AMD PQOS White Paper for
AMD EPYC™ 9()(04 and 9005
Series Processors

Advanced Micro Devices &\

[Public]

Disclaimer

The information presented in this document is for informational purposes only and may contain technical
inaccuracies, omissions, and typographical errors. The information contained herein is subject to change and may
be rendered inaccurate for many reasons, including but not limited to product and roadmap changes, component and
motherboard version changes, new model and/or product releases, product differences between differing
manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any computer system has risks of
security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no obligation to update or
otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make
changes from time to time to the content hereof without obligation of AMD to notify any person of such revisions
or changes.

THIS INFORMATION IS PROVIDED “AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES
WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY
INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD
SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE
LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER
CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN,
EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

AMD, the AMD Arrow logo, AMD EPYC, and combinations thereof are trademarks of Advanced Micro Devices,
Inc. Other product names used in this publication are for identification purposes only and may be trademarks of their
respective companies. CXL is a trademark of Compute Express Link Consortium, Inc. Linux® is the registered
trademark of Linus Torvalds in the U.S. and other countries. Ubuntu and the Ubuntu logo are registered trademarks
of Canonical Ltd.

© 2025 Advanced Micro Devices, Inc. All rights reserved.

[Public]

AMDZ1

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series

Processors

Contents

Chapter 1 INtroduction........eececceresevercscsnrcssnencssnnncssssscsssesssnseces 9
1.1 INteNAEd AUIENCEeeeeiiieeiiiecee ettt e e e e et e e s e e e s bae e sbaeessseeesseeennns 9
1.2 DETINITIONS .uvitieiieiiiiiieiteeie ettt ettt ettt ettt sttt et s bt et eate s bt enbeestesbeenbeennesaeens 9
1.3 Reference DOCUMENLSccouiiiiiiiiiiiieeieeee ettt sttt e 10
1.4 Back@roUnd........ccoooiiiiiiiiieiieeeee e ettt et sttt enre s 11
1.5 BENETIS ..t sttt ettt e 11
Chapter 2 PQOS Feature Overview........ccccceereneecscneccnns 12
2.1 FEature Cat@@OTICSccuviieiiieeeiieeiieeeciiteeeteeeite e st eeeteeestaeesbaeesssaeessseeesssaeessseeesseensseens 12
2.1.1 Monitoring TeChNOLOZIES.........ccueeiiieriieiiieiie ettt ebe e 12
2.1.2 Enforcement TeChNOIOZIESccecuviiiiiiieiiieciee e 12

2.2 KEY CONCEPLS ...ttt ettt et e et e et e e s abeeesabeeessbeeesabeeesseesnnneean 13
2.2.1 Resource Monitoring ID (RMID)ccueiiiiiiiiiiieciieeee e 13
2.2.2 Class of Service (COS) IDcuuviiiiiieiee e e e 13
223 TESCHIT FlESYSIEM ...t 13
Chapter 3 USe CaSES...ccirrrerirsrercssnrcssnressssrsssssssssssssssssssssssssnns 14
3.1 Cloud Data Center OPtimiZationccueeeeveeerieeesieeesieeesieeeesereesseeesseeesseeesseeesseeanns 14
3.2 Memory Oversubscription Jitter Reduction............cccecvvieeiiiriieriiiniieiiecieeeese e 14
33 Hybrid Cloud Networking Protection...........cccueeeciieiiiieciieeeeecee e 15
3.4 Industrial Control System OptimiZationcccueevueerieeiiienieeieenieeieeseeeneeseeeveenseeens 15
3.5 Data Center Networking Infrastructure Optimizationccceeevveeecveeerieeenveeerree e 15
3.6 Gaming Platform OptimiZationccceeeiieiiieriieiiienie ettt ereesee e esseesreesaee e 16
Chapter 4 Software Enablement Overviewccceecveeecsccnnenees 17
4.1 CPUID-Based Feature Detection and Enumerationc..ccoceevevienienenienennieneeniene 17
4.2 Kernel ConfigUIationc.ccecviieiiieeiiieeieeeciee et eee e e e s aee e s aeeessbeeesnseeesseeenaeeas 18
4.3 1ESCL] FIleSYSteM SETUPeeiviiiiieiiieiiece et e 18
4.4 MSR INEEITACES ...uveiiiiiiieeiie ettt sttt ettt sb e et e e saeean 19
4.5 USET-SPACE TOOIS ...c.ueiiiiiiiietieeie ettt et ettt e e te e b e e beesaesnseas 20
4.6 Feature Detection vVIa dMESE.......cccuiiiiiieiiiiieeiiieeiee ettt svee e sveeesre e e seaeeesnseeeenee s 21
Chapter 5 Monitoring Features.......cc.cceecerecnensueenne 22

Contents 3

[Public]

AMDZ1

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series

Processors
5.1 RMID-Based MONITOTINGcccueeeriuieeiiieeiiieesieeesireeeiteeeteeeseeeesseeessseeessseessseesnsseesseens 22
5.1.1 RMID PINNING ...oovviieiiiiiieeiieeie ettt ettt et s e eteesaeebeeesaeeseeenseenseessseensnas 23
5.1.2 PIEr@QUISIEES ...eivviiiiiieieiie ettt ettt ettt tee e et e e st eesbeeessbeeesseessaeeensaeesnnaeenns 24
5.1.3 INERITACES ..ottt sttt 24
5.1.4 Software WOrKflOWccueiieiiiieeeee et 24
5.1.5 FEature OPeration........ccueecuieiiieiiieiieeiieeie ettt ee et e sae et e eaeesseesnaeenseeenseenseas 25
5.1.6 Product-Specific RMID Availabilityccccoooiieriiiieiiieeceeecee e 25
5.1.7 UsIng pqos fOr MONIEOTINGccuvieriierieeiienieetieeieeieeseeeeaeeseeeereeseeesseesseeesseensnes 25
5.2 L3 Cache and Memory Bandwidth Monitoringcccccveeeciieeeieeeriee e 26
5.2.1 PrErEQUISIEES ..ouvieiieeiiieiie ettt ettt et e et e et e e etee e b e eseesnseeseeesseenseas 26
5.2.2 FI LTS o ol TSRS 27
5.2.3 Software Setup and Workflowccoooieiiiiiiiniieieeeteeeeee e 27
5.2.4 Using resctr]l for MONIEOTINGveeeuiieeiiieeiiieciieeeteeeeeeeeeeetee e eaeeeeaeeesae e 27
5.2.5 UsIng pqos fOr MONIEOTINGcccvieriierieeiienieeitieeieeieeseeeeteeseeeereesseesseesseeenseesnes 28
53 Bandwidth Monitoring Event Configuration (BMEC)ccccoeoiiiiiiiiniieeeeeeeee, 28
5.3.1 SUpported EVEnt TYPESccvieeiieiieeieeiteeie ettt ettt sv e 29
5.3.2 EXaMPIES OF USC...ccuviiiiiiieiie ettt ettt e e eeaaeeeaaeeennaee e 29
Chapter 6 Enforcement Features........cccceeeeuerercunccnnns 30
6.1 COS-Based ENfOrCemMENtccecuiieiiiiieeiieeeiie ettt e sive e e are e et e e e e saneeas 30
6.1.1 INERITACES ..ottt sttt 30
6.1.2 Software Setup and WoOrkflowcccvieviiiiiiiiiieeee e 30
6.1.3 FEature OPeration........c.c.eccuieriieiiieiieeieeeie ettt e eeetee e eteeeveesseesnbeenseessseennees 31
6.2 L3 Cache Allocation Technology (CAT)....c.coouiiiiiiiiiieeeeeeee e 31
6.2.1 PrEIEQUISIEES ..ovvieeiieiieiie ettt ettt e s e et e et e et e e esbeeseesnseeseessseenseas 31
6.2.2 INEETTACES ..ttt 32
6.2.3 Software Setup and Workflowc.c.oooieriiiiiiiiie e 32
6.2.4 Feature OPerationc.eeecvieeiiieeiiieerieeeseeeeiteeeiteeeieeeeaeeessaeeesaseeesaeesnaeessneenns 32
6.2.5 Using reSctr]l for L3 CAToooiieeeeee et 32
6.2.6 Performance Profiling and Trade-Offs...........cccovveriiiieiiienieeeeeee e 33
6.3 Memory Bandwidth Allocation (MBA) and Slow MBA (SMBA)........ccccceviiivienieenen. 34
6.3.1 USE CASES ettt ettt ettt ettt e et e e it e e bt e s bt e e sbteesbeeesneee e 35

Contents 4

[Public]

