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1
Introduction
Purpose

The AMD K86™ family of x86 processors can efficiently
execute code written for previous-generation x86 processors.
However, to get the highest performance from the unique
microarchitecture of the AMD-K6® family of processors, certain
code optimization techniques should be applied. 

This document contains information to assist programmers in
creating optimized code for the AMD-K6 family. This document
is targeted at compiler/assembler designers and assembly
language programmers writing high-performance code
sequences. It is assumed that the reader possesses an in-depth
knowledge of the x86 architecture.

The information in this application note pertains to the
AMD-K6 family of processors – information specific to the
AMD-K6-2 processor Model 8 and AMD-K6-III processor Model
9 is noted. For information about the recognition of processor
model numbers, see the AMD Processor Recognition Application
Note, order# 20734.
Chapter 1 Introduction 1
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AMD-K6® Family of Processors

Processors in the AMD-K6 family use a decoupled instruction
decode and superscalar execution microarchitecture, including
state -of -the -art  RISC des ign techniques ,  to  del iver
sixth-generation performance with x86 binary software
compatibility. An x86 binary-compatible processor implements
the industry-standard x86 instruction set by decoding and
executing the x86 instruction set as its native mode of
operation. Only this native mode permits delivery of maximum
performance when running PC software.

AMD-K6®-2 and AMD-K6®-III Processors

The AMD-K6-2 and AMD-K6-III processors (hereafther both are
referred to as the processor) bring superscalar RISC
performance to desktop systems running industry-standard x86
software. The processor implements advanced design
techniques such as:

■ Instruction pre-decoding

■ Multiple x86 opcode decoding

■ Single-cycle internal RISC operations

■ Multiple parallel execution units

■ Out-of-order execution

■ Data-forwarding

■ Register renaming

■ Dynamic branch prediction

The processor is capable of issuing, executing, and retiring
multiple x86 instructions per cycle, resulting in superior
scaleable performance.

Although the processor is capable of extracting code
parallelism out of off-the-shelf, commercially available x86
software, specific code optimizations for the processor can
result in significantly higher delivered performance. This
document describes the RISC86® microarchitecture in the
processor and makes recommendations for optimizing
2 Introduction Chapter 1
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execution of x86 software on the processor. The coding
techniques for achieving peak performance on the processor
include, but are not limited to, those recommended for the
Pentium®, Pentium II, and Pentium Pro processors. However,
many of these optimizations are not necessary for the processor
to achieve maximum performance. For example, due to more
flexible pipeline control in the AMD-K6 microarchitecture, the
processor is less sensitive to instruction selection and the
scheduling of code. This flexibility is one of the distinct
advantages of the AMD-K6 processor microarchitecture.

In addition to the ability to execute MMX™ instructions, the
processor includes the implementation of the 3DNow!™
instruction set. 3DNow! technology was created based on
suggestions from leading graphics and software vendors.
Utilizing a data format and single instruction multiple data
(SIMD) operations based on the MMX instruction model, the
processor can produce up to four, 32-bit, single-precision
floating-point results per clock cycle. 3DNow! technology also
includes new integer multimedia instructions, a new
instruction to allow the prefetching of data under software
control, and a faster enter/exit multimedia-state instruction. 

The 3DNow! units provide support for high-performance,
floating-point vector operations, which can replace x87
instructions and enhance the performance of 3D graphics and
other floating-point-intensive applications. The complete
multimedia processing unit in the processor combines existing
MMX instructions with the new 3DNow! instructions. The
3DNow! instructions share the use of the MMX registers with
the multimedia unit. By mixing 3DNow! instructions with MMX
instructions, it now becomes possible to write x86 programs
containing both MMX integer and floating-point instructions
without a performance penalty that would have been incurred
if MMX and x87 floating-point instructions were intermixed.
All these improvements have been carefully designed to bring a
better multimedia experience to mainstream PC users while
maintaining backwards compatibility with all existing x86
software.
Chapter 1 Introduction 3
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2
RISC86 Microarchitecture®
Overview

When discussing processor design, it is important to understand
the terms architecture ,  microarchitecture ,  and design
implementation. The term architecture refers to the instruction
set and features of a processor that are visible to software
programs running on the processor.  The architecture
determines what software the processor can run. The
architecture of the AMD-K6 processor is the industry-standard
x86 instruction set. 

The term microarchitecture refers to the design techniques used
in the processor to reach the target cost, performance, and
functionality goals. The AMD-K6 processor is based on a
sophisticated RISC core known as the Enhanced RISC86
microarchitecture. The Enhanced RISC86 microarchitecture is
an advanced decoupled decode/execution design approach that
enables industry-leading performance for x86-based software. 

The term design implementation refers to the actual logic and
circuit designs from which the processor is created according to
the microarchitecture specifications.
Chapter 2 RISC86 Microarchitecture 5
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Enhanced RISC86® Microarchitecture

The Enhanced RISC86 microarchitecture defines the
characteristics of the AMD-K6 family of processors. The
innovative RISC86 microarchitecture approach implements the
x86 instruction set by internally translating x86 instructions
into RISC86 operations. These RISC86 operations were
specially designed to include direct support for the x86
instruction set while observing the RISC performance
principles of fixed-length encoding, regularized instruction
fields, and a large register set. The Enhanced RISC86
microarchitecture used in the AMD-K6 processor enables
higher  processor  core  performance and promotes
straightforward extensions in future designs. Instead of directly
executing complex x86 instructions, which have lengths of 1 to
15 bytes, the AMD-K6 processor executes the simpler
fixed-length RISC86 operations, while maintaining the
instruction coding efficiencies found in x86 programs.

The AMD-K6 processor includes parallel instruction decoders, a
centralized RISC86 operation scheduler, and several execution
resources that support superscalar execution— multiple
decode, execution, and retirement—of x86 instructions. These
elements are packed into an aggressive and highly efficient
six-stage processing pipeline. 

Decoding of the x86 instructions into RISC86 operations begins
when the on-chip level-one instruction cache is filled.
Predecode logic determines the length of an x86 instruction on
a byte-by-byte basis. This predecode information is stored along
with the x86 instructions in a dedicated, level-one predecode
cache to be used later by the decoders. The predecode data is
essential to the ability of the short decoders to operate. 

The AMD-K6 processor categorizes x86 instructions into three
types of decodes—short, long, and vector. The decoders process
either two short, one long, or one vector decode at a time. The
three types of decodes have the following characteristics:

■ Short decodes—common x86 instructions less than or equal
to 7 bytes in length that produce one or two RISC86
operations. The two short decoders can work in parallel,
resulting in a maximum of four RISC86 operations per clock
with no additional latency.
6 RISC86 Microarchitecture Chapter 2
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■ Long decodes—more complex and somewhat common x86
instructions less than or equal to 11 bytes in length that
produce up to four RISC86 operations.

■ Vector decodes—complex x86 instructions requiring long
sequences of RISC86 operations.

Short and long decodes are processed completely within the
decoders. Vector decodes are started by the vector decoder
with the generation of an initial set of four RISC86 operations,
and then completed by fetching a sequence of additional
operations from an on-chip ROM (at a rate of four operations
per clock). RISC86 operations, whether produced by decoders
or fetched from ROM, are then loaded into a buffer line in the
centralized scheduler for dispatch to the execution units. 

AMD-K6®-2 and 
AMD-K6®-III 
Processor-Specific 
Microarchitecture

The internal RISC86 instruction set consists of the following
seven categories or types of operations (the execution unit that
handles each type of operation is displayed in parenthesis):

■ Memory load operations (load)

■ Load immediate (instruction control unit)

■ Memory store operations (store)

■ Integer register operations (alu/alux)

■ MMX/3DNow! register operations (multimedia execution
unit (meu))

■ x87 floating-point register operations (float)

■ Branch condition evaluations (branch)

The following example shows a series of x86 instructions and
the corresponding decoded RISC86 operations.

x86 Instructions RISC86 Operations

MOV CX, [SP+4] Load
ADD AX,BX Alu (Add)
CMP CX,[AX] Load

Alu (Sub)
JZ foo Branch

The MOV instruction converts to a RISC86 load operation that
requires indirect data to be loaded from memory. The ADD
instruction converts to an alu register operation that can be
sent to either of the integer units. The CMP instruction
converts into two RISC86 operations. The first RISC86 load
Chapter 2 RISC86 Microarchitecture 7
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operation requires indirect data to be loaded from memory.
That value is then compared (alu function) with CX.

Once the RISC86 operations are placed in the centralized
scheduler buffer, they can be immediately issued to the
appropriate execution pipeline. The processor contains ten
execution pipelines—store, load, integer X ALU, integer Y
ALU, MMX ALU (X), MMX ALU (Y), MMX/3DNow! multiplier,
3DNow! ALU, Floating-Point, and Branch. Figure 1 shows a
block diagram of these units within the processor. The Register
X and Y Functional Units contain several execution resources,
which are described in Chapter 3 on page 11.

Figure 1.   AMD-K6®-III Processor Block Diagram

The centralized scheduler buffer, in conjunction with the
instruction control unit (ICU), buffers and manages up to 24
RISC86 operations at a time (which equals up to 12 x86
instructions). This buffer size is matched to the processor’s
six-stage RISC86 pipeline and decode rate of four RISC86
operations per clock. 
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On every clock, the centralized scheduler buffer can accept up
to four RISC86 operations from the decoders, issue up to six
RISC86 operations to corresponding execution unit pipelines,
and retire up to four RISC86 operations. The register execution
units are shared between six execution pipelines. A maximum
of two of these register operations can be issued at a time. 

When managing the 24 RISC86 operations, the ICU uses 69
physical  regis ters  contained within  the  RISC86
microarchitecture. Forty-eight of the physical registers are
located in a general register file and are grouped as 24
committed or architectural registers plus 24 rename registers.
The 24 architectural registers consist of 16 scratch registers and
8 registers that correspond to the x86 general-purpose
registers— EAX, EBX, ECX, EDX, EBP, ESP, ESI, and EDI.
There is an analogous set of registers specifically for MMX and
3DNow! operations. There are 9 MMX/3DNow! committed or
architectural registers plus 12 MMX/3DNow! rename registers.
The 9 architectural registers consist of one scratch register and
8 registers that correspond to the MMX registers (mm0–mm7). 

The processor offers sophisticated dynamic branch logic that
includes the following elements:

■ Branch history/prediction table

■ Branch target cache

■ Return address stack

These components serve to minimize or eliminate the delays
due to the branch instructions (jumps, calls, returns) common
in x86 software.

The processor implements a two-level branch prediction
scheme based on an 8192-entry branch history table. The
branch history table stores prediction information that is used
for predicting the direction of conditional branches. The target
addresses of conditional and unconditional branches are not
predicted, but instead are calculated on-the-fly during
instruction decode by special branch target address ALUs. The
branch target cache augments performance of taken branches
by avoiding a one-cycle cache-fetch penalty. This specialized
target cache does this by supplying the first 16 bytes of target
instructions to the decoders when a branch is taken. 
Chapter 2 RISC86 Microarchitecture 9
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The return address stack serves to optimize CALL and
RETURN instruction pairs by remembering the return address
of each CALL within a nested series of subroutines and
supplying  i t  as  the  predicted target  address  of  the
corresponding RETURN instruction. 

As shown in Figure 1 on page 8, the high-performance,
out-of-order execution engine is mated to a split 64-Kbyte
writeback level-one cache (Harvard architecture) with 32
Kbytes of instruction cache and 32 Kbytes of data cache. The
level-one instruction cache feeds the decoders and, in turn, the
decoders feed the scheduler. The ICU controls the issue and
retirement of RISC86 operations contained in the centralized
scheduler buffer. The level-one data cache satisfies most
memory reads and writes by the load and store execution units.
The store queue temporarily buffers memory writes from the
store unit until they can safely be committed into the cache
(that is, when all preceding operations have been found to be
free of faults and branch mispredictions). The system bus
interface is the industry-standard Super7 and Socket 7
interface.
10 RISC86 Microarchitecture Chapter 2
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3
AMD-K6 -2 and AMD-K6-III 
Processors Execution Units 
and Dependency Latencies

® ®
The AMD-K6-2 and AMD-K6-III processors contain several
specialized execution pipelines — store, load, register X,
register Y, floating-point, and branch condition. Each pipeline
operates independently and handles a specific subset of the
RISC86 instruction set. The register X and register Y pipelines
each contain integer, multimedia, and 3DNow! technology
execution resources, some of which are shared between the two.
This chapter describes the operation of these units, their
execution latencies, and how these latencies affect concurrent
dependency chains. 

Note: meu–Multimedia execution units execute MMX and
3DNow! instructions. 

A dependency occurs when data needed in one execution
unit/resource is being processed in another unit/resource (or a
different stage of the same unit/resource). Additional latencies
can occur because the dependent execution unit must wait for
the data from the supplying unit. Table 1 on page 20 provides a
summary of the execution units, the operations performed
within these units, the operation latency, and the operation
throughput.
Chapter 3 Execution Units and Dependency Latencies 11
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Execution Unit Terminology

Introduction The execution units operate with two different types of register
values—operands and results. Of these there are three types of
operands and two types of results. 

Operands The three types of operands are as follows:

■ Address register operands—used for address calculations of 
load and store operations

■ Data register operands—used for register operations

■ Store data register operands—used for memory stores

Results The two types of results are as follows:

■ Data register results—produced by load or register operations

■ Address register results—produced by Lea or Push operations

The following examples illustrate the operand and result
definitions:

Add AX, BX

The Add operation has two data register operands (AX and
BX) and one data register result (AX).

Load BX, [SP+4·CX+8]

The Load operation has two address register operands (SP
and CX as base and index registers, respectively) and a data
register result (BX).

Store [SP+4·CX+8], AX

The Store operation has a store data register operand (AX)
and two address register operands (SP and CX as base and
index registers, respectively).

Lea SI, [SP+4·CX+8]

The Lea operation (a type of store operation) has address
register operands (SP and CX as base and index registers,
respectively), and an address register result (SI).
12 Execution Units and Dependency Latencies Chapter 3
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Six-Stage Pipeline

To help visualize the operations within the processor, Figure 2
illustrates the effective pipeline stages. This is a simplified
illustration in that the processor contains multiple parallel
pipelines (starting after common instruction fetch and x86
decode pipe stages), and these pipelines often execute
operations out-of-order with respect to each other. This view of
the processor execution pipeline illustrates the effect of
execution latencies for various types of operations.

For many instructions, the effective pipeline is seven stages.
For register operations that do not require execution stage 2,
the effective pipeline is six stages. 

Figure 2.   Processor Pipeline

Register Execution Units

The register execution resources are attached to the register X
unit execution pipeline and the register Y unit execution
pipeline. Each register execution pipeline has dedicated
resources that consist of an integer execution unit and a
multimedia/ALU execution unit. In addition, both pipelines can
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shift and multiply operations. Figure 3 on page 14 shows the
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Figure 3.   Register X and Y Functional Units
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include the MMX shifter, 3DNow! ALU, and the combined
MMX/3DNow! multiplier. Figure 5 on page 16 shows which
instruction types are associated with the various execution
pipelines.

Any combination of two operations that do not utilize the same
shared execution resource can be issued and executed
simultaneously. For example, the following pairs of register
operations can execute together: MMX logical and 3DNow! add,
3DNow! add and 3DNow! multiply, MMX multiply and 3DNow!
add, etc. If issued simultaneously, the following examples result
in resource contentions and the stall of one RISC86 operation:
MMX multiply and 3DNow! multiply, two MMX multiplies, two
3DNow! multiplies, two 3DNow! adds, etc.

Figure 4 shows the data flow architecture of the single-stage or
double-stage integer execution unit pipeline. There are few
operations (such as integer multiply) that require a second
execution stage. The operation issue and operand fetch stages
(execution stage 0) that precede execution stage 1 are not part
of the execution pipeline. The data register result is produced
near the end of the execution pipe stage.

Figure 4.   Register X and Y Execution Stages
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(X Integer, Y Integer, etc.)

Data Register Operands 
(Base and Index)
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(if necessary)

Data Register Result
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Figure 5.   Microarchitecture and Execution Resources

Integer ALU

Integer Shift

Integer Multiply 
and Divide Integer ALU

MMX ALU
Add/Subtract, 

Compare

MMX Shifter

Integer Byte 
Operations

Integer Special 
Registers

Integer Segment 
Register Loads

MMX ALU
Add/Subtract, 

Compare

MMX ALU
Logical, Pack, 

Unpack

Register X Execution 
Pipeline

3DNow!™
Add/Subtract,

Compare, Integer 
Conversion, 

Reciprocal and 
Reciprocal 

Square Root 
Table Lookup

MMX™ and 
3DNow!
Multiply,

Reciprocal and 
Reciprocal 

Square Root 
Iteration

MMX ALU
Logical, Pack, 

Unpack

Shared Register X and Y 
Resources

Register Y Execution 
Pipeline

Dedicated Register X 
Resources

Dedicated Register Y 
Resources
16 Execution Units and Dependency Latencies Chapter 3



21924C/0—August 1999 AMD-K6® Processor Code Optimization
Load Unit

The load unit is a two-stage pipelined design that performs data
memory reads. It has a two-clock latency from the time it
receives the address register operands until it produces a data
register result on a Dcache hit. A cache miss produces longer
latencies. The load unit and the Dcache support hit-under-miss
operations where a load operation bypasses a previous load
operation that is stalled waiting for a cache line refill. This unit
uses two address register operands and a memory data value as
inputs, and produces a data register result. 

Memory read data can come from either the data cache or from
the store queue entry (for a recent store). If the data is
forwarded from the store queue, there is zero additional
execution latency, which means that a dependent load
operation can complete its execution one clock after a store
operation completes execution. 

Figure 6 shows the architecture of the two-stage load execution
pipeline. The address register operands are received at the end
of the operand fetch pipe stage, and the data register result is
produced near the end of the second execution pipe stage. The
operation issue and fetch stages that precede these execution
stages are not shown. 

Figure 6.   Load Execution Unit
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Store Unit

The store execution unit is a two-stage pipelined design that
performs data memory writes and, in some cases, produces an
address register result. For inputs, the store unit uses two
address register operands and, during actual memory writes, a
store data register operand. This unit also produces an address
register result for some store unit operations. For most store
operations, for example those that write data to memory, the
store unit produces a physical memory address and the
associated data bytes to be written. After execution completes,
these results are entered in a new store queue entry. The store
queue can hold up to seven data results, each of which can be 64
bits.

The store unit has a one-clock execution latency from the time
it receives address register operands until the time it produces
an address register result. The most common examples are the
Load Effective Address (Lea) and Store and Update (Push)
RISC86 operations, which are produced from the x86 LEA and
PUSH instructions, respectively. Most store operations do not
produce an address register result and only perform a memory
write. The Push operation is unique because it produces an
address register result and performs a memory write.

The store unit has a one-clock execution latency from the time
it receives a store data operand until it enters the store memory
address and data pair into the store queue.

The store unit can have a three-clock latency from the time it
receives address register operands and a store data register
operand until it enters the store memory address and data pair
into the store queue.

Note: Address register operands are required at the start of
execution, but register store data is not required until the
end of execution.

Figure 7 on page 19 shows the architecture of the two-stage
store execution pipeline. The operation issue and fetch stages
that precede this execution stage are not part of the execution
pipeline. The address register operands are received at the end
of the operand fetch pipe stage, and the new store queue entry
is created upon completion of the second execution pipe stage.
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Figure 7.   Store Unit Execution Pipeline
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Latencies and Throughput

Table 1  summarizes the static latencies and throughput of each
execution unit. 

Table 1. RISC86® Execution Latencies and Throughput

Execution
Unit Operations Latency Throughput

Register X Integer Unit

Integer ALU

Integer Multiply

Integer Shift

1

2–3

1

1

2–3

1

Register X 
Multimedia Unit 

MMX™ Add/Subtract

MMX Logical, Pack, Unpack

1

1

1

1

Register Y Integer Unit Integer ALU (16– and 32– bit operands) 1 1

Register Y
Multimedia Unit 

MMX Add/Subtract

MMX Logical, Pack, Unpack

1

1

1

1

Multimedia/3DNow!™

Shared Execution 
Units 

(X and Y)

MMX Shifter

MMX/3DNow! Multiply, Reciprocal and, Reciprocal Square Root Iteration

3DNow! Add, Compare, Integer Conversion, Reciprocal, and Reciprocal
Square Root Table Lookup

1

2

2

1

1

1

Load
From Address Register Operands to Data Register Result 

Memory Read Data from Data Cache/Store Queue to Data Register Result

2

0

1

1

Store

From Address Register Operands to Address Register Result 

From Store Data Register Operand to Store Queue Entry

From Address Register Operands to Store Queue Entry 

1

1

3

1

1

1

Branch Resolves Branch Conditions 1 1

FPU
FADD, FSUB

FMUL

2

2

2

2
Note:

No additional latency exists between execution of dependent operations. Bypassing of register results directly from producing execution
units to the operand inputs of dependent units is fully supported. Similarly, forwarding of memory store values from the store queue
to dependent load operations is supported.
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Resource Constraints

To optimize code effectively, execution resource constraints
must be considered. Due to a fixed number of execution units,
even with up to six RISC86 operations per cycle, optimal
execution parallelism should be carefully scheduled.

For example, if an IMUL is decoded and issued to the X
pipeline, for the next two to three cycles integer, MMX, and
3DNow! technology RISC86 operations can only be issued to the
Y pipeline. Another example is two ALU instructions that
require the load unit. Only one load can occur each cycle,
therefore, one instruction would stall for a cycle.

