
Advanced Micro Devices

AMD64 Technology

Lightweight Profiling

Specification

Publication No. Revision Date

43724 3.08 August 2010

Lightweight Profiling Specification 43724—Rev. 3.08—August 2010

Trademarks

AMD, the AMD Arrow logo, AMD Opteron and combinations thereof are trademarks of Advanced Micro Devices, Inc.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

Linux is a registered trademark of Linus Torvalds.

Other product names used in this publication are for identification purposes only and may be trademarks of their
respective companies.

© 2008 – 2010 Advanced Micro Devices, Inc. All rights reserved.

The contents of this document are provided in connection with Advanced Micro
Devices, Inc. (“AMD”) products. AMD makes no representations or warranties with
respect to the accuracy or completeness of the contents of this publication and
reserves the right to make changes to specifications and product descriptions at
any time without notice. The information contained herein may be of a preliminary
or advance nature and is subject to change without notice. No license, whether
express, implied, arising by estoppel or otherwise, to any intellectual property rights
is granted by this publication. Except as set forth in AMD’s Standard Terms and
Conditions of Sale, AMD assumes no liability whatsoever, and disclaims any
express or implied warranty, relating to its products including, but not limited to, the
implied warranty of merchantability, fitness for a particular purpose, or infringement
of any intellectual property right.

AMD’s products are not designed, intended, authorized or warranted for use as
components in systems intended for surgical implant into the body, or in other appli-
cations intended to support or sustain life, or in any other application in which the
failure of AMD’s product could create a situation where personal injury, death, or
severe property or environmental damage may occur. AMD reserves the right to
discontinue or make changes to its products at any time without notice.

43724—Rev. 3.08—August 2010 Lightweight Profiling Specification

Contents 3

Contents

1 Introduction .11
1.1 Overview . 11

2 Events and Event Records .15
2.1 Programmed Value Sample . 16
2.2 Instructions Retired . 17
2.3 Branches Retired . 17
2.4 DCache Misses . 19

2.4.1 Measuring Latency . 19
2.4.2 Reporting the DCache Miss Data Address . 19

2.5 CPU Clocks not Halted . 20
2.6 CPU Reference Clocks not Halted . 21
2.7 Programmed Event . 22
2.8 Other Events . 22

3 Detecting LWP .23
3.1 Detecting LWP Presence . 23
3.2 Detecting LWP XSAVE Area . 23
3.3 Detecting LWP Capabilities . 23

4 LWP Registers .27
4.1 XFEATURE_ENABLED_MASK Support. 27
4.2 LWP_CFG — LWP Configuration MSR . 27
4.3 LWP_CBADDR — LWPCB Address MSR . 28

5 LWP Instructions. .29
5.1 LLWPCB — Load LWPCB Address . 29
5.2 SLWPCB — Store LWPCB Address . 31
5.3 LWPVAL — Insert Value Sample in LWP Ring Buffer . 32
5.4 LWPINS — Insert User Event Record in LWP Ring Buffer . 34

6 LWP Control Block .37

7 XSAVE/XRSTOR .47
7.1 Configuration. 47
7.2 XSAVE Area . 47
7.3 XSAVE operation . 49
7.4 XRSTOR operation . 49
7.5 Processor supplied values . 51

8 Implementation Notes .53
8.1 Multiple Simultaneous Events . 53
8.2 Processor State for Context Switch, SVM, and SMM. 53

8.2.1 Saving State at Thread Context Switches. 53
8.2.2 Saving State at SVM Worldswitch to a Different Guest . 54
8.2.3 Enabling SVM Live Migration. 54

Lightweight Profiling Specification 43724—Rev. 3.08—August 2010

4 Contents

8.2.4 Saving State at SMM Entry and Exit . 54
8.2.5 Notes on Restoring LWP State . 54

8.3 LWPCB Access . 54
8.4 Security . 55
8.5 Interrupts . 55
8.6 Memory Access During LWP Operation . 56
8.7 Guidelines for Operating Systems . 56

8.7.1 System initialization . 56
8.7.2 Thread support . 56

8.8 Summary of LWP State . 57

Appendix A Glossary .59

43724—Rev. 3.08—August 2010 Lightweight Profiling Specification

Figures 5

Figures

Figure 2-1. Generic Event Record . 15

Figure 2-2. Programmed Value Sample Event Record . 16

Figure 2-3. Instruction Retired Event Record . 17

Figure 2-4. Branch Retired Event Record . 18

Figure 2-5. DCache Miss Event Record . 20

Figure 2-6. CPU Clocks not Halted Event Record . 21

Figure 2-7. CPU Reference Clocks not Halted Event Record. 21

Figure 2-8. Programmed Event Record . 22

Figure 4-1. LWP_CFG — Lightweight Profiling Features MSR. 28

Figure 6-1. LWPCB — Lightweight Profiling Control Block . 38

Figure 6-2. LWPCB Flags . 42

Figure 6-3. LWPCB Filters . 42

Figure 7-1. XSAVE Area for LWP . 49

Lightweight Profiling Specification 43724—Rev. 3.08—August 2010

6 Figures

43724—Rev. 3.08—August 2010 Lightweight Profiling Specification

Tables 7

Tables

Table 2-1. EventId Values . 16

Table 3-1. Lightweight Profiling CPUID Values. 24

Table 6-1. LWPCB — Lightweight Profiling Control Block Fields. 39

Table 6-2. LWPCB Filters . 43

Table 7-1. XSAVE Area for LWP Fields. 49

Lightweight Profiling Specification 43724—Rev. 3.08—August 2010

8 Tables

43724—Rev. 3.08—August 2010 Lightweight Profiling Specification

Revision History 9

Revision History

Date Revision Description

August 2010 3.08

Correct description of XRSTOR.

Added reserved fields for software in LWPCB.

Clarify PRD bit in Branches Retired event.

April 2010 3.06

New encoding for LWP instructions.

Removed 16-bit operand size variants.

BufferSize in XSAVE area shortened to 28 bits.

Clarify details of XRSTOR operation.

Change “active” to “enabled” in instruction descriptions.

Clarified behaviors when the CPL != 3.

Specify reset value of LWP_CBADDR MSR as 0.

August 2009 3.04

Clarified CPUID bits in 3.1, “Detecting LWP Presence” on page 23.

Clarified LWP detections in 8.7.1, “System initialization” on page 56.

Corrected 8.7.2, “Thread support” on page 56 to refer to LWP_CBADDR.

July 2009 3.03 Second public version.

August 2007 3.00 Initial public version.

Lightweight Profiling Specification 43724—Rev. 3.08—August 2010

10 Revision History

43724—Rev. 3.08—August 2010 Lightweight Profiling Specification

Introduction 11

1 Introduction

Lightweight Profiling (LWP) is an AMD64 extension to allow user mode processes to gather
performance data about themselves with very low overhead. Modules such as managed runtime
environments and dynamic optimizers can use LWP to monitor the running program with high
accuracy and high resolution. They can quickly discover performance problems and opportunities and
immediately act on this information.

LWP allows a program to gather performance data and examine it either by polling or by taking an
occasional interrupt. It introduces minimal additional state to the CPU and the process. LWP differs
from the existing performance counters and from Instruction Based Sampling (IBS) because it collects
large quantities of data before an taking an interrupt. This substantially reduces the overhead of using
performance feedback. An application that polls LWP data requires no interrupts at all.

A program can control LWP data collection entirely in user mode. It can start, stop, and reconfigure
profiling without calling the kernel.

LWP runs within the context of a thread, so it can be used by multiple processes in a system at the same
time without interference. This also means that if one thread is using LWP and another is not, the latter
thread incurs no profiling overhead.

LWP is supported in both long mode and legacy mode.

1.1 Overview

When enabled, LWP hardware monitors one or more events during the execution of user-mode code
and periodically inserts event records into a ring buffer in the address space of the running process.
When the ring buffer is filled beyond a user-specified threshold, the hardware can cause an interrupt
which the operating system (OS) uses to signal a process to empty the ring buffer. With proper OS
support, the interrupt can even be delivered to a separate process or thread.

LWP only counts instructions that retire in user mode (CPL = 3). Instructions that change to CPL 3
from some other level are not counted, since the instruction address is not an address in user mode
space. LWP does not count hardware events while the processor is in system management mode
(SMM) and while entering or leaving SMM.

Once LWP is enabled, each user-mode thread uses the LLWPCB and SLWPCB instructions to control
LWP operation. These instructions refer to a data structure in application memory called the
Lightweight Profiling Control Block, or LWPCB, to specify the profiling parameters and to interact
with the LWP hardware. The LWPCB in turn points to a buffer in memory in which LWP stores event
records.

Each thread in a multi-threaded process must configure LWP separately. A thread has its own ring
buffer and counters which are context switched with the rest of the thread state. However, a single
monitor thread could collect and process LWP data from multiple other threads.

Lightweight Profiling Specification 43724—Rev. 3.08—August 2010

12 Introduction

During profiling, the LWP hardware monitors and reports on one or more types of events. Following
are the steps in this process:

1. Count—Each time an instruction is retired, LWP decrements its internal event counters for all of
the events associated with the instruction. An instruction can cause zero, one, or multiple events.
For instance, an indirect jump through a pointer in memory counts as an instruction retired, a
branch retired, and may also cause up to two DCache misses (or more, if there is a TLB miss) and
up to two ICache misses.

• Some events may have filters or conditions on them that regulate counting. For instance, the
application may configure LWP so that only cache miss events with latency greater than a
specified minimum are eligible to be counted.

2. Gather—When an event counter becomes negative, the event should be reported. LWP gathers
an event record. This is the equivalent of filling in an internal copy of an event record, though
actual implementation may vary. The event’s counter may continue to count below zero until the
record is written to the event ring buffer.

For most events, such as instructions retired, LWP gathers an event record describing the
instruction that caused the counter to become negative. However, it is valid for LWP to gather
event record data for the next instruction that causes the event, or to take other measures to capture
a record. Some of these options are described with the individual events.

• An implementation can choose to gather event information on one or many events at any one
time. If multiple event counters become negative, an advanced LWP implementation might
gather one event record per event and write them sequentially. A basic LWP implementation
may choose one of the eligible events. Other events continue counting but wait until the first
event record is written. LWP picks the next eligible instructions for the waiting events. This
situation should be extremely uncommon if software chooses large event interval values.

• LWP may discard an event occurrence. For instance, if the LWPCB or the event ring buffer
needs to be paged in from disk, LWP might choose not to preserve the pending event data. If an
event is discarded, LWP gathers an event record for the next instruction to cause the event.

• Similarly, if LWP needs to replay an instruction to gather a complete event record, the replay
may abort instead of retiring. The event counter continues counting below zero and LWP
gathers an event record for the next instruction to cause the event.

3. Store—When a complete event record is gathered, LWP stores it into the event ring buffer in the
process’ address space and advances the ring buffer head pointer.

• LWP checks to see if the ring buffer is full, i.e., if advancing the ring buffer head pointer would
make it equal to the tail pointer. If the buffer is full, LWP increments the 64-bit counter
LWPCB.MissedEvents. It does not advance the head pointer.

• If more than one event record reaches the Store stage simultaneously, only one need be stored.
Though LWP might store all such event records, it may delay storing some event records or it
may discard the information and proceed to choose the next eligible instruction for the
discarded event type(s). This behavior is implementation dependent.

43724—Rev. 3.08—August 2010 Lightweight Profiling Specification

Introduction 13

• The store need not complete synchronously with the instruction retiring. In other words, if
LWP buffers the event record contents, the Store stage (and subsequent stages) may complete
some number of cycles after the tagged instruction retires. The data about the event and the
instruction are precise, but the Report and Reset steps (below) may complete later.

4. Report—If LWP threshold interrupts are enabled and the space used in the event ring buffer
exceeds a user-defined threshold, LWP initiates an interrupt. The OS can use this to signal the
process to empty the ring buffer. Note that the interrupt may occur significantly later than the
event that caused the threshold to be reached.

5. Reset—For each event that was stored, the counter is reset to its programmed interval. If
requested by the application, LWP applies randomization to the low order bits of the interval.
Counting for that event continues. Reset happens if the ring buffer head pointer was advanced or
if the missed event counter was incremented. If the event counter went below -1, indicating that
additional events occurred between the selected event and the time it was reported, that overrun
value reduces the reset value so as to preserve the statistical distribution of events.

