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Chapter 1 Introduction

This guide provides optimization information and recommendations for AMD Family 10h 
processors. These optimizations are designed to yield software code that is fast, compact, and 
efficient. Toward this end, the optimizations in each of the following chapters are listed in order of 
importance.

This chapter covers the following topics:

1.1 Intended Audience
This book is intended for compiler and assembler designers, as well as C, C++, and assembly-
language programmers writing performance-sensitive code sequences. This guide assumes that you 
are familiar with the AMD64 instruction set and the AMD64 architecture (registers and programming 
modes). For complete information on the AMD64 architecture and instruction set, see the 
multivolume AMD64 Architecture Programmer’s Manual available from AMD.com. Individual 
volumes and their order numbers are provided below.

1.2 Getting Started
More experienced readers may skip to “Key Optimizations” on page 6, which identifies the most 
important optimizations, and to “What’s New on AMD Family 10h Processors” on page 6 for a quick 
review of key new performance enhancement features introduced with AMD Family 10h processors.

Topic Page

Intended Audience 1

Getting Started 1

Using This Guide 2

Important New Terms 4

Key Optimizations 6

What’s New on AMD Family 10h Processors 6

Title Order Number

Volume 1, Application Programming 24592

Volume 2, System Programming 24593

Volume 3, General-Purpose and System Instructions 24594

Volume 4, 128-Bit Media Instructions 26568

Volume 5, 64-Bit Media and x87 Floating-Point Instructions 26569

AMD64 Architecture Programmer’s Manual Documentation Updates 33633
Chapter 1 Introduction 1
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1.3 Using This Guide
Each of the remaining chapters in this document focuses on a particular general area of relevance to 
software optimization on AMD Family 10h processors. Each chapter is organized into a set of one or 
more recommended related optimizations pertaining to a particular issue. These sections are divided 
into three sections:

• Optimization—Specifies the recommended action required for achieving the optimization under 
consideration.

• Application—Specifies the type of software for which the particular optimization is relevant (i.e., 
to 32-bit software or 64-bit software or to both).

• Rationale—Provides additional explanatory technical information regarding the particular 
optimization. This section usually provides illustrative C, C++, or assembly code examples as 
well.

The chapters that follow cover the following topics:

• Chapter 2, “C and C++ Source-Level Optimizations,” describes techniques that you can use to 
optimize your C and C++ source code.

• Chapter 3, “General 64-Bit Optimizations,” presents general assembly-language optimizations 
that can improve the performance of software designed to run in 64-bit mode. The optimizations 
in this chapter apply only to 64-bit software.

• Chapter 4, “Instruction-Decoding Optimizations,” discusses optimizations designed to maximize 
the number of instructions that the processor can decode at one time.

• Chapter 5, “Cache and Memory Optimizations,” discusses how to take advantage of the large L1 
caches and high-bandwidth buses.

• Chapter 6, “Branch Optimizations,” discusses improving branch prediction and minimizing 
branch penalties.

• Chapter 7, “Scheduling Optimizations.” discusses improving instruction scheduling in the 
processor.

• Chapter 8, “Integer Optimizations,” discusses integer performance.

• Chapter 9, “Optimizing with SIMD Instructions,” discusses the 64-bit and 128-bit SIMD 
instructions (SSE, SSE2, SSE3, SSE4a) used to encode floating-point and integer operations.

• Chapter 10, “x87 Floating-Point Optimizations,” discusses optimizations using the x87 assembly 
instructions.

• Chapter 11, “Multiprocessor Considerations,” discusses processor/core selection and related 
issues for applications running on multiprocessor/multicore cache coherent non-uniform memory 
access (ccNUMA) configurations.

• Chapter 12, “Optimizing Secure Systems,” discusses ways to minimize the performance overhead 
imposed by the virtualization of a guest.
2 Introduction Chapter 1
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• Appendix A, “Microarchitecture of AMD Family 10h Processors,” discusses the internal design, 
or microarchitecture, of the AMD Family 10h processor and provides information about 
translation-lookaside buffers and other functional units that, while not part of the main processor, 
are integrated on the chip.

• Appendix B, “Implementation of Write-Combining,” describes how AMD Family 10h processors 
perform memory write-combining.

• Appendix C, “Instruction Latencies,” provides a complete listing of all AMD64 instructions with 
each instruction’s decode type, execution latency, and—where applicable—the pipes and 
throughput used in the floating-point unit.

• Appendix D, “Tools and APIs for AMD Family 10h ccNUMA Multiprocessor Systems” provides 
information on tools for programming in NUMA environments.

• Appendix E, “NUMA Optimizations for I/O Devices” provides information on the association of 
particular I/O devices with a specific nodes in a NUMA system.

• Appendix F, “Remarks on the RDTSC(P) Instruction” provides information on using the RDTSC 
and RDTSCP instructions to load the value of the time stamp counter (TSC).

• Appendix G, “Guide to Instruction-Based Sampling on AMD Family 10h Processors” describes 
the use of intruction-based sampling to monitor software performance.

1.3.1 Special Information

Special information in this guide is marked as follows:

This symbol appears next to the most important, or key, optimizations.

1.3.2 Numbering Systems

The following suffixes identify different numbering systems:

This suffix Identifies a

b Binary number. For example, the binary equivalent of the number 5 is written 101b.

d Decimal number. Decimal numbers are followed by this suffix only when the possibility of 
confusion exists. In general, decimal numbers are shown without a suffix.

h Hexadecimal number. For example, the hexadecimal equivalent of the number 60 is 
written 3Ch.
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1.3.3 Typographic Notation

This guide uses the following typographic notations for certain types of information:

1.4 Important New Terms
This section defines several important terms and concepts used in this guide.

1.4.1 Multi-Core Processors 

The AMD Family 10h family of processors have multiple cores. A multi-core processor contains two 
to four identical cores that share the processor’s L3 cache and Northbridge (see Appendix A). Within 
a processor, each core can simultaneously run independent threads.

1.4.2 Primitive Operations

AMD Family 10h processors perform four types of primitive operations:

• Integer (arithmetic or logic)

• Floating-point (arithmetic)

• Load

• Store

1.4.3 Internal Instruction Formats

The AMD64 instruction set is complex. Instructions have variable-length encoding and many perform 
multiple primitive operations. AMD Family 10h processors do not execute these complex instructions 
directly, but, instead, decode them internally into simpler fixed-length instructions called macro-ops. 
Processor schedulers subsequently break down macro-ops into sequences of even simpler instructions 
called micro-ops, each of which specifies a single primitive operation.

A macro-op is a fixed-length instruction that:

• Expresses, at most, one integer or floating-point operation and one load and/or store operation.

• Is the primary unit of work managed (that is, dispatched and retired) by the processor.

A micro-op is a fixed-length instruction that:

• Expresses one and only one of the primitive operations that the processor can perform (for 
example, a load).

This type of text Identifies

italic Placeholders that represent information you must provide. Italicized text is also used 
for the titles of publications and for emphasis.

monowidth Program statements and function names.
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• Is executed by the processor’s execution units.

Table 1 on page 5 summarizes the differences between AMD64 instructions, macro-ops, and micro-
ops.

1.4.4 Types of Instructions

Instructions are classified according to how they are decoded by the processor. There are three types 
of instructions:

Table 1. Instructions, Macro-ops and Micro-ops

Comparing AMD64 instructions Macro-ops Micro-ops

Complexity Complex

A single instruction may 
specify one or more of 
each of the following 
operations:

• Integer or floating-point

• Load

• Store

Average

A single macro-op may 
specify—at most—one 
integer or floating-point 
operation and one of the 
following operations:

• Load

• Store

• Load and store to the 
same address

Simple

A single micro-op 
specifies only one of the 
following primitive 
operations:

• Integer or floating-point

• Load

• Store

Encoded length Variable (instructions are 
different lengths)

Fixed (all macro-ops are 
the same length)

Fixed (all micro-ops are 
the same length)

Regularized 
instruction fields

No (field locations and 
definitions vary among 
instructions)

Yes (field locations and 
definitions are the same 
for all macro-ops)

Yes (field locations and 
definitions are the same 
for all micro-ops)

Instruction Type Description

DirectPath Single Decodes directly into one macro-op in microprocessor hardware.

DirectPath Double Decodes directly into two macro-ops in microprocessor hardware.

VectorPath Decodes into one or more (usually three or more) macro-ops using the on-chip 
microcode-engine ROM (MROM).
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1.5 Key Optimizations
While all of the optimizations in this guide help improve software performance, some of them have 
more impact than others. Optimizations that offer the most improvement are called key optimizations.

This symbol appears next to the most important (key) optimizations.

1.5.1 Implementation Guideline

Concentrate your efforts on implementing key optimizations before moving on to other optimizations.

Table 2 lists the key optimizations. These optimizations are discussed in detail in later sections of this 
book.

1.6 What’s New on AMD Family 10h Processors
AMD Family 10h processors introduce several new features that can significantly enhance software 
performance when compared to the previous AMD64 microprocessors. The following section 
provides compiler/assembler designers and C/C++/assembly language programmers with a summary 
of these performance improvements. Throughout this discussion, it is assumed that readers are 
familiar with the software optimization guide for the previous AMD64 processors and the 
terminology used there.

Table 2. Optimizations by Rank

Rank Optimization

1 Load-Execute Instructions for Floating-Point or Integer Operands (See 
section 4.2 on page 53.)

2 Write-Combining (See section 5.6 on page 89.)

3 Branches That Depend on Random Data (See section 6.3 on page 101.)

4 Loop Unrolling (See section 7.2 on page 110.)

5 Pointer Arithmetic in Loops (See section 7.6 on page 116.)

6 Explicit Load Instructions (See section 9.2 on page 146.)

7 Reuse of Dead Registers (See section 9.15 on page 165.)

8 ccNUMA Optimizations (See section 11.1 on page 179.)

9 Multithreading (See section 11.3 on page 190.)

10 Prefetch and Streaming Instructions (See section 5.5 on page 81.)

11 Memory and String Routines (See section 5.9 on page 92.)

12 Loop Iteration Boundaries (See section 4.3 on page 56.)

13 Floating-Point Scalar Conversions (See sections 9.16 on page 166.)
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1.6.1 AMD Instruction Set Enhancements

The AMD Family 10h processor has been enhanced with the following new instructions:

• LZCNT, POPCNT—Advanced Bit Manipulation (ABM) instructions operate on general purpose 
registers.

• MOVNTSS, MOVNTSD, EXTRQ, INSERTQ—SSE4a instructions operate on XMM registers.

Support for these instructions is implementation dependent. See the CPUID Specification, order# 
25481, and the AMD64 Architecture Programmer’s Manual Updates Application Note, order# 33633, 
for additional information.

1.6.2 Floating-Point Improvements 

Previous AMD64 processors supported 64-bit floating-point execution units. The new 
AMD Family 10h processors add support for 128-bit floating-point execution units. As a result, the 
throughput of both single-precision and double-precision floating-point SSEx vector operations has 
improved by 2X over the previous generation of AMD processors.

Performance Guidelines for Vectorized Floating-Point SSEx Code

While 128-bit floating-point execution units imply better performance for vectorized floating-point 
SSEx code, it is necessary to adhere to several performance guidelines to realize their full potential:

• Avoid writing less than 128 bits of an XMM register when using certain initializing and non-
initializing operations.

A floating-point XMM register is viewed as one 128-bit register internally by the processor. 
Writing to a 64-bit half of a 128-bit XMM register results in a merge dependency on the other 64-
bit half. Therefore the following replacements are advised on AMD Family 10h processors:

– Replace MOVLPX/MOVHPX reg, mem pairs with MOVUPX reg, mem, irrespective of the 
alignment of the data. On AMD Family 10h processors, the MOVUPX instruction is just as 
efficient as MOVAPX for when data is aligned. Hence it is advised to use MOVUPX 
regardless of the alignment.

– Replace MOVLPD reg, mem with MOVSD reg, mem.

– Replace MOVSD reg, reg with MOVAPD reg, reg.

However, there are also several instructions that initialize the lower 64 or 32 bits of an XMM 
register and zero out the upper 64 or 96 bits and, thus, do not suffer from such merge 
dependencies. Consider, for example, the following instructions:

MOVSD xmm, [mem64]
MOVSS xmm, [mem32]

When writing to a register during the course of a non-initializing operation on the register, there is 
usually no additional performance loss due to partial register reads and writes. This is because in 
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the typical case, the partial register that is being written is also a source to the operation. For 
example, addsd xmm1, xmm2 does not suffer from merge dependencies.

There are often cases of non-initializing operations on a register, in which the partial register 
being written by the operation is not a source for the operation. In these cases also, it is preferable 
to avoid partial register writes. If it is not possible to avoid writing to a part of that register, then 
you should schedule any prior operation on any part of that register well ahead of the point where 
the partial write occurs.

Examples of non-initializing instructions that result in merge dependencies are SQRTSD, 
CVTPI2PS, CVTSI2SD, CVTSS2SD, MOVLHPS, MOVHLPS, UNPCKLPD and 
PUNPCKLQDQ.

For additional details on this optimization see “Partial-Register Writes” on page 60, “Explicit 
Load Instructions” on page 146, “Unaligned and Aligned Data Access” on page 147, and “Reuse 
of Dead Registers” on page 165.

• In the event of a load following a previous store to a given address for aligned floating-point 
vector data, use 128-bit stores and 128-bit loads instead of MOVLPX/MOVHPX pairs for storing 
and loading the data. This allows store-to-load forwarding to occur. Using MOVLPX/MOVHPX 
pairs is still recommended for storing unaligned floating-point vector data. Additional details on 
these restrictions can be obtained in “Store-to-Load Forwarding Restrictions” on page 74.

• To make use of the doubled throughput of both single-precision and double-precision floating-
point SSEx vector operations, a compiler or an application developer can consider either 
increasing the unrolling factor of loops that include such vector operations and/or performing 
other code transformations to keep the floating-point pipeline fully utilized.

1.6.3 Load-Execute Instructions for Unaligned Data

Use load-execute instructions instead of discrete load and execute instructions when performing SSE 
floating-point/SSE integer/x87 computations on floating-point source operands. This is 
recommended regardless of the alignment of packed data on AMD Family 10h processors. (The use 
of load-execute instructions under these circumstances was only recommended for aligned packed 
data on the previous AMD64 processors.) This replacement is only possible if the misaligned 
exception mask (MM) is set. See the AMD CPUID Specification, order# 25481, and the AMD64 
Architecture Programmer’s Manual Updates Application Note, order# 33633,for additional 
information on SSE misaligned access support. This optimization can be especially useful in 
vectorized SSEx loops and may eliminate the need for loop peeling due to nonalignment. (See “Load-
Execute Instructions for Floating-Point or Integer Operands” on page 53.)

1.6.4 Instruction Fetching Improvements

The fetch window has changed from 16 bytes on previous AMD64 processors to 32 bytes on  
AMD Family 10h processors. The 32-byte fetch, when combined with the 128-bit floating-point 
execution unit, allows the processor to sustain a fetch/dispatch/retire sequence of three large 
instructions per cycle.
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Assembly language programmers can now group large instructions together without worrying about 
an instruction possibly spanning the fetch window. In this regard, it is also advisable to align hot loops 
to 32 bytes instead of 16 bytes, especially in the case of loops for large SSE instructions.

For additional details, readers can refer to “Loop Iteration Boundaries” on page 56.

1.6.5 Instruction Decode and Floating-Point Pipe Improvements

Several integer and floating-point instructions have improved latencies and decode types on 
AMD Family 10h processors. Furthermore, the FPU pipes utilized by several floating-point 
instructions have changed. These changes can influence instruction choice and scheduling for 
compilers and hand-written assembly code. A comprehensive listing of all AMD64 instructions with 
their decode types, decode type changes from previous families of AMD processors, and execution 
latencies and FPU pipe utilization data are available in Appendix C.

1.6.6 Notable Performance Improvements

Several enhancements to the AMD64 architecture have resulted in significant performance 
improvements in AMD Family 10h processors, including:

• Improved performance of shuffle instructions

• Improved data transfer between floating-point registers and general purpose registers

• Improved floating-point register to floating-point register moves

• Optimization of repeated move instructions

• More efficient PUSH/POP stack operations

• 1-Gbyte paging

These are discussed in the following paragraphs and elsewhere in this document.

Improved Bandwidth Decode Type for Shuffle Instructions

The floating-point logic in AMD Family 10h processors uses three separate execution positions or 
pipes called FADD, FMUL and FSTORE. This is illustrated in Figure 8 on page 222 in Appendix A. 
Current AMD Family 10h processors support two SSE logical/shuffle units, one in the FMUL pipe 
and another in the FADD pipe, while previous AMD64 processors have only one SSE logical/shuffle 
unit in the FMUL pipe. As a result, the SSE/SSE2 shuffle instructions can be processed at twice the 
previous bandwidth on AMD Family 10h processors. Furthermore, the PSHUFD and SHUFPx 
shuffle instructions are now DirectPath instructions instead of VectorPath instructions on 
AMD Family 10h processors and take advantage of the 128-bit floating point execution units. Hence, 
these instructions get a further 2X boost in bandwidth, resulting in an overall improvement of 4X in 
bandwidth compared to the previous generation of AMD processors.

It’s more efficient to use SHUFPx and PSHUFD instructions over combinations of more than one 
MOVLHPS/MOVHLPS/UNPCKx/PUNPCKx instructions to do shuffle operations. 
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Data Transfer Between Floating-Point Registers and General Purpose Integer 
Registers

We recommend using the MOVD instruction when moving data from an MMX™ or XMM register to 
a GPR. However, when moving data from a GPR to an MMX or XMM floating-point register, it is 
advisable to use separate store and load instructions to move the data from the source register to a 
temporary location in memory and then from memory into the destination register, taking the memory 
latency into account when scheduling them.

The performance of the CVTSS2SI, CVTTSS2SI, CVTSD2SI, CVTTSD2SI instructions that are 
used to convert floating-point data to integer data has improved. For additional details see “Floating-
Point-to-Integer Conversion” on page 165.

Floating-Point Register-to-Register Moves 

On previous AMD processors, floating-point register-to-register moves could only go through the 
FADD and FMUL pipes. On AMD Family 10h processors, floating-point register-to-register moves 
can also go through the FSTORE pipe, thereby improving overall throughput. 

Repeated String Instructions

REP instructions have been optimized on AMD Family 10h processors. See “Repeated String 
Instructions” on page 126 for details on how to take advantage of these optimizations.

Faster PUSH/POP with the Sideband Stack Optimizer

AMD Family 10h processors have added a sideband stack optimizer (SSO). This special circuitry 
removes the dependency that arises during chains of PUSH and POP operations on the rSP register 
and, thereby, improves the efficiency of the PUSH and POP instructions.

The SSO also improves the performance of CALL and RET instructions, among others. (See “Stack 
Operations” on page 59.)
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1.6.7 Large Page Support

AMD Family 10h processors now have better large page support, having incorporated new 1GB 
paging and 2MB and 4KB paging improvements.

The L1 data TLB and L2 data TLB now support 1GB pages, a benefit to applications making large 
data-set random accesses.

The L1 instruction TLB, L1 data TLB and L2 data TLB have increased the number of entries for 
2MB pages. This improves the performance of software that uses 2MB code or data or code mixed 
with data virtual pages.

The L1 data TLB has also increased the number of entries for 4KB pages.

For additional details on the actual number of TLB entries, see section A.10, “Translation-Lookaside 
Buffer” on page 225.

For more information on 1-Gbyte pages see “Using 1-Gbyte Virtual Memory Pages” on page 96.

1.6.8 AMD Virtualization™ Optimizations

Chapter 12, “Optimizing Secure Virtual Machines” covers optimizations that minimize the 
performance overhead imposed by the virtualization of a guest in AMD Virtualization™ technology 
(AMD-V™). Topics include:

• The advantages of using nested paging instead of shadow paging

• Guest page attribute table (PAT) configuration

• State swapping

• Economizing Interceptions

• Nested page and shadow page size

• TLB control and flushing in shadow pages

• Instruction Fetch for Intercepted (REP) INS instructions

• Sharing IOIO and MSR protection masks

• CPUID

• Time resources

• Paravirtualized resources
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Chapter 2 C and C++ Source-Level 
Optimizations

Although C and C++ compilers can often produce very efficient object code from naive source code, 
careful attention to coding details can lead to even better object code and therefore to improved 
performance. Many optimizations take advantage of the underlying mechanisms used by C and C++ 
compilers to translate source code into sequences of AMD64 instructions. This chapter includes 
guidelines for writing C and C++ source code that yields an approximation to the most highly 
efficient optimization.

This chapter covers the following topics:

Topic Page

Declarations of Floating-Point Values 14

Using Arrays and Pointers 14

Unrolling Small Loops 17

Arrange Boolean Operands for Quick Expression Evaluation 18

Expression Order in Compound Branch Conditions 19

Long Logical Expressions in If Statements 20

Dynamic Memory Allocation Consideration 21

Unnecessary Store-to-Load Dependencies 21

Matching Store and Load Size 23

Use of Function Prototypes 25

Use of const Type Qualifier 26

Generic Loop Hoisting 26

Local Static Functions 28

Explicit Parallelism in Code 29

Extracting Common Subexpressions 30

Sorting and Padding C and C++ Structures 31

Replacing Integer Division with Multiplication 32

Frequently Dereferenced Pointer Arguments 33

32-Bit Integral Data Types 34

Sign of Integer Operands 35

Accelerating Floating-Point Division and Square Root 36

Speeding Up Branches Based on Comparisons Between Floats 38

Improving Performance in Linux® Libraries 40

Aligning Matrices 41
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2.1 Declarations of Floating-Point Values

Optimization

When working with single precision (float) values:

• Use the f or F suffix (for example, 3.14f) to specify a constant value of type float.

• Use function prototypes for all functions that accept arguments of type float.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

C and C++ compilers treat floating-point constants and arguments as double precision (double) 
unless you specify otherwise. However, single precision floating-point values occupy half the 
memory space as double precision values and can often provide the precision necessary for a given 
computational problem.

This optimization also results in more efficient use of the XMM Streaming SIMD registers: four 
single precision values can be packed into a single XMM register, compared to two double precision 
values.

2.2 Using Arrays and Pointers

Optimization

Use array notation instead of pointer notation when working with arrays.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

C allows the use of either the array operator ([]) or pointers to access the elements of an array. 
However, the use of pointers in C makes work difficult for optimizers in C compilers. Without 
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detailed and aggressive pointer analysis, the compiler has to assume that writes through a pointer can 
write to any location in memory, including storage allocated to other variables. (For example, *p and 
*q can refer to the same memory location, while x[0] and x[2] cannot.) Pointers make it difficult for 
compilers to detect the presence or absence of aliasing—with possible ambiguous access to a block of 
memory. The compiler sometimes must assume aliasing in the presence of pointers, which limits the 
opportunities for optimization. Array notation makes the task of the optimizer easier by reducing 
possible aliasing.

Example

Avoid code, such as the following, which uses pointer notation:

typedef struct {
   float x, y, z, w;
} VERTEX;

typedef struct {
   float m[4][4];
} MATRIX;

void XForm(float *res, const float *v, const float *m, int numverts) {

   float dp;
   int i;
   const VERTEX* vv = (VERTEX *)v;

   for (i = 0; i < numverts; i++) {
      dp  = vv->x * *m++;
      dp += vv->y * *m++;
      dp += vv->z * *m++;
      dp += vv->w * *m++;

      *res++ = dp;  // Write transformed x.
     

 dp  = vv->x * *m++;
      dp += vv->y * *m++;
      dp += vv->z * *m++;
      dp += vv->w * *m++;

      *res++ = dp;  // Write transformed y.

      dp  = vv->x * *m++;
      dp += vv->y * *m++;
      dp += vv->z * *m++;
      dp += vv->w * *m++;

      *res++ = dp;  // Write transformed z.

      dp  = vv->x * *m++;
      dp += vv->y * *m++;
      dp += vv->z * *m++;
      dp += vv->w * *m++;
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      *res++ = dp;  // Write transformed w.

      ++vv;     // Next input vertex
      m -= 16;  // Reset to start of transform matrix.
   }
}

Instead, use the equivalent array notation:

typedef struct {
    float x, y, z, w;
} VERTEX;

typedef struct {
    float m[4][4];
} MATRIX;

void XForm(float *res, const float *v, const float *m, int numverts) {
    int i;
    const VERTEX* vv = (VERTEX *)v;
    const MATRIX* mm = (MATRIX *)m;
    VERTEX* rr = (VERTEX *)res;
    for (i = 0; i < numverts; i++) {
        rr[i].x = vv[i].x * mm->m[0][0] + vv[i].y * mm->m[0][1] +
            vv[i].z * mm->m[0][2] + vv[i].w * mm->m[0][3];
        rr[i].y = vv[i].x * mm->m[1][0] + vv[i].y * mm->m[1][1] +
            vv[i].z * mm->m[1][2] + vv[i].w * mm->m[1][3];
        rr[i].z = vv[i].x * mm->m[2][0] + vv[i].y * mm->m[2][1] +
            vv[i].z * mm->m[2][2] + vv[i].w * mm->m[2][3];
        rr[i].w = vv[i].x * mm->m[3][0] + vv[i].y * mm->m[3][1] +
            vv[i].z * mm->m[3][2] + vv[i].w * mm->m[3][3];
    }
}

Additional Considerations

Source-code transformations interact with a compiler’s code generator, making it difficult to control 
the generated machine code from the source level. It is even possible that source-code transformations 
aimed at improving performance may conflict with compiler optimizations. Depending on the 
compiler and the specific source code, it is possible for pointer-style code to compile into machine 
code that is faster than that generated from equivalent array-style code. Compare the performance of 
your code after implementing a source-code transformation with the performance of the original code 
to be sure that there is an improvement.

Some compilers provide proprietary declaration keywords that further allow the compiler to reduce 
possible aliasing. See Compiler Usage Guidelines for 64-Bit Operating Systems on AMD64 Platforms 
Application Note, order# 32035, for details.
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2.3 Unrolling Small Loops

Optimization

Completely unroll loops that have a small fixed loop count and a small loop body.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Many compilers do not aggressively unroll loops. Manually unrolling loops can benefit performance, 
especially if the loop body is small, making the loop overhead significant.

Unrolling loops increases the code size, which may decrease performance in rare cases.

Example

Avoid a small loop like this:

// 3D-transform: Multiply vector V by 4x4 transform matrix M.
for (i = 0; i < 4; i++) {
   r[i] = 0;
   for (j = 0; j < 4; j++) {
      r[i] += m[j][i] * v[j];
   }
}

Instead, replace it with its completely unrolled equivalent, as shown here:

r[0] = m[0][0] * v[0] + m[1][0] * v[1] + m[2][0] * v[2] + m[3][0] * v[3];
r[1] = m[0][1] * v[0] + m[1][1] * v[1] + m[2][1] * v[2] + m[3][1] * v[3];
r[2] = m[0][2] * v[0] + m[1][2] * v[1] + m[2][2] * v[2] + m[3][2] * v[3];
r[3] = m[0][3] * v[0] + m[1][3] * v[1] + m[2][3] * v[2] + m[3][3] * v[3];

Related Information

For information on loop unrolling at the assembly-language level, see “Loop Unrolling” on page 110.
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2.4 Arrange Boolean Operands for Quick Expression 
Evaluation

Optimization

In expressions that use the logical AND (&&) or logical OR (||) operator, arrange the operands for 
quick evaluation of the expression:

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

C and C++ compilers guarantee short-circuit evaluation of the boolean operators && and ||. In an 
expression that uses &&, the first operand to evaluate to false terminates the evaluation; subsequent 
operands are not evaluated. In an expression that uses ||, the first operand to evaluate to true 
terminates the evaluation.

When used to control program flow, expressions involving && and || are translated into a series of 
conditional branches. This optimization minimizes the total number of conditions evaluated and 
branches executed.

Example 1

In the following code, the operands of && are not arranged for quick expression evaluation because the 
first operand is not the condition case most likely to be false (it is far less likely for an animal name to 
begin with a ‘y’ than for it to have fewer than four characters):

char animalname[30];
char *p;

p = animalname;

if ((strlen(p) > 4) && (*p == 'y')) { ... }

Because the odds that the animal name begins with a ‘y’ are comparatively low, it is better to put that 
operand first:

If the expression uses this 
operator

Then arrange the operands from left to right in decreasing 
probability of being

&& (logical AND) False

|| (logical OR) True
18 C and C++ Source-Level Optimizations Chapter 2



Software Optimization Guide for AMD Family 10h Processors40546 Rev. 3.08 October 2008
if ((*p == 'y') && (strlen(p) > 4)) { ... }

Example 2

In the following code (assuming a uniform random distribution of i), the operands of || are not 
arranged for quick expression evaluation because the first operand is not the condition most likely to 
be true:

unsigned int i;

if ((i < 4) || (i & 1)) { ... }

Because it is more likely for the least-significant bit of i to be 1, it is better to put that operand first:

if ((i & 1) || (i < 4)) { ... }

2.5 Expression Order in Compound Branch 
Conditions

Optimization

In the most active areas of a program, order the expressions in compound branch conditions to take 
advantage of short circuiting of compound conditional expressions.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Branch conditions in C programs often consist of compound conditions consisting of multiple 
boolean expressions joined by the logical AND (&&) or logical OR (||) operators. C compilers 
guarantee short-circuit evaluation of these operators. In a compound logical OR expression, the first 
operand to evaluate to true terminates the evaluation, and subsequent operands are not evaluated at all. 
Similarly, in a logical AND expression, the first operand to evaluate to false terminates the evaluation. 
Hence, it is not always possible to swap the operands of logical OR and logical AND. This is 
especially true when the evaluation of one of the operands causes a side effect. In most cases the order 
of operands in such expressions is irrelevant.

When used to control conditional branches, expressions involving logical OR or logical AND are 
translated into a series of conditional branches. The ordering of the conditional branches is a function 
of the ordering of the expressions in the compound condition and can have a significant impact on 
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performance. It is impossible to give an easy, closed-form formula on how to order the conditions. 
Overall performance is a function of the following factors:

• Probability of a branch misprediction for each of the branches generated

• Additional latency incurred due to a branch misprediction

• Cost of evaluating the conditions controlling each of the branches generated

• Amount of parallelism that can be extracted in evaluating the branch conditions

• Data stream consumed by an application (mostly due to the dependence of misprediction 
probabilities on the nature of the incoming data in data-dependent branches)

It is recommended to experiment with the ordering of expressions in compound branch conditions in 
the most active areas of a program (“hot spots,” consuming a great amount of execution time). Such 
hot spots can be found through the use of profiling by feeding a typical data stream to the program 
while doing the experiments.

2.6 Long Logical Expressions in If Statements

Optimization

In if statements, avoid long logical expressions that can generate dense conditional branches that 
violate the guideline described in “Branch Alignment and Density” on page 99. When long logical 
expressions are unavoidable, try to arrange them so that most of the implicit branches are not be 
taken.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

High branch density can lead to some branches not being identified by the branch predictor (as 
described in section “Branch Alignment and Density” on page 99). If these unpredicted branches are 
not taken, they will not cause a misprediction penalty.

Preferred for Data that Falls Mostly Within the Range
if (a <= max && a >= min && b <= max && b >= min)

If most of the data falls within the range, the branches will not be taken, so the above code is 
preferred. Otherwise, the following code is preferred.
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Preferred for Data that Does Not Fall Mostly Within the Range
if (a > max || a < min || b > max || b < min)

2.7 Dynamic Memory Allocation Consideration

Optimization

Where this aligned pointer cannot be guaranteed, use the technique shown in the following code to 
make the pointer 16-byte aligned, if needed. 

Application

This optimization applies to:

• 32-bit software

Examples

Dynamic memory allocation—accomplished through the use of the malloc library function in C—
should always return a pointer that is suitably aligned for the largest base type (16-byte alignment). 
However, this may not always be the case. In this example, after memory allocation, use np instead of 
p to access the data. The pointer p is still needed in order to deallocate the storage later.

double *p;
double *np;

p = (double *)malloc(sizeof(double) * number_of_doubles + 15);
np = (double *)((((ptrdiff_t)(p)) + 15L) & (-16L));

2.8 Unnecessary Store-to-Load Dependencies

Optimization

Avoid store-to-load dependencies.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

A store-to-load dependency exists when data is stored to memory, only to be read back shortly 
thereafter. For details, see “Store-to-Load Forwarding Restrictions” on page 74. The 
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AMD Family 10h processor contains hardware to accelerate such store-to-load dependencies, 
allowing the load to obtain the store data before it has been written to memory. However, avoiding 
such dependencies and keeping the data in an internal register results in faster code. 

It is especially important to avoid store-to-load dependencies if they are part of a long dependency 
chain, as may occur in a recurrence computation. If the dependency occurs while operating on arrays, 
many compilers are unable to optimize the code in a way that avoids the store-to-load dependency. In 
some instances the language definition may prohibit the compiler from using code transformations 
that would remove the store-to-load dependency. Therefore, it is recommended that the programmer 
remove the dependency manually, for example, by introducing a temporary variable that can be kept 
in a register. This can result in a significant performance increase.

Examples

Avoid

double x[VECLEN], y[VECLEN], z[VECLEN];
unsigned int k;

for (k = 1; k < VECLEN; k++) {
   x[k] = x[k-1] + y[k];
}

for (k = 1; k < VECLEN; k++) {
   x[k] = z[k] * (y[k] - x[k-1]);
}

Preferred

double x[VECLEN], y[VECLEN], z[VECLEN];
unsigned int k;
double t;

t = x[0];
for (k = 1; k < VECLEN; k++) {
   t = t + y[k];
   x[k] = t;
}

t = x[0];
for (k = 1; k < VECLEN; k++) {
   t = z[k] * (y[k] - t);
   x[k] = t;
}
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2.9 Matching Store and Load Size

Optimization

Align memory accesses and match addresses and sizes of stores and dependent loads.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

The AMD Family 10h processor contains a load-store buffer to speed up the forwarding of store data 
to dependent loads. However, this store-to-load forwarding (STLF) inside the load-store buffer 
occurs, in general, only when the addresses and sizes of the store and the dependent load match, and 
when both memory accesses are aligned. For details, see “Store-to-Load Forwarding Restrictions” on 
page 74.

It is impossible to control load and store activity at the source level in such a way as to avoid all cases 
that violate restrictions placed on store-to-load-forwarding. In some instances it is possible to spot 
such cases in the source code. Size mismatches can easily occur when different-size data items are 
joined in a union. Address mismatches could be the result of pointer manipulation.

The following examples show a situation involving a union of different-size data items. The examples 
show a user-defined unsigned 16.16 fixed-point type and two operations defined on this type. 
Function fixed_add adds two fixed-point numbers, and function fixed_int extracts the integer 
portion of a fixed-point number. Listing  shows an inappropriate implementation of fixed_int, 
which, when used on the result of fixed_add, causes misalignment, address mismatch, or size 
mismatch between memory operands, such that no store-to-load forwarding in the load-store buffer 
takes place. The following examples shows how to properly implement fixed_int in order to allow 
store-to-load forwarding in the load-store buffer.