Contention for execution resources can cause delays in the
issuing and execution of instructions. In addition, stalls due to
resource constraints can increase dependency latencies to
cause or exacerbate stalls due to dependencies. In general,
constraints that delay non-critical instructions do not impact
performance because such stalls typically overlap with the
execution of critical operations.
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Code Sample Analysis

The samples in this section show the execution behavior of
several series of instructions as a function of decode
constraints, dependencies, and execution resource constraints.

The sample tables show the x86 instructions, the RISC86
operation equivalents and a description of the events occurring
within the processor. 

The following nomenclature is used to describe the current
location of a RISC86 operation:

■ D — Decode stage

■ IX — Issue stage of register X unit

■ OX — Operand fetch stage of register X unit

■ EX1 — Execution stage 1 of register X unit

■ EX2 — Execution stage 2 of register X unit

■ IY — Issue stage of register Y unit

■ OY — Operand fetch stage of register Y unit

■ EY1 — Execution stage 1 of register Y unit

■ EY2 — Execution stage 2 of register Y unit

■ IL — Issue stage of load unit

■ OL — Operand fetch stage of load unit

■ EL1 — Execution stage 1 of load unit

■ EL2 — Execution stage 2 of load unit

■ IS — Issue stage of store unit

■ OS — Operand fetch stage of store unit

■ ES1 — Execution stage 1 of store unit

■ ES2 — Execution stage 2 of store unit

Note: Instructions execute more efficiently (that is, without
delays) when scheduled apart by suitable distances based on
dependencies. In general, the samples in this section show
poorly scheduled code in order to illustrate the resultant
effects.
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Table 2. Sample 1 – Integer Register Operations

Instruction
 Number Instruction

RISC86®

Operation

Clocks

1 2 3 4 5 6 7 8 9

1 IMUL EAX, EBX alux D D IX OX EX1

alux IX OX EX1

alux IX OX EX1

2 INC ESI alu D IY OY EY1

3 MOV EDI, 0x07F4 limm D

4 SHL EAX, 8 alux D IX OX EX1

5 OR EAX, 0x0F alu D IY OY IX OX EX1

6 ADD ESI, EDX alu D IY OY EY1

7 SUB EDI, ECX alu D IY OY EY1

Comments for Each Instruction Number

1 It takes two decode cycles because IMUL is vector decoded. The IMUL instruction is executable only in
the integer X unit. It is a non-pipelined 2–3 cycle latency register operation that is equivalent to three
serially-dependent register operations (the result of the second and third operations are EAX and EDX,
respectively).

2 This simple alu operation ends up in the Y pipe.

3 A load immediate (limm) RISC86 operation does not require execution. The result value is immediately
available to dependent operations.

4 Shift instructions are only executable in the integer X unit. Issue is delayed by preceding IMUL
operations due to a resource constraint of the integer X unit.

5 The register operation is bumped out of the integer Y unit in clock 6 because it must wait for more than
one cycle for its dependencies to resolve. It is reissued in the next cycle to the integer X unit (just in time
for availability of its operand).

6 This add alu falls through to the integer Y unit right behind the first issuance of instruction #5 without
delay (as a result of instruction #5 being bumped out of the way).

7 The issuance of the subtract register operation is delayed in clock 6 due to the resource constraints of
the integer Y unit.
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Table 3. Sample 2 – Integer Register and Memory Load Operations

Instruction
 Number

RISC86®

Operation

Clocks

Instruction 1 2 3 4 5 6 7 8 9 10 11

1 DEC EDX alu D IX OX EX1

2 MOV EDI, [ECX] load D IL OL EL1 EL2

3 SUB EAX, [EDX+20] load D IL OL EL1 EL2

alu IX OX IX OX EX1

4 SAR EAX, 5 alux D IX OX IX OX EX1

5 ADD ECX, [EDI+4] load D IL OL EL1 EL2

alu IY OY IY OY EY1

6 AND EBX, 0x1F alu D IY OY EY1

7 MOV ESI, [0x0F100] load D IL OL EL1 EL2

8 OR ECX, [ESI+EAX*4+8] load D IL OL OL EL1 EL2

alu IX OX IX OX EX1

Comments for Each Instruction Number

1 This simple alu operation ends up in the X pipe.

2 This operation occupies the load execution unit.

3 The register operand for the load operation is bypassed, without delay, from the result of instruction #1’s
register operand. In clock 4, the register operation is bumped out of the integer X unit while waiting for the
previous load operation result to complete. It is reissued just in time to receive the bypassed result of the load.

4 Shift instructions are only executable in the integer X unit. The register operation is bumped in clock 5 while
waiting for the result of the preceding instruction #3.

5 The register operand for the load operation is bypassed, without delay, from the result of instruction #2’s
register operand. This and most surrounding load operations are generated by instruction decoders, and issued
and smoothly executed by the load unit at a rate of one clock per cycle. In clock 5, the register operation is
bumped out of the integer Y unit while waiting for the previous load operation result to complete.

6 The register operation falls through into the integer Y unit right behind instruction #5’s register operation.

7 This operation falls into the load unit behind the load in instruction #5.

8 The operand fetch for the load operation is delayed because it needs the result of the immediately preceding
load operation #7 as well as the results from earlier instruction #4.
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Table 4. Sample 3 – Integer Register and Memory Load/Store Operations

Instruction
Number

RISC86®

Operation

Clocks

Instruction 1 2 3 4 5 6 7 8 9 10 11

1 MOV EDX, 
[0xA0008F00]

load
D IL OL EL1 EL2

2 ADD [EDX+16], 7 load D IL OL OL EL1 EL2

alu IX OX IX OX OX EX1

store IS OS OS ES1 ES2 ES2

3 SUB EAX, [EDX+16] load D IL IL OL EL1 EL2 EL2

alu IX OX IX IX OX OX EX1

4 PUSH EAX store D IS IS OS ES1 ES2 ES2 ES2

5 LEA EBX, 
[ECX+EAX*4+3]

store
D IS OS OS OS ES1 ES2

6 MOV EDI, EBX alu D IY OY IY OY IX OX EX1

Comments for Each Instruction Number

1 This operation occupies the load unit.

2 This long-decoded ADD instruction takes a single clock to decode. The operand fetch for the load operation is
delayed waiting for the result of the previous load operation from instruction #1. The store operation
completes concurrent with the register operation. The result of the register operation is bypassed directly into a
new store queue entry created by the store operation.

3 The issue of the load operation is delayed because the operand fetch of the preceding load operation from
instruction #2 was delayed. The completion of the load operation is held up due to a memory dependency on
the preceding store operation of instruction #2. The load operation completes immediately after the store
operation, with the store data being forwarded from a new store queue entry.

4 Completion of the store operation is held up due to a data dependency on the preceding instruction #3. The
store data is bypassed directly into a new store queue entry from the result of instruction #3’s register
operation.

5 The Lea RISC86 operation is executed by the store unit. The operand fetch is delayed waiting for the result of
instruction #3. The register result value is produced in the first execution stage of the store unit.

6 This simple alu operation is stalled due to the dependency of the EBX result in instruction #5.
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Table 5. Sample 4 – Integer, MMX™, and Memory Load/Store Operations

Inst.
Num.

RISC86®

Operation

Clocks

Instruction 1 2 3 4 5 6 7 8 9 10 11 12

1 PADDSWMM0, MM4 alu D IX OX EX1

2 PADDSWMM1, MM5 alu D IY OY EY1

3 PSRAW MM0, 3 alu D IX OX EX1

4 MOVQ MM2, [EAX+EBX] mload D IL OL EL1 EL2

5 PAND MM0, MM3 alu D IX OX EX1

6 PMULLWMM2, [EDI+8] mload D IL OL EL1 EL2

alu IY OY IX OX EX1 EX2

7 MOVQ [ESP+4], MM2 mstore D IS OS ES1 ES2 ES2

8 ADD EBX, ECX alu D IX OX EX1

9 PMULLWMM6, MM7 alu D IY OY EY1 EY1 EY2

10 PMADDWDMM2, MM6 alu D IX OX OX OX EX1 EX2

Comments for Each Instruction Number

1, 2 Instructions 1 and 2 are decoded, issued, and executed simultaneously and in parallel due to no decode
restrictions, dependency delays, or execution resource constraints.

3 This instruction is decoded, issued, and executed without delay, one cycle behind the preceding one-cycle
execution latency instruction on which it is dependent.

4 This multimedia operation occupies the load unit.

5 This instruction is decoded, issued, and executed without delay, right behind the preceding operations on
which it is dependent.

6 This and the preceding instruction are decoded and issued together without delay. The operand fetch of the
register operation is delayed because of the dependency on the associated load. As a result, the register
operation is bumped out of register unit Y in clock 5 and is reissued in the next cycle to register unit X (as it
happens), just in time for availability of its operands.

7 Completion of this store operation is held up due to a data dependency on the preceding MMX multiply
register operation (which has a two-cycle execution latency). The store data is bypassed directly into a new
store queue entry from the result of the register operation.

8 This operation is issued to register unit X and executes without delay and out-of-order with respect to the
preceding register operation from instruction #6 (which was bumped out of the way while waiting for its
operands).

9 This MMX multiply register operation issues to and starts execution in register unit Y in parallel with an MMX
multiply register operation from instruction #6 which simultaneously issues to and starts execution in register
unit X. Due to an execution resource constraint, this operation is delayed one cycle in its first execution pipe
stage and then executes and completes normally, one cycle behind the other contending register operation.
(This takes advantage of the pipelined nature of the MMX multiply execution logic.)

10 The issue of this operation is delayed (in clock 6) for one cycle due to two earlier register operations being
selected for issue. It is then delayed further during operand fetch while waiting for the preceding two-cycle
latency MMX multiply register operations to complete execution.
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4
Instruction Dispatch 
This chapter describes the RISC86 operations executed by each
instruction. Tables 6 through 9 starting on page 29 define the
integer, MMX, floating-point, and 3DNow! instructions. Only
the AMD-K6-2 and AMD-K6-III processors support the
instructions in Table 9, “3DNow!™ Instructions,” on page 55.

The first column in these tables indicates the instruction
mnemonic and operand types with the following notations:

■ reg8—byte integer register defined by instruction byte(s) or
bits 5, 4, and 3 of the modR/M byte

■ mreg8—byte integer register or byte integer value in
memory defined by the modR/M byte

■ reg16/32—word or doubleword integer register defined by
instruction byte(s) or bits 5, 4, and 3 of the modR/M byte

■ mreg16/32—word or doubleword integer register, or word or
doubleword integer value in memory defined by the
modR/M byte

■ mem8—byte integer value in memory

■ mem16/32—word or doubleword integer value in memory

■ mem32/48—doubleword or 48-bit integer value in memory

■ mem48—48-bit integer value in memory

■ mem64—64-bit value in memory

■ imm8—8-bit immediate value

■ imm16/32—16-bit or 32-bit immediate value
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■ disp8—8-bit displacement value

■ disp16/32—16-bit or 32-bit displacement value 

■ disp32/48—doubleword or 48-bit displacement value

■ eXX—register width depending on the operand size

■ mem32real—32-bit floating-point value in memory

■ mem64real—64-bit floating-point value in memory

■ mem80real—80-bit floating-point value in memory

■ mmreg—MMX/3DNow! register 

■ mmreg1—MMX/3DNow! register defined by bits 5, 4, and 3
of the modR/M byte

■ mmreg2—MMX/3DNow! register defined by bits 2, 1, and 0
of the modR/M byte 

The second and third columns list all applicable encoding
opcode bytes.

The fourth column lists the modR/M byte when used by the
instruction. The modR/M byte defines the instruction as
register or memory form. If mod bits 7 and 6 are documented as
mm (memory form), mm can only be 10b, 01b, or 00b.

The fifth column lists the type of instruction decode—short,
long, or vector. The processor decode logic can process two
short, one long, or one vector decode per clock. Any pair of
short decodable instructions, be it integer, floating-point,
MMX, or 3DNow!, can be decoded simultaneously. All MMX
and 3DNow! instructions are short decodable except the
EMMS, FEMMS, and PREFETCH instructions.

The sixth column lists the type of RISC86 operation(s) required
for the instruction. The operation types and corresponding
execution units are as follows:

■ load, fload, mload—load unit

■ store, fstore, mstore—store unit

■ alu—either of the integer register execution units

■ alux—integer register X execution unit only

■ branch—branch condition unit

■ float—floating-point execution unit

■ meu—Multimedia execution units for MMX and 3DNow!
instructions

■ limm—load immediate, instruction control unit only
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The operation(s) of most instructions form a single dependency
chain. For instructions whose operations form two parallel
dependency chains,  the RISC86 operat ions for  each
dependency chain is shown on a separate row.

Table 6. Integer Instructions

Instruction Mnemonic First 
Byte

Second 
Byte

ModR/M 
Byte

Decode
Type

RISC86®

Operations

AAA 37h vector

AAD D5h 0Ah vector

AAM D4h 0Ah vector

AAS 3Fh vector

ADC mreg8, reg8 10h 11-xxx-xxx vector

ADC mem8, reg8 10h mm-xxx-xxx vector

ADC mreg16/32, reg16/32 11h 11-xxx-xxx vector

ADC mem16/32, reg16/32 11h mm-xxx-xxx vector

ADC reg8, mreg8 12h 11-xxx-xxx vector

ADC reg8, mem8 12h mm-xxx-xxx vector

ADC reg16/32, mreg16/32 13h 11-xxx-xxx vector

ADC reg16/32, mem16/32 13h mm-xxx-xxx vector

ADC AL, imm8 14h vector

ADC EAX, imm16/32 15h vector

ADC mreg8, imm8 80h 11-010-xxx vector

ADC mem8, imm8 80h mm-010-xxx vector

ADC mreg16/32, imm16/32 81h 11-010-xxx vector

ADC mem16/32, imm16/32 81h mm-010-xxx vector

ADC mreg16/32, imm8 (signed ext.) 83h 11-010-xxx vector

ADC mem16/32, imm8 (signed ext.) 83h mm-010-xxx vector

ADD mreg8, reg8 00h 11-xxx-xxx short alux

ADD mem8, reg8 00h mm-xxx-xxx long load, alux, store

ADD mreg16/32, reg16/32 01h 11-xxx-xxx short alu

ADD mem16/32, reg16/32 01h mm-xxx-xxx long load, alu, store

ADD reg8, mreg8 02h 11-xxx-xxx short alux

ADD reg8, mem8 02h mm-xxx-xxx short load, alux

ADD reg16/32, mreg16/32 03h 11-xxx-xxx short alu

ADD reg16/32, mem16/32 03h mm-xxx-xxx short load, alu

ADD AL, imm8 04h short alux
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ADD EAX, imm16/32 05h short alu

ADD mreg8, imm8 80h 11-000-xxx short alux

ADD mem8, imm8 80h mm-000-xxx long load, alux, store

ADD mreg16/32, imm16/32 81h 11-000-xxx short alu

ADD mem16/32, imm16/32 81h mm-000-xxx long load, alu, store

ADD mreg16/32, imm8 (signed ext.) 83h 11-000-xxx short alux

ADD mem16/32, imm8 (signed ext.) 83h mm-000-xxx long load, alux, store

AND mreg8, reg8 20h 11-xxx-xxx short alux

AND mem8, reg8 20h mm-xxx-xxx long load, alux, store

AND mreg16/32, reg16/32 21h 11-xxx-xxx short alu

AND mem16/32, reg16/32 21h mm-xxx-xxx long load, alu, store

AND reg8, mreg8 22h 11-xxx-xxx short alux

AND reg8, mem8 22h mm-xxx-xxx short load, alux

AND reg16/32, mreg16/32 23h 11-xxx-xxx short alu

AND reg16/32, mem16/32 23h mm-xxx-xxx short load, alu

AND AL, imm8 24h short alux

AND EAX, imm16/32 25h short alu

AND mreg8, imm8 80h 11-100-xxx short alux

AND mem8, imm8 80h mm-100-xxx long load, alux, store

AND mreg16/32, imm16/32 81h 11-100-xxx short alu

AND mem16/32, imm16/32 81h mm-100-xxx long load, alu, store

AND mreg16/32, imm8 (signed ext.) 83h 11-100-xxx short alux

AND mem16/32, imm8 (signed ext.) 83h mm-100-xxx long load, alux, store

ARPL mreg16, reg16 63h 11-xxx-xxx vector

ARPL mem16, reg16 63h mm-xxx-xxx vector

BOUND 62h vector

BSF reg16/32, mreg16/32 0Fh BCh 11-xxx-xxx vector

BSF reg16/32, mem16/32 0Fh BCh mm-xxx-xxx vector

BSR reg16/32, mreg16/32 0Fh BDh 11-xxx-xxx vector

BSR reg16/32, mem16/32 0Fh BDh mm-xxx-xxx vector

BSWAP EAX 0Fh C8h long alu

BSWAP ECX 0Fh C9h long alu

BSWAP EDX 0Fh CAh long alu

Table 6. Integer Instructions (continued)

Instruction Mnemonic First 
Byte

Second 
Byte

ModR/M 
Byte

Decode
Type

RISC86®

Operations
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BSWAP EBX 0Fh CBh long alu

BSWAP ESP 0Fh CCh long alu

BSWAP EBP 0Fh CDh long alu

BSWAP ESI 0Fh CEh long alu

BSWAP EDI 0Fh CFh long alu

BT mreg16/32, reg16/32 0Fh A3h 11-xxx-xxx vector

BT mem16/32, reg16/32 0Fh A3h mm-xxx-xxx vector

BT mreg16/32, imm8 0Fh BAh 11-100-xxx vector

BT mem16/32, imm8 0Fh BAh mm-100-xxx vector

BTC mreg16/32, reg16/32 0Fh BBh 11-xxx-xxx vector

BTC mem16/32, reg16/32 0Fh BBh mm-xxx-xxx vector

BTC mreg16/32, imm8 0Fh BAh 11-111-xxx vector

BTC mem16/32, imm8 0Fh BAh mm-111-xxx vector

BTR mreg16/32, reg16/32 0Fh B3h 11-xxx-xxx vector

BTR mem16/32, reg16/32 0Fh B3h mm-xxx-xxx vector

BTR mreg16/32, imm8 0Fh BAh 11-110-xxx vector

BTR mem16/32, imm8 0Fh BAh mm-110-xxx vector

BTS mreg16/32, reg16/32 0Fh ABh 11-xxx-xxx vector

BTS mem16/32, reg16/32 0Fh ABh mm-xxx-xxx vector

BTS mreg16/32, imm8 0Fh BAh 11-101-xxx vector

BTS mem16/32, imm8 0Fh BAh mm-101-xxx vector

CALL full pointer 9Ah vector

CALL near imm16/32 E8h short store

CALL mem16:16/32 FFh 11-011-xxx vector

CALL near mreg32 (indirect) FFh 11-010-xxx vector

CALL near mem32 (indirect) FFh mm-010-xxx vector

CBW/CWDE EAX 98h vector

CLC F8h vector

CLD FCh vector

CLI FAh vector

CLTS 0Fh 06h vector

CMC F5h vector

CMP mreg8, reg8 38h 11-xxx-xxx short alux
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CMP mem8, reg8 38h mm-xxx-xxx short load, alux

CMP mreg16/32, reg16/32 39h 11-xxx-xxx short alu

CMP mem16/32, reg16/32 39h mm-xxx-xxx short load, alu

CMP reg8, mreg8 3Ah 11-xxx-xxx short alux

CMP reg8, mem8 3Ah mm-xxx-xxx short load, alux

CMP reg16/32, mreg16/32 3Bh 11-xxx-xxx short alu

CMP reg16/32, mem16/32 3Bh mm-xxx-xxx short load, alu

CMP AL, imm8 3Ch short alux

CMP EAX, imm16/32 3Dh short alu

CMP mreg8, imm8 80h 11-111-xxx short alux

CMP mem8, imm8 80h mm-111-xxx short load, alux

CMP mreg16/32, imm16/32 81h 11-111-xxx short alu

CMP mem16/32, imm16/32 81h mm-111-xxx short load, alu

CMP mreg16/32, imm8 (signed ext.) 83h 11-111-xxx long load, alu

CMP mem16/32, imm8 (signed ext.) 83h mm-111-xxx long load, alu

CMPSB mem8,mem8 A6h vector

CMPSW mem16, mem32 A7h vector

CMPSD mem32, mem32 A7h vector

CMPXCHG mreg8, reg8 0Fh B0h 11-xxx-xxx vector

CMPXCHG mem8, reg8 0Fh B0h mm-xxx-xxx vector

CMPXCHG mreg16/32, reg16/32 0Fh B1h 11-xxx-xxx vector

CMPXCHG mem16/32, reg16/32 0Fh B1h mm-xxx-xxx vector

CMPXCHG8B EDX:EAX 0Fh C7h 11-xxx-xxx vector

CMPXCHG8B mem64 0Fh C7h mm-xxx-xxx vector

CPUID 0Fh A2h vector

CWD/CDQ EDX, EAX 99h vector

DAA 27h vector

DAS 2Fh vector

DEC EAX 48h short alu

DEC ECX 49h short alu

DEC EDX 4Ah short alu

DEC EBX 4Bh short alu

DEC ESP 4Ch short alu
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DEC EBP 4Dh short alu

