maximum size of 1FFh corresponds to a 2M byte device table. 
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MMIO Offset 0008h Command Buffer Base Address Register
This register specifies the system physical address and length of the command buffer.
63 60 59 56 55 52 51 32

Reserved ComLen Reserved ComBase

31 12 11 0

ComBase Reserved

Bits Description
63:60 Reserved. 
59:56 ComLen: command buffer length. RW. Reset 1000b. Specifies the length of the command buffer in 

power of 2 increments. The minimum size is 256 entries (4K bytes); values less than 1000b are 
reserved.
0000b - 0111b = Reserved
1000b = 256 entries (4K bytes)
1001b = 512 entries (8K bytes)
...
1111b = 32768 entries (512K bytes)

55:52 Reserved
51:12 ComBase: command buffer base address. RW. Reset 00_0000_0000h. Specifies the base address of 

the command buffer. The base address programmed must be aligned to 4K bytes.
11:0 Reserved

MMIO Offset 0010h Event Log Base Address Register
This register specifies the system physical address and length of the event log.

Software Note: If EventLen or EventBase is changed while the EventLogRun=1, the IOMMU behavior is 
undefined.
63 60 59 56 55 52 51 32

Reserved EventLen Reserved EventBase

31 12 11 0

EventBase Reserved

Bits Description
63:60 Reserved. 
126Advanced Micro Devices



PID 48882 Rev 2.00 - 3/24/11  IOMMU Architectural Specification
59:56 EventLen: event log length. RW. Reset 1000b. Specifies the length of the event log in power of 2 
increments. The minimum size is 256 entries (4K bytes); values less than 1000b are reserved.
0000b - 0111b = Reserved
1000b = 256 entries (4K bytes)
1001b = 512 entries (8K bytes)
...
1111b = 32768 entries (512K bytes)

55:52 Reserved
51:12 EventBase: event log base address. RW. Reset 00_0000_0000h. Specifies the base address of the 

event log. The base address programmed must be aligned to 4K bytes.
11:0 Reserved

MMIO Offset 0018h IOMMU Control Register
This register controls the behavior of the IOMMU.
63 32

Reserved

31 22 21 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved CRW

G
A

En

G
TE

n

PP
R

En

PP
R

In
tE

n

PP
R

Lo
gE

n

C
m

dB
uf

En

Is
oc

C
oh

er
en

t

R
es

Pa
ss

PW

Pa
ss

PW

In
vT

im
eO

ut

C
om

W
ai

tIn
tE

n

Ev
en

tIn
tE

n

Ev
en

tL
og

En

H
tT

un
En

Io
m

m
uE

n

Bits Description
63:22 Reserved.
21:18 CRW: ignored. Revision 1: RO. Reset 0h. Reserved. Revision 2: RW. Reset 0h. Intended for future 

use. 
Software note: this field is not implemented in Revision 2 but may be defined in future revisions. 
Software may safely write 0h to this field in Revision 2 and should ignore the value read.

17 GAEn: Guest APIC enable. Revision 1: RO. Reset 0b. Reserved. Revision 2: RW. Reset 0b. 
0=Device interrupt virtualization is not enabled. 1=device interrupts are updated using the Guest 
Virtual APIC Table Root Pointer in the DTE and are posted to the processors. Writes to this bit are 
ignored when MMIO Offset 0030h[GASup]=0.

16 GTEn: guest translation enable. Revision 1: RO. Reset 0b. Reserved. Revision 2: RW. Reset 0b. 
0=Guest translation disabled. 1=Guest translation may be enabled for a peripheral by programming 
DTE[GV] (see Table 5). When guest translation is enabled, invalidation semantics are changed (see 
Section 2.3.2 [Enhanced AMD64 long Page Table Compatibility]). Writes to this bit are ignored when 
MMIO Offset 0030h[GTSup]=0.

15 PPREn: peripheral page service request processing enable. Revision 1: RO. Reset 0b. Reserved. 
Revision 2: RW. Reset 0b. 1=Peripheral page service requests are processed. 0=PPR requests are 
treated as invalid device requests (see Section 3.4.8 [INVALID_DEVICE_REQUEST Event]). 
Writes to this bit are ignored when MMIO Offset 0030h[PPRSup]=0.

14 PPRIntEn: peripheral page service request interrupt enable. Revision 1: RO. Reset 0b. Reserved. 
Revision 2: RW. Reset 0b. 1=An interrupt is signalled when MMIO Offset 2020h[PPRLogInt]=1 
using Capability Offset 10h[MsiNumPPR]. 0=An interrupt is not signalled when MMIO Offset 
2020h[PPRLogInt]=1. Writes to this bit are ignored when MMIO Offset 0030h[PPRSup]=0.
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13 PPRLogEn: peripheral page service log enable. Revision 1: RO. Reset 0b. Reserved. Revision 2: 
RW. Reset 0b. 1=The PPR Log Base Address Register [MMIO Offset 0038h] has been configured 
and peripheral page service request events are written to the peripheral page service request log when 
IommuEn has also been set. Writing a 1b to this bit when PPRLogEn=1b has no effect. 0=Peripheral 
page service request logging is not enabled. Peripheral page service requests are discarded when the 
peripheral page service request log is not enabled or when MMIO Offset 0030h[PPRSup]=0.
When IommuEn=1b and software writes PPRLogEn with 1b, the IOMMU clears the 
PPRLogOverflow bit and sets the PPRRun bit in the IOMMU Status Register [MMIO Offset 2020h]. 
The IOMMU can now write new entries to the event log if there are usable entries available.
Note: writes to this bit are ignored when MMIO Offset 0030h[PPRSup]=0.
Note: software can read MMIO Offset 2020h[PPRRun] to determine the status of peripheral page 
service request log writing by the IOMMU.
Note: the peripheral page service request log and event log are independent.
Software note: the PPR Log Base Address Register [MMIO Offset 0038h], the IOMMU PPR Log 
Head Pointer Register [MMIO Offset 2030h], and the IOMMU PPR Log Tail Pointer Register 
[MMIO Offset 2038h] must be set prior to enabling the event log.

12 CmdBufEn: command buffer enable. RW. Reset 0b. 1=Start or restart command buffer processing. 
When CmdBufEn=1b and IommuEn=1b, the IOMMU starts fetching commands and sets MMIO 
Offset 2020h[CmdBufRun] to 1b. Writing a 1b to CmdBufEn when CmdBufRun=1b has no effect. 
0=Halt command buffer processing. Writing a 0 to CmdBufEn causes the IOMMU to cease fetching 
new commands although commands previously fetched are completed. The IOMMU stops fetching 
commands upon reset and after events as specified in Table 3.4. See MMIO Offset 
2020h[CmdBufRun].
Note: see IOMMU Status Register [MMIO Offset 2020h] to determine the status of command buffer 
processing.
Note: writing of event log entries is independently controlled by EventLogEn.
Software note: the Command Buffer Base Address Register [MMIO Offset 0008h], the Command 
Buffer Head Pointer Register [MMIO Offset 2000h], and the Command Buffer Tail Pointer Register 
[MMIO Offset 2008h] must be set prior to enabling the IOMMU command buffer processor.

11 Isoc: isochronous. RW. Reset 0b. This bit controls the state of the isochronous bit in the 
HyperTransport™ read request packet when the IOMMU issues I/O page table reads and device table 
reads on the HyperTransport™ link. 1=Request packet to use isochronous channel. 0=Request packet 
to use standard channel.
Note: Platform firmware should set this bit to 1b for processors that support the isochronous channel.

10 Coherent: coherent. RW. Reset 1b. This bit controls the state of the coherent bit in the 
HyperTransport™ read request packet when the IOMMU issues device table reads on the 
HyperTransport™ link. 1=Device table requests are snooped by the processor. 0=Device table 
requests are not snooped by the processor. See SD in Table 5.

9 ResPassPW: response pass posted write. RW. Reset 0b. This bit controls the state of the 
ResPassPW bit in the HyperTransport™ read request packet when the IOMMU issues I/O page table 
reads and device table reads on the HyperTransport™ link. 1=Response may pass posted requests. 
0=Response may not pass posted requests.

8 PassPW: pass posted write. RW. Reset 0b. This bit controls the state of the PassPW bit in the 
HyperTransport™ read request packet when the IOMMU issues I/O page table reads and device table 
reads on the HyperTransport™ link. 1=Request packet may pass posted requests. 0=Request packet 
may not pass posted requests.
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7:5 InvTimeOut: invalidation time-out. RW. Reset 000b. This field specifies the invalidation time-out 
for IOTLB invalidation requests.
000b=No time-out 001b=1 ms
010b=10 ms 011b=100 ms
100b=1 sec. 101b=10 sec.
110b=100 sec. 101b=reserved

4 ComWaitIntEn: completion wait interrupt enable. RW. Reset 0b. 1=An interrupt is signalled when 
MMIO Offset 2020h[ComWaitInt]=1 using Capability Offset 10h[MsiNum].

3 EventIntEn: event log interrupt enable. RW. Reset 0b. 1=An interrupt is signalled when MMIO 
Offset 2020h[EventLogInt]=1 or when MMIO Offset 2020h[EventOverflow]=1 using Capability 
Offset 10h[MsiNum].

2 EventLogEn: event log enable. RW. Reset 0b. 1=The Event Log Base Address Register [MMIO 
Offset 0010h] has been configured and all events detected are written to the event log when IommuEn 
has also been set. Writing a 1b to this bit when EventLogEn=1b has no effect. 0=Event logging is not 
enabled. Events are discarded when the event log is not enabled.
When IommuEn=1b and software changes EventLogEn from 0b to 1b, the IOMMU clears the 
EventOverflow bit and sets the EventLogRun bit in the IOMMU Status Register [MMIO Offset 
2020h]. The IOMMU can now write new entries to the event log if there are usable entries available.
Note: software can read MMIO Offset 2020h[EventLogRun] to determine the status of event log 
writing by the IOMMU.
Note: the fetching of commands is independently controlled by CmdBufEn.
Software note: the Event Log Base Address Register [MMIO Offset 0010h], the Event Log Head 
Pointer Register [MMIO Offset 2010h], and the Event Log Tail Pointer Register [MMIO Offset 
2018h] must be set prior to enabling the event log.

1 HtTunEn: HyperTransport™ tunnel translation enable. RW. Reset 0b. 1= Upstream traffic 
received by the HyperTransport™ tunnel is translated by the IOMMU. 0=Upstream traffic received 
by the HyperTransport™ tunnel is not translated by the IOMMU. The IOMMU ignores the state of 
this bit while IommuEn=0. See the HtTunnel bit in the IOMMU Capability Header [Capability Offset 
00h].

0 IommuEn: IOMMU enable. RW. Reset 0b. 1=IOMMU enabled. All upstream transactions are 
processed by the IOMMU. The Device Table Base Address Register [MMIO Offset 0000h] must be 
configured by software before setting this bit. 0=IOMMU is disabled and no upstream transactions 
are translated or remapped by the IOMMU. When disabled, the IOMMU reads no commands and 
creates no event log entries.
Software note: Revision 1: Software must configure EventLogEn and CmdBufEn. Revision 2: 
Software must configure EventLogEn, CmdBufEn, and PPRLogEn. 
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MMIO Offset 0020h IOMMU Exclusion Base Register
This register specifies the base device virtual address of the IOMMU exclusion range. Accesses that target 
addresses in the exclusion range are neither translated nor access checked if the EX bit in the device table is 
set for the device or if the Allow bit is set in this register.