For all events except the LWPVAL instruction, the hardware may impose a minimum on the reset
value of an event counter. This prevents the system from spending too much time storing samples
rather than making forward progress on the application. Any minimum imposed by the hardware
can be detected by examining the EventIntervaln fields in the LWPCB after enabling LWP.

An application should periodically remove event records from the ring buffer and advance the tail
pointer. (If the application does not process the event records quickly enough or often enough, the
LWP hardware will detect that the ring buffer is full and will miss events.) There are two ways to
process the gathered events: interrupts or polling.

The application can wait until a threshold interrupt occurs to process the event records in the ring
buffer. This requires OS or driver support. (As a consequence, interrupts can only be enabled if a
kernel mode routine allows it; refer to “LWP_CFG — LWP Configuration MSR” on page 27.) One
usage model is to associate the LWP interrupt with a semaphore or mutex. When the interrupt occurs,
the OS or driver signals the associated object. A thread waiting on the object wakes up and empties the
ring buffer. Other models are possible, of course.

Alternatively, the application can have a thread that periodically polls the ring buffer. The polling
thread need not be part of the process that is using LWP. It can be in a separate process that shares the
memory containing the LWP control block and ring buffer.

Access to the ring buffer uses a lockless protocol between the LWP hardware and the application. The
hardware owns the head pointer and the area in the ring buffer from the head pointer up to (but not
including) the tail pointer. (That area might wrap around from the end of the ring to the beginning, of
course.) The application must not modify the head pointer nor rely on any data in that region of the
ring buffer. If the application has a stale value for the head pointer, it may miss an existing event record
but it will never read invalid data. When the application is done emptying the ring buffer, it should
refresh its copy of the head pointer to see if the LWP hardware has added any new event records.

Similarly, the application owns the tail pointer and the area in the ring buffer from the tail pointer up to
(but not including) the head pointer. The hardware will never modify the tail pointer or overwrite the

Lightweight Profiling Specification 43724—Rev. 3.08—August 2010

14 Introduction

data in that region of the ring buffer. If the hardware has a stale value for the tail pointer, it may
consider that the ring buffer is full or at its threshold, but it will never overwrite valid data. Instead, it
refreshes its copy of the tail pointer and rechecks to see if the full or threshold condition still applies.

43724—Rev. 3.08—August 2010 Lightweight Profiling Specification

Events and Event Records 15

2 Events and Event Records

When a monitored event overflows its event counter, LWP puts an event record into the LWP event
ring buffer. Each event record in the ring buffer is 32 bytes long in version 1 of LWP. The actual event
record size is returned as LwpEventSize (see “Detecting LWP Capabilities” on page 23).

Reserved fields and fields that are not defined for a particular event are set to zero when LWP writes an
event record.

Figure 2-1. Generic Event Record

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

(Event-specific data) Flags CoreId EventId 0

InstructionAddress 8

(Event-specific address or data) 16

Reserved 24

Bytes Field Description

0 EventId
Event identifier specifying the event record type. Valid identifiers are
1 to 255. 0 is an invalid identifier.

1 CoreId

CPU core identifier value from COREID field of LWP_CFG (see
“LWP_CFG — LWP Configuration MSR” on page 27). For multicore
systems, this typically identifies the core on which LWP is running.
This allows software to aggregate event records from multiple
threads into a single data structure without losing CPU information. It
also allows software to detect when a thread has migrated from one
core to another.

3–2 Flags Event-specific flags.

7–4 Event-specific data.

15–8 InstructionAddress

The effective address of the instruction that triggered this event
record. This is the value before adding in the CS base address. If the
base is non-zero, software must track it. (Modern operating systems
use a CS base of zero, and CS is unused in long mode.)

23–16 Event-specific address or other data.

31–24 Reserved

Lightweight Profiling Specification 43724—Rev. 3.08—August 2010

16 Events and Event Records

Table 2-1 lists the event identifiers for the events defined in version 1 of LWP. They are described in
detail in the following sections.

2.1 Programmed Value Sample

LWP decrements the event counter each time the program executes the LWPVAL instruction (see
“LWPVAL — Insert Value Sample in LWP Ring Buffer” on page 32). When the counter becomes
negative, it stores an event record with an EventId of 1. The data in the event record come from the
operands to the instruction as detailed in the instruction description.

Figure 2-2. Programmed Value Sample Event Record

Table 2-1. EventId Values

EventId Description

0 Reserved – invalid event

1 Programmed value sample

2 Instructions retired

3 Branches retired

4 DCache misses

5 CPU clocks not halted

6 CPU reference clocks not halted

255 Programmed event

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Data1 Flags CoreId 1 0

InstructionAddress 8

Data2 16

Reserved 24

Bytes Field Description

0 EventId Event identifier = 1

1 CoreId CPU core identifier from LWP_CFG

3–2 Flags Immediate value (bottom 16 bits)

7–4 Data1 Reg/mem value

15–8 InstructionAddress Instruction address of LWPVAL instruction

23–16 Data2 Reg value (zero extended if running in legacy mode)

31–24 Reserved

43724—Rev. 3.08—August 2010 Lightweight Profiling Specification

Events and Event Records 17

2.2 Instructions Retired

LWP decrements the event counter each time an instruction retires. When the counter becomes
negative, it stores a generic event record with an EventId of 2.

Instructions are counted if they execute entirely in user mode (CPL = 3). Instructions that change to
CPL 3 from some other level are not counted, since the instruction address is not an address in user
mode space. All user mode instructions are counted, including LWPVAL and LWPINS.

Figure 2-3. Instruction Retired Event Record

2.3 Branches Retired

LWP decrements the event counter each time a transfer of control retires, regardless of whether or not
it is taken. When the counter becomes negative, it stores an event record with an EventId of 3.

Control transfer instructions that are counted are:

• JMP (near), Jcc, JCXZ, JEXCZ, and JRCXZ

• LOOP, LOOPE, and LOOPNE

• CALL (near) and RET (near)

LWP does not count JMP (far), CALL (far), RET (far), traps, or interrupts (whether synchronous or
asynchronous), nor does it count operations that switch to or from ring 3, SMM, or SVM, such as
SYSCALL, SYSENTER, SYSEXIT, SYSRET, VMMCALL, INT, or INTO.

Some implementations of the AMD64 architecture perform an optimization called “fusing” when a
compare operation (or other operation that sets the condition codes) is followed immediately by a
conditional branch. The processor fuses these into a single operation internally before they are
executed. While this is invisible to the programmer, the address of the actual branch is not available for
LWP to report when the (fused) instruction retires. In this case, LWP sets the FUS bit in the event
record and reports the address of the operation that set the condition codes. If FUS is set, software can
find the address of the actual branch by decoding the instruction at the reported InstructionAddress and

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Reserved Reserved CoreId 2 0

InstructionAddress 8

Reserved 16

Reserved 24

Lightweight Profiling Specification 43724—Rev. 3.08—August 2010

18 Events and Event Records

adding its length to that address. (Note that fused instructions do count as 2 instructions for the
Instructions Retired event, since there were 2 x86 instructions originally.)

Figure 2-4. Branch Retired Event Record

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Reserved
T
K
N

P
R
D

P
R
V

F
U
S

Reserved CoreId 3 0

InstructionAddress 8

TargetAddress 16

Reserved 24

Bytes Bits Field Description

0 EventId Event identifier = 3

1 CoreId CPU core identifier from LWP_CFG

3–2 27–16 Reserved

3 28 FUS

1—Fused operation. InstructionAddress points to a compare
operation (or other operation that sets the condition
codes) immediately preceding the branch.

0—InstructionAddress points to the branch instruction.

3 29 PRV

1—PRD bit is valid

0—Prediction information is not available
Some implementations of LWP may be unable to capture
branch prediction information on some or all branches.

3 30 PRD

1—Branch was predicted correctly

0—Mispredicted
If PRV = 0, the value of PRD is unpredictable and should be
ignored.
For unconditional branches, PRD=1 if PRV=1.

3 31 TKN

1—Branch was taken

0—Branch not taken
Always 1 for unconditional branches.

7–4 Reserved

15–8 InstructionAddress Instruction address

23–16 TargetAddress

Address of instruction executed after branch. This is the tar-
get if the branch was taken and the fall-through address if
the branch was a not-taken conditional branch. TargetAd-
dress is the effective address value before adding in the CS
base address.

31–24 Reserved

43724—Rev. 3.08—August 2010 Lightweight Profiling Specification

Events and Event Records 19

2.4 DCache Misses

LWP decrements the event counter each time a load from memory causes a DCache miss whose
latency exceeds the LwpCacheLatency threshold and/or whose data come from a level of the cache or
memory hierarchy that is selected for counting. When the counter becomes negative, LWP stores an
event record with an EventId of 4.

A misaligned access that causes two misses on a single load decrements the event counter by 1 and, if
it reports an event, the data are for the lowest address that missed. LWP only counts loads directly
caused by the instruction. It does not count cache misses that are indirectly due to TLB walks, LDT or
GDT references, TLB misses, etc. Cache misses caused by LWP itself accessing the LWPCB or the
event ring buffer are not counted.

2.4.1 Measuring Latency

The x86 architecture allows multiple loads to be outstanding simultaneously. An implementation of
LWP might not have a full latency counter for every load that is waiting for a cache miss to be
resolved. Therefore, an implementation may apply any of the following simplifications. Software
using LWP should be prepared for this.

• The implementation may round the latency to a multiple of 2^j. This is a small power of 2, and the
value of j must be 1 to 4. For example, in the rest of this section, assume that j = 4, so 2^j = 16. The
low 4 bits of latency reported in the event record will be 0. The actual latency counter is
incremented by 16 every 16 cycles of waiting. The value of j is returned as LwpLatencyRnd (see
“Detecting LWP Capabilities” on page 23).

• The implementation may do an approximation when starting to count latency. If counting is in
increments of 16, the 16 cycles need not start when the load begins to wait. The implementation
may bump the latency value from 0 to 16 any time during the first 16 cycles of waiting.

• The implementation may cap total latency to 2^n-16 (where n >= 10). The latency counter is thus a
saturating counter that stops counting when it reaches its maximum value. For example, if n = 10,
the latency value will count from 0 to 1008 in steps of 16 and then stop at 1008. (If n = 10, each
counter is only 6 bits wide.) The value of n is returned as LwpLatencyMax (see “Detecting LWP
Capabilities” on page 23).

Note that the latency threshold used to filter events is a multiple of 16. This value is used in the
comparison that decides whether a cache miss event is eligible to be counted.

2.4.2 Reporting the DCache Miss Data Address

The event record for a DCache miss reports the linear address of the data (after adding in the segment
base address, if any). The way an implementation records the linear address affects the exact event that
is reported and the amount of time it takes to report a cache miss event. The implementation may
report the event immediately, report the next eligible event once the counter becomes negative, or
replay the instruction.

Lightweight Profiling Specification 43724—Rev. 3.08—August 2010

20 Events and Event Records

Figure 2-5. DCache Miss Event Record

2.5 CPU Clocks not Halted

LWP decrements the event counter each clock cycle that the CPU is not in a halted state (due to
STPCLK or a HLT instruction). When the counter becomes negative, it stores a generic event record
with an EventId of 5. This counter varies in real-time frequency as the core clock frequency changes.

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Latency SRC
D
A
V

Reserved CoreId 4 0

InstructionAddress 8

DataAddress 16

Reserved 24

Bytes Bits Field Description

0 EventId Event identifier = 4

1 CoreId CPU identifier from LWP_CFG

2:3 27–16 Reserved

3 28 DAV
1—DataAddress is valid

0—Address is unavailable

3 31–29 SRC

Data source for the requested data

7–4 Latency Total latency of cache miss (in cycles)

15–8 InstructionAddress Instruction address

23–16 DataAddress Address of memory reference (if flag bit 28 = 1)

31–24 Reserved

0 No valid status

1 Local L3 cache

2 Remote CPU or L3 cache

3 DRAM

4 Reserved (for Remote cache)

5 Reserved

6 Reserved

7 Other (MMIO/Config/PCI/APIC)

43724—Rev. 3.08—August 2010 Lightweight Profiling Specification

Events and Event Records 21

Figure 2-6. CPU Clocks not Halted Event Record

2.6 CPU Reference Clocks not Halted

LWP decrements the event counter each reference clock cycle that the CPU is not in a halted state (due
to STPCLK or a HLT instruction). When the counter becomes negative, it stores a generic event record
with an EventId of 6.

