
This document contains information on a product under development at Advanced Micro
Devices (AMD). The information is intended to help you evaluate this product. AMD re-
serves the right to change or discontinue work on this proposed product without notice.

Publication # 21828 Rev: A Amendment/0
Issue Date: August 1997

Application Note

AMD-K6
MMX Enhanced
Processor

x86 Code
Optimization

™
™

© 1997 Advanced Micro Devices, Inc. All rights reserved.

Advanced Micro Devices, Inc. ("AMD") reserves the right to make changes in its
products without notice in order to improve design or performance characteristics.

The information in this publication is believed to be accurate at the time of
publication, but AMD makes no representations or warranties with respect to the
accuracy or completeness of the contents of this publication or the information
contained herein, and reserves the right to make changes at any time, without
notice. AMD disclaims responsibility for any consequences resulting from the use
of the information included in this publication.

This publication neither states nor implies any representations or warranties of
any kind, including but not limited to, any implied warranty of merchantability or
fitness for a particular purpose. AMD products are not authorized for use as critical
components in life support devices or systems without AMD’s written approval.
AMD assumes no liability whatsoever for claims associated with the sale or use
(including the use of engineering samples) of AMD products except as provided in
AMD’s Terms and Conditions of Sale for such product.

Trademarks

AMD, the AMD logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc.

RISC86 is a registered trademark, and K86, AMD-K5, AMD-K6, and the AMD-K6 logo are trademarks of Advanced
Micro Devices, Inc.

Microsoft and Windows are registered trademarks, and Windows NT is a trademark of Microsoft Corporation.

Pentium is a registered trademark and MMX is a trademark of the Intel Corporation.

Other product names used in this publication are for identification purposes only and may be trademarks of their
respective companies.

21828A/0—August 1997 AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization

Contents

1 Introduction 1

Purpose. 1

The AMD-K6™ Family of Processors . 1

The AMD-K6™ MMX™ Enhanced Processor. 2

2 The AMD-K6™ Processor RISC86® Microarchitecture 3

Overview . 3

RISC86® Microarchitecture . 4

3 AMD-K6™ Processor Execution Units and Dependency Latencies 9

Execution Unit Terminology . 10

Six-Stage Pipeline . 11

Integer and Multimedia Execution Units. 11

Load Unit . 12

Store Unit. 13

Branch Condition Unit . 15

Floating Point Unit . 15

Latencies and Throughput . 15

Resource Constraints . 17

Code Sample Analysis . 18

4 Instruction Dispatch and Execution Timing 23

5 x86 Optimization Coding Guidelines 51

General x86 Optimization Techniques . 51

General AMD-K6™ Processor x86 Coding Optimizations. 53

AMD-K6™ Processor Integer x86 Coding Optimizations 57

AMD-K6™ Processor Multimedia Coding Optimizations 61

AMD-K6™ Processor Floating-Point Coding Optimizations 62

6 Considerations for Other Processors 67
Contents iii

AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization 21828A/0—August 1997

iv Contents

List of Tables v

21828A/0—August 1997 AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization

List of Tables

Table 1. RISC86® Execution Latencies and Throughput 16

Table 2. Sample 1 – Integer Register Operations 19

Table 3. Sample 2 – Integer Register and Memory Load
Operations . 20

Table 4. Sample 3 – Integer Register and Memory Load/Store
Operations . 21

Table 5. Sample 4 – Integer, MMX™, and Memory Load/Store
Operations . 22

Table 6. Integer Instructions. 25

Table 7. MMX™ Instructions . 43

Table 8. Floating-Point Instructions . 46

Table 9. Decode Accumulation and Serialization 54

Table 10. Specific Optimizations and Guidelines for AMD-K6™
and AMD-K5™ Processors . 67

Table 11. AMD-K6™ Processor Versus Pentium®
Processor-Specific Optimizations and Guidelines 69

Table 12. AMD-K6™ Processor and Pentium® Processor with
Optimizations for MMX™ Instructions 71

Table 13. AMD-K6™ Processor and Pentium® Pro
Processor-Specific Optimizations. 71

Table 14. AMD-K6™ Processor and Pentium® Pro with
Optimizations for MMX™ Instructions 73

vi List of Tables

AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization 21828A/0—August 1997

21828A/0—August 1997 AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization

List of Figures
Figure 1. AMD-K6™ MMX™ Enhanced Processor Block

Diagram. 6
Figure 2. AMD-K6™ Processor Pipeline . 11
Figure 3. Integer/Multimedia Execution Unit 12
Figure 4. Load Execution Unit . 13
Figure 5. Store Execution Unit . 14
List of Figures vii

AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization 21828A/0—August 1997

viii List of Figures

21828A/0—August 1997 AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization

Revision History

Date Rev Description

August 1997 A Initial Release
Revision History ix

AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization 21828A/0—August 1997

x Revision History

21828A/0—August 1997 AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization

1
Introduction
Purpose

The AMD-K6™ MMX™ enhanced processor is the newest
microprocessor in the AMD K86™ family of microprocessors.
The AMD-K6 processor can efficiently execute code written for
previous-generation x86 processors. However, there are many
ways to get higher performance from the AMD-K6 processor.

This document contains information to assist programmers in
creating optimized code for the AMD-K6 processor. This
document is targeted at compiler/assembler designers and
assembly language programmers writing high-performance
code sequences.

It is assumed that the reader possesses an in-depth knowledge
of the x86 microarchitecture.

The AMD-K6™ Family of Processors

Processors in the AMD-K6™ family use a decoupled instruction
decode and execution superscalar microarchitecture, including
state -of -the -art RISC des ign techniques , to del iver
sixth-generation performance with full x86 binary software
Chapter 1 Introduction 1

AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization 21828A/0—August 1997

compatibility. An x86 binary-compatible processor implements
the industry-standard x86 instruction set by decoding and
executing the x86 instruction set as its native mode of
operation. Only this native mode permits delivery of maximum
performance when running PC software.

The AMD-K6™ MMX™ Enhanced Processor

The AMD-K6 MMX enhanced processor, the first in the
AMD-K6 family, brings superscalar RISC performance to
desktop systems running industry-standard x86 software. This
processor implements advanced design techniques such as
instruction pre-decoding, multiple x86 opcode decoding,
single-cycle internal RISC operations, multiple parallel
execution units, out-of-order execution, data-forwarding,
register renaming, and dynamic branch prediction. In other
words, the AMD-K6 processor is capable of issuing, executing,
and retiring multiple x86 instructions per cycle, resulting in
superior scaleable performance.

Although the AMD-K6 processor is capable of extracting code
parallelism out of off-the-shelf, commercially available x86
software, specific code optimizations for the AMD-K6 processor
can result in even higher delivered performance. This
document describes the RISC86® microarchitecture in the
AMD-K6 processor and makes recommendations for optimizing
execution of x86 software on the processor. The coding
techniques for achieving peak performance on the AMD-K6
processor include, but are not limited to, those recommended
for the Pentium® and Pentium Pro processors. However, many
of these optimizations are not necessary for the AMD-K6
processor to achieve maximum performance. Due to the more
flexible pipeline control of the AMD-K6 microarchitecture, the
AMD-K6 processor is not as sensitive to instruction selection
and the scheduling of code. This flexibility is one of the distinct
advantages of the AMD-K6 processor microarchitecture.
2 Introduction Chapter 1

21828A/0—August 1997 AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization

2
The AMD-K6™ Processor
RISC86® Microarchitecture
Overview

When discussing processor design, it is important to
understand the terms architecture, microarchitecture, and design
implementation. The term architecture refers to the instruction
set and features of a processor that are visible to software
programs running on the processor. The architecture
determines what software the processor can run. The
architecture of the AMD-K6 MMX processor i s the
industry-standard x86 instruction set.

The term microarchitecture refers to the design techniques used
in the processor to reach the target cost, performance, and
functionality goals. The AMD-K6 processor is based on a
sophisticated RISC core known as the enhanced RISC86
microarchitecture. The enhanced RISC86 microarchitecture is
an advanced, second-order decoupled decode/execution design
approach that enables industry-leading performance for
x86-based software.

The term design implementation refers to the actual logic and
circuit designs from which the processor is created according to
the microarchitecture specifications.
Chapter 2 The AMD-K6™ Processor RISC86® Microarchitecture 3

AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization 21828A/0—August 1997

RISC86® Microarchitecture

The enhanced RISC86 microarchitecture defines the
characteristics of the AMD-K6 MMX enhanced processor. The
innovative RISC86 microarchitecture approach implements the
x86 instruction set by internally translating x86 instructions
into RISC86 operations. These RISC86 operations were
specially designed to include direct support for the x86
instruction set while observing the RISC performance
principles of fixed-length encoding, regularized instruction
fields, and a large register set. The enhanced RISC86
microarchitecture used in the AMD-K6 enables higher
processor core performance and promotes straightforward
extendibility in future designs. Instead of executing complex
x86 instructions, which have lengths of 1 to 15 bytes, the
AMD-K6 processor executes the simpler fixed-length RISC86
opcodes, while maintaining the instruction coding efficiencies
found in x86 programs.

The AMD-K6 processor includes parallel decoders, a
centralized scheduler, and seven execution units that support
superscalar operation— multiple decode, execution, and
retirement—of x86 instructions. These elements are packed
into an aggressive and very efficient six-stage pipeline.

Decoding of the x86 instructions into RISC86 operations begins
when the on-chip level-one instruction cache is filled.
Predecode logic determines the length of an x86 instruction on
a byte-by-byte basis. This predecode information is stored,
alongside the x86 instructions, in a dedicated level-one
predecode cache to be used later by the decoders. Up to two
x86 instructions are decoded per clock on-the-fly, resulting in a
maximum of four RISC86 operations per clock with no
additional latency.

The AMD-K6 processor categorizes x86 instructions into three
types of decodes — short, long, and vector. The decoders
process either two short, one long, or one vectored decode at a
time. The three types of decodes have the following
characteristics:

■ Short decode—common x86 instructions less than or equal
to 7 bytes in length that produce one or two RISC86
operations.
4 The AMD-K6™ Processor RISC86® Microarchitecture Chapter 2

21828A/0—August 1997 AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization

■ Long decode—more complex and somewhat common x86
instructions less than or equal to 11 bytes in length that
produce up to four RISC86 operations.

■ Vectored decode—complex x86 instructions requiring long
sequences of RISC86 operations.

Short and long decodes are processed completely within the
decoders. Vectored decodes are started by the decoders with
the generation of an initial set of four RISC86 operations, and
then completed by fetching a sequence of additional operations
from an on-chip ROM (at a rate of four operations per clock).
RISC86 operations, whether produced by decoders or fetched
from ROM, are then sent to a buffer in the centralized
scheduler for dispatch to the execution units.

The internal RISC86 instruction set consists of the following six
categories or types of operations (the execution unit that
handles each type of operation is displayed in parenthesis):

■ Memory load operations (load)

■ Memory store operations (store)

■ Integer register operations (alu/alux)

■ MMX register operations (meu)

■ Floating-point register operations (float)

■ Branch condition evaluations (branch)

The following example shows a series of x86 instructions and
the corresponding decoded RISC86 operations.

x86 Instructions RISC86 Operations

MOV CX, [SP+4] Load
ADD AX,BX Alu (Add)
CMP CX,[AX] Load

Alu (Sub)
JZ foo Branch

The MOV instruction converts to a RISC86 load that requires
indirect data to be loaded from memory. The ADD instruction
converts to an alu function that can be sent to either of the
integer units. The CMP instruction converts into two RISC86
instructions. The first RISC86 load operation requires indirect
data to be loaded from memory. That value is then compared
(alu function) with CX.
Chapter 2 The AMD-K6™ Processor RISC86® Microarchitecture 5

AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization 21828A/0—August 1997

Once the RISC86 operations are in the centralized scheduler
buffer they are ready for the scheduler to issue them to the
appropriate execution unit. The AMD-K6 processor contains
seven execution units—Integer X, Integer Y, Multimedia,
Load, Store, Branch, and Floating-Point. Figure 1 shows a block
diagram of these units.

Figure 1. AMD-K6™ MMX™ Enhanced Processor Block Diagram

The centralized scheduler buffer, in conjunction with the
instruction control unit (ICU/scheduler), buffers and manages
up to 24 RISC86 operations at a time (which equates with up to
12 x86 instructions). This buffer size (24) is well matched to the
processor’s six-stage RISC86 pipeline and seven parallel
execution units.

On every clock, the centralized scheduler buffer can accept up
to four RISC86 operations from the decoders and issue up to six
RISC86 operations to corresponding execution units. (Six
RISC86 operations can be issued at a time because the alux and
multimedia execution units share the same pipeline.)

When managing the 24 RISC86 operations, the scheduler uses
48 phys ical regis ters contained within the RISC86

Integer X
(Register) Unit

Store
Unit

Integer Y
(Register) Unit

Floating-Point
Unit

Branch
(Resolving) Unit

Store
Queue

Instruction
Control Unit

Scheduler
Buffer

(24 RISC86)Six RISC86
Operation Issue

Out-of-Order
Execution Engine

Level-One Dual-Port Data Cache (32KByte) 128-Entry DTLB

Level-One Instruction Cache
(32KByte + Predecode) 64-Entry ITLB

Dual Instruction Decoders
x86 to RISC86

Branch Logic
(8192-Entry BHT)

(16-Entry BTC)
(16-Entry RAS)

Load
Unit

Multimedia
Unit

Predecode
Logic

Level-One Cache
Controller

Socket 7
Bus

Interface

16-Byte Fetch

Four RISC86
Decode
6 The AMD-K6™ Processor RISC86® Microarchitecture Chapter 2

21828A/0—August 1997 AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization

microarchitecture. The 48 physical registers are located in a
general register file and are grouped as 24 committed or
architectural registers plus 24 rename registers. The 24
architectural registers consist of 16 scratch registers and eight
registers that correspond to the x86 general-purpose
registers— EAX, EBX, ECX, EDX, EBP, ESP, ESI, and EDI.

The AMD-K6 processor offers sophisticated dynamic branch
logic that includes the following elements:

■ Branch history/prediction table

■ Branch target cache

■ Return address stack

These components serve to minimize or eliminate the delays
due to the branch instructions (jumps, calls, returns) common
in x86 software.

The AMD-K6 processor implements a two-level branch
prediction scheme based on an 8192-entry branch history table.
The branch history table stores prediction information that is
used for predicting the direction of conditional branches. The
target addresses of conditional and unconditional branches are
not predicted, but instead are calculated on-the-fly during
instruction decode by special branch target address ALUs. The
branch target cache augments performance of taken branches
by avoiding a one-cycle cache-fetch penalty. This specialized
target cache does this by supplying the first 16 bytes of target
instructions to the decoders when a branch is taken.

The return address stack serves to optimize CALL/RET
instruction pairs by remembering the return address of each
CALL within a nested series of subroutines and supplying it as
the predicted target address of the corresponding RET
instruction.

As shown in Figure 1 on page 6, the high-performance,
out-of-order execution engine is mated to a split 64-Kbyte
(Harvard architecture) writeback level-one cache with 32
Kbytes of instruction cache and 32 Kbytes of data cache. The
level-one instruction cache feeds the decoders and, in turn, the
decoders feed the scheduler. The ICU controls the issue and
retirement of RISC86 operations contained in the centralized
scheduler buffer. The level-one data cache satisfies most
memory reads and writes by the load and store execution units.
Chapter 2 The AMD-K6™ Processor RISC86® Microarchitecture 7

AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization 21828A/0—August 1997

The store queue temporarily buffers memory writes from the
store unit until they can safely be committed into the cache
(that is, when all preceding operations have been found to be
free of faults and branch mispredictions). The system bus
interface i s an industry -s tandard 64 -bi t Pent ium
processor-compatible demultiplexed address/data system bus.

The AMD-K6 processor uses the latest in processor
microarchitecture techniques to provide the highest x86
performance for today’s PC. In short, the AMD-K6 processor
offers true sixth-generation performance and full x86 binary
software compatibility.
8 The AMD-K6™ Processor RISC86® Microarchitecture Chapter 2

21828A/0—August 1997 AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization

3
AMD-K6™ Processor
Execution Units and
Dependency Latencies
The AMD-K6 MMX enhanced processor contains seven
specialized execution units—store, load, integer X, integer Y,
multimedia, floating-point, and branch condition. Each unit
operates independently and handles a specific group of the
RISC86 instruction set. This chapter describes the operation of
these units, their execution latencies, and how concurrent
dependency chains affect those latencies.

A dependency occurs when data needed in one execution unit
is being processed in another unit (or the same unit).
Additional latencies can occur because the dependent
execution unit must wait for the data. Table 1 on page 16
provides a summary of the execution units, the operations
performed within these units, the operation latency, and the
operation throughput.
Chapter 3 AMD-K6™ Processor Execution Units and Dependency Latencies 9

AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization 21828A/0—August 1997

Execution Unit Terminology

The execution units operate on two different types of register
values — operands and results. There are three types of
operands and two types of results.

Operands The three types of operands are as follows:

■ Address register operands—used for address calculations of
load and store operations

■ Data register operands—used for register operations

■ Store data register operands—used for memory stores

Results The two types of results are as follows:

■ Data register results—from load or register operations

■ Address register results—from Lea or Push operations

The following examples illustrate the operand and result
definitions:

Add AX, BX

The Add operation has two data register operands (AX,
and BX) and one data register result (AX).