A translation request for which the IOMMU exclusion range applies and I=1b in the device table entry returns 
R=1, W=1, and a physical address that equals the requested virtual address. The response to a multi-page 
translation request in the IOMMU exclusion range is implementation-specific. 

Software note: A peripheral using a remote IOTLB may cache the results of a translation request to the 
exclusion range, so an INVALIDATE_IOTLB_PAGES command must be issued after changing the IOMMU 
exclusion range.
63 52 51 32

Reserved Exclusion Base Address[51:32]

31 12 11 2 1 0

Exclusion Base Address[31:12] Reserved

A
llo

w

Ex
En

Bits Description
63:52 Reserved.
51:12 Exclusion range base address. RW. Reset 00_0000_0000h. Specifies the 4Kbyte-aligned base 

address of the exclusion range.
11:2 Reserved. 

1 Allow: allow all devices. RW. Reset 0b. 1=All accesses to the exclusion range are forwarded 
untranslated. 0=The EX bit in the device table entry specifies if accesses to the exclusion range are 
translated.

0 ExEn: exclusion range enable. RW. Reset 0b. 1=The exclusion range is enabled. 0=the exclusion 
range is disabled.

MMIO Offset 0028h IOMMU Exclusion Range Limit Register
This register specifies the limit of the IOMMU exclusion range. The lower 12 bits of the limit are treated as 
FFFh for range comparisons.
Note: when the exclusion base address equals the exclusion limit address, the exclusion range is 4K bytes.
63 52 51 32

Reserved Exclusion Limit[51:32]

31 12 11 2 1 0

Exclusion Limit[31:12] Reserved

Bits Description
63:52 Reserved.
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51:12 Exclusion range limit. RW. Reset 00_0000_0000h. Specifies the 4K byte limit of the exclusion 
range.

11:0 Reserved. 

MMIO Offset 0030h IOMMU Extended Feature Register
Revision 1: Reserved. 

Revision 2: This register specifies the extended features supported by the IOMMU.
Note: when Capability Offset 00h[EFRSup]=0b, this register is Reserved and the features described by it are 
not supported by the IOMMU.
63 37 36 32

Reserved PASmax[4:0]

31 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
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Bits Description
63:37 Reserved. 
36:32 PASmax[4:0]: maximum PASID supported. Revision 1: RO. Reset 0h. Reserved. Revision 2: RO. 

Reset X_XXXXb. The maximum PASID value supported is calculated as 2PASmax+1-1.
00h=1-bit PASID 01h=2-bit PASID
02h=3-bit PASID 03h=4-bit PASID
04h=5-bit PASID 05h=6-bit PASID
... ...
0Eh=15-bit PASID 0Fh=16-bit PASID
10h=17-bit PASID 11h=18-bit PASID
12h=19-bit PASID 13h=20-bit PASID
14h-1Fh=Reserved
This value is not meaningful when MMIO Offset 0030h[GTSup]=0. 

31:16 Reserved.
15:14 GLXSup: Guest CR3 root table level supported. Revision 1: Reserved. RO. Reset 0b. Revision 2: 

RO. Reset XXb. Specifies the maximum number of levels supported in a guest CR3 root table. 
00b=single-level Guest CR3 base table address translation is supported. 01b=Two-level GCR3 base 
address table is supported in hardware. 10b=Three-level GCR3 base address table is supported in 
hardware for 19- and 20-bit PASID values. 11b is reserved.
The value of GLXSup is not meaningful when MMIO Offset 0030h[GTSup]=0. See Table 9.

13:12 GATS[1:0]: Guest Address Translation Size. Revision 1: RO. Reset 00b. Reserved. Revision 2: 
RO. Reset XXb. The maximum number of translation levels supported for guest address translation 
(GVA). This value is not meaningful when MMIO Offset 0030h[GTSup]=0. 
00b=4 levels (PML4E) 01b=5 levels
10b=6 levels 11b=Reserved
See also Figure 20 and Table 23. 
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11:10 HATS[1:0]: Host Address Translation Size. Revision 1: RO. Reset 00b. Reserved. Revision 2: RO. 
Reset XXb. The maximum number of host address translation levels supported.
00b=4 levels 01b=5 levels
10b=6 levels 11b=Reserved
This field sets an implementation limit on the value of DTE[Mode] in Table 5 and sets an 
implementation limit on the value of Next Level in Figure 9 and Figure 10. See also Figure 33. 

9 PCSup: Performance counters supported. Revision 1: RO. Reset 0b. Reserved. Revision 2: RO. 
Reset Xb. 0=no performance counters are supported. 1=performance counters are supported (see 
IOMMU Counter Configuration Register [MMIO Offset 4000h] and Section 3.7.2.3 [MMIO Event 
Counter Control Registers]).

8 HESup. Hardware Error registers supported. Revision 1: RO. Reset 0b. Reserved. Revision 2: 
RO. Reset Xb. 0=Hardware error registers do not report error information. 1=Error information is 
reported in hardware error registers (see I/O Hardware Event Reporting Registers [3.4.11.2]).

7 GASup. Guest APIC supported. Revision 1: RO. Reset 0b. Reserved. Revision 2: RO. Reset Xb. 
1=Guest virtual APIC is supported. 0=Guest virtual APIC is not supported. 

6 IASup: INVALIDATE_IOMMU_ALL supported. Revision 1: RO. Reset 0b. Reserved. 
Revision 2: RO. Reset Xb. 1=The INVALIDATE_IOMMU_ALL command is supported. 0=The 
INVALIDATE_IOMMU_ALL command is not supported and will generate an error when used.

5 EFRW: ignored. Revision 1: RO. Reset 0b. Reserved. Revision 2: RW. Reset Xb. Intended for future 
use. 
Software note: this field is not implemented in Revision 2 but may be defined in future revisions. 
Software may safely write 0h to this field in Revision 2 and should ignore the value read.

4 GTSup: guest translations supported. Revision 1: RO. Reset 0b. Reserved. Revision 2: RO. Reset 
Xb. 1=guest address translation is supported. 0=only nested address translation is supported. When 
GTSup=0, the following values in the DTE must be zero: GV, GLX, and GCR3 Table Root Pointer. 
See also MMIO Offset 0018h[GTEn].

3 NXSup: NX supported. Revision 1: RO. Reset 0b. Reserved. Revision 2: RO. Reset Xb. 1=no-
execute protection is supported. 0=no-execute protection is not supported.

2 XTSup: x2APIC supported. Revision 1: Reserved. RO. Reset 0b. Revision 2: RO. Reset Xb. The 
interrupt remapping table is expanded to provide x2APIC interrupt information.

1 PPRSup: peripheral page service request support. Revision 1: RO. Reset 0b. Reserved. 
Revision 2: RO. Reset Xb. 1=Indicates the IOMMU handles page service request events from 
peripherals, the IOMMU supports the page service request queue, and that the second IOMMU 
interrupt can be used to signal peripheral page service request events. 0=peripheral page service 
requests are not supported, the page service request queue is not supported, and the PPR interrupt is 
not generated by the IOMMU.

0 PreFSup: prefetch support. Revision 1: RO. Reset 0b. Reserved. Revision 2: RO. Reset Xb. 
1=Indicates IOMMU will accept PREFETCH_IOMMU_PAGES commands (see Section 3.3.6 
[PREFETCH_IOMMU_PAGES]). 0=IOMMU treats PREFETCH_IOMMU_PAGES commands as 
invalid commands. 
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MMIO Offset 0038h PPR Log Base Address Register
Revision 1: Reserved. 

Revision 2: This register specifies the system physical address and length of the peripheral page service 
request log. Peripheral requests for page service handling are converted to entries in the PPR log. This register 
is reserved when Capability Offset 00h[EFRSup]=0b or when MMIO Offset 0030h[PPRSup]=0b. Page 
service requests detected by the IOMMU are reported in the event log (see Section 3.4.2 [IO_PAGE_FAULT 
Event]).

If PPRLogLen or PPRLogBase is changed while the PPRLogRun=1, the IOMMU response is undefined.
63 60 59 56 55 52 51 32

Reserved PPRLogLen Reserved PPRLogBase

31 12 11 0

PPRLogBase Reserved

Bits Description
63:60 Reserved. 
59:56 PPRLogLen: peripheral page service request log length. RW. Reset 1000b. Specifies the length of 

the PPR log in power of 2 increments. The minimum size is 256 entries (4K bytes); values less than 
1000b are reserved.
0000b - 0111b = Reserved
1000b = 256 entries (4K bytes)
1001b = 512 entries (8K bytes)
...
1111b = 32768 entries (512K bytes)

55:52 Reserved
51:12 PPRLogBase: peripheral page service request log base address. RW. Reset 00_0000_0000h. 

Specifies the base address of the PPR log. The base address programmed must be aligned to 4K bytes.
11:0 Reserved

MMIO Offset 0040h IOMMU Hardware Event Upper Register
Revision 1: Reserved. 

Revision 2: This register contains the upper 64-bits or the most recent hardware event detected by the 
IOMMU.
63 60 59 32

EventCode[3:0] First event code dependent operand[59:32]

31 0

First event code dependent operand[31:0]
133Advanced Micro Devices



PID 48882 Rev 2.00 - 3/24/11  IOMMU Architectural Specification
Bits Description
63:60 EventCode[3:0]. RW. Reset 0000b. See Figure 48.
59:0 First event code dependent operand[59:0]. RW. Reset 000_0000_0000_0000h. See Figure 48.

MMIO Offset 0048h IOMMU Hardware Event Lower Register
Revision 1: Reserved. 

Revision 2: This register contains the lower 64-bits of the most recent hardware event detected by the 
IOMMU.
63 32

Second event code dependent operand[63:32]

31 19 18 4 3 0

Second event code dependent operand[31:0]

Bits Description
63:0 Second event code dependent operand[59:0]. RW. Reset 0000_0000_0000_0000h. See Figure 48.

MMIO Offset 0050h IOMMU Hardware Event Status Register
Revision 1: Reserved. 

Revision 2: This register contains the lower 64-bits of the most recent hardware event detected by the 
IOMMU.
63 32

Reserved

31 19 18 4 3 0

Reserved

H
EO

H
EV

Bits Description
63:2 Reserved.

1 HEO: Hardware Event Overflow. RW. Reset 0. Defines the contents of the IOMMU hardware 
event registers as having been overwritten. 0=not overwritten. 1=contents overwritten by new 
information. HEO is not meaningful when HEV=0.

0 HEV: Hardware Event Valid. RW. Reset 0. Defines the contents of the IOMMU hardware event 
registers as valid. 0=register contents not valid. 1=contents valid.
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3.7.2.2 MMIO Command and Log Pointer Registers

    

    

MMIO Offset 2000h Command Buffer Head Pointer Register
This register points to the offset in the command buffer that will be read next by the IOMMU.
63 32

Reserved

31 19 18 4 3 0

Reserved CmdHeadPtr Reserved

Bits Description
63:19 Reserved. 
18:4 CmdHeadPtr: command buffer head pointer. RW. Reset 0000h. Specifies the 128-bit aligned 

offset from the command buffer base address register of the next command to be fetched by the 
IOMMU. The IOMMU increments this register, rolling over to zero at the end of the buffer, after 
fetching and validating the command in the command buffer. After incrementing this register, the 
IOMMU cannot re-fetch the command from the buffer. If this register is written to by software while 
CmdBufRun=1b, the IOMMU behavior is undefined. If this register is set by software to a value 
outside the length specified by MMIO Offset 0008h[ComLen], the IOMMU behavior is undefined.