Examples

Avoid

typedef union {
   unsigned int whole;
   struct {
      unsigned short frac; /* Lower 16 bits are fraction. */
      unsigned short intg; /* Upper 16 bits are integer.  */
   } parts;
} FIXED_U_16_16;
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__inline FIXED_U_16_16 fixed_add(FIXED_U_16_16 x, FIXED_U_16_16 y) {
     FIXED_U_16_16 z;
     z.whole = x.whole + y.whole;
     return (z);
}

__inline unsigned int fixed_int(FIXED_U_16_16 x) {
     return((unsigned int)(x.parts.intg));
}
...
FIXED_U_16_16 y, z;
unsigned int q;
...
label1:
y = fixed_add (y, z);
q = fixed_int (y);

label2:
...

The object code generated for the source code between label1 and label2 typically follows one of 
these two variants:

; Variant 1
mov edx, DWORD PTR [z]
mov eax, DWORD PTR [y]     ; -+
add eax, edx               ;  |
mov DWORD PTR [y], eax     ;  |
mov EAX, DWORD PTR [y+2]   ; <+ Address mismatch--no forwarding in LSU
and EAX, 0FFFFh
mov DWORD PTR [q], eax

; Variant 2
mov   edx, DWORD PTR [z]
mov   eax, DWORD PTR [y]    ; -+
add   eax, edx              ;  |
mov   DWORD PTR [y], eax    ;  |
movzx eax, WORD PTR [y+2]   ; <+ Size and address mismatch--no forwarding in LSU
mov   DWORD PTR [q], eax

Some more sophisticated compilers may generate optimal machine code even for the previous 
example. These compilers provide various optional levels and types of optimizations that are 
controlled by compiler program flags. When compiled at a moderate level of optimization, such 
compilers may generate perfectly acceptable code from C++ code such as that listed above. For more 
information, see Compiler Usage Guidelines for 64-Bit Operating Systems on AMD64 Platforms 
Application Note, order# 32035.

Preferred

typedef union {
   unsigned int whole;
   struct {
      unsigned short frac; /* Lower 16 bits are fraction. */
      unsigned short intg; /* Upper 16 bits are integer.  */
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   } parts;
} FIXED_U_16_16;

__inline FIXED_U_16_16 fixed_add(FIXED_U_16_16 x, FIXED_U_16_16 y) {
   FIXED_U_16_16 z;
   z.whole = x.whole + y.whole; 
   return(z);
}

__inline unsigned int fixed_int(FIXED_U_16_16 x) {
   return (x.whole >> 16);
}
...
FIXED_U_16_16 y, z;
unsigned int q;
...
label1:
y = fixed_add (y, z);
q = fixed_int (y);

label2:
...

The object code generated for the source code between label1 and label2 typically looks like this:

mov edx, DWORD PTR [z]
mov eax, DWORD PTR [y]
add eax, edx
mov DWORD PTR [y], eax   ; -+
mov eax, DWORD PTR [y]   ; <+ Aligned (size/address match)--forwarding in LSU
shr eax, 16
mov DWORD PTR [q], eax

2.10 Use of Function Prototypes

Optimization

In general, use prototypes for all functions.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Prototypes can convey additional information to the compiler that might enable more aggressive 
optimizations.
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2.11 Use of const Type Qualifier

Optimization

For objects whose values will not be changed, use the const type qualifier.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Using the const type qualifier makes code more robust and may enable the compiler to generate 
higher-performance code. For example, under the C standard, a compiler is not required to allocate 
storage for an object that is declared const, if its address is never used. 

2.12 Generic Loop Hoisting

Optimization

To improve the performance of inner loops, reduce redundant constant calculations (that is, loop-
invariant calculations). This idea can also be extended to invariant control structures.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale and Examples

The following example demonstrates the use of an invariant condition in an if statement in a for 
loop. The second listing shows the preferred optimization.

Avoid

for (i...) {
   if (CONSTANT0) {
      DoWork0(i);   // Does not affect CONSTANT0.
   }
   else {
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      DoWork1(i);   // Does not affect CONSTANT0.
   }
}

Preferred

if (CONSTANT0) {
   for (i...) {
      DoWork0(i);
   }
}
else {
   for (i...) {
      DoWork1(i);
   }
}

The preferred optimization in the preceding example tightens the inner loops by avoiding repetitious 
evaluation of a known if control structure. Although the branch would be easily predicted, the extra 
instructions and decode limitations imposed by branching are eliminated.

To generalize the preceding example further for multiple-constant control code, more work may be 
needed to create the proper outer loop. Enumeration of the constant cases reduces this to a simple 
switch statement.

Avoid

for (i...) {
   if (CONSTANT0) {
      DoWork0(i);   // Does not affect CONSTANT0 or CONSTANT1.
   }
   else {
      DoWork1(i);   // Does not affect CONSTANT0 or CONSTANT1.
   }

   if (CONSTANT1) {
      DoWork2(i);   // Does not affect CONSTANT0 or CONSTANT1.
   }
   else {
      DoWork3(i);   // Does not affect CONSTANT0 or CONSTANT1.
   }
}

Transform the loop in the preceding example (by using the switch statement) into:

Preferred

#define combine(c1, c2) (((c1) << 1) + (c2))
switch (combine(CONSTANT0 != 0, CONSTANT1 != 0)) {
   case combine(0, 0):
      for(i...) {
         DoWork0(i);
         DoWork2(i);
      }
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      break;
   case combine(1, 0):
      for(i...) {
         DoWork1(i);
         DoWork2(i);
      }
      break;
   case combine(0, 1):
      for(i...) {
         DoWork0(i);
         DoWork3(i);
      }
      break;
   case combine( 1, 1 ):
      for(i...) {
         DoWork1(i);
         DoWork3(i);
      }
      break;
   default:
      break;
}

Some introductory code is necessary to generate all the combinations for the switch constant and the 
total amount of code has doubled. However, the inner loops are now free of if statements. In ideal 
cases where the DoWorkn functions are inlined, the successive functions have greater overlap, leading 
to greater parallelism than possible in the presence of intervening if statements.

The same idea can be applied to constant switch statements or to combinations of switch statements 
and if statements inside of for loops. The method used to combine the input constants becomes 
more complicated but benefits performance.

However, the number of inner loops can also substantially increase. If the number of inner loops is 
prohibitively high, then only the most common cases must be dealt with directly, and the remaining 
cases can fall back to the old code in the default clause of the switch statement. This situation is 
typical of run-time generated code. While the performance of run-time generated code can be 
improved by means similar to those presented here, it is much harder to maintain and developers must 
do their own code-generation optimizations without the help of an available compiler.

2.13 Local Static Functions

Optimization

Declare as static functions that are not used outside the file where they are defined.

Application

This optimization applies to:

• 32-bit software
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• 64-bit software

Rationale

Declaring a function as static forces internal linkage. Functions that are not declared as static 
default to external linkage, which may inhibit certain optimizations—for example, aggressive 
inlining—with some compilers. In C++, programmers can declare functions inside an anonymous 
namespace to achieve the same local scoping effect.

2.14 Explicit Parallelism in Code

Optimization

Where possible, break long dependency chains into several independent chains that can be executed 
in parallel to take advantage of the execution units in each pipeline. 

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

It is especially important to break long x87, SSE, or SSE2 dependency chains into smaller executing 
units in floating-point code, because of the longer latency of floating-point operations. Most 
languages (including ANSI C) are bound by the guarantee that floating-point expressions can not be 
reordered; compilers cannot usually perform such optimizations unless they offer a switch to allow 
noncompliant reordering of floating-point expressions according to algebraic rules.

Reordered code that is algebraically identical to the original code does not necessarily produce 
identical computational results due to the lack of associativity of floating-point operations. There are 
well-known numerical considerations in applying these optimizations (consult a book on numerical 
analysis). In some cases, reordered floating-point code may lead to unexpected results, but in the vast 
majority of cases, the final result differs only in the least-significant bits.

Examples

Avoid

double a[100], sum;
int i;

sum = 0.0f;
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for (i = 0; i < 100; i++) {
   sum += a[i];
}

Preferred

double a[100], sum1, sum2, sum3, sum4, sum;
int i;

sum1 = 0.0;
sum2 = 0.0;
sum3 = 0.0;
sum4 = 0.0;
for (i = 0; i < 100; i + 4) {
   sum1 += a[i];
   sum2 += a[i+1];
   sum3 += a[i+2];
   sum4 += a[i+3];
}
sum = (sum4 + sum3) + (sum1 + sum2);

Notice that the four-way unrolling is chosen to exploit the four-stage fully pipelined floating-point 
adder. Each stage of the floating-point adder is occupied on every clock cycle, ensuring maximum 
sustained utilization.

2.15 Extracting Common Subexpressions

Optimization

Manually extract common subexpressions from floating-point expressions, where C compilers may 
be unable to extract them due to the rules against reordering of floating-point expressions in the ANSI 
standard. 

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Specifically, the compiler cannot rearrange the computation according to algebraic equivalencies 
before extracting common subexpressions. Rearranging the expression may give different 
computational results due to the lack of associativity of floating-point operations, but the results 
usually differ in only the least-significant bits. However, since errors in the least significant bits can 
be magnified by later operations to the extent that they completely invalidate the calculation, the 
programmer should proceed with caution when implementing this sort of computation.
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Examples

Avoid

double a, b, c, d, e, f;

e = b * c / d;
f = b / d * a;

Preferred

double a, b, c, d, e, f, t;

t = b / d;
e = c * t;
f = a * t;

Avoid

double a, b, c, e, f;

e = a / c;
f = b / c;

Preferred

double a, b, c, e, f, t;

t = 1 / c;
e = a * t
f = b * t;

2.16 Sorting and Padding C and C++ Structures

Optimization

Sort and pad C and C++ structures to achieve natural alignment.

Application

This optimization applies to:

• 32-bit software

• 64-bit software
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Rationale

In order to achieve better alignment for structures, many compilers have options that allow padding of 
structures to make their sizes multiples of words, doublewords, or quadwords. In addition, to improve 
the alignment of structure members, some compilers may allocate structure elements in an order that 
differs from the order in which they are declared. Unfortunately, some compilers may not offer any of 
these features, or their implementations might not work properly in all situations.

By sorting and padding structures at the source-code level, if the first member of a structure is 
naturally aligned, then all other members are naturally aligned as well. This allows, for example, 
arrays of structures to be perfectly aligned.

Sorting and Padding C and C++ Structures

To sort and pad a C or C++ structure, follow these steps:

1. Sort the structure members according to their type sizes, declaring members with larger type sizes 
ahead of members with smaller type sizes.

2. Pad the structure so the size of the structure is a multiple of the largest member’s type size.

Examples

Avoid structure declarations in which the members are not declared in order of their type sizes and the 
size of the structure is not a multiple of the size of the largest member’s type:

struct {
   char a[5];   \\ Smallest type size (1 byte * 5)
   long k;      \\ 4 bytes in this example
   double x;    \\ Largest type size (8 bytes)
} baz;

Instead, declare the members according to their type sizes (largest to smallest) and add padding to 
ensure that the size of the structure is a multiple of the largest member’s type size:

struct {
   double x;      \\ Largest type size (8 bytes)
   long k;        \\ 4 bytes in this example
   char a[5];     \\ Smallest type size (1 byte * 5)
   char pad[7];   \\ Make structure size a multiple of 8.
} baz;

2.17 Replacing Integer Division with Multiplication

Optimization

Replace integer division with multiplication when there are multiple divisions in an expression. (This 
is possible only if no overflow will occur during the computation of the product. The possibility of an 
overflow can be determined by considering the possible ranges of the divisors.)
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Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Integer division is the slowest of all integer arithmetic operations.

Examples

Avoid code that uses two integer divisions:

int i, j, k, m;

m = i / j / k;

Instead, replace one of the integer divisions with the appropriate multiplication:

m = i / (j * k);

2.18 Frequently Dereferenced Pointer Arguments

Optimization

Avoid dereferenced pointer arguments inside a function. 

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Because the compiler has no knowledge of aliasing between pointers, such dereferencing cannot be 
“optimized away.” Since data may not be maintained in registers, memory traffic can significantly 
increase.

Many compilers have an “assume no aliasing” optimization switch. This allows the compiler to 
assume that two different pointers always have disjoint contents and does not require copying of 
pointer arguments to local variables. If your compiler does not have this type of optimization, then 
copy the data referenced by the pointer arguments to local variables at the start of the function and if 
necessary copy them back at the end of the function. (Some compilers also provide keywords to 
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provide the same aliasing information to the compiler. For details, see Compiler Usage Guidelines for 
64-Bit Operating Systems on AMD64 Platforms Application Note, order# 32035.)

Examples

Avoid

// Assumes pointers are different and q != r.
void isqrt(unsigned long a, unsigned long *q, unsigned long *r) {

   *q = a;
   if (a > 0) {
      while (*q > (*r = a / *q)) {
         *q = (*q + *r) >> 1;
      }
   }
   *r = a - *q * *q;
}

Preferred

// Assumes pointers are different and q != r.
void isqrt(unsigned long a, unsigned long *q, unsigned long *r) {

   unsigned long qq, rr;
   qq = a;
   if (a > 0) {
      while (qq > (rr = a / qq)) {
         qq = (qq + rr) >> 1;
      }
   }
   rr = a - qq * qq;
   *q = qq;
   *r = rr;
}

2.19 32-Bit Integral Data Types

Optimization

Use 32-bit integers instead of smaller sized integers (16-bit or 8-bit). 

Application

This optimization applies to:

• 32-bit software

• 64-bit software
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Rationale

When choosing between 32-bit, 16-bit and 8-bit data types in cases where memory footprint is not a 
concern, using 32-bit integer types in 32-bit software (32-bit or 64-bit integer types in 64-bit 
software) avoids possible register-merging false dependencies due to partial register writes. See 
section 4.8, "Partial-Register Writes" on page 60 for details.

2.20 Sign of Integer Operands

Optimization

Where there is a choice of using either a signed or an unsigned type, take into consideration that some 
operations are faster with unsigned types while others are faster for signed types.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

In many cases, the type of data to be stored in an integer variable determines whether a signed or an 
unsigned integer type is appropriate. For example, to record the weight of a person in pounds, no 
negative numbers are required, so an unsigned type is appropriate. However, recording temperatures 
in degrees Celsius may require both positive and negative numbers, so a signed type is needed. 

Integer-to-floating-point conversion using integers larger than 16 bits is faster with signed types, as 
the AMD64 architecture provides instructions for converting signed integers to floating-point but has 
no instructions for converting unsigned integers. In a typical case, a 32-bit integer is converted by a 
compiler to assembly as follows:

Examples

Avoid

double x;         ====>   mov [temp+4], 0
unsigned int i;           mov eax, i
                          mov [temp], eax
x = i;                    fild QWORD PTR [temp]
                          fstp QWORD PTR [x]

The preceding code is slow not only because of the number of instructions, but also because a size 
mismatch prevents store-to-load forwarding to the FILD instruction. Instead, use the following code:
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Preferred

double x;   ====>   fild DWORD PTR [i]
int i;              fstp QWORD PTR [x]

x = i;

Computing quotients and remainders in integer division by constants is faster when performed on 
unsigned types. The following typical case is the compiler output for a 32-bit integer divided by 4:

Avoid

int i;       ====>   mov eax, i
                     cdq
i = i / 4;           and edx, 3
                     add eax, edx
                     sar eax, 2
                     mov i, eax

Preferred

unsigned int i;   ====>   shr  i, 2

i = i / 4;

In summary, use unsigned types for:

• Division and remainders

• Loop counters

• Array indexing

Use signed types for:

• Integer-to-floating-point conversion

2.21 Accelerating Floating-Point Division and Square 
Root

Optimization

In applications employing the heavy use of single precision division and square root operations, in 
which the compiler maps floating-point operations to x87 instructions, the x87 FPU control word 
register precision control specification bits (PC) can be set to single precision to improve 
performance. (The processor defaults to double-extended precision. See AMD64 Architecture 
Programmer’s Manual, Volume 1, order# 24592, for details on the FPU control register.)
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Note: For hotspots that can be recoded in assembly language or SSE intrinsics, refer to section 
9.7“Using SIMD Instructions for Fast Square Roots and Divisions” on page 150 for coding 
suggestions.

Application

This optimization applies to any compiler that maps floating-point operations to x87 instructions. 
This is generally true only for 32-bit compilers.

Rationale

Division and square root have a much longer latency than other floating-point operations, even though 
the AMD Family 10h processors provide significant acceleration of these two operations. In some 
application programs, these operations occur so often that they seriously impair performance. If the 
code has hot spots that use single precision arithmetic only (that is, all computation involves data of 
type float) and for some reason cannot be ported to SSE, SSE2, or SSE3 code, the following 
technique may be used to improve performance.

The x87 FPU has a precision-control field as part of the FPU control word. The precision-control 
setting determines rounding precision of instruction results and affects the basic arithmetic 
operations, including division and the extraction of square root. Division and square root on the 
AMD Family 10h processors are only computed to the number of bits necessary for the currently 
selected precision. Setting precision control to single precision (versus the default of double-extended 
precision) lowers the latency of those operations.

For example, the 32-bit version Microsoft® Visual C environment provides functions to manipulate 
the FPU control word and, thus, the precision control bits. Note that these functions are not very fast, 
so insert changes of precision control where doing so creates little overhead, such as outside of 
computation-intensive loops. Otherwise, the overhead created by the function calls outweighs the 
benefit of reducing the latencies of divide and square-root operations. The following example shows 
how to set the precision control to single precision and later restore the original settings in the 
Microsoft Visual C environment.

Examples

/* Prototype for _controlfp_s function */
#include <float.h>

unsigned int cw, orig_cw;
int err;

/* Get original FP control word and save it. */

err = _controlfp_s(&orig_cw, 0, 0);
if ( err ) /* handle error here */;

/* Set precision in FPU control word to single precision.
   This reduces the latency of divide and square-root operations. */
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err = _controlfp_s(&cw, _PC_24, MCW_PC);
if ( err ) /* handle error here */;

/* Restore original FPU control word */

err = _controlfp_s(&cw, orig_cw, MCW_PC);
if ( err ) /* handle error here */;

2.22 Speeding Up Branches Based on Comparisons 
Between Floats

Optimization

Store operands of type float into a memory location and use integer comparison with the memory 
location to perform fast branches in cases where compilers do not support fast floating-point 
comparison instructions.

Application

This optimization applies to 32-bit software.

Rationale

Branches based on floating-point comparisons are often slow. AMD Family 10h processors support 
the FCOMI, FUCOMI, FCOMIP, and FUCOMIP instructions that allow implementation of fast 
branches based on comparisons between operands of type double or type float. However, some 
compilers do not support generating these instructions.

Some compilers only implement branches based on floating-point comparisons by using FCOM or 
FCOMP to compare the floating-point operands, followed by FSTSW AX in order to transfer the x87 
condition-code flags into EAX. The subsequent branch is then based on the contents of the EAX 
register. Although the AMD Family 10h processors have acceleration hardware to speed up the 
FSTSW instruction, this process is still fairly slow.

Branches Dependent on Integer Comparisons Are Fast

One alternative for branches dependent upon the outcome of the comparison of operands of type 
float is to store the operand(s) into a memory location and then perform an integer comparison with 
that memory location. Branches dependent on integer comparisons are very fast. The replacement 
code uses a load dependent on an immediately prior store. If the store is not doubleword-aligned, no 
store-to-load-forwarding takes place, and the branch is still slow. Also, if there is a lot of activity in 
the load-store queue, forwarding of the store data may be somewhat delayed, thus negating some of 
the advantages of using the replacement code. It is recommended that you experiment with the 
replacement code to test whether it actually provides a performance increase in the code at hand.
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The replacement code works well for comparisons against zero, including correct behavior when 
encountering a negative zero as allowed by the IEEE-754 standard. It also works well for comparing 
to positive constants. In that case, the user must first determine the integer representation of that 
floating-point constant. This can be accomplished with the following C code snippet:

float x;
scanf("%g", &x);
printf("%08X\n", (*((int *)(&x))));

The replacement code is IEEE-754 compliant for all classes of floating-point operands except NaNs.

Examples

Initial definitions:

#define FLOAT2INTCAST(f)  (*((int *)(&f)))
#define FLOAT2UINTCAST(f) (*((unsigned int *)(&f)))

Table 3. Comparisons Against Zero

Use this … Instead of this.

if (FLOAT2UINTCAST(f) > 0x80000000U) if (f < 0.0f)

if (FLOAT2INCAST(f) <= 0) if (f <= 0.0f)

if (FLOAT2INTCAST(f) > 0) if (f > 0.0f)

if (FLOAT2UINTCAST(f) <= 0x80000000U) if (f >= 0.0f)

Table 4. Comparisons Against Positive Constant

Use this … Instead of this.

if (FLOAT2INTCAST(f) < 0x40400000) if (f < 3.0f)

if (FLOAT2INTCAST(f) <= 0x40400000) if (f <= 3.0f)

if (FLOAT2INTCAST(f) > 0x40400000) if (f > 3.0f) 

if (FLOAT2INTCAST(f) >= 0x40400000) if (f >= 3.0f)

Table 5. Comparisons Among Two Floats

Use this … Instead of this.

float t = f1 - f2; 

if (FLOAT2UINTCAST(t) > 0x80000000U)

if (f1 < f2) 

float t = f1 - f2;

if (FLOAT2INTCAST(t) <= 0)

if (f1 <= f2)

float t = f1 - f2;

if (FLOAT2INTCAST(t) > 0)

if (f1 > f2)

float t = f1 - f2;

f (FLOAT2UINTCAST(f) <= 0x80000000U)

if (f1 >= f2)
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2.23 Improving Performance in Linux® Libraries

Optimization

If symbol interposition is not important to a particular application, then you should control the 
visibility of the symbols in a shared object in such a way as to optimize internal references to other 
symbols in the library and minimize the symbol export table size.

Application

This optimization applies to:

• 32-bit software 

• 64-bit software

Rationale

Dynamically loadable libraries are a versatile feature of the Linux® operating system. These allow 
one or more symbols in one library to override an identical symbol in another library. Known as 
interposition, this ability makes customizations and probing seamless. Interposition is implemented 
by means of a procedure linkage table (PLT). The PLT is so flexible that even references to an 
overridden symbol inside its own library end up referencing the overriding symbol. However, the PLT 
imposes a performance penalty by requiring all function calls to public global routines to go through 
an extra step that increases the chances of cache misses and branch mispredictions. This is 
particularly severe for C++ classes whose methods refer to other methods in the same class.

When using ld to link a shared object, include the command line option -Bsymbolic. 

If using a version of gcc prior to 4.0 to link a shared object, add the option -Wl,-Bsymbolic to the 
command-line. If using gcc 4.0 or later, add the option -fvisibility=protected to the command-
line. 

If finer control is desired, then it is possible to specify -fvisibility=hidden to gcc 4.0 or later and 
then add __attribute__ ((visibility ("default"))) to each symbol that should be exported. 
When building C++ shared objects, also consider using the -fvisibility-inlines-hidden option.
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2.24 Aligning Matrices

Optimization

When using multi-dimensional arrays or matrices, make sure that each row or 2nd-order dimension 
starts at a 16-byte boundary.

Application

This optimization applies to:

•     32-bit software

•     64-bit software

Rationale

Instead of creating matrices with arbitrary dimensions, make sure that the size in bytes of the low-
order dimension is a multiple of 16 and that it starts at a 16-byte boundary. By doing so, when 
iterating over the elements of the matrix the compiler is presented with data properly aligned for low-
cost vectorization.

For example, in:

  double a [10][11], 
         b [10][11];
  int i, j;

  for (j = 0; j < 10; j++)
    for (i = 0; i < 11; i++)
      b [j][i] = a [j][i] * M_1_PI;

Declare the matrices in this way:

__declspec (align (16))
       double a [10][ ((11 * sizeof (double) + 15) / 16) * 16 / sizeof (double)],
              b [10][ ((11 * sizeof (double) + 15) / 16) * 16 / sizeof (double)];
int i, j;

for (j = 0; j < 10; j++)
  for (i = 0; i < 11; i++)
    b [j][i] = a [j][i] * M_1_PI;

However, be aware of cache-bank conflicts for best performance. For more information, see section 
5.7, "L1 Data Cache Bank Conflicts" on page 90. 
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Chapter 3 General 64-Bit Optimizations

The AMD64 architecture provides a compatibility mode, which allows a 64-bit operating system to 
run existing 16-bit and 32-bit applications, and a 64-bit mode, which provides 64-bit addressing and 
expanded register resources to improve performance for recompiled 64-bit programs. This chapter 
presents general optimizations to improve the performance of software designed to run in 64-bit 
mode.

This chapter covers the following topics:

3.1 64-Bit Registers and Integer Arithmetic

Optimization

Use 64-bit registers for 64-bit integer arithmetic.

Rationale

Using 64-bit registers instead of their 32-bit equivalents can dramatically reduce the amount of code 
necessary to perform 64-bit integer arithmetic.

Example 1

This code performs 64-bit addition using 32-bit registers:

; Add ECX:EBX to EDX:EAX, and place sum in EDX:EAX.
00000000  03 C3  add  eax, ebx
00000002  13 D1  adc  edx, ecx

Using 64-bit registers, the previous code can be replaced by one simple instruction (assuming that 
RAX and RBX contain the 64-bit integer values to add):

00000000  48 03 C3  add  rax, rbx

Although the preceding instruction requires one additional byte for the REX prefix, it is still one byte 
shorter than the original code. More importantly, this instruction still has a latency of only one cycle, 
uses two fewer registers, and occupies only one decode slot.

Topic Page

64-Bit Registers and Integer Arithmetic 43

Using 64-bit Arithmetic for Large-Integer Multiplication 45

128-Bit Media Instructions and Floating-Point Operations 49

32-Bit Legacy GPRs and Small Unsigned Integers 49
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Example 2

To perform the low-order half of the product of two 64-bit integers using 32-bit registers, a procedure 
such as the following is necessary:

; In:        [ESP+8]:[ESP+4] = multiplicand
;            [ESP+16]:[ESP+12] = multiplier
; Out:       EDX:EAX = (multiplicand * multiplier) % 2^64
; Modifies: EAX, ECX, EDX, EFlags

llmul PROC
   mov edx, [esp+8]    ; multiplicand_hi
   mov ecx, [esp+16]   ; multiplier_hi
   or  edx, ecx        ; One operand >= 2^32?
   mov edx, [esp+12]   ; multiplier_lo
   mov eax, [esp+4]    ; multiplicand_lo
   jnz twomul          ; Yes, need two multiplies.
   mul edx             ; multiplicand_lo * multiplier_lo
   ret                 ; Done, return to caller.

twomul:
   imul edx, [esp+8]         ; p3_lo = multiplicand_hi * multiplier_lo
   imul ecx, eax             ; p2_lo = multiplier_hi * multiplicand_lo
   add  ecx, edx             ; p2_lo + p3_lo
   mul  dword ptr [esp+12]   ; p1 = multiplicand_lo * multiplier_lo
   add  edx, ecx             ; p1 + p2_lo + p3_lo = result in EDX:EAX
   ret                       ; Done, return to caller.

llmul ENDP

Using 64-bit registers, the entire product can be produced with only one instruction:

; Multiply RAX by RBX. The 128-bit product is stored in RDX:RAX.
00000000  48 F7 EB  imul  rbx

Related Information

For more examples of 64-bit arithmetic using only 32-bit registers, see the example on page 47 and  
“Efficient 64-Bit Integer Arithmetic in 32-Bit Mode” on page 129.
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3.2 Using 64-bit Arithmetic for Large-Integer 
Multiplication

Optimization

Use 64-bit arithmetic for integer multiplication that produces 128-bit or larger products.

Background

Large integer multiplications (those involving 128-bit or larger products) are utilized in a variety of  
applications, such as cryptography software, which figure prominently in e-commerce applications 
and secure transactions on the Internet. Processors cannot perform large-number multiplication 
natively; they must break the operation into chunks that are permitted by their architecture (32-bit or 
64-bit additions and multiplications).

Rationale

Using 64-bit rather than 32-bit integer operations dramatically reduces the number of additions and 
multiplications required to compute large products. For example, computing a 1024-bit product using 
64-bit arithmetic requires fewer than one quarter the number of instructions required when using 
32-bit operations:

In addition, the processor performs 64-bit additions just as fast as it performs 32-bit additions, and the 
latency of 64-bit multiplications is only slightly higher than for 32-bit multiplications. (The processor 
is capable of performing three independent 64-bit additions each clock cycle and a 64-bit 
multiplication every other clock cycle.)

Example

Consider the multiplication of two unsigned 64-bit numbers a and b, represented in terms of 32-bit 
components a1:a0 and b1:b0.

a = a1 * 232 + a0

b = b1 * 232 + b0

The product of a and b, calculated using the FOIL method of the polynomials above, can be expressed 
in terms of products of the 32-bit components, as follows:

Comparing... 32-bit arithmetic 64-bit arithmetic

Number of multiplications 256 64

Number of additions with carry 509 125

Number of additions 255 63
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Formula 3.1

c  = (a1 * b1) * 264 + (a1 * b0 + a0 * b1) * 232 + (a0 * b0)

Each of the products of the components of a and b (for example, a1 * b1) is composed of 64 bits—an 
upper 32 bits and a lower 32 bits. It is convenient to represent these individual products as d, e, f, and 
g, as follows:

a0 * b0 = d1:d0 = d1 * 232 + d0

a1 * b0 = e1:e0 = e1 * 232 + e0

a0 * b1 = f1:f0 = f1 * 232 + f0

a1 * b1 = g1:g0 = g1 * 232 + g0

Substitution into Formula 3.1 above yields the following equation:

Formula 3.2

c  = (g1 * 232 + g0) * 264 + (e1 * 232 + e0 + f1 * 232 + f0) * 232 + (d1 * 232 + d0)

Simplifying yields this equation:

Formula 3.3

c = g1 * 296 + (e1 + f1 + g0) * 264 + (d1 + e0 + f0) * 232 + d0

It is convenient to represent the terms that are multiplied by each power of 2 as c3, c2, c1, and c0, as 
follows:

g1 = c3

e1 + f1 + g0 = c2

d1 + e0 + f0 = c1

d0 = c0

Substituting again yields:

Formula 3.4

c = c3 * 296 + c2 * 264 + c1 * 232 + c0
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The following procedure performs 64-bit unsigned integer multiplication, as previously illustrated 
using 32-bit integer operations:

; 32bitalu_64x64(int *a, int *b, int *c);
;
; TO ASSEMBLE INTO *.obj DO THE FOLLOWING:
;       ml.exe -coff -c 32bitalu_64x64.asm
;
.586
.K3D
.XMM
_DATA   SEGMENT
tempESP dd 0
_DATA   ENDS
_TEXT   SEGMENT 
ASSUME DS:_DATA
PUBLIC _32bitalu_64x64
_32bitalu_64x64 PROC NEAR
;==============================================================================
; Save the register state. Registers EAX, ECX, and EDX are considered volatile
;  and assumed to be changed, while the registers below must be preserved.
push ebp
mov  ebp, esp
;==============================================================================
; Parameters passed into routine:
;  [ebp+8]   = ->a
;  [ebp+12]  = ->b
;  [ebp+16]  = ->c
;==============================================================================
push ebx
push esi
push edi
;==============================================================================
mov  esi,[ebp+8]      ; ESI = ->a
mov  edi,[ebp+12]     ; EDI = ->b
mov  ecx,[ebp+16]     ; ECX = ->c
push ebp
mov  [tempESP], esp
;==============================================================================
; Multiply 64-bit numbers a and b, each of which is composed of two 32-bit
;  components:
;  a = a1 * 2^32 + a0
;  b = b1 * 2^32 + b0
mov eax,[esi]      ; EAX = a0
mov edx,[edi]      ; EDX = b0
mul edx            ; EDX:EAX = a0*b0 = d1:d0
mov ebx,edx        ; EDX = d1
mov [ecx],eax      ; c0 = EAX
xor esp,esp        ; ESP = 0
xor ebp,ebp        ; EBP = 0
mov eax,[esi+4]    ; EAX = a1
mov edx,[edi]      ; EDX = b0
mul edx            ; EDX:EAX = a1*b0 = e1:e0
add ebx,eax        ; EBX = d1 + e0
adc ebp,edx        ; EBP = e1 + possible carry from d1+e0
adc esp,0          ; Collect possible carry into c3.
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mov eax,[esi]      ; EAX = a0
mov edx,[edx+4]    ; EDX = b1
mul edx            ; EDX:EAX = a0*b1 = f1:f0
add ebx,eax        ; EBX = d1 + e0 + f0
adc ebp,edx        ; EBP = e1 + f1 + carry
adc esp,0          ; Collect possible carry into c3.
mov [ecx+4],ebx    ; c1 = d1 + e0 + f0

mov eax,[esi+4]    ; EAX = a1
mov edx,[edi+4]    ; EDX = b1
mul edx            ; EDX:EAX = a1*b1 = g1:g0
add ebp,eax        ; EBP = e1 + f1 + g0 + carry
adc esp,edx        ; ESP = g1 + carry
mov [ecx+8],ebp    ; c2 = e1 + f1 + g0 + carry
mov [ecx+12],esp   ; c3 = g1 + carry
;==============================================================================
; Restore the register state.
mov esp, [tempESP]
pop ebp
pop edi
pop esi
pop ebx
mov esp, ebp
pop ebp
;==============================================================================
ret
_32bitalu_64x64 ENDP
_TEXT   ENDS
END

To improve performance and substantially reduce code size, the following procedure performs the 
same 64-bit integer multiplication using 64-bit instead of 32-bit operations:

; 64bitalu_64x64(int *a, int *b, int *c);
;
; TO ASSEMBLE INTO *.obj DO THE FOLLOWING:
;       ml64.exe -c 64bitalu_64x64.asm
;
_TEXT   SEGMENT
64bitalu_64x64 PROC NEAR
;==============================================================================
; Parameters passed into routine:
;  rcx = ->a
;  rdx = ->b
;  r8  = ->c
;==============================================================================
mov rax, [rcx]    ; RAX = [a0]
mul [rdx]         ; Multiply [a0] by [b0] such that
                  ;  RDX:RAX = [c1]:[c0].
mov [r8], rax     ; Store 128-bit product of a and b.
mov [r8+8], rdx
;==============================================================================
ret
64bitalu_64x64 ENDP
END
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3.3 128-Bit Media Instructions and Floating-Point 
Operations

Optimization

Use 128-bit media (SSE, SSE2, SSE3, and SSE4a) instructions instead of x87 or 64-bit media 
instructions for floating-point operations.