Load BX, [SP+4·CX+8]

The Load operation has two address register operands (SP
and CX as base and index registers, respectively) and a
data register result (BX).

Store [SP+4·CX+8], AX

The Store operation has a store data register operand
(AX) and two address register operands (SP and CX as
base and index registers, respectively).

Lea SI, [SP+4·CX+8]

The Lea operation (a type of store operation) has address
register operands (SP and CX as base and index registers,
respectively), and an address register result.
10 AMD-K6™ Processor Execution Units and Dependency Latencies Chapter 3

21828A/0—August 1997 AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization

Six-Stage Pipeline

To help visualize the operations within the AMD-K6 processor,
Figure 2 illustrates the six-stage pipeline design. This is a
simplified illustration in that the AMD-K6 contains multiple
parallel pipelines (starting after common instruction fetch and
x86 decode pipe stages), and these pipelines often execute
operations out-of-order with respect to each other. This view of
the AMD-K6 execution pipeline illustrates the effect of
execution latencies for various types of operations.

For register operations that only require one execution cycle,
this pipeline is effectively shorter due to the absence of
execution stage 2.

The samples starting on page 19 assume that the x86
instructions have already been fetched, decoded, and placed in
the centralized scheduler buffer. The RISC86 operations are
waiting to be dispatched to the appropriate execution units.

Figure 2. AMD-K6™ Processor Pipeline

Integer and Multimedia Execution Units

The integer X execution unit can execute all ALU operations,
multiplies and divides (signed and unsigned), shifts, and
rotates. Data register results are available after one clock of
execution latency.

The multimedia execution unit (meu) executes all MMX
operations and shares pipeline control with the integer X
execution unit (an integer X operation and an MMX operation
cannot be dispatched simultaneously). In most cases, data
register results are available after one clock and after two
clocks for PMULH and PMADD operations.

Instruction

Fetch

x86—>RISC86

Decode

RISC86

Issue

Execution

Stage 1

Execution

Stage 2

Retire
Chapter 3 AMD-K6™ Processor Execution Units and Dependency Latencies 11

AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization 21828A/0—August 1997

The integer Y execution unit can execute the basic word and
doubleword ALU operations (ADD, AND, CMP, OR, SUB and
XOR) and zero and sign-extend operations. Data register
results are available after one clock.

Figure 3 shows the architecture of the single-stage integer
execution pipeline. The operation issue and fetch stages that
precede this execution stage are not part of the execution
pipeline. The data register operands are received at the end of
the operand fetch pipe stage, and the data register result is
produced near the end of the execution pipe stage.

Figure 3. Integer/Multimedia Execution Unit

Load Unit

The load unit is a two-stage pipelined design that performs data
memory reads. This unit uses two address register operands
and a memory data value as inputs and produces a data register
result.

The load unit has a two-clock latency from the time it receives
the address register operands until it produces a data register
result.

Memory read data can come from either the data cache or the
store queue entry for a recent store. If the data is forwarded
from the store queue, there is a zero additional execution
latency. This means that a dependent load operation can
complete its execution one clock after a store operation
completes execution.

 Execution Stage
(Integer X,
Integer Y,

Multimedia)

Data Register Operands

Data Register Result
12 AMD-K6™ Processor Execution Units and Dependency Latencies Chapter 3

21828A/0—August 1997 AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization

Figure 4 shows the architecture of the two-stage load execution
pipeline. The operation issue and fetch stages that precede this
execution stage are not part of the execution pipeline. The
address register operands are received at the end of the
operand fetch pipe stage, and the data register result is
produced near the end of the second execution pipe stage.

Figure 4. Load Execution Unit

Store Unit

The store execution unit is a two-stage pipelined design that
performs data memory writes and/or, in some cases, produces
an address register result. For inputs, the store unit uses two
address register operands and, during actual memory writes, a
store data register operand. This unit also produces an address
register result for some store unit operations. For most store
operations, which actually write to memory, the store unit
produces a physical memory address and the associated bytes
of data to be written. After execution completes, these results
are entered in a new store queue entry.

The store unit has a one-clock execution latency from the time
it receives address register operands until the time it produces
an address register result. The most common examples are the
Load Effective Address (Lea) and Store and Update (Push)
RISC86 operations, which are produced from the x86 LEA and
PUSH instructions, respectively. Most store operations do not

Execution Stage 1
Address Calculation

Stage

Address Register
Operands

(Base and Index)

Memory data from Data
Cache or Store Queue

Execution Stage 2
Data Cache/

Store Queue Lookup Data Register Result
Chapter 3 AMD-K6™ Processor Execution Units and Dependency Latencies 13

AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization 21828A/0—August 1997

produce an address register result and only perform a memory
write. The Push operation is unique because it produces both
an address register result and performs a memory write.

The store unit has a one-clock execution latency from the time
it receives address register operands until it enters a store
memory address and data pair into the store queue.

The store unit also has a three-clock latency occurring from the
time it receives address register operands and a store data
register operand until it enters a store memory address and
data pair into the store queue.

Note: Address register operands are required at the start of
execution, but register data is not required until the end of
execution.

Figure 5 shows the architecture of the two-stage store execution
pipeline. The operation issue and fetch stages that precede this
execution stage are not part of the execution pipeline. The
address register operands are received at the end of the
operand fetch pipe stage, and the new store queue entry is
created upon completion of the second execution pipe stage.

Figure 5. Store Execution Unit

Address Register
Operands

(Base and Index)

Store Data Register
Operand

Execution Stage 1
Address Calculation

Stage

Store Queue Entry

Execution Stage 2

Address Register Result

Address

Data
14 AMD-K6™ Processor Execution Units and Dependency Latencies Chapter 3

21828A/0—August 1997 AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization

Branch Condition Unit

The branch condition unit is separate from the branch
prediction logic, which is utilized at x86 instruction decode
time. This unit resolves conditional branches, such as JCC and
LOOP instructions, at a rate of up to one per clock cycle.

Floating Point Unit

The floating-point unit handles all register operations for x87
instructions. The execution unit is a single-stage design that
takes data register operands as inputs and produces a data
register result as an output. The most common floating-point
instructions have a two clock execution latency from the time it
receives data register operands until the time it produces a data
register result.

Latencies and Throughput

Table 1 on page 16 summarizes the latencies and throughput of
each execution unit.
Chapter 3 AMD-K6™ Processor Execution Units and Dependency Latencies 15

AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization 21828A/0—August 1997

Table 1. RISC86® Execution Latencies and Throughput

Execution
Unit Operations Latency Throughput

Integer X

Integer ALU

Integer Multiply

Integer Shift

1

2–3

1

1

2–3

1

Multimedia

MMX ALU

MMX Shifts, Packs, Unpack

MMX Multiply Low/High

MMX Multiply-Accumulate

1

1

1/2

2

1

1

1/2

2

Integer Y Basic ALU (16– and 32– bit operands) 1 1

Load
From Address Register Operands to Data Register Result

Memory Read Data from Data Cache/Store Queue to Data Register Result

2

0

1

1

Store

From Address Register Operands to Address Register Result

From Store Data Register Operands to Store Queue Entry

From Address Register Operands to Store Queue Entry

1

1

3

1

1

1

Branch Resolves Branch Conditions 1 1

FPU
FADD, FSUB

FMUL

2

2

2

2
Note:

No additional latency exists between execution of dependent operations. Bypassing of register results directly from
producing execution units to the operand inputs of dependent units is fully supported. Similarly, forwarding of memory
store values from the store queue to dependent load operations is supported.
16 AMD-K6™ Processor Execution Units and Dependency Latencies Chapter 3

21828A/0—August 1997 AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization

Resource Constraints

To optimize code effectively, consider not only the latencies of
critical dependencies, but also execution resource constraints.
Due to a fixed number of execution units, only so many
operations can be issued in each cycle (up to 6 RISC86
operations per cycle), even though, based on dependencies,
more execution parallelism may be possible.

For example, if code contains three consecutive integer
operations that do not have co-dependencies, they cannot
execute in parallel because there are only 2 integer execution
units. The third operation is delayed by one cycle.

Contention for execution resources causes delays in the issuing
and execution of instructions. In addition, stalls due to resource
constraints can combine with dependency latencies to cause or
exacerbate stalls due to dependencies. In general, constraints
that delay non-critical instructions do not impact performance
because such stalls typically overlap with the execution of
critical operations.
Chapter 3 AMD-K6™ Processor Execution Units and Dependency Latencies 17

AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization 21828A/0—August 1997

Code Sample Analysis

The samples in this section show the execution behavior of
several series of instructions as a function of decode
constraints, dependencies, and execution resource constraints.

The sample tables show the x86 instructions, the RISC86
operation equivalents, the clock counts, and a description of
the events occurring within the processor.

The following nomenclature is used to describe the current
location of a RISC86 operation (RISC86op):

■ D — Decode stage

■ IX — Issue stage of integer X unit

■ OX — Operand fetch stage of integer X unit

■ EX1 — Execution stage 1 of integer X unit

■ IY — Issue stage of integer Y unit

■ OY — Operand fetch stage of integer Y unit

■ EY1 — Execution stage 1 of integer Y unit

■ IL — Issue stage of load unit

■ OL — Operand fetch stage of load unit

■ EL1 — Execution stage 1 of load unit

■ EL2 — Execution stage 2 of load unit

■ IS — Issue stage of store unit

■ OS — Operand fetch stage of store unit

■ ES1 — Execution stage 1 of store unit

■ ES2 — Execution stage 2 of store unit

Note: Instructions execute more efficiently (that is, without
delays) when scheduled apart by suitable distances based on
dependencies. In general, the samples in this section show
poorly scheduled code in order to illustrate the resultant
effects.
18 AMD-K6™ Processor Execution Units and Dependency Latencies Chapter 3

21828A/0—August 1997 AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization

Table 2. Sample 1 – Integer Register Operations

Instruction Clocks

 Number Instruction RISC86op 1 2 3 4 5 6 7 8 9

1 IMUL EAX, EBX alux D D IX OX EX1

alux IX OX EX1

alux IX OX EX1

2 INC ESI alu D IY OY EY1

3 MOV EDI, 0x07F4 limm D

4 SHL EAX, 8 alux D IX OX EX1

5 OR EAX, 0x0F alu D IY OY IX OX EX1

6 ADD ESI, EDX alu D IY OY EY1

7 SUB EDI, ECX alu D IY OY EY1

Comments for Each Instruction Number

1 It takes two decode cycles because IMUL is vector decoded. The IMUL instruction is executable only in
the integer X unit. It is a non-pipelined 2–3 cycle latency register operation that is equivalent to three
serially dependent register operations (the result of the second and third operations are AX and DX,
respectively)

2 This simple alu operation ends up in the Y pipe.

3 A load immediate (limm) RISC86 operation does not require execution. The result value is immediately
available to dependent operations

4 Shift instructions are only executable in the integer X unit. Issue is delayed by preceding IMUL
operations due to a resource constraint of the integer X unit.

5 The register operation is ‘bumped’ out of the integer Y unit in clock 6 because it must wait for more
than one cycle for its dependencies to resolve. It is re-issued in the next cycle to the integer X unit (just
in time for availability of its operands)

6 This add alu falls through to the integer Y unit right behind the first issuance of operation #5 without
delay (as a result of operation #5 being bumped out of the way).

7 The issuance of the subtract register operation is delayed in clock 6 due to the resource constraints of
the integer Y unit.
Chapter 3 AMD-K6™ Processor Execution Units and Dependency Latencies 19

AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization 21828A/0—August 1997

Table 3. Sample 2 – Integer Register and Memory Load Operations

Instruction Clocks

 Number Instruction RISC86op 1 2 3 4 5 6 7 8 9 10 11

1 DEC EDX alu D IX OX EX1

2 MOV EDI, [ECX] load D IL OL EL1 EL2

3 SUB EAX, [EDX+20] load D IL OL EL1 EL2

alu IX OX IX OX EX1

4 SAR EAX, 5 alux D IX OX IX OX EX1

5 ADD ECX, [EDI+4] load D IL OL EL1 EL2

alu IY OY IY OY EY1

6 AND EBX, 0x1F alu D IY OY EY1

7 MOV ESI, [0x0F100] load D IL OL EL1 EL2

8 OR ECX, [ESI+EAX*4+8] load D IL OL OL EL1 EL2

alu IX OX OX OX EX1

Comments for Each Instruction Number

1 This simple alu operation ends up in the X pipe.

2 This operation will occupy the load execution unit.

3 The register operand for the load operation is bypassed, without delay, from the result of instruction #1’s
register operand. In clock 4, the register operation is ‘bumped’ out of the integer X unit while waiting for the
previous load operation result to complete. It is re-issued just in time to receive the bypassed result of the
load.

4 Shift instructions are only executable in the integer X unit. The register operation is bumped in clock 5 while
waiting for the result of the receding instruction #3.

5 The register operand for the load operation is bypassed, without delay, from the result of instruction #2’s
register operand. Note how this and most surrounding load operations are generated by instruction decoders,
and issued and executed by the load unit “smoothly” at a rate of one clock per cycle. In clock 5, the register
operation is bumped out of the integer Y unit while waiting for the previous load operation result to complete.

6 The register operation falls through into the integer Y unit right behind instruction #5’s register operation.

7 This operation falls into the load unit behind the load in instruction #5

8 The operand fetch for the load operation is delayed because it needs the result of the immediately preceding
load operation #7 as well as the results from earlier instructions #3 and #4.
20 AMD-K6™ Processor Execution Units and Dependency Latencies Chapter 3

21828A/0—August 1997 AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization

Table 4. Sample 3 – Integer Register and Memory Load/Store Operations

Instruction Clocks

Number Instruction RISC86op 1 2 3 4 5 6 7 8 9 10 11

1 MOV EDX, [0xA0008F00] load D IL OL EL1 EL2

2 ADD [EDX+16], 7 load D IL OL EL1 EL2

alu IX OX IX OX EX1

store IS OS OS ES1 ES2 ES2

3 SUB EAX, [EDX+16] load D IL IL OL EL1 EL2 EL2

alu IX OX IX IX OX OX EX1

4 PUSH EAX store D IS IS OS ES1 ES2 ES2 ES2

5 LEA EBX, [ECX+EAX*4+3] store D IS OS OS OS ES1 ES2

6 MOV EDI, EBX alu D IY OY OY OY OY OY EY1

Comments for Each Instruction Number

1 This operation will occupy the load unit.

2 This long decoded ADD instruction takes a single clock to decode. The operand fetch for the load operation is
delayed waiting for the result of the previous load operation from instruction #1. The store operation completes
concurrent with the register operation. The result of the register operation is bypassed directly into a new store
queue entry created by the store operation.

3 The issue of the load operation is delayed because the operand fetch of the preceding load operation from
instruction #2 was delayed. The completion of the load operation is held up due to a memory dependency on
the preceding store operation of instruction #2. The load operation completes immediately after the store
operation, with the store data being forwarded from a new store queue entry.

4 Completion of the store operation is held up due to a data dependency on the preceding instruction #3. The
store data is bypassed directly into a new store queue entry from the result of instruction #3’s register
operation.

5 The Lea RISC86 operation is executed by the store unit. The operand fetch is delayed waiting for the result of
instruction #3. The register result value is produced in the first execution stage of the store unit.

6 This simple alu operation is stalled due to the dependency of the BX result in instruction #5.
Chapter 3 AMD-K6™ Processor Execution Units and Dependency Latencies 21

AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization 21828A/0—August 1997

Table 5. Sample 4 – Integer, MMX™, and Memory Load/Store Operations

Instruction Clocks

Number Instruction RISC86op 1 2 3 4 5 6 7 8 9 10

1 MOVQ MM0, [EAX] mload D IL OL EL1 EL2

2 PSUBSW MM0, [EAX+16] mload D IL OL EL1 EL2

alux IX OX OX OX EX1

3 ADD EBX, ECX alu D IY OY EY1

4 PADDSW MM1, MM2 alux D IX IX IX OX EX1

5 PUSH EBX store D IS OS ES1 ES2

6 PMADDWD MM0, MM1 alux D IX OX EX1 EX1

7 ADD EAX, 32 alu D IY OY EY1

8 MOVQ [EDI], MM0 mstore D IS OS ES1 ES2 ES2

9 ADD EDI, 8 alu D IY OY EY1

Comments for Each Instruction Number

1 This multimedia operation will occupy the load unit.

2 Instruction #2 could not be decoded along with the preceding instruction because only MMX instructions
can be decoded in the first decode position. The MMX register operation is executable only by the integer
X unit. The operand fetch is delayed because of the dependency of the load.

3 This instruction can be decoded in parallel with instruction #2 because it is not an MMX instruction. It is
issued to the integer Y unit in parallel with the issuing of the preceding MMX register operation in
instruction #2.

4 This instruction is only executable in the integer X unit. The issue of this MMX instruction is delayed due
to the delay of the operand fetch of the preceding MMX register operation.

5 This instruction stores the contents of BX in memory.

6 Instruction #6 is only executable in the integer X unit. This non-pipelined unit has a two-clock execution
latency for this instruction, and it is delayed due to ‘stacking-up’ behind the preceding MMX operations.

7 This instruction is issued to the integer Y unit in parallel with the series of preceding MMX register
operations being issued to the integer X unit.