AMDZ1

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series

Processors
6.3.2 PrOTEQUISIEES ..evvieeiiie et ettt ettt et e et e e e e et e e e taeeeaeeesssaeessseeennsaeennnas 35
6.3.3 INERIEACES ...ttt st eaeas 36
6.3.4 SOftWare INtEITACESooiuiiiiieiiieee e e 36
6.3.5 Software Setup and WorkfloW........cccoeeouiiiiiiiiiiiieieceeeece e 38
6.3.6 FEature OPeration.........c.ceecvieeiiieeiieeciieeeiteesteeesteeesteeesaaeesaaeesaaeesssaeessseeenssaeensnes 38
6.3.7 Performance Profiling and Trade-Offscccooviiiiiiniiniiecceeee e 38
6.4 Code and Data Prioritization (CDP)ceeoiiiiiiiiieiieeieeeeee et 40
6.4.1 PrOIEQUISIEES ...vveitieiieeii ettt ettt ettt ettt ettt e et e et eestaesnbeesbeeesseensaeenseeseeans 40
6.4.2 | §3 LTS o o USSR 41
6.4.3 Software Setup and WorkfloW........cccooeoiieriiiiiiniieieceeeceee e 41
6.4.4 FEature OPeration.........c.ueeevieeiiieeeieeeiieeeiteeeieeesteeesve e e seaeeesaeesaaeesssaeessseeensseeensns 41
6.4.5 UsINg 1eSCrl fOr CDP......ooviiiiiiiicieee et 42
Chapter 7 CONCIUSION a..cciieiruericcscsnnrecsssnnrcsssssssecsssssssssssssssssses 43

Contents 5

[Public]

AMDZ\
69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series
Processors
List of Figures
Figre 1. PQR.ASSOC MSR ...oovoooieeeeeseeeeeeeeeeeeeeeeees e eses e esee s eses e esesseeseseeesesseeseseeeseseeene 19
Figure 2. QM _EVTSEL and QM _CTR MSRSccuiiiiiiieciieeeeeeete et 20
Figure 3. RMID-Based MONITOTING.coutertirierieierienteeie sttt ettt st et e e st esbe et seeenae e 22

List of Figures 6

[Public]

AMDZ\
69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series
Processors
List of Tables
Table 1. DEINITIONSouiiiiiiiiieii ettt ettt ettt et e et e et e e teeeebeeseeenseeseeenseenseeennes 9
Table 2. Reference DOCUMENLS...........cciiiiiiiiiiiiie ettt et e e ebeeesseeeensaeens 10
Table 3. CPUID-Based Feature Detection and Enumerationcccooeeeiieriiiiiienieeiieeie e, 17
Table 4. MISR INtEITACESc.vviiiiiieiiie ettt ettt e e e e e e ebeeeenreeens 19
Table 5. Product-Specific RMID Availability...........cccoooiiiiiiiiiiiiiiieiicecee e 25
Table 6. SUPPOTted EVENT TYPES....ccviiiiiiiiiiie et eiraeens 29

List of Tables 7

[Public]

AMDZ\
69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series
Processors
Revision History
Date Revision Description
November 2025 1.00 Initial release
Revision History 8

[Public]

AMDZ

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series
Processors

Chapter 1 Introduction

Modern computing platforms face increasing pressure to deliver consistent performance across
diverse workloads, especially in multi-tenant and latency-sensitive environments. AMD’s
Platform Quality of Service (PQOS) architecture addresses this challenge by providing hardware-
enforced mechanisms for monitoring, allocating, and enforcing shared resources such as last level
(L3) cache and memory bandwidth.

The purpose of this document is to introduce the PQOS extension that is already available on
AMD platforms and to demonstrate how to use its features to achieve predictable performance,
workload isolation, and fairness in shared-resource systems.

These PQOS features are available on AMD EPYC™ 9004 series processors, codenamed
“Genoa,” and AMD EPYC 9005 series processors, codenamed “Turin,” enabling customers to
deploy them for applications that include these products.

1.1 Intended Audience

This white paper is intended for system architects, performance engineers, virtualization
specialists, and platform software developers working in cloud, data-center, edge, and embedded
environments.

1.2 Definitions

The following table defines the terms and acronyms that are used in this document.

Table 1. Definitions

Term Description
ABMC Assignable Bandwidth Monitoring Counters
BMEC Bandwidth Monitor Event Configuration
CAT Cache Allocation Technology
CBM Cache Bitmask
CCX Core complex
CDP Code and Data Prioritization
COS Class of Service
CMT Cache Monitoring Technology
CXL Compute Express Link
L2 cache Level 2 cache

Introduction

[Public]

AMDZ

69127 Rev. 1.00 November 2025

AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series

Processors

Term Description
L3 cache Level 3 cache (last level cache)
LLC Last level cache (L3 cache)
LRU Least Recently Used
MBA Memory Bandwidth Allocation
MBM Memory Bandwidth Monitoring
MLC Memory Latency Checker
NUMA Non-Uniform Memory Access
PQE PQOS Enforcement
PQM PQOS Monitoring
PQOS Platform Quality of Service
RMID Resource Monitoring ID
SDCIAE Smart Data Cache Injection Allocation Enforcement
SMBA Slow Memory Bandwidth Allocation
UMC Unified Memory Controller
VM Virtual machine

1.3

Reference Documents

The following table lists official documentation and technical resources that support AMD PQOS
features, including architectural specifications, software enablement guides, and performance

analysis tools.

Table 2. Reference Documents

Reference Publication # Link
AMDG64 Architecture 24593 https://docs.amd.com/search/all?query=24593 &content-
Programmer’s Manual, Volume lang=en-US
2: System Programming
Smart Data Cache Injection 58725 https://docs.amd.com/search/all?query=58725&content-

(SDCI) White Paper

lang=en-US

Linux® resctrl options

https://kernel.org/doc/Documentation/x86/resctrl.rst

Ubuntu® manpage: pqos, pqos-
msr, pqos-os

https://manpages.ubuntu.com/manpages/noble/man8/pqos-
0s.8.html

10

Introduction

[Public]

AMDZ

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series
Processors

1.4 Background

As part of our ongoing innovation roadmap, AMD continues to evolve the PQOS architecture with
additional advanced features. These enhancements are currently a work in progress and aim to
further expand the capabilities of resource control, monitoring granularity, and enforcement
precision. By showcasing real-world use cases and performance profiling data, this paper
demonstrates the practical benefits of AMD PQOS features and encourages customers to explore
their use in production environments.

1.5 Benefits

AMD PQOS features, including cache and memory bandwidth control, are fully accessible
through standard Linux interfaces such as the resctrl filesystem and the pqos tool. No proprietary
software, vendor-specific utilities, or additional platform integration are required. These tools offer
a simple and portable way to configure and monitor quality of service (QoS) policies across
workloads. They enable fine-grained control over resource usage, allowing system administrators
and developers to isolate workloads, enforce service-level guarantees, and reduce performance
jitters.

11

Introduction

[Public]

AMDZ

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series
Processors

Chapter 2 PQOS Feature Overview

To meet the growing complexity of modern workloads, systems must balance performance
guarantees with equitable resource distribution and responsiveness to real-time demands. AMD’s
PQOS extension equips platforms with tools to observe, manage, and regulate shared resources
such as cache and memory bandwidth, ensuring that critical applications maintain consistent
behavior under varying system loads.

PQOS is designed to operate in domains where resource contention is most critical, such as L3
cache, I/0 subsystems, and memory bandwidth. A PQOS domain is a group of system components
that share resources, such as a set of processor cores, memory controllers, or cache slices.

Goals of AMD PQOS include:

e Monitor usage of shared resources per thread and process

o Enforce resource limits to ensure fairness and performance isolation
e Allocate resources dynamically based on workload priority

e Support real-time and latency-sensitive applications

e Overall: improve performance and throughput

For details about PQOS, see the “Platform Quality of Service (PQOS) Extension” chapter of
AMDG64 Architecture Programmer’s Manual, Volume 2, publication #24593.

2.1 Feature Categories

AMD PQOS includes both monitoring and enforcement technologies.
2.1.1 Monitoring Technologies

e Cache Monitoring Technology (CMT)
e Memory Bandwidth Monitoring (MBM)
e Bandwidth Monitor Event Configuration (BMEC)

2.1.2 Enforcement Technologies

e Cache Allocation Technology (CAT)

e Memory Bandwidth Allocation (MBA)

e Code and Data Prioritization (CDP)

e Slow Memory Bandwidth Allocation (SMBA)

e Smart Data Cache Injection Allocation Enforcement (SDCIAE)

12
PQOS Feature Overview

[Public]

AMDZ

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series
Processors

These features are enabled via architectural tags and hardware registers and are managed by the
OS or hypervisor using interfaces like model-specific registers (MSRs), CPUID functions, and the
resctrl filesystem.

NOTE: For details about SDCI, see Smart Data Cache Injection (SDCI) White Paper, publication
#58725. For details about SDCIAE, see the “Platform Quality of Service (PQOS) Extension”
chapter of AMDG64 Architecture Programmer’s Manual, Volume 2, publication #24593.