The reference clock runs at a constant frequency that is independent of the core frequency and of the
performance state. The reference clock frequency is processor dependent. The processor may
implement this event by subtracting the ratio of (reference clock frequency / core clock frequency)
each core clock cycle.

Figure 2-7. CPU Reference Clocks not Halted Event Record

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Reserved Reserved CoreId 5 0

InstructionAddress 8

Reserved 16

Reserved 24

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Reserved Reserved CoreId 6 0

InstructionAddress 8

Reserved 16

Reserved 24

Lightweight Profiling Specification 43724—Rev. 3.08—August 2010

22 Events and Event Records

2.7 Programmed Event

When a program executes the LWPINS instruction (see “LWPINS — Insert User Event Record in LWP
Ring Buffer” on page 34), the processor stores an event record with an event identifier of 255. The data
in the event record come from the operands to the instruction as detailed in the instruction description.

Figure 2-8. Programmed Event Record

2.8 Other Events

The overall design of LWP allows easy extension to the list of events that it can monitor. The following
are possibilities for events that may be added in future versions of LWP:

• DTLB misses

• FPU operations

• ICache misses

• ITLB misses

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Data1 Flags CoreId 255 0

InstructionAddress 8

Data2 16

Reserved 24

Bytes Field Description

0 EventId Event identifier = 255

1 CoreId CPU identifier from LWP_CFG

3–2 Flags Imm16 value

7–4 Data1 Reg/mem value

15–8 InstructionAddress Instruction address of LWPINS instruction

23–16 Data2 Reg value (zero extended if running in legacy mode)

31–24 Reserved

43724—Rev. 3.08—August 2010 Lightweight Profiling Specification

Detecting LWP 23

3 Detecting LWP

An application uses the CPUID instruction to identify whether Lightweight Profiling is present and
which of its capabilities are available for use. An operating system uses CPUID to determine whether
LWP is supported on the hardware and to determine which features of LWP are supported and can be
made available to applications.

The notation “CPUID FnXXXX_XXXX_RRR[FieldName]” means that the program should execute
CPUID with the function code XXXX_XXXXh in EAX and then examine the field FieldName in
register RRR. If the “_RRR” notation is followed by “_xYYY”, register ECX must be set to the value
YYYh before executing CPUID. When FieldName is not given, the entire contents of register RRR
contains the desired value. Numeric values in hexadecimal have an “h” suffix.

3.1 Detecting LWP Presence

LWP is supported on a processor if CPUID Fn8000_0001_ECX[LWP] (bit 15) is set. This bit is
identical to the value of CPUID Fn0000_000D_EDX_x0[bit 30], which is bit 62 of the
XFeatureSupportedMask and indicates XSAVE support for LWP. A system can check either of those
bits to determine if LWP is supported. Since LWP requires XSAVE, software can assume that this bit
being set implies that CPUID Fn0000_0001_ECX[XSAVE] (bit 26) is also set.

3.2 Detecting LWP XSAVE Area

The size of the LWP extended state save area used by XSAVE/XRSTOR is 128 bytes (080h). This
value is returned by CPUID Fn0000_000D_ EAX_x3E (ECX=62).

The offset of the LWP save area from the beginning of the XSAVE/XRSTOR area is 832 bytes (340h).
This value is returned by CPUID Fn0000_000D_ EBX_x3E (ECX=62).

The size of the LWP save area is included in the XFeatureSupportedSizeMax value returned by
CPUID Fn0000_000D_ECX_x0 (ECX=0).

If LWP is enabled in the XFEATURE_ENABLED_MASK, the size of the LWP save area is included
in the XFeatureEnabledSizeMax value returned by CPUID Fn0000_000D_EBX_x0 (ECX=0).

3.3 Detecting LWP Capabilities

The values returned by CPUID Fn8000_001C indicate the capabilities of LWP. See Table 3-1,
“Lightweight Profiling CPUID Values” for a listing of the returned values.

Bit 0 of EAX is a copy of bit 62 from XFEATURE_ENABLED_MASK and indicates whether LWP is
available for use by applications. If it is 1, the processor supports LWP and the operating system has
enabled LWP for applications.

Lightweight Profiling Specification 43724—Rev. 3.08—August 2010

24 Detecting LWP

Bits[31:1] returned in EAX are taken from the LWP_CFG MSR and reflect the LWP features that are
available for use. These are a subset of the bits returned in EDX, which reflect the full capabilities of
LWP on current processor. The operating system can make a subset of LWP available if it cannot
handle all supported features. For instance, if the OS cannot handle an LWP threshold interrupt, it can
disable the feature. User-mode software must assume that the bits in EAX describe the features it can
use. Operating systems should use the bits from EDX to determine the supported capabilities of LWP
and make all or some of those features available.

Under SVM, if a VMM allows the migration of guests among processors that all support LWP, it must
arrange for CPUID to report the logical AND of the supported feature bits over all processors in the
migration pool. Other CPUID values must also be reported as the “least common denominator” among
the processors.

Table 3-1. Lightweight Profiling CPUID Values

Reg Bits Field Description

EAX

0 LwpAvail

1—LWP is available to application programs. The hardware and
the operating system support LWP.

0—LWP is not available.

This bit is a copy of bit 62 of the XFEATURE_ENABLED_MASK
register (XCR0).

1 LwpVAL LWPVAL instruction (EventId = 1) is available.

2 LwpIRE Instructions retired event (EventId = 2) is available.

3 LwpBRE Branch retired event (EventId = 3) is available.

4 LwpDME DCache miss event (EventId = 4) is available.

5 LwpCNH CPU clocks not halted event (EventId = 5) is available.

6 LwpRNH CPU reference clocks not halted event (EventId = 6) is available.

30–7 Reserved for future events.

31 LwpInt Interrupt on threshold overflow is available.

EBX

7–0 LwpCbSize
Size in quadwords of the LWPCB. This value is at least
(LwpEventOffset / 8) + LwpMaxEvents but an implementation
may require a larger control block.

15–8 LwpEventSize
Size in bytes of an event record in the LWP event ring buffer. (32
for LWP Version 1.)

23–16 LwpMaxEvents
Maximum supported EventId value (not including EventId 255
used by the LWPINS instruction). Not all events between 1 and
LwpMaxEvents are necessarily supported.

31–24 LwpEventOffset

Offset from the start of the LWPCB to the EventInterval1 field.
Software uses this value to locate the area of the LWPCB that
describes events to be sampled. This permits expansion of the
initial fixed region of the LWPCB. LwpEventOffset is always a
multiple of 8.

43724—Rev. 3.08—August 2010 Lightweight Profiling Specification

Detecting LWP 25

ECX

4–0 LwpLatencyMax
Number of bits in cache latency counters (10 to 31).

0 if DCache miss event is not supported (EDX.LwpDME = 0).

5 LwpDataAddress

1—Cache miss event records report the data address of the
reference.

0—Data address is not reported.

0 if DCache miss event is not supported (EDX.LwpDME = 0).

8–6 LwpLatencyRnd

The amount by which cache latency is rounded. The bottom
LwpLatencyRnd bits of latency information will be zero. The actual
number of bits implemented for the counter is (LwpLatencyMax –
LwpLatencyRnd).

Must be 0 to 4.

0 if DCache miss event is not supported (EDX.LwpDME = 0).

15–9 LwpVersion Version of LWP implementation. (1 for LWP Version 1.)

23–16 LwpMinBufferSize

Minimum size of the LWP event ring buffer, in units of 32 event
records. At least 32*LwpMinBufferSize records must be allocated
for the LWP event ring buffer, and hence the size of the ring buffer
must be at least 32 * LwpMinBufferSize * LwpEventSize bytes. If
0, there is no minimum.

27–24 Reserved

28 LwpBranchPrediction

1—Branches Retired events can be filtered based on whether the
branch was predicted properly. The values of NMB and NPB in
the LWPCB enable filtering based on prediction.

0—NMB and NPB fields of the LWPCB are ignored.

0 if Branches Retired event is not supported (EDX.LwpBRE = 0).

29 LwpIpFiltering
1—IP filtering is supported.

0—IP filtering is not supported. The IPI, IPF, BaseIP, and LimitIP
fields of the LWPCB are ignored.

30 LwpCacheLevels

1—Cache-related events can be filtered by the cache level that
returned the data. The value of CLF in the LWPCB enables
cache level filtering.

0—CLF is ignored.

An implementation must support filtering either by latency or by
cache level. It may support both.

0 if DCache miss event is not supported (EDX.LwpDME = 0).

31 LwpCacheLatency

1—Cache-related events can be filtered by latency. The value of
MinLatency in the LWPCB controls filtering.

0—MinLatency is ignored.

An implementation must support filtering either by latency or by
cache level. It may support both.

0 if DCache miss event is not supported (EDX.LwpDME = 0).

Table 3-1. Lightweight Profiling CPUID Values (Continued)

Reg Bits Field Description

Lightweight Profiling Specification 43724—Rev. 3.08—August 2010

26 Detecting LWP

EDX

0 LwpAvail
LWP is supported. If 0, the remainder of the data returned by
CPUID should be ignored.

This bit is a copy of CPUID Fn8000_0001_ECX[LWP] (bit 15).

1 LwpVAL LWPVAL instruction (EventId = 1) is supported.

2 LwpIRE Instructions retired event (EventId = 2) is supported.

3 LwpBRE Branch retired event (EventId = 3) is supported.

4 LwpDME DCache miss event (EventId = 4) is supported.

5 LwpCNH CPU clocks not halted event (EventId = 5) is supported.

6 LwpRNH CPU reference clocks not halted event (EventId = 6) is supported.

30–7 Reserved for future events.

31 LwpInt Interrupt on threshold overflow is supported.

Table 3-1. Lightweight Profiling CPUID Values (Continued)

Reg Bits Field Description

43724—Rev. 3.08—August 2010 Lightweight Profiling Specification

LWP Registers 27

4 LWP Registers

The XFEATURE_ENABLED_MASK register (extended control register XCR0) and the LWP model-
specific registers describe and control the LWP hardware. The MSRs are available if CPUID
Fn8000_0001_ECX[LWP] (bit 15) is set. LWP can only be used if the system has made support for
LWP state management available in XFEATURE_ENABLED_MASK.

4.1 XFEATURE_ENABLED_MASK Support

LWP requires that the processor support the XSAVE/XRSTOR instructions to manage LWP state,
along with the XSETBV/XGETBV instructions that manage the enabled state mask. An operating
system uses XSETBV to set bit 62 of XFEATURE_ENABLED_MASK to indicate that it supports
management of LWP state and allows applications to use LWP. When the system makes LWP
available by setting bit 62 of XFEATURE_ENABLED_MASK, LWP is initially disabled
(LWP_CBADDR is zero).

See “Guidelines for Operating Systems” on page 56 for details on how to implement LWP support in
an operating system.

4.2 LWP_CFG — LWP Configuration MSR

LWP_CFG (MSR C000_0105h) controls which features of LWP are available on the processor. The
operating system loads LWP_CFG at start-up time (or at the time an LWP driver is loaded) to indicate
its level of support for LWP. Only bits for supported features (those that are set in CPUID
Fn8000_001C_EDX) can be turned on in LWP_CFG. Attempting to set other bits causes a #GP fault.

User code can examine LWP_CFG bits 31:1 by reading CPUID Fn8000_001C_EAX.

Bits 39:32 of LWP_CFG contains the COREID value that LWP will store into the CoreId field of
every event record written by this core. The operating system should initialize this value to be the local
APIC number, obtained from CPUID Fn0000_0001_EBX[LocalApicId] (bits 31:24). COREID is
present so that when LWP is used in a virtualized environment, it has access to the core number
without needing to enter the hypervisor. On systems that support x2APIC, local APIC numbers may be
more than 8 bits wide. The operating system may then assign LWP COREID values that are small and
identify the core within a cluster. If the system has more than 256 cores, there will be unavoidable
duplication of COREID values.