8 Completion of this store operation is held up due to a data dependency on the preceding MMX register
operation from instruction #6. The store data is bypassed directly into a new store queue entry from the
result of the MMX operation.

9 This instruction is issued to the integer Y unit in parallel with the series of preceding MMX register
operations being issued to the integer X unit.
22 AMD-K6™ Processor Execution Units and Dependency Latencies Chapter 3

21828A/0—August 1997 AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization

4
Instruction Dispatch and
Execution Timing
This chapter describes the RISC86 operations executed by each
instruction. Three separate tables define the integer, MMX, and
floating-point instructions.

The first column in these tables indicates the instruction
mnemonic and operand types with the following notations:

■ reg8—byte integer register defined by instruction byte(s) or
bits 5, 4, and 3 of the modR/M byte

■ mreg8—byte integer register defined by bits 2, 1, and 0 of
the modR/M byte

■ reg16/32—word and doubleword integer register defined by
instruction byte(s) or bits 5, 4, and 3 of the modR/M byte

■ mreg16/32—word and doubleword integer register defined
by bits 2, 1, and 0 of the modR/M byte

■ mem8—byte memory location

■ mem16/32—word or doubleword memory location

■ mem32/48—doubleword or 6-byte memory location

■ mem48—48-bit integer value in memory

■ mem64—64-bit value in memory

■ imm8/16/32—8-bit, 16-bit or 32-bit immediate value

■ disp8—8-bit displacement value

■ disp16/32—16-bit or 32-bit displacement value

■ disp32/48—32-bit or 48-bit displacement value
Chapter 4 Instruction Dispatch and Execution Timing 23

AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization 21828A/0—August 1997

■ eXX—register width depending on the operand size

■ mem32real—32-bit floating-point value in memory

■ mem64real—64-bit floating-point value in memory

■ mem80real—80-bit floating-point value in memory

■ mmreg—MMX register

■ mmreg1—MMX register defined by bits 5, 4, and 3 of the
modR/M byte

■ mmreg2—MMX register defined by bits 2, 1, and 0 of the
modR/M byte

The second and third columns list all applicable encoding
opcode bytes.

The fourth column lists the modR/M byte when used by the
instruction. The modR/M byte defines the instruction as
register or memory form. If mod bits 7 and 6 are documented as
mm (memory form), mm can only be 10b, 01b, or 00b.

The fifth column lists the type of instruction decode—short,
long, or vectored. The AMD-K6 MMX enhanced processor
decode logic can process two short, one long, or one vectored
decode per clock. In addition, two short integer, one short
integer and one short MMX, or one short integer and one short
FPU instruction can be decoded simultaneously.

Note: In order to simultaneously decode an integer with a
floating-point or MMX instruction, the floating-point or
MMX instruction must precede the integer instruction.

The sixth column lists the type of RISC86 operation(s) required
for the instruction. The operation types and corresponding
execution units are as follows:

■ load, fload, mload—load unit

■ store, fstore, mstore—store unit

■ alu—either of the integer execution units

■ alux—integer X execution unit only

■ branch—branch condition unit

■ float—floating-point execution unit

■ meu—multimedia execution unit

■ limm—load immediate, instruction control unit
24 Instruction Dispatch and Execution Timing Chapter 4

21828A/0—August 1997 AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization

The operation(s) of most instructions form a single dependency
chain. For instructions whose operations form two parallel
dependency chains, the RISC86 operations and execution
latency for each dependency chain is shown on a separate row.

Table 6. Integer Instructions

Instruction Mnemonic First
Byte

Second
Byte

modR/M
Byte

Decode
Type

RISC86®

Opcodes

AAA 37h vector

AAD D5h 0Ah vector

AAM D4h 0Ah vector

AAS 3Fh vector

ADC mreg8, reg8 10h 11-xxx-xxx vector

ADC mem8, reg8 10h mm-xxx-xxx vector

ADC mreg16/32, reg16/32 11h 11-xxx-xxx vector

ADC mem16/32, reg16/32 11h mm-xxx-xxx vector

ADC reg8, mreg8 12h 11-xxx-xxx vector

ADC reg8, mem8 12h mm-xxx-xxx vector

ADC reg16/32, mreg16/32 13h 11-xxx-xxx vector

ADC reg16/32, mem16/32 13h mm-xxx-xxx vector

ADC AL, imm8 14h xx-xxx-xxx vector

ADC EAX, imm16/32 15h xx-xxx-xxx vector

ADC mreg8, imm8 80h 11-010-xxx vector

ADC mem8, imm8 80h mm-010-xxx vector

ADC mreg16/32, imm16/32 81h 11-010-xxx vector

ADC mem16/32, imm16/32 81h mm-010-xxx vector

ADC mreg16/32, imm8 (signed ext.) 83h 11-010-xxx vector

ADC mem16/32, imm8 (signed ext.) 83h mm-010-xxx vector

ADD mreg8, reg8 00h 11-xxx-xxx short alux

ADD mem8, reg8 00h mm-xxx-xxx long load, alux, store

ADD mreg16/32, reg16/32 01h 11-xxx-xxx short alu

ADD mem16/32, reg16/32 01h mm-xxx-xxx long load, alu, store

ADD reg8, mreg8 02h 11-xxx-xxx short alux

ADD reg8, mem8 02h mm-xxx-xxx short load, alux

ADD reg16/32, mreg16/32 03h 11-xxx-xxx short alu

ADD reg16/32, mem16/32 03h mm-xxx-xxx short load, alu

ADD AL, imm8 04h xx-xxx-xxx short alux
Chapter 4 Instruction Dispatch and Execution Timing 25

AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization 21828A/0—August 1997

ADD EAX, imm16/32 05h xx-xxx-xxx short alu

ADD mreg8, imm8 80h 11-000-xxx short alux

ADD mem8, imm8 80h mm-000-xxx long load, alux, store

ADD mreg16/32, imm16/32 81h 11-000-xxx short alu

ADD mem16/32, imm16/32 81h mm-000-xxx long load, alu, store

ADD mreg16/32, imm8 (signed ext.) 83h 11-000-xxx short alux

ADD mem16/32, imm8 (signed ext.) 83h mm-000-xxx long load, alux, store

AND mreg8, reg8 20h 11-xxx-xxx short alux

AND mem8, reg8 20h mm-xxx-xxx long load, alux, store

AND mreg16/32, reg16/32 21h 11-xxx-xxx short alu

AND mem16/32, reg16/32 21h mm-xxx-xxx long load, alu, store

AND reg8, mreg8 22h 11-xxx-xxx short alux

AND reg8, mem8 22h mm-xxx-xxx short load, alux

AND reg16/32, mreg16/32 23h 11-xxx-xxx short alu

AND reg16/32, mem16/32 23h mm-xxx-xxx short load, alu

AND AL, imm8 24h xx-xxx-xxx short alux

AND EAX, imm16/32 25h xx-xxx-xxx short alu

AND mreg8, imm8 80h 11-100-xxx short alux

AND mem8, imm8 80h mm-100-xxx long load, alux, store

AND mreg16/32, imm16/32 81h 11-100-xxx short alu

AND mem16/32, imm16/32 81h mm-100-xxx long load, alu, store

AND mreg16/32, imm8 (signed ext.) 83h 11-100-xxx short alux

AND mem16/32, imm8 (signed ext.) 83h mm-100-xxx long load, alux, store

ARPL mreg16, reg16 63h 11-xxx-xxx vector

ARPL mem16, reg16 63h mm-xxx-xxx vector

BOUND 62h xx-xxx-xxx vector

BSF reg16/32, mreg16/32 0Fh BCh 11-xxx-xxx vector

BSF reg16/32, mem16/32 0Fh BCh mm-xxx-xxx vector

BSR reg16/32, mreg16/32 0Fh BDh 11-xxx-xxx vector

BSR reg16/32, mem16/32 0Fh BDh mm-xxx-xxx vector

BSWAP EAX 0Fh C8h long alu

BSWAP ECX 0Fh C9h long alu

BSWAP EDX 0Fh CAh long alu

Table 6. Integer Instructions (continued)

Instruction Mnemonic First
Byte

Second
Byte

modR/M
Byte

Decode
Type

RISC86®

Opcodes
26 Instruction Dispatch and Execution Timing Chapter 4

21828A/0—August 1997 AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization

BSWAP EBX 0Fh CBh long alu

BSWAP ESP 0Fh CCh long alu

BSWAP EBP 0Fh CDh long alu

BSWAP ESI 0Fh CEh long alu

BSWAP EDI 0Fh CFh long alu

BT mreg16/32, reg16/32 0Fh A3h 11-xxx-xxx vector

BT mem16/32, reg16/32 0Fh A3h mm-xxx-xxx vector

BT mreg16/32, imm8 0Fh BAh 11-100-xxx vector

BT mem16/32, imm8 0Fh BAh mm-100-xxx vector

BTC mreg16/32, reg16/32 0Fh BBh 11-xxx-xxx vector

BTC mem16/32, reg16/32 0Fh BBh mm-xxx-xxx vector

BTC mreg16/32, imm8 0Fh BAh 11-111-xxx vector

BTC mem16/32, imm8 0Fh BAh mm-111-xxx vector

BTR mreg16/32, reg16/32 0Fh B3h 11-xxx-xxx vector

BTR mem16/32, reg16/32 0Fh B3h mm-xxx-xxx vector

BTR mreg16/32, imm8 0Fh BAh 11-110-xxx vector

BTR mem16/32, imm8 0Fh BAh mm-110-xxx vector

BTS mreg16/32, reg16/32 0Fh ABh 11-xxx-xxx vector

BTS mem16/32, reg16/32 0Fh ABh mm-xxx-xxx vector

BTS mreg16/32, imm8 0Fh BAh 11-101-xxx vector

BTS mem16/32, imm8 0Fh BAh mm-101-xxx vector

CALL full pointer 9Ah vector

CALL near imm16/32 E8h short store

CALL mem16:16/32 FFh 11-011-xxx vector

CALL near mreg32 (indirect) FFh 11-010-xxx vector

CALL near mem32 (indirect) FFh mm-010-xxx vector

CBW/CWDE EAX 98h vector

CLC F8h vector

CLD FCh vector

CLI FAh vector

CLTS 0Fh 06h vector

CMC F5h vector

CMP mreg8, reg8 38h 11-xxx-xxx short alux

Table 6. Integer Instructions (continued)

Instruction Mnemonic First
Byte

Second
Byte

modR/M
Byte

Decode
Type

RISC86®

Opcodes
Chapter 4 Instruction Dispatch and Execution Timing 27

AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization 21828A/0—August 1997

CMP mem8, reg8 38h mm-xxx-xxx short load, alux

CMP mreg16/32, reg16/32 39h 11-xxx-xxx short alu

CMP mem16/32, reg16/32 39h mm-xxx-xxx short load, alu

CMP reg8, mreg8 3Ah 11-xxx-xxx short alux

CMP reg8, mem8 3Ah mm-xxx-xxx short load, alux

CMP reg16/32, mreg16/32 3Bh 11-xxx-xxx short alu

CMP reg16/32, mem16/32 3Bh mm-xxx-xxx short load, alu

CMP AL, imm8 3Ch xx-xxx-xxx short alux

CMP EAX, imm16/32 3Dh xx-xxx-xxx short alu

CMP mreg8, imm8 80h 11-111-xxx short alux

CMP mem8, imm8 80h mm-111-xxx short load, alux

CMP mreg16/32, imm16/32 81h 11-111-xxx short alu

CMP mem16/32, imm16/32 81h mm-111-xxx long load, alu

CMP mreg16/32, imm8 (signed ext.) 83h 11-111-xxx short load, alu

CMP mem16/32, imm8 (signed ext.) 83h mm-111-xxx short load, alu

CMPSB mem8,mem8 A6h vector

CMPSW mem16, mem32 A7h vector

CMPSD mem32, mem32 A7h vector

CMPXCHG mreg8, reg8 0Fh B0h 11-xxx-xxx vector

CMPXCHG mem8, reg8 0Fh B0h mm-xxx-xxx vector

CMPXCHG mreg16/32, reg16/32 0Fh B1h 11-xxx-xxx vector

CMPXCHG mem16/32, reg16/32 0Fh B1h mm-xxx-xxx vector

CMPXCH8B EDX:EAX 0Fh C7h 11-xxx-xxx vector

CMPXCH8B mem64 0Fh C7h mm-xxx-xxx vector

CPUID 0Fh A2h vector

CWD/CDQ EDX, EAX 99h vector

DAA 27h vector

DAS 2Fh vector

DEC EAX 48h short alu

DEC ECX 49h short alu

DEC EDX 4Ah short alu

DEC EBX 4Bh short alu

DEC ESP 4Ch short alu

Table 6. Integer Instructions (continued)

Instruction Mnemonic First
Byte

Second
Byte

modR/M
Byte

Decode
Type

RISC86®

Opcodes
28 Instruction Dispatch and Execution Timing Chapter 4

21828A/0—August 1997 AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization

DEC EBP 4Dh short alu

DEC ESI 4Eh short alu

DEC EDI 4Fh short alu

DEC mreg8 FEh 11-001-xxx vector

DEC mem8 FEh mm-001-xxx long load, alux, store

DEC mreg16/32 FFh 11-001-xxx vector

DEC mem16/32 FFh mm-001-xxx long load, alu, store

DIV AL, mreg8 F6h 11-110-xxx vector

DIV AL, mem8 F6h mm-110-xx vector

DIV EAX, mreg16/32 F7h 11-110-xxx vector

DIV EAX, mem16/32 F7h mm-110-xx vector

IDIV mreg8 F6h 11-111-xxx vector

IDIV mem8 F6h mm-111-xx vector

IDIV EAX, mreg16/32 F7h 11-111-xxx vector

IDIV EAX, mem16/32 F7h mm-111-xx vector

IMUL reg16/32, imm16/32 69h 11-xxx-xxx vector

IMUL reg16/32, mreg16/32, imm16/32 69h 11-xxx-xxx vector

IMUL reg16/32, mem16/32, imm16/32 69h mm-xxx-xxx vector

IMUL reg16/32, imm8 (sign extended) 6Bh 11-xxx-xxx vector

IMUL reg16/32, mreg16/32, imm8
(signed) 6Bh 11-xxx-xxx vector

IMUL reg16/32, mem16/32, imm8
(signed) 6Bh mm-xxx-xxx vector

IMUL AX, AL, mreg8 F6h 11-101-xxx vector

IMUL AX, AL, mem8 F6h mm-101-xx vector

IMUL EDX:EAX, EAX, mreg16/32 F7h 11-101-xxx vector

IMUL EDX:EAX, EAX, mem16/32 F7h mm-101-xx vector

IMUL reg16/32, mreg16/32 0Fh AFh 11-xxx-xxx vector

IMUL reg16/32, mem16/32 0Fh AFh mm-xxx-xxx vector

INC EAX 40h short alu

INC ECX 41h short alu

INC EDX 42h short alu

INC EBX 43h short alu

Table 6. Integer Instructions (continued)

Instruction Mnemonic First
Byte

Second
Byte

modR/M
Byte

Decode
Type

RISC86®

Opcodes
Chapter 4 Instruction Dispatch and Execution Timing 29

AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization 21828A/0—August 1997

INC ESP 44h short alu

INC EBP 45h short alu

INC ESI 46h short alu

INC EDI 47h short alu

INC mreg8 FEh 11-000-xxx vector

INC mem8 FEh mm-000-xxx long load, alux, store

INC mreg16/32 FFh 11-000-xxx vector

INC mem16/32 FFh mm-000-xxx long load, alu, store

INVD 0Fh 08h vector

INVLPG 0Fh 01h mm-111-xxx vector

JO short disp8 70h short branch

JB/JNAE short disp8 71h short branch

JNO short disp8 71h short branch

JNB/JAE short disp8 73h short branch

JZ/JE short disp8 74h short branch

JNZ/JNE short disp8 75h short branch

JBE/JNA short disp8 76h short branch

JNBE/JA short disp8 77h short branch

JS short disp8 78h short branch

JNS short disp8 79h short branch

JP/JPE short disp8 7Ah short branch

JNP/JPO short disp8 7Bh short branch

JL/JNGE short disp8 7Ch short branch

JNL/JGE short disp8 7Dh short branch

JLE/JNG short disp8 7Eh short branch

JNLE/JG short disp8 7Fh short branch

JCXZ/JEC short disp8 E3h vector

JO near disp16/32 0Fh 80h short branch

JNO near disp16/32 0Fh 81h short branch

JB/JNAE near disp16/32 0Fh 82h short branch

JNB/JAE near disp16/32 0Fh 83h short branch

JZ/JE near disp16/32 0Fh 84h short branch

JNZ/JNE near disp16/32 0Fh 85h short branch

Table 6. Integer Instructions (continued)

Instruction Mnemonic First
Byte

Second
Byte

modR/M
Byte

Decode
Type

RISC86®

Opcodes
30 Instruction Dispatch and Execution Timing Chapter 4

21828A/0—August 1997 AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization

JBE/JNA near disp16/32 0Fh 86h short branch

JNBE/JA near disp16/32 0Fh 87h short branch

JS near disp16/32 0Fh 88h short branch

JNS near disp16/32 0Fh 89h short branch

JP/JPE near disp16/32 0Fh 8Ah short branch

JNP/JPO near disp16/32 0Fh 8Bh short branch

JL/JNGE near disp16/32 0Fh 8Ch short branch

JNL/JGE near disp16/32 0Fh 8Dh short branch

JLE/JNG near disp16/32 0Fh 8Eh short branch

JNLE/JG near disp16/32 0Fh 8Fh short branch

JMP near disp16/32 (direct) E9h short

JMP far disp32/48 (direct) EAh vector

JMP disp8 (short) EBh short

JMP far mreg32 (indirect) EFh 11-101-xxx vector

JMP far mem32 (indirect) EFh mm-101-xxx vector

JMP near mreg16/32 (indirect) FFh 11-100-xxx vector

JMP near mem16/32 (indirect) FFh mm-100-xxx vector

LAHF 9Fh vector

LAR reg16/32, mreg16/32 0Fh 02h 11-xxx-xxx vector

LAR reg16/32, mem16/32 0Fh 02h mm-xxx-xxx vector

LDS reg16/32, mem32/48 C5h mm-xxx-xxx vector

LEA reg16/32, mem16/32 8Dh mm-xxx-xxx short
alu
store

LEAVE C9h long
alu
load, alu

LES reg16/32, mem32/48 C4h mm-xxx-xxx vector

LFS reg16/32, mem32/48 0Fh B4h vector

LGDT mem48 0Fh 01h mm-010-xxx vector

LGS reg16/32, mem32/48 0Fh B5h vector

LIDT mem48 0Fh 01h mm-011-xxx vector

LLDT mreg16 0Fh 00h 11-010-xxx vector

LLDT mem16 0Fh 00h mm-010-xxx vector

LMSW mreg16 0Fh 01h 11-100-xxx vector

Table 6. Integer Instructions (continued)

Instruction Mnemonic First
Byte

Second
Byte

modR/M
Byte

Decode
Type

RISC86®

Opcodes
Chapter 4 Instruction Dispatch and Execution Timing 31

AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization 21828A/0—August 1997

LMSW mem16 0Fh 01h mm-100-xxx vector

LODSB AL, mem8 ACh long load
alu

LODSW AX, mem16 ADh long load
alu

LODSD EAX, mem32 ADh long load
alu

LOOP disp8 E2h short branch
alu

LOOPE/LOOPZ disp8 E1h vector

LOOPNE/LOOPNZ disp8 E0h vector

LSL reg16/32, mreg16/32 0Fh 03h 11-xxx-xxx vector

LSL reg16/32, mem16/32 0Fh 03h mm-xxx-xxx vector

LSS reg16/32, mem32/48 0Fh B2h mm-xxx-xxx vector

LTR mreg16 0Fh 00h 11-011-xxx vector

LTR mem16 0Fh 00h mm-011-xxx vector

MOV mreg8, reg8 88h 11-xxx-xxx short alux

MOV mem8, reg8 88h mm-xxx-xxx short store

MOV mreg16/32, reg16/32 89h 11-xxx-xxx short alu

MOV mem16/32, reg16/32 89h mm-xxx-xxx short store

MOV reg8, mreg8 8Ah 11-xxx-xxx short alux

MOV reg8, mem8 8Ah mm-xxx-xxx short load

MOV reg16/32, mreg16/32 8Bh 11-xxx-xxx short alu

MOV reg16/32, mem16/32 8Bh mm-xxx-xxx short load

MOV mreg16, segment reg 8Ch 11-xxx-xxx long load

MOV mem16, segment reg 8Ch mm-xxx-xxx vector

MOV segment reg, mreg16 8Eh 11-xxx-xxx vector

MOV segment reg, mem16 8Eh mm-xxx-xxx vector

MOV AL, mem8 A0h short load

MOV EAX, mem16/32 A1h short load

MOV mem8, AL A2h short store

MOV mem16/32, EAX A3h short store

MOV AL, imm8 B0h short limm

MOV CL, imm8 B1h short limm

Table 6. Integer Instructions (continued)

Instruction Mnemonic First
Byte

Second
Byte

modR/M
Byte

Decode
Type

RISC86®

Opcodes
32 Instruction Dispatch and Execution Timing Chapter 4

21828A/0—August 1997 AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization

MOV DL, imm8 B2h short limm

MOV BL, imm8 B3h short limm

MOV AH, imm8 B4h short limm

MOV CH, imm8 B5h short limm

MOV DH, imm8 B6h short limm

MOV BH, imm8 B7h short limm

MOV EAX, imm16/32 B8h short limm

MOV ECX, imm16/32 B9h short limm

MOV EDX, imm16/32 BAh short limm

MOV EBX, imm16/32 BBh short limm

MOV ESP, imm16/32 BCh short limm

MOV EBP, imm16/32 BDh short limm

MOV ESI, imm16/32 BEh short limm

MOV EDI, imm16/32 BFh short limm

MOV mreg8, imm8 C6h 11-000-xxx short limm

MOV mem8, imm8 C6h mm-000-xxx long store

MOV reg16/32, imm16/32 C7h 11-000-xxx short limm

MOV mem16/32, imm16/32 C7h mm-000-xxx long store

MOVSB mem8,mem8 A4h long
load, store
alu
alu

MOVSD mem16, mem16 A5h long
load, store
alu
alu

MOVSW mem32, mem32 A5h long
load, store
alu
alu

MOVSX reg16/32, mreg8 0Fh BEh 11-xxx-xxx short alu

MOVSX reg16/32, mem8 0Fh BEh mm-xxx-xxx short load, alu

MOVSX reg32, mreg16 0Fh BFh 11-xxx-xxx short alu

MOVSX reg32, mem16 0Fh BFh mm-xxx-xxx short load, alu

MOVZX reg16/32, mreg8 0Fh B6h 11-xxx-xxx short alu

MOVZX reg16/32, mem8 0Fh B6h mm-xxx-xxx short load, alu

MOVZX reg32, mreg16 0Fh B7h 11-xxx-xxx short alu

Table 6. Integer Instructions (continued)

Instruction Mnemonic First
Byte

Second
Byte

modR/M
Byte

Decode
Type

RISC86®

Opcodes
Chapter 4 Instruction Dispatch and Execution Timing 33

AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization 21828A/0—August 1997

MOVZX reg32, mem16 0Fh B7h mm-xxx-xxx short load, alu

MUL AL, mreg8 F6h 11-100-xxx vector

MUL AL, mem8 F6h mm-100-xx vector

MUL EAX, mreg16/32 F7h 11-100-xxx vector

MUL EAX, mem16/32 F7h mm-100-xx vector

NEG mreg8 F6h 11-011-xxx short alux

NEG mem8 F6h mm-011-xx vector

NEG mreg16/32 F7h 11-011-xxx short alu

NEG mem16/32 F7h mm-011-xx vector

NOP (XCHG AX, AX) 90h short limm

NOT mreg8 F6h 11-010-xxx short alux

NOT mem8 F6h mm-010-xx vector

NOT mreg16/32 F7h 11-010-xxx short alu

NOT mem16/32 F7h mm-010-xx vector

OR mreg8, reg8 08h 11-xxx-xxx short alux

OR mem8, reg8 08h mm-xxx-xxx long load, alux, store

OR mreg16/32, reg16/32 09h 11-xxx-xxx short alu

OR mem16/32, reg16/32 09h mm-xxx-xxx long load, alu, store

OR reg8, mreg8 0Ah 11-xxx-xxx short alux

OR reg8, mem8 0Ah mm-xxx-xxx short load, alux

OR reg16/32, mreg16/32 0Bh 11-xxx-xxx short alu

OR reg16/32, mem16/32 0Bh mm-xxx-xxx short load, alu

OR AL, imm8 0Ch xx-xxx-xxx short alux

OR EAX, imm16/32 0Dh xx-xxx-xxx short alu

OR mreg8, imm8 80h 11-001-xxx short alux

OR mem8, imm8 80h mm-001-xxx long load, alux, store

OR mreg16/32, imm16/32 81h 11-001-xxx short alu

OR mem16/32, imm16/32 81h mm-001-xxx long load, alu, store

OR mreg16/32, imm8 (signed ext.) 83h 11-001-xxx short alux

OR mem16/32, imm8 (signed ext.) 83h mm-001-xxx long load, alux, store

POP ES 07h vector

POP SS 17h vector

POP DS 1Fh vector

Table 6. Integer Instructions (continued)

Instruction Mnemonic First
Byte

Second
Byte

modR/M
Byte

Decode
Type

RISC86®

Opcodes
34 Instruction Dispatch and Execution Timing Chapter 4

21828A/0—August 1997 AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization

POP FS 0Fh A1h vector

POP GS 0Fh A9h vector

POP EAX 58h short load
alu

POP ECX 59h short load
alu

POP EDX 5Ah short load
alu

POP EBX 5Bh short load
alu

POP ESP 5Ch short load
alu

POP EBP 5Dh short load
alu

POP ESI 5Eh short load
alu

POP EDI 5Fh short load
alu

POP mreg 8Fh 11-000-xxx short load
alu

POP mem 8Fh mm-000-xxx long load, store
alu

POPA/POPAD 61h vector

POPF/POPFD 9Dh vector

PUSH ES 06h long load, store

PUSH CS 0Eh vector

PUSH FS 0Fh A0h vector

PUSH GS 0Fh A8h vector

PUSH SS 16h vector

PUSH DS 1Eh long load, store

PUSH EAX 50h short store

PUSH ECX 51h short store

PUSH EDX 52h short store

PUSH EBX 53h short store

PUSH ESP 54h short store

Table 6. Integer Instructions (continued)

Instruction Mnemonic First
Byte

Second
Byte

modR/M
Byte

Decode
Type

RISC86®

Opcodes
Chapter 4 Instruction Dispatch and Execution Timing 35

AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization 21828A/0—August 1997

PUSH EBP 55h short store

PUSH ESI 56h short store

PUSH EDI 57h short store

PUSH imm8 6Ah long store

PUSH imm16/32 68h long store

PUSH mreg16/32 FFh 11-110-xxx vector

PUSH mem16/32 FFh mm-110-xxx long load, store

PUSHA/PUSHAD 60h vector

PUSHF/PUSHFD 9Ch vector

RCL mreg8, imm8 C0h 11-010-xxx vector

RCL mem8, imm8 C0h mm-010-xxx vector

RCL mreg16/32, imm8 C1h 11-010-xxx vector

RCL mem16/32, imm8 C1h mm-010-xxx vector

RCL mreg8, 1 D0h 11-010-xxx vector

RCL mem8, 1 D0h mm-010-xxx vector

RCL mreg16/32, 1 D1h 11-010-xxx vector

RCL mem16/32, 1 D1h mm-010-xxx vector

RCL mreg8, CL D2h 11-010-xxx vector

RCL mem8, CL D2h mm-010-xxx vector

RCL mreg16/32, CL D3h 11-010-xxx vector

RCL mem16/32, CL D3h mm-010-xxx vector

RCR mreg8, imm8 C0h 11-011-xxx vector

RCR mem8, imm8 C0h mm-011-xxx vector

RCR mreg16/32, imm8 C1h 11-011-xxx vector

RCR mem16/32, imm8 C1h mm-011-xxx vector

RCR mreg8, 1 D0h 11-011-xxx vector

RCR mem8, 1 D0h mm-011-xxx vector

RCR mreg16/32, 1 D1h 11-011-xxx vector

RCR mem16/32, 1 D1h mm-011-xxx vector

RCR mreg8, CL D2h 11-011-xxx vector

RCR mem8, CL D2h mm-011-xxx vector

RCR mreg16/32, CL D3h 11-011-xxx vector

RCR mem16/32, CL D3h mm-011-xxx vector

Table 6. Integer Instructions (continued)

Instruction Mnemonic First
Byte

Second
Byte

modR/M
Byte

Decode
Type

RISC86®

Opcodes
36 Instruction Dispatch and Execution Timing Chapter 4

21828A/0—August 1997 AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization

RET near imm16 C2h vector

RET near C3h vector

RET far imm16 CAh vector

RET far CBh vector

ROL mreg8, imm8 C0h 11-000-xxx vector

ROL mem8, imm8 C0h mm-000-xxx vector

ROL mreg16/32, imm8 C1h 11-000-xxx vector

ROL mem16/32, imm8 C1h mm-000-xxx vector

ROL mreg8, 1 D0h 11-000-xxx vector

ROL mem8, 1 D0h mm-000-xxx vector

ROL mreg16/32, 1 D1h 11-000-xxx vector

ROL mem16/32, 1 D1h mm-000-xxx vector

ROL mreg8, CL D2h 11-000-xxx vector

ROL mem8, CL D2h mm-000-xxx vector

ROL mreg16/32, CL D3h 11-000-xxx vector

ROL mem16/32, CL D3h mm-000-xxx vector

ROR mreg8, imm8 C0h 11-001-xxx vector

ROR mem8, imm8 C0h mm-001-xxx vector

ROR mreg16/32, imm8 C1h 11-001-xxx vector

ROR mem16/32, imm8 C1h mm-001-xxx vector

ROR mreg8, 1 D0h 11-001-xxx vector

ROR mem8, 1 D0h mm-001-xxx vector

ROR mreg16/32, 1 D1h 11-001-xxx vector

ROR mem16/32, 1 D1h mm-001-xxx vector

ROR mreg8, CL D2h 11-001-xxx vector

ROR mem8, CL D2h mm-001-xxx vector

ROR mreg16/32, CL D3h 11-001-xxx vector

ROR mem16/32, CL D3h mm-001-xxx vector

SAHF 9Eh vector

SAR mreg8, imm8 C0h 11-111-xxx short alux

SAR mem8, imm8 C0h mm-111-xxx vector

SAR mreg16/32, imm8 C1h 11-111-xxx short alu

SAR mem16/32, imm8 C1h mm-111-xxx vector

Table 6. Integer Instructions (continued)

Instruction Mnemonic First
Byte

Second
Byte

modR/M
Byte

Decode
Type

RISC86®

Opcodes
Chapter 4 Instruction Dispatch and Execution Timing 37

AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization 21828A/0—August 1997

SAR mreg8, 1 D0h 11-111-xxx short alux

SAR mem8, 1 D0h mm-111-xxx vector

SAR mreg16/32, 1 D1h 11-111-xxx short alu

SAR mem16/32, 1 D1h mm-111-xxx vector

SAR mreg8, CL D2h 11-111-xxx short alux

SAR mem8, CL D2h mm-111-xxx vector

SAR mreg16/32, CL D3h 11-111-xxx short alu

SAR mem16/32, CL D3h mm-111-xxx vector

SBB mreg8, reg8 18h 11-xxx-xxx vector

SBB mem8, reg8 18h mm-xxx-xxx vector

SBB mreg16/32, reg16/32 19h 11-xxx-xxx vector

SBB mem16/32, reg16/32 19h mm-xxx-xxx vector

SBB reg8, mreg8 1Ah 11-xxx-xxx vector

SBB reg8, mem8 1Ah mm-xxx-xxx vector

SBB reg16/32, mreg16/32 1Bh 11-xxx-xxx vector

SBB reg16/32, mem16/32 1Bh mm-xxx-xxx vector

SBB AL, imm8 1Ch xx-xxx-xxx vector

SBB EAX, imm16/32 1Dh xx-xxx-xxx vector

SBB mreg8, imm8 80h 11-011-xxx vector

SBB mem8, imm8 80h mm-011-xxx vector

SBB mreg16/32, imm16/32 81h 11-011-xxx vector

SBB mem16/32, imm16/32 81h mm-011-xxx vector

SBB mreg8, imm8 (signed ext.) 83h 11-011-xxx vector

SBB mem8, imm8 (signed ext.) 83h mm-011-xxx vector

SCASB AL, mem8 AEh vector

SCASW AX, mem16 AFh vector

SCASD EAX, mem32 AFh vector

SETO mreg8 0Fh 90h 11-xxx-xxx vector

SETO mem8 0Fh 90h mm-xxx-xxx vector

SETNO mreg8 0Fh 91h 11-xxx-xxx vector

SETNO mem8 0Fh 91h mm-xxx-xxx vector

SETB/SETNAE mreg8 0Fh 92h 11-xxx-xxx vector

SETB/SETNAE mem8 0Fh 92h mm-xxx-xxx vector

Table 6. Integer Instructions (continued)

Instruction Mnemonic First
Byte

Second
Byte

modR/M
Byte

Decode
Type

RISC86®

Opcodes
38 Instruction Dispatch and Execution Timing Chapter 4

21828A/0—August 1997 AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization

SETNB/SETAE mreg8 0Fh 93h 11-xxx-xxx vector

SETNB/SETAE mem8 0Fh 93h mm-xxx-xxx vector

SETZ/SETE mreg8 0Fh 94h 11-xxx-xxx vector

SETZ/SETE mem8 0Fh 94h mm-xxx-xxx vector

SETNZ/SETNE mreg8 0Fh 95h 11-xxx-xxx vector

SETNZ/SETNE mem8 0Fh 95h mm-xxx-xxx vector

SETBE/SETNA mreg8 0Fh 96h 11-xxx-xxx vector

SETBE/SETNA mem8 0Fh 96h mm-xxx-xxx vector

SETNBE/SETA mreg8 0Fh 97h 11-xxx-xxx vector

SETNBE/SETA mem8 0Fh 97h mm-xxx-xxx vector

SETS mreg8 0Fh 98h 11-xxx-xxx vector

SETS mem8 0Fh 98h mm-xxx-xxx vector

SETNS mreg8 0Fh 99h 11-xxx-xxx vector

SETNS mem8 0Fh 99h mm-xxx-xxx vector

SETP/SETPE mreg8 0Fh 9Ah 11-xxx-xxx vector

SETP/SETPE mem8 0Fh 9Ah mm-xxx-xxx vector

SETNP/SETPO mreg8 0Fh 9Bh 11-xxx-xxx vector

SETNP/SETPO mem8 0Fh 9Bh mm-xxx-xxx vector

SETL/SETNGE mreg8 0Fh 9Ch 11-xxx-xxx vector

SETL/SETNGE mem8 0Fh 9Ch mm-xxx-xxx vector

SETNL/SETGE mreg8 0Fh 9Dh 11-xxx-xxx vector

SETNL/SETGE mem8 0Fh 9Dh mm-xxx-xxx vector

SETLE/SETNG mreg8 0Fh 9Eh 11-xxx-xxx vector

SETLE/SETNG mem8 0Fh 9Eh mm-xxx-xxx vector

SETNLE/SETG mreg8 0Fh 9Fh 11-xxx-xxx vector

SETNLE/SETG mem8 0Fh 9Fh mm-xxx-xxx vector

SGDT mem48 0Fh 01h mm-000-xxx vector

SIDT mem48 0Fh 01h mm-001-xxx vector

SHL/SAL mreg8, imm8 C0h 11-100-xxx short alux

SHL/SAL mem8, imm8 C0h mm-100-xxx vector

SHL/SAL mreg16/32, imm8 C1h 11-100-xxx short alu

SHL/SAL mem16/32, imm8 C1h mm-100-xxx vector

SHL/SAL mreg8, 1 D0h 11-100-xxx short alux

Table 6. Integer Instructions (continued)

Instruction Mnemonic First
Byte

Second
Byte

modR/M
Byte

Decode
Type

RISC86®

Opcodes
Chapter 4 Instruction Dispatch and Execution Timing 39

AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization 21828A/0—August 1997

SHL/SAL mem8, 1 D0h mm-100-xxx vector

SHL/SAL mreg16/32, 1 D1h 11-100-xxx short alu

SHL/SAL mem16/32, 1 D1h mm-100-xxx vector

SHL/SAL mreg8, CL D2h 11-100-xxx short alux

SHL/SAL mem8, CL D2h mm-100-xxx vector

SHL/SAL mreg16/32, CL D3h 11-100-xxx short alu

SHL/SAL mem16/32, CL D3h mm-100-xxx vector

SHR mreg8, imm8 C0h 11-101-xxx short alux

SHR mem8, imm8 C0h mm-101-xxx vector

SHR mreg16/32, imm8 C1h 11-101-xxx short alu

SHR mem16/32, imm8 C1h mm-101-xxx vector

SHR mreg8, 1 D0h 11-101-xxx short alux

SHR mem8, 1 D0h mm-101-xxx vector

SHR mreg16/32, 1 D1h 11-101-xxx short alu

SHR mem16/32, 1 D1h mm-101-xxx vector

SHR mreg8, CL D2h 11-101-xxx short alux

SHR mem8, CL D2h mm-101-xxx vector

SHR mreg16/32, CL D3h 11-101-xxx short alu

SHR mem16/32, CL D3h mm-101-xxx vector

SHLD mreg16/32, reg16/32, imm8 0Fh A4h 11-xxx-xxx vector

SHLD mem16/32, reg16/32, imm8 0Fh A4h mm-xxx-xxx vector

SHLD mreg16/32, reg16/32, CL 0Fh A5h 11-xxx-xxx vector

SHLD mem16/32, reg16/32, CL 0Fh A5h mm-xxx-xxx vector

SHRD mreg16/32, reg16/32, imm8 0Fh ACh 11-xxx-xxx vector

SHRD mem16/32, reg16/32, imm8 0Fh ACh mm-xxx-xxx vector

SHRD mreg16/32, reg16/32, CL 0Fh ADh 11-xxx-xxx vector

SHRD mem16/32, reg16/32, CL 0Fh ADh mm-xxx-xxx vector

SLDT mreg16 0Fh 00h 11-000-xxx vector

SLDT mem16 0Fh 00h mm-000-xxx vector

SMSW mreg16 0Fh 01h 11-100-xxx vector

SMSW mem16 0Fh 01h mm-100-xxx vector

STC F9h vector

STD FDh vector

Table 6. Integer Instructions (continued)

Instruction Mnemonic First
Byte

Second
Byte

modR/M
Byte

Decode
Type

RISC86®

Opcodes
40 Instruction Dispatch and Execution Timing Chapter 4

21828A/0—August 1997 AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization

STI FBh vector

STOSB mem8, AL AAh long store
alux

STOSW mem16, AX ABh long store
alux

STOSD mem32, EAX ABh long store
alux

STR mreg16 0Fh 00h 11-001-xxx vector

STR mem16 0Fh 00h mm-001-xxx vector

SUB mreg8, reg8 28h 11-xxx-xxx short alux

SUB mem8, reg8 28h mm-xxx-xxx long load, alux, store

SUB mreg16/32, reg16/32 29h 11-xxx-xxx short alu

SUB mem16/32, reg16/32 29h mm-xxx-xxx long load, alu, store

SUB reg8, mreg8 2Ah 11-xxx-xxx short alux

SUB reg8, mem8 2Ah mm-xxx-xxx short load, alux

SUB reg16/32, mreg16/32 2Bh 11-xxx-xxx short alu

SUB reg16/32, mem16/32 2Bh mm-xxx-xxx short load, alu

SUB AL, imm8 2Ch xx-xxx-xxx short alux

SUB EAX, imm16/32 2Dh xx-xxx-xxx short alu

SUB mreg8, imm8 80h 11-101-xxx short alux

SUB mem8, imm8 80h mm-101-xxx long load, alux, store

SUB mreg16/32, imm16/32 81h 11-101-xxx short alu

SUB mem16/32, imm16/32 81h mm-101-xxx long load, alu, store

SUB mreg16/32, imm8 (signed ext.) 83h 11-101-xxx short alux

SUB mem16/32, imm8 (signed ext.) 83h mm-101-xxx long load, alux, store

TEST mreg8, reg8 84h 11-xxx-xxx short alux

TEST mem8, reg8 84h mm-xxx-xxx vector

TEST mreg16/32, reg16/32 85h 11-xxx-xxx short alu

TEST mem16/32, reg16/32 85h mm-xxx-xxx vector

TEST AL, imm8 A8h long alux

TEST EAX, imm16/32 A9h long alu

TEST mreg8, imm8 F6h 11-000-xxx long alux

TEST mem8, imm8 F6h mm-000-xx long load, alux

TEST mreg8, imm16/32 F7h 11-000-xxx long alu

Table 6. Integer Instructions (continued)

Instruction Mnemonic First
Byte

Second
Byte

modR/M
Byte

Decode
Type

RISC86®

Opcodes
Chapter 4 Instruction Dispatch and Execution Timing 41

AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization 21828A/0—August 1997

TEST mem8, imm16/32 F7h mm-000-xx long load, alu

VERR mreg16 0Fh 00h 11-100-xxx vector

VERR mem16 0Fh 00h mm-100-xxx vector

VERW mreg16 0Fh 00h 11-101-xxx vector

VERW mem16 0Fh 00h mm-101-xxx vector

WAIT 9Bh vector

XADD mreg8, reg8 0Fh C0h 11-100-xxx vector

XADD mem8, reg8 0Fh C0h mm-100-xxx vector

XADD mreg16/32, reg16/32 0Fh C1h 11-101-xxx vector

XADD mem16/32, reg16/32 0Fh C1h mm-101-xxx vector

XCHG reg8, mreg8 86h 11-xxx-xxx vector

XCHG reg8, mem8 86h mm-xxx-xxx vector

XCHG reg16/32, mreg16/32 87h 11-xxx-xxx vector

XCHG reg16/32, mem16/32 87h mm-xxx-xxx vector

XCHG EAX, EAX 90h short limm

XCHG EAX, ECX 91h long alu, alu, alu

XCHG EAX, EDX 92h long alu, alu, alu

XCHG EAX, EBX 93h long alu, alu, alu

XCHG EAX, ESP 94h long alu, alu, alu

XCHG EAX, EBP 95h long alu, alu, alu

XCHG EAX, ESI 96h long alu, alu, alu

XCHG EAX, EDI 97h long alu, alu, alu

XLAT D7h vector

XOR mreg8, reg8 30h 11-xxx-xxx short alux

XOR mem8, reg8 30h mm-xxx-xxx long load, alux, store

XOR mreg16/32, reg16/32 31h 11-xxx-xxx short alu

XOR mem16/32, reg16/32 31h mm-xxx-xxx long load, alu, store

XOR reg8, mreg8 32h 11-xxx-xxx short alux

XOR reg8, mem8 32h mm-xxx-xxx short load, alux

XOR reg16/32, mreg16/32 33h 11-xxx-xxx short alu

XOR reg16/32, mem16/32 33h mm-xxx-xxx short load, alu

XOR AL, imm8 34h xx-xxx-xxx short alux

XOR EAX, imm16/32 35h xx-xxx-xxx short alu

Table 6. Integer Instructions (continued)

Instruction Mnemonic First
Byte

Second
Byte

modR/M
Byte

Decode
Type

RISC86®

Opcodes
42 Instruction Dispatch and Execution Timing Chapter 4

21828A/0—August 1997 AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization

XOR mreg8, imm8 80h 11-110-xxx short alux

XOR mem8, imm8 80h mm-110-xxx long load, alux, store

XOR mreg16/32, imm16/32 81h 11-110-xxx short alu

XOR mem16/32, imm16/32 81h mm-110-xxx long load, alu, store

XOR mreg16/32, imm8 (signed ext.) 83h 11-110-xxx short alux

XOR mem16/32, imm8 (signed ext.) 83h mm-110-xxx long load, alux, store

Table 6. Integer Instructions (continued)

Instruction Mnemonic First
Byte

Second
Byte

modR/M
Byte

Decode
Type

RISC86®

Opcodes

Table 7. MMX™ Instructions

Instruction Mnemonic Prefix
Byte(s)

First
Byte

modR/M
Byte

Decode
Type

RISC86®

Opcodes

EMMS 0Fh 77h vector

MOVD mmreg, mreg32 0Fh 6Eh 11-xxx-xxx short store, mload

MOVD mmreg, mem32 0Fh 6Eh mm-xxx-xxx short mload

MOVD mreg32, mmreg 0Fh 7Eh 11-xxx-xxx short mstore, load

MOVD mem32, mmreg 0Fh 7Eh mm-xxx-xxx short mstore

MOVQ mmreg1, mmreg2 0Fh 6Fh 11-xxx-xxx short meu

MOVQ mmreg, mem64 0Fh 6Fh mm-xxx-xxx short mload

MOVQ mmreg1, mmreg2 0Fh 7Fh 11-xxx-xxx short meu

MOVQ mem64, mmreg 0Fh 7Fh mm-xxx-xxx short mstore

PACKSSDW mmreg1, mmreg2 0Fh 6Bh 11-xxx-xxx short meu

PACKSSDW mmreg, mem64 0Fh 6Bh mm-xxx-xxx short mload, meu

PACKSSWB mmreg1, mmreg2 0Fh 63h 11-xxx-xxx short meu

PACKSSWB mmreg, mem64 0Fh 64h mm-xxx-xxx short mload, meu

PACKUSWB mmreg1, mmreg2 0Fh 67h 11-xxx-xxx short meu

PACKUSWB mmreg, mem64 0Fh 67h mm-xxx-xxx short mload, meu

PADDB mmreg1, mmreg2 0Fh FCh 11-xxx-xxx short meu

PADDB mmreg, mem64 0Fh FCh mm-xxx-xxx short mload, meu

PADDD mmreg1, mmreg2 0Fh FEh 11-xxx-xxx short meu

PADDD mmreg, mem64 0Fh FEh mm-xxx-xxx short mload, meu

PADDSB mmreg1, mmreg2 0Fh ECh 11-xxx-xxx short meu

PADDSB mmreg, mem64 0Fh ECh mm-xxx-xxx short mload, meu

PADDSW mmreg1, mmreg2 0Fh EDh 11-xxx-xxx short meu
Chapter 4 Instruction Dispatch and Execution Timing 43

AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization 21828A/0—August 1997

PADDSW mmreg, mem64 0Fh EDh mm-xxx-xxx short mload, meu

PADDUSB mmreg1, mmreg2 0Fh DCh 11-xxx-xxx short meu

PADDUSB mmreg, mem64 0Fh DCh mm-xxx-xxx short mload, meu

PADDUSW mmreg1, mmreg2 0Fh DDh 11-xxx-xxx short meu

PADDUSW mmreg, mem64 0Fh DDh mm-xxx-xxx short mload, meu

PADDW mmreg1, mmreg2 0Fh FDh 11-xxx-xxx short meu

PADDW mmreg, mem64 0Fh FDh mm-xxx-xxx short mload, meu

PAND mmreg1, mmreg2 0Fh DBh 11-xxx-xxx short meu

PAND mmreg, mem64 0Fh DBh mm-xxx-xxx short mload, meu

PANDN mmreg1, mmreg2 0Fh DFh 11-xxx-xxx short meu

PANDN mmreg, mem64 0Fh DFh mm-xxx-xxx short mload, meu

PCMPEQB mmreg1, mmreg2 0Fh 74h 11-xxx-xxx short meu

PCMPEQB mmreg, mem64 0Fh 74h mm-xxx-xxx short mload, meu

PCMPEQD mmreg1, mmreg2 0Fh 76h 11-xxx-xxx short meu

PCMPEQD mmreg, mem64 0Fh 76h mm-xxx-xxx short mload, meu

PCMPEQW mmreg1, mmreg2 0Fh 75h 11-xxx-xxx short meu

PCMPEQW mmreg, mem64 0Fh 75h mm-xxx-xxx short mload, meu

PCMPGTB mmreg1, mmreg2 0Fh 64h 11-xxx-xxx short meu

PCMPGTB mmreg, mem64 0Fh 64h mm-xxx-xxx short mload, meu

PCMPGTD mmreg1, mmreg2 0Fh 66h 11-xxx-xxx short meu

PCMPGTD mmreg, mem64 0Fh 66h mm-xxx-xxx short mload, meu

PCMPGTW mmreg1, mmreg2 0Fh 65h 11-xxx-xxx short meu

PCMPGTW mmreg, mem64 0Fh 65h mm-xxx-xxx short mload, meu

PMADDWD mmreg1, mmreg2 0Fh F5h 11-xxx-xxx short meu

PMADDWD mmreg, mem64 0Fh F5h mm-xxx-xxx short mload, meu

PMULHW mmreg1, mmreg2 0Fh E5h 11-xxx-xxx short meu

PMULHW mmreg, mem64 0Fh E5h mm-xxx-xxx short mload, meu

PMULLW mmreg1, mmreg2 0Fh D5h 11-xxx-xxx short meu

PMULLW mmreg, mem64 0Fh D5h mm-xxx-xxx short mload, meu

POR mmreg1, mmreg2 0Fh EBh 11-xxx-xxx short meu

POR mmreg, mem64 0Fh EBh mm-xxx-xxx short mload, meu

PSLLW mmreg1, mmreg2 0Fh F1h 11-xxx-xxx short meu

PSLLW mmreg, mem64 0Fh F1h 11-xxx-xxx short mload, meu

Table 7. MMX™ Instructions (continued)

Instruction Mnemonic Prefix
Byte(s)

First
Byte

modR/M
Byte

Decode
Type

RISC86®

Opcodes
44 Instruction Dispatch and Execution Timing Chapter 4

21828A/0—August 1997 AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization

PSLLW mmreg, imm8 0Fh 71h 11-110-xxx short meu

PSLLD mmreg1, mmreg2 0Fh F2h 11-xxx-xxx short meu

PSLLD mmreg, mem64 0Fh F2h 11-xxx-xxx short meu

PSLLD mmreg, imm8 0Fh 72h 11-110-xxx short meu

PSLLQ mmreg1, mmreg2 0Fh F3h 11-xxx-xxx short meu

PSLLQ mmreg, mem64 0Fh F3h 11-xxx-xxx short meu

PSLLQ mmreg, imm8 0Fh 73h 11-110-xxx short meu

PSRAW mmreg1, mmreg2 0Fh E1h 11-xxx-xxx short meu

PSRAW mmreg, mem64 0Fh E1h 11-xxx-xxx short meu

PSRAW mmreg, imm8 0Fh 71h 11-100-xxx short meu

PSRAD mmreg1, mmreg2 0Fh E2h 11-xxx-xxx short meu

PSRAD mmreg, mem64 0Fh E2h 11-xxx-xxx short meu

PSRAD mmreg, imm8 0Fh 72h 11-100-xxx short meu

PSRLW mmreg1, mmreg2 0Fh D1h 11-xxx-xxx short meu

PSRLW mmreg, mem64 0Fh D1h 11-xxx-xxx short meu

PSRLW mmreg, imm8 0Fh 71h 11-010-xxx short meu

PSRLD mmreg1, mmreg2 0Fh D2h 11-xxx-xxx short meu

PSRLD mmreg, mem64 0Fh D2h 11-xxx-xxx short meu

PSRLD mmreg, imm8 0Fh 72h 11-010-xxx short meu

PSRLQ mmreg1, mmreg2 0Fh D3h 11-xxx-xxx short meu

PSRLQ mmreg, mem64 0Fh D3h 11-xxx-xxx short meu

PSRLQ mmreg, imm8 0Fh 73h 11-010-xxx short meu

PSUBB mmreg1, mmreg2 0Fh F8h 11-xxx-xxx short meu

PSUBB mmreg, mem64 0Fh F8h mm-xxx-xxx short mload, meu

PSUBD mmreg1, mmreg2 0Fh FAh 11-xxx-xxx short meu

PSUBD mmreg, mem64 0Fh FAh mm-xxx-xxx short mload, meu

PSUBSB mmreg1, mmreg2 0Fh E8h 11-xxx-xxx short meu

PSUBSB mmreg, mem64 0Fh E8h mm-xxx-xxx short mload, meu

PSUBSW mmreg1, mmreg2 0Fh E9h 11-xxx-xxx short meu

PSUBSW mmreg, mem64 0Fh E9h mm-xxx-xxx short mload, meu

PSUBUSB mmreg1, mmreg2 0Fh D8h 11-xxx-xxx short meu

PSUBUSB mmreg, mem64 0Fh D8h mm-xxx-xxx short mload, meu

PSUBUSW mmreg1, mmreg2 0Fh D9h 11-xxx-xxx short meu

Table 7. MMX™ Instructions (continued)

