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1
Introduction
The AMD Athlon™ processor is the newest microprocessor in
the AMD K86™ family of microprocessors. The advances in the
AMD Athlon processor take superscalar operation and
out-of-order execution to a new level. The AMD Athlon
processor has been designed to efficiently execute code written
for previous-generation x86 processors. However, to enable the
fastest code execution with the AMD Athlon processor,
programmers should write software that includes specific code
optimization techniques.

This document contains information to assist programmers in
creating optimized code for the AMD Athlon processor. In
addition, this document is targeted at compiler and assembler
designers and assembly language programmers writing
execution-sensitive code sequences.

This document assumes that the reader possesses in-depth
knowledge of the x86 instruction set, the x86 architecture
(registers, programming modes, etc.), and the IBM PC-AT
platform.

This guide has been written specifically for the AMD Athlon
processor,  but  i t  includes  cons iderat ions  for
previous-generation processors and how those optimizations are
applicable to the AMD Athlon processor.
Chapter 1 Introduction 1
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AMD Athlon™ Processor Family

The AMD Athlon processor family uses state-of-the-art
decoupled decode/execution design techniques to deliver
next-generation performance with x86 binary software
compatibility. This next-generation processor family advances
x86 code execution by using flexible instruction predecoding,
wide and balanced decoders, aggressive out-of-order execution,
parallel integer execution pipelines, parallel floating-point
execution pipelines, deep pipelined execution for higher
delivered operating frequency, dedicated backside cache
memory, and a new high-performance double-rate 64-bit local
bus. As an x86 binary-compatible processor, the AMD Athlon
processor implements the industry-standard x86 instruction set
by decoding and executing the x86 instructions using a
proprietary microarchitecture. This microarchitecture allows
the delivery of maximum performance when running x86-based
PC software.

AMD Athlon™ Processor

The AMD Athlon processor brings superscalar performance
and high operating frequency to PC systems running
industry-standard x86 software. A brief summary of the
next-generation design features implemented in the
AMD Athlon processor is as follows:

■ High-speed double-rate local bus interface

■ Large, split 128-Kbyte level-one (L1) cache

■ Dedicated backside level-two (L2) cache

■ Instruction predecode and branch detection during cache
line fills

■ Decoupled decode/execution core

■ Three-way x86 instruction decoding

■ Dynamic scheduling and speculative execution

■ Three-way integer execution

■ Three-way address generation

■ Three-way floating-point execution
2 Introduction Chapter 1
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■ 3DNow!™ technology and MMX™ single-instruction
multiple-data (SIMD) instruction extensions

■ Super data forwarding

■ Deep out-of-order integer and floating-point execution

■ Register renaming

■ Dynamic branch prediction

The AMD Athlon processor communicates  through a
next-generation high-speed local bus that is beyond the current
Socket 7 or Super7™ bus standard. The local bus can transfer
data at twice the rate of the bus operating frequency by using
both the  r is ing  and fa l l ing  edges  of  the  c lock  (see
“AMD Athlon™ System Bus”  on  page  119  for  more
information). 

To reduce on-chip cache miss penalties and to avoid subsequent
data load or instruction fetch stalls, the AMD Athlon processor
has a dedicated high-speed backside L2 cache. The large
128-Kbyte L1 on-chip cache and the backside L2 cache allow the
AMD Athlon execution core to achieve and sustain maximum
performance.

As a decoupled decode/execution processor, the AMD Athlon
processor makes use of a proprietary microarchitecture, which
defines the heart of the AMD Athlon processor. With the
inclusion of all these features, the AMD Athlon processor is
capable of decoding, issuing, executing, and retiring multiple
x86 instructions per cycle, resulting in superior scaleable
performance.

The AMD Athlon processor includes both the industry-standard
MMX SIMD integer instructions and the 3DNow! SIMD
floating-point instructions that were first introduced in the
AMD-K6®-2 processor. The design of 3DNow! technology was
based on suggestions from leading graphics and independent
software vendors (ISVs). Using SIMD format, the AMD Athlon
processor can generate up to four 32-bit, single-precision
floating-point results per clock cycle. 

The 3DNow! execution units allow for high-performance
floating-point vector operations, which can replace x87
instructions and enhance the performance of 3D graphics and
other floating-point-intensive applications. Because the
3DNow! architecture uses the same registers as the MMX
Chapter 1 Introduction 3
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instructions, switching between MMX and 3DNow! has no
penalty. 

The AMD Athlon processor designers took another innovative
step by carefully integrating the traditional x87 floating-point,
MMX, and 3DNow! execution units into one operational engine.
With the introduction of the AMD Athlon processor, the
switching overhead between x87,  MMX, and 3DNow!
technology is virtually eliminated. The AMD Athlon processor
combined with 3DNow! technology brings a better multimedia
experience to mainstream PC users while maintaining
backwards compatibility with all existing x86 software.

Although the AMD Athlon processor can extract code
parallelism on-the-fly from off-the-shelf, commercially available
x86 software, specific code optimization for the AMD Athlon
processor can result in even higher delivered performance. This
document describes the proprietary microarchitecture in the
AMD Athlon processor and makes recommendations for
optimizing execution of x86 software on the processor. 

The coding techniques for achieving peak performance on the
AMD Athlon processor include, but are not limited to, those for
the AMD-K6, AMD-K6-2, Pentium®, Pentium Pro, and Pentium
II processors. However, many of these optimizations are not
necessary for the AMD Athlon processor to achieve maximum
performance. Due to the more flexible pipeline control and
aggressive out-of-order execution, the AMD Athlon processor is
not as sensitive to instruction selection and code scheduling.
This flexibility is one of the distinct advantages of the
AMD Athlon processor.

The AMD Athlon processor uses the latest in processor
microarchitecture design techniques to provide the highest x86
performance for today’s PC. In short, the AMD Athlon
processor offers true next-generation performance with x86
binary software compatibility.
4 Introduction Chapter 1
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2
Top Optimizations
This chapter contains concise descriptions of the best
optimizations for  improving the performance of  the
AMD Athlon™ processor. Subsequent chapters contain more
detailed descriptions of these and other optimizations. The
optimizations in this chapter are divided into two groups and
listed in order of importance.

Group I — Essential 
Optimizations

Group I contains essential optimizations. Users should follow
these critical guidelines closely. The optimizations in Group I
are as follows:

■ Memory Size and Alignment Issues—Avoid memory size
mismatches—Align data where possible

■ Use the 3DNow! PREFETCH and PREFETCHW
Instructions

■ Select DirectPath Over VectorPath Instructions

Group II — Secondary 
Optimizations

Group II  contains  secondary optimizat ions  that  can
significantly improve the performance of the AMD Athlon
processor. The optimizations in Group II are as follows:

■ Load-Execute Instruction Usage—Use Load-Execute
instructions—Avoid load-execute floating-point instructions
with integer operands

■ Take Advantage of Write Combining

■ Use 3DNow!™ Instructions

■ Avoid Branches Dependent on Random Data
Chapter 2 Top Optimizations 5
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■ Avoid Placing Code and Data in the Same 64-Byte Cache
Line

Optimization Star

The top optimizations described in this chapter are flagged
with a star. In addition, the star appears beside the more
detailed descriptions found in subsequent chapters.

Group I Optimizations — Essential Optimizations

Memory Size and Alignment Issues

See “Memory Size and Alignment Issues” on page 37 for more
details.

Avoid Memory Size Mismatches

Avoid memory size mismatches when instructions operate on
the same data. For instructions that store and reload the same
data, keep operands aligned and keep the loads/stores of each
operand the same size.

Align Data Where Possible

Avoid misaligned data references. A misaligned store or load
operation suffers a minimum one-cycle penalty in the
AMD Athlon processor load/store pipeline.

Use the 3DNow!™ PREFETCH and PREFETCHW Instructions

For code that can take advantage of prefetching, use the
3DNow! PREFETCH and PREFETCHW instructions to increase
the effective bandwidth to the AMD Athlon processor, which
significantly improves performance. Use the following formula
to determine prefetch distance:

✩TOP

✩TOP

✩TOP

✩TOP
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Prefetch Length = 200 (DS/C)

■ Round up to the nearest cache line.

■ DS is the data stride per loop iteration.

■ C is the number of cycles per loop iteration when hitting in
the L1 cache.

See “Use the 3DNow!™ PREFETCH and PREFETCHW
Instructions” on page 38 for more details.

Select DirectPath Over VectorPath Instructions

Use DirectPath instruct ions rather than VectorPath
instructions. DirectPath instructions are optimized for decode
and execute efficiently by minimizing the number of operations
per x86 instruction. Using VectorPath instructions may block
DirectPath instructions from decoding simultaneously. 

See Appendix E, “DirectPath versus VectorPath Instructions”
on page 175 for a list of DirectPath and VectorPath instructions.

Group II Optimizations—Secondary Optimizations

Load-Execute Instruction Usage

See “Load-Execute Instruction Usage” on page 26 for more
details.

Use Load-Execute Instructions

Wherever possible, use load-execute instructions to increase
code density with the one exception described below. The
split-instruction form of load-execute instructions can be used
to avoid scheduler stalls for longer executing instructions and
to explicitly schedule the load and execute operations.

✩TOP

✩TOP
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Avoid Load-Execute Floating-Point Instructions with Integer Operands

Do not use load-execute floating-point instructions with integer
operands. The floating-point load-execute instructions with
integer operands are VectorPath and generate two OPs in a
cycle, while the discrete equivalent enables a third DirectPath
instruction to be decoded in the same cycle.

Take Advantage of Write Combining

This guideline applies only to operating system, device driver,
and BIOS writers. In order to improve system performance, the
AMD Athlon processor aggressively combines multiple
memory-write cycles of any data size that address locations
within a 64-byte cache line aligned write buffer.

See Appendix C, “Implementation of Write Combining” on
page 135 for more details.

Use 3DNow!™ Instructions

Unless accuracy requirements dictate otherwise, perform
floating-point computations using the 3DNow! instructions
instead of x87 instructions. The SIMD nature of 3DNow!
instructions achieves twice the number of FLOPs that are
achieved through x87 instructions. 3DNow! instructions also
provide for a flat register file instead of the stack-based
approach of x87 instructions. 

See Table 15 on page 171 for a list of 3DNow! instructions. For
information about instruction usage, see the 3DNow!™
Technology Manual, order# 21928.

Avoid Branches Dependent on Random Data

Avoid data-dependent branches around a single instruction.
Data-dependent branches acting upon basically random data
can cause the branch prediction logic to mispredict the branch
about 50% of the time. Design branch-free alternative code
sequences, which results in shorter average execution time.

See “Avoid Branches Dependent on Random Data” on page 49
for more details.

✩TOP

✩TOP

✩TOP

✩TOP
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Avoid Placing Code and Data in the Same 64-Byte Cache Line

Consider that the AMD Athlon processor cache line is twice the
size of previous processors. Code and data should not be shared
in the same 64-byte cache line, especially if the data ever
becomes modified. In order to maintain cache coherency, the
AMD Athlon processor may thrash its caches, resulting in lower
performance.

In general the following should be avoided:

■ Self-modifying code

■ Storing data in code segments

See “Avoid Placing Code and Data in the Same 64-Byte Cache
Line” on page 42 for more details.

✩TOP
Chapter 2 Top Optimizations 9
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3
C Source Level Optimizations
Chapter 3 C Source Level Optimizations 11

This chapter details C programming practices for optimizing
code for the AMD Athlon™ processor. Guidelines are listed in
order of importance.

Ensure Floating-Point Variables and Expressions are of 
Type Float

For compilers that generate 3DNow!™ instructions, make sure
that all floating-point variables and expressions are of type
float. Pay special attention to floating-point constants. These
require a suffix of “F” or “f” (for example, 3.14f) in order to be
of type float, otherwise they default to type double. To avoid
automatic promotion of float arguments to double, always use
function prototypes for all functions that accept float
arguments.

Use 32-Bit Data Types for Integer Code

Use  32 -bi t  data  types  for  integer  code.  Compi ler
implementations vary, but typically the following data types are
included—int, signed, signed int, unsigned, unsigned int, long,
signed long, long int, signed long int, unsigned long, and unsigned
long int.
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Use Unsigned Integer Types over Signed Integer Types

If possible, use unsigned integer types over signed integer
types. The unsigned types convey to the compiler that data
cannot be negative, which allows some optimizations not
possible with signed and potentially negative data.

In most programs, certain variables have to be of signed types
due to the nature of the data stored in them (for example,
temperatures). In some cases, aggressive use of unsigned types
can create many mixed expressions containing both signed and
unsigned terms. It can be difficult to determine the exact
semantics of such expressions.

Completely Unroll Small Loops

Take advantage of the AMD Athlon processor’s large, 64-Kbyte
instruction cache and completely unroll small loops. Unrolling
loops can be beneficial to performance, especially if the loop
body is small and the loop overhead is, therefore, significant.
Many compilers are not aggressive at unrolling loops. For loops
that have a small fixed loop count and a small loop body,
completely unroll ing the loops at  the source level is
recommended.

Example 1 (Avoid):  
// 3D-transform: multiply vector V by 4x4 transform matrix M
for (i=0; i<4; i++) {
   r[i] = 0;
   for (j=0; j<4; j++) {
      r[i] += M[j][i]*V[j];
   }
}

Example 2 (Preferred):  
// 3D-transform: multiply vector V by 4x4 transform matrix M
r[0] = M[0][0]*V[0] + M[1][0]*V[1] + M[2][0]*V[2] +

M[3][0]*V[3];
r[1] = M[0][1]*V[0] + M[1][1]*V[1] + M[2][1]*V[2] +

M[3][1]*V[3];
r[2] = M[0][2]*V[0] + M[1][2]*V[1] + M[2][2]*V[2] +

M[3][2]*V[3];
r[3] = M[0][3]*V[0] + M[1][3]*V[1] + M[2][3]*V[2] +

M[3][3]*v[3];
12 C Source Level Optimizations Chapter 3
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Avoid Unnecessary Store-to-Load Dependencies

A store-to-load dependency exists when data is stored to
memory, only to be read back shortly thereafter.  See
“Store-to-Load Forwarding Restrictions” on page 42 for more
details. The AMD Athlon processor contains hardware to
accelerate such store-to-load dependencies, allowing the load to
obtain the store data before it has been written to memory.
However, it is still faster to avoid such dependencies altogether
and keep the data in an internal register. 

Avoiding store-to-load dependencies is especially important if
they are part of a long dependency chains, as might occur in a
recurrence computation. If the dependency occurs while
operating on arrays, many compilers are unable to optimize the
code in a way that avoids the store-to-load dependency. In some
instances the language definition may prohibit the compiler
from using code transformations that would remove the store-
to-load dependency. It is therefore recommended that the
programmer remove the dependency manually, e.g., by
introducing a temporary variable that can be kept in a register.
This can result in a significant performance increase. The
following is an example of this.

Example 1 (Avoid):  
double x[VECLEN], y[VECLEN], z[VECLEN];
unsigned int k;

for (k = 1; k < VECLEN; k++) {
   x[k] = x[k-1] + y[k];
}

for (k = 1; k < VECLEN; k++) {
   x[k] = z[k] * (y[k] - x[k-1]);
}

Example 2 (Preferred):  
double x[VECLEN], y[VECLEN], z[VECLEN];
unsigned int k;
double t;

t = x[0];
for (k = 1; k < VECLEN; k++) {
   t = t + y[k];
   x[k] = t;
}

Chapter 3 C Source Level Optimizations 13
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t = x[0];
for (k = 1; k < VECLEN; k++) {
   t = z[k] * (y[k] - t);
   x[k] = t;
}

Switch Statement Usage

Optimize Switch Statements

Switch statements are translated using a variety of algorithms.
The most common of these are jump tables and comparison
chains/trees. It is recommended to sort the cases of a switch
statement according to the probability of occurrences, with the
most probable first. This will improve performance when the
switch is translated as a comparison chain. It is further
recommended to make the case labels small, contiguous
integers, as this will allow the switch to be translated as a jump
table.

Example 1 (Avoid):  
int days_in_month, short_months, normal_months, long_months;

switch (days_in_month) {
  case 28:
  case 29: short_months++; break;
  case 30: normal_months++; break;
  case 31: long_months++; break;
  default: printf ("month has fewer than 28 or more than 31 
days\n");
}

Example 2 (Preferred):  
int days_in_month, short_months, normal_months, long_months;

switch (days_in_month) {
  case 31: long_months++; break;
  case 30: normal_months++; break;
  case 28:
  case 29: short_months++; break;
  default: printf ("month has fewer than 28 or more than 31 
days\n");
}

14 C Source Level Optimizations Chapter 3
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Use Prototypes for All Functions

In general, use prototypes for all functions. Prototypes can
convey additional information to the compiler that might
enable more aggressive optimizations.

Use Const Type Qualifier

Use the “const” type qualifier as much as possible. This
optimization makes code more robust and may enable higher
performance code to be generated due to the additional
information available to the compiler. For example, the C
standard allows compilers to not allocate storage for objects
that are declared “const”, if their address is never taken.

Generic Loop Hoisting

To improve the performance of inner loops, it is beneficial to
reduce redundant constant calculations (i.e., loop invariant
calculations). However, this idea can be extended to invariant
control structures.

The first case is that of a constant “if()” statement in a “for()”
loop.  

Example 1:  
for( i ... ) {

if( CONSTANT0 ) {
DoWork0( i ); // does not affect CONSTANT0

} else {
DoWork1( i ); // does not affect CONSTANT0

}
}

Chapter 3 C Source Level Optimizations 15
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The above loop should be transformed into:

if( CONSTANT0 ) {
for( i ... ) {

DoWork0( i );
}

} else {
for( i ... ) {

DoWork1( i );
}

}

This will make your inner loops tighter by avoiding repetitious
evaluation of a known “if()” control structure. Although the
branch would be easily predicted, the extra instructions and
decode limitations imposed by branching are saved, which are
usually well worth it.

Generalization for Multiple Constant Control Code

To generalize this further for multiple constant control code
some more work may have to be done to create the proper outer
loop. Enumeration of the constant cases will reduce this to a
simple switch statement.

Example 2:  
for(i ... ) {

if( CONSTANT0 ) {
DoWork0( i ); //does not affect CONSTANT0

// or CONSTANT1
} else {

DoWork1( i ); //does not affect CONSTANT0
// or CONSTANT1

}
if( CONSTANT1 ) {

DoWork2( i ); //does not affect CONSTANT0
// or CONSTANT1

} else {
DoWork3( i ); //does not affect CONSTANT0

// or CONSTANT1
}

}

16 C Source Level Optimizations Chapter 3
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The above loop should be transformed into:

#define combine( c1, c2 ) (((c1) << 1) + (c2))
switch( combine( CONSTANT0!=0, CONSTANT1!=0 ) ) {

case combine( 0, 0 ):
for( i ... ) {

DoWork0( i );
DoWork2( i );

}
break;

case combine( 1, 0 ):
for( i ... ) {

DoWork1( i );
DoWork2( i );

}
break;

case combine( 0, 1 ):
for( i ... ) {

DoWork0( i );
DoWork3( i );

}
break;

case combine( 1, 1 ):
for( i ... ) {

DoWork1( i );
DoWork3( i );

}
break;

default:
break;

}

The trick here is that there is some up-front work involved in
generating all the combinations for the switch constant and the
total amount of code has doubled. However, it is also clear that
the inner loops are "if()-free". In ideal cases where the
“DoWork*()” functions are inlined, the successive functions
will have greater overlap leading to greater parallelism than
would be possible in the presence of intervening “if()”
statements.

The same idea can be applied to constant “switch()”
statements, or combinations of “switch()” statements and “if()”
statements inside of “for()” loops. The method for combining
the input constants gets more complicated but will be worth it
for the performance benefit.  

However, the number of inner loops can also substantially
increase. If the number of inner loops is prohibitively high, then
Chapter 3 C Source Level Optimizations 17
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only the most common cases need to be dealt with directly, and
the remaining cases can fall back to the old code in a "default:"
clause for the “switch()” statement.

This typically comes up when the programmer is considering
runtime generated code. While runtime generated code can
lead to similar levels of performance improvement, it is much
harder to maintain, and the developer must do their own
optimizations for their code generation without the help of an
available compiler.

Declare Local Functions as Static

Functions that are not used outside the file in which they are
defined should always be declared static, which forces internal
linkage. Otherwise, such functions default to external linkage,
which might inhibit certain optimizations with some
compilers—for example, aggressive inlining.

Dynamic Memory Allocation Consideration

Dynamic memory allocation (‘malloc’ in C language) should
always return a pointer that is suitably aligned for the largest
base type (quadword alignment). Where this aligned pointer
cannot be guaranteed, use the technique shown in the following
code to make the pointer quadword aligned, if needed. This
code assumes the pointer can be cast to a long.

Example:  
double* p;
double* np;

p  = (double *)malloc(sizeof(double)*number_of_doubles+7L);
np = (double *)((((long)(p))+7L) & (–8L));

Then use ‘np’ instead of ‘p’ to access the data. ‘p’ is still needed
in order to deallocate the storage.
18 C Source Level Optimizations Chapter 3
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Introduce Explicit Parallelism into Code
Where possible, long dependency chains should be broken into
several independent dependency chains which can then be
executed in parallel exploiting the pipeline execution units.
This is especially important for floating-point code, whether it
is mapped to x87 or 3DNow! instructions because of the longer
latency of floating-point operations. Since most languages,
including ANSI C, guarantee that floating-point expressions are
not re-ordered, compilers can not usually perform such
optimizations unless they offer a switch to allow ANSI non-
compliant reordering of floating-point expressions according to
algebraic rules. 

Note that re-ordered code that is algebraically identical to the
original  code does not  necessarily del iver  identical
computational results due to the lack of associativity of floating
point  operat ions .  There  are  wel l -known numerical
considerations in applying these optimizations (consult a book
on numerical analysis). In some cases, these optimizations may
lead to unexpected results. Fortunately, in the vast majority of
cases, the final result will differ only in the least significant
bits.

Example 1 (Avoid):  
double a[100],sum;
int i;

sum = 0.0f;
for (i=0; i<100; i++) {

sum += a[i];
}

Example 2 (Preferred):  
double a[100],sum1,sum2,sum3,sum4,sum;
int i;

sum1 = 0.0;
sum2 = 0.0;
sum3 = 0.0;
sum4 = 0.0;
for (i=0; i<100; i+4) {

sum1 += a[i];
sum2 += a[i+1];
sum3 += a[i+2];
sum4 += a[i+3];
}

sum = (sum4+sum3)+(sum1+sum2);
Chapter 3 C Source Level Optimizations 19
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Notice that the 4-way unrolling was chosen to exploit the 4-stage
fully pipelined floating-point adder. Each stage of the floating-
point adder is occupied on every clock cycle, ensuring maximal
sustained utilization.

Explicitly Extract Common Subexpressions

In certain situations, C compilers are unable to extract common
subexpressions from floating-point expressions due to the
guarantee against reordering of such expressions in the ANSI
standard. Specifically, the compiler can not re-arrange the
computation according to algebraic equivalencies before
extracting common subexpressions. In such cases, the
programmer should  manual ly  extract  the  common
subexpression. It should be noted that re-arranging the
expression may result in different computational results due to
the lack of associativity of floating-point operations, but the
results usually differ in only the least significant bits.

Example 1 Avoid:  
double  a,b,c,d,e,f;

e = b*c/d;
f = b/d*a;

Preferred:  
double  a,b,c,d,e,f,t;

t = b/d;
e = c*t;
f = a*t;

Example 2 Avoid:  
double a,b,c,e,f;

e = a/c;
f = b/c;

Preferred:  
double a,b,c,e,f,t;

t = 1/c;
e = a*t
f = b*t;
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C Language Structure Component Considerations

Many compilers have options that allow padding of structures
to make their size multiples of words, doublewords, or
quadwords, in order to achieve better alignment for structures.
In addition, to improve the alignment of structure members,
some compilers might allocate structure elements in an order
that differs from the order in which they are declared. However,
some compilers might not offer any of these features, or their
implementation might not work properly in all situations.
Therefore, to achieve the best alignment of structures and
structure members while minimizing the amount of padding
regardless of compiler optimizations, the following methods are
suggested.

Sort by Base Type 
Size

Sort structure members according to their base type size,
declaring members with a larger base type size ahead of
members with a smaller base type size. 

Pad by Multiple of 
Largest Base Type 
Size

Pad the structure to a multiple of the largest base type size of
any member. In this fashion, if the first member of a structure is
naturally aligned, all other members are naturally aligned as
well. The padding of the structure to a multiple of the largest
based type size allows, for example, arrays of structures to be
perfectly aligned.

The following example demonstrates the reordering of
structure member declarations:

Original ordering (Avoid):  
struct {
       char    a[5];
       long    k;
       double  x;
} baz;

New ordering, with padding (Preferred):  
struct {
       double  x;
       long    k;
       char    a[5];
       char    pad[7];
} baz;

See “C Language Structure Component Considerations” on
page 47 for a different perspective.
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Sort Local Variables According to Base Type Size

When a compiler allocates local variables in the same order in
which they are declared in the source code, it can be helpful to
declare local variables in such a manner that variables with a
larger base type size are declared ahead of the variables with
smaller base type size. Then, if the first variable is allocated so
that it is naturally aligned, all other variables are allocated
contiguously in the order they are declared, and are naturally
aligned without any padding.

Some compilers do not allocate variables in the order they are
declared. In these cases, the compiler should automatically
allocate variables in such a manner as to make them naturally
aligned with the minimum amount of padding. In addition,
some compilers do not guarantee that the stack is aligned
suitably for the largest base type (that is, they do not guarantee
quadword alignment), so that quadword operands might be
misaligned, even if this technique is used and the compiler does
allocate variables in the order they are declared.

The following example demonstrates the reordering of local
variable declarations:

Original ordering (Avoid):  
short   ga, gu, gi;
long    foo, bar;
double  x, y, z[3];
char    a, b;
float   baz;

Improved ordering (Preferred):  
double  z[3];
double  x, y;
long    foo, bar;
float   baz;
short   ga, gu, gi;

See “Sort Variables According to Base Type Size” on page 47 for
more information from a different perspective.
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Avoid Unnecessary Integer Division

Integer division is the slowest of all integer arithmetic
operations and should be avoided wherever possible. One
possibility for reducing the number of integer divisions is
multiple divisions, in which division can be replaced with
multiplication as shown in the following examples. This
replacement is possible only if no overflow occurs during the
computation of the product. This can be determined by
considering the possible ranges of the divisors.

Example 1 (Avoid):  
int i,j,k,m;

m = i / j / k;

Example 2 (Preferred):  
int i,j,k,l;

m = i / (j * k);

Copy Frequently De-referenced Pointer Arguments to Local 
Variables

Avoid frequently de-referencing pointer arguments inside a
function. Since the compiler has no knowledge of whether
aliasing exists between the pointers, such de-referencing can
not be optimized away by the compiler. This prevents data from
being kept in registers and significantly increases memory
traffic.

Note that many compilers have an “assume no aliasing”
optimization switch. This allows the compiler to assume that
two different pointers always have disjoint contents and does
not require copying of pointer arguments to local variables.

Otherwise, copy the data pointed to by the pointer arguments
to local variables at the start of the function and if necessary
copy them back at the end of the function.
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Example 1 (Avoid):  
//assumes pointers are different
void isqrt ( unsigned long a, 

unsigned long *q, 
unsigned long *r)

{
*q = a;
   if (a > 0) 

{
while (*q > (*r = a / *q)) 

{
*q = (*q + *r) >> 1;
}

   }
*r = a - *q * *q;
}

Example 2 (Preferred):  
//assumes pointers are different
void isqrt ( unsigned long a, 

unsigned long *q, 
unsigned long *r)

{
unsigned long qq, rr;
qq = a;
if (a > 0) 

{
while (qq > (rr = a / qq)) 

{
qq = (qq + rr) >> 1;
}

   }
rr = a - qq * qq;
*q = qq;
*r = rr;
}
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4
Instruction Decoding 
Optimizations
This chapter discusses ways to maximize the number of
instructions decoded by the instruction decoders in the
AMD Athlon™ processor. Guidelines are listed in order of
importance.

Overview

The AMD Athlon processor instruction fetcher reads 16-byte
aligned code windows from the instruction cache. The
instruction bytes are then merged into a 24-byte instruction
queue. On each cycle, the in-order front-end engine selects for
decode up to three x86 instructions from the instruction-byte
queue. 

All instructions (x86, x87, 3DNow!™, and MMX™) are
classified into two types of decodes — DirectPath and
VectorPath (see “DirectPath Decoder” and “VectorPath
Decoder” on page 113 for more information). DirectPath
instructions are common instructions that are decoded directly
in hardware. VectorPath instructions are more complex
instructions that require the use of a sequence of multiple
operations issued from an on-chip ROM.

Up to three DirectPath instructions can be selected for decode
per cycle. Only one VectorPath instruction can be selected for
decode per cycle. DirectPath instructions and VectorPath
instructions cannot be simultaneously decoded.
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Select DirectPath Over VectorPath Instructions

Use DirectPath instruct ions rather than VectorPath
instructions. DirectPath instructions are optimized for decode
and execute efficiently by minimizing the number of operations
per x86 instruction, which includes ‘register← register op
memory’ as well as ‘register←register op register’ forms of
instructions. Up to three DirectPath instructions can be
decoded per cycle. VectorPath instructions may also block the
decoding of DirectPath instructions. See Appendix D,
“Instruction Dispatch and Execution Timing” on page 141 and
Appendix E, “DirectPath versus VectorPath Instructions” on
page 175 for tables of DirectPath and VectorPath instructions.

Load-Execute Instruction Usage

Use Load-Execute Integer Instructions

Most load-execute integer instructions are DirectPath
decodable and can be decoded at the rate of three per cycle.
Splitting a load-execute integer instruction into two separate
instructions—a load instruction and a “reg, reg” instruction—
reduces decoding bandwidth and increases register pressure,
which results in lower performance. The split-instruction form
can be used to avoid scheduler stalls for longer executing
instructions and to explicitly schedule the load and execute
operations.

Use Load-Execute Floating-Point Instructions with Floating-Point 
Operands

When operating on single-precision or double-precision
floating-point data, wherever possible use floating-point
load-execute instructions to increase code density. 

Note: This optimization applies only to floating-point instructions
with floating-point operands and not with integer operands,
as described in the next optimization.

✩TOP

✩TOP

✩TOP
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This coding style helps in two ways. First, denser code allows
more work to be held in the instruction cache. Second, the
denser code generates fewer internal OPs and, therefore, the
FPU scheduler holds more work, which increases the chances of
extracting parallelism from the code.

Example 1 (Avoid):  
FLD QWORD PTR [TEST1]
FLD QWORD PTR [TEST2]
FMUL ST, ST(1)

Example 2 (Preferred):  
FLD QWORD PTR [TEST1]
FMUL QWORD PTR [TEST2]

Avoid Load-Execute Floating-Point Instructions with Integer Operands

Do not use load-execute floating-point instructions with integer
operands: FIADD, FISUB, FISUBR, FIMUL, FIDIV, FIDIVR,
FICOM, and FICOMP. Remember that  f loating-point
instructions can have integer operands while integer
instruction cannot have floating-point operands. 

Floating-point computations involving integer-memory
operands should use separate FILD and arithmetic instructions.
This optimization has the potential to increase decode
bandwidth and OP density in the FPU scheduler. The floating-
point load-execute instructions with integer operands are
VectorPath and generate two OPs in a cycle, while the discrete
equivalent enables a third DirectPath instruction to be decoded
in the same cycle. In some situations this optimizations can also
reduce execution time if the FILD can be scheduled several
instructions ahead of the arithmetic instruction in order to
cover the FILD latency.

Example 1 (Avoid):  
FLD QWORD PTR [foo]
FIMUL DWORD PTR [bar]
FIADD DWORD PTR [baz]

Example 2 (Preferred):   
FILD DWORD PTR [bar]
FILD DWORD PTR [baz]
FLD QWORD PTR [foo]
FMULP ST(2), ST
FADDP ST(1),ST

✩TOP
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Align Branch Targets

Place branch targets at or near the beginning of 16-byte aligned
code windows. This technique helps to maximize the number of
instructions that are filled into the instruction-byte queue.

Use Short Instruction Lengths

Assemblers and compilers should generate the tightest code
possible to optimize use of the I-Cache and increase average
decode rate. Wherever possible, use instructions with shorter
lengths. Using shorter instructions increases the number of
instructions that can fit into the instruction-byte queue. For
example, use 8-bit displacements as opposed to 32-bit
displacements. In addition, use the single-byte format of simple
integer instructions whenever possible, as opposed to the
2-byte Opcode ModR/M format.

Example 1 (Avoid):  
81 C0 78 56 34 12 add eax, 12345678h ;uses 2-byte opcode

; form (with ModR/M)
81 C3 FB FF FF FF add ebx, -5 ;uses 32-bit 

; immediate
0F 84 05 00 00 00 jz  $label1 ;uses 2-byte opcode,

; 32-bit immediate

Example 2 (Preferred):  
05 78 56 34 12 add eax, 12345678h ;uses single byte

; opcode form
83 C3 FB add ebx, -5 ;uses 8-bit sign

; extended immediate
74 05 jz  $label1 ;uses 1-byte opcode,

; 8-bit immediate
28 Instruction Decoding Optimizations Chapter 4



22007D/0—August 1999 AMD Athlon™ Processor x86 Code Optimization

Preliminary Information
Avoid Partial Register Reads and Writes

In order to handle partial register writes, the AMD Athlon
processor execution core implements a data-merging scheme. 

In the execution unit, an instruction writing a partial register
merges the modified portion with the current state of the
remainder of the register. Therefore, the dependency hardware
can potentially force a false dependency on the most recent
instruction that writes to any part of the register.

Example 1 (Avoid):
MOV AL, 10 ;inst 1
MOV AH, 12 ;inst 2 has a false dependency on 

; inst 1
;inst 2 merges new AH with current 
; EAX register value forwarded
; by inst 1

In addition, an instruction that has a read dependency on any
part of a given architectural register has a read dependency on
the most recent instruction that modifies any part of the same
architectural register.

Example 2 (Avoid):
MOV BX, 12h ;inst 1
MOV BL, DL ;inst 2, false dependency on 

; completion of inst 1
MOV BH, CL ;inst 3, false dependency on 

; completion of inst 2
MOV AL, BL ;inst 4, depends on completion of 

; inst 2

Replace Certain SHLD Instructions with Alternative Code

Certain instances of the SHLD instruction can be replaced by
alternative code using SHR and LEA. The alternative code has
lower latency and requires less execution resources. SHR and
LEA (32-bit version) are DirectPath instructions, while SHLD is
a VectorPath instruction. SHR and LEA preserves decode
bandwidth as it potentially enables the decoding of a third
DirectPath instruction.
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Example 1 (Avoid):  
SHLD REG1, REG2, 1

(Preferred):  
SHR REG2, 31
LEA REG1, [REG1*2 + REG2]

Example 2 (Avoid):  
SHLD REG1, REG2, 2

(Preferred):  
SHR REG2, 30
LEA REG1, [REG1*4 + REG2]

Example 3 (Avoid):  
SHLD REG1, REG2, 3

(Preferred):  
SHR REG2, 29
LEA REG1, [REG1*8 + REG2]

Use 8-Bit Sign-Extended Immediates

Using 8-bit sign-extended immediates improves code density
with no negative effects on the AMD Athlon processor. For
example, ADD BX, –5 should be encoded “83 C3 FB” and not
“81 C3 FF FB”.

Use 8-Bit Sign-Extended Displacements

Use 8-bit sign-extended displacements for conditional
branches. Using short, 8-bit sign-extended displacements for
conditional branches improves code density with no negative
effects on the AMD Athlon processor.
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Code Padding Using Neutral Code Fillers
Occasionally a need arises to insert neutral code fillers into the
code stream, e.g., for code alignment purposes or to space out
branches. Since this filler code can be executed, it should take
up as few execution resources as possible, not diminish decode
density, and not modify any processor state other than
advancing EIP. A one byte padding can easily be achieved using
the NOP instructions (XCHG EAX,EAX; opcode 0x90). In the
x86 architecture, there are several multi-byte "NOP"
instructions available that do not change processor state other
than EIP:

■ MOV  REG, REG

■ XCHG REG, REG

■ CMOVcc REG, REG

■ SHR  REG, 0

■ SAR  REG, 0

■ SHL  REG, 0

■ SHRD REG, REG, 0

■ SHLD REG, REG, 0

■ LEA  REG, [REG]

■ LEA  REG, [REG+00]

■ LEA  REG, [REG*1+00]

■ LEA  REG, [REG+00000000]

■ LEA  REG, [REG*1+00000000]

Not all of these instructions are equally suitable for purposes of
code padding. For example, SHLD/SHRD are microcoded which
reduces decode bandwidth and takes up execution resources.

Recommendations for the AMD Athlon™ Processor
For code that is optimized specifically for the AMD Athlon
processor, the optimal code fillers are NOP instructions (opcode
0x90) with up to two REP prefixes (0xF3). In the AMD Athlon
processor, a NOP with up to two REP prefixes can be handled
by a single decoder with no overhead. As the REP prefixes are
redundant and meaningless, they get discarded, and NOPs are
handled without using any execution resources. The three
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decoders of AMD Athlon processor can handle up to three
NOPs, each with up to two REP prefixes each, in a single cycle,
for a neutral code filler of up to nine bytes. If a larger amount of
code padding is required, it is recommended to use a JMP
instruction to jump across the padding region. The following
assembly language macros show this:

NOP1_ATHLON TEXTEQU <DB 090h>
NOP2_ATHLON TEXTEQU <DB 0F3h, 090h>
NOP3_ATHLON TEXTEQU <DB 0F3h, 0F3h, 090h>
NOP4_ATHLON TEXTEQU <DB 0F3h, 0F3h, 090h, 090h>
NOP5_ATHLON TEXTEQU <DB 0F3h, 0F3h, 090h, 0F3h, 090h>
NOP6_ATHLON TEXTEQU <DB 0F3h, 0F3h, 090h, 0F3h, 0F3h, 090h>
NOP7_ATHLON TEXTEQU <DB 0F3h, 0F3h, 090h, 0F3h, 0F3h, 090h,

090h>
NOP8_ATHLON TEXTEQU <DB 0F3h, 0F3h, 090h, 0F3h, 0F3h, 090h, 

0F3h, 090h>
NOP9_ATHLON TEXTEQU <DB 0F3h, 0F3h, 090h, 0F3h, 0F3h, 090h, 

0F3h, 0F3h, 090h>
NOP10_ATHLONTEXTEQU <DB 0EBh, 008h, 90h, 90h, 90h, 90h,

90h, 90h, 90h, 90h>

Recommendations for AMD-K6® Family and AMD Athlon™ Processor 
Blended Code

On x86 processors other than the AMD Athlon processor
(including the AMD-K6 family of processors), the REP prefix
and especially multiple prefixes cause decoding overhead, so
the above technique is not recommended for code that has to
run well both on AMD Athlon processor and  other x86
processors (blended code). In such cases the instructions and
instruction sequences below are recommended. For neutral
code fillers longer than eight bytes in length, the JMP
instruction can be used to jump across the padding region.