DEC ESI 4Eh short alu

DEC EDI 4Fh short alu

DEC mreg8 FEh 11-001-xxx vector

DEC mem8 FEh mm-001-xxx long load, alux, store

DEC mreg16/32 FFh 11-001-xxx vector

DEC mem16/32 FFh mm-001-xxx long load, alu, store

DIV AL, mreg8 F6h 11-110-xxx vector

DIV AL, mem8 F6h mm-110-xxx vector

DIV EAX, mreg16/32 F7h 11-110-xxx vector

DIV EAX, mem16/32 F7h mm-110-xxx vector

IDIV mreg8 F6h 11-111-xxx vector

IDIV mem8 F6h mm-111-xxx vector

IDIV EAX, mreg16/32 F7h 11-111-xxx vector

IDIV EAX, mem16/32 F7h mm-111-xxx vector

IMUL reg16/32, imm16/32 69h 11-xxx-xxx vector

IMUL reg16/32, mreg16/32, imm16/32 69h 11-xxx-xxx vector

IMUL reg16/32, mem16/32, imm16/32 69h mm-xxx-xxx vector

IMUL reg16/32, imm8 (sign extended) 6Bh 11-xxx-xxx vector

IMUL reg16/32, mreg16/32, imm8 (signed) 6Bh 11-xxx-xxx vector

IMUL reg16/32, mem16/32, imm8 (signed) 6Bh mm-xxx-xxx vector

IMUL AX, AL, mreg8 F6h 11-101-xxx vector

IMUL AX, AL, mem8 F6h mm-101-xxx vector

IMUL EDX:EAX, EAX, mreg16/32 F7h 11-101-xxx vector

IMUL EDX:EAX, EAX, mem16/32 F7h mm-101-xxx vector

IMUL reg16/32, mreg16/32 0Fh AFh 11-xxx-xxx vector

IMUL reg16/32, mem16/32 0Fh AFh mm-xxx-xxx vector

IN AL, imm8 E4h vector

IN AX, imm8 E5h vector

IN EAX, imm8 E5h vector

IN AL, DX ECh vector

IN AX, DX EDh vector

IN EAX, DX EDh vector
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INC EAX 40h short alu

INC ECX 41h short alu

INC EDX 42h short alu

INC EBX 43h short alu

INC ESP 44h short alu

INC EBP 45h short alu

INC ESI 46h short alu

INC EDI 47h short alu

INC mreg8 FEh 11-000-xxx vector

INC mem8 FEh mm-000-xxx long load, alux, store

INC mreg16/32 FFh 11-000-xxx vector

INC mem16/32 FFh mm-000-xxx long load, alu, store

INVD 0Fh 08h vector

INVLPG 0Fh 01h mm-111-xxx vector

JO short disp8 70h short branch

JB/JNAE short disp8 71h short branch

JNO short disp8 71h short branch

JNB/JAE short disp8 73h short branch

JZ/JE short disp8 74h short branch

JNZ/JNE short disp8 75h short branch

JBE/JNA short disp8 76h short branch

JNBE/JA short disp8 77h short branch

JS short disp8 78h short branch

JNS short disp8 79h short branch

JP/JPE short disp8 7Ah short branch

JNP/JPO short disp8 7Bh short branch

JL/JNGE short disp8 7Ch short branch

JNL/JGE short disp8 7Dh short branch

JLE/JNG short disp8 7Eh short branch

JNLE/JG short disp8 7Fh short branch

JCXZ/JEC short disp8 E3h vector

JO near disp16/32 0Fh 80h short branch

JNO near disp16/32 0Fh 81h short branch
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JB/JNAE near disp16/32 0Fh 82h short branch

JNB/JAE near disp16/32 0Fh 83h short branch

JZ/JE near disp16/32 0Fh 84h short branch

JNZ/JNE near disp16/32 0Fh 85h short branch

JBE/JNA near disp16/32 0Fh 86h short branch

JNBE/JA near disp16/32 0Fh 87h short branch

JS near disp16/32 0Fh 88h short branch

JNS near disp16/32 0Fh 89h short branch

JP/JPE near disp16/32 0Fh 8Ah short branch

JNP/JPO near disp16/32 0Fh 8Bh short branch

JL/JNGE near disp16/32 0Fh 8Ch short branch

JNL/JGE near disp16/32 0Fh 8Dh short branch

JLE/JNG near disp16/32 0Fh 8Eh short branch

JNLE/JG near disp16/32 0Fh 8Fh short branch

JMP near disp16/32 (direct) E9h short branch

JMP far disp32/48 (direct) EAh vector

JMP disp8 (short) EBh short branch

JMP far mreg32 (indirect) EFh 11-101-xxx vector

JMP far mem32 (indirect) EFh mm-101-xxx vector

JMP near mreg16/32 (indirect) FFh 11-100-xxx vector

JMP near mem16/32 (indirect) FFh mm-100-xxx vector

LAHF 9Fh vector

LAR reg16/32, mreg16/32 0Fh 02h 11-xxx-xxx vector

LAR reg16/32, mem16/32 0Fh 02h mm-xxx-xxx vector

LDS reg16/32, mem32/48 C5h mm-xxx-xxx vector

LEA reg16/32, mem16/32 8Dh mm-xxx-xxx short load, alu

LEAVE C9h long load, alu, alu

LES reg16/32, mem32/48 C4h mm-xxx-xxx vector

LFS reg16/32, mem32/48 0Fh B4h vector

LGDT mem48 0Fh 01h mm-010-xxx vector

LGS reg16/32, mem32/48 0Fh B5h vector

LIDT mem48 0Fh 01h mm-011-xxx vector

LLDT mreg16 0Fh 00h 11-010-xxx vector
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LLDT mem16 0Fh 00h mm-010-xxx vector

LMSW mreg16 0Fh 01h 11-100-xxx vector

LMSW mem16 0Fh 01h mm-100-xxx vector

LODSB AL, mem8 ACh long load, alux

LODSW AX, mem16 ADh long load, alu

LODSD EAX, mem32 ADh long load, alu

LOOP disp8 E2h short alu, branch

LOOPE/LOOPZ disp8 E1h vector

LOOPNE/LOOPNZ disp8 E0h vector

LSL reg16/32, mreg16/32 0Fh 03h 11-xxx-xxx vector

LSL reg16/32, mem16/32 0Fh 03h mm-xxx-xxx vector

LSS reg16/32, mem32/48 0Fh B2h mm-xxx-xxx vector

LTR mreg16 0Fh 00h 11-011-xxx vector

LTR mem16 0Fh 00h mm-011-xxx vector

MOV mreg8, reg8 88h 11-xxx-xxx short alux

MOV mem8, reg8 88h mm-xxx-xxx short store

MOV mreg16/32, reg16/32 89h 11-xxx-xxx short alu

MOV mem16/32, reg16/32 89h mm-xxx-xxx short store

MOV reg8, mreg8 8Ah 11-xxx-xxx short alux

MOV reg8, mem8 8Ah mm-xxx-xxx short load

MOV reg16/32, mreg16/32 8Bh 11-xxx-xxx short alu

MOV reg16/32, mem16/32 8Bh mm-xxx-xxx short load

MOV mreg16, segment reg 8Ch 11-xxx-xxx long load

MOV mem16, segment reg 8Ch mm-xxx-xxx vector

MOV segment reg, mreg16 8Eh 11-xxx-xxx vector

MOV segment reg, mem16 8Eh mm-xxx-xxx vector

MOV AL, mem8 A0h short load

MOV EAX, mem16/32 A1h short load

MOV mem8, AL A2h short store

MOV mem16/32, EAX A3h short store

MOV AL, imm8 B0h short limm

MOV CL, imm8 B1h short limm

MOV DL, imm8 B2h short limm
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MOV BL, imm8 B3h short limm

MOV AH, imm8 B4h short limm

MOV CH, imm8 B5h short limm

MOV DH, imm8 B6h short limm

MOV BH, imm8 B7h short limm

MOV EAX, imm16/32 B8h short limm

MOV ECX, imm16/32 B9h short limm

MOV EDX, imm16/32 BAh short limm

MOV EBX, imm16/32 BBh short limm

MOV ESP, imm16/32 BCh short limm

MOV EBP, imm16/32 BDh short limm

MOV ESI, imm16/32 BEh short limm

MOV EDI, imm16/32 BFh short limm

MOV mreg8, imm8 C6h 11-000-xxx short limm

MOV mem8, imm8 C6h mm-000-xxx long store

MOV reg16/32, imm16/32 C7h 11-000-xxx short limm

MOV mem16/32, imm16/32 C7h mm-000-xxx long store

MOVSB mem8,mem8 A4h long load, store, alux, alux

MOVSD mem16, mem16 A5h long load, store, alu, alu

MOVSW mem32, mem32 A5h long load, store, alu, alu

MOVSX reg16/32, mreg8 0Fh BEh 11-xxx-xxx short alu

MOVSX reg16/32, mem8 0Fh BEh mm-xxx-xxx short load, alu

MOVSX reg32, mreg16 0Fh BFh 11-xxx-xxx short alu

MOVSX reg32, mem16 0Fh BFh mm-xxx-xxx short load, alu

MOVZX reg16/32, mreg8 0Fh B6h 11-xxx-xxx short alu

MOVZX reg16/32, mem8 0Fh B6h mm-xxx-xxx short load, alu

MOVZX reg32, mreg16 0Fh B7h 11-xxx-xxx short alu

MOVZX reg32, mem16 0Fh B7h mm-xxx-xxx short load, alu

MUL AL, mreg8 F6h 11-100-xxx vector

MUL AL, mem8 F6h mm-100-xxx vector

MUL EAX, mreg16/32 F7h 11-100-xxx vector

MUL EAX, mem16/32 F7h mm-100-xxx vector

NEG mreg8 F6h 11-011-xxx short alux
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NEG mem8 F6h mm-011-xxx vector

NEG mreg16/32 F7h 11-011-xxx short alu

NEG mem16/32 F7h mm-011-xxx vector

NOP (XCHG AX, AX) 90h short limm

NOT mreg8 F6h 11-010-xxx short alux

NOT mem8 F6h mm-010-xxx vector

NOT mreg16/32 F7h 11-010-xxx short alu

NOT mem16/32 F7h mm-010-xxx vector

OR mreg8, reg8 08h 11-xxx-xxx short alux

OR mem8, reg8 08h mm-xxx-xxx long load, alux, store

OR mreg16/32, reg16/32 09h 11-xxx-xxx short alu

OR mem16/32, reg16/32 09h mm-xxx-xxx long load, alu, store

OR reg8, mreg8 0Ah 11-xxx-xxx short alux

OR reg8, mem8 0Ah mm-xxx-xxx short load, alux

OR reg16/32, mreg16/32 0Bh 11-xxx-xxx short alu

OR reg16/32, mem16/32 0Bh mm-xxx-xxx short load, alu

OR AL, imm8 0Ch short alux

OR EAX, imm16/32 0Dh short alu

OR mreg8, imm8 80h 11-001-xxx short alux

OR mem8, imm8 80h mm-001-xxx long load, alux, store

OR mreg16/32, imm16/32 81h 11-001-xxx short alu

OR mem16/32, imm16/32 81h mm-001-xxx long load, alu, store

OR mreg16/32, imm8 (signed ext.) 83h 11-001-xxx short alux

OR mem16/32, imm8 (signed ext.) 83h mm-001-xxx long load, alux, store

OUT imm8, AL E6h vector

OUT imm8, AX E7h vector

OUT imm8, EAX E7h vector

OUT DX, AL EEh vector

OUT DX, AX EFh vector

OUT DX, EAX EFh vector

POP ES 07h vector

POP SS 17h vector

POP DS 1Fh vector
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POP FS 0Fh A1h vector

POP GS 0Fh A9h vector

POP EAX 58h short load, alu

POP ECX 59h short load, alu

POP EDX 5Ah short load, alu

POP EBX 5Bh short load, alu

POP ESP 5Ch short load, alu

POP EBP 5Dh short load, alu

POP ESI 5Eh short load, alu

POP EDI 5Fh short load, alu

POP mreg 16/32 8Fh 11-000-xxx short load, alu

POP mem 16/32 8Fh mm-000-xxx long load, store, alu

POPA/POPAD 61h vector

POPF/POPFD 9Dh vector

PUSH ES 06h long load, store

PUSH CS 0Eh vector

PUSH FS 0Fh A0h vector

PUSH GS 0Fh A8h vector

PUSH SS 16h vector

PUSH DS 1Eh long load, store

PUSH EAX 50h short store

PUSH ECX 51h short store

PUSH EDX 52h short store

PUSH EBX 53h short store

PUSH ESP 54h short store

PUSH EBP 55h short store

PUSH ESI 56h short store

PUSH EDI 57h short store

PUSH imm8 6Ah long store

PUSH imm16/32 68h long store

PUSH mreg16/32 FFh 11-110-xxx vector

PUSH mem16/32 FFh mm-110-xxx long load, store

PUSHA/PUSHAD 60h vector
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PUSHF/PUSHFD 9Ch vector

RCL mreg8, imm8 C0h 11-010-xxx vector

RCL mem8, imm8 C0h mm-010-xxx vector

RCL mreg16/32, imm8 C1h 11-010-xxx vector

RCL mem16/32, imm8 C1h mm-010-xxx vector

RCL mreg8, 1 D0h 11-010-xxx vector

RCL mem8, 1 D0h mm-010-xxx vector

RCL mreg16/32, 1 D1h 11-010-xxx vector

RCL mem16/32, 1 D1h mm-010-xxx vector

RCL mreg8, CL D2h 11-010-xxx vector

RCL mem8, CL D2h mm-010-xxx vector

RCL mreg16/32, CL D3h 11-010-xxx vector

RCL mem16/32, CL D3h mm-010-xxx vector

RCR mreg8, imm8 C0h 11-011-xxx vector

RCR mem8, imm8 C0h mm-011-xxx vector

RCR mreg16/32, imm8 C1h 11-011-xxx vector

RCR mem16/32, imm8 C1h mm-011-xxx vector

RCR mreg8, 1 D0h 11-011-xxx vector

RCR mem8, 1 D0h mm-011-xxx vector

RCR mreg16/32, 1 D1h 11-011-xxx vector

RCR mem16/32, 1 D1h mm-011-xxx vector

RCR mreg8, CL D2h 11-011-xxx vector

RCR mem8, CL D2h mm-011-xxx vector

RCR mreg16/32, CL D3h 11-011-xxx vector

RCR mem16/32, CL D3h mm-011-xxx vector

RET near imm16 C2h vector

RET near C3h vector

RET far imm16 CAh vector

RET far CBh vector

ROL mreg8, imm8 C0h 11-000-xxx vector

ROL mem8, imm8 C0h mm-000-xxx vector

ROL mreg16/32, imm8 C1h 11-000-xxx vector

ROL mem16/32, imm8 C1h mm-000-xxx vector
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ROL mreg8, 1 D0h 11-000-xxx vector

ROL mem8, 1 D0h mm-000-xxx vector

ROL mreg16/32, 1 D1h 11-000-xxx vector

ROL mem16/32, 1 D1h mm-000-xxx vector

ROL mreg8, CL D2h 11-000-xxx vector

ROL mem8, CL D2h mm-000-xxx vector

ROL mreg16/32, CL D3h 11-000-xxx vector

ROL mem16/32, CL D3h mm-000-xxx vector

ROR mreg8, imm8 C0h 11-001-xxx vector

ROR mem8, imm8 C0h mm-001-xxx vector

ROR mreg16/32, imm8 C1h 11-001-xxx vector

ROR mem16/32, imm8 C1h mm-001-xxx vector

ROR mreg8, 1 D0h 11-001-xxx vector

ROR mem8, 1 D0h mm-001-xxx vector

ROR mreg16/32, 1 D1h 11-001-xxx vector

ROR mem16/32, 1 D1h mm-001-xxx vector

ROR mreg8, CL D2h 11-001-xxx vector

ROR mem8, CL D2h mm-001-xxx vector

ROR mreg16/32, CL D3h 11-001-xxx vector

ROR mem16/32, CL D3h mm-001-xxx vector

SAHF 9Eh vector

SAR mreg8, imm8 C0h 11-111-xxx short alux

SAR mem8, imm8 C0h mm-111-xxx vector

SAR mreg16/32, imm8 C1h 11-111-xxx short alu

SAR mem16/32, imm8 C1h mm-111-xxx vector

SAR mreg8, 1 D0h 11-111-xxx short alux

SAR mem8, 1 D0h mm-111-xxx vector

SAR mreg16/32, 1 D1h 11-111-xxx short alu

SAR mem16/32, 1 D1h mm-111-xxx vector

SAR mreg8, CL D2h 11-111-xxx short alux

SAR mem8, CL D2h mm-111-xxx vector

SAR mreg16/32, CL D3h 11-111-xxx short alu

SAR mem16/32, CL D3h mm-111-xxx vector
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SBB mreg8, reg8 18h 11-xxx-xxx vector

SBB mem8, reg8 18h mm-xxx-xxx vector

SBB mreg16/32, reg16/32 19h 11-xxx-xxx vector

SBB mem16/32, reg16/32 19h mm-xxx-xxx vector

SBB reg8, mreg8 1Ah 11-xxx-xxx vector

SBB reg8, mem8 1Ah mm-xxx-xxx vector

SBB reg16/32, mreg16/32 1Bh 11-xxx-xxx vector

SBB reg16/32, mem16/32 1Bh mm-xxx-xxx vector

SBB AL, imm8 1Ch vector

SBB EAX, imm16/32 1Dh vector

SBB mreg8, imm8 80h 11-011-xxx vector

SBB mem8, imm8 80h mm-011-xxx vector

SBB mreg16/32, imm16/32 81h 11-011-xxx vector

SBB mem16/32, imm16/32 81h mm-011-xxx vector

SBB mreg8, imm8 (signed ext.) 83h 11-011-xxx vector

SBB mem8, imm8 (signed ext.) 83h mm-011-xxx vector

SCASB AL, mem8 AEh vector

SCASW AX, mem16 AFh vector

SCASD EAX, mem32 AFh vector

SETO mreg8 0Fh 90h 11-xxx-xxx vector

SETO mem8 0Fh 90h mm-xxx-xxx vector

SETNO mreg8 0Fh 91h 11-xxx-xxx vector

SETNO mem8 0Fh 91h mm-xxx-xxx vector

SETB/SETNAE mreg8 0Fh 92h 11-xxx-xxx vector

SETB/SETNAE mem8 0Fh 92h mm-xxx-xxx vector

SETNB/SETAE mreg8 0Fh 93h 11-xxx-xxx vector

SETNB/SETAE mem8 0Fh 93h mm-xxx-xxx vector

SETZ/SETE mreg8 0Fh 94h 11-xxx-xxx vector

SETZ/SETE mem8 0Fh 94h mm-xxx-xxx vector

SETNZ/SETNE mreg8 0Fh 95h 11-xxx-xxx vector

SETNZ/SETNE mem8 0Fh 95h mm-xxx-xxx vector

SETBE/SETNA mreg8 0Fh 96h 11-xxx-xxx vector

SETBE/SETNA mem8 0Fh 96h mm-xxx-xxx vector
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SETNBE/SETA mreg8 0Fh 97h 11-xxx-xxx vector

SETNBE/SETA mem8 0Fh 97h mm-xxx-xxx vector

SETS mreg8 0Fh 98h 11-xxx-xxx vector

SETS mem8 0Fh 98h mm-xxx-xxx vector

SETNS mreg8 0Fh 99h 11-xxx-xxx vector

SETNS mem8 0Fh 99h mm-xxx-xxx vector

SETP/SETPE mreg8 0Fh 9Ah 11-xxx-xxx vector

SETP/SETPE mem8 0Fh 9Ah mm-xxx-xxx vector

SETNP/SETPO mreg8 0Fh 9Bh 11-xxx-xxx vector

SETNP/SETPO mem8 0Fh 9Bh mm-xxx-xxx vector

SETL/SETNGE mreg8 0Fh 9Ch 11-xxx-xxx vector

SETL/SETNGE mem8 0Fh 9Ch mm-xxx-xxx vector

SETNL/SETGE mreg8 0Fh 9Dh 11-xxx-xxx vector

SETNL/SETGE mem8 0Fh 9Dh mm-xxx-xxx vector

SETLE/SETNG mreg8 0Fh 9Eh 11-xxx-xxx vector

SETLE/SETNG mem8 0Fh 9Eh mm-xxx-xxx vector

SETNLE/SETG mreg8 0Fh 9Fh 11-xxx-xxx vector

SETNLE/SETG mem8 0Fh 9Fh mm-xxx-xxx vector

SGDT mem48 0Fh 01h mm-000-xxx vector

SIDT mem48 0Fh 01h mm-001-xxx vector

SHL/SAL mreg8, imm8 C0h 11-100-xxx short alux

SHL/SAL mem8, imm8 C0h mm-100-xxx vector

SHL/SAL mreg16/32, imm8 C1h 11-100-xxx short alu

SHL/SAL mem16/32, imm8 C1h mm-100-xxx vector

SHL/SAL mreg8, 1 D0h 11-100-xxx short alux

SHL/SAL mem8, 1 D0h mm-100-xxx vector

SHL/SAL mreg16/32, 1 D1h 11-100-xxx short alu

SHL/SAL mem16/32, 1 D1h mm-100-xxx vector

SHL/SAL mreg8, CL D2h 11-100-xxx short alux

SHL/SAL mem8, CL D2h mm-100-xxx vector

SHL/SAL mreg16/32, CL D3h 11-100-xxx short alu

SHL/SAL mem16/32, CL D3h mm-100-xxx vector

SHR mreg8, imm8 C0h 11-101-xxx short alux

Table 6. Integer Instructions (continued)