Rationale

In 64-bit mode, the processor provides eight additional XMM registers (XMM8–XMM15) for a total 
of 16. These extra registers can substantially reduce register pressure in floating-point code written 
using 128-bit media instructions.

Although the processor fully supports the x87 and 64-bit media instructions, there are only eight 
registers available to these instructions (ST(0)–ST(7) or MMX0–MMX7, respectively). Additionally, 
the x87 and 64-bit media instructions require cumbersome register manipulation and mode switches, 
unlike SSE, SSE2, SSE3 and SSE4a.

For further information, see Chapter 9, “Optimizing with SIMD Instructions” on page 145.

3.4 32-Bit Legacy GPRs and Small Unsigned Integers

Optimization

Use the 32-bit legacy general-purpose registers (EAX through ESI) instead of their 64-bit extensions 
to store unsigned integer values whose range never requires more than 32 bits, even if subsequent 
statements use the 32-bit value in a 64-bit operation. (For example, use ECX instead of RCX until you 
need to perform a 64-bit operation; then use RCX.)

Rationale

In 64-bit mode, the machine-language representation of many instructions that operate on unsigned 
64-bit register operands requires a REX prefix byte, which increases the size of the code. However, 
instructions that operate on a 32-bit legacy register operand do not require the prefix and have the 
desirable side-effect of clearing the upper 32 bits of the extended register to zero. For example, using 
the AND instruction on ECX clears the upper half of RCX.

Caution

Because the assembler also uses a REX prefix byte to encode the 32-bit sizes of the eight new 64-bit 
general-purpose registers (R8D–R15D), you should only use one of the original eight general-
purpose registers (EAX through ESI) to implement this technique.
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Example

The following example illustrates the unnecessary use of 64-bit registers to calculate the number of 
bytes remaining to be copied by an aligned block-copy routine after copying the first few bytes having 
addresses not meeting the routine’s 8-byte-alignment requirements. The first two statements, after the 
program comments, use the 64-bit R10 register—presumably, because this value is later used to 
adjust a 64-bit value in R8—even though it requires no more than four bits to represent the range of 
values stored in R10. Using R10 instead of a smaller register requires a REX prefix byte (in this case, 
49), which increases the size of the machine-language code.

; Input:
;  R10 = source address (src)
;  R8 = number of bytes to copy (count)
49 F7 DA      neg r10       ; Subtract the source address from 2^64.
49 83 E2 07   and r10, 7    ; Determine how many bytes were copied separately.
4D 2B C2      sub r8, r10   ; Subtract the number of bytes already copied from
                            ;  the number of bytes to copy.

To improve code density, the following rewritten code uses ECX until it is absolutely necessary to use 
RCX, eliminating two REX prefix bytes:

F7 D9      neg ecx       ; Subtract the source address from 2^32 (the processor
                         ; clears the high 32 bits of RCX).
83 E1 07   and ecx, 7    ; Determine how many bytes were copied separately.
4C 2B C1   sub r8, rcx   ; Subtract the number of bytes already copied from
                         ; the number of bytes to copy.
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Chapter 4 Instruction-Decoding 
Optimizations

The optimizations in this chapter are designed to help maximize the number of instructions that the 
processor can decode at one time.

The AMD Family 10h processor instruction fetcher reads 32-byte packets from the L1 instruction 
cache. These packets are 32-byte aligned. The instruction bytes are then merged into a 32-byte pick 
window. On each cycle, the in-order front-end engine selects up to three AMD64 instructions to 
decode from the pick window.

This chapter covers the following topics:
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DirectPath Instructions 52

Load-Execute Instructions for Floating-Point or Integer Operands 53

Loop Iteration Boundaries 56
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Short Instruction Encodings 56

Stack Operations 59
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Using LEAVE for Function Epilogues 64

Alternatives to SHLD Instruction 66
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4.1 DirectPath Instructions

Optimization

Use DirectPath instructions rather than VectorPath instructions.  To determine the type of an 
instruction—either DirectPath or VectorPath—see Appendix C, “Instruction Latencies.”

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

DirectPath instructions minimize the number of operations per AMD64 instruction, thus providing 
for optimally efficient decode and execution. Up to three DirectPath Single instructions, or one and a 
half DirectPath Double instructions, can be decoded per cycle. VectorPath instructions block the 
decoding of DirectPath instructions.

The AMD Family 10h processor has been designed to execute the instructions most frequently 
generated by compilers as DirectPath Single or DirectPath Double instructions. However, assembly 
writers must still take into consideration the use of DirectPath versus VectorPath instructions.

Examples

The following example shows code for swapping two memory values. Although the second case uses 
an extra instruction, it is preferred because it avoids VectorPath instructions. 

Avoid code such as the following which uses a VectorPath instruction.
   
   movzx eax, BYTE PTR [memA]
   xchg [memB], al    ; xchg mem8, reg8 is a VectorPath instruction
   mov [memA], al

Instead, use an equivalent instruction sequence such as the following using DirectPath instructions.

;; All of the following are DirectPath instructions
   movzx eax, BYTE PTR [memA]
   movzx ebx, BYTE PTR [memB]
   mov [memB], al
   mov [memA], bl
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4.2 Load-Execute Instructions for Floating-Point or 
Integer Operands 

A load-execute instruction is an instruction that loads a value from memory into a register and then 
performs an operation on that value. Many general purpose instructions, such as ADD, SUB, AND, 
etc., have load-execute forms:

ADD rax, QWORD PTR [foo]

This instruction loads the value foo from memory and then adds it to the value in the RAX register.

The work performed by a load-execute instruction can also be accomplished by using two discrete 
instructions—a load instruction followed by an execute instruction. The following example employs 
discrete load and execute stages:

MOV rbx, QWORD PTR [foo]
ADD rax, rbx

The first statement loads the value foo from memory into the RBX register. The second statement 
adds the value in RBX to the value in RAX.

The following optimizations govern the use of load-execute instructions:

• Load-Execute Integer Instructions on page 53.

• Load-Execute SSE/SSE2/SSE3 Instructions with Floating-Point or Integer Operands on page 54.

• Load-Execute x87 Instructions with Integer Operands on page 55.

4.2.1 Load-Execute Integer Instructions

Optimization

When performing integer computations, use load-execute instructions instead of discrete load 
and execute instructions.  Use discrete load and execute instructions only under one or more of the 
following circumstances:

• to explicitly schedule load and execute operations

• to avoid scheduler stalls for longer executing instructions

• if the load target will be used multiple times in different instructions

Application

This optimization applies to:

• 32-bit software

• 64-bit software
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Rationale

Most load-execute integer instructions are DirectPath decodable and can be decoded at the rate of 
three per cycle. Splitting a load-execute integer instruction into two separate instructions reduces 
decoding bandwidth and increases register pressure, which results in lower performance.

4.2.2 Load-Execute SSE/SSE2/SSE3 Instructions with Floating-Point 
or Integer Operands

Optimization

When performing floating-point computation using floating-point or integer source operands, 
use load-execute instructions instead of discrete load and execute instructions.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Using load-execute floating-point instructions that take floating-point or integer operands improves 
performance for the following reasons:

• Denser code allows more work to be held in the instruction cache.

• Denser code generates fewer internal macro-ops, allowing the floating-point scheduler to hold 
more work, which increases the chances of extracting parallelism from the code.

The use of load-execute packed SSE instructions instead of distinct load and execute instructions 
improves performance in cases in which data might not be aligned on a 16-byte boundary. However, 
this requires setting the misaligned exception mask (MXCSR[17]). Setting this bit disables general 
protection exceptions for unaligned loads in SSE load-execute instructions. See also “Unaligned and 
Aligned Data Access” on page 147.

Example

Avoid code such as the following, which uses discrete load and execute SSE instructions:
movss xmm0, [float_var1]
movss xmm12, [float_var2]
mulss xmm0, xmm12

Instead, use code such as the following, which uses a load-execute SSE floating-point instruction:
movss xmm0, [float_var1]
mulss xmm0, [float_var2]
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4.2.3 Load-Execute x87 Instructions with Integer Operands

Optimization

Avoid x87 load-execute floating-point instructions that take integer operands (FIADD, FICOM, 
FICOMP, FIDIV, FIDIVR, FIMUL, FISUB, and FISUBR). When performing floating-point 
computations using integer source operands, use discrete load (FILD) and execute instructions 
instead.

However, when performing floating-point computations using floating point operands, use load-
execute instructions instead of discrete load and execute instructions.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

The load-execute floating-point instructions that take integer operands take longer to execute than an 
FILD followed by the same register-execute arithmetic instruction. In some situations, this 
optimization can also reduce execution time, if FILD can be scheduled several instructions ahead of 
the arithmetic instruction to cover the FILD latency.

Example

Avoid code such as the following, which uses load-execute floating-point instructions that take 
integer operands:

fld   QWORD PTR [foo]   ; Push foo onto FP stack [ST(0) = foo].
fimul DWORD PTR [bar]   ; Multiply bar by ST(0) [ST(0) = bar * foo].
fiadd DWORD PTR [baz]   ; Add baz to ST(0) [ST(0) = baz + (bar * foo)].

Instead, use code such as the following, which uses discrete load and execute instructions:

fild  DWORD PTR [bar]   ; Push bar onto FP stack.
fild  DWORD PTR [baz]   ; Push baz onto FP stack.
fld   QWORD PTR [foo]   ; Push foo onto FP stack.
fmulp st(2), st         ; Multiply and pop [ST(1) = foo * bar, ST(0) = baz].
faddp st(1), st         ; Add and pop [ST(0) = baz + (foo * bar)].
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4.3 Loop Iteration Boundaries

Optimization

Fit an entire loop iteration into the smallest number of 32-byte-aligned blocks. In program “hot spots” 
(as determined by either profiling or loop-nesting analysis), loop iteration boundaries should be 
placed at or near the beginning of code windows that are 32-byte aligned. The smaller the basic block, 
the more beneficial this optimization will be.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

AMD Family 10h processors can fetch 32 bytes of instruction data per cycle, but will not fetch across 
a 32-byte-aligned boundary. Aligning branch targets maximizes the number of instructions in the pick 
window and preserves instruction-cache space in branch-intensive code outside such hot spots.

4.4 32/64-Bit vs. 16-Bit Forms of the LEA Instruction

Optimization

Use the 32-bit or 64-bit forms of the Load Effective Address (LEA) instruction rather than the 16-bit 
form.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

The 32-bit and 64-bit LEA instructions are implemented as DirectPath operations with an execution 
latency of only two cycles. The 16-bit LEA instruction, however, is a VectorPath instruction, which 
lowers the decode bandwidth and has a longer execution latency.
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4.5 Take Advantage of x86 and AMD64 Complex 
Addressing Modes

Optimization

When porting from other architectures, remember that the x86 architecture provides many complex 
addressing modes. By building the effective address in one instruction, the instruction count can 
sometimes be reduced, leading to better code density and greater decode bandwidth. Refer to the 
section on effective addresses in the AMD64 Architecture Programmer's Manual, Volume 1: 
Application Programming, order# 24592 for more detailed information on how effective addresses 
are formed.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Building the effective address sometimes seems to require numerous instructions when there is a base 
address (such as the base of an array), an index and a displacement (if applicable).  However, the x86 
architecture can often handle all of this information in one instruction. This can reduce code size and 
results in fewer instructions to decode. As always, attention should be paid to total instruction length, 
latencies and whether or not the instruction choices are DirectPath (fastest) or VectorPath (slower).

Example

The first instruction sequence of five instructions having a total latency of 8 can be replaced by one 
instruction.

The following instruction replaces the functionality of the above sequence.

Number of Bytes Latency Instruction

3 1 mov    r11d, r10d

8 2 lea    rcx, 68E35h

3 1 add    r11, rcx

5 3 mov    cl, BYTE PTR [r11+r13]

2 1 cmp    cl, al

Number of Bytes Latency Instruction

8 4 cmp    BYTE PTR [r10+r13+68E35h], al
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Example

These two instructions:

mov  r11, QWORD PTR ds:0x4c65a 
mov  r11, QWORD PTR [r11+r8*8]

can be replaced by one instruction:

mov r11, QWORD PTR [r8*8+0x4c65a]

4.6 Short Instruction Encodings

Optimization

Use instruction forms with shorter encodings rather than those with longer encodings. For example, 
use 8-bit displacements instead of 32-bit displacements, and use the single-byte form of simple 
integer instructions instead of the 2-byte opcode-ModR/M form.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Using shorter instructions increases the number of instructions that can fit into the L1 instruction 
cache and increases the average decode rate.

Example

Avoid the use of instructions having longer encodings, such as the following:

81 C0 78 56 34 12  add eax, 12345678h  ; 2-byte opcode form (with ModRM)
81 C3 FB FF FF FF  add ebx, -5         ; 32-bit immediate value
0F 84 05 00 00 00  jz label1           ; 2-byte opcode, 32-bit immediate value

Instead, choose instructions having shorter encodings, such as:

05 78 56 34 12   add eax, 12345678h   ; 1-byte opcode form
83 C3 FB         add ebx, -5          ; 8-bit sign-extended immediate value
74 05            jz  label1           ; 1-byte opcode, 8-bit immediate value
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4.7 Stack Operations

Optimization

When saving or restoring registers in function prologues or epilogues, or when passing arguments 
through the stack, use PUSH or POP instructions to improve performance and to reduce code size.

When deallocating stack space at function exit, use RET imm to improve performance and to reduce 
code size.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

In spite of the implicit dependency between several successive PUSH or POP instructions on the 
stack-pointer (which PUSH and POP modify), special circuitry (the Sideband Stack Optimizer) tracks 
the value that the stack-pointer assumes, allowing parallel execution of more than one PUSH or POP. 
This is also true of instructions that reference the stack-pointer, either implicitly or explicitly, 
including:

• Near CALL 

• Near RET 

• LEAVE

• Instructions that specify the stack-pointer as a source register.

• Instructions that specify the stack-pointer in the addressing mode of a memory operand without 
an index register. 

However, the Sideband Stack Optimizer cannot break the dependency between the aforementioned 
instructions and other instructions that refer either implicitly or explicitly to the stack-pointer, 
including: 

• LEA instructions that specify the stack-pointer.

• Instructions that specify the stack-pointer as a destination register.

• Instructions that specify the stack-pointer in the addressing mode of a memory operand with an 
index register.

• VectorPath instructions that specify the stack-pointer.
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Examples

Avoid
   sub   esp, 20
   mov   [esp + 16], edi
   mov   [esp + 12], esi
   ...
   mov   [esp], eax
   call  ...
   ...
   mov   esi, [esp + 12]
   mov   edi, [esp + 16]
   add   esp, 20
   ret

Preferred
   sub   esp, 8
   push  edi
   push  esi
   ...
   push  eax
   call  ...
   ...
   pop   esi
   pop   edi
   add   esp, 8
   ret

4.8 Partial-Register Writes

Optimization

When writing to a register for the purpose of initialization, avoid instructions that

• write less than 32 bits of a general purpose integer register.

• write less than 128 bits of an XMM register.

When writing to a register during the course of a non-initializing operation on the register,

• avoid partial register writes.

• schedule any prior operations on the target register well ahead of the point in the code where the 
partial write is to occur.

Application

This optimization applies to:

• 32-bit software
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• 64-bit software

Rationale

In order to handle partial register writes, the processor’s execution core implements a data merging 
scheme. In the execution unit, an instruction that writes part of a register merges the modified portion 
with the current state of the other part of the register. This creates a false dependency on the most 
recent instruction that writes to any part of the register.

When writing to a register for the purpose of register initialization, it is usually possible to avoid false 
dependencies by careful instruction selection. For example, rather than initializing a part of a floating-
point 128-bit XMM register, initialize the whole 128-bit register.

When writing to a register during the course of a non-initializing operation on the register, there is 
usually no additional performance loss due to partial register reads and writes. This is because, in the 
typical case, the partial register being written to is also a source operand to the operation.

For example, the following instruction does not suffer from merge dependencies:

addsd, xmm1, xmm2

However, in some cases of non-initializing operations on a register, it is preferable to avoid partial 
register writes and replace them with more efficient operations. In these cases, the partial register 
being written by the operation is not a source for the operation. Examples are provided below.

If it is not possible to avoid writing to a part of that register, you should schedule any such prior 
operation on any part of the register well ahead of the point where the partial write occurs. Such cases 
are also listed in the examples.

A general purpose integer register is viewed as a 64-bit register internal to the processor. A floating-
point XMM register is viewed as one 128-bit register internal to the processor. 

Current generation processors cannot write a 64-bit half of a 128-bit XMM register without having a 
merge dependency on the other 64-bit half. Additionally, current generation processors cannot write a 
32-bit portion of a 128-bit XMM register without having a merge dependency on other bits of that 
register.

However, there are several instructions that initialize the lower 64 bits or 32 bits of an XMM register 
that also zero out the upper 64 or 96 bits and, thus, do not suffer from merge dependencies. For 
example, the following instructions do not have merge dependencies:

movsd xmm, [mem64]
movss xmm, [mem32]

Integer operations that write to the lower 32 bits of a general purpose integer register do not have a 
false merge dependency because they zero out the upper 32 bits. But operations that write to portions 
of a general purpose integer register narrower than 32 bits should be avoided.
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Example 1

Avoid
     

MOV    al, bl

Preferred
     

MOVZX  eax, bl

Example 2

Avoid

MOV    al, [ebx]

Preferred
     

MOVZX  eax, byte ptr [ebx]

Example 3

Avoid
     

MOV    al, 01h

Preferred
     

MOV    eax, 00000001h

Example 4

The following recommendation only applies when both instruction operands of the MOVSS instruction 
are registers. 

Avoid
     

MOVSS    xmm1, xmm2

Preferred
     

MOVAPS   xmm1, xmm2
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Example 5

While this example uses instructions with double-precision data type, the principle also applies to 
instructions with single-precision data types. 

Avoid 
     
     MOVLPD xmm1, QWORD PTR[eax]  ;      ; Address may or may not be  
                                         ; 16-byte aligned.
     MOVHPD xmm1, QWORD PTR[eax+8];

Preferred 
     

MOVUPD xmm1, XMMWORD PTR[eax] ;

Example 6

Avoid

   MOVLPD xmm1, QWORD PTR [eax]

   MOVHPD xmm1, QWORD PTR [eax]     ; Same memory location as used for MOVLPD.

Preferred

   MOVDDUP xmm1, QWORD PTR [eax]; 

Example 7

The following recommendation only applies when both operands of the MOVSD instruction are 
registers. If the source operand of the MOVSD instruction is a memory operand, the high-order 64 bits 
of the destination register are zeroed out, thereby avoiding any merge dependency on the destination 
register.

Avoid

   MOVSD xmm1, xmm2 

Preferred

   MOVAPD xmm1, xmm2
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Example 8

When the source operand of the MOVSD instruction is a memory operand, the high-order 64 bits of the 
destination register are zeroed out, thereby avoiding any merge dependency on the destination 
register.

Avoid
   
   MOVLPD xmm1, mem64

Preferred
   
   MOVSD xmm1, mem64

Example 9

The SQRTSD instruction writes only the lower 64 bits of xmm1 and so should be moved well below 
the write from the MULPD. In addition to SQRTSD, this example also applies for other instructions 
such as CVTPI2PS, CVTSI2SD, CVTSS2SD, UNPCKLPD, PUNPCKLQDQ, MOVLHPS and 
MOVHLPS.

Avoid

   MULPD xmm1, xmm3
   SQRTSD xmm1, xmm2

Preferred

   MULPD xmm1, xmm3

   .....schedule some other unrelated instructions here

   SQRTSD xmm1, xmm2

4.9 Using LEAVE for Function Epilogues

Optimization

The recommended optimization for function epilogues depends on whether the function allocates 
local variables.

If the function Then

Allocates local variables. Replace the traditional function epilogue with the LEAVE instruction.

Does not allocate local variables or 
does not have a frame-pointer.

Do not use function prologues or epilogues. Access function 
arguments and local variables through rSP.
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Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Functions That Allocate Local Variables

The LEAVE instruction is a single-byte instruction and saves 2 bytes of code space over the 
traditional epilogue. Replacing the traditional sequence with LEAVE also preserves decode 
bandwidth.

Functions That Do Not Allocate Local Variables

Accessing function arguments and local variables directly through ESP frees EBP for use as a 
general-purpose register.

Background

The function arguments and local variables inside a function are referenced through a so-called frame 
pointer. In AMD64 code, the base pointer register (rBP) is customarily used as a frame pointer. You 
set up the frame pointer at the beginning of the function using a function prologue:

push ebp                    ; Save old frame pointer.
mov  ebp, esp               ; Initialize new frame pointer.
sub  esp, n                 ; Allocate space for local variables (only if the
                            ; function allocates local variables).

Function arguments on the stack can now be accessed at positive offsets relative to rBP, and local 
variables are accessible at negative offsets relative to rBP.

Example

The traditional function epilogue looks like this:

mov esp, ebp   ; Deallocate local variables (only if space was allocated).
pop ebp        ; Restore old frame pointer.

Replace the traditional function epilogue with a single LEAVE instruction:

leave
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4.10 Alternatives to SHLD Instruction

Optimization

Where register pressure is low, replace the SHLD instruction with alternative code using ADD and 
ADC, or SHR and LEA.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Using alternative code in place of SHLD achieves lower overall latency and requires fewer execution 
resources. The 32-bit and 64-bit forms of ADD, ADC, SHR, and LEA (except 16-bit form) are 
DirectPath instructions, while SHLD is a VectorPath instruction. Use of the replacement code 
optimizes decode bandwidth because it potentially enables the simultaneous decoding of a third 
DirectPath instruction. However, the replacement code may increase register pressure because it 
destroys the contents of one register (reg2 in the following examples) whereas the register is 
preserved by SHLD.

Example 1

Replace this instruction:

shld reg32a, reg32b, 1 ; Operands are 32-bit registers.

with this code sequence:

add reg32b, reg32b ; Operands are 32-bit registers
adc reg32a, reg32a

Example 2

Replace this instruction:

shld reg1, reg2, 2

with this code sequence:

shr reg2, 30
lea reg1, [reg1*4+reg2]
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Example 3

Replace this instruction:

shld reg1, reg2, 3

with this code sequence:

shr reg2, 29
lea reg1, [reg1*8+reg2]

4.11 8-Bit Sign-Extended Immediate Values

Optimization

Use 8-bit sign-extended immediate values instead of larger-size values.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Using 8-bit sign-extended immediate values improves code density with no negative effects on the 
processor.

Example

Consider this instruction:

add bx, -5

Avoid encoding it as:

81 C3 FF FB

Instead, encode it as:

83 C3 FB
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4.12 8-Bit Sign-Extended Displacements

Optimization

Use 8-bit sign-extended displacements for conditional branches.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Using short, 8-bit sign-extended displacements for conditional branches improves code density with 
no negative effects on the processor. See “Branch Alignment and Density” on page 99 for more 
details on optimizing branches.

4.13 Code Padding with Operand-Size Override and 
Multibyte NOP

Optimization

Use the multibyte NOP instruction (0F 1Fh) to align code and space out branches..

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Occasionally it is necessary to insert neutral code fillers into the code stream (for example, for code-
alignment purposes or to space out branches). Because this filler code is executable, it should take up 
as few execution resources as possible, should not diminish decode density, and should not modify 
any processor state other than to advance the instruction pointer (rIP). Although there are several 
possible multibyte NOP-equivalent instructions that do not change the processor state (other than 
rIP), combinations of the operand-size override and the multibyte NOP instruction are more efficient. 
These NOP instructions are only available on AMD Athlon™ and later processors. For processors 
older than Athlon, use the standard NOP (opcode 090h) in combination with up to three operand size 
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override prefixes (opcode 66h). The use of more than three legacy prefixes limits decoder 
performance.
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Example

Assign code-padding sequences like these and use them to align code and space out branches. These 
sequences are suitable for both 32-bit and 64-bit code, and you can use them on the AMD Family 10h 
processors:

NOP1_OVERRIDE_NOP TEXTEQU <DB 090h>
NOP2_OVERRIDE_NOP TEXTEQU <DB 066h, 090h> 
NOP3_OVERRIDE_NOP TEXTEQU <DB 00fh, 01fh, 000h>
NOP4_OVERRIDE_NOP TEXTEQU <DB 00fh, 01fh, 040h, 000h>
NOP5_OVERRIDE_NOP TEXTEQU <DB 00fh, 01fh, 044h, 000h, 000h>
NOP6_OVERRIDE_NOP TEXTEQU <DB 066h, 00fh, 01fh, 044h, 000h, 000h>
NOP7_OVERRIDE_NOP TEXTEQU <DB 00fh, 01fh, 080h, 000h, 000h, 000h, 000h>
NOP8_OVERRIDE_NOP TEXTEQU <DB 00fh, 01fh, 084h, 000h, 000h, 000h, 000h, 000h>
NOP9_OVERRIDE_NOP TEXTEQU <DB 066h, 00fh, 01fh, 084h, 000h, 000h, 000h, 000h, 
000h>
NOP10_OVERRIDE_NOP TEXTEQU <DB 066h, 066h, 00fh, 01fh, 084h, 000h, 000h, 000h, 
000h, 000h>
NOP11_OVERRIDE_NOP TEXTEQU <DB 066h, 066h, 066h, 00fh, 01fh, 084h, 000h, 000h, 
000h, 000h, 000h>

In certain rare situations, padding of up to 31 bytes can improve performance by aligning “hot” 
branch targets.  For example, run-time profile information may reveal that a forward branch is very 
often taken.  In these cases, generate padding by combining a minimum number of the large NOP 
instructions used in the above code-padding sequences.

For x87 floating-point instructions, a better single-byte padding exists. See “Align and Pack 
DirectPath x87 Instructions” on page 173. For aligning loop tops, see “Loop Iteration Boundaries” on 
page 56.
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Chapter 5 Cache and Memory Optimizations

The optimizations in this chapter take advantage of the large L1 caches and high-bandwidth buses of 
AMD Family 10h processors.

This chapter covers the following topics:

5.1 Memory-Size Mismatches

Optimization

Avoid memory-size mismatches when different instructions operate on the same data. When one 
instruction stores and another instruction subsequently loads the same data, align instruction operands 
and keep the loads/stores of each operand the same size.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Examples—Store-to-Load-Forwarding Stalls

The following code examples result in a store-to-load-forwarding stall:

Topic Page

Memory-Size Mismatches 71

Natural Alignment of Data Objects 73

Store-to-Load Forwarding Restrictions 74

Prefetch and Streaming Instructions 81

Write-Combining 89

L1 Data Cache Bank Conflicts 90

Placing Code and Data in the Same 64-Byte Cache Line 91

Memory and String Routines 92

Stack Considerations 94

Cache Issues When Writing Instruction Bytes to Memory 95

Interleave Loads and Stores 96

Using 1-Gbyte Virtual Memory Pages 96
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 Avoid (64-bit)

foo DQ ?                   ; Assume foo is 8-byte aligned.
...
mov DWORD PTR foo, eax     ; Store a DWORD to foo.
mov DWORD PTR foo+4, ebx   ; Now store to foo+4.
mov rcx, QWORD PTR foo     ; Load a QWORD from foo.

Avoid (32-bit)

foo DQ ?                   ; Assume foo is 4-byte aligned.
...
mov DWORD PTR foo, eax     ; Store a DWORD in foo.
mov DWORD PTR foo+4, edx   ; Store a DWORD in foo+4.
fld QWORD PTR foo          ; Load a QWORD from foo.

Avoid

mov  foo, eax
mov  foo+4, edx
...
movq mm0, foo

Preferred

mov       foo, eax
mov       foo+4, edx
...
movd      mm0, foo
punpckldq mm0, foo+4

Preferred If Stores Are Close to the Load

movd      mm0, eax
mov       foo+4, edx
punpckldq mm0, foo+4

Examples—Large-to-Small Mismatches

Avoid large-to-small mismatches, as shown in the following code:

Avoid (64-bit)

foo DQ ?                   ; Assume foo is 8-byte aligned.
...
mov QWORD PTR foo, rax     ; Store a QWORD to foo.
mov eax, DWORD PTR foo     ; Load a DWORD from foo.
mov edx, DWORD PTR foo+4   ; Load a DWORD from foo+4.

Avoid (32-bit)

foo DQ ?                   ; Assume foo is 4-byte aligned.
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...
fst QWORD PTR foo          ; Store a QWORD in foo.
mov eax, DWORD PTR foo     ; Load a DWORD from foo.
mov edx, DWORD PTR foo+4   ; Load a DWORD from foo+4.

Avoid

movq foo, mm0
...
mov  eax, foo
mov  edx, foo+4

Preferred

movd   foo, mm0
pswapd mm0, mm0
movd   foo+4, mm0
pswapd mm0, mm0
...
mov    eax, foo
mov    edx, foo+4

Preferred If the Contents of MM0 are No Longer Needed

movd      foo, mm0
punpckhdq mm0, mm0
movd      foo+4, mm0
...
mov       eax, foo
mov       edx, foo+4

Preferred If the Stores and Loads are Close Together, Option 1

movd   eax, mm0
pswapd mm0, mm0
movd   edx, mm0
pswapd mm0, mm0

Preferred If the Stores and Loads are Close Together, Option 2

movd      eax, mm0
punpckhdq mm0, mm0
movd      edx, mm0

5.2 Natural Alignment of Data Objects

Optimization

Make sure data objects are naturally aligned. An object is naturally aligned if it is located at an 
address that is a multiple of its size.
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Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

A misaligned store or load operation suffers a minimum one-cycle penalty in the processor’s load-
store pipeline. Also, using misaligned loads and stores increase the likelihood of encountering a store-
to-load forwarding pitfall, especially when operating in long mode (64-bit software). (For a more 
detailed discussion of store-to-load forwarding issues, see “Store-to-Load Forwarding Restrictions” 
on page 74.)

In addition, if the Alignment Mask bit is set in Control Register 0 (CR0), an unaligned memory 
reference may cause an alignment check exception. For more information on this topic, see the 
AMD64 Architecture Programmer’s Manual, Volume 2, order# 24593.

5.3 Store-to-Load Forwarding Restrictions

Optimization

Maintain consistent operand sizes across all loads and stores. Preferably use doubleword, quadword, 
or 128-bit operand sizes. Avoid store-to-load forwarding pitfalls, such as

• narrow-to-wide forwarding cases.

• mismatched addresses for stores and loads.

• misaligned data references.

• loading data from anywhere in the same doubleword of memory other than the identical start 
addresses of the stores when using word or byte stores

Locate this type of object At an address evenly divisible by

Word 2

Doubleword 4

Quadword 8

Ten-byte (for example, TBYTE or REAL10) 8 (instead of 10)

Double quadword 16
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Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Store-to-load forwarding refers to the process of a load reading (forwarding) data from the store 
buffer. Where this is possible, it can lead to a performance improvement because the load does not 
have to wait for the recently written (stored) data to be written to cache and then read back out again. 

There are circumstances under which AMD Family 10h processor load-store (LS) architecture does 
not allow data to be read from a store in the store buffer. In these cases, it is impossible to load the 
needed data into a register until the store has retired out of the store buffer and written to the data 
cache. A store-buffer entry cannot retire and write to the data cache until every instruction before the 
store has completed and retired from the reorder buffer. The implication of this restriction is that all 
instructions in the reorder buffer, up to and including the store, must complete and retire out of the 
reorder buffer before the load can complete. Effectively, the load has a false dependency on every 
instruction up to the store.

Due to the significant depth of the LS buffer of AMD Family 10h processors, any load that is 
dependent on a store that cannot bypass data through the LS buffer may experience significant delays 
of up to tens of clock cycles, where the exact delay is a function of pipeline conditions.

The following sections describe store-to-load forwarding examples.

Store-to-Load Forwarding Pitfalls—True Dependencies

A load is not allowed to read data from the store-buffer entry if any of the following conditions occur:

• The start address of the load does not match the start address of the store.

• The load operand size is greater than the store operand size.

• Either the load or the store is misaligned. See “Natural Alignment of Data Objects” on page 73 for 
additional information on alignment recommendations.

• A high byte (or word) store and a low byte (or word) store in the same aligned doubleword are 
followed by either a low or high byte (or word) load.

The following sections describe common-case scenarios to avoid. In these scenarios, a load has a true 
dependency on an LS2-buffered store, but cannot read (forward) data from a store-buffer entry.

Load Operand Size Greater than the Store Operand Size

If the following conditions are present, there is a narrow-to-wide store-buffer data-forwarding 
restriction:
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• The operand size of the store data is smaller than the operand size of the load data.

• The range of addresses spanned by the store data covers some subrange of the addresses spanned 
by the load data.

Examples

Avoid

mov eax, 10h
mov WORD PTR [eax], bx     ; Word store
...
mov ecx, DWORD PTR [eax]   ; Doubleword load--cannot forward upper byte
                           ; from store buffer

Avoid

MOV eax, 10h
MOV BYTE PTR [eax+3], bl   ; Byte store
...
MOV ecx, DWORD PTR [eax]   ; Doubleword load--cannot forward upper byte
                           ; from store buffer

Avoid

MOV eax, 10h
MOVSD QWORD PTR [eax], xmm0 ; Quadword store 
MOVSD QWORD PTR [eax+8], xmm1 ; Quadword store 

... 

MOVAPD xmm2, XMMWORD PTR [eax] ; Octal Word load--cannot forward upper and
                               ; lower Quadwords from store buffer. 

Preferred 

MOV eax, 10h 

MOVAPD xmm3, xmm0 ; Assumes XMM3 is available and will not be detrimental
                  ; to register pressure 

SHUFPD xmm3, xmm1, 0 

MOVAPD XMMWORD PTR [eax], xmm3 

.... 

MOVAPD xmm2, XMMWORD PTR [eax] ; Octal Word load--can forward from 
                               ; Octal word store from store buffer 
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Mismatched Store and Load Addresses

A data-forwarding restriction exists if the start address of the store data does not match the start 
address of the load data.

In general, wide stores can forward data to narrow loads if the start address of the load matches that of 
the store and neither store nor load is misaligned. However, store-to-load forwarding cannot occur if 
the start addresses of the load and store do not match, with the exception that stores to an aligned 128-
bit location can forward to loads of 64 bits or less, starting at its upper 64-bit quadword.

Examples

Avoid

movq [foo], mm1     ; Store upper and lower half.
...
add  eax, [foo]     ; Fine
add  edx, [foo+4]   ; Not good!

Preferred

movd      [foo], mm1     ; Store lower half.
punpckhdq mm1, mm1       ; Copy upper half into lower half.
movd      [foo+4], mm1   ; Store lower half.
...
add       eax, [foo]     ; Fine
add       edx, [foo+4]   ; Fine

Acceptable

mov eax, 10h
movapd XMMWORD PTR [eax], xmm0 ; Store upper and lower half. 

... 

movsd xmm1, QWORD PTR [eax] ; Fine 
movsd xmm2, QWORD PTR [eax+8] ; Load of upper 64 bits, OK.