Note that each of the instructions and instruction sequences
below utilizes an x86 register.  To avoid performance
degradation, the register used in the padding should be
selected so as to not lengthen existing dependency chains, i.e.,
one should select a register that is not used by instructions in
the vicinity of the neutral code filler. Note that certain
instructions use registers implicitly. For example, PUSH, POP,
CALL, and RET all make implicit use of the ESP register. The
5-byte filler sequence below consists of two instructions. If flag
changes across the code padding are acceptable, the following
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instructions may be used as single instruction, 5-byte code
fillers:

■ TEST EAX, 0FFFF0000h

■ CMP  EAX, 0FFFF0000h

The fo l lowing assembly  language  macros  show the
recommended neutral code fillers for code optimized for the
AMD Athlon processor that also has to run well on other x86
processors. Note for some padding lengths, versions using ESP
or EBP are missing due to the lack of fully generalized
addressing modes.

NOP2_EAX TEXTEQU <DB 08Bh,0C0h> ;mov eax, eax
NOP2_EBX TEXTEQU <DB 08Bh,0DBh> ;mov ebx, ebx
NOP2_ECX TEXTEQU <DB 08Bh,0C9h> ;mov ecx, ecx
NOP2_EDX TEXTEQU <DB 08Bh,0D2h> ;mov edx, edx
NOP2_ESI TEXTEQU <DB 08Bh,0F6h> ;mov esi, esi
NOP2_EDI TEXTEQU <DB 08Bh,0FFh> ;mov edi, edi
NOP2_ESP TEXTEQU <DB 08Bh,0E4h> ;mov esp, esp
NOP2_EBP TEXTEQU <DB 08Bh,0EDh> ;mov ebp, ebp

NOP3_EAX TEXTEQU <DB 08Dh,004h,020h> ;lea eax, [eax]
NOP3_EBX TEXTEQU <DB 08Dh,01Ch,023h> ;lea ebx, [ebx]
NOP3_ECX TEXTEQU <DB 08Dh,00Ch,021h> ;lea ecx, [ecx]
NOP3_EDX TEXTEQU <DB 08Dh,014h,022h> ;lea edx, [edx]
NOP3_ESI TEXTEQU <DB 08Dh,024h,024h> ;lea esi, [esi]
NOP3_EDI TEXTEQU <DB 08Dh,034h,026h> ;lea edi, [edi]
NOP3_ESP TEXTEQU <DB 08Dh,03Ch,027h> ;lea esp, [esp]
NOP3_EBP TEXTEQU <DB 08Dh,06Dh,000h> ;lea ebp, [ebp]

NOP4_EAX TEXTEQU <DB 08Dh,044h,020h,000h> ;lea eax, [eax+00]
NOP4_EBX TEXTEQU <DB 08Dh,05Ch,023h,000h> ;lea ebx, [ebx+00]
NOP4_ECX TEXTEQU <DB 08Dh,04Ch,021h,000h> ;lea ecx, [ecx+00]
NOP4_EDX TEXTEQU <DB 08Dh,054h,022h,000h> ;lea edx, [edx+00]
NOP4_ESI TEXTEQU <DB 08Dh,064h,024h,000h> ;lea esi, [esi+00]
NOP4_EDI TEXTEQU <DB 08Dh,074h,026h,000h> ;lea edi, [edi+00]
NOP4_ESP TEXTEQU <DB 08Dh,07Ch,027h,000h> ;lea esp, [esp+00]

;lea eax, [eax+00];nop
NOP5_EAX TEXTEQU <DB 08Dh,044h,020h,000h,090h> 

;lea ebx, [ebx+00];nop
NOP5_EBX TEXTEQU <DB 08Dh,05Ch,023h,000h,090h> 

;lea ecx, [ecx+00];nop
NOP5_ECX TEXTEQU <DB 08Dh,04Ch,021h,000h,090h> 

;lea edx, [edx+00];nop
NOP5_EDX TEXTEQU <DB 08Dh,054h,022h,000h,090h> 
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;lea esi, [esi+00];nop
NOP5_ESI TEXTEQU <DB 08Dh,064h,024h,000h,090h> 

;lea edi, [edi+00];nop
NOP5_EDI TEXTEQU <DB 08Dh,074h,026h,000h,090h> 

;lea esp, [esp+00];nop
NOP5_ESP TEXTEQU <DB 08Dh,07Ch,027h,000h,090h> 

;lea eax, [eax+00000000]
NOP6_EAX TEXTEQU <DB 08Dh,080h,0,0,0,0>

;lea ebx, [ebx+00000000]
NOP6_EBX TEXTEQU <DB 08Dh,09Bh,0,0,0,0>

;lea ecx, [ecx+00000000]
NOP6_ECX TEXTEQU <DB 08Dh,089h,0,0,0,0>

;lea edx, [edx+00000000]
NOP6_EDX TEXTEQU <DB 08Dh,092h,0,0,0,0>

;lea esi, [esi+00000000]
NOP6_ESI TEXTEQU <DB 08Dh,0B6h,0,0,0,0>

;lea edi ,[edi+00000000]
NOP6_EDI TEXTEQU <DB 08Dh,0BFh,0,0,0,0>

;lea ebp ,[ebp+00000000]
NOP6_EBP TEXTEQU <DB 08Dh,0ADh,0,0,0,0>

;lea eax,[eax*1+00000000]
NOP7_EAX TEXTEQU <DB 08Dh,004h,005h,0,0,0,0>

;lea ebx,[ebx*1+00000000]
NOP7_EBX TEXTEQU <DB 08Dh,01Ch,01Dh,0,0,0,0>

;lea ecx,[ecx*1+00000000]
NOP7_ECX TEXTEQU <DB 08Dh,00Ch,00Dh,0,0,0,0>

;lea edx,[edx*1+00000000]
NOP7_EDX TEXTEQU <DB 08Dh,014h,015h,0,0,0,0>

;lea esi,[esi*1+00000000]
NOP7_ESI TEXTEQU <DB 08Dh,034h,035h,0,0,0,0>

;lea edi,[edi*1+00000000]
NOP7_EDI TEXTEQU <DB 08Dh,03Ch,03Dh,0,0,0,0>

;lea ebp,[ebp*1+00000000]
NOP7_EBP TEXTEQU <DB 08Dh,02Ch,02Dh,0,0,0,0>
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;lea eax,[eax*1+00000000] ;nop
NOP8_EAX TEXTEQU <DB 08Dh,004h,005h,0,0,0,0,90h>

;lea ebx,[ebx*1+00000000] ;nop
NOP8_EBX TEXTEQU <DB 08Dh,01Ch,01Dh,0,0,0,0,90h>

;lea ecx,[ecx*1+00000000] ;nop
NOP8_ECX TEXTEQU <DB 08Dh,00Ch,00Dh,0,0,0,0,90h>

;lea edx,[edx*1+00000000] ;nop
NOP8_EDX TEXTEQU <DB 08Dh,014h,015h,0,0,0,0,90h> 

;lea esi,[esi*1+00000000] ;nop
NOP8_ESI TEXTEQU <DB 08Dh,034h,035h,0,0,0,0,90h> 

;lea edi,[edi*1+00000000] ;nop
NOP8_EDI TEXTEQU <DB 08Dh,03Ch,03Dh,0,0,0,0,90h> 

;lea ebp,[ebp*1+00000000] ;nop
NOP8_EBP TEXTEQU <DB 08Dh,02Ch,02Dh,0,0,0,0,90h> 

;JMP
NOP9 TEXTEQU <DB 0EBh,007h,90h,90h,90h,90h,90h,90h,90h>
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5
Cache and Memory 
Optimizations
This chapter describes code optimization techniques that take
advantage of the large L1 caches and high-bandwidth buses of
the AMD Athlon™ processor. Guidelines are listed in order of
importance.

Memory Size and Alignment Issues

Avoid Memory Size Mismatches

Avoid memory size mismatches when instructions operate on
the same data. For instructions that store and reload the same
data, keep operands aligned and keep the loads/stores of each
operand the same size. The following code examples result in a
store-to-load-forwarding (STLF) stall:

Example 1 (Avoid):  
MOV   DWORD PTR [FOO], EAX
MOV   DWORD PTR [FOO+4], EDX
FLD   QWORD PTR [FOO]

Avoid large-to-small mismatches, as shown in the following
code:

Example 2 (Avoid):   
FST   QWORD PTR [FOO]
MOV   EAX, DWORD PTR [FOO]
MOV   EDX, DWORD PTR [FOO+4]

✩TOP
Chapter 5 Cache and Memory Optimizations 37



AMD Athlon™ Processor x86 Code Optimization 22007D/0—August 1999

Preliminary Information
Align Data Where Possible

In general, avoid misaligned data references. All data whose
size is a power of 2 is considered aligned if it is naturally
aligned. For example:

■ QWORD accesses are aligned if they access an address
divisible by 8.

■ DWORD accesses are aligned if they access an address
divisible by 4.

■ WORD accesses are aligned if they access an address
divisible by 2.

■ TBYTE accesses are aligned if they access an address
divisible by 8.

A misaligned store or load operation suffers a minimum
one-cycle penalty in the AMD Athlon processor load/store
pipeline. In addition, using misaligned loads and stores
increases the likelihood of encountering a store-to-load
forwarding pitfall. For a more detailed discussion of store-to-
load forwarding issues, see “Store-to-Load Forwarding
Restrictions” on page 42.

Use the 3DNow!™ PREFETCH and PREFETCHW Instructions

For code that can take advantage of prefetching, use the
3DNow! PREFETCH and PREFETCHW instructions to
increase the effective bandwidth to the AMD Athlon processor.
The PREFETCH and PREFETCHW instructions take
advantage of the AMD Athlon processor’s high bus bandwidth
to hide long latencies when fetching data from system memory.
Large data sets typically require unit-stride access to ensure
that all data pulled in by PREFETCH or PREFETCHW is
actually used. If necessary, algorithms or data structures should
be reorganized to allow unit-stride access.

PREFETCH/W versus 
PREFETCHNTA/T0/T1
/T2

The PREFETCHNTA/T0/T1/T2 instructions in the MMX
extensions are processor implementation dependent. To
maintain compatibility with the 25 million AMD-K6®-2 and
AMD-K6-III  processors already sold,  use the 3DNow!
PREFETCH/W instructions instead of the various prefetch
flavors in the new MMX extensions. 

✩TOP

✩TOP
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PREFETCHW Usage Code that intends to modify the cache line brought in through
prefetching should use the PREFETCHW instruction. While
PREFETCHW works the same as a PREFETCH on the
AMD-K6-2 and AMD-K6-III processors, PREFETCHW gives a
hint to the AMD Athlon processor of an intent to modify the
cache line. The AMD Athlon processor will mark the cache line
being brought in by PREFETCHW as Modified. Using
PREFETCHW can save an additional 15-25 cycles compared to
a PREFETCH and the subsequent cache state change caused by
a write to the prefetched cache line.

Multiple Prefetches Programmers can initiate multiple outstanding prefetches on
the AMD Athlon processor.  While the AMD-K6-2 and
AMD-K6-III processors can have only one outstanding prefetch,
the AMD Athlon processor can have up to six outstanding
prefetches. For example, when traversing more than one array,
the programmer should initiate multiple prefetches.

Example (Multiple Prefetches):  
.CODE
.K3D

; original C code
;
; #define LARGE_NUM 65536
;
; double array_a[LARGE_NUM];
; double array b[LARGE_NUM];
; double array c[LARGE_NUM];
; int i;
;
; for (i = 0; i < LARGE_NUM; i++) {
;    a[i] = b[i] * c[i]
; }

MOV ECX, (-LARGE_NUM) ;used biased index
MOV EAX, OFFSET array_a ;get address of array_a  
MOV EDX, OFFSET array_b ;get address of array_b
MOV ECX, OFFSET array_c ;get address of array_c

$loop:    

PREFETCHW [EAX+196] ;two cachelines ahead
PREFETCH [EDX+196] ;two cachelines ahead
PREFETCH [ECX+196] ;two cachelines ahead
FLD QWORD PTR [EDX+ECX*8+ARR_SIZE] ;b[i]
FMUL QWORD PTR [ECX+ECX*8+ARR_SIZE] ;b[i]*c[i]
FSTP QWORD PTR [EAX+ECX*8+ARR_SIZE] ;a[i] = b[i]*c[i]
FLD QWORD PTR [EDX+ECX*8+ARR_SIZE+8] ;b[i+1]
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FMUL QWORD PTR [ECX+ECX*8+ARR_SIZE+8] ;b[i+1]*c[i+1]
FSTP QWORD PTR [EAX+ECX*8+ARR_SIZE+8] ;a[i+1] =

; b[i+1]*c[i+1]
FLD QWORD PTR [EDX+ECX*8+ARR_SIZE+16];b[i+2]
FMUL QWORD PTR [ECX+ECX*8+ARR_SIZE+16];b[i+2]*c[i+2]
FSTP QWORD PTR [EAX+ECX*8+ARR_SIZE+16];a[i+2] =

; [i+2]*c[i+2]
FLD QWORD PTR [EDX+ECX*8+ARR_SIZE+24];b[i+3]
FMUL QWORD PTR [ECX+ECX*8+ARR_SIZE+24];b[i+3]*c[i+3]
FSTP QWORD PTR [EAX+ECX*8+ARR_SIZE+24];a[i+3] =

; b[i+3]*c[i+3]
FLD QWORD PTR [EDX+ECX*8+ARR_SIZE+32];b[i+4]
FMUL QWORD PTR [ECX+ECX*8+ARR_SIZE+32];b[i+4]*c[i+4]
FSTP QWORD PTR [EAX+ECX*8+ARR_SIZE+32];a[i+4] =

; b[i+4]*c[i+4]
FLD QWORD PTR [EDX+ECX*8+ARR_SIZE+40];b[i+5]
FMUL QWORD PTR [ECX+ECX*8+ARR_SIZE+40];b[i+5]*c[i+5]
FSTP QWORD PTR [EAX+ECX*8+ARR_SIZE+40];a[i+5] =

; b[i+5]*c[i+5]
FLD QWORD PTR [EDX+ECX*8+ARR_SIZE+48];b[i+6]
FMUL QWORD PTR [ECX+ECX*8+ARR_SIZE+48];b[i+6]*c[i+6]
FSTP QWORD PTR [EAX+ECX*8+ARR_SIZE+48];a[i+6] =

; b[i+6]*c[i+6]
FLD QWORD PTR [EDX+ECX*8+ARR_SIZE+56];b[i+7]
FMUL QWORD PTR [ECX+ECX*8+ARR_SIZE+56];b[i+7]*c[i+7]
FSTP QWORD PTR [EAX+ECX*8+ARR_SIZE+56];a[i+7] =

; b[i+7]*c[i+7]
ADD ECX, 8 ;next 8 products
JNZ $loop ;until none left

END

The following optimization rules were applied to this example. 

■ Loops should be unrolled to make sure that the data stride
per loop iteration is equal to the length of a cache line. This
avoids overlapping PREFETCH instructions and thus
optimal use of the available number of outstanding
PREFETCHes. 

■ Since the array "array_a" is written rather than read,
PREFETCHW is used instead of PREFETCH to avoid
overhead for switching cache lines to the correct MESI
state. The PREFETCH lookahead has been optimized such
that each loop iteration is working on three cache lines
while six active PREFETCHes bring in the next six cache
lines.

■ Index arithmetic has been reduced to a minimum by use of
complex addressing modes and biasing of the array base
addresses in order to cut down on loop overhead.
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Determining Prefetch 
Distance

Given the latency of a typical AMD Athlon processor system
and expected processor speeds, the following formula should be
used to determine the prefetch distance in bytes:

Prefetch Distance = 200 (DS/C) bytes

■ Round up to the nearest 64-byte cache line.

■ The number 200 is a constant that is based upon expected
AMD Athlon processor clock frequencies and typical system
memory latencies. 

■ DS is the data stride in bytes per loop iteration.

■ C is the number of cycles for one loop to execute entirely
from the L1 cache.

Prefetch at Least 64 
Bytes Away from 
Surrounding Stores

The PREFETCH and PREFETCHW instructions can be
affected by false dependencies on stores. If there is a store to an
address that matches a request, that request (the PREFETCH
or PREFETCHW instruction) may be blocked until the store is
written to the cache. Therefore, code should prefetch data that
is located at least 64 bytes away from any surrounding store’s
data address.

Take Advantage of Write Combining

Operating system and device driver programmers should take
advantage of the write-combining capabilit ies of the
AMD Athlon processor. The AMD Athlon processor has a very
aggressive write-combining algorithm, which improves
performance significantly. 

See Appendix C, “Implementation of Write Combining” on
page 135 for more details.

✩TOP
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Avoid Placing Code and Data in the Same 64-Byte Cache 
Line

Sharing code and data in the same 64-byte cache line may cause
the L1 caches to thrash (unnecessary castout of code/data) in
order to maintain coherency between the separate instruction
and data caches. The AMD Athlon processor has a cache-line
size of 64-bytes, which is twice the size of previous processors.
Programmers must be aware that code and data should not be
shared within this larger cache line, especially if the data
becomes modified.

For example, programmers should consider that a memory
indirect JMP instruction may have the data for the jump table
residing in the same 64-byte cache line as the JMP instruction,
which would result in lower performance.

Although rare, do not place critical code at the border between
32-byte aligned code segments and a data segments. The code
at the start or end of your data segment should be as rarely
executed as possible or simply padded with garbage. 

In general, the following should be avoided:

■ self-modifying code

■ storing data in code segments

Store-to-Load Forwarding Restrictions

Store-to-load forwarding refers to the process of a load reading
(forwarding) data from the store buffer (LS2). There are
instances in the AMD Athlon processor load/store architecture
when either a load operation is not allowed to read needed data
from a store in the store buffer, or a load OP detects a false data
dependency on a store in the store buffer.

In either case, the load cannot complete (load the needed data
into a register) until the store has retired out of the store buffer
and written to the data cache. A store-buffer entry cannot retire
and write to the data cache until every instruction before the
store has completed and retired from the reorder buffer.

✩TOP
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The implication of this restriction is that all instructions in the
reorder buffer, up to and including the store, must complete
and retire out of the reorder buffer before the load can
complete. Effectively, the load has a false dependency on every
instruction up to the store.

The following sections discuss store-to-load forwarding
examples that are acceptable and those that should be avoided.

Store-to-Load Forwarding Pitfalls—True Dependencies

A load is allowed to read data from the store-buffer entry only if
all of the following conditions are satisfied:

■ The start address of the load matches the start address of
the store.

■ The load operand size is equal to or smaller than the store
operand size.

■ Neither the load or store is misaligned.

■ The store data is not from a high-byte register (AH, BH, CH,
or DH).

The following sections describe common-case scenarios to avoid
whereby a load has a true dependency on a LS2-buffered store
but cannot read (forward) data from a store-buffer entry.

Narrow-to-Wide 
Store-Buffer Data 
Forwarding 
Restriction

I f  the  fo l lowing condit ions  are  present ,  there  is  a
narrow-to-wide store-buffer data forwarding restriction:

■ The operand size of the store data is smaller than the
operand size of the load data.

■ The range of addresses spanned by the store data covers
some sub-region of range of addresses spanned by the load
data.

Avoid the type of code shown in the following two examples.

Example 1 (Avoid):  
MOV EAX, 10h
MOV WORD PTR [EAX], BX ;word store
...
MOV ECX, DWORD PTR [EAX] ;doubleword load

;cannot forward upper
; byte from store buffer
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Example 2 (Avoid):  
MOV EAX, 10h
MOV BYTE PTR [EAX + 3], BL ;byte store
...
MOV ECX, DWORD PTR [EAX]  ;doubleword load

  ;cannot forward upper byte
  ; from store buffer

Wide-to-Narrow 
Store-Buffer Data 
Forwarding 
Restriction

I f  the  fo l lowing condit ions  are  present ,  there  is  a
wide-to-narrow store-buffer data forwarding restriction:

■ The operand size of the store data is greater than the
operand size of the load data.

■ The start address of the store data does not match the start
address of the load.

Example 3 (Avoid):  
MOV EAX, 10h
ADD DWORD PTR [EAX], EBX ;doubleword store
MOV CX, WORD PTR [EAX + 2] ;word load-cannot forward high

; word from store buffer

Use Example 5 instead of Example 4.

Example 4 (Avoid):  
MOVQ       [foo], MM1    ;store upper and lower half
...
ADD        EAX, [foo]    ;fine
ADD        EDX, [foo+4]  ;uh-oh!

Example 5 (Preferred):  
MOVD       [foo], MM1    ;store lower half
PUNPCKHDQ  MM1, MM1      ;get upper half into lower half
MOVD       [foo+4], MM1  ;store lower half
...
ADD        EAX, [foo]    ;fine
ADD        EDX, [foo+4]  ;fine

Misaligned 
Store-Buffer Data 
Forwarding 
Restriction

If the following condition is present, there is a misaligned
store-buffer data forwarding restriction:

■ The store or load address is misaligned. For example, a
quadword store is not aligned to a quadword boundary, a
doubleword store is not aligned to doubleword boundary,
etc.

A common case of misaligned store-data forwarding involves
the passing of misaligned quadword floating-point data on the
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doubleword-aligned integer stack. Avoid the type of code shown
in the following example.

Example 6 (Avoid):  
MOV ESP, 24h
FSTP QWORD PTR [ESP] ;esp=24
. ;store occurs to quadword
. ; misaligned address
.
FLD QWORD PTR[ESP] ;quadword load cannot forward

; from quadword misaligned
; ‘fstp[esp]’ store OP

High-Byte 
Store-Buffer Data 
Forwarding 
Restriction

If the following condition is present, there is a high-byte
store-data buffer forwarding restriction:

■ The store data is from a high-byte register (AH, BH, CH,
DH).

Avoid the type of code shown in the following example.

Example 7 (Avoid):  
MOV EAX, 10h
MOV [EAX], BH ;high-byte store
.
MOV DL, [EAX] ;load cannot forward from

; high-byte store

One Supported Store-
to-Load Forwarding 
Case

There is one case of a mismatched store-to-load forwarding that
is supported by the by AMD Athlon processor. The lower 32 bits
from an aligned QWORD write feeding into a DWORD read is
allowed.

Example 8 (Allowed):  
MOVQ   [AlignedQword], mm0
...
MOV    EAX, [AlignedQword]

Summary of Store-to-Load Forwarding Pitfalls to Avoid

To avoid store-to-load forwarding pitfalls, code should conform
to the following guidelines:

■ Maintain consistent use of operand size across all loads and
stores. Preferably, use doubleword or quadword operand
sizes.

■ Avoid misaligned data references.

■ Avoid narrow-to-wide and wide-to-narrow forwarding cases.
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■ When using word or byte stores, avoid loading data from
anywhere in the same doubleword of memory other than the
identical start addresses of the stores.

Stack Alignment Considerations

Make sure the stack is suitably aligned for the local variable
with the largest base type. Then, using the technique described
in “C Language Structure Component Considerations” on page
47, all variables can be properly aligned with no padding.

Extend to 32 Bits 
Before Pushing onto 
Stack

Function arguments smaller than 32 bits should be extended to
32 bits before being pushed onto the stack, which ensures that
the stack is always doubleword aligned on entry to a function.

If a function has no local variables with a base type larger than
doubleword, no further work is necessary. If the function does
have local variables whose base type is larger than a
doubleword, additional code should be inserted to ensure
proper alignment of the stack. For example, the following code
achieves quadword alignment:

Example (Preferred):  
Prolog: 
PUSH EBP         
MOV EBP, ESP
AND ESP, –8
SUB ESP, SIZE_OF_LOCALS ;size of local variables

;push registers that need to be preserved

Epilog: ;pop register that needed to be preserved
MOV ESP, EBP
POP EBP
RET

With this technique, function arguments can be accessed via
EBP, and local variables can be accessed via ESP. In order to
free EBP for general use, it needs to be saved and restored
between the prolog and the epilog.
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Align TBYTE Variables on Quadword Aligned Addresses

Align variables of type TBYTE on quadword aligned addresses.
In order to make an array of TBYTE variables that are aligned,
array elements are 16-bytes apart. In general, TBYTE variables
should be avoided. Use double-precision variables instead.

C Language Structure Component Considerations

Structures (‘struct’ in C language) should be made the size of a
multiple of the largest base type of any of their components. To
meet this requirement, padding should be used where
necessary.

Language definitions permitting, to minimize padding,
structure components should be sorted and allocated such that
the components with a larger base type are allocated ahead of
those with a smaller base type. For example, consider the
following code:

Example:  
struct {

char a[5];
long k;
doublex;
} baz;

The structure components should be allocated (lowest to
highest address) as follows:

x, k, a[4], a[3], a[2], a[1], a[0], padbyte6, ..., padbyte0

See “C Language Structure Component Considerations” on
page 21 for more information from a C source code perspective.

Sort Variables According to Base Type Size

Sort local variables according to their base type size and
allocate variables with larger base type size ahead of those with
smaller base type size. Assuming the first variable allocated is
naturally aligned, all other variables are naturally aligned
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without any padding. The following example is a declaration of
local variables in a C function:

Example:  
short ga, gu, gi;
long foo, bar;
double x, y, z[3];
char a, b;
float baz;

Allocate in the following order from left to right (from higher to
lower addresses):

x, y, z[2], z[1], z[0], foo, bar, baz, ga, gu, gi, a, b;

See “Sort Local Variables According to Base Type Size” on page
22 for more information from a C source code perspective.
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6
Branch Optimizations
While  the  AMD Athlon™ processor  contains  a  very
sophisticated branch unit, certain optimizations increase the
effectiveness of the branch prediction unit. This chapter
discusses rules that improve branch prediction and minimize
branch penalties. Guidelines are listed in order of importance.

Avoid Branches Dependent on Random Data

Avoid conditional branches depending on random data, as these
are difficult to predict. For example, a piece of code receives a
random stream of characters “A” through “Z” and branches if
the character is before “M” in the collating sequence.
Data-dependent branches acting upon basically random data
causes the branch prediction logic to mispredict the branch
about 50% of the time. 

If possible, design branch-free alternative code sequences,
which results in shorter average execution time. This technique
is especially important if the branch body is small. Examples 1
and 2 illustrate this concept using the CMOV instruction. Note
that the AMD-K6® processor does not support the CMOV
instruction. Therefore, blended AMD-K6 and AMD Athlon
processor code should use Examples 3 and 4.

✩TOP
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AMD Athlon™ Processor Specific Code

Example 1 — Signed integer ABS function (X = labs(X)):  
MOV ECX, [X] ;load value
MOV EBX, ECX ;save value
NEG ECX ;–value
CMOVS ECX, EBX ;if –value is negative, select value
MOV [X], ECX ;save labs result

Example 2 — Unsigned integer min function (z = x < y ? x : y):  
MOV EAX, [X] ;load X value
MOV EBX, [Y] ;load Y value
CMP EAX, EBX ;EBX<=EAX ? CF=0 : CF=1
CMOVNC EAX, EBX ;EAX=(EBX<=EAX) ? EBX:EAX
MOV [Z], EAX ;save min (X,Y)

Blended AMD-K6® and AMD Athlon™ Processor Code

Example 3 — Signed integer ABS function (X = labs(X)):  
MOV    ECX, [X]    ;load value
MOV    EBX, ECX    ;save value
SAR    ECX, 31 ;x < 0 ? 0xffffffff : 0
XOR    EBX, ECX    ;x < 0 ? ~x : x
SUB    EBX, ECX    ;x < 0 ? (~x)+1 : x
MOV    [X], EBX    ;x < 0 ? -x : x

Example 4 — Unsigned integer min function (z = x < y ? x : y):  
MOV    EAX, [x]    ;load x
MOV    EBX, [y]    ;load y
SUB    EAX, EBX    ;x < y ? CF : NC ; x - y
SBB    ECX, ECX    ;x < y ? 0xffffffff : 0
AND    ECX, EAX    ;x < y ? x - y : 0
ADD    ECX, EBX    ;x < y ? x - y + y : y
MOV    [z], ECX    ;x < y ? x : y 

Example 5 — Hexadecimal to ASCII conversion 
(y=x < 10 ? x + 0x30: x + 0x41):  
MOV AL, [X] ;load X value
CMP AL, 10 ;if x is less than 10, set carry flag
SBB AL, 69h ;0..9 –> 96h, Ah..Fh –> A1h...A6h
DAS ;0..9: subtract 66h, Ah..Fh: Sub. 60h
MOV [Y],AL ;save conversion in y
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Example 6 — Increment Ring Buffer Offset:  
//C Code
char buf[BUFSIZE];
   int a;

   if (a < (BUFSIZE-1)) {
      a++;
   } else {
      a = 0;
   }   

;-------------
;Assembly Code
MOV     EAX, [a]          ; old offset
CMP     EAX, (BUFSIZE-1)  ; a < (BUFSIZE-1) ? CF : NC
INC     EAX               ; a++
SBB     EDX, EDX          ; a < (BUFSIZE-1) ? 0xffffffff :0
AND     EAX, EDX          ; a < (BUFSIZE-1) ? a++ : 0  
MOV     [a], EAX          ; store new offset

Example 7 — Integer Signum Function:  
//C Code
int a, s;

if (!a) {
      s = 0;
} else if (a < 0) {
      s = -1;
} else {
      s = 1;
}

;-------------
;Assembly Code
MOV     EAX, [a]         ;load a
CDQ                      ;t = a < 0 ? 0xffffffff : 0
CMP     EDX, EAX         ;a > 0 ? CF : NC
ADC     EDX, 0           ;a > 0 ? t+1 : t
MOV     [s], EDX         ;signum(x)

Always Pair CALL and RETURN

When the 12  entry return address  s tack gets  out  of
synchronization, the latency of returns increase. The return
address stack becomes out of sync when:

■ calls and returns do not match

■ the depth of the return stack is exceeded because of too 
many levels of nested functions calls
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Replace Branches with Computation in 3DNow!™ Code
Branches negatively impact the performance of 3DNow! code.
Branches can operate only on one data item at a time, i.e., they
are inherently scalar and inhibit the SIMD processing that
makes 3DNow! code superior. Also, branches based on 3DNow!
comparisons require data to be passed to the integer units,
which requires either transport through memory, or the use of
“MOVD reg, MMreg” instructions. If the body of the branch is
small, one can achieve higher performance by replacing the
branch with computation. The computation simulates
predicated execution or conditional moves. The principal tools
for this are the following instructions: PCMPGT, PFCMPGT,
PFCMPGE, PFMIN, PFMAX, PAND, PANDN, POR, PXOR.

Muxing Constructs

The most important construct to avoiding branches in
3DNow!™ and MMX™ code is a 2-way muxing construct that is
equivalent to the ternary operator “?:” in C and C++. It is
implemented using the PCMP/PFCMP, PAND, PANDN, and
POR instructions. To maximize performance, it is important to
apply the PAND and PANDN instructions in the proper order.

Example 1 (Avoid):  
; r = (x < y) ? a : b
;
; in:  mm0  a
;      mm1  b
;      mm2  x
;      mm3  y
; out: mm1  r

PCMPGTD  MM3, MM2   ; y > x ? 0xffffffff : 0
MOVQ     MM4, MM3   ; duplicate mask
PANDN    MM3, MM0   ; y > x ? 0 : a
PAND     MM1, MM4   ; y > x ? b : 0
POR      MM1, MM3   ; r = y > x ? b : a

Because the use of PANDN destroys the mask created by PCMP,
the mask needs to be saved, which requires an additional
register. This adds an instruction, lengthens the dependency
chain, and increases register pressure. Therefore 2-way muxing
constructs should be written as follows.
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Example 2 (Preferred):  
; r = (x < y) ? a : b
;
; in:  mm0  a
;      mm1  b
;      mm2  x
;      mm3  y
; out: mm1  r

PCMPGTD  MM3, MM2   ; y > x ? 0xffffffff : 0
PAND     MM1, MM3   ; y > x ? b : 0
PANDN    MM3, MM0   ; y > x > 0 : a
POR      MM1, MM3   ; r = y > x ? b : a   "

Sample Code Translated Into 3DNow!™ Code

The following examples use scalar code translated into 3DNow!
code. Note that it is not recommended to use 3DNow! SIMD
instructions for scalar code, because the advantage of 3DNow!
instructions lies in their “SIMDness”. These examples are
meant to demonstrate general techniques for translating source
code with branches into branchless 3DNow! code. Scalar source
code was chosen to keep the examples simple. These techniques
work in an identical fashion for vector code.

Each example shows the C code and the resulting 3DNow! code.

Example 1: C code:  
float x,y,z;
if (x < y) {

z += 1.0;
}
else {

z -= 1.0;
}

3DNow! code:  
;in: MM0 = x
; MM1 = y
; MM2 = z
;out: MM0 = z
MOVQ MM3, MM0    ;save x
MOVQ MM4, one    ;1.0
PFCMPGE MM0, MM1    ;x < y ? 0 : 0xffffffff
PSLLD MM0, 31     ;x < y ? 0 : 0x80000000
PXOR MM0, MM4    ;x < y ? 1.0 : -1.0
PFADD MM0, MM2    ;x < y ? z+1.0 : z-1.0
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Example 2: C code:  
float x,z;
z = abs(x);
if (z >= 1) {

z = 1/z;
}

3DNow! code:  
;in:  MM0 = x
;out: MM0 = z
MOVQ MM5, mabs  ;0x7fffffff
PAND MM0, MM5   ;z=abs(x)
PFRCP MM2, MM0   ;1/z approx
MOVQ MM1, MM0   ;save z
PFRCPIT1 MM0, MM2   ;1/z step
PFRCPIT2 MM0, MM2   ;1/z final
PFMIN MM0, MM1   ;z = z < 1 ? z : 1/z

Example 3: C code:  
float x,z,r,res; 
z = fabs(x)
if (z < 0.575) {
     res = r;
}
else {
     res = PI/2 - 2*r;
}

3DNow! code:  
;in: MM0 = x
; MM1 = r
;out: MM0 = res
MOVQ    MM7, mabs ;mask for absolute value
PAND    MM0, MM7  ;z = abs(x)
MOVQ    MM2, bnd  ;0.575
PCMPGTD MM2, MM0  ;z < 0.575 ? 0xffffffff : 0
MOVQ    MM3, pio2 ;pi/2
MOVQ    MM0, MM1  ;save r
PFADD   MM1, MM1  ;2*r
PFSUBR  MM1, MM3  ;pi/2 - 2*r
PAND    MM0, MM2  ;z < 0.575 ? r : 0
PANDN   MM2, MM1  ;z < 0.575 ? 0 : pi/2 - 2*r
POR     MM0, MM2  ;z < 0.575 ? r : pi/2 - 2 * r
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Example 4: C code:  
#define PI 3.14159265358979323
float x,z,r,res;
/* 0 <= r <= PI/4 */
z = abs(x)
if (z < 1) {
     res = r;
}
else {
     res = PI/2-r;
}

3DNow! code:  
;in: MM0 = x
; MM1 = r
;out: MM1 = res
MOVQ MM5, mabs  ; mask to clear sign bit
MOVQ MM6, one   ; 1.0
PAND MM0, MM5   ; z=abs(x)
PCMPGTD MM6, MM0   ; z < 1 ? 0xffffffff : 0
MOVQ MM4, pio2  ; pi/2
PFSUB MM4, MM1   ; pi/2-r
PANDN MM6, MM4   ; z < 1 ? 0 : pi/2-r
PFMAX MM1, MM6   ; res = z < 1 ? r : pi/2-r

Example 5: C code:  
#define PI 3.14159265358979323
float x,y,xa,ya,r,res;
int   xs,df;
xs = x < 0 ? 1 : 0;
xa = fabs(x);
ya = fabs(y);
df = (xa < ya);
if (xs && df) {
     res = PI/2 + r;
}
else if (xs) {
     res = PI - r;
}
else if (df) {
     res = PI/2 - r;
}
else {
     res = r;
}
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3DNow! code:  
;in: MM0 = r
; MM1 = y
; MM2 = x
;out: MM0 = res
MOVQ MM7, sgn ;mask to extract sign bit
MOVQ MM6, sgn ;mask to extract sign bit
MOVQ MM5, mabs ;mask to clear sign bit
PAND MM7, MM2 ;xs = sign(x)
PAND MM1, MM5 ;ya = abs(y)
PAND MM2, MM5 ;xa = abs(x)
MOVQ MM6, MM1 ;y
PCMPGTD MM6, MM2 ;df = (xa < ya) ? 0xffffffff : 0
PSLLD MM6, 31 ;df = bit<31>
MOVQ MM5, MM7 ;xs
PXOR MM7, MM6 ;xs^df ? 0x80000000 : 0
MOVQ MM3, npio2 ;-pi/2
PXOR MM5, MM3 ;xs ? pi/2 : -pi/2
PSRAD MM6, 31 ;df ? 0xffffffff : 0
PANDN MM6, MM5 ;xs ? (df ? 0 : pi/2) : (df ? 0 : -pi/2)
PFSUB MM6, MM3 ;pr = pi/2 + (xs ? (df ? 0 : pi/2) : 

; (df ? 0 : -pi/2))
POR MM0, MM7 ;ar = xs^df ? -r : r
PFADD MM0, MM6 ;res = ar + pr

Avoid the Loop Instruction

The LOOP instruction in the AMD Athlon processor requires
eight cycles to execute. Use the preferred code shown below:

Example 1 (Avoid):  
LOOP LABEL

Example 2 (Preferred):  
DEC ECX
JNZ LABEL

Avoid Far Control Transfer Instructions

Avoid using far control transfer instructions. Far control
transfer branches can not be predicted by the branch target
buffer (BTB).
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Avoid Recursive Functions

Avoid recursive functions due to the danger of overflowing the
return address stack. Convert end-recursive functions to
iterative code. An end-recursive function is when the function
call to itself is at the end of the code. 

Example 1 (Avoid):  
long fac(long a)
{

if (a==0) {
return (1);

} else {
return (a*fac(a–1));

}
return (t);

}

Example 2 (Preferred):  
long fac(long a)
{

long t=1;
while (a > 0) {

t *= a;
a--;

}
return (t);

}
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7
Scheduling Optimizations
This chapter describes how to code instructions for efficient
scheduling. Guidelines are listed in order of importance.

Schedule Instructions According to Their Latency

The AMD Athlon™ processor can execute up to three x86
instructions per cycle, with each x86 instruction possibly having
a different latency. The AMD Athlon processor has flexible
scheduling, but for absolute maximum performance, schedule
instructions, especially FPU and 3DNow! instructions,
according to their latency. Dependent instructions will then not
have to wait on instructions with longer latencies.

See Appendix D, “Instruction Dispatch and Execution Timing”
on page 141 for a list of latency numbers.

Unrolling Loops

Complete Loop Unrolling

Make use of the large AMD Athlon processor 64-Kbyte
instruction cache and unroll loops to get more parallelism and
reduce loop overhead, even with branch prediction. Complete
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unrolling reduces register pressure by removing the loop
counter. To completely unroll a loop, remove the loop control
and replicate the loop body N times. In addition, completely
unrolling a loop increases scheduling opportunities. 