3:0 Reserved. 

MMIO Offset 2008h Command Buffer Tail Pointer Register
This register points to the offset in the command buffer that will be written next by the software.
63 32

Reserved

31 19 18 4 3 0

Reserved CmdTailPtr Reserved

Bits Description
63:19 Reserved. 
18:4 CmdTailPtr: command buffer tail pointer. RW. Reset 0000h. Specifies the 128-bit aligned offset 

from the command buffer base address register of the next command to be written by the software. 
Software must increment this field, rolling over to zero at the end of the buffer, after writing a 
command to the command buffer. If software advances the tail pointer equal to or beyond the head 
pointer after adding one or more commands to the buffer, the IOMMU behavior is undefined. If 
software sets the command buffer tail pointer to an offset beyond the length of the command buffer, 
the IOMMU behavior is undefined.

3:0 Reserved. 
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MMIO Offset 2010h Event Log Head Pointer Register
This register points to the offset in the event buffer that will be read next by the software.
63 32

Reserved

31 19 18 4 3 0

Reserved EventHeadPtr Reserved

Bits Description
63:19 Reserved. 
18:4 EventHeadPtr: event log head pointer. RW. Reset 0000h. Specifies the 128 bit aligned offset from 

the event log base address register that will be read next by software. Software must increment this 
field, rolling over at the end of the buffer, after reading an event from the event log. If software 
advances the head pointer beyond the tail pointer, the IOMMU behavior is undefined. If software sets 
the event log head pointer to an offset beyond the length of the event log, the IOMMU behavior is 
undefined.

3:0 Reserved. 

MMIO Offset 2018h Event Log Tail Pointer Register
This register points to the offset in the event buffer that will be written next by the IOMMU.
63 32

Reserved

31 19 18 4 3 0

Reserved EventTailPtr Reserved

Bits Description
63:19 Reserved. 
18:4 EventTailPtr: event log tail pointer. RW. Reset 0000h. Specifies the 128-bit aligned offset from the 

event log base address register that will be written next by the IOMMU when an event is detected. 
The IOMMU increments this register, rolling over at the end of the buffer, after writing an event to the 
event log. If this register is written while EventLogRun=1, the IOMMU behavior is undefined. If this 
register is set by software to a value outside the length specified by MMIO Offset 0010h[EventLen], 
the IOMMU behavior is undefined

3:0 Reserved. 

MMIO Offset 2020h IOMMU Status Register
This register indicates the current status of the IOMMU command and event processing. If interrupts are 
enabled, the IOMMU signals an interrupt when one of the interrupt status bits is set by hardware and no other 
interrupts status bits are set. Other bits report the status of command buffer processing and event logging.
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63 32

Reserved
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Bits Description
63:8 Reserved. 

7 PPRRun: peripheral page service request logging is running. Revision 1: RO. Reset 0b. Reserved. 
Revision 2: RO. Reset 0b. 1=PPR requests are logged as they occur. 0=PPR requests are discarded 
without logging. When PPROverflow=1b, the IOMMU does not write new PPR log entries even 
when PPRRun=1b. When halted, PPR request logging is restarted by using MMIO Offset 
0018h[PPRLogEn].

6 PPRInt: peripheral page service request interrupt. Revision 1: RO. Reset 0b. Reserved. 
Revision 2: RW1C. Reset 0b. 1=PPR request entry written to the PPR log by the IOMMU. 0=No PPR 
entry written to the PPR log by the IOMMU. An interrupt is generated when PPRInt=1b and MMIO 
Offset 0018h[PPRIntEn]=1b. 

5 PPROverflow: peripheral page service request log overflow. Revision 1: RO. Reset 0b. Reserved. 
Revision 2: RW1C. Reset 0b. 1=IOMMU PPR log overflow has occurred. This bit is set when a new 
peripheral page service request is to be written to the PPR log and there is no usable entry in the PPR 
log, causing the new event information to be discarded. An interrupt is generated when 
PPROverflow=1b and MMIO Offset 0018h[PPRIntEn]=1b (see Capability Offset 
10h[MsiNumPPR]). No new PPR log entries are written while this bit is set.

4 CmdBufRun: command buffer is running. RO. Reset 0b. 1=the IOMMU may fetch commands 
from the command buffer. 0=IOMMU does not fetch commands from the command buffer. The 
IOMMU stops command processing after COMMAND_HARDWARE_ERROR (Section 3.4.6 
[COMMAND_HARDWARE_ERROR Event]) and ILLEGAL_COMMAND_ERROR (Section 3.4.5 
[ILLEGAL_COMMAND_ERROR Event]) events. When CmdBufRun=0, the IOMMU will not fetch 
commands until software programs MMIO Offset 0018h[CmdBufEn].
Implementation note: CmdBufRun is level-sensitive; once set to 1, it does not change to 0 until 
command processing stops for cause; and once set to 0, it does not change to 1 until MMIO Offset 
0018h[CmdBufEn] is written with 1 by software.

3 EventLogRun: event logging is running. RO. Reset 0b. 1=events are logged as they occur. 0=event 
reports are discarded without logging. When EventOverflow=1b, the IOMMU does not write new 
event log entries even when EventLogRun=1b. When halted, event logging is restarted by using 
MMIO Offset 0018h[EventLogEn]. 

2 ComWaitInt: completion wait interrupt. RW1C. Reset 0b. 1=COMPLETION_WAIT command 
completed. This bit is only set if the i bit is set in the COMPLETION_WAIT command. An interrupt 
is generated when ComWaitInt=1b and MMIO Offset 0018h[ComWaitIntEn]=1b (see Capability 
Offset 10h[MsiNum]).
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1 EventLogInt: event log interrupt. RW1C. Reset 0b. 1=Event entry written to the event log by the 
IOMMU. 0=No event entry written to the event log by the IOMMU. An interrupt is generated when 
EventLogInt=1b and MMIO Offset 0018h[EventIntEn]=1b. 

0 EventOverflow: event log overflow. RW1C. Reset 0b. 1=IOMMU event log overflow has occurred. 
This bit is set when a new event is to be written to the event log and there is no usable entry in the 
event log, causing the new event information to be discarded. An interrupt is generated when 
EventOverflow=1b and MMIO Offset 0018h[EventIntEn]=1b. No new event log entries are written 
while this bit is set.

MMIO Offset 2030h IOMMU PPR Log Head Pointer Register
Revision 1: Reserved. 

Revision 2: This register points to the offset in the peripheral page service request log entry that will be read 
next by the software.
63 32

Reserved

31 19 18 4 3 0

Reserved PPRHeadPtr Reserved

Bits Description
63:19 Reserved. 
18:4 PPRHeadPtr: peripheral page service log head pointer. RW. Reset 0000h. Specifies the 128-bit 

aligned offset from the PPR log base address register that will be read next by software. Software 
must increment this field, rolling over at the end of the buffer, after reading a PPR request entry from 
the PPR event log. If software advances the head pointer beyond the tail pointer, the IOMMU 
behavior is undefined. If software sets the PPR log head pointer to an offset beyond the length of the 
PPR log, the IOMMU behavior is undefined.

3:0 Reserved. 

MMIO Offset 2038h IOMMU PPR Log Tail Pointer Register
Revision 1: Reserved. 

Revision 2: This register points to the offset in the peripheral page service request log that will be written next 
by the IOMMU.
63 32

Reserved

31 19 18 4 3 0

Reserved PPRTailPtr Reserved
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3.7.2.3 MMIO Event Counter Control Registers

Revision 1: The next set of registers, MMIO Offset 4000h through MMIO Offset 4018h, are reserved. 

Revision 2: The next set of registers, MMIO Offset 4000h through MMIO Offset 4018h, control the IOMMU 
event counters.

Bits Description
63:19 Reserved. 
18:4 PPRTailPtr: peripheral page service log tail pointer. RW. Reset 0000h. Specifies the 128-bit 

aligned offset from the PPR log base address register that will be written next by the IOMMU when a 
PPR request is detected. The IOMMU increments this register, rolling over at the end of the buffer, 
after writing a PPR request to the PPR log. If this register is written while PPRLogRun=1, the 
IOMMU behavior is undefined. If this register is set by software to a value outside the length 
specified by MMIO Offset 0038h[PPRLen], the IOMMU behavior is undefined

3:0 Reserved. 
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MMIO Offset 4000h IOMMU Counter Configuration Register
Revision 1: Reserved. 

Revision 2: This register reports the type and number of counters available to software.
63 32

Reserved

31 18 17 12 11 10 7 6 0

Reserved NCounterBanks 0 NCounter Reserved

Bits Description
63:18 Reserved.
17:12 NCounterBanks[5:0]: number of IOMMU counter banks. RO. Reset XXh. The number of counter 

banks supported by the IOMMU. Each bank contains two or more counter register and control 
registers as specified by NCounter. For each counter bank, a corresponding control bit is in IOMMU 
Counter PASID Bank-Lock Register [MMIO Offset 4008h],IOMMU Counter Domain Bank-Lock 
Register [MMIO Offset 4010h], and IOMMU Counter DeviceID Bank-Lock Register [MMIO Offset 
4018h]. Each supported event counter bank is in a distinct, consecutive 4K byte page. The limit of 63 
counter banks is architectural and an implementation may set a lower value. 
0=No event counter banks supported.
1-63=The number of event counter banks supported.
Note: IOMMU event counter banks are numbered starting with 0.

11 Reserved.
10:7 NCounter[3:0]: number of counters per counter bank. RO. Reset Xh. Reports the number of 

individual counters in each IOMMU counter bank. Each counter bank contains the same number of 
counters.
0=No counters supported.
1=Reserved.
2-15=number of counters in each counter bank. 

6:0 Reserved.

MMIO Offset 4008h IOMMU Counter PASID Bank-Lock Register
Revision 1: Reserved. 

Revision 2: This register locks the corresponding PASID-match register, IOMMU PASID Match Register 
[MMIO Offset [40-7F][0-F]10h]. When a PASID-match register is locked, the register can be read but writes 
are ignored.
63 32

PASIDLock[63:32]
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31 0

PASIDLock[31:0]

Bits Description
63:0 PASIDLock: PASID lock enable. RW. Reset 0. 0=Corresponding counter bank of PASID-match 

registers is unlocked. 1=locked (writes are ignored). For each bit in PASIDLock, the corresponding 
PASID-match registers in an IOMMU counter bank may be changed. See IOMMU PASID Match 
Register [MMIO Offset [40-7F][0-F]10h]. Bit positions above the value reported in MMIO Offset 
4000h[NCounterBanks] are ignored when written and return zero when read. The counter banks are 
numbered starting with zero; PASIDLock[0] controls bank 0, etc.
Software note: this register should be managed by trusted software.