2.2 Key Concepts
Three foundational elements are essential for understanding PQOS features.
2.2.1 Resource Monitoring ID (RMID)

RMIDs are numeric tags assigned to logical threads or processes to track their usage of shared
resources. PQOS allows the user to measure metrics like L3 cache occupancy and memory
bandwidth with per-RMID granularity, enabling flexible grouping of hardware threads. RMIDs
are configured via the PQR_ASSOC MSR.

e RMID monitoring is non-intrusive and has no hardware overhead
e RMIDs can be dynamically reassigned
e Monitoring granularity is per-thread or per-process

2.2.2 Class of Service (COS) ID

COS IDs enforce resource allocation policies. Threads assigned to a COS share the resource limits
defined for that class. COS IDs are configured via MSRs such as L3 MASK n (for cache) and
L3QOS_BW_CONTROL n (for bandwidth).

e Upto 16 COS IDs per system
e COS IDs are used for partitioning and throttling
o Enforcement is hardware-driven and may be based on feedback loops

2.2.3 resctrl Filesystem

resctrl is a Linux kernel interface that exposes PQOS features to user space. It allows
administrators to:

o Create resource groups

e Assign tasks or CPUs to groups

e Configure cache and bandwidth allocation
e Monitor resource usage

13
PQOS Feature Overview

[Public]

AMDZ

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series
Processors

Chapter 3 Use Cases

AMD PQOS technologies are engineered to solve real-world performance and predictability
challenges across diverse computing environments from hyperscale cloud data centers to latency-
critical industrial systems. This chapter summarizes key use cases that illustrate how PQOS
features can improve fairness, isolation, and performance.

3.1 Cloud Data Center Optimization

Challenge:

In multi-tenant cloud environments, virtual machines (VMs) often compete for shared resources.
This competition leads to performance degradation for critical workloads due to “noisy
neighbors,” prompting customers to search for better performance by frequently switching
nodes—a behavior known as node jumping.

Solution:

PQOS enables administrators to enforce per-VM resource limits using COS IDs. By bounding
cache and memory bandwidth usage, PQOS increases predictable performance and reduces node
jumping.

Features Used:

« MBA
o CAT

3.2 Memory Oversubscription Jitter Reduction

Challenge:

When VMs oversubscribe memory, data often spills into slower memory tiers like Compute
Express Link (CXL®) or NVDIMM, causing access latency spikes and performance jitter that
violate SLAs.

Solution:

PQOS uses SMBA to throttle traffic to slower memory tiers and prioritize access to fast memory
(e.g., DDR). This management reduces jitter and ensures consistent performance for DDR-
intensive workloads.

Features Used:

« SMBA
« MBM

14

Use Cases

[Public]

AMDZ

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series
Processors

3.3 Hybrid Cloud Networking Protection

Challenge:

Networking VMs such as virtual switches and firewalls run performance-critical code loops that
must stay resident in cache to maintain low-latency packet processing. In shared environments,
cache evictions caused by other workloads can lead to frequent reloads from slower memory,
resulting in latency spikes and packet loss.

Solution:
Use CDP to ensure that critical networking code and data remain in cache. This approach
minimizes evictions and maintains fast, consistent packet handling.

Features Used:

« CDP

3.4 Industrial Control System Optimization

Challenge:

Real-time control loops in industrial systems require deterministic execution and minimal jitter.
Resource contention—especially cache and memory bandwidth saturation—can disrupt control
logic and compromise system safety.

Solution:
Apply CAT and MBA to enforce strict resource boundaries. This practice isolates control
workloads from interference, ensuring predictable timing and safer operation.

Features Used:

e CAT
« MBA

3.5 Data Center Networking Infrastructure Optimization

Challenge:
Virtual switches and network endpoints require consistent low-latency performance under heavy
traffic loads. Shared-resource contention can cause unpredictable delays.

Solution:

Combine latency-aware thread prioritization with cache and bandwidth enforcement to ensure
deterministic performance. Use CAT to isolate cache usage and MBA to cap bandwidth for non-
critical workloads.

15

Use Cases

[Public]

AMDZ

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series
Processors

Features Used:

e CAT
« MBA

3.6 Gaming Platform Optimization

Challenge:
Gaming workloads rely on “hero” threads for real-time responsiveness. Background “worker”
threads can consume shared resources, causing frame drops and input lag.

Solution:
Assign hero threads to COS IDs with full cache and bandwidth access. Throttle worker threads
using MBA and CAT to ensure smooth gameplay and responsiveness.

Features Used:

e CAT
« MBA

16

Use Cases

[Public]

AMDZ\
69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series

Processors
Chapter 4 Software Enablement Overview

AMD PQOS features are exposed to system software through a combination of architectural
registers, CPUID instructions, and kernel interfaces. This section outlines how to detect,
configure, and use PQOS capabilities in Linux environments.

4.1 CPUID-Based Feature Detection and Enumeration

To determine PQOS support and capabilities, use the following CPUID functions.

Table 3. CPUID-Based Feature Detection and Enumeration

CPUID Function | Register PQOS Feature Detection and Enumeration
0x0000_0007 EBX Bit 12 indicates PQOS Monitoring (PQM) support
(ECX=0)

Bit 15 indicates PQOS Enforcement (PQE) support

0x0000_000F EBX Enumerates maximum RMIDs supported for monitoring

(ECX=0)

EDX e o

(ECX=0) Bit 1 indicates L3 cache monitoring support

EAX Bits 7-0 enumerate counter width for L3 cache monitorin
(ECX=1) J

0x0000_0010 EDX Bit 1 indicates CAT support

(ECX=0)
EAX Bits 4-0 enumerate cache bitmask length for CAT and CDP
(ECX=1) s 4-0 enumerate cache ask length fo a
ECX oA g
(ECX=1) Bit 2 indicates CDP support
EDX Bits 15-0 enumerate maximum COS IDs for CAT and CDP
(ECX=1)
0x8000_0020 EBX Indicates support for extended PQOS features:
(ECX=0)
e Bit 6 indicates SDCIAE support
e Bit5 indicates ABMC support
e Bit 3 indicates BMEC support
e Bit 2 indicates SMBA support
e Bit 1 indicates MBA support
EAX . .
(ECX=1) Enumerates bandwidth field width for COS-based enforcement and MBA

17

Software Enablement Overview

[Public]

AMDZ

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series
Processors

CPUID Function | Register PQOS Feature Detection and Enumeration
EDX .
(ECX=1) Enumerates maximum COS IDs for COS-based enforcement and MBA
EAX Enumerates bandwidth field width for SMBA
(ECX=2)
EDX .
(ECX=2) Enumerates maximum COS IDs for SMBA

These values guide how many RMIDs and COS IDs can be used and how granular the monitoring
and enforcement can be. For a complete and up-to-date list of CPUID functions that pertain to
PQOS, refer to the “Platform Quality of Service (PQOS) Extension” chapter of AMD64
Architecture Programmer’s Manual, Volume 2, publication #24593.

4.2 Kernel Configuration

1. Ensure the Linux kernel is built with PQOS support:

CONFIG_X86 CPU RESCTRL=y
CONFIG_PROC_CPU RESCTRL=y

2. Verify:

cat /boot/config-$ (uname -r) | grep -i resctrl

4.3 resctrl Filesystem Setup

Example setup to mount resctrl, create a cos0, and add cores 0-3 to cpus_list:

1. Mount the resctrl filesystem:

mount -t resctrl resctrl /sys/fs/resctrl

2. Create a directory cos0:

mkdir /sys/fs/resctrl/cos0

3. Write 0-3 to cpus_list:

echo 0-3 > /sys/fs/resctrl/cos0/cpus list

18

Software Enablement Overview

[Public]

AMDZ

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series
Processors

4. Consider a process with this PID: 12345. To apply the resource constraints defined in the
schemata, add the PID to tasks of cos0:

echo 12345 | sudo tee /sys/fs/resctrl/cos0/tasks

4.4 MSR Interfaces

Key MSRs used for PQOS include:

Table 4. MSR Interfaces

MSR Name (Address) PQOS Purpose
PQR_ASSOC (0xC8F) Assign RMID or COS to logical thread
QM _EVTSEL (0xC8D) Select RMID and event to monitor
QM _CTR (0xCS8E) Read counter value for RMID/event
L3 MASK n (0xC90 + n) Configure cache allocation per COS
L3QOS_BW_CONTROL_n (0xC000_0200 + n) Set bandwidth ceiling per COS
L3QOS_SMBW_CONTROL n (0xC000 0280 + n)

The following figures illustrate PQR_ASSOC, QM_EVTSEL, and QM_CTR.