Only unrolling very large code loops can result in the inefficient
use of the L1 instruction cache. Loops can be unrolled
completely, if all of the following conditions are true:

■ The loop is in a frequently executed piece of code.

■ The loop count is known at compile time.

■ The loop body, once unrolled, is less than 100 instructions,
which is approximately 400 bytes of code.

Partial Loop Unrolling

Partial loop unrolling can increase register pressure, which can
make it inefficient due to the small number of registers in the
x86 architecture. However, in certain situations, partial
unrolling can be efficient due to the performance gains
possible. Partial loop unrolling should be considered if the
following conditions are met:

■ Spare registers are available

■ The loop body is small, so that loop overhead is significant

■ The number of loop iterations is likely > 10

Consider the following piece of C code:

double a[MAX_LENGTH], b[MAX_LENGTH];

   for (i=0; i< MAX_LENGTH; i++) {
      a[i] = a[i] + b[i];
   }

Without loop unrolling, the code looks like the following:
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Without Loop Unrolling:  
MOV ECX, MAX_LENGTH
MOV EAX, OFFSET A
MOV EBX, OFFSET B

$add_loop:
FLD QWORD PTR [EAX]
FADD QWORD PTR [EBX]
FSTP QWORD PTR [EAX]
ADD EAX, 8
ADD EBX, 8
DEC ECX
JNZ $add_loop

The loop consists of seven instructions. The AMD Athlon
processor can decode/retire three instructions per cycle, so it
cannot execute faster than three iterations in seven cycles, or
3/7 floating-point adds per cycle. However, the pipelined
floating-point adder allows one add every cycle. In the following
code, the loop is partially unrolled by a factor of two, which
creates potential endcases that must be handled outside the
loop:

With Partial Loop Unrolling:  
MOV ECX, MAX_LENGTH
MOV EAX, offset A
MOV EBX, offset B
SHR ECX, 1
JNC $add_loop
FLD QWORD PTR [EAX]
FADD QWORD PTR [EBX]
FSTP QWORD PTR [EAX]
ADD EAX, 8
ADD EBX, 8
   
$add_loop:
FLD QWORD PTR[EAX]
FADD QWORD PTR[EBX]
FSTP QWORD PTR[EAX]
FLD QWORD PTR[EAX+8]
FADD QWORD PTR[EBX+8]
FSTP QWORD PTR[EAX+8]
ADD EAX, 16
ADD EBX, 16
DEC ECX
JNZ $add_loop   

Now the loop consists of 10 instructions. Based on the
decode/retire bandwidth of three OPs per cycle, this loop goes
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no faster  than three i terat ions  in  10 cycles ,  or  6 /10
floating-point adds per cycle, or 1.4 times as fast as the original
loop. 

Deriving Loop 
Control For Partially 
Unrolled Loops

A frequently used loop construct is a counting loop. In a typical
case, the loop count starts at some lower bound lo, increases by
some fixed, positive increment inc for each iteration of the
loop, and may not exceed some upper bound hi. The following
example shows how to partially unroll such a loop by an
unrolling factor of fac, and how to derive the loop control for
the partially unrolled version of the loop.

Example 1 (rolled loop):  
 for (k = lo; k <= hi; k += inc) {
    x[k] = 
    ...
 }

Example 2 (partially unrolled loop):  
 for (k = lo; k <= (hi - (fac-1)*inc); k += fac*inc) {
    x[k] =
    ...
    x[k+inc] =
    ...
    ...
    x[k+(fac-1)*inc] =
    ...
 }  

 /* handle end cases */

 for (k = k; k <= hi; k += inc) {
    x[k] =
    ...
 }

Use Function Inlining

Overview

Make use of the AMD Athlon processor’s large 64-Kbyte
instruction cache by inlining small routines to avoid
procedure-call overhead. Consider the cost of possible
increased register usage, which can increase load/store
instructions for register spilling.
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Function inlining has the advantage of eliminating function call
overhead and allowing better register allocation and
instruction scheduling at the site of the function call. The
disadvantage is decreasing code locality, which can increase
execution time due to instruction cache misses. Therefore,
function inlining is an optimization that has to be used
judiciously. 

In general, due to its very large instruction cache, the
AMD Athlon processor is less susceptible than other processors
to the negative side effect of function inlining. Function call
overhead on the AMD Athlon processor can be low because
calls and returns are executed at high speed due to the use of
prediction mechanisms. However, there is still overhead due to
passing function arguments through memory, which creates
STLF (store-to-load-forwarding) dependencies. Some compilers
allow for a reduction of this overhead by allowing arguments to
be passed in registers in one of their calling conventions, which
has the drawback of constraining register allocation in the
function and at the site of the function call.

In general, function inlining works best if the compiler can
utilize feedback from a profiler to identify the function call
sites most frequently executed. If such data is not available, a
reasonable heuristic is to concentrate on function calls inside
loops. Functions that are directly recursive should not be
considered candidates for inlining. However, if they are
end-recursive, the compiler should convert them to an iterative
equivalent to avoid potential overflow of the AMD Athlon
processor return prediction mechanism (return stack) during
deep recursion. For best results, a compiler should support
function inlining across multiple source files. In addition, a
compiler should provide inline templates for commonly used
library functions, such as sin(), strcmp(), or memcpy().

Always Inline Functions If Called From One Site

A function should always be inlined if it can be established that
it is called from just one site in the code. For the C language,
determination of this characteristic is made easier if functions
are explicitly declared static unless they require external
linkage. This case occurs quite frequently, as functionality that
could be concentrated in a single large function is split across
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multiple small functions for improved maintainability and
readability. 

Always Inline Functions with Fewer Than 25 Machine Instructions

In addition, functions that create fewer than 25 machine
instructions once inlined should always be inlined because it is
likely that the function call overhead is close to or more than
the time spent executing the function body. For large functions,
the benefits of  reduced function call  overhead gives
diminishing returns. Therefore, a function that results in the
insertion of more than 500 machine instructions at the call site
should probably not be inlined. Some larger functions might
consist of multiple, relatively short paths that are negatively
affected by function overhead. In such a case, it can be
advantageous to inline larger functions. Profiling information is
the best guide in determining whether to inline such large
functions.

Avoid Address Generation Interlocks

Loads and stores are scheduled by the AMD Athlon processor to
access the data cache in program order. Newer loads and stores
with their addresses calculated can be blocked by older loads
and stores whose addresses are not yet calculated – this is
known as an address generation interlock. Therefore, it is
advantageous to schedule loads and stores that can calculate
their addresses quickly, ahead of loads and stores that require
the resolution of a long dependency chain in order to generate
their addresses. Consider the following code examples.

Example 1 (Avoid):  
ADD EBX, ECX          ;inst 1
MOV EAX, DWORD PTR [10h]     ;inst 2 (fast address calc.)
MOV ECX, DWORD PTR [EAX+EBX] ;inst 3 (slow address calc.)
MOV EDX, DWORD PTR [24h]     ;this load is stalled from 

           ; accessing data cache due
           ; to long latency for 

 ; generating address for
 ; inst 3
64 Scheduling Optimizations Chapter 7



22007D/0—August 1999 AMD Athlon™ Processor x86 Code Optimization

Preliminary Information
Example 2 (Preferred):  
ADD EBX, ECX            ;inst 1
MOV EAX, DWORD PTR [10h]     ;inst 2
MOV EDX, DWORD PTR [24h]     ;place load above inst 3 

           ; to avoid address
           ; generation interlock stall

MOV ECX, DWORD PTR [EAX+EBX] ;inst 3

Use MOVZX and MOVSX

Use the MOVZX and MOVSX instructions to zero-extend and
sign-extend byte-size and word-size operands to doubleword
length. For example, typical code for zero extension creates a
superset dependency when the zero-extended value is used, as
in the following code:

Example 1 (Avoid):  
XOR EAX, EAX
MOV AL, [MEM]

Example 2 (Preferred):  
MOVZX EAX, BYTE PTR [MEM] 

Minimize Pointer Arithmetic in Loops

Minimize pointer arithmetic in loops, especially if the loop
body is small. In this case, the pointer arithmetic would cause
significant overhead. Instead, take advantage of the complex
addressing modes to utilize the loop counter to index into
memory arrays. Using complex addressing modes does not have
any negative impact on execution speed, but the reduced
number of instructions preserves decode bandwidth.

Example 1 (Avoid):  
int a[MAXSIZE], b[MAXSIZE], c[MAXSIZE], i;

for (i=0; i < MAXSIZE; i++) {
       c [i] = a[i] + b[i];
}

MOV    ECX, MAXSIZE   ;initialize loop counter
XOR    ESI, ESI       ;initialize offset into array a
XOR    EDI, EDI       ;initialize offset into array b
XOR    EBX, EBX       ;initialize offset into array c
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$add_loop:
MOV    EAX, [ESI + a] ;get element a
MOV    EDX, [EDI + b] ;get element b
ADD    EAX, EDX       ;a[i] + b[i]
MOV    [EBX + c], EAX ;write result to c
ADD    ESI, 4         ;increment offset into a
ADD    EDI, 4         ;increment offset into b
ADD    EBX, 4         ;increment offset into c
DEC    ECX            ;decrement loop count
JNZ    $add_loop      ;until loop count 0

Example 2 (Preferred):  
int a[MAXSIZE], b[MAXSIZE], c[MAXSIZE], i;

for (i=0; i < MAXSIZE; i++) {
       c [i] = a[i] + b[i];
}

MOV ECX, MAXSIZE-1 ;initialize loop counter

$add_loop:
MOV EAX, [ECX*4 + a] ;get element a
MOV EDX, [ECX*4 + b] ;get element b
ADD EAX, EDX         ;a[i] + b[i]
MOV [ECX*4 + c], EAX ;write result to c
DEC ECX              ;decrement index
JNS $add_loop        ;until index negative

Note that the code in example 2 traverses the arrays in a
downward direction (i.e., from higher addresses to lower
addresses), whereas the original code in example 1 traverses
the arrays in an upward direction. Such a change in the
direction of the traversal is possible if each loop iteration is
completely independent of all other loop iterations, as is the
case here. 

In code where the direction of the array traversal can’t be
switched, it is still possible to minimize pointer arithmetic by
appropriately biasing base addresses and using an index
variable that starts with a negative value and reaches zero when
the loop expires. Note that if the base addresses are held in
registers (e.g.,  when the base addresses are passed as
arguments of a function) biasing the base addresses requires
additional instructions to perform the biasing at run time and a
small amount of additional overhead is incurred. In the
examples shown here the base addresses are used in the
displacement  port ion  of  the  address  and bias ing  i s
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accomplished at compile time by simply modifying the
displacement.

Example 3 (Preferred):  
int a[MAXSIZE], b[MAXSIZE], c[MAXSIZE], i;

for (i=0; i < MAXSIZE; i++) {
c [i] = a[i] + b[i];

}

MOV ECX, (-MAXSIZE) ;initialize index

$add_loop:
MOV EAX, [ECX*4 + a + MAXSIZE*4] ;get a element
MOV EDX, [ECX*4 + b + MAXSIZE*4] ;get b element
ADD EAX, EDX ;a[i] + b[i]
MOV [ECX*4 + c + MAXSIZE*4], EAX ;write result to c
INC ECX ;increment index
JNZ $add_loop ;until index==0

Push Memory Data Carefully

Carefully choose the best method for pushing memory data. To
reduce register pressure and code dependencies, follow
example 2 below.

Example 1 (Avoid):  
MOV EAX, [MEM]
PUSH EAX

Example 2 (Preferred):  
PUSH [MEM]
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8
Integer Optimizations
This chapter describes ways to improve integer performance
through optimized programming techniques. The guidelines are
listed in order of importance.

Replace Divides with Multiplies

Replace integer division by constants with multiplication by
the reciprocal. Because the AMD Athlon™ processor has a very
fast integer multiply (5–9 cycles signed, 4–8 cycles unsigned)
and the integer division delivers only one bit of quotient per
cycle (22–47 cycles signed, 17–41 cycles unsigned), the
equivalent code is much faster. The user can follow the
examples in this chapter that illustrate the use of integer
division by constants, or access the executables in the
opt_utilities directory in the AMD documentation CD-ROM
(PID 21860) to find alternative code for dividing by a constant.

Multiplication by Reciprocal (Division) Utility

The code for the utilities can be found at “Derivation of
Multiplier Used For Integer Division by Constants” on page 84.
All utilities were compiled for the Microsoft Windows® 95,
Windows 98, and Windows NT® environments. All utilities are
provided ‘as is’ and are not supported by AMD.
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Signed Division 
Utility

In the opt_utilities directory of the AMD documentation
CDROM, run sdiv.exe in a DOS box to find the fastest code for
signed division by a constant. The utility displays the code after
the user enters a signed constant divisor.  Type “sdiv >
example.out” to output the code to a file.

Unsigned Division 
Utility

In the opt_utilities directory of the AMD documentation
CDROM, run udiv.exe in a DOS box to find the fastest code for
unsigned division by a constant. The utility displays the code
after the user enters an unsigned constant divisor. Type “udiv >
example.out” to output the code to a file.

Unsigned Division by Multiplication of Constant 
Algorithm: Divisors 
1 <= d < 231, Odd d

The following code shows an unsigned division using a constant
value multiplier.

;In: d = divisor, 1 <= d < 2^31, odd d
;Out: a = algorithm
; m = multiplier
; s = shift factor

;algorithm 0
MOV EDX, dividend
MOV EAX, m
MUL EDX
SHR EDX, s   ;EDX=quotient

;algorithm 1
MOV EDX, dividend
MOV EAX, m
MUL EDX
ADD EAX, m
ADC EDX, 0
SHR EDX, s   ;EDX=quotient

Derivation of a, m, s The derivation for the algorithm (a), multiplier (m), and shift
count (s), is found in the section “Unsigned Derivation for
Algorithm, Multiplier, and Shift Factor” on page 84.

Algorithm: Divisors 
231 <= d < 232

For divisors 231 <= d < 232, there is no fancy code needed
because the result is either 0 or 1. Therefore, for these divisors,
the recommended code is as follows:

;In: EDX = dividend
;Out: EDX = quotient
CMP    EDX, d      ;CF = (dividend < divisor) ? 1 : 0
SBB    EDX, EDX    ;(dividend < divisor) ? –1 : 0
INC    EDX         ;quotient = (dividend < divisor) ? 0 : 1
70 Integer Optimizations Chapter 8



22007D/0—August 1999 AMD Athlon™ Processor x86 Code Optimization

Preliminary Information
Simpler Code for 
Restricted Dividend

Integer division by a constant can be made faster if the range of
the dividend is limited, which removes a shift associated with
most divisors. For example, for a divide by 10 operation, use the
following code if the dividend is less than 40000005h:

MOV EAX, dividend
MOV EDX, 01999999Ah
MUL EDX
MOV quotient, EDX

Signed Division by Multiplication of Constant 

Algorithm: Divisors 
2 <= d < 231

These algorithms work if the divisor is positive. If the divisor is
negative, use abs(d) instead of d, and append a ‘NEG EDX’ to
the code. The code makes use of the fact that n/–d = –(n/d).

;IN: d = divisor, 2 <= d < 2^31
;OUT: a = algorithm
; m = multiplier
; s = shift count

;algorithm 0
MOV   EAX, m 
MOV   EDX, dividend
MOV   ECX, EDX
IMUL  EDX   
SHR   ECX, 31
SAR   EDX, s
ADD   EDX, ECX           ;quotient in EDX

;algorithm 1
MOV   EAX, m
MOV   EDX, dividend  
MOV   ECX, EDX
IMUL  EDX
ADD   EDX, ECX
SHR   ECX, 31
SAR   EDX, s
ADD   EDX, ECX           ;quotient in EDX

Derivation for a, m, s The derivation for the algorithm (a), multiplier (m), and shift
count (s), is found in the section “Signed Derivation for
Algorithm, Multiplier, and Shift Factor” on page 86.

Signed Division By 2 ;IN: EAX = dividend
;OUT:EAX = quotient
CMP EAX, 800000000h ;CY = 1, if dividend >=0
SBB EAX, –1 ;Increment dividend if it is < 0
SAR EAX, 1 ;Perform a right shift
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Signed Division By 2n ;IN:EAX = dividend
;OUT:EAX = quotient
CDQ ;Sign extend into EDX
AND EDX, (2^n–1) ;Mask correction (use divisor –1)
ADD EAX, EDX ;Apply correction if necessary
SAR EAX, (n) ;Perform right shift by 

; log2 (divisor)

Signed Division By –2 ;IN:EAX = dividend
;OUT:EAX = quotient
CMP EAX, 800000000h ;CY = 1, if dividend >= 0
SBB EAX, –1 ;Increment dividend if it is < 0
SAR EAX, 1 ;Perform right shift
NEG EAX ;Use (x/–2) == –(x/2)

Signed Division By
–(2n)

;IN:EAX = dividend
;OUT:EAX = quotient
CDQ ;Sign extend into EDX
AND EDX, (2^n–1) ;Mask correction (–divisor –1)
ADD EAX, EDX ;Apply correction if necessary
SAR EAX, (n) ;Right shift by log2(–divisor)
NEG EAX ;Use (x/–(2^n)) == (–(x/2^n))

Remainder of Signed 
Integer 2 or –2

;IN:EAX = dividend
;OUT:EAX = remainder
CDQ ;Sign extend into EDX
AND EDX, 1 ;Compute remainder
XOR EAX, EDX ;Negate remainder if
SUB EAX, EDX ;Dividend was < 0
MOV [remainder], EAX

Remainder of Signed 
Integer 2n or –(2n)

;IN:EAX = dividend
;OUT:EAX = remainder
CDQ    ;Sign extend into EDX
AND EDX, (2^n–1) ;Mask correction (abs(divison)–1)
ADD EAX, EDX ;Apply pre-correction
AND EAX, (2^n–1) ;Mask out remainder (abs(divison)–1)
SUB EAX, EDX ;Apply pre-correction, if necessary
MOV [remainder], EAX
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Use Alternative Code When Multiplying by a Constant

A 32-bit integer multiply by a constant has a latency of five
cycles. Therefore, use alternative code when multiplying by
certain constants. In addition, because there is just one
multiply unit, the replacement code may provide better
throughput.

The following code samples are designed such that the original
source also receives the final result. Other sequences are
possible if the result is in a different register. Adds have been
favored over shifts to keep code size small. Generally, there is a
fast replacement if the constant has very few 1 bits in binary.

More constants are found in the file multiply_by_constants.txt
located in the “opt_utilities” directory of the documentation
CDROM.

by 2:    ADD   REG1, REG1 ;1 cycle

by 3:    LEA   REG1, [REG1*2+REG1] ;2 cycles

by 4:    SHL   REG1, 2 ;1 cycle

by 5:    LEA   REG1, [REG1*4+REG1]    ;2 cycles 

by 6:    LEA   REG2, [REG1*4+REG1]    ;3 cycles
ADD   REG1, REG2 

by 7:    MOV REG2, REG1 ;2 cycles
SHL REG1, 3
SUB REG1, REG2

   
by 8:    SHL   REG1, 3              ;1 cycle

by 9:    LEA   REG1, [REG1*8+REG1]    ;2 cycles

by 10:   LEA   REG2, [REG1*8+REG1]    ;3 cycles
ADD   REG1, REG2

by 11:   LEA   REG2, [REG1*8+REG1]  ;3 cycles
ADD   REG1, REG1         
ADD   REG1, REG2

by 12: SHL   REG1, 2
LEA   REG1, [REG1*2+REG1]    ;3 cycles
 

by 13:   LEA   REG2, [REG1*2+REG1] ;3 cycles
SHL REG1, 4
SUB REG1, REG2
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by 14:   LEA   REG2, [REG1*4+REG1]   ;3 cycles
LEA REG1, [REG1*8+REG1]
ADD   REG1, REG2 

  
by 15:   MOV   REG2, REG1          ;2 cycles

SHL   REG1, 4             
SUB   REG1, REG2          

by 16:   SHL   REG1, 4              ;1 cycle

by 17:   MOV   REG2, REG1 ;2 cycles
SHL   REG1, 4               
ADD   REG1, REG2

by 18: ADD   REG1, REG1 ;3 cycles
LEA   REG1, [REG1*8+REG1] 

by 19:   LEA   REG2, [REG1*2+REG1]  ;3 cycles
SHL   REG1, 4
ADD   REG1, REG2 

by 20: SHL   REG1, 2 ;3 cycles
LEA   REG1, [REG1*4+REG1] 

by 21:   LEA   REG2, [REG1*4+REG1] ;3 cycles
SHL   REG1, 4
ADD   REG1, REG2       

by 22:   use IMUL

by 23:   LEA   REG2, [REG1*8+REG1] ;3 cycles
SHL   REG1, 5        
SUB   REG1, REG2

by 24: SHL   REG1, 3 ;3 cycles
LEA   REG1, [REG1*2+REG1] 
 

by 25:   LEA   REG2, [REG1*8+REG1] ;3 cycles
SHL   REG1, 4
ADD   REG1, REG2

by 26:   use IMUL

by 27:   LEA   REG2, [REG1*4+REG1]    ;3 cycles
SHL REG1, 5
SUB REG1, REG2

by 28:   MOV REG2, REG1 ;3 cycles
SHL   REG1, 3
SUB   REG1, REG2
SHL REG1, 2
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by 29:   LEA   REG2, [REG1*2+REG1] ;3 cycles

SHL   REG1, 5
SUB   REG1, REG2

by 30:   MOV REG2, REG1 ;3 cycles
SHL   REG1, 4
SUB   REG1, REG2
ADD REG1, REG1

by 31:   MOV   REG2, REG1 ;2 cycles
SHL   REG1, 5
SUB   REG1, REG2

by 32:   SHL   REG1, 5              ;1 cycle

Use MMX™ Instructions for Integer-Only Work

In many programs it can be advantageous to use MMX
instructions to do integer-only work, especially if the function
already uses 3DNow!™ or MMX code. Using MMX instructions
relieves register pressure on the integer registers. As long as
data is simply loaded/stored, added, shifted, etc., MMX
instructions are good substitutes for integer instructions.
Integer registers are freed up with the following results:

■ May be able to reduce the number of integer registers to
saved/restored on function entry/edit.

■ Free up integer registers for pointers, loop counters, etc., so
that they do not have to be spilled to memory, which
reduces memory traffic and latency in dependency chains.

Be careful with regards to passing data between MMX and
integer registers and of creating mismatched store-to-load
forwarding cases. See “Unrolling Loops” on page 59. 

In addition, using MMX instructions increases the available
parallelism. The AMD Athlon processor can issue three integer
OPs and two MMX OPs per cycle.
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Repeated String Instruction Usage 

Latency of Repeated String Instructions

Table 1 shows the latency for repeated string instructions on the
AMD Athlon processor.

Table 1 lists the latencies with the direction flag (DF) = 0
(increment) and DF = 1. In addition, these latencies are
assumed for aligned memory operands.  Note that for
MOVS/STOS, when DF = 1 (DOWN), the overhead portion of the
latency increases significantly. However, these types are less
commonly found. The user should use the formula and round up
to the nearest integer value to determine the latency.

Guidelines for Repeated String Instructions

To help achieve good performance, this section contains
guidelines for the careful scheduling of VectorPath repeated
string instructions.

Use the Largest 
Possible Operand 
Size

Always move data using the largest operand size possible. For
example, use REP MOVSD rather than REP MOVSW and REP
MOVSW rather than REP MOVSB. Use REP STOSD rather than
REP STOSW and REP STOSW rather than REP MOVSB.

Ensure DF=0 (UP) Always make sure that DF = 0 (UP) (after execution of CLD) for
REP MOVS and REP STOS. DF = 1 (DOWN) is only needed for
certain cases of overlapping REP MOVS (for example, source
and destination overlap).

Table 1. Latency of Repeated String Instructions

Instruction ECX=0 (cycles) DF = 0 (cycles) DF = 1 (cycles)

REP MOVS 11 15 + (4/3*c) 25 + (4/3*c)

REP STOS 11 14 + (1*c) 24 + (1*c)

REP LODS 11 15 + (2*c) 15 + (2*c)

REP SCAS 11 15 + (5/2*c) 15 + (5/2*c)

REP CMPS 11 16 + (10/3*c) 16 + (10/3*c)
Note:

c = value of ECX, (ECX > 0)
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While string instructions with DF = 1 (DOWN) are slower, only
the overhead part of the cycle equation is larger and not the
throughput part. See Table 1, “Latency of Repeated String
Instructions,” on page 76 for additional latency numbers.

Align Source and 
Destination with 
Operand Size

For REP MOVS, make sure that both source and destination are
aligned with regard to the operand size. Handle the end case
separately, if necessary. If either source or destination cannot
be aligned, make the destination aligned and the source
misaligned. For REP STOS, make the destination aligned.

Inline REP String 
with Low Counts

Expand REP string instructions into equivalent sequences of
simple x86 instructions, if the repeat count is constant and less
than eight. Use an inline sequence of loads and stores to
accomplish the move. Use a sequence of stores to emulate REP
STOS. This technique eliminates the setup overhead of REP
instructions and increases instruction throughput.

Use Loop for REP 
String with Low 
Variable Counts

If the repeated count is variable, but is likely less than eight,
use a simple loop to move/store the data. This technique avoids
the overhead of REP MOVS and REP STOS.

Use MOVQs for Moving a Quadword Aligned Block of Data

For moving a large quadword-aligned block of data, use a
partially unrolled loop that uses MOVQs. The following
example is for Microsoft Visual C inline code and works equally
well on the AMD-K6® and AMD Athlon processors.

Example:.  
_asm { 
mov   eax, [src]
mov   edx, [dst]
mov   ecx, (SIZE >> 6)

align 16

xfer:
movq  mm0, [eax]
add   edx, 64
movq  mm1, [eax+8]
add   eax, 64
movq  mm2, [eax–48]
movq  [edx–64], mm0
movq  mm3, [eax–40]
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movq  [edx–56], mm1
movq  mm4, [eax–32]
movq  [edx–48], mm2
movq  mm5, [eax–24]
movq  [edx–40], mm3
movq  mm6, [eax–16]
movq  [edx–32], mm4
movq  mm7, [eax–8]
movq  [edx–24], mm5
movq  [edx–16], mm6
dec   ecx
movq  [edx–8], mm7
jnz   xfer
}

Use XOR Instruction to Clear Integer Registers

To clear an integer register to all 0s, use “XOR reg, reg”. The
AMD Athlon processor is able to avoid the false read
dependency on the XOR instruction.

Example 1 (Acceptable):  
MOV REG, 0

Example 2 (Preferred):  
XOR REG, REG

Efficient 64-Bit Integer Arithmetic

This section contains a collection of code snippets and
subroutines showing the efficient implementation of 64-bit
arithmetic. Addition, subtraction, negation, and shifts are best
handled by inline code. Multiplies, divides, and remainders are
less common operations and should usually be implemented as
subroutines.  If  these subroutines are used often, the
programmer should consider inlining them. Except for division
and remainder, the code presented works for both signed and
unsigned integers. The division and remainder code shown
works for unsigned integers, but can easily be extended to
handle signed integers.
78 Integer Optimizations Chapter 8



22007D/0—August 1999 AMD Athlon™ Processor x86 Code Optimization

Preliminary Information
Example 1 (Addition):  
;add operand in ECX:EBX to operand EDX:EAX, result in
; EDX:EAX
ADD     EAX, EBX
ADC     EDX, ECX

Example 2 (Subtraction):  
;subtract operand in ECX:EBX from operand EDX:EAX, result in
; EDX:EAX
SUB     EAX, EBX
SBB     EDX, ECX

Example 3 (Negation):  
;negate operand in EDX:EAX
NOT     EDX
NEG     EAX
SBB     EDX, –1 ;fixup: increment hi-word if low-word was 0

Example 4 (Left shift):  
;shift operand in EDX:EAX left, shift count in ECX (count
; applied modulo 64)
SHLD    EDX, EAX, CL      ;first apply shift count 
SHL     EAX, CL           ;  mod 32 to EDX:EAX
TEST    ECX, 32           ;need to shift by another 32?
JZ      $lshift_done      ;no, done
MOV     EDX, EAX          ;left shift EDX:EAX 
XOR     EAX, EAX          ;  by 32 bits

$lshift_done:

Example 5 (Right shift):  
SHRD    EAX, EDX, CL      ;first apply shift count 
SHR     EDX, CL           ;  mod 32 to EDX:EAX
TEST    ECX, 32           ;need to shift by another 32?
JZ      $rshift_done      ;no, done
MOV     EAX, EDX          ;left shift EDX:EAX
XOR     EDX, EDX          ;  by 32 bits

$rshift_done:
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Example 6 (Multiplication):  
;_llmul computes the low-order half of the product of its
; arguments, two 64-bit integers
;
;INPUT: [ESP+8]:[ESP+4]   multiplicand
; [ESP+16]:[ESP+12] multiplier
;
;OUTPUT: EDX:EAX      (multiplicand * multiplier) % 2^64
;
;DESTROYS:  EAX,ECX,EDX,EFlags

_llmul PROC
MOV     EDX, [ESP+8] ;multiplicand_hi
MOV     ECX, [ESP+16] ;multiplier_hi
OR      EDX, ECX ;one operand >= 2^32?
MOV     EDX, [ESP+12] ;multiplier_lo
MOV     EAX, [ESP+4] ;multiplicand_lo
JNZ     $twomul ;yes, need two multiplies
MUL     EDX ;multiplicand_lo * multiplier_lo
RET ;done, return to caller

$twomul:
IMUL    EDX, [ESP+8] ;p3_lo = multiplicand_hi*multiplier_lo
IMUL    ECX, EAX ;p2_lo = multiplier_hi*multiplicand_lo
ADD     ECX, EDX ; p2_lo + p3_lo
MUL     DWORD PTR [ESP+12] ;p1=multiplicand_lo*multiplier_lo
ADD     EDX, ECX ;p1+p2lo+p3_lo = result in EDX:EAX
RET ;done, return to caller

_llmul ENDP

Example 7 (Division):  
;_ulldiv divides two unsigned 64-bit integers, and returns
; the quotient.
;
;INPUT: [ESP+8]:[ESP+4]   dividend
; [ESP+16]:[ESP+12] divisor
;
;OUTPUT: EDX:EAX     quotient of division
;
;DESTROYS: EAX,ECX,EDX,EFlags
_ulldiv PROC
PUSH    EBX ;save EBX as per calling convention
MOV     ECX, [ESP+20] ;divisor_hi
MOV     EBX, [ESP+16] ;divisor_lo
MOV     EDX, [ESP+12] ;dividend_hi
MOV     EAX, [ESP+8] ;dividend_lo
TEST    ECX, ECX ;divisor > 2^32–1?
JNZ     $big_divisor ;yes, divisor > 32^32–1
CMP     EDX, EBX ;only one division needed? (ECX = 0)
JAE     $two_divs ;need two divisions
DIV     EBX ;EAX = quotient_lo
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MOV     EDX, ECX ;EDX = quotient_hi = 0 (quotient in
; EDX:EAX)

POP     EBX ;restore EBX as per calling convention
RET ;done, return to caller

$two_divs:
MOV     ECX, EAX ;save dividend_lo in ECX
MOV     EAX, EDX ;get dividend_hi
XOR     EDX, EDX ;zero extend it into EDX:EAX
DIV     EBX ;quotient_hi in EAX
XCHG    EAX, ECX ;ECX = quotient_hi, EAX = dividend_lo
DIV     EBX ;EAX = quotient_lo
MOV     EDX, ECX ;EDX = quotient_hi (quotient in EDX:EAX)
POP     EBX ;restore EBX as per calling convention
RET ;done, return to caller

$big_divisor:
PUSH    EDI ;save EDI as per calling convention
MOV     EDI, ECX ;save divisor_hi
SHR     EDX, 1 ;shift both divisor and dividend right
RCR     EAX, 1 ; by 1 bit
ROR     EDI, 1  
RCR     EBX, 1 
BSR     ECX, ECX ;ECX = number of remaining shifts
SHRD    EBX, EDI, CL ;scale down divisor and dividend
SHRD    EAX, EDX, CL ; such that divisor is less than
SHR     EDX, CL ; less than 2^32 (i.e. fits in EBX)
ROL     EDI, 1 ;restore original divisor_hi
DIV     EBX ;compute quotient
MOV     EBX, [ESP+12] ;dividend_lo
MOV     ECX, EAX ;save quotient
IMUL    EDI, EAX ;quotient * divisor hi-word 

; (low only)
MUL     DWORD PTR [ESP+20];quotient * divisor lo-word
ADD     EDX, EDI ;EDX:EAX = quotient * divisor
SUB     EBX, EAX ;dividend_lo – (quot.*divisor)_lo
MOV     EAX, ECX ;get quotient
MOV     ECX, [ESP+16] ;dividend_hi
SBB     ECX, EDX ;subtract divisor * quot. from dividend
SBB     EAX, 0 ;adjust quotient if remainder negative
XOR     EDX, EDX ;clear hi-word of quot(EAX<=FFFFFFFFh)
POP     EDI ;restore EDI as per calling convention
POP     EBX ;restore EBX as per calling convention
RET ;done, return to caller

_ulldiv ENDP
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Example 8 (Remainder):  
;_ullrem divides two unsigned 64-bit integers, and returns
; the remainder.
;
;INPUT: [ESP+8]:[ESP+4]   dividend
; [ESP+16]:[ESP+12] divisor
;
;OUTPUT: EDX:EAX     remainder of division
;
;DESTROYS: EAX,ECX,EDX,EFlags

_ullrem PROC
PUSH    EBX ;save EBX as per calling convention
MOV     ECX, [ESP+20] ;divisor_hi
MOV     EBX, [ESP+16] ;divisor_lo
MOV     EDX, [ESP+12] ;dividend_hi
MOV     EAX, [ESP+8] ;dividend_lo
TEST    ECX, ECX ;divisor > 2^32–1?
JNZ     $r_big_divisor ;yes, divisor > 32^32–1
CMP     EDX, EBX ;only one division needed? (ECX = 0)
JAE     $r_two_divs ;need two divisions
DIV     EBX ;EAX = quotient_lo
MOV     EAX, EDX ;EAX = remainder_lo
MOV     EDX, ECX ;EDX = remainder_hi = 0
POP     EBX ;restore EBX as per calling convention
RET ;done, return to caller

$r_two_divs:
MOV     ECX, EAX ;save dividend_lo in ECX
MOV     EAX, EDX ;get dividend_hi
XOR     EDX, EDX ;zero extend it into EDX:EAX
DIV     EBX ;EAX = quotient_hi, EDX = intermediate

; remainder
MOV     EAX, ECX ;EAX = dividend_lo
DIV     EBX ;EAX = quotient_lo
MOV     EAX, EDX ;EAX = remainder_lo
XOR     EDX, EDX ;EDX = remainder_hi = 0
POP     EBX ;restore EBX as per calling convention
RET ;done, return to caller

$r_big_divisor:
PUSH    EDI ;save EDI as per calling convention
MOV     EDI, ECX ;save divisor_hi
SHR     EDX, 1 ;shift both divisor and dividend right
RCR     EAX, 1 ; by 1 bit
ROR     EDI, 1 
RCR     EBX, 1 
BSR     ECX, ECX ;ECX = number of remaining shifts
SHRD    EBX, EDI, CL ;scale down divisor and dividend such
SHRD    EAX, EDX, CL ; that divisor is less than 2^32
SHR     EDX, CL ; (i.e. fits in EBX)
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ROL     EDI, 1 ;restore original divisor (EDI:ESI)
DIV     EBX ;compute quotient
MOV     EBX, [ESP+12] ;dividend lo-word
MOV     ECX, EAX ;save quotient
IMUL    EDI, EAX ;quotient * divisor hi-word (low only)
MUL     DWORD PTR [ESP+20] ;quotient * divisor lo-word
ADD     EDX, EDI ;EDX:EAX = quotient * divisor
SUB     EBX, EAX ;dividend_lo – (quot.*divisor)–lo
MOV     ECX, [ESP+16] ;dividend_hi
MOV     EAX, [ESP+20] ;divisor_lo
SBB     ECX, EDX ;subtract divisor * quot. from

; dividend
SBB     EDX, EDX ;(remainder < 0)? 0xFFFFFFFF : 0
AND     EAX, EDX ;(remainder < 0)? divisor_lo : 0
AND     EDX, [ESP+24] ;(remainder < 0)? divisor_hi : 0
ADD     EAX, EBX ;remainder += (remainder < 0)?
ADC     EDX, ECX ;   divisor : 0
POP     EDI ;restore EDI as per calling convention
POP     EBX ;restore EBX as per calling convention
RET ;done, return to caller

_ullrem ENDP
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Derivation of Multiplier Used For Integer Division by 
Constants

Unsigned Derivation for Algorithm, Multiplier, and Shift Factor

The utility udiv.exe was compiled using the code shown in this
section.

The following code derives the multiplier value used when
performing integer division by constants. The code works for
unsigned integer division and for odd divisors between 1 and
231–1, inclusive. For divisors of the form d = d’*2n, the
multiplier is the same as for d’ and the shift factor is s + n.

/* Code snippet to determine algorithm (a), multiplier (m),
and shift factor (s) to perform division on unsigned 32-bit
integers by constant divisor. Code is written for the
Microsoft Visual C compiler. */

/* 
In: d = divisor, 1 <= d < 2^31, d odd
Out: a = algorithm

m = multiplier
s = shift factor

;algorithm 0
MOV EDX, dividend
MOV EAX, m
MUL EDX
SHR EDX, s   ;EDX=quotient

;algorithm 1
MOV EDX, dividend
MOV EAX, m
MUL EDX
ADD EAX, m
ADC EDX, 0
SHR EDX, s   ;EDX=quotient
*/

typedef unsigned __int64   U64;
typedef unsigned long      U32;

U32 d, l, s, m, a, r;
U64 m_low, m_high, j, k;
U32 log2 (U32 i)
{
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  U32 t = 0;
  i = i >> 1;
  while (i) {
    i = i >> 1;
    t++;
  }
  return (t);
}

/* Generate m, s for algorithm 0. Based on: Granlund, T.;
Montgomery, P.L.:"Division by Invariant Integers using
Multiplication”. SIGPLAN Notices, Vol. 29, June 1994, page
61. */

l       = log2(d) + 1;
j       = (((U64)(0xffffffff)) % ((U64)(d)));
k       = (((U64)(1)) << (32+l)) / ((U64)(0xffffffff–j));
m_low   = (((U64)(1)) << (32+l)) / d;
m_high  = ((((U64)(1)) << (32+l)) + k) / d;
while (((m_low >> 1) < (m_high >> 1)) && (l > 0)) {
   m_low  = m_low  >> 1;
   m_high = m_high >> 1;
   l      = l – 1;
}
if ((m_high >> 32) == 0) {
   m = ((U32)(m_high));
   s = l;
   a = 0;
}
/* Generate m, s for algorithm 1. Based on: Magenheimer,
D.J.; et al: “Integer Multiplication and Division on the HP
Precision Architecture”. IEEE Transactions on Computers, Vol
37, No. 8, August 1988, page 980. */

else {
   s = log2(d);
   m_low = (((U64)(1)) << (32+s)) / ((U64)(d));
   r     = ((U32)((((U64)(1)) << (32+s)) % ((U64)(d))));
   m = (r < ((d>>1)+1)) ? ((U32)(m_low)) : ((U32)(m_low))+1;
   a = 1;
}

/* Reduce multiplier/shift factor for either algorithm to
smallest possible */

while (!(m&1)) {
   m = m >> 1;
   s––;
}
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Signed Derivation for Algorithm, Multiplier, and Shift Factor

The utility sdiv.exe was compiled using the following code.