Instruction Mnemonic Prefix
Byte(s)

First
Byte

modR/M
Byte

Decode
Type

RISC86®

Opcodes
Chapter 4 Instruction Dispatch and Execution Timing 45

AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization 21828A/0—August 1997

PSUBUSW mmreg, mem64 0Fh D9h mm-xxx-xxx short mload, meu

PSUBW mmreg1, mmreg2 0Fh F9h 11-xxx-xxx short meu

PSUBW mmreg, mem64 0Fh F9h mm-xxx-xxx short mload, meu

PUNPCKHBW mmreg1, mmreg2 0Fh 68h 11-xxx-xxx short meu

PUNPCKHBW mmreg, mem64 0Fh 68h mm-xxx-xxx short mload, meu

PUNPCKHWD mmreg1, mmreg2 0Fh 69h 11-xxx-xxx short meu

PUNPCKHWD mmreg, mem64 0Fh 69h mm-xxx-xxx short mload, meu

PUNPCKHDQ mmreg1, mmreg2 0Fh 6Ah 11-xxx-xxx short meu

PUNPCKHDQ mmreg, mem64 0Fh 6Ah mm-xxx-xxx short mload, meu

PUNPCKLBW mmreg1, mmreg2 0Fh 60h 11-xxx-xxx short meu

PUNPCKLBW mmreg, mem64 0Fh 60h mm-xxx-xxx short mload, meu

PUNPCKLWD mmreg1, mmreg2 0Fh 61h 11-xxx-xxx short meu

PUNPCKLWD mmreg, mem64 0Fh 61h mm-xxx-xxx short mload, meu

PUNPCKLDQ mmreg1, mmreg2 0Fh 62h 11-xxx-xxx short meu

PUNPCKLDQ mmreg, mem64 0Fh 62h mm-xxx-xxx short mload, meu

PXOR mmreg1, mmreg2 0Fh EFh 11-xxx-xxx short meu

PXOR mmreg, mem64 0Fh EFh mm-xxx-xxx short mload, meu

Table 7. MMX™ Instructions (continued)

Instruction Mnemonic Prefix
Byte(s)

First
Byte

modR/M
Byte

Decode
Type

RISC86®

Opcodes

Table 8. Floating-Point Instructions

Instruction Mnemonic First
Byte

Second
Byte

modR/M
Byte

Decode
Type

RISC86®

Opcodes

F2XM1 D9h F0h short float

FABS D9h F1h short float

FADD ST(0), ST(i) D8h 11-000-xxx short float

FADD ST(0), mem32real D8h mm-000-xxx short fload, float

FADD ST(i), ST(0) DCh 11-000-xxx short float

FADD ST(0), mem64real DCh mm-000-xxx short fload, float

FADDP ST(i), ST(0) DEh 11-000-xxx short float

FBLD DFh mm-100-xxx vector

FBSTP DFh mm-110-xxx vector

FCHS D9h E0h short float
46 Instruction Dispatch and Execution Timing Chapter 4

21828A/0—August 1997 AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization

FCLEX DBh E2h vector

FCOM ST(0), ST(i) D8h 11-010-xxx short float

FCOM ST(0), mem32real D8h mm-010-xxx short fload, float

FCOM ST(0), mem64real DCh mm-010-xxx short fload, float

FCOMP ST(0), ST(i) D8h 11-011-xxx short float

FCOMP ST(0), mem32real D8h mm-011-xxx short fload, float

FCOMP ST(0), mem64real DCh mm-011-xxx short fload, float

FCOMPP DEh 11-011-001 short float

FCOS ST(0) D9h FFh short float

FDECSTP D9h F6h short float

FDIV ST(0), ST(i) (single precision) D8h 11-110-xxx short float

FDIV ST(0), ST(i) (double precision) D8h 11-110-xxx short float

FDIV ST(0), ST(i) (extended precision) D8h 11-110-xxx short float

FDIV ST(i), ST(0) (single precision) DCh 11-111-xxx short float

FDIV ST(i), ST(0) (double precision) DCh 11-111-xxx short float

FDIV ST(i), ST(0) (extended precision) DCh 11-111-xxx short float

FDIV ST(0), mem32real D8h mm-110-xxx short fload, float

FDIV ST(0), mem64real DCh mm-110-xxx short fload, float

FDIVP ST(0), ST(i) DEh 11-111-xxx short float

FDIVR ST(0), ST(i) D8h 11-110-xxx short float

FDIVR ST(I), ST(0) DCh 11-111-xxx short float

FDIVR ST(0), mem32real D8h mm-111-xxx short fload, float

FDIVR ST(0), mem64real DCh mm-111-xxx short fload, float

FDIVRP ST(i), ST(0) DEh 11-110-xxx short float

FFREE ST(I) DDh 11-000-xxx short float

FIADD ST(0), mem32int DAh mm-000-xxx short fload, float

FIADD ST(0), mem16int DEh mm-000-xxx short fload, float

FICOM ST(0), mem32int DAh mm-010-xxx short fload, float

FICOM ST(0), mem16int DEh mm-010-xxx short fload, float

FICOMP ST(0), mem32int DAh mm-011-xxx short fload, float

FICOMP ST(0), mem16int DEh mm-011-xxx short fload, float

FIDIV ST(0), mem32int DAh mm-110-xxx short fload, float

FIDIV ST(0), mem16int DEh mm-110-xxx short fload, float

Table 8. Floating-Point Instructions (continued)

Instruction Mnemonic First
Byte

Second
Byte

modR/M
Byte

Decode
Type

RISC86®

Opcodes
Chapter 4 Instruction Dispatch and Execution Timing 47

AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization 21828A/0—August 1997

FIDIVR ST(0), mem32int DAh mm-111-xxx short fload, float

FIDIVR ST(0), mem16int DEh mm-111-xxx short fload, float

FILD mem16int DFh mm-000-xxx short fload, float

FILD mem32int DBh mm-000-xxx short fload, float

FILD mem64int DFh mm-101-xxx short fload, float

FIMUL ST(0), mem32int DAh mm-001-xxx short fload, float

FIMUL ST(0), mem16int DEh mm-001-xxx short fload, float

FINCSTP D9h F7h short

FINIT DBh E3h vector

FIST mem16int DFh mm-010-xxx short fload, float

FIST mem32int DBh mm-010-xxx short fload, float

FISTP mem16int DFh mm-011-xxx short fload, float

FISTP mem32int DBh mm-011-xxx short fload, float

FISTP mem64int DFh mm-111-xxx short fload, float

FISUB ST(0), mem32int DAh mm-100-xxx short fload, float

FISUB ST(0), mem16int DEh mm-100-xxx short fload, float

FISUBR ST(0), mem32int DAh mm-101-xxx short fload, float

FISUBR ST(0), mem16int DEh mm-101-xxx short fload, float

FLD ST(i) D9h 11-000-xxx short fload, float

FLD mem32real D9h mm-000-xxx short fload, float

FLD mem64real DDh mm-000-xxx short fload, float

FLD mem80real DBh mm-101-xxx vector

FLD1 D9h E8h short fload, float

FLDCW D9h mm-101-xxx vector

FLDENV D9h mm-100-xxx short fload, float

FLDL2E D9h EAh short float

FLDL2T D9h E9h short float

FLDLG2 D9h ECh short float

FLDLN2 D9h EDh short float

FLDPI D9h EBh short float

FLDZ D9h EEh short float

FMUL ST(0), ST(i) D8h 11-001-xxx short float

FMUL ST(i), ST(0) DCh 11-001-xxx short float

Table 8. Floating-Point Instructions (continued)

Instruction Mnemonic First
Byte

Second
Byte

modR/M
Byte

Decode
Type

RISC86®

Opcodes
48 Instruction Dispatch and Execution Timing Chapter 4

21828A/0—August 1997 AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization

FMUL ST(0), mem32real D8h mm-001-xxx short fload, float

FMUL ST(0), mem64real DCh mm-001-xxx short fload, float

FMULP ST(0), ST(i) DEh 11-001-xxx short float

FNOP D9h D0h short float

FPTAN D9h F2h vector

FPATAN D9h F3h short float

FPREM D9h F8h short float

FPREM1 D9h F5h short float

FRNDINT D9h FCh short float

FRSTOR DDh mm-100-xxx vector

FSAVE DDh mm-110-xxx vector

FSCALE D9h FDh short float

FSIN D9h FEh short float

FSINCOS D9h FBh vector

FSQRT (single precision) D9h FAh short float

FSQRT (double precision) D9h FAh short float

FSQRT (extended precision) D9h FAh short float

FST mem32real D9h mm-010-xxx short fstore

FST mem64real DDh mm-010-xxx short fstore

FST ST(i) DDh 11-010xxx short fstore

FSTCW D9h mm-111-xxx vector

FSTENV D9h mm-110-xxx vector

FSTP mem32real D9h mm-011-xxx short fstore

FSTP mem64real DDh mm-011-xxx short fstore

FSTP mem80real D9h mm-111-xxx vector

FSTP ST(i) DDh 11-011-xxx short float

FSTSW AX DFh E0h vector

FSTSW mem16 DDh mm-111-xxx vector

FSUB ST(0), mem32real D8h mm-100-xxx short fload, float

FSUB ST(0), mem64real DCh mm-100-xxx short fload, float

FSUB ST(0), ST(i) D8h 11-100-xxx short float

FSUB ST(i), ST(0) DCh 11-101-xxx short float

FSUBP ST(0), ST(I) DEh 11-101-xxx short float

Table 8. Floating-Point Instructions (continued)

Instruction Mnemonic First
Byte

Second
Byte

modR/M
Byte

Decode
Type

RISC86®

Opcodes
Chapter 4 Instruction Dispatch and Execution Timing 49

AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization 21828A/0—August 1997

FSUBR ST(0), mem32real D8h mm-101-xxx short fload, float

FSUBR ST(0), mem64real DCh mm-101-xxx short fload, float

FSUBR ST(0), ST(I) D8h 11-100-xxx short float

FSUBR ST(i), ST(0) DCh 11-101-xxx short float

FSUBRP ST(i), ST(0) DEh 11-100-xxx short float

FTST D9h E4h short float

FUCOM DDh 11-100-xxx short float

FUCOMP DDh 11-101-xxx short float

FUCOMPP DAh E9h short float

FXAM D9h E5h short float

FXCH D9h 11-001-xxx short float

FXTRACT D9h F4h vector

FYL2X D9h F1h short float

FYL2XP1 D9h F9h short float

FWAIT 9Bh vector

Table 8. Floating-Point Instructions (continued)

Instruction Mnemonic First
Byte

Second
Byte

modR/M
Byte

Decode
Type

RISC86®

Opcodes
50 Instruction Dispatch and Execution Timing Chapter 4

21828A/0—August 1997 AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization

5
x86 Optimization Coding
Guidelines
General x86 Optimization Techniques

This section describes general code optimization techniques
specific to superscalar processors (that is, techniques common
to the AMD-K6 MMX enhanced processor, AMD-K5™ processor,
and Pentium-family processors). In general, all optimization
techniques used for the AMD-K5 processor, Pentium, and
Pentium Pro processors either improve the performance of the
AMD-K6 processor or are not required and have no effect (due
to fewer coding restrictions with the AMD-K6 processor).

Short Forms—Use shorter forms of instructions to increase the
effective number of instructions that can be examined for
decoding at any one time. Use 8-bit displacements and jump
offsets where possible.

Simple Instructions—Use simple instructions with hardwired
decode (pairable, short, or fast) because they perform more
efficiently. This includes “register←register op memory” as
well as “register←register op register” forms of instructions.

Dependencies—Spread out true dependencies to increase the
opportunities for parallel execution. Anti-dependencies and
output dependencies do not impact performance.
Chapter 5 x86 Optimization Coding Guidelines 51

AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization 21828A/0—August 1997

Memory Operands — Instructions that operate on data in
memory (load/op/store) can inhibit parallelism. The use of
separate move and ALU instructions allows better code
scheduling for independent operations. However, if there are no
opportunities for parallel execution, use the load/op/store forms
to reduce the number of register spills (storing values in
memory to free registers for other uses).

Register Operands — Maintain frequently used values in
registers rather than in memory.

Stack References—Use ESP for stack references so that EBP
remains available.

Stack Allocation—When allocating space for local variables
and/or outgoing parameters within a procedure, adjust the
stack pointer and use moves rather than pushes. This method of
allocation allows random access to the outgoing parameters so
that they can be set up when they are calculated instead of
being held somewhere else until the procedure call. This
method also reduces ESP dependencies and uses fewer
execution resources.

Data Embedding — When data is embedded in the code
segment, align it in separate cache blocks from nearby code.
This technique avoids some overhead when maintaining
coherency between the instruction and data caches.

Loops—Unroll loops to get more parallelism and reduce loop
overhead, even with branch prediction. Inline small routines to
avoid procedure-call overhead. For both techniques, however,
consider the cost of possible increased register usage, which
might add load/store instructions for register spilling.

Code Alignment—Aligning at 0-mod-16 improves performance
(ideally at 0-mod-32). However, there is a trade-off between
execution speed and code size.
52 x86 Optimization Coding Guidelines Chapter 5

21828A/0—August 1997 AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization

General AMD-K6™ Processor x86 Coding Optimizations

This section describes general code optimization techniques
specific to the AMD-K6 MMX enhanced processor.

Use short-decodeable instructions — To increase decode
bandwidth and minimize the number of RISC86 operations per
x86 instruction, use short-decodeable x86 instructions. See
“Instruction Dispatch and Execution Timing” on page 23 for
the list of short-decodeable instructions.

Pair short-decodeable instructions—Two short-decodeable x86
instructions can be decoded per clock, using the full decode
bandwidth of the AMD-K6 processor.

Avoid using complex instructions—The more complex and
uncommon instructions are vector decoded and can generate a
larger ratio of RISC86 operations per x86 instruction than
short-decodeable or long-decodeable instructions.

0Fh prefix usage—0Fh does not count as a prefix.

Avoid long instruction length—Use x86 instructions that are
less than eight bytes in length. An x86 instruction that is longer
than seven bytes cannot be short-decoded.

Align branch targets—Keep branch targets away from the end
of a cache line. 16-byte alignment is preferred for branch
targets, while 32-byte alignment is ideal.

Use read-modify-write instructions over discrete equivalent—
No advantage is gained by splitting read-modify-write
instructions into a load-execute-store instruction group. Both
read-modify-write instructions and load-execute-store
instruction groups decode and execute in one cycle but
read-modify-write instructions promote better code density.

Move rarely used code and data to separate pages—Placing
code, such as exception handlers, in separate pages and data,
such as error text messages, in separate pages maximizes the
use of the TLBs and prevents pollution with rarely used items.
Chapter 5 x86 Optimization Coding Guidelines 53

AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization 21828A/0—August 1997

Avoid multiple and accumulated prefixes — In order to
accomplish an instruction decode, the decoders require
sufficient predecode information. When an instruction has
multiple prefixes and this cannot be deduced by the decoders
(due to a lack of data in the instruction decode buffer), the first
decoder retires and accumulates one prefix at a time until the
instruction is completely decoded. Table 9 shows when prefixes
are accumulated and decoding is serialized.

Avoid mixing code size types—Size prefixes that affect the
length of an instruction can sometimes inhibit dual decoding.

Always pair CALL and RETURN—If CALLs and RETs are not
paired, the return address stack gets out of synchronization,
increasing the latency of returns and decreasing performance.

Exploit parallel execution of integer and floating-point
multiplies —The AMD-K6 MMX enhanced processor allows
simultaneous integer and floating-point multiplies using
separate, low-latency multipliers.

Avoid more than 16 levels of nesting in subroutines—More than
16 levels of nested subroutine calls overflow the return address
stack, leading to lower performance. While this is not a problem
for most code, recursive subroutines might easily exceed 16
levels of subroutine calls. If the recursive subroutine is tail
recursive, it can usually be mechanically transformed into an
iterative version, which leads to increased performance.