Instruction Mnemonic First 
Byte

Second 
Byte

ModR/M 
Byte

Decode
Type

RISC86®

Operations
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SHR mem8, imm8 C0h mm-101-xxx vector

SHR mreg16/32, imm8 C1h 11-101-xxx short alu

SHR mem16/32, imm8 C1h mm-101-xxx vector

SHR mreg8, 1 D0h 11-101-xxx short alux

SHR mem8, 1 D0h mm-101-xxx vector

SHR mreg16/32, 1 D1h 11-101-xxx short alu

SHR mem16/32, 1 D1h mm-101-xxx vector

SHR mreg8, CL D2h 11-101-xxx short alux

SHR mem8, CL D2h mm-101-xxx vector

SHR mreg16/32, CL D3h 11-101-xxx short alu

SHR mem16/32, CL D3h mm-101-xxx vector

SHLD mreg16/32, reg16/32, imm8 0Fh A4h 11-xxx-xxx vector

SHLD mem16/32, reg16/32, imm8 0Fh A4h mm-xxx-xxx vector

SHLD mreg16/32, reg16/32, CL 0Fh A5h 11-xxx-xxx vector

SHLD mem16/32, reg16/32, CL 0Fh A5h mm-xxx-xxx vector

SHRD mreg16/32, reg16/32, imm8 0Fh ACh 11-xxx-xxx vector

SHRD mem16/32, reg16/32, imm8 0Fh ACh mm-xxx-xxx vector

SHRD mreg16/32, reg16/32, CL 0Fh ADh 11-xxx-xxx vector

SHRD mem16/32, reg16/32, CL 0Fh ADh mm-xxx-xxx vector

SLDT mreg16 0Fh 00h 11-000-xxx vector

SLDT mem16 0Fh 00h mm-000-xxx vector

SMSW mreg16 0Fh 01h 11-100-xxx vector

SMSW mem16 0Fh 01h mm-100-xxx vector

STC F9h vector

STD FDh vector

STI FBh vector

STOSB mem8, AL AAh long store, alux

STOSW mem16, AX ABh long store, alu

STOSD mem32, EAX ABh long store, alu

STR mreg16 0Fh 00h 11-001-xxx vector

STR mem16 0Fh 00h mm-001-xxx vector

SUB mreg8, reg8 28h 11-xxx-xxx short alux

SUB mem8, reg8 28h mm-xxx-xxx long load, alux, store

Table 6. Integer Instructions (continued)

Instruction Mnemonic First 
Byte

Second 
Byte

ModR/M 
Byte

Decode
Type

RISC86®

Operations
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SUB mreg16/32, reg16/32 29h 11-xxx-xxx short alu

SUB mem16/32, reg16/32 29h mm-xxx-xxx long load, alu, store

SUB reg8, mreg8 2Ah 11-xxx-xxx short alux

SUB reg8, mem8 2Ah mm-xxx-xxx short load, alux

SUB reg16/32, mreg16/32 2Bh 11-xxx-xxx short alu

SUB reg16/32, mem16/32 2Bh mm-xxx-xxx short load, alu

SUB AL, imm8 2Ch short alux

SUB EAX, imm16/32 2Dh short alu

SUB mreg8, imm8 80h 11-101-xxx short alux

SUB mem8, imm8 80h mm-101-xxx long load, alux, store

SUB mreg16/32, imm16/32 81h 11-101-xxx short alu

SUB mem16/32, imm16/32 81h mm-101-xxx long load, alu, store

SUB mreg16/32, imm8 (signed ext.) 83h 11-101-xxx short alux

SUB mem16/32, imm8 (signed ext.) 83h mm-101-xxx long load, alux, store

SYSCALL (only supported on AMD-K6-2 
and AMD-K6-III processors) 0Fh 05h vector

SYSRET (only supported on AMD-K6-2 and 
AMD-K6-III processors) 0Fh 07h vector

TEST mreg8, reg8 84h 11-xxx-xxx short alux

TEST mem8, reg8 84h mm-xxx-xxx vector 

TEST mreg16/32, reg16/32 85h 11-xxx-xxx short alu

TEST mem16/32, reg16/32 85h mm-xxx-xxx vector

TEST AL, imm8 A8h long alux

TEST EAX, imm16/32 A9h long alu

TEST mreg8, imm8 F6h 11-000-xxx long alux

TEST mem8, imm8 F6h mm-000-xxx long load, alux

TEST mreg16/32, imm16/32 F7h 11-000-xxx long alu

TEST mem16/32, imm16/32 F7h mm-000-xxx long load, alu

VERR mreg16 0Fh 00h 11-100-xxx vector

VERR mem16 0Fh 00h mm-100-xxx vector

VERW mreg16 0Fh 00h 11-101-xxx vector

VERW mem16 0Fh 00h mm-101-xxx vector

WAIT 9Bh vector

Table 6. Integer Instructions (continued)

Instruction Mnemonic First 
Byte

Second 
Byte

ModR/M 
Byte

Decode
Type

RISC86®

Operations
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WBINVD 0Fh 09h vector

XADD mreg8, reg8 0Fh C0h 11-100-xxx vector

XADD mem8, reg8 0Fh C0h mm-100-xxx vector

XADD mreg16/32, reg16/32 0Fh C1h 11-101-xxx vector

XADD mem16/32, reg16/32 0Fh C1h mm-101-xxx vector

XCHG reg8, mreg8 86h 11-xxx-xxx vector

XCHG reg8, mem8 86h mm-xxx-xxx vector

XCHG reg16/32, mreg16/32 87h 11-xxx-xxx vector

XCHG reg16/32, mem16/32 87h mm-xxx-xxx vector

XCHG EAX, EAX 90h short limm

XCHG EAX, ECX 91h long alu, alu, alu

XCHG EAX, EDX 92h long alu, alu, alu

XCHG EAX, EBX 93h long alu, alu, alu

XCHG EAX, ESP 94h long alu, alu, alu

XCHG EAX, EBP 95h long alu, alu, alu

XCHG EAX, ESI 96h long alu, alu, alu

XCHG EAX, EDI 97h long alu, alu, alu

XLAT D7h vector

XOR mreg8, reg8 30h 11-xxx-xxx short alux

XOR mem8, reg8 30h mm-xxx-xxx long load, alux, store

XOR mreg16/32, reg16/32 31h 11-xxx-xxx short alu

XOR mem16/32, reg16/32 31h mm-xxx-xxx long load, alu, store

XOR reg8, mreg8 32h 11-xxx-xxx short alux

XOR reg8, mem8 32h mm-xxx-xxx short load, alux

XOR reg16/32, mreg16/32 33h 11-xxx-xxx short alu

XOR reg16/32, mem16/32 33h mm-xxx-xxx short load, alu

XOR AL, imm8 34h short alux

XOR EAX, imm16/32 35h short alu

XOR mreg8, imm8 80h 11-110-xxx short alux

XOR mem8, imm8 80h mm-110-xxx long load, alux, store

XOR mreg16/32, imm16/32 81h 11-110-xxx short alu

XOR mem16/32, imm16/32 81h mm-110-xxx long load, alu, store

Table 6. Integer Instructions (continued)

Instruction Mnemonic First 
Byte

Second 
Byte

ModR/M 
Byte

Decode
Type

RISC86®

Operations
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XOR mreg16/32, imm8 (signed ext.) 83h 11-110-xxx short alux

XOR mem16/32, imm8 (signed ext.) 83h mm-110-xxx long load, alux, store

Table 7. MMX™ Instructions

Instruction Mnemonic Prefix
Byte(s)

First
Byte

ModR/M 
Byte

Decode
Type

RISC86®

Operations
Note

EMMS 0Fh 77h vector

MOVD mmreg, mreg32 0Fh 6Eh 11-xxx-xxx short meu **

MOVD mmreg, mem32 0Fh 6Eh mm-xxx-xxx short mload

MOVD mreg32, mmreg 0Fh 7Eh 11-xxx-xxx short mstore, load **

MOVD mem32, mmreg 0Fh 7Eh mm-xxx-xxx short mstore

MOVQ mmreg1, mmreg2 0Fh 6Fh 11-xxx-xxx short meu

MOVQ mmreg, mem64 0Fh 6Fh mm-xxx-xxx short mload

MOVQ mmreg2, mmreg1 0Fh 7Fh 11-xxx-xxx short meu

MOVQ mem64, mmreg 0Fh 7Fh mm-xxx-xxx short mstore

PACKSSDW mmreg1, mmreg2 0Fh 6Bh 11-xxx-xxx short meu

PACKSSDW mmreg, mem64 0Fh 6Bh mm-xxx-xxx short mload, meu

PACKSSWB mmreg1, mmreg2 0Fh 63h 11-xxx-xxx short meu

PACKSSWB mmreg, mem64 0Fh 64h mm-xxx-xxx short mload, meu

PACKUSWB mmreg1, mmreg2 0Fh 67h 11-xxx-xxx short meu

PACKUSWB mmreg, mem64 0Fh 67h mm-xxx-xxx short mload, meu

PADDB mmreg1, mmreg2 0Fh FCh 11-xxx-xxx short meu

PADDB mmreg, mem64 0Fh FCh mm-xxx-xxx short mload, meu

PADDD mmreg1, mmreg2 0Fh FEh 11-xxx-xxx short meu

PADDD mmreg, mem64 0Fh FEh mm-xxx-xxx short mload, meu

PADDSB mmreg1, mmreg2 0Fh ECh 11-xxx-xxx short meu

PADDSB mmreg, mem64 0Fh ECh mm-xxx-xxx short mload, meu

PADDSW mmreg1, mmreg2 0Fh EDh 11-xxx-xxx short meu

PADDSW mmreg, mem64 0Fh EDh mm-xxx-xxx short mload, meu

PADDUSB mmreg1, mmreg2 0Fh DCh 11-xxx-xxx short meu

PADDUSB mmreg, mem64 0Fh DCh mm-xxx-xxx short mload, meu
Notes:

** Bits 2, 1, and 0 of the modR/M byte select the integer register.

Table 6. Integer Instructions (continued)

Instruction Mnemonic First 
Byte

Second 
Byte

ModR/M 
Byte

Decode
Type

RISC86®

Operations
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PADDUSW mmreg1, mmreg2 0Fh DDh 11-xxx-xxx short meu

PADDUSW mmreg, mem64 0Fh DDh mm-xxx-xxx short mload, meu

PADDW mmreg1, mmreg2 0Fh FDh 11-xxx-xxx short meu

PADDW mmreg, mem64 0Fh FDh mm-xxx-xxx short mload, meu

PAND mmreg1, mmreg2 0Fh DBh 11-xxx-xxx short meu

PAND mmreg, mem64 0Fh DBh mm-xxx-xxx short mload, meu

PANDN mmreg1, mmreg2 0Fh DFh 11-xxx-xxx short meu

PANDN mmreg, mem64 0Fh DFh mm-xxx-xxx short mload, meu

PCMPEQB mmreg1, mmreg2 0Fh 74h 11-xxx-xxx short meu

PCMPEQB mmreg, mem64 0Fh 74h mm-xxx-xxx short mload, meu

PCMPEQD mmreg1, mmreg2 0Fh 76h 11-xxx-xxx short meu

PCMPEQD mmreg, mem64 0Fh 76h mm-xxx-xxx short mload, meu

PCMPEQW mmreg1, mmreg2 0Fh 75h 11-xxx-xxx short meu

PCMPEQW mmreg, mem64 0Fh 75h mm-xxx-xxx short mload, meu

PCMPGTB mmreg1, mmreg2 0Fh 64h 11-xxx-xxx short meu

PCMPGTB mmreg, mem64 0Fh 64h mm-xxx-xxx short mload, meu

PCMPGTD mmreg1, mmreg2 0Fh 66h 11-xxx-xxx short meu

PCMPGTD mmreg, mem64 0Fh 66h mm-xxx-xxx short mload, meu

PCMPGTW mmreg1, mmreg2 0Fh 65h 11-xxx-xxx short meu

PCMPGTW mmreg, mem64 0Fh 65h mm-xxx-xxx short mload, meu

PMADDWD mmreg1, mmreg2 0Fh F5h 11-xxx-xxx short meu

PMADDWD mmreg, mem64 0Fh F5h mm-xxx-xxx short mload, meu

PMULHW mmreg1, mmreg2 0Fh E5h 11-xxx-xxx short meu

PMULHW mmreg, mem64 0Fh E5h mm-xxx-xxx short mload, meu

PMULLW mmreg1, mmreg2 0Fh D5h 11-xxx-xxx short meu

PMULLW mmreg, mem64 0Fh D5h mm-xxx-xxx short mload, meu

POR mmreg1, mmreg2 0Fh EBh 11-xxx-xxx short meu

POR mmreg, mem64 0Fh EBh mm-xxx-xxx short mload, meu

PSLLW mmreg1, mmreg2 0Fh F1h 11-xxx-xxx short meu

PSLLW mmreg, mem64 0Fh F1h mm-xxx-xxx short mload, meu

PSLLW mmreg, imm8 0Fh 71h 11-110-xxx short meu

Table 7. MMX™ Instructions (continued)

Instruction Mnemonic Prefix
Byte(s)

First
Byte

ModR/M 
Byte

Decode
Type

RISC86®

Operations
Note

Notes:
** Bits 2, 1, and 0 of the modR/M byte select the integer register.
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PSLLD mmreg1, mmreg2 0Fh F2h 11-xxx-xxx short meu

PSLLD mmreg, mem64 0Fh F2h mm-xxx-xxx short mload, meu

PSLLD mmreg, imm8 0Fh 72h 11-110-xxx short meu

PSLLQ mmreg1, mmreg2 0Fh F3h 11-xxx-xxx short meu

PSLLQ mmreg, mem64 0Fh F3h mm-xxx-xxx short mload, meu

PSLLQ mmreg, imm8 0Fh 73h 11-110-xxx short meu

PSRAW mmreg1, mmreg2 0Fh E1h 11-xxx-xxx short meu

PSRAW mmreg, mem64 0Fh E1h mm-xxx-xxx short mload, meu

PSRAW mmreg, imm8 0Fh 71h 11-100-xxx short meu

PSRAD mmreg1, mmreg2 0Fh E2h 11-xxx-xxx short meu

PSRAD mmreg, mem64 0Fh E2h mm-xxx-xxx short mload, meu

PSRAD mmreg, imm8 0Fh 72h 11-100-xxx short meu

PSRLW mmreg1, mmreg2 0Fh D1h 11-xxx-xxx short meu

PSRLW mmreg, mem64 0Fh D1h mm-xxx-xxx short mload, meu

PSRLW mmreg, imm8 0Fh 71h 11-010-xxx short meu

PSRLD mmreg1, mmreg2 0Fh D2h 11-xxx-xxx short meu

PSRLD mmreg, mem64 0Fh D2h mm-xxx-xxx short mload, meu

PSRLD mmreg, imm8 0Fh 72h 11-010-xxx short meu

PSRLQ mmreg1, mmreg2 0Fh D3h 11-xxx-xxx short meu

PSRLQ mmreg, mem64 0Fh D3h mm-xxx-xxx short mload, meu

PSRLQ mmreg, imm8 0Fh 73h 11-010-xxx short meu

PSUBB mmreg1, mmreg2 0Fh F8h 11-xxx-xxx short meu

PSUBB mmreg, mem64 0Fh F8h mm-xxx-xxx short mload, meu

PSUBD mmreg1, mmreg2 0Fh FAh 11-xxx-xxx short meu

PSUBD mmreg, mem64 0Fh FAh mm-xxx-xxx short mload, meu

PSUBSB mmreg1, mmreg2 0Fh E8h 11-xxx-xxx short meu

PSUBSB mmreg, mem64 0Fh E8h mm-xxx-xxx short mload, meu

PSUBSW mmreg1, mmreg2 0Fh E9h 11-xxx-xxx short meu

PSUBSW mmreg, mem64 0Fh E9h mm-xxx-xxx short mload, meu

PSUBUSB mmreg1, mmreg2 0Fh D8h 11-xxx-xxx short meu

PSUBUSB mmreg, mem64 0Fh D8h mm-xxx-xxx short mload, meu

Table 7. MMX™ Instructions (continued)

Instruction Mnemonic Prefix
Byte(s)

First
Byte

ModR/M 
Byte

Decode
Type

RISC86®

Operations
Note

Notes:
** Bits 2, 1, and 0 of the modR/M byte select the integer register.
Chapter 4 Instruction Dispatch 49



AMD-K6® Processor Code Optimization 21924C/0—August 1999
PSUBUSW mmreg1, mmreg2 0Fh D9h 11-xxx-xxx short meu

PSUBUSW mmreg, mem64 0Fh D9h mm-xxx-xxx short mload, meu

PSUBW mmreg1, mmreg2 0Fh F9h 11-xxx-xxx short meu

PSUBW mmreg, mem64 0Fh F9h mm-xxx-xxx short mload, meu

PUNPCKHBW mmreg1, mmreg2 0Fh 68h 11-xxx-xxx short meu

PUNPCKHBW mmreg, mem64 0Fh 68h mm-xxx-xxx short mload, meu

PUNPCKHWD mmreg1, mmreg2 0Fh 69h 11-xxx-xxx short meu

PUNPCKHWD mmreg, mem64 0Fh 69h mm-xxx-xxx short mload, meu

PUNPCKHDQ mmreg1, mmreg2 0Fh 6Ah 11-xxx-xxx short meu

PUNPCKHDQ mmreg, mem64 0Fh 6Ah mm-xxx-xxx short mload, meu

PUNPCKLBW mmreg1, mmreg2 0Fh 60h 11-xxx-xxx short meu

PUNPCKLBW mmreg, mem64 0Fh 60h mm-xxx-xxx short mload, meu

PUNPCKLWD mmreg1, mmreg2 0Fh 61h 11-xxx-xxx short meu

PUNPCKLWD mmreg, mem64 0Fh 61h mm-xxx-xxx short mload, meu

PUNPCKLDQ mmreg1, mmreg2 0Fh 62h 11-xxx-xxx short meu

PUNPCKLDQ mmreg, mem64 0Fh 62h mm-xxx-xxx short mload, meu

PXOR mmreg1, mmreg2 0Fh EFh 11-xxx-xxx short meu

PXOR mmreg, mem64 0Fh EFh mm-xxx-xxx short mload, meu

Table 7. MMX™ Instructions (continued)

Instruction Mnemonic Prefix
Byte(s)

First
Byte

ModR/M 
Byte

Decode
Type

RISC86®

Operations
Note

Notes:
** Bits 2, 1, and 0 of the modR/M byte select the integer register.
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Table 8. Floating-Point Instructions

Instruction Mnemonic First 
Byte

Second 
Byte

ModR/M 
Byte

Decode
Type

RISC86®

Operations
Note

F2XM1 D9h F0h short float

FABS D9h F1h short float

FADD ST(0), ST(i) D8h 11-000-xxx short float *

FADD ST(0), mem32real D8h mm-000-xxx short fload, float

FADD ST(i), ST(0) DCh 11-000-xxx short float *

FADD ST(0), mem64real DCh mm-000-xxx short fload, float

FADDP ST(i), ST(0) DEh 11-000-xxx short float *

FBLD DFh mm-100-xxx vector

FBSTP DFh mm-110-xxx vector

FCHS D9h E0h short float

FCLEX DBh E2h vector

FCOM ST(0), ST(i) D8h 11-010-xxx short float *

FCOM ST(0), mem32real D8h mm-010-xxx short fload, float

FCOM ST(0), mem64real DCh mm-010-xxx short fload, float

FCOMP ST(0), ST(i) D8h 11-011-xxx short float *

FCOMP ST(0), mem32real D8h mm-011-xxx short fload, float

FCOMP ST(0), mem64real DCh mm-011-xxx short fload, float

FCOMPP DEh D9h 11-011-001 short float

FCOS D9h FFh short float

FDECSTP D9h F6h short float

FDIV ST(0), ST(i) (single precision) D8h 11-110-xxx short float *

FDIV ST(0), ST(i) (double precision) D8h 11-110-xxx short float *

FDIV ST(0), ST(i) (extended precision) D8h 11-110-xxx short float *

FDIV ST(i), ST(0) (single precision) DCh 11-111-xxx short float *

FDIV ST(i), ST(0) (double precision) DCh 11-111-xxx short float *

FDIV ST(i), ST(0) (extended precision) DCh 11-111-xxx short float *

FDIV ST(0), mem32real D8h mm-110-xxx short fload, float

FDIV ST(0), mem64real DCh mm-110-xxx short fload, float

FDIVP ST(0), ST(i) DEh 11-111-xxx short float *

FDIVR ST(0), ST(i) D8h 11-110-xxx short float *

FDIVR ST(i), ST(0) DCh 11-111-xxx short float *
Notes:

* The last three bits of the modR/M byte select the stack entry ST(i).
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FDIVR ST(0), mem32real D8h mm-111-xxx short fload, float