Misaligned Store-Buffer Data-Forwarding Restriction

If the following condition is present, there is a misaligned store-buffer data-forwarding restriction:

• The store or load address is misaligned. For example, a quadword store is not aligned to a 
quadword boundary.

A common case of misaligned store-data forwarding involves the passing of misaligned quadword 
floating-point data on the doubleword-aligned integer stack. Avoid the type of code shown in the 
following example:

mov  esp, 24h
fstp QWORD PTR [esp]   ; ESP = 24
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...                    ; Store occurs to quadword misaligned address.
fld  QWORD PTR [esp]   ; Quadword load cannot forward from quadword
                       ;  misaligned ‘FSTP[ESP]’ store operation.

Forwarding Restriction from Distinct Stores on Distinct Bytes (or Words) 
to a Subsequent Load on One of the Same Bytes (or Words) Within the 
Same Aligned Doubleword Location

When there are two or more distinct stores to distinct bytes (or words) inside the same aligned 
doubleword memory location, it may not be possible to forward the data from the stores to a 
subsequent load from one of the same byte (or word) locations. Therefore, it is recommended to use 
doubleword, quad word or 128-bit operand sizes to allow store-to-load forwarding.

However, when there is only a single store and a single load to a byte (or word) inside an aligned 
doubleword location, store-to-load forwarding is allowed to occur as long as all of the other 
conditions listed previously in this section for store-to-load forwarding are satisfied.

Examples

In all of the examples below, the operations in between the store and the load indicated by the ... are 
assumed not to write to any part of the aligned doubleword under consideration.

Allowed

mov eax, 10h
mov BYTE PTR [eax], bl ; Low-byte store to an aligned doubleword
...
mov dl, BYTE PTR[eax] ; low byte load CAN forward from low byte store

Allowed

mov eax, 10h
mov WORD PTR [eax], bx ; Low-word store to an aligned doubleword
...

mov dl, BYTE PTR[eax] ; low byte load CAN forward from low word store

Allowed

mov eax, 10h
mov DWORD PTR [eax], ebx ; doubleword store to an aligned doubleword
...
mov dx, WORD PTR[eax] ; low word load CAN forward from doubleword store

Avoid

mov eax, 10h
mov BYTE PTR[eax], bl  ; Low-byte store to an aligned doubleword
mov BYTE PTR[eax+1], bh ; High-byte store to an aligned doubleword
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...
mov dl, BYTE PTR [eax]  ; low byte load cannot forward from low byte store

Preferred

mov eax, 10h
mov WORD PTR [eax], bx ;
...
mov dl, BYTE PTR [eax] ;

Avoid

mov eax, 10h
mov BYTE PTR[eax], bl  ; Low-byte store to an aligned doubleword
mov BYTE PTR[eax+1], bh ; High-byte store to an aligned doubleword
...
mov dl, BYTE PTR [eax]  ; low byte load cannot forward from low byte store
mov dh, BYTE PTR [eax+1]; high byte load CAN forward from high byte store

Preferred

mov eax, 10h
mov WORD PTR [eax], bx ;
...
mov dx, WORD PTR [eax] ;

Summary of Store-to-Load-Forwarding Pitfalls to Avoid

The following list summarizes the situations that require care to handle store-to-load forwarding 
cases:

• Avoid narrow-to-wide forwarding cases.

• Avoid mismatched addresses for stores and loads.

• Avoid misaligned data references.

• When using word or byte stores, avoid having two or more distinct stores to distinct bytes (or 
words) inside the same aligned doubleword memory location followed by a subsequent load from 
one of the same byte (or word) locations.

• Maintain consistent operand sizes across all loads and stores. Preferably use doubleword, 
quadword, or 128-bit operand sizes.
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5.4 Good Practices for Avoiding False Store-to-Load 
Forwarding

Optimization

Choose linear addresses for the source and destination operands of REP MOVS/CMPS that are not an 
exact multiple of 4K pages away from each other.

Application

This optimization applies to: 

• 32-bit software

• 64-bit software

Rationale

As mentioned in the previous section, store-to-load forwarding occurs when the store address matches 
the load address. This address match is split into two stages. In the first stage, bits 4:11 of the store 
and the load addresses are matched. In addition the double word mask of the store and load addresses 
is matched. The double word mask indicates whether the load/store pair is accessing the same double 
word in a 16-byte bank. If both these parameters match, then a store-to-load forward is initiated. In 
the second stage the remaining bits 12:47 of the store and load addresses is matched. If the remaining 
bits match, then the STLF is considered as a true STLF and is allowed to proceed. Otherwise it is 
considered as a false STLF and the load is cancelled and retried. 

The previous section deals with true STLF and describes the practices to follow to promote it. This 
section deals with the cases of false STLF and what the developer needs to do to avoid these from 
occurring in the first place, thereby avoiding the later penalty of STLF cancellation.

Example

For REP MOVS/CMPS, choose linear addresses that avoid conflicts.

REP stands for the repeat function. This function repeats or iterates its associated string instruction as 
many times as specified in the counter register (rCX) and terminates the repetition when the value in 
rCX reaches 0. For example, REP MOVS moves a string from a source address to a destination 
address a specified number of times. In the event that bits 4:11 of the linear address of the store 
address in the first iteration match the load address in the second iteration, a store-to-load forward 
may be initiated.

When the destination address of an iteration is located at an exact multiple of 4K pages away from the 
source address of the next iteration, an STLF will be initiated. When the remaining address bits are 
found to be mismatched later, the STLF is cancelled and the load has to be retried.  This results in a 
significant penalty of wasted DC bandwidth due to having to retry loads multiple times.
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For example, a REP MOVS instruction suffers from these inefficiencies if RSI is 0x1ffeee000000 and 
RDI is 0x1ffeee401000.

5.5 Prefetch and Streaming Instructions

Optimization

Where appropriate, use one of the prefetch instructions to increase the effective bandwidth of 
AMD Family 10h processors.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Prefetch instructions take advantage of the high bus bandwidth of AMD Family 10h processors to 
hide latencies when fetching data from system memory. A prefetch instruction initiates a read request 
of a specified address and reads the entire cache line that contains that address.

AMD Family 10h processors perform three types of prefetches:

The prefetch instructions can be used anywhere, in any type of code. The use of prefetch instructions 
is not affected by the values of Control Register 0 (CR0) bits, such as CR0.EM and CR0.TS.

Prefetching versus Preloading

In code that makes irregular memory accesses rather than sequential accesses, an ordinary MOV 
instruction is the best way to load data. But in situations where sequential addresses are read, prefetch 
instructions can improve performance. Prefetch instructions only update the L1 data cache and do not 
update an architectural register.

Prefetch type Description

Load Reads the data into the L1 data cache; the data is later evicted to the L2 cache. The 
following instructions perform load prefetches: PREFETCH, PREFETCHT0, 
PREFETCHT1, and PREFETCHT2.

Store Reads the data into the L1 data cache and marks the data as modified; the data is 
later evicted to the L2 cache. The PREFETCHW instruction performs a store prefetch.

Nontemporal The PREFETCHNTA instruction performs a nontemporal prefetch. The data is read  
into the L1 data cache; to avoid cache pollution, when a PREFETCHNTA misses in 
the L2 cache and reads from memory, the data is never evicted to the L2 cache. When 
a PREFETCHNTA hits in the L2 cache, the data is evicted back to the L2 cache.
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Unit-Stride Access

Large data sets typically require unit-stride access to ensure that all data pulled in by a prefetch 
instruction are actually used. Large data sets make use of all data that are read from memory, rather 
than using only a sparse subset of the memory. If necessary, you should reorganize algorithms or data 
structures to allow unit-stride access. For a definition of unit-stride access, see “Definitions” on 
page 88.

Hardware Prefetcher Optimizations

Previous AMD64 processors prefetched data into the L2 cache.  In AMD Family 10h processors, the 
data hardware prefetcher loads data into the L1 cache.  This hides the L2 cache access latency and 
offers significant performance improvement.  However, this slightly increases the risk of thrashing 
and cache pollution, as discussed later in Section 5.5.

The hardware prefetcher in AMD Family 10h processors is a unit-stride prefetcher which trains on L1 
cache misses and propagates on L1 cache accesses (hits and misses).  Any two consecutive cache line 
misses can train a hardware prefetch stream, and this generates a preset number of initial prefetch 
requests.  Any subsequent unit-stride accesses propagate the stream, causing more cache lines to be 
prefetched.  For example, if the preset value is 3 and there are L1 misses to lines I and I+1, the 
prefetcher issues prefetch requests for lines I+2, I+3, and I+4.  Subsequently, if a hit or miss to line 
I+2 is seen, a prefetch request for I+5 is issued, and so on.

Adaptive Prefetching

In AMD Family 10h processors, a hardware optimization called adaptive prefetching is implemented 
to improve the timeliness of the prefetches.  This mechanism basically kicks in if the demand stream 
catches up with the prefetch stream, and it adjusts the prefetch distance dynamically to maintain a 
good prefetch distance.  Here, a good prefetch distance is defined as the number of cachelines the 
prefetch stream needs to stay ahead, such that the demand stream hits on prefetched lines in the L1 
cache.  Again, the hardware has a preset maximum fetch-ahead distance that controls this dynamic 
scheme.  As part of this adaptive scheme, the hardware prefetcher in AMD Family 10h processors 
maintains pending prefetch request counters and adjustable distance counters.  This helps the 
prefetcher to scale with different memory technologies.

Note that in AMD Family 10h processors, the hardware prefetcher trains on software prefetch 
requests (including the NTA type). 

Contraindications for Prefetching

There are situations in which careless software prefetching can hurt performance.

• Thrashing—This is potentially the worst scenario. Thrashing occurs if more than two arrays are  
prefetched in parallel and the addresses are separated by whole multiples of 32K bytes (the L1 
cache size divided by the associativity). When this occurs, some of the prefetched data evicts 
other prefetched data before it can be used. This is inefficient even without prefetching—which 
simply makes the situation worse. Thrashing can be particularly bad if PREFETCHNTA is used.
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• Cache pollution—This is a problem when the code prefetches a large amount of unused data, such 
as when the data is used conditionally or consists of many short sequences and the prefetches 
extend beyond the ends of the ranges of addresses that are actually desired.

• Prefetch from unmapped pages—This occurs when there is a prefetch in a loop, and the prefetch 
address is simply the data address plus some offset. Normally you should make the offset large 
enough so the data is fetched before the loop catches up to it, but this means there will be some 
over-run at the end of the loop. An over-run in an unmapped page can result in a significant delay. 
This is not so important if the over-run falls at the end of a very long stream of useful data.

In general, prefetching is useful where the program is neither totally memory-bound nor totally 
compute-bound, and the pattern of data access is fairly predictable within the code. The ideal fetch-
ahead distance depends on the code, on the DRAM latency, and on how the data is laid out in address 
space.

The following table summarizes which prefetch instructions to use based on data size and data type.

Table 6. Prefetching Guidelines

Data
Less Than
½ L1 Size

Less Than ½ L2 Size or Unknown Size Greater Than
½ L2 SizeReused Not Reused

Read-Only PREFETCH1 or PREFETCHNTA PREFETCH1 PREFETCHNTA PREFETCHNTA

Sequential
Read-Only

Prefetcher + PREFETCH1,3 Prefetcher + PREFETCH1,3 PREFETCHNTA PREFETCHNTA

Read-Write PREFETCHW PREFETCHW PREFETCHNTA PREFETCHNTA

Sequential 
Read-Write

PREFETCHW PREFETCHW PREFETCHNTA PREFETCHNTA

Write-Only PREFETCHW PREFETCHW MOVNT2,5 MOVNT2,5

Sequential
Write-Only

Prefetcher + PREFETCHW4 Prefetcher + 
PREFETCHW4

MOVNT2,5 MOVNT2,5

Notes:
1. PREFETCH is a place-holder for any of PREFETCH, PREFETCHT0, PREFETCHT1 or PREFETCHT2.
2. MOVNT is a place-holder for any of MOVNTI, MOVNTQ, MOVNTDQ, MOVNTPD, MOVNTPS, MOVNTSD, 

MOVNTSS, MASKMOVQ or MASKMOVDQU.

3. Use PREFETCH1 twice before iterations to jump-start the prefetcher, if advantageous. Otherwise, do not use 

PREFETCH1.
4. Use PREFETCHW twice before iterations to jump-start the prefetcher, if advantageous. Otherwise, do not use 

PREFETCHW.

5. If no suitable MOVNT2 instruction is available, use PREFETCHNTA.

For guidance on when to use software prefetching for memory and string routines, see Section 5.9, 
“Memory and String Routines’ on page 92.
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PREFETCH/W versus PREFETCHNTA/T0/T1/T2

PREFETCHNTA, PREFETCHT0, PREFETCHT1, and PREFETCHT2 are SSE instructions and are 
processor-implementation dependent. For AMD Family 10h processors, data that is prefetched with 
the PREFETCHNTA instruction is not placed into the L2 cache when it is evicted unless it was 
originally in L2 when prefetched. 

PREFETCHNTA is intended for non-temporal data that will not be needed again soon.  
PREFETCHNTA should also be used when reading arrays that are so large that they are larger than 
the L2 cache.  Because of their size, such large arrays will not be available in L2 even if they are 
needed again, and by feeding them through the L2 cache, other possibly useful data will also be 
evicted from L2.

Note: The sizes of the L1 and L2 caches of the processor can be determined by using the CPUID 
instruction.

Note: DC misses on PREFETCHNTA trigger the hardware prefetcher on AMD Family 10h 
processors, but those prefetch streams are marked “NT”, so that they are not evicted back to 
L2 or L3.

Note: PREFETCHNTA should not be used for large arrays that are only being written, not read.  In 
such cases, write-combining stores should be used. (See “Write-Combining” on page 89, 
Appendix B “Implementation of Write-Combining” on page 233, and “Write-Combining” in 
the AMD64 Architecture Programmer’s Manual, Volume 2, order# 24593.)

AMD Family 10h processors implement the PREFETCHT0, PREFETCHT1, and PREFETCHT2 
instructions in exactly the same way as the PREFETCH instruction. That is, the data is brought into 
the L1 data cache. This functionality could change in future implementations of the AMD Family 10h 
processor.

PREFETCHW versus PREFETCH

Code intended to modify the cache line that is brought in through prefetching should use the 
PREFETCHW instruction. PREFETCHW provides a hint to the AMD Family 10h processor of an 
intent to modify the cache line. The AMD Family 10h processor marks the cache line being read by 
PREFETCHW as modified. Using PREFETCHW can save additional cycles compared to 
PREFETCH, and avoid the subsequent cache state change caused by a write to the prefetched cache 
line. Only use PREFETCHW if there is a write to the same cache line afterwards.

 Use of Streaming Instructions

Use streaming instructions instead of PREFETCHW in situations where all of the following 
conditions are true:

• The code will overwrite one or more complete cache lines with new data.

• The new data will not be used again soon.
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Streaming instructions include the non-temporal stores MOVNTDQ, MOVNTI, MOVNTPS, 
MOVNTPD, MOVNTSD,  MOVNTSS and the MMX instruction MOVNTQ. However, unlike 
regular stores, non-temporal stores are weakly ordered relative to other loads and stores. If strong 
ordering of stores is required, an SFENCE instruction should be used between the non-temporal 
stores and any succeeding normal stores. See Section 11.4, “Memory Barrier Operations’ on page 196 
for further recommendations on memory barrier instructions.

Streaming instructions can dramatically improve memory-write performance. They write data 
directly to memory through write-combining buffers, bypassing the cache. This is faster than 
PREFETCHW because data does not need to be initially read from memory to fill the cache lines, 
only to be completely overwritten shortly thereafter. The new data is simply written to memory, 
replacing the old data in memory, so no memory read is performed.

One application where streaming is useful, often in conjunction with prefetch instructions, is in 
copying large blocks of memory.

Note: The streaming instructions are not recommended or necessary for write-combined memory 
regions since the processor automatically combines writes for those regions. Write-combine 
memory types are indicated through the MTRRs and the page-attribute table (PAT).

Note: For best performance, do not mix streaming instructions on a cache line with non-streaming 
store instructions.

For more information on write-combining, see Appendix B, “Implementation of Write-Combining.”

Multiple Prefetches

Programmers can initiate multiple outstanding prefetches on AMD Family 10h processors. These 
processors can have a theoretical maximum of eight outstanding cache misses, including prefetches. 
When all resources are filled by various memory read requests, the processor waits until resources 
become free before processing the next request. Multiple prefetch requests are essentially handled in 
order, prefetching data in the order that it is needed.

The following example shows how to initiate multiple prefetches when traversing more than one 
array.

Example—Multiple Prefetches

.CODE

.K3D

.686

; Original C code:
;
; #define LARGE_NUM 65536
; #define ARR_SIZE (LARGE_NUM*8)
;
; double array_a[LARGE_NUM];
; double array_b[LARGE_NUM];
; double array_c[LARGE_NUM];
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; int i;
;
; for (i = 0; i < LARGE_NUM; i++) {
;    a[i] = b[i] * c[i];
; }

   mov edx, (-LARGE_NUM)     ; Use biased index.
   mov eax, OFFSET array_a   ; Get address of array_a.
   mov ebx, OFFSET array_b   ; Get address of array_b.
   mov ecx, OFFSET array_c   ; Get address of array_c.

loop:
   prefetchw [eax+256]   ; Four cache lines ahead
   prefetch  [ebx+256]   ; Four cache lines ahead
   prefetch  [ecx+256]   ; Four cache lines ahead
   fld  QWORD PTR [ebx+edx*8+ARR_SIZE]       ; b[i]
   fmul QWORD PTR [ecx+edx*8+ARR_SIZE]       ; b[i] * c[i]
   fstp QWORD PTR [eax+edx*8+ARR_SIZE]       ; a[i] = b[i] * c[i]
   fld  QWORD PTR [ebx+edx*8+ARR_SIZE+8]     ; b[i+1]
   fmul QWORD PTR [ecx+edx*8+ARR_SIZE+8]     ; b[i+1] * c[i+1]
   fstp QWORD PTR [eax+edx*8+ARR_SIZE+8]     ; a[i+1] = b[i+1] * c[i+1]
   fld  QWORD PTR [ebx+edx*8+ARR_SIZE+16]    ; b[i+2]
   fmul QWORD PTR [ecx+edx*8+ARR_SIZE+16]    ; b[i+2]*c[i+2]
   fstp QWORD PTR [eax+edx*8+ARR_SIZE+16]    ; a[i+2] = [i+2] * c[i+2]
   fld  QWORD PTR [ebx+edx*8+ARR_SIZE+24]    ; b[i+3]
   fmul QWORD PTR [ecx+edx*8+ARR_SIZE+24]    ; b[i+3] * c[i+3]
   fstp QWORD PTR [eax+edx*8+ARR_SIZE+24]    ; a[i+3] = b[i+3] * c[i+3]
   fld  QWORD PTR [ebx+edx*8+ARR_SIZE+32]    ; b[i+4]
   fmul QWORD PTR [ecx+edx*8+ARR_SIZE+32]    ; b[i+4] * c[i+4]
   fstp QWORD PTR [eax+edx*8+ARR_SIZE+32]    ; a[i+4] = b[i+4] * c[i+4]
   fld  QWORD PTR [ebx+edx*8+ARR_SIZE+40]    ; b[i+5]
   fmul QWORD PTR [ecx+edx*8+ARR_SIZE+40]    ; b[i+5] * c[i+5]
   fstp QWORD PTR [eax+edx*8+ARR_SIZE+40]    ; a[i+5] = b[i+5] * c[i+5]
   fld  QWORD PTR [ebx+edx*8+ARR_SIZE+48]    ; b[i+6]
   fmul QWORD PTR [ecx+edx*8+ARR_SIZE+48]    ; b[i+6] * c[i+6]
   fstp QWORD PTR [eax+edx*8+ARR_SIZE+48]    ; a[i+6] = b[i+6] * c[i+6]
   fld  QWORD PTR [ebx+edx*8+ARR_SIZE+56]    ; b[i+7]
   fmul QWORD PTR [ecx+edx*8+ARR_SIZE+56]    ; b[i+7] * c[i+7]
   fstp QWORD PTR [eax+edx*8+ARR_SIZE+56]    ; a[i+7] = b[i+7] * c[i+7]
   add  edx, 8   ; Compute next 8 products
   jnz  loop     ;  until none left.

END

The following optimization rules are applied to this example: 

• Partially unroll loops to ensure that the data stride per loop iteration is equal to the length of a 
cache line. This avoids overlapping PREFETCH instructions and thus makes optimal use of the 
available number of outstanding prefetches.

• Because the array array_a is written rather than read, use PREFETCHW instead of PREFETCH 
to avoid overhead for switching cache lines to the correct state. The prefetch distance is optimized 
such that each loop iteration is working on three cache lines while active prefetches bring in the 
next cache lines.
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• Reduce index arithmetic to a minimum by use of complex addressing modes and biasing of the 
array base addresses in order to cut down on loop overhead.

Determining Prefetch Distance

When determining how far ahead to prefetch, the basic guideline is to initiate the prefetch early 
enough so that the data is in the cache by the time it is needed.

To determine the optimal prefetch distance, use empirical benchmarking when possible. Prefetching 
four to eight cache lines ahead (256 to 512 bytes) is a good starting point. Trying to prefetch either too 
far ahead or too soon impairs performance.

Memory-Limited versus Processor-Limited Code

Software prefetching can help to hide the memory latency, but it cannot increase the total memory 
bandwidth. Many loops are limited by memory bandwidth rather than processor speed, as shown in 
Figure 1. In these cases, the best that software prefetching can do is to ensure that enough memory 
requests are “in flight” to keep the memory system busy all of the time. AMD Family 10h processors 
support a maximum of eight concurrent memory requests to different cache lines. Multiple requests to 
the same cache line count as only one towards this limit of eight.

Figure 1. Memory-Limited Code

Code that performs many computations on each cache line is limited by processor speed rather than 
memory bandwidth, as shown in Figure 2. In this case, the goal of software prefetching is just to 
ensure that the memory data is available when the processor needs it. As the processor speed 
increases, optimal prefetch distance increases until memory bandwidth becomes the limiting factor.
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Figure 2. Processor-Limited Code

Definitions

Unit-stride access refers to a memory access pattern where consecutive memory accesses are made to 
consecutive array elements, in ascending or descending order. If the arrays are made of elemental 
types, then they imply adjacent memory locations as well. For example:

char j, k[MAX];
for (i = 0; i < MAX; i++) {
...
j += k[i];   // Every byte is used.
...
}  
double x, y[MAX];
for (i = 0; i < MAX; i++) {
...
x += y[i];   // Every byte is used.
...
}

Exception to Unit Stride

The unit-stride concept works well when stepping through arrays of elementary data types. In some 
instances, unit stride alone may not be sufficient to determine how to use the PREFETCH instruction 
properly. For example, assume that there is a vertex structure of 256 bytes and the code steps through 
the vertices in unit stride, but using only the x, y, z, w components, each being of type float (for 
example, the first 16 bytes of each vertex). In this case, the prefetch distance obviously should be 
some function of the data size structure (for a properly chosen n):

prefetch [eax+n*structure_size]
...
add      eax, structure_size
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You should experiment to find the optimal prefetch distance; there is no formula that works for all 
situations.

Data Stride per Loop Iteration

Assuming unit-stride access to a single array, the data stride of a loop (the loop stride) refers to the 
number of bytes accessed in the array per loop iteration. For example:

   fldz
add_loop:
   fadd QWORD PTR [ebx*8+base_address]
   dec  ebx
   jnz  add_loop

The data stride of the above loop is eight bytes. In general, for optimal use of prefetching, the data 
stride per iteration is the length of a cache line (64 bytes in AMD Family 10h processors). If the loop 
stride is smaller, unroll the loop enough to use a whole cache line of data per iteration. However, 
unrolling the loop may not be feasible if the original loop stride is very small (for example, only two 
bytes).

Prefetch at Least 64 Bytes Away from Surrounding Stores

The prefetch instructions can be affected by false dependencies on stores. If there is a store to an 
address that matches a request, that request (the prefetch instruction) may be blocked until the store is 
written to the cache. Therefore, code should prefetch data that is located at least 64 bytes away from 
any surrounding store’s data address.

5.6 Write-Combining

Optimization

Operating-system, device-driver, and BIOS programmers should take advantage of the write-
combining capabilities of AMD Family 10h processors.

For details, see Appendix B, “Implementation of Write-Combining.” For more information on write-
combining, see “Write-Combining” in the AMD64 Architecture Programmer’s Manual, Volume 2, 
order# 24593.

Application

This optimization applies to:

• 32-bit software

• 64-bit software
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Rationale

In order to improve system performance, AMD Family 10h processors aggressively combine multiple 
memory-write cycles (of any data size) that address locations within a 64-byte cache-line-aligned 
write buffer.

5.7 L1 Data Cache Bank Conflicts

Optimization

Utilize pair loads that do not have a bank conflict in the L1 data cache to improve load throughput.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Fields Used to Address the Multibank L1 Data Cache

The L1 data cache is a multibank design consisting of eight banks total, where each bank is 16 bytes 
wide. To address the L1 data cache, the processor uses fields within the address as shown in the 
following diagram:

How to Know If a Bank Conflict Exists

The existence of a bank conflict between two neighboring loads depends on their bank and index 
values:

In other words, with common data types, consecutive array elements cannot have a bank conflict. If 
the array elements are 8 bytes or less, the two loads are to the same index and the same bank, and no 

When the bank is And the index is Then a bank conflict

Different Either the same or different Does not exist

The same The same Does not exist

The same Different Exists

Index

14 0

Byte

Bank

36

...

47
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conflict occurs. If the array elements are 16 bytes, the loads are to the same index but different banks, 
so a bank conflict does not occur either.

Rationale

Loads are served by the L1 data cache in program order, but the number of loads that the processor 
can perform in one cycle depends on whether a bank conflict exists between the loads:

Therefore, pairing loads that do not have a bank conflict helps maximize load throughput.

Example

Avoid code like this, where two loads without a bank conflict are separated by other instructions:

fld   qword ptr [eax]
fmul  qword ptr [ebx]
faddp st(3), st
fld   qword ptr [eax+16]
fmul  qword ptr [ebx+16]
faddp st(2), st

Instead, rearrange the two loads so they appear as a pair:

fld   qword ptr [eax]
fld   qword ptr [eax+16]
fmul  qword ptr [ebx+16]
faddp st(2), st
fmul  qword ptr [ebx]
faddp st(3), st

5.8 Placing Code and Data in the Same 64-Byte Cache 
Line

Optimization

Avoid placing code and data together within a cache line, especially if the data becomes 
modified.

Application

This optimization applies to:

• 32-bit software

When a bank conflict Then the number of loads the processor can perform per cycle is

Exists 1

Does not exist 2
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• 64-bit software

Rationale

Sharing code and data in the same 64-byte cache line may cause the L1 caches to thrash 
(unnecessarily cast out code or data) in order to maintain coherency between the separate instruction 
and data caches. AMD Family 10h processors have a cache-line size of 64 bytes. 

For example, consider the case of a memory-indirect JMP instruction that accesses data in a jump 
table that resides in the same 64-byte cache line as the JMP instruction. This mixing of code and data 
in the same cache line degrades performance.

Do not place critical code at the border between 32-byte-aligned code segments and data segments. 
Code at the beginning or end of a data segment should be executed as infrequently as possible or 
padded.

In summary, avoid self-modifying code and storing data in code segments.

5.9 Memory and String Routines

Optimization

Use the memory and string routines provided in the run-time libraries, rather than creating new 
custom versions.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

To achieve optimal performance, it is necessary to use different memory and string manipulation 
algorithms to handle different block sizes and alignments. These algorithms must consider system 
configuration as well as the cache and memory subsystems.

The run-time libraries have optimized routines that combine several algorithms. However, if it is 
necessary to create fast, specific-purpose memory or string routines or to build routines that 
complement the run-time library, the following pseudo-code can be used as a guide to write new 
routines combining different algorithms:
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if (block size is less than 8 bytes for 32 bits or less than 16 bytes for 64 
bits):
  perform operations in byte, word and doubleword for 32 bits and additionally 
  in quad-word for 64 bits, starting with the widest operation;

if (block size is between 8 bytes for 32 bits or 16 bytes for 64 bits and L1   
    cache-line size):
  perform operations in the natural word-size in a simple loop;

if (block size is between cache-line size and smallest page-size):
  perform operations in the natural word-size in an unrolled loop,  
  one cache-line size per iteration;

align the destination or a source block to the natural word-size;

if (block size is between smallest page-size and half of L1 cache-size):
  if (there is a suitable repeated string instruction)
    use repeated string instruction;
  else
    perform operations in the natural word-size in an unrolled loop, one  
    cache-line size per iteration;

if (block size is between half of L1 cache-size and half of L2 cache-size)
    perform operations in the natural word-size using temporal prefetching in an 
    unrolled loop, one cache-line size per iteration;

if (block size is between half of L2 cache-size and one-fourth of a core's share 
     of L3 cache-size)
   perform operations in the natural word-size using non-temporal prefetching in 
   an unrolled loop, one cache-line size per iteration;

This pseudo-code makes the following assumptions: 

• Some thresholds are specified as half of a cache level because some routines have either two 
sources (e.g., strcmp( )) or a source and a destination (e.g., memcpy( )). A routine that has a 
single source or destination (e.g., strlen( ) or memset( )), could use all of a cache level for its 
work. However, while there is usually no drawback in using all of the L1 or even L2 caches, using 
all of the L3 cache can hurt the performance of other processes on a system. Using only up to a 
core's share of the L3 cache (e.g., on a four-core processor, up to 1/4 of the L3 cache) is 
recommended.

• The natural word-size is a doubleword for 32 bits and a quadword for 64 bits.

• The block size thresholds between one algorithm and the other assume that the block size is 
unknown at the beginning. Therefore, if the block size is known beforehand to be within a certain 
range, experimentation may lead to different thresholds.

• Memory routines are almost completely memory bandwidth-limited; operations within loops 
being limited to data movement and pointers and counter maintenance. However, string routines 
may additionally require some computation to find the terminating null character or to ignore 
character case; this computation can dominate memory bandwidth. Therefore, some string 
routines may require many fewer algorithms than memory routines.
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• Each core on a processor has access to exclusive L1 and L2 data cache and to a shared L3 cache.

• Instead of using the L2 cache-size as a threshold, particular needs and experimentation may favor 
using the L3 cache-size as a threshold.

• When software prefetching is used, the distance is typically eight cache lines, but experimentation 
may lead to a different distance.

The current generation of AMD64 processors has:

• L1 cache line-size of 64 bytes.

• Smallest page-size of 4096 bytes.

• L1 data cache size of 64 Kbytes.

• L2 cache size between 512 Kbytes and 1 Mbyte.

• L3 cache size between zero and 8 Mbytes.

See also Section 5.5, “Prefetch and Streaming Instructions” on page 81, and Section 8.3, “Repeated 
String Instructions” on page 126.

5.10 Stack Considerations

Optimization

Make sure the stack is suitably aligned for the local variable with the largest base type. Then, using 
the technique described in Section 2.16, “Sorting and Padding C and C++ Structures’ on page 31, all 
variables can be properly aligned with no padding.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Aligning the Stack for Local Variables

A calling convention requires a certain stack alignment on function entry. For example, the Win32 32-
bit ABI arranges for 32-bit stack alignment.

If a function has no local variables with a base type larger than the guaranteed stack alignment, no 
further work is necessary. If the function has local variables whose base type is larger than a 
doubleword, insert additional code to ensure proper alignment of the stack. For example, SSE packed 
data requires 16-byte alignment. The following code achieves double quadword (16-byte) alignment:

prologue:
   push ebp
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   mov  ebp, esp
   sub  esp, SIZE_OF_LOCALS   ; Size of local variables
   and  esp, –16
   ...                        ; Push registers that need to be preserved.

epilogue:                     ; Pop register that needed to be preserved.
   leave
   ret

For functions which have local variables that need 8-byte alignment, change the above code to use:

   and esp, -8

With this technique, function arguments can be accessed through EBP, and local variables can be 
accessed through ESP. Save and restore EBP between the prologue and the epilogue to keep it free for 
general use.

5.11 Cache Issues When Writing Instruction Bytes to 
Memory

Optimization 

When writing data consisting of instructions for future execution to memory use streaming store 
(write-combining) instructions such as MOVNTDQ and MOVNTI. 

Application 

This optimization applies to: 

• 32-bit software

• 64-bit software

Rationale 

This optimization pertains to software that writes executable instructions to memory for subsequent  
execution, such as might be done by a just-in-time compiler. If normal store instructions are used to 
write the code to memory, then the cache lines will be in a modified state (either in L1 data cache or in 
L2). When the processor eventually tries to execute the code, it will miss in the instruction cache. 
Because the instruction cache cannot contain cache lines that are in a modified state, the data must be 
flushed to memory before it can be fetched into the instruction cache.  This unnecessarily evicts 
possibly useful information from the caches. By using write-combining instructions, the contents of 
the cache is preserved with no performance penalty, and this possibly provides a performance 
improvement.
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5.12 Interleave Loads and Stores

Optimization

When loading and storing data as in a copy routine, the organization of the sequence of loads and 
stores can affect performance.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

When using SSE and SSE2 instructions to perform loads and stores, it is best to interleave them in the 
following pattern—Load, Store, Load, Store, Load, Store, etc. This enables the processor to maxi-
mize the load/store bandwidth.

If using MMX loads and stores in 32-bit mode, the loads and stores should be arranged in the 
following pattern—Load, Load, Store, Store, Load, Load, Store, Store, etc.

Example

The following example illustrates a sequence of 128-bit loads and stores:

movdqa     xmm0,[rdx+r8*8]           ; Load
movntdq    [rcx+r8*8],xmm0           ; Store
movdqa      xmm1,[rdx+r8*8+16]       ; Load
movntdq    [rcx+r8*8+16],xmm1        ; Store

5.13 Using 1-Gbyte Virtual Memory Pages

Optimization

Although AMD Family 10h processor functionally supports 1-Gbyte pages for either code or data, for 
best performance, 1-Gbyte pages should only be used for data. They should not be used for code or 
for code mixed with data.

Application 

This optimization applies to:

• 32-bit software
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• 64-bit software

Rationale

Refer to Appendix A and you will see that there are no ITLBs for 1-Gbyte pages. Microarchitectural 
trade-offs were made such that 1-Gbyte pages which map to ITLBs have poor performance 
themselves, and in addition they cause poor performance for all other pages. Thus the use of 1-Gbyte 
pages for pure code or for code mixed with data is not recommended.
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Chapter 6 Branch Optimizations

The optimizations in this chapter help improve branch prediction and minimize branch penalties.