Table 9. Decode Accumulation and Serialization

Decode #1 Decoder #2 Results

Instruction Single instruction decoded

Instruction Instruction Dual instruction decode

Instruction Prefix
Single instruction decode and prefix is
accumulated

Prefix Instruction
(modified by Prefix)

No prefix accumulation and single instruction
is decoded

PrefixA PrefixB Accumulate PrefixA and cancel decode of the
second prefix

PrefixB Instruction

If a prefix has already been accumulated in
the previous decode cycle, accumulate PrefixB
and cancel instruction decode, wait for next
decode cycle to decode the instruction
54 x86 Optimization Coding Guidelines Chapter 5

21828A/0—August 1997 AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization

Place frequently used stack data within 128 bytes of the EBP—
The statically most-referenced data items in a function’s stack
frame should be located from –128 to +127 bytes from EBP. This
technique improves code density by enabling the use of an 8-bit
sign-extended displacement instead of a 32-bit displacement.

Avoid superset dependencies—Using the larger form of a
register immediate after an instruction uses the smaller form
creates a superset dependency and prevents parallel execution.
For example, avoid the following type of code:

Avoid OR AH,055h
AND EAX,1555555h

Avoid excessive loop unrolling or code inlining—Excessive loop
unrolling or code inlining increases code size and reduces
locality, which leads to lower cache hit rates and reduced
performance.

Avoid splitting a 16-bit memory access in 32-bit code —No
advantage is gained by splitting a 16-bit memory access in
32-bit code into two byte-sized accesses. This technique avoids
the operand size override.

Avoid data dependent branches around a single instruction—
Data dependent branches acting upon basically random data
cause the branch prediction logic to mispredict the branch
about 50% of the time. Design branch-free alternative code
sequences that can replace straight forward code with data
dependent branches. The effect is shorter average execution
time. The following examples illustrate this concept:

■ Signed integer ABS function (x = labs(x))
Static Latency: 4 cycles
MOV ECX, [x] ;load value
MOV EBX, ECX
SAR ECX, 31
XOR EBX, ECX ;1’s complement if x<0, else don’t modify
SUB EBX, ECX ;2’s complement if x<0, else don’t modify
MOV [x], EBX ;save labs result
Chapter 5 x86 Optimization Coding Guidelines 55

AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization 21828A/0—August 1997

■ Unsigned integer min function (z = x < y ? x : y)
Static Latency: 4 cycles
MOV EAX, [x] ;load x value
MOV EBX, [y] ;load y value
SUB EAX, EBX ;set carry flag if y is greater than x
SBB ECX, ECX ;get borrow out from previous SUB
AND ECX, EAX ;if x > y, ECX = x–y, else 0
ADD ECX, EBX ;if x > y, return x–y+y = x, else y
MOV [z], ECX ;save min (x,y)

■ Hexadecimal to ASCII conversion
(y=x < 10 ? x + 0x30: x + 0x41)
Static Latency: 4 cycles
MOV AL, [x] ;load x value
CMP AL, 10 ;if x is less than 10, set carry flag
SBB AL, 69h ;0..9 –> 96h, Ah..Fh –> A1h...A6h
DAS ;0..9: subtract 66h, Ah..Fh: Subtract 60h
MOV [y],AL ;save conversion in y

The [ESI] addressing mode—When using [ESI] as an indirect
memory addressing mode, explicitly code [ESI] to be [ESI+0].
Doing so improves decode bandwidth. For an example, see
“Floating-Point Code Sample” on page 64.
56 x86 Optimization Coding Guidelines Chapter 5

21828A/0—August 1997 AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization

AMD-K6™ Processor Integer x86 Coding Optimizations

This section describes integer code optimization techniques
specific to the AMD-K6 MMX enhanced processor.

Neutral code filler — Use the XCHG EAX, EAX or NOP
instruction when aligning instructions. XCHG EAX, EAX
consumes decode slots but requires no execution resources.
Essentially, the scheduler absorbs the equivalent RISC86
operation without requiring any of the execution units.

Inline REP String with low counts — Expand REP String
instructions into equivalent sequences of simple x86
instructions. This technique eliminates the setup overhead of
these instructions and increases instruction throughput.

Use ADD reg, reg instead of SHL reg, 1—This optimization
technique allows the scheduler to use either of the two integer
adders rather than the single shifter and effectively increases
overall throughput. The only difference between these two
instructions is the setting of the AF flag.

Access 16-bit memory data using the MOVSX and MOVZX
instructions—The AMD-K6 processor has direct hardware
support for extending word size operands to doubleword length.

Use load-execute integer instructions—Most load-execute
integer instructions are short-decodeable and can be decoded
at the rate of two per cycle. Splitting a load-execute instruction
into two separate instructions—a load instruction and a reg, reg
instruction — reduces decoding bandwidth and increases
register pressure.

Use AL, AX, and EAX to improve code density—In many cases,
instructions using AL and EAX can be encoded in one less byte
than using a general purpose register. For example, ADD AX,
0x5555 should be encoded 05 55 55 and not 81 C0 55 55.

Clear registers using MOV reg, 0 instead of XOR reg, reg—
Executing XOR reg, reg requires additional overhead due to
register dependency checking and flag generation. Using MOV
reg, 0 produces a limm (load immediate) RISC86 operation that
is completed when placed in the scheduler and does not
consume execution resources.
Chapter 5 x86 Optimization Coding Guidelines 57

AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization 21828A/0—August 1997

Use 8 -b it s ign -extended immediates — Using 8 -bi t
sign-extended immediates improves code density with no
negative effects on the AMD-K6 processor. For example, ADD
BX, –55 should be encoded 83 C3 FB and not 81 C3 FF FB.

Use 8-bit sign-extended displacements for conditional
branches—Using short, 8-bit sign-extended displacements for
conditional branches improves code density with no negative
effects on the AMD-K6 processor.

Use integer multiply over shift-add sequences when it is
advantageous — The AMD-K6 MMX enhanced processor
features a low-latency integer multiplier. Therefore, almost any
shift-add sequences can have higher latency than MUL or IMUL
instructions. An exception is a trivial case involving
multiplication by powers of two by means of left shifts. In
general, replacements should be made if the shift-add
sequences have a latency greater than or equal to 3 clocks.

Carefully choose the best method for pushing memory data—
To reduce register pressure and code dependency, use PUSH
[mem] rather than MOV EAX, [mem], PUSH EAX.

Balance the use of CWD, CBW, CDQ, and CWDE — These
instructions require special attention to avoid either decreased
decode or execution bandwidth. The following code illustrates
the possible trade-offs:

■ The following code replacement trades decode bandwidth
(CWD is vector decoded, but with only one RISC86
operation) with execution bandwidth (SAR requires two
RISC86 operations, including a shift):
Replace:CWD With: MOV DX,AX

SAR DX,15

■ The following code replacement improves decode
bandwidth (CBW is vector decoded while MOVSX is short
decoded):
Replace:CBW With: MOVSX AX,AL

■ The following code replacement trades decode bandwidth
(CDQ is vector decoded, but with only two RISC86
operations) with execution bandwidth (SAR requires two
RISC86 operations, including a shifter):
Replace:CDQ With: MOV EDX,EAX

SAR EDX,31
58 x86 Optimization Coding Guidelines Chapter 5

21828A/0—August 1997 AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization

■ The following code replacement improves decode
bandwidth (CWDE is vector decoded while MOVSX is short
decoded):
Replace:CWDE With: MOVSX EAX, AX

Replace integer division by constants with multiplication by
the reciprocal—This is a commonly used optimization on RISC
CPUs. Because the AMD-K6 processor has an extremely fast
integer multiply (two cycles) and the integer division delivers
only two bits of quotient per cycle (approximately 18 cycles for
32-bit divides), the equivalent code is much faster. The
following examples illustrate the use of integer division by
constants:

■ Unsigned division by 10 using multiplication by reciprocal
Static Latency: 5 cycles
; IN: EAX = dividend
; OUT:EDX = quotient
MOV EDX, 0CCCCCCCDh ;0.1 * 2^32 * 8 rounded up
MUL EDX
SHR EDX, 3 ;divide by 2^32 * 8

■ Unsigned division by 3 using multiplication by reciprocal
Static Latency: 5 cycles
; IN: EAX = dividend
; OUT:EDX = quotient
MOV EDX, 0AAAAAAABh ;1/3 * 2^32 * 2 rounded up
MUL EDX
SHR EDX, 1 ;divide by 2^32 * 2

■ Signed division by 2
Static Latency: 3 cycles
; IN: EAX = dividend
; OUT:EAX = quotient
CMP EAX, 800000000h ;CY = 1, if dividend >=0
SBB EAX, –1 ;increment dividend if it is <0
SAR EAX, 1 ;perform a right shift

■ Signed division by 2^n
Static Latency: 5 cycles
; IN: EAX = dividend
; OUT:EAX = quotient
MOV EDX, EAX ;sign extend into EDX
SAR EDX, 31 ;EDX = 0xFFFFFFFF if dividend < 0
AND EDX, (2^n–1) ;mask correction (use divisor –1)
ADD EAX, EDX ;apply correction if necessary
SAR EAX, (n) ;perform right shift by log2 (divisor)
Chapter 5 x86 Optimization Coding Guidelines 59

AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization 21828A/0—August 1997

■ Signed division by –2
Static Latency: 4 cycles
; IN: EAX = dividend
; OUT:EAX = quotient
CMP EAX, 800000000h ;CY = 1, if dividend >=0
SBB EAX, –1 ;increment dividend if it is <0
SAR EAX, 1 ;perform right shift
NEG EAX ;use (x/–2) = = – (x/2)

■ Signed division by –(2^n)
Static Latency: 6 cycles
; IN: EAX = dividend
; OUT:EAX = quotient
MOV EDX, EAX ;sign extend into EDX
SAR EDX, 31 ;EDX = 0xFFFFFFFF if dividend < 0
AND EDX, (2^n–1) ;mask correction (–divisor –1)
ADD EAX, EDX ;apply correction if necessary
SAR EAX, (n) ;right shift by log2(–divisor)
NEG EAX ;use (x/–(2^n)) = = (– (x/2^n))

■ Remainder of signed integer 2 or (–2)
Static Latency: 4 cycles
; IN: EAX = dividend
; OUT:EDX = quotient
MOV EDX, EAX ;sign extend into EDX
SAR EDX, 31 ;EDX = 0xFFFFFFFF if dividend < 0
AND EDX, 1 ;compute remainder
XOR EAX, EDX ;negate remainder if
SUB EAX, EDX ;dividend was < 0
MOV [quotient], EAX

■ Remainder of signed integer (2^n) or (–(2^n)))
Static Latency: 6 cycles
; IN: EAX = dividend
; OUT:EDX = quotient
MOV EDX, EAX ;sign extend into EDX
SAR EDX, 31 ;EDX = 0xFFFFFFFF if dividend < 0
AND EDX, (2^n–1) ;mask correction (abs(divison)–1)
ADD EAX, EDX ;apply pre-correction
AND EAX, (2^n–1) ;mask out remainder (abs(divison)–1)
SUB EAX, EDX ;apply pre-correction if necessary
MOV [quotient], EAX
60 x86 Optimization Coding Guidelines Chapter 5

21828A/0—August 1997 AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization

AMD-K6™ Processor Multimedia Coding Optimizations

This section describes multimedia code optimization
techniques specific to the AMD-K6 MMX enhanced processor.

Pair MMX instructions with short-decodeable instructions—
MMX instruct ions are short -decodeable and can be
simultaneously decoded with any other short-decodeable
instruction. This technique requires that MMX instructions be
arranged as the first of a pair of short-decodeable instructions.

Avoid using MMX registers to move double-precision
floating-point data—Although using an MMX register to move
floating-point data appears fast, using MMX registers requires
the use of the EMMS instruction when switching from MMX to
floating-point instructions.

Avoid switching between MMX and FPU instructions—Because
the MMX registers are mapped on to the floating-point stack,
the EMMS instruction must be executed after using MMX code
and prior to the use of the floating-point unit. Group or
partition MMX code away from FPU code so that the use of the
EMMS instruction is minimized. Also, the actual penalty from
the use of the EMMS instruction occurs not at the time of
execution but when the first floating-point instruction is
encountered.
Chapter 5 x86 Optimization Coding Guidelines 61

AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization 21828A/0—August 1997

AMD-K6™ Processor Floating-Point Coding Optimizations

This section describes floating-point code optimization
techniques specific to the AMD-K6 MMX enhanced processor.

Avoid vector decoded floating-point instructions — Most
floating-point instructions are short decodeable. A few of the
less common instructions are vector decoded. Additionally if a
short decodeable instruction straddles a cache line, it will
become vector decoded. This adds unnecessary overheard that
can be avoided by inserting NOPs in strategic locations within
the code.

Pair floating-point with short-decodeable instructions—Most
floating-point instructions (also known as ESC instructions) are
short-decodeable and are limited to the first decoder. The
short-decodeable floating-point instructions can be paired with
other short-decodeable instructions. This technique requires
that floating-point instructions be arranged as the first of a pair
of short-decodeable instructions.

Avoid FXCH usage—Pairing FXCH with other floating-point
instructions does not increase performance.

Avoid switching between MMX and FPU instructions—Because
the MMX registers are mapped on to the floating-point stack,
the EMMS instruction must be executed after using MMX code
and prior to the use of the floating-point unit. Group or
partition MMX code away from FPU code so that the use of the
EMMS instruction is minimized. Also, the actual penalty from
the use of the EMMS instruction occurs not at the time of
execution but when the first floating-point instruction is
encountered.

Avoid using MMX registers to move double-precision
floating-point data—Although using an MMX register to move
floating-point data appears fast, using MMX registers requires
the use of the EMMS instruction when switching from MMX to
floating-point instructions.
62 x86 Optimization Coding Guidelines Chapter 5

21828A/0—August 1997 AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization

Exploit parallel execution of integer and floating-point
multiplies —The AMD-K6 MMX enhanced processor allows
simultaneous integer and floating-point multiplies using
separate, low-latency multipliers.

Avoid splitting floating-point instructions with integer
instructions—No penalty is incurred when using arithmetic or
comparison floating-point instructions that use integer
operands, such as FIADD or FICOM. Split t ing these
instructions into discrete load and floating-point instructions
decreases performance.

Replace FDIV instructions with FMUL where possible—The
FMUL instruction latency is much less than the FDIV
instruction. When possible, replace floating-point divisions
with floating-point multiplication of the reciprocal.

Use integer instructions to move floating-point data — A
floating-point load and store instruction pair requires a
minimum of four cycles to complete (two-cycle latency for each
instruction). The AMD-K6 processor can perform one integer
load and one store per cycle. Therefore, moving single-precision
data requires one cycle, moving double-precision data requires
two cycles, and moving extended-precision data only requires
three cycles when using integer loads and stores. The example
below shows how to translate the C-style code when moving
double-precision floating-point data:

double temp1, temp2;
temp2 = temp1;

Avoid:FLD QWORD PTR [temp1];Use: MOV EAX, [temp1];
FSTP QWORD PTR [temp2]; MOV [temp2], EAX;

MOV EAX, [temp1+4];
MOV [temp2+4], EAX;

Scheduling of floating-point instructions is unnecessary—The
AMD-K6 processor has a low-latency, non-pipel ined
floating-point execution unit. Therefore, no scheduling between
floating-point instructions is necessary.

Use load-execute floating-point instructions—The use of a
load-execute instruction (such as, FADD DWORD PRT [mem])
is preferable to the use of a load floating-point instruction
followed by a FP reg, reg instruction. For the AMD-K6
processor, load-execute arithmetic and compare instructions
Chapter 5 x86 Optimization Coding Guidelines 63

AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization 21828A/0—August 1997

are identical in throughput to FP reg, reg instructions. Because
common floating-point instructions execute in two cycles each
and the floating-point unit is not pipelined, code executes more
efficiently if the minimum possible number of floating-point
instructions are generated.

Floating-Point Code Sample

The following code sample uses three important rules to
optimize this matrix multiply routine. The first rule is to force
[ESI] to be [ESI+0]. The second rule is the insertion of NOPs to
avoid cache line straddles. The third rule used is avoiding
vector decoded instructions.