FDIVR ST(0), mem64real DCh mm-111-xxx short fload, float

FDIVRP ST(i), ST(0) DEh 11-110-xxx short float *

FFREE ST(i) DDh 11-000-xxx short float *

FIADD ST(0), mem32int DAh mm-000-xxx short fload, float

FIADD ST(0), mem16int DEh mm-000-xxx short fload, float

FICOM ST(0), mem32int DAh mm-010-xxx short fload, float

FICOM ST(0), mem16int DEh mm-010-xxx short fload, float

FICOMP ST(0), mem32int DAh mm-011-xxx short fload, float

FICOMP ST(0), mem16int DEh mm-011-xxx short fload, float

FIDIV ST(0), mem32int DAh mm-110-xxx short fload, float

FIDIV ST(0), mem16int DEh mm-110-xxx short fload, float

FIDIVR ST(0), mem32int DAh mm-111-xxx short fload, float

FIDIVR ST(0), mem16int DEh mm-111-xxx short fload, float

FILD mem16int DFh mm-000-xxx short fload, float

FILD mem32int DBh mm-000-xxx short fload, float

FILD mem64int DFh mm-101-xxx short fload, float

FIMUL ST(0), mem32int DAh mm-001-xxx short fload, float

FIMUL ST(0), mem16int DEh mm-001-xxx short fload, float

FINCSTP D9h F7h short float

FINIT DBh E3h vector

FIST mem16int DFh mm-010-xxx short fload, float

FIST mem32int DBh mm-010-xxx short fload, float

FISTP mem16int DFh mm-011-xxx short fload, float

FISTP mem32int DBh mm-011-xxx short fload, float

FISTP mem64int DFh mm-111-xxx short fload, float

FISUB ST(0), mem32int DAh mm-100-xxx short fload, float

FISUB ST(0), mem16int DEh mm-100-xxx short fload, float

FISUBR ST(0), mem32int DAh mm-101-xxx short fload, float

FISUBR ST(0), mem16int DEh mm-101-xxx short fload, float

FLD ST(i) D9h 11-000-xxx short fload, float *

Table 8. Floating-Point Instructions (continued)

Instruction Mnemonic First 
Byte

Second 
Byte

ModR/M 
Byte

Decode
Type

RISC86®

Operations
Note

Notes:
* The last three bits of the modR/M byte select the stack entry ST(i).
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FLD mem32real D9h mm-000-xxx short fload, float

FLD mem64real DDh mm-000-xxx short fload, float

FLD mem80real DBh mm-101-xxx vector

FLD1 D9h E8h short fload, float

FLDCW D9h mm-101-xxx vector

FLDENV D9h mm-100-xxx short fload, float

FLDL2E D9h EAh short float

FLDL2T D9h E9h short float

FLDLG2 D9h ECh short float

FLDLN2 D9h EDh short float

FLDPI D9h EBh short float

FLDZ D9h EEh short float

FMUL ST(0), ST(i) D8h 11-001-xxx short float *

FMUL ST(i), ST(0) DCh 11-001-xxx short float *

FMUL ST(0), mem32real D8h mm-001-xxx short fload, float

FMUL ST(0), mem64real DCh mm-001-xxx short fload, float

FMULP ST(0), ST(i) DEh 11-001-xxx short float *

FNOP D9h D0h short float

FPATAN D9h F3h short float

FPREM D9h F8h short float

FPREM1 D9h F5h short float

FPTAN D9h F2h vector

FRNDINT D9h FCh short float

FRSTOR DDh mm-100-xxx vector

FSAVE DDh mm-110-xxx vector

FSCALE D9h FDh short float

FSIN D9h FEh short float

FSINCOS D9h FBh vector

FSQRT (single precision) D9h FAh short float

FSQRT (double precision) D9h FAh short float

FSQRT (extended precision) D9h FAh short float

Table 8. Floating-Point Instructions (continued)

Instruction Mnemonic First 
Byte

Second 
Byte

ModR/M 
Byte

Decode
Type

RISC86®

Operations
Note

Notes:
* The last three bits of the modR/M byte select the stack entry ST(i).
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FST mem32real D9h mm-010-xxx short fstore 

FST mem64real DDh mm-010-xxx short fstore

FST ST(i) DDh 11-010-xxx short fstore *

FSTCW D9h mm-111-xxx vector

FSTENV D9h mm-110-xxx vector

FSTP mem32real D9h mm-011-xxx short fstore

FSTP mem64real DDh mm-011-xxx short fstore

FSTP mem80real D9h mm-111-xxx vector

FSTP ST(i) DDh 11-011-xxx short float *

FSTSW AX DFh E0h vector

FSTSW mem16 DDh mm-111-xxx vector

FSUB ST(0), mem32real D8h mm-100-xxx short fload, float

FSUB ST(0), mem64real DCh mm-100-xxx short fload, float

FSUB ST(0), ST(i) D8h 11-100-xxx short float *

FSUB ST(i), ST(0) DCh 11-101-xxx short float *

FSUBP ST(0), ST(i) DEh 11-101-xxx short float *

FSUBR ST(0), mem32real D8h mm-101-xxx short fload, float

FSUBR ST(0), mem64real DCh mm-101-xxx short fload, float

FSUBR ST(0), ST(i) D8h 11-100-xxx short float *

FSUBR ST(i), ST(0) DCh 11-101-xxx short float *

FSUBRP ST(i), ST(0) DEh 11-100-xxx short float *

FTST D9h E4h short float

FUCOM DDh 11-100-xxx short float

FUCOMP DDh 11-101-xxx short float

FUCOMPP DAh E9h short float

FXAM D9h E5h short float

FXCH D9h 11-001-xxx short float

FXTRACT D9h F4h vector

FYL2X D9h F1h short float

FYL2XP1 D9h F9h short float

FWAIT 9Bh vector

Table 8. Floating-Point Instructions (continued)

Instruction Mnemonic First 
Byte

Second 
Byte

ModR/M 
Byte

Decode
Type

RISC86®

Operations
Note

Notes:
* The last three bits of the modR/M byte select the stack entry ST(i).
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Table 9. 3DNow!™ Instructions

Instruction Mnemonic Prefix
Byte(s)

Opcode
Byte

ModR/M 
Byte

Decode
Type

RISC86®

Operations
Note

FEMMS 0Fh 0Eh vector 1

PAVGUSB mmreg1, mmreg2 0Fh, 0Fh BFh 11-xxx-xxx short meu

PAVGUSB mmreg, mem64 0Fh, 0Fh BFh mm-xxx-xxx short mload, meu

PFADD mmreg1, mmreg2 0Fh, 0Fh 9Eh 11-xxx-xxx short meu

PFADD mmreg, mem64 0Fh, 0Fh 9Eh mm-xxx-xxx short mload, meu

PFSUB mmreg1, mmreg2 0Fh, 0Fh 9Ah 11-xxx-xxx short meu

PFSUB mmreg, mem64 0Fh, 0Fh 9Ah mm-xxx-xxx short mload, meu

PFSUBR mmreg1, mmreg2 0Fh, 0Fh AAh 11-xxx-xxx short meu

PFSUBR mmreg, mem64 0Fh, 0Fh AAh mm-xxx-xxx short mload, meu

PFACC mmreg1, mmreg2 0Fh, 0Fh AEh 11-xxx-xxx short meu

PFACC mmreg, mem64 0Fh, 0Fh AEh mm-xxx-xxx short mload, meu

PFMUL mmreg1, mmreg2 0Fh, 0Fh B4h 11-xxx-xxx short meu

PFMUL mmreg, mem64 0Fh, 0Fh B4h mm-xxx-xxx short mload, meu

PFCMPGE mmreg1, mmreg2 0Fh, 0Fh 90h 11-xxx-xxx short meu

PFCMPGE mmreg, mem64 0Fh, 0Fh 90h mm-xxx-xxx short mload, meu

PFCMPGT mmreg1, mmreg2 0Fh, 0Fh A0h 11-xxx-xxx short meu

PFCMPGT mmreg, mem64 0Fh, 0Fh A0h mm-xxx-xxx short mload, meu

PFCMPEQ mmreg1, mmreg2 0Fh, 0Fh B0h 11-xxx-xxx short meu

PFCMPEQ mmreg, mem64 0Fh, 0Fh B0h mm-xxx-xxx short mload, meu

PFMIN mmreg1, mmreg2 0Fh, 0Fh 94h 11-xxx-xxx short meu

PFMIN mmreg, mem64 0Fh, 0Fh 94H mm-xxx-xxx short mload, meu

PFMAX mmreg1, mmreg2 0Fh, 0Fh A4h 11-xxx-xxx short meu

PFMAX mmreg, mem64 0Fh, 0Fh A4h mm-xxx-xxx short mload, meu

PI2FD mmreg1, mmreg2 0Fh, 0Fh 0Dh 11-xxx-xxx short meu

PI2FD mmreg, mem64 0Fh, 0Fh 0Dh mm-xxx-xxx short mload, meu

PF2ID mmreg1, mmreg2 0Fh, 0Fh 1Dh 11-xxx-xxx short meu

PF2ID mmreg, mem64 0Fh, 0Fh 1Dh mm-xxx-xxx short mload, meu

PFRCP mmreg1, mmreg2 0Fh, 0Fh 96h 11-xxx-xxx short meu

PFRCP mmreg, mem64 0Fh, 0Fh 96h mm-xxx-xxx short mload, meu
Notes:

1. For more information about the FEMMS instruction, see “AMD-K6®-2 and AMD-K6®-III Processors Multimedia Cod-
ing Optimizations” on page 67.

2. For PREFETCH and PREFETCHW, the mem8 value refers to an address in the 32-byte line that will be prefetched.
3. PREFETCHW will be implemented in a future K86™ processor. On the AMD-K6-2 processor, this instruction performs 

in the same manner as the PREFETCH instruction.
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PFRSQRT mmreg1, mmreg2 0Fh, 0Fh 97h 11-xxx-xxx short meu

PFRSQRT mmreg, mem64 0Fh, 0Fh 97h mm-xxx-xxx short mload, meu

PFRCPIT1 mmreg1, mmreg2 0Fh, 0Fh A6h 11-xxx-xxx short meu

PFRCPIT1 mmreg, mem64 0Fh, 0Fh A6h mm-xxx-xxx short mload, meu

PFRSQIT1 mmreg1, mmreg2 0Fh, 0Fh A7h 11-xxx-xxx short meu

PFRSQIT1 mmreg, mem64 0Fh, 0Fh A7h mm-xxx-xxx short mload, meu

PFRCPIT2 mmreg1, mmreg2 0Fh, 0Fh B6h 11-xxx-xxx short meu

PFRCPIT2 mmreg, mem64 0Fh, 0Fh B6h mm-xxx-xxx short mload, meu

PMULHRW mmreg1, mmreg2 0Fh, 0Fh B7h 11-xxx-xxx short meu

PMULHRW mmreg1, mem64 0Fh, 0Fh B7h mm-xxx-xxx short mload, meu

PREFETCH mem8 0Fh 0Dh mm-000-xxx vector load 2

PREFETCHW mem8 0Fh 0Dh mm-001-xxx vector load 2, 3

Table 9. 3DNow!™ Instructions (continued)

Instruction Mnemonic Prefix
Byte(s)

Opcode
Byte

ModR/M 
Byte

Decode
Type

RISC86®

Operations
Note

Notes:
1. For more information about the FEMMS instruction, see “AMD-K6®-2 and AMD-K6®-III Processors Multimedia Cod-

ing Optimizations” on page 67.
2. For PREFETCH and PREFETCHW, the mem8 value refers to an address in the 32-byte line that will be prefetched.
3. PREFETCHW will be implemented in a future K86™ processor. On the AMD-K6-2 processor, this instruction performs 

in the same manner as the PREFETCH instruction.
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5
Optimization Coding 
Guidelines
General x86 Optimization Techniques

This section describes general code optimization techniques
specific to superscalar processors (that is, techniques common
to the AMD-K6 family of processors, AMD-K5™ processor, and
Pentium family processors). In general, all optimization
techniques used for the AMD-K5 processor, Pentium, and
Pentium Pro processors either improve the performance of the
AMD-K6 family or are not required and have neutral effect
(usually due to fewer coding restrictions with the AMD-K6
family).

Short Forms—Use shorter forms of instructions to increase the
effective number of instructions that can be examined for
decoding at any one time. Use 8-bit displacements and jump
offsets where possible.

Simple Instructions—Use simple instructions with hardwired
decode (pairable, short, or fast) because they perform more
efficiently. This includes “register ←register op memory” as
well as “register←register op register” forms of instructions.

Dependencies—Spread out true dependencies to increase the
opportunities for parallel execution. Anti-dependencies and
output dependencies do not impact performance.
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Memory Operands— Instructions that operate on data in
memory (load/operation/store) can inhibit parallelism. The use
of separate move and ALU instructions allows better code
scheduling for independent operations. However, if there are no
opportuni t ies  for  paral le l  execut ion ,  use  the
load/operation/store forms to reduce the number of register
spills (storing values in memory to free registers for other uses).

Register Operands — Maintain frequently used values in
registers rather than in memory.

Stack References—Use ESP for stack references so that EBP
remains available.

Stack Allocation—When allocating space for local variables
and/or outgoing parameters within a procedure, adjust the
stack pointer and use moves rather than pushes. This method of
allocation allows random access to the outgoing parameters so
that they can be set up when they are calculated instead of
being held somewhere else until the procedure call. This
method also reduces ESP dependencies and uses fewer
execution resources.

Data Embedding — When data is embedded in the code
segment, align it in separate cache blocks from nearby code.
This technique avoids some overhead when maintaining
coherency between the instruction and data caches.

Loops—Unroll loops to get more parallelism and reduce loop
overhead, even with branch prediction. Inline small routines to
avoid procedure-call overhead. For both techniques, however,
consider the cost of possible increased register usage, which
might add load/store instructions for register spilling. Unrolling
large code loops can result in the inefficient use of L1
instruction caches.

Code Alignment—Aligning subroutines at 0-mod-16 (or ideally,
at 0-mod-32) address boundaries optimizes instruction
cache-fill efficiency. Keeping the starting point of loops at least
two instructions away from the end of 32-byte cache lines
optimizes branch-target instruction fetch and decode
efficiency.
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General AMD-K6® Family x86 Coding Optimizations

This section describes general code optimization techniques
specific to the AMD-K6 family of processors.

Use short-decodable instructions — To increase decode
bandwidth and minimize the number of RISC86 operations per
x86 instruction, use short-decodable x86 instructions. See
“Instruct ion  Dispatch” on  page 27  for  the  l i st  of
short-decodable instructions.

Pair short-decodable instructions—Two short-decodable x86
instructions can be decoded per clock, using the full decode
bandwidth of the AMD-K6 family. 

Note: For the AMD-K6-2 and AMD-K6-III processors, all MMX
and 3DNow! instructions are short-decodable except the
EMMS, FEMMS, and PREFETCH instructions.

Avoid using complex instructions—The more complex and
uncommon instructions are vector decoded and can generate a
larger ratio of RISC86 operations per x86 instruction compared
with short-decodable or long-decodable instructions. 

Avoid multiple and accumulated prefixes — In order to
accomplish an instruction decode, the decoders require
sufficient predecode information. When an instruction has
multiple prefixes and this cannot be deduced by the decoders
(due to a lack of data in the instruction decode buffer), the first
decoder retires and accumulates one prefix per cycle until the
instruction is completely decoded. Table 10 shows when
prefixes are accumulated and decoding is serialized.

Table 10. Decode Accumulation and Serialization

Decode #1 Decoder #2 Results

Instruction Single instruction decoded.

Instruction Instruction Dual instruction decode.

Instruction Prefix Single instruction decode and prefix is 
accumulated.

Prefix Instruction
(modified by Prefix)

No prefix accumulation and single instruction 
is decoded.
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0Fh prefix usage — 0Fh does not count as a prefix for the
decoder accumulation rules (that is, it does not cause
accumulation).

Avoid long instruction length—Use x86 instructions that are
less than eight bytes in length. An x86 instruction that is longer
than seven bytes cannot be short-decoded.

Use read-modify-write instructions over discrete equivalent—
No advantage is gained by splitting read-modify-write
instructions into a load-execute-store instruction group. Both
read-modify-write instructions and load-execute-store
instruction groups decode and execute in one cycle but
read-modify-write instructions promote better code density.

Move rarely used code and data to separate pages—Placing
code, such as exception handlers, in separate pages and data,
such as error text messages, in separate pages maximizes the
use of the TLBs and prevents table pollution with rarely used
items.

Avoid mixing code size types—Size prefixes that affect the
length of an instruction can sometimes inhibit dual decoding.

Always pair CALL and RETURN—If CALLs and RETs are not
paired, the return address stack gets out of synchronization,
increasing the latency of returns and decreasing performance. 

Exploit parallel execution of integer and floating-point
multiplies — The AMD-K6 processor allows simultaneous
integer and floating-point multiplies using separate,
low-latency multipliers.

PrefixA PrefixB Accumulate PrefixA and cancel decode of the 
second prefix.

PrefixB Instruction

If a prefix has already been accumulated in 
the previous decode cycle, accumulate PrefixB 
and cancel instruction decode, wait for next 

decode cycle to decode the instruction.

Table 10. Decode Accumulation and Serialization (continued)

Decode #1 Decoder #2 Results
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Avoid more than 16 levels of nesting in subroutines—More than
16 levels of nested subroutine calls overflow the return address
stack, leading to lower performance. While this is not a problem
for most code, recursive subroutines might easily exceed 16
levels of subroutine calls. If the recursive subroutine is tail
recursive, it can usually be mechanically transformed into an
iterative version, which leads to increased performance.

Place frequently used stack data within 128 bytes of the EBP—
The statically most-referenced data items in a function’s stack
frame should be located from –128 to +127 bytes from EBP. This
technique improves code density by enabling the use of an 8-bit
sign-extended displacement instead of a 32-bit displacement.

Avoid superset dependencies—Using the larger form of a
register immediate after an instruction uses the smaller form
creates a superset dependency and prevents parallel execution.
For example, avoid the following type of code:

OR AH,07h
ADD EAX,1555555h

One method for avoiding superset dependencies is to schedule
the instruction with the superset dependency (for example, the
ADD instruction) 4–6 instructions later than would normally be
preferable. Another method, useful in some cases, is to use the
MOVZX instruction to efficiently convert a byte-size value to a
doubleword-size value, which can then be combined with other
values in 32-bit operations.

Avoid excessive loop unrolling or code inlining—Excessive loop
unrolling or code inlining increases code size and reduces
locality, which leads to lower cache hit rates and reduced
performance.

Avoid splitting a 16-bit memory access in 32-bit code —No
advantage is gained by splitting a 16-bit memory access in
32-bit code into two byte-sized accesses. This technique avoids
the operand size override.

Avoid data dependent branches around a single instruction—
Data dependent branches acting upon basically random data
cause the branch prediction logic to mispredict the branch
about 50% of the time. Design branch-free alternative code
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sequences. The effect is shorter average execution time. The
following examples illustrate this concept:

■ Signed integer ABS function (x = labs(x))
Static Latency: 4 cycles
MOV ECX, [x] ;load value
MOV EBX, ECX
SAR ECX, 31
XOR EBX, ECX ;1’s complement if x<0, else don’t modify
SUB EBX, ECX ;2’s complement if x<0, else don’t modify
MOV [x], EBX ;save labs result

Unsigned integer min function (z = x < y ? x : y)
Static Latency: 4 cycles
MOV EAX, [x] ;load x value
MOV EBX, [y] ;load y value
SUB EAX, EBX ;set carry flag if y is greater than x
SBB ECX, ECX ;get borrow out from previous SUB
AND ECX, EAX ;if x > y, ECX = x–y, else 0
ADD ECX, EBX ;if x > y, return x–y+y = x, else y
MOV [z], ECX ;save min (x,y)

■ Hexadecimal to ASCII conversion 
(y=x < 10 ? x + 0x30: x + 0x41)
Static Latency: 4 cycles
MOV AL, [x] ;load x value
CMP AL, 10 ;if x is less than 10, set carry flag
SBB AL, 69h ;0..9 –> 96h, Ah..Fh –> A1h...A6h
DAS ;0..9: subtract 66h, Ah..Fh: Subtract 60h
MOV [y],AL ;save conversion in y

Avoid using the [ESI] addressing mode— This addressing mode
forces the instructions using it to become vector decoded. There
are two ways to avoid this problem. The first way is to use
another register. The second way is to alter the addressing mode
by explicitly coding [ESI+0]. Assemblers may optimize this to
[ESI] by removing the 0.
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AMD-K6® Family Integer x86 Coding Optimizations

This section describes integer code optimization techniques
specific to the AMD-K6 family of processors.

Neutral code filler — Use the XCHG EAX, EAX or NOP
instruction when aligning instructions. XCHG EAX, EAX
consumes one decode slot but requires no execution resources.
Essentially, the scheduler absorbs the equivalent RISC86
operation without requiring any of the execution units.

Inline REP String with low counts — Expand REP String
instructions into equivalent sequences of simple x86
instructions. This technique eliminates the setup overhead of
these instructions and increases instruction throughput.

Use ADD reg, reg instead of SHL reg, 1—This optimization
technique allows the scheduler to use either of the two integer
adders rather than the single shifter and effectively increases
overall throughput. The only difference between these two
instructions is the setting of the AF flag.

Use MOVZX and MOVSX to zero-extend and sign-extend
byte-size and word-size operands to doubleword length—For
example, typical code for zero extension creates a superset
dependency when the zero-extended value is used, as in the
following code:

XOR EAX,EAX
MOV AL, [mem]

Instead, use the following code:

MOVZX EAX,BYTE PTR [mem] 

Use load-execute integer instructions—Most load-execute
integer instructions are short-decodable and can be decoded at
the rate of two per cycle. Splitting a load-execute instruction
into two separate instructions—a load instruction and a reg, reg
instruction — reduces decoding bandwidth and increases
register pressure. The split-instruction form can be used to
avoid scheduler stalls for longer executing instructions and to
explicitly schedule the load and execute operations.
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Use AL, AX, and EAX to improve code density—In many cases,
instructions using AL and EAX can be encoded in one less byte
than using a general-purpose register. For example, ADD AX,
0x5555 should be encoded 05 55 55 and not 81 C0 55 55.