MMIO Offset 4010h IOMMU Counter Domain Bank-Lock Register
Revision 1: Reserved. 

Revision 2: This register locks the corresponding Domain-match counter bank registers, IOMMU Domain 
Match Register [MMIO Offset [40-7F][0-F]18h]. When a Domain-match register is locked, the register can be 
read but writes are ignored.
63 32

DomainLock[63:32]

31 0

DomainLock[31:0]

Bits Description
63:0 DomainLock: Domain lock enable. RW. Reset 0. 0=Corresponding counter bank of Domain-match 

registers is unlocked. 1=locked (writes are ignored). For each bit in DomainLock, the corresponding 
Domain-match registers in an IOMMU counter bank may be changed. See IOMMU Domain Match 
Register [MMIO Offset [40-7F][0-F]18h]. Bit positions above the value reported in MMIO Offset 
4000h[NCounterBanks] are ignored when written and return zero when read. The counter banks are 
numbered starting with zero; DomainLock[0] controls bank 0, DomainLock[1] controls bank 1, etc.
Software note: this register should be managed by trusted software.

MMIO Offset 4018h IOMMU Counter DeviceID Bank-Lock Register
Revision 1: Reserved. 

Revision 2: This register locks the corresponding DeviceID-match counter bank registers, IOMMU DeviceID 
Match Register [MMIO Offset [40-7F][0-F]20h]. When a DeviceID-match register is locked, the register can 
be read but writes are ignored. 
63 32

DevIDLock[63:32]
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3.7.2.4 MMIO Event Counter Configuration Registers

Revision 1: The next set of registers, MMIO Offset [40-7F][0-F]00h through MMIO Offset [40-7F][0-F]28h, 
are reserved. 

Revision 2: The next set of registers, MMIO Offset [40-7F][0-F]00h through MMIO Offset [40-7F][0-F]28h, 
are spaced at 4K byte page boundaries. There are a variable number of counter registers and counter register 
banks implemented as specified in MMIO Offset 4000h[NCounterBanks, NCounter]. The MMIO addresses 
are decoded as shown in Figure 65. The base address is the IOMMU MMIO base address defined by IOMMU 
Base Address Low Register [Capability Offset 04h] and IOMMU Base Address High Register [Capability 
Offset 08h]. Note that the use of IOMMU event counters affects the value programmed into IOMMU Base 
Address Low Register [Capability Offset 04h].

Figure 65: IOMMU Counter Register Address Decode  

31 0

DevIDLock[31:0]

Bits Description
63:0 DevIDLock: DeviceID lock enable. RW. Reset 0. 0=Corresponding counter bank of DeviceID-

match registers is unlocked. 1=locked (writes are ignored). For each bit in DevIDLock, the 
corresponding DeviceID-match registers in an IOMMU counter bank may be changed. See IOMMU 
DeviceID Match Register [MMIO Offset [40-7F][0-F]20h]. Bit positions above the value reported in 
MMIO Offset 4000h[NCounterBanks] are ignored when written and return zero when read. The 
counter banks are numbered starting with zero; DevIDLock[0] controls bank 0, etc.
Software note: this register should be managed by trusted software.

... 19 18 17 13 12 11 8 7 6 3 2 0

(base address) 1 BankNum CounterNum 0 Fxn 000b

Table 63: Counter Bank Addressing (MMIO)

Bits Description
63:19 MMIO base address of IOMMU counter registers.

18 1.

17:12 BankNum: Bank number. Selects counter bank. The maximum value is defined by MMIO Offset 
4000h[NCounterBanks].

11:8 CounterNum: Counter number. Selects counter within bank. The maximum value is defined by 
MMIO Offset 4000h[NCounter].

7 Must be zero.
6:3 Fxn: Function. This field selects the functional register within the counter set.

+00h: IOMMU Counter Register [MMIO Offset [40-7F][0-F]00h].
+08h: IOMMU Counter Source Register [MMIO Offset [40-7F][0-F]08h].
+10h: IOMMU PASID Match Register [MMIO Offset [40-7F][0-F]10h].
+18h: IOMMU Domain Match Register [MMIO Offset [40-7F][0-F]18h].
+20h: IOMMU DeviceID Match Register [MMIO Offset [40-7F][0-F]20h].
+28h: IOMMU Counter Report Register [MMIO Offset [40-7F][0-F]28h].
+30h through +78h: Reserved.

2:0 Byte alignment. 
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Software note: because each counter bank is aligned to a 4 Kbyte page, the counter banks can be assigned to 
different guests for direct access after programming IOMMU Counter PASID Bank-Lock Register [MMIO 
Offset 4008h], IOMMU Counter Domain Bank-Lock Register [MMIO Offset 4010h], and IOMMU Counter 
DeviceID Bank-Lock Register [MMIO Offset 4018h].

.    

    

MMIO Offset [40-7F][0-F]00h IOMMU Counter Register
Revision 1: Reserved. 

Revision 2: This register counts events as programmed by IOMMU Counter Source Register [MMIO Offset 
[40-7F][0-F]08h] and IOMMU PASID Match Register [MMIO Offset [40-7F][0-F]10h]. When the ICounter 
value increments to zero, an event is optionally written to the event log (see IOMMU Counter Report Register 
[MMIO Offset [40-7F][0-F]28h] and Section 3.4.10 [EVENT_COUNTER_ZERO Event]) and the counter 
continues incrementing. To cause an interrupt at a threshold value, software must set ICounter to the 2’s 
complement of the desired threshold value.
63 48 47 32

Reserved ICounter[47:32]

31 0

ICounter[31:0]

Bits Description
63:48 Reserved.
47:28 ICounter. RW. Reset 0. Reports the counter value. The counter counts up continuously, wrapping at 

the maximum value and continuing to count. There is no overflow indicator.

MMIO Offset [40-7F][0-F]08h IOMMU Counter Source Register
Revision 1: Reserved. 

Revision 2: This register selects an event source for the corresponding counter.
63 32

Reserved

31 30 29 8 7 0

C
A

C

C
ou

nt
U

ni
ts

Ignored CSource[7:0]

Bits Description
63:32 Reserved.

31 CAC: counter source architectural or custom. RW. Reset 0. Selects architectural counter input 
group (Table 64) or custom input group. 0=architectural counters as defined in Table 64. 
1=implementation-defined counters.
Software note: Unless otherwise specified, selecting a counter marked Reserved returns undefined 
results.
143Advanced Micro Devices



PID 48882 Rev 2.00 - 3/24/11  IOMMU Architectural Specification
  

30 CountUnits. RW. Reset 0. 0=Counter counts events (level). 1=Counter counts clocks (edges). 
Meaningful when CAC=0; implementation-specific when CAC=1.

29:8 Ignored. When CAC=0, writes to this field are ignored and reads return 0. When CAC=1, this field is 
implementation-specific.

7:0 CSource: counter source. RW. Reset 0. Selects event counter input from the choices in Table 64 
when CAC=0; selects an implementation-specific counter input when CAC=1.

Table 64: Architectural Counter Input Group, CAC=0b

Value 
(CSource) Architectural Counter Input Group Selection

0 No events. Note: CountUnits=0 stops the counter and CountUnits=1 is a free-run counter.
1 Peripheral memory operations passed-through, untranslated.
2 Peripheral memory operations passed-through, pretranslated.
3 Peripheral memory operations passed-through, via Exclusion Range.
4 Peripheral memory operations target aborted.
5 Peripheral memory operations translated, total.
6 Peripheral memory operations translated, IOMMU TLB hit PTE.
7 Peripheral memory operations translated, IOMMU TLB missed PTE.
8 Peripheral memory operations translated, IOMMU TLB hit PDE.
9 Peripheral memory operations translated, IOMMU TLB missed PDE.

10 Peripheral memory operations, DTE cache hit.
11 Peripheral memory operations, DTE cache miss.
12 IOMMU page table read operations due to memory translation, total.
13 IOMMU page table read operations due to memory translations, nested.
14 IOMMU page table read operations due to memory translations, guest.
15 Peripheral interrupt operations remapped, DTE cache hit.
16 Peripheral interrupt operations remapped, DTE cache miss.
17 IOMMU commands processed (total).
18 IOMMU commands processed, invalidations (total).
19 IOMMU TLB invalidations (total).

20-255 Reserved (treated as CSource=0 and CountUnits=0). 
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The IOMMU Counter Register [MMIO Offset [40-7F][0-F]00h] is incremented when IOMMU PASID Match 
Register [MMIO Offset [40-7F][0-F]10h], IOMMU Domain Match Register [MMIO Offset [40-7F][0-
F]18h], and IOMMU DeviceID Match Register [MMIO Offset [40-7F][0-F]20h] match or are ignored.

MMIO Offset [40-7F][0-F]10h IOMMU PASID Match Register
Revision 1: Reserved. 

Revision 2: This register contains the PASID filter mask and the PASID for which to count events in the 
corresponding counter register. The incoming PASID is ANDed with the PASIDMask field and the result is 
compared to the PASIDMatch field. If the comparison result is the same value, the event is enabled to be 
counted in the corresponding counter.

63 52 51 48 47 32

Reserved PASIDMask

31 30 20 19 16 15 0

PA
SM

En

Reserved PASIDMatch

Bits Description
63:52  Reserved
51:32 PASIDMask. RW. Reset 0. This bit-mask is ANDed with the PASID of the transaction to decide to 

count the corresponding event. 
0=count events for all values of incoming PASID. 
0_0001h-F_FFFFh=bit-wise mask ANDed with incoming PASID.

31 PASMEn: PASID match enable. RW. Reset 0. 0=PASID is ignored. 1=Filtered PASID must match 
to count an event. An event with no PASID tag is only counted when PASMEn=0.

30:20 Reserved.
19:0 PASIDMatch. RW. Reset 0. This value is compared to the masked (filtered) value of the incoming 

PASID of the transaction to decide to count the corresponding event. The event is counted if 
PASIDMatch is equal to the masked incoming PASID; the event is not counted if they are not equal.

MMIO Offset [40-7F][0-F]18h IOMMU Domain Match Register
Revision 1: Reserved. 

Revision 2: This register contains the Domain filter mask and the Domain for which to count events in the 
corresponding counter register. The incoming Domain is ANDed with the DomainMask field and the result is 
compared to the DomainMatch field. If the comparison result is the same value, the event is enabled to be 
counted in the corresponding counter.

63 48 47 32

Reserved DomainMask
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31 30 16 15 0
D

om
M

En

Reserved DomainMatch

Bits Description
63:48  Reserved.
47:32 DomainMask. RW. Reset 0. This bit-mask is ANDed with the Domain of the transaction to decide to 

count the corresponding event. 
0=count events for all values of incoming Domain. 
0001h-FFFFh=bit-wise mask ANDed with incoming Domain.

31 DomMEn: Domain match enable. RW. Reset 0. 0=Domain is ignored. 1=Filtered Domain must 
match to count an event.

30:16 Reserved.
15:0 DomainMatch. RW. Reset 0. This value is compared to the masked (filtered) value of the incoming 

Domain of the transaction to decide to count the corresponding event. The event is counted if 
DomainMatch is equal to the masked incoming PASID; the event is not counted if they are not equal.

MMIO Offset [40-7F][0-F]20h IOMMU DeviceID Match Register
Revision 1: Reserved. 