/* Code snippet to determine algorithm (a), multiplier (m), 
and shift count (s) for 32-bit signed integer division, 
given divisor d. Written for Microsoft Visual C compiler. */

/* 
IN: d = divisor, 2 <= d < 2^31
OUT: a = algorithm

m = multiplier
s = shift count

;algorithm 0
MOV   EAX, m 
MOV   EDX, dividend
MOV   ECX, EDX
IMUL  EDX   
SHR   ECX, 31
SAR   EDX, s
ADD   EDX, ECX           ; quotient in EDX

;algorithm 1
MOV   EAX, m
MOV   EDX, dividend  
MOV   ECX, EDX
IMUL  EDX
ADD   EDX, ECX
SHR   ECX, 31
SAR   EDX, s
ADD   EDX, ECX           ; quotient in EDX
*/

typedef unsigned __int64   U64;
typedef unsigned long      U32;

U32 log2 (U32 i)
{
  U32 t = 0;
  i = i >> 1;
  while (i) {
    i = i >> 1;
    t++;
  }
  return (t);
}

U32 d, l, s, m, a;
U64 m_low, m_high, j, k;
86 Integer Optimizations Chapter 8



22007D/0—August 1999 AMD Athlon™ Processor x86 Code Optimization

Preliminary Information
/* Determine algorithm (a), multiplier (m), and shift count 
(s) for 32-bit signed integer division. Based on: Granlund, 
T.; Montgomery, P.L.: “Division by Invariant Integers using 
Multiplication”. SIGPLAN Notices, Vol. 29, June 1994, page 
61. */

l       = log2(d);
j       = (((U64)(0x80000000)) % ((U64)(d)));
k       = (((U64)(1)) << (32+l)) / ((U64)(0x80000000–j));
m_low   = (((U64)(1)) << (32+l)) / d;
m_high  = ((((U64)(1)) << (32+l)) +  k) / d;
while (((m_low >> 1) < (m_high >> 1)) && (l > 0)) {
   m_low  = m_low  >> 1;
   m_high = m_high >> 1;
   l      = l – 1;
}
m = ((U32)(m_high));
s = l;
a = (m_high >> 31) ? 1 : 0;
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9
Floating-Point Optimizations
This  chapter  detai l s  the  methods  used to  opt imize
floating-point code to the pipelined floating-point unit (FPU).
Guidelines are listed in order of importance.

Ensure All FPU Data is Aligned

As discussed in “Memory Size and Alignment Issues” on page
37, floating-point data should be naturally aligned. That is,
words should be aligned on word boundaries, doublewords on
doubleword boundaries,  and quadwords on quadword
boundaries. Misaligned memory accesses reduce the available
memory bandwidth.

Use Multiplies Rather Than Divides

If accuracy requirements allow, floating-point division by a
constant should be converted to a multiply by the reciprocal.
Divisors that are powers of two and their reciprocal are exactly
representable, except in the rare case that the reciprocal
overflows or underflows, and therefore does not cause an
accuracy issue. Unless such an overflow or underflow occurs, a
division by a power of two should always be converted to a
multiply.  Although the AMD Athlon™ processor has
high-performance division, multiplies are significantly faster
than divides.
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Use FFREEP Macro to Pop One Register from the FPU Stack

In FPU intensive code, frequently accessed data is often
pre-loaded at the bottom of the FPU stack before processing
floating-point data. After completion of processing, it is
desirable to remove the pre-loaded data from the FPU stack as
quickly as possible. The classical way to clean up the FPU stack
is to use either of the following instructions:

FSTP ST(0) ;removes one register from stack

FCOMPP ;removes two registers from stack

On the AMD Athlon processor, a faster alternative is to use the
FFREEP instruction below. Note that the FFREEP instruction,
although insufficiently documented in the past, is supported by
all 32-bit x86 processors. The opcode bytes for FFREEP ST(i)
are listed in Table 14 on page 166.

FFREEP ST(0) ;removes one register from stack

On the AMD Athlon processor, the FFREEP instruction
converts to an internal NOP, which can go down any pipe with
no dependencies.

Many assemblers do not support the FFREEP instruction. In
these cases, a simple text macro can be created to facilitate use
of the FFREEP ST(0).

FFREEP_ST0 TEXTEQU <DB 0DFh, 0C0h>

Floating-Point Compare Instructions

For branches that are dependent on floating-point comparisons,
use the FCOMI/FCOMIP/FUCOMI/FUCOMIP instructions.
These instructions are much faster than the classical approach
using FSTSW, because FSTSW is essentially a serializing
instruction on the AMD Athlon processor. When FSTSW cannot
be avoided (for example, backward compatibility of code with
older processors), no FPU instruction should occur between an
FCOM[P], FICOM[P], FUCOM[P], or FTST and a dependent
FSTSW. This optimization allows the use of a fast forwarding
mechanism for the FPU condition codes internal to the
AMD Athlon processor FPU and increases performance.
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Use the FXCH Instruction Rather Than FST/FLD Pairs

Increase parallelism by breaking up dependency chains or by
evaluating multiple dependency chains simultaneously by
explicitly switching execution between them. Although the
AMD Athlon processor FPU has a deep scheduler, which in
most cases can extract sufficient parallelism from existing code,
long dependency chains can stall the scheduler while issue slots
are still available. The maximum dependency chain length that
the scheduler can absorb is about six 4-cycle instructions.

To switch execution between dependency chains, use of the
FXCH instruction is recommended because it has an apparent
latency of zero cycles and generates only one OP. The
AMD Athlon processor FPU contains special hardware to
handle up to three FXCH instructions per cycle. Using FXCH is
preferred over the use of FST/FLD pairs, even if the FST/FLD
pair works on a register. An FST/FLD pair adds two cycles of
latency and consists of two OPs.

Avoid Using Extended-Precision Data

Store data as either single-precision or double-precision
quantities. Loading and storing extended-precision data is
comparatively slower.

Minimize Floating-Point-to-Integer Conversions

C++, C, and Fortran define floating-point-to-integer conversions
as truncating. This creates a problem because the active
rounding mode in an application is typically round-to-nearest-
even. The classical way to do a double-to-int conversion
therefore works as follows:

Example 1 (Fast):  
SUB    [I], EDX              ;trunc(X)=rndint(X)-correction
FLD    QWORD PTR [X]         ;load double to be converted
FSTCW  [SAVE_CW]             ;save current FPU control word
MOVZX  EAX, WORD PTR[SAVE_CW];retrieve control word
OR     EAX, 0C00h ;rounding control field = truncate
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MOV    WORD PTR [NEW_CW], AX ;new FPU control word
FLDCW  [NEW_CW]              ;load new FPU control word
FISTP  DWORD PTR [I]         ;do double->int conversion
FLDCW  [SAVE_CW]             ;restore original control word

The AMD Athlon processor contains special acceleration
hardware to execute such code as quickly as possible. In most
situations, the above code is therefore the fastest way to
perform floating-point-to-integer conversion and the conversion
is compliant both with programming language standards and
the IEEE-754 standard.

The speed of the above code is somewhat dependent on the
nature of the code surrounding it. For applications in which the
speed of floating-point-to-integer conversions is extremely
critical for application performance, experiment with either of
the following substitutions, which may or may not be faster than
the code above.

The first substitution simulates a truncating floating-point to
integer conversion provided that there are no NaNs, infinities,
and overflows. This conversion is therefore not IEEE-754
compliant. This code works properly only if the current FPU
rounding mode is round-to-nearest-even, which is usually the
case. 

Example 2 (Potentially faster).  
FLD    QWORD PTR [X] ;load double to be converted
FST    DWORD PTR [TX] ;store X because sign(X) is needed
FIST   DWORD PTR [I] ;store rndint(x) as default result
FISUB  DWORD PTR [I] ;compute DIFF = X - rndint(X)
FSTP   DWORD PTR [DIFF] ;store DIFF as we need sign(DIFF)
MOV    EAX, [TX] ;X
MOV    EDX, [DIFF] ;DIFF
TEST   EDX, EDX ;DIFF == 0 ?
JZ     $DONE ;default result is OK, done
XOR    EDX, EAX ; need correction if sign(X) != sign(DIFF)
SAR    EAX, 31 ;(X<0) ? 0xFFFFFFFF : 0
SAR    EDX, 31 ; sign(X)!=sign(DIFF)?0xFFFFFFFF:0
LEA    EAX, [EAX+EAX+1] ;(X<0) ? 0xFFFFFFFF : 1
AND    EDX, EAX ;correction: -1, 0, 1
SUB    [I], EDX ;trunc(X)=rndint(X)-correction
$DONE:

The second substitution simulates a truncating floating-point to
integer conversion using only integer instructions and therefore
works correctly independent of the FPU’s current rounding
mode. It does not handle NaNs, infinities, and overflows
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according to the IEEE-754 standard. Note that the first
instruction of this code may cause an STLF size mismatch
resulting in performance degradation if the variable to be
converted has been stored recently.

Example 3 (Potentially faster):  
MOV    ECX, DWORD PTR[X+4] ;get upper 32 bits of double 
XOR    EDX, EDX ;i = 0
MOV    EAX, ECX ;save sign bit
AND    ECX, 07FF00000h ;isolate exponent field
CMP    ECX, 03FF00000h ;if abs(x) < 1.0 
JB     $DONE2 ; then i = 0
MOV    EDX, DWORD PTR[X] ;get lower 32 bits of double
SHR    ECX, 20 ;extract exponent
SHRD   EDX, EAX, 21 ;extract mantissa
NEG    ECX ;compute shift factor for extracting
ADD    ECX, 1054 ;non-fractional mantissa bits
OR     EDX, 080000000h ;set integer bit of mantissa
SAR    EAX, 31 ;x < 0 ? 0xffffffff : 0
SHR    EDX, CL ;i = trunc(abs(x))
XOR    EDX, EAX ;i = x < 0 ? ~i : i
SUB    EDX, EAX ;i = x < 0 ? -i : i
$DONE2:
MOV    [I], EDX ;store result

For applications which can tolerate a floating-point-to-integer
conversion that is not compliant with existing programming
language standards (but is IEEE-754 compliant), perform the
conversion using the rounding mode that is currently in effect
(usually round-to-nearest-even).

Example 4 (Fastest):  
FLD    QWORD PTR [X]      ; get double to be converted
FISTP  DWORD PTR [I]      ; store integer result

Some compilers offer an option to use the code from example 4
for floating-point-to-integer conversion, using the default
rounding mode. 

Lastly, consider setting the rounding mode throughout an
application to truncate and using the code from example 4 to
perform extremely fast conversions that are compliant with
language standards and IEEE-754. This mode is also provided
as an option by some compilers. Note that use of this technique
also changes the rounding mode for all other FPU operations
inside the application, which can lead to significant changes in
numerical results and even program failure (for example, due to
lack of convergence in iterative algorithms).
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Floating-Point Subexpression Elimination

There are cases which do not require an FXCH instruction after
every instruction to allow access to two new stack entries. In the
cases where two instructions share a source operand, an FXCH
is not required between the two instructions. When there is an
opportunity for subexpression elimination, reduce the number
of superfluous FXCH instructions by putting the shared source
operand at the top of the stack. For example, using the function:

func( (x*y), (x+z) )

Example 1 (Avoid):  
FLD Z
FLD Y
FLD X
FADD ST, ST(2)
FXCH ST(1)
FMUL ST, ST(2)
CALL FUNC
FSTP ST(0)

Example 2 (Preferred):  
FLD Z
FLD Y
FLD X
FMUL ST(1), ST
FADDP ST(2), ST
CALL FUNC
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10
3DNow!™ and MMX™ 
Optimizations
This chapter describes 3DNow! and MMX code optimization
techniques for the AMD Athlon™ processor. Guidelines are
listed in order of importance. 3DNow! porting guidelines can be
found in the 3DNow!™ Instruction Porting Guide, order# 22621.

Use 3DNow!™ Instructions

Unless accuracy requirements dictate otherwise, perform
floating-point computations using the 3DNow! instructions
instead of x87 instructions. The SIMD nature of 3DNow!
achieves twice the number of FLOPs that are achieved through
x87 instructions. 3DNow! instructions provide for a flat register
file instead of the stack-based approach of x87 instructions.

See the 3DNow!™ Technology Manual, order# 21928 for
information on instruction usage.

Use FEMMS Instruction

Though there is no penalty for switching between x87 FPU and
3DNow!/MMX instructions in the AMD Athlon processor, the
FEMMS instruction should be used to ensure the same code
also runs optimally on the AMD-K6® processor. The FEMMS

✩TOP
Chapter 10 3DNow!™ and MMX™ Optimizations 95



AMD Athlon™ Processor x86 Code Optimization 22007D/0—August 1999

Preliminary Information
instruction is supported for backward compatibility with the
AMD-K6 processor, and is aliased to the EMMS instruction. 

Use 3DNow!™ Instructions for Fast Division

3DNow! instructions can be used to compute a very fast, highly
accurate reciprocal or quotient.

Optimized 15-Bit Precision Divide

This divide operation executes with a total latency of seven
cycles, assuming that the program hides the latency of the first
MOVD/MOVQ instructions within preceding code.

Example:  
MOVD MM0, [MEM] ;   0 | W
PFRCP MM0, MM0 ; 1/W | 1/W
MOVQ MM2, [MEM] ;   Y | X
PFMUL MM2, MM0 ; Y/W | X/W

Optimized Full 24-Bit Precision Divide

This divide operation executes with a total latency of 15 cycles,
assuming that the program hides the latency of the first
MOVD/MOVQ instructions within preceding code.

Example:  
MOVD   MM0, [W] ;          0 | W
PFRCP   MM1, MM0 ;        1/W | 1/W
PUNPCKLDQ  MM0, MM0 ;          W | W
PFRCPIT1   MM0, MM1 ; 1/W refine | 1/W refine
MOVQ   MM2, [X_Y] ;          Y | X
PFRCPIT2   MM0, MM1 ;  1/W final | 1/W final
PFMUL   MM2, MM0 ;    Y/W | X/W

Pipelined Pair of 24-Bit Precision Divides

This divide operation executes with a total latency of 21 cycles,
assuming that the program hides the latency of the first
MOVD/MOVQ instructions within preceding code.
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Example:  
MOVQ       MM0, [DIVISORS]   ;   y | x
PFRCP      MM1, MM0          ; 1/x | 1/x   (approximate)
MOVQ       MM2, MM0          ;   y | x              
PUNPCKHDQ  MM0, MM0          ;   y | y
PFRCP      MM0, MM0          ; 1/y | 1/y   approximate
PUNPCKLDQ  MM1, MM0          ; 1/y | 1/x   approximate
MOVQ       MM0, [DIVIDENDS]  ;   z | w 
PFRCPIT1   MM2, MM1          ; 1/y | 1/x   intermediate
PFRCPIT2   MM2, MM1          ; 1/y | 1/x   final
PFMUL      MM0, MM2          ; z/y | w/x 

Newton-Raphson Reciprocal

Consider the quotient q = a/b. An (on-chip) ROM-based table
lookup can be used to quickly produce a 14-to-15-bit precision
approximation of 1/b using just one PFRCP instruction. A full
24-bit precision reciprocal can then be quickly computed from
this approximation using a Newton Raphson algorithm. 

The general Newton-Raphson recurrence for the reciprocal is as
follows:

Xi+1 = Xi • (2 – b • Xi)

Given that the initial approximation, X0, is accurate to at least
14 bits, and that a full IEEE single-precision mantissa contains
24 bits, just one Newton-Raphson iteration is required. The
following sequence shows the 3DNow! instructions that produce
the initial reciprocal approximation, compute the full precision
reciprocal from the approximation, and finally, complete the
desired divide of a/b.

X0 = PFRCP(b)
X1 = PFRCPIT1(b,X0)
X2 = PFRCPIT2(X1,X0)
q = PFMUL(a,X2)

The 24-bit final reciprocal value is X2. In the AMD Athlon
processor 3DNow! technology implementation the operand X2
contains the correct round-to-nearest single precision
reciprocal for approximately 99% of all arguments.
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Use 3DNow!™ Instructions for Fast Square Root and 
Reciprocal Square Root

3DNow! instructions can be used to compute a very fast, highly
accurate square root and reciprocal square root.

Optimized 15-Bit Precision Square Root

This square root operation can be executed in only 7 cycles,
assuming a program hides the latency of the first MOVD
instruction within previous code. The reciprocal square root
operation requires four less cycles than the square root
operation.

Example:  
MOVD MM0, [MEM] ;  0 | a
PFRSQRT MM1, MM0 ;1/sqrt(a) | 1/sqrt(a) (approximate)
PUNPCKLDQ MM0, MM0 ; a | a         (MMX instr.)
PFMUL MM0, MM1 ;  sqrt(a) | sqrt(a)

Optimized 24-Bit Precision Square Root

This square root operation can be executed in only 19 cycles,
assuming a program hides the latency of the first MOVD
instruction within previous code. The reciprocal square root
operation requires four less cycles than the square root
operation.

Example:  
MOVD MM0, [MEM] ;        0 | a
PFRSQRT MM1, MM0 ;1/sqrt(a) | 1/sqrt(a) (approximate)
MOVQ MM2, MM1 ; X_0 = 1/(sqrt a)     (approximate)
PFMUL MM1, MM1 ; X_0 * X_0 | X_0 * X_0 (step 1)
PUNPCKLDQ MM0, MM0 ; a | a (MMX instr.)
PFRSQIT1 MM1, MM0 ; intermediate (step 2)
PFRCPIT2 MM1, MM2 ;1/sqrt(a) | 1/sqrt(a) (step 3)
PFMUL MM0, MM1 ;  sqrt(a) | sqrt(a)
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Newton-Raphson Reciprocal Square Root

The general Newton-Raphson reciprocal square root recurrence
is:

Xi+1 = 1/2 • Xi • (3 – b • Xi
2)

To reduce the number  of  i terations ,  X0 is  an init ia l
approximation read from a table. The 3DNow! reciprocal square
root approximation is accurate to at least 15 bits. Accordingly,
to obtain a single-precision 24-bit reciprocal square root of an
input operand b, one Newton-Raphson iteration is required,
using the following sequence of 3DNow! instructions:

X0 = PFRSQRT(b)
X1 = PFMUL(X0,X0)
X2 = PFRSQIT1(b,X1)
X3 = PFRCPIT2(X2,X0)
X4 = PFMUL(b,X3)

The 24-bit final reciprocal square root value is X3. In the
AMD Athlon processor 3DNow! implementation, the estimate
contains the correct round-to-nearest value for approximately
87% of all arguments. The remaining arguments differ from the
correct round-to-nearest value by one unit-in-the-last-place. The
square root (X4) is formed in the last step by multiplying by the
input operand b.

Use MMX™ PMADDWD Instruction to Perform Two 32-Bit 
Multiplies in Parallel

The MMX PMADDWD instruction can be used to perform two
signed 16x16→32 bit multiplies in parallel, with much higher
performance than can be achieved using the IMUL instruction.
The PMADDWD instruction is designed to perform four
16x16→32 bit signed multiplies and accumulate the results
pairwise. By making one of the results in a pair a zero, there are
now just two multiplies. The following example shows how to
multiply 16-bit signed numbers a,b,c,d into signed 32-bit
products a×c and b×d:
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Example:  
PXOR      MM2, MM2       ;   0 | 0
MOVD      MM0, [ab]      ; 0 0 | b a
MOVD      MM1, [cd]      ; 0 0 | d c
PUNPCKLWD MM0, MM2       ; 0 b | 0 a
PUNCPKLWD MM1, MM2       ; 0 d | 0 c
PMADDWD   MM0, MM1       ; b*d | a*c

3DNow!™ and MMX™ Intra-Operand Swapping

If the swapping of MMX register halves is necessary, use the
PSWAPD instruction, which is a new AMD Athlon MMX
extension. Use of this  instruction should only be for
AMD Athlon specific code. See the AMD Extensions to the
3DNow! and MMX Instruction Set Manual, order #22466 for
correct usage of this instruction.

Otherwise, for blended code, which needs to run well on
AMD-K6 and AMD Athlon family processors, the following code
is recommended:

Example 1 (Preferred, faster):  
;MM1 = SWAP (MM0), MM0 destroyed
MOVQ MM1, MM0 ;make a copy
PUNPCKLDQ MM0, MM0 ;duplicate lower half
PUNPCKHDQ MM1, MM0 ;combine lower halves

Example 2 (Preferred, fast):  
;MM1 = SWAP (MM0), MM0 preserved
MOVQ MM1, MM0 ;make a copy
PUNPCKHDQ MM1, MM1 ;duplicate upper half
PUNPCKLDQ MM1, MM0 ;combine upper halves

Both examples accomplish the swapping, but the first example
should be used if the original contents of the register do not
need to be preserved. The first example is faster due to the fact
that the MOVQ and PUNPCKLDQ instructions can execute in
parallel. The instructions in the second example are dependent
on one another and take longer to execute.

Fast Conversion of Signed Words to Floating-Point

In many applications there is a need to quickly convert data
consisting of packed 16-bit signed integers into floating-point
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numbers. The following two examples show how this can be
accomplished efficiently on AMD processors. 

The first example shows how to do the conversion on a processor
that supports AMD’s 3DNow! extensions,  such as the
AMD Athlon processor. It demonstrates the increased
efficiency from using the PI2FW instruction. Use of this
instruction should only be for AMD Athlon specific code. See
the AMD Extensions to the 3DNow! and MMX Instruction Set
Manual, order #22466 for more information on this instruction.

The second example demonstrates how to accomplish the same
task in blended code that achieves good performance on the
AMD Athlon processor as well as on the AMD-K6 family
processors that support 3DNow! technology.

Example 1 (AMD Athlon specific code using 3DNow! DSP instruction):  
MOVD MM0, [packed_sword] ;0 0 | b a
PUNPCKLWD MM0, MM0 ;b b | a a
PI2FW MM0, MM0 ;xb=float(b) | xa=float(a)            
MOVQ [packed_float], MM0 ;store xb | xa

Example 2 (AMD K6 Family and AMD Athlon blended code):  
MOVD      MM1, [packed_sword]   ;0 0 | b a
PXOR      MM0, MM0              ;0 0 | 0 0
PUNPCKLWD MM0, MM1              ;b 0 | a 0
PSRAD     MM0, 16               ;sign extend: b | a
PI2FD     MM0, MM0              ;xb=float(b) | xa=float(a)
MOVQ      [packed_float], MM0   ;store xb | xa

Use MMX™ PXOR to Change the Sign Bit in 3DNow!™ Code

For both the AMD Athlon and AMD-K6 processors, it is
recommended that code use the MMX PXOR instruction to
change the sign bit of 3DNow! operations instead of the 3DNow!
PFMUL instruction. On the AMD Athlon processor, using
PXOR allows for more parallelism, as it can execute in either
the FADD or FMUL pipes. PXOR has an execution latency of
two, but because it is a MMX instruction, there is an initial one
cycle bypassing penalty, and another one cycle penalty if the
result goes to a 3DNow! operation. The PFMUL execution
latency is four, therefore, in the worst case, the PXOR and
PMUL instructions are the same in terms of latency. On the
AMD-K6 processor, there is only a one cycle latency for PXOR,
versus a two cycle latency for the 3DNow! PFMUL instruction.
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Use MMX™ PCMP Instead of 3DNow!™ PFCMP

Use the MMX PCMP instruction instead of the 3DNow! PFCMP
instruction. On the AMD Athlon processor, the PCMP has a
latency of two cycles while the PFCMP has a latency of four
cycles. In addition to the shorter latency, PCMP can be issued to
either the FADD or the FMUL pipe, while PFCMP is restricted
to the FADD pipe.

Note: The PFCMP instruction has a ‘GE’ (greater or equal)
version (PFCMPGE) that is missing from PCMP.

Both Numbers 
Positive

If both arguments are positive, PCMP always works.

One Negative, One 
Positive

If one number is negative and the other is positive, PCMP still
works, except when one number is a positive zero and the other
is a negative zero.

Both Numbers 
Negative

Be careful when performing integer comparison using PCMPGT
on two negative 3DNow! numbers. The result is the inverse of
the PFCMPGT floating-point comparison. For example:

–2 = 84000000
–4 = 84800000

PCMP gives 84800000 > 84000000, but –4 < –2. To address this
issue, simply reverse the comparison by swapping the source
operands.

Use MMX™ PXOR to Clear an MMX Register

To set all the bits in an MMX register to 0s, use:

PXOR mmreg, mmreg

Note that “PXOR mmreg, mmreg” is dependent on previous
writes to mmreg. Therefore, using PXOR in the manner
described can lengthen dependency chains, which in return
may lead to reduced performance. In such instances, a MOVD
should be used to load a zero from a statically initialized
memory location.
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Use MMX™ PCMPEQD to Set an MMX Register

To set all the bits in an MMX register to 1s, use:

PCMPEQD mmreg, mmreg

Note that “PCMPEQD mmreg, mmreg” is dependent on
previous writes to mmreg. Therefore, using PCMPEQD in the
manner described can lengthen dependency chains, which in
return may lead to reduce performance. In such instances,
MOVQ should  be  used to  load the  constant
0xFFFFFFFFFFFFFFFF from a statically initialized memory
location.

Use MMX™ PAND to Find Absolute Value in 3DNow!™ Code

Use the following to compute the absolute value of 3DNow!
floating-point operands:

mabs DQ 7FFFFFFF7FFFFFFFh
PAND MM0, [mabs] ;mask out sign bit

Use MMX™ PXOR to Negate 3DNow!™ Data

Use the following code to negate 3DNow! data:

msgn DQ 8000000080000000h
PXOR MM0, [msgn] ;toggle sign bit

Use 3DNow!™ PAVGUSB for MPEG-2 Motion Compensation

Use the 3DNow! PAVGUSB instruction for MPEG-2 motion
compensation. The PAVGUSB instruction produces the rounded
averages of the eight unsigned 8-bit integer values in the source
operand (a MMX register or a 64-bit memory location) and the
eight corresponding unsigned 8-bit integer values in the
destination operand (a MMX register). The PAVGUSB
instruction is extremely useful in DVD (MPEG-2) decoding
where motion compensation performs a lot of byte averaging
between and within macroblocks. The PAVGUSB instruction
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helps speed up these operations. In addition, PAVGUSB can
free up some registers and make unrolling the averaging loops
possible.

The following code fragment uses original MMX code to
perform averaging between the source macroblock and
destination macroblock:

Example 1 (Avoid):  
MOV ESI, DWORD PTR Src_MB
MOV EDI, DWORD PTR Dst_MB
MOV EDX, DWORD PTR SrcStride
MOV EBX, DWORD PTR DstStride
MOVQ MM7, QWORD PTR [ConstFEFE]
MOVQ MM6, QWORD PTR [Const0101]
MOV ECX, 16

L1:
MOVQ MM0, [ESI] ;MM0=QWORD1
MOVQ MM1, [EDI] ;MM1=QWORD3
MOVQ MM2, MM0
MOVQ MM3, MM1
PAND MM2, MM6
PAND MM3, MM6
PAND MM0, MM7 ;MM0 = QWORD1 & 0xfefefefe
PAND MM1, MM7 ;MM1 = QWORD3 & 0xfefefefe
POR MM2, MM3 ;calculate adjustment
PSRLQ MM0, 1 ;MM0 = (QWORD1 & 0xfefefefe)/2
PSRLQ MM1, 1 ;MM1 = (QWORD3 & 0xfefefefe)/2
PAND MM2, MM6
PADDB MM0, MM1 ;MM0 = QWORD1/2 + QWORD3/2 w/o 

; adjustment
PADDB MM0, MM2 ;add lsb adjustment
MOVQ [EDI], MM0
MOVQ MM4, [ESI+8] ;MM4=QWORD2
MOVQ MM5, [EDI+8] ;MM5=QWORD4
MOVQ MM2, MM4
MOVQ MM3, MM5
PAND MM2, MM6
PAND MM3, MM6
PAND MM4, MM7 ;MM0 = QWORD2 & 0xfefefefe
PAND MM5, MM7 ;MM1 = QWORD4 & 0xfefefefe
POR MM2, MM3 ;calculate adjustment
PSRLQ MM4, 1 ;MM0 = (QWORD2 & 0xfefefefe)/2
PSRLQ MM5, 1 ;MM1 = (QWORD4 & 0xfefefefe)/2
PAND MM2, MM6
PADDB MM4, MM5 ;MM0 = QWORD2/2 + QWORD4/2 w/o 

; adjustment
PADDB MM4, MM2 ;add lsb adjustment
MOVQ [EDI+8], MM4
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ADD ESI, EDX
ADD EDI, EBX
LOOP L1

The following code fragment uses the 3DNow! PAVGUSB
instruction to perform averaging between the source
macroblock and destination macroblock:

Example 2 (Preferred):  
MOV EAX, DWORD PTR Src_MB
MOV EDI, DWORD PTR Dst_MB
MOV EDX, DWORD PTR SrcStride
MOV EBX, DWORD PTR DstStride
MOV ECX, 16

L1:
MOVQ MM0, [EAX] ;MM0=QWORD1
MOVQ MM1, [EAX+8] ;MM1=QWORD2
PAVGUSB MM0, [EDI] ;(QWORD1 + QWORD3)/2 with 

; adjustment
PAVGUSB MM1, [EDI+8] ;(QWORD2 + QWORD4)/2 with 

; adjustment
ADD EAX, EDX
MOVQ [EDI], MM0
MOVQ [EDI+8], MM1 
ADD EDI, EBX
LOOP L1

Stream of Packed Unsigned Bytes

The following code is an example of how to process a stream of
packed unsigned bytes (like RGBA information) with faster
3DNow! instructions.

Example:  
outside loop:
PXOR MM0, MM0

inside loop:
MOVD MM1, [VAR] ;  0 | v[3],v[2],v[1],v[0]
PUNPCKLBW MM1, MM0 ;0,v[3],0,v[2] | 0,v[1],0,v[0]
MOVQ MM2, MM1 ;0,v[3],0,v[2] | 0,v[1],0,v[0]
PUNPCKLWD MM1, MM0 ;   0,0,0,v[1] | 0,0,0,v[0]
PUNPCKHWD MM2, MM0 ;   0,0,0,v[3] | 0,0,0,v[2]
PI2FD MM1, MM1 ;  float(v[1]) | float(v[0])
PI2FD MM2, MM2 ;  float(v[3]) | float(v[2])
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11
General x86 Optimization 
Guidelines
This chapter describes general code optimization techniques
specific to superscalar processors (that is, techniques common
to the AMD-K6® processor, AMD Athlon™ processor, and
Pentium-family processors). In general, all optimization
techniques used for the AMD-K6 processor, Pentium®, and
Pentium Pro processors either improve the performance of the
AMD Athlon processor or are not required and have a neutral
effect (usually due to fewer coding restrictions with the
AMD Athlon processor).

Short Forms

Use shorter forms of instructions to increase the effective
number of instructions that can be examined for decoding at
any one time. Use 8-bit displacements and jump offsets where
possible.

Example 1 (Avoid):  
CMP REG, 0

Example 2 (Preferred):  
TEST REG, REG

Although both of these instructions have an execute latency of
one, fewer opcode bytes need to be examined by the decoders
for the TEST instruction.
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Dependencies

Spread out true dependencies to increase the opportunities for
paral le l  execution .  Anti -dependencies  and  output
dependencies do not impact performance.

Register Operands

Maintain frequently used values in registers rather than in
memory. This technique avoids the comparatively long latencies
for accessing memory.

Stack Allocation

When allocating space for local variables and/or outgoing
parameters within a procedure, adjust the stack pointer and
use moves rather than pushes. This method of allocation allows
random access to the outgoing parameters so that they can be
set up when they are calculated instead of being held
somewhere else until the procedure call. In addition, this
method reduces ESP dependencies and uses fewer execution
resources.
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Appendix A

AMD Athlon™ Processor 
Microarchitecture
Introduction

When discussing processor design, it is important to understand
the following terms—architecture, microarchitecture, and design
implementation. The term architecture refers to the instruction
set and features of a processor that are visible to software
programs running on the processor.  The architecture
determines what software the processor can run. The
archi tecture  of  the  AMD Athlon processor  i s  the
industry-standard x86 instruction set.

The term microarchitecture refers to the design techniques used
in the processor to reach the target cost, performance, and
funct ional i ty  goals .  The  AMD Athlon processor
microarchitecture is a decoupled decode/execution design
approach. In other words, the decoders essentially operate
independent of the execution units, and the execution core uses
a small number of instructions and simplified circuit design for
fast single-cycle execution and fast operating frequencies.

The term design implementation refers to the actual logic and
circuit designs from which the processor is created according to
the microarchitecture specifications.
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AMD Athlon™ Processor Microarchitecture

The innovative AMD Athlon processor microarchitecture
approach implements the x86 instruction set by processing
simpler operations (OPs) instead of complex x86 instructions.
These OPs are specially designed to include direct support for
the x86 instructions while observing the high-performance
principles of fixed-length encoding, regularized instruction
fields, and a large register set. Instead of executing complex
x86 instructions, which have lengths from 1 to 15 bytes, the
AMD Athlon processor executes the simpler fixed-length OPs,
while maintaining the instruction coding efficiencies found in
x86 programs. The enhanced microarchitecture used in the
AMD Athlon processor enables higher processor core
performance and promotes straightforward extendibility for
future designs. 

Superscalar Processor

The AMD Athlon processor is an aggressive, out-of-order,
three-way superscalar x86 processor. It can fetch, decode, and
issue up to three x86 instructions per cycle with a centralized
instruction control unit (ICU) and two independent instruction
schedulers — an integer scheduler and a floating-point
scheduler. These two schedulers can simultaneously issue up to
nine OPs to the three general-purpose integer execution units
(IEUs), three address-generation units (AGUs), and three
floating-point/3DNow!™/MMX™ execution units.  The
AMD Athlon moves integer instructions down the integer
execution pipeline, which consists of the integer scheduler and
the IEUs, as shown in Figure 1 on page 111. Floating-point
instructions are handled by the floating-point execution
pipeline, which consists of the floating-point scheduler and the
x87/3DNow!/MMX execution units.
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Figure 1.   AMD Athlon™ Processor Block Diagram
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contains a very large 64-Kbyte L1 instruction cache. The L1
instruction cache is organized as a 64-Kbyte, two-way,
set-associative array. Each line in the instruction array is 64
bytes long. Functions associated with the L1 instruction cache
are instruction loads, instruction prefetching, instruction
predecoding, and branch prediction. Requests that miss in the
L1 instruction cache are fetched from the backside L2 cache or,
subsequently, from the local memory using the bus interface
unit (BIU). 

The instruction cache generates fetches on the naturally
aligned 64 bytes containing the instructions and the next
sequential line of 64 bytes (a prefetch). The principal of
program spatial locality makes data prefetching very effective
and avoids or reduces execution stalls due to the amount of
t ime wasted reading the necessary data.  Cache l ine
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replacement is  based on a least-recently used (LRU)
replacement algorithm.

The L1 instruction cache has an associated two-level translation
look-aside buffer (TLB) structure. The first-level TLB is fully
associative and contains 24 entries (16 that map 4-Kbyte pages
and eight that map 2-Mbyte or 4-Mbyte pages). The second-level
TLB is four-way set associative and contains 256 entries, which
can map 4-Kbyte pages.

Predecode

Predecoding begins as the L1 instruction cache is filled.
Predecode information is generated and stored alongside the
instruction cache. This information is used to help efficiently
identify the boundaries between variable length x86
instructions, to distinguish DirectPath from VectorPath
early-decode instructions, and to locate the opcode byte in each
instruction. In addition, the predecode logic detects code
branches such as CALLs, RETURNs and short unconditional
JMPs. When a branch is detected, predecoding begins at the
target of the branch.

Branch Prediction

The fetch logic accesses the branch prediction table in parallel
with the instruction cache and uses the information stored in
the branch prediction table to predict the direction of branch
instructions.

The AMD Athlon processor employs combinations of a branch
target address buffer (BTB), a global history bimodal counter
(GHBC) table, and a return address stack (RAS) hardware in
order to predict and accelerate branches. Predicted-taken
branches incur only a single-cycle delay to redirect the
instruction fetcher to the target instruction. In the event of a
mispredict, the minimum penalty is ten cycles.

The BTB is a 2048-entry table that caches in each entry the
predicted target address of a branch. 

In addition, the AMD Athlon processor implements a 12-entry
return address stack to predict return addresses from a near or
far call. As CALLs are fetched, the next EIP is pushed onto the
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return stack. Subsequent RETs pop a predicted return address
off the top of the stack.

Early Decoding

The DirectPath  and VectorPath  decoders  perform
early-decoding of instructions into MacroOPs. A MacroOP is a
fixed length instruction which contains one or more OPs. The
outputs of the early decoders keep all (DirectPath or
VectorPath) instructions in program order. Early decoding
produces three MacroOPs per cycle from either path. The
outputs of both decoders are multiplexed together and passed
to the next stage in the pipeline, the instruction control unit.

When the target 16-byte instruction window is obtained from
the instruction cache, the predecode data is examined to
determine which type of basic decode should occur —
DirectPath or VectorPath.

DirectPath Decoder DirectPath instructions can be decoded directly into a
MacroOP, and subsequently into one or two OPs in the final
issue stage. A DirectPath instruction is limited to those x86
instructions that can be further decoded into one or two OPs.
The length of the x86 instruction does not determine DirectPath
instructions. A maximum of three DirectPath x86 instructions
can occupy a given aligned 8-byte block. 16-bytes are fetched at
a time. Therefore, up to six DirectPath x86 instructions can be
passed into the DirectPath decode pipeline.

VectorPath Decoder Uncommon x86 instructions requiring two or more MacroOPs
proceed down the VectorPath pipeline. The sequence of
MacroOPs is produced by an on-chip ROM known as the MROM.
The VectorPath decoder can produce up to three MacroOPs per
cycle. Decoding a VectorPath instruction may prevent the
simultaneous decode of a DirectPath instruction.

Instruction Control Unit

The instruction control unit (ICU) is the control center for the
AMD Athlon processor. The ICU controls the following
resources—the centralized in-flight reorder buffer, the integer
scheduler, and the floating-point scheduler. In turn, the ICU is
responsible for the following functions—MacroOP dispatch,
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MacroOP retirement, register and flag dependency resolution
and renaming, execution resource management, interrupts,
exceptions, and branch mispredictions.

The ICU takes the three MacroOPs per cycle from the early
decoders and places them in a centralized, fixed-issue reorder
buffer. This buffer is organized into 24 lines of three MacroOPs
each. The reorder buffer allows the ICU to track and monitor up
to 72 in-flight MacroOPs (whether integer or floating-point) for
maximum instruction throughput. The ICU can simultaneously
dispatch multiple MacroOPs from the reorder buffer to both the
integer and floating-point schedulers for final decode, issue,
and execution as OPs. In addition, the ICU handles exceptions
and manages the retirement of MacroOPs.

Data Cache

The L1 data  cache contains  two 64-bi t  ports .  I t  i s  a
write-allocate and writeback cache that uses an LRU
replacement policy. The data cache and instruction cache are
both two-way set-associative and 64-Kbytes in size. In addition,
this cache supports the MOESI (Modified, Owner, Exclusive,
Shared, and Invalid) cache coherency protocol and data parity.

The L1 data cache has an associated two-level TLB structure.
The first-level TLB is fully associative and contains 32 entries
(24 that map 4-Kbyte pages and eight that map 2-Mbyte or
4-Mbyte pages).  The second-level TLB is four-way set
associative and contains 256 entries, which can map 4-Kbyte
pages.
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Integer Scheduler

The integer scheduler is based on a three-wide queuing system
(also known as a reservation station) that feeds three integer
execution positions or pipes. Each reservation station divides
the MacroOPs into integer and address generation OPs, as
required.

Integer Execution Unit

The integer execution pipeline consists of three identical
pipes—0, 1, and 2. Each integer pipe consists of an integer
execution unit (IEU) and an address generation unit (AGU).
The integer execution pipeline is organized to match the three
MacroOP dispatch pipes in the ICU as shown in Figure 2 on
page 115. MacroOPs are broken down into OPs in the
schedulers. OPs issue when their operands are available either
from the register file or result buses.

OPs are executed when their operands are available. OPs from
a single MacroOP can execute out-of-order. In addition, a
particular integer pipe can be executing two OPs from different
MacroOPs (one in the IEU and one in the AGU) at the same
time. 

Figure 2.   Integer Execution Pipeline
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Each of the three IEUs are general purpose in that each
performs logic functions, arithmetic functions, conditional
functions, divide step functions, status flag multiplexing, and
branch resolutions. The AGUs calculate the logical addresses
for loads, stores, and LEAs. A load and store unit reads and
writes data to and from the L1 data cache. The integer
scheduler sends a completion status to the ICU when the
outstanding OPs for a given MacroOP are executed.

All integer operations can be handled within any of the three
IEUs with the exception of multiplies. Multiplies are handled
by a pipelined multiplier that is attached to the pipeline at pipe
0. See Figure 2 on page 115. 

Floating-Point Scheduler

The AMD Athlon processor  f loat ing -point  logic  is  a
high-performance, fully-pipelined, superscalar, out-of-order
execution unit. It is capable of accepting three MacroOPs of any
mixture of x87 floating-point, 3DNow! or MMX operations per
cycle.

The floating-point scheduler handles register renaming and has
a dedicated 36-entry scheduler buffer organized as 12 lines of
three MacroOPs each. It also performs OP issue, and
out-of -order execution.  The f loating-point  scheduler
communicates with the ICU to retire a MacroOP, to manage
comparison results from the FCOMI instruction, and to back
out results from a branch misprediction. 

Floating-Point Execution Unit

The floating-point execution unit (FPU) is implemented as a
coprocessor that has its own out-of-order control in addition to
the data path. The FPU handles all register operations for x87
instructions, all 3DNow! operations, and all MMX operations.
The FPU consists of a stack renaming unit, a register renaming
unit, a scheduler, a register file, and three parallel execution
units. Figure 3 shows a block diagram of the dataflow through
the FPU.
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Figure 3.   Floating-Point Unit Block Diagram

As shown in Figure 3 on page 117, the floating-point logic uses
three separate execution positions or pipes for superscalar x87,
3DNow! and MMX operations. The first of the three pipes is
generally known as the adder pipe (FADD), and it contains
3DNow! add, MMX ALU/shifter, and floating-point add
execution units. The second pipe is known as the multiplier
(FMUL). It contains a 3DNow!/MMX multiplier/reciprocal unit,
an MMX ALU and a floating-point multiplier/divider/square
root unit. The third pipe is known as the floating-point
load/store (FSTORE), which handles floating-point constant
loads (FLDZ, FLDPI, etc.), stores, FILDs, as well as many OP
primitives used in VectorPath sequences. 

Load-Store Unit (LSU)

The load-store unit (LSU) manages data load and store accesses
to the L1 data cache and, if required, to the backside L2 cache
or system memory. The 44-entry LSU provides a data interface
for both the integer scheduler and the floating-point scheduler.
It consists of two queues—a 12-entry queue for L1 cache load
and store accesses and a 32-entry queue for L2 cache or system
memory load and store accesses. The 12-entry queue can
request a maximum of two L1 cache loads and two L1 cache
(32-bits) stores per cycle. The 32-entry queue effectively holds
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requests that missed in the L1 cache probe by the 12-entry
queue. Finally, the LSU ensures that the architectural load and
store ordering rules are preserved (a requirement for x86
architecture compatibility).

Figure 4.   Load/Store Unit
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The AMD Athlon processor contains a very flexible onboard L2
controller. It uses an independent backside bus to access up to
8-Mbytes of industry-standard SRAMs. There are full on-chip
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that map 4-Kbyte pages and eight that map 2-Mbyte or 4-Mbyte
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AMD Athlon™ System Bus

The AMD Athlon system bus is a high-speed bus that consists of
a pair of unidirectional 13-bit address and control channels and
a bidirectional 64-bit data bus. The AMD Athlon system bus
supports low-voltage swing, multiprocessing, clock forwarding,
and fast data transfers. The clock forwarding technique is used
to deliver data on both edges of the reference clock, therefore
doubling the transfer speed. A four-entry 64-byte write buffer is
integrated into the BIU. The write buffer improves bus
utilization by combining multiple writes into a single large
write cycle. By using the AMD Athlon system bus, the
AMD Athlon processor can transfer data on the 64-bit data bus
at 200 MHz, which yields an effective throughput of 1.6-Gbyte
per second.
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Appendix B

Pipeline and Execution Unit 
Resources Overview
The AMD Athlon™ processor contains two independent
execution pipelines—one for integer operations and one for
floating-point operations. The integer pipeline manages x86
integer operations and the floating-point pipeline manages all
x87, 3DNow!™ and MMX™ instructions. This appendix
describes the operation and functionality of these pipelines.

Fetch and Decode Pipeline Stages

Figure 5 on page 122 and Figure 6 on page 122 show the
AMD Athlon processor instruction fetch and decoding pipeline
stages. The pipeline consists of one cycle for instruction fetches
and four cycles of instruction alignment and decoding. The
three ports in stage 5 provide a maximum bandwidth of three
MacroOPs per cycle for dispatching to the instruction control
unit (ICU).
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Figure 5.   Fetch/Scan/Align/Decode Pipeline Hardware

The most common x86 instructions flow through the DirectPath
pipeline stages and are decoded by hardware. The less common
instructions, which require microcode assistance, flow through
the VectorPath. Although the DirectPath decodes the common
x86 instructions, it also contains VectorPath instruction data,
which allows it to maintain dispatch order at the end of cycle 5. 

Figure 6.   Fetch/Scan/Align/Decode Pipeline Stages
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Cycle 1–FETCH The FETCH pipeline stage calculates the address of the next
x86 instruction window to fetch from the processor caches or
system memory. 

Cycle 2–SCAN SCAN determines the start and end pointers of instructions.
SCAN can send up to six aligned instructions (DirectPath and
VectorPath) to ALIGN1 and only one VectorPath instruction to
the microcode engine (MENG) per cycle. 

Cycle 3 (DirectPath)–
ALIGN1 

Because each 8-byte buffer (quadword queue) can contain up to
three instructions, ALIGN1 can buffer up to a maximum of nine
instructions, or 24 instruction bytes. ALIGN1 tries to send three
instructions from an 8-byte buffer to ALIGN2 per cycle. 

Cycle 3 (VectorPath)–
MECTL 

For VectorPath instructions, the microcode engine control
(MECTL) stage of the pipeline generates the microcode entry
points.

Cycle 4 (DirectPath)–
ALIGN2

ALIGN2 prioritizes prefix bytes, determines the opcode,
ModR/M, and SIB bytes for each instruction and sends the
accumulated prefix information to EDEC.

Cycle 4 (VectorPath)–
MEROM

In the microcode engine ROM (MEROM) pipeline stage, the
entry-point generated in the previous cycle, MECTL, is used to
index into the MROM to obtain the microcode lines necessary
to decode the instruction sent by SCAN.

Cycle 5 (DirectPath)–
EDEC

The early decode (EDEC) stage decodes information from the
DirectPath stage (ALIGN2) and VectorPath stage (MEROM)
into MacroOPs. In addition, EDEC determines register
pointers, flag updates, immediate values, displacements, and
other information. EDEC then selects either MacroOPs from
the DirectPath or MacroOPs from the VectorPath to send to the
instruction decoder (IDEC) stage.

Cycle 5 (VectorPath)–
MEDEC/MESEQ

The microcode engine decode (MEDEC) stage converts x86
instructions into MacroOPs. The microcode engine sequencer
(MESEQ) performs the sequence controls (redirects and
exceptions) for the MENG.

Cycle 6–
IDEC/Rename

At the instruction decoder (IDEC)/rename stage, integer and
floating-point MacroOPs diverge in the pipeline. Integer
MacroOPs are scheduled for execution in the next cycle.
Floating-point MacroOPs have their floating-point stack
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operands mapped to registers. Both integer and floating-point
MacroOPs are placed into the ICU.

Integer Pipeline Stages

The integer execution pipeline consists of four or more stages
for scheduling and execution and, if necessary, accessing data
in the processor caches or system memory. There are three
integer pipes associated with the three IEUs. 

Figure 7.   Integer Execution Pipeline

Figure 7 and Figure 8 show the integer execution resources and
the pipeline stages, which are described in the following
sections.

Figure 8.   Integer Pipeline Stages
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Cycle 7–SCHED In the scheduler (SCHED) pipeline stage, the scheduler buffers
can contain MacroOPs that are waiting for integer operands
from the ICU or the IEU result bus. When all operands are
received, SCHED schedules the MacroOP for execution and
issues the OPs to the next stage, EXEC.

Cycle 8–EXEC In the execution (EXEC) pipeline stage, the OP and its
associated operands are processed by an integer pipe (either
the IEU or the AGU). If addresses must be calculated to access
data necessary to complete the operation, the OP proceeds to
the next stages, ADDGEN and DCACC.

Cycle 9–ADDGEN In the address generation (ADDGEN) pipeline stage, the load
or store OP calculates a linear address, which is sent to the data
cache TLBs and caches.

Cycle 10–DCACC In the data cache access (DCACC) pipeline stage, the address
generated in the previous pipeline stage is used to access the
data cache arrays and TLBs. Any OP waiting in the scheduler
for this data snarfs this data and proceeds to the EXEC stage
(assuming all other operands were available).

Cycle 11–RESP In the response (RESP) pipeline stage, the data cache returns
hit/miss status and data for the request from DCACC.
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Floating-Point Pipeline Stages

The floating-point unit (FPU) is implemented as a coprocessor
that has its own out-of-order control in addition to the data
path. The FPU handles all register operations for x87
instructions, all 3DNow! operations, and all MMX operations.
The FPU consists of a stack renaming unit, a register renaming
unit, a scheduler, a register file, and three parallel execution
units. Figure 9 shows a block diagram of the dataflow through
the FPU.

Figure 9.   Floating-Point Unit Block Diagram

The floating-point pipeline stages 7–15 are shown in Figure 10
and described in the following sections. Note that the
floating-point pipe and integer pipe separates at cycle 7.

Figure 10.   Floating-Point Pipeline Stages
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Cycle 7–STKREN The stack rename (STKREN) pipeline stage in cycle 7 receives
up to three MacroOPs from IDEC and maps stack-relative
register tags to virtual register tags.

Cycle 8–REGREN The register renaming (REGREN) pipeline stage in cycle 8 is
responsible for register renaming. In this stage, virtual register
tags are mapped into physical register tags. Likewise, each
destination is assigned a new physical register. The MacroOPs
are then sent to the 36-entry FPU scheduler.

Cycle 9–SCHEDW The scheduler write (SCHEDW) pipeline stage in cycle 9 can
receive up to three MacroOPs per cycle.

Cycle 10–SCHED The schedule (SCHED) pipeline stage in cycle 10 schedules up
to three MacroOPs per cycle from the 36-entry FPU scheduler
to the FREG pipeline stage to read register operands.
MacroOPs are sent when their operands and/or tags are
obtained.

Cycle 11–FREG The register file read (FREG) pipeline stage reads the
floating-point register file for any register source operands of
MacroOPs. The register file read is done before the MacroOPs
are sent to the floating-point execution pipelines.

Cycle 12–15–
Floating-Point 
Execution (FEXEC1–4)

The FPU has three logical pipes—FADD, FMUL, and FSTORE.
Each pipe may have several associated execution units. MMX
execution is in both the FADD and FMUL pipes, with the
exception of MMX instructions involving multiplies, which are
limited to the FMUL pipe. The FMUL pipe has special support
for long latency operations.

DirectPath/VectorPath operations are dispatched to the FPU
during cycle 6, but are not acted upon until they receive
validation from the ICU in cycle 7. 

Execution Unit Resources

Terminology

The execution units operate with two types of register values—
operands and results. There are three operand types and two
result types, which are described in this section.
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Operands The three types of operands are as follows:

■ Address register operands—Used for address calculations of
load and store instructions

■ Data register operands—Used for register instructions

■ Store data register operands—Used for memory stores

Results The two types of results are as follows:

■ Data register results—Produced by load or register
instructions

■ Address register results—Produced by LEA or PUSH
instructions

Examples The following examples illustrate the operand and result
definitions:

ADD EAX, EBX

The ADD instruction has two data register operands (EAX
and EBX) and one data register result (EAX).

MOV EBX, [ESP+4*ECX+8] ;Load

The Load instruction has two address register operands
(ESP and ECX as base and index registers, respectively)
and a data register result (EBX).

MOV [ESP+4*ECX+8], EAX ;Store

The Store instruction has a data register operand (EAX)
and two address register operands (ESP and ECX as base
and index registers, respectively).

LEA ESI, [ESP+4*ECX+8]

The LEA instruction has address register operands (ESP
and ECX as base and index registers, respectively), and an
address register result (ESI).
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Integer Pipeline Operations

Table 2 shows the category or type of operations handled by the
integer pipeline. Table 3 shows examples of the decode type.

As shown in Table 2, the MOV instruction early decodes in the
DirectPath decoder and requires two OPs—an address
generation operation for the indirect address and a data load
from memory into a register. The ADD instruction early
decodes in the DirectPath decoder and requires a single OP
that can be executed in one of the three IEUs. The CMP
instruction early decodes in the VectorPath and requires three
OPs—an address generation operation for the indirect address,
a data load from memory, and a compare to CX using an IEU.
The final JZ instruction is a simple operation that early decodes
in the DirectPath decoder and requires a single OP. Not shown
is a load-op-store instruction, which translates into only one
MacroOP (one AGU OP, one IEU OP, and one L/S OP).

Table 2. Integer Pipeline Operation Types

Category Execution Unit

Integer Memory Load or Store Operations L/S

Address Generation Operations AGU

Integer Execution Unit Operations IEU

Integer Multiply Operations IMUL

Table 3. Integer Decode Types

x86 Instruction Decode Type OPs

MOV CX, [SP+4] DirectPath AGU, L/S

ADD AX, BX DirectPath IEU

CMP CX, [AX] VectorPath AGU, L/S, IEU

JZ Addr DirectPath IEU
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Floating-Point Pipeline Operations

Table 4 shows the category or type of operations handled by the
floating-point execution units. Table 5 shows examples of the
decode types.

As shown in Table 4, the FADD register-to-register instruction
generates a single MacroOP targeted for the floating-point
scheduler. FSIN is considered a VectorPath instruction because
it is a complex instruction with long execution times, as
compared to the more common floating-point instructions. The
MMX PFACC instruction is DirectPath decodeable and
generates a single MacroOP targeted for the arithmetic
operation execution pipeline in the floating-point logic. Just
like PFACC, a single MacroOP is early decoded for the 3DNow!
PFRSQRT instruction, but it is targeted for the multiply
operation execution pipeline.

Table 4. Floating-Point Pipeline Operation Types

Category Execution Unit

FPU/3DNow!/MMX Load/store or 
Miscellaneous Operations FSTORE

FPU/3DNow!/MMX Multiply Operation FMUL

FPU/3DNow!/MMX Arithmetic Operation FADD

Table 5. Floating-Point Decode Types

x86 Instruction Decode Type OPs

FADD ST, ST(i) DirectPath FADD

FSIN VectorPath various

PFACC DirectPath FADD

PFRSQRT DirectPath FMUL
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Load/Store Pipeline Operations

The AMD Athlon processor decodes any instruction that
references memory into primitive load/store operations. For
example, consider the following code sample:

MOV AX, [EBX] ;1 load MacroOP
PUSH EAX ;1 store MacroOP
POP EAX ;1 load MacroOP
ADD [EAX], EBX ;1 load/store and 1 IEU MacroOPs
FSTP [EAX] ;1 store MacroOP
MOVQ [EAX], MM0 ;1 store MacroOP

As shown in Table 6, the load/store unit (LSU) consists of a
three-stage data cache lookup.

Loads and stores are first dispatched in order into a 12-entry
deep reservation queue called LS1. LS1 holds loads and stores
that are waiting to enter the cache subsystem. Loads and stores
are allocated into LS1 entries at dispatch time in program
order, and are required by LS1 to probe the data cache in
program order. The AGUs can calculate addresses out of
program order, therefore, LS1 acts as an address reorder buffer. 

When a load or store is scanned out of the LS1 queue (Stage 1),
it is deallocated from the LS1 queue and inserted into the data
cache probe pipeline (Stage 2 and Stage 3). Up to two memory
operations can be scheduled (scanned out of LS1) to access the
data cache per cycle. The LSU can handle the following:

■ Two 64-bit loads per cycle or

■ One 64-bit load and one 64-bit store per cycle or

■ Two 32-bit stores per cycle

Table 6. Load/Store Unit Stages

Stage 1 (Cycle 8) Stage 2 (Cycle 9) Stage 3 (Cycle 10)

Address Calculation / LS1 
Scan

Transport Address to Data 
Cache

Data Cache Access / LS2 
Data Forward
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Code Sample Analysis
The samples in Table 7 on page 133 and Table 8 on page 134
show the execution behavior of several series of instructions as
a function of decode constraints, dependencies, and execution
resource constraints.

The sample tables show the x86 instructions, the decode pipe in
the integer execution pipeline, the decode type, the clock
counts, and a description of the events occurring within the
processor. The decode pipe gives the specific IEU used (see
Figure 7 on page 124). The decode type specifies either
VectorPath (VP) or DirectPath (DP).

The following nomenclature is used to describe the current
location of a particular operation:

■ D—Dispatch stage (Allocate in ICU, reservation stations,
load-store (LS1) queue)

■ I—Issue stage (Schedule operation for AGU or FU
execution)

■ E—Integer Execution Unit (IEU number corresponds to
decode pipe)

■ &—Address Generation Unit (AGU number corresponds to
decode pipe)

■ M—Multiplier Execution 

■ S—Load/Store pipe stage 1 (Schedule operation for
load/store pipe)

■ A—Load/Store pipe stage 2 (1st stage of data cache/LS2
buffer access)

■ $—Load/Store pipe stage 3 (2nd stage of data cache/LS2
buffer access) 

Note: Instructions execute more efficiently (that is, without
delays) when scheduled apart by suitable distances based on
dependencies. In general, the samples in this section show
poorly scheduled code in order to illustrate the resultant
effects.
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Table 7. Sample 1 – Integer Register Operations

Instruction
 Number

Decode 
Pipe

Decode 
Type

Clocks

Instruction 1 2 3 4 5 6 7 8

1 IMUL EAX, ECX 0 VP D I M M M M

2 INC ESI 0 DP D I E

3 MOV EDI, 0x07F4 1 DP D I E

4 ADD EDI, EBX 2 DP D I E

5 SHL EAX, 8 0 DP D I E

6 OR EAX, 0x0F 1 DP D I E

7 INC EBX 2 DP D I E

8 ADD ESI, EDX 0 DP D I E

Comments for Each Instruction Number

1. The IMUL is a VectorPath instruction. It cannot be decode or paired with other operations and, therefore,
dispatches alone in pipe 0. The multiply latency is four cycles.

2. The simple INC operation is paired with instructions 3 and 4. The INC executes in IEU0 in cycle 4.

3. The MOV executes in IEU1 in cycle 4.

4. The ADD operation depends on instruction 3. It executes in IEU2 in cycle 5.

5. The SHL operation depends on the multiply result (instruction 1). The MacroOP waits in a reservation
station and is eventually scheduled to execute in cycle 7 after the multiply result is available.

6. This operation executes in cycle 8 in IEU1.

7. This simple operation has a resource contention for execution in IEU2 in cycle 5. Therefore, the operation
does not execute until cycle 6.

8. The ADD operation executes immediately in IEU0 after dispatching.
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Table 8. Sample 2 – Integer Register and Memory Load Operations

Instruc
 Num

Decode 
Pipe

Decode 
Type

Clocks

Instruction 1 2 3 4 5 6 7 8 9 10 11 1

1 DEC EDX 0 DP D I E

2 MOV EDI, [ECX] 1 DP D I &/S A $

3 SUB EAX, [EDX+20] 2 DP D I &/S A $/I E

4 SAR EAX, 5 0 DP D I E

5 ADD ECX, [EDI+4] 1 DP D I &/S A $

6 AND EBX, 0x1F 2 DP D I E

7 MOV ESI, [0x0F100] 0 DP D I & S A $

8 OR ECX, [ESI+EAX*4+8] 1 DP D I &/S A $ E

Comments for Each Instruction Number

1. The ALU operation executes in IEU0.

2. The load operation generates the address in AGU1 and is simultaneously scheduled for the load/store pipe in cycle 3. I
cycles 4 and 5, the load completes the data cache access.

3. The load-execute instruction accesses the data cache in tandem with instruction 2. After the load portion completes, th
subtraction is executed in cycle 6 in IEU2.

4. The shift operation executes in IEU0 (cycle 7) after instruction 3 completes. 

5. This operation is stalled on its address calculation waiting for instruction 2 to update EDI. The address is calculated i
cycle 6. In cycle 7/8, the cache access completes.

6. This simple operation executes quickly in IEU2

7. The address for the load is calculated in cycle 5 in AGU0. However, the load is not scheduled to access the data cach
until cycle 6. The load is blocked for scheduling to access the data cache for one cycle by instruction 5. In cycles 7 and 8
instruction 7 accesses the data cache concurrently with instruction 5.

8. The load execute instruction accesses the data cache in cycles 10/11 and executes the ‘OR’ operation in IEU1 in cycle 12
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Appendix C

Implementation of 
Write Combining
Introduction

This appendix describes the memory write-combining feature
as implemented in the AMD Athlon™ processor family. The
AMD Athlon processor supports the memory type and range
register (MTRR) and the page attribute table (PAT) extensions,
which allow software to define ranges of memory as either
writeback (WB), write-protected (WP), writethrough (WT),
uncacheable (UC), or write-combining (WC). 

Defining the memory type for a range of memory as WC or WT
allows the processor to conditionally combine data from
multiple write cycles that are addressed within this range into a
merge buffer. Merging multiple write cycles into a single write
cycle reduces processor bus utilization and processor stalls,
thereby increasing the overall system performance.

To understand the information presented in this appendix, the
reader should possess a knowledge of K86™ processors, the x86
architecture, and programming requirements.
Appendix C Implementation of Write Combining 135



AMD Athlon™ Processor x86 Code Optimization 22007D/0—August 1999

Preliminary Information
Write-Combining Definitions and Abbreviations

This appendix uses the following definitions and abbreviations.

■ UC—Uncacheable memory type

■ WC—Write-combining memory type

■ WT—Writethrough memory type

■ WP—Write-protected memory type

■ WB—Writeback memory type

■ One Byte—8 bits

■ One Word—16 bits

■ Longword—32 bits (same as a x86 doubleword)

■ Quadword—64 bits or 2 longwords

■ Octaword—128 bits or 2 quadwords

■ Cache Block—64 bytes or 4 octawords or 8 quadwords

What is Write Combining?

Write combining is the merging of multiple memory write
cycles that target locations within the address range of a write
buffer. The AMD Athlon processor combines multiple
memory-write cycles to a 64-byte buffer whenever the memory
address is within a WC or WT memory type region. The
processor continues to combine writes to this buffer without
writing the data to the system, as long as certain rules apply
(see Table 9 on page 138 for more information).

Programming Details

The steps required for programming write combining on the
AMD Athlon processor are as follows:

1. Verify the presence of an AMD Athlon processor by using
the CPUID instruction to check for the instruction family
code and vendor identification of the processor. Standard
function 0 on AMD processors returns a vendor
identification string of “AuthenticAMD” in registers EBX,
EDX, and ECX. Standard function 1 returns the processor
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signature in register EAX, where EAX[11–8] contains the
instruction family code. For the AMD Athlon processor, the
instruction family code is six (6). 

2. In addition, the presence of the MTRRs is indicated by bit
12 and the presence of the PAT extension is indicated by bit
16 of the extended features bits returned in the EDX
register by CPUID function 8000_0001h. See the AMD
Processor Recognition Application Note, order# 20734 for more
details on the CPUID instruction. 

3. Write combining is controlled by the MTRRs and PAT.
Write combining should be enabled for the appropriate
memory ranges. The AMD Athlon processor MTRRs and
PAT are compatible with the Pentium® II. 

Write-Combining Operations

In order to improve system performance, the AMD Athlon
processor aggressively combines multiple memory-write cycles
of any data size that address locations within a 64-byte write
buffer that is aligned to a cache-line boundary. The data sizes
can be bytes, words, longwords, or quadwords.

WC memory type writes can be combined in any order up to a
full 64-byte sized write buffer.

WT memory type writes can only be combined up to a fully
aligned quadword in the 64-byte buffer, and must be combined
contiguously in ascending order. Combining may be opened at
any byte boundary in a quadword, but is closed by a write that is
either not “contiguous and ascending” or fills byte 7.

All other memory types for stores that go through the write
buffer (UC and WP) cannot be combined.

Combining is able to continue until interrupted by one of the
conditions listed in Table 9 on page 138. When combining is
interrupted, one or more bus commands are issued to the
system for that write buffer, as described by Table 10 on
page 139. 
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Table 9. Write Combining Completion Events

Event Comment

Non-WB write outside of 
current buffer

The first non-WB write to a different cache block address 
closes combining for previous writes. WB writes do not affect 
write combining. Only one line-sized buffer can be open for 
write combining at a time. Once a buffer is closed for write 
combining, it cannot be reopened for write combining.

I/O Read or Write
Any IN/INS or OUT/OUTS instruction closes combining. The 
implied memory type for all IN/OUT instructions is UC, 
which cannot be combined.

Serializing instructions

Any serializing instruction closes combining. These 
instructions include: MOVCRx, MOVDRx, WRMSR, INVD, 
INVLPG, WBINVD, LGDT, LLDT, LIDT, LTR, CPUID, IRET, RSM, 
INIT, HALT.

Flushing instructions Any flush instruction causes the WC to complete.

Locks
Any instruction or processor operation that requires a cache 
or bus lock closes write combining before starting the lock. 
Writes within a lock can be combined.

Uncacheable Read
A UC read closes write combining. A WC read closes 
combining only if a cache block address match occurs 
between the WC read and a write in the write buffer.

Different memory type
Any WT write while write-combining for WC memory or any 
WC write while write combining for WT memory closes write 
combining.

Buffer full Write combining is closed if all 64 bytes of the write buffer 
are valid.

WT time-out
If 16 processor clocks have passed since the most recent 
write for WT write combining, write combining is closed. 
There is no time-out for WC write combining.

WT write fills byte 7

Write combining is closed if a write fills the most significant 
byte of a quadword, which includes writes that are 
misaligned across a quadword boundary. In the misaligned 
case, combining is closed by the LS part of the misaligned 
write and combining is opened by the MS part of the 
misaligned store.

WT Nonsequential

If a subsequent WT write is not in ascending sequential 
order, the write combining completes. WC writes have no 
addressing constraints within the 64-byte line being 
combined.

TLB AD bit set Write combining is closed whenever a TLB reload sets the 
accessed (A) or dirty (D) bits of a Pde or Pte.
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Sending Write-Buffer Data to the System

Once write combining is closed for a 64-byte write buffer, the
contents of the write buffer are eligible to be sent to the system
as one or more AMD Athlon system bus commands. Table 10
lists the rules for determining what system commands are
issued for a write buffer, as a function of the alignment of the
valid buffer data. 

Table 10. AMD Athlon™ System Bus Commands Generation Rules

1. If all eight quadwords are either full (8 bytes valid) or empty (0 bytes valid), a
Write-Quadword system command is issued, with an 8-byte mask representing
which of the eight quadwords are valid. If this case is true, do not proceed to the
next rule.

2. If all longwords are either full (4 bytes valid) or empty (0 bytes valid), a
Write-Longword system command is issued for each 32-byte buffer half that
contains at least one valid longword. The mask for each Write-Longword system
command indicates which longwords are valid in that 32-byte write buffer half. If
this case is true, do not proceed to the next rule.

3. Sequence through all eight quadwords of the write buffer, from quadword 0 to
quadword 7. Skip over a quadword if no bytes are valid. Issue a Write-Quad system
command if all bytes are valid, asserting one mask bit. Issue a Write-Longword
system command if the quadword contains one aligned longword, asserting one
mask bit. Otherwise, issue a Write-Byte system command if there is at least one
valid byte, asserting a mask bit for each valid byte.
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Appendix D

Instruction Dispatch and 
Execution Timing
This chapter describes the MacroOPs generated by each
decoded instruction, along with the relative static execution
latencies of these groups of operations. Tables 11 through 16
starting on page 142 define the integer, MMX™, MMX
extensions, floating-point, 3DNow!™, and 3DNow! extensions
instructions, respectively. 

The first column in these tables indicates the instruction
mnemonic and operand types with the following notations:

■ reg8—byte integer register defined by instruction byte(s) or 
bits 5, 4, and 3 of the modR/M byte

■ mreg8—byte integer register defined by bits 2, 1, and 0 of 
the modR/M byte

■ reg16/32—word and doubleword integer register defined by 
instruction byte(s) or bits 5, 4, and 3 of the modR/M byte

■ mreg16/32—word and doubleword integer register defined 
by bits 2, 1, and 0 of the modR/M byte

■ mem8—byte memory location

■ mem16/32—word or doubleword memory location

■ mem32/48—doubleword or 6-byte memory location

■ mem48—48-bit integer value in memory

■ mem64—64-bit value in memory

■ imm8/16/32—8-bit, 16-bit or 32-bit immediate value

■ disp8—8-bit displacement value
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■ disp16/32—16-bit or 32-bit displacement value 

■ disp32/48—32-bit or 48-bit displacement value

■ eXX—register width depending on the operand size

■ mem32real—32-bit floating-point value in memory

■ mem64real—64-bit floating-point value in memory

■ mem80real—80-bit floating-point value in memory

■ mmreg—MMX/3DNow! register

■ mmreg1—MMX/3DNow! register defined by bits 5, 4, and 3 
of the modR/M byte

■ mmreg2—MMX/3DNow! register defined by bits 2, 1, and 0 
of the modR/M byte 

The second and third columns list all applicable encoding
opcode bytes.

The fourth column lists the modR/M byte used by the
instruction. The modR/M byte defines the instruction as
register or memory form. If mod bits 7 and 6 are documented as
mm (memory form), mm can only be 10b, 01b, or 00b.

The fifth column lists the type of instruction decode —
DirectPath or VectorPath (see “DirectPath Decoder” on page
113 and “VectorPath Decoder” on page 113 for more
information). The AMD Athlon™ enhanced processor decode
logic can process three instructions per clock.

The FPU, MMX, and 3DNow! instruction tables have an
additional column that lists the possible FPU execution
pipelines available for use by any particular DirectPath
decoded operation. Typically, VectorPath instructions require
more than one execution pipe resource.

Table 11. Integer Instructions

Instruction Mnemonic First
Byte

Second
Byte

ModR/M 
Byte

Decode
Type

AAA 37h VectorPath

AAD D5h 0Ah VectorPath

AAM D4h 0Ah VectorPath

AAS 3Fh VectorPath
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ADC mreg8, reg8 10h 11-xxx-xxx DirectPath

ADC mem8, reg8 10h mm-xxx-xxx DirectPath

ADC mreg16/32, reg16/32 11h 11-xxx-xxx DirectPath

ADC mem16/32, reg16/32 11h mm-xxx-xxx DirectPath

ADC reg8, mreg8 12h 11-xxx-xxx DirectPath

ADC reg8, mem8 12h mm-xxx-xxx DirectPath

ADC reg16/32, mreg16/32 13h 11-xxx-xxx DirectPath

ADC reg16/32, mem16/32 13h mm-xxx-xxx DirectPath

ADC AL, imm8 14h DirectPath

ADC EAX, imm16/32 15h DirectPath

ADC mreg8, imm8 80h 11-010-xxx DirectPath

ADC mem8, imm8 80h mm-010-xxx DirectPath

ADC mreg16/32, imm16/32 81h 11-010-xxx DirectPath

ADC mem16/32, imm16/32 81h mm-010-xxx DirectPath

ADC mreg16/32, imm8 (sign extended) 83h 11-010-xxx DirectPath

ADC mem16/32, imm8 (sign extended) 83h mm-010-xxx DirectPath

ADD mreg8, reg8 00h 11-xxx-xxx DirectPath

ADD mem8, reg8 00h mm-xxx-xxx DirectPath

ADD mreg16/32, reg16/32 01h 11-xxx-xxx DirectPath

ADD mem16/32, reg16/32 01h mm-xxx-xxx DirectPath

ADD reg8, mreg8 02h 11-xxx-xxx DirectPath

ADD reg8, mem8 02h mm-xxx-xxx DirectPath

ADD reg16/32, mreg16/32 03h 11-xxx-xxx DirectPath

ADD reg16/32, mem16/32 03h mm-xxx-xxx DirectPath

ADD AL, imm8 04h DirectPath

ADD EAX, imm16/32 05h DirectPath

ADD mreg8, imm8 80h 11-000-xxx DirectPath

ADD mem8, imm8 80h mm-000-xxx DirectPath

ADD mreg16/32, imm16/32 81h 11-000-xxx DirectPath

ADD mem16/32, imm16/32 81h mm-000-xxx DirectPath

ADD mreg16/32, imm8 (sign extended) 83h 11-000-xxx DirectPath

ADD mem16/32, imm8 (sign extended) 83h mm-000-xxx DirectPath

AND mreg8, reg8 20h 11-xxx-xxx DirectPath

Table 11. Integer Instructions (continued)

Instruction Mnemonic First
Byte

Second
Byte

ModR/M 
Byte

Decode
Type
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AND mem8, reg8 20h mm-xxx-xxx DirectPath

AND mreg16/32, reg16/32 21h 11-xxx-xxx DirectPath

AND mem16/32, reg16/32 21h mm-xxx-xxx DirectPath

AND reg8, mreg8 22h 11-xxx-xxx DirectPath

AND reg8, mem8 22h mm-xxx-xxx DirectPath

AND reg16/32, mreg16/32 23h 11-xxx-xxx DirectPath

AND reg16/32, mem16/32 23h mm-xxx-xxx DirectPath

AND AL, imm8 24h DirectPath

AND EAX, imm16/32 25h DirectPath

AND mreg8, imm8 80h 11-100-xxx DirectPath

AND mem8, imm8 80h mm-100-xxx DirectPath

AND mreg16/32, imm16/32 81h 11-100-xxx DirectPath

AND mem16/32, imm16/32 81h mm-100-xxx DirectPath

AND mreg16/32, imm8 (sign extended) 83h 11-100-xxx DirectPath

AND mem16/32, imm8 (sign extended) 83h mm-100-xxx DirectPath

ARPL mreg16, reg16 63h 11-xxx-xxx VectorPath

ARPL mem16, reg16 63h mm-xxx-xxx VectorPath

BOUND 62h VectorPath

BSF reg16/32, mreg16/32 0Fh BCh 11-xxx-xxx VectorPath

BSF reg16/32, mem16/32 0Fh BCh mm-xxx-xxx VectorPath

BSR reg16/32, mreg16/32 0Fh BDh 11-xxx-xxx VectorPath

BSR reg16/32, mem16/32 0Fh BDh mm-xxx-xxx VectorPath

BSWAP EAX 0Fh C8h DirectPath

BSWAP ECX 0Fh C9h DirectPath

BSWAP EDX 0Fh CAh DirectPath

BSWAP EBX 0Fh CBh DirectPath

BSWAP ESP 0Fh CCh DirectPath

BSWAP EBP 0Fh CDh DirectPath

BSWAP ESI 0Fh CEh DirectPath

BSWAP EDI 0Fh CFh DirectPath

BT mreg16/32, reg16/32 0Fh A3h 11-xxx-xxx DirectPath

BT mem16/32, reg16/32 0Fh A3h mm-xxx-xxx VectorPath

BT mreg16/32, imm8 0Fh BAh 11-100-xxx DirectPath

Table 11. Integer Instructions (continued)

Instruction Mnemonic First
Byte

Second
Byte

ModR/M 
Byte

Decode
Type
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BT mem16/32, imm8 0Fh BAh mm-100-xxx DirectPath

BTC mreg16/32, reg16/32 0Fh BBh 11-xxx-xxx VectorPath

BTC mem16/32, reg16/32 0Fh BBh mm-xxx-xxx VectorPath

BTC mreg16/32, imm8 0Fh BAh 11-111-xxx VectorPath

BTC mem16/32, imm8 0Fh BAh mm-111-xxx VectorPath

BTR mreg16/32, reg16/32 0Fh B3h 11-xxx-xxx VectorPath

BTR mem16/32, reg16/32 0Fh B3h mm-xxx-xxx VectorPath

BTR mreg16/32, imm8 0Fh BAh 11-110-xxx VectorPath

BTR mem16/32, imm8 0Fh BAh mm-110-xxx VectorPath

BTS mreg16/32, reg16/32 0Fh ABh 11-xxx-xxx VectorPath

BTS mem16/32, reg16/32 0Fh ABh mm-xxx-xxx VectorPath

BTS mreg16/32, imm8 0Fh BAh 11-101-xxx VectorPath

BTS mem16/32, imm8 0Fh BAh mm-101-xxx VectorPath

CALL full pointer 9Ah VectorPath

CALL near imm16/32 E8h VectorPath

CALL mem16:16/32 FFh 11-011-xxx VectorPath

CALL near mreg32 (indirect) FFh 11-010-xxx VectorPath

CALL near mem32 (indirect) FFh mm-010-xxx VectorPath

CBW/CWDE 98h DirectPath

CLC F8h DirectPath

CLD FCh VectorPath

CLI FAh VectorPath

CLTS 0Fh 06h VectorPath

CMC F5h DirectPath

CMOVA/CMOVNBE reg16/32, reg16/32 0Fh 47h 11-xxx-xxx DirectPath

CMOVA/CMOVNBE reg16/32, mem16/32 0Fh 47h mm-xxx-xxx DirectPath

CMOVAE/CMOVNB/CMOVNC reg16/32, mem16/32 0Fh 43h 11-xxx-xxx DirectPath

CMOVAE/CMOVNB/CMOVNC mem16/32, 
mem16/32

0Fh 43h mm-xxx-xxx DirectPath

CMOVB/CMOVC/CMOVNAE reg16/32, reg16/32 0Fh 42h 11-xxx-xxx DirectPath

CMOVB/CMOVC/CMOVNAE mem16/32, reg16/32 0Fh 42h mm-xxx-xxx DirectPath

CMOVBE/CMOVNA reg16/32, reg16/32 0Fh 46h 11-xxx-xxx DirectPath

CMOVBE/CMOVNA reg16/32, mem16/32 0Fh 46h mm-xxx-xxx DirectPath

Table 11. Integer Instructions (continued)

Instruction Mnemonic First
Byte

Second
Byte

ModR/M 
Byte

Decode
Type
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CMOVE/CMOVZ reg16/32, reg16/32 0Fh 44h 11-xxx-xxx DirectPath

CMOVE/CMOVZ reg16/32, mem16/32 0Fh 44h mm-xxx-xxx DirectPath

CMOVG/CMOVNLE reg16/32, reg16/32 0Fh 4Fh 11-xxx-xxx DirectPath

CMOVG/CMOVNLE reg16/32, mem16/32 0Fh 4Fh mm-xxx-xxx DirectPath

CMOVGE/CMOVNL reg16/32, reg16/32 0Fh 4Dh 11-xxx-xxx DirectPath

CMOVGE/CMOVNL reg16/32, mem16/32 0Fh 4Dh mm-xxx-xxx DirectPath

CMOVL/CMOVNGE reg16/32, reg16/32 0Fh 4Ch 11-xxx-xxx DirectPath

CMOVL/CMOVNGE reg16/32, mem16/32 0Fh 4Ch mm-xxx-xxx DirectPath

CMOVLE/CMOVNG reg16/32, reg16/32 0Fh 4Eh 11-xxx-xxx DirectPath

CMOVLE/CMOVNG reg16/32, mem16/32 0Fh 4Eh mm-xxx-xxx DirectPath

CMOVNE/CMOVNZ reg16/32, reg16/32 0Fh 45h 11-xxx-xxx DirectPath

CMOVNE/CMOVNZ reg16/32, mem16/32 0Fh 45h mm-xxx-xxx DirectPath

CMOVNO reg16/32, reg16/32 0Fh 41h 11-xxx-xxx DirectPath

CMOVNO reg16/32, mem16/32 0Fh 41h mm-xxx-xxx DirectPath

CMOVNP/CMOVPO reg16/32, reg16/32 0Fh 4Bh 11-xxx-xxx DirectPath

CMOVNP/CMOVPO reg16/32, mem16/32 0Fh 4Bh mm-xxx-xxx DirectPath

CMOVNS reg16/32, reg16/32 0Fh 49h 11-xxx-xxx DirectPath

CMOVNS reg16/32, mem16/32 0Fh 49h mm-xxx-xxx DirectPath

CMOVO reg16/32, reg16/32 0Fh 40h 11-xxx-xxx DirectPath

CMOVO reg16/32, mem16/32 0Fh 40h mm-xxx-xxx DirectPath

CMOVP/CMOVPE reg16/32, reg16/32 0Fh 4Ah 11-xxx-xxx DirectPath

CMOVP/CMOVPE reg16/32, mem16/32 0Fh 4Ah mm-xxx-xxx DirectPath

CMOVS reg16/32, reg16/32 0Fh 48h 11-xxx-xxx DirectPath

CMOVS reg16/32, mem16/32 0Fh 48h mm-xxx-xxx DirectPath

CMP mreg8, reg8 38h 11-xxx-xxx DirectPath

CMP mem8, reg8 38h mm-xxx-xxx DirectPath

CMP mreg16/32, reg16/32 39h 11-xxx-xxx DirectPath

CMP mem16/32, reg16/32 39h mm-xxx-xxx DirectPath

CMP reg8, mreg8 3Ah 11-xxx-xxx DirectPath

CMP reg8, mem8 3Ah mm-xxx-xxx DirectPath

CMP reg16/32, mreg16/32 3Bh 11-xxx-xxx DirectPath

CMP reg16/32, mem16/32 3Bh mm-xxx-xxx DirectPath

CMP AL, imm8 3Ch DirectPath
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CMP EAX, imm16/32 3Dh DirectPath

CMP mreg8, imm8 80h 11-111-xxx DirectPath

CMP mem8, imm8 80h mm-111-xxx DirectPath

CMP mreg16/32, imm16/32 81h 11-111-xxx DirectPath

CMP mem16/32, imm16/32 81h mm-111-xxx DirectPath

CMP mreg16/32, imm8 (sign extended) 83h 11-111-xxx DirectPath

CMP mem16/32, imm8 (sign extended) 83h mm-111-xxx DirectPath

CMPSB mem8,mem8 A6h VectorPath

CMPSW mem16, mem32 A7h VectorPath

CMPSD mem32, mem32 A7h VectorPath

CMPXCHG mreg8, reg8 0Fh B0h 11-xxx-xxx VectorPath

CMPXCHG mem8, reg8 0Fh B0h mm-xxx-xxx VectorPath

CMPXCHG mreg16/32, reg16/32 0Fh B1h 11-xxx-xxx VectorPath

CMPXCHG mem16/32, reg16/32 0Fh B1h mm-xxx-xxx VectorPath

CMPXCHG8B mem64 0Fh C7h mm-xxx-xxx VectorPath

CPUID 0Fh A2h VectorPath

CWD/CDQ 99h DirectPath

DAA 27h VectorPath

DAS 2Fh VectorPath

DEC EAX 48h DirectPath

DEC ECX 49h DirectPath

DEC EDX 4Ah DirectPath

DEC EBX 4Bh DirectPath

DEC ESP 4Ch DirectPath

DEC EBP 4Dh DirectPath

DEC ESI 4Eh DirectPath

DEC EDI 4Fh DirectPath

DEC mreg8 FEh 11-001-xxx DirectPath

DEC mem8 FEh mm-001-xxx DirectPath

DEC mreg16/32 FFh 11-001-xxx DirectPath

DEC mem16/32 FFh mm-001-xxx DirectPath

DIV AL, mreg8 F6h 11-110-xxx VectorPath

DIV AL, mem8 F6h mm-110-xxx VectorPath
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DIV EAX, mreg16/32 F7h 11-110-xxx VectorPath

DIV EAX, mem16/32 F7h mm-110-xxx VectorPath

ENTER C8 VectorPath

IDIV mreg8 F6h 11-111-xxx VectorPath

IDIV mem8 F6h mm-111-xxx VectorPath

IDIV EAX, mreg16/32 F7h 11-111-xxx VectorPath

IDIV EAX, mem16/32 F7h mm-111-xxx VectorPath

IMUL reg16/32, imm16/32 69h 11-xxx-xxx VectorPath

IMUL reg16/32, mreg16/32, imm16/32 69h 11-xxx-xxx VectorPath

IMUL reg16/32, mem16/32, imm16/32 69h mm-xxx-xxx VectorPath

IMUL reg16/32, imm8 (sign extended) 6Bh 11-xxx-xxx VectorPath

IMUL reg16/32, mreg16/32, imm8 (signed) 6Bh 11-xxx-xxx VectorPath

IMUL reg16/32, mem16/32, imm8 (signed) 6Bh mm-xxx-xxx VectorPath

IMUL AX, AL, mreg8 F6h 11-101-xxx VectorPath

IMUL AX, AL, mem8 F6h mm-101-xxx VectorPath

IMUL EDX:EAX, EAX, mreg16/32 F7h 11-101-xxx VectorPath

IMUL EDX:EAX, EAX, mem16/32 F7h mm-101-xxx VectorPath

IMUL reg16/32, mreg16/32 0Fh AFh 11-xxx-xxx VectorPath

IMUL reg16/32, mem16/32 0Fh AFh mm-xxx-xxx VectorPath

IN AL, imm8 E4h VectorPath

IN AX, imm8 E5h VectorPath

IN EAX, imm8 E5h VectorPath

IN AL, DX ECh VectorPath

IN AX, DX EDh VectorPath

IN EAX, DX EDh VectorPath

INC EAX 40h DirectPath

INC ECX 41h DirectPath

INC EDX 42h DirectPath

INC EBX 43h DirectPath

INC ESP 44h DirectPath

INC EBP 45h DirectPath

INC ESI 46h DirectPath

INC EDI 47h DirectPath
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INC mreg8 FEh 11-000-xxx DirectPath

INC mem8 FEh mm-000-xxx DirectPath

INC mreg16/32 FFh 11-000-xxx DirectPath

INC mem16/32 FFh mm-000-xxx DirectPath

INVD 0Fh 08h VectorPath

INVLPG 0Fh 01h mm-111-xxx VectorPath

JO short disp8 70h DirectPath

JNO short disp8 71h DirectPath

JB/JNAE/JC short disp8 72h DirectPath

JNB/JAE/JNC short disp8 73h DirectPath

JZ/JE short disp8 74h DirectPath

JNZ/JNE short disp8 75h DirectPath

JBE/JNA short disp8 76h DirectPath

JNBE/JA short disp8 77h DirectPath

JS short disp8 78h DirectPath

JNS short disp8 79h DirectPath

JP/JPE short disp8 7Ah DirectPath

JNP/JPO short disp8 7Bh DirectPath

JL/JNGE short disp8 7Ch DirectPath

JNL/JGE short disp8 7Dh DirectPath

JLE/JNG short disp8 7Eh DirectPath

JNLE/JG short disp8 7Fh DirectPath

JCXZ/JEC short disp8 E3h VectorPath

JO near disp16/32 0Fh 80h DirectPath

JNO near disp16/32 0Fh 81h DirectPath

JB/JNAE near disp16/32 0Fh 82h DirectPath

JNB/JAE near disp16/32 0Fh 83h DirectPath

JZ/JE near disp16/32 0Fh 84h DirectPath

JNZ/JNE near disp16/32 0Fh 85h DirectPath

JBE/JNA near disp16/32 0Fh 86h DirectPath

JNBE/JA near disp16/32 0Fh 87h DirectPath

JS near disp16/32 0Fh 88h DirectPath

JNS near disp16/32 0Fh 89h DirectPath
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JP/JPE near disp16/32 0Fh 8Ah DirectPath

JNP/JPO near disp16/32 0Fh 8Bh DirectPath

JL/JNGE near disp16/32 0Fh 8Ch DirectPath

JNL/JGE near disp16/32 0Fh 8Dh DirectPath

JLE/JNG near disp16/32 0Fh 8Eh DirectPath

JNLE/JG near disp16/32 0Fh 8Fh DirectPath

JMP near disp16/32 (direct) E9h DirectPath

JMP far disp32/48 (direct) EAh VectorPath

JMP disp8 (short) EBh DirectPath

JMP far mem32 (indirect) EFh mm-101-xxx VectorPath

JMP far mreg32 (indirect) FFh mm-101-xxx VectorPath

JMP near mreg16/32 (indirect) FFh 11-100-xxx DirectPath

JMP near mem16/32 (indirect) FFh mm-100-xxx DirectPath

LAHF 9Fh VectorPath

LAR reg16/32, mreg16/32 0Fh 02h 11-xxx-xxx VectorPath

LAR reg16/32, mem16/32 0Fh 02h mm-xxx-xxx VectorPath

LDS reg16/32, mem32/48 C5h mm-xxx-xxx VectorPath

LEA reg16, mem16/32 8Dh mm-xxx-xxx VectorPath

LEA reg32, mem16/32 8Dh mm-xxx-xxx DirectPath

LEAVE C9h VectorPath

LES reg16/32, mem32/48 C4h mm-xxx-xxx VectorPath

LFS reg16/32, mem32/48 0Fh B4h VectorPath

LGDT mem48 0Fh 01h mm-010-xxx VectorPath

LGS reg16/32, mem32/48 0Fh B5h VectorPath

LIDT mem48 0Fh 01h mm-011-xxx VectorPath

LLDT mreg16 0Fh 00h 11-010-xxx VectorPath

LLDT mem16 0Fh 00h mm-010-xxx VectorPath

LMSW mreg16 0Fh 01h 11-100-xxx VectorPath

LMSW mem16 0Fh 01h mm-100-xxx VectorPath

LODSB AL, mem8 ACh VectorPath

LODSW AX, mem16 ADh VectorPath

LODSD EAX, mem32 ADh VectorPath

LOOP disp8 E2h VectorPath
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LOOPE/LOOPZ disp8 E1h VectorPath

LOOPNE/LOOPNZ disp8 E0h VectorPath

LSL reg16/32, mreg16/32 0Fh 03h 11-xxx-xxx VectorPath

LSL reg16/32, mem16/32 0Fh 03h mm-xxx-xxx VectorPath

LSS reg16/32, mem32/48 0Fh B2h mm-xxx-xxx VectorPath

LTR mreg16 0Fh 00h 11-011-xxx VectorPath

LTR mem16 0Fh 00h mm-011-xxx VectorPath

MOV mreg8, reg8 88h 11-xxx-xxx DirectPath

MOV mem8, reg8 88h mm-xxx-xxx DirectPath

MOV mreg16/32, reg16/32 89h 11-xxx-xxx DirectPath

MOV mem16/32, reg16/32 89h mm-xxx-xxx DirectPath

MOV reg8, mreg8 8Ah 11-xxx-xxx DirectPath

MOV reg8, mem8 8Ah mm-xxx-xxx DirectPath

MOV reg16/32, mreg16/32 8Bh 11-xxx-xxx DirectPath

MOV reg16/32, mem16/32 8Bh mm-xxx-xxx DirectPath

MOV mreg16, segment reg 8Ch 11-xxx-xxx VectorPath

MOV mem16, segment reg 8Ch mm-xxx-xxx VectorPath

MOV segment reg, mreg16 8Eh 11-xxx-xxx VectorPath

MOV segment reg, mem16 8Eh mm-xxx-xxx VectorPath

MOV AL, mem8 A0h DirectPath

MOV EAX, mem16/32 A1h DirectPath

MOV mem8, AL A2h DirectPath

MOV mem16/32, EAX A3h DirectPath

MOV AL, imm8 B0h DirectPath

MOV CL, imm8 B1h DirectPath

MOV DL, imm8 B2h DirectPath

MOV BL, imm8 B3h DirectPath

MOV AH, imm8 B4h DirectPath

MOV CH, imm8 B5h DirectPath

MOV DH, imm8 B6h DirectPath

MOV BH, imm8 B7h DirectPath

MOV EAX, imm16/32 B8h DirectPath

MOV ECX, imm16/32 B9h DirectPath
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MOV EDX, imm16/32 BAh DirectPath

MOV EBX, imm16/32 BBh DirectPath

MOV ESP, imm16/32 BCh DirectPath

MOV EBP, imm16/32 BDh DirectPath

MOV ESI, imm16/32 BEh DirectPath

MOV EDI, imm16/32 BFh DirectPath

MOV mreg8, imm8 C6h 11-000-xxx DirectPath

MOV mem8, imm8 C6h mm-000-xxx DirectPath

MOV mreg16/32, imm16/32 C7h 11-000-xxx DirectPath

MOV mem16/32, imm16/32 C7h mm-000-xxx DirectPath

MOVSB mem8,mem8 A4h VectorPath

MOVSD mem16, mem16 A5h VectorPath

MOVSW mem32, mem32 A5h VectorPath

MOVSX reg16/32, mreg8 0Fh BEh 11-xxx-xxx DirectPath

MOVSX reg16/32, mem8 0Fh BEh mm-xxx-xxx DirectPath

MOVSX reg32, mreg16 0Fh BFh 11-xxx-xxx DirectPath

MOVSX reg32, mem16 0Fh BFh mm-xxx-xxx DirectPath

MOVZX reg16/32, mreg8 0Fh B6h 11-xxx-xxx DirectPath

MOVZX reg16/32, mem8 0Fh B6h mm-xxx-xxx DirectPath

MOVZX reg32, mreg16 0Fh B7h 11-xxx-xxx DirectPath

MOVZX reg32, mem16 0Fh B7h mm-xxx-xxx DirectPath

MUL AL, mreg8 F6h 11-100-xxx VectorPath

MUL AL, mem8 F6h mm-100-xx VectorPath

MUL AX, mreg16 F7h 11-100-xxx VectorPath

MUL AX, mem16 F7h mm-100-xxx VectorPath

MUL EAX, mreg32 F7h 11-100-xxx VectorPath

MUL EAX, mem32 F7h mm-100-xx VectorPath

NEG mreg8 F6h 11-011-xxx DirectPath

NEG mem8 F6h mm-011-xx DirectPath

NEG mreg16/32 F7h 11-011-xxx DirectPath

NEG mem16/32 F7h mm-011-xx DirectPath

NOP (XCHG EAX, EAX) 90h DirectPath

NOT mreg8 F6h 11-010-xxx DirectPath
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NOT mem8 F6h mm-010-xx DirectPath

NOT mreg16/32 F7h 11-010-xxx DirectPath

NOT mem16/32 F7h mm-010-xx DirectPath

OR mreg8, reg8 08h 11-xxx-xxx DirectPath

OR mem8, reg8 08h mm-xxx-xxx DirectPath

OR mreg16/32, reg16/32 09h 11-xxx-xxx DirectPath

OR mem16/32, reg16/32 09h mm-xxx-xxx DirectPath

OR reg8, mreg8 0Ah 11-xxx-xxx DirectPath

OR reg8, mem8 0Ah mm-xxx-xxx DirectPath

OR reg16/32, mreg16/32 0Bh 11-xxx-xxx DirectPath

OR reg16/32, mem16/32 0Bh mm-xxx-xxx DirectPath

OR AL, imm8 0Ch DirectPath

OR EAX, imm16/32 0Dh DirectPath

OR mreg8, imm8 80h 11-001-xxx DirectPath

OR mem8, imm8 80h mm-001-xxx DirectPath

OR mreg16/32, imm16/32 81h 11-001-xxx DirectPath

OR mem16/32, imm16/32 81h mm-001-xxx DirectPath

OR mreg16/32, imm8 (sign extended) 83h 11-001-xxx DirectPath

OR mem16/32, imm8 (sign extended) 83h mm-001-xxx DirectPath

OUT imm8, AL E6h VectorPath

OUT imm8, AX E7h VectorPath

OUT imm8, EAX E7h VectorPath

OUT DX, AL EEh VectorPath

OUT DX, AX EFh VectorPath

OUT DX, EAX EFh VectorPath

POP ES 07h VectorPath

POP SS 17h VectorPath

POP DS 1Fh VectorPath

POP FS 0Fh A1h VectorPath

POP GS 0Fh A9h VectorPath

POP EAX 58h VectorPath

POP ECX 59h VectorPath

POP EDX 5Ah VectorPath
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POP EBX 5Bh VectorPath

POP ESP 5Ch VectorPath

POP EBP 5Dh VectorPath

POP ESI 5Eh VectorPath

POP EDI 5Fh VectorPath

POP mreg 16/32 8Fh 11-000-xxx VectorPath

POP mem 16/32 8Fh mm-000-xxx VectorPath

POPA/POPAD 61h VectorPath

POPF/POPFD 9Dh VectorPath

PUSH ES 06h VectorPath

PUSH CS 0Eh VectorPath

PUSH FS 0Fh A0h VectorPath

PUSH GS 0Fh A8h VectorPath

PUSH SS 16h VectorPath

PUSH DS 1Eh VectorPath

PUSH EAX 50h DirectPath

PUSH ECX 51h DirectPath

PUSH EDX 52h DirectPath

PUSH EBX 53h DirectPath

PUSH ESP 54h DirectPath

PUSH EBP 55h DirectPath

PUSH ESI 56h DirectPath

PUSH EDI 57h DirectPath

PUSH imm8 6Ah DirectPath

PUSH imm16/32 68h DirectPath

PUSH mreg16/32 FFh 11-110-xxx VectorPath

PUSH mem16/32 FFh mm-110-xxx VectorPath

PUSHA/PUSHAD 60h VectorPath

PUSHF/PUSHFD 9Ch VectorPath

RCL mreg8, imm8 C0h 11-010-xxx DirectPath

RCL mem8, imm8 C0h mm-010-xxx VectorPath

RCL mreg16/32, imm8 C1h 11-010-xxx DirectPath

RCL mem16/32, imm8 C1h mm-010-xxx VectorPath
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RCL mreg8, 1 D0h 11-010-xxx DirectPath

RCL mem8, 1 D0h mm-010-xxx DirectPath

RCL mreg16/32, 1 D1h 11-010-xxx DirectPath

RCL mem16/32, 1 D1h mm-010-xxx DirectPath

RCL mreg8, CL D2h 11-010-xxx DirectPath

RCL mem8, CL D2h mm-010-xxx VectorPath

RCL mreg16/32, CL D3h 11-010-xxx DirectPath

RCL mem16/32, CL D3h mm-010-xxx VectorPath

RCR mreg8, imm8 C0h 11-011-xxx DirectPath

RCR mem8, imm8 C0h mm-011-xxx VectorPath

RCR mreg16/32, imm8 C1h 11-011-xxx DirectPath

RCR mem16/32, imm8 C1h mm-011-xxx VectorPath

RCR mreg8, 1 D0h 11-011-xxx DirectPath

RCR mem8, 1 D0h mm-011-xxx DirectPath

RCR mreg16/32, 1 D1h 11-011-xxx DirectPath

RCR mem16/32, 1 D1h mm-011-xxx DirectPath

RCR mreg8, CL D2h 11-011-xxx DirectPath

RCR mem8, CL D2h mm-011-xxx VectorPath

RCR mreg16/32, CL D3h 11-011-xxx DirectPath

RCR mem16/32, CL D3h mm-011-xxx VectorPath

RDMSR 0Fh 32h VectorPath

RDPMC 0Fh 33h VectorPath

RDTSC 0F 31h VectorPath

RET near imm16 C2h VectorPath

RET near C3h VectorPath

RET far imm16 CAh VectorPath

RET far CBh VectorPath

ROL mreg8, imm8 C0h 11-000-xxx DirectPath

ROL mem8, imm8 C0h mm-000-xxx DirectPath

ROL mreg16/32, imm8 C1h 11-000-xxx DirectPath

ROL mem16/32, imm8 C1h mm-000-xxx DirectPath

ROL mreg8, 1 D0h 11-000-xxx DirectPath

ROL mem8, 1 D0h mm-000-xxx DirectPath
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ROL mreg16/32, 1 D1h 11-000-xxx DirectPath

ROL mem16/32, 1 D1h mm-000-xxx DirectPath

ROL mreg8, CL D2h 11-000-xxx DirectPath

ROL mem8, CL D2h mm-000-xxx DirectPath

ROL mreg16/32, CL D3h 11-000-xxx DirectPath

ROL mem16/32, CL D3h mm-000-xxx DirectPath

ROR mreg8, imm8 C0h 11-001-xxx DirectPath

ROR mem8, imm8 C0h mm-001-xxx DirectPath

ROR mreg16/32, imm8 C1h 11-001-xxx DirectPath

ROR mem16/32, imm8 C1h mm-001-xxx DirectPath

ROR mreg8, 1 D0h 11-001-xxx DirectPath

ROR mem8, 1 D0h mm-001-xxx DirectPath

ROR mreg16/32, 1 D1h 11-001-xxx DirectPath

ROR mem16/32, 1 D1h mm-001-xxx DirectPath

ROR mreg8, CL D2h 11-001-xxx DirectPath

ROR mem8, CL D2h mm-001-xxx DirectPath

ROR mreg16/32, CL D3h 11-001-xxx DirectPath

ROR mem16/32, CL D3h mm-001-xxx DirectPath

SAHF 9Eh VectorPath

SAR mreg8, imm8 C0h 11-111-xxx DirectPath

SAR mem8, imm8 C0h mm-111-xxx DirectPath

SAR mreg16/32, imm8 C1h 11-111-xxx DirectPath

SAR mem16/32, imm8 C1h mm-111-xxx DirectPath

SAR mreg8, 1 D0h 11-111-xxx DirectPath

SAR mem8, 1 D0h mm-111-xxx DirectPath

SAR mreg16/32, 1 D1h 11-111-xxx DirectPath

SAR mem16/32, 1 D1h mm-111-xxx DirectPath

SAR mreg8, CL D2h 11-111-xxx DirectPath

SAR mem8, CL D2h mm-111-xxx DirectPath

SAR mreg16/32, CL D3h 11-111-xxx DirectPath

SAR mem16/32, CL D3h mm-111-xxx DirectPath

SBB mreg8, reg8 18h 11-xxx-xxx DirectPath

SBB mem8, reg8 18h mm-xxx-xxx DirectPath
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SBB mreg16/32, reg16/32 19h 11-xxx-xxx DirectPath

SBB mem16/32, reg16/32 19h mm-xxx-xxx DirectPath

SBB reg8, mreg8 1Ah 11-xxx-xxx DirectPath

SBB reg8, mem8 1Ah mm-xxx-xxx DirectPath

SBB reg16/32, mreg16/32 1Bh 11-xxx-xxx DirectPath

SBB reg16/32, mem16/32 1Bh mm-xxx-xxx DirectPath

SBB AL, imm8 1Ch DirectPath

SBB EAX, imm16/32 1Dh DirectPath

SBB mreg8, imm8 80h 11-011-xxx DirectPath

SBB mem8, imm8 80h mm-011-xxx DirectPath

SBB mreg16/32, imm16/32 81h 11-011-xxx DirectPath

SBB mem16/32, imm16/32 81h mm-011-xxx DirectPath

SBB mreg16/32, imm8 (sign extended) 83h 11-011-xxx DirectPath

SBB mem16/32, imm8 (sign extended) 83h mm-011-xxx DirectPath

SCASB AL, mem8 AEh VectorPath

SCASW AX, mem16 AFh VectorPath

SCASD EAX, mem32 AFh VectorPath

SETO mreg8 0Fh 90h 11-xxx-xxx DirectPath

SETO mem8 0Fh 90h mm-xxx-xxx DirectPath

SETNO mreg8 0Fh 91h 11-xxx-xxx DirectPath

SETNO mem8 0Fh 91h mm-xxx-xxx DirectPath

SETB/SETC/SETNAE mreg8 0Fh 92h 11-xxx-xxx DirectPath

SETB/SETC/SETNAE mem8 0Fh 92h mm-xxx-xxx DirectPath

SETAE/SETNB/SETNC mreg8 0Fh 93h 11-xxx-xxx DirectPath

SETAE/SETNB/SETNC mem8 0Fh 93h mm-xxx-xxx DirectPath

SETE/SETZ mreg8 0Fh 94h 11-xxx-xxx DirectPath

SETE/SETZ mem8 0Fh 94h mm-xxx-xxx DirectPath

SETNE/SETNZ mreg8 0Fh 95h 11-xxx-xxx DirectPath

SETNE/SETNZ mem8 0Fh 95h mm-xxx-xxx DirectPath

SETBE/SETNA mreg8 0Fh 96h 11-xxx-xxx DirectPath

SETBE/SETNA mem8 0Fh 96h mm-xxx-xxx DirectPath

SETA/SETNBE mreg8 0Fh 97h 11-xxx-xxx DirectPath

SETA/SETNBE mem8 0Fh 97h mm-xxx-xxx DirectPath
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SETS mreg8 0Fh 98h 11-xxx-xxx DirectPath

SETS mem8 0Fh 98h mm-xxx-xxx DirectPath

SETNS mreg8 0Fh 99h 11-xxx-xxx DirectPath

SETNS mem8 0Fh 99h mm-xxx-xxx DirectPath

SETP/SETPE mreg8 0Fh 9Ah 11-xxx-xxx DirectPath

SETP/SETPE mem8 0Fh 9Ah mm-xxx-xxx DirectPath

SETNP/SETPO mreg8 0Fh 9Bh 11-xxx-xxx DirectPath

SETNP/SETPO mem8 0Fh 9Bh mm-xxx-xxx DirectPath

SETL/SETNGE mreg8 0Fh 9Ch 11-xxx-xxx DirectPath

SETL/SETNGE mem8 0Fh 9Ch mm-xxx-xxx DirectPath

SETGE/SETNL mreg8 0Fh 9Dh 11-xxx-xxx DirectPath

SETGE/SETNL mem8 0Fh 9Dh mm-xxx-xxx DirectPath

SETLE/SETNG mreg8 0Fh 9Eh 11-xxx-xxx DirectPath

SETLE/SETNG mem8 0Fh 9Eh mm-xxx-xxx DirectPath

SETG/SETNLE mreg8 0Fh 9Fh 11-xxx-xxx DirectPath

SETG/SETNLE mem8 0Fh 9Fh mm-xxx-xxx DirectPath

SGDT mem48 0Fh 01h mm-000-xxx VectorPath

SIDT mem48 0Fh 01h mm-001-xxx VectorPath

SHL/SAL mreg8, imm8 C0h 11-100-xxx DirectPath

SHL/SAL mem8, imm8 C0h mm-100-xxx DirectPath

SHL/SAL mreg16/32, imm8 C1h 11-100-xxx DirectPath

SHL/SAL mem16/32, imm8 C1h mm-100-xxx DirectPath

SHL/SAL mreg8, 1 D0h 11-100-xxx DirectPath

SHL/SAL mem8, 1 D0h mm-100-xxx DirectPath

SHL/SAL mreg16/32, 1 D1h 11-100-xxx DirectPath

SHL/SAL mem16/32, 1 D1h mm-100-xxx DirectPath

SHL/SAL mreg8, CL D2h 11-100-xxx DirectPath

SHL/SAL mem8, CL D2h mm-100-xxx DirectPath

SHL/SAL mreg16/32, CL D3h 11-100-xxx DirectPath

SHL/SAL mem16/32, CL D3h mm-100-xxx DirectPath

SHR mreg8, imm8 C0h 11-101-xxx DirectPath

SHR mem8, imm8 C0h mm-101-xxx DirectPath

SHR mreg16/32, imm8 C1h 11-101-xxx DirectPath

Table 11. Integer Instructions (continued)

Instruction Mnemonic First
Byte

Second
Byte

ModR/M 
Byte

Decode
Type
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SHR mem16/32, imm8 C1h mm-101-xxx DirectPath

SHR mreg8, 1 D0h 11-101-xxx DirectPath

SHR mem8, 1 D0h mm-101-xxx DirectPath

SHR mreg16/32, 1 D1h 11-101-xxx DirectPath

SHR mem16/32, 1 D1h mm-101-xxx DirectPath

SHR mreg8, CL D2h 11-101-xxx DirectPath

SHR mem8, CL D2h mm-101-xxx DirectPath

SHR mreg16/32, CL D3h 11-101-xxx DirectPath

SHR mem16/32, CL D3h mm-101-xxx DirectPath

SHLD mreg16/32, reg16/32, imm8 0Fh A4h 11-xxx-xxx VectorPath

SHLD mem16/32, reg16/32, imm8 0Fh A4h mm-xxx-xxx VectorPath

SHLD mreg16/32, reg16/32, CL 0Fh A5h 11-xxx-xxx VectorPath

SHLD mem16/32, reg16/32, CL 0Fh A5h mm-xxx-xxx VectorPath

SHRD mreg16/32, reg16/32, imm8 0Fh ACh 11-xxx-xxx VectorPath

SHRD mem16/32, reg16/32, imm8 0Fh ACh mm-xxx-xxx VectorPath

SHRD mreg16/32, reg16/32, CL 0Fh ADh 11-xxx-xxx VectorPath

SHRD mem16/32, reg16/32, CL 0Fh ADh mm-xxx-xxx VectorPath

SLDT mreg16 0Fh 00h 11-000-xxx VectorPath

SLDT mem16 0Fh 00h mm-000-xxx VectorPath

SMSW mreg16 0Fh 01h 11-100-xxx VectorPath

SMSW mem16 0Fh 01h mm-100-xxx VectorPath

STC F9h DirectPath

STD FDh VectorPath

STI FBh VectorPath

STOSB mem8, AL AAh VectorPath

STOSW mem16, AX ABh VectorPath

STOSD mem32, EAX ABh VectorPath

STR mreg16 0Fh 00h 11-001-xxx VectorPath

STR mem16 0Fh 00h mm-001-xxx VectorPath

SUB mreg8, reg8 28h 11-xxx-xxx DirectPath

SUB mem8, reg8 28h mm-xxx-xxx DirectPath

SUB mreg16/32, reg16/32 29h 11-xxx-xxx DirectPath

SUB mem16/32, reg16/32 29h mm-xxx-xxx DirectPath

Table 11. Integer Instructions (continued)

Instruction Mnemonic First
Byte

Second
Byte

ModR/M 
Byte

Decode
Type
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SUB reg8, mreg8 2Ah 11-xxx-xxx DirectPath

SUB reg8, mem8 2Ah mm-xxx-xxx DirectPath

SUB reg16/32, mreg16/32 2Bh 11-xxx-xxx DirectPath

SUB reg16/32, mem16/32 2Bh mm-xxx-xxx DirectPath

SUB AL, imm8 2Ch DirectPath

SUB EAX, imm16/32 2Dh DirectPath

SUB mreg8, imm8 80h 11-101-xxx DirectPath

SUB mem8, imm8 80h mm-101-xxx DirectPath

SUB mreg16/32, imm16/32 81h 11-101-xxx DirectPath

SUB mem16/32, imm16/32 81h mm-101-xxx DirectPath

SUB mreg16/32, imm8 (sign extended) 83h 11-101-xxx DirectPath

SUB mem16/32, imm8 (sign extended) 83h mm-101-xxx DirectPath

SYSCALL 0Fh 05h VectorPath

SYSENTER 0Fh 34h VectorPath

SYSEXIT 0Fh 35h VectorPath

SYSRET 0Fh 07h VectorPath

TEST mreg8, reg8 84h 11-xxx-xxx DirectPath

TEST mem8, reg8 84h mm-xxx-xxx DirectPath 

TEST mreg16/32, reg16/32 85h 11-xxx-xxx DirectPath

TEST mem16/32, reg16/32 85h mm-xxx-xxx DirectPath

TEST AL, imm8 A8h DirectPath

TEST EAX, imm16/32 A9h DirectPath

TEST mreg8, imm8 F6h 11-000-xxx DirectPath

TEST mem8, imm8 F6h mm-000-xxx DirectPath

TEST mreg8, imm16/32 F7h 11-000-xxx DirectPath

TEST mem8, imm16/32 F7h mm-000-xxx DirectPath

VERR mreg16 0Fh 00h 11-100-xxx VectorPath

VERR mem16 0Fh 00h mm-100-xxx VectorPath

VERW mreg16 0Fh 00h 11-101-xxx VectorPath

VERW mem16 0Fh 00h mm-101-xxx VectorPath

WAIT 9Bh DirectPath

WBINVD 0Fh 09h VectorPath

WRMSR 0Fh 30h VectorPath

Table 11. Integer Instructions (continued)

Instruction Mnemonic First
Byte

Second
Byte

ModR/M 
Byte

Decode
Type
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XADD mreg8, reg8 0Fh C0h 11-100-xxx VectorPath

XADD mem8, reg8 0Fh C0h mm-100-xxx VectorPath

XADD mreg16/32, reg16/32 0Fh C1h 11-101-xxx VectorPath

XADD mem16/32, reg16/32 0Fh C1h mm-101-xxx VectorPath

XCHG reg8, mreg8 86h 11-xxx-xxx VectorPath

XCHG reg8, mem8 86h mm-xxx-xxx VectorPath

XCHG reg16/32, mreg16/32 87h 11-xxx-xxx VectorPath

XCHG reg16/32, mem16/32 87h mm-xxx-xxx VectorPath

XCHG EAX, EAX 90h DirectPath

XCHG EAX, ECX 91h VectorPath

XCHG EAX, EDX 92h VectorPath

XCHG EAX, EBX 93h VectorPath

XCHG EAX, ESP 94h VectorPath

XCHG EAX, EBP 95h VectorPath

XCHG EAX, ESI 96h VectorPath

XCHG EAX, EDI 97h VectorPath

XLAT D7h VectorPath

XOR mreg8, reg8 30h 11-xxx-xxx DirectPath

XOR mem8, reg8 30h mm-xxx-xxx DirectPath

XOR mreg16/32, reg16/32 31h 11-xxx-xxx DirectPath

XOR mem16/32, reg16/32 31h mm-xxx-xxx DirectPath

XOR reg8, mreg8 32h 11-xxx-xxx DirectPath

XOR reg8, mem8 32h mm-xxx-xxx DirectPath

XOR reg16/32, mreg16/32 33h 11-xxx-xxx DirectPath

XOR reg16/32, mem16/32 33h mm-xxx-xxx DirectPath

XOR AL, imm8 34h DirectPath

XOR EAX, imm16/32 35h DirectPath

XOR mreg8, imm8 80h 11-110-xxx DirectPath

XOR mem8, imm8 80h mm-110-xxx DirectPath

XOR mreg16/32, imm16/32 81h 11-110-xxx DirectPath

XOR mem16/32, imm16/32 81h mm-110-xxx DirectPath

XOR mreg16/32, imm8 (sign extended) 83h 11-110-xxx DirectPath

XOR mem16/32, imm8 (sign extended) 83h mm-110-xxx DirectPath

Table 11. Integer Instructions (continued)

Instruction Mnemonic First
Byte

Second
Byte

ModR/M 
Byte

Decode
Type
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Instruction Mnemonic Prefix
Byte(s)

First
Byte

ModR/M 
Byte

Decode
Type FPU Pipe(s) Notes

EMMS 0Fh 77h DirectPath FADD/FMUL/FSTORE

MOVD mmreg, reg32 0Fh 6Eh 11-xxx-xxx VectorPath 1

MOVD mmreg, mem32 0Fh 6Eh mm-xxx-xxx DirectPath FADD/FMUL/FSTORE

MOVD reg32, mmreg 0Fh 7Eh 11-xxx-xxx VectorPath 1

MOVD mem32, mmreg 0Fh 7Eh mm-xxx-xxx DirectPath FSTORE

MOVQ mmreg1, mmreg2 0Fh 6Fh 11-xxx-xxx DirectPath FADD/FMUL

MOVQ mmreg, mem64 0Fh 6Fh mm-xxx-xxx DirectPath FADD/FMUL/FSTORE

MOVQ mmreg2, mmreg1 0Fh 7Fh 11-xxx-xxx DirectPath FADD/FMUL

MOVQ mem64, mmreg 0Fh 7Fh mm-xxx-xxx DirectPath FSTORE

PACKSSDW mmreg1, mmreg2 0Fh 6Bh 11-xxx-xxx DirectPath FADD/FMUL

PACKSSDW mmreg, mem64 0Fh 6Bh mm-xxx-xxx DirectPath FADD/FMUL

PACKSSWB mmreg1, mmreg2 0Fh 63h 11-xxx-xxx DirectPath FADD/FMUL

PACKSSWB mmreg, mem64 0Fh 63h mm-xxx-xxx DirectPath FADD/FMUL

PACKUSWB mmreg1, mmreg2 0Fh 67h 11-xxx-xxx DirectPath FADD/FMUL

PACKUSWB mmreg, mem64 0Fh 67h mm-xxx-xxx DirectPath FADD/FMUL

PADDB mmreg1, mmreg2 0Fh FCh 11-xxx-xxx DirectPath FADD/FMUL

PADDB mmreg, mem64 0Fh FCh mm-xxx-xxx DirectPath FADD/FMUL

PADDD mmreg1, mmreg2 0Fh FEh 11-xxx-xxx DirectPath FADD/FMUL

PADDD mmreg, mem64 0Fh FEh mm-xxx-xxx DirectPath FADD/FMUL

PADDSB mmreg1, mmreg2 0Fh ECh 11-xxx-xxx DirectPath FADD/FMUL

PADDSB mmreg, mem64 0Fh ECh mm-xxx-xxx DirectPath FADD/FMUL

PADDSW mmreg1, mmreg2 0Fh EDh 11-xxx-xxx DirectPath FADD/FMUL

PADDSW mmreg, mem64 0Fh EDh mm-xxx-xxx DirectPath FADD/FMUL

PADDUSB mmreg1, mmreg2 0Fh DCh 11-xxx-xxx DirectPath FADD/FMUL

PADDUSB mmreg, mem64 0Fh DCh mm-xxx-xxx DirectPath FADD/FMUL

PADDUSW mmreg1, mmreg2 0Fh DDh 11-xxx-xxx DirectPath FADD/FMUL

PADDUSW mmreg, mem64 0Fh DDh mm-xxx-xxx DirectPath FADD/FMUL

PADDW mmreg1, mmreg2 0Fh FDh 11-xxx-xxx DirectPath FADD/FMUL

PADDW mmreg, mem64 0Fh FDh mm-xxx-xxx DirectPath FADD/FMUL

PAND mmreg1, mmreg2 0Fh DBh 11-xxx-xxx DirectPath FADD/FMUL

PAND mmreg, mem64 0Fh DBh mm-xxx-xxx DirectPath FADD/FMUL
Notes:

1. Bits 2, 1, and 0 of the modR/M byte select the integer register.
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PANDN mmreg1, mmreg2 0Fh DFh 11-xxx-xxx DirectPath FADD/FMUL

PANDN mmreg, mem64 0Fh DFh mm-xxx-xxx DirectPath FADD/FMUL

PCMPEQB mmreg1, mmreg2 0Fh 74h 11-xxx-xxx DirectPath FADD/FMUL

PCMPEQB mmreg, mem64 0Fh 74h mm-xxx-xxx DirectPath FADD/FMUL

PCMPEQD mmreg1, mmreg2 0Fh 76h 11-xxx-xxx DirectPath FADD/FMUL

PCMPEQD mmreg, mem64 0Fh 76h mm-xxx-xxx DirectPath FADD/FMUL

PCMPEQW mmreg1, mmreg2 0Fh 75h 11-xxx-xxx DirectPath FADD/FMUL

PCMPEQW mmreg, mem64 0Fh 75h mm-xxx-xxx DirectPath FADD/FMUL

PCMPGTB mmreg1, mmreg2 0Fh 64h 11-xxx-xxx DirectPath FADD/FMUL

PCMPGTB mmreg, mem64 0Fh 64h mm-xxx-xxx DirectPath FADD/FMUL

PCMPGTD mmreg1, mmreg2 0Fh 66h 11-xxx-xxx DirectPath FADD/FMUL

PCMPGTD mmreg, mem64 0Fh 66h mm-xxx-xxx DirectPath FADD/FMUL

PCMPGTW mmreg1, mmreg2 0Fh 65h 11-xxx-xxx DirectPath FADD/FMUL

PCMPGTW mmreg, mem64 0Fh 65h mm-xxx-xxx DirectPath FADD/FMUL

PMADDWD mmreg1, mmreg2 0Fh F5h 11-xxx-xxx DirectPath FMUL

PMADDWD mmreg, mem64 0Fh F5h mm-xxx-xxx DirectPath FMUL

PMULHW mmreg1, mmreg2 0Fh E5h 11-xxx-xxx DirectPath FMUL

PMULHW mmreg, mem64 0Fh E5h mm-xxx-xxx DirectPath FMUL

PMULLW mmreg1, mmreg2 0Fh D5h 11-xxx-xxx DirectPath FMUL

PMULLW mmreg, mem64 0Fh D5h mm-xxx-xxx DirectPath FMUL

POR mmreg1, mmreg2 0Fh EBh 11-xxx-xxx DirectPath FADD/FMUL

POR mmreg, mem64 0Fh EBh mm-xxx-xxx DirectPath FADD/FMUL

PSLLD mmreg1, mmreg2 0Fh F2h 11-xxx-xxx DirectPath FADD/FMUL

PSLLD mmreg, mem64 0Fh F2h mm-xxx-xxx DirectPath FADD/FMUL

PSLLD mmreg, imm8 0Fh 72h 11-110-xxx DirectPath FADD/FMUL

PSLLQ mmreg1, mmreg2 0Fh F3h 11-xxx-xxx DirectPath FADD/FMUL

PSLLQ mmreg, mem64 0Fh F3h mm-xxx-xxx DirectPath FADD/FMUL

PSLLQ mmreg, imm8 0Fh 73h 11-110-xxx DirectPath FADD/FMUL

PSLLW mmreg1, mmreg2 0Fh F1h 11-xxx-xxx DirectPath FADD/FMUL

PSLLW mmreg, mem64 0Fh F1h mm-xxx-xxx DirectPath FADD/FMUL

PSLLW mmreg, imm8 0Fh 71h 11-110-xxx DirectPath FADD/FMUL

Table 12. MMX™ Instructions (continued)

Instruction Mnemonic Prefix
Byte(s)

First
Byte

ModR/M 
Byte

Decode
Type FPU Pipe(s) Notes

Notes:
1. Bits 2, 1, and 0 of the modR/M byte select the integer register.
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PSRAW mmreg1, mmreg2 0Fh E1h 11-xxx-xxx DirectPath FADD/FMUL

PSRAW mmreg, mem64 0Fh E1h mm-xxx-xxx DirectPath FADD/FMUL

PSRAW mmreg, imm8 0Fh 71h 11-100-xxx DirectPath FADD/FMUL

PSRAD mmreg1, mmreg2 0Fh E2h 11-xxx-xxx DirectPath FADD/FMUL

PSRAD mmreg, mem64 0Fh E2h mm-xxx-xxx DirectPath FADD/FMUL

PSRAD mmreg, imm8 0Fh 72h 11-100-xxx DirectPath FADD/FMUL

PSRLD mmreg1, mmreg2 0Fh D2h 11-xxx-xxx DirectPath FADD/FMUL

PSRLD mmreg, mem64 0Fh D2h mm-xxx-xxx DirectPath FADD/FMUL

PSRLD mmreg, imm8 0Fh 72h 11-010-xxx DirectPath FADD/FMUL

PSRLQ mmreg1, mmreg2 0Fh D3h 11-xxx-xxx DirectPath FADD/FMUL

PSRLQ mmreg, mem64 0Fh D3h mm-xxx-xxx DirectPath FADD/FMUL

PSRLQ mmreg, imm8 0Fh 73h 11-010-xxx DirectPath FADD/FMUL

PSRLW mmreg1, mmreg2 0Fh D1h 11-xxx-xxx DirectPath FADD/FMUL

PSRLW mmreg, mem64 0Fh D1h mm-xxx-xxx DirectPath FADD/FMUL

PSRLW mmreg, imm8 0Fh 71h 11-010-xxx DirectPath FADD/FMUL

PSUBB mmreg1, mmreg2 0Fh F8h 11-xxx-xxx DirectPath FADD/FMUL

PSUBB mmreg, mem64 0Fh F8h mm-xxx-xxx DirectPath FADD/FMUL

PSUBD mmreg1, mmreg2 0Fh FAh 11-xxx-xxx DirectPath FADD/FMUL

PSUBD mmreg, mem64 0Fh FAh mm-xxx-xxx DirectPath FADD/FMUL

PSUBSB mmreg1, mmreg2 0Fh E8h 11-xxx-xxx DirectPath FADD/FMUL

PSUBSB mmreg, mem64 0Fh E8h mm-xxx-xxx DirectPath FADD/FMUL

PSUBSW mmreg1, mmreg2 0Fh E9h 11-xxx-xxx DirectPath FADD/FMUL

PSUBSW mmreg, mem64 0Fh E9h mm-xxx-xxx DirectPath FADD/FMUL

PSUBUSB mmreg1, mmreg2 0Fh D8h 11-xxx-xxx DirectPath FADD/FMUL

PSUBUSB mmreg, mem64 0Fh D8h mm-xxx-xxx DirectPath FADD/FMUL

PSUBUSW mmreg1, mmreg2 0Fh D9h 11-xxx-xxx DirectPath FADD/FMUL

PSUBUSW mmreg, mem64 0Fh D9h mm-xxx-xxx DirectPath FADD/FMUL

PSUBW mmreg1, mmreg2 0Fh F9h 11-xxx-xxx DirectPath FADD/FMUL

PSUBW mmreg, mem64 0Fh F9h mm-xxx-xxx DirectPath FADD/FMUL

PUNPCKHBW mmreg1, mmreg2 0Fh 68h 11-xxx-xxx DirectPath FADD/FMUL

PUNPCKHBW mmreg, mem64 0Fh 68h mm-xxx-xxx DirectPath FADD/FMUL

Table 12. MMX™ Instructions (continued)

Instruction Mnemonic Prefix
Byte(s)

First
Byte

ModR/M 
Byte

Decode
Type FPU Pipe(s) Notes

Notes:
1. Bits 2, 1, and 0 of the modR/M byte select the integer register.
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PUNPCKHDQ mmreg1, mmreg2 0Fh 6Ah 11-xxx-xxx DirectPath FADD/FMUL

PUNPCKHDQ mmreg, mem64 0Fh 6Ah mm-xxx-xxx DirectPath FADD/FMUL

PUNPCKHWD mmreg1, mmreg2 0Fh 69h 11-xxx-xxx DirectPath FADD/FMUL

PUNPCKHWD mmreg, mem64 0Fh 69h mm-xxx-xxx DirectPath FADD/FMUL

PUNPCKLBW mmreg1, mmreg2 0Fh 60h 11-xxx-xxx DirectPath FADD/FMUL

PUNPCKLBW mmreg, mem64 0Fh 60h mm-xxx-xxx DirectPath FADD/FMUL

PUNPCKLDQ mmreg1, mmreg2 0Fh 62h 11-xxx-xxx DirectPath FADD/FMUL

PUNPCKLDQ mmreg, mem64 0Fh 62h mm-xxx-xxx DirectPath FADD/FMUL

PUNPCKLWD mmreg1, mmreg2 0Fh 61h 11-xxx-xxx DirectPath FADD/FMUL

PUNPCKLWD mmreg, mem64 0Fh 61h mm-xxx-xxx DirectPath FADD/FMUL

PXOR mmreg1, mmreg2 0Fh EFh 11-xxx-xxx DirectPath FADD/FMUL

PXOR mmreg, mem64 0Fh EFh mm-xxx-xxx DirectPath FADD/FMUL

Table 13. MMX™ Extensions

Instruction Mnemonic Prefix
Byte(s)

First
Byte

ModR/M 
Byte

Decode
Type

FPU
Pipe(s) Notes

MASKMOVQ mmreg1, mmreg2 0Fh F7h VectorPath FADD/FMUL/FSTORE

MOVNTQ mem64, mmreg 0Fh E7h DirectPath FSTORE

PAVGB mmreg1, mmreg2 0Fh E0h 11-xxx-xxx DirectPath FADD/FMUL

PAVGB mmreg, mem64 0Fh E0h mm-xxx-xxx DirectPath FADD/FMUL

PAVGW mmreg1, mmreg2 0Fh E3h 11-xxx-xxx DirectPath FADD/FMUL

PAVGW mmreg, mem64 0Fh E3h mm-xxx-xxx DirectPath FADD/FMUL

PEXTRW reg32, mmreg, imm8 0Fh C5h VectorPath

PINSRW mmreg, reg32, imm8 0Fh C4h VectorPath

PINSRW mmreg, mem16, imm8 0Fh C4h VectorPath

PMAXSW mmreg1, mmreg2 0Fh EEh 11-xxx-xxx DirectPath FADD/FMUL

PMAXSW mmreg, mem64 0Fh EEh mm-xxx-xxx DirectPath FADD/FMUL

PMAXUB mmreg1, mmreg2 0Fh DEh 11-xxx-xxx DirectPath FADD/FMUL

PMAXUB mmreg, mem64 0Fh DEh mm-xxx-xxx DirectPath FADD/FMUL

PMINSW mmreg1, mmreg2 0Fh EAh 11-xxx-xxx DirectPath FADD/FMUL
Notes:

1. For the PREFETCHNTA/T0/T1/T2 instructions, the mem8 value refers to an address in the 64-byte line that will be prefetched.

Table 12. MMX™ Instructions (continued)

Instruction Mnemonic Prefix
Byte(s)

First
Byte

ModR/M 
Byte

Decode
Type FPU Pipe(s) Notes

Notes:
1. Bits 2, 1, and 0 of the modR/M byte select the integer register.
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PMINSW mmreg, mem64 0Fh EAh mm-xxx-xxx DirectPath FADD/FMUL

PMINUB mmreg1, mmreg2 0Fh DAh 11-xxx-xxx DirectPath FADD/FMUL

PMINUB mmreg, mem64 0Fh DAh mm-xxx-xxx DirectPath FADD/FMUL

PMOVMSKB reg32, mmreg 0Fh D7h VectorPath

PMULHUW mmreg1, mmreg2 0Fh E4h 11-xxx-xxx DirectPath FMUL

PMULHUW mmreg, mem64 0Fh E4h mm-xxx-xxx DirectPath FMUL

PSADBW mmreg1, mmreg2 0Fh F6h 11-xxx-xxx DirectPath FADD

PSADBW mmreg, mem64 0Fh F6h mm-xxx-xxx DirectPath FADD

PSHUFW mmreg1, mmreg2, imm8 0Fh 70h DirectPath FADD/FMUL

PSHUFW mmreg, mem64, imm8 0Fh 70h DirectPath FADD/FMUL

PREFETCHNTA mem8 0Fh 18h DirectPath - 1

PREFETCHT0 mem8 0Fh 18h DirectPath - 1

PREFETCHT1 mem8 0Fh 18h DirectPath - 1

PREFETCHT2 mem8 0Fh 18h DirectPath - 1

SFENCE 0Fh AEh VectorPath -

Table 14. Floating-Point Instructions

Instruction Mnemonic First
Byte

Second
Byte

ModR/M 
Byte

Decode
Type

FPU
Pipe(s) Note

F2XM1 D9h F0h VectorPath

FABS D9h E1h DirectPath FMUL

FADD ST, ST(i) D8h 11-000-xxx DirectPath FADD 1

FADD [mem32real] D8h mm-000-xxx DirectPath FADD

FADD ST(i), ST DCh 11-000-xxx DirectPath FADD 1

FADD [mem64real] DCh mm-000-xxx DirectPath FADD

FADDP ST(i), ST DEh 11-000-xxx DirectPath FADD 1

FBLD [mem80] DFh mm-100-xxx VectorPath

FBSTP [mem80] DFh mm-110-xxx VectorPath

FCHS D9h E0h DirectPath FMUL

FCLEX DBh E2h VectorPath
Notes:

1. The last three bits of the modR/M byte select the stack entry ST(i).

Table 13. MMX™ Extensions (continued)

Instruction Mnemonic Prefix
Byte(s)

First
Byte

ModR/M 
Byte

Decode
Type

FPU
Pipe(s) Notes

Notes:
1. For the PREFETCHNTA/T0/T1/T2 instructions, the mem8 value refers to an address in the 64-byte line that will be prefetched.
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FCMOVB ST(0), ST(i) DAh C0-C7h VectorPath

FCMOVE ST(0), ST(i) DAh C8-CFh VectorPath

FCMOVBE ST(0), ST(i) DAh D0-D7h VectorPath

FCMOVU ST(0), ST(i) DAh D8-DFh VectorPath

FCMOVNB ST(0), ST(i) DBh C0-C7h VectorPath

FCMOVNE ST(0), ST(i) DBh C8-CFh VectorPath

FCMOVNBE ST(0), ST(i) DBh D0-D7h VectorPath

FCMOVNU ST(0), ST(i) DBh D8-DFh VectorPath

FCOM ST(i) D8h 11-010-xxx DirectPath FADD 1

FCOMP ST(i) D8h 11-011-xxx DirectPath FADD 1

FCOM [mem32real] D8h mm-010-xxx DirectPath FADD

FCOM [mem64real] DCh mm-010-xxx DirectPath FADD

FCOMI ST, ST(i) DBh F0-F7h VectorPath FADD

FCOMIP ST, ST(i) DFh F0-F7h VectorPath FADD

FCOMP [mem32real] D8h mm-011-xxx DirectPath FADD

FCOMP [mem64real] DCh mm-011-xxx DirectPath FADD

FCOMPP DEh D9h 11-011-001 DirectPath FADD

FCOS D9h FFh VectorPath

FDECSTP D9h F6h DirectPath FADD/FMUL/FSTORE

FDIV ST, ST(i) D8h 11-110-xxx DirectPath FMUL 1

FDIV ST(i), ST DCh 11-111-xxx DirectPath FMUL 1

FDIV [mem32real] D8h mm-110-xxx DirectPath FMUL

FDIV [mem64real] DCh mm-110-xxx DirectPath FMUL

FDIVP ST, ST(i) DEh 11-111-xxx DirectPath FMUL 1

FDIVR ST, ST(i) D8h 11-110-xxx DirectPath FMUL 1

FDIVR ST(i), ST DCh 11-111-xxx DirectPath FMUL 1

FDIVR [mem32real] D8h mm-111-xxx DirectPath FMUL

FDIVR [mem64real] DCh mm-111-xxx DirectPath FMUL

FDIVRP ST(i), ST DEh 11-110-xxx DirectPath FMUL 1

FFREE ST(i) DDh 11-000-xxx DirectPath FADD/FMUL/FSTORE 1

FFREEP ST(i) DFh C0-C7h DirectPath FADD/FMUL/FSTORE 1

Table 14. Floating-Point Instructions (continued)

Instruction Mnemonic First
Byte

Second
Byte

ModR/M 
Byte

Decode
Type

FPU
Pipe(s) Note

Notes:
1. The last three bits of the modR/M byte select the stack entry ST(i).
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FIADD [mem32int] DAh mm-000-xxx VectorPath

FIADD [mem16int] DEh mm-000-xxx VectorPath

FICOM [mem32int] DAh mm-010-xxx VectorPath

FICOM [mem16int] DEh mm-010-xxx VectorPath

FICOMP [mem32int] DAh mm-011-xxx VectorPath

FICOMP [mem16int] DEh mm-011-xxx VectorPath

FIDIV [mem32int] DAh mm-110-xxx VectorPath

FIDIV [mem16int] DEh mm-110-xxx VectorPath

FIDIVR [mem32int] DAh mm-111-xxx VectorPath

FIDIVR [mem16int] DEh mm-111-xxx VectorPath

FILD [mem16int] DFh mm-000-xxx DirectPath FSTORE

FILD [mem32int] DBh mm-000-xxx DirectPath FSTORE

FILD [mem64int] DFh mm-101-xxx DirectPath FSTORE

FIMUL [mem32int] DAh mm-001-xxx VectorPath

FIMUL [mem16int] DEh mm-001-xxx VectorPath

FINCSTP D9h F7h DirectPath FADD/FMUL/FSTORE

FINIT DBh E3h VectorPath

FIST [mem16int] DFh mm-010-xxx DirectPath FSTORE

FIST [mem32int] DBh mm-010-xxx DirectPath FSTORE

FISTP [mem16int] DFh mm-011-xxx DirectPath FSTORE

FISTP [mem32int] DBh mm-011-xxx DirectPath FSTORE

FISTP [mem64int] DFh mm-111-xxx DirectPath FSTORE

FISUB [mem32int] DAh mm-100-xxx VectorPath

FISUB [mem16int] DEh mm-100-xxx VectorPath

FISUBR [mem32int] DAh mm-101-xxx VectorPath

FISUBR [mem16int] DEh mm-101-xxx VectorPath

FLD ST(i) D9h 11-000-xxx DirectPath FADD/FMUL 1

FLD [mem32real] D9h mm-000-xxx DirectPath FADD/FMUL/FSTORE

FLD [mem64real] DDh mm-000-xxx DirectPath FADD/FMUL/FSTORE

FLD [mem80real] DBh mm-101-xxx VectorPath

FLD1 D9h E8h DirectPath FSTORE

Table 14. Floating-Point Instructions (continued)

Instruction Mnemonic First
Byte

Second
Byte

ModR/M 
Byte

Decode
Type

FPU
Pipe(s) Note

Notes:
1. The last three bits of the modR/M byte select the stack entry ST(i).
168 Instruction Dispatch and Execution Timing Appendix D



22007D/0—August 1999 AMD Athlon™ Processor x86 Code Optimization

Preliminary Information
FLDCW [mem16] D9h mm-101-xxx VectorPath

FLDENV [mem14byte] D9h mm-100-xxx VectorPath

FLDENV [mem28byte] D9h mm-100-xxx VectorPath

FLDL2E D9h EAh DirectPath FSTORE

FLDL2T D9h E9h DirectPath FSTORE

FLDLG2 D9h ECh DirectPath FSTORE

FLDLN2 D9h EDh DirectPath FSTORE

FLDPI D9h EBh DirectPath FSTORE

FLDZ D9h EEh DirectPath FSTORE

FMUL ST, ST(i) D8h 11-001-xxx DirectPath FMUL 1

FMUL ST(i), ST DCh 11-001-xxx DirectPath FMUL 1

FMUL [mem32real] D8h mm-001-xxx DirectPath FMUL

FMUL [mem64real] DCh mm-001-xxx DirectPath FMUL

FMULP ST, ST(i) DEh 11-001-xxx DirectPath FMUL 1

FNOP D9h D0h DirectPath FADD/FMUL/FSTORE

FPTAN D9h F2h VectorPath

FPATAN D9h F3h VectorPath

FPREM D9h F8h DirectPath FMUL

FPREM1 D9h F5h DirectPath FMUL

FRNDINT D9h FCh VectorPath

FRSTOR [mem94byte] DDh mm-100-xxx VectorPath

FRSTOR [mem108byte] DDh mm-100-xxx VectorPath

FSAVE [mem94byte] DDh mm-110-xxx VectorPath

FSAVE [mem108byte] DDh mm-110-xxx VectorPath

FSCALE D9h FDh VectorPath

FSIN D9h FEh VectorPath

FSINCOS D9h FBh VectorPath

FSQRT D9h FAh DirectPath FMUL

FST [mem32real] D9h mm-010-xxx DirectPath FSTORE

FST [mem64real] DDh mm-010-xxx DirectPath FSTORE

FST ST(i) DDh 11-010xxx DirectPath FADD/FMUL

Table 14. Floating-Point Instructions (continued)

Instruction Mnemonic First
Byte

Second
Byte

ModR/M 
Byte

Decode
Type

FPU
Pipe(s) Note

Notes:
1. The last three bits of the modR/M byte select the stack entry ST(i).
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FSTCW [mem16] D9h mm-111-xxx VectorPath

FSTENV [mem14byte] D9h mm-110-xxx VectorPath

FSTENV [mem28byte] D9h mm-110-xxx VectorPath

FSTP [mem32real] D9h mm-011-xxx DirectPath FADD/FMUL

FSTP [mem64real] DDh mm-011-xxx DirectPath FADD/FMUL

FSTP [mem80real] D9h mm-111-xxx VectorPath

FSTP ST(i) DDh 11-011-xxx DirectPath FADD/FMUL

FSTSW AX DFh E0h VectorPath

FSTSW [mem16] DDh mm-111-xxx VectorPath FSTORE

FSUB [mem32real] D8h mm-100-xxx DirectPath FADD

FSUB [mem64real] DCh mm-100-xxx DirectPath FADD

FSUB ST, ST(i) D8h 11-100-xxx DirectPath FADD 1

FSUB ST(i), ST DCh 11-101-xxx DirectPath FADD 1

FSUBP ST, ST(i) DEh 11-101-xxx DirectPath FADD 1

FSUBR [mem32real] D8h mm-101-xxx DirectPath FADD

FSUBR [mem64real] DCh mm-101-xxx DirectPath FADD

FSUBR ST, ST(i) D8h 11-100-xxx DirectPath FADD 1

FSUBR ST(i), ST DCh 11-101-xxx DirectPath FADD 1

FSUBRP ST(i), ST DEh 11-100-xxx DirectPath FADD 1

FTST D9h E4h DirectPath FADD

FUCOM DDh 11-100-xxx DirectPath FADD

FUCOMI ST, ST(i) DB E8-EFh VectorPath FADD

FUCOMIP ST, ST(i) DF E8-EFh VectorPath FADD

FUCOMP DDh 11-101-xxx DirectPath FADD

FUCOMPP DAh E9h DirectPath FADD

FWAIT 9Bh DirectPath

FXAM D9h E5h VectorPath

FXCH D9h 11-001-xxx DirectPath FADD/FMUL/FSTORE

FXTRACT D9h F4h VectorPath

FYL2X D9h F1h VectorPath

FYL2XP1 D9h F9h VectorPath

Table 14. Floating-Point Instructions (continued)

Instruction Mnemonic First
Byte

Second
Byte

ModR/M 
Byte

Decode
Type

FPU
Pipe(s) Note

Notes:
1. The last three bits of the modR/M byte select the stack entry ST(i).
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Table 15. 3DNow!™ Instructions

Instruction Mnemonic Prefix
Byte(s) imm8 ModR/M 

Byte
Decode

Type
FPU

Pipe(s) Note

FEMMS 0Fh 0Eh DirectPath FADD/FMUL/FSTORE 2

PAVGUSB mmreg1, mmreg2 0Fh, 0Fh BFh 11-xxx-xxx DirectPath FADD/FMUL

PAVGUSB mmreg, mem64 0Fh, 0Fh BFh mm-xxx-xxx DirectPath FADD/FMUL

PF2ID mmreg1, mmreg2 0Fh, 0Fh 1Dh 11-xxx-xxx DirectPath FADD

PF2ID mmreg, mem64 0Fh, 0Fh 1Dh mm-xxx-xxx DirectPath FADD

PFACC mmreg1, mmreg2 0Fh, 0Fh AEh 11-xxx-xxx DirectPath FADD

PFACC mmreg, mem64 0Fh, 0Fh AEh mm-xxx-xxx DirectPath FADD

PFADD mmreg1, mmreg2 0Fh, 0Fh 9Eh 11-xxx-xxx DirectPath FADD

PFADD mmreg, mem64 0Fh, 0Fh 9Eh mm-xxx-xxx DirectPath FADD

PFCMPEQ mmreg1, mmreg2 0Fh, 0Fh B0h 11-xxx-xxx DirectPath FADD

PFCMPEQ mmreg, mem64 0Fh, 0Fh B0h mm-xxx-xxx DirectPath FADD

PFCMPGE mmreg1, mmreg2 0Fh, 0Fh 90h 11-xxx-xxx DirectPath FADD

PFCMPGE mmreg, mem64 0Fh, 0Fh 90h mm-xxx-xxx DirectPath FADD

PFCMPGT mmreg1, mmreg2 0Fh, 0Fh A0h 11-xxx-xxx DirectPath FADD

PFCMPGT mmreg, mem64 0Fh, 0Fh A0h mm-xxx-xxx DirectPath FADD

PFMAX mmreg1, mmreg2 0Fh, 0Fh A4h 11-xxx-xxx DirectPath FADD

PFMAX mmreg, mem64 0Fh, 0Fh A4h mm-xxx-xxx DirectPath FADD

PFMIN mmreg1, mmreg2 0Fh, 0Fh 94h 11-xxx-xxx DirectPath FADD

PFMIN mmreg, mem64 0Fh, 0Fh 94h mm-xxx-xxx DirectPath FADD

PFMUL mmreg1, mmreg2 0Fh, 0Fh B4h 11-xxx-xxx DirectPath FMUL

PFMUL mmreg, mem64 0Fh, 0Fh B4h mm-xxx-xxx DirectPath FMUL

PFRCP mmreg1, mmreg2 0Fh, 0Fh 96h 11-xxx-xxx DirectPath FMUL

PFRCP mmreg, mem64 0Fh, 0Fh 96h mm-xxx-xxx DirectPath FMUL

PFRCPIT1 mmreg1, mmreg2 0Fh, 0Fh A6h 11-xxx-xxx DirectPath FMUL

PFRCPIT1 mmreg, mem64 0Fh, 0Fh A6h mm-xxx-xxx DirectPath FMUL

PFRCPIT2 mmreg1, mmreg2 0Fh, 0Fh B6h 11-xxx-xxx DirectPath FMUL

PFRCPIT2 mmreg, mem64 0Fh, 0Fh B6h mm-xxx-xxx DirectPath FMUL

PFRSQIT1 mmreg1, mmreg2 0Fh, 0Fh A7h 11-xxx-xxx DirectPath FMUL

PFRSQIT1 mmreg, mem64 0Fh, 0Fh A7h mm-xxx-xxx DirectPath FMUL

PFRSQRT mmreg1, mmreg2 0Fh, 0Fh 97h 11-xxx-xxx DirectPath FMUL
Notes:

1. For the PREFETCH and PREFETCHW instructions, the mem8 value refers to an address in the 64-byte line that will be 
prefetched.

2. The byte listed in the column titled ‘imm8’ is actually the opcode byte.
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PFRSQRT mmreg, mem64 0Fh, 0Fh 97h mm-xxx-xxx DirectPath FMUL

PFSUB mmreg1, mmreg2 0Fh, 0Fh 9Ah 11-xxx-xxx DirectPath FADD

PFSUB mmreg, mem64 0Fh, 0Fh 9Ah mm-xxx-xxx DirectPath FADD

PFSUBR mmreg1, mmreg2 0Fh, 0Fh AAh 11-xxx-xxx DirectPath FADD

PFSUBR mmreg, mem64 0Fh, 0Fh AAh mm-xxx-xxx DirectPath FADD

PI2FD mmreg1, mmreg2 0Fh, 0Fh 0Dh 11-xxx-xxx DirectPath FADD

PI2FD mmreg, mem64 0Fh, 0Fh 0Dh mm-xxx-xxx DirectPath FADD

PMULHRW mmreg1, mmreg2 0Fh, 0Fh B7h 11-xxx-xxx DirectPath FMUL

PMULHRW mmreg1, mem64 0Fh, 0Fh B7h mm-xxx-xxx DirectPath FMUL

PREFETCH mem8 0Fh 0Dh mm-000-xxx DirectPath - 1, 2

PREFETCHW mem8 0Fh 0Dh mm-001-xxx DirectPath - 1, 2

Table 15. 3DNow!™ Instructions (continued)

Instruction Mnemonic Prefix
Byte(s) imm8 ModR/M 

Byte
Decode

Type
FPU

Pipe(s) Note

Notes:
1. For the PREFETCH and PREFETCHW instructions, the mem8 value refers to an address in the 64-byte line that will be 

prefetched.
2. The byte listed in the column titled ‘imm8’ is actually the opcode byte.
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Table 16. 3DNow!™ Extensions

Instruction Mnemonic Prefix
Byte(s) imm8 ModR/M 

Byte
Decode

Type
FPU

Pipe(s) Note

PF2IW mmreg1, mmreg2 0Fh, 0Fh 1Ch 11-xxx-xxx DirectPath FADD

PF2IW mmreg, mem64 0Fh, 0Fh 1Ch mm-xxx-xxx DirectPath FADD

PFNACC mmreg1, mmreg2 0Fh, 0Fh 8Ah 11-xxx-xxx DirectPath FADD

PFNACC mmreg, mem64 0Fh, 0Fh 8Ah mm-xxx-xxx DirectPath FADD

PFPNACC mmreg1, mmreg2 0Fh, 0Fh 8Eh 11-xxx-xxx DirectPath FADD

PFPNACC mmreg, mem64 0Fh, 0Fh 8Eh mm-xxx-xxx DirectPath FADD

PI2FW mmreg1, mmreg2 0Fh, 0Fh 0Ch 11-xxx-xxx DirectPath FADD

PI2FW mmreg, mem64 0Fh, 0Fh 0Ch mm-xxx-xxx DirectPath FADD

PSWAPD mmreg1, mmreg2 0Fh, 0Fh BBh 11-xxx-xxx DirectPath FADD/FMUL

PSWAPD mmreg, mem64 0Fh, 0Fh BBh mm-xxx-xxx DirectPath FADD/FMUL
Appendix D Instruction Dispatch and Execution Timing 173



AMD Athlon™ Processor x86 Code Optimization 22007D/0—August 1999

Preliminary Information
174 Instruction Dispatch and Execution Timing Appendix D



22007D/0—August 1999 AMD Athlon™ Processor x86 Code Optimization

Preliminary Information
Appendix E

DirectPath versus 
VectorPath Instructions
Select DirectPath Over VectorPath Instructions

Use DirectPath instructions rather than VectorPath
instructions. DirectPath instructions are optimized for decode
and execute efficiently by minimizing the number of operations
per x86 instruction, which includes ‘register← register op
memory’ as well as ‘register←register op register’ forms of
instructions.

