AMDCH

Lightweight Profiling
Specification

Publication# 43724 Revision: 3.02
Issue Date: October 2007

AdvancedMicroDevices 21

© 2005 Advanced Micro Devices, Inc. All rights reserved.

The contents of this document are provided in connection with Advanced Micro Devices,
Inc. (“AMD”) products. AMD makes no representations or warranties with respect to the
accuracy or completeness of the contents of this publication and reserves the right to make
changes to specifications and product descriptions at any time without notice. The informa-
tion contained herein may be of a preliminary or advance nature and is subject to change
without notice. No license, whether express, implied, arising by estoppel or otherwise, to
any intellectual property rightsis granted by this publication. Except as set forthin AMD’s
Standard Terms and Conditions of Sale, AMD assumes no liability whatsoever, and dis-
claims any express or implied warranty, relating to its products including, but not limited
to, theimplied warranty of merchantability, fitnessfor a particular purpose, or infringement
of any intellectual property right.

AMD'’s products are not designed, intended, authorized or warranted for use as compo-
nents in systems intended for surgica implant into the body, or in other applications
intended to support or sustain life, or in any other application in which the failure of
AMD’s product could create a Situation where persona injury, death, or severe property or
environmental damage may occur. AMD reserves the right to discontinue or make changes
to its products at any time without notice.

Trademarks

AMD, the AMD Arrow logo, AMD Opteron, and combinations thereof are trademarks of Advanced Micro Devices, Inc.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

Linux is aregistered trademark of Linus Torvalds.

Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

AMDA

43724 Rev.3.02 October 2007 Lightweight Profiling Specification
Contents

REVISION HiStOrY .. e e e 5

Chapter 1 IntroducCtion e e et e 7

L1 REQUITEMENS ..ttt e e 7

L2 VIV B .ottt 7

13 BEventsand EVENtRECOrdSt e 9

131 InstructionsRetired 11

132 BranchesRetired 11

133 DCaChe MiSSES . ..o 13

1.34 CPU Clocksnot Halted s 15

135 CPU Reference Clocksnot Halted 15

136 Programmed Event 16

1.3.7 Other EVENS . ..ot 17

Chapter 2 LWPDEaIIS. 18

21 CPUID Identificationiuuie it 18

22 LWPMode SpecifiC RegIStErSo oo 20

221 LWPMSRO—LWP FeatureEnable 20

2.2.2 LWPMSRLI—LWPCB Pointerooiitiiiiiiiiiinnenn. 21

2.2.3 LWPMSR2—LWPCorelID 21

23 LWPControl INStruCtionSot e et e 21

24 LWPControl BIock 23

25 Implementalion NOtESot e 30

251 Multiple Simultaneous Eventst 30

252 Processor State for Context Switch, SYM,andSMM 30

253 LWPCB ACCESS ..ottt ettt e ettt e 32

254 SECUNIEY ottt et 33

2.5.5 IO TUDLS . . e e 33

256 TLB and Cache MissesDuring LWPLOQQINgo oo iiei it 33

APPENdiIX A GlOSSAIY . .ottt 35

Contents 3

AMDA

43724 Rev.3.02 October 2007 Lightweight Profiling Specification

List of Figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure7.
Figure 8.
Figure 9.
Figure 10.

GeneriCEVeNt ReCOrd.o 10
Instruction Retired Event Recordo 11
Branch Retired Event Record.t e 12
DCacheMissEvent Record e e 14
CPU Clocksnot Halted Event Record 15
CPU Reference Clocksnot Halted Event Record.t 16
Programmed Event Record. i 16
LWPMSRO—Lightweight Profiling FeatureEnable 20
LWPCB—Lightweight Profiling Control Block 25
LWP HAgS . . oo 29

List of Tables

Table 1. GenericEvent Record Fields 10
Table 2. Eventld Valueso 11
Table 3. Branch Retired Event Record Fields. 12
Table 4. DCacheMissEvent Record Fields. e 14
Tableb. Programmed Event Record Fields 16
Table 6. Lightweight Profiling CPUID Values. e 18
Table7. LWPMSRO—Lightweight Profiling Feature Enable Fields. 20
Table 8. LWPCB—Lightweight Profiling Control Block Fields. 26
Table 9. LWP HAgS. . . . 30
4 Lists of Figures and Tables

AMDA

43724 Rev.3.02 October 2007 Lightweight Profiling Specification

Revision History

Date Revision | Description

October 2007 3.02 Added IP filters, new events, LWPINS opcode
September 2007 3.01 Minor editorial and formatting changes.
August 2007 3.00 Initial public version.

Revision History 5

AMDAQ

Lightweight Profiling Specification 43724 Rev.3.02 October 2007

6 Revision History

AMDA

43724 Rev.3.02 October 2007 Lightweight Profiling Specification

Chapter 1 Introduction

The lightweight profiling (LWP) proposal extends the AMD64 architecture (in both legacy and long
mode) to allow user mode (CPL=3) processes to gather performance data about themselves with very
low overhead. Modules such as managed runtime environments and dynamic optimizers can use
LWP to monitor the running program with high accuracy and high resolution. They can quickly
discover performance problems and opportunities and immediately act on this information.

The proposed extensions allow a program to gather performance data and examine it either by polling
or by taking an occasional interrupt. LWP introduces minimal additional states to the CPU and the
process. LWP differs from the existing performance counters and from IBS in that large quantities of
data are collected before an interrupt is taken. This feature provides a substantial reduction in the
overhead of using performance feedback. LWP can even be used with a polling scheme that requires
no interrupts at all. LWP also reduces overhead by allowing a user mode program to control its data
collection without calling a driver. LWP runs within the context of athread, so it can be used by
multiple processes in a system at the same time.

1.1 Requirements

The following are requirements for LWP to operate properly with modern operating systems (OS):

* ldentifiable—The OSis able to detect whether LWP is available and, if so, which profiling
features are present.

* Globally Enabled—The OS must enable LWP in order to allow programsto interact with it. By
enabling LWP, the OS commits to context switching the profiling state. By enabling profiling
interrupts, the OS commits to handling them.

» Secure—No data on the operation of the OS may “leak” to any user process. No dataon the
operation of one user process may leak to any other process.

» Separable—The hardware mechanisms for LWP do not interact in any way with the existing
performance counters or instruction-based sampling.

1.2 Overview

When enabled, LWP hardware monitors one or more events during the execution of user-mode code
and periodically inserts event records into aring buffer in the address space of the running process.
When the buffer isfilled beyond a user-specified threshold, the hardware can cause an interrupt which
the OS can useto signal a process to empty the buffer. With proper OS support, the interrupt can even
be delivered to a separate process or thread.

Instructions are only counted if they execute in user mode (CPL=3) and contribute to the instruction
count in that mode according to AMD standard for counting instructions. Furthermore, LWP is
inactive while in system management mode (SMM) or while entering or leaving SMM.

Chapter 1 Introduction 7

AMDAQ

Lightweight Profiling Specification 43724 Rev.3.02 October 2007

Once LWP is enabled, the user thread has compl ete control over its operations via the LLWPCB and
S WPCB instructions. Each thread in a multi-threaded process must configure LWP separately. A
thread hasits own buffer and counters which are context switched with the rest of the thread state.
However, it is certainly possible for a single monitor thread to collect, store, and process the data
from multiple other threads in the process.