Revision 2: This register contains the DeviceID filter mask and the DeviceID for which to count events in the 
corresponding counter register. The incoming DeviceID is ANDed with the DeviceIDMatch field and the 
result is compared to the DeviceIDMatch field. If the comparison result is the same value, the event is enabled 
to be counted in the corresponding counter.

63 48 47 32

Reserved DeviceIDMask

31 30 16 15 0

D
ID

M
En

Reserved DeviceIDMatch

Bits Description
63:48 Reserved.
47:32 DeviceIDMask. RW. Reset 0. This bit-mask is ANDed with the DeviceID of the transaction to decide 

to count the corresponding event. 
0=count events for all values of incoming DeviceID. 
0001h-FFFFh=bit-wise mask ANDed with incoming DeviceID.

31 DIDMEn: DeviceID match enable. RW. Reset 0. 0=DeviceID is ignored. 1=Filtered DeviceID must 
match to count an event.

30:16 Reserved.
15:0 DeviceIDMatch. RW. Reset 0. This value is compared to the masked (filtered) value of the incoming 

DeviceID of the transaction to decide to count the corresponding event. The event is counted if 
DeviceIDMatch is equal to the masked incoming DeviceID; the event is not counted if they are not 
equal.
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MMIO Offset [40-7F][0-F]28h IOMMU Counter Report Register
Revision 1: Reserved. 

Revision 2: This register hold information for the optional event log entry generated when the event counter 
wraps to zero. The counters continue to count after they wrap to zero.
63 62 52 51 32

C
ER

E

Reserved EventNote[51:32]

31 0

EventNote[31:0]

Bits Description
63 CERE: Counter Event Report Enable. RW. Reset 0. 0=no event report when counter wraps to zero. 

1=IOMMU writes an EVENT_COUNTER_ZERO event log entry when the counter wraps to zero. 
The counter-wrap event is treated like any other event (see Section 3.4 [Event Logging]). 
Software note: the counter-wrap event is delivered promptly but without a latency guarantee.

62:52 Reserved.
51:0 EventNote. RW. Reset 0_0000_0000_0000h. When CERE=1 and the corresponding counter is 

incremented and wraps to zero, EventNote[51:0] is reported in the EVENT_COUNTER_ZERO event 
log entry (see Section 3.4.10 [EVENT_COUNTER_ZERO Event]).
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4 Implementation Considerations

This chapter discusses issues that are primarily of concern to IOMMU implementers.

The IOMMU specification is intended to allow a wide range of implementations with different cost and 
performance trade-offs. Potential implementation technology may range from ASIC to full custom. Capacity 
and organization of the IOMMU’s translation caches can vary substantially depending on technology, die 
budgets, and product requirements. The IOMMU can be integrated with a chipset (typically as part of some 
existing HyperTransport™ bridge) or built as a standalone component (which can act as a HyperTransport™ 
bridge or tunnel).

4.1 Caching and Invalidation Strategies

All IOMMU implementations should have some form of translation cache that allows the IOMMU to 
determine the disposition of device accesses quickly without having to re-walk the IOMMU tables for each 
separate device access. The translation cache is likely to be the largest portion of the IOMMU’s die area budget 
in all but the smallest implementations. Consequently the IOMMU specification has been written to allow 
flexibility in the design of the translation cache.

Plausible implementations range from direct mapped RAM structures to fully associative CAM structures, 
with the expectation that most implementations are set associative. Furthermore, implementers may choose to 
flatten the multi-stage IOMMU table walk into a single cache array lookup, or, alternatively, may choose to use 
a similar multi-stage organization for internal translation cache lookups.

The IOMMU’s translation cache must support the following operations:
• Lookup — when the IOMMU processes an access by a particular device to a specified device virtual address, 

it applies protection checks and translation transformations using information obtained using DeviceID and 
device virtual address.

• Invalidate device — discard any translation cache contents that depend on a specific device table entry.
• Invalidate virtual address (within domain) — discard any cached translations for a virtual address within the 

specified domain.

Typical IOMMU implementations are likely to be built with ASIC design flows, where CAM cells are 
expensive compared to RAM cells. The main implication of this is that direct support for different page sizes is 
likely to require a combination of separate arrays and/or multiple entries within arrays, causing both fills and 
invalidations to require time-consuming search-and-destroy algorithms. 

The IOMMU is designed to support three main usage models: 
• Direct user process access to a single device like a graphics controller; 
• Direct virtual machine guest access to a collection of devices that have been dedicated to that guest; and 
• A single non-virtualized OS using the IOMMU to enforce device to system memory access controls.

When a user process directly controls a single device, the total memory footprint for the device’s accesses is 
likely to be a modest fraction of the process’s own memory footprint. Moreover, the user process has direct 
knowledge of the specific device, so there is a good chance that the device’s access pattern is controllable for 
good locality. In this case the main consideration for achieving performance is to ensure that the IOMMU 
translation cache is large enough.

By contrast, the potential memory footprint of a virtual machine guest’s devices is the entire memory of the 
guest. Often the access pattern may be poorly controlled, as determined by the guest operating system’s 
workload (of which the VMM likely has no specific knowledge), and, moreover, consists of interactions with a 
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variety of devices under the control of different guest device drivers and subsystems, with diverse memory 
allocation strategies. In the case of a non-paravirtualized guest, a VMM’s strategy for improving performance 
is probably to set up I/O page tables using the largest available page size and assume that the IOMMU can 
share the same translation cache entries among multiple devices. It is for this reason that the IOMMU table 
structure includes a DomainID that can be shared for multiple DeviceIDs: since the IOMMU uses translation 
cache entries tagged by {DomainID, I/O virtual address} it automatically shares translations among multiple 
devices assigned to the same domain.

Based on these considerations, designers should consider a two-stage organization for the IOMMU translation 
cache:
• The first stage should map DeviceID to {DomainID, I/O page table base address}. Most systems have only a 

few distinct DeviceIDs, so the capacity of the first stage can be small. The one complication is that 
DeviceIDs are not very random and tend to be clustered, so, to avoid conflicts, this stage should either be 
highly associative or use a good DeviceID hash function.

• The second stage should map {DomainID, device virtual address} to {system physical address, protection}. 
This stage should have (at least) hundreds of entries. This stage should explicitly include the DomainID in 
set index hashing (rather than just using the DomainID as a tag), so that different domains with similar 
memory layouts do not compete for the same translation cache entries. (Server consolidation environments 
are likely to create many domains with very similar memory layouts.)

In addition, since the latency of IOMMU access to system memory can be high, implementers should consider 
a page directory cache (PDC) to accelerate processing of translation cache misses. This cache should map 
{DomainID, device virtual address} to page directory entry (PDE), so that the IOMMU can quickly calculate 
the address of the final PTE needed to resolve a translation cache miss. This way, most translation cache misses 
can be resolved in a single memory access by the IOMMU, rather than requiring a full multi-stage table walk. 
The page directory cache could also double as a large-page translation cache, since for large pages the PDE is 
also the PTE.

4.2 IOMMU Topologies

The IOMMU’s architecture is designed to accommodate a variety of system fabrics and topologies. There can 
be multiple IOMMUs, located at a variety of places in the system fabric. Some requestor ID information can be 
lost at bridges between busses or bus types, so it is advantageous to locate IOMMUs in bridges. The mapping 
of bus requesterIDs to IOMMU DeviceIDs depends on both the bus type as well as the IOMMU’s location in 
the system fabric. In most other respects, the IOMMU’s behavior is bus-independent.

The most basic implementation of the IOMMU takes the form of a HyperTransport™ tunnel. 

Figure 66: IOMMU in a Tunnel

The advantage of this approach is that it can be easily retrofitted to an existing system design. The main 
limitation of this approach is that the HyperTransport™ specification defines only 5 bits of UnitID information 
to identify the originators of requests, so the IOMMU can provide distinct translations for at most 31 
downstream devices. If downstream nodes include any bridges, the IOMMU is unable to distinguish between 

IOMMU

HyperTransportTM link

raw requests from devices

HyperTransportTM  link

translated requests to host

UnitID[4:0]

DeviceID[15:0]
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different devices beyond the bridges, since bridged requests use the UnitID of the bridge. A possible solution is 
to include a separate IOMMU on each downstream bus; each IOMMU can then be programmed not to rewrite 
transactions whose UnitID proves they have already passed through another IOMMU. Software must 
understand the system topology to correctly coordinate multiple IOMMUs. If a downstream HyperTransport™ 
device is a PCIe® root complex or a PCI-X® host bridge, the device can implement the RequesterID mapping 
capability to assign specific UnitIDs to PCIe® or PCI-X® devices.

An IOMMU implemented in a PCIe®- or PCI-X®-to-HyperTransport™ bridge can exploit the larger PCIe® 
or PCI-X® RequesterID namespace to provide better discrimination between downstream devices when 
translating requests:

Figure 67: IOMMU in a Peripheral Bus Bridge

Since most future commodity devices are expected to be on a PCIe® bus, this is likely to be the most common 
implementation of the IOMMU for low-cost systems.

Large systems may want a scalable IOMMU building block. Such systems may choose to implement a hybrid 
HyperTransport™ tunnel / PCIe® root complex component or a HyperTransport™ tunnel / PCI-X® host 
bridge component combining the above ideas:

Figure 68: Hybrid IOMMU

Hybrid IOMMUs can be chained together to build large systems:
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Figure 69: Chained Hybrid IOMMU in a Large System

4.3 Issues Specific to the HyperTransport™ Architecture

This section discusses implementation considerations that are specific to IOMMUs attached to a 
HyperTransport™ link.

The HyperTransport™ specification requires devices (especially tunnels and bridges) to interoperate with 
other devices in ways that ensure correctness and maintain performance. Among other requirements, 
HyperTransport™ devices must make certain transaction ordering guarantees and must ensure they operate 
without deadlocks.

A key requirement in the HyperTransport™ specification is that posted requests must be able to pass non-
posted requests. The introduction of the IOMMU, however, means that posted requests (e.g. writes to memory) 
may spawn non-posted requests (I/O page table walks) that must complete before the posted request can be 
allowed to progress further.

To avoid deadlocks, the IOMMU requires a dedicated virtual channel for its I/O page table walk requests. This 
ensures that, the IOMMU’s page table walks on behalf of posted requests can complete, regardless of the 
completion status of other non-posted traffic in the fabric. The IOMMU also requires that the host bridge 
process its requests without spawning any requests to other devices. In other words, the IOMMU’s table 
structures must be located solely in system memory.

The IOMMU can share its virtual channel with other traffic as long the other traffic is also guaranteed to make 
forward progress. In practice, this means that any other devices sharing the IOMMU’s page walk channel must 
also restrict their non-posted traffic solely to accessing system memory. 

To allow the IOMMU to support different AMD processors with different isochronous capabilities the 
IOMMU control registers contain bits that control the state of the PassPW bits, the coherent bit and the 
isochronous bit in the HyperTransport™ link read request issued by the IOMMU. 

4.4 Chipset Specific Implementation Issues

Chipsets that implement both an IOMMU and a legacy PCI or AGP bridge must provide source identification 
to identify uniquely DMA traffic as originating from the PCI or AGP bus.To provide this identification, the 
IOMMU must use the requesterID of the PCI or AGP bridge to perform translations for DMA transactions 
from the legacy bus. 