Bits 47:40 of LWP_CFG specify the vector number that LWP will use when it signals a ring buffer
threshold interrupt.

The reset value of LWP_CFG is 0.

Lightweight Profiling Specification 43724—Rev. 3.08—August 2010

28 LWP Registers

Figure 4-1. LWP_CFG — Lightweight Profiling Features MSR

4.3 LWP_CBADDR — LWPCB Address MSR

LWP_CBADDR (MSR C000_0106h) provides access to the internal copy of the LWPCB linear
address.

RDMSR from this register returns the current LWPCB address without performing any of the
operations described for the SLWPCB instruction.

WRMSR to this register with a non-zero value generates a #GP fault; use LLWPCB or XRSTOR to
load an LWPCB address.

Writing a zero to LWP_CBADDR immediately disables LWP, discarding any internal state. For
instance, an operating system can write a zero to stop LWP when it terminates a thread.

Note that LWP_CBADDR contains the linear address of the control block. All references to the
LWPCB that are made by microcode during the normal operation of LWP ignore the DS segment
register.

The reset value of LWP_CBADDR is 0. This means that when the system sets bit 62 of
XFEATURE_ENABLED_MASK to make LWP available, it is initially disabled.

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Reserved VECTOR COREID
I
N
T

MBZ
R
N
H

C
N
H

D
M
E

B
R
E

I
R
E

V
A
L

Bits Field Description

0 Reserved

1 VAL Allow the LWPVAL instruction.

2 IRE Allow LWP to count instructions retired.

3 BRE Allow LWP to count branches retired.

4 DME Allow LWP to count DCache misses.

5 CNH Allow LWP to count CPU clocks not halted.

6 RNH Allow LWP to count CPU reference clocks not halted.

30–7 Reserved, must be zero

31 INT Allow LWP to generate an interrupt when threshold is exceeded.

39–32 COREID Value to store in CoreId field when writing an event record.

47–40 VECTOR
Interrupt vector number to use for LWP Threshold interrupts. Must be pro-
vided if INT=1.

63–48 Reserved

43724—Rev. 3.08—August 2010 Lightweight Profiling Specification

LWP Instructions 29

5 LWP Instructions

This section describes the instructions included in the AMD64 architecture to support LWP. These
instructions raise #UD if LWP is not supported or if bit 62 of XFEATURE_ENABLED_MASK is 0
indicating that LWP is not available.

The LLWPCB instruction enables or disables Lightweight Profiling and controls the events being
profiled. The SLWPCB instruction queries the current state of Lightweight Profiling.

LWP provides two instructions for inserting user data into the event ring buffer. The LWPINS
instruction unconditionally stores an event record into the ring buffer, while the LWPVAL instruction
uses an LWP event counter to sample program values at defined intervals.

5.1 LLWPCB — Load LWPCB Address

Parses the Lightweight Profiling Control Block at the address contained in the specified register. If the
LWPCB is valid, writes the address into the LWP_CBADDR MSR and enables Lightweight Profiling.

The r/m field of the ModRM byte specifies the register containing the effective address of the LWPCB.
The mod field of the ModRM byte must be 11b and the vvvv field must be 1111b. The LWPCB address
in the register is truncated to 32 bits if the operand size is 32.

The LWPCB must be in memory that is readable and writable in user mode. For better performance, it
should be aligned on a 64-byte boundary in memory and placed so that it does not cross a page
boundary, though neither of these suggestions is required.

Action

1. If LWP is not available or if the machine is not in protected mode, LLWPCB immediately causes
a #UD exception.

2. If LWP is already enabled, the processor flushes the LWP state to memory in the old LWPCB. See
“SLWPCB — Store LWPCB Address” on page 31 for details on saving the active LWP state.

If the flush causes a #PF exception, LWP remains enabled with the old LWPCB still active. Note
that the flush is done before LWP attempts to access the new LWPCB.

3. If the specified LWPCB address is 0, LWP is disabled and the execution of LLWPCB is complete.

Mnemonic Encoding

XOP RXB.mmmmm W.vvvv.L.pp Opcode

LLWPCB reg32 8F RXB.09 0.1111.0.00 12 /0

LLWPCB reg64 8F RXB.09 1.1111.0.00 12 /0

Lightweight Profiling Specification 43724—Rev. 3.08—August 2010

30 LWP Instructions

4. The LWPCB address is non-zero. LLWPCB validates it as follows:

• If any part of the LWPCB or the ring buffer is beyond the data segment limit, LLWPCB causes
a #GP exception.

• If the ring buffer size is below the implementation’s minimum ring buffer size, LLWPCB
causes a #GP exception.

• While doing these checks, LWP reads and writes the LWPCB, which may cause a #PF
exception.

If any of these exceptions occurs, LLWPCB aborts and LWP is left disabled. Usually, the operating
system will handle a #PF exception by making the memory available and returning to retry the
LLWPCB instruction. The #GP exceptions indicate application programming errors.

5. LWP converts the LWPCB address and the ring buffer address to linear address form by adding
the DS base address and stores the addresses internally.

6. LWP examines the LWPCB.Flags field to determine which events should be enabled and whether
threshold interrupts should be taken. It clears the bits for any features that are not available and
stores the result back to LWPCB.Flags to inform the application of the actual LWP state.

7. For each event being enabled, LWP examines the EventIntervaln value and, if necessary, sets it to
an implementation-defined minimum. (The minimum event interval for LWPVAL is zero.) It
loads its internal counter for the event from the value in EventCountern. A zero or negative value
in EventCountern means that the next event of that type will cause an event record to be stored. To
count every jth event, a program should set EventIntervaln to j-1 and EventCountern to some
starting value (where j-1 is a good initial count). If the counter value is larger than the interval, the
first event record will be stored after a larger number of events than subsequent records.

8. LWP is started. The execution of LLWPCB is complete.

Notes

If none of the bits in the LWPCB.Flags specifies an available event, LLWPCB still enables LWP to
allow the use of the LWPINS instruction. However, no other event records will be stored.

A program can temporarily disable LWP by executing SLWPCB to obtain the current LWPCB
address, saving that value, and then executing LLWPCB with a register containing 0. It can later re-
enable LWP by executing LLWPCB with a register containing the saved address.

When LWP is enabled, it is typically an error to execute LLWPCB with the address of the active
LWPCB. When the hardware flushes the existing LWP state into the LWPCB, it may overwrite fields
that the application may have set to new LWP parameter values. The flushed values will then be loaded
as LWP is restarted. To reuse an LWPCB, an application should stop LWP by passing a zero to
LLWPCB, then prepare the LWPCB with new parameters and execute LLWPCB again to restart LWP.

Internally, LWP keeps the linear address of the LWPCB and the ring buffer. If the application changes
the value of DS, LWP will continue to collect samples even if the new DS value would no longer
allows it to access the LWPCB or the ring buffer. However, a #GP fault will occur if the application
uses XRSTOR to restore LWP state saved by XSAVE. Programs should avoid using XSAVE/

43724—Rev. 3.08—August 2010 Lightweight Profiling Specification

LWP Instructions 31

XRSTOR on LWP state if DS has changed. This only applies when the CPL != 0; kernel mode
operation of XRSTOR is unaffected by changes to DS. See “XSAVE/XRSTOR” on page 47 for
details.

Operating system and hypervisor code that runs when the CPL != 3 should use XSAVE and XRSTOR
to control LWP rather than using LLWPCB (see below). Use WRMSR to write 0 to LWP_CBADDR
to immediately stop LWP without saving its current state (see “LWP_CBADDR — LWPCB Address
MSR” on page 28).

It is possible to execute LLWPCB when the CPL != 3 or when SMM is active, but the system software
must ensure that the LWPCB and the entire ring buffer are properly mapped into writable memory in
order to avoid a #PF or #GP fault. Furthermore, if LWP is enabled when a kernel executes LLWPCB,
both the old and new control blocks and ring buffers must be accessible. Using LLWPCB in these
situations is not recommended.

rFLAGS Affected

None

Exceptions

5.2 SLWPCB — Store LWPCB Address

Flushes LWP state to memory and returns the current effective address of the LWPCB in the specified
register.

If LWP is not currently enabled, SLWPCB sets the specified register to zero.

The flush operation stores the internal event counters for active events and the current ring buffer head
pointer into the LWPCB. If there is an unwritten event record pending, it is written to the event ring
buffer.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD

X X X LWP is not implemented on this processor.

X X The system is not in protected mode.

X LWP is not available, or mod != 11b, or vvvv != 1111b.

General protection,
#GP

X
Any part of the LWPCB or the event ring buffer is beyond the
DS segment limit.

X Any restrictions on the contents of the LWPCB are violated

Page fault, #PF

X A page fault resulted from reading or writing the LWPCB.

X
LWP was already enabled and a page fault resulted from
reading or writing the old LWPCB.

X
LWP was already enabled and a page fault resulted from
flushing an event to the old ring buffer.

Lightweight Profiling Specification 43724—Rev. 3.08—August 2010

32 LWP Instructions

The r/m field of the ModRM byte specifies the register in which to put the LWPCB address. The mod
field of the ModRM byte must be 11b and the vvvv field must be 1111b. The LWPCB address returned
in the register is truncated to 32 bits if the operand size is 32.

If LWP_CBADDR is not zero, the value returned is an effective address that is calculated by
subtracting the current DS.Base address from the linear address kept in LWP_CBADDR. Note that if
DS has changed between the time LLWPCB was executed and the time SLWPCB is executed, this
might result in an address that is not currently accessible by the application.

SLWPCB generates an invalid opcode exception (#UD) if the machine is not in protected mode or if
LWP is not available.

It is possible to execute SLWPCB when the CPL != 3 or when SMM is active, but if the LWPCB
pointer is not zero, the system software must ensure that the LWPCB and the entire ring buffer are
properly mapped into writable memory in order to avoid a #PF fault. Using SLWPCB in these
situations is not recommended.

rFLAGS Affected

None

Exceptions

5.3 LWPVAL — Insert Value Sample in LWP Ring Buffer

Decrements the event counter associated with the Programmed Value Sample event (see “Programmed
Value Sample” on page 16). If the resulting counter value is negative, inserts an event record into the
LWP event ring buffer in memory and advances the ring buffer pointer. If the counter is not negative
and the modrm operand specifies a memory location, that location is not accessed.

Mnemonic Encoding

XOP RXB.mmmmm W.vvvv.L.pp Opcode

SLWPCB reg32 8F RXB.09 0.1111.0.00 12 /1

SLWPCB reg64 8F RXB.09 1.1111.0.00 12 /1

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD

X X X LWP is not implemented on this processor.

X X The system is not in protected mode.

X LWP is not available, or mod != 11b, or vvvv != 1111b.

Page fault, #PF
X A page fault resulted from reading or writing the LWPCB.

X A page fault resulted from flushing an event to the ring buffer.

43724—Rev. 3.08—August 2010 Lightweight Profiling Specification

LWP Instructions 33

The event record has an EventId of 1. The value in the register specified by vvvv (first operand) is
stored in the Data2 field at bytes 23–16 (zero extended if the operand size is 32). The value in a register
or memory location (second operand) is stored in the Data1 field at bytes 7–4. The immediate value
(third operand) is truncated to 16 bits and stored in the Flags field at bytes 3–2. See Figure 2-2 on
page 16.

If the ring buffer is not full, the head pointer is advanced and the event counter is reset to the interval
for the event (subject to randomization). If the ring buffer threshold is exceeded and threshold
interrupts are enabled, an interrupt is signaled.

If the ring buffer is full, the event record overwrites the last record in the buffer, the MissedEvents
counter in the LWPCB is incremented, and the head pointer is not advanced.

LWPVAL generates an invalid opcode exception (#UD) if the machine is not in protected mode or if
LWP is not available.

LWPVAL does nothing if LWP is not enabled or if the Programmed Value Sample event is not enabled
in LWPCB.Flags. This allows LWPVAL instructions to be harmlessly ignored if profiling is turned off.

It is possible to execute LWPVAL when the CPL != 3 or when SMM is active, but the system software
must ensure that the memory operand (if present), the LWPCB, and the entire ring buffer are properly
mapped into writable memory in order to avoid a #PF or #GP fault. Using LWPVAL in these situations
is not recommended.

LWPVAL can be used by a program to perform value profiling. This is the technique of sampling the
value of some program variable at a predetermined frequency. For example, a managed runtime might
use LWPVAL to sample the value of the divisor for a frequently executed divide instruction in order to
determine whether to generate specialized code for a common division. It might sample the target
location of an indirect branch or call to see if one destination is more frequent than others. Since
LWPVAL does not modify any registers or condition codes, it can be inserted harmlessly between any
instructions.

Note that when the LWPVAL instruction completes (whether or not it stored an event record in the
event ring buffer), it counts as an instruction retired. If the Instructions Retired event is active, this
might cause that counter to become negative and immediately store an event record. If LWPVAL also
stored an event record, the buffer will contain two records with the same instruction address (but
different EventId values).

rFLAGS Affected

None

Mnemonic Encoding

XOP RXB.mmmmm W.vvvv.L.pp Opcode

LWPVAL reg32.vvvv, reg/mem32, imm32 8F RXB.0A 0.src1.0.00 12 /1 /imm32

LWPVAL reg64.vvvv, reg/mem32, imm32 8F RXB.0A 1.src1.0.00 12 /1 /imm32

Lightweight Profiling Specification 43724—Rev. 3.08—August 2010

34 LWP Instructions

Exceptions

5.4 LWPINS — Insert User Event Record in LWP Ring Buffer

Inserts a record into the LWP event ring buffer in memory and advances the ring buffer pointer.

The record has an EventId of 255. The value in the register specified by vvvv (first operand) is stored
in the Data2 field at bytes 23–16 (zero extended if the operand size is 32). The value in a register or
memory location (second operand) is stored in the Data1 field at bytes 7–4. The immediate value (third
operand) is truncated to 16 bits and stored in the Flags field at bytes 3–2. See Figure 2-8 on page 22.

If the ring buffer is not full, the head pointer is advanced and the CF flag is cleared. If the ring buffer
threshold is exceeded and threshold interrupts are enabled, an interrupt is signaled.

If the ring buffer is full, the event record overwrites the last record in the buffer, the MissedEvents
counter in the LWPCB is incremented, the head pointer is not advanced, and the CF flag is set.

LWPINS generates an invalid opcode exception (#UD) if the machine is not in protected mode or if
LWP is not available.

LWPINS simply clears CF if LWP is not enabled. This allows LWPINS instructions to be harmlessly
ignored if profiling is turned off.

It is possible to execute LWPINS when the CPL != 3 or when SMM is active, but the system software
must ensure that the memory operand (if present), the LWPCB, and the entire ring buffer are properly
mapped into writable memory in order to avoid a #PF or #GP fault. Using LWPINS in these situations
is not recommended.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD

X X X LWP is not implemented on this processor.

X X The system is not in protected mode.

X LWP is not available.

Page fault, #PF

X A page fault resulted from reading or writing the LWPCB.

X A page fault resulted from writing the event to the ring buffer.

X
A page fault resulted from reading a modrm operand from
memory.

General protection,
#GP

X A modrm operand in memory exceeded the segment limit.

Mnemonic Encoding

XOP RXB.mmmmm W.vvvv.L.pp Opcode

LWPINS reg32.vvvv, reg/mem32, imm32 8F RXB.0A 0.src1.0.00 12 /0 /imm32

LWPINS reg64.vvvv, reg/mem32, imm32 8F RXB.0A 1.src1.0.00 12 /0 /imm32

43724—Rev. 3.08—August 2010 Lightweight Profiling Specification

LWP Instructions 35

LWPINS can be used by a program to mark significant events in the ring buffer as they occur. For
instance, a program might capture information on changes in the process’ address space such as library
loads and unloads, or changes in the execution environment such as a change in the state of a user-
mode thread of control.

Note that when the LWPINS instruction finishes writing a event record in the event ring buffer, it
counts as an instruction retired. If the Instructions Retired event is active, this might cause that counter
to become negative and immediately store another event record with the same instruction address (but
different EventId values).

rFLAGS Affected

Exceptions

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

M

21 20 19 18 17 16 14 13–12 11 10 9 8 7 6 4 2 0

Note: Bits 31–22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exception Real
Virtual
8086 Protected Cause of Exception

Invalid opcode,
#UD

X X X LWP is not implemented on this processor.

X X The system is not in protected mode.

X LWP is not available.

Page fault, #PF

X A page fault resulted from reading or writing the LWPCB.

X A page fault resulted from writing the event to the ring buffer.

X
A page fault resulted from reading a modrm operand from
memory.

General protection,
#GP

X A modrm operand in memory exceeded the segment limit.

Lightweight Profiling Specification 43724—Rev. 3.08—August 2010

36 LWP Instructions

43724—Rev. 3.08—August 2010 Lightweight Profiling Specification

LWP Control Block 37

6 LWP Control Block

An application uses the LWP Control Block (LWPCB) to specify the details of Lightweight Profiling
operation. It is an interactive region of memory in which some fields are controlled and modified by
the LWP hardware and others are controlled and modified by the software that processes the LWP
event records.

Most of the fields in the LWPCB are constant for the duration of a LWP session (the time between
enabling LWP and disabling it). This means that they are loaded into the LWP hardware when it is
enabled, and may be periodically reloaded from the same location as needed. The contents of the
constant fields must not be changed during a LWP run or results will be unpredictable. Changing the
LWPCB memory to read-only or unmapped will cause an exception the next time LWP attempts to
access it. To change values in the LWPCB, disable LWP, change the LWPCB (or create a new one),
and re-enable LWP.

A few fields are modified by the LWP hardware to communicate progress to the software that is
emptying the event ring buffer. Software may read them but should never modify them during an LWP
session. Other fields are for software to modify to indicate that progress has been made in emptying
the ring buffer. Software writes these fields and the LWP hardware reads them as needed.

For efficiency, some of the LWPCB fields may be shadowed internally in the LWP hardware unit when
profiling is enabled. LWP refreshes these fields from (or flushes them to) memory as needed to allow
software to make progress. For more information, refer to “LWPCB Access” on page 54.

The BufferTailOffset field is at offset 64 in the LWPCB in order to place it in a separate cache line on
most implementations, assuming that the LWPCB itself is aligned properly. This allows the software
thread that is emptying the ring buffer to retain write ownership of that cache line without colliding
with the changes made by LWP when writing BufferHeadOffset. In addition, most implementations
will use a value of 128 as the offset to the EventInterval1 field, since that places the event information
in a separate cache line.

All fields in the LWPCB (as shown in Figure 6-1, “LWPCB — Lightweight Profiling Control Block”)
that are marked as “Reserved” (or “Rsvd”) must be zero.

Lightweight Profiling Specification 43724—Rev. 3.08—August 2010

38 LWP Control Block

Figure 6-1. LWPCB — Lightweight Profiling Control Block

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Random BufferSize Flags 0

BufferBase 8

Reserved BufferHeadOffset 16

MissedEvents 24

Filters Threshold 32

BaseIP 40

LimitIP 48

Reserved 56

Reserved BufferTailOffset 64

Reserved for software 72

Reserved for software 80

.

.
Reserved

.

.

88

63 58

Rsvd
57 32

EventCounter1
31 26

Rsvd
25 0

EventInterval1
E = LwpEventOffset

E

63 58

Rsvd
57 32

EventCounter2
31 26

Rsvd
25 0

EventInterval2
E
+8

...

63 58

Rsvd
57 32

EventCounterN
31 26

Rsvd
25 0

EventIntervalN
N = LwpMaxEvents

...

43724—Rev. 3.08—August 2010 Lightweight Profiling Specification

LWP Control Block 39

The R/W column in Table 6-1, “LWPCB — Lightweight Profiling Control Block Fields” indicates how
a field is used while LWP is enabled:

• LWP — hardware modifies the field; software may read it, but must not change it

• Init — hardware reads and modifies the field while executing LLWPCB

• SW — software may modify the field

• No — field must remain unchanged as long as the LWPCB is in use

Table 6-1. LWPCB — Lightweight Profiling Control Block Fields

Bytes Bits Field Description R/W

3–0 Flags

Flags indicating which events should be or are being counted
(see Table 6-2, “LWPCB Flags”) and whether threshold interrupts
should be enabled.

Before executing LLWPCB, the application sets Flags to a bit
mask of the events (and interrupt) that should be enabled.
LLWPCB does a logical “and” of this mask with the available
feature bits in LWP_CFG and rewrites Flags with the mask of
features actually enabled.

Init

7–4 59–32 BufferSize

Total size of the event ring buffer (in bytes). Must be a multiple of
the event record size LwpEventSize (the value used internally
will be rounded down if not). BufferSize must be at least (32 *
LwpMinBufferSize * LwpEventSize).

No

7 63–60 Random

Number of bits of randomness to use in counters. Each time a
counter is loaded from an interval to start counting down to the
next event to record, the bottom Random bits are set to a random
value. This avoids fixed patterns in events.

No

15–8 BufferBase

The effective address of the event ring buffer. Should be aligned
on a 64-byte boundary for reasonable performance. Software is
encouraged to align the ring buffer to a page boundary for best
performance. If the default address size is less than 64 bits, the
upper bits of BufferBase must be zero.

LLWPCB converts BufferBase to a linear address and stores it
internally. LWPCB.BufferBase is not modified.

No

19–16 BufferHeadOffset

Unsigned offset from BufferBase specifying where the LWP
hardware will store the next event record. When
BufferHeadOffset == BufferTailOffset, the ring buffer is empty.
BufferHeadOffset must always be less than BufferSize; LWP will
use a value of 0 if BufferHeadOffset is too large. Also, it must
always be a multiple of LwpEventSize; LWP will round it down if
not.

LWP

23–20 Reserved

Lightweight Profiling Specification 43724—Rev. 3.08—August 2010

40 LWP Control Block

31–24 MissedEvents

The 64-bit count of the number of events that were missed. A
missed event occurs when LWP stores an event record, attempts
to advance BufferHeadOffset, and discovers that it would be
equal to BufferTailOffset. In this case, LWP leaves
BufferHeadOffset unchanged and instead increments the
MissedEvents counter. Thus, when the ring buffer is full, the last
event record is overwritten.

LWP

35–32 Threshold

Threshold for signaling an interrupt to indicate that the ring buffer
is filling up. If threshold interrupts are enabled in Flags, then
when LWP advances BufferHeadOffset, it computes the space
used as ((BufferHeadOffset – BufferTailOffset) % BufferSize). If
the space used equals or exceeds Threshold, LWP causes an
interrupt.

If Threshold is greater than BufferSize, no interrupt will ever be
taken. If Threshold is zero, an interrupt will be taken every time
an event record is stored in the ring buffer.

Threshold is an unsigned integer multiple of LwpEventSize (the
value used internally will be rounded down if not).

Ignored if threshold interrupts are not available in LWP_CFG or if
they are not enabled in Flags

No

39–36 Filters

Filters to qualify which events are eligible to be counted. This
field includes bits to filter branch events by type and prediction
status, and bits and values to filter cache events by type and
latency. See Figure 6-3, “LWPCB Filters” for details.

47–40 BaseIP

Low limit of the IP filtering range. An instruction must start at a
location greater than or equal to BaseIP to be in range.

Ignored if IPF is zero or if the CPUID LwpIpFiltering bit is 0 to
indicate that IP filtering is not supported.

No

55–48 LimitIP

High limit of the IP filtering range. An instruction must start at a
location less than or equal to LimitIP to be in range.

Ignored if IPF is zero or if the CPUID LwpIpFiltering bit is 0 to
indicate that IP filtering is not supported.

No

63–56 Reserved

67–64 BufferTailOffset

Unsigned offset from BufferBase to the oldest event record in the
ring buffer. BufferTailOffset is maintained by software and must
always be less than BufferSize and a multiple of LwpEventSize. If
software stores a value of BufferTailOffset into the LWPCB that
violates these rules, the LWP hardware might not detect ring
buffer overflow or threshold conditions properly.

SW

71–68 Reserved

72–87
Reserved for software use. These bytes are never read or written
by the LWP hardware

SW

Table 6-1. LWPCB — Lightweight Profiling Control Block Fields (Continued)

Bytes Bits Field Description R/W

43724—Rev. 3.08—August 2010 Lightweight Profiling Specification

LWP Control Block 41

The LLWPCB instruction reads the Flags word from the LWPCB to determine which events to profile
and whether threshold interrupts should be enabled. LLWPCB writes the Flags word after turning off
bits corresponding to features which are not currently available.

E-1–
88

Reserved area between the fixed portion of the LWPCB and the
event specifiers. Must be zero. The EventInterval1 field is at
offset E = LwpEventOffset.

E+3–
E 25–0 EventInterval1

Reset value for counting events of type EventId = 1
(Programmed Value Sample). A value of n specifies that after
n+1 (modified by Random) LWPVAL instructions, LWP will store
an event record in the ring buffer.

EventInterval1 is a signed value. If it is negative, LLWPCB will
use zero and will store zero into EventInterval1 in the LWPCB.

The Programmed Value Sample event is the only one which
allows an interval to be below the implementation minimum
interval value.

Init

E+3 31–26 Reserved

E+7–
E+4 57–32 EventCounter1

Starting (LLWPCB) or current (SLWPCB) value of counter. This is
a signed number. LLWPCB treats a negative value as zero.

LWP

E+7 63–58 Reserved

E+11–
E+8 25–0 EventInterval2

Reset value for counting events of type EventId = 2 (Instructions
Retired). A value of n specifies that after n+1 (modified by
Random) instructions are retired, LWP will store an event record
in the ring buffer.

EventInterval2 is a signed value. If it is negative or is below the
implementation minimum, LLWPCB will use the minimum and
will store that value into EventInterval2 in the LWPCB.

Init

E+11 31–26 Reserved

E+15–
E+12 57–32 EventCounter2

Starting (LLWPCB) or current (SLWPCB) value of counter. This is
a signed number. LLWPCB treats a negative value as zero.

LWP

E+15 63–58 Reserved

Event3…
Repeat event configuration similar to EventInterval2 and
EventCounter2 for EventId values from 3 to LwpMaxEvents.

Table 6-1. LWPCB — Lightweight Profiling Control Block Fields (Continued)

Bytes Bits Field Description R/W

Lightweight Profiling Specification 43724—Rev. 3.08—August 2010

42 LWP Control Block

Figure 6-2. LWPCB Flags

Event counting can be filtered by a number of conditions which are specified in the Filters word of the
LLWPCB. The IP filtering applies to all events. Cache level filtering applies to all events that interact
with the caches. Branch filtering applies to the Branches Retired event.

Figure 6-3. LWPCB Filters

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
I
N
T

Reserved
R
N
H

C
N
H

D
M
E

B
R
E

I
R
E

V
A
L

Bit Field Input to LLWPCB Value after LLWPCB

0 Reserved

1 VAL Enable LWPVAL instruction LWPVAL instruction enabled

2 IRE Enable Instructions Retired event Instructions Retired event enabled

3 BRE Enable Branches Retired event Branches Retired event enabled

4 DME Enable DCache miss event DCache Miss event enabled

5 CNH Enable CPU clocks not halted event CPU Clocks Not Halted event enabled

6 RNH
Enable CPU reference clocks not halted
event

CPU Reference Clocks Not Halted event
enabled

30–7 Reserved

31 INT Enable threshold interrupts. Threshold interrupts are enabled.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
I
P
F

I
P
I

N
R
B

N
C
B

N
A
B

N
P
B

N
M
B

Reserved
O
T
H

R
A
M

R
D
C

N
B
C

C
L
F

MinLatency

Bits Field Description

7–0 MinLatency Minimum latency for a cache-related event

8 CLF Cache level filtering

9 NBC Northbridge cache events

10 RDC Remote data cache events

11 RAM DRAM cache events

12 OTH Other cache events

24–13 Reserved

25 NMB No mispredicted branches

26 NPB No predicted branches

27 NAB No absolute branches

28 NCB No conditional branches

29 NRB No unconditional relative branches

30 IPI IP filtering invert

31 IPF IP filtering

43724—Rev. 3.08—August 2010 Lightweight Profiling Specification

LWP Control Block 43

The following table provides detailed descriptions of the fields in the Filters word.

Table 6-2. LWPCB Filters

Bits Field Description

7–0 MinLatency

Minimum latency for a cache-related event to be eligible for LWP counting.
Applies to all cache-related events being monitored. MinLatency is multiplied
by 16 to get the actual latency in cycles, providing less resolution but a
larger range for filtering. An implementation may have a maximum for the
latency value. If MinLatency*16 exceeds this maximum value, the maximum
is used instead. A value of 0 disables filtering by latency.

Ignored if no cache latency event is enabled or if the CPUID
LwpCacheLatency bit is 0 to indicate that the implementation does not filter
by latency (use the CLF bits to get a similar effect). At least one of these
mechanisms is supported if any cache miss events are supported.

8 CLF

Cache level filtering.

1—Enables filtering cache-related events by the cache level or memory level
that returned the data. It enables the next 4 bits. Cache-related events
are only eligible for counting if the bit describing the memory level is on.

0—Disables cache level filtering. The next 4 bits are ignored, and any cache
or memory level is eligible.

Ignored if no cache latency event is enabled or if the CPUID
LwpCacheLevels bit is 0 to indicate that the implementation does not filter by
cache level (use the MinLatency field to get a similar effect). At least one of
these mechanisms is supported if any cache miss events are supported.

9 NBC

Northbridge cache events.

1—Count cache-related events that are satisfied from data held in a cache
that resides on the Northbridge.

0—Ignore Northbridge cache events

Ignored if CLF is 0.

10 RDC

Remote data cache events.

1—Count cache-related events that are satisfied from data held in a remote
data cache.

0—Ignore remote cache events.

Ignored if CLF is 0.

11 RAM

DRAM cache events.

1—Count cache-related events that are satisfied from DRAM.

0—Ignore DRAM cache events.

Ignored if CLF is 0.

12 OTH

Other cache events.

1—Count cache-related events that are satisfied from other sources, such
as MMIO, Config space, PCI space, or APIC.

0—Ignore such cache events

Ignored if CLF is 0.

24–13 Reserved

Lightweight Profiling Specification 43724—Rev. 3.08—August 2010

44 LWP Control Block

25 NMB

No mispredicted branches.

1—Mispredicted branches will not be counted.

0—Mispredicted branches will be counted if not suppressed by other filter
conditions.

Caution: If NMB and NPB are both set, no branches will be counted.

Ignored if the Branches Retired event is not enabled or if the CPUID
LwpBranchPrediction bit is 0 to indicate that the implementation does not
filter by prediction.

26 NPB

No predicted branches.

1—Correctly predicted branches will not be counted. Note that since direct
branches are always predicted correctly, this is a superset of the NDB
filter.

0—Correctly predicted branches will be counted if not suppressed by other
filter conditions.

Caution: If NMB and NPB are both set, no branches will be counted.

Ignored if the Branches Retired event is not enabled or if the CPUID
LwpBranchPrediction bit is 0 to indicate that the implementation does not
filter by prediction.

27 NAB

No absolute branches.

1—Absolute branches will not be counted. This only applies to jumps
through a register or memory (JMP opcode FF /4) and calls through a
register or memory (CALL opcode FF /2). Relative branches (both
conditional and unconditional) are counted normally if not disabled via
the NRB or NCB bits.

0—Absolute branches will be counted if not suppressed by other filter
conditions.

Caution: If NRB, NCB, and NAB are all set, no branches will be counted.

Ignored if the Branches Retired event is not enabled.

28 NCB

No conditional branches.

1—Conditional branches will not be counted. This only applies to conditional
jumps (Jcc) and loops (LOOPcc). Unconditional relative branches,
indirect jumps through a register or memory, and returns are counted
normally if not disabled via the NRB or NAB bits.

0—Conditional branches will be counted if not suppressed by other filter
conditions.

Caution: If NRB, NCB, and NAB are all set, no branches will be counted.

Ignored if the Branches Retired event is not enabled.

Table 6-2. LWPCB Filters

Bits Field Description

43724—Rev. 3.08—August 2010 Lightweight Profiling Specification

LWP Control Block 45

29 NRB

No unconditional relative branches.

1—Unconditional relative branches will not be counted. This applies to
unconditional jumps (JMP), calls (CALL), and returns (RET). Conditional
branches and indirect jumps or calls through a register or memory are
counted normally if not disabled via the NCB or NAB bits.

0—Direct branches will be counted if not suppressed by other filter
conditions.

Caution: If NRB, NCB, and NAB are all set, no branches will be counted.

Ignored if the Branches Retired event is not enabled.

30 IPI

IP filtering invert.

1—IP filtering inverted. Only instructions outside the range from BaseIP to
LimitIP are eligible for LWP counting.

0—IP filtering normal. Only instructions inside the range from BaseIP to
LimitIP are eligible for LWP counting.

Ignored if IPF is zero or if the CPUID LwpIpFiltering bit is 0 to indicate that IP
filtering is not supported.

31 IPF

IP filtering.

1—IP filtering enabled. The values of the BaseIP and LimitIP fields specify a
range of instruction addresses that are eligible for LWP event counting
and reporting. The range is inclusive if IPI is 0 and exclusive if IPI is 1.

0—IP filtering disabled; instructions at every address are eligible for LWP
counting.

Ignored if the CPUID LwpIpFiltering bit is 0 to indicate that IP filtering is not
supported.

Table 6-2. LWPCB Filters

Bits Field Description

Lightweight Profiling Specification 43724—Rev. 3.08—August 2010

46 LWP Control Block

43724—Rev. 3.08—August 2010 Lightweight Profiling Specification

XSAVE/XRSTOR 47

7 XSAVE/XRSTOR

LWP requires that the processor support the XSAVE/XRSTOR instructions for managing extended
processor state components.

7.1 Configuration

The processor uses bit 62 of XFEATURE_ENABLED_MASK (register XCR0) to indicate whether
LWP state can be saved and restored, and thus whether LWP is available to applications. The LWP
XSAVE area length and offset from the beginning of the XSAVE area are available from the CPUID
instruction (see “Detecting LWP XSAVE Area” on page 23). In Version 1 of LWP, the LWP XSAVE
area is 128 (080h) bytes long and the offset is 832 (340h) bytes.

7.2 XSAVE Area

Figure 7-1, “XSAVE Area for LWP” shows the layout of the XSAVE area for LWP. It is large enough
to allow for future expansion of the number of event counters. Details of the fields are in Table 7-1,
“XSAVE Area for LWP Fields”.

All fields in the XSAVE area that are marked as “Reserved” (or “Rsvd”) must be zero.

Lightweight Profiling Specification 43724—Rev. 3.08—August 2010

48 XSAVE/XRSTOR

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

LWPCBAddress 0

BufferHeadOffset Flags 8

BufferBase 16

Filters
31 28

Rsvd
27 0

BufferSize 24

Saved Event Record

32

40

48

56

EventCounter2 EventCounter1 64

EventCounter4 EventCounter3 72

EventCounter6 EventCounter5 80

Reserved for EventCounter8 Reserved for EventCounter7 88

Reserved for EventCounter10 Reserved for EventCounter9 96

Reserved for EventCounter12 Reserved for EventCounter11 104

Reserved for EventCounter14 Reserved for EventCounter13 112

Reserved for EventCounter16 Reserved for EventCounter15 120

43724—Rev. 3.08—August 2010 Lightweight Profiling Specification

XSAVE/XRSTOR 49

Figure 7-1. XSAVE Area for LWP

7.3 XSAVE operation

If LWP is not currently enabled (i.e., if LWP_CBADDR = 0), no state needs to be stored. XSAVE sets
bit 62 in XSAVE.HEADER.XSTATE_BV to 0 so that an attempt to restore state from this save area
will use the processor supplied values. See “Processor supplied values” on page 51.