This chapter covers the following topics:

6.1 Branch Alignment and Density

Optimization

When possible, align branch targets to a 32-byte boundary and limit the number of branches in a 16-
byte boundary to three.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

AMD Family 10h processors have the capability to cache the branch-prediction history for a 
maximum of three near branches (CALL, JMP, conditional branches, or returns) per 16-byte fetch 
window. A branch instruction that crosses a 16-byte boundary is counted in the second 16-byte 
window. Due to architectural restrictions, a branch that is split across a 16-byte boundary cannot 
dispatch with any other instructions when it is predicted to be taken. Perform this alignment by 
rearranging code; it is not beneficial to align branches using padding sequences.

The branch prediction hardware can only support up to three near branches per aligned 16 byte 
window. Coding more than three branches in the same 16-byte code window may lead to conflicts in  
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prediction storage. To avoid conflicts in branch prediction storage, space out branches in such a way  
that three or fewer exist in a given 16-byte code window, with one of the three being preferably an 
unconditional branch if at all possible. For absolute optimal performance, try to limit branches to one 
per 16-byte code window. If there is a jump table that contains many frequently executed branches, 
pad the table entries to 8 bytes each to assure that there are never more than three branches per 16-
byte block of code. Note that a branch is assigned to a region based on its end byte and not its start 
byte.

Only branches that have been taken at least once are entered into the branch prediction, and therefore 
only those branches count toward the three-branch limit.

By aligning branch targets to 32-byte boundaries, the number of instructions in a fetch-window to be  
processed by the following stages is maximized.

6.2 Three-Byte Return-Immediate RET Instruction

Optimization

Use of a three-byte return-immediate can improve performance. The single-byte near-return 
(opcode C3h) of the RET instruction should be used carefully. Specifically, avoid the following two 
situations:

• Any kind of branch (either conditional or unconditional) that has the single-byte near-return RET 
instruction as its target. See “Examples” on page 101.

• A conditional branch that occurs in the code directly before the single-byte near-return RET 
instruction. See “Examples” on page 101 

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

The processor is sometimes unable to apply a branch prediction to the single-byte near-return form 
(opcode C3h) of the RET instruction.

The easiest way to assure the utilization of the branch prediction mechanism is to use a three-byte 
RET imm16 instruction with an imm16 value of 0, which produces the functional equivalent of the 
single-byte near-return RET instruction, but is not affected by the prediction limitations outlined 
above. To use a three-byte RET imm16 with an imm16 value of 0, define a text macro named 
RETIMM0 and use it instead of the RET instruction to force the intended object code.
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RETIMM0 TEXTEQU <DB 0C2h, 0, 0>

Examples

Avoid branches in which the target of the branch is a single-byte near-return:

   jmp label   ; Jump to a single-byte near-return RET instruction.
   ...
label:
   ret         ; RET is potentially mispredicted.

Avoid branches that immediately precede a single-byte near-return:

jz  label   ; Conditional branch is not taken.
ret         ; RET is a fall-through instruction,
            ;  potentially mispredicted.

If possible, move an existing instruction, such as a POP instruction that is part of the function 
epilogue, so that it is inserted between the branch and the RET instruction:

jz  label
pop ebp   ; Pad with at least one non-branch instruction.
ret

If no existing instruction is available for this purpose, then insert a NOP instruction to provide the 
necessary padding or, better still, use the recommended three-byte version of RET imm16.

6.3 Branches That Depend on Random Data

Optimization

Avoid conditional branches that depend on random data, as these branches are difficult to 
predict.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Suppose a piece of code receives a random stream of characters “A” through “Z” and branches if the 
character is before “M” in the collating sequence. Data-dependent branches acting upon basically 
random data cause the branch-prediction logic to mispredict the branch about 50% of the time.

If possible, design branch-free alternative code sequences that result in shorter average execution 
time. This technique is especially important if the branch body is small. 
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Examples

The following examples illustrate this concept using the CMOVxx instruction.

Signed Integer ABS Function (x = labs(x))

mov   ecx, [x]   ; Load value.
mov   ebx, ecx   ; Save value.
neg   ecx        ; Negate value.
cmovs ecx, ebx   ; If negated value is negative, select value.
mov   [x], ecx   ; Save labs result.

Unsigned Integer min Function (z = x < y ? x : y)

mov    eax, [x]   ; Load x value.
mov    ebx, [y]   ; Load y value.
cmp    eax, ebx   ; EBX <= EAX ? CF = 0 : CF = 1
cmovnc eax, ebx   ; EAX = (EBX <= EAX) ? EBX : EAX
mov    [z], eax   ; Save min(X,Y).

Conditional Write
// C code:

int a, b, i, dummy, c[BUFSIZE];

if (a < b) {
   c[i++] = a;
}

;--------------
; Assembly code:

lea esi, [dummy]   ; &dummy
xor ecx, ecx       ; i = 0
...
lea    edi, [c+ecx*4]   ; &c[i]
lea    edx, [ecx+1]     ; i++
cmp    eax, ebx         ; a < b ?
cmovge edi, esi         ; ptr = (a >= b) ? &dummy : &c[i]
cmovl  ecx, edx         ; a < b ? i : i + 1
mov    [edi], eax       ; *ptr = a
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6.4 Pairing CALL and RETURN

Optimization

For each CALL to a subroutine, use a RET instruction to return to the caller.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

As explained in “Branch-Prediction Table” on page 224, the Return Address Stack (RAS) can predict 
a limited number of branches by the RET instruction. CALL instructions push the next rIP on the 
return address stack. The corresponding RET instruction uses this address for its target prediction. If 
the RAS overflows, then the oldest return address is lost and the corresponding RET will likely be 
mispredicted, considerably lengthening the latency of the RET instruction.

When a CALL instruction is not paired with a RET instruction, the RAS can get out of sync, 
lengthening the latency of other RET instructions whose return addresses remain in the RAS. 
However, there is an important special case, shown in the following example, commonly used to get 
the value in the EIP register into a general-purpose register in 32-bit software:
    CALL 0h
    POP  EAX   ; EAX contains the value of EIP

When the CALL instruction is used with a displacement of zero, it is recognized and treated specially; 
the RAS remains consistent even if there is not a corresponding RET instruction.

To get the value in the RIP register into a general-purpose register in 64-bit software, you can use 
RIP-relative addressing, as in the following example:

 
LEA  RAX, [RIP+0] ; RAX contains the value of RIP.
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6.5 Nonzero Code-Segment Base Values

Optimization

In 32-bit threads, avoid using a nonzero code-segment (CS) base value. (In 64-bit mode, segmentation 
is disabled and the segment base value is ignored and treated as zero.)

Application

This optimization applies to:

• 32-bit software

Rationale

A nonzero CS base value causes an additional two cycles of branch-misprediction penalty when 
compared with a CS base value of zero.

6.6 Replacing Branches

Optimization

Use muxing constructs to simulate conditional moves in SSE or MMX code.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Branches can negatively impact the performance of code. In SSE or MMX code, if the body of the 
branch is small, you can achieve higher performance instead computing both paths of the branch and 
using muxing constructs to construct the result. This simulates predicated execution or conditional 
moves. There are many SSE and SSE2 instructions that can be useful for accomplishing this. The 
principal instructions are as follows: ANDPS, ANDPD, ANDNPS, ANDNPD, CMPPS, CMPSS, 
CMPPD, CMPSD, MINPS, MINSS, MINPD, MINSD, MAXPS, MAXSS, MAXPD, MAXSD, 
ORPS, ORPD, PAND, PANDN, PCMPEQB, PCMPEQD, PCMPEQW, PCMPGTB, PCMPGTD, 
PCMPGTW, PMAXSW, PMAXUB, PMINSW, PMINUB, POR, PXOR, XORPS, and XORPD.

When using MMX registers, the following instructions may be useful for eliminating branches: 
PCMPGTB, PCMPGTD, PCMPGTW, PAND, PANDN, POR, and PXOR.
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Muxing Constructs

The most important construct to use in avoiding branches in SIMD code is a two-way muxing 
construct that is equivalent to the ternary operator (?:) in C and C++.

Examples

SSE Solution (Preferred)

; r = (x < y) ? a : b
;
; In:  XMM0 = a
;      XMM1 = b
;      XMM2 = x
;      XMM3 = y
; Out: XMM0 = r

cmpps  xmm2, xmm3, 1   ; x < y ? 0xffffffff : 0
andps  xmm0, xmm2      ; x < y ? a : 0
andnps xmm2, xmm1      ; x < y ? 0 : b
orps   xmm0, xmm2      ; x < y ? a : b

MMX™ Solution (Preferred)
; r = (x < y) ? a : b
;
; In: MM0 = a
;     MM1 = b
;     MM2 = x
;     MM3 = y
; Out: MM0 = r

pcmpgtd mm3, mm2 ; y > x ? 0xffffffff : 0
pand mm0, mm3 ; y > x ? a: 0
pandn mm3, mm1 ; y > x > 0 : b
por mm0, mm3 ; r = y > x ? a : b

Avoid the following muxing construct.  This example reverses the order of the PAND and PANDN 
instructions.  Because the use of PANDN destroys the mask created by PCMPGTD, the mask must be 
saved, requiring the use of an additional register. This adds an instruction, lengthens the dependency 
chain, and increases register pressure.

MMX™ Solution (Avoid)

; r = (x < y) ? a : b
;
; In:  MM0 = a
;      MM1 = b
;      MM2 = x
;      MM3 = y
; Out: MM0 = r
Chapter 6 Branch Optimizations 105



40546 Rev. 3.08 October 2008Software Optimization Guide for AMD Family 10h Processors
pcmpgtd   mm3, mm2   ; y > x ? 0xffffffff : 0
movq      mm4, mm3   ; Duplicate mask
pandn     mm3, mm1   ; y > x ? 0: b
pand      mm0, mm4   ; y > x ? a : 0

6.7 Avoiding the LOOP Instruction

Optimization

Avoid using the LOOP instruction.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

The LOOP instruction has a latency of 7 cycles in 32-bit protected mode and 8 cycles in 64-bit 
protected mode.

Example

Avoid code like this, which uses the LOOP instruction:

label:
   ...
   loop label ;Latency is 7/8 cycles, depending upon whether we  

; are in 32-bit or 64-bit protected mode.

Instead, replace the loop instruction with a DEC and a JNZ:

label:
   ...
   dec rcx ;Latency of 1 cycle for register operand form of DEC.
   jnz label ;Latency of 1 cycle. 

6.8 Far Control-Transfer Instructions

Optimization

Use far control-transfer instructions only when necessary. (Far control-transfer instructions include 
the far forms of JMP, CALL, and RET, as well as the INT, INTO, and IRET instructions.)
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Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

The processor’s branch-prediction unit does not predict far branches.

6.9 Branches Not-Taken Preferable to  Branches 
Taken

Optimization

Whenever possible, use branches that are biased toward being not-taken over branches that are biased 
toward being taken.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Correctly-predicted taken branches have at least one prediction-based bubble while not-taken 
branches do not. In addition, taken branches consume more branch prediction resources.
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Chapter 7 Scheduling Optimizations

The optimizations discussed in this chapter help improve scheduling in the processor.

This chapter covers the following topics:

7.1 Instruction Scheduling by Latency

Optimization

In general, select instructions with shorter latencies that are DirectPath—not VectorPath—
instructions. For a list of instruction latencies and classifications, see Appendix C, “Instruction 
Latencies.”

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

AMD Family 10h processors can execute up to three AMD64 instructions per cycle, with each 
instruction possibly having a different latency. AMD Family 10h processors have flexible scheduling, 
but for absolute maximum performance, schedule instructions according to their latencies and data 
dependencies. The goal is to reduce the overall length of dependency chains.
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7.2 Loop Unrolling

Optimization

Use loop unrolling where appropriate to increase instruction-level parallelism:

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Loop Unrolling

Loop unrolling is a technique that duplicates the body of a loop one or more times in order to increase 
the number of instructions relative to the branch and allow operations from different loop iterations to 
execute in parallel.

There are two types of loop unrolling:

• Complete loop unrolling

• Partial loop unrolling

Complete Loop Unrolling

Complete loop unrolling eliminates the loop overhead completely by replacing the loop with copies 
of the loop body.

Because complete loop unrolling removes the loop counter, it also reduces register pressure. 
However, completely unrolling very large loops can result in the inefficient use of the L1 instruction 
cache.

If all of these conditions are true Then use

• The loop is in a frequently executed piece of code.

• The number of loop iterations is known at compile time.

• The loop body includes fewer than 10 instructions.

Complete loop unrolling

• Spare registers are available (for example, when operating in 64-bit mode, 
where additional registers are available).

• The loop body is small, so that loop overhead is significant.

• The number of loop iterations is likely greater than 10.

Partial loop unrolling
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Example—Complete Loop Unrolling

In the following C code, the number of loop iterations is known at compile time and the loop body is 
less than 100 instructions:

#define ARRAY_LENGTH 3

int sum, i, a[ARRAY_LENGTH];

...
sum = 0;
for (i = 0; i < ARRAY_LENGTH; i++) {
   sum = sum + a[i];
}

To completely unroll an n-iteration loop, remove the loop control and replicate the loop body n times:

sum = 0;
sum = sum + a[0];
sum = sum + a[1];
sum = sum + a[2];

Partial Loop Unrolling

Partial loop unrolling reduces the loop overhead by duplicating the loop body several times, changing 
the increment in the loop, and adding cleanup code to execute any leftover iterations of the loop. The 
number of times the loop body is duplicated is known as the unroll factor.

However, partial loop unrolling may increase register pressure.

Example—Partial Loop Unrolling

In the following C code, each element of one array is added to the corresponding element of another 
array:

double a[MAX_LENGTH], b[MAX_LENGTH];

for (i = 0; i < MAX_LENGTH; i++) {
   a[i] = a[i] + b[i];
}

Without loop unrolling, this is the equivalent assembly-language code:

   mov ecx, MAX_LENGTH   ; Initialize counter.
   mov eax, OFFSET a     ; Load address of array a into EAX.
   mov ebx, OFFSET b     ; Load address of array b into EBX.

add_loop:
   movsd  xmm0, QWORD PTR [eax] ; Load double pointed to by EAX
   addsd  xmm0, QWORD PTR [ebx] ; Add double pointed to by EBX
   movsd  QWORD PTR [eax], xmm0 ; Store double result.   
   add  eax, 8            ; Point to next element of array a.
   add  ebx, 8            ; Point to next element of array b.
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   dec  ecx               ; Decrement counter.
   jnz  add_loop          ; If elements remain, then jump.

The rolled loop consists of seven instructions. AMD Family 10h processors can decode and retire as 
many as three instructions per cycle, so it cannot execute faster than three iterations in seven cycles 
(3/7 of a floating-point add per cycle). However, the pipelined floating-point adder allows one add 
every cycle.

After partial loop unrolling using an unroll factor of two, the new code creates a potential end case 
that must be handled outside the loop:

   mov ecx, MAX_LENGTH   ; Initialize counter.
   mov eax, OFFSET a     ; Load address of array a into EAX.
   mov ebx, OFFSET b     ; Load address of array b into EBX.

   shr  ecx, 1            ; Divide counter by 2 (the unroll factor).
   jnc  add_loop          ; If original counter was even, then jump.
   ; Handle the end case.
   movsd  xmm0, QWORD PTR [eax] ; Load double pointed to by EAX
   addsd   xmm0, QWORD PTR [ebx] ; Add double pointed to by EBX
   movsd  QWORD PTR [eax], xmm0 ; Store double result.   
   add  eax, 8            ; Point to next element of array a.
   add  ebx, 8            ; Point to next element of array b.

add_loop:
   movsd  xmm0, QWORD PTR [eax]  ; Load double pointed to by EAX
   addsd   xmm0, QWORD PTR [ebx] ; Add double pointed to by EBX
   movsd  QWORD PTR [eax], xmm0 ; Store double result.   
   movsd  xmm0, QWORD PTR [eax+8]  ; repeat for next double 
   addsd   xmm0, QWORD PTR [ebx+8] ; Add double pointed to by EBX
   movsd  QWORD PTR [eax], xmm0 ; Store double result.
   add  eax, 16             ; Point to next element of array a.
   add  ebx, 16             ; Point to next element of array b.
   dec  ecx                 ; Decrement counter.
   jnz  add_loop            ; If elements remain, then jump.

The unrolled loop consists of 10 instructions. Based on the decode/retire bandwidth of three 
instructions per cycle, this loop goes no faster than three iterations in 10 cycles (which is equivalent to 
6/10 of a floating-point add per cycle because there are two additions per iteration), or 1.4 times as 
fast as the original loop.

3 instructions
cycle

-----------------------------------x iteration
7 instructions
-----------------------------------x 1 FADD

iteration
------------------------ 3 FADDs

7 cycles
------------------------ 0.429FADDs/cycle= =

3 instructions
cycle

-----------------------------------x iteration
10 instructions
--------------------------------------x2 FADDs

iteration
------------------------ 6 FADDs

10 cycles
------------------------- 0.600 FADDs cycle§= =
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Deriving the Loop Control for Partially Unrolled Loops

A frequently used loop construct is a counting loop. In a typical case, the loop count starts at some 
lower bound (low), increases by some fixed, positive increment (inc) for each iteration of the loop, 
and may not exceed some upper bound (high):

for (k = low; k <= high; k += inc) {
   x[k] = ...
}

The following code shows how to partially unroll such a loop by an unroll factor (factor) and how to 
derive the loop control for the partially unrolled version of the loop:

for (k = low; k <= (high - (factor - 1) * inc); k += factor * inc) {
   // Begin the series of unrolled statements.
   x[k + 0 * inc] = ...
   // Continue the series if the unrolling factor is greater than 2.
   x[k + 1 * inc] = ...
   x[k + 2 * inc] = ...
   ...
   // End the series.
   x[k + (factor - 1) * inc] = ...
}  

// Handle the end cases.
for (k = k; k <= high; k += inc) {
   x[k] = ...
}

Related Information

For information on loop unrolling at the C-source level, see “Unrolling Small Loops” on page 17.

7.3 Inline Functions

Optimization

Use function inlining when:

• A function is called from just one site in the code. (For the C language, determination of this 
characteristic is made easier if functions are explicitly declared static unless they require 
external linkage.)

• A function—once inlined—contains fewer than 25 machine instructions.
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Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

There are advantages and disadvantages to function inlining. On the one hand, function inlining 
eliminates function-call overhead and allows better register allocation and instruction scheduling at 
the site of the function call. The disadvantage of function inlining is decreased code reference locality, 
which can increase execution time due to instruction cache misses.

For functions that create fewer than 25 machine instructions once inlined, it is likely that the function-
call overhead is close to, or more than, the time spent executing the function body. In these cases, 
function inlining is recommended.

Function-call overhead on the AMD Family 10h processors can be low because calls and returns are 
executed very quickly due to the use of prediction mechanisms. However, there is still overhead due 
to passing function arguments through memory, which creates store-to-load-forwarding 
dependencies. (In 64-bit mode, this overhead is typically avoided by passing more arguments in 
registers, as specified in the AMD64 Application Binary Interface [ABI] for the operating system.)

For longer functions, inlining yields diminishing returns. A function that results in the insertion of 
more than 500 machine instructions at the call site should probably not be inlined. Some larger 
functions might consist of multiple, relatively short paths. The execution time of the body of such a 
function may be relatively short compared to the function overhead, in which case inlining can 
improve performance. Profiling information is the best guide in determining whether to inline such 
large functions.

Additional Recommendations for Compiler Writers

In general, function inlining works best if the compiler utilizes feedback from a profiler to identify the 
function calls most frequently executed. If such data is not available, a reasonable approach is to 
concentrate on function calls inside loops. Do not consider as candidates for inlining any functions 
that are directly recursive. However, if they are end-recursive, the compiler should convert them to an 
iterative equivalent to avoid potential overflow of the processor’s return-prediction mechanism (return 
stack) during deep recursion. For best results, a compiler should support function inlining across 
multiple source files. In addition, a compiler should provide intrinsic functions for commonly used 
library routines, such as sin, strcmp, or memcpy.
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7.4 Address-Generation Interlocks

Optimization

Avoid address-generation interlocks by scheduling loads and stores whose addresses can be 
calculated quickly ahead of loads and stores that require the resolution of a long dependency chain in 
order to generate their addresses.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Address-Generation Interlocks

An address-generation interlock is a condition in which newer loads and stores whose addresses have 
already been calculated by the processor are blocked by older loads and stores whose addresses have 
not yet been calculated.

Rationale

The processor schedules instructions that access the data cache (loads and stores) in program order. 
By carefully choosing the order of loads and stores, you can avoid address-generation interlocks.

Example

Avoid code that places a load whose address takes longer to calculate before a load whose address can 
be determined more quickly:

add ebx, ecx                   ; Instruction 1
mov eax, DWORD PTR [10h]       ; Instruction 2 (non-dependent address calc.)
mov ecx, DWORD PTR [eax+ebx]   ; Instruction 3 (dependent address calc.)
mov edx, DWORD PTR [24h]       ; This load is stalled from accessing the
                               ;  data cache due to the long latency
                               ;  caused by generating the address for
                               ;  instruction 3.

Where possible, reorder instructions so that loads with simpler address calculations come before 
those with more complex address calculations:

add ebx, ecx                   ; Instruction 1
mov eax, DWORD PTR [10h]       ; Instruction 2
mov edx, DWORD PTR [24h]       ; Place load above instruction 3 to avoid
                               ; address-generation interlock stall.
mov ecx, DWORD PTR [eax+ebx]   ; Instruction 3
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7.5 MOVZX and MOVSX

Optimization

Use the MOVZX and MOVSX instructions to zero-extend or sign-extend, respectively, an operand to 
a larger size.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Typical code for zero extension that replaces MOVZX uses more decode and execution resources than 
MOVZX. It also has higher latency due to the superset dependency between the XOR and the MOV, 
which requires a merge operation.

Example

When zero-extending an operand (in this case, a byte), avoid code such as the following:

xor rax, rax
mov al, mem

Instead, use the MOVZX instruction:

movzx rax, BYTE PTR mem

7.6 Pointer Arithmetic in Loops

Optimization

Minimize pointer arithmetic in loops, especially if the loop bodies are small. Take advantage of 
scaled-index addressing modes to utilize the loop counter as an index into memory arrays.

Application

This optimization applies to:

• 32-bit software

• 64-bit software
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Rationale

In small loops, pointer arithmetic causes significant overhead. Using scaled-index addressing modes 
has no negative impact on execution speed, but the reduced number of instructions preserves decode 
bandwidth.

Example

Consider the following C code, which adds the elements of two arrays and stores them in a third 
array:

int a[MAXSIZE], b[MAXSIZE], c[MAXSIZE], i;

for (i = 0; i < MAXSIZE; i++) {
   c[i] = a[i] + b[i];
}

Avoid an assembly-language equivalent like this, which uses base and displacement components (for 
example, [esi+a]) to compute array-element addresses, requiring additional pointer arithmetic to 
increment the offsets into the forward-traversed arrays:

   mov ecx, MAXSIZE   ; Initialize loop counter.
   xor esi, esi       ; Initialize offset into array a.
   xor edi, edi       ; Initialize offset into array b.
   xor ebx, ebx       ; Initialize offset into array c.

add_loop:
   mov eax, [esi+a]   ; Get element from a.
   mov edx, [edi+b]   ; Get element from b.
   add eax, edx       ; a[i] + b[i]
   mov [ebx+c], eax   ; Write result to c.
   add esi, 4         ; Increment offset into a.
   add edi, 4         ; Increment offset into b.
   add ebx, 4         ; Increment offset into c.
   dec ecx            ; Decrement loop count
   jnz add_loop       ;  until loop count is 0.

Instead, traverse the arrays in a downward direction (from higher to lower addresses), in order to take 
advantage of scaled-index addressing (for example, [ecx*4+a]), which minimizes pointer arithmetic 
within the loop:

   mov ecx, MAXSIZE - 1   ; Initialize index.

add_loop:
   mov eax, [ecx*4+a]   ; Get element from a.
   mov edx, [ecx*4+b]   ; Get element from b.
   add eax, edx         ; a[i] + b[i]
   mov [ecx*4+c], eax   ; Write result to c.
   dec ecx              ; Decrement index
   jns add_loop         ;  until index is negative.

A change in the direction of traversal is possible only if each loop iteration is completely independent 
of the others. If you cannot change the direction of traversal for a given array, it is still possible to 
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minimize pointer arithmetic by using as a base address a displacement that points to the byte past the 
end of the array, and using an index that starts with a negative value and reaches zero when the loop 
expires:

   mov ecx, (-MAXSIZE)   ; Initialize index.

add_loop:
   mov eax, [ecx*4+a+MAXSIZE*4]   ; Get element from a.
   mov edx, [ecx*4+b+MAXSIZE*4]   ; Get element from b.
   add eax, edx                   ; a[i] + b[i]
   mov [ecx*4+c+MAXSIZE*4], eax   ; Write result to c.
   inc ecx                        ; Increment index
   jnz add_loop                   ;  until index is 0.

If the base addresses of the arrays are held in registers (for example, when the base addresses are 
passed as the arguments of a function), biasing the base addresses requires additional instructions to 
perform the biasing at run time, and a small amount of additional overhead is incurred.

7.7 Pushing Memory Data Directly onto the Stack

Optimization

Push memory data directly onto the stack instead of loading it into a register first.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Pushing memory data directly onto the stack reduces register pressure and eliminates data 
dependencies.

Example

Avoid code that first loads the memory data into a register and then pushes it onto the stack:

mov  rax, mem
push rax

Instead, push the memory data directly onto the stack:

push mem
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Chapter 8 Integer Optimizations

The optimizations in this chapter help improve integer performance.

This chapter covers the following topics:

8.1 Replacing Division with Multiplication

Optimization

Replace integer division by constants with multiplication by the reciprocal. 

Rationale

AMD Family 10h processors have very fast integer multiplication instructions (IMUL, MUL) 
whereas the integer division instructions (IDIV and DIV) are vector instructions having a variable 
latency that depends on the number of bits in the divisor. (For exact latencies, see “Optimizing Integer 
Division” on page 141 and Appendix C, “Instruction Latencies.”)

For this reason division by a constant should be replaced by multiplication by the reciprocal of the 
constant. The exact code to use for multiplication by the reciprocal of the constant can be found either 
in the examples later in this section or by using the utilities in “Derivation of Algorithm, Multiplier, 
and Shift Factor for Integer Division by Constants” on page 135.

Multiplication by Reciprocal (Division) Utility

The code for the utilities is shown in “Derivation of Algorithm, Multiplier, and Shift Factor for 
Integer Division by Constants” on page 135. The utilities provided in this document are for reference 
only and are not supported by AMD.
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Signed Division Utility

The sdiv.exe utility finds the fastest code for signed division by a constant. The utility displays the 
code after the user enters a signed constant divisor. To redirect the code to a file, type the following 
command:

sdiv > example.out

Unsigned Division Utility

The udiv.exe utility finds the fastest code for unsigned division by a constant. The utility displays 
the code after the user enters an unsigned constant divisor. To redirect the code to a file, type the 
following command:

udiv > example.out

Unsigned Division by Multiplication of Constant

Algorithm: Divisors 1 ≤ d < 231, Odd d

The following code shows an unsigned division using a constant value multiplier.

; a = algorithm
; m = multiplier
; s = shift factor

; a == 0
mov eax, m
mul dividend
shr edx, s   ; EDX = quotient

; a == 1
mov eax, m
mul dividend
add eax, m
adc edx, 0
shr edx, s   ; EDX = quotient

Code for determining the algorithm (a), multiplier (m), and shift factor (s) from the divisor (d) is 
found in the section “Derivation of Algorithm, Multiplier, and Shift Factor for Integer Division by 
Constants” on page 135.

Algorithm: Divisors 231 ≤ d < 232

For divisors 231 ≤  d < 232, the possible quotient values are either 0 or 1. For this reason, it is easy to 
establish the quotient by simple comparison of the dividend and divisor. When the dividend needs to 
be preserved, consider using code like the following:

; In:  EAX = dividend
; Out: EDX = quotient
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xor edx, edx   ; 0
cmp eax, d     ; CF = (dividend < divisor) ? 1 : 0
sbb edx, -1    ; quotient = 0 + 1 - CF = (dividend < divisor) ? 0 : 1

When it is not necessary to preserve the dividend, the division can be accomplished without the use of 
an additional register, thus reducing register pressure, as shown in the following example:

; In:  EAX = dividend
; Out: EDX = quotient

cmp edx, d    ; CF = (dividend < divisor) ? 1 : 0
mov eax, 0    ; 0
sbb eax, -1   ; quotient = 0 + 1 - CF = (dividend < divisor) ? 0 : 1

Simpler Code for Restricted Dividend

Integer division by a constant can be accelerated by limiting the range of the dividend, which removes 
a shift associated with most divisors. For example, for a divide-by-10 operation, use the following 
code, if the dividend is less than 4000_0005h:

mov eax, dividend
mov edx, 01999999Ah
mul edx
mov quotient, edx

Signed Division by Multiplication of Constant

Algorithm: Divisors 2 ≤ d < 231

The following algorithms work if the divisor is positive. If the divisor is negative, use ABS(d) instead 
of d, and append a NEG edx instruction to the code. These changes make use of the fact 
that n/–d = –(n/d).

; a is the algorithm to select between two sets of code 
;      sequences depending on the calculation of multiplier.
; m is the multiplier, the constant used with the multiply instruction.
; s is the amount of right shifting to accomplish the division after the
;      multiplication of a constant.

; a == 0
mov  eax, m 
imul dividend
mov  eax, dividend
shr  eax, 31
sar  edx, s
add  edx, eax        ; Quotient in EDX

; a == 1
mov  eax, m
imul dividend
mov  eax, dividend
add  edx, eax
shr  eax, 31
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sar  edx, s
add  edx, eax   ; Quotient in EDX

Code for determining the algorithm (a), multiplier (m), and shift factor (s) is shown in “Derivation of 
Algorithm, Multiplier, and Shift Factor for Integer Division by Constants” on page 135.

Signed Division by 2

; In:  EAX = dividend
; Out: EAX = quotient

cmp eax, 80000000h   ; CF = 1 if dividend >= 0.
sbb eax, -1          ; Increment dividend if it is < 0.
sar eax, 1           ; Perform right shift.

Signed Division by 2n

; In:  EAX = dividend
; Out: EAX = quotient

cdq                  ; Sign extend into EDX.
and edx, (2^n - 1)   ; Mask correction (use divisor - 1)
add eax, edx         ; Apply correction if necessary.
sar eax, (n)         ; Perform right shift by log2(divisor).

Signed Division by –2
; In:  EAX = dividend
; Out: EAX = quotient

cmp eax, 80000000h   ; CF = 1 if dividend >= 0.
sbb eax, -1          ; Increment dividend if it is < 0.
sar eax, 1           ; Perform right shift.
neg eax              ; Use (x / -2) == -(x / 2).

Signed Division by –(2n)
; In:  EAX = dividend
; Out: EAX = quotient

cdq                  ; Sign extend into EDX.
and edx, (2^n - 1)   ; Mask correction (-divisor - 1).
add eax, edx         ; Apply correction if necessary.
sar eax, (n)         ; Right shift by log2(-divisor).
neg eax              ; Use (x / -(2^n)) == (-(x / 2^n)).

Remainder of Signed Division by 2 or –2
; In:  EAX = dividend
; Out: EAX = remainder

cdq            ; Sign extend into EDX.
and eax, 1     ; Compute remainder.
xor eax, edx   ; Negate remainder if
sub eax, edx   ;  dividend was < 0.
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Remainder of Signed Division by 2n or –(2n)
; In:  EAX = dividend
; Out: EAX = remainder

cdq                  ; Sign extend into EDX.
and edx, (2^n - 1)   ; Mask correction (abs(divisor) - 1)
add eax, edx         ; Apply pre-correction.
and eax, (2^n - 1)   ; Mask out remainder (abs(divisor) - 1)
sub eax, edx         ; Apply pre-correction if necessary.

8.2 Alternative Code for Multiplying by a Constant

Optimization

Devise instruction sequences with lower latency to accomplish multiplication by certain constant 
multipliers.

Rationale

A 32-bit integer multiplied by a constant has a latency of 3 cycles; a 64-bit integer multiplied by a 
constant has a latency of 4 cycles. For certain constant multipliers, instruction sequences can be 
devised that accomplish the multiplication with lower latency. Because AMD Family 10h processors 
contain only one integer multiplier but three integer execution units, the replacement code can provide 
better throughput as well.

Most replacement sequences require the use of an additional temporary register, thus increasing 
register pressure. If register pressure in a piece of code that performs integer multiplication with a 
constant is already high, it could be better for the overall performance of that code to use the IMUL 
instruction instead of the replacement code. Similarly, replacement sequences with low latency but 
containing many instructions may negatively influence decode bandwidth as compared to the IMUL 
instruction. In general, replacement sequences containing more than four instructions are not 
recommended.

The following code samples are designed for the original source to receive the final result. Other 
sequences are possible if the result is in a different register. Sequences that do not require a temporary 
register are favored over those requiring a temporary register, even if the latency is higher. To keep 
code size small, arithmetic-logic-unit operations are preferred over shifts. Similarly, both arithmetic-
logic-unit operations and shifts are favored over the LEA instruction.

There are improvements in the AMD Family 10h processors’ multiplier over that of previous x86 
processors. For this reason, when doing 32-bit multiplication, only use the alternative sequence if the 
alternative sequence has a latency that is less than or equal to 2 cycles. For 64-bit multiplication, only 
use the alternative sequence if the alternative sequence has a latency that is less than or equal to 
3 cycles.
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Examples

by 2:   add reg1, reg1            ; 1 cycle

by 3:   lea reg1, [reg1+reg1*2]   ; 2 cycles

by 4:   shl reg1, 2               ; 1 cycle

by 5:   lea reg1, [reg1+reg1*4]   ; 2 cycles

by 6:   lea reg1, [reg1+reg1*2]   ; 3 cycles
        add reg1, reg1

by 7:   mov reg2, reg1            ; 2 cycles
        shl reg1, 3
        sub reg1, reg2

by 8:   shl reg1, 3               ; 1 cycle

by 9:   lea reg1, [reg1+reg1*8]   ; 2 cycles

by 10:  lea reg1, [reg1+reg1*4]   ; 3 cycles
        add reg1, reg1

by 11:  lea reg2, [reg1+reg1*8]   ; 3 cycles
        add reg1, reg1
        add reg1, reg2

by 12:  lea reg1, [reg1+reg1*2]   ; 3 cycles
        shl reg1, 2

by 13:  lea reg2, [reg1+reg1*2]   ; 3 cycles
        shl reg1, 4
        sub reg1, reg2

by 14:  lea reg2, [reg1+reg1]     ; 3 cycles
        shl reg1, 4
        sub reg1, reg2

by 15:  mov reg2, reg1            ; 3 cycles
        shl reg1, 4
        sub reg1, reg2

by 16:  shl reg1, 4               ; 1 cycle

by 17:  mov reg2, reg1            ; 2 cycles
        shl reg1, 4
        add reg1, reg2

by 18:  lea reg1, [reg1+reg1*8]   ; 3 cycles
        add reg1, reg1

by 19:  lea reg2, [reg1+reg1*2]   ; 3 cycles
        shl reg1, 4
        add reg1, reg2
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by 20:  lea reg1, [reg1+reg1*4]   ; 3 cycles
        shl reg1, 2

by 21:  lea reg2, [reg1+reg1*4]   ; 3 cycles
        shl reg1, 4
        add reg1, reg2

by 22:  imul reg1, 22             ; Use the IMUL instruction.

by 23:  lea reg2, [reg1+reg1*8]   ; 3 cycles
        shl reg1, 5
        sub reg1, reg2

by 24:  lea reg1, [reg1+reg1*2]   ; 3 cycles
        shl reg1, 3

by 25:  lea reg2, [reg1+reg1*8]   ; 3 cycles
        shl reg1, 4
        add reg1, reg2

by 26:  imul reg1, 26             ; Use the IMUL instruction.

by 27:  lea reg2, [reg1+reg1*4]   ; 3 cycles
        shl reg1, 5
        sub reg1, reg2

by 28:  lea reg2, [REG1*4]        ; 3 cycles
        shl reg1, 5
        sub reg1, reg2

by 29:  lea reg2, [reg1+reg1*2]   ; 3 cycles
        shl reg1, 5
        sub reg1, reg2

by 30:  lea reg2, [reg1+reg1]     ; 3 cycles
        shl reg1, 5
        sub reg1, reg2

by 31:  mov reg2, reg1            ; 2 cycles
        shl reg1, 5
        sub reg1, reg2

by 32:  shl reg1, 5               ; 1 cycle
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8.3 Repeated String Instructions

Optimization

Use the REP prefix judiciously when performing string operations. 