4.5 Software and Platform Firmware Implementation Issues

Because of the flexible architecture of the IOMMU, it is unlikely that any single system software 
implementation uses all the features, topologies, or options. The following constraints are strongly 
recommended:
• An IOMMU should be a root-complex device (i.e., appear directly on the bus at the top of the PCI tree 
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hierarchy).
• Some system software may prohibit an IOMMU from appearing under a PCI-to-PCI bridge. 
• To ensure the IOMMU is recognized and configured properly, the platform firmware should perform the 

initial configuration of the IOMMU so that it is accessible to system software when control is handed off by 
the platform firmware.

• The platform firmware should describe the IOMMU in an ACPI table as defined in Section 5 [I/O 
Virtualization ACPI Tables]. The table must include all information necessary to identify, configure, and 
access the IOMMU.

• System firmware must ensure the IOMMU configuration is preserved or restored across power-management 
state changes.
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5 I/O Virtualization ACPI Tables

This section defines the ACPI tables to describe the platform configuration information for IOMMU control 
fields. Key features of the I/O virtualization ACPI tables are listed here:
1. The I/O virtualization ACPI tables describe the IOMMUs present in a system with their attributes.
2. The I/O virtualization ACPI tables describe the system I/O topology relevant to the IOMMU. 
3. The I/O virtualization ACPI tables identify any peripheral devices that cannot be otherwise enumerated.
4. The I/O virtualization ACPI tables override the information available in IOMMU hardware registers. Sys-

tem software is required to honor the ACPI settings.
5. The I/O virtualization ACPI tables prescribe access to memory regions used by SMI/SMM, platform firm-

ware, and platform hardware. These are generally exclusion ranges to be configured by system software.

The I/O virtualization ACPI tables are created in memory by the platform firmware.

5.1 IOMMU Control Flow

The IOMMU start-up procedure flows through several stages. In general, the IOMMU PCI configuration space 
is initially configured by the platform firmware and later the primary operational manipulations are done by 
system software. Some settings are programmed into the IOMMU hardware at design time (e.g., virtual 
address size, physical address size, MSI interrupts). Certain hardware features can be overridden by the 
platform designer and so are defined in ACPI settings (e.g., the exclusion range, remote IOTLB support), such 
as when certain features are not included in platform qualification testing or are reserved for use by the 
platform firmware. 

At system reset, the IOMMU returns to a default state. Following system reset, platform firmware is able to 
program essential platform-specific information into the IOMMU, mostly through the PCI configuration space 
registers (e.g., MMIO base address). Some additional settings are made by the platform firmware in the MMIO 
space (e.g., tunnel enable) while other settings are made by system software in the MMIO space (e.g., the 
coherent bit). Finally, system software must initialize and manage IOMMU control and operational tables 
allocated in memory (e.g., the device tables). Some of these control and operational settings must be 
configured according to policies determined by the platform firmware, so they are communicated to system 
software via the ACPI tables (e.g., selected interrupt controls, system management controls).

Once configuration is complete, the IOMMU is enabled by system software and begins processing transactions 
from peripherals. From this point, the IOMMU is under the control of the system software.

5.2 Future Work

Although this specification allows the placement of IOMMU translation units outside the root complex, current 
platform implementations are cautioned against such designs. This document does not define the ACPI 
methods or data structures necessary to hot-plug a peripheral controller containing an IOMMU.

5.3 IOMMU ACPI Table Definitions

There are three types of data blocks that may defined in IOMMU ACPI tables:
1. I/O Virtualization Reporting Structure (IVRS),
2. I/O Virtualization Hardware Definition (IVHD), and
3. I/O Virtualization Memory Definition (IVMD).
Each is described in detail in the following sections.

The IOMMU ACPI tables inform system software which IOMMU will service DMA operations and interrupts 
from the DeviceIDs possible in the system, whether the DeviceID is actually populated or not. The IVHD data 
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block reports ranges when hot-plug and SR-IOV devices are possible. Each DeviceID is described by one 
IVHD entry which may be a select or select-alias record or is part of a range or an alias range. If a given 
DeviceID exists but can generate neither DMA nor interrupts (ever), it need not be listed in the IOMMU ACPI 
tables. A DeviceID used as an alias must be included in a IVHD record (either “select” or “range”). The 
simplest IOMMU ACPI table contains one DeviceID range for each IOMMU; a system with one IOMMU may 
report as little as a single range covering all DeviceIDs (0x0000-0xFFFF).

5.3.1 I/O Virtualization Reporting Structure (IVRS)

There is one I/O Virtualization Reporting Structure (IVRS) in a system that contains an IOMMU.

Table 65: I/O Virtualization Reporting Structure (IVRS)

Table 66: IVRS fields

Byte 
Offset

I/O Virtualization Reporting Structure (IVRS)

00 Signature (“IVRS”) Length (bytes)
08 Revision Check OEM ID
16 OEM Table ID
24 OEM Revision Creator ID
32 Creator Revision IVinfo
40 Reserved (0000_0000_0000_0000h)
-- I/O Virtualization Definition Blocks (IVHD, IVMD)
48 (IVHD, IVMD)

Offset: 0 1 2 3 4 5 6 7

IVRS field 
name

Offset Size 
(bytes)

Value Definition

Signature 00 4 “IVRS” I/O Virtualization Reporting Structure (ASCII)
Length 04 4 Length in 

bytes
Length in bytes of device reporting structure in bytes, including 
IVHD and IVMD structures

Revision 08 1 1h IVRS revision number.
Check 09 1 Checksum of entire structure must equal zero
OEM ID 10 6 Identifies platform OEM
OEM Table ID 16 8 Specified by OEM
OEM Revision 24 4 Specified by OEM
Creator ID 28 4 Vendor ID of the utility that created the table
Creator 
Revision

32 4 Revision of the utility that created the table

IVinfo 36 4 I/O virtualization information common to all IOMMU units in a 
system

Reserved 40 8 0 Reserved for future use; must be zero
(varies) 48+ I/O Virtualization Definition blocks: IVHD or IVMD
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Software note: IOMMU Revision 2 hardware implementations are backwards-compatible with IOMMU 
Revision 1, so the IVRS Revision field should not be used to distinguish between Revision 1 and Revision 2 
implementations.
Table 67: IVRS IVinfo fields

5.3.2 I/O Virtualization Definition Blocks

There are two types of data blocks that can be passed from platform firmware to system software in the I/O 
Virtualization ACPI table: I/O Virtualization Hardware Definition (IVHD) blocks, and I/O Virtualization 
Memory Definition (IVMD) blocks. A set of definition blocks begins with an IVHD, optionally followed by 
IVMD blocks. Each IVMD blocks pertains to the IVHD block that precedes it.

5.3.3 I/O Virtualization Hardware Definition (IVHD) Block

The I/O Virtualization ACPI entry must contain at least one I/O Virtualization Hardware Definition (IVHD) 
block to specify key parameters of the IOMMU being described. The Bus and Device/Function (UnitID) 
specify the IOMMU defined by the IVHD block; the Capability Offset is required in case the function 
implements multiple IOMMU capabilities. An IVHD block is required for each IOMMU in the platform. The 
flags are initially programmed into the IOMMU register fields by the platform firmware. They are 
communicated in the IVHD to the system software for reference when changes are made to the IOMMU 
registers by system software.

All peripherals that can generate transactions processed by an IOMMU must be defined in the ACPI tables. 
The IVHD block entries describe the I/O topology (start and end of a range, or single entries) of I/O devices 
and slots served by an IOMMU. 

Implementation note: all DeviceID values served by an IOMMU must be reported in an IVHD record 
including DeviceIDs not yet populated (including, but not limited to, virtual functions and empty hot-plug 
slots).

The IVHD device entry also specifies the setting of IOMMU device table entry fields for the DeviceID 
identified in the IVHD. The IVHD entries must always be aligned to 8-bytes, so a "pad" entry of 0000h should 
be used to fill out a short entry. There must be at least one IVHD device entry to describe at least one I/O 
device or slot governed by the IOMMU; an IOMMU may govern multiple ranges and singletons of I/O 
devices. The IVHD device entry defining the start of a range must come before the IVHD entry defining the 
end of the range, and the two entries must be adjacent in the ACPI IVHD table. For peripherals that use source 
identification other than their own DeviceID, alias entries must be used. An IOMMU and the peripherals it 

IVinfo field 
name

Bits Definition

Reserved 31:23 Must be zero.
HtAtsResv 22 ATS address translation range reserved.
VAsize 21:15 Virtual address size (common). Revision 2 note: This is the guest physical 

address (GPA) size.
PAsize 14:8 Physical address size (common). Revision 2 note: This is the system physical 

address (SPA) size.
GVAsize 5:7 Revision 1: Reserved (must be zero). Revision 2: Guest virtual address size 

(common).
Reserved 4:0 Must be zero.
155Advanced Micro Devices



PID 48882 Rev 2.00 - 3/24/11  IOMMU Architectural Specification
serves must be on the same PCI Segment Group defined in the IVHD block. At this time, only PCI Segment 
Group 0 is supported. The IVHD length field specifies the number of bytes in the IVHD block, starting from 
the Type field. In Table 68, there must be at least one IVHD entry and there may be many.

Software note: an indication of support for the performance counter feature can be derived from the IOMMU 
EFR values (see Figure 70 and Table 72). When IOMMU_EFR[PNBanks]=0 and 
IOMMU_EFR[PNCounters]=0, then the performance counter feature is not supported (see MMIO Offset 
0030h[PCSup]).

Table 68: I/O Virtualization Hardware Definition (IVHD) fields

Table 69: IVHD type definitions

Byte 
offset

I/O Virtualization Hardware Definition (IVHD) block Relative 
offset

48 Type 
(10h)

IVHD 
flags

Length DeviceID Capability offset +0

56 IOMMU base address +8
64 PCI Segment Group IOMMU info Reserved / IOMMU EFR +16
72 IVHD device entry (4-byte) ... +24

Offset: 0 1 2 3 4 5 6 7 -

IVHD field 
name

Offset Size 
(bytes)

Value Definition

Type 48 1 10h I/O virtualization hardware definition block
Flags 49 1 Settings for selected IOMMU control fields (see Table 70)
Length 50 2 (bytes) Size of IVHD in bytes, including IVHD device entries and 

starting from Type field
DeviceID 52 2 DeviceID of IOMMU
Capability 
offset

54 2 Offset in Capability space for control fields of IOMMU

IOMMU base 
address

56 8 Base address of IOMMU control registers in MMIO space

PCI Segment 
Group

64 2 0000h PCI Segment Group number

IOMMU info 66 2 Interrupt numbers and UnitID (see Table 71)
IOMMU EFR 68 4 Revision 1: Reserved for future use; must be zero. 