Privileged Software

PQR_ASSOC MSR
63 32 31 7 0

Reserved CLOS Reserved RMID
Field Field

Width of RMID Field: Log,{{CPUID {EAX=0FH,ECX=0H} EBX[31:0]} +1}
Width of CLOS Field: Log,{{CPUID {EAX=10H,ECX=2H} EDX[15:0]} +1}

Figure 1. PQR_ASSOC MSR

19

Software Enablement Overview

[Public]

AMDZ1

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series
Processors

Privileged Software
QM_EVTSEL MSR QM_CTR MSR
63 32 31 7 063 62 61 60 0
Reserved RMID Reserved Event ID E | U O | Resource Monitoring Data
RMID Field Width matches PQR_ASSOC Bits 61-63 are zeroes if data is valid

Figure 2. QM_EVTSEL and QM_CTR MSRs

4.5 User-Space Tools

The pqos tool simplifies configuration and monitoring of PQOS features. It supports both MSR
and kernel interfaces. However, using both interfaces together may lead to unexpected behavior,
so AMD recommends using either the MSR interface or the kernel interface consistently.

o To inspect available PQOS features:

pgos -d

Sample output:

OS capabilities (Linux kernel 5.15.0-73-generic)
Monitoring
Cache Monitoring Technology (CMT) : LLC Occupancy
Memory Bandwidth Monitoring (MBM) : LMEM, TMEM, RMEM
PMU events: LLC misses, IPC
Allocation
Cache Allocation Technology (CAT): L3 CAT, CDP disabled, Num COS: 16
Memory Bandwidth Allocation (MBA): Num COS: 16

o To reset configuration:

pgos -r

For deeper hardware-level feature detection, use CPUID functions 0x0000 000F, 0x0000 0010,
and 0x8000 0020 to query support for specific PQOS sub-features.

20

Software Enablement Overview

[Public]

AMDZ

69127

4.6

Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series
Processors

Feature Detection via dmesg

Use the following command to search for CAT or MBA support in the CPU:

lscpu | grep -o 'cat\ |mba'

Then, check the kernel log to see if CAT or MBA has been initialized:

dmesg | grep -i 'cat\|mba'

If they appear in the output, it means the features are likely enabled and supported by your
system.

Check if resctrl is active:

dmesg | grep -i resctrl

If you see output related to resctrl, it indicates that the resctrl filesystem has been
initialized and is available for use.

Example output:

13.034171] resctrl: L3 allocation detected
13.044547] resctrl: L3DATA allocation detected
13.050066] resctrl: L3CODE allocation detected
13.055117] resctrl: MB allocation detected

— — — —

21

Software Enablement Overview

[Public]

AMDZ

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series
Processors

Chapter 5 Monitoring Features

5.1 RMID-Based Monitoring

RMID-based monitoring is a hardware feature that enables fine-grained tracking of shared
resources—such as L3 cache occupancy and memory bandwidth—by associating each logical
thread or process with a unique RMID. The hardware maintains counters for each active RMID,
allowing software to observe resource consumption per thread, process, or VM. This capability is
foundational for QoS enforcement and performance analysis on AMD platforms.

The PQR_ASSOC MSR assigns RMIDs on a per-hardware-thread basis. After an RMID is
assigned, the hardware automatically tracks usage, and MSRs store usage counters. Monitoring
granularity is configurable, allowing administrators or OS managers to group workloads—such as
applications, containers, or VMs—and map them to specific RMIDs for targeted analysis.

]]]
]]]

Process] Docker/VM] App]

Configurable Mapping

Logical RMIDs

Utilization Per RMID

Figure 3. RMID-Based Monitoring

22

Monitoring Features

[Public]

AMDZ

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series
Processors

5.1.1 RMID Pinning

Assignable Bandwidth Monitoring Counters (ABMC) enable users to explicitly assign hardware
counters to RMID-event pairs, a practice also called QoS RMID pinning. This practice guarantees
that hardware continuously tracks the assigned RMID until it is explicitly unassigned.

CPUID 0x8000 0020, EBX bit 5 (ECX=0) indicates ABMC support.

The ABMC implementation introduces new interfaces under the resctrl filesystem:
e mbm_assign mode: Lists assignable monitoring features supported.
enum_mbm_cntrs: Identifies the total number of assignable counters per domain.
e available mbm_cntrs: Identifies the number of counters currently available for assignment.

e cvent configs: Contains configuration directories for each MBM event, including filters for
transaction types.

embm L3 assignments: Provides a per-group interface to list or modify RMID-event
assignments.

Assignments are domain-specific and can be:
« Exclusive (e): Counter is dedicated to a specific RMID-event pair.
e Shared (s): Counter is shared across multiple groups, with scheduling handled by the system.
« Unassigned (_): No counter is currently assigned.

Example of use:

e To check if ABMC is supported:

cat /sys/fs/resctrl/info/L3 MON/mbm assign mode
[mbm event]

e To view available counters:
cat /sys/fs/resctrl/info/L3 MON/available mbm cntrs
0=30;1=30

¢ To assign a counter associated with the mbm_total bytes event on all domains in exclusive
mode:

23

Monitoring Features

[Public]

AMDZ

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series

Processors

echo "mbm total bytes:*=e" > /sys/fs/resctrl/mbm L3 assignments
cat /sys/fs/resctrl/mbm L3 assignments

mbm total bytes:0=e;l=e

mbm local bytes:0=e;l=e

¢ To unassign a counter:

echo "mbm total bytes:0=" > /sys/fs/resctrl/mbm L3 assignments

5.1.2

5.1.3

5.1.3.1

5.1.3.2

[98)

Prerequisites

Hardware Support: Platform must support PQM, indicated by CPUID 0x0000 0007,
EBX bit 12 (ECX=0).

RMID Enumeration: Maximum RMIDs supported (typically up to 4095) is given by
CPUID 0x0000_000F, EBX (ECX=0).

Software Support: OS or monitoring tools must be able to program PQR_ASSOC and
read counters.

QoS Domain Awareness: Understanding core complex (CCX)/L3 topology and thread
mapping is required.

Interfaces

CPUID Enumeration

0x0000_000F, EBX (ECX=0): Max RMID indicates the largest RMID supported.
0x0000_000F, EDX bit 1 (ECX=0): Indicates support for L3 cache monitoring.

MSRs and Registers

PQR_ASSOC (C8Fh): Assign RMID to logical thread.
QM_EVTSEL (C8Dh): Select RMID and event type.

QM _CTR (C8Eh): Read counter value.

ChL3QosEvtCfg0/1: Configure bandwidth sources per event.

Software Workflow

Enumerate RMID Support: Use CPUID functions to determine RMID capacity and
supported events.

Assign RMIDs: Write desired RMID to PQR_ASSOC MSR for each thread or process.
Configure Monitoring Events: Use QM_EVTSEL to select RMID and event type (e.g.,
L3 cache occupancy or memory bandwidth) to monitor.

Read Counters: Read QM_CTR to obtain the current value for the selected RMID/event.
Convert the counter value to bytes using the conversion factor from CPUID.

24

Monitoring Features

[Public]

AMDZ1
69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series
Processors

5. Interpret Results: Analyze per-RMID resource usage using the counters. Ignore counters
if U bit of QM_CTR s set.

6. Reassign Dynamically: RMIDs can be reassigned at runtime by updating PQR ASSOC.

5.1.5 Feature Operation

o Initialization: Hardware enumerates RMIDs and supported events.

e Assignment: OS or tool assigns RMIDs to threads via PQR _ASSOC.

e Monitoring: Hardware tracks all RMIDs currently assigned to active threads; counters are
queried via QM_CTR.

e Event Selection: Events like L3 cache occupancy or memory bandwidth are selected via
QM_EVTSEL.

e Counter Reading: QM_CTR provides a 44-bit value, converted to bytes using CPUID-
provided scaling factors.

e Overflow Handling: Counters are large enough to avoid overflow for ~1 hour at peak
bandwidth; periodic reads are recommended.

o Inactive RMIDs: Hardware retains counters for active RMIDs and a limited number for
recently used inactive RMIDs (Least Recently Used [LRU] policy).

e Error Handling: If an invalid RMID or event is selected, the E bit in QM_CTR is set and
the counter value should be ignored. If the U bit is set, the counter value is not valid (e.g.,
RMID not tracked).

5.1.6 Product-Specific RMID Availability

Table 5. Product-Specific RMID Availability

Product Largest RMID Supported for Any Resource:
CPUID 0x0000_000F, EBX (ECX=0)

AMD EPYC 9004 series processors, codenamed “Genoa” | 255

AMD EPYC 9005 series processors, codenamed “Turin” 4095

5.1.7

Using pqos for Monitoring

RMIDs are automatically assigned when monitoring starts.

Use the -m or -p option to monitor cores or processes, respectively.