During profiling, the LWP hardware monitors and reports on one or more types of events. Following
are the stepsin this process:

1. Count—Each time an instruction is retired, LWP decrementsitsinternal event countersfor all of
the events associated with theinstruction. Aninstruction can cause zero, one, or multiple events.
For instance, an indirect jump through a pointer in memory counts as an instruction retired, a
branch retired, and may also cause up to two DCache misses (or more, if thereisaTLB miss) and
up to two I Cache misses.

» Some events may have filters or conditions on them that regulate counting. For instance, the
user may configure LWP so that only cache miss events with latency greater than a specified
minimum are eligible to be counted.

2. Gather—When an event counter reaches zero, the event should be reported, and LWP gathers an
event record. Thisisthe equivalent of fillinginaninternal copy of an event record, though actual
implementation may vary. The event’s counter freezes at zero until an event record is written to
the event buffer.

For most events, such asinstructions retired, LWP gathers an event record describing the
instruction that caused the counter to reach zero. However, it isvalid for LWP to gather event
record datafor the next instruction that causes the event, or to take other aternativesto capture the
record. Some of these options are described with the individual events.

* Animplementation can choose to gather event information on one or many events at any one
time. If multiple event counters reach zero, an advanced LWP implementation may gather
one event record per event and write them sequentially. A basic LWP implementation may
choose one of the eligible events. The other expired events wait until the chosen event record
iswritten and then pick the next eligible instruction for the waiting event. This situation
should be extremely uncommon if software chooses its intervals to be large enough.

* LWP may discard an event occurrence. For instance, if the event buffer needs to be paged in
from disk, LWP might not be able to preserve the pending event record data. If an eventis
discarded, LWP gathers an event record for the next instruction to cause the event.

« Similarly, if LWP needsto replay an instruction to gather a compl ete event record, the replay
may abort instead of retiring. The event counter remains zero and LWP gathers an event
record for the next instruction to cause the event.

8 Introduction Chapter 1

AMDA

43724 Rev.3.02 October 2007 Lightweight Profiling Specification

3. Sore—When a complete event record is gathered, LWP storesit into aring buffer in the process
address space and advances the ring buffer pointer.

» If thering buffer isfull at thistime, LWP increments a 64-bit counter of missed events and
does not advance the buffer pointer.

» If morethan one event record reaches the Store stage simultaneously, only one need be stored.
LWP may delay storing other event records or it may discard the information and proceed to
choose the next eligible instruction for the discarded event type(s).

» The store need not complete synchronously with the instruction retiring. In other words, if
LWP buffers the event record contents, the Store stage (and subsequent stages) may complete
some number of cycles after the tagged instruction retires. The data about the event and the
instruction are precise, but the rest of the LWP process may complete later.

4. Report—If LWP threshold interrupts are enabled and the space used in the ring buffer exceeds a
user-defined threshold, LWP initiates an interrupt. The OS can use thisto signal the process to
empty the buffer. Note that the interrupt may occur significantly later than the event that caused
the threshold to be met.

5. Reset—The counter for the event that was stored is reset to its programmed interval (with any
randomization applied). Counting for that event starts again. Reset happensif the event record is
stored or if the missed event counter was incremented.

The user process can wait until an interrupt occurs to process the eventsin the ring buffer. This
requires OS or driver support. (As aconsequence, interrupts can only be enabled if a kernel mode
routine allowsit; refer to “LWP Model Specific Registers’ on page 20.) One usage model isto have
the program call adriver to associate the LWP interrupt with a semaphore or mutex. When the
interrupt occurs, the driver signals the associated object. Any thread waiting on the object will wake
up and can process the buffer. (Other driver models are possible, of course.)

Alternatively, the user process can have athread that periodically polls the ring buffer and removes
event records from it, advancing the tail pointer so that the LWP hardware can continue storing
records. The hardware is designed to never overflow the buffer by advancing the head pointer to
equal the tail pointer.

1.3 Events and Event Records

When a monitored event overflows its event counter, LWP puts an event record into the LWP event
ring buffer. Each event record in the ring buffer is 32 byteslong in version 1 of LWP. (The actual
event record size isreturned as LWPEventS ze by the CPUID instruction when querying for LWP
features.)

Reserved fields and fields that are not defined for the particular event are set to zero when LWP writes
an event record.

Chapter 1 Introduction 9

AMDAQ

Lightweight Profiling Specification

43724 Rev.3.02 October 2007

16

: 5 Lw o
(Event-specific data) Flags Coreld Eventld | O
InstructionAddress 8

(Event-specific address or data)
Reserved 24

Figurel. Generic Event Record

Table 1. Generic Event Record Fields

Field Bytes |Bits Description

Eventld 0 Event identifier specifying the event record type. Valid
identifiersare 1 to 255. Oisaninvalid identifier.

Coreld 1 CPU core number. For multicore systems, thisidentifies the
core on which LWP isrunning. This allows software to
aggregate event records from multiple threads into asingle
buffer without losing CPU information. O for single core
systems.

Flags 2:3 16:31 Event-specific flags. Flags aretypically allocated starting at bit
31.

47 Event-specific data.

InstructionAddress 8:15 Linear address of theinstruction that triggered this event record.
Thisisthe value after adding in the CS base address. If the base
is non-zero, software must track it. (Generally, modern
operating systems use a CS base of zero.)

16:23 Event-specific address or other data.
24:31 Reserved.

10

Introduction Chapter 1

AMDA

43724 Rev.3.02 October 2007 Lightweight Profiling Specification

Table 2 lists the event identifiers for the events available in version 1 of LWP. They are described in
detail in the following sections.

Table 2. Eventld Values

Eventld |Description

0 Reserved —invalid event

Instructions retired

Branches retired

DCache misses

CPU clocks not halted

CPU reference clocks not halted

gl bl wW| N

1.3.1 I nstructions Retired

LWP decrements the event counter each time an instruction retires. When the counter reaches zero, it
stores a generic event record with an Eventld of 1.

: : e
Reserved Reserved Coreld 1 0

InstructionAddress 8

Reserved 16

Reserved 24

Figure2. Instruction Retired Event Record
1.3.2 Branches Retired

LWP decrements the event counter each time atransfer of control retires, regardless of whether or not
it is taken. When the counter reaches zero, it stores an event record with an Eventld of 2.

Control transfer instructions are short and long jumps (including JCXZ and its variants), LOOPX,
CALL, and RET. LWP does not count traps or interrupts, whether synchronous or asynchronous, nor
does it count operations that switch to or from ring 3, SMM, or SVM, such as SY SCALL,
SYSENTER, or INT 3.

Chapter 1 Introduction 11

AMDAQ

Lightweight Profiling Specification

43724 Rev.3.02 October 2007

3332 11

6
3 2109 65 87 0
T|P|P
Reserved K|RIR Reserved Coreld 2 0
N|D|V
InstructionAddress 8
TargetAddress 16
Reserved 24

Figure3. Branch Retired Event Record

Table 3. Branch Retired Event Record Fields

Field Bytes |Bits Description
Eventld 0 Event identifier = 2
Coreld 1 CPU core number
2:3 16:29 Reserved
PRV 3 29 1—PRD bitisvalid
O—Prediction information is not available
Some implementations of LWP may be unable to capture branch
prediction information on some or all branches.
PRD 3 30 1—Branch was predicted correctly
0—Mispredicted
Always 1 for unconditional direct branches.
TKN 3 31 1—Branch was taken
0—Branch not taken
Always 1 for unconditional branches.
4:7 Reserved
InstructionAddress 8:15 Instruction address
TargetAddress 16:23 Address of instruction after branch. Thisisthe target if the
branch was taken and the fall-through address if the branch was
anot-taken conditional branch.
24:31 Reserved
12 Introduction Chapter 1

AMDA

43724 Rev.3.02 October 2007 Lightweight Profiling Specification

1.3.3 DCache Misses

LWP decrements the event counter each time aload from memory causes a DCache miss whose
latency exceeds the LWPCachel atency threshold and/or whose data comes from alevel of the cache
or memory hierarchy that is selected for counting. When the counter reaches zero, LWP stores an
event record with an Eventld of 3.

A misaligned access that causes two misses on a single load only decrements the event counter by 1
and, if it reports an event, the datais for the lowest address that missed. LWP does not count cache
missesthat areindirectly dueto TLB walks, LDT or GDT references, TLB misses, etc. It only counts
loads directly caused by the instruction. Cache misses caused by the LWP hardware itself are not
subject to counting.

1331 Measuring L atency

The x86 architecture allows multiple loads to be outstanding simultaneously. An implementation of
LWP might not have afull latency counter for every load that is waiting for a cache missto be
resolved. Therefore, an implementation may apply any of the following simplifications. Software
using LWP should be prepared for this.

* Theimplementation may round the latency to a multiple of 27j. Thisisasmall power of 2, and
the value of | must be 1 to 4. For example, in therest of this section, assumethat j = 4, so
27 = 16. Thelow 4 bits of latency reported in the event record will be 0. The actual latency
counter isincremented by 16 every 16 cycles of waiting. The value of j isreturned as
LWPLatencyRnd by the CPUID instruction when querying for LWP features.

* Theimplementation may do an approximation when starting to count latency. If countingisin
increments of 16, the 16 cycles need not start when the load begins to wait. The implementation
may bump the latency value from 0 to 16 any time during the first 16 cycles of waiting.

» Theimplementation may cap total latency to 2*n-16 (where n >= 10). Thelatency counter isthus
a saturating counter that stops counting when it reaches its maximum value. For example, if
n = 10, the latency value will count from 0 to 1008 in steps of 16 and then stop at 1008. (If
n = 10, each counter can be amere 6 bitswide.) Thevalue of nisreturned as LWPLatencyMax by
the CPUID instruction when querying for LWP features.

Note also that the latency threshold used to filter eventsis a multiple of 16 when performing the
comparison that decides whether a cache miss event is eligible to be counted.

1332 Reporting the DCache Miss Data Address

The event record for a DCache miss reports the linear address of the data. The way an
implementation records the linear address affects the exact event that is reported and the amount of
time it takes to report a cache miss event. The implementation may report the event immediately,
report the next eligible event once the counter reaches zero, or replay the instruction.

Chapter 1 Introduction 13

AMDAQ

Lightweight Profiling Specification

43724 Rev.3.02 October 2007

: 53 Lw o
Latency SRC g Reserved Coreld 3 0

InstructionAddress 8

DataAddress 16

Reserved 24

Figure4. DCacheMissEvent Record

Table 4. DCache Miss Event Record Fields

Field Bytes |Bits Description
Eventld 0 Event identifier = 3
Coreld 1 CPU core number
2:3 16:27 Reserved
DAV 3 28 1—DataAddressisvalid
O—Addressisunavailable

SRC 3 29:31 Data source for the requested data

0 | Novalid status

1| Local L3 cache

2 | Remote CPU or L3 cache

3 | DRAM

4 | Reserved (for Remote cache)

5 | Reserved

6 | Reserved

7 | Other (MMIO/Config/PCI/APIC)
Latency 4:7 Total latency of cache miss (in cycles)
InstructionAddress 8:15 Instruction address

14

Introduction

Chapter 1

AMDA

43724 Rev.3.02 October 2007 Lightweight Profiling Specification

Table 4. DCache Miss Event Record Fields (Continued)

Field Bytes |Bits Description
DataAddress 16:23 Address of memory reference (if flag bit 28 = 1)
24:31 Reserved

1.34 CPU Clocksnot Halted

LWP decrements the event counter each clock cycle that the CPU isnot in a halted state (due to
STPCLK or aHLT instruction). When the counter reaches zero, it stores a generic event record with
an Eventld of 4. This counter varies in real-time frequency as the core clock frequency changes.

: : e o
Reserved Reserved Coreld 4 0
InstructionAddress 8
Reserved 16
Reserved 24

Figure5. CPU Clocks not Halted Event Record

1.35 CPU Reference Clocks not Halted

LWP decrements the event counter each reference clock cycle that the CPU isnot in a halted state
(dueto STPCLK or aHLT instruction). When the counter reaches zero, it stores a generic event
record with an Eventld of 5.

The reference clock runs at a constant frequency that is independent of the core frequency and of the
performance state. The reference clock frequency is processor dependent. The processor may

Chapter 1 Introduction 15

AMDAQ

Lightweight Profiling Specification 43724 Rev.3.02 October 2007

implement this event by subtracting the ratio of (reference clock frequency / core clock frequency)
each core clock cycle.

: 5 I
Reserved Reserved Coreld 5 0
InstructionAddress 8
Reserved 16
Reserved 24

Figure6. CPU Reference Clocksnot Halted Event Record

1.3.6 Programmed Event

When a program successfully executes the LWPINS instruction (see “LWPINS—Insert User Event
Record into LWP Event Ring Buffer” on page 23), the processor stores an event record with an event
identifier of 255.

33 11

g 21 65 87 0
Datal Flags Coreld 255 0
InstructionAddress 8
Data? 16
Reserved 24

Figure7. Programmed Event Record

Tableb. Programmed Event Record Fields

Field Bytes |Bits Description
Eventld 0 Event identifier = 255
Coreld 1 CPU core number

16 Introduction Chapter 1

AMDA

43724 Rev.3.02 October 2007 Lightweight Profiling Specification

Tableb. Programmed Event Record Fields (Continued)

Field Bytes |Bits Description

Flags 2:3 Flags value from EAX[15:0]

Datal 47 Data value from EBX

InstructionAddress 8:15 Instruction address

Data? 16:23 Data value from rDX, zero extended if running in legacy mode
24:31 Reserved

1.3.7 Other Events

The overall design of LWP allows easy extension to the list of events that it can monitor. The
following are possibilities for events that may be added in future versions of LWP:

e DTLB misses

* FPU operations

* |Cache misses

e ITLB misses

Chapter 1 Introduction 17

AMDAQ

Lightweight Profiling Specification 43724 Rev.3.02 October 2007

Chapter 2 LWP Detalils

This chapter describes how to identify the presence of lightweight profiling by using the CPUID
instruction and provides information on LWP M SRs, instructions, and other considerations.

2.1 CPUID ldentification

To identify whether lightweight profiling is present, use the CPUID instruction:

« Cadl: CPUID <= EAX: 8000 0001

* Return: EDX bit TBD issetto 1 if LWP is present.

To identify the supported LWP capabilities, use CPUID with the following leaf request code:
e Cadl: CPUID <= EAX: 8000_001C (for extended features, EAX: 8000_001D)

* Return: See Table 6, “Lightweight Profiling CPUID Values’

The bitsreturned in EAX are taken from LWPM SRO and reflect the currently enabled LWP features.
These are a subset of the bits returned in EDX, which reflect the full capabilities of LWP in the
current processor. The operating system can enable a subset of LWP if it does not support all
available features. For instance, if the OS cannot handle an LWP threshold interrupt, it can disable
the feature. User-mode software must assume that the bitsin EAX describe the features it can use.
Operating systems should use the bits from EDX to determine the capabilities of LWP and enable all
or some of the available features.

Under SVM, if aVMM allows the migration of guests among processorsthat all have LWP available,
it must arrange for CPUID to report the logical AND of the available feature bits and the minimum of
the number of events over all processors in the migration set.

Table 6. Lightweight Profiling CPUID Values

Field Reg |Bits Description
Enabled EAX |0 LWPisenabled. If thishitisO, the remainder of the data
returned by CPUID should be ignored.

IRE EAX |1 Instructions retired event (Eventld = 1) is enabled.

BRE EAX |2 Branch retired event (Eventld = 2) is enabled.

DME EAX |3 DCache miss event (Eventld = 3) is enabled.

CNH EAX |4 CPU clocks not halted event (Eventld = 4) is enabled.

RNH EAX |5 CPU reference clocks not halted event (Eventld = 5) is enabled.
EAX [6:29 Reserved for future events.

18 LWP Details Chapter 2

AMDA

43724 Rev.3.02 October 2007

Table 6.

Lightweight Profiling Specification

Lightweight Profiling CPUID Values (Continued)

Field

Bits

Description

Extension

30

Extended CPUID information is available. If 1, information on
events with Eventld > 29 is available by executing CPUID with
EAX =8000_001D. (0 for LWP Version 1.)

I nterrupt

31

Interrupt on threshold overflow is enabled.

LWPCBSize

70

Sizein bytes of the LWPCB. Thisvaueis at |east
LWPEventOffset + (LWPMaxEvents * 8) but an
implementation may require alarger control block.

LWPEventSize

EBX

15:8

Sizein bytes of an event record in the LWP ring buffer. (32 for
LWP Version 1.)

LWPMaxEvents

EBX

23:16

Number of different events that can be monitored
simultaneously.

LWPEventOffset

EBX

31:24

Offset from the start of the LWPCB to the EventInterval O field.
Software must use this value to locate the area of the LWPCB
that describes events to be sampled. This permits expansion of
theinitial fixed region of the LWPCB.

LWPL atencyMax

ECX

Number of bitsin cache latency counters (10 to 31).

LWPDataAddress

ECX

1—Cache miss event records report the data address of the
reference.

0—Data address is not reported.

LWPL atencyRnd

ECX

8:6

The amount by which cache latency isrounded. The bottom
LWPL atencyRnd bits of latency information will be zero. The
actual number of bitsimplemented for the counter is
LWPLatencyMax — LWPLatencyRnd. Must be 0 to 4.

LWPVersion

ECX

15:9

Version of LWP implementation. (1 for LWP Version 1.)

ECX

29:16

Reserved

LWPCachelevels

ECX

30

1—Cache-related events can be filtered by the cache level that
returned the data. The value of CLF in the LWPCB enables
cache level filtering.

0—CLFisignored

Animplementation must support filtering either by latency or by

cachelevel. It may support both.

LWPCachel atency

ECX

31

1—Cache-related events can befiltered by latency. The value of
MinLatency in the LWPCB controls filtering.

0O—MinLatency isignored

An implementation must support filtering either by latency or by
cache level. It may support both.

Enabled

EDX

LWPisavailable. If thishbitisO, the remainder of the data
returned by CPUID should be ignored.

Chapter 2

LWP Details 19

AMDAQ

Lightweight Profiling Specification 43724 Rev.3.02 October 2007

Table 6. Lightweight Profiling CPUID Values (Continued)

Field Reg |Bits Description

IRE EDX |1 Instructions retired event (Eventld = 1) isavailable.
BRE EDX |2 Branch retired event (Eventld = 2) isavailable.
DME EDX |3 DCache miss event (Eventld = 3) isavailable.

CNH EAX |4 CPU clocks not halted event (Eventld = 4) is available.
RNH EAX |5 CPU reference clocks not halted event (Eventld =5) is
available.

EDX |6:30 Reserved for future events.
Interrupt EDX |31 Interrupt on threshold overflow is available.

2.2 LWP Model Specific Registers

The LWP model-specific registers describe and control the LWP hardware. They are available if
EDX bit TBD of CPUID 8000 0001 is1.

2.2.1 LWPMSRO—LWP Feature Enable

LWPM SRO controls how LWP can be used on the processor. It can prohibit the use of LWP or restrict
itin several ways. The operating system loads LWPMSRO at start-up time (or at the time a LWP
driver isloaded) to indicate its level of support for LWP. Only bitsthat are set in EDX from CPUID
when enumerating LWP can be turned on in LWPMSRO. Attempting to set other bits causes a #GP
fault.

User code can examine the contents of LWPM SRO by executing CPUID with EAX =8000_001C and
then examining the contents of EAX.

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 O
| RICID[B|I |
N Reserved NINIMIRIR|
T H|H|E|E|E

Figure8. LWPM SRO—Lightweight Profiling Feature Enable

Table 7. LWPM SRO—L ightweight Profiling Feature Enable Fields

Field Bits |Description
EN 0 Enable LWP.
IRE 1 Allow LWP to count instructions retired.

20 LWP Details Chapter 2

AMDA

43724 Rev.3.02 October 2007 Lightweight Profiling Specification

Table7. LWPM SRO—-L ightweight Profiling Feature Enable Fields (Continued)

Field Bits |Description
BRE 2 Allow LWP to count branches retired.
DME 3 Allow LWP to count DCache misses.
CNH 4 Allow LWP to count CPU clocks not halted.
RNH 5 Allow LWP to count CPU reference clocks not halted.
6:30 |Reserved
INT 31 Allow LWP to generate an interrupt when threshold is exceeded.

222 LWPM SR1—LWPCB Pointer

LWPM SR1 provides access to the internal copy of the LWPCB pointer. RDM SR on this register
performs the operations described for the SLWPCB instruction, and WRM SR performs the LLWPCB
operations. Note that RDM SR and WRM SR are only available in ring O, while the LLWPCB and
SLWPCB instructions are available in user mode.

223 LWPMSR2—LWP Core D

LWPM SR2 contains the value that will be stored into the Coreld field of every event record written
by LWP on this processor. The operating system should initialize this value to be the local APIC
number obtained by executing CPUID function 0000_0001.

ThisMSR is present so that when LWP is runsin avirtualized environment, it has access to the core
number without needing to enter the hypervisor.

2.3 LWP Control I nstructions

The LLWPCB instruction enables and disables lightweight profiling and controls the events being
profiled. The SLWPCB instruction queries the current state of lightweight profiling. These
instructions provide user mode access to the LWPCB pointer in LWPMSR1.