Revision 2: Extended Feature Report (see Table 72).
IVHD device 
entries

72+ 4, 8, 
16, or 

32

IVHD device entries (see Section 5.3.5 [IVHD 4-byte Device 
Entries], Section 5.3.6 [IVHD 8-byte Device Entries]).
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Table 70: IVHD flag fields

Table 71: IVHD IOMMU info fields

Figure 70: IVHD IOMMU Extended Feature Report fields format

Table 72: IVHD IOMMU Extended Feature Report fields

IVHD flags Bits Definition
PPRSup 7 Defines peripheral page service support to system software 

(see MMIO Offset 0030h[PPRSup]).
PreFSup 6 Defines PREFETCH_IOMMU_PAGES support to system software

(see MMIO Offset 0030h[PreFSup]).
Coherent 5 Recommended setting for Coherent control bit to system software

(see MMIO Offset 0018h[Coherent]). The recommended value is 1b.
IotlbSup 4 Defines remote IOTLB support to system software 

(see Capability Offset 00h[IotlbSup]).
Isoc 3 Recommended setting for Isoc control bit to system software 

(see MMIO Offset 0018h[Isoc]).
ResPassPW 2 Recommended setting for ResPassPW to system software 

(see MMIO Offset 0018h[ResPassPW]).
PassPW 1 Recommended setting for PassPW to system software 

(see MMIO Offset 0018h[PassPW]).
HtTunEn 0 Recommended setting for HtTunEn to system software 

(see MMIO Offset 0018h[HtTunEn]).

IVHD 
IOMMU info 
fields

Bits Definition

Reserved 15:13 Reserved.
UnitID 12:8 Unit ID number (see Capability Offset 0Ch[UnitID])
Reserved 7:5 Reserved.
MSInum 4:0 MSI message number for event log (see Capability Offset 10h[MSInum])

31 30 29 28 27 23 22 17 16 13 12 8 7 6 5 4 3 2 0

HATS GATS MsiNumPPR PNBanks PNCounters PASmax

H
ES

up

G
A

Su
p

IA
Su

p

G
LX

Su
p

G
TS

up

N
X

Su
p

X
TS

up

IVHD 
IOMMU EFR 
fields

Bits Definition

HATS 31:30 Revision 1: Reserved. Revision 2: Host address translation size (see MMIO 
Offset 0030h[HATS]).
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5.3.4 IVHD device entry sizes

Device entries in the IVHD table can be 4-, 8-, 16-, or 32-bytes long. The two uppermost bits of the 
device type define the entry length.

Table 73: IVHD device entry length codes

IVHD entries can be used to describe one or more PCI bus-device-function (BDF) or HyperTransport™ bus-

GATS 29:28 Revision 1: Reserved. Revision 2: Guest address translation size (see MMIO 
Offset 0030h[GATS]). This value must be zero when MMIO Offset 
0030h[GTSup]=0.

MsiNumPPR 27:23 Revision 1: Reserved. Revision 2: MsiNumPPR for peripheral page service 
requests (see Capability Offset 00h[MsiNumPPR]); must be 0_0000b when 
PPRSup=0.

PNBanks 22:17 Revision 1: Reserved. Revision 2: Number of performance counter banks (see 
MMIO Offset 4000h[NCounterBanks]).

PNCounters 16:13 Revision 1: Reserved. Revision 2: Number of performance counters per counter 
bank (see MMIO Offset 4000h[NCounter]).

PASmax 12:8 Revision 1: Reserved. Revision 2: Maximum PASID value supported (see 
MMIO Offset 0030h[PASmax]). Must be ignored if PPRSup=0. 

HESup 7 Revision 1: Reserved. Revision 2: Hardware Error Registers supported (Section 
3.4.11.2 [I/O Hardware Event Reporting Registers]).

GASup 6 Revision 1: Reserved. Revision 2: AMD Virtual Interrupt Controller supported 
(see MMIO Offset 0030h[GASup]). 

IASup 5 Revision 1: Reserved. Revision 2: INVALIDATE_IOMMU_ALL supported (see 
MMIO Offset 0030h[IASup]).

GLXSup 4:3 Revision 1: Reserved. Revision 2: Number of guest CR3 tables supported (see 
MMIO Offset 0030h[GLXSup]). 

GTSup 2 Revision 1: Reserved. Must be zero. Revision 2: Guest translation supported (see 
MMIO Offset 0030h[GTSup]).

NXSup 1 Revision 1: Reserved. Must be zero. Revision 2: NX supported for I/O (see 
MMIO Offset 0030h[NXSup]).

XTSup 0 Revision 1: Reserved. Must be zero. Revision 2: x2APIC supported for 
peripherals (see MMIO Offset 0030h[XTSup]).

IVHD device entry type 
range (decimal)

IVHD device entry type 
range (hexadecimal)

Uppermost 2-bits IVHD device entry length 
(bytes)

0-63 00h-3Fh 00b 4 bytes
64-127 40h-7Fh 01b 8 bytes
128-191 80h-BFh 10b 16 bytes
192-255 C0h-FFh 11b 32 bytes

IVHD 
IOMMU EFR 
fields

Bits Definition
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unit addresses. When IVHD entries describe a range of addresses, the DeviceID address is treated as if it were 
16-bit integer so that, for example, DeviceID 0100h (Bus 1, Device 0, Function 0) follows DeviceID 00FFh 
(Bus 0, Device 31, Function 7), and DeviceID 0518h (Bus 5, Device 3, Function 0) follows DeviceID 0517h 
(Bus 5, Device 2, Function 7).

5.3.5 IVHD 4-byte Device Entries

The 4-byte IVHD device entry is structured to contain a single DeviceID with related IVHD flags. A 4-byte 
IVHD device entry must be aligned to a 4-byte boundary.
Table 74: IVHD device entry fields (4-byte)

Table 75: IVHD device entry type codes (4-byte)

Table 76: IVHD device entry data setting fields

The fields contained in Table 76 are defined in Table 5. Extended data settings are defined in Table 78.

Byte offset: +0 +1 +2 +3
Byte contents: Device entry type DeviceID Data setting

Byte 0: 
IVHD device entry type 
(4-byte)

Bytes 1 & 2:
DeviceID

Byte 3:
Device entry 
data setting

Entry Definition
(see Table 76)

0 0000h 00h 4-byte pad (use for alignment)
1 (All) (ignored) Data setting Data setting applies to all DeviceIDs controlled by 

the IOMMU.
2 (Select) DeviceID of 

entry
Data setting Data setting applies to selected DeviceID.

3 (Start of range) DeviceID of 
entry

Data setting Data setting applies to all devices from start of 
range (inclusive). Range is terminated with entry 
type of 4 (end of range).

4 (End of range) DeviceID of 
entry

Reserved Previous data setting (from start of range or alias 
start of range) applies to all peripherals to the end 
of range (inclusive). The data setting is reserved 
and must be zero.

5-63 (05h-3Fh) Reserved Reserved Reserved.

IVHD device 
entry data 
setting fields

Bits Definition

Lint1Pass 7 Identifies a device able to assert LINT1 interrupts
Lint0Pass 6 Identifies a device able to assert LINT0 interrupts
SysMgt[1:0] 5:4 Identifies a device able to assert System 

Management messages (e.g. VID/FID)
Reserved 3 Reserved; must be zero.
NMIPass 2 Identifies a device able to assert NMI interrupts
EIntPass 1 Identifies a device able to assert ExtInt interrupts
INITPass 0 Identifies a device able to assert INIT interrupts
159Advanced Micro Devices



PID 48882 Rev 2.00 - 3/24/11  IOMMU Architectural Specification
5.3.6 IVHD 8-byte Device Entries

The 8-byte IVHD device entry is used to convey more information than a single DeviceID address. 
Fields in an 8-byte IVHD device table entry marked as Reserved or Res must be zero. An 8-byte 
IVHD device entry must be aligned to a 8-byte boundary.

Table 77: IVHD device entry type codes (8-byte)

Byte 0: 
IVHD 
device 

entry type 
(8-byte)

Bytes 1 & 2 Byte 3
(see 

Table 76)

Byte 4 Bytes 5 & 6 Byte 7 Entry Definition

64 (40h) 0000h 00h 00h 0000h 00h 8-byte pad (use for alignment)
65 0000h 00h 00h 0000h 00h Reserved
66 (Alias 
select)

DeviceID 
(a): Actual 
peripheral 
DeviceID

Data 
setting:
IVHD 
device 
entry data 
setting

00h DeviceID 
(b): 
DeviceID 
used as 
source by 
peripheral

00h Data setting applies to DeviceID 
(a); peripheral uses DeviceID (b) 
as source identification 
information.

67 (Alias 
start of 
range)

DeviceID 
(a): Actual 
peripheral 
DeviceID

Data 
setting:
IVHD 
device 
entry data 
setting

00h DeviceID 
(b): 
DeviceID 
used as 
source by 
peripheral

00h Data setting applies to all 
peripherals from start of range 
(inclusive); all peripherals in 
range use DeviceID (b) as source 
identification information. Range 
is terminated with an IVHD entry 
type 4 (end of range). Note that all 
peripherals in the range use the 
same DeviceID (b).

68-69 0000h 00h 00h 0000h 00h Reserved
70 
(Extended 
select)

DeviceID of 
entry

Data 
setting

Extended data setting (see 
Table 78)

Data setting and extended data 
setting apply to selected DeviceID 
(see Table 78).

71 
(Extended 
start of 
range)

DeviceID of 
entry

Data 
setting

Extended data setting (see 
Table 78)

Data setting and extended data 
setting apply to all devices from 
start of range (inclusive). Range is 
terminated with an IVHD entry 
type 4 (end of range); see 
Table 78.

72 (Special 
Device)

0000h Data 
setting

Handle: 
see 
Table 79

DeviceID: 
DeviceID 
used as 
source by 
peripheral

Variety: 
see 
Table 79

Device not normally identified 
through enumeration. Variety 
encodes IOAPIC or HPET, and 
Handle contains the I/O APIC ID 
or the HPET Number, 
respectively.

73-127 0000h 00h 0000_0000h Reserved
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An Alias device type entry is used for each peripheral that does not use its own DeviceID information in bus 
transactions. For example, peripherals downstream of a bridge device that use the DeviceID of the bridge must 
have a corresponding Alias Select or Alias Start of Range entry to inform system software which IOMMU 
device table entry will be used for translation information. 

When an Alias device type entry is used, the IVHD block cannot contain a device type entry of type 1 (ALL), 
2 (Select), or 3 (Start of Range) that includes the same peripherals. When the (type 67, type 4) IVHD type pair 
is used to define a range, all the included peripherals use the same DeviceID (b) as a DeviceID and thus the 
same IOMMU device table entry. An extended entry of type 70 or type 71 is used when the extended attributes 
in Table 78 must be expressed.

Table 78: IVHD device entry extended data setting fields

A peripheral not identified in the normal enumeration process requires a Special Device table entry of 
type 72. The variety of the peripheral and the associated tag are provided as show in Table 79.

Table 79: IVHD special device entry - variety and handle fields

5.3.7 16-byte Device Entries

All 16-byte device entry type values (type 128-191) are reserved and may not be used. A 16-byte 
IVHD device entry must be aligned to a 16-byte boundary.

5.3.8 32-byte Device Entries

All 32-byte device entry type values (type 192-255) are reserved and may not be used. A 32-byte 
IVHD device entry must be aligned to a 32-byte boundary.

5.3.9 I/O Virtualization Memory Definition (IVMD) Block

Platform firmware may have memory usage requirements to communicate to system software based 

IVHD device 
entry 
extended data 
setting fields

Bits Definition

AtsDisabled 31 Identifies an I/O device that must be prevented from 
issuing address translation requests. 1b=block ATS 
requests; 0b=allow ATS.

Reserved 30:0 Reserved; must be zero.

IVHD special 
device entry 
variety

Variety value Handle definition

IOAPIC 01h The I/O APIC ID from the APCI MADT.
HPET 02h The HPET Number from the HPET table.
Reserved 00h, 03h-FFh Reserved.
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on its needs or on hardware characteristics. Platform firmware can inform system software of 
memory usage restrictions or requirements by using I/O Virtualization Memory Definition (IVMD) 
blocks. Each IVMD entry may be per-device, specifying the DeviceID to which the entry applies, or 
the IVMD entry may apply to all devices and the DeviceID is ignored. System software is expected to 
use the information in the IVMD blocks when it programs the IOMMU.

Table 80: I/O Virtualization Memory Definition (IVMD) format

The IVMD block fields are defined in Table 81. Note that a memory definition block may apply to a 
particular peripheral device, multiple peripheral devices, or all peripheral devices. When a memory 
block is defined for multiple peripheral devices, but not all, the IVMD definition is repeated for each 
discontiguous peripheral device or range to which the memory definition applies. If IR=0b and 
IW=0b in the IVMD flags field, then the memory range is not to be mapped into the peripheral device 
address space and the unity flag field must be 0b. To prevent a memory range from ever being 
mapped into any peripheral device address space, use IR=0b and IW=0b in the IVMD flags field and 
IVMD type=20h (all devices).

Table 81: IVMD fields

Byte 
offset

I/O Virtualization Memory Definition (IVMD) block Relative 
offset

0 Type Flags Length DeviceID Auxiliary data +0
8 Reserved (0000_0000_0000_0000h) +8

16 IVMD start address +16
24 IVMD memory block length +24

Offset: 0 1 2 3 4 5 6 7 -

IVMD field name Offset Size 
(bytes)

Value Definition

IVMD type 0 1 20h=all peripherals;
21h=specified 
peripheral;
22h=peripheral range

I/O virtualization memory definition 
block

IMVD Flags 1 1 (see Table 82) Flags for memory block 
IVMD length 2 2 32 Length of IVMD entry in bytes
DeviceID 4 2 Type 20h: field reserved;

type 21h: DeviceID;
type 22h: starting DeviceID of range

Auxiliary data 6 2 Types 20h, 21h: field reserved;
type 22h: ending DeviceID of range 
(inclusive)

Reserved 8 8 0 Reserved
Start address (physical) 16 8 System-physical address of start of 

memory block
162Advanced Micro Devices



PID 48882 Rev 2.00 - 3/24/11  IOMMU Architectural Specification
Table 82: IVMD flags definitions

The IVMD flag field applies to individual devices when IVMD type=21h, to all devices in a system 
when IVMD type=20h, and to all devices in the DeviceID range when IVMD type=22h. 

Memory block length 24 8 Length in bytes Length of memory block; system 
software may round up to 4K byte 
boundary

IVMD Flags fields Bits Definition
Reserved 7:4 Reserved; must be zero.
ExclusionRange 3 Exclusion range. 1b=included in exclusion range, 0b=not in exclusion 

range.
Note: IR, IW, and Unity are ignored when ExclusionRange=1b.

IW 2 Write permission. 1b=writeable, 0b=not writeable.
IR 1 Read permission. 1b=readable, 0b=not readable.
Unity 0 Unit address mapping. 1b=virtual addresses must be the same value as 

physical addresses. 0b=any virtual address translation may be used.

IVMD field name Offset Size 
(bytes)

Value Definition
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6 IOMMU Pseudo Code

6.1 IOMMU Page Walker Pseudo Code

//  
// Page table walker for IOMMU.
// -- for single-level page tables.
//
// Inputs: 
// {dte} is partial device table entry (lower 64-bits), 
// {dva} is device virtual address,
// extern int errno assumed.
//
// Return value is a (possibly synthetic) 64-bit "pte" suitable for storing
// in a TLB, with the following fields valid:
// [62] (cumulative) I/O write permission
// [61] (cumulative) I/O read permission
// [60] FC bit
// [59] U bit
// [51:12] system physical page address
// [5:0] how many VA bits to append
//
// The caller of this routine is responsible for read and write permission
// checks, and for checks that the dte is valid for translation.
// The caller is responsible for special access permission check in the
// case of a 0-length read.
// This routine performs all other checks, and exits by raising an
// exception (instead of returning a value) if any problem is found.
//

#define LARGEST_VA(LEVEL) ((0x1000ull << ((LEVEL) * 9)) - 1)
#define VABITS(LEVEL) (((LEVEL) * 9) + 3)

#define IOPERM 0x6000000000000000 // 6000_0000_0000_0000h - IR and IW bits in PTE
#define RESV_BITS 0x1FF0000000000000 // 1FF0_0000_0000_0000h - Reserved bits in PTE
#define U_FC_BITS 0x1800000000000000 // 1800_0000_0000_0000h - U, FC bits in PTE
#define BITS_51_12 0xFFFFFFFFFF000 // 000F_FFFF_FFFF_F000h - bit mask [51:12]

uint64
iopagewalk(uint64 dte, uint64 dva)
{

uint64 pdte = dte;
uint64 ioperm = pdte & IOPERM;
uint64 pa = pdte & BITS_51_12; // dte bits [51:12]
uint oldlevel = 7, level = (pdte >> 9) & 7, vabits = 63;

if (level == 7)
raise DEVTAB_RESERVED_LEVEL;

if (level == 0)
return ioperm | pa | vabits;
164Advanced Micro Devices



PID 48882 Rev 2.00 - 3/24/11  IOMMU Architectural Specification
while (level != 0) {
uint64 skipbits = LARGEST_VA(oldlevel - 1) - LARGEST_VA(level);
if ((dva & skipbits) != 0)

raise PAGE_NOT_PRESENT;
uint offset = (dva >> (level * 9)) & 0xFF8;
pdte = read_memory_qword(pa + offset);
if ((errno == E_MEM_ERROR) & (MMIO_Offset_0030h[HESup])) {

update_IOMMU_error_registers(); 
errno=0;
append_event_log(event_info);
if ((errno == E_MEM_ERROR) & (MMIO_Offset_0030h[HESup])) {

update_IOMMU_error_registers(); 
event_logging(off);

}
raise PAGE_TAB_HARDWARE_ERROR; 

}
if ((pdte & 1) == 0)

raise PAGE_NOT_PRESENT;

oldlevel = level;
level = (pdte >> 9) & 7;
uint64 reserved_bits = RESV_BITS;
if (level == 0 || level ==7) {

reserved_bits &= ~U_FC_BITS; // U and FC bits are not reserved for PTEs
ioperm |= pdte & U_FC_BITS; // merge U and FC bits into result

}
if ((pdte & reserved_bits) != 0)

raise PDTE_RESERVED_BITS;
ioperm &= pdte;
pa = pdte & BITS_51_12; // pte bits [51:12]
oldlevel = level;
level = (pdte >> 9) & 7;
if (level == 0x7) {

uint64 tmp = pa ^ BITS_51_12;
vabits = bsf(tmp) + 1; // find first 0 in pa[51:12] - see BSF instruction
if ((vabits >= VABITS(oldlevel + 1)) || (vabits <= VABITS(oldlevel)))

raise PDTE_RESERVED_BITS;
pa &= ~((1ull << vabits) - 1);
return ioperm | pa | vabits

}
if (level >= oldlevel)

raise PDTE_RESERVED_BITS;
}

if ((pa & LARGEST_VA(oldlevel - 1) != 0)
raise PDTE_RESERVED_BITS;

return ioperm | pa | VABITS(oldlevel);
}
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6.2 Clear Accessed Bit

This is discussed in Section 3.2.7.5 [Clearing Accessed and Dirty Bits].

void
reset_a(uint64 virtual_address, list_t DeviceID_list) // reset A bit in PTE using a simple algorithm
{
#define AMASK 0x20 // Accessed bit in PTE

pte_t * pte_p = va_to_ptep(virtual_address); // get pointer to PTE for virtual address
pte_t pte_temp;
did_t DeviceID;
int completion_pending;

pte_temp = *pte_p; // take sample of PTE, including A bit
if (pte_temp & AMASK){ // A==1 means page recently accessed 

lock_and64((uint64)(~AMASK), pte_p); // interlocked AND to update PTE in memory
foreach(DeviceID in DeviceID_list)

IOMMU_enqueue_command(INVALIDATE_IOMMU_PAGES, DeviceID, virtual_address);
completion_pending = 1;
IOMMU_enqueue_command(COMPLETION_WAIT, &completion_pending, 0);
while(completion_pending) ; // spinlock
// invalidation completed
page_was_accessed(virtual_address);

} // end if
} // end reset_a()
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121 Capability Offset 00h: IOMMU Capability Header
122 Capability Offset 04h: IOMMU Base Address Low Register
122 Capability Offset 08h: IOMMU Base Address High Register
123 Capability Offset 0Ch: IOMMU Range Register
124 Capability Offset 10h: IOMMU Miscellaneous Information Register
125 MMIO Offset 0000h: Device Table Base Address Register
126 MMIO Offset 0008h: Command Buffer Base Address Register
126 MMIO Offset 0010h: Event Log Base Address Register
127 MMIO Offset 0018h: IOMMU Control Register
130 MMIO Offset 0020h: IOMMU Exclusion Base Register
130 MMIO Offset 0028h: IOMMU Exclusion Range Limit Register
131 MMIO Offset 0030h: IOMMU Extended Feature Register
133 MMIO Offset 0038h: PPR Log Base Address Register
133 MMIO Offset 0040h: IOMMU Hardware Event Upper Register
134 MMIO Offset 0048h: IOMMU Hardware Event Lower Register
134 MMIO Offset 0050h: IOMMU Hardware Event Status Register
135 MMIO Offset 2000h: Command Buffer Head Pointer Register
135 MMIO Offset 2008h: Command Buffer Tail Pointer Register
136 MMIO Offset 2010h: Event Log Head Pointer Register
136 MMIO Offset 2018h: Event Log Tail Pointer Register
136 MMIO Offset 2020h: IOMMU Status Register
138 MMIO Offset 2030h: IOMMU PPR Log Head Pointer Register
138 MMIO Offset 2038h: IOMMU PPR Log Tail Pointer Register
140 MMIO Offset 4000h: IOMMU Counter Configuration Register
140 MMIO Offset 4008h: IOMMU Counter PASID Bank-Lock Register
141 MMIO Offset 4010h: IOMMU Counter Domain Bank-Lock Register
141 MMIO Offset 4018h: IOMMU Counter DeviceID Bank-Lock Register
143 MMIO Offset [40-7F][0-F]00h: IOMMU Counter Register
143 MMIO Offset [40-7F][0-F]08h: IOMMU Counter Source Register
145 MMIO Offset [40-7F][0-F]18h: IOMMU Domain Match Register
145 MMIO Offset [40-7F][0-F]10h: IOMMU PASID Match Register
146 MMIO Offset [40-7F][0-F]20h: IOMMU DeviceID Match Register
147 MMIO Offset [40-7F][0-F]28h: IOMMU Counter Report Register

7 Register List

The following is a list of all storage elements, context, and registers provided in this document. Page numbers, register 
mnemonics, and register names are provided. 
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