Clear registers using MOV reg, 0 instead of XOR reg, reg—
Executing XOR reg, reg requires additional overhead due to
register dependency checking and flag generation. Using MOV
reg, 0 produces a limm (load immediate) RISC86 operation that
is completed when placed in the scheduler and does not
consume execution resources. 

Use  8 -b i t  s ign-extended immediates — Using 8 -bi t
sign-extended immediates improves code density with no
negative effects on the AMD-K6 processor. For example, ADD
BX, –55 should be encoded 83 C3 FB and not 81 C3 FF FB.

Use 8-bit sign-extended displacements for conditional
branches—Using short, 8-bit sign-extended displacements for
conditional branches improves code density with no negative
effects on the AMD-K6 processor.

Use integer multiply over shift-add sequences when it is
advantageous—The AMD-K6 processor features a low-latency
integer multiplier. Therefore, almost any shift-add sequences
can have higher latency than MUL or IMUL instructions. An
exception is a trivial case involving multiplication by powers of
two by means of left shifts. In general, replacements should be
made if the shift-add sequences have a latency greater than or
equal to 3 clocks.

Carefully choose the best method for pushing memory data—
To reduce register pressure and code dependency, use PUSH
[mem] rather than MOV EAX, [mem] followed by PUSH EAX.

Balance the use of CWD, CBW, CDQ, and CWDE — These
instructions require special attention to avoid either decreased
decode or execution bandwidth. The following code illustrates
the possible trade-offs:

■ The following code replacement trades decode bandwidth
(CWD is vector decoded, but with only one RISC86
operation) with execution bandwidth (SAR requires two
RISC86 operations, including a shift):
Replace:CWD With: MOV DX,AX

SAR DX,15
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■ The following code replacement improves decode
bandwidth (CBW is vector decoded while MOVSX is short
decoded):
Replace:CBW With: MOVSX AX,AL

■ The following code replacement trades decode bandwidth
(CDQ is vector decoded, but with only two RISC86
operations) with execution bandwidth (SAR requires two
RISC86 operations, including a shifter):
Replace:CDQ With: MOV EDX,EAX

SAR EDX,31

■ The following code replacement improves decode
bandwidth (CWDE is vector decoded while MOVSX is short
decoded):
Replace:CWDE With: MOVSX EAX, AX

Replace integer division by constants with multiplication by
the reciprocal—This optimization is commonly used on RISC
processors. Because the AMD-K6 processor has an extremely
fast integer multiply (two cycles) and the integer division
delivers only two bits of quotient per cycle (approximately 18
cycles for 32-bit divides), the equivalent code is much faster.
The following examples illustrate the use of integer division by
constants:

■ Unsigned division by 10 using multiplication by reciprocal
Static Latency: 5 cycles
; IN: EAX = dividend
; OUT:EDX = quotient
MOV EDX, 0CCCCCCCDh ;0.1 * 2^32 * 8 rounded up
MUL EDX
SHR EDX, 3 ;divide by 2^32 * 8

■ Unsigned division by 3 using multiplication by reciprocal
Static Latency: 5 cycles
; IN: EAX = dividend
; OUT:EDX = quotient
MOV EDX, 0AAAAAAABh ;1/3 * 2^32 * 2 rounded up
MUL EDX
SHR EDX, 1 ;divide by 2^32 * 2

■ Signed division by 2
Static Latency: 3 cycles
; IN: EAX = dividend
; OUT:EAX = quotient
CMP EAX, 800000000h ;CY = 1, if dividend >=0
SBB EAX, –1 ;increment dividend if it is <0
SAR EAX, 1 ;perform a right shift
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■ Signed division by 2^n
Static Latency: 5 cycles
; IN: EAX = dividend
; OUT:EAX = quotient
MOV EDX, EAX ;sign extend into EDX
SAR EDX, 31 ;EDX = 0xFFFFFFFF if dividend < 0
AND EDX, (2^n–1) ;mask correction (use divisor –1)
ADD EAX, EDX ;apply correction if necessary
SAR EAX, (n) ;perform right shift by log2 (divisor)

■ Signed division by –2
Static Latency: 4 cycles
; IN: EAX = dividend
; OUT:EAX = quotient
CMP EAX, 800000000h ;CY = 1, if dividend >=0
SBB EAX, –1 ;increment dividend if it is <0
SAR EAX, 1 ;perform right shift
NEG EAX ;use (x/–2) = = – (x/2)

■ Signed division by –(2^n)
Static Latency: 6 cycles
; IN: EAX = dividend
; OUT:EAX = quotient
MOV EDX, EAX ;sign extend into EDX
SAR EDX, 31 ;EDX = 0xFFFFFFFF if dividend < 0
AND EDX, (2^n–1) ;mask correction (–divisor –1)
ADD EAX, EDX ;apply correction if necessary
SAR EAX, (n) ;right shift by log2(–divisor)
NEG EAX ;use (x/–(2^n)) = = (– (x/2^n))

■ Remainder of signed integer 2 or (–2)
Static Latency: 4 cycles
; IN: EAX = dividend
; OUT:EDX = quotient
MOV EDX, EAX ;sign extend into EDX
SAR EDX, 31 ;EDX = 0xFFFFFFFF if dividend < 0
AND EDX, 1 ;compute remainder
XOR EAX, EDX ;negate remainder if
SUB EAX, EDX ;dividend was < 0
MOV [quotient], EAX

■ Remainder of signed integer (2^n) or (–(2^n)))
Static Latency: 6 cycles
; IN: EAX = dividend
; OUT:EDX = quotient
MOV EDX, EAX ;sign extend into EDX
SAR EDX, 31 ;EDX = 0xFFFFFFFF if dividend < 0
AND EDX, (2^n–1) ;mask correction (abs(divison)–1)
ADD EAX, EDX ;apply pre-correction
AND EAX, (2^n–1) ;mask out remainder (abs(divison)–1)
SUB EAX, EDX ;apply pre-correction if necessary
MOV [quotient], EAX
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AMD-K6®-2 and AMD-K6®-III Processors Multimedia 
Coding Optimizations

This section describes multimedia code optimization
techniques for the AMD-K6-2 and AMD-K6-III processors.

For optimal floating-point performance—Wherever possible,
use the packed single-precision, floating-point capability of
3DNow! technology  instead of  the s ingle -precis ion,
double-precision, and extended-precision floating-point
capabilities of the x87 floating-point unit. The 3DNow! units are
fully pipelined, allow vectorized optimizations, are not stack
based, and provide faster inverse, square root, and inverse
square root calculations. 

Issues to ensure optimal predecode of MMX™ and 3DNow!™
instructions—Attention must be paid to coding issues that can
inhibit  the predecode,  and later dual decode,  of x86
instructions. Instructions are predecoded during instruction
cache line fills. The predecode information that is produced
and then stored in the predecode cache is later used by the
instruction decoders to quickly find consecutive instructions
and, therefore, enable dual-instruction decode. (The predecode
information, in particular, reflects the length of instructions.)

The processor predecode scheme is based on a number of
assumptions and constraints that have been mentioned
previously, but which are repeated here for convenience:

■ Only a subset of x86 instructions are short decodable and 
require predecode information. These include all MMX and 
3DNow! instructions except for the EMMS, FEMMS, and 
PREFETCH instructions.

■ Predecodable instructions can be up to seven bytes in 
length.

■ The processor predecoders can only examine the first three 
bytes of an instruction to determine the length of the 
instruction and generate the predecode information. To 
determine instruction length, non-modR/M instructions 
require examination of the opcode byte, and modR/M 
instructions require the examination of the opcode byte 
plus the modR/M byte. Instructions with a 0Fh prefix 
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require the examination of the 0Fh byte in addition to the 
opcode byte and any modR/M byte. Finally, modR/M 
address modes with a sib byte and no displacement 
(modR/M = 00_xxx_100b) require examination of the addi-
tional sib byte. Instructions in this last category that also 
require a 0Fh prefix violate the three-byte predecode con-
straint and, therefore, cannot be predecoded—these 
instructions use [disp32 + index], [disp32 + scale • index], 
[base + index], or [base + scale • index] address modes and, 
therefore, require the examination of four bytes to deter-
mine instruction length. Note that the [base], [disp32], and 
[base + disp32] address modes are not affected by this.

■ The 32-bit modR/M address mode [ESI] cannot be prede-
coded.

■ For instructions starting within the last two bytes of a cache 
line, the predecode logic is not able to scan past the end of 
the cache line when it needs to examine more bytes to 
determine the length of an instruction. This constraint lim-
its the type of instructions that can be predecoded at the 
end of a cache line. For example, a modR/M instruction that 
starts on the last byte of a 32-byte cache line, or a 0Fh-prefix 
plus modR/M instruction that starts within the last two 
bytes of the cache line, cannot be predecoded.

■ MMX and 3DNow! instructions have a 0Fh-prefix byte, an 
opcode byte, and a modR/M byte, all of which must be 
examined by the predecode logic.

These constraints result in the following recommendations for
successful predecode of multimedia instructions:

■ With 3DNow! instructions, do not use address modes with 
large (32-bit) displacements. Large displacements result in 
a total instruction length of eight bytes (including the addi-
tional suffix byte used at the end of the instruction as a 
sub-opcode byte).

■ With MMX and 3DNow! instructions, do not use the [disp32 
+ index], [disp32 + scale • index], [base + index], [base + 
scale • index], or [ESI] address modes. Instead use the 
[base], [base + disp32], [disp32], or [ESI+0] (with byte off-
set) address modes.

■ Avoid placing the start of MMX and 3DNow! instructions in 
the last two bytes of a cache line. If not successfully prede-
coded, MMX instructions default to vector decodes and 
3DNow! instructions default to long decodes. 
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A comparison of the instruction decode clock-cycle count on 
optimized code is as follows:

• 0.5 cycle for one short decode as part of a dual decode.

• 1.0 cycle for a single long decode.

• 2.0 cycles for a single vector decode (for simple instruc-
tions such as MMX and 3DNow! instructions).

Avoid  us ing  MMX™/3DNow!™ regis ters  to  move
double-precision floating-point data—Although using an
MMX/3DNow! register to move x87 floating-point data appears
fast, using these registers requires the use of the EMMS or
FEMMS instruction when switching from MMX or 3DNow!
instructions to x87 instructions.

Use  the  FEMMS instruct ion  instead o f  the  EMMS
instruction— The processor implements an improved version of
the  EMMS instruct ion,  cal led FEMMS.  Because the
MMX/3DNow! registers are mapped onto the x87 stack, an
EMMS or FEMMS instruction must be executed when switching
from MMX or 3DNow! code to x87 code. Execution of the EMMS
or FEMMS instruction marks the floating-point tag word as
empty (all 1s), which guarantees correct x87 results and ensures
that no x87 exceptions occur in the subsequent code due to a
stack overflow.

Each time the processor encounters a switch between MMX or
3DNow! code and x87 code, in either direction, a significant
clock-cycle count penalty occurs. The FEMMS instruction was
created to reduce this penalty. The FEMMS instruction sets the
floating-point tag word to empty (like EMMS), and also sets all
of the register values as undefined. If a switch is required
following a FEMMS instruction, it executes in less than half the
cycles required after an EMMS instruction. The switch
overhead occurs when an x87 instruction is encountered, and
not  during  the  execut ion of  the  EMMS and FEMMS
instructions. In addition, the FEMMS instruction executes in 3
clock cycles, 2 cycles less than the EMMS instruction. For more
information on the operation and advantages of the FEMMS
instruction, see the 3DNow!™ Technology Manual, order# 21928.
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Use the FEMMS instruction at the beginning of an MMX™ or
3DNow!™ routine — While the FEMMS instruction is not
necessary for correct program functionality at the beginning of
MMX or 3DNow! routines, its usage reduces the clock-cycle
count penalty when entering such routines from preceding x87
code. If no switch occurs, the FEMMS takes 3 clock cycles to
execute. If a switch is necessary, FEMMS reduces the clock
cycles required by over half.

Practice the following general rules when using MMX™ or
3DNow!™ code mixed with x87 code: 

■ Always use the FEMMS instruction (instead of EMMS) at 
the end of an MMX or 3DNow! instruction routine when x87 
instructions or unknown code follows. 

■ Use the FEMMS instruction at the beginning of an MMX or 
3DNow! instruction routine that is preceded by x87 instruc-
tions or unknown code. FEMMS serves to reduce any switch 
penalty.

■ Group or partition MMX or 3DNow! code separate from x87 
code to minimize the frequency of switching between MMX 
or 3DNow! operations and x87 operations.

Use the new 3DNow!™ instruction PAVGUSB instruction for
MPEG-2 motion compensation—In DVD decoding, motion
compensation performs a lot of byte averaging between and
within macroblocks. The PAVGUSB instruction helps speed up
these operations. In addition, PAVGUSB can free up some
registers and make unrolling the averaging loops possible.
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The following code fragment uses original MMX code to
perform averaging between the source macroblock and
destination macroblock:

mov esi, DWORD PTR Src_MB
mov edi, DWORD PTR Dst_MB
mov edx, DWORD PTR SrcStride
mov ebx, DWORD PTR DstStride
movq mm7, QWORD PTR [ConstFEFE]
movq mm6, QWORD PTR [Const0101]
mov ecx, 16

L1:
movq mm0, [esi] ;mm0=qword1
movq mm1, [edi] ;mm1=qword3
movq mm2, mm0
movq mm3, mm1
pand mm2, mm6
pand mm3, mm6
pand mm0, mm7 ;mm0 = qword1 & 0xfefefefe
pand mm1, mm7 ;mm1 = qword3 & 0xfefefefe
por mm2, mm3 ;calculate adjustment
psrlq mm0, 1 ;mm0 = (qword1 & 0xfefefefe)/2
psrlq mm1, 1 ;mm1 = (qword3 & 0xfefefefe)/2
pand mm2, mm6
paddb mm0, mm1 ;mm0 = qw1/2 + qw3/2 w/o adjustment
paddb mm0, mm2 ;add lsb adjustment
movq [edi], mm0
movq mm4, [esi+8] ;mm4=qword2
movq mm5, [edi+8] ;mm5=qword4
movq mm2, mm4
movq mm3, mm5
pand mm2, mm6
pand mm3, mm6
pand mm4, mm7 ;mm0 = qword2 & 0xfefefefe
pand mm5, mm7 ;mm1 = qword4 & 0xfefefefe
por mm2, mm3 ;calculate adjustment
psrlq mm4, 1 ;mm0 = (qword2 & 0xfefefefe)/2
psrlq mm5, 1 ;mm1 = (qword4 & 0xfefefefe)/2
pand mm2, mm6
paddb mm4, mm5 ;mm0 = qw2/2 + qw4/2 w/o adjustment
paddb mm4, mm2 ;add lsb adjustment
movq [edi+8], mm4

add esi, edx
add edi, ebx
loop L1
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The following code fragment uses the 3DNow! PAVGUSB
instruction to perform averaging between the source
macroblock and destination macroblock:

mov eax, DWORD PTR Src_MB
mov edi, DWORD PTR Dst_MB
mov edx, DWORD PTR SrcStride
mov ebx, DWORD PTR DstStride
mov ecx, 16

L1:
movq mm0, [eax] ;mm0=qword1
movq mm1, [eax+8] ;mm1=qword2
pavgusb mm0, [edi] ;(qw1+qw3)/2 with adjustment
pavgusb mm1, [edi+8] ;(qw2+qw4)/2 with adjustment
add eax, edx
movq [edi], mm0
movq [edi+8], mm1 
add edi, ebx
loop L1

3DNow!™ Matrix Multiplication Optimization Example

The code samples starting on page 73 contain both a
non-optimized and an optimized sample of a 4x4 matrix
multiplied by a 4x1 vector. This type of code is often used in 3D
graphics for geometry transformation. This routine serves to
translate, scale, rotate, and apply perspective to 3D coordinates
represented in homogeneous coordinates. The code samples
contain many addition and multiplication instructions that can
now be implemented in any one of three ways. For high-end, 3D
graphic programs, x87 FPU instructions supply only moderate
performance, are not superscalar, and cannot be efficiently
intermixed with MMX and 3DNow! instructions. Integer
instructions and MMX instructions, while fast and superscalar,
do not have the accuracy and dynamic range that is required for
these programs. Therefore, the 3DNow! instructions, providing
the benefit of packed, floating-point data precision and parallel
execution, can be used in order to write software that
outperforms standard floating-point code and has no switching
overhead when intermixed with MMX code. The following two
code samples illustrate non-optimized and optimized code. A
description of the steps a programmer should take when
optimizing code for the AMD-K6-2 processor starts on page 78.
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Non-Optimized Code Sample:

;--------------------------------------------------------------------------
; void Transform4x4(Vertex *firstv, int cnt, const Matrix *m)
;
; NON-OPTIMIZED VERSION
;
; Full 4x4 matrix transform of an array of cnt vertices starting from the
; vertex pointed to by firstv, using the transform matrix pointed to by m.
;
; Each vertex data structure is assumed to occupy 128 bytes, 16 bytes of
; which contains the vertex coordinates to be transformed.
;
;   new_x = x*m[0][0] + y*m[0][1] + z*m[0][2] + w*m[0][3];
;   new_y = x*m[1][0] + y*m[1][1] + z*m[1][2] + w*m[1][3];
;   new_z = x*m[2][0] + y*m[2][1] + z*m[2][2] + w*m[2][3];
;   new_w = x*m[3][0] + y*m[3][1] + z*m[3][2] + w*m[3][3];
;
;--------------------------------------------------------------------------
Vrtx_X equ  0h
Vrtx_Y equ  4h
Vrtx_Z equ  8h
Vrtx_W equ 0ch
Mat_00 equ  0h
Mat_01 equ  4h
Mat_02 equ  8h
Mat_03 equ 0ch
Mat_10 equ 10h
Mat_11 equ 14h
Mat_12 equ 18h
Mat_13 equ 1ch
Mat_20 equ 20h
Mat_21 equ 24h
Mat_22 equ 28h
Mat_23 equ 2ch
Mat_30 equ 30h
Mat_31 equ 34h
Mat_32 equ 38h
Mat_33 equ 3ch

;EAX = m ptr to transform matrix
;EBX = firstv ptr to first vertex to be transformed
;EDX = lastv ptr to last vertex to be transformed

 
Comments appear after the code lines.

TransformLoop:
;All multiplies for XResult:

movq mm0, QWORD PTR [ebx + Vrtx_X] ;mm0 = y | x
movq mm2, mm0 ;copy vector

Right in the beginning there is a dependency for mm0, which stalls the second movq 2 clock cycles, even though
both instructions are short-decodable and decode together as an instruction pair.
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pfmul mm0, QWORD PTR [eax + Mat_00] ;mm0 = y*a21 | x*a11
The PFMUL instruction leads to another dependency, but because of the previous stall, the PFMUL instruction
executes when Mat_00 loads from memory. The PFMUL instruction translates to a 3DNow! ALU and a Load unit
operation.

movq mm1, QWORD PTR [ebx + Vrtx_Z] ;mm1 = w | z
The MOVQ instruction decodes with the previous PFMUL but there is now a resource constraint, with both
instructions trying to use the Load unit. This contention causes one of the instructions to stall an extra cycle.

movq mm3, mm1 ;copy vector
Another stall while waiting for mm1.

pfmul mm1, QWORD PTR [eax + Mat_20] ;mm1 = w*a41 | z*a31
Same as the previous PFMUL instruction. Note that tasks in this code line are serialized, with no opportunity for
overlap of execution resources. Even if the instructions short decode in pairs, other constraints are causing stalls. In
addition, a scheduler stall occurs when an instruction cannot retire off the bottom of the scheduler because
dependency and resource stalls have delayed the instruction too many cycles.

;All multiplies for YResult:
movq mm4, mm2 ;copy vector
pfmul mm2, QWORD PTR [eax + Mat_01] ;mm2 = y*a22 | x*a12

These instructions are paired. The PFMUL instructions decode to a Load unit operation followed by a 3DNow!
Multiply unit operation.

movq mm5, mm3 ;copy vector
pfmul mm3, QWORD PTR [eax + Mat_21] ;mm3 = w*a42 | z*a32

These instructions are paired. Same comments as before.

;All multiplies for ZResult:
movq mm6, mm4 ;copy vector
pfmul mm4, QWORD PTR [eax + Mat_02] ;mm4 = y*a23 | x*a13

These instructions are paired. Same comments as before.

movq mm7, mm5 ;copy vector
pfmul mm5, QWORD PTR [eax + Mat_22] ;mm5 = w*a43 | z*a33

These instructions are paired. Same comments as before.

;All multiplies for WResult:
pfmul mm6, QWORD PTR [eax + Mat_03] ;mm6 = y*a24 | x*a14
pfmul mm7, QWORD PTR [eax + Mat_23] ;mm7 = w*a44 | z*a34

These instructions are paired. However, this pair causes a conflict for both the Load unit and the 3DNow! Multiplier
resources, which stalls one instruction in the scheduler for a clock cycle. The instructions execute in a staggered
fashion. The goal for short-decodeable pairs is simultaneous execution.

;All first sums:
; of XResult

pfadd mm0, mm1 ;mm0 = w*a41 + y*a21 | z*a31 + x*a11
; of YResult

pfadd mm2, mm3 ;mm2 = w*a42 + y*a22 | z*a32 + x*a12
These instructions are paired. However, this pair causes a conflict for the 3DNow! ALU, which delay one instruction.

; of ZResult
pfadd mm4, mm5 ;mm4 = w*a43 + y*a23 | z*a33 + x*a13
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; of WResult
pfadd mm6, mm7 ;mm6 = w*a44 + y*a24 | z*a34 + x*a14

These instructions are paired, but there is a conflict for the 3DNow! ALU and with one of the PFADD instructions
from the previous pair that was delayed one cycle. These dual-decodeable operations serialize execution,
eventually stalling the scheduler because RISC86 instructions can no longer retire.

;All final sums:
pfacc mm0, mm0 ; of XResult
pfacc mm2, mm2 ; of YResult

These instructions are paired, but there is a conflict for the 3DNow! ALU. See the comments above.

pfacc mm4, mm4 ; of ZResult
pfacc mm6, mm6 ; of WResult

These instructions are paired, but there is a conflict for the 3DNow! ALU. See the comments above.

;All result stores:
movd DWORD PTR [ebx + Vrtx_X], mm0 ; of XResult
movd DWORD PTR [ebx + Vrtx_Y], mm2 ; of YResult

These instructions are paired, but there is a conflict for the Store unit.

movd DWORD PTR [ebx + Vrtx_Z], mm4 ; of ZResult
movd DWORD PTR [ebx + Vrtx_W], mm6 ; of WResult

These instructions are paired, but there is a conflict for the Store Unit as well as the delayed store operation from
the previous instruction pair.

add ebx, Vertex_Stride ;Advance to next vertex
cmp ebx, edx ;Compare with ptr to last vertex

These instructions are paired, but a dependency on ebx value delays the second instruction by one cycle. 

jbe TransformLoop ;If not done yet

Optimized Code Sample:
;--------------------------------------------------------------------------
; void Transform4x4(Vertex *firstv, int cnt, const Matrix *m)
;
; OPTIMIZED VERSION
;
; Full 4x4 matrix transform of an array of cnt vertices starting from the
; vertex pointed to by firstv, using the transform matrix pointed to by m.
;
; Each vertex data structure is assumed to occupy 128 bytes, 16 bytes of
; which contains the vertex coordinates to be transformed.
;
;   new_x = x*m[0][0] + y*m[0][1] + z*m[0][2] + w*m[0][3];
;   new_y = x*m[1][0] + y*m[1][1] + z*m[1][2] + w*m[1][3];
;   new_z = x*m[2][0] + y*m[2][1] + z*m[2][2] + w*m[2][3];
;   new_w = x*m[3][0] + y*m[3][1] + z*m[3][2] + w*m[3][3];
;
;--------------------------------------------------------------------------
Vrtx_X equ  0h
Vrtx_Y equ  4h
Vrtx_Z equ  8h
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Vrtx_W equ 0ch
Mat_00 equ  0h
Mat_01 equ  4h
Mat_02 equ  8h
Mat_03 equ 0ch
Mat_10 equ 10h
Mat_11 equ 14h
Mat_12 equ 18h
Mat_13 equ 1ch
Mat_20 equ 20h
Mat_21 equ 24h
Mat_22 equ 28h
Mat_23 equ 2ch
Mat_30 equ 30h
Mat_31 equ 34h
Mat_32 equ 38h
Mat_33 equ 3ch

;EAX = m ptr to transform matrix
;EBX = firstv ptr to first vertex to be transformed
;ECX = cnt count of vertices to be transformed

The code begins here, but this section is not in the loop. The initial Loads conflict and stall waiting to load the first
vertex values and the first four values from the matrix. However, once the loop begins, this code runs efficiently.
Note that most of these x86 instructions are four bytes long, which helps to make them short decodable.

;Load first vertex:
movq mm6, DWORD PTR [ebx] ;mm6 = y | x
movq mm7, DWORD PTR [ebx + Vrtx_Z] ;mm7 = w | z

These instructions decode together, but cause a conflict for the Load unit.

;Start load of matrix:
movq mm0, DWORD PTR [eax + Mat_00] ;mm0 = m01 | m00
movq mm1, DWORD PTR [eax + Mat_20] ;mm1 = m03 | m02

Decode together, but conflict for the Load Unit.

TransformLoop:
prefetchw [ebx + 128] ;Prefetch next vertex

The PREFETCHW instruction is a vector decode and takes 2 cycles. However, this instruction increases efficiency
because it begins the preload of the L1 data cache with the next vertex. A vertex is four dwords or one half a cache
line. However, the ‘stride’ or distance from one vertex data structure to the next within the vertex array, in this
example, is 128 bytes, which means that each vertex is in a separate cache line. It is assumed that vertex data starts
on cache line boundaries. From this point forward, the x86 instructions form instruction pairs that both decode into
one Opquad. An Opquad is one line in the instruction scheduler that is composed of four RISC86 operations.

movq mm2, DWORD PTR [eax + Mat_01] ;mm2 = m11 | m10
This MOVQ instruction continues to fill in the matrix. Separating the matrix load from the multiply instruction avoids
serializing the load and multiply, which can lead to a stall of the scheduler. The load takes 2–3 cycles to execute
and the multiply takes 2 cycles to execute. Including the operand fetch stage almost fills the six-stage length of the
scheduler.

pfmul mm0, mm6 ;mm0 = y*m01 | x*m00
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This PFMUL instruction is paired with the MOVQ instruction. These two instructions use different resources (Load
Unit and 3DNow! ALU, respectively). There are no resource conflicts, no dependencies (mm0 should be loaded
from three cycles earlier), and the instructions execute together.

movq mm3, DWORD PTR [eax + Mat_21] ;mm3 = m13 | m12
pfmul mm1, mm7 ;mm1 = w*m03 | z*m02

Same comments as previous instruction pair. 

movq mm4, DWORD PTR [eax + Mat_02] ;mm4 = m21 | m20
pfmul mm2, mm6 ;mm2 = y*m11 | x*m10

Same comments as previous instruction pair, except the load mm2 was started two cycles earlier and should be
forwarded from the Load unit to the 3DNow! ALU just-in-time.

movq mm5, DWORD PTR [eax + Mat_22] ;mm5 = m23 | m22
pfmul mm3, mm7 ;mm3 = w*m13 | z*m12

In this pair of instructions, the last free register is loaded for now (mm5). Because there are only eight MMX
registers, the registers must be reused and then reloaded with the matrix values for the next vertex calculation.

;First sum of XResult:
pfadd mm0, mm1 ;mm0 = w*m03 + y*m01 | z*m02 + x*m00
pfmul mm4, mm6 ;mm4 = y*m21 | x*m20

These two 3DNow! instructions can be paired because the 3DNow! ALU and multiplier are separate units and both
have access to the issue buses for the register X and register Y execution pipelines. Note that at this time the
processor is operating on eight single-precision, floating-point values (packed into four mmx registers) and the
processor produces four single-precision values (in two mmx registers).

;First sum of YResult:
pfadd mm2, mm3 ;mm2 = w*m13 + y*m11 | z*m12 + x*m10

The mm3 operand is forwarded from the 3DNow! multiplier output.

movq mm1, DWORD PTR [eax + Mat_03] ;mm1 = m31 | m30
The previous two instructions are paired. The MOVQ instruction moves in the first pair of the remaining four matrix
values.

pfmul mm5, mm7 ;mm5 = w*m23 | z*m22
The mm5 operand is forwarded from the Load unit and the mm7 operand is forwarded from the 3DNow!
multiplier.

movq mm3, DWORD PTR [eax + Mat_23] ;mm3 = m33 | m32
The previous two instructions are paired. The MOVQ instruction moves in the last pair of matrix values.

add ebx, Vertex_Stride ;Advance to next vertex
The pointer to the next vertex is updated. In this example, Vertex_Stride = 128. 

pfmul mm1, mm6 ;mm1 = y*m31 | x*m30
The previous two instructions are paired.

;Final sum of XResult and YResult:
pfacc mm0, mm2 ;mm0 = YRes | XRes

The first pair of vertex values are complete and can be stored two clock cycles later (the 3DNow! accumulate
instruction has a two-cycle execution latency, as do all 3DNow! ALU and Multiply instructions).

pfmul mm3, mm7 ;mm3 = w*m33 | z*m32
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The previous two instructions are paired and use the 3DNow! ALU and Multiplier units simultaneously.

;First sum of ZResult
pfadd mm4, mm5 ;mm4 = w*m23 + y*m21 | z*m22 + x*m20

Continuing the goal of spreading out dependencies, this instruction is two cycles after the mm5 calculation.

;Load next vertex
movq mm6, DWORD PTR [ebx + Vrtx_X] ;mm6 = y | x

The previous two instructions are paired. This MOVQ instruction begins to load the next vertex, which the
PREFETCHW instruction has been preloading into the L1 data cache.

;First sum of WResult:
pfadd mm1, mm3 ;mm1 = w*m33 + y*m31 | z*m32 + x*m30 

;Load next vertex
movq mm7, DWORD PTR [ebx + Vrtx_Z] ;mm7 = w | z

The previous two instructions are paired. The second part of the new vertex is loaded.

movq DWORD PTR [ebx – 128 + Vrtx_X], mm0 ;Store XResult and YResult
;Start next iteration

movq mm0, DWORD PTR [eax + Mat_00] ;mm0 = m01 | m00
The previous two instructions are paired and can complete simultaneously because the AMD-K6-2 processor has
separate Load and Store units. Unfortunately, all the matrix values must be reloaded with each iteration because
there are not enough registers to hold the vertices, the full matrix, and intermediate values.

;Final sum of ZResult and WResult:
pfacc mm4, mm1 ;mm4 = WRes | ZRes

;Start next iteration
movq mm1, DWORD PTR [eax + Mat_20] ;mm1 = m03 | m02

The previous two instructions are paired. 

movq DWORD PTR [ebx – 128 + Vrtx_Z], mm4 ;Store ZResult and WResult
Fortunately, the Store unit can accept data up to two cycles later without a penalty because there are no
calculations left to hide the execution latency of the last accumulate instruction. Therefore, this store is not delayed.

loop TransformLoop ;If not done yet, go to beginning of the loop.
The previous two instructions are short decodeable and paired. Note that on the AMD-K6 family, the LOOP
instruction executes in the same amount of time as the CMP and JBE instructions in the non-optimized example.
However, the LOOP instruction, being only one instruction instead of two, is more efficient.

Programming Steps The following descriptions review and expand on the steps
taken to arrive at the optimized code example:

Schedule code into pairs of short-decodable x86 instructions
that correspond to the expected decode pairing— Each
short-decodable pair of instructions decodes into four RISC86
operations that form a set of four Op entries in the instruction
scheduler. This set of entries moves down the scheduler and
eventually retires from the bottom of the scheduler buffer. The
scheduler buffer can hold a total of six sets of entries (which
represents a total of 24 Op entries). Under ideal conditions of
uninterrupted decode and execution (no stalls), these entries
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also correspond to clock cycles through the scheduler and
execution pipes of the AMD-K6-2 processor. Consequently, the
programmer should schedule dependent instructions apart
from each other, in different decode pairs, based on the
execution latencies of the corresponding RISC86 operations. It
is cleanest and simplest to use only MOVQ and MOVD
instruct ions  for  memory loads  and s tores ,  and use
register-to-register instructions for computations. In addition,
this technique has the benefit of minimizing or avoiding
instruction scheduling delays due to long-latency instructions
(such as those with a memory load followed by a two-cycle
register operation), not completing in time and, therefore, not
being ready to commit results when the entry containing the
associated RISC86 operations reaches the bottom of the
scheduler buffer. This situation can lead to a stall when no new
RISC86 operations can be placed in the scheduler until an entry
is available. 

Interleave independent sequences of instructions (subject to
register allocation constraints) to fill each and every decode
slot—To the extent that this is achieved while maintaining the
proper minimum distances between dependent operations and
respecting execution resource constraints, optimal decode
pairing and instruction execution without delays or stalls is
very likely to be achieved.

Use separate moves from memory and register-to-register
multiplies, instead of register-to-register copies and multiplies
from memory—This technique allows easy explicit and optimal
scheduling of memory loads and dependent register operations,
spaced at least two decode pairs apart and corresponding to the
two-cycle load execution latency. While this technique
generally applies to all MMX and 3DNow! instructions,
particularly avoid the use of the memory form of instructions
with two-cycle execution latencies (for example, all 3DNow!
instructions). In other words, optimal performance is best and
most easily achieved using a RISC coding style (despite the
extra MOVD/MOVQ instructions).

Schedule instructions apart that use the same execution
resources—For example, multiplies should be spread apart.
The programmer should put at least one decode slot between
multiplies. Similarly, adds and accumulates, memory loads, and
memory stores should be spread apart.
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Use the pipelining ability of accumulate instructions to
perform two independent accumulates and to pair the resultant
values together as a 64-bit result—This technique allows the
use of fewer MOVQ instructions instead of a greater number of
MOVD instructions. Overall, four accumulate and four MOVD
instructions get replaced with two and two. In some situations,
where scalar register results are naturally produced and are
then stored out to memory via a series of MOVDs, it may be
preferable to reduce the number of store operations through
use of  PUNPCKLDQ instructions fol lowed by MOVQ
instructions. Often this optimization may not be worthwhile or
favorable, particularly given the extra latency introduced by
the PUNPCKLDQ operations and possibly by memory
alignment issues for the MOVQ instructions. Typically, it is best
to spend the overhead to pack initial scalar operands together
when first read from memory (using MOVD instructions),
followed by vector computations and MOVQs back to memory.

Separate the first and second stores by at least two or three
decode slots (in other words, by one intervening decode pair)
within a series of two or more stores to a cache line recently
brought in and not yet written to—This technique is in contrast
to the second and following stores, which can be in adjacent
decode pairs. This technique allows an extra cycle for the initial
MESI-state change to the cache line (from Exclusive to Shared).

Schedule the ADD/CMP/JCC instructions apart (or at least the
ADD and CMP instructions)—This scheduling is primarily
desirable when the ADD and/or CMP instructions reference a
memory operand and are, therefore, subject to the latency of
the load operation. In such cases, either the ADD/CMP
instruction should be scheduled apart from (and ahead of) the
JCC instructions, or a separate MOV instruction, scheduled
earlier, should be used to fetch the memory operand. An
alternative and desirable solution in some cases is to replace
these instructions with the LOOP instruction (along with
corresponding setup and usage of the ECX register before and
within the loop).

Take advantage of the PREFETCH instruction — In the
optimized code example, each vertex occupies a different cache
line (the stride between vertices being 32 bytes or greater).
Consequently, one cache miss and associated 32 byte line fill
occurs per loop iteration. To maximize overlap of the cache fill
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from L2 cache or main memory, use the PREFETCH instruction
to start the fill before starting to process the current vertex
(which is already in the cache, having been prefetched at the
beginning of processing of the last vertex). Specify the address
elements of the next vertex that will be accessed first. In
addition, schedule the loads of the next vertex’s data elements
away from the prefetch instruction. Doing so ensures that the
load data (which will be the first data of the cache line to be
fetched) has been received and is available for forwarding to
these loads while the rest of the fill proceeds to completion.

Move the first few MOVQs around to the bottom of the loop—
Typically, the first instructions after the prefetch instruction
would be a series of MOVQs to get the first vertex and matrix
elements to operate on,  without any other available
independent operations to fill out these first couple of decode
pairs. Similarly, near the bottom of the loop, as the last
computations are performed, there would also be some
partially-filled decode slots. To fix both of these problems,
move the f irst  few vertex and matrix element MOVQ
instructions from the bottom of the loop into the empty slots (as
well as duplicating these MOVQs in the setup code before the
start of the loop).

Pay attention to the alignment of instructions relative to
32-byte cache line boundaries—The code samples do not show
the actual memory alignment of instructions and, therefore,
whether the decode of any instructions may be impacted by
end-of-cache-line degraded predecode. These code examples
require a suitable starting alignment (relative to a 32-byte
address boundary). There also exists the possibility that there is
no starting alignment for which all instructions can be
successfully predecoded. In such cases, adjustments to the code
(such as padding with one-byte or multiple-byte NOPs,
instruction rearrangement, or different instruction selections)
may be warranted. In the case of 3DNow! instructions, which
can still be hardware decoded as a single long decode, the best
alternative may sometimes be to do nothing.

Avoid certain address modes with MMX™ and 3DNow!™
instructions that inhibit instruction predecode—As discussed
earlier in the chapter, the [ESI] modR/M address mode (without
any displacement bytes or index register) inhibits successful
instruction predecode and should be avoided. In addition, for
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MMX and 3DNow! instructions, address modes that use a sib
byte with mod=00b in the modR/M byte should be avoided.
These cases consist of [disp32 + index], [disp32 + scale • index],
[base + index], or [base + scale • index] address modes.

Division and Square Root

Division The 3DNow! instructions can be used to compute a very fast,
highly accurate reciprocal or quotient.

Consider the quotient q = a/b. An (on-chip) ROM-based table
lookup can be used to quickly produce a 14-to-15-bit precision
approximation of 1/b. (Using just one 2-cycle latency PFRCP
instruction). A full 24-bit precision reciprocal can then be
quickly computed from this approximation using a Newton-
Raphson algorithm. 

The general Newton-Raphson recurrence for the reciprocal is as
follows:

Zi +1 ← Zi • (2 – b • Zi)

Given that the initial approximation is accurate to at least 14
bits, and that full IEEE single precision contains 24 bits of
mantissa, just one Newton-Raphson iteration is required. The
following shows the 3DNow! instruction sequence to produce
the initial reciprocal approximation, to compute the
full-precision reciprocal from this, and lastly, to complete the
required division of a/b.

X0 = PFRCP(b)

X1 = PFRCPIT1(b, X0)

X2 = PFRCPIT2(X1, X0)

q = PFMUL(a, X2)

The 24-bit final reciprocal value is X2. In the AMD processor
implementat ion,  the  est imate  contains  the  correct
round-to-nearest value for approximately 99% of all arguments.
The remaining  arguments  d i f fer  f rom the  correct
round-to -nearest  value  for  the  reciprocal  by  1
unit-in-the-last-place (ulp). The quotient is formed in the last
step by multiplying the reciprocal by the dividend a.
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Optimized 15-Bit 
Precision Divide

This divide operation executes with a total latency of 4 cycles,
assuming that the programmer is able to hide the latency of the
first MOVD/MOVQ instructions within preceding code.

MOVD MM0, [mem] ; 0|w
PFRCP MM0, MM0 ;1/w|1/w
MOVQ MM2, [mem] ; y|x
PFMUL MM2, MM0 ;y/w|x/w

Optimized Full 24-Bit 
Precision Divide

This divide operation executes with a total latency of 8 cycles,
assuming that the programmer is able to hide the latency of the
first MOVD/MOVQ instructions within preceding code.

MOVD MM0, [mem] ; 0|w
PFRCP MM1, MM0 ; 1/w|1/w
PUNPCKLDQ MM0, MM0 ; w|w
PFRCPIT1 MM0, MM1 ;
MOVQ MM2, [mem] ; y|x
PFRCPIT2 MM0, MM1 ; 1/w|1/w
PFMUL MM2, MM0 ; y/w|x/w

Pipelined Pair of 
24-Bit Precision 
Divides

This divide operation executes with a total latency of 8 cycles,
assuming that the programmer is able to hide the latency of the
first MOVD/MOVQ instructions within preceding code.

MOVD MM1, [mem] ; 0 |w0
MOVD MM2, [mem+4] ; 0 |w1
PFRCP MM1, MM1 ;1/w0|1/w0
MOVQ MM0, [mem] ;
PFRCP MM2, MM2 ;1/w1|1/w1 
PUNPCKLDQ MM1, MM2 ;1/w1|1/w0 
PFRCPIT1 MM0, MM1 ;
MOVQ MM2, [mem] ; y|x 
PFRCPIT2 MM0, MM1 ;1/w1|1/w0 
PFMUL MM2, MM0 ;y/w1|x/w0 

Square Root and 
Reciprocal Square 
Root

The 3DNow! instructions can also be used to compute a
reciprocal square root or square root with high performance.
The general Newton-Raphson reciprocal square root recurrence
is as follows:

Zi +1 ← 1/2 • Zi • (3 – b • Zi
2)

To reduce the number of iterations, the initial approximation is
read from a table. The 3DNow! reciprocal square root
approximation is accurate to at least 15 bits. Accordingly, to
obtain a single-precision 24-bit reciprocal square root of an
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input operand b, one Newton-Raphson iteration is required
using the following 3DNow! instructions:

1. X0 = PFRSQRT(b)

2. X1 = PFMUL(X0, X0)

3. X2 = PFRSQIT1(b, X1)

4. X3 = PFRCPIT2(X2, X0)

5. X4 = PFMUL(b, X3)

The 24-bit final reciprocal square root value is X3. In the AMD
implementat ion,  the  est imate  contains  the  correct
round-to-nearest value for approximately 87% of all arguments.
The remaining  arguments  d i f fer  f rom the  correct
round-to-nearest value for approximately 87% of all arguments.
The remaining  arguments  d i f fer  f rom the  correct
round-to-nearest value by 1 ulp. The square root (X4) is formed
in the last step by multiplying by the input operand b.