Core monitoring:

pgos -m all:0,2,4-10

PID monitoring:

25

Monitoring Features

[Public]

AMDZ

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series

Processors

pgos -I -p 11c:22,25673

Monitoring options:

5.2

llc: Last Level Cache occupancy
mbl: Local memory bandwidth
mbr: Remote memory bandwidth
mbt: Total memory bandwidth
all: All available events

L3 Cache and Memory Bandwidth Monitoring

L3 Cache Monitoring and Bandwidth Monitoring are hardware-based QoS features on AMD
platforms that enable real-time, fine-grained tracking of shared resource usage. These features
operate by associating each logical thread or process with an RMID. The hardware maintains
counters per RMID to track:

L3 Cache Occupancy: Tracks how much of the L3 cache is occupied by a specific thread,
process, or VM. This tracking helps identify cache-heavy workloads and analyze cache
contention. High occupancy may indicate inefficient cache usage or the need for cache
partitioning.

Local and Remote Memory Bandwidth: Tracks how much memory bandwidth is used
locally (same Non-Uniform Memory Access [NUMA] node) vs. remotely (other NUMA
nodes). This tracking helps identify inefficient memory access patterns.

Non-Temporal Writes: Monitors memory writes that bypass the cache, typically used in
streaming workloads. This is tracked separately for local and remote memory.

Slow Memory Access: Tracks reads to slower memory tiers such as NVDIMM-P, CXL-
attached memory, or peer memory extensions. These accesses are typically higher latency
and lower bandwidth than DDR. Monitoring slow memory usage helps ensure latency-
sensitive workloads are not routed to slow memory unintentionally.

“Dirty Victim” Traffic: Measures bandwidth consumed by evicted dirty cache lines. High
dirty victim traffic may indicate frequent cache evictions and write-back pressure, which
can degrade performance and increase memory bandwidth usage.

This monitoring capability forms the foundation for performance analysis, workload isolation, and
dynamic resource management in multi-tenant and latency-sensitive environments.

5.2.1

Prerequisites

Hardware Support: Platform must support PQM, indicated by CPUID 0x0000 0007,
EBX bit 12 (ECX=0).

RMID Enumeration: Maximum RMIDs supported (typically 4095) is given by CPUID
0x0000_000F, EBX (ECX=0).

26

Monitoring Features

[Public]

AMDZ

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series
Processors

e Software Support: OS or monitoring software must program PQR_ASSOC MSR and
read counters.

e QoS Domain Awareness: Understanding CCX/L3 topology and thread mapping is
essential.

5.2.2 Interfaces

5.2.2.1 CPUID Enumeration

e 0x0000 000F, EBX (ECX=0): Max_RMID indicates the largest RMID supported.
e 0x0000 000F, EDX bit 1 (ECX=0): Support for L3 cache monitoring.
e 0x0000 000F, EAX bits 7-0 (ECX=1): CounterSize (e.g., 44-bit counters).

5.2.2.2 MSRs and Registers

e PQR ASSOC (C8Fh): Assign RMID to logical thread.

e QM _EVTSEL (C8Dh): Select RMID and event type.

e QM _CTR (C8Eh): Read counter value.

e ChL3QosEvtCfg0/1: Configure bandwidth sources per event.

5.2.3 Software Setup and Workflow

1. Enumerate RMID Support: Use CPUID to determine RMID capacity and supported
events.

Assign RMIDs: Write RMID to PQR_ASSOC MSR for each thread or process.
Configure Monitoring Events: Use QM_EVTSEL to select RMID and event type.
Read Counters: Use QM _CTR to get usage data; convert using CPUID scaling.
Interpret Results: Analyze per-RMID resource usage. Check U and E bits for counter
validity.

6. Reassign Dynamically: RMIDs can be reassigned at runtime by updating PQR_ASSOC.

Aol

5.2.4 Using resctrl for Monitoring

5.2.4.1 Last Level Cache (LLC) Occupancy

To monitor LLC (L3 cache) occupancy, use the following file:

/sys/fs/resctrl/<COS>/mon _data/mon L3 <CCX id>/llc occupancy

5.2.4.2 Local DRAM Bandwidth

To measure bandwidth to local DRAM from the L3 domain:

27

Monitoring Features

[Public]

AMDZ

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series
Processors

script mbm local.sh

cd /sys/fs/resctrl/test

m0=$ (cat mon data/mon L3 00/mbm local bytes)
sleep 1

ml=$ (cat mon data/mon L3 00/mbm local bytes)
delta=S$((ml - mO))

mb=$ (echo "scale=3; ${delta}/1024/1024" | bc -1)
echo "Local memory bandwidth: ${mb} MB/s"

To measure total DRAM bandwidth: read mbm_total bytes.

5.2.5 Using pqos for Monitoring

To measure bandwidth to DRAM from the L3 domain:

Local bandwidth monitoring

pgos —--mon-core=mbl:0-5

Remote bandwidth monitoring
pgos —-mon-core=mbr:0-5

Total bandwidth monitoring
pgos —-mon-core=mbt:0-5

5.3 Bandwidth Monitoring Event Configuration (BMEC)

BMEC is an advanced feature that allows users to customize which types of memory traffic are
counted by the memory bandwidth monitoring infrastructure. This feature enables more targeted
monitoring of memory behavior across workloads.

CPUID 0x8000 0020, EBX bit 3 (ECX=0) indicates BMEC support.
When the platform supports BMEC, the following monitoring features are available:

cat /sys/fs/resctrl/info/L3 MON/

mbm total bytes config
mbm local bytes config

The presence of mbm_total bytes config and mbm_local bytes config indicates that BMEC is
supported and configurable.

BMEC allows users to selectively monitor memory traffic, contributing to:

embm_total bytes: Total memory bandwidth usage
embm_local bytes: Local memory bandwidth usage

28

Monitoring Features

[Public]

AMDZ

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series
Processors

Each configuration is domain specific and affects all CPUs within that domain. When a
configuration is changed, the bandwidth counters for all RMIDs in that domain are cleared. The
next read returns “Unavailable” until new data is collected.

5.3.1 Supported Event Types
Each configuration is a bitmask where each bit enables a specific type of memory traffic:

Table 6. Supported Event Types

Bit Description
6 Dirty victims from the QoS domain to all memory types
5 Reads to slow memory in the non-local NUMA domain
4 Reads to slow memory in the local NUMA domain
3 Non-temporal writes to the non-local NUMA domain
2 Non-temporal writes to the local NUMA domain
1 Reads to memory in the non-local NUMA domain
0 Reads to memory in the local NUMA domain

Default values:

embm_total bytes config: 0x7F (all event types enabled).

embm _local bytes config: 0x15 (local memory reads and writes).
5.3.2 Examples of Use
5.3.2.1 Count Only Reads on Domain 0

To count only read traffic (bits 0, 1, 4, 5), set the bitmask to 0x33:

echo "0=0x33" > /sys/fs/resctrl/info/L3 MON/mbm total bytes config

5.3.2.2 Count Only Slow Memory Reads on Domains 0 and 1

To count only slow memory reads (bits 4 and 5), set the bitmask to 0x30:

echo "0=0x30;1=0x30" >
/sys/fs/resctrl/info/L3 MON/mbm local bytes config

29

Monitoring Features

[Public]

AMDZ

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series
Processors

Chapter 6 Enforcement Features

6.1 COS-Based Enforcement

COS-based enforcement is a hardware-enabled QoS mechanism that allows system software to
partition and control shared resources such as L3 cache and memory bandwidth by assigning
threads or processes to distinct COS IDs. Each COS can be independently configured with
resource allocation policies, enabling fine-grained control over how resources are distributed
across workloads.

Each logical core uses the PQR_ASSOC MSR to associate a thread with a COS. Enforcement is
applied via cache masks and bandwidth ceilings, allowing the system to throttle or isolate
workloads based on priority or performance requirements.

The impact of dynamically updating MSR values is not instantaneous. After an MSR update, a
delay occurs before the change takes effect, and the update itself may take additional time
depending on current CPU load and memory access pressure.

6.1.1 Interfaces

6.1.1.1 CPUID Enumeration

e 0x0000 0007, EBX bit 15 (ECX=0): Indicates PQE support.
e 0x8000 0020, EDX (ECX=1): COS_MAX indicates maximum number of supported COS

(typically 16).
e 0x8000 0020, EAX (ECX=1): BW_LEN indicates width of bandwidth ceiling field.

6.1.1.2 MSRs and Registers

e PQR ASSOC (C8Fh): Assigns COS to logical thread.
e L3QOS BW_CONTROL n (C000_0200h + n): Bandwidth ceiling per COS.
e L3 MASK n (C90h + n): Cache allocation mask per COS.

6.1.2 Software Setup and Workflow

1. Enumerate COS Support: Use CPUID to determine available COS IDs and enforcement
capabilities.
2. Assign Threads to COS: Write the desired COS ID to PQR_ASSOC MSR for each thread
or process.
3. Configure Enforcement Policies:
o Set bandwidth ceilings via L3QOS_BW_CONTROL n.

30

Enforcement Features

[Public]

AMDZ\
69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series
Processors
o Configure cache allocation via L3 MASK n (optional).
4. Monitor and Adjust: Use QoS monitoring features to observe per-COS resource usage

6.1.3

and adjust policies as needed.
Reassign Dynamically: Threads can be reassigned to different COS IDs at runtime to
adapt to workload changes.

Feature Operation

Resource Partitioning: Each COS is configured with independent limits for cache and
bandwidth. Threads assigned to a COS share these resources competitively.
Enforcement: Hardware enforces limits via

o Throttling (for bandwidth).

o Allocation masks (for cache).
Feedback Loop: At the end of each feedback interval (e.g., 128 us), the hardware
evaluates usage and adjusts throttle levels accordingly.
Unlimited Mode: Setting the U bit in the ceiling register disables enforcement for that
COS.

This mechanism ensures that bandwidth-intensive workloads do not interfere with latency-
sensitive or critical tasks, and it supports dynamic adjustment based on workload behavior.

6.2

L3 Cache Allocation Technology (CAT)

L3 CAT is a hardware-based QoS feature that enables fine-grained partitioning of the shared L3
cache across workloads. These mechanisms allow system software to partition, isolate, and reserve
cache regions for specific workloads, enabling predictable performance and cache residency. By
assigning each logical thread or process to a COS and configuring a Cache Bitmask (CBM) for
each COS via MSRs, the system can control which cache “ways” are accessible to each group.

6.2.1

Prerequisites

Hardware Support: Platform must support
o PQE, indicated by CPUID 0x0000 0007, EBX bit 15 (ECX=0).
o L3 Cache Allocation Enforcement, indicated by CPUID 0x0000 0010, EDX bit 1
(ECX=0).

BIOS/SMU Enablement: Both features must be enabled in firmware.

Operating System/Driver: Must support MSR programming and thread-to-COS
assignment.

QoS Domain Awareness: Understanding CCX/L3 topology and thread mapping is
required.

31

Enforcement Features

[Public]

AMDZ

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series

6.2.2

6.2.2.1

6.2.2.2

6.2.3

—

Processors

Interfaces

CPUID Enumeration
0x0000 0010, EAX bits 4-0 (ECX=1): CBM_LEN indicates length of cache bitmask
(typically 15 for 16 ways).
0x0000 0010, EDX bits 15-0 (ECX=1): COS_MAX indicates maximum number of
supported COS IDs.

MSRs and Registers
PQR ASSOC (C8Fh): Assigns COS to logical threads.

L3 MASK n (C90h + n): Per-COS cache allocation mask.
ChL3QosAllocMask{15-0}: Hardware register backing the MSR.

Software Setup and Workflow

Enumerate Support: Use CPUID to determine COS count and cache way availability.

2. Assign Threads to COS: Write COS ID to PQR_ASSOC MSR for each thread.

6.2.4

Configure Cache Allocation Masks: Set L3 MASK n with desired bitmask. Example:
0xO00FF for lower 8 ways.

Monitor and Adjust: Use QoS tools to observe cache usage and adjust masks or reserved
ranges.

Reassign Dynamically: Threads and cache masks can be updated at runtime. Reserved
regions can be reconfigured as workloads change.

Feature Operation

Cache Partitioning: Each COS is assigned a CBM that defines which L3 cache ways it
can use. Threads in that COS can only fill or evict lines in those ways.

Competitive Sharing: Overlapping masks result in shared cache ways among COS
groups.

Isolation: Exclusive cache ways ensure strong isolation between workloads.

Unlimited Mode: Setting all bits in the mask allows full cache access.

Dynamic Adjustment: RMID and COS assignments can be modified at runtime.

Using resctrl for L3 CAT

Mount resctrl and create a COS:

umount /sys/fs/resctrl

mount -t resctrl resctrl /sys/fs/resctrl
cd /sys/fs/resctrl

mkdir cos0

32

Enforcement Features

[Public]

AMDZ

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series
Processors

cd cos0

e View the current schemata:

cat schemata

e Assign cores 0-3 to the COS:

echo 0-3 > cpus list

e Assign a specific PID to the COS:

echo <pid> tasks

6.2.6 Performance Profiling and Trade-Offs
6.2.6.1 Scenario 1: Default L3 Allocation (Full Cache Access)
Run the Memory Latency Checker (MLC) benchmark on core 2 with default L3 allocation:

./mlc --peak injection bandwidth -m2

With the cache bitmask set to OXxFFFF (default), the thread has access to all 16 L3 cache ways.
MLC Results (Application Perspective):

e ALL Reads: 64,189.2 MB/s

¢ 3:1 Reads-Writes: 79,931.5 MB/s
e 2:1 Reads-Writes: 85,160.9 MB/s
e 1:1 Reads-Writes: 108,459.7 MB/s
e Stream-triad: 94,766.9 MB/s

Unified Memory Controller (UMC) Bandwidth (Memory Controller Perspective):

e Estimated Read Bandwidth: 39.86 GB/s
e Estimated Write Bandwidth: 17.71 GB/s

6.2.6.2 Scenario 2: Restricted L3 Allocation (1 Cache Way)

Restrict the L3 COS bitmask from OxFFFF to 0x0001:

33

Enforcement Features

[Public]

AMDZ

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series
Processors

/sys/fs/resctrl/test# echo “L3:0=0001"” > schemata

This setting limits the thread to only 1 cache way.
MLC Results (Application Perspective):

e ALL Reads: 52,777.4 MB/s

¢ 3:1 Reads-Writes: 70,076.6 MB/s
e 2:1 Reads-Writes: 77,455.6 MB/s
e 1:1 Reads-Writes: 97,809.0 MB/s
e Stream-triad: 76,137.8 MB/s

UMC Bandwidth (Memory Controller Perspective):

¢ Estimated Read Bandwidth: 41.80 GB/s
e Estimated Write Bandwidth: 17.86 GB/s

6.2.6.3 Conclusions

The results indicate that restricting cache access via CAT reduces application-observed memory
bandwidth, especially for read-intensive and mixed workloads.

e With cache access reduced from 16 ways to 1 way, MLC bandwidth—including stream-triad
performance, which simulates real-world memory access patterns—can decrease a relative
amount of up to 20%.

¢ UMC bandwidth can increase slightly when the cache is restricted. This result is expected:
with fewer cache ways available, more memory accesses bypass the cache and go directly
to DDR, increasing observed bandwidth at the memory controller.

This behavior confirms that cache availability directly influences memory throughput from both
the core and memory perspectives. CAT can thus effectively throttle or isolate workloads by
controlling their cache residency and memory access behavior.

6.3 Memory Bandwidth Allocation (MBA) and Slow
MBA (SMBA)

MBA is a platform-level QoS feature that enables the enforcement of upper bounds on memory
bandwidth consumed by threads or processes within a QoS domain (typically a CCX or L3
domain). By assigning bandwidth ceilings to specific COSs, MBA ensures:

34

Enforcement Features

[Public]

AMDZ

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series
Processors

o Fair sharing of memory resources and predictable performance for critical workloads.
e Prevention of bandwidth starvation.

Administrators can allocate any COS ID from 0 to 15 and apply it to a resource group to enforce
bandwidth limits.

SMBA is an AMD PQOS feature designed to control and allocate memory bandwidth for slower
memory tiers (such as CXL). It works similarly to MBA but specifically targets slow memory
regions to allocate bandwidth resources and prevents jitter caused by oversubscription of slow
memory in systems with heterogeneous memory.

6.3.1 Use Cases
6.3.1.1 Thread Admission Control

This scenario ensures minimum guaranteed bandwidth for latency-sensitive workloads:

e A background process continuously consumes memory bandwidth.
e When a new process arrives requiring Y GB/s, the system checks if the remaining threads
(e.g., 4 out of 8 in a CCD) can be throttled to (X — Y)/4 GB/s.
o If so, the new process is scheduled accordingly.
o Ifnot, the new process is not scheduled.

6.3.1.2 Fairness Across VMs
Bandwidth allocation is proportional to the number of cores used by each VM, which:

e Prevents one VM from monopolizing memory bandwidth and degrading others.
o Enables multi-tenant fairness in virtualized environments.

6.3.2 Prerequisites

o Hardware Support: Platform must support MBA, indicated by CPUID function
0x8000_ 0020, EBX bit 1 (ECX=0). Platform support for SMBA is indicated by CPUID
function 0x8000_ 0020, EBX bit 2 (ECX=0).

e BIOS/SMU Enablement: MBA (or SMBA) must be enabled in BIOS or firmware.

e Operating System/Driver: The OS must support MSR programming and thread-to-COS
assignment. The kernel must be built with the CONFIG_X86 CPU_RESCTRL flag.

e QoS Domain Awareness: Understanding the system’s CCX/L3 topology and how threads
are mapped to COS is required.

35

Enforcement Features

[Public]

AMDZ

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series

6.3.3

6.3.3.1

6.3.3.2

6.3.4

Processors

Interfaces

CPUID Enumeration

0x8000 0020, EBX bit 1 (ECX=0): Indicates MBA support.

0x8000 0020, EAX (ECX=1): BW_LEN field gives the width of the bandwidth ceiling
field for MBA.

0x8000 0020, EDX (ECX=1): COS_MAX field gives the maximum number of supported
COS for MBA.

0x8000 0020, EBX bit 2 (ECX=0): Indicates SMBA support.

0x8000 0020, EAX (ECX=2): BW_LEN field gives the width of the bandwidth ceiling
field for SMBA.

0x8000 0020, EDX (ECX=2): COS_MAX field gives the maximum number of supported
COS for SMBA.

MSRs and Registers

L3QOS BW_CONTROL n (MSR C000 0200h + n) for MBA and
L3QOS SMBW_CONTROL n (MSR C000 0280h + n) for SMBA: Per-COS bandwidth
ceiling register.
o U: Set to 1 for unlimited bandwidth.
o BW: Define bandwidth limit in 1/8 GB/s increments.
PQR_ASSOC (MSR C8Fh): Assigns threads to COS.

Software Interfaces

MBA is exposed to user space via the Linux kernel and the resctrl filesystem. To enable MBA, the
kernel must be built with CONFIG x86 CPU RESCTRL.

6.3.4.1

Key Files in resctrl Used for Bandwidth Monitoring

min bandwidth: Minimum bandwidth percentage per CPU model.
bandwidth gran: Allocation granularity; values round to nearest control step.
delay linear: Linear or non-linear delay scaling.

ctrl hw_id: Debug-only field showing hardware COS ID.

MBA and SMBA use absolute bandwidth values. Example ceiling values:

1 =128 MB/s.
16 =2 GB/s.
2048 =256 GB/s.

To set MBA or SMBA bandwidth via schemata (using MB for MBA) with example values:

36

Enforcement Features

[Public]

AMDZ

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series
Processors

echo "MB:1=16" > schemata
echo "SMBA:0=32" > schemata

The MBA example sets 2 GB/s for cache ID 1, while the SMBA example sets 4 GB/s for cache ID
0. Continuing with these examples, cat schemata might show (maximum value is 2048):

MB:0=2048;1=16;2=2048;3=2048
SMBA:0=32;1=2048;2=2048;3=2048

6.3.4.2 Resource Group Configuration

Resource groups are directories under /sys/fs/resctrl. The root group owns all tasks and CPUs
initially.

e CTRL MON groups: Created under root to define resource allocations.
e MON groups: Created under mon_groups to monitor subsets of tasks in a CTRL MON
group.

Removing a CTRL MON group also removes its MON groups. MON groups can be moved
between CTRL_MON parents (except those monitoring CPUs). Renaming is the only other
supported move.

6.3.4.3 Group Files and Controls

e tasks: Assign PIDs to the group. Failures abort the operation but retain successful
assignments.

e cpus/cpus_ list: Assign logical CPUs using bitmasks or ranges. MON groups must
inherit CPUs from their parent.

e schemata: Defines resource allocations. For memory bandwidth, the format is:
MB:<cache id>=<bw MiBps> (e.g., MB:1=16 for 2 GB/s).

6.3.4.4 Bandwidth Monitoring Configuration

To control the bandwidth that is counted for throttling, set mbm total bytes configin
info/L3_MON. It has a 7-bit value:

e Bit 0: Reads to local NUMA.
e Bit 1: Reads to non-local NUMA.
e Bits 2-6: Non-temporal writes, reads to slow memory, and dirty victims.

Examples:

e 0x7F: Monitor all traffic.

37

Enforcement Features

[Public]

AMDZ

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series

6.3.5

6.3.6

Processors

0x01: Monitor only local NUMA reads.
Software Setup and Workflow

Enumerate MBA Support: Use CPUID to confirm MBA (or SMBA) availability and
determine COS. MAX and BW_LEN.

Assign Threads to COS: Use the PQR_ASSOC MSR to assign each thread to a COS.
Program Bandwidth Ceilings: For each COS, write the desired bandwidth limit to
L3QOS BW_CONTROL n for MBA or L3QOS SMBW_CONTROL n for SMBA.
Example: To set a 32 GB/s limit, write BW =256 (256 x 1/8 GB/s = 32 GB/s).

Monitor and Adjust: Use performance counters and QoS monitoring features to observe
bandwidth usage and adjust ceilings as needed.

Feature Operation

MBA (and similarly SMBA) operates as a closed-loop control system that tracks memory
bandwidth usage per COS and dynamically adjusts throttle levels to enforce bandwidth ceilings. It
ensures predictable performance by limiting memory access when usage exceeds configured
thresholds.

6.3.7

Bandwidth Tracking: Hardware counters monitor memory bandwidth usage per COS,
including reads/writes to DRAM, non-temporal writes, and victim traffic.

Ceiling Programming: Each COS is assigned a bandwidth ceiling via

L3QOS BW_CONTROL n for MBA or L3QOS_SMBW_CONTROL n MSR for
SMBA, specified in 1/8 GB/s units (e.g., 256 = 32 GB/s).

Periodic Evaluation: At the end of each feedback period (e.g., every 128 us), the system
compares actual usage against the ceiling.

Throttle Level Adjustment: If usage exceeds the ceiling, throttle levels are increased—
limiting outstanding memory operations, delaying token returns, and controlling write-
back context release. If usage is below the ceiling, throttling is relaxed.

L2 Enforcement: Throttle levels are enforced at the L2 cache by restricting memory
instruction buffers and delaying memory-related actions.

Unlimited Mode: Setting the U bit in the ceiling register disables enforcement for that
COS, allowing unrestricted bandwidth.

Dynamic Adjustment: Ceilings and COS assignments can be modified at runtime to adapt
to changing workload demands.

Monitoring: Bandwidth usage and throttle levels can be observed via performance
counters and QoS MSRs.

Performance Profiling and Trade-Offs

This test evaluates bandwidth scaling behavior under MBA enforcement.

38

Enforcement Features

[Public]

AMDZ

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series
Processors

Test Setup:

e Two processes:
o P1 runs on 6 cores from CCXO.
o P2 runs on 2 cores from CCX1.
o Both processes are assigned to the same COS.
e PIDs are added to /sys/fs/resctrl/coSn/tasks and cores to
/sys/fs/resctrl/COSn/cpus list.
o Bandwidth ceilings vary along the X-axis.

Plotting:

MEB: Per Process BW

Observations and Inferences:

e P1 (teal line)
Bandwidth increases steadily with MBA value until around x = 168, after which it
plateaus. This plateau does not indicate memory saturation, but rather that P1 becomes
CCX-bound—Ilimited by the bandwidth capacity of its CCX interface. Further increases in
MBA do not improve throughput beyond this architectural ceiling.

e P2 (blue line)
Bandwidth increases slightly until x = 63, then flattens, confirming that P2 is core-bound.
Its performance is constrained by compute resources rather than memory bandwidth, and
additional bandwidth allocation has no effect past this point.

e P1+ P2 (green line)
Combined bandwidth scales similarly to P1 but remains consistently higher due to P2’s
contribution. However, the curve does not represent the system’s maximum bandwidth

39

Enforcement Features

[Public]

AMDZ

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series
Processors

capacity. Instead, it reflects the sum of P1’s CCX bandwidth limit and P2’s core
throughput. If additional cores or CCXs were active, the system could achieve higher
aggregate bandwidth. This highlights that bandwidth ceilings are shared within a QoS
domain (CCX), but not across different CCXs.

e Vertical lines

o X =63: Marks the inflection point where P2 stops responding to increased bandwidth,
indicating core-bound behavior.

o x=168: Marks the saturation point for P1’s CCX interface, not the system-wide
bandwidth limit.

Conclusions:

e The plot illustrates effective MBA scaling up to architectural limits specific to each QoS
domain.

e [t distinguishes between core-bound and CCX-bound workloads.

e It emphasizes that bandwidth ceilings are enforced per CCX and that combining workloads
across CCXs can increase total bandwidth without contention.

e This behavior guides optimal bandwidth allocation strategies and validates system-level
QoS enforcement.

6.4 Code and Data Prioritization (CDP)

CDP is a hardware-enabled QoS feature that allows the system to distinguish between instruction
(code) and data cache lines in the shared L3 cache and allocate cache resources accordingly. By
enabling CDP, the system can assign separate cache allocation masks (CBMs) for code and data,
enabling differentiated cache usage policies.

Without CDP, both code and data share the same cache region, which can lead to cache
contention. For example, data-heavy operations may evict frequently used instructions, increasing
cache misses and degrading performance. CDP solves this problem by assigning two independent
bitmasks per COS—one for code and one for data—to ensure that critical instructions remain
resident in the L3 cache even during high data traffic.

6.4.1 Prerequisites

e Hardware Support: CDP must be supported, indicated by CPUID 0x0000 0010, ECX bit
2 (ECX=1).

e BIOS/SMU Enablement: CDP must be enabled in BIOS or firmware.

e Operating System/Driver: OS must support MSR programming and thread-to-COS
assignment.

40

Enforcement Features

[Public]

AMDZ

69127

6.4.2

6.4.2.1

6.4.2.2

Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series
Processors

QoS Domain Awareness: Understanding CCX/L3 topology and thread mapping is
required.

Interfaces

CPUID Enumeration

0x0000_0010, ECX bit 2 (ECX=1): Indicates CDP support.

0x0000 0010, EAX bits 4-0 (ECX=1): CBM_LEN indicates cache bitmask length
(typically 15 for 16 ways).

0x0000 0010, EDX bits 15-0 (ECX=1): COS_MAX indicates maximum supported COS
IDs (typically 16).

MSRs and Registers
PQR _ASSOC (C8Fh): Assigns COS to logical thread.
L3 MASK n (C90h + n): Per-COS cache allocation mask; interpreted as code/data pair

when CDP is enabled.
L3 QOS _CFGI (C81h): Enables CDP mode at L3 level.

Software Setup and Workflow

. Enumerate CDP Support: Use CPUID to confirm CDP availability and determine cache

way count.

Enable CDP: Set CDP bitin L3_QOS_ CFGl1 register.

Assign Threads to COS: Use PQR_ASSOC MSR to assign threads. With CDP enabled,
COS values are shifted and concatenated with a code/data bit.

Configure Cache Allocation Masks: Set L3 MASK n for each COS with separate masks
for code and data.

Monitor and Adjust: Use QoS monitoring tools to observe cache usage and adjust masks
as needed.

Reassign Dynamically: Threads and masks can be updated at runtime for workload-aware
cache management.

Feature Operation

Code/Data Partitioning: CDP interprets COS values as code/data pairs, allowing separate
cache masks for each stream.

Competitive Sharing: Overlapping masks result in shared cache ways among COS
groups.

Isolation: Exclusive cache ways ensure strong isolation between code and data streams.
Unlimited Mode: Setting all bits in the mask allows full cache access.

Dynamic Adjustment: Masks and COS assignments can be modified at runtime.

41

Enforcement Features

[Public]

AMDZ

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series
Processors

e Consistency Requirement: CDP must be consistently enabled across L2 and L3 cache
domains.

6.4.5 Using resctrl for CDP

umount /sys/fs/resctrl
mount -o cdp -t resctrl resctrl /sys/fs/resctrl

cd /sys/fs/resctrl
mkdir test

cd test

cat schemata

You should see 1.3copE and L3DATA entries in the schemata file. To restrict data cache ways:

echo 0-3 > cpus list
echo L3DATA:0=0001 > schemata

42

Enforcement Features

[Public]

AMDZ

69127 Rev. 1.00 November 2025 AMD PQOS White Paper for AMD EPYC™ 9004 and 9005 Series
Processors

Chapter 7 Conclusion

As computing environments grow increasingly complex and dynamic, AMD’s commitment to
advancing the PQOS extension remains central to enabling predictable and efficient system
behavior. The current generation of PQOS features available on AMD EPYC 9004 and 9005
series processors provides robust mechanisms for resource control—including cache partitioning,
memory bandwidth enforcement, and code/data prioritization—that are accessible through
standard Linux interfaces.

Looking ahead, AMD continues to evolve its PQOS capabilities to meet the demands of
increasingly complex and heterogeneous computing environments. Future generations of EPYC
processors will introduce expanded feature sets designed to offer even finer-grained control,
enhanced observability, and smarter resource orchestration. These advancements will further
empower developers and system architects to optimize performance, enforce workload boundaries,
and ensure consistent quality of service across diverse deployment scenarios.

AMD remains committed to enabling open, scalable, and intelligent platform management through
PQOS and encourages early adoption and feedback to shape the next wave of innovation.

43

Conclusion

	Chapter 1 Introduction
	1.1 Intended Audience
	1.2 Definitions
	1.3 Reference Documents
	1.4 Background
	1.5 Benefits

	Chapter 2 PQOS Feature Overview
	2.1 Feature Categories
	2.1.1 Monitoring Technologies
	2.1.2 Enforcement Technologies

	2.2 Key Concepts
	2.2.1 Resource Monitoring ID (RMID)
	2.2.2 Class of Service (COS) ID
	2.2.3 resctrl Filesystem

	Chapter 3 Use Cases
	3.1 Cloud Data Center Optimization
	3.2 Memory Oversubscription Jitter Reduction
	3.3 Hybrid Cloud Networking Protection
	3.4 Industrial Control System Optimization
	3.5 Data Center Networking Infrastructure Optimization
	3.6 Gaming Platform Optimization

	Chapter 4 Software Enablement Overview
	4.1 CPUID-Based Feature Detection and Enumeration
	4.2 Kernel Configuration
	4.3 resctrl Filesystem Setup
	4.4 MSR Interfaces
	4.5 User-Space Tools
	4.6 Feature Detection via dmesg

	Chapter 5 Monitoring Features
	5.1 RMID-Based Monitoring
	5.1.1 RMID Pinning
	5.1.2 Prerequisites
	5.1.3 Interfaces
	5.1.3.1 CPUID Enumeration
	5.1.3.2 MSRs and Registers

	5.1.4 Software Workflow
	5.1.5 Feature Operation
	5.1.6 Product-Specific RMID Availability
	5.1.7 Using pqos for Monitoring

	5.2 L3 Cache and Memory Bandwidth Monitoring
	5.2.1 Prerequisites
	5.2.2 Interfaces
	5.2.2.1 CPUID Enumeration
	5.2.2.2 MSRs and Registers

	5.2.3 Software Setup and Workflow
	5.2.4 Using resctrl for Monitoring
	5.2.4.1 Last Level Cache (LLC) Occupancy
	5.2.4.2 Local DRAM Bandwidth

	5.2.5 Using pqos for Monitoring

	5.3 Bandwidth Monitoring Event Configuration (BMEC)
	5.3.1 Supported Event Types
	5.3.2 Examples of Use
	5.3.2.1 Count Only Reads on Domain 0
	5.3.2.2 Count Only Slow Memory Reads on Domains 0 and 1

	Chapter 6 Enforcement Features
	6.1 COS-Based Enforcement
	6.1.1 Interfaces
	6.1.1.1 CPUID Enumeration
	6.1.1.2 MSRs and Registers

	6.1.2 Software Setup and Workflow
	6.1.3 Feature Operation

	6.2 L3 Cache Allocation Technology (CAT)
	6.2.1 Prerequisites
	6.2.2 Interfaces
	6.2.2.1 CPUID Enumeration
	6.2.2.2 MSRs and Registers

	6.2.3 Software Setup and Workflow
	6.2.4 Feature Operation
	6.2.5 Using resctrl for L3 CAT
	6.2.6 Performance Profiling and Trade-Offs
	6.2.6.1 Scenario 1: Default L3 Allocation (Full Cache Access)
	6.2.6.2 Scenario 2: Restricted L3 Allocation (1 Cache Way)
	6.2.6.3 Conclusions

	6.3 Memory Bandwidth Allocation (MBA) and Slow MBA (SMBA)
	6.3.1 Use Cases
	6.3.1.1 Thread Admission Control
	6.3.1.2 Fairness Across VMs

	6.3.2 Prerequisites
	6.3.3 Interfaces
	6.3.3.1 CPUID Enumeration
	6.3.3.2 MSRs and Registers

	6.3.4 Software Interfaces
	6.3.4.1 Key Files in resctrl Used for Bandwidth Monitoring
	6.3.4.2 Resource Group Configuration
	6.3.4.3 Group Files and Controls
	6.3.4.4 Bandwidth Monitoring Configuration

	6.3.5 Software Setup and Workflow
	6.3.6 Feature Operation
	6.3.7 Performance Profiling and Trade-Offs

	6.4 Code and Data Prioritization (CDP)
	6.4.1 Prerequisites
	6.4.2 Interfaces
	6.4.2.1 CPUID Enumeration
	6.4.2.2 MSRs and Registers

	6.4.3 Software Setup and Workflow
	6.4.4 Feature Operation
	6.4.5 Using resctrl for CDP

	Chapter 7 Conclusion