Rationale

In general, using the REP prefix to repeatedly perform string instructions is less efficient than other 
methods, especially when copying blocks of memory. Even though using the REP prefix may seem 
attractive due to its small code size, a loop may yield better performance due to its minimal overhead, 
compared to the setup overhead of using the REP prefix. However, certain string operations can 
benefit from using the REP prefix when the increased throughput compared to that of a loop makes up 
for its setup overhead for any specific repeat count.

Guidelines for Repeated String Instructions

The following sections contain guidelines for the careful scheduling of VectorPath repeated string 
instructions.

Use the Largest Possible Operand Size

Always move data using the largest operand size possible. For example, in 32-bit applications, use 
REP MOVSD rather than REP MOVSW, and REP MOVSW rather than REP MOVSB. Use REP STOSD rather 
than REP STOSW, and REP STOSW rather than REP STOSB.

In 64-bit mode, a quadword data size is available and offers better performance (for example, 
REP MOVSQ and REP STOSQ).

Make Sure that DF is 0 (Increment)

Some string instructions with DF = 1 (decrement) may be slower.

Align Source and Destination with Operand Size

Make sure that accesses are aligned and handle the end case separately, if necessary. If there are both 
a source (read from) and a destination (written to) and only one can be aligned, align the destination 
and leave the source misaligned in order to optimize internal resources usage.

Inline REP String with Constant Small Counts

If the repeat count is constant and low (less than eight), expand REP string instructions into 
equivalent sequences of simple AMD64 instructions. For example, use an inline sequence of loads 
and stores to emulate REP MOVS or use a sequence of stores to emulate REP STOS. This technique 
eliminates the setup overhead of REP instructions and increases instruction throughput.
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Use REP String with Constant Large Counts 

If the repeat count is constant and large (in the hundreds), use REP string instructions up to 
approximately the data cache size. Above this limit, other techniques must be used to achieve optimal 
performance.

Use a Loop for REP String with Low Variable Counts

If the repeat count is variable, but is (likely) less than eight, use a simple loop to move or store the 
data. Otherwise, use an unrolled loop to move or store the data. These techniques avoid the overhead 
of REP MOVS and REP STOS.

Use a Loop for REP MOVS/CMPS If There Can Be Conflicts

The REP MOVS and REP CMPS instructions both issue two data cache operations per iteration.  If 
certain bits of the linear addresses match, the load-store unit might have to cancel an operation and 
retry. To avoid this behavior, make sure the following bits in the linear address do not match:

• [6:4]—if these bits match, a cache bank conflict will occur

• [11:3]—if these bits match, a store-to-load forwarding mismatch will occur

For details, see “Store-to-Load Forwarding Restrictions” on page 74 and “L1 Data Cache Bank 
Conflicts” on page 90.

All Other Cases

For all other cases, it is best to call the appropriate routines in the run-time library, assuming that 
optimized routines are available.  For more details on writing routines using repeated string 
instructions, see “Memory and String Routines” on page 92.

8.4 Using XOR to Clear Integer Registers

Optimization

To clear an integer register to all zeros, use the XOR instruction to exclusive OR the register with 
itself, as shown below.

Rationale

AMD Family 10h processors are able to avoid the false read dependency on the XOR instruction.

Examples

Acceptable
mov reg, 0
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Preferred
xor reg, reg

8.5 Efficient 64-Bit Integer Arithmetic in 32-Bit Mode

Optimization

The following section contains a collection of code snippets and subroutines showing the efficient 
implementation of 64-bit arithmetic in 32-bit mode. Note that these are 32-bit recommendations, in 
64-bit mode it is important to use 64-bit integer instructions for best performance.

Addition, subtraction, negation, and shifting are best handled by inline code. Multiplication, division, 
and the computation of remainders are less common operations and are usually implemented as 
subroutines. If these subroutines are used often, the programmer should consider inlining them. 
Except for division and remainder calculations, the following code works for both signed and 
unsigned integers. The division and remainder code shown works for unsigned integers, but can easily 
be extended to handle signed integers.

64-Bit Addition
; Add ECX:EBX to EDX:EAX, and place sum in EDX:EAX.
add eax, ebx
adc edx, ecx

64-Bit Subtraction
; Subtract ECX:EBX from EDX:EAX and place difference in EDX:EAX.
sub eax, ebx
sbb edx, ecx

64-Bit Negation
; Negate EDX:EAX.
not edx
neg eax
sbb edx, -1   ; Fix: Increment high word if low word was 0.

64-Bit Left Shift
; Shift EDX:EAX left, ??shift count in ECX (count
;  applied modulo 64).
   shld edx, eax, cl   ; First apply shift count.
   shl  eax, cl        ; ??mod 32 to EDX:EAX
   test ecx, 32        ; Need to shift by another 32?
   jz   lshift_done    ; No, done.
   mov  edx, eax       ; Left shift EDX:EAX
   xor  eax, eax       ;  by 32 bits

lshift_done:

64-Bit Right Shift
   shrd eax, edx, cl   ; First apply shift count.
   shr  edx, cl        ; ??mod 32 to EDX:EAX
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   test ecx, 32        ; Need to shift by another 32?
   jz   rshift_done    ; No, done.
   mov  eax, edx       ; Left shift EDX:EAX
   xor  edx, edx       ;  by 32 bits.

rshift_done:

64-Bit Multiplication
; _llmul computes the low-order half of the product of its
;  arguments, two 64-bit integers.
;
; In:       [ESP+8]:[ESP+4] = multiplicand
;           [ESP+16]:[ESP+12] = multiplier
; Out:      EDX:EAX = (multiplicand * multiplier) % 2^64
; Destroys: EAX, ECX, EDX, EFlags

_llmul PROC
   mov edx, [esp+8]    ; multiplicand_hi
   mov ecx, [esp+16]   ; multiplier_hi
   or  edx, ecx        ; One operand >= 2^32?
   mov edx, [esp+12]   ; multiplier_lo
   mov eax, [esp+4]    ; multiplicand_lo
   jnz twomul          ; Yes, need two multiplies.
   mul edx             ; multiplicand_lo * multiplier_lo
   ret                 ; Done, return to caller.

twomul:
   imul edx, [esp+8]         ; p3_lo = multiplicand_hi * multiplier_lo
   imul ecx, eax             ; p2_lo = multiplier_hi * multiplicand_lo
   add  ecx, edx             ; p2_lo + p3_lo
   mul  dword ptr [esp+12]   ; p1 = multiplicand_lo * multiplier_lo
   add  edx, ecx             ; p1 + p2_lo + p3_lo = result in EDX:EAX
   ret                       ; Done, return to caller.

_llmul ENDP

64-Bit Unsigned Division
; _ulldiv divides two unsigned 64-bit integers and returns the quotient.
;
; In:       [ESP+8]:[ESP+4] = dividend
;           [ESP+16]:[ESP+12] = divisor
; Out:      EDX:EAX = quotient of division
; Destroys: EAX, ECX, EDX, EFlags

_ulldiv PROC
   push ebx             ; Save EBX as per calling convention.
   mov  ecx, [esp+20]   ; divisor_hi
   mov  ebx, [esp+16]   ; divisor_lo
   mov  edx, [esp+12]   ; dividend_hi
   mov  eax, [esp+8]    ; dividend_lo
   test ecx, ecx        ; divisor > (2^32 – 1)?
   jnz  big_divisor     ; Yes, divisor > 2^32 – 1.
   cmp  edx, ebx        ; Only one division needed (ECX = 0)?
   jae  two_divs        ; Need two divisions.
   div  ebx             ; EAX = quotient_lo
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   mov  edx, ecx        ; EDX = quotient_hi = 0 (quotient in EDX:EAX)
   pop  ebx             ; Restore EBX as per calling convention.
   ret                  ; Done, return to caller.

two_divs:
   mov  ecx, eax   ; Save dividend_lo in ECX.
   mov  eax, edx   ; Get dividend_hi.
   xor  edx, edx   ; Zero-extend it into EDX:EAX.
   div  ebx        ; quotient_hi in EAX
   xchg eax, ecx   ; ECX = quotient_hi, EAX = dividend_lo
   div  ebx        ; EAX = quotient_lo
   mov  edx, ecx   ; EDX = quotient_hi (quotient in EDX:EAX)
   pop  ebx        ; Restore EBX as per calling convention.
   ret             ; Done, return to caller.

big_divisor:
   push edi                  ; Save EDI as per calling convention.
   mov  edi, ecx             ; Save divisor_hi.
   shr  edx, 1               ; Shift both divisor and dividend right
   rcr  eax, 1               ;  by 1 bit.
   ror  edi, 1
   rcr  ebx, 1
   bsr  ecx, ecx             ; ECX = number of remaining shifts
   shrd ebx, edi, cl         ; Scale down divisor and dividend
   shrd eax, edx, cl         ;  such that divisor is less than
   shr  edx, cl              ;  2^32 (that is, it fits in EBX).
   rol  edi, 1               ; Restore original divisor_hi.
   div  ebx                  ; Compute quotient.
   mov  ebx, [esp+12]        ; dividend_lo
   mov  ecx, eax             ; Save quotient.
   imul edi, eax             ; quotient * divisor high word (??low only)
   mul  dword ptr [esp+20]   ; quotient * divisor low word
   add  edx, edi             ; EDX:EAX = quotient * divisor
   sub  ebx, eax             ; dividend_lo – (quot.*divisor)_lo
   mov  eax, ecx             ; Get quotient.
   mov  ecx, [esp+16]        ; dividend_hi
   sbb  ecx, edx             ; Subtract (divisor * quot.) from dividend.
   sbb  eax, 0               ; Adjust quotient if remainder negative.
   xor  edx, edx             ; Clear high word of quot. (EAX<=FFFFFFFFh).
   pop  edi                  ; Restore EDI as per calling convention.
   pop  ebx                  ; Restore EBX as per calling convention.
   ret                       ; Done, return to caller.

_ulldiv ENDP
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64-Bit Signed Division
; _lldiv divides two signed 64-bit numbers and delivers the quotient 
;
; In:       [ESP+8]:[ESP+4] = dividend
;           [ESP+16]:[ESP+12] = divisor
; Out:      EDX:EAX = quotient of division
; Destroys: EAX, ECX,E DX, EFlags

_lldiv PROC
   push ebx    ; Save EBX as per calling convention.
   push esi    ; Save ESI as per calling convention.
   push edi    ; Save EDI as per calling convention.
   mov  ecx, [esp+28]   ; divisor_hi
   mov  ebx, [esp+24]   ; divisor_lo
   mov  edx, [esp+20]   ; dividend_hi
   mov  eax, [esp+16]   ; dividend_lo
   mov  esi, ecx        ; divisor_hi
   xor  esi, edx        ; divisor_hi ^ dividend_hi 
   sar  esi, 31         ; (quotient < 0) ? -1 : 0
   mov  edi, edx        ; dividend_hi
   sar  edi, 31         ; (dividend < 0) ? -1 : 0
   xor  eax, edi        ; If (dividend < 0),
   xor  edx, edi        ;  compute 1's complement of dividend.
   sub  eax, edi        ; If (dividend < 0),
   sbb  edx, edi        ;  compute 2's complement of dividend.
   mov  edi, ecx        ; divisor_hi
   sar  edi, 31         ; (divisor < 0) ? -1 : 0
   xor  ebx, edi        ; If (divisor < 0),
   xor  ecx, edi        ;  compute 1's complement of divisor.
   sub  ebx, edi        ; If (divisor < 0),
   sbb  ecx, edi        ;  compute 2's complement of divisor.
   jnz  big_divisor     ; divisor > 2^32 - 1
   cmp  edx, ebx        ; Only one division needed (ECX = 0)?
   jae  two_divs        ; Need two divisions.
   div  ebx             ; EAX = quotient_lo
   mov  edx, ecx        ; EDX = quotient_hi = 0 (quotient in EDX:EAX)
   xor  eax, esi        ; If (quotient < 0),
   xor  edx, esi        ;  compute 1's complement of result.
   sub  eax, esi        ; If (quotient < 0),
   sbb  edx, esi        ;  compute 2's complement of result.
   pop  edi             ; Restore EDI as per calling convention.
   pop  esi             ; Restore ESI as per calling convention.
   pop  ebx             ; Restore EBX as per calling convention.
   ret                  ; Done, return to caller.

two_divs:
   mov  ecx, eax     ; Save dividend_lo in ECX.
   mov  eax, edx     ; Get dividend_hi.
   xor  edx, edx     ; Zero-extend it into EDX:EAX.
   div  ebx          ; quotient_hi in EAX
   xchg eax, ecx     ; ECX = quotient_hi, EAX = dividend_lo
   div  ebx          ; EAX = quotient_lo
   mov  edx, ecx     ; EDX = quotient_hi (quotient in EDX:EAX)
   jmp  make_sign   ; Make quotient signed.
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big_divisor:
   sub  esp, 12             ; Create three local variables.
   mov  [esp], eax          ; dividend_lo
   mov  [esp+4], ebx        ; divisor_lo
   mov  [esp+8], edx        ; dividend_hi
   mov  edi, ecx            ; Save divisor_hi.
   shr  edx, 1              ; Shift both
   rcr  eax, 1              ;  divisor and
   ror  edi, 1              ;  and dividend
   rcr  ebx, 1              ;  right by 1 bit.
   bsr  ecx, ecx            ; ECX = number of remaining shifts
   shrd ebx, edi, cl        ; Scale down divisor and
   shrd eax, edx, cl        ;  dividend such that divisor is
   shr  edx, cl             ;  less than 2^32 (that is, fits in EBX).
   rol  edi, 1              ; Restore original divisor_hi.
   div  ebx                 ; Compute quotient.
   mov  ebx, [esp]          ; dividend_lo
   mov  ecx, eax            ; Save quotient.
   imul edi, eax            ; quotient * divisor high word (??low only)
   mul  DWORD PTR [esp+4]   ; quotient * divisor low word
   add  edx, edi            ; EDX:EAX = quotient * divisor
   sub  ebx, eax            ; dividend_lo - (quot.*divisor)_lo
   mov  eax, ecx            ; Get quotient.
   mov  ecx, [esp+8]        ; dividend_hi
   sbb  ecx, edx            ; Subtract (divisor * quot.) from dividend
   sbb  eax, 0              ; Adjust quotient if remainder is negative.
   xor  edx, edx            ; Clear high word of quotient.
   add  esp, 12             ; Remove local variables.

make_sign:
   xor eax, esi   ; If (quotient < 0),
   xor edx, esi   ;  compute 1's complement of result.
   sub eax, esi   ; If (quotient < 0),
   sbb edx, esi   ;  compute 2's complement of result.
   pop edi        ; Restore EDI as per calling convention.
   pop esi        ; Restore ESI as per calling convention.
   pop ebx        ; Restore EBX as per calling convention.
   ret            ; Done, return to caller.
_lldiv ENDP

64-Bit Unsigned Remainder Computation
; _ullrem divides two unsigned 64-bit integers and returns the remainder.
;
; In:       [ESP+8]:[ESP+4] = dividend
;           [ESP+16]:[ESP+12] = divisor
;
; Out:      EDX:EAX = remainder of division
;
; Destroys: EAX, ECX, EDX, EFlags

_ullrem PROC
   push ebx              ; Save EBX as per calling convention.
   mov  ecx, [esp+20]    ; divisor_hi
   mov  ebx, [esp+16]    ; divisor_lo
   mov  edx, [esp+12]    ; dividend_hi
   mov  eax, [esp+8]     ; dividend_lo
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   test ecx, ecx         ; divisor > 2^32 - 1?
   jnz  r_big_divisor    ; Yes, divisor > 32^32 - 1.
   cmp  edx, ebx         ; Only one division needed (ECX = 0)?
   jae  r_two_divs       ; Need two divisions.
   div  ebx              ; EAX = quotient_lo
   mov  eax, edx         ; EAX = remainder_lo
   mov  edx, ecx         ; EDX = remainder_hi = 0
   pop  ebx              ; Restore EBX per calling convention.
   ret                   ; Done, return to caller.

r_two_divs:
   mov ecx, eax   ; Save dividend_lo in ECX.
   mov eax, edx   ; Get dividend_hi.
   xor edx, edx   ; Zero-extend it into EDX:EAX.
   div ebx        ; EAX = quotient_hi, EDX = intermediate remainder
   mov eax, ecx   ; EAX = dividend_lo
   div ebx        ; EAX = quotient_lo
   mov eax, edx   ; EAX = remainder_lo
   xor edx, edx   ; EDX = remainder_hi = 0
   pop ebx        ; Restore EBX as per calling convention.
   ret            ; Done, return to caller.

r_big_divisor:
   push edi                  ; Save EDI as per calling convention.
   mov  edi, ecx             ; Save divisor_hi.
   shr  edx, 1               ; Shift both divisor and dividend right
   rcr  eax, 1               ;  by 1 bit.
   ror  edi, 1
   rcr  ebx, 1
   bsr  ecx, ecx             ; ECX = number of remaining shifts
   shrd ebx, edi, cl         ; Scale down divisor and dividend such
   shrd eax, edx, cl         ;  that divisor is less than 2^32
   shr  edx, cl              ;  (that is, it fits in EBX).
   rol  edi, 1               ; Restore original divisor (EDI:ESI).
   div  ebx                  ; Compute quotient.
   mov  ebx, [esp+12]        ; dividend low word
   mov  ecx, eax             ; Save quotient.
   imul edi, eax             ; quotient * divisor high word (??low only)
   mul  DWORD PTR [esp+20]   ; quotient * divisor low word
   add  edx, edi             ; EDX:EAX = quotient * divisor
   sub  ebx, eax             ; dividend_lo – (quot.*divisor)_lo
   mov  ecx, [esp+16]        ; dividend_hi
   mov  eax, [esp+20]        ; divisor_lo
   sbb  ecx, edx             ; Subtract divisor * quot. from dividend.
   sbb  edx, edx             ; (remainder < 0) ? 0xFFFFFFFF : 0
   and  eax, edx             ; (remainder < 0) ? divisor_lo : 0
   and  edx, [esp+24]        ; (remainder < 0) ? divisor_hi : 0
   add  eax, ebx             ; remainder += (remainder < 0) ? divisor : 0
   pop  edi                  ; Restore EDI as per calling convention.
   pop  ebx                  ; Restore EBX as per calling convention.
   ret                       ; Done, return to caller.

_ullrem ENDP
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64-Bit Signed Remainder Computation
; _llrem divides two signed 64-bit numbers and returns the remainder.
;
; In:       [ESP+8]:[ESP+4] = dividend
;           [ESP+16]:[ESP+12] = divisor
;
; Out:      EDX:EAX = remainder of division
;
; Destroys: EAX, ECX, EDX, EFlags

   push ebx               ; Save EBX as per calling convention.
   push esi               ; Save ESI as per calling convention.
   push edi               ; Save EDI as per calling convention.
   mov  ecx, [esp+28]     ; divisor-hi
   mov  ebx, [esp+24]     ; divisor-lo
   mov  edx, [esp+20]     ; dividend-hi
   mov  eax, [esp+16]     ; dividend-lo
   mov  esi, edx          ; sign(remainder) == sign(dividend)
   sar  esi, 31           ; (remainder < 0) ? -1 : 0
   mov  edi, edx          ; dividend-hi
   sar  edi, 31           ; (dividend < 0) ? -1 : 0
   xor  eax, edi          ; If (dividend < 0),
   xor  edx, edi          ;  compute 1's complement of dividend.
   sub  eax, edi          ; If (dividend < 0),
   sbb  edx, edi          ;  compute 2's complement of dividend.
   mov  edi, ecx          ; divisor-hi
   sar  edi, 31           ; (divisor < 0) ? -1 : 0
   xor  ebx, edi          ; If (divisor < 0),
   xor  ecx, edi          ;  compute 1's complement of divisor.
   sub  ebx, edi          ; If (divisor < 0),
   sbb  ecx, edi          ;  compute 2's complement of divisor.
   jnz  sr_big_divisor    ; divisor > 2^32 - 1
   cmp  edx, ebx          ; Only one division needed (ECX = 0)?
   jae  sr_two_divs       ; No, need two divisions.
   div  ebx               ; EAX = quotient_lo
   mov  eax, edx          ; EAX = remainder_lo
   mov  edx, ecx          ; EDX = remainder_lo = 0
   xor  eax, esi          ; If (remainder < 0),
   xor  edx, esi          ;  compute 1's complement of result.
   sub  eax, esi          ; If (remainder < 0),
   sbb  edx, esi          ;  compute 2's complement of result.
   pop  edi               ; Restore EDI as per calling convention.
   pop  esi               ; Restore ESI as per calling convention.
   pop  ebx               ; Restore EBX as per calling convention.
   ret                    ; Done, return to caller.

sr_two_divs:
   mov ecx, eax        ; Save dividend_lo in ECX.
   mov eax, edx        ; Get dividend_hi.
   xor edx, edx        ; Zero-extend it into EDX:EAX.
   div ebx             ; EAX = quotient_hi, EDX = intermediate remainder
   mov eax, ecx        ; EAX = dividend_lo
   div  ebx            ; EAX = quotient_lo
   mov  eax, edx       ; remainder_lo
   xor  edx, edx       ; remainder_hi = 0
   jmp  sr_makesign    ; Make remainder signed.
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sr_big_divisor:
   sub  esp, 16             ; Create three local variables.
   mov  [esp], eax          ; dividend_lo             
   mov  [esp+4], ebx        ; divisor_lo             
   mov  [esp+8], edx        ; dividend_hi
   mov  [esp+12], ecx       ; divisor_hi
   mov  edi, ecx            ; Save divisor_hi.
   shr  edx, 1              ; Shift both
   rcr  eax, 1              ;  divisor and
   ror  edi, 1              ;  and dividend
   rcr  ebx, 1              ;  right by 1 bit.
   bsr  ecx, ecx            ; ECX = number of remaining shifts
   shrd ebx, edi, cl        ; Scale down divisor and
   shrd eax, edx, cl        ;  dividend such that divisor is
   shr  edx, cl             ;  less than 2^32 (that is, fits in EBX).
   rol  edi, 1              ; Restore original divisor_hi.
   div  ebx                 ; Compute quotient.
   mov  ebx, [esp]          ; dividend_lo
   mov  ecx, eax            ; Save quotient.
   imul edi, eax            ; quotient * divisor high word (??low only)
   mul  DWORD PTR [esp+4]   ; quotient * divisor low word
   add  edx, edi            ; EDX:EAX = quotient * divisor
   sub  ebx, eax            ; dividend_lo - (quot.*divisor)_lo
   mov  ecx, [esp+8]        ; dividend_hi
   sbb  ecx, edx            ; Subtract divisor * quot. from dividend.
   sbb  eax, eax            ; remainder < 0 ? 0xffffffff : 0
   mov  edx, [esp+12]       ; divisor_hi
   and  edx, eax            ; remainder < 0 ? divisor_hi : 0
   and  eax, [esp+4]        ; remainder < 0 ? divisor_lo : 0
   add  eax, ebx            ; remainder_lo
   add  edx, ecx            ; remainder_hi
   add  esp, 16             ; Remove local variables.

sr_makesign:
   xor eax, esi   ; If (remainder < 0),
   xor edx, esi   ;  compute 1's complement of result.
   sub eax, esi   ; If (remainder < 0),
   sbb edx, esi   ;  compute 2's complement of result.
   pop edi        ; Restore EDI as per calling convention.
   pop esi        ; Restore ESI as per calling convention.
   pop ebx        ; Restore EBX as per calling convention.
   ret            ; Done, return to caller.

8.6 Derivation of Algorithm, Multiplier, and Shift 
Factor for Integer Division by Constants

The following examples illustrate the derivation of algorithm, multiplier and shift factor for signed 
and unsigned integer division.
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Unsigned Integer Division

The utility udiv.exe was compiled from the code shown in this section. The utilities provided in this 
document are for reference only and are not supported by AMD.

The following code derives the multiplier value used when performing integer division by constants. 
The code works for unsigned integer division and for odd divisors between 1 and 231 – 1, inclusive. 
For divisors of the form d = d' * 2n, the multiplier is the same as for d' and the shift factor is s + n.

Example

/* This program determines the algorithm (a), multiplier (m), and
    shift factor (s) to be used to accomplish *unsigned* division by
    a constant divisor. Compile with MSVC.
*/

#include <stdio.h>

typedef unsigned __int64 U64;
typedef unsigned long    U32;

U32 log2(U32 i)
{
   U32 t = 0;
   i = i >> 1;
   while (i) {
      i = i >> 1;
      t++;
   }
   return(t);
}

U32 res1, res2;
U32 d, l, s, m, a, r, n, t;
U64 m_low, m_high, j, k;

int main (void)
{
   fprintf(stderr, "\n");
   fprintf(stderr, "Unsigned division by constant\n");
   fprintf(stderr, "=============================\n\n");
   fprintf(stderr, "enter divisor: ");
   scanf("%lu", &d);
   printf("\n");
   if (d == 0) goto printed_code;

   if (d >= 0x80000000UL) {
      printf("; dividend: register or memory location\n");
      printf("\n");
      printf("CMP    dividend, 0%08lXh\n", d);
      printf("MOV    EDX, 0\n");
      printf("SBB    EDX, -1\n");
      printf("\n");
      printf("; quotient now in EDX\n");
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      goto printed_code;
   }

   /* Reduce divisor until it becomes odd. */

   n = 0;
   t = d;
   while (!(t & 1)) {
      t >>= 1;
      n++;
   }

   if (t == 1) {
      if (n == 0) {
         printf("; dividend: register or memory location\n");
         printf("\n");
         printf("MOV    EDX, dividend\n", n);
         printf("\n");
         printf("; quotient now in EDX\n");
      }
      else {
         printf("; dividend: register or memory location\n");
         printf("\n");
         printf("SHR    dividend, %d\n", n);
         printf("\n");
         printf("; quotient replaced dividend\n");
      }
      goto printed_code;
   }

   /* Generate m, s for algorithm 0. Based on: Granlund, T.; Montgomery,
      P.L.: "Division by Invariant Integers using Multiplication."
      SIGPLAN Notices, Vol. 29, June 1994, page 61.
   */

   l = log2(t) + 1;
   j = (((U64)(0xffffffff)) % ((U64)(t)));
   k = (((U64)(1)) << (32 + l)) / ((U64)(0xffffffff - j));
   m_low = (((U64)(1)) << (32 + l)) / t;
   m_high = ((((U64)(1)) << (32 + l)) + k) / t;
   while (((m_low >> 1) < (m_high >> 1)) && (l > 0)) {
      m_low = m_low >> 1;
      m_high = m_high >> 1;
      l = l - 1;
   }
   if ((m_high >> 32) == 0) {
      m = ((U32)(m_high));
      s = l;
      a = 0;
   }

      /* Generate m and s for algorithm 1. Based on: Magenheimer, D.J.; et al: 
      "Integer Multiplication and Division on the HP Precision Architecture." 
      IEEE Transactions on Computers, Vol. 37, No. 8, August 1988, page 980.*/

   else {
      s = log2(t);
      m_low = (((U64)(1)) << (32 + s)) / ((U64)(t));
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      r = ((U32)((((U64)(1)) << (32 + s)) % ((U64)(t))));
      m = (r < ((t >> 1) + 1)) ? ((U32)(m_low)) : ((U32)(m_low)) + 1;
      a = 1;
   }

      /* Reduce multiplier for either algorithm to smallest possible.*/

  while (!(m & 1)) {
      m = m >> 1;
      s--;
   }

   /* Adjust multiplier for reduction of even divisors. */

   s += n;

   if (a) {
      printf("; dividend: register other than EAX or memory location\n");
      printf("\n");
      printf("MOV    EAX, 0%08lXh\n", m);
      printf("MUL    dividend\n");
      printf("ADD    EAX, 0%08lXh\n", m);
      printf("ADC    EDX, 0\n");
      if (s) printf("SHR    EDX, %d\n", s);
      printf("\n");
      printf("; quotient now in EDX\n");
   }
   else {
      printf("; dividend: register other than EAX or memory location\n");
      printf("\n");
      printf("MOV    EAX, 0%08lXh\n", m);
      printf("MUL    dividend\n");
      if (s) printf("SHR    EDX, %d\n", s);
      printf("\n");
      printf("; quotient now in EDX\n");
   }

printed_code:

   fprintf(stderr, "\n");
   exit(0);

   return(0);
}

Signed Integer Division

The utility sdiv.exe was compiled using the following code. The utilities provided in this document 
are for reference only and are not supported by AMD.

Example

/* This program determines the algorithm (a), multiplier (m), and
    shift factor (s) to be used to accomplish *signed* division by
    a constant divisor. Compile with MSVC.
*/
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#include <stdio.h>

typedef unsigned __int64 U64;
typedef unsigned long    U32;

U32 log2(U32 i)
{
   U32 t = 0;
   i = i >> 1;
   while (i) {
      i = i >> 1;
      t++;
   }
   return(t);
}

long e;
U32 res1, res2;
U32 oa, os, om;
U32 d, l, s, m, a, r, t;
U64 m_low, m_high, j, k;

int main(void)

{
   fprintf(stderr, "\n");
   fprintf(stderr, "Signed division by constant\n");
   fprintf(stderr, "===========================\n\n");

   fprintf(stderr, "enter divisor: ");
   scanf("%ld", &d);
   fprintf(stderr, "\n");

   e = d;
   d = labs(d);

   if (d == 0) goto printed_code;

   if (e == (-1)) {
      printf("; dividend: register or memory location\n");
      printf("\n");
      printf("NEG    dividend\n");
      printf("\n");
      printf("; quotient replaced dividend\n");
      goto printed_code;
   }
   if (d == 2) {
      printf("; dividend expected in EAX\n");
      printf("\n");
      printf("CMP    EAX, 080000000h\n");
      printf("SBB    EAX, -1\n");
      printf("SAR    EAX, 1\n");
      if (e < 0) printf("NEG    EAX\n");
      printf("\n");
      printf("; quotient now in EAX\n");
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      goto printed_code;
   }

   if (!(d & (d - 1))) {
      printf("; dividend expected in EAX\n");
      printf("\n");
      printf("CDQ\n");
      printf("AND    EDX, 0%08lXh\n", (d-1));
      printf("ADD    EAX, EDX\n");
      if (log2(d)) printf("SAR    EAX, %d\n", log2(d));
      if (e < 0)   printf("NEG    EAX\n");
      printf("\n");
      printf("; quotient now in EAX\n");
      goto printed_code;
   }

   /* Determine algorithm (a), multiplier (m), and shift factor (s) for 32-bit
      signed integer division. Based on: Granlund, T.; Montgomery, P.L.: 
      "Division by Invariant Integers using Multiplication". SIGPLAN Notices, 
      Vol. 29, June 1994, page 61.
   */

   l = log2(d);
   j = (((U64)(0x80000000)) % ((U64)(d)));
   k = (((U64)(1)) << (32 + l)) / ((U64)(0x80000000 - j));
   m_low = (((U64)(1)) << (32 + l)) / d;
   m_high = ((((U64)(1)) << (32 + l)) +  k) / d;

   while (((m_low >> 1) < (m_high >> 1)) && (l > 0)) {
      m_low  = m_low  >> 1;
      m_high = m_high >> 1;
      l = l - 1;
   }
   m = ((U32)(m_high));
   s = l;
   a = (m_high >> 31) ? 1 : 0;

   if (a) {
      printf("; dividend: memory location or register other than EAX or EDX\n");
      printf("\n");
      printf("MOV    EAX, 0%08LXh\n", m);
      printf("IMUL   dividend\n");
      printf("MOV    EAX, dividend\n");
      printf("ADD    EDX, EAX\n");
      if (s) printf("SAR    EDX, %d\n", s);
      printf("SHR    EAX, 31\n");
      printf("ADD    EDX, EAX\n");
      if (e < 0) printf("NEG    EDX\n");
      printf("\n");
      printf("; quotient now in EDX\n");
   }
   else {
      printf("; dividend: memory location of register other than EAX or EDX\n");
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      printf("\n");
      printf("MOV    EAX, 0%08LXh\n", m);
      printf("IMUL   dividend\n");
      printf("MOV    EAX, dividend\n");
      if (s) printf("SAR    EDX, %d\n", s);
      printf("SHR    EAX, 31\n");
      printf("ADD    EDX, EAX\n");
      if (e < 0) printf("NEG    EDX\n");
      printf("\n");
      printf("; quotient now in EDX\n");
   }

printed_code:

   fprintf(stderr, "\n");
   exit(0);
}

8.7 Optimizing Integer Division

Optimization

For all data types, except in 8-bit division, making the absolute value of the most significant word (in 
DX/EDX/RDX) of the dividend all 0s for the DIV instruction or all 0s or all 1s for the IDIV 
instruction lowers the latency of integer division. If this is not possible, then use a smaller data type 
for integer division.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Integer division latency is dependent on the operand size. These latency numbers could go down even 
lower, depending on the number of leading zero bits in the absolute value of the dividend. Table 7 
provides details about the latency of any particular instance of a DIV/IDIV instruction.

When integer division constitutes a substantial computational load, it may be beneficial to check 
whether the most significant word of the absolute value of the dividend in DX/EDX/RDX can be set 
to all 0s for DIV or to all 0s or all 1s for IDIV. If that is not possible, then using a smaller division size 
will help to lower the latency.