MATMUL MACRO
db 0d9h, 046h, 00h ;; FLD DWORD PTR [ESI+00] ;;x
FMUL DWORD PTR [EBX] ;; a11*x
FLD DWORD PTR [ESI+4] ;; y
FMUL DWORD PTR [EBX+4] ;; a21*y
FLD DWORD PTR [ESI+8] ;; z
FMUL DWORD PTR [EBX+8] ;; a31*z
FLD DWORD PTR [ESI+12] ;; w
FMUL DWORD PTR [EBX+12] ;; a41*w
FADDP ST(3), ST ;; a41*w+a31*z
FADDP ST(2), ST ;; a41*w+a31*z+a21*y
FADDP ST(1), ST ;; a41*w+a31*z+a21*y+a11*x
FSTP DWORD PTR [EDI] ;; store rx
NOP ;; make sure it does not

;; straddle across a cache line
db 0d9h, 046h, 00h ;; FLD DWORD PTR [ESI+00] ;; x
FMUL DWORD PTR [EBX+16] ;; a12*x
FLD DWORD PTR [ESI+4] ;; y
FMUL DWORD PTR [EBX+20] ;; a22*y
FLD DWORD PTR [ESI+8] ;; z
NOP ;; make sure it does not

;; straddle across a cache line
FMUL DWORD PTR [EBX+24] ;; a32*z
FLD DWORD PTR [ESI+12] ;; w
FMUL DWORD PTR [EBX+28] ;; a42*w
FADDP ST(3), ST ;; a42*w+a32*z
FADDP ST(2), ST ;; a42*w+a32*z+a22*y
FADDP ST(1), ST ;; a42*w+a32*z+a22*y+a12*x
NOP ;; make sure it does not

;; straddle across a cache line
FSTP DWORD PTR [EDI+4] ;; store ry
db 0d9h, 046h, 00h ;; FLD DWORD PTR [ESI+00] ;; x
FMUL DWORD PTR [EBX+32] ;; a13*x
FLD DWORD PTR [ESI+4] ;; y
FMUL DWORD PTR [EBX+36] ;; a23*y
NOP ;; make sure it does not

;; straddle across a cache line
FLD DWORD PTR [ESI+8] ;; z
64 x86 Optimization Coding Guidelines Chapter 5

21828A/0—August 1997 AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization

FMUL DWORD PTR [EBX+40] ;; a33*z
FLD DWORD PTR [ESI+12] ;; w
FMUL DWORD PTR [EBX+44] ;; a43*w
FADDP ST(3), ST ;; a43*w+a33*z
FADDP ST(2), ST ;; a43*w+a33*z+a23*y
FADDP ST(1), ST ;; a43*w+a33*z+a23*y+a13*x
FSTP DWORD PTR [EDI+8] ;; store rz
db 0d9h, 046h, 00h ;; FLD DWORD PTR [ESI+00] ;; x
FMUL DWORD PTR [EBX+48] ;; a14*x
FLD DWORD PTR [ESI+4] ;; y
FMUL DWORD PTR [EBX+52] ;; a24*y
FLD DWORD PTR [ESI+8] ;; z
FMUL DWORD PTR [EBX+56] ;; a34*z
FLD DWORD PTR [ESI+12] ;; w
FMUL DWORD PTR [EBX+60] ;; a44*w
FADDP ST(3), ST ;; a44*w+a34*z
NOP ;; make sure it does not

;; straddle across a cache line
FADDP ST(2), ST ;; a44*w+a34*z+a24*y
FADDP ST(1), ST ;; a44*w+a34*z+a24*y+a14*x
FSTP DWORD PTR [EDI+12] ;; store rw

ENDM
Chapter 5 x86 Optimization Coding Guidelines 65

AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization 21828A/0—August 1997

66 x86 Optimization Coding Guidelines Chapter 5

21828A/0—August 1997 AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization

6
Considerations for Other
Processors
The tables in this chapter contain information describing how
AMD-K6 MMX enhanced processor-specific optimization
techniques affect other processors, including the AMD-K5
processor.

Table 10. Specific Optimizations and Guidelines for AMD-K6™ and AMD-K5™ Processors

AMD-K5
Processor

Guideline/Event
AMD-K5 Processor Details

Usage/Effect
on AMD-K6
Processors

AMD-K6 Processor
Details

Jumps and
Loops

JCXZ requires 1 cycle (correctly predicted)
and therefore is faster than a TEST/JZ. All
forms of LOOP take 2 cycles (correctly
predicted).

Different
JCXZ takes 2 cycles when taken and 7
cycles when not taken. LOOP takes 1
cycle.

Shifts

Although there is only one shifter, certain
shifts can be done using other execution
units. For example, shift left 1 by adding a
value to itself. Use LEA index scaling to
shift left by 1, 2, or 3.

Same

Shifts are short decodeable and
converted to a single RISC86 shift
operation that executes only in the
Integer X unit. LEA is executed in the
store unit.

Multiplies

Independent IMULs can be pipelined at
one per cycle with 4-cycle latency. (MUL
has the same latency, although the implicit
AX usage of MUL prevents independent,
parallel MUL operations.)

Different
2– or 3–cycle throughput and latency
(3 cycles only if the upper half of the
product is produced)
Chapter 6 Considerations for Other Processors 67

AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization 21828A/0—August 1997

Dispatch
Conflicts

Load-balancing (that is, selecting
instructions for parallel decode) is still
important, but to a lesser extent than on
the Pentium processor. In particular,
arrange instructions to avoid
execution-unit dispatching conflicts.

Same

Byte Operations

For byte operations, the high and low
bytes of AX, BX, CX, and DX are effectively
independent registers that can be
operated on in parallel. For example,
reading AL does not have a dependency
on an outstanding write to AH.

Same Register dependency is checked on a
byte boundary.

Floating-Point
Top-of-Stack
Bottleneck

The AMD-K5 processor has a pipelined
floating-point unit. Greater parallelism can
be achieved by using FXCH in parallel with
floating-point operations to alleviate the
top-of-stack bottleneck, as in the Pentium.

Not required
Loads and stores are performed in
parallel with floating-point instructions.

Move and
Convert

MOVZX, MOVSX, CBW, CWDE, CWD, CDQ
all take 1 cycle (2 cycles for memory-based
input).

Same
Zero and sign extension are
short-decodeable with 1 cycle
execution.

Indexed
Addressing

There is no penalty for base + index
addressing in the AMD-K5 processor.

Same

Instruction
Prefixes

There is no penalty for instruction prefixes,
including combinations such as
segment-size and operand-size prefixes.
This is particularly important for 16-bit
code.

Possible A penalty can only occur during
accumulated prefix decoding.

Floating-Point
Execution

Parallelism

The AMD-K5 processor permits integer
operations (ALU, branch, load/store) in
parallel with floating-point operations.

Same
In addition, the AMD-K6 processor
allows two integer, a branch, a load,
and a store.

Locating Branch
Targets

Performance can be sensitive to code
alignment, especially in tight loops.
Locating branch targets to the first 17
bytes of the 32-byte cache line maximizes
the opportunity for parallel execution at
the target.

Optional
Branch targets should be placed on 0
mod 16 alignment for optimal
performance.

NOPs

The AMD-K5 processor executes NOPs
(opcode 90h) at the rate of two per cycle.
Adding NOPs is even more effective if they
execute in parallel with existing code.

Same
NOPs are short-decodeable and
consume decode bandwidth but no
execution resources.

Table 10. Specific Optimizations and Guidelines for AMD-K6™ and AMD-K5™ Processors (continued)

AMD-K5
Processor

Guideline/Event
AMD-K5 Processor Details

Usage/Effect
on AMD-K6
Processors

AMD-K6 Processor
Details
68 Considerations for Other Processors Chapter 6

21828A/0—August 1997 AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization

Branch
Prediction

There are two branch prediction bits in a
32-byte instruction cache line. For effective
branch prediction, code should be
generated with one branch per 16-byte
line half.

Not required This optimization has a neutral effect
on the AMD-K6 processor.

Bit Scan
BSF and BSR take 1 cycle (2 cycles for
memory-based input), compared to the
Pentium’s data-dependent 6 to 34 cycles.

Different A multi-cycle operation, but faster than
Pentium.

Bit Test

BT, BTS, BTR, and BTC take 1 cycle for
register-based operands, and 2 or 3 cycles
for memory-based operands with
immediate bit-offset. Register-based
bit-offset forms on the AMD-K5 processor
take 5 cycles.

Different Bit test latencies are similar to the
Pentium.

Table 10. Specific Optimizations and Guidelines for AMD-K6™ and AMD-K5™ Processors (continued)

AMD-K5
Processor

Guideline/Event
AMD-K5 Processor Details

Usage/Effect
on AMD-K6
Processors

AMD-K6 Processor
Details

Table 11. AMD-K6™ Processor Versus Pentium® Processor-Specific Optimizations and Guidelines

Pentium
Guideline/Event

Pentium
Effect

Usage/Effect on
AMD-K6 Processors

AMD-K6 Processor
Details

Instruction Fetches
Across Two Cache Lines No Penalty Possible

Decode penalty only if there is
not sufficient information to
decode at least one instruction.

Mispredicted
Conditional Branch
Executed in U pipe

3-cycle penalty Different
Mispredicted branches have a 1–
to 4–cycle penalty.

Mispredicted
Conditional Branch
Executed in V pipe

4-cycle penalty Different Mispredicted branches have a 1–
to 4–cycle penalty.

Mispredicted Calls 3-cycle penalty None

Mispredicted
Unconditional Jumps 3-cycle penalty None

FXCH Optimizing
Pairs with most FP instructions
and effectively hides FP stack
manipulations.

None

Index Versus Base
Register

1-cycle penalty to calculate the
effective address when an index
register is used.

None
Chapter 6 Considerations for Other Processors 69

AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization 21828A/0—August 1997

Address Generation
Interlock Due to Explicit
Register Usage

1-clock penalty when
instructions are not scheduled
apart by at least one instruction.

None However, it is best to schedule
apart the dependency.

Address Generation
Interlock Due to Implicit
Register Usage

1-clock penalty when
instructions are not scheduled
apart by at least one instruction.

None However, it is best to schedule
apart the dependency.

Instructions with an
Immediate Displacement 1-cycle penalty None

Carry & Borrow
Instructions Issue Limits Issued to U pipe only Same Issued to Integer X unit only.

Prefix Decode Penalty 1-clock delay Possible
Delays can occur due to prefix
accumulation.

0Fh Prefix Penalty 1-clock delay None

MOVZX Acceleration No, incurs 4-cycle latency Yes Short-decodeable, 1 cycle.

Unpairability Due to
Register Dependencies

Incurred during flow and output
dependency. None Dependencies do not affect

instruction decode.

Shifts with Immediates
Issue Limitations Issued to U pipe only Similar Issued to the Integer X unit only.

Floating-Point Ops Issue
Limitation Issued to U pipe only Similar Issued to dedicated floating-point

unit.

Conditional Code Pairing Special pairing case None
Conditional code such as JCCs
are short decodeable and
pairable.

Integer Execution Delay
Due to Transcendental
Operation

Issue to U pipe is stalled None
The AMD-K6 processor has a
separate floating-point execution
unit.

Instructions Greater
Than 7 Bytes Issued to U pipe only Similar Long and vector decodeable

only.

Misaligned Data Penalty 3-clock delay Partial 1-clock delay.

Table 11. AMD-K6™ Processor Versus Pentium® Processor-Specific Optimizations and Guidelines

Pentium
Guideline/Event

Pentium
Effect

Usage/Effect on
AMD-K6 Processors

AMD-K6 Processor
Details
70 Considerations for Other Processors Chapter 6

21828A/0—August 1997 AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization

Table 12. AMD-K6™ Processor and Pentium® Processor with Optimizations for MMX™ Instructions

Pentium/MMX
Guideline/Event

Pentium/MMX
Effect

Usage/Effect on
AMD-K6 Processor

AMD-K6 Processor
Details

0Fh Prefix Penalty None None

Three-clock Stalls for
Dependent MMX Multiplies

Dependent instruction must be
scheduled two instruction pairs
following the multiply.

Different
MULL - 1 clock
MULH - 2 clocks
MADD - 2 clocks

Two-clock Stalls for Writing
Then Storing an MMX
Register

Requires scheduling the store
two cycles after writing
(updating) the MMX register.

None

U Pipe: Integer/MMX Pairing

MMX instruction that access
either memory or integer
registers cannot be executed
in the V pipe.

Different

Pairing requires
short-decodeable integer
instruction as the second
instruction.

U Pipe: MMX/Integer Pairing V pipe integer instruction must
be pairable.

Similar

Pairing requires
short-decodeable integer
instruction as the second
instruction.

Pairing Two MMX Instructions

Cannot pair two MMX
multiplies, two MMX shifts, or
MMX instructions in V pipe
with U pipe dependency.

None

66h or 67h Prefix Penalty Three clocks. None

Table 13. AMD-K6™ Processor and Pentium® Pro Processor-Specific Optimizations

Pentium Pro
Guideline/Event Pentium Pro Effect

Usage/Effect on
AMD-K6
Processor

AMD-K6 Processor Detail

Partial-Register Stalls

Avoid reading a large register after writing
a smaller version of the same register.
This causes the P6 to stall the issuing of
instructions that reference the full register
and all subsequent instructions until after
the partial write has retired. If the partial
register update is adjacent to a
subsequent full register read, the stall
lasts at least seven clock cycles with
respect to the decoder outputs. On the
average, such a stall can prevent from 3
to 21 micro-ops from being issued.

Different

The AMD-K6 processor
performs register
dependency checking on a
byte granularity. Due to
shorter pipelines,
execution latency, and
commitment latency,
instruction issuing is not
affected. However,
execution is stalled.
Chapter 6 Considerations for Other Processors 71

AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization 21828A/0—August 1997

Branches
Exploit the P6 return stack by using a RET
rather than a JMP at the end of a
subroutine.

Same
The AMD-K6 processor
contains a Call/Return
stack.

Avoid Self-Modifying
Code

Code that alters itself can cause the P6 to
flush the processor’s pipelines and can
invalidate code resident in caches.

Same

Code Alignment 16-byte block Same

Predicted Branch Penalty BTB suffers 1-cycle delay None

The AMD-K6 processor
uses parallel adders for
on-the-fly address
generation.

Mispredicted Branch Minimum 9, typically 10 to 15 clocks Different 1 to 4 clocks.

Misaligned Data Penalty More than 3 clocks Different 1-clock maximum delay.

2-Byte Data Alignment 4-byte boundary Same
Note, the misalignment
penalty is only a 1-clock
delay.

4-Byte Data Alignment 4-byte boundary Same
Note, the misalignment
penalty is only a 1-clock
delay.

8-Byte Data Alignment 8-byte boundary Same
Note, the misalignment
penalty is only a 1-clock
delay.

Instruction Lengths
Greater Than 7 Bytes Issued one at a time Different Long-decodeable and

vector-decodeable.

Prefix Penalty 1-clock delay Possible
Delays can sometimes
occur due to prefix
accumulation.

0Fh Prefix Penalty None None

MOVZX Acceleration Yes Yes Short-decodeable, 1 cycle.

Static Prediction Penalty 6 clocks Different 3 clocks.

Table 13. AMD-K6™ Processor and Pentium® Pro Processor-Specific Optimizations (continued)

Pentium Pro
Guideline/Event Pentium Pro Effect

Usage/Effect on
AMD-K6
Processor

AMD-K6 Processor Detail
72 Considerations for Other Processors Chapter 6

21828A/0—August 1997 AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization

Table 14. AMD-K6™ Processor and Pentium® Pro with Optimizations for MMX™ Instructions

Pentium Pro
Guideline/Event Pentium Pro Effect Usage/Effect on

AMD-K6 Processor
AMD-K6 Processor

Details

Three Clock Stalls for
Dependent MMX Multiplies

Dependent instruction must be
scheduled two instruction pairs following
the multiply.

None
MULL - 1 clock
MULH - 2 clocks
MADD - 2 clocks

Pairing Two MMX Instructions
Cannot pair two MMX multiplies, two
MMX shifts, or MMX instructions in
V-pipe with U-pipe dependency.

None

Predicted Branches not in the
BTB ~5-cycle latency Different

1-cycle latency for
BTB miss.
Chapter 6 Considerations for Other Processors 73

AMD-K6™ MMX™ Enhanced Processor x86 Code Optimization 21828A/0—August 1997

74 Considerations for Other Processors Chapter 6

	AMD�K6 MMX Enhanced Processor
	™
	™
	Contents
	List of Tables
	List of Figures
	Revision History

	Introduction
	Purpose
	The AMD�K6™ Family of Processors
	The AMD�K6™ MMX™ Enhanced Processor

	The AMD�K6™ Processor RISC86® Microarchitecture
	Overview
	RISC86® Microarchitecture
	Figure 1. AMD�K6™ MMX™ Enhanced Processor Block Di...

	AMD�K6™ Processor Execution Units and Dependency L...
	Execution Unit Terminology
	Six�Stage Pipeline
	Figure 2. AMD�K6™ Processor Pipeline

	Integer and Multimedia Execution Units
	Figure 3. Integer/Multimedia Execution Unit

	Load Unit
	Figure 4. Load Execution Unit

	Store Unit
	Figure 5. Store Execution Unit

	Branch Condition Unit
	Floating Point Unit
	Latencies and Throughput
	Table 1. RISC86® Execution Latencies and Throughpu...

	Resource Constraints
	Code Sample Analysis
	Table 2. Sample 1 – Integer Register Operations
	Table 3. Sample 2 – Integer Register and Memory Lo...
	Table 4. Sample 3 – Integer Register and Memory Lo...
	Table 5. Sample 4 – Integer, MMX™, and Memory Load...

	Instruction Dispatch and Execution Timing
	Table 6. Integer Instructions (continued)
	Table 7. MMX™ Instructions (continued)
	Table 8. Floating-Point Instructions (continued)

	x86 Optimization Coding Guidelines
	General x86 Optimization Techniques
	General AMD�K6™ Processor x86 Coding Optimizations...
	Table 9. Decode Accumulation and Serialization�

	AMD�K6™ Processor Integer x86 Coding Optimizations...
	AMD�K6™ Processor Multimedia Coding Optimizations
	AMD�K6™ Processor Floating�Point Coding Optimizati...
	Floating�Point Code Sample

	Considerations for Other Processors
	Table 10. Specific Optimizations and Guidelines fo...
	Table 11. AMD�K6™ Processor Versus Pentium® Proces...
	Table 12. AMD�K6™ Processor and Pentium® Processor...
	Table 13. AMD�K6™ Processor and Pentium® Pro Proce...
	Table 14. AMD�K6™ Processor and Pentium® Pro with ...