If LWP is enabled, XSAVE stores the various internal LWP values into the XSAVE area with no
checking or conversion and sets bit 62 in XSAVE.HEADER.XSTATE_BV to 1.

7.4 XRSTOR operation

If bit 62 in XFEATURE_ENABLED_MASK (XCR0) is 0 or if bit 62 of EDX:EAX (EDX[30]) is 0,
XRSTOR does not alter the LWP state.

If the above bits are 1 but bit 62 in XSAVE.HEADER.XSTATE_BV is 0, XRSTOR writes the LWP
state using the processor supplied values, disabling LWP. See “Processor supplied values” on page 51.

If all of the above bits are 1, XRSTOR loads LWP state from the XSAVE area as follows:

Table 7-1. XSAVE Area for LWP Fields

Bytes Bits Field Description

7–0 LWPCBAddress
Address of LWPCB. 0 if LWP is disabled, in which case the rest of
the save area is ignored. This is a linear address.

8 0 Reserved

8 1 Counter1
1—Event with EventId 1 is active. XRSTOR will make the event

active and restore its counter from EventCounter1.

0—Event 1 is not active. XRSTOR will make the event inactive.

9–8 6–2 Countern Similar to Counter1 for other events.

11–10 31–7 Reserved

15–12 BufferHeadOffset BufferHeadOffset value

23–16 BufferBase Address of the event ring buffer. This is a linear address.

27–24 27–0 BufferSize Size of the event ring buffer.

27 31–28 Reserved

31–28 Filters Profiling filters (same as the Filters field in the LWPCB)

63–32 SavedEventRecord
If an event record is pending, the data to write. May be sparse. Zero
in the EventId field means no record pending.

67–64 EventCounter1 Counter for event 1 (if the Counter1 bit is set)

87–68 EventCountern Counters for events 2–6 (if the respective Countern bit is set)

127–88 Reserved for future event counters

Lightweight Profiling Specification 43724—Rev. 3.08—August 2010

50 XSAVE/XRSTOR

1. The internal pointers and sizes are loaded.

• If BufferSize is below the implementation minimum, LWP is disabled and XRSTOR of LWP
state terminates.

• If BufferSize is not a multiple of the event record size, it is rounded down.

• If BufferHeadOffset is greater than (BufferSize - LwpEventSize), a value of 0 is used instead.

• If BufferHeadOffset is not a multiple of the event record size, it is rounded down.

2. For each bit that is set in the Flags field that corresponds to an available event (as currently set in
the LWP_CFG MSR), the corresponding event is enabled and the event counter is loaded from the
EventCountern field. All other events are disabled.

3. If the EventId field in the SavedEventRecord is non-zero, there was a pending event when
XSAVE was executed. XRSTOR loads the event record into hardware. LWP will store it into the
event ring buffer as soon as possible once the CPL is 3.

Software should not alter the SavedEventRecord field. An implementation may ignore a saved
event record if it was not constructed by XSAVE. Storing an event into SavedEventRecord and
then executing XRSTOR is not a reliable way of injecting an event into the ring buffer.

Note that if LWP is already enabled when executing XRSTOR, the old LWP state is overwritten
without being saved.

No interrupt is generated by XRSTOR if the restored value of BufferHeadOffset results in a buffer that
is filled beyond the threshold. The interrupt will occur the next time an event record is stored.

XRSTOR may not restore all of the state necessary for LWP to operate. The LWP hardware will read
additional state from the LWPCB when it stores then next event record.

If the CPL = 0, XRSTOR simply reloads the LWPCB address and the ring buffer address from the
XSAVE area. Kernel software is trusted not to alter the area in such a way as to allow access to
memory that the application could not otherwise read or write. The linear addresses in the XSAVE area
were validated when the application executed LLWPCB.

If the CPL != 0, XRSTOR first validates the LWPCB and ring buffer pointers. This prevents an
application from altering the XSAVE area in order to gain access to memory that it could not otherwise
read or write (based on the current values in the DS segment register). Note that if a program’s DS
value changes after doing a successful LLWPCB, it might be incapable of doing an XSAVE and then
an XRSTOR of LWP state. The XRSTOR will fail if the new DS value no longer allows access to the
linear addresses corresponding to the LWPCB or the ring buffer. Programs should avoid this behavior.

If XRSTOR is executed when the CPL != 0, the system performs additional checks on the LWPCB
and ring buffer addresses according to the pseudo-code below. A “Store-type Segment_check” fails if
the limit check fails (address is beyond the segment limit) or if the segment is read-only.

bool Check(uint64 addr, uint32 size) { // Utility function
if (!64bit_Mode)

addr = truncate32(addr - DS.BASE)
uint64 top = addr + size - 1;

43724—Rev. 3.08—August 2010 Lightweight Profiling Specification

XSAVE/XRSTOR 51

if (! Store-type Segment_check on DS:[addr] || // Check lower bound
 ! Store-type Segment_check on DS:[top]) // and upper bound

return false;
return true;

}

if (! Check(XSAVE.LWPCBAddress, sizeof(LWPCB)) ||
 ! Check(XSAVE.BufferAddress, XSAVE.BufferSize))

Disable LWP

If any of the address checks fails, LWP is disabled. No fault is generated. A program that executes
XRSTOR when the CPL != 0 and DS has changed can use SLWPCB to check whether LWP is
running.

As with all features that use XSAVE and XRSTOR, if bit 62 of XFEATURE_ENABLED_MASK
(XCR0) is 0 but bit 62 of XSAVE.HEADER.XSTATE_BV is 1, XRSTOR will cause a #GP(0)
exception.

7.5 Processor supplied values

If XRSTOR is executed when bit 62 of XFEATURE_ENABLED_MASK (XCR0) and EDX:EAX are
both 1, but the corresponding bit in XSAVE.HEADER.XSTATE_BV is 0, it indicates that there is no
LWP state to restore. In this case, LWP_CBADDR is set to 0 and LWP is disabled. Other processor
internal state for LWP is set to 0 as necessary to avoid security issues.

Lightweight Profiling Specification 43724—Rev. 3.08—August 2010

52 XSAVE/XRSTOR

43724—Rev. 3.08—August 2010 Lightweight Profiling Specification

Implementation Notes 53

8 Implementation Notes

The following subsections describe other LWP considerations.

8.1 Multiple Simultaneous Events

Multiple events are possible when an instruction retires. For instance, an indirect jump through a
pointer in memory can trigger the instructions retired, branches retired, and DCache miss events
simultaneously. LWP counts all events that apply to the instruction, but might not store event records
for all events whose event counters became negative. It is implementation dependent as to how many
event records are stored when multiple event counters simultaneously become negative. If not all
events cause event records to be stored, the choice of which event(s) to report is implementation
dependent and may vary from run to run on the same processor.

8.2 Processor State for Context Switch, SVM, and SMM

Implementations of LWP have internal state to hold information such as the current values of the
counters for the various events, a pointer into the event ring buffer, and a copy of the tail pointer for
quick detection of threshold and overflow states.

There are times when the system must preserve the volatile LWP state. When the operating system
context switches from one user thread to another, the old user state must be saved with the thread’s
context and the new state must be loaded. When a hypervisor decides to switch from one guest OS to
another, the same must be done for the guest systems’ states. Finally, state must be stored and reloaded
when the system enters and exits SMM, since the SMM code may decide to shut off power to the core.

Hardware does not maintain the LWP state in the active LWPCB. This is because the counters change
with every event (not just every reported event), so keeping them in memory would generate a large
amount of unnecessary memory traffic. Also, the LWPCB is in user memory and may be paged out to
disk at any time, so the memory may not be available when needed.

8.2.1 Saving State at Thread Context Switches

LWP requires that an operating system use the XSAVE and XRSTOR instructions to save and restore
LWP state across context switches.

XRSTOR restores the LWP volatile state when restoring other system state. Some additional LWP
state will be restored from the LWPCB when operations in ring 3 require that information.

LWP does not support the “lazy” state save and restore that is possible for floating point and SSE state.
It does not interact with the CR0.TS bit. Operating systems that support LWP must always do an
XSAVE to preserve the old thread’s LWP context and an XRSTOR to set up the new LWP context. The
OS can continue to do a lazy switch of the FP and SSE state by ensuring that the corresponding bits in
EDX:EAX are clear when it executes the XSAVE and XRSTOR to handle the LWP context.

Lightweight Profiling Specification 43724—Rev. 3.08—August 2010

54 Implementation Notes

8.2.2 Saving State at SVM Worldswitch to a Different Guest

Hypervisors that allow guests to use LWP must save and restore LWP state when the guest OS
changes. In addition to the usual information in the VMCB, the hypervisor must use XSAVE/
XRSTOR to maintain the volatile LWP state and must also save and restore LWP_CFG. When
switching between a guest that uses LWP and one that does not, the hypervisor changes the value of
XFEATURE_ENABLED_MASK (XCR0), which ensures that LWP is only enabled in the appropriate
guest(s).

A hypervisor need not modify the LWP state if the guest OS is not changed.

8.2.3 Enabling SVM Live Migration

Some hypervisors support live migration of a guest virtual machine. Live migration is when a
hypervisor preserves the entire state of the guest running on one physical machine, copies that state to
another physical machine, and then resumes execution of the guest on the new hardware.

To allow live migration among machines which may have different internal implementations of LWP,
the hypervisor must present the common subset of features among all the hosts in the pool of machines
that can be used. Furthermore, since the hypervisor may XSAVE LWP state on one machine and
XRSTOR it on another machine, the contents of the XSAVE area must be consistent across all
implementations.

This means that an implementation of LWP keeps all event counters internally, not in the LWPCB. If
implementations were permitted to differ in this detail, a counter might not get properly restored after
migrating the guest machine.

8.2.4 Saving State at SMM Entry and Exit

SMM entry and exit must save and restore LWP state when the processor is going to change power
state. SMM must use XSAVE/XRSTOR and must also save and restore LWP_CFG. Since LWP is ring
3 only and is inactive in System Management Mode, its state should not need to be saved and restored
otherwise.

8.2.5 Notes on Restoring LWP State

The LWPCB may not be in memory at all times. Therefore, the LWP hardware does not attempt to
access it while still in the OS kernel/VMM/SMM, since that access might fault. Some LWP state is
restored once the processor is in ring 3 and can take a #PF exception without crashing. This usually
happens the next time LWP needs to store an event record into the ring buffer.

8.3 LWPCB Access

Several LWPCB fields are written asynchronously by the LWP hardware and by the user software.
This section discusses techniques for reducing the associated memory traffic. This is interesting to
software because it influences what state is kept internally in LWP, and it explains the protocol
between the hardware filling the event ring buffer and the software emptying it.

43724—Rev. 3.08—August 2010 Lightweight Profiling Specification

Implementation Notes 55

The hardware keeps an internal copy of the event ring buffer head pointer. It need not flush the head
pointer to the LWPCB every time it stores an event record. The flush can be done periodically or it can
be deferred until a threshold or buffer full condition happens or until the application executes
LLWPCB or SLWPCB. Exceeding the buffer threshold always forces the head pointer to memory so
that the interrupt handler emptying the ring buffer sees the threshold condition.

The hardware may keep an internal copy of the event ring buffer tail pointer. It need not read the
software-maintained tail pointer unless it detects a threshold or buffer full condition. At that point, it
rereads the tail pointer to see if software has emptied some records from the ring buffer. If so, it
recomputes the condition and acts accordingly. This implies that software polling the ring buffer
should begin processing event records when it detects a threshold condition itself. To avoid a race
condition with software, the hardware rereads the tail pointer every time it stores an event record while
the threshold condition appears to be true. (An implementation can relax this to “every nth time” for
some small value of n.) It also rereads it whenever the ring buffer appears to be full.

The interval values used to reset the counters can be cached in the hardware when the LLWPCB
instruction is executed, or they can be read from the LWPCB each time the counter overflows.

The ring buffer base and size are cached in the hardware.

The MissedEvents value is a counter for an exceptional condition and is kept in memory.

The cached LWP state is refreshed from the LWPCB when LWP is enabled either explicitly via
LLWPCB or implicitly when needed in ring 3 after LWP state is restored via XRSTOR.

Caching implies that software cannot reliably change sampling intervals or other cached state by
modifying the LWPCB. The change might not be noticed by the LWP hardware. On the other hand,
changing state in the LWPCB while LWP is running may change the operation at an unpredictable
moment in the future if LWP context is saved and restored due to context switching. Software must
stop and restart LWP to ensure that any changes reliably take effect.

8.4 Security

The operating system must ensure that information does not leak from one process to another or from
the kernel to a user process. Hence, if it supports LWP at all, the operating system must ensure that the
state of the LWP hardware is set appropriately when a context switch occurs and when a new process
or thread is created. LWP state for a new thread can be initialized by executing XRSTOR with bit 62 of
XSAVE.HEADER.XSTATE_BV set to 0 and the corresponding bit in EDX:EAX set to 1.

8.5 Interrupts

The LWP threshold interrupt vector number is specified in the LWP_CFG MSR. The operating system
must assign a vector for LWP threshold interrupts and fill in the corresponding entry in the interrupt-
descriptor table. Note that the LWP interrupt is not shared with the performance counter interrupt,
since the system allows concurrent and independent use of those two mechanisms.

Lightweight Profiling Specification 43724—Rev. 3.08—August 2010

56 Implementation Notes

8.6 Memory Access During LWP Operation

When LWP needs to save an event record in the event ring buffer, it accesses the user memory
containing the ring buffer and sometimes the memory containing the LWPCB. This causes a Page
Fault (#PF) exception if those pages are not in memory.

A particular implementation of LWP has several ways to deal with page faults when storing an event
record. These may include saving the event record in the XSAVE area and retrying the store later,
reexecuting the instruction, or discarding the event and reporting the next event of the appropriate
type.

Note that this reinforces the notion that LWP is a sampling mechanism. Programs cannot rely on it to
precisely capture every nth instance of an event. It captures approximately every nth instance.

8.7 Guidelines for Operating Systems

To support LWP, an operating system should follow the following guidelines. Most of these operations
should be done on each core of a multi-core system.

8.7.1 System initialization

• Use CPUID Fn0000_0000 to ensure that the system is running on an “Authentic AMD” processor,
and then check CPUID Fn8000_0001_ECX[LWP] to ensure that the processor supports LWP.

Alternatively, check CPUID Fn0000_000D_EDX_x0[bit 30] to ensure that the system supports
the LWP XSAVE area, indicating that the processor supports LWP.

• Enable XSAVE operations by setting CR4.OSXSAVE.

• Enable LWP by executing XSETBV to set bit 62 of XCR0.

• Assign a unique interrupt vector number for LWP threshold interrupts and load the corresponding
entry in the interrupt-descriptor table with the address of the interrupt handler. This handler should
use some system-specific method to forward any threshold interrupts to the application.

• Make LWP available by setting LWP_CFG. To enable all supported LWP features, set
LWP_CFG[31:0] to the value returned by CPUID Fn8000_001C_EDX. Set LWP_CFG[COREID]
to the APIC core number (or some other value unique to the core) and LWP_CFG[VECTOR] to
the assigned interrupt vector number.

8.7.2 Thread support

• For each thread, allocate an XSAVE area that is at least as big as the XFeatureEnabledSizeMax
value returned by CPUID Fn0000_000D_EBX_x0 (ECX=0). This is good practice for any system
that supports XSAVE.

• When creating a new process or thread, execute XRSTOR with bit 62 of EDX:EAX set to 1 and bit
62 of XSAVE.HEADER.XSTATE_BV set to 0. This ensures that LWP is turned off for any new
thread. Alternatively, use WRMSR to write 0 into LWP_CBADDR before starting the thread.

43724—Rev. 3.08—August 2010 Lightweight Profiling Specification

Implementation Notes 57

• When saving a running thread’s context, execute XSAVE with bit 62 of EDX:EAX set to 1 to save
the thread’s LWP state. It takes almost no time or resources if the thread is not using LWP.

• When restoring a thread’s context, execute XRSTOR with bit 62 of EDX:EAX set to 1. This
restores the LWP state for the thread or disables LWP if the thread is not using it.

• When a thread exits or aborts, use WRMSR to store 0 into LWP_CBADDR. This ensures that
LWP is turned off.

8.8 Summary of LWP State

LWP adds the following visible state to the AMD64 architecture:

• CPUID Fn8000_0001_ECX[LWP] (bit 15) to indicate LWP support.

• CPUID Fn8000_001C to indicate LWP features.

• Two new MSRs: LWP_CFG, LWP_CBADDR,.

• Four new instructions: LLWPCB, SLWPCB, LWPINS, and LWPVAL.

• Bit 62 in XCR0 (XFEATURE_ENABLED_MASK)

• A new XSAVE area for LWP state.

• New fields for LWP state in the SVM and SMM context, whether in the VMCB and SMM save
area or elsewhere.

Lightweight Profiling Specification 43724—Rev. 3.08—August 2010

58 Implementation Notes

43724—Rev. 3.08—August 2010 Lightweight Profiling Specification

Glossary 59

Appendix A Glossary

APIC

Advanced Programmable Interrupt Controller—An internal device that can be programmed to handle
processor interrupts and direct them to an appropriate interrupt handler.

Available

LWP is available on a processor if it is supported on the processor and the system has set XCR0[62].
The XCR0 register is also called XFEATURE_ENABLED_MASK. Bit 62 of that register is visible to
the application as CPUID Fn8000_001C_EAX[LwpAvail] (bit 0).

A subsettable feature of LWP (such as threshold interrupts or individual events) is available if LWP is
available, the feature itself is supported, and the feature’s configuration bit in LWP_CFG is set. If a
feature is available, the corresponding bit in CPUID Fn8000_001C_EAX is set.

CPL

Current Privilege Level—The privilege level of the processor, where 0 is the most privileged level
and is usually used by the kernel or operating system, and 3 is the least privileged level and is usually
used by application programs.

CPUID

An instruction in the x86 architecture that allows a program to determine the features that are present
on the current processor.

DCache

Data Cache—The structures in the processor that keep a local copy of data being referenced by the
running program. Data in the DCache can be accessed very quickly. There are typically multiple
levels of DCache that form a cache hierarchy, with higher cache levels taking more time to access. If
a program tries to use data that is not in the DCache, there is typically a long delay while the
processor fetches the data from memory or a “farther” level of the cache hierarchy.

DTLB

Data Translation Lookaside Buffer—A TLB structure (see TLB) dedicated exclusively to speeding
up access to data by the instructions in a program.

Effective Address

An address in memory that represents an offset into a segmented address space. This is the address of
a location before the appropriate segment base address has been added to it. If the segment base is 0
(as it is for most memory references in long mode), this is the same as the linear address.

Lightweight Profiling Specification 43724—Rev. 3.08—August 2010

60 Glossary

Enabled

LWP is enabled on a processor if it is available on the processor and has been successfully started by
executing an LLWPCB or XRSTOR instruction that specifies a non-zero LWPCB address.

A subsettable feature of LWP (such as threshold interrupts or individual events) is enabled if LWP is
enabled and the feature was successfully turned on by the LLWPCB or XRSTOR. Features enabled
by LLWPCB are reported in LWPCB.Flags.

Hypervisor

See VMM.

IBS

Instruction Based Sampling—An extension to the AMD64 architecture introduced in the quad-core
AMD Opteron™ processor that can provide performance data that include the precise address of the
instruction being sampled, along with details of the execution of the instruction.

ICache

Instruction Cache—The structures in the processor that keep a local copy of instructions being
executed by the running program. The ICache can be accessed very quickly. When there are multiple
levels of cache hierarchy (see DCache), the first level ICache and DCache often share the other cache
levels.

ITLB

Instruction Translation Lookaside Buffer—A TLB structure (see TLB) dedicated exclusively to
speeding up access to the instructions in a program.

Kernel mode

Refers to the processor when running when the CPL = 0, the most privileged level of operation.

Linear Address

An address in memory after any segment base address has been added but before being translated to a
physical DRAM address. Also called a virtual address.

LWP

Lightweight Profiling—The hardware feature described in this document that allows performance
data to be captured by a program in user mode.

OS

Operating System—The software that provides overall control of the processor. Examples are

Microsoft® Windows® and Linux®.

43724—Rev. 3.08—August 2010 Lightweight Profiling Specification

Glossary 61

Process

An instance of a program running in a computer. It is started when a program is initiated by a user or
by another process. If multiple users are using the same application on a single CPU, there is usually
one process for each user.

Retired

An instruction in a processor is retired when all of its operations are complete and the results are
committed to the state of the processor. In a complex and out-of-order CPU like the x86, many
instructions can be happening simultaneously, but they retire in the original program order.

RIP

The 64-bit instruction pointer register that holds the address of the instruction being executed.

SMM

System Management Mode—An operating mode designed for system control activities that are
typically transparent to conventional system software. This includes power management and some
low level device control.

Supported

LWP is supported if the hardware is capable of executing the LWP features, indicated by CPUID
Fn8000_0001_ECX[LWP] (bit 15) being set. A subsettable feature of LWP is supported if the
corresponding bit in CPUID Fn8000_001C_EDX is set.

SVM

Secure Virtual Machine—The extensions to the AMD64 architecture designed to enable enterprise-
class server virtualization software. SVM provides hardware resources that allow a single machine to
run multiple operating systems efficiently. See also VMM.

Thread

A flow of instructions associated with a process, usually to perform a particular part of the process’
work. A process can have multiple simultaneous threads running to accomplish different parts of its
job in parallel.

TLB

Translation Lookaside Buffer—A mechanism to speed up the translation of virtual addresses used by
a running program to refer to its memory into physical addresses in the actual main memory of the
system.

User mode

Refers to the processor when running when the CPL = 3, the least privileged level of operation.

Virtual Address

See Linear Address.

Lightweight Profiling Specification 43724—Rev. 3.08—August 2010

62 Glossary

VMCB

Virtual Machine Control Block—An area of memory used by SVM and the VMM to hold the state of
a guest operating system.

VMM

Virtual Machine Monitor—The software that controls the execution of multiple virtual machines and
their guest operating systems on a single physical host machine. The VMM is responsible for running
and switching among the guests and for keeping them isolated from one another.

	Contents
	Figures
	Tables
	Revision History
	1 Introduction
	1.1 Overview

	2 Events and Event Records
	2.1 Programmed Value Sample
	2.2 Instructions Retired
	2.3 Branches Retired
	2.4 DCache Misses
	2.4.1 Measuring Latency
	2.4.2 Reporting the DCache Miss Data Address

	2.5 CPU Clocks not Halted
	2.6 CPU Reference Clocks not Halted
	2.7 Programmed Event
	2.8 Other Events

	3 Detecting LWP
	3.1 Detecting LWP Presence
	3.2 Detecting LWP XSAVE Area
	3.3 Detecting LWP Capabilities

	4 LWP Registers
	4.1 XFEATURE_ENABLED_MASK Support
	4.2 LWP_CFG — LWP Configuration MSR
	4.3 LWP_CBADDR — LWPCB Address MSR

	5 LWP Instructions
	5.1 LLWPCB — Load LWPCB Address
	5.2 SLWPCB — Store LWPCB Address
	5.3 LWPVAL — Insert Value Sample in LWP Ring Buffer
	5.4 LWPINS — Insert User Event Record in LWP Ring Buffer

	6 LWP Control Block
	7 XSAVE/XRSTOR
	7.1 Configuration
	7.2 XSAVE Area
	7.3 XSAVE operation
	7.4 XRSTOR operation
	7.5 Processor supplied values

	8 Implementation Notes
	8.1 Multiple Simultaneous Events
	8.2 Processor State for Context Switch, SVM, and SMM
	8.2.1 Saving State at Thread Context Switches
	8.2.2 Saving State at SVM Worldswitch to a Different Guest
	8.2.3 Enabling SVM Live Migration
	8.2.4 Saving State at SMM Entry and Exit
	8.2.5 Notes on Restoring LWP State

	8.3 LWPCB Access
	8.4 Security
	8.5 Interrupts
	8.6 Memory Access During LWP Operation
	8.7 Guidelines for Operating Systems
	8.7.1 System initialization
	8.7.2 Thread support

	8.8 Summary of LWP State

	Appendix A Glossary