In any case, assembly language output generated by high-level language compilers should be verified 
that the desired code is generated. When dividing by a constant, if possible, substitute the division 
with a multiplication. (See “Replacing Division with Multiplication” on page 119 for more details.)
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8.8 Efficient Implementation of Population Count and 
Leading-Zero Count

Optimization

Use the POPCNT instruction to implement a population count and use LZCNT to perform a leading-
zero count operation.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

A population count determines the number of set bits in a bit string. The POPCNT instruction, a new 
instruction for AMD Family 10h processors, is the preferred way to implement a population count.

A leading-zero count is an operation that counts the number of leading bits in the input operand that 
are cleared to zero. Counting starts downward from the most significant bit and stops at the highest bit 
which is one or when the least significant bit is encountered.  LZCNT is a new instruction for 
AMD Family 10h processors that implement this function.

The POPCNT and LZCNT instructions can count the bits in a 32-bit operand in 32-bit mode or a 64-
bit operand in 64-bit mode.

Table 7. DIV/IDIV Latencies

Divisor
Absolute Value

of
Dividend

Latency

DIV IDIV

8 Bits Reg 17 18

Mem 16 20

16, 32, 64 Bits 0 18 22

16 Bits > 0 and < 216 18 (MSB in bit 0, 1, or 2); or
15 + bit position of the MSB of 

the dividend (MSB >= bit 
3)

22 + bit position of the MSB of 
the absolute value of the 
dividend

32 Bits > 0 and < 232

64 Bits > 0 and < 264

16 Bits ≥  216 24 31

32 Bits ≥ 232 40 47

64 Bits ≥ 264 72 79

Note: MSB—Most significant bit.
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Chapter 9 Optimizing with SIMD Instructions

The 64-bit and 128-bit SIMD instructions—SSE, SSE2, SSE3, SSE4a instructions—should be used 
to encode floating-point and packed integer operations.

• The SIMD instructions use a flat register file rather than the stack register file used by x87 
floating-point instructions. This allows arbitrary sequences of operations to map more efficiently 
to the instruction set.

• AMD Family 10h processors with 128-bit multipliers and adders achieve better throughput using 
SSE, SSE2, SSE3, and SSE4a instructions. (Double precision throughput is 2× and single 
precision is 4× the throughput of x87.)

• SSE, SSE2, SSE3, and SSE4a instructions work well in both 32-bit and 64-bit threads.

• In 64-bit mode, there are twice as many XMM registers available as in 32-bit mode, however, the 
number of x87 registers is the same in both 32-bit mode and 64-bit mode.

The SIMD instructions provide a theoretical single-precision peak throughput of four additions and 
four multiplications per clock cycle, whereas x87 instructions can only sustain one addition and one 
multiplication per clock cycle. The double-precision peak throughput of the SSE, SSE2, SSE3, and 
SSE4a instructions is two additions and two multiplications per clock cycle.

This chapter covers the following topics:

Topic Page

Ensure All Packed Floating-Point Data are Aligned 144

Explicit Load Instructions 144

Unaligned and Aligned Data Access 145

Moving Data Between General-Purpose and MMX™ or XMM Registers 145

Use SSE Instructions to Construct Fast Block-Copy Routines in 32-Bit Mode or 64-bit Mode 146

EMMS Usage 147

Using SIMD Instructions for Fast Square Roots and Divisions 148

Use XOR Operations to Negate Operands of SSEx Instructions 150

Clearing MMX™ and XMM Registers with XOR Instructions 151

Finding the Floating-Point Absolute Value of Operands of SSE and SSE2 Instructions 152

Accumulating Single-Precision Floating-Point Numbers Using SSE and SSE2 Instructions 153

Complex-Number Arithmetic Using SSE, SSE2, and SSE3 Instructions 154

Optimized 4 X 4 Matrix Multiplication on 4 X 1 Column Vector Routines 160

Floating-Point-to-Integer Conversion 163

Reuse of Dead Registers 163

Floating-Point Scalar Conversions 164
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9.1 Ensure All Packed Floating-Point Data are Aligned

Optimization

Align all packed floating-point data on 16-byte boundaries. 

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Misaligned memory accesses reduce the available memory bandwidth and SSE, SSE2, and SSE3 
instructions have shorter latencies when operating on aligned memory operands.

Aligning data on 16-byte boundaries reduces the possibility of stalling floating-point addition and 
multiplication instructions that are dependent on the load data. See also section 9.3, “Unaligned and 
Aligned Data Access” on page 145.

9.2 Explicit Load Instructions

Optimization

Use MOVSD xmm1, mem64 when loading a scalar floating-point double-precision value from memory. 
Use MOVSS xmm1, mem32 when loading a scalar floating-point single-precision value from memory.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

The MOVSD xmm1, mem64 instruction is more efficient than MOVLPD xmm1, mem64 on an 
AMD Family 10h processor, since it modifies the entire XMM register, thus breaking the dependency 
chain on the high-order bits of the register. 

The MOVSS xmm1, mem32 instruction zeroes the unaffected remaining bits of the XMM register and 
breaks any dependency chain. It also assures that the upper half of the XMM register contains a 
normal floating-point single-precision value.
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9.3 Unaligned and Aligned Data Access

Optimization

When data alignment cannot be guaranteed, use MOVUPx or MOVDQU for loads and the 
MOVLPx/MOVHPx pair for stores on AMD Family 10h processors.

Otherwise, when data alignment is guaranteed, always use MOVAPx or MOVDQA.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

On AMD Family 10h processors, the MOVUPx and MOVDQU instructions are DirectPath for loads, 
but VectorPath for stores, therefore the MOVLPx / MOVHPx pair should be used for stores. MOVUPx 
or MOVDQU loads can be as fast as MOVAPx or MOVDQA loads when the memory location is 16-
byte aligned. The MOVUPx and MOVDQU instructions break dependency chains by changing the 
entire XMM register when loading data from memory. On the other hand, because both MOVLPx and 
MOVHPx loads change one half of the XMM register, there is a dependency between each of them 
and any previous instructions that change any part of the same XMM register.

9.4 Moving Data Between General-Purpose and 
MMX™ or XMM Registers

Optimization

When moving data from a GPR to an MMX or XMM register, use separate store and load instructions 
to move the data first from the source register to a temporary location in memory and then from 
memory into the destination register, taking the memory latency into account when scheduling both 
stages of the load-store sequence.

When moving data from an MMX or XMM register to a general-purpose register, use the MOVD 
instruction.

Whenever possible, use loads and stores of the same data length. (See 5.3, ‘Store-to-Load Forwarding 
Restrictions” on page 74 for more information.)
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Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

When a GPR is the source to the MOVD instruction, MOVD is a higher-latency DirectPath Double 
instruction; compared to the low-latency DirectPath Single instructions used first to store the contents 
of the GPR to memory and then to load this value into an MMX or XMM register. 

When a GPR is the destination of MOVD, MOVD is a DirectPath Single instruction.

9.5 Use SSE Instructions to Construct Fast Block-
Copy Routines in 32-Bit Mode or 64-bit Mode

Optimization

Use XMM registers instead of general purpose registers to copy blocks of data that reside in cache. 

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

An SSE load can read 16 bytes in a single clock cycle, while an SSE store can write 16 bytes in 2 
cycles. MOVDQU can safely access 16-byte SSE data regardless of alignment, with performance 
equal to MOVDQA when data is actually 16-byte aligned, so use MOVDQU and align the destination 
and/or the source to 16-byte boundaries when possible.

Example

The following code illustrates an implementation of an optimized memory block copy.

Note: The loop is unrolled to use two XMM registers, to hide the execution latencies of the 
pointer/counter arithmetic and the branch.

mov rcx, [destination]  ; 16-byte aligned, if possible
mov rdx, [source]       ; 16-byte aligned, if possible
mov rax, [count]        ; make sure it's at least 32 bytes!
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sshr rax, 5       ; we move 32 bytes per loop
jz SSE_done

align 16         ; align loop top for best performance
SSE_loop:

movdqu xmm0, [rdx]
movdqu xmm1, [rdx + 16]
add rdx, 32
movlpd [rcx], xmm0
movhpd [rcx+8], xmm0
movlpd [rcx+16], xmm1
movhpd [rcx+24], xmm1 
add rcx, 32
dec rax
jnz SSE_loop

SSE_done:
(move any residual bytes)

9.6 EMMS Usage

Optimization

Use EMMS to clean up the register file between an x87 instruction and a following MMX instruction 
or vice versa.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Use the EMMS instruction when switching between the x87 floating-point unit and MMX 
instructions. The EMMS instruction is a fast low-latency instruction in AMD Family 10h processors.

x87 and MMX instructions share the same architectural registers, so there is no easy way to use them 
concurrently without cleaning up the register file in between by using the EMMS instruction. For 
more information, see the AMD64 Architecture Programmer’s Manual, Volume 1: Application 
Programming, order# 24592, and AMD64 Architecture Programmer’s Manual, Volume 5: 64-Bit 
Media and x87 Floating-Point Instructions, order# 26569.
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9.7 Using SIMD Instructions for Fast Square Roots 
and Divisions

Optimization

Use SIMD vectorized square root (SQRTSS/SQRTPS) and reciprocal (RCPSS/RCPPS) instructions 
to calculate square roots and divisions of single-precision numbers.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

The calculation of reciprocal square root and reciprocation of single-precision numbers are often used 
in multimedia applications. These SIMD instructions can be used for such operations when a slight 
inaccuracy is acceptable.

Although these instructions return their results with a maximum error of 2-11, they can be used with 
the Newton-Raphson method to obtain more accurate results. 

For square roots accurate to 2.5 ULPs, the following algorithm is obtained after one Newton-Raphson 
iteration: 

y = 0.5 * a * x * (3.0 - a * x * x) 

Where x is the initial approximation of the reciprocal of the square root of a and y, the square root of 
a. 

For divisions accurate to 1.5 ULPs, the following algorithm is obtained after one Newton-Raphson 
iteration: 
y = a * x * (2.0 - b * x) 

Where x is the initial approximation of the reciprocal of b and y, the quotient of a divided by b. 

Although more Newton-Raphson iterations could be used to increase accuracy, the execution time 
would be longer than the equivalent instructions. This implementation of the Newton-Raphson 
technique is not 100% compliant to the IEEE-754 specification, but its results are acceptable in most 
applications.

Example

The following functions calculate the square root:

#include <xmmintrin.h>
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/* nr_sqrtf: return scalar square root accurate to 2.5ulps.

    This approximation assumes finite math; never returns denormals, but zero;
    does not return the expected values after C89; 
    is not compliant with IEEE754 semantics. */

float nr_sqrtf (float a)
{
  __m128 x0, x1, x2, x3, x4, x5, m;
  float y;

  m = _mm_cmpneq_ss (_mm_set_ss (a), _mm_setzero_ps ()); // m = (a != 0.0? T: F)

  x0 = _mm_rsqrt_ss (_mm_set_ss (a));                    // x0 = initial estimate
  x1 = _mm_and_ps (m, x0);                               // x1 = m & x0
  x2 = _mm_mul_ss (_mm_set_ss (a), x1);                  // x2 = a * x1
  x3 = _mm_mul_ss (_mm_set_ss (0.5F), x2);               // x3 = 0.5 * x2
  x4 = _mm_mul_ss (x1, x2);                              // x4 = x1 * x2
  x5 = _mm_sub_ss (_mm_set_ss (3.0F), x4);               // x5 = 3.0 - x4

  _mm_store_ss (&y, _mm_mul_ss (x3, x5));                // y = x3 * x5
  return (y);                                            // y = sqrtf (a)
}

/* nr_sqrtvf: return vector square root accurate to 2.5ulps.

    This approximation assumes finite math; never returns denormals, but zero;
    does not return the expected values after C89; 
    is not compliant with IEEE754 semantics. */

__m128 nr_sqrtvf (__m128 a)
{
  __m128 x0, x1, x2, x3, x4, x5, m, y;

  m = _mm_cmpneq_ps (a, _mm_setzero_ps ()); // m = (a != 0.0? T: F)

  x0 = _mm_rsqrt_ps (a);                    // x0 = initial estimate
  x1 = _mm_and_ps (m, x0);                  // x1 = m & x0
  x2 = _mm_mul_ps (a, x1);                  // x2 = a * x1
  x3 = _mm_mul_ps (_mm_set1_ps (0.5F), x2); // x3 = 0.5 * x2
  x4 = _mm_mul_ps (x1, x2);                 // x4 = x1 * x2
  x5 = _mm_sub_ps (_mm_set1_ps (3.0F), x4); // x5 = 3.0 - x4

  y = _mm_mul_ps (x3, x5);                  // y = x3 * x5
  return (y);                               // y = sqrtf (a)
}

Chapter 9 Optimizing with SIMD Instructions 149



40546 Rev. 3.08 October 2008Software Optimization Guide for AMD Family 10h Processors
These functions return the quotient: 

#include <xmmintrin.h>

/* nr_divf: return scalar quotient accurate to 1.5ulps.

    This approximation assumes finite math; never returns denormals, but zero;
    does not return the expected values after C89; 
    is not compliant with IEEE754 semantics. */

float nr_divf (float a, float b)
{
  __m128 x0, x1, x2, x3;
  float y;

  x0 = _mm_rcp_ss (_mm_set_ss (b));        // x0 = initial estimate
  x1 = _mm_mul_ss (_mm_set_ss (a), x0);    // x1 = a * x0
  x2 = _mm_mul_ss (_mm_set_ss (b), x0);    // x2 = b * x0
  x3 = _mm_sub_ss (_mm_set_ss (2.0F), x2); // x3 = 2 - x2
 
  _mm_store_ss (&y, _mm_mul_ss (x1, x3));  // y = x1 * x3
  return (y);                              // y = a / b
}

/* nr_divvf: return vector quotient accurate to 1.5ulps.

    This approximation assumes finite math; never returns denormals, but zero;
    does not return the expected values after C89; 
    is not compliant with IEEE754 semantics. */

__m128 nr_divf (__m128 a, __m128 b)
{
  __m128 x0, x1, x2, x3, y;

  x0 = _mm_rcp_ps (b);                      // x0 = initial estimate
  x1 = _mm_mul_ps (a, x0);                  // x1 = a * x0
  x2 = _mm_mul_ps (b, x0);                  // x2 = b * x0
  x3 = _mm_sub_ps (_mm_set1_ps (2.0F), x2); // x3 = 2 - x2
 
  y = _mm_mul_ps (x1, x3);                  // y = x1 * x3
  return (y);                               // y = a / b
}

9.8 Use XOR Operations to Negate Operands of SSEx 
Instructions

Optimization

For AMD Family 10h processors, use instructions that perform XOR operations (XORPS, and 
XORPD) instead of multiplication instructions to change the sign bits of operands of SSE 
instructions.
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Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

On the AMD Family 10h processors, using XOR-type instructions allows for more parallelism, since 
these instructions can execute in either the FADD or FMUL pipe of the floating-point unit. Also, the 
latency of the MULPS or MULPD instruction is longer than the latency of XORPS or XORPD (see 
Appendix C, “Instruction Latencies”).

Single Precision

This example shows how to toggle the sign bit of four floating-point values using single-precision 
SSE instructions: 

signmask DQ 8000000080000000h,8000000080000000h
xorps xmm0, [signmask] ; Toggle sign bits of all four floats.

Double Precision

The following example shows how to toggle the sign bit of two doubles using double-precision SSE 
instructions:

signmask DQ 8000000000000000h,8000000000000000h
xorpd xmm0, [signmask]   ; Toggle sign bit of both doubles.

9.9 Clearing MMX™ and XMM Registers with XOR 
Instructions

Optimization

Use instructions that perform XOR operations (PXOR, XORPS, and XORPD) to clear all the bits in 
MMX and XMM registers. 

Application

This optimization applies to:

• 32-bit software

• 64-bit software
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Rationale

The PXOR, XORPS, and XORPD instructions are more efficient than loading a zero value into an 
MMX or XMM register from memory and then storing it (see Appendix C, “Instruction Latencies,” 
on page 227). In addition, the processor “knows” that the PXOR, XORPS and XORPD instructions 
that use the same register for both source and destination do not have a real dependency on the 
previous contents of the register, and thus, do not have to wait before completing.

Examples

The following examples illustrate how to clear the bits in a register using the different exclusive-OR 
instructions:

; MMX
pxor mm0, mm0      ; Clear the MM0 register.

; SSE
xorps xmm0, xmm0   ; Clear the XMM0 register.

; SSE2
xorpd xmm0, xmm0   ; Clear the XMM0 register.

9.10 Finding the Floating-Point Absolute Value of 
Operands of SSE and SSE2 Instructions

Optimization

Use instructions that perform AND operations (ANDPS, and ANDPD) to determine the absolute 
value of floating-point operands of SSE and SSE2 instructions.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Examples

The following examples illustrate how to clear the sign bits. See Appendix C for latencies of the 
ANDPS and ANDPD instructions:

; SSE
absmask DQ 7FFFFFFF7FFFFFFFh,7FFFFFFF7FFFFFFFh
andps xmm0, [absmask]   ; Clear the sign bits of all four floats in XMM0.
; SSE2
absmask DQ 7FFFFFFFFFFFFFFFh,7FFFFFFFFFFFFFFFh
andpd xmm0, [absmask]   ; Clear the sign bits of both doubles in XMM0.
152 Optimizing with SIMD Instructions Chapter 9



Software Optimization Guide for AMD Family 10h Processors40546 Rev. 3.08 October 2008
9.11 Accumulating Single-Precision Floating-Point 
Numbers Using SSE and SSE2 Instructions

Optimization

Careful selection of SSE instructions based on efficient data organization can lead to more 
economical code.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

SSE and SSE2 provide vectorized multiplication and addition instructions. These instructions are 
useful for carrying out such operations as complex-number multiplication, 4 ∞ 4 matrix 
multiplication, and dot products.

Examples

The following example uses SSE instructions. Four floating-point values are loaded into four XMM 
registers, XMM4–XMM7. These values are then rearranged and added, so as to accumulate the sum 
of each XMM register into a float in XMM1.

;----------------------------------------------------------------------
; The instructions below take the 4 floats in each XMM register below:
;  xmm4  =  [d,c,b,a]
;  xmm5  =  [D,C,B,A]
;  xmm6  =  [h,g,f,e]
;  xmm7  =  [H,G,F,E]
;
;  and arranges them to look like:
;  xmm4  =  [E,e,A,a]
;  xmm1  =  [F,f,B,b]
;  xmm2  =  [G,g,C,c]
;  xmm3  =  [H,h,D,d]

movaps   xmm3, xmm4   ; xmm3 | [d,c,b,a]
movaps   xmm0, xmm5   ; xmm0 | [D,C,B,A]

unpcklps xmm4, xmm6   ; xmm4 | [f,b,e,a]
unpckhps xmm3, xmm6   ; xmm3 | [h,d,g,c]
movaps   xmm1, xmm4   ; xmm1 | [f,b,e,a]
movaps   xmm2, xmm3   ; xmm2 | [h,d,g,c]

unpcklps xmm5, xmm7   ; xmm5 | [F,B,E,A]
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unpckhps xmm0, xmm7   ; xmm0 | [H,D,G,C]

unpcklps xmm4, xmm5   ; xmm4 | [E,e,A,a]
unpckhps xmm1, xmm5   ; xmm1 | [F,f,B,b]
unpcklps xmm3, xmm0   ; xmm3 | [G,g,C,c]
unpckhps xmm2, xmm0   ; xmm2 | [H,h,D,d]

; Now if we compute the sum of these registers, we get the dot-product
;  of the first row of A with vector X:
;
;  a+b+c+d
;
;  in the lower DWORD of the resultant XMM register. The dot-product of the
;  second row is stored in the second DWORD and so on, such that:
;
;  xmm1 = [V+X+Y+Z,v+x+y+z,A+B+C+D,a+b+c+d]

addps xmm1, xmm4   ; xmm1 | [E+F,e+f,A+B,a+b]
addps xmm3, xmm2   ; xmm3 | [G+H,g+h,C+D,c+d]
addps xmm1, xmm3   ; xmm1 | [E+F+G+H,e+f+g+h,A+B+C+D,a+b+c+d]

9.12 Complex-Number Arithmetic Using SSE, SSE2, 
and SSE3 Instructions

Optimization

Use vectorizing SSE, SSE2 and SSE3 instructions to perform complex number calculations.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Complex numbers have a “real” part and an “imaginary” part (where the imaginary part is denoted by 
the letter i). For example, the complex number z1 might have a real part equal to 4 and an imaginary 
part equal to 3, written as 4 + 3i. Multiplying and adding complex numbers is an integral part of 
digital signal processing. Complex number addition is illustrated here using two complex numbers, z1 
(4 + 3i) and z2 (5 + 2i):

z1 + z2 = (4 + 3i) + (5 + 2i) = [4+5] + [3+2]i = 9 + 5i

or:

sum.real = z1.real + z2.real
sum.imag = z1.imag + z2.imag
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Complex number multiplication is illustrated below using the same two complex numbers:

z1 + z2 = (4 + 3i)(5 + 2i) = [4 ∞ 5 - 3 ∞ 2] + [3 ∞ 5 + 4 ∞ 2]i = 14 + 23i

or:

product.real = z1.real * z2.real - z1.imag * z2.imag
product.imag = z1.real * z2.imag + z1.imag * z2.real

Complex numbers are stored as streams of two-element vectors, the two elements being the real and 
imaginary parts of the complex numbers. Addition of complex numbers can be achieved using 
vectorizing SSE or SSE3 instructions, such as ADDPS and ADDPD. Multiplication of complex 
numbers is more involved, but SSE3 instructions are available to perform exactly the operations 
required.

From the formulas for multiplication, the real and imaginary parts of one of the numbers must be 
interchanged, and, additionally, the products must be positively or negatively accumulated depending 
upon whether we are computing the imaginary or real portion of the product.

The following functions use SSE, SSE2, and SSE3 instructions to illustrate complex multiplication of 
streams of complex numbers x[] and y[] stored in a product stream prod[]. For these examples, 
assume that the sizes of x[] and y[] are even multiples of four.

Example

Complex Multiplication of Streams of Complex Numbers using SSE3 Instructions

; cmplx_multiply_sse3(float *x, float *y, int num_cmplx_elem, float *prod);
;
; TO ASSEMBLE INTO *.obj DO THE FOLLOWING:
; ml64.exe -c cmplx_multiply_sse3.asm
;
;
; define local variable storage offsets
save_xmm6      equ      0h        ;xmmword
save_xmm7      equ      010h      ;xmmword
save_rdi       equ      020h      ;qword
save_rsi       equ      028h      ;qword

stack_size     equ      038h

TEXT   SEGMENT      page      'CODE'
   PUBLIC  cmplx_multiply_sse3
cmplx_multiply_sse3   proc   frame
;==============================================================================
; INSTRUCTIONS BELOW SAVE THE REGISTER STATE WITH WHICH THIS ROUTINE WAS ENTERED
; REGISTERS RSI, ESI, and XMM6, ARE CONSIDERED VOLATILE AND ASSUMED TO BE CHANGED
; WHILE THE REGISTERS BELOW MUST BE PRESERVED IF THE USER IS CHANGING THEM
;
; NOTE the use of the Masm 64 prolog macros needed for Structured Exception
; Handling.
   sub      rsp,stack_size
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   .ALLOCSTACK   stack_size
   movdqa   XMMWORD PTR [rsp+save_xmm6],xmm6   ; save xmm6
   .SAVEXMM128 xmm6, save_xmm6
   movdqa   XMMWORD PTR [rsp+save_xmm7],xmm7   ; save xmm7
   .SAVEXMM128 xmm7, save_xmm7
   mov      QWORD PTR [rsp+save_rdi],rdi       ; save rdi
   .SAVEREG rdi, save_rdi
   mov      QWORD PTR [rsp+save_rsi],rsi       ; save rsi
   .SAVEREG rsi, save_rsi
   .ENDPROLOG
;==============================================================================
; Parameters passed into routine according to the Microsoft AMD64 ABI:
; rcx = ->x
; rdx = ->y
; r8d = num_cmplx_elem
; r9 = ->prod
;==============================================================================

mov rsi, rcx    ; rsi = ->x
mov rdi, rdx    ; rdi = ->y
mov ecx, r8d    ; rcx = num_cmplx_elem (zero extends the 64 bit destination

     ; register)

;==============================================================================
; THE 6 ASM LINES BELOW OFFSET THE ADDRESS TO THE ARRAYS x[] AND y[] SUCH
; THAT THEY CAN BE ACCESSED IN THE MOST EFFICIENT MANNER AS ILLUSTRATED
; BELOW IN THE LOOP mult8cmplxnum_loop WITH THE MINIMUM NUMBER OF
; ADDRESS INCREMENTS
;==============================================================================
mov r8, rcx    ; rdx = num_cmplx_elem
neg rcx        ; rcx = -num_cmplx_elem
imul r8, 8     ; edx = 8 * num_cmplx_elem = # bytes in x[] and y[] to multiply
add rsi, r8    ; esi = -> to last element of x[] to multiply
add rdi, r8    ; edi = -> to last element of y[] to multiply
add r9, r8     ; r9 = -> end of prod[] to calculate
;==============================================================================
; THIS LOOP MULTIPLIES 8 COMPLEX #s FROM "x[]" UPON 8 COMPLEX #s FROM "y[]"
; AND RETURNS THE PRODUCT IN "prod[]".
;==============================================================================
ALIGN 32 ; Align address of loop to a 32-byte boundary.
four_cmplx_prod_loop: ;
movaps xmm0, XMMWORD PTR [rsi+rcx*8]     ; xmm0=[x1i,x1r,x0i,x0r]
movaps xmm1, XMMWORD PTR [rsi+rcx*8+16]  ; xmm1=[x3i,x3r,x2i,x2r]

movaps xmm4, XMMWORD PTR [rdi+rcx*8]     ; xmm4=[y1i,y1r,y0i,y0r]
movaps xmm5, XMMWORD PTR [rdi+rcx*8+16]  ; xmm5=[y3i,y3r,y2i,y2r]

movaps    xmm6,xmm4           ; xmm6=[y1i,y1r,y0i,y0r]
movaps    xmm7,xmm5           ; xmm7=[y3i,y3r,y2i,y2r]
movshdup xmm2,xmm0            ; xmm2=[x1i,x1i,x0i,x0i]
movshdup xmm3,xmm1            ; xmm3=[x3i,x3i,x2i,x2i]
movsldup xmm0,xmm0            ; xmm0=[x1r,x1r,x0r,x0r]
movsldup xmm1,xmm1            ; xmm1=[x3r,x3r,x2r,x2r]
shufps   xmm6,xmm4,0b1h       ; xmm6=[y1r,y1i,y0r,y0i]
shufps   xmm7,xmm5,0b1h       ; xmm7=[y3r,y3i,y2r,y2i]
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mulps xmm2, xmm6              ; xmm2=[x1i*y1r,x1i*y1i,x0i*y0r,x0i*y0i]
mulps xmm3, xmm7              ; xmm3=[x3i*y3r,x3i*y3i,x2i*y2r,x2i*y2i]
mulps xmm0, xmm4              ; xmm0=[x1r*y1i,x1r*y1r,x0r*y0i,x0r*y0r]
mulps xmm1, xmm5              ; xmm1=[x3r*y3i,x3r*y3r,x2r*y2i,x2r*y2r]

addsubps xmm0, xmm2 ; xmm0=[x1r*y1i+x1i*y1r,x1r*y1r-x1i*y1i,
 ; x0r*y0i+x0i*y0r,x0r*y0r-x0i*y0i]

addsubps xmm1, xmm3 ; xmm1=[x3r*y3i+x3i*y3r,x3r*y3r-x3i*y3i,
                    ;       x2r*y2i+x2i*y2r,x2r*y2r-x2i*y2i]

movntps XMMWORD PTR [r9+rcx*8], xmm0   ; Stream XMM0-XMM3 to representative memory
movntps XMMWORD PTR [r9+rcx*8+16], xmm1
add rcx, 4 ; RCX = RCX +4
jnz four_cmplx_prod_loop
sfence                         ; Finish all memory writes.

;==============================================================================
; INSTRUCTIONS BELOW RESTORE THE REGISTER STATE WITH WHICH THIS ROUTINE WAS
; ENTERED
; REGISTERS RDI, RSI ARE CONSIDERED VOLATILE AND ASSUMED TO BE CHANGED
; WHILE THE REGISTERS BELOW MUST BE PRESERVED IF THE USER IS CHANGING THEM
   mov   rdi, QWORD PTR [rsp+save_rdi]      ; restore rdi
   mov   rsi, QWORD PTR [rsp+save_rsi]      ; restore rsi
   movdqa   xmm6, [rsp+save_xmm6]           ; restore xmm6
   movdqa   xmm7, [rsp+save_xmm7]           ; restore xmm7
   add   rsp,stack_size
   ret

cmplx_multiply_sse3      endp
TEXT   ENDS
END

The example above makes use of many optimization techniques. First, the SSE3 technology code 
utilizes the MOVSHDUP, MOVSLDUP and ADDSUBPS instructions, whose operations are outlined 
below:

; MOVSHDUP
; Suppose that XMM0 contains four floats: r2, i2, r1 and i1.
; INPUT:
; XMM0 = [i2,r2,i1,r1]
; OUTPUT:
; XMM1 = [i2,i2,i1,i1]
movshdup xmm1, xmm0 ; SMM1 = [i2,i2,i1,i1]

; MOVSLDUP
; Suppose that XMM0 contains four floats: r2, i2, r1 and i1.
; INPUT:
; XMM0 = [i2,r2,i1,r1]
; OUTPUT:
; XMM1 = [r2,r2,r1,r1]
movsldup xmm1, xmm0 ; XMM1 = [r2,r2,r1,r1]
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The ADDSUBPS instruction is specifically designed for use in complex arithmetic operations. 
; ADDSUBPS 
; Suppose that XMM0 contains four floats: r3 * i4, r3 * r4 , r1 * i2, r1 * r2 
; where r3 * i4 and r1 * i2 are the products of the real
; part of the first complex number and the imaginary part of the second
; complex number for two pairs of complex numbers,
; and  r3 * r4 and r1 * r2 are the product of the real parts
; of two pairs of complex numbers
; Also suppose that XMM1 contains four floats: i3 * r4, i3 * i4, i1 * r2, i1 * i2
; where i1 * r2  and i3 * r4  are the products of the imaginary part of the
; first complex number and the real part of the second complex number
; for two pairs of complex numbers
; and i3 * i4 and i1 * i2 air the products of the imaginary parts
; of two pairs of complex numbers.
; INPUTS:
; XMM0 = [r3*i4,r3*r4,r1*i2,r1*r2]
; XMM1 = [i3*r4,i3*i4,i1*r2,i1*i2]
; OUTPUT:
; XMM0 = [r3*i4+i3*r4+,r3*r4-i3*i4,r1*i2+i1*r2,r1*r2-i1*i2]
addsubps xmm0, xmm1 ; XMM0 = [r3*i4+i3*r4+,r3*r4-i3*i4,r1*i2+i1*r2,r1*r2-i1*i2]

The second optimization is a form of loop unrolling so that four complex numbers are concurrently 
multiplied in the examples using SSE and SSE3 instructions to break up register dependencies. 
Loads, multiplications, and additions do not execute with zero delay, but have a latency associated 
with them. The following instructions are interdependent:

movaps xmm0, XMMWORD PTR [rsi+rcx*8]     ; xmm0=[x1i,x1r,x0i,x0r]
movaps xmm4, XMMWORD PTR [rdi+rcx*8]     ; xmm4=[y1i,y1r,y0i,y0r]

movaps    xmm6,xmm4           ; xmm6=[y1i,y1r,y0i,y0r]
movshdup xmm2,xmm0            ; xmm2=[x1i,x1i,x0i,x0i]
movsldup xmm0,xmm0            ; xmm0=[x1r,x1r,x0r,x0r]
shufps   xmm6,xmm4,0b2h       ; xmm6=[y1r,y1i,y0r,y0i]
mulps xmm2, xmm6              ; xmm2=[x1i*y1r,x1i*y1i,x0i*y0r,x0i*y0i]
mulps xmm0, xmm4              ; xmm0=[x1r*y1i,x1r*y1r,x0r*y0i,x0r*y0r]

addsubps xmm0, xmm2           ; xmm0=[x1r*y1i+x1i*y1r,x1r*y1r-x1i*y1i,
                              ;       x0r*y0i+x0i*y0r,x0r*y0r-x0i*y0i]

The move from memory (MOVAPS) requires 2 cycles (assuming that the data is available in L1 
cache), MOVSHDUP, MOVSLDUP require 2 cycles each, the two MULPS instructions require 4 
cycles, the SHUFPS requires 4 cycles, and ADDSUBPS requires 4 cycles. The instruction flow 
through the processor is illustrated on a clock-cycle basis, as follows:

Instruction 0     2     4     6     8     10    12    14    16    
MOVAPS      xxxxxx
MOVAPS      xxxxxx
MOVAPS            xxxxxx
MOVSHDUP          xxxxxx
MOVSLDUP          xxxxxx
SHUFPS                  xxxxxxxxxxxx
MULPS                               xxxxxxxxxxxx
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MULPS                   xxxxxxxxxxxx
ADDSUBPS                                        xxxxxxxxxxxx

These two complex multiplies take 15 cycles to finish. During these 15 cycles, the processor has the 
ability to perform 60 single-precision adds and 60 single-precision multiplies, but in this code 
sequence it only performs eight multiplies and four adds (the subtracts are performed on the ADD 
execution unit). This is only 10% utilization. The majority of the time is spent waiting for previous 
instructions to terminate so that arguments to future instructions are available. By unrolling the 
multiplication and working with four complex numbers per loop, there are more instructions that are 
not dependent on previous or presently executing operations. This allows the processor to mask the 
execution latency and keep itself busier, as illustrated below:

Instruction 0     2     4     6     8     10    12    14    16    18
MOVAPS      xxxxxx
MOVAPS      xxxxxx
MOVAPS         xxxxxx
MOVAPS         xxxxxx
MOVAPS            xxxxxx
MOVAPS            xxxxxx
MOVSHDUP          xxxxxx
MOVSHDUP             xxxxxx
MOVSLDUP             xxxxxx
MOVSLDUP             xxxxxx
SHUFPS                  xxxxxxxxxxxx
SHUFPS                  xxxxxxxxxxxx
MULPS                               xxxxxxxxxxxx
MULPS                      xxxxxxxxxxxx
MULPS                                  xxxxxxxxxxxx
MULPS                         xxxxxxxxxxxx
ADDSUBPS                                        xxxxxxxxxxxx
ADDSUBPS                                           xxxxxxxxxxxx

Multiplying four complex single-precision numbers only takes 17 cycles as opposed to 15 cycles to 
multiply two complex single-precision numbers. The floating-point pipes are kept busier by feeding 
new instructions into the floating-point pipeline each cycle. In the arrangement above, 16 multiplies 
and 8 additions are performed in 17 cycles, achieving a 1.8x increase in performance. Unrolling the 
loop one more time will improve efficiency even more, at the expense of requiring all 16 XMM 
registers at once.