LLWPCB—L oad LWPCB Pointer

Sets the state of the lightweight profiling hardware from the LWP Control Block at DS:rAX and
enables profiling if specified. Returnsthe previous value of the LWPCB addressin rAX.

The LWPCB must be aligned on a 16-byte boundary in normal (writeback) memory and must be
writable in user mode. Software is advised to place the LWPCB so that it does not cross a page
boundary, but thisis not arequirement. To disable LWP, execute LLWPCB withrAX = 0.

This operation may only be issued when the machineisin protected mode. It can be executed at any
privilege level. If it isexecuted from a privilege level other than 3, the internal LWPCB pointer is

Chapter 2 LWP Details 21

AMDAQ

Lightweight Profiling Specification 43724 Rev.3.02 October 2007

loaded, but the initialization of the remainder of LWP state is deferred until the processor enters ring
3. Thisalowsthe LWPCB to reside in memory that needs to be paged in immediately; the page fault
will occur fromring 3.

If LWPiscurrently active, it flushesitsinternal state to memory in the old LWPCB. Then it sets up
new internal state from the new LWPCB and writes the new LWPCB.Flags bits to indicate the
resulting status of LWP. These bits indicate which events are actually being profiled and whether
threshold interrupts are enabled. Bits[1:30] correspond to events with Eventld of the same value.

If no events are being collected, the flags are set to zero and LWP isdisabled. Inthiscase, a
subsequent SLWPCB will return zero in rAX. This can happen if none of the Eventld fields in the
LWPCB select events that are implemented and enabled on the current system.

If multiple event selectors specify the same Eventld, only the earliest one in the LWPCB is used.
LWP ignores duplicate events and treats them as if the Eventld were zero, though it does not change
the Eventld field in the LWPCB.

Since the previous LWPCB addressis returned in rAX, a program can temporarily disable LWP by
executing LLWPCB withrAX =0 and saving the old LWPCB addressreturned inrAX. It can later re-
enable LWP by executing LLWPCB with rAX set to the old address.

rFLAGS Affected

None

Exceptions

Invalid opcode, #UD—The LLWPCB instruction is not supported, or LWP is not implemented on
this processor, or profiling is not enabled in LWPM SRO, or the system is not in protected mode.

Page Fault, #PF—The memory at [DS:rAX : DS:IrAX + LWPCBSize - 1] is not writeable by the
current process.

SLWPCB—Sore LWPCB Pointer

Flushes the current state of LWP into the LWPCB in memory and returns the current address of the
LWPCB inrAX. If LWPisnot currently active, SLWPCB setsrAX to zero.

This operation may only be issued when the machineisin protected mode. It can be executed at any
privilege level.

rFLAGS Affected
None
Exceptions

Invalid opcode, #UD—The SLWPCB instruction is not supported, or LWP is not implemented on
this processor, or profiling is not enabled in LWPM SRO, or the system is not in protected mode.

22 LWP Details Chapter 2

AMDA

43724 Rev.3.02 October 2007 Lightweight Profiling Specification

LWPINS—Insert User Event Record into LWP Event Ring Buffer

Inserts arecord into the LWP event ring buffer in memory and advances the ring buffer pointer. The
record has an Eventld of 255. The Flags bits are taken from EAX[15:0]. The event-specific data at
bytes 7:4 of the event record are taken from EBX. The event-specific data at bytes 23:16 are taken
from rDX and are zero extended if the program is running in legacy mode. See Figure 7,
“Programmed Event Record” for details.

If the record is successfully stored, the CF flag is cleared. If the ring buffer is full and the record
cannot be stored, the CF flag is set.

This operation may only be issued when the machineisin protected mode. It can be executed at any
privilege level.

LWPINS can be used by a program to mark significant events in the ring buffer as they occur. Such
events might include information on changes in the process address space such aslibrary loads and
unloads, or changes in the execution environment such as a change in the state of a user-mode thread
of control.

rFLAGS Affected

CF

Exceptions

Invalid opcode, #UD—The LWPINS instruction is not supported, or LWP is not implemented on this
processor, or profiling is not enabled in LWPMSRO, or LWP is not running (LWPMSRL1 is zero), or
the system is not in protected mode.

2.4 LWP Control Block

The LWP Control Block (LWPCB) specifies the details of how LWP operates. It isan interactive
region of memory in which some fields are controlled and modified by the LWP hardware and others
are controlled and modified by the software that processes the LWP event records.

Most of the fieldsin the LWPCB are constant for the duration of a LWP session (the time between
enabling LWP and disabling it). This meansthat they are loaded into the LWP hardware when it is
enabled, and may be periodically reloaded from the same location as needed. The contents of the
constant fields must not be changed during a LWP run or results will be unpredictable. Changing the
LWPCB memory to read-only or unmapped will cause an exception the next time the LWP hardware
attemptsto accessit. To change valuesin the LWPCB, disable LWP, change the LWPCB (or create a
new one), and reenable LWP.

A few fields are modified by the LWP hardware to communicate progress to the software that is
emptying the event record buffer. Software may read them but should never modify them during an
LWP session. Other fields are for software to modify to indicate that progress has been made in
emptying the buffer. Software writes these fields and the LWP hardware will read them as needed.

Chapter 2 LWP Details 23

AMDAQ

Lightweight Profiling Specification

43724 Rev.3.02 October 2007

For efficiency, some of the LWPCB fields may be shadowed in registers in the LWP hardware unit
when profiling is active. LWP will refresh these fields from (or flush them to) memory as needed to
allow software to make progress. For more information, refer to “LWPCB Access’ on page 31.

All fieldsin the LWPCB (as shown in Figure 9) that are marked as “ Reserved” must be zero.

6 65 33

3 09 21 0
Random BufferSize Flags 0
BufferBase 8
BufferTail Offset BufferHeadOff set 16
MissedEvents 24
6316216116059 58 45 44143142 ¢41140(39 32
S Reserved OR[R[NS| MinLatency Threshold 32
F|l |B|B(B H|M|C|C|F
Basel P 40
LimitIP 48
: 56
Reserved
63 58|57 32|31 26|25 0
Rsvd EventCounterO E\ijent EventInterval O E
1d0
63 58|57 32|31 26|25 0 E
Rsvd EventCounterl Event EventInterval1
Id1 +8
63 58|57 32|31 26|25 0
Rsvd EventCounterN Event EventintervalN XX
IdN N = LWPMaxEvents - 1

E = LWPEventOffset

Figure9. LWPCB—-Lightweight Profiling Control Block

24 LWP Details

Chapter 2

AMDA

43724 Rev.3.02 October 2007

Lightweight Profiling Specification

The R/W columnin Table 8, “LWPCB—Lightweight Profiling Control Block Fields’ indicates how a
field is used while LWP is enabled:

* LWP—hardware modifiesthe field

* Init—hardware modifies the field while executing LLWPCB

* SW—software may modify the field

* No—field must remain unchanged as long as the LWPCB isin use

Table 8. LWPCB—L ightweight Profiling Control Block Fields

Field

Bytes

Bits

Description

R/W

Flags

3.0

Flagsindicating LWP state (see Table 9, “LWP Flags’).

Init

BufferSize

74

59:32

Total size of the event record buffer (in bytes). Must bea
multiple of the event record size LWPEventSze.

No

Random

63:60

Number of bits of randomnessto usein counters. Eachtime
acounter isloaded from an interval to start counting down
to the next event to record, the bottom Random bits are set
to arandom value. This avoids fixed patternsin events.

No

BufferBase

15:8

Linear address of the event record buffer. Must be aligned
on a 32-byte boundary (the low 5 bits of BufferBase are
ignored). Software isencouraged to align the buffer on a
page boundary, but thisis not required.

No

BufferHeadOffset

19:16

Unsigned offset into BufferBase specifying where the LWP
hardware will store the next event record. When
BufferHeadOffset == BufferTail Offset, the buffer is empty.
BufferHeadOffset is always less than BufferSizeand is
always amultiple of LWPEventSze.

LWP

BufferTail Offset

23:20

Unsigned offset into BufferBase specifying the oldest event
record in the buffer. BufferTail Offset is always less than
BufferSize and is always a multiple of LWPEventSze.

MissedEvents

31:24

The 64-bit count of the number of events that were missed.
A missed event occurs after LWP stores an event record
when it advances BufferHeadOffset and discovers that it
would be equal to BufferTailOffset. In this case, LWP
leaves BufferHeadOffset unchanged and instead increments
the MissedEvents counter. Thus, when the buffer isfull, the
last event record is overwritten.

LWP

Chapter 2

LWP Details

25

AMDAQ

Lightweight Profiling Specification 43724 Rev.3.02 October 2007

Table 8. LWPCB—L ightweight Profiling Control Block Fields (Continued)

Field Bytes |Bits |Description R/W

Threshold 35:32 If non-zero, threshold for interrupting the user to indicate | No
that the buffer isfilling up. When LWP advances
BufferHeadOffset, it computes the space used as
((BufferHeadOffset — BufferTail Offset) % BufferSize) and
comparesit to Threshold. If the space used == Threshold
and threshold interrupts are enabled, LWP causes an
interrupt. The compare for equality ensures that only one
interrupt occurs when the threshold is crossed.

Notes: If zero, no threshold interrupts will be generated.
Thisfield isignored if threshold interrupts are not
enabled in LWPM SR1.

MinLatency 36 Minimum latency required to make a cache-related event | No
eligible for LWP counting. Appliesto all cache-related
events being monitored. The number in MinLatency is
multiplied by 16 to get the actual latency in cycles. This
scaling provides less resolution but alarger range for
filtering. Animplementation may have a maximum for the
latency valueit captures. If MinLatency* 16 exceedsthis
maximum value, the maximum is used instead. A value of 0
disablesfiltering by latency.

Notes:

MinLatency isignored if no cachelatency event ischosenin
one of the Eventldn fields.

MinLatency isignored if CPUID indicates that the
implementation does not filter by latency. Usethe CLF bits
to get asimilar effect. At least one of these mechanisms
must be available.

CLF 37 40 Cache Level Filtering. No
1—Enablesfiltering cache-related events by the cache level
or memory level that returned the data. It enablesthe next 4
bits, and cache-related events are only dligible for LWP
counting if the bit describing the memory level ison.
0—Disables cache level filtering. The next 4 bits are
ignored, and any cache or memory level iseligible.

Notes:

CLFisignored if no cache latency event is chosen in one of
the Eventldn fields.

CLFisignored if CPUID indicates that the implementation
does nat filter by cache level. Usethe MinLatency field to
get asimilar effect. At least one of these mechanisms must
be available.

26 LWP Details Chapter 2

AMDA

43724 Rev.3.02 October 2007

Table 8.

Lightweight Profiling Specification

LWPCB—L ightweight Profiling Control Block Fields (Continued)

Field

Bytes

Bits

Description

R/W

NBC

37

41

Set to 1 to record cache-rel ated events that are satisfied from
data held in a cache that resides on the Northbridge.
Ignored if CLFisO.

No

RDC

37

42

Set to 1 to record cache-related eventsthat are satisfied from
data held in aremote data cache. Ignored if CLFisO

No

37

43

Set to 1 to record cache-related eventsthat are satisfied from
DRAM. Ignoredif CLFisO

No

OTH

37

Set to 1 to record cache-related eventsthat are satisfied from
other sources, such as MMIO, Config space, PCI space, or
APIC. Ignoredif CLFisO

No

NMB

39

59

No mispredicted branches.

1—Mispredicted branches will not be counted.
0O—Mispredicted branches will be counted if not suppressed
by other filter conditions.

Caution: If NMB and NPB are both set, no branches will be
counted.

Thisvaueisignored if the Branches Retired event is not
chosen in one of the Eventldn fields.

No

NPB

39

60

No predicted branches.

1—Correctly predicted branches will not be counted.
0—Correctly predicted branches will be counted if not
suppressed by other filter conditions.

Caution: If NMB and NPB are both set, no branches will be
counted.

Thisvaueisignored if the Branches Retired event is not
chosen in one of the Eventldn fields.

No

NDB

39

61

No direct branches.

1—Direct branches will not be counted. This only applies
to unconditional RIP-relative branches. Conditional
branches, indirect jumps through aregister or memory,
calls, and returns are counted normally.

O—Direct branches will be counted if not suppressed by
other filter conditions.

Thisvaueisignored if the Branches Retired event is not
chosen in one of the Eventldn fields.

No

Pl

39

62

1—IPfiltering inverted. Instructions outside the range from
BaselPto LimitlP are eligible for LWP counting.

O0—IP filtering normal. Instructions inside the range from
BaselPto LimitlP are eligible for LWP counting.

Ignored if IPF is zero.

No

Chapter 2

LWP Details

27

AMDAQ

Lightweight Profiling Specification 43724 Rev.3.02 October 2007

Table 8. LWPCB—L ightweight Profiling Control Block Fields (Continued)

Field Bytes |Bits |Description R/W

IPF 39 63 1—IPfiltering enabled. The values of the Basel P and No
Limitl P fields specify arange of instruction addresses that
are eligible for LWP event counting and reporting. The
rangeisinclusiveif IPI is0 and exclusiveif 1Pl is 1.
O—IPfiltering disabled. Basel P, LimitIP, and IPI are
ignored; instructions at every address are eligible for LWP

counting.
Basel P 47:40 Low limit of the eligible IP filtering range. Aninstruction | No
must be at alocation greater than or equal to BaselPto bein
the range.
Ignored if IPF is zero.
LimitIP 55:48 High limit of the eligible IP filtering range. An instruction | No
must be at alocation less than or equal to LimitIPto bein
the range.
Ignored if IPF is zero.
E-1:56 Reserved area between the fixed portion of the LWPCB and

the event specifiers. Must be zero. The Eventlnterval O field
isat offset E = LWPEventOffset which is returned by
CPUID.

Eventinterval 0 E+3:E [25:0 |Number of events of type EventldO to count before storing |No
an event record.

EventldO E+3 31:26 |Eventld of the event to count in this counter. 0 means No
disable this counter. Itisinvalid to specify the same
Eventld in two or more counters and may cause
unpredictable results.

EventCounterO E+7: 57:32 | Starting or current value of counter LWP
E+4

Eventl... (Repeat counter configuration LWPMaxEvents times...)

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 O
| RICID[B|I |
N Reserved NINIMIRIR|
T H|H|E|E|E

Figure10. LWP Flags

28 LWP Details Chapter 2

AMDA

43724 Rev.3.02 October 2007 Lightweight Profiling Specification

Table 9. LWP Flags
Field |Bit Description

EN 0 LWP is enabled.

IRE |1 Instruction retired event is enabled.

BRE |2 Branch retired event is enabled.

DME |3 DCache miss event is enabled.

CNH |4 CPU clocks not halted event is enabled.

RNH |5 CPU reference clocks not halted event is enabled.
6:30 |Reserved

INT |31 Threshold interrupts are enabled.

2.5 | mplementation Notes

The following subsections describe other LWP considerations.

251 Multiple Simultaneous Events

Multiple events are possible when an instruction retires. For instance, an indirect jump through a
pointer in memory can trigger the instructions retired, branches retired, and DCache miss events
simultaneously. LWP must count all eventsthat apply to the instruction, but it will only report one
event per instruction. The other events will not cause an event record to be stored. The choice of
which event to report isimplementation dependent and may vary from run to run on the same
processor.

This ensures that an instruction that regularly causes multiple events can be reported in all of its
categories as the events' counters expire at varying intervals.

252 Processor Sate for Context Switch, SVM, and SMM

Implementations of LWP have internal state to hold the current values of the counters for the various
events (up to the maximum number of simultaneous events supported), a copy of the pointer into the
event buffer, and a copy of thetail pointer for quick detection of threshold and overflow states.

There are times when the system must preserve the volatile LWP state. When the operating system
context switches from one user thread to another, the old user state must be saved with the thread’s
context and the new state must be loaded. When a hypervisor decides to switch from one guest OSto
another, the same must be done for the guest systems’ states. Finally, state must be stored and
reloaded when the system enters and exits SMM, since the SMM code may decide to shut off power
to the core.

Hardware cannot maintain the LWP state in the active LWPCB. First, the counters change with every
event (not just every reported event), and keeping them in memory would generate alarge amount of

Chapter 2 LWP Details 29

AMDAQ

Lightweight Profiling Specification 43724 Rev.3.02 October 2007

unnecessary memory traffic. Second, the LWPCB isin user memory and may be paged out to disk at
any time, so the memory may not be available when needed.

Fortunately, only the following values need to be preserved when changing threads:
* LWPMSR1—LWPCB address (8 bytes)

* BufferHeadOffset value (4 bytes)

* 26-bit counter values (4 bytes each)

» A flagindicating that the MissedEvents counter must be incremented (1 bit)

In addition, the following values need to be preserved when a hypervisor changes guests or when the
system enters low power state:

« LWPMSRO—LWP feature enable flags (4 bytes but can be packed to 1 bytein version 1)
« LWPMSR2—LWP Coreld value (1 byte)
All of the remaining LWP state can be reconstructed from the LWPCB itself.

2521 Saving Sate at Thread Context Switches

If the system includes a hardware feature to extend a system’s ability to switch internal system state,
that feature will preserve LWP state across context switches. Such afeature requires operating
system support for the general mechanism, but once that is done, LWP requires no additional special
support.

If implemented, the feature restores the LWP volatile state immediately when restoring other system
state. If executed at ring 3, the remaining state gets restored from the LWPCB. |f executed when not
running at ring 3, the hardware sets a flag and restores the remaining state from the LWPCB at the
next transition to ring 3.

If such a hardware feature is not available, LWP internal state can be saved and restored using
RDMSR and WRMSR instructions. In this case, this specification will be extended to expose the
additional LWP state as M SR addresses. In addition, an LWP driver will require a hook into the OS
context switch code.

25.2.2 Saving Sate at SVM Worldswitch to a Different Guest

The VMCB will be augmented to include the volatile LWP state, and VM SAVE and VMLOAD will
save and restore that state. The state need not be saved and restored when the guest OS does not
change.

2523 Saving Sateat SMM Entry and Exit

The SMM save area will be augmented to include the volatile LWP state. SMM entry and exit will
save and restore LWP state as necessary. State must be saved when the processor is going to change
power state, but since LWP isring 3 only, its state should not need to be saved and restored otherwise.

30 LWP Details Chapter 2

AMDA

43724 Rev.3.02 October 2007 Lightweight Profiling Specification

2524 Notes on Restoring LWP Sate

Aswas mentioned at the top of this section, the LWPCB may not be in memory at all times.
Therefore, the LWP hardware must not attempt to access it while till in the OS kernel/VMM/SMM,
since that access might fault. The LWP state restore must only be done once the processor isin ring 3
and can take a #PF exception without crashing.

25.3 LWPCB Access

Severa of the LWPCB fields are written asynchronously by the LWP hardware and by the user
software. This section discusses techniques for reducing the associated memory traffic. Thisis
interesting to software because it influences what state is kept internally in LWP, and it helps
understand the protocol between the hardware filling the event buffer and the software that will be
emptying it.

The hardware can keep internal copies of the buffer head and tail pointers. It need not flush the head
pointer to the LWPCB every time it stores an event record; the flush can be deferred until athreshold
or buffer full event happens or until context needs to be saved for a context switch. In fact, exceeding
the buffer threshold should force the head pointer to memory so that a process polling the ring buffer
will be able to see forward progress.

The hardware need not read the software-maintained tail pointer unlessit detects athreshold or buffer
full condition. At that point, it must reread the tail pointer to see if software has emptied some
records from the buffer. If so, it recomputes the threshold condition and acts accordingly. This
implies that software polling the buffer should begin processing event records when it detects a
threshold event itself. To avoid arace condition with software, the hardware should reread the tail
pointer every time it stores an event record while the threshold condition appears to be true. (An
implementation can relax thisto “every nt" time” for some small value of n.) It should also reread it
whenever the buffer appearsto be full.

The interval values used to reset the counters can be cached in the hardware when the LLWPCB
instruction is executed, or they can be read from the LWPCB each time the counter overflows.

The buffer base and buffer size will most likely be cached in the hardware.

The MissedEvents value is intended to be a counter for an exceptional condition, and may be left in
memory.

Most cached state can be refreshed from the LWPCB when LWP is enabled either explicitly via
LLWPCB or implicitly by having the LWPCB pointer loaded when LWP state is restored.

Caching means that software cannot reliably change sampling intervals or other cached state by
modifying the LWPCB. The change might not be noticed by the LWP hardware. On the other hand,
changing state in the LWPCB while LWP is running may change the operation at an unpredictable
moment in the future if LWP context is saved and restored due to context switching. In summary,
software must stop and restart LWP to ensure that any changes reliably take effect.

Chapter 2 LWP Details 31

AMDAQ

Lightweight Profiling Specification 43724 Rev.3.02 October 2007

254 Security

The operating system must ensure that information does not |eak from one process to another or from
the kernel to auser process. Hence, if it supports LWP at al, the operating system must ensure that
the state of the LWP hardware is set appropriately when a context switch occurs. In a system with
hardware context switch support, this should happen automatically. Otherwise, the LWPCB pointer
for each process must be saved and restored as part of the process context.

255 Interrupts

The LWP threshold interrupt address is specified by a Local Vector Table (LVT) entry in the local
APIC. Thismust be set by the operating system to point to the LWP interrupt handler similar to the
way the performance counters are connected to their LVT entry. The LWP interrupt isnot shared with
the performance counter interrupt, since the system allows concurrent and independent use of those
two mechanisms. The method of hooking a driver to alocal APIC LVT entry is operating system
dependent.

256 TLB and Cache Misses During LWP L ogging

When LWP needs to save an event record in the ring buffer, it requires access to the memory
containing the ring buffer and sometimes the memory containing the LWPCB. Since these are
locations in the user memory space, such access will cause a Page Fault (#PF) exception if these
pages are not in memory. A particular implementation of LWP has several ways to handle this
situation. Some of these mechanisms may result in reexecuting the instruction or discarding the event
and reporting the next event of the appropriate type.

Note that this reinforces the notion that LWP is a sampling mechanism. Programs cannot rely on it to
precisely capture every nth instance of an event. It captures approximately every n" instance.

32 LWP Details Chapter 2

AMDA

43724 Rev.3.02 October 2007 Lightweight Profiling Specification

Appendix A Glossary

APIC

Advanced Programmable Interrupt Controller—An internal device that can be programmed to handle
processor interrupts and direct them to an appropriate interrupt handler.

CPL

Current Privilege Level—The privilege level of the processor, where O is the most privileged level
and isusually used by the kernel or operating system, and 3 isthe least privileged level and isusually
used by application programs.

CPUID

An instruction in the x86 architecture that allows a program to determine the features that are present
on the current processor.

DCache

Data Cache—The structures in the processor that keep alocal copy of data being referenced by the
running program. Datain the DCache can be accessed very quickly. There aretypicaly multiple
levels of DCache that form a cache hierarchy, with higher cache levels taking more time to access. If
aprogram tries to use data that is not in the DCache, there istypically along delay while the
processor fetches the data from memory or a“farther” level of the cache hierarchy.

DTLB

Data Translation Lookaside Buffer—A TLB structure (see TLB) dedicated exclusively to speeding
up access to data by the instructions in a program.

Hyper visor
See VMM.
IBS

Instruction Based Sampling—An extension to the AM D64 architecture introduced in the quad-core
AMD Opteron™ processor that can provide performance data that include the precise address of the
instruction being sampled, aong with details of the execution of the instruction.

| Cache

Instruction Cache—The structuresin the processor that keep alocal copy of instructions being
executed by the running program. The ICache can be accessed very quickly. When there are
multiple levels of cache hierarchy (see DCache), the first level 1Cache and DCache often share the
other cache levels.

Appendix A Glossary 35

AMDAQ

Lightweight Profiling Specification 43724 Rev.3.02 October 2007

ITLB

Instruction Tranglation Lookaside Buffer—A TLB structure (see TLB) dedicated exclusively to
speeding up access to the instructionsin a program.

Kernel mode
Refers to the processor when running at CPL 0, the most privileged level of operation.
LWP

Lightweight Profiling—The hardware proposal in this document to allow performance data to be
captured by a program in user mode.

OS

Operating System—The software that provides overall control of the processor. Examples are

Microsoft® Windows® and Linux®.

Process

An instance of a program running in acomputer. It is started when a program isinitiated by a user or
by another process. If multiple users are using the same application on asingle CPU, thereisusualy
one process for each user.

Retired

Aninstruction in a processor isretired when all of its operations are complete and the results are
committed to the state of the processor. In a complex and out-of-order CPU like the x86, many
instructions can be happening simultaneously, but they retire in the original program order.

RIP
The 64-bit instruction pointer register that holds the address of the instruction being executed.
SMM

System Management Mode—An operating mode designed for system control activities that are
typically transparent to conventional system software. Thisincludes power management and some
low level device control.

SVM

Secure Virtual Machine—The extensions to the AMD64 architecture designed to enable enterprise-
class server virtualization software. SVM provides hardware resources that allow a single machine to
run multiple operating systems efficiently. Seeaso VMM.

Thread

A flow of instructions associated with a process, usually to perform a particular part of the process
work. A process can have multiple simultaneous threads running to accomplish different parts of its
jobin paralel.

36 Glossary Appendix A

AMDA

43724 Rev.3.02 October 2007 Lightweight Profiling Specification

TLB

Trandation Lookaside Buffer—A mechanism to speed up the trandlation of virtual addresses used by
arunning program to refer to its memory into physical addresses in the actual main memory of the
system.

User mode
Refers to the processor when running at CPL 3, the least privileged level of operation.
VM CB

Virtual Machine Control Block—An area of memory used by SVM and the VMM to hold the state of
aguest operating system.

VMM

Virtual Machine Monitor—The software that controls the execution of multiple virtual machines and
their guest operating systems on asingle physical host machine. The VMM isresponsible for running
and switching among the guests and for keeping them isolated from one another.

Appendix A Glossary 37

	Contents
	List of Figures
	List of Tables
	Revision History
	Chapter 1 Introduction
	1.1 Requirements
	1.2 Overview
	1.3 Events and Event Records
	Figure 1. Generic Event Record
	Table 1. Generic Event Record Fields
	Table 2. EventId Values
	1.3.1 Instructions Retired
	Figure 2. Instruction Retired Event Record

	1.3.2 Branches Retired
	Figure 3. Branch Retired Event Record
	Table 3. Branch Retired Event Record Fields

	1.3.3 DCache Misses
	Figure 4. DCache Miss Event Record
	Table 4. DCache Miss Event Record Fields

	1.3.4 CPU Clocks not Halted
	Figure 5. CPU Clocks not Halted Event Record

	1.3.5 CPU Reference Clocks not Halted
	Figure 6. CPU Reference Clocks not Halted Event Record

	1.3.6 Programmed Event
	Figure 7. Programmed Event Record
	Table 5. Programmed Event Record Fields

	1.3.7 Other Events

	Chapter 2 LWP Details
	2.1 CPUID Identification
	Table 6. Lightweight Profiling CPUID Values

	2.2 LWP Model Specific Registers
	2.2.1 LWPMSR0—LWP Feature Enable
	Figure 8. LWPMSR0—Lightweight Profiling Feature Enable
	Table 7. LWPMSR0—Lightweight Profiling Feature Enable Fields

	2.2.2 LWPMSR1—LWPCB Pointer
	2.2.3 LWPMSR2—LWP Core ID

	2.3 LWP Control Instructions
	LLWPCB—Load LWPCB Pointer
	SLWPCB—Store LWPCB Pointer
	LWPINS—Insert User Event Record into LWP Event Ring Buffer

	2.4 LWP Control Block
	Figure 9. LWPCB—Lightweight Profiling Control Block
	Table 8. LWPCB—Lightweight Profiling Control Block Fields
	Figure 10. LWP Flags
	Table 9. LWP Flags

	2.5 Implementation Notes
	2.5.1 Multiple Simultaneous Events
	2.5.2 Processor State for Context Switch, SVM, and SMM
	2.5.3 LWPCB Access
	2.5.4 Security
	2.5.5 Interrupts
	2.5.6 TLB and Cache Misses During LWP Logging

	Appendix A Glossary