Optimized 15-Bit 
Precision Square 
Root

This square root operation can be executed in only 4 cycles,
assuming a programmer is able to hide the latency of the first
MOVD instruction within previous code. The reciprocal square
root operation requires two less cycles than the square root
operation.

MOVD MM0, [mem] ; 0|a
PFRSQRT MM1, MM0 ; 1/sqrt(a)|1/sqrt(a)
PUNPCKLDQ MM0, MM0 ; a|a
PFMUL MM0, MM1 ; sqrt(a)|sqrt(a)

Optimized 24-Bit 
Precision Square 
Root

This square root operation can be executed in only 10 cycles,
assuming a programmer is able to hide the latency of the first
MOVD instruction within previous code. The reciprocal square
root operation requires two less cycles than the square root
operation.

MOVD MM0, [mem] ; 0|a
PFRSQRT MM1, MM0 ; 1/sqrt(a)|1/sqrt(a)
MOVQ MM2, MM1 ;
PFMUL MM1, MM1 ;
PUNPCKLDQ MM0, MM0 a|a
PFRSQIT1 MM1, MM0 ;
PFRCPIT2 MM1, MM2 ; 1/sqrt(a)|1/sqrt(a)
PFMUL MM0, MM1 ; sqrt(a)|sqrt(a)
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AMD-K6®-2 and AMD-K6®-III Processors x87 Floating Point 
Coding Optimizations

This section describes x87 floating-point code optimization
techniques specific to the AMD-K6-2 and AMD-K6-III
processors.

For optimal floating-point performance—Wherever possible,
use the packed single-precision, floating-point capability of
3DNow! technology  instead of  the s ingle -precis ion,
double-precision, and extended-precision floating-point
capabilities of the x87 floating-point unit. The 3DNow!
technology units are fully pipelined, allow vectorized
optimizations, are not stack based, and provide faster inverse,
square root, and inverse square root calculations.

Avoid vector decoded floating-point instructions — Most
floating-point instructions are short decodable. A few of the
less common instructions are vector decoded. In additional, if a
short decodable instruction straddles a cache line, it becomes
vector decoded. This adds unnecessary overheard that can be
avoided by inserting NOPs in strategic locations within the
code. 

Pair floating-point with short-decodable instructions—Most
floating-point instructions (also known as ESC instructions) are
short-decodable and are limited to the first decoder. The
short-decodable floating-point instructions can be paired with
other short-decodable instructions. This technique requires
that floating-point instructions be arranged as the first of a pair
of short-decodable instructions.

Minimize switching between MMX™ or 3DNow!™ instructions
and FPU instructions—Because the MMX/3DNow! registers are
mapped onto the floating-point register stack, the EMMS or
FEMMS instruction must be executed after MMX or 3DNow!
code and prior to the use of the floating-point unit. Group or
partition MMX and 3DNow! code away from FPU code so that
the use of the EMMS or FEMMS instructions is minimized. In
addition, the actual penalty or switch overhead from the use of
the EMMS or FEMMS instructions occurs not at the time of
their execution, but when and if the first floating-point
instruction is encountered.
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Avoid using MMX™/3DNow!™ registers (and MOVQ
instructions) to move blocks of double-precision floating-point
data in memory—Although using 64-bit MOVQ instructions to
move floating-point data appears fast, using MMX/3DNow!
registers requires the use of the EMMS or FEMMS instruction
and incurs switch overhead when switching between these
MMX or 3DNow! instructions and surrounding floating-point
instructions.

Exploit parallel execution of integer and floating-point
multiplies—The processor allows simultaneous integer and
floating-point multiplies using separate,  low-latency
multipliers.

Do not spli t  f loating-point  instructions with integer
instructions—No penalty is incurred when using arithmetic or
comparison floating-point instructions that use integer
operands, such as the FIADD instruction or FICOM instruction.
Splitting these instructions into discrete load and floating-point
instructions decreases performance.

Replace FDIV instructions with FMUL where possible—The
FMUL instruction latency is much less than the FDIV
instruction. If possible, replace floating-point divisions with
floating-point multiplication of the reciprocal.

Use integer instructions to move floating-point data — A
floating-point load and store instruction pair requires a
minimum of four cycles to complete (two-cycle latency for each
instruction). The processor can perform one integer load and
one store per cycle. Therefore, moving single-precision data
requires one cycle, moving double-precision data requires two
cycles, and moving extended-precision data only requires three
cycles when using integer loads and stores. The following
example shows how to translate the C-style code when moving
double-precision floating-point data:

double temp1, temp2;
temp2 = temp1;

FLD QWORD PTR [temp1]; Use: MOV EAX, [temp1];
FSTP QWORD PTR [temp2]; MOV [temp2], EAX;

MOV EAX, [temp1+4];
MOV [temp2+4], EAX;
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Scheduling of floating-point instructions is unnecessary—The
processor has a low-latency, non-pipelined floating-point
execution unit. 

Use load-execute floating-point instructions—The use of a
load-execute instruction (such as, FADD DWORD PRT [mem])
is preferable to the use of a load floating-point instruction
followed by a floating-point reg, reg instruction. For the
processor, load-execute arithmetic and compare instructions
are identical in throughput to floating-point reg, reg
instructions. Because common floating-point instructions
execute in two cycles each and the floating-point unit is not
pipelined, code executes more efficiently if the minimum
possible number of floating-point instructions are generated.

Floating-Point Code Sample

The following code sample uses three of the most important
rules to optimize this matrix multiply routine. The first rule
used is avoidance of the [ESI] addressing mode. The routine
forces this code to be [ESI+0]. The second rule is the insertion
of NOPs to avoid cache-line straddles. The third rule used is
avoidance of vector decoded instructions.

MATMUL MACRO
db 0d9h, 046h, 00h ;; FLD DWORD PTR [ESI+00] ;;x
FMUL DWORD PTR [EBX] ;; a11*x
FLD DWORD PTR [ESI+4] ;; y
FMUL DWORD PTR [EBX+4] ;; a21*y
FLD DWORD PTR [ESI+8] ;; z
FMUL DWORD PTR [EBX+8] ;; a31*z
FLD DWORD PTR [ESI+12];; w
FMUL DWORD PTR [EBX+12];; a41*w
FADDP ST(3), ST ;; a41*w+a31*z
FADDP ST(2), ST ;; a41*w+a31*z+a21*y
FADDP ST(1), ST ;; a41*w+a31*z+a21*y+a11*x
FSTP DWORD PTR [EDI] ;; store rx
NOP ;; make sure it does not

;; straddle across a cache line
db 0d9h, 046h, 00h ;; FLD DWORD PTR [ESI+00] ;; x
FMUL DWORD PTR [EBX+16];; a12*x
FLD DWORD PTR [ESI+4] ;; y
FMUL DWORD PTR [EBX+20];; a22*y
FLD DWORD PTR [ESI+8] ;; z
NOP ;; make sure it does not 

;; straddle across a cache line
FMUL DWORD PTR [EBX+24];; a32*z
FLD DWORD PTR [ESI+12];; w
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FMUL DWORD PTR [EBX+28];; a42*w
FADDP ST(3), ST ;; a42*w+a32*z
FADDP ST(2), ST ;; a42*w+a32*z+a22*y
FADDP ST(1), ST ;; a42*w+a32*z+a22*y+a12*x
NOP ;; make sure it does not

;; straddle across a cache line
FSTP DWORD PTR [EDI+4] ;; store ry
db 0d9h, 046h, 00h ;; FLD DWORD PTR [ESI+00] ;; x
FMUL DWORD PTR [EBX+32];; a13*x
FLD DWORD PTR [ESI+4] ;; y
FMUL DWORD PTR [EBX+36];; a23*y
NOP ;; make sure it does not 

;; straddle across a cache line
FLD DWORD PTR [ESI+8] ;; z
FMUL DWORD PTR [EBX+40];; a33*z
FLD DWORD PTR [ESI+12];; w
FMUL DWORD PTR [EBX+44];; a43*w
FADDP ST(3), ST ;; a43*w+a33*z
FADDP ST(2), ST ;; a43*w+a33*z+a23*y
FADDP ST(1), ST ;; a43*w+a33*z+a23*y+a13*x
FSTP DWORD PTR [EDI+8] ;; store rz
db 0d9h, 046h, 00h ;; FLD DWORD PTR [ESI+00] ;; x
FMUL DWORD PTR [EBX+48];; a14*x
FLD DWORD PTR [ESI+4] ;; y
FMUL DWORD PTR [EBX+52];; a24*y
FLD DWORD PTR [ESI+8] ;; z
FMUL DWORD PTR [EBX+56];; a34*z
FLD DWORD PTR [ESI+12];; w
FMUL DWORD PTR [EBX+60];; a44*w
FADDP ST(3), ST ;; a44*w+a34*z
NOP ;; make sure it does not 

;; straddle across a cache line
FADDP ST(2), ST ;; a44*w+a34*z+a24*y
FADDP ST(1), ST ;; a44*w+a34*z+a24*y+a14*x
FSTP DWORD PTR [EDI+12];; store rw

ENDM
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6
Considerations for Other 
Processors
The tables in this chapter contain information describing how
optimization techniques for the AMD-K6 family of processors
affect other processors, including the AMD-K5 processor.

Table 11. Specific Optimizations and Guidelines for AMD-K6® and AMD-K5™ Processors

AMD-K5™ 
Processor

Guideline/Event
AMD-K5 Processor Details

Usage/Effect
on AMD-K6®

Processors

AMD-K6 Processor
Details

Jumps and 
Loops

JCXZ requires 1 cycle (correctly predicted) 
and therefore is faster than a TEST/JZ. All 
forms of LOOP take 2 cycles (correctly 
predicted).

Different
JCXZ takes 2 cycles when taken and 7 
cycles when not taken. LOOP takes 1 
cycle.

Shifts

Although there is only one shifter, certain 
shifts can be done using other execution 
units. For example, shift left 1 by adding a 
value to itself. Use LEA index scaling to 
shift left by 1, 2, or 3.

Same

Shifts are short decodable and 
converted to a single RISC86 shift 
operation that executes only in the 
Integer X unit. LEA is executed in the 
store unit.

Multiplies

Independent IMULs can be pipelined at 
one per cycle with 4-cycle latency. (MUL 
has the same latency, although the implicit 
AX usage of MUL prevents independent, 
parallel MUL operations.)

Different
2– or 3–cycle throughput and latency. 
(3 cycles if the upper half of the 
product is produced.)
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Dispatch 
Conflicts

Load-balancing (that is, selecting 
instructions for parallel decode) is still 
important, but to a lesser extent than on 
the Pentium processor. In particular, 
arrange instructions to avoid 
execution-unit dispatching conflicts.

Same

Byte Operations

For byte operations, the high and low 
bytes of AX, BX, CX, and DX are effectively 
independent registers that can be 
operated on in parallel. For example, 
reading AL does not have a dependency 
on an outstanding write to AH.

Same Register dependency is checked on a 
byte boundary.

Floating-Point 
Top-of-Stack 
Bottleneck

The AMD-K5 processor has a pipelined 
floating-point unit. Greater parallelism can 
be achieved by using FXCH in parallel with 
floating-point operations to alleviate the 
top-of-stack bottleneck, as in the Pentium. 

Not required
Loads and stores are performed in 
parallel with floating-point 
instructions.

Move and 
Convert

MOVZX, MOVSX, CBW, CWDE, CWD, CDQ 
all take 1 cycle (2 cycles for 
memory-based input).

Same
Zero and sign extension are 
short-decodable with 1 cycle 
execution.

Indexed 
Addressing

There is no penalty for base + index 
addressing in the AMD-K5 processor. Same

Instruction 
Prefixes

There is no penalty for instruction prefixes, 
including combinations such as 
segment-size and operand-size prefixes. 
This is particularly important for 16-bit 
code. 

Possible
A penalty can only occur during 
accumulated prefix decoding.

Floating-Point 
Execution 

Parallelism

The AMD-K5 processor permits integer 
operations (ALU, branch, load/store) in 
parallel with floating-point operations.

Same
In addition, the AMD-K6 processor 
allows two integer, a branch, a load, 
and a store.

Locating Branch 
Targets

Performance can be sensitive to code 
alignment, especially in tight loops. 
Locating branch targets to the first 17 bytes 
of the 32-byte cache line maximizes the 
opportunity for parallel execution at the 
target. 

Optional
Branch targets should be placed on 0 
mod 16 alignment for optimal 
performance.

Table 11. Specific Optimizations and Guidelines for AMD-K6® and AMD-K5™ Processors (continued)

AMD-K5™ 
Processor

Guideline/Event
AMD-K5 Processor Details

Usage/Effect
on AMD-K6®

Processors

AMD-K6 Processor
Details
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NOPs

The AMD-K5 processor executes NOPs 
(opcode 90h) at the rate of two per cycle. 
Adding NOPs is even more effective if they 
execute in parallel with existing code. 

Same
NOPs are short-decodable and 
consume decode bandwidth but no 
execution resources.

Branch 
Prediction

There are two branch prediction bits in a 
32-byte instruction cache line. For effective 
branch prediction, code should be 
generated with one branch per 16-byte 
line half.

Not required This optimization has a neutral effect 
on the AMD-K6 processor.

Bit Scan
BSF and BSR take 1 cycle (2 cycles for 
memory-based input), compared to the 
Pentium’s data-dependent 6 to 34 cycles.

Different A multi-cycle operation, but faster than 
Pentium.

Bit Test

BT, BTS, BTR, and BTC take 1 cycle for 
register-based operands, and 2 or 3 cycles 
for memory-based operands with 
immediate bit-offset. Register-based 
bit-offset forms on the AMD-K5 processor 
take 5 cycles.

Different Bit test latencies are similar to the 
Pentium.

Table 12. AMD-K6® Processor Versus Pentium® Processor-Specific Optimizations and Guidelines

Pentium®

Guideline/Event
Pentium

Effect
Usage/Effect on

AMD-K6® Processors
AMD-K6 Processor

Details

Instruction Fetches 
Across Two Cache Lines

No Penalty Possible
Decode penalty only if there is 
not sufficient information to 
decode at least one instruction.

Mispredicted 
Conditional Branch 
Executed in U pipe

3-cycle penalty Different Mispredicted branches have a 
1– to 4–cycle penalty.

Mispredicted 
Conditional Branch 
Executed in V pipe

4-cycle penalty Different Mispredicted branches have a 
1– to 4–cycle penalty.

Mispredicted Calls 3-cycle penalty None

Mispredicted 
Unconditional Jumps 3-cycle penalty None

FXCH Optimizing
Pairs with most FP instructions 
and effectively hides FP stack 
manipulations.

None

Table 11. Specific Optimizations and Guidelines for AMD-K6® and AMD-K5™ Processors (continued)

AMD-K5™ 
Processor

Guideline/Event
AMD-K5 Processor Details

Usage/Effect
on AMD-K6®

Processors

AMD-K6 Processor
Details
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Index Versus Base 
Register

1-cycle penalty to calculate the 
effective address when an index 
register is used.

None

Address Generation 
Interlock Due to Explicit 
Register Usage

1-clock penalty when 
instructions are not scheduled 
apart by at least one instruction.

None However, it is best to schedule 
apart the dependency.

Address Generation 
Interlock Due to Implicit 
Register Usage

1-clock penalty when 
instructions are not scheduled 
apart by at least one instruction.

None
However, it is best to schedule 
apart the dependency.

Instructions with an 
Immediate Displacement 1-cycle penalty None

Carry & Borrow 
Instructions Issue Limits Issued to U pipe only Same Issued to Integer X unit only.

Prefix Decode Penalty 1-clock delay Possible Delays can occur due to prefix 
accumulation.

0Fh Prefix Penalty 1-clock delay None

MOVZX Acceleration No, incurs 4-cycle latency Yes Short-decodable, 1 cycle.

Unpairability Due to 
Register Dependencies

Incurred during flow and output 
dependency. None Dependencies do not affect 

instruction decode.

Shifts with Immediates 
Issue Limitations Issued to U pipe only Similar Issued to the Integer X unit only.

Floating-Point Ops Issue 
Limitation Issued to U pipe only Similar Issued to dedicated 

floating-point unit.

Conditional Code Pairing Special pairing case None
Conditional code such as JCCs 
are short decodable and 
pairable.

Integer Execution Delay 
Due to Transcendental 
Operation

Issue to U pipe is stalled None
The AMD-K6 processor has a 
separate floating-point 
execution unit.

Instructions Greater 
Than 7 Bytes Issued to U pipe only Similar Long and vector decodable 

only. 

Misaligned Data Penalty 3-clock delay Partial 1-clock delay.

Table 12. AMD-K6® Processor Versus Pentium® Processor-Specific Optimizations and Guidelines 

Pentium®

Guideline/Event
Pentium

Effect
Usage/Effect on

AMD-K6® Processors
AMD-K6 Processor

Details
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Table 13. AMD-K6® Processor and Pentium® Processor with Optimizations for MMX™ Instructions

Pentium®/MMX™
Guideline/Event

Pentium/MMX
Effect

Usage/Effect on
AMD-K6® Processor

AMD-K6 Processor
Details

0Fh Prefix Penalty None None

Three-clock Stalls for 
Dependent MMX Multiplies

Dependent instruction must be 
scheduled two instruction pairs 
following the multiply.

Different Only two clock execution 
latency for all MMX multiples

Two-clock Stalls for Writing 
Then Storing an MMX 
Register 

Requires scheduling the store 
two cycles after writing 
(updating) the MMX register.

None

U Pipe: Integer/MMX Pairing

MMX instruction that access 
either memory or integer 
registers cannot be executed in 
the V pipe.

Different No pairing restrictions.

U Pipe: MMX/Integer Pairing V pipe integer instruction must 
be pairable. Different No pairing restrictions.

Pairing Two MMX Instructions

Cannot pair two MMX 
multiplies, two MMX shifts, or 
MMX instructions in V pipe 
with U pipe dependency.

None

No decode pairing 
restrictions. Optimum 
execution may still benefit, 
though, from such 
instructions not being paired 
together.

66h or 67h Prefix Penalty Three clocks. None

Table 14. AMD-K6® Processor and Pentium® Pro/Pentium II Specific Optimizations

Pentium® Pro/Pentium II
Guideline/Event

Pentium Pro/Pentium II Effect
Usage/Effect on

AMD-K6®

Processor

AMD-K6 Processor 
Detail

Partial-Register Stalls

Avoid reading a large register after writing 
a smaller version of the same register. 
This causes the processor to stall the 
issuing of instructions that reference the 
full register and all subsequent 
instructions until after the partial write 
has retired. If the partial register update is 
adjacent to a subsequent full register 
read, the stall lasts at least seven clock 
cycles with respect to the decoder 
outputs. On the average, such a stall can 
prevent from 3 to 21 micro-ops from 
being issued.

Partial

The AMD-K6 processor 
performs register 
dependency checking on a 
byte granularity. Due to 
shorter pipelines, 
execution latency, and 
commitment latency, 
instruction issuing is not 
affected. However, 
execution is stalled.
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Branches
Exploit the processor return stack by 
using a RET rather than a JMP at the end 
of a subroutine.

Same
The AMD-K6 processor 
contains a Call/Return 
stack.

Avoid Self-Modifying Code

Code that alters itself can cause the 
processor to flush the processor’s 
pipelines and can invalidate code resident 
in caches.

Same

Code Alignment 16-byte block Same

Predicted Branch Penalty BTB suffers 1-cycle delay None

The AMD-K6 processor 
uses parallel adders for 
on-the-fly address 
generation.

Mispredicted Branch Minimum 9, typically 10 to 15 clocks Different 1 to 4 clocks.

Misaligned Data Penalty More than 3 clocks Partial 1-clock delay.

2-Byte Data Alignment 4-byte boundary Same The misalignment penalty 
is only a 1-clock delay.

4-Byte Data Alignment 4-byte boundary Same The misalignment penalty 
is only a 1-clock delay.

8-Byte Data Alignment 8-byte boundary Same The misalignment penalty 
is only a 1-clock delay.

Instruction Lengths Greater 
Than 7 Bytes Issued one at a time or vectored Different Long-decodable and 

vector-decodable.

Prefix Penalty 1-clock delay Possible
Delays can sometimes 
occur due to prefix 
accumulation.

0Fh Prefix Penalty None None

MOVZX Acceleration Yes Yes Short-decodable, 1 cycle.

Static Prediction Penalty 6 clocks Different 3 clocks.

Table 14. AMD-K6® Processor and Pentium® Pro/Pentium II Specific Optimizations (continued)

Pentium® Pro/Pentium II
Guideline/Event

Pentium Pro/Pentium II Effect
Usage/Effect on

AMD-K6®

Processor

AMD-K6 Processor 
Detail
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Table 15. AMD-K6® Processor and Pentium® Pro with Optimizations for MMX™ Instructions

Pentium® Pro/Pentium II
Guideline/Event

Pentium Pro/Pentium II Effect
Usage/Effect on

AMD-K6® Processor
AMD-K6 Processor 

Details

Three Clock Stalls for 
Dependent MMX™ Multiplies

Dependent instruction must be 
scheduled two instruction pairs 
following the multiply.

None
Only two clock 
execution latency for 
all MMX multiples.

Pairing Two MMX Instructions Cannot pair two MMX multiplies, or 
two MMX shifts. Same

Predicted Branches not in the 
BTB ~5-cycle latency Different 1-cycle latency for BTB 

miss.
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