DirectPath Instructions

The following tables contain DirectPath instructions, which
should be used in the AMD Athlon processor wherever possible:

■ Table 17, “DirectPath Integer Instructions,” on page 176

■ Table 18, “DirectPath MMX™ Instructions,” on page 183 
and Table 19, “DirectPath MMX™ Extensions,” on page 184

■ Table 20, “DirectPath Floating-Point Instructions,” on 
page 185

■ All 3DNow! instructions, including the 3DNow! Extensions, 
are DirectPath and are listed in Table 15, “3DNow!™ 
Instructions,” on page 171 and Table 16, “3DNow!™ Exten-
sions,” on page 173.
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Table 17. DirectPath Integer Instructions

Instruction Mnemonic

ADC mreg8, reg8

ADC mem8, reg8

ADC mreg16/32, reg16/32

ADC mem16/32, reg16/32

ADC reg8, mreg8

ADC reg8, mem8

ADC reg16/32, mreg16/32

ADC reg16/32, mem16/32

ADC AL, imm8

ADC EAX, imm16/32

ADC mreg8, imm8

ADC mem8, imm8

ADC mreg16/32, imm16/32

ADC mem16/32, imm16/32

ADC mreg16/32, imm8 (sign extended)

ADC mem16/32, imm8 (sign extended)

ADD mreg8, reg8

ADD mem8, reg8

ADD mreg16/32, reg16/32

ADD mem16/32, reg16/32

ADD reg8, mreg8

ADD reg8, mem8

ADD reg16/32, mreg16/32

ADD reg16/32, mem16/32

ADD AL, imm8

ADD EAX, imm16/32

ADD mreg8, imm8

ADD mem8, imm8

ADD mreg16/32, imm16/32

ADD mem16/32, imm16/32

ADD mreg16/32, imm8 (sign extended)

ADD mem16/32, imm8 (sign extended)

AND mreg8, reg8

AND mem8, reg8

A

A

A

A

A

A

A

A

A

A

A

A

A

A

B

B

B

B

B

B

B

B

B

B

B

C

C

C

C

C

C

C

C

C

Ta
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ND mreg16/32, reg16/32

ND mem16/32, reg16/32

ND reg8, mreg8

ND reg8, mem8

ND reg16/32, mreg16/32

ND reg16/32, mem16/32

ND AL, imm8

ND EAX, imm16/32

ND mreg8, imm8

ND mem8, imm8

ND mreg16/32, imm16/32

ND mem16/32, imm16/32

ND mreg16/32, imm8 (sign extended)

ND mem16/32, imm8 (sign extended)

SWAP EAX

SWAP ECX

SWAP EDX

SWAP EBX

SWAP ESP

SWAP EBP

SWAP ESI

SWAP EDI

T mreg16/32, reg16/32

T mreg16/32, imm8

T mem16/32, imm8

BW/CWDE

LC

MC

MOVA/CMOVBE reg16/32, reg16/32

MOVA/CMOVBE reg16/32, mem16/32

MOVAE/CMOVNB/CMOVNC reg16/32, mem16/32

MOVAE/CMOVNB/CMOVNC mem16/32, mem16/32

MOVB/CMOVC/CMOVNAE reg16/32, reg16/32

MOVB/CMOVC/CMOVNAE mem16/32, reg16/32

ble 17. DirectPath Integer Instructions (continued)
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CMOVBE/CMOVNA reg16/32, reg16/32

CMOVBE/CMOVNA reg16/32, mem16/32

CMOVE/CMOVZ reg16/32, reg16/32

CMOVE/CMOVZ reg16/32, mem16/32

CMOVG/CMOVNLE reg16/32, reg16/32

CMOVG/CMOVNLE reg16/32, mem16/32

CMOVGE/CMOVNL reg16/32, reg16/32

CMOVGE/CMOVNL reg16/32, mem16/32

CMOVL/CMOVNGE reg16/32, reg16/32

CMOVL/CMOVNGE reg16/32, mem16/32

CMOVLE/CMOVNG reg16/32, reg16/32

CMOVLE/CMOVNG reg16/32, mem16/32

CMOVNE/CMOVNZ reg16/32, reg16/32

CMOVNE/CMOVNZ reg16/32, mem16/32

CMOVNO reg16/32, reg16/32

CMOVNO reg16/32, mem16/32

CMOVNP/CMOVPO reg16/32, reg16/32

CMOVNP/CMOVPO reg16/32, mem16/32

CMOVNS reg16/32, reg16/32

CMOVNS reg16/32, mem16/32

CMOVO reg16/32, reg16/32

CMOVO reg16/32, mem16/32

CMOVP/CMOVPE reg16/32, reg16/32

CMOVP/CMOVPE reg16/32, mem16/32

CMOVS reg16/32, reg16/32

CMOVS reg16/32, mem16/32

CMP mreg8, reg8

CMP mem8, reg8

CMP mreg16/32, reg16/32

CMP mem16/32, reg16/32

CMP reg8, mreg8

CMP reg8, mem8

CMP reg16/32, mreg16/32

CMP reg16/32, mem16/32

Table 17. DirectPath Integer Instructions (continued)

Instruction Mnemonic

C

C

C

C

C

C

C

C

C

D

D

D

D

D

D

D

D

D

D

D

D

IN

IN

IN

IN

IN

IN

IN

IN

IN

IN

IN

IN

J

Ta
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MP AL, imm8

MP EAX, imm16/32

MP mreg8, imm8

MP mem8, imm8

MP mreg16/32, imm16/32

MP mem16/32, imm16/32

MP mreg16/32, imm8 (sign extended)

MP mem16/32, imm8 (sign extended)

WD/CDQ

EC EAX

EC ECX

EC EDX

EC EBX

EC ESP

EC EBP

EC ESI

EC EDI

EC mreg8

EC mem8

EC mreg16/32

EC mem16/32

C EAX

C ECX

C EDX

C EBX

C ESP

C EBP

C ESI

C EDI

C mreg8

C mem8

C mreg16/32

C mem16/32

O short disp8

ble 17. DirectPath Integer Instructions (continued)
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JNO short disp8

JB/JNAE short disp8

JNB/JAE short disp8

JZ/JE short disp8

JNZ/JNE short disp8

JBE/JNA short disp8

JNBE/JA short disp8

JS short disp8

JNS short disp8

JP/JPE short disp8

JNP/JPO short disp8

JL/JNGE short disp8

JNL/JGE short disp8

JLE/JNG short disp8

JNLE/JG short disp8

JO near disp16/32

JNO near disp16/32

JB/JNAE near disp16/32

JNB/JAE near disp16/32

JZ/JE near disp16/32

JNZ/JNE near disp16/32

JBE/JNA near disp16/32

JNBE/JA near disp16/32

JS near disp16/32

JNS near disp16/32

JP/JPE near disp16/32

JNP/JPO near disp16/32

JL/JNGE near disp16/32

JNL/JGE near disp16/32

JLE/JNG near disp16/32

JNLE/JG near disp16/32

JMP near disp16/32 (direct)

JMP far disp32/48 (direct) 

JMP disp8 (short)

Table 17. DirectPath Integer Instructions (continued)

Instruction Mnemonic

JM

JM

L

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

Ta
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P near mreg16/32 (indirect)

P near mem16/32 (indirect)

EA reg32, mem16/32

OV mreg8, reg8

OV mem8, reg8

OV mreg16/32, reg16/32

OV mem16/32, reg16/32

OV reg8, mreg8

OV reg8, mem8

OV reg16/32, mreg16/32

OV reg16/32, mem16/32

OV AL, mem8

OV EAX, mem16/32

OV mem8, AL

OV mem16/32, EAX

OV AL, imm8

OV CL, imm8

OV DL, imm8

OV BL, imm8

OV AH, imm8

OV CH, imm8

OV DH, imm8

OV BH, imm8

OV EAX, imm16/32

OV ECX, imm16/32

OV EDX, imm16/32

OV EBX, imm16/32

OV ESP, imm16/32

OV EBP, imm16/32

OV ESI, imm16/32

OV EDI, imm16/32

OV mreg8, imm8

OV mem8, imm8

OV mreg16/32, imm16/32

ble 17. DirectPath Integer Instructions (continued)

Instruction Mnemonic
ctorPath Instructions Appendix E



22007D/0—August 1999 AMD Athlon™ Processor x86 Code Optimization

Preliminary Information
MOV mem16/32, imm16/32

MOVSX reg16/32, mreg8

MOVSX reg16/32, mem8

MOVSX reg32, mreg16

MOVSX reg32, mem16

MOVZX reg16/32, mreg8

MOVZX reg16/32, mem8

MOVZX reg32, mreg16

MOVZX reg32, mem16

NEG mreg8

NEG mem8

NEG mreg16/32

NEG mem16/32

NOP (XCHG EAX, EAX)

NOT mreg8

NOT mem8

NOT mreg16/32

NOT mem16/32

OR mreg8, reg8

OR mem8, reg8

OR mreg16/32, reg16/32

OR mem16/32, reg16/32

OR reg8, mreg8

OR reg8, mem8

OR reg16/32, mreg16/32

OR reg16/32, mem16/32

OR AL, imm8

OR EAX, imm16/32

OR mreg8, imm8

OR mem8, imm8

OR mreg16/32, imm16/32

OR mem16/32, imm16/32

OR mreg16/32, imm8 (sign extended)

OR mem16/32, imm8 (sign extended)

Table 17. DirectPath Integer Instructions (continued)

Instruction Mnemonic

PUSH EAX

PUSH ECX

PUSH EDX

PUSH EBX

PUSH ESP

PUSH EBP

PUSH ESI

PUSH EDI

PUSH imm8

PUSH imm1

RCL mreg8, 

RCL mreg16

RCL mreg8, 

RCL mem8, 

RCL mreg16

RCL mem16

RCL mreg8, 

RCL mreg16

RCR mreg8,

RCR mreg16

RCR mreg8,

RCR mem8, 

RCR mreg16

RCR mem16

RCR mreg8,

RCR mreg16

ROL mreg8,

ROL mem8,

ROL mreg16

ROL mem16

ROL mreg8,

ROL mem8,

ROL mreg16

ROL mem16

Table 17. D
Appendix E DirectPath versus Ve
6/32

imm8

/32, imm8

1

1

/32, 1

/32, 1

CL

/32, CL

 imm8

/32, imm8

 1

1

/32, 1

/32, 1

 CL

/32, CL

 imm8

 imm8

/32, imm8

/32, imm8

 1

 1

/32, 1

/32, 1

irectPath Integer Instructions (continued)
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ROL mreg8, CL

ROL mem8, CL

ROL mreg16/32, CL

ROL mem16/32, CL

ROR mreg8, imm8

ROR mem8, imm8

ROR mreg16/32, imm8

ROR mem16/32, imm8

ROR mreg8, 1

ROR mem8, 1

ROR mreg16/32, 1

ROR mem16/32, 1

ROR mreg8, CL

ROR mem8, CL

ROR mreg16/32, CL

ROR mem16/32, CL

SAR mreg8, imm8

SAR mem8, imm8

SAR mreg16/32, imm8

SAR mem16/32, imm8

SAR mreg8, 1

SAR mem8, 1

SAR mreg16/32, 1

SAR mem16/32, 1

SAR mreg8, CL

SAR mem8, CL

SAR mreg16/32, CL

SAR mem16/32, CL

SBB mreg8, reg8

SBB mem8, reg8

SBB mreg16/32, reg16/32

SBB mem16/32, reg16/32

SBB reg8, mreg8

SBB reg8, mem8

Table 17. DirectPath Integer Instructions (continued)

Instruction Mnemonic

SBB reg16/

SBB reg16/

SBB AL, im

SBB EAX, im

SBB mreg8

SBB mem8

SBB mreg1

SBB mem1

SBB mreg1

SBB mem1

SETO mreg

SETO mem

SETNO mre

SETNO me

SETB/SETC

SETB/SETC

SETAE/SETN

SETAE/SETN

SETE/SETZ 

SETE/SETZ 

SETNE/SET

SETNE/SET

SETBE/SET

SETBE/SET

SETA/SETN

SETA/SETN

SETS mreg

SETS mem8

SETNS mre

SETNS mem

SETP/SETP

SETP/SETP

SETNP/SET

SETNP/SET

Table 17. D
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32, mreg16/32

32, mem16/32

m8

m16/32

, imm8

, imm8

6/32, imm16/32

6/32, imm16/32

6/32, imm8 (sign extended)

6/32, imm8 (sign extended)

8

8

g8

m8

/SETNAE mreg8

/SETNAE mem8

B/SETNC mreg8

B/SETNC mem8

mreg8

mem8

NZ mreg8

NZ mem8

NA mreg8

NA mem8

BE mreg8

BE mem8

8

g8

8

E mreg8

E mem8

PO mreg8

PO mem8

irectPath Integer Instructions (continued)

Instruction Mnemonic
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)

SETL/SETNGE mreg8

SETL/SETNGE mem8

SETGE/SETNL mreg8

SETGE/SETNL mem8

SETLE/SETNG mreg8

SETLE/SETNG mem8

SETG/SETNLE mreg8

SETG/SETNLE mem8

SHL/SAL mreg8, imm8

SHL/SAL mem8, imm8

SHL/SAL mreg16/32, imm8

SHL/SAL mem16/32, imm8

SHL/SAL mreg8, 1

SHL/SAL mem8, 1

SHL/SAL mreg16/32, 1

SHL/SAL mem16/32, 1

SHL/SAL mreg8, CL

SHL/SAL mem8, CL

SHL/SAL mreg16/32, CL

SHL/SAL mem16/32, CL

SHR mreg8, imm8

SHR mem8, imm8

SHR mreg16/32, imm8

SHR mem16/32, imm8

SHR mreg8, 1

SHR mem8, 1

SHR mreg16/32, 1

SHR mem16/32, 1

SHR mreg8, CL

SHR mem8, CL

SHR mreg16/32, CL

SHR mem16/32, CL

STC

SUB mreg8, reg8

Table 17. DirectPath Integer Instructions (continued)

Instruction Mnemonic

SUB mem8, reg8

SUB mreg16/32, reg16/32

SUB mem16/32, reg16/32

SUB reg8, mreg8

SUB reg8, mem8

SUB reg16/32, mreg16/32

SUB reg16/32, mem16/32

SUB AL, imm8

SUB EAX, imm16/32

SUB mreg8, imm8

SUB mem8, imm8

SUB mreg16/32, imm16/32

SUB mem16/32, imm16/32

SUB mreg16/32, imm8 (sign extended)

SUB mem16/32, imm8 (sign extended)

TEST mreg8, reg8

TEST mem8, reg8

TEST mreg16/32, reg16/32

TEST mem16/32, reg16/32

TEST AL, imm8

TEST EAX, imm16/32

TEST mreg8, imm8

TEST mem8, imm8

TEST mreg8, imm16/32

TEST mem8, imm16/32

WAIT

XCHG EAX, EAX

XOR mreg8, reg8

XOR mem8, reg8

XOR mreg16/32, reg16/32

XOR mem16/32, reg16/32

XOR reg8, mreg8

XOR reg8, mem8

XOR reg16/32, mreg16/32

Table 17. DirectPath Integer Instructions (continued

Instruction Mnemonic
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XOR reg16/32, mem16/32

XOR AL, imm8

XOR EAX, imm16/32

XOR mreg8, imm8

XOR mem8, imm8

XOR mreg16/32, imm16/32

XOR mem16/32, imm16/32

XOR mreg16/32, imm8 (sign extended)

XOR mem16/32, imm8 (sign extended)

Table 17. DirectPath Integer Instructions (continued)
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Table 18. DirectPath MMX™ Instructions

Instruction Mnemonic

EMMS

MOVD mmreg, mem32

MOVD mem32, mmreg 

MOVQ mmreg1, mmreg2

MOVQ mmreg, mem64

MOVQ mmreg2, mmreg1

MOVQ mem64, mmreg 

PACKSSDW mmreg1, mmreg2

PACKSSDW mmreg, mem64

PACKSSWB mmreg1, mmreg2

PACKSSWB mmreg, mem64

PACKUSWB mmreg1, mmreg2

PACKUSWB mmreg, mem64

PADDB mmreg1, mmreg2

PADDB mmreg, mem64

PADDD mmreg1, mmreg2

PADDD mmreg, mem64

PADDSB mmreg1, mmreg2

PADDSB mmreg, mem64

PADDSW mmreg1, mmreg2

PADDSW mmreg, mem64

PADDUSB mmreg1, mmreg2

PADDUSB mmreg, mem64

PADDUSW mmreg1, mmreg2

PADDUSW mmreg, mem64

PADDW mmreg1, mmreg2

PADDW mmreg, mem64

PAND mmreg1, mmreg2

PAND mmreg, mem64

PANDN mmreg1, mmreg2

PANDN mmreg, mem64

PCMPEQB mmreg1, mmreg2

PCMPEQB mmreg, mem64

PCMPEQD mmreg1, mmreg2

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

Ta
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CMPEQD mmreg, mem64

CMPEQW mmreg1, mmreg2

CMPEQW mmreg, mem64

CMPGTB mmreg1, mmreg2

CMPGTB mmreg, mem64

CMPGTD mmreg1, mmreg2

CMPGTD mmreg, mem64

CMPGTW mmreg1, mmreg2

CMPGTW mmreg, mem64

MADDWD mmreg1, mmreg2

MADDWD mmreg, mem64

MULHW mmreg1, mmreg2

MULHW mmreg, mem64

MULLW mmreg1, mmreg2

MULLW mmreg, mem64

OR mmreg1, mmreg2

OR mmreg, mem64

SLLD mmreg1, mmreg2

SLLD mmreg, mem64

SLLD mmreg, imm8

SLLQ mmreg1, mmreg2

SLLQ mmreg, mem64

SLLQ mmreg, imm8

SLLW mmreg1, mmreg2

SLLW mmreg, mem64

SLLW mmreg, imm8

SRAW mmreg1, mmreg2

SRAW mmreg, mem64

SRAW mmreg, imm8

SRAD mmreg1, mmreg2

SRAD mmreg, mem64

SRAD mmreg, imm8

SRLD mmreg1, mmreg2

SRLD mmreg, mem64

ble 18. DirectPath MMX™ Instructions (continued)
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PSRLD mmreg, imm8

PSRLQ mmreg1, mmreg2

PSRLQ mmreg, mem64

PSRLQ mmreg, imm8

PSRLW mmreg1, mmreg2

PSRLW mmreg, mem64

PSRLW mmreg, imm8

PSUBB mmreg1, mmreg2

PSUBB mmreg, mem64

PSUBD mmreg1, mmreg2

PSUBD mmreg, mem64

PSUBSB mmreg1, mmreg2

PSUBSB mmreg, mem64

PSUBSW mmreg1, mmreg2

PSUBSW mmreg, mem64

PSUBUSB mmreg1, mmreg2

PSUBUSB mmreg, mem64

PSUBUSW mmreg1, mmreg2

PSUBUSW mmreg, mem64

PSUBW mmreg1, mmreg2

PSUBW mmreg, mem64

PUNPCKHBW mmreg1, mmreg2

PUNPCKHBW mmreg, mem64

PUNPCKHDQ mmreg1, mmreg2

PUNPCKHDQ mmreg, mem64

PUNPCKHWD mmreg1, mmreg2

PUNPCKHWD mmreg, mem64

PUNPCKLBW mmreg1, mmreg2

PUNPCKLBW mmreg, mem64

PUNPCKLDQ mmreg1, mmreg2

PUNPCKLDQ mmreg, mem64

PUNPCKLWD mmreg1, mmreg2

PUNPCKLWD mmreg, mem64

PXOR mmreg1, mmreg2

Table 18. DirectPath MMX™ Instructions (continued)
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XOR mmreg, mem64

ble 19. DirectPath MMX™ Extensions

Instruction Mnemonic

OVNTQ mem64, mmreg

AVGB mmreg1, mmreg2

AVGB mmreg, mem64

AVGW mmreg1, mmreg2

AVGW mmreg, mem64

MAXSW mmreg1, mmreg2

MAXSW mmreg, mem64

MAXUB mmreg1, mmreg2

MAXUB mmreg, mem64

MINSW mmreg1, mmreg2

MINSW mmreg, mem64

MINUB mmreg1, mmreg2

MINUB mmreg, mem64

MULHUW mmreg1, mmreg2

MULHUW mmreg, mem64

SADBW mmreg1, mmreg2

SADBW mmreg, mem64

SHUFW mmreg1, mmreg2, imm8

SHUFW mmreg, mem64, imm8

REFETCHNTA mem8

REFETCHT0 mem8

REFETCHT1 mem8

REFETCHT2 mem8

ble 18. DirectPath MMX™ Instructions (continued)
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Table 20. DirectPath Floating-Point Instructions

Instruction Mnemonic

FABS

FADD ST, ST(i)

FADD [mem32real]

FADD ST(i), ST

FADD [mem64real]

FADDP ST(i), ST

FCHS

FCOM ST(i)

FCOMP ST(i)

FCOM [mem32real]

FCOM [mem64real]

FCOMP [mem32real]

FCOMP [mem64real]

FCOMPP

FDECSTP

FDIV ST, ST(i)

FDIV ST(i), ST

FDIV [mem32real]

FDIV [mem64real]

FDIVP ST, ST(i)

FDIVR ST, ST(i)

FDIVR ST(i), ST

FDIVR [mem32real]

FDIVR [mem64real]

FDIVRP ST(i), ST

FFREE ST(i)

FFREEP ST(i)

FILD [mem16int]

FILD [mem32int]

FILD [mem64int]

FIMUL [mem32int]

FIMUL [mem16int]

FINCSTP

FIST [mem16int]

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

Ta
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IST [mem32int]

ISTP [mem16int]

ISTP [mem32int]

ISTP [mem64int]

LD ST(i)

LD [mem32real]

LD [mem64real]

LD [mem80real]

LD1

LDL2E

LDL2T

LDLG2

LDLN2

LDPI

LDZ

MUL ST, ST(i)

MUL ST(i), ST

MUL [mem32real]

MUL [mem64real]

MULP ST, ST(i)

NOP

PREM

PREM1

SQRT

ST [mem32real]

ST [mem64real]

ST ST(i)

STP [mem32real]

STP [mem64real]

STP [mem80real]

STP ST(i)

SUB [mem32real]

SUB [mem64real]

SUB ST, ST(i)

ble 20. DirectPath Floating-Point Instructions 
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FSUB ST(i), ST

FSUBP ST, ST(i)

FSUBR [mem32real]

FSUBR [mem64real]

FSUBR ST, ST(i)

FSUBR ST(i), ST

FSUBRP ST(i), ST

FTST

FUCOM

FUCOMP

FUCOMPP

FWAIT

FXCH

Table 20. DirectPath Floating-Point Instructions 
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VectorPath Instructions

The following tables contain VectorPath instructions, which
should be avoided in the AMD Athlon processor:

■ Table 21, “VectorPath Integer Instructions,” on page 187

■ Table 22, “VectorPath MMX™ Instructions,” on page 190 
and Table 23, “VectorPath MMX™ Extensions,” on 
page 190

■ Table 24, “VectorPath Floating-Point Instructions,” on 
page 191

Table 21. VectorPath Integer Instructions

Instruction Mnemonic

AAA

AAD

AAM

AAS

ARPL mreg16, reg16

ARPL mem16, reg16

BOUND

BSF reg16/32, mreg16/32

BSF reg16/32, mem16/32

BSR reg16/32, mreg16/32

BSR reg16/32, mem16/32

BT mem16/32, reg16/32

BTC mreg16/32, reg16/32

BTC mem16/32, reg16/32

BTC mreg16/32, imm8

BTC mem16/32, imm8

BTR mreg16/32, reg16/32

BTR mem16/32, reg16/32

BTR mreg16/32, imm8

BTR mem16/32, imm8

BTS mreg16/32, reg16/32

BTS mem16/32, reg16/32

BTS mreg16/32, imm8

BTS mem16/32, imm8

CALL full pointer

CALL near imm16/32

CALL mem16:16/32

CALL near mreg32 (indirect)

CALL near mem32 (indirect)

CLD

CLI

CLTS

CMPSB mem8,mem8

CMPSW mem16, mem32

CMPSD mem32, mem32

CMPXCHG mreg8, reg8

CMPXCHG mem8, reg8

CMPXCHG mreg16/32, reg16/32

CMPXCHG mem16/32, reg16/32

CMPXCHG8B mem64

CPUID

DAA

DAS

DIV AL, mreg8

DIV AL, mem8

DIV EAX, mreg16/32

DIV EAX, mem16/32

Table 21. VectorPath Integer Instructions (continued)
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ENTER

IDIV mreg8

IDIV mem8

IDIV EAX, mreg16/32

IDIV EAX, mem16/32

IMUL reg16/32, imm16/32

IMUL reg16/32, mreg16/32, imm16/32

IMUL reg16/32, mem16/32, imm16/32

IMUL reg16/32, imm8 (sign extended)

IMUL reg16/32, mreg16/32, imm8 (signed)

IMUL reg16/32, mem16/32, imm8 (signed)

IMUL AX, AL, mreg8

IMUL AX, AL, mem8

IMUL EDX:EAX, EAX, mreg16/32

IMUL EDX:EAX, EAX, mem16/32

IMUL reg16/32, mreg16/32

IMUL reg16/32, mem16/32

IN AL, imm8

IN AX, imm8

IN EAX, imm8

IN AL, DX

IN AX, DX

IN EAX, DX

INVD

INVLPG

JCXZ/JEC short disp8

JMP far disp32/48 (direct) 

JMP far mem32 (indirect) 

JMP far mreg32 (indirect) 

LAHF

LAR reg16/32, mreg16/32

LAR reg16/32, mem16/32

LDS reg16/32, mem32/48

LEA reg16, mem16/32

Table 21. VectorPath Integer Instructions (continued)

Instruction Mnemonic

LEAVE

LES reg16/32, mem32/48

LFS reg16/32, mem32/48

LGDT mem48

LGS reg16/32, mem32/48

LIDT mem48

LLDT mreg16

LLDT mem16

LMSW mreg16

LMSW mem16

LODSB AL, mem8

LODSW AX, mem16

LODSD EAX, mem32

LOOP disp8

LOOPE/LOOPZ disp8

LOOPNE/LOOPNZ disp8

LSL reg16/32, mreg16/32

LSL reg16/32, mem16/32

LSS reg16/32, mem32/48

LTR mreg16

LTR mem16

MOV mreg16, segment reg

MOV mem16, segment reg

MOV segment reg, mreg16

MOV segment reg, mem16

MOVSB mem8,mem8

MOVSD mem16, mem16

MOVSW mem32, mem32

MUL AL, mreg8

MUL AL, mem8

MUL AX, mreg16

MUL AX, mem16

MUL EAX, mreg32

MUL EAX, mem32

Table 21. VectorPath Integer Instructions (continued)
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OUT imm8, AL

OUT imm8, AX

OUT imm8, EAX

OUT DX, AL

OUT DX, AX

OUT DX, EAX

POP ES

POP SS

POP DS

POP FS

POP GS

POP EAX

POP ECX

POP EDX

POP EBX

POP ESP

POP EBP

POP ESI

POP EDI

POP mreg 16/32

POP mem 16/32

POPA/POPAD

POPF/POPFD

PUSH ES

PUSH CS

PUSH FS

PUSH GS

PUSH SS

PUSH DS

PUSH mreg16/32

PUSH mem16/32

PUSHA/PUSHAD

PUSHF/PUSHFD

RCL mem8, imm8

Table 21. VectorPath Integer Instructions (continued)
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CL mem16/32, imm8

CL mem8, CL

CL mem16/32, CL

CR mem8, imm8

CR mem16/32, imm8

CR mem8, CL

CR mem16/32, CL

DMSR

DPMC

DTSC

ET near imm16

ET near

ET far imm16

ET far

AHF

CASB AL, mem8

CASW AX, mem16

CASD EAX, mem32

GDT mem48

IDT mem48

HLD mreg16/32, reg16/32, imm8

HLD mem16/32, reg16/32, imm8

HLD mreg16/32, reg16/32, CL

HLD mem16/32, reg16/32, CL

HRD mreg16/32, reg16/32, imm8

HRD mem16/32, reg16/32, imm8

HRD mreg16/32, reg16/32, CL

HRD mem16/32, reg16/32, CL

LDT mreg16

LDT mem16

MSW mreg16

MSW mem16

TD

TI

ble 21. VectorPath Integer Instructions (continued)
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STOSB mem8, AL

STOSW mem16, AX

STOSD mem32, EAX

STR mreg16

STR mem16

SYSCALL

SYSENTER

SYSEXIT

SYSRET

VERR mreg16

VERR mem16

VERW mreg16

VERW mem16

WBINVD

WRMSR

XADD mreg8, reg8

XADD mem8, reg8

XADD mreg16/32, reg16/32

XADD mem16/32, reg16/32

XCHG reg8, mreg8

XCHG reg8, mem8

XCHG reg16/32, mreg16/32

XCHG reg16/32, mem16/32

XCHG EAX, ECX

XCHG EAX, EDX

XCHG EAX, EBX

XCHG EAX, ESP

XCHG EAX, EBP

XCHG EAX, ESI

XCHG EAX, EDI

XLAT

Table 21. VectorPath Integer Instructions (continued)
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Table 2

MOVD

MOVD

Table 2

MASK

PEXTR

PINSR

PINSR

PMOV

SFENC
190 DirectPath versus Vecto
2. VectorPath MMX™ Instructions

Instruction Mnemonic

 mmreg, mreg32

 mreg32, mmreg

3. VectorPath MMX™ Extensions

Instruction Mnemonic

MOVQ mmreg1, mmreg2

W reg32, mmreg, imm8

W mmreg, reg32, imm8

W mmreg, mem16, imm8

MSKB reg32, mmreg

E
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tinued)
Table 24. VectorPath Floating-Point Instructions

Instruction Mnemonic

F2XM1

FBLD [mem80]

FBSTP [mem80]

FCLEX

FCMOVB ST(0), ST(i)

FCMOVE ST(0), ST(i)

FCMOVBE ST(0), ST(i)

FCMOVU ST(0), ST(i)

FCMOVNB ST(0), ST(i)

FCMOVNE ST(0), ST(i)

FCMOVNBE ST(0), ST(i)

FCMOVNU ST(0), ST(i)

FCOMI ST, ST(i)

FCOMIP ST, ST(i)

FCOS

FIADD [mem32int]

FIADD [mem16int]

FICOM [mem32int]

FICOM [mem16int]

FICOMP [mem32int]

FICOMP [mem16int]

FIDIV [mem32int]

FIDIV [mem16int]

FIDIVR [mem32int]

FIDIVR [mem16int]

FIMUL [mem32int]

FIMUL [mem16int]

FINIT

FISUB [mem32int]

FISUB [mem16int]

FISUBR [mem32int]

FISUBR [mem16int]

FLD [mem80real]

FLDCW [mem16]

FLDENV [mem14byte]

FLDENV [mem28byte]

FPTAN

FPATAN

FRNDINT

FRSTOR [mem94byte]

FRSTOR [mem108byte]

FSAVE [mem94byte]

FSAVE [mem108byte]

FSCALE

FSIN

FSINCOS

FSTCW [mem16]

FSTENV [mem14byte]

FSTENV [mem28byte]

FSTP [mem80real]

FSTSW AX

FSTSW [mem16]

FUCOMI ST, ST(i)

FUCOMIP ST, ST(i)

FXAM

FXTRACT

FYL2X

FYL2XP1

Table 24. VectorPath Floating-Point Instructions (con
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Appendix F

Performance Monitoring 
Counters
This chapter describes how to use the AMD Athlon™ processor
performance monitoring counters.

Overview

The AMD Athlon processor provides four 48-bit performance
counters, which allows four types of events to be monitored
simultaneously. These counters can either count events or
measure duration. When counting events, a counter is
incremented each time a specified event takes place or a
specified number of events takes place. When measuring
duration, a counter counts the number of processor clocks that
occur while a specified condition is true. The counters can
count events or measure durations that occur at any privilege
level. Table 26 on page 196 lists the events that can be counted
with the performance monitoring counters.

Performance Counter Usage

The performance monitoring counters are supported by eight
MSRs— PerfEvtSel[3:0] are the performance event select
MSRs, and PerfCtr[3:0] are the performance counter MSRs.
Appendix F Performance Monitoring Counters 193
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These registers can be read from and written to using the
RDMSR and WRMSR instructions, respectively. 

The PerfEvtSel[3:0] registers are located at MSR locations
C001_0000h to C001_0003h. The PerfCtr[3:0] registers are
located at MSR locations C001_0004h to C0001_0007h and are
64-byte registers.

The PerfEvtSel[3:0] registers can be accessed using the
RDMSR/WRMSR instructions only when operating at privilege
level 0. The PerfCtr[3:0] MSRs can be read from any privilege
level using the RDPMC (read performance-monitoring
counters) instruction, if the PCE flag in CR4 is set.

PerfEvtSel[3:0] MSRs (MSR Addresses C001_0000h–C001_0003h)

The PerfEvtSel[3:0] MSRs, shown in Figure 11, control the
operation of the performance-monitoring counters, with one
register used to set up each counter. These MSRs specify the
events to be counted, how they should be counted, and the
privilege levels at which counting should take place. The
functions of the flags and fields within these MSRs are as are
described in the following sections.

Figure 11.   PerfEvtSel[3:0] Registers

Event Select Field 
(Bits 0—7) 

These bits are used to select the event to be monitored. See
Table 26 on page 196 for a list of event masks and their 8-bit
codes.
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Unit Mask Event MaskCounter Mask

Symbol Description Bit
USR User Mode 16
OS Operating System Mode 17
E Edge Detect 18
PC Pin Control 19
INT APIC Interrupt Enable 20
EN Enable Counter 22
INV Invert Mask 23
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Unit Mask Field (Bits 
8—15) 

These bits are used to further qualify the event selected in the
event select field. For example, for some cache events, the mask
is used as a MESI-protocol qualifier of cache states. See
Table 26 on page 196 for a list of unit masks and their 8-bit
codes.

USR (User Mode) Flag 
(Bit 16) 

Events are counted only when the processor is operating at
privilege levels 1, 2 or 3. This flag can be used in conjunction
with the OS flag.

OS (Operating System 
Mode) Flag (Bit 17) 

Events are counted only when the processor is operating at
privilege level 0. This flag can be used in conjunction with the
USR flag.

E (Edge Detect) Flag 
(Bit 18) 

When this flag is set, edge detection of events is enabled. The
processor counts the number of negated-to-asserted transitions
of any condition that can be expressed by the other fields. The
mechanism is limited in that it does not permit back-to-back
assertions to be distinguished. This mechanism allows software
to measure not only the fraction of time spent in a particular
state, but also the average length of time spent in such a state
(for example, the time spent waiting for an interrupt to be
serviced).

PC (Pin Control) Flag 
(Bit 19) 

When this flag is set, the processor toggles the PMi pins when
the counter overflows. When this flag is clear, the processor
toggles the PMi pins and increments the counter when
performance monitoring events occur. The toggling of a pin is
defined as assertion of the pin for one bus clock followed by
negation.

INT (APIC Interrupt 
Enable) Flag (Bit 20) 

When this flag is set, the processor generates an interrupt
through its local APIC on counter overflow.

EN (Enable Counter) 
Flag (Bit 22) 

This flag enables/disables the PerfEvtSeln MSR. When set,
performance counting is enabled for this counter. When clear,
this counter is disabled.

INV (Invert) Flag (Bit 
23) 

By inverting the Counter Mask Field, this flag inverts the result
of the counter comparison, allowing both greater than and less
than comparisons. 

Counter Mask Field 
(Bits 31–24) 

For events which can have multiple occurrences within one
clock, this field is used to set a threshold. If the field is non-zero,
the counter increments each time the number of events is
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greater than or equal to the counter mask. Otherwise if this
field is zero, then the counter increments by the total number of
events.

Table 26. Performance Monitoring Counters

Event 
Number

Source 
Unit Notes / Unit Mask (bits 15–8) Event Description

20h LS

1xxx_xxxxb = reserved

x1xx_xxxxb = HS

xx1x_xxxxb = GS

xxx1_xxxxb = FS

xxxx_1xxxb = DS

xxxx_x1xxb = SS

xxxx_xx1xb = CS

xxxx_xxx1b = ES

Segment register loads

21h LS Stores to active instruction stream

40h DC Data cache accesses

41h DC Data cache misses

42h DC

xxx1_xxxxb = Modified (M)

xxxx_1xxxb = Owner (O)

xxxx_x1xxb = Exclusive (E)

xxxx_xx1xb = Shared (S)

xxxx_xxx1b = Invalid (I)

Data cache refills

43h DC

xxx1_xxxxb = Modified (M)

xxxx_1xxxb = Owner (O)

xxxx_x1xxb = Exclusive (E)

xxxx_xx1xb = Shared (S)

xxxx_xxx1b = Invalid (I)

Data cache refills from system

44h DC

xxx1_xxxxb = Modified (M)

xxxx_1xxxb = Owner (O)

xxxx_x1xxb = Exclusive (E)

xxxx_xx1xb = Shared (S)

xxxx_xxx1b = Invalid (I)

Data cache writebacks

45h DC L1 DTLB misses and L2 DTLB hits

46h DC L1 and L2 DTLB misses

47h DC Misaligned data references

64h BU DRAM system requests
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65h BU

1xxx_xxxxb = reserved

x1xx_xxxxb = WB

xx1x_xxxxb = WP

xxx1_xxxxb = WT

bits 11–10 = reserved

xxxx_xx1xb = WC

xxxx_xxx1b = UC

System requests with the selected type

73h BU

bits 15–11 = reserved

xxxx_x1xxb = L2 (L2 hit and no DC 
hit)

xxxx_xx1xb = Data cache

xxxx_xxx1b = Instruction cache

Snoop hits

74h BU
bits 15–10 = reserved

xxxx_xx1xb = L2 single bit error

xxxx_xxx1b = System single bit error

Single-bit ECC errors detected/corrected

75h BU

bits 15–12 = reserved

xxxx_1xxxb = I invalidates D

xxxx_x1xxb = I invalidates I

xxxx_xx1xb = D invalidates D

xxxx_xxx1b = D invalidates I

Internal cache line invalidates

76h BU
Cycles processor is running (not in HLT 
or STPCLK)

79h BU

1xxx_xxxxb = Data block write from 
the L2 (TLB RMW)

x1xx_xxxxb = Data block write from 
the DC

xx1x_xxxxb = Data block write from 
the system

xxx1_xxxxb = Data block read data 
store

xxxx_1xxxb = Data block read data 
load

xxxx_x1xxb = Data block read 
instruction

xxxx_xx1xb = Tag write

xxxx_xxx1b = Tag read

L2 requests

Table 26. Performance Monitoring Counters (continued)

Event 
Number

Source 
Unit Notes / Unit Mask (bits 15–8) Event Description
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7Ah BU Cycles that at least one fill request 
waited to use the L2

80h PC Instruction cache fetches

81h PC Instruction cache misses

82h PC Instruction cache refills from L2

83h PC Instruction cache refills from system

84h PC L1 ITLB misses (and L2 ITLB hits)

85h PC (L1 and) L2 ITLB misses

86h PC Snoop resyncs

87h PC Instruction fetch stall cycles

88h PC Return stack hits

89h PC Return stack overflow

C0h FR Retired instructions (includes 
exceptions, interrupts, resyncs)

C1h FR Retired Ops

C2h FR
Retired branches (conditional, 
unconditional, exceptions, interrupts)

C3h FR Retired branches mispredicted

C4h FR Retired taken branches

C5h FR Retired taken branches mispredicted

C6h FR Retired far control transfers

C8h FR Retired near returns

C9h FR Retired near returns mispredicted

CAh FR
Retired indirect branches with target 
mispredicted

CDh FR Interrupts masked cycles (IF=0)

CEh FR Interrupts masked while pending cycles 
(INTR while IF=0)

CFh FR Number of taken hardware interrupts

D0h FR Instruction decoder empty

D1h FR Dispatch stalls (event masks D2h 
through DAh below combined)

D2h FR Branch abort to retire

D3h FR Serialize

D4h FR Segment load stall

Table 26. Performance Monitoring Counters (continued)

Event 
Number

Source 
Unit Notes / Unit Mask (bits 15–8) Event Description
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PerfCtr[3:0] MSRs (MSR Addresses C001_0004h–C001_0007h)

The performance-counter MSRs contain the event or duration
counts for the selected events being counted. The RDPMC
instruction can be used by programs or procedures running at
any privilege level and in virtual-8086 mode to read these
counters. The PCE flag in control register CR4 (bit 8) allows the
use of this instruction to be restricted to only programs and
procedures running at privilege level 0.

The RDPMC instruction is not serializing or ordered with other
instructions. Therefore, it does not necessarily wait until all
previous instructions have been executed before reading the
counter. Similarly, subsequent instructions can begin execution
before the RDPMC instruction operation is performed.

Only the operating system, executing at privilege level 0, can
directly manipulate the performance counters, using the
RDMSR and WRMSR instructions. A secure operating system
would clear the PCE flag during system initialization, which
disables direct user access to the performance-monitoring
counters but provides a user-accessible programming interface
that emulates the RDPMC instruction.

The WRMSR instruction cannot arbitrarily write to the
performance-monitoring counter MSRs (PerfCtr[3:0]). Instead,
the value should be treated as 64-bit sign extended, which

D5h FR ICU full

D6h FR Reservation stations full

D7h FR FPU full

D8h FR LS full

D9h FR All quiet stall

DAh FR Far transfer or resync branch pending

DCh FR Breakpoint matches for DR0

DDh FR Breakpoint matches for DR1

DEh FR Breakpoint matches for DR2

DFh FR Breakpoint matches for DR3

Table 26. Performance Monitoring Counters (continued)

Event 
Number

Source 
Unit Notes / Unit Mask (bits 15–8) Event Description
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allows writing both positive and negative values to the
performance counters. The performance counters may be
initialized using a 64-bit signed integer in the range -247 and
+247. Negative values are useful for generating an interrupt
after a specific number of events.

Starting and Stopping the Performance-Monitoring Counters

The performance-monitoring counters are started by writing
valid setup information in one or more of the PerfEvtSel[3:0]
MSRs and setting the enable counters flag in the PerfEvtSel0
MSR. If the setup is valid, the counters begin counting
following the execution of a WRMSR instruction, which sets the
enable counter flag. The counters can be stopped by clearing
the enable counters flag or by clearing all the bits in the
PerfEvtSel[3:0] MSRs.

Event and Time-Stamp Monitoring Software

For applications to use the performance-monitoring counters
and time-stamp counter, the operating system needs to provide
an event-monitoring device driver. This driver should include
procedures for handling the following operations:

■ Feature checking

■ Initialize and start counters

■ Stop counters

■ Read the event counters

■ Reading of the time stamp counter

The event monitor feature determination procedure must
determine whether the current processor supports the
performance-monitoring counters and time-stamp counter. This
procedure compares the family and model of the processor
returned by the CPUID instruction with those of processors
known to support performance monitoring. In addition, the
procedure checks the MSR and TSC flags returned to register
EDX by the CPUID instruction to determine if the MSRs and
the RDTSC instruction are supported.

The initialization and start counters procedure sets the
PerfEvtSel0 and/or PerfEvtSel1 MSRs for the events to be
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counted and the method used to count them and initializes the
counter MSRs (PerfCtr[3:0]) to starting counts. The stop
counters procedure stops the performance counters. (See
“Starting and Stopping the Performance-Monitoring Counters”
on page 200 for more information about starting and stopping
the counters.)

The read counters procedure reads the values in the
PerfCtr[3:0] MSRs, and a read time-stamp counter procedure
reads the time-stamp counter. These procedures can be used
instead of enabling the RDTSC and RDPMC instructions, which
allow application code to read the counters directly.

Monitoring Counter Overflow

The AMD Athlon processor provides the option of generating a
debug interrupt when a performance-monitoring counter
overflows. This mechanism is enabled by setting the interrupt
enable flag in one of the PerfEvtSel[3:0] MSRs. The primary
use of this option is for statistical performance sampling.

To use this option, the operating system should do the
following:

■ Provide an interrupt routine for handling the counter
overflow as an APIC interrupt

■ Provide an entry in the IDT that points to a stub exception
handler that returns without executing any instructions

■ Provide an event monitor driver that provides the actual
interrupt handler and modifies the reserved IDT entry to
point to its interrupt routine

When interrupted by a counter overflow, the interrupt handler
needs to perform the following actions:

■ Save the instruction pointer (EIP register), code segment
selector, TSS segment selector, counter values and other
relevant information at the time of the interrupt

■ Reset the counter to its initial setting and return from the
interrupt

An event monitor application utility or another application
program can read the collected performance information of the
profiled application.
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