
Advanced Micro Devices

AMD PQOS White Paper for

AMD EPYC™ 9004 and 9005

Series Processors

Publication # 69127 Revision: 1.00

Issue Date: November 2025

[Public]

Disclaimer

The information presented in this document is for informational purposes only and may contain technical

inaccuracies, omissions, and typographical errors. The information contained herein is subject to change and may

be rendered inaccurate for many reasons, including but not limited to product and roadmap changes, component and

motherboard version changes, new model and/or product releases, product differences between differing

manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any computer system has risks of

security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no obligation to update or

otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make

changes from time to time to the content hereof without obligation of AMD to notify any person of such revisions

or changes.

THIS INFORMATION IS PROVIDED “AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES

WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY

INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD

SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT,

MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE

LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER

CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN,

EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

AMD, the AMD Arrow logo, AMD EPYC, and combinations thereof are trademarks of Advanced Micro Devices,

Inc. Other product names used in this publication are for identification purposes only and may be trademarks of their

respective companies. CXL is a trademark of Compute Express Link Consortium, Inc. Linux® is the registered

trademark of Linus Torvalds in the U.S. and other countries. Ubuntu and the Ubuntu logo are registered trademarks

of Canonical Ltd.

© 2025 Advanced Micro Devices, Inc. All rights reserved.

[Public]

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series

Processors

 Contents 3

Contents

Chapter 1 Introduction .. 9

1.1 Intended Audience ... 9

1.2 Definitions ... 9

1.3 Reference Documents .. 10

1.4 Background .. 11

1.5 Benefits .. 11

Chapter 2 PQOS Feature Overview ... 12

2.1 Feature Categories ... 12

2.1.1 Monitoring Technologies ... 12

2.1.2 Enforcement Technologies .. 12

2.2 Key Concepts ... 13

2.2.1 Resource Monitoring ID (RMID) .. 13

2.2.2 Class of Service (COS) ID ... 13

2.2.3 resctrl Filesystem ... 13

Chapter 3 Use Cases... 14

3.1 Cloud Data Center Optimization ... 14

3.2 Memory Oversubscription Jitter Reduction ... 14

3.3 Hybrid Cloud Networking Protection .. 15

3.4 Industrial Control System Optimization .. 15

3.5 Data Center Networking Infrastructure Optimization ... 15

3.6 Gaming Platform Optimization ... 16

Chapter 4 Software Enablement Overview ... 17

4.1 CPUID-Based Feature Detection and Enumeration .. 17

4.2 Kernel Configuration ... 18

4.3 resctrl Filesystem Setup ... 18

4.4 MSR Interfaces .. 19

4.5 User-Space Tools ... 20

4.6 Feature Detection via dmesg .. 21

Chapter 5 Monitoring Features .. 22

[Public]

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series

Processors

 Contents 4

5.1 RMID-Based Monitoring .. 22

5.1.1 RMID Pinning ... 23

5.1.2 Prerequisites .. 24

5.1.3 Interfaces ... 24

5.1.4 Software Workflow ... 24

5.1.5 Feature Operation .. 25

5.1.6 Product-Specific RMID Availability .. 25

5.1.7 Using pqos for Monitoring .. 25

5.2 L3 Cache and Memory Bandwidth Monitoring .. 26

5.2.1 Prerequisites .. 26

5.2.2 Interfaces ... 27

5.2.3 Software Setup and Workflow .. 27

5.2.4 Using resctrl for Monitoring ... 27

5.2.5 Using pqos for Monitoring .. 28

5.3 Bandwidth Monitoring Event Configuration (BMEC) ... 28

5.3.1 Supported Event Types ... 29

5.3.2 Examples of Use .. 29

Chapter 6 Enforcement Features ... 30

6.1 COS-Based Enforcement .. 30

6.1.1 Interfaces ... 30

6.1.2 Software Setup and Workflow .. 30

6.1.3 Feature Operation .. 31

6.2 L3 Cache Allocation Technology (CAT) .. 31

6.2.1 Prerequisites .. 31

6.2.2 Interfaces ... 32

6.2.3 Software Setup and Workflow .. 32

6.2.4 Feature Operation .. 32

6.2.5 Using resctrl for L3 CAT .. 32

6.2.6 Performance Profiling and Trade-Offs .. 33

6.3 Memory Bandwidth Allocation (MBA) and Slow MBA (SMBA) 34

6.3.1 Use Cases .. 35

[Public]

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series

Processors

 Contents 5

6.3.2 Prerequisites ... 35

6.3.3 Interfaces .. 36

6.3.4 Software Interfaces .. 36

6.3.5 Software Setup and Workflow ... 38

6.3.6 Feature Operation ... 38

6.3.7 Performance Profiling and Trade-Offs .. 38

6.4 Code and Data Prioritization (CDP) .. 40

6.4.1 Prerequisites ... 40

6.4.2 Interfaces .. 41

6.4.3 Software Setup and Workflow ... 41

6.4.4 Feature Operation ... 41

6.4.5 Using resctrl for CDP... 42

Chapter 7 Conclusion .. 43

[Public]

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series

Processors

 List of Figures 6

List of Figures

Figure 1. PQR_ASSOC MSR ... 19

Figure 2. QM_EVTSEL and QM_CTR MSRs ... 20

Figure 3. RMID-Based Monitoring ... 22

[Public]

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series

Processors

 List of Tables 7

List of Tables

Table 1. Definitions ... 9

Table 2. Reference Documents .. 10

Table 3. CPUID-Based Feature Detection and Enumeration .. 17

Table 4. MSR Interfaces .. 19

Table 5. Product-Specific RMID Availability ... 25

Table 6. Supported Event Types .. 29

[Public]

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series

Processors

 Revision History 8

Revision History

Date Revision Description

November 2025 1.00 Initial release

[Public]

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series

Processors

 9

Introduction

Chapter 1 Introduction

Modern computing platforms face increasing pressure to deliver consistent performance across

diverse workloads, especially in multi-tenant and latency-sensitive environments. AMD’s

Platform Quality of Service (PQOS) architecture addresses this challenge by providing hardware-

enforced mechanisms for monitoring, allocating, and enforcing shared resources such as last level

(L3) cache and memory bandwidth.

The purpose of this document is to introduce the PQOS extension that is already available on

AMD platforms and to demonstrate how to use its features to achieve predictable performance,

workload isolation, and fairness in shared-resource systems.

These PQOS features are available on AMD EPYC™ 9004 series processors, codenamed

“Genoa,” and AMD EPYC 9005 series processors, codenamed “Turin,” enabling customers to

deploy them for applications that include these products.

1.1 Intended Audience

This white paper is intended for system architects, performance engineers, virtualization

specialists, and platform software developers working in cloud, data-center, edge, and embedded

environments.

1.2 Definitions

The following table defines the terms and acronyms that are used in this document.

Table 1. Definitions

Term Description

ABMC Assignable Bandwidth Monitoring Counters

BMEC Bandwidth Monitor Event Configuration

CAT Cache Allocation Technology

CBM Cache Bitmask

CCX Core complex

CDP Code and Data Prioritization

COS Class of Service

CMT Cache Monitoring Technology

CXL Compute Express Link

L2 cache Level 2 cache

[Public]

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series

Processors

 10

Introduction

Term Description

L3 cache Level 3 cache (last level cache)

LLC Last level cache (L3 cache)

LRU Least Recently Used

MBA Memory Bandwidth Allocation

MBM Memory Bandwidth Monitoring

MLC Memory Latency Checker

NUMA Non-Uniform Memory Access

PQE PQOS Enforcement

PQM PQOS Monitoring

PQOS Platform Quality of Service

RMID Resource Monitoring ID

SDCIAE Smart Data Cache Injection Allocation Enforcement

SMBA Slow Memory Bandwidth Allocation

UMC Unified Memory Controller

VM Virtual machine

1.3 Reference Documents

The following table lists official documentation and technical resources that support AMD PQOS

features, including architectural specifications, software enablement guides, and performance

analysis tools.

Table 2. Reference Documents

Reference Publication # Link

AMD64 Architecture

Programmer’s Manual, Volume

2: System Programming

24593 https://docs.amd.com/search/all?query=24593&content-

lang=en-US

Smart Data Cache Injection

(SDCI) White Paper
58725 https://docs.amd.com/search/all?query=58725&content-

lang=en-US

Linux® resctrl options — https://kernel.org/doc/Documentation/x86/resctrl.rst

Ubuntu® manpage: pqos, pqos-

msr, pqos-os
— https://manpages.ubuntu.com/manpages/noble/man8/pqos-

os.8.html

[Public]

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series

Processors

 11

Introduction

1.4 Background

As part of our ongoing innovation roadmap, AMD continues to evolve the PQOS architecture with

additional advanced features. These enhancements are currently a work in progress and aim to

further expand the capabilities of resource control, monitoring granularity, and enforcement

precision. By showcasing real-world use cases and performance profiling data, this paper

demonstrates the practical benefits of AMD PQOS features and encourages customers to explore

their use in production environments.

1.5 Benefits

AMD PQOS features, including cache and memory bandwidth control, are fully accessible

through standard Linux interfaces such as the resctrl filesystem and the pqos tool. No proprietary

software, vendor-specific utilities, or additional platform integration are required. These tools offer

a simple and portable way to configure and monitor quality of service (QoS) policies across

workloads. They enable fine-grained control over resource usage, allowing system administrators

and developers to isolate workloads, enforce service-level guarantees, and reduce performance

jitters.

[Public]

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series

Processors

 12

PQOS Feature Overview

Chapter 2 PQOS Feature Overview

To meet the growing complexity of modern workloads, systems must balance performance

guarantees with equitable resource distribution and responsiveness to real-time demands. AMD’s

PQOS extension equips platforms with tools to observe, manage, and regulate shared resources

such as cache and memory bandwidth, ensuring that critical applications maintain consistent

behavior under varying system loads.

PQOS is designed to operate in domains where resource contention is most critical, such as L3

cache, I/O subsystems, and memory bandwidth. A PQOS domain is a group of system components

that share resources, such as a set of processor cores, memory controllers, or cache slices.

Goals of AMD PQOS include:

• Monitor usage of shared resources per thread and process

• Enforce resource limits to ensure fairness and performance isolation

• Allocate resources dynamically based on workload priority

• Support real-time and latency-sensitive applications

• Overall: improve performance and throughput

For details about PQOS, see the “Platform Quality of Service (PQOS) Extension” chapter of

AMD64 Architecture Programmer’s Manual, Volume 2, publication #24593.

2.1 Feature Categories

AMD PQOS includes both monitoring and enforcement technologies.

2.1.1 Monitoring Technologies

• Cache Monitoring Technology (CMT)

• Memory Bandwidth Monitoring (MBM)

• Bandwidth Monitor Event Configuration (BMEC)

2.1.2 Enforcement Technologies

• Cache Allocation Technology (CAT)

• Memory Bandwidth Allocation (MBA)

• Code and Data Prioritization (CDP)

• Slow Memory Bandwidth Allocation (SMBA)

• Smart Data Cache Injection Allocation Enforcement (SDCIAE)

[Public]

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series

Processors

 13

PQOS Feature Overview

These features are enabled via architectural tags and hardware registers and are managed by the

OS or hypervisor using interfaces like model-specific registers (MSRs), CPUID functions, and the

resctrl filesystem.

NOTE: For details about SDCI, see Smart Data Cache Injection (SDCI) White Paper, publication

#58725. For details about SDCIAE, see the “Platform Quality of Service (PQOS) Extension”

chapter of AMD64 Architecture Programmer’s Manual, Volume 2, publication #24593.

2.2 Key Concepts

Three foundational elements are essential for understanding PQOS features.

2.2.1 Resource Monitoring ID (RMID)

RMIDs are numeric tags assigned to logical threads or processes to track their usage of shared

resources. PQOS allows the user to measure metrics like L3 cache occupancy and memory

bandwidth with per-RMID granularity, enabling flexible grouping of hardware threads. RMIDs

are configured via the PQR_ASSOC MSR.

• RMID monitoring is non-intrusive and has no hardware overhead

• RMIDs can be dynamically reassigned

• Monitoring granularity is per-thread or per-process

2.2.2 Class of Service (COS) ID

COS IDs enforce resource allocation policies. Threads assigned to a COS share the resource limits

defined for that class. COS IDs are configured via MSRs such as L3_MASK_n (for cache) and

L3QOS_BW_CONTROL_n (for bandwidth).

• Up to 16 COS IDs per system

• COS IDs are used for partitioning and throttling

• Enforcement is hardware-driven and may be based on feedback loops

2.2.3 resctrl Filesystem

resctrl is a Linux kernel interface that exposes PQOS features to user space. It allows

administrators to:

• Create resource groups

• Assign tasks or CPUs to groups

• Configure cache and bandwidth allocation

• Monitor resource usage

[Public]

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series

Processors

 14

Use Cases

Chapter 3 Use Cases

AMD PQOS technologies are engineered to solve real-world performance and predictability

challenges across diverse computing environments from hyperscale cloud data centers to latency-

critical industrial systems. This chapter summarizes key use cases that illustrate how PQOS

features can improve fairness, isolation, and performance.

3.1 Cloud Data Center Optimization

Challenge:

In multi-tenant cloud environments, virtual machines (VMs) often compete for shared resources.

This competition leads to performance degradation for critical workloads due to “noisy

neighbors,” prompting customers to search for better performance by frequently switching

nodes—a behavior known as node jumping.

Solution:

PQOS enables administrators to enforce per-VM resource limits using COS IDs. By bounding

cache and memory bandwidth usage, PQOS increases predictable performance and reduces node

jumping.

Features Used:

• MBA

• CAT

3.2 Memory Oversubscription Jitter Reduction

Challenge:

When VMs oversubscribe memory, data often spills into slower memory tiers like Compute

Express Link (CXL®) or NVDIMM, causing access latency spikes and performance jitter that

violate SLAs.

Solution:

PQOS uses SMBA to throttle traffic to slower memory tiers and prioritize access to fast memory

(e.g., DDR). This management reduces jitter and ensures consistent performance for DDR-

intensive workloads.

Features Used:

• SMBA

• MBM

[Public]

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series

Processors

 15

Use Cases

3.3 Hybrid Cloud Networking Protection

Challenge:

Networking VMs such as virtual switches and firewalls run performance-critical code loops that

must stay resident in cache to maintain low-latency packet processing. In shared environments,

cache evictions caused by other workloads can lead to frequent reloads from slower memory,

resulting in latency spikes and packet loss.

Solution:

Use CDP to ensure that critical networking code and data remain in cache. This approach

minimizes evictions and maintains fast, consistent packet handling.

Features Used:

• CDP

3.4 Industrial Control System Optimization

Challenge:

Real-time control loops in industrial systems require deterministic execution and minimal jitter.

Resource contention—especially cache and memory bandwidth saturation—can disrupt control

logic and compromise system safety.

Solution:

Apply CAT and MBA to enforce strict resource boundaries. This practice isolates control

workloads from interference, ensuring predictable timing and safer operation.

Features Used:

• CAT

• MBA

3.5 Data Center Networking Infrastructure Optimization

Challenge:

Virtual switches and network endpoints require consistent low-latency performance under heavy

traffic loads. Shared-resource contention can cause unpredictable delays.

Solution:

Combine latency-aware thread prioritization with cache and bandwidth enforcement to ensure

deterministic performance. Use CAT to isolate cache usage and MBA to cap bandwidth for non-

critical workloads.

[Public]

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series

Processors

 16

Use Cases

Features Used:

• CAT

• MBA

3.6 Gaming Platform Optimization

Challenge:

Gaming workloads rely on “hero” threads for real-time responsiveness. Background “worker”

threads can consume shared resources, causing frame drops and input lag.

Solution:

Assign hero threads to COS IDs with full cache and bandwidth access. Throttle worker threads

using MBA and CAT to ensure smooth gameplay and responsiveness.

Features Used:

• CAT

• MBA

[Public]

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series

Processors

 17

Software Enablement Overview

Chapter 4 Software Enablement Overview

AMD PQOS features are exposed to system software through a combination of architectural

registers, CPUID instructions, and kernel interfaces. This section outlines how to detect,

configure, and use PQOS capabilities in Linux environments.

4.1 CPUID-Based Feature Detection and Enumeration

To determine PQOS support and capabilities, use the following CPUID functions.

Table 3. CPUID-Based Feature Detection and Enumeration

CPUID Function Register PQOS Feature Detection and Enumeration

0x0000_0007 EBX

(ECX=0)

Bit 12 indicates PQOS Monitoring (PQM) support

Bit 15 indicates PQOS Enforcement (PQE) support

0x0000_000F EBX

(ECX=0)
Enumerates maximum RMIDs supported for monitoring

EDX

(ECX=0)
Bit 1 indicates L3 cache monitoring support

EAX

(ECX=1)
Bits 7-0 enumerate counter width for L3 cache monitoring

0x0000_0010 EDX

(ECX=0)
Bit 1 indicates CAT support

EAX

(ECX=1)
Bits 4-0 enumerate cache bitmask length for CAT and CDP

ECX

(ECX=1)
Bit 2 indicates CDP support

EDX

(ECX=1)
Bits 15-0 enumerate maximum COS IDs for CAT and CDP

0x8000_0020 EBX

(ECX=0)

Indicates support for extended PQOS features:

• Bit 6 indicates SDCIAE support

• Bit 5 indicates ABMC support

• Bit 3 indicates BMEC support

• Bit 2 indicates SMBA support

• Bit 1 indicates MBA support

EAX

(ECX=1)
Enumerates bandwidth field width for COS-based enforcement and MBA

[Public]

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series

Processors

 18

Software Enablement Overview

CPUID Function Register PQOS Feature Detection and Enumeration

EDX

(ECX=1)
Enumerates maximum COS IDs for COS-based enforcement and MBA

EAX

(ECX=2)
Enumerates bandwidth field width for SMBA

EDX

(ECX=2)
Enumerates maximum COS IDs for SMBA

These values guide how many RMIDs and COS IDs can be used and how granular the monitoring

and enforcement can be. For a complete and up-to-date list of CPUID functions that pertain to

PQOS, refer to the “Platform Quality of Service (PQOS) Extension” chapter of AMD64

Architecture Programmer’s Manual, Volume 2, publication #24593.

4.2 Kernel Configuration

1. Ensure the Linux kernel is built with PQOS support:

CONFIG_X86_CPU_RESCTRL=y

CONFIG_PROC_CPU_RESCTRL=y

2. Verify:

cat /boot/config-$(uname -r) | grep -i resctrl

4.3 resctrl Filesystem Setup

Example setup to mount resctrl, create a cos0, and add cores 0-3 to cpus_list:

1. Mount the resctrl filesystem:

mount -t resctrl resctrl /sys/fs/resctrl

2. Create a directory cos0:

mkdir /sys/fs/resctrl/cos0

3. Write 0-3 to cpus_list:

echo 0-3 > /sys/fs/resctrl/cos0/cpus_list

[Public]

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series

Processors

 19

Software Enablement Overview

4. Consider a process with this PID: 12345. To apply the resource constraints defined in the

schemata, add the PID to tasks of cos0:

echo 12345 | sudo tee /sys/fs/resctrl/cos0/tasks

4.4 MSR Interfaces

Key MSRs used for PQOS include:

Table 4. MSR Interfaces

MSR Name (Address) PQOS Purpose

PQR_ASSOC (0xC8F) Assign RMID or COS to logical thread

QM_EVTSEL (0xC8D) Select RMID and event to monitor

QM_CTR (0xC8E) Read counter value for RMID/event

L3_MASK_n (0xC90 + n) Configure cache allocation per COS

L3QOS_BW_CONTROL_n (0xC000_0200 + n)

L3QOS_SMBW_CONTROL_n (0xC000_0280 + n)

Set bandwidth ceiling per COS

The following figures illustrate PQR_ASSOC, QM_EVTSEL, and QM_CTR.

Figure 1. PQR_ASSOC MSR

[Public]

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series

Processors

 20

Software Enablement Overview

Figure 2. QM_EVTSEL and QM_CTR MSRs

4.5 User-Space Tools

The pqos tool simplifies configuration and monitoring of PQOS features. It supports both MSR

and kernel interfaces. However, using both interfaces together may lead to unexpected behavior,

so AMD recommends using either the MSR interface or the kernel interface consistently.

• To inspect available PQOS features:

pqos -d

Sample output:

OS capabilities (Linux kernel 5.15.0-73-generic)

Monitoring

 Cache Monitoring Technology (CMT): LLC Occupancy

 Memory Bandwidth Monitoring (MBM): LMEM, TMEM, RMEM

 PMU events: LLC misses, IPC

Allocation

 Cache Allocation Technology (CAT): L3 CAT, CDP disabled, Num COS: 16

 Memory Bandwidth Allocation (MBA): Num COS: 16

• To reset configuration:

pqos -r

For deeper hardware-level feature detection, use CPUID functions 0x0000_000F, 0x0000_0010,

and 0x8000_0020 to query support for specific PQOS sub-features.

[Public]

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series

Processors

 21

Software Enablement Overview

4.6 Feature Detection via dmesg

• Use the following command to search for CAT or MBA support in the CPU:

lscpu | grep -o 'cat\|mba'

Then, check the kernel log to see if CAT or MBA has been initialized:

dmesg | grep -i 'cat\|mba'

If they appear in the output, it means the features are likely enabled and supported by your

system.

• Check if resctrl is active:

dmesg | grep -i resctrl

If you see output related to resctrl, it indicates that the resctrl filesystem has been

initialized and is available for use.

Example output:

[13.034171] resctrl: L3 allocation detected

[13.044547] resctrl: L3DATA allocation detected

[13.050066] resctrl: L3CODE allocation detected

[13.055117] resctrl: MB allocation detected

[Public]

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series

Processors

 22

Monitoring Features

Chapter 5 Monitoring Features

5.1 RMID-Based Monitoring

RMID-based monitoring is a hardware feature that enables fine-grained tracking of shared

resources—such as L3 cache occupancy and memory bandwidth—by associating each logical

thread or process with a unique RMID. The hardware maintains counters for each active RMID,

allowing software to observe resource consumption per thread, process, or VM. This capability is

foundational for QoS enforcement and performance analysis on AMD platforms.

The PQR_ASSOC MSR assigns RMIDs on a per-hardware-thread basis. After an RMID is

assigned, the hardware automatically tracks usage, and MSRs store usage counters. Monitoring

granularity is configurable, allowing administrators or OS managers to group workloads—such as

applications, containers, or VMs—and map them to specific RMIDs for targeted analysis.

Figure 3. RMID-Based Monitoring

[Public]

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series

Processors

 23

Monitoring Features

5.1.1 RMID Pinning

Assignable Bandwidth Monitoring Counters (ABMC) enable users to explicitly assign hardware

counters to RMID-event pairs, a practice also called QoS RMID pinning. This practice guarantees

that hardware continuously tracks the assigned RMID until it is explicitly unassigned.

CPUID 0x8000_0020, EBX bit 5 (ECX=0) indicates ABMC support.

The ABMC implementation introduces new interfaces under the resctrl filesystem:

• mbm_assign_mode: Lists assignable monitoring features supported.

• num_mbm_cntrs: Identifies the total number of assignable counters per domain.

• available_mbm_cntrs: Identifies the number of counters currently available for assignment.

• event_configs: Contains configuration directories for each MBM event, including filters for

transaction types.

• mbm_L3_assignments: Provides a per-group interface to list or modify RMID-event

assignments.

Assignments are domain-specific and can be:

• Exclusive (e): Counter is dedicated to a specific RMID-event pair.

• Shared (s): Counter is shared across multiple groups, with scheduling handled by the system.

• Unassigned (_): No counter is currently assigned.

Example of use:

• To check if ABMC is supported:

cat /sys/fs/resctrl/info/L3_MON/mbm_assign_mode

[mbm event]

• To view available counters:

cat /sys/fs/resctrl/info/L3_MON/available_mbm_cntrs

0=30;1=30

• To assign a counter associated with the mbm_total_bytes event on all domains in exclusive

mode:

[Public]

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series

Processors

 24

Monitoring Features

echo "mbm_total_bytes:*=e" > /sys/fs/resctrl/mbm_L3_assignments

cat /sys/fs/resctrl/mbm_L3_assignments

mbm_total_bytes:0=e;1=e

mbm_local_bytes:0=e;1=e

• To unassign a counter:

echo "mbm_total_bytes:0=" > /sys/fs/resctrl/mbm_L3_assignments

5.1.2 Prerequisites

• Hardware Support: Platform must support PQM, indicated by CPUID 0x0000_0007,

EBX bit 12 (ECX=0).

• RMID Enumeration: Maximum RMIDs supported (typically up to 4095) is given by

CPUID 0x0000_000F, EBX (ECX=0).

• Software Support: OS or monitoring tools must be able to program PQR_ASSOC and

read counters.

• QoS Domain Awareness: Understanding core complex (CCX)/L3 topology and thread

mapping is required.

5.1.3 Interfaces

5.1.3.1 CPUID Enumeration

• 0x0000_000F, EBX (ECX=0): Max_RMID indicates the largest RMID supported.

• 0x0000_000F, EDX bit 1 (ECX=0): Indicates support for L3 cache monitoring.

5.1.3.2 MSRs and Registers

• PQR_ASSOC (C8Fh): Assign RMID to logical thread.

• QM_EVTSEL (C8Dh): Select RMID and event type.

• QM_CTR (C8Eh): Read counter value.

• ChL3QosEvtCfg0/1: Configure bandwidth sources per event.

5.1.4 Software Workflow

1. Enumerate RMID Support: Use CPUID functions to determine RMID capacity and

supported events.

2. Assign RMIDs: Write desired RMID to PQR_ASSOC MSR for each thread or process.

3. Configure Monitoring Events: Use QM_EVTSEL to select RMID and event type (e.g.,

L3 cache occupancy or memory bandwidth) to monitor.

4. Read Counters: Read QM_CTR to obtain the current value for the selected RMID/event.

Convert the counter value to bytes using the conversion factor from CPUID.

[Public]

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series

Processors

 25

Monitoring Features

5. Interpret Results: Analyze per-RMID resource usage using the counters. Ignore counters

if U bit of QM_CTR is set.

6. Reassign Dynamically: RMIDs can be reassigned at runtime by updating PQR_ASSOC.

5.1.5 Feature Operation

• Initialization: Hardware enumerates RMIDs and supported events.

• Assignment: OS or tool assigns RMIDs to threads via PQR_ASSOC.

• Monitoring: Hardware tracks all RMIDs currently assigned to active threads; counters are

queried via QM_CTR.

• Event Selection: Events like L3 cache occupancy or memory bandwidth are selected via

QM_EVTSEL.

• Counter Reading: QM_CTR provides a 44-bit value, converted to bytes using CPUID-

provided scaling factors.

• Overflow Handling: Counters are large enough to avoid overflow for ~1 hour at peak

bandwidth; periodic reads are recommended.

• Inactive RMIDs: Hardware retains counters for active RMIDs and a limited number for

recently used inactive RMIDs (Least Recently Used [LRU] policy).

• Error Handling: If an invalid RMID or event is selected, the E bit in QM_CTR is set and

the counter value should be ignored. If the U bit is set, the counter value is not valid (e.g.,

RMID not tracked).

5.1.6 Product-Specific RMID Availability

Table 5. Product-Specific RMID Availability

Product Largest RMID Supported for Any Resource:

CPUID 0x0000_000F, EBX (ECX=0)

AMD EPYC 9004 series processors, codenamed “Genoa” 255

AMD EPYC 9005 series processors, codenamed “Turin” 4095

5.1.7 Using pqos for Monitoring

RMIDs are automatically assigned when monitoring starts.

Use the -m or -p option to monitor cores or processes, respectively.

• Core monitoring:

pqos -m all:0,2,4-10

• PID monitoring:

[Public]

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series

Processors

 26

Monitoring Features

pqos -I -p llc:22,25673

Monitoring options:

llc: Last Level Cache occupancy

mbl: Local memory bandwidth

mbr: Remote memory bandwidth

mbt: Total memory bandwidth

all: All available events

5.2 L3 Cache and Memory Bandwidth Monitoring

L3 Cache Monitoring and Bandwidth Monitoring are hardware-based QoS features on AMD

platforms that enable real-time, fine-grained tracking of shared resource usage. These features

operate by associating each logical thread or process with an RMID. The hardware maintains

counters per RMID to track:

• L3 Cache Occupancy: Tracks how much of the L3 cache is occupied by a specific thread,

process, or VM. This tracking helps identify cache-heavy workloads and analyze cache

contention. High occupancy may indicate inefficient cache usage or the need for cache

partitioning.

• Local and Remote Memory Bandwidth: Tracks how much memory bandwidth is used

locally (same Non-Uniform Memory Access [NUMA] node) vs. remotely (other NUMA

nodes). This tracking helps identify inefficient memory access patterns.

• Non-Temporal Writes: Monitors memory writes that bypass the cache, typically used in

streaming workloads. This is tracked separately for local and remote memory.

• Slow Memory Access: Tracks reads to slower memory tiers such as NVDIMM-P, CXL-

attached memory, or peer memory extensions. These accesses are typically higher latency

and lower bandwidth than DDR. Monitoring slow memory usage helps ensure latency-

sensitive workloads are not routed to slow memory unintentionally.

• “Dirty Victim” Traffic: Measures bandwidth consumed by evicted dirty cache lines. High

dirty victim traffic may indicate frequent cache evictions and write-back pressure, which

can degrade performance and increase memory bandwidth usage.

This monitoring capability forms the foundation for performance analysis, workload isolation, and

dynamic resource management in multi-tenant and latency-sensitive environments.

5.2.1 Prerequisites

• Hardware Support: Platform must support PQM, indicated by CPUID 0x0000_0007,

EBX bit 12 (ECX=0).

• RMID Enumeration: Maximum RMIDs supported (typically 4095) is given by CPUID

0x0000_000F, EBX (ECX=0).

[Public]

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series

Processors

 27

Monitoring Features

• Software Support: OS or monitoring software must program PQR_ASSOC MSR and

read counters.

• QoS Domain Awareness: Understanding CCX/L3 topology and thread mapping is

essential.

5.2.2 Interfaces

5.2.2.1 CPUID Enumeration

• 0x0000_000F, EBX (ECX=0): Max_RMID indicates the largest RMID supported.

• 0x0000_000F, EDX bit 1 (ECX=0): Support for L3 cache monitoring.

• 0x0000_000F, EAX bits 7-0 (ECX=1): CounterSize (e.g., 44-bit counters).

5.2.2.2 MSRs and Registers

• PQR_ASSOC (C8Fh): Assign RMID to logical thread.

• QM_EVTSEL (C8Dh): Select RMID and event type.

• QM_CTR (C8Eh): Read counter value.

• ChL3QosEvtCfg0/1: Configure bandwidth sources per event.

5.2.3 Software Setup and Workflow

1. Enumerate RMID Support: Use CPUID to determine RMID capacity and supported

events.

2. Assign RMIDs: Write RMID to PQR_ASSOC MSR for each thread or process.

3. Configure Monitoring Events: Use QM_EVTSEL to select RMID and event type.

4. Read Counters: Use QM_CTR to get usage data; convert using CPUID scaling.

5. Interpret Results: Analyze per-RMID resource usage. Check U and E bits for counter

validity.

6. Reassign Dynamically: RMIDs can be reassigned at runtime by updating PQR_ASSOC.

5.2.4 Using resctrl for Monitoring

5.2.4.1 Last Level Cache (LLC) Occupancy

To monitor LLC (L3 cache) occupancy, use the following file:

/sys/fs/resctrl/<COS>/mon_data/mon_L3_<CCX_id>/llc_occupancy

5.2.4.2 Local DRAM Bandwidth

To measure bandwidth to local DRAM from the L3 domain:

[Public]

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series

Processors

 28

Monitoring Features

script_mbm_local.sh

cd /sys/fs/resctrl/test

m0=$(cat mon_data/mon_L3_00/mbm_local_bytes)

sleep 1

m1=$(cat mon_data/mon_L3_00/mbm_local_bytes)

delta=$((m1 - m0))

mb=$(echo "scale=3; ${delta}/1024/1024" | bc -l)

echo "Local memory bandwidth: ${mb} MB/s"

To measure total DRAM bandwidth: read mbm_total_bytes.

5.2.5 Using pqos for Monitoring

To measure bandwidth to DRAM from the L3 domain:

 # Local bandwidth monitoring

 pqos --mon-core=mbl:0-5

 # Remote bandwidth monitoring

 pqos --mon-core=mbr:0-5

 # Total bandwidth monitoring

 pqos --mon-core=mbt:0-5

5.3 Bandwidth Monitoring Event Configuration (BMEC)

BMEC is an advanced feature that allows users to customize which types of memory traffic are

counted by the memory bandwidth monitoring infrastructure. This feature enables more targeted

monitoring of memory behavior across workloads.

CPUID 0x8000_0020, EBX bit 3 (ECX=0) indicates BMEC support.

When the platform supports BMEC, the following monitoring features are available:

cat /sys/fs/resctrl/info/L3_MON/

mbm_total_bytes_config

mbm_local_bytes_config

The presence of mbm_total_bytes_config and mbm_local_bytes_config indicates that BMEC is

supported and configurable.

BMEC allows users to selectively monitor memory traffic, contributing to:

• mbm_total_bytes: Total memory bandwidth usage

• mbm_local_bytes: Local memory bandwidth usage

[Public]

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series

Processors

 29

Monitoring Features

Each configuration is domain specific and affects all CPUs within that domain. When a

configuration is changed, the bandwidth counters for all RMIDs in that domain are cleared. The

next read returns “Unavailable” until new data is collected.

5.3.1 Supported Event Types

Each configuration is a bitmask where each bit enables a specific type of memory traffic:

Table 6. Supported Event Types

Bit Description

6 Dirty victims from the QoS domain to all memory types

5 Reads to slow memory in the non-local NUMA domain

4 Reads to slow memory in the local NUMA domain

3 Non-temporal writes to the non-local NUMA domain

2 Non-temporal writes to the local NUMA domain

1 Reads to memory in the non-local NUMA domain

0 Reads to memory in the local NUMA domain

Default values:

• mbm_total_bytes_config: 0x7F (all event types enabled).

• mbm_local_bytes_config: 0x15 (local memory reads and writes).

5.3.2 Examples of Use

5.3.2.1 Count Only Reads on Domain 0

To count only read traffic (bits 0, 1, 4, 5), set the bitmask to 0x33:

echo "0=0x33" > /sys/fs/resctrl/info/L3_MON/mbm_total_bytes_config

5.3.2.2 Count Only Slow Memory Reads on Domains 0 and 1

To count only slow memory reads (bits 4 and 5), set the bitmask to 0x30:

echo "0=0x30;1=0x30" >

/sys/fs/resctrl/info/L3_MON/mbm_local_bytes_config

[Public]

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series

Processors

 30

Enforcement Features

Chapter 6 Enforcement Features

6.1 COS-Based Enforcement

COS-based enforcement is a hardware-enabled QoS mechanism that allows system software to

partition and control shared resources such as L3 cache and memory bandwidth by assigning

threads or processes to distinct COS IDs. Each COS can be independently configured with

resource allocation policies, enabling fine-grained control over how resources are distributed

across workloads.

Each logical core uses the PQR_ASSOC MSR to associate a thread with a COS. Enforcement is

applied via cache masks and bandwidth ceilings, allowing the system to throttle or isolate

workloads based on priority or performance requirements.

The impact of dynamically updating MSR values is not instantaneous. After an MSR update, a

delay occurs before the change takes effect, and the update itself may take additional time

depending on current CPU load and memory access pressure.

6.1.1 Interfaces

6.1.1.1 CPUID Enumeration

• 0x0000_0007, EBX bit 15 (ECX=0): Indicates PQE support.

• 0x8000_0020, EDX (ECX=1): COS_MAX indicates maximum number of supported COS

(typically 16).

• 0x8000_0020, EAX (ECX=1): BW_LEN indicates width of bandwidth ceiling field.

6.1.1.2 MSRs and Registers

• PQR_ASSOC (C8Fh): Assigns COS to logical thread.

• L3QOS_BW_CONTROL_n (C000_0200h + n): Bandwidth ceiling per COS.

• L3_MASK_n (C90h + n): Cache allocation mask per COS.

6.1.2 Software Setup and Workflow

1. Enumerate COS Support: Use CPUID to determine available COS IDs and enforcement

capabilities.

2. Assign Threads to COS: Write the desired COS ID to PQR_ASSOC MSR for each thread

or process.

3. Configure Enforcement Policies:

o Set bandwidth ceilings via L3QOS_BW_CONTROL_n.

[Public]

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series

Processors

 31

Enforcement Features

o Configure cache allocation via L3_MASK_n (optional).

4. Monitor and Adjust: Use QoS monitoring features to observe per-COS resource usage

and adjust policies as needed.

5. Reassign Dynamically: Threads can be reassigned to different COS IDs at runtime to

adapt to workload changes.

6.1.3 Feature Operation

• Resource Partitioning: Each COS is configured with independent limits for cache and

bandwidth. Threads assigned to a COS share these resources competitively.

• Enforcement: Hardware enforces limits via

o Throttling (for bandwidth).

o Allocation masks (for cache).

• Feedback Loop: At the end of each feedback interval (e.g., 128 µs), the hardware

evaluates usage and adjusts throttle levels accordingly.

• Unlimited Mode: Setting the U bit in the ceiling register disables enforcement for that

COS.

This mechanism ensures that bandwidth-intensive workloads do not interfere with latency-

sensitive or critical tasks, and it supports dynamic adjustment based on workload behavior.

6.2 L3 Cache Allocation Technology (CAT)

L3 CAT is a hardware-based QoS feature that enables fine-grained partitioning of the shared L3

cache across workloads. These mechanisms allow system software to partition, isolate, and reserve

cache regions for specific workloads, enabling predictable performance and cache residency. By

assigning each logical thread or process to a COS and configuring a Cache Bitmask (CBM) for

each COS via MSRs, the system can control which cache “ways” are accessible to each group.

6.2.1 Prerequisites

• Hardware Support: Platform must support

o PQE, indicated by CPUID 0x0000_0007, EBX bit 15 (ECX=0).

o L3 Cache Allocation Enforcement, indicated by CPUID 0x0000_0010, EDX bit 1

(ECX=0).

• BIOS/SMU Enablement: Both features must be enabled in firmware.

• Operating System/Driver: Must support MSR programming and thread-to-COS

assignment.

• QoS Domain Awareness: Understanding CCX/L3 topology and thread mapping is

required.

[Public]

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series

Processors

 32

Enforcement Features

6.2.2 Interfaces

6.2.2.1 CPUID Enumeration

• 0x0000_0010, EAX bits 4-0 (ECX=1): CBM_LEN indicates length of cache bitmask

(typically 15 for 16 ways).

• 0x0000_0010, EDX bits 15-0 (ECX=1): COS_MAX indicates maximum number of

supported COS IDs.

6.2.2.2 MSRs and Registers

• PQR_ASSOC (C8Fh): Assigns COS to logical threads.

• L3_MASK_n (C90h + n): Per-COS cache allocation mask.

• ChL3QosAllocMask{15-0}: Hardware register backing the MSR.

6.2.3 Software Setup and Workflow

1. Enumerate Support: Use CPUID to determine COS count and cache way availability.

2. Assign Threads to COS: Write COS ID to PQR_ASSOC MSR for each thread.

3. Configure Cache Allocation Masks: Set L3_MASK_n with desired bitmask. Example:

0x00FF for lower 8 ways.

4. Monitor and Adjust: Use QoS tools to observe cache usage and adjust masks or reserved

ranges.

5. Reassign Dynamically: Threads and cache masks can be updated at runtime. Reserved

regions can be reconfigured as workloads change.

6.2.4 Feature Operation

• Cache Partitioning: Each COS is assigned a CBM that defines which L3 cache ways it

can use. Threads in that COS can only fill or evict lines in those ways.

• Competitive Sharing: Overlapping masks result in shared cache ways among COS

groups.

• Isolation: Exclusive cache ways ensure strong isolation between workloads.

• Unlimited Mode: Setting all bits in the mask allows full cache access.

• Dynamic Adjustment: RMID and COS assignments can be modified at runtime.

6.2.5 Using resctrl for L3 CAT

• Mount resctrl and create a COS:

 umount /sys/fs/resctrl

 mount -t resctrl resctrl /sys/fs/resctrl

 cd /sys/fs/resctrl

 mkdir cos0

[Public]

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series

Processors

 33

Enforcement Features

 cd cos0

• View the current schemata:

 cat schemata

• Assign cores 0–3 to the COS:

 echo 0-3 > cpus_list

• Assign a specific PID to the COS:

 echo <pid> tasks

6.2.6 Performance Profiling and Trade-Offs

6.2.6.1 Scenario 1: Default L3 Allocation (Full Cache Access)

Run the Memory Latency Checker (MLC) benchmark on core 2 with default L3 allocation:

./mlc --peak_injection_bandwidth -m2

With the cache bitmask set to 0xFFFF (default), the thread has access to all 16 L3 cache ways.

MLC Results (Application Perspective):

• ALL Reads: 64,189.2 MB/s

• 3:1 Reads-Writes: 79,931.5 MB/s

• 2:1 Reads-Writes: 85,160.9 MB/s

• 1:1 Reads-Writes: 108,459.7 MB/s

• Stream-triad: 94,766.9 MB/s

Unified Memory Controller (UMC) Bandwidth (Memory Controller Perspective):

• Estimated Read Bandwidth: 39.86 GB/s

• Estimated Write Bandwidth: 17.71 GB/s

6.2.6.2 Scenario 2: Restricted L3 Allocation (1 Cache Way)

Restrict the L3 COS bitmask from 0xFFFF to 0x0001:

[Public]

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series

Processors

 34

Enforcement Features

/sys/fs/resctrl/test# echo “L3:0=0001” > schemata

This setting limits the thread to only 1 cache way.

MLC Results (Application Perspective):

• ALL Reads: 52,777.4 MB/s

• 3:1 Reads-Writes: 70,076.6 MB/s

• 2:1 Reads-Writes: 77,455.6 MB/s

• 1:1 Reads-Writes: 97,809.0 MB/s

• Stream-triad: 76,137.8 MB/s

UMC Bandwidth (Memory Controller Perspective):

• Estimated Read Bandwidth: 41.80 GB/s

• Estimated Write Bandwidth: 17.86 GB/s

6.2.6.3 Conclusions

The results indicate that restricting cache access via CAT reduces application-observed memory

bandwidth, especially for read-intensive and mixed workloads.

• With cache access reduced from 16 ways to 1 way, MLC bandwidth—including stream-triad

performance, which simulates real-world memory access patterns—can decrease a relative

amount of up to 20%.

• UMC bandwidth can increase slightly when the cache is restricted. This result is expected:

with fewer cache ways available, more memory accesses bypass the cache and go directly

to DDR, increasing observed bandwidth at the memory controller.

This behavior confirms that cache availability directly influences memory throughput from both

the core and memory perspectives. CAT can thus effectively throttle or isolate workloads by

controlling their cache residency and memory access behavior.

6.3 Memory Bandwidth Allocation (MBA) and Slow

MBA (SMBA)

MBA is a platform-level QoS feature that enables the enforcement of upper bounds on memory

bandwidth consumed by threads or processes within a QoS domain (typically a CCX or L3

domain). By assigning bandwidth ceilings to specific COSs, MBA ensures:

[Public]

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series

Processors

 35

Enforcement Features

• Fair sharing of memory resources and predictable performance for critical workloads.

• Prevention of bandwidth starvation.

Administrators can allocate any COS ID from 0 to 15 and apply it to a resource group to enforce

bandwidth limits.

SMBA is an AMD PQOS feature designed to control and allocate memory bandwidth for slower

memory tiers (such as CXL). It works similarly to MBA but specifically targets slow memory

regions to allocate bandwidth resources and prevents jitter caused by oversubscription of slow

memory in systems with heterogeneous memory.

6.3.1 Use Cases

6.3.1.1 Thread Admission Control

This scenario ensures minimum guaranteed bandwidth for latency-sensitive workloads:

• A background process continuously consumes memory bandwidth.

• When a new process arrives requiring Y GB/s, the system checks if the remaining threads

(e.g., 4 out of 8 in a CCD) can be throttled to (X − Y)/4 GB/s.

o If so, the new process is scheduled accordingly.

o If not, the new process is not scheduled.

6.3.1.2 Fairness Across VMs

Bandwidth allocation is proportional to the number of cores used by each VM, which:

• Prevents one VM from monopolizing memory bandwidth and degrading others.

• Enables multi-tenant fairness in virtualized environments.

6.3.2 Prerequisites

• Hardware Support: Platform must support MBA, indicated by CPUID function

0x8000_0020, EBX bit 1 (ECX=0). Platform support for SMBA is indicated by CPUID

function 0x8000_0020, EBX bit 2 (ECX=0).

• BIOS/SMU Enablement: MBA (or SMBA) must be enabled in BIOS or firmware.

• Operating System/Driver: The OS must support MSR programming and thread-to-COS

assignment. The kernel must be built with the CONFIG_X86_CPU_RESCTRL flag.

• QoS Domain Awareness: Understanding the system’s CCX/L3 topology and how threads

are mapped to COS is required.

[Public]

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series

Processors

 36

Enforcement Features

6.3.3 Interfaces

6.3.3.1 CPUID Enumeration

• 0x8000_0020, EBX bit 1 (ECX=0): Indicates MBA support.

• 0x8000_0020, EAX (ECX=1): BW_LEN field gives the width of the bandwidth ceiling

field for MBA.

• 0x8000_0020, EDX (ECX=1): COS_MAX field gives the maximum number of supported

COS for MBA.

• 0x8000_0020, EBX bit 2 (ECX=0): Indicates SMBA support.

• 0x8000_0020, EAX (ECX=2): BW_LEN field gives the width of the bandwidth ceiling

field for SMBA.

• 0x8000_0020, EDX (ECX=2): COS_MAX field gives the maximum number of supported

COS for SMBA.

6.3.3.2 MSRs and Registers

• L3QOS_BW_CONTROL_n (MSR C000_0200h + n) for MBA and

L3QOS_SMBW_CONTROL_n (MSR C000_0280h + n) for SMBA: Per-COS bandwidth

ceiling register.

o U: Set to 1 for unlimited bandwidth.

o BW: Define bandwidth limit in 1/8 GB/s increments.

• PQR_ASSOC (MSR C8Fh): Assigns threads to COS.

6.3.4 Software Interfaces

MBA is exposed to user space via the Linux kernel and the resctrl filesystem. To enable MBA, the

kernel must be built with CONFIG_X86_CPU_RESCTRL.

6.3.4.1 Key Files in resctrl Used for Bandwidth Monitoring

• min_bandwidth: Minimum bandwidth percentage per CPU model.

• bandwidth_gran: Allocation granularity; values round to nearest control step.

• delay_linear: Linear or non-linear delay scaling.

• ctrl_hw_id: Debug-only field showing hardware COS ID.

MBA and SMBA use absolute bandwidth values. Example ceiling values:

• 1 = 128 MB/s.

• 16 = 2 GB/s.

• 2048 = 256 GB/s.

To set MBA or SMBA bandwidth via schemata (using MB for MBA) with example values:

[Public]

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series

Processors

 37

Enforcement Features

echo "MB:1=16" > schemata

echo "SMBA:0=32" > schemata

The MBA example sets 2 GB/s for cache ID 1, while the SMBA example sets 4 GB/s for cache ID

0. Continuing with these examples, cat schemata might show (maximum value is 2048):

MB:0=2048;1=16;2=2048;3=2048

SMBA:0=32;1=2048;2=2048;3=2048

6.3.4.2 Resource Group Configuration

Resource groups are directories under /sys/fs/resctrl. The root group owns all tasks and CPUs

initially.

• CTRL_MON groups: Created under root to define resource allocations.

• MON groups: Created under mon_groups to monitor subsets of tasks in a CTRL_MON

group.

Removing a CTRL_MON group also removes its MON groups. MON groups can be moved

between CTRL_MON parents (except those monitoring CPUs). Renaming is the only other

supported move.

6.3.4.3 Group Files and Controls

• tasks: Assign PIDs to the group. Failures abort the operation but retain successful

assignments.

• cpus / cpus_list: Assign logical CPUs using bitmasks or ranges. MON groups must

inherit CPUs from their parent.

• schemata: Defines resource allocations. For memory bandwidth, the format is:

MB:<cache_id>=<bw_MiBps> (e.g., MB:1=16 for 2 GB/s).

6.3.4.4 Bandwidth Monitoring Configuration

To control the bandwidth that is counted for throttling, set mbm_total_bytes_config in

info/L3_MON. It has a 7-bit value:

• Bit 0: Reads to local NUMA.

• Bit 1: Reads to non-local NUMA.

• Bits 2–6: Non-temporal writes, reads to slow memory, and dirty victims.

Examples:

• 0x7F: Monitor all traffic.

[Public]

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series

Processors

 38

Enforcement Features

• 0x01: Monitor only local NUMA reads.

6.3.5 Software Setup and Workflow

1. Enumerate MBA Support: Use CPUID to confirm MBA (or SMBA) availability and

determine COS_MAX and BW_LEN.

2. Assign Threads to COS: Use the PQR_ASSOC MSR to assign each thread to a COS.

3. Program Bandwidth Ceilings: For each COS, write the desired bandwidth limit to

L3QOS_BW_CONTROL_n for MBA or L3QOS_SMBW_CONTROL_n for SMBA.

Example: To set a 32 GB/s limit, write BW = 256 (256 × 1/8 GB/s = 32 GB/s).

4. Monitor and Adjust: Use performance counters and QoS monitoring features to observe

bandwidth usage and adjust ceilings as needed.

6.3.6 Feature Operation

MBA (and similarly SMBA) operates as a closed-loop control system that tracks memory

bandwidth usage per COS and dynamically adjusts throttle levels to enforce bandwidth ceilings. It

ensures predictable performance by limiting memory access when usage exceeds configured

thresholds.

• Bandwidth Tracking: Hardware counters monitor memory bandwidth usage per COS,

including reads/writes to DRAM, non-temporal writes, and victim traffic.

• Ceiling Programming: Each COS is assigned a bandwidth ceiling via

L3QOS_BW_CONTROL_n for MBA or L3QOS_SMBW_CONTROL_n MSR for

SMBA, specified in 1/8 GB/s units (e.g., 256 = 32 GB/s).

• Periodic Evaluation: At the end of each feedback period (e.g., every 128 µs), the system

compares actual usage against the ceiling.

• Throttle Level Adjustment: If usage exceeds the ceiling, throttle levels are increased—

limiting outstanding memory operations, delaying token returns, and controlling write-

back context release. If usage is below the ceiling, throttling is relaxed.

• L2 Enforcement: Throttle levels are enforced at the L2 cache by restricting memory

instruction buffers and delaying memory-related actions.

• Unlimited Mode: Setting the U bit in the ceiling register disables enforcement for that

COS, allowing unrestricted bandwidth.

• Dynamic Adjustment: Ceilings and COS assignments can be modified at runtime to adapt

to changing workload demands.

• Monitoring: Bandwidth usage and throttle levels can be observed via performance

counters and QoS MSRs.

6.3.7 Performance Profiling and Trade-Offs

This test evaluates bandwidth scaling behavior under MBA enforcement.

[Public]

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series

Processors

 39

Enforcement Features

Test Setup:

• Two processes:

o P1 runs on 6 cores from CCX0.

o P2 runs on 2 cores from CCX1.

• Both processes are assigned to the same COS.

• PIDs are added to /sys/fs/resctrl/COSn/tasks and cores to

/sys/fs/resctrl/COSn/cpus_list.

• Bandwidth ceilings vary along the X-axis.

Plotting:

Observations and Inferences:

• P1 (teal line)

Bandwidth increases steadily with MBA value until around x = 168, after which it

plateaus. This plateau does not indicate memory saturation, but rather that P1 becomes

CCX-bound—limited by the bandwidth capacity of its CCX interface. Further increases in

MBA do not improve throughput beyond this architectural ceiling.

• P2 (blue line)

Bandwidth increases slightly until x = 63, then flattens, confirming that P2 is core-bound.

Its performance is constrained by compute resources rather than memory bandwidth, and

additional bandwidth allocation has no effect past this point.

• P1 + P2 (green line)

Combined bandwidth scales similarly to P1 but remains consistently higher due to P2’s

contribution. However, the curve does not represent the system’s maximum bandwidth

[Public]

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series

Processors

 40

Enforcement Features

capacity. Instead, it reflects the sum of P1’s CCX bandwidth limit and P2’s core

throughput. If additional cores or CCXs were active, the system could achieve higher

aggregate bandwidth. This highlights that bandwidth ceilings are shared within a QoS

domain (CCX), but not across different CCXs.

• Vertical lines

o x = 63: Marks the inflection point where P2 stops responding to increased bandwidth,

indicating core-bound behavior.

o x = 168: Marks the saturation point for P1’s CCX interface, not the system-wide

bandwidth limit.

Conclusions:

• The plot illustrates effective MBA scaling up to architectural limits specific to each QoS

domain.

• It distinguishes between core-bound and CCX-bound workloads.

• It emphasizes that bandwidth ceilings are enforced per CCX and that combining workloads

across CCXs can increase total bandwidth without contention.

• This behavior guides optimal bandwidth allocation strategies and validates system-level

QoS enforcement.

6.4 Code and Data Prioritization (CDP)

CDP is a hardware-enabled QoS feature that allows the system to distinguish between instruction

(code) and data cache lines in the shared L3 cache and allocate cache resources accordingly. By

enabling CDP, the system can assign separate cache allocation masks (CBMs) for code and data,

enabling differentiated cache usage policies.

Without CDP, both code and data share the same cache region, which can lead to cache

contention. For example, data-heavy operations may evict frequently used instructions, increasing

cache misses and degrading performance. CDP solves this problem by assigning two independent

bitmasks per COS—one for code and one for data—to ensure that critical instructions remain

resident in the L3 cache even during high data traffic.

6.4.1 Prerequisites

• Hardware Support: CDP must be supported, indicated by CPUID 0x0000_0010, ECX bit

2 (ECX=1).

• BIOS/SMU Enablement: CDP must be enabled in BIOS or firmware.

• Operating System/Driver: OS must support MSR programming and thread-to-COS

assignment.

[Public]

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series

Processors

 41

Enforcement Features

• QoS Domain Awareness: Understanding CCX/L3 topology and thread mapping is

required.

6.4.2 Interfaces

6.4.2.1 CPUID Enumeration

• 0x0000_0010, ECX bit 2 (ECX=1): Indicates CDP support.

• 0x0000_0010, EAX bits 4-0 (ECX=1): CBM_LEN indicates cache bitmask length

(typically 15 for 16 ways).

• 0x0000_0010, EDX bits 15-0 (ECX=1): COS_MAX indicates maximum supported COS

IDs (typically 16).

6.4.2.2 MSRs and Registers

• PQR_ASSOC (C8Fh): Assigns COS to logical thread.

• L3_MASK_n (C90h + n): Per-COS cache allocation mask; interpreted as code/data pair

when CDP is enabled.

• L3_QOS_CFG1 (C81h): Enables CDP mode at L3 level.

6.4.3 Software Setup and Workflow

1. Enumerate CDP Support: Use CPUID to confirm CDP availability and determine cache

way count.

2. Enable CDP: Set CDP bit in L3_QOS_CFG1 register.

3. Assign Threads to COS: Use PQR_ASSOC MSR to assign threads. With CDP enabled,

COS values are shifted and concatenated with a code/data bit.

4. Configure Cache Allocation Masks: Set L3_MASK_n for each COS with separate masks

for code and data.

5. Monitor and Adjust: Use QoS monitoring tools to observe cache usage and adjust masks

as needed.

6. Reassign Dynamically: Threads and masks can be updated at runtime for workload-aware

cache management.

6.4.4 Feature Operation

• Code/Data Partitioning: CDP interprets COS values as code/data pairs, allowing separate

cache masks for each stream.

• Competitive Sharing: Overlapping masks result in shared cache ways among COS

groups.

• Isolation: Exclusive cache ways ensure strong isolation between code and data streams.

• Unlimited Mode: Setting all bits in the mask allows full cache access.

• Dynamic Adjustment: Masks and COS assignments can be modified at runtime.

[Public]

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series

Processors

 42

Enforcement Features

• Consistency Requirement: CDP must be consistently enabled across L2 and L3 cache

domains.

6.4.5 Using resctrl for CDP

umount /sys/fs/resctrl

mount -o cdp -t resctrl resctrl /sys/fs/resctrl

cd /sys/fs/resctrl

mkdir test

cd test

cat schemata

You should see L3CODE and L3DATA entries in the schemata file. To restrict data cache ways:

echo 0-3 > cpus_list

echo L3DATA:0=0001 > schemata

[Public]

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series

Processors

 43

Conclusion

Chapter 7 Conclusion

As computing environments grow increasingly complex and dynamic, AMD’s commitment to

advancing the PQOS extension remains central to enabling predictable and efficient system

behavior. The current generation of PQOS features available on AMD EPYC 9004 and 9005

series processors provides robust mechanisms for resource control—including cache partitioning,

memory bandwidth enforcement, and code/data prioritization—that are accessible through

standard Linux interfaces.

Looking ahead, AMD continues to evolve its PQOS capabilities to meet the demands of

increasingly complex and heterogeneous computing environments. Future generations of EPYC

processors will introduce expanded feature sets designed to offer even finer-grained control,

enhanced observability, and smarter resource orchestration. These advancements will further

empower developers and system architects to optimize performance, enforce workload boundaries,

and ensure consistent quality of service across diverse deployment scenarios.

AMD remains committed to enabling open, scalable, and intelligent platform management through

PQOS and encourages early adoption and feedback to shape the next wave of innovation.

[Public]

	Chapter 1 Introduction
	1.1 Intended Audience
	1.2 Definitions
	1.3 Reference Documents
	1.4 Background
	1.5 Benefits

	Chapter 2 PQOS Feature Overview
	2.1 Feature Categories
	2.1.1 Monitoring Technologies
	2.1.2 Enforcement Technologies

	2.2 Key Concepts
	2.2.1 Resource Monitoring ID (RMID)
	2.2.2 Class of Service (COS) ID
	2.2.3 resctrl Filesystem

	Chapter 3 Use Cases
	3.1 Cloud Data Center Optimization
	3.2 Memory Oversubscription Jitter Reduction
	3.3 Hybrid Cloud Networking Protection
	3.4 Industrial Control System Optimization
	3.5 Data Center Networking Infrastructure Optimization
	3.6 Gaming Platform Optimization

	Chapter 4 Software Enablement Overview
	4.1 CPUID-Based Feature Detection and Enumeration
	4.2 Kernel Configuration
	4.3 resctrl Filesystem Setup
	4.4 MSR Interfaces
	4.5 User-Space Tools
	4.6 Feature Detection via dmesg

	Chapter 5 Monitoring Features
	5.1 RMID-Based Monitoring
	5.1.1 RMID Pinning
	5.1.2 Prerequisites
	5.1.3 Interfaces
	5.1.3.1 CPUID Enumeration
	5.1.3.2 MSRs and Registers

	5.1.4 Software Workflow
	5.1.5 Feature Operation
	5.1.6 Product-Specific RMID Availability
	5.1.7 Using pqos for Monitoring

	5.2 L3 Cache and Memory Bandwidth Monitoring
	5.2.1 Prerequisites
	5.2.2 Interfaces
	5.2.2.1 CPUID Enumeration
	5.2.2.2 MSRs and Registers

	5.2.3 Software Setup and Workflow
	5.2.4 Using resctrl for Monitoring
	5.2.4.1 Last Level Cache (LLC) Occupancy
	5.2.4.2 Local DRAM Bandwidth

	5.2.5 Using pqos for Monitoring

	5.3 Bandwidth Monitoring Event Configuration (BMEC)
	5.3.1 Supported Event Types
	5.3.2 Examples of Use
	5.3.2.1 Count Only Reads on Domain 0
	5.3.2.2 Count Only Slow Memory Reads on Domains 0 and 1

	Chapter 6 Enforcement Features
	6.1 COS-Based Enforcement
	6.1.1 Interfaces
	6.1.1.1 CPUID Enumeration
	6.1.1.2 MSRs and Registers

	6.1.2 Software Setup and Workflow
	6.1.3 Feature Operation

	6.2 L3 Cache Allocation Technology (CAT)
	6.2.1 Prerequisites
	6.2.2 Interfaces
	6.2.2.1 CPUID Enumeration
	6.2.2.2 MSRs and Registers

	6.2.3 Software Setup and Workflow
	6.2.4 Feature Operation
	6.2.5 Using resctrl for L3 CAT
	6.2.6 Performance Profiling and Trade-Offs
	6.2.6.1 Scenario 1: Default L3 Allocation (Full Cache Access)
	6.2.6.2 Scenario 2: Restricted L3 Allocation (1 Cache Way)
	6.2.6.3 Conclusions

	6.3 Memory Bandwidth Allocation (MBA) and Slow MBA (SMBA)
	6.3.1 Use Cases
	6.3.1.1 Thread Admission Control
	6.3.1.2 Fairness Across VMs

	6.3.2 Prerequisites
	6.3.3 Interfaces
	6.3.3.1 CPUID Enumeration
	6.3.3.2 MSRs and Registers

	6.3.4 Software Interfaces
	6.3.4.1 Key Files in resctrl Used for Bandwidth Monitoring
	6.3.4.2 Resource Group Configuration
	6.3.4.3 Group Files and Controls
	6.3.4.4 Bandwidth Monitoring Configuration

	6.3.5 Software Setup and Workflow
	6.3.6 Feature Operation
	6.3.7 Performance Profiling and Trade-Offs

	6.4 Code and Data Prioritization (CDP)
	6.4.1 Prerequisites
	6.4.2 Interfaces
	6.4.2.1 CPUID Enumeration
	6.4.2.2 MSRs and Registers

	6.4.3 Software Setup and Workflow
	6.4.4 Feature Operation
	6.4.5 Using resctrl for CDP

	Chapter 7 Conclusion