The last optimization uses MOVNTPS instructions—nontemporal writes to memory that stream data 
to main memory. These instructions increase throughput to memory and make more efficient use of 
the bandwidth provided by the processor and memory controller. Nontemporal writes, such as 
MOVNTPS, and MOVNTDQ, should only be used on data that is not going to be accessed again in 
the near future.
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9.13 Optimized 4 X 4 Matrix Multiplication on 4 X 1 
Column Vector Routines

Optimization

Transpose the rotation matrix to eliminate the need to accumulate floating-point values in an XMM 
register.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

The multiplication of a 4 × 4 matrix with a 4 × 1 vector is commonly used in 3-D graphics for 
geometric transformation (translating, scaling, rotating, and applying perspective to 3-D points 
represented in homogeneous coordinates). Efficiency in single-precision matrix multiplication can be 
enhanced by use of SIMD instructions to increase throughput, but there are other general 
optimizations that can be implemented to further increase performance. The first optimization is the 
transposition of the rotation matrix such that column n of the matrix becomes row n and row m 
becomes column m. There are no SSE or SSE2 instructions that accumulate the floats and doubles in 
a single XMM register; for this reason, the matrix must be transposed. If the rotation matrix is not 
transposed, then the dot-product of a row of the matrix with a column vector necessitates the 
accumulation of the four floating-point values in an XMM register. The multiplication on the column 
vector is illustrated here

               |r00 r01 r02 r03|        |r00 r10 r20 r30|   |v0|   |v'0|
tr(R) × v = tr |r10 r11 r12 r13| × v =  |r01 r11 r21 r31| × |v1| = |v'1|
               |r20 r21 r22 r23|        |r02 r12 r22 r32|   |v2|   |v'2|
               |r30 r31 r32 r33|        |r03 r13 r23 r33|   |v3|   |v'3|

         Step 0       Step 1       Step 2       Step 3
|v'0|   |r00 × v0|   |r01 × v1| + |r02 × v2| + |r03 × v3|
|v'1| = |r10 × v0| + |r11 × v1| + |r12 × v2| + |r13 × v3|
|v'2|   |r20 × v0|   |r21 × v1| + |r22 × v2| + |r23 × v3|
|v'3|   |r30 × v0|   |r31 × v1| + |r32 × v2| + |r33 × v3|

In each step above, the elements of the rotation matrix can be loaded into an XMM register with the 
MOVAPS instruction, assuming the rotation matrix begins at a 16-byte-aligned memory location. 
Transposition of the rotation matrix eliminates the need to accumulate the floating-point values in an 
XMM register, but it does require the duplication of the elements of the 4 × 1 column vector V in all 
four floating-point values of the XMM register in each step above. The following example shows an 
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SSE function that performs 4 × 4 matrix multiplication upon a stream of num_vertices_to_rotate 
vertices.

Example

4 X 4 Matrix Multiplication (SSE)
; matrix_x_vector_sse(float *trR, float *v, int num_vertices_to_rotate,
float *rotv);
;
; TO ASSEMBLE INTO *.obj DO THE FOLLOWING:
; ml.exe -coff -c matrix_x_vector_sse.asm
;
.586
.K3D
.XMM
_TEXT SEGMENT
PUBLIC _matrix_x_vector_sse
_matrix_x_vector_sse PROC NEAR
;==============================================================================
; INSTRUCTIONS BELOW SAVE THE REGISTER STATE WITH WHICH THIS ROUTINE WAS
; ENTERED.
; REGISTERS EAX, ECX, AND EDX ARE CONSIDERED VOLATILE AND ASSUMED TO BE CHANGED,
; WHILE THE REGISTERS BELOW MUST BE PRESERVED IF THE USER IS CHANGING THEM
push ebp
mov ebp, esp
;==============================================================================
; Parameters passed into routine:
; [ebp+8] = ->trR
; [ebp+12] = ->v
; [ebp+16] = num_vertices_to_rotate
; [ebp+20] = ->rotv
;==============================================================================
push ebx
push esi
push edi
;==============================================================================
; THE 4 ASM LINES BELOW LOAD THE FUNCTION's ARGUMENTS INTO GENERAL-PURPOSE
; REGISTERS (GPRS)
; esi = address of Transposed Rotation Matrix
; edi = address of vertices to rotate
; ecx = # of vertices to rotate
; eax = address of rotated vertices
;==============================================================================
mov esi, [ebp+8] ; ESI = ->trR
mov edi, [ebp+12] ; EDI = ->v
mov ecx, [ebp+16] ; ECX = num_vertices_to_rotate
mov edx, ecx ; EDX = num_vertices_to_rotate
shl edx, 4 ; EDX = 16*num_vertices_to_rotate
mov eax, [ebp+20] ; EAX = ->rotv
imul ecx, 2 ; ECX = # quadwords of vertices to rotate
add edi, edx ; EDI = -> end of "v"
add eax, edx ; EAX = -> end of "rotv"
neg ecx ; ECX = -# quadwords of vertices to rotate
;==============================================================================
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; THE 4 ASM LINES BELOW LOAD THE TRANSPOSED ROTATION MATRIX "R" INTO XMM0-XMM3
; IN THE FOLLOWING MANNER:
; xmm0 = column 0 of "R" or row 0 of "R" transpose
; xmm1 = column 1 of "R" or row 1 of "R" transpose
; xmm2 = column 2 of "R" or row 2 of "R" transpose
; xmm3 = column 3 of "R" or row 3 of "R" transpose
;==============================================================================
movaps xmm0, [esi] ; XMM0 = [R30,R20,R10,R00]
movaps xmm1, [esi+16] ; XMM1 = [R31,R21,R11,R01]
movaps xmm2, [esi+32] ; XMM2 = [R32,R22,R12,R02]
movaps xmm3, [esi+48] ; XMM3 = [R33,R23,R13,R03]
;==============================================================================
; THIS LOOP ROTATES "num_vertices_to_rotate" VERTICES BY THE TRANSPOSED
; ROTATION MATRIX "R" PASSED INTO THE ROUTINE AND STORES THE ROTATED
; VERTICES TO "rotv".
;==============================================================================
ALIGN 32 ; Align address of loop to a 32-byte boundary.
rotate_vertices_loop:
movlps xmm4, [edi+8*ecx] ; XMM4=[,,v1,v0]
movlps xmm6, [edi+8*ecx+8] ; XMM6=[,,v3,v2]
unpcklps xmm4, xmm4 ; XMM4=[v1,v1,v0,v0]
unpcklps xmm6, xmm6 ; XMM6=[v3,v3,v2,v2]
movhlps xmm5, xmm4 ; XMM5=[,,v1,v1]
movhlps xmm7, xmm6 ; XMM7=[,,v3,v3]
movlhps xmm4, xmm4 ; XMM4=[v0,v0,v0,v0]
mulps xmm4, xmm0 ; XMM4=[R30*v0,R20*v0,R10*v0,R00*v0]
movlhps xmm5, xmm5 ; XMM5=[v1,v1,v1,v1]
mulps xmm5, xmm1 ; XMM5=[R31*v1,R21*v1,R11*v1,R01*v1]
movlhps xmm6, xmm6 ; XMM6=[v2,v2,v2,v2]
mulps xmm6, xmm2 ; XMM6=[R32*v2,R22*v2,R12*v2,R02*v2]
addps xmm4, xmm5 ; XMM4=[R30*v0+R31*v1,R20*v0+R21*v1,
; R10*v0+R11*v1,R00*v0+R01*v1]
movlhps xmm7, xmm7 ; XMM7=[v3,v3,v3,v3]
mulps xmm7, xmm3 ; XMM6=[R33*v3,R23*v3,R13*v3,R03*v3]
addps xmm6, xmm7 ; XMM6=[R32*v2+R33*v3,R22*v2+R23*v3,
; R12*v2+R13*v3,R02*v2+R03*v3]
addps xmm4, xmm6 ; XMM4=New rotated vertex
movntps [eax+8*ecx], xmm4 ; Store rotated vertex to rotv.
add ecx, 2 ; Decrement the # of QWORDs to rotate by 2.
jnz rotate_vertices_loop
sfence ; Finish all memory writes.
;==============================================================================
; INSTRUCTIONS BELOW RESTORE THE REGISTER STATE WITH WHICH THIS ROUTINE
; WAS ENTERED
; REGISTERS EAX, ECX, EDX ARE CONSIDERED VOLATILE AND ASSUMED TO BE CHANGED
; WHILE THE REGISTERS BELOW MUST BE PRESERVED IF THE USER IS CHANGING THEM
pop edi
pop esi
pop ebx
mov esp, ebp
pop ebp
;==============================================================================
ret
_matrix_x_vector_sse ENDP
_TEXT ENDS
END
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To greatly enhance performance, the previous function can perform the matrix multiplication not only 
on one four-column vector, but on many. Creating a separate function to transform a single vertex and 
repeatedly calling the function is prohibitively expensive because of the overhead in pushing and 
popping registers from the stack. This applies to routines that negate a single vector, nullify a single 
vector, and add two vectors.

9.14 Floating-Point-to-Integer Conversion

Optimization

Floating-point-to-integer conversion in C and C++ requires the use of truncation. Use one of the 
instructions from CVTTSS2SI, CVTTSD2SI to convert a floating-point number to integer when 
truncation is required. See the AMD64 Architecture Programmer's, Volume 4: 128-Bit Media 
Instructions, order# 26568, for details.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

These instructions provide the fastest means by which to convert floating-point types to integers in 
AMD Family 10h processors.

9.15 Reuse of Dead Registers

Optimization

On AMD Family 10h processors, when it is necessary to save the contents of a register that is a 
single-precision floating-point scalar to another unused (or dead) register, use MOVAPS dest, src 
instead of MOVSS dest, src.

When saving a register that is a double-precision floating-point scalar to another register, where the 
contents are unknown, then use MOVAPD dest, src instead of MOVSD dest, src.

Application

This optimization applies to:

• 32-bit software

• 64-bit software
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Rationale

On the AMD Family 10h processors, the MOVSS dest, src instruction takes additional time to 
execute if any of the upper three fields of dest is a denormal. Additionally, the MOVSS dest, src 
instruction has a dependency on previous instructions that change dest, either partially or in full, and 
the MOVAPS dest, src instruction breaks such dependency chains by changing dest as a whole. 

The MOVSD dest, src instruction also takes additional time to execute, if the previous value in xmm1 
is a denormal. Moreover, the MOVSD dest, src instruction has a dependency on previous instructions 
that change dest either partially or in full. On the other hand, the MOVAPD dest, src instruction 
breaks such dependency chains by writing to all of dest.

9.16 Floating-Point Scalar Conversions 

Optimization 

Use the recommended instruction sequences given in Table 8 and Table 9 to convert integer data to 
floating-point data.

Application 

This optimization applies to: 

• 32-bit software 

• 64-bit software 

Rationale 

On AMD Family 10h processors, some SIMD conversion instructions are VectorPath and/or add a 
false dependency on previous instructions that change the same destination register. In the cases for 
which there are alternatives in Tables 8 and 9, these instruction sequences use DirectPath instructions 
and provide better performance. (All recommendations apply to both 32-bit and 64-bit software, 
unless stated otherwise.)

Several instructions may be required to perform some conversions from unsigned integer to floating-
point, due to the lack of a suitable conversion instruction, therefore signed integers should be favored 
when converting to floating-point.

Table 8. Single-Precision Floating-Point Scalar Conversion

Conversion From a Register From Memory

32-Bit Signed Integer to 
Single-Precision 

movd xmm, reg32 
cvtdq2ps xmm, xmm

movd xmm, mem32 
cvtdq2ps xmm, xmm 
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32-Bit Unsigned Integer 
to Single-Precision 

64-bit software:

xorps xmm, xmm2 

mov mem64, reg64 
cvtsi2ss xmm, mem64

64-bit software:

xorps xmm, xmm2 
cvtsi2ss xmm, mem64

64-Bit Signed Integer to 
Single-Precision 

64-bit software:

xorps xmm, xmm2 
mov mem64, reg64 
cvtsi2ss xmm, mem64

64-bit software:

xorps xmm, xmm2 
cvtsi2ss xmm, mem64

Double-Precision to 
Single-Precision 

unpcklpd xmm2, xmm21 

cvtpd2ps xmm1, xmm2 

movsd xmm, mem64 
cvtpd2ps xmm, xmm 

Notes:
1. If the contents of [127:64] of xmm2 is known to be a normal number, this instruction can be omitted.
2. This avoids a merge dependency for contents of [127:32] of xmm as a result of a previous long latency 

instruction that has written to contents of [127:0] of xmm.

Table 9. Double-Precision Floating-Point Scalar Conversion

Conversion From a Register From Memory

32-Bit Signed Integer to 
Double-Precision 

movd xmm, reg32 
cvtdq2pd xmm, xmm

movd xmm, mem32 
cvtdq2pd xmm, xmm 

32-Bit Unsigned Integer 
toDouble-Precision 

64-bit software:

xorpd xmm, xmm2 
mov mem64, reg64 
cvtsi2sd xmm, mem64

64-bit software:

xorpd xmm, xmm2 
cvtsi2sd xmm, mem64

64-Bit Signed Integer to 
Double-Precision 

64-bit software:

xorpd xmm, xmm2 
mov mem64, reg64 
cvtsi2sd xmm, mem64

64-bit software:

xorpd xmm, xmm2 
cvtsi2sd xmm, mem64

Single-Precision to 
Double-Precision 

unpcklps xmm2, xmm21 

cvtps2pd xmm1, xmm2

movss xmm, mem32 
cvtps2pd xmm, xmm

Notes:
1. If the contents of [63:32] of xmm2 is known to be a normal number, this instruction can be omitted.
2. This avoids a merge dependency for contents of [127:32] of xmm as a result of a previous long latency 

instruction that has written to contents of [127:0] of xmm.

Table 8. Single-Precision Floating-Point Scalar Conversion

Conversion From a Register From Memory
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Chapter 10 x87 Floating-Point Optimizations

AMD Family 10h processors support multiple methods of performing floating-point operations, 
including the older x87 assembly instructions, in addition to the more recent SIMD instructions (SSE, 
SSE2, SSE3, and SSE4a technologies).

AMD Family 10h processors are 64-bit processors that are fully backwards compatible with 32-bit 
code. In general, 64-bit operating systems support the x87 instructions in 32-bit threads; however, 
64-bit operating systems may not support x87 instructions in 64-bit threads. To facilitate future 
migration from 32-bit to 64-bit code, it may be necessary to avoid x87 instructions altogether and use 
only SSE, SSE2, SSE3, and SSE4a instructions when writing new 32-bit code.

Note that x87 and scalar SSE instructions cannot schedule floating-point operations in the new second 
set of FPU registers.  Thus, the x87 instructions cannot take full advantage of the new 128-bit 
floating-point resources; better performance is achieved using packed SSE instructions.

This chapter details the methods used to optimize floating-point code to the pipelined x87 floating-
point registers.

This chapter covers the following topics:

10.1 Using Multiplication Rather Than Division

Optimization

If accuracy requirements allow, convert floating-point division by a constant to multiplication by the 
reciprocal. 

Application

This optimization applies to:

• 32-bit software

• 64-bit software
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Rationale

Divisors that are powers of two—and their reciprocals—are exactly representable, and therefore do 
not cause an accuracy issue, except for the rare case in which the reciprocal overflows or underflows. 
Unless such an overflow or underflow occurs, always convert a division by a power of two for 
multiplication. (Underflow in a reciprocal operation can only occur if one is flushing denormals to 
zero.) Although AMD Family 10h processors have high-performance division, multiplication is 
significantly faster than division. (This method will likely be faster than using the FSCALE 
instruction, and considerably faster than many implementations of the scalb( ) function for x87.

10.2 Achieving Two Floating-Point Operations per 
Clock Cycle

Optimization

Pay special attention to the order and packing of the operations to sustain up to two floating-point 
operations per clock cycle.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

The AMD Family 10h floating-point unit can sustain up to two floating-point operations (one in the 
add unit and one in the multiply unit) per clock cycle. However, to achieve this, you must pay special 
attention to the order and packing of the operations. For example, consider multiplying a 30 ∞ 30 
double-precision matrix A by a transposed 30 ∞ 30 double-precision matrix B, the result of which is 
called C.

Use Efficient Addressing of FPU Data When Loading and Storing

The rows of A are 240 bytes wide, as are the columns of B. There are eight x87 floating-point 
registers [ST(0)–ST(7)], and in this example, six rows of A are concurrently multiplied by a single 
column of B. The address of the first element of the first row of A (A[0]) is presumed to be stored in 
the EDI register, while the address of the first element of the first column of B (B[0]) is stored in ESI.

This addressing scheme initially appears to be a good idea, however, only 128 bytes can be addressed 
forward of A[0] with 8-bit offsets (hence 3-byte instructions are required—two bytes for the 
instruction and one byte for the offset). When the offset is greater than 128 bytes from the address in 
the general-purpose register, the size of the instruction increases from 3 bytes to 6 bytes (offsets larger 
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than 128 bytes are represented by 32 bits rather than 8 bits in the instruction). Address offsets larger 
than 128 bytes require 6-byte instructions, as these offsets require 32 bits rather than 8 bits in the 
instruction. Large instruction sizes reduce the number of decoded operations to be executed within the 
pipes of the floating-point unit, and as such prevent us from achieving two floating-point operations 
per clock cycle. To alleviate this, the general-purpose registers EDI and ESI are offset by 128 bytes 
such that they contain the addresses of A[15] and B[15]. This is beneficial because data within 
128 bytes (16 double-precision numbers) before or after these two locations can now be accessed with 
instructions that are 2–3 bytes in size. The next five rows of A can be efficiently addressed in terms of 
the first row. Storing the size of a single row of A (240 bytes) in the EAX register, the size of three 
rows (720 bytes) in EBX, and the size of five rows (1200 bytes) in ECX, the first element of rows 0–5 
of A can be addressed as follows:

fld QWORD PTR [edi-128]         ; Load A[i,0].
fld QWORD PTR [edi+eax-128]     ; Load A[i+1,0].
fld QWORD PTR [edi+eax*2-128]   ; Load A[i+2,0].
fld QWORD PTR [edi+ebx-128]     ; Load A[i+3,0].
fld QWORD PTR [edi+eax*4-128]   ; Load A[i+4,0].
fld QWORD PTR [edi+ecx-128]     ; Load A[i+5,0].

This addressing scheme reduces the size of all loads from memory to 3 bytes; additionally, to address 
rows 6–11 of A, you only need to add 240*6 to EDI.

Avoid Register Dependencies by Spacing Apart Instructions that Accumulate Results 
in a Register

The second general optimization to consider is spacing out register dependencies. Operations 
internally in the floating-point unit have an execution latency (normally 3–4 cycles for x87 
operations). Consider this instruction sequence:

fldz                       ; Push 0.0 onto floating-point stack.
fld  QWORD PTR [edi-128]   ; Push A[i,0] onto stack.
fmul QWORD PTR [esi-128]   ; Multiply A[i,0] by B[0,j].
faddp st(1), st(0)         ; Accumulate contribution to dot product of
                           ; A’s row i and B’s column j.
fld  QWORD PTR [edi-120]   ; Push A[i,1] onto stack.
fmul QWORD PTR [esi-120]   ; Multiply A[i,1] by B[1,j].
faddp st(1), st(0)         ; Accumulate contribution to dot product of
                           ; A’s row i and B’s column j.
fld  QWORD PTR [edi-112]   ; Push A[i,2] onto stack.
fmul QWORD PTR [esi-112]   ; Multiply A[i,2] by B[2,j].
faddp st(1), st(0)         ; Accumulate contribution to dot product of
                           ; A’s row i and B’s column j.

The second statement loads A[0] into ST(0), and the third statement multiplies it by B[0]. The 
subsequent line adds this product to ST(1), where the dot product of row 0 of matrix A and column 0 
of matrix B is accumulated. Each of the subsequent groups of three instructions adds the contribution 
of the remaining 29 elements to the dot product. This code is poor because all the addition operations 
depend upon the contents of a single register, ST(1).  The AMD Family 10h processors have out-of-
order-execution floating-point units, but none of the addition operations can be performed out of 
order because the result of each addition operation depends on the outcome of the previous addition 
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operation. Instruction scheduling based on this code greatly limits the throughput of the floating-point 
unit. To alleviate this, space out operations that are dependent on one another. In this case, work with 
six rows of A rather than one at a time, as follows:

; Multiply first element of each of six rows of A by first element of
;  B’s column j.
fldz                       ; Push 0.0 six times onto floating-point stack.
fldz
fldz
fldz
fldz
fldz
fld  QWORD PTR [esi-128]   ; Push B[0,j] onto stack.

fld  QWORD PTR [edi-128]          ; Push A[i,0] onto stack.
fmul st(0), st(1)                 ; Multiply A[i,0] by B[0,j].
faddp st(7), st(0)                ; Accumulate contribution to dot product of
                                  ;  A’s row i and B’s column j.

fld   QWORD PTR [edi+eax-128]     ; Push A[i+1,0] onto stack.
fmul  st(0), st(1)                ; Multiply A[i+1,0] by B[0,j].
faddp st(6), st(0)                ; Accumulate contribution to dot product of
                                  ;  A’s row i+1 and B’s column j.

fld   QWORD PTR [edi+eax*2-128]   ; Push A[i+2,0] onto stack.
fmul  st(0), st(1)                ; Multiply A[i+2,0] by B[0,j].
faddp st(5), st(0)                ; Accumulate contribution to dot product of
                                  ;  A’s row i+2 and B’s column j.

fld   QWORD PTR [edi+ebx-128]     ; Push A[i+3,0] onto stack.
fmul  st(0), st(1)                ; Multiply A[i+3,0] by B[0,j].
faddp st(4), st(0)                ; Accumulate contribution to dot product of
                                  ;  A’s row i+3 and B’s column j.

fld   QWORD PTR [edi+eax*4-128]   ; Push A[i+4,0] onto stack.
fmul  st(0), st(1)                ; Multiply A[i+4,0] by B[0,j].
faddp st(3), st(0)                ; Accumulate contribution to dot product of
                                  ;  A’s row i+4 and B’s column j.

fmul  QWORD PTR [edi+ecx-128]     ; Multiply A[i+5,0] by B[0,j].
faddp st(1), st(0)                ; Accumulate contribution to dot product of
                                  ;  A’s row i+5 and B’s column j.

The processor can execute the instructions in this code sequence out of order because the instructions 
are independent. Even though the loads and multiplies are performed sequentially, the floating-point 
scheduler can execute the FLD and FMUL instructions out of order in addition to the FADD 
instruction so as to keep the multiplier and adder pipes of the floating-point unit busy. B[0] is initially 
loaded into an x87 register and multiplied by the loaded elements of each row with the reg, reg 
form of FMUL to minimize the number of load operations that need to be performed. Additionally, 
the first element from the sixth row of A is not loaded but simply multiplied from memory by the 
loaded element of B[0]. This eliminates an FLD instruction and decreases the number of instructions 
in the instruction cache and the workload on the processor’s decoder. To achieve two floating-point 
operations per clock cycle, the number of floating-point operations should be twice the number of 
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load-store operations. In the example above, there are 12 floating-point operations and seven 
operations requiring loads from memory, so nearly two floating-point operations can be performed 
per clock cycle.

Align and Pack DirectPath x87 Instructions

The last optimization to be performed is code packing and alignment. Having an abundance of 
operations in the decoder keeps the processor’s schedulers well fed in circumstances where 
instructions cannot be immediately provided to the decoders. Floating-point x87 code can be aligned 
to 8-byte boundaries as illustrated here, which is optimal on AMD Family 10h processors:

;Instruction Address        Opcode      Instruction
;==================================================
 00000360                   66          DB      066h
 00000361                   DD 06       fld     QWORD PTR [esi]
 00000363                   66          DB      066h
 00000364                   DD 07       fld     QWORD PTR [edi]
 00000366                   D8 C9       fmul    st(0), st(1)

 00000368                   DE C7       faddp   st(7), st(0)
 0000036A                   DD 04 38    fld     QWORD PTR [edi+eax]
 0000036D                   66          DB      066h
 0000036E                   D8 C9       fmul    st(0), st(1)

 00000370                   DE C6       faddp   st(6), st(0)
 00000372                   DD 04 47    fld     QWORD PTR [edi+eax*2]
 00000375                   66          DB      066h
 00000376                   D8 C9       fmul    st(0), st(1)

 00000378                   DE C5       faddp   st(5), st(0)
 0000037A                   DD 04 3B    fld     QWORD PTR [edi+ebx]
 0000037D                   66          DB      066h
 0000037E                   D8 C9       fmul    st(0), st(1)

 00000380                   DE C4       faddp   st(4), st(0)
 00000382                   DD 04 87    fld     QWORD PTR [edi+eax*4]
 00000385                   66          DB      066h
 00000386                   D8 C9       fmul    st(0), st(1)

 00000388                   DE C3       faddp   st(3), st(0)
 0000038A                   DC 0C 39    fmul    QWORD PTR [edi+ecx]
 0000038D                   66          DB      066h
 0000038E                   DE C1       faddp   st(1), st(0)

The instruction address specifies the address (in hexadecimal) of the instruction to the right.

Typically three DirectPath instructions occupy 7 bytes. Maintaining 8-byte alignment for the next 
group of three instructions requires the addition of a single byte. A 1-byte padding can easily be 
achieved using the single-byte NOP instruction (opcode 90h), as recommended in “Code Padding 
with Operand-Size Override and Multibyte NOP” on page 68. However, for the special case of x87 
instructions, the operand-size override (66h) serves as a high-performance NOP instruction and is the 
recommended choice for padding an x87 instruction without altering its behavior, as shown here:
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DB 066h   ; Operand-size override used as high-performance NOP instruction

This usage of the operand-size override alone as a filler byte (without an accompanying NOP 
instruction) is permitted only for x87 instructions. This usage of the operand-size override can be 
applied to all but four of the x87 instructions. The FLDENV, FRSTOR, FSTENV, and FSAVE 
instructions and their no-wait forms behave differently when associated with an operand-size 
override; therefore, these should not be padded with the operand-size override.

10.3 Floating-Point Compare Instructions

Optimization

For branches that are dependent on floating-point comparisons, use the FCOMI, FCOMIP, FUCOMI, 
and FUCOMIP instructions:

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

The FCOMI, FCOMIP, FUCOMI, and FUCOMIP instructions are much faster than the classical 
approach using FSTSW. When FSTSW cannot be avoided (for example, backward compatibility of 
code with older processors), no floating-point instruction should occur between an FCOM, FCOMP, 
FCOMPP, FICOM, FICOMP, FUCOM, FUCOMP, FUCOMPP, or FTST instruction and a dependent 
FSTSW instruction. This optimization allows the use of a fast-forwarding mechanism for the floating-
point condition codes internal to the processor’s floating-point unit and increases performance.

10.4 Using the FXCH Instruction Rather Than FST/FLD 
Pairs

Optimization

Increase parallelism by breaking up dependency chains or by evaluating multiple dependency chains 
simultaneously by explicitly switching execution between them.
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Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Although the AMD Family 10h processor’s floating-point unit has a deep scheduler, which in most 
cases can extract sufficient parallelism from existing code, long dependency chains can stall the 
scheduler while issue slots are still available. The maximum dependency chain length that the 
scheduler can absorb is about six four-cycle instructions.

To switch execution between dependency chains, use of the FXCH instruction is recommended 
because it has an apparent latency of zero cycles and generates only one micro-op. The floating-point 
unit of the AMD Family 10h processors contains special hardware to handle up to three FXCH 
instructions per cycle. Using FXCH is preferred over the use of FST/FLD pairs, even if the FST/FLD 
pair works on a register. An FST/FLD pair adds two cycles of latency and consists of two macro-ops.

10.5 Floating-Point Subexpression Elimination

Optimization

Reduce the number of superfluous FXCH instructions by putting the shared source operand at the top 
of the stack to eliminate subexpressions.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

There are cases that do not require an FXCH instruction after every instruction to allow access to two 
new stack entries. In the cases where two instructions share a source operand, an FXCH is not 
required between the two instructions. When there is an opportunity for subexpression elimination, 
reduce the number of superfluous FXCH instructions by putting the shared source operand at the top 
of the stack—for example:
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Examples

Avoid

;=====================
; func((x*y),(x+z))
;=====================
fld   x           ; x
fld   y           ; y x
fld   x           ; x y x
fld   z           ; z x y x
faddp st(1), st   ; x+z y x
fxch  st(2)       ; x y x+z
fmulp st(1), st   ; x*y x+z

Preferred

fld   z           ; z
fld   y           ; y z
fld   x           ; x y z
fmul st(1), st   ; x x*y z
faddp st(2), st   ; x*y x+z

10.6 Accumulating Precision-Sensitive Quantities in 
x87 Registers

Optimization

Accumulate results in the x87 registers rather than the SSE and SSE2 XMM registers, if more than 
64 bits of accuracy are required.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

More than 64 bits of accuracy may be required, as when accumulating a result (for example, during 
the calculation of dot product). The precision of floating-point operations in the x87 registers ST(0)–
ST(7) is 80 bits internally, whereas the precision of operations using SIMD instructions is only 
64 bits.

Note: Some compilers may not fully support 80-bit precision.
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10.7 Avoiding Extended-Precision Data

Optimization

Store floating-point data in single-precision or double-precision format. 

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Loading and storing extended-precision data is significantly slower than storing single- or double-
precision data.
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Chapter 11 Multiprocessor Considerations

This chapter covers the following topics:

11.1 ccNUMA Optimizations
AMD family 10h multiprocessor systems use cache coherent non-uniform memory access 
(ccNUMA). For details on optimizing applications for ccNUMA systems, see Performance 
Guidelines for AMD Athlon™ 64 and AMD Opteron™ ccNUMA Multiprocessor Systems,  
order# 40555.

11.1.1  Scheduling Single and Multithreaded Applications on 
Multiprocessor Systems

Optimization

On AMD family 10h quad-core multiprocessor systems, schedule threads in such a way as to 
maintain a balanced system load. In most cases, it is advisable to rely on the ccNUMA-aware 
operating system to make the correct scheduling decisions for single and multi-threaded applications.

Be sure the operating system is properly configured to support ccNUMA. All versions of Microsoft® 
Windows® XP for AMD64, Windows Server for AMD64 and Windows Vista support ccNUMA. The 
32-bit versions of Windows Server 2003 Enterprise Edition and Windows Server 2003 Datacenter 
Edition require the /PAE boot parameter to support ccNUMA. For 64-bit Linux™, there may be 
separate kernels supporting ccNUMA that should be selected. The 2.6.x Linux kernels feature 
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NUMA awareness in the scheduler. Most SuSE and Red Hat 64-bit Linux distributions have the 
ccNUMA-aware kernel. All versions of Solaris™ for AMD64 support ccNUMA without change.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Some multiple processor systems available today employ a symmetric multiprocessing (SMP) 
architecture. Processors on an SMP platform generally share a common or centralized memory bus 
having identical memory access latencies regardless of the processor position. Because the processors 
use the same bus and memory, system performance may be negatively affected when bottlenecks 
occur due to increased demands on the single memory bus. Figure 3 shows a simplified diagram of a 
two processor(2P) SMP system.

Figure 3. Simple SMP Block Diagram

AMD family 10h multiprocessor systems implement cache coherent non-uniform memory access 
(ccNUMA) architecture to connect two or more processors on the same motherboard. In a ccNUMA 
design, each processor has its own memory system. In AMD family 10h multiprocessor systems, each 
processor has its own memory controller and its own local memory. When a processor accesses its 
local memory, the latency is relatively low, especially when compared to that of a similar SMP 
system. If a processor accesses remote memory—that is, memory located on a different processor—
then the access latency is higher. The phrase 'non-uniform memory access' refers to this potential 
difference in latency. Figure 4 on page 197 shows a simplified diagram of a two processor (2P) AMD 
Family 10h processor system in a ccNUMA configuration.

CPU0 CPU1

Memory
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Figure 4. AMD Family 10h 2P System

AMD family 10h dual processor systems could have up to four cores on each processor chip that 
share the on-chip integrated memory controller and memory. Figure 5 shows a simplified diagram of 
a two processor (2P) quad-core AMD family 10h system in a ccNUMA configuration.

Figure 5. Dual Quad-Core AMD Family 10h Processor Configuration

An operating system running on an AMD family 10h platform transparently coordinates and manages 
memory configuration. Thus, it is not necessary for applications to be aware of memory configuration 
details. Thanks to the OS, the platform simply appears to have one contiguous block of memory, 
regardless of how many processors are in the platform. The architecture simultaneously ensures that 
the entire shared memory space gives consistent values despite potentially parallel accesses from 
different processors. The phrase “cache coherence” in a ccNUMA system refers to this guaranteed 
memory consistency.
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In an AMD family 10h (either dual core or quad core) 2P multiprocessor system, each processor is 
directly connected to the other processor. In addition to the 2P configuration, AMD offers 4P and 
higher configurations. 

Figure 6 shows an example of a four processor quad-core AMD family 10h system in a ccNUMA 
configuration. The processors, also called nodes, are numbered N0, N1, N3 and N2 clockwise from 
the top left. Each node has four cores that are labeled C0, C1, C2 and C3, respectively.

Figure 6. Block Diagram of a ccNUMA AMD Family 10h Quad-Core Multiprocessor 
System

The four quad-core processors are connected by coherent HyperTransport™ links. Each processor 
has one bidirectional non-coherent link that is dedicated to I/O and two bidirectional coherent 
HyperTransport links that each connect to one of the two adjacent quad-core processors in the 
configuration. In a 4-way configuration, this assures a direct connection for any given quad-core 
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processor to all the other quad-core processors in the system but one. The throughput of each 
bidirectional HyperTransport link is 4GB/s in each direction. (This can be platform dependent.) Each 
node is connected to its own memory.

The term hop is commonly used to describe access distances on NUMA systems. If a thread accesses 
memory on the same node as that on which the thread is running, the memory access is considered a 
zero-hop access or local access. If a thread is running on one node but accessing memory that is 
resident on a different node, the access is considered a remote access. If the node on which the thread 
is running and the node on which the memory is resident are directly connected to each other, it is a  
one-hop access. If they are indirectly connected to each other (no direct coherent HyperTransport 
link) in the four processor configuration shown above, it is considered a two-hop access. For example, 
if a thread running on Node 0 (N0) accesses memory resident on Node 3 (N3), it is considered a two-
hop access.

Figure 7 on page 181 shows the resources inside a node on a multiprocessor system.

Figure 7. Internal Resources Associated with a Multiprocessor Node

Each node in this system has four cores. The four cores comminicate through a system request 
interface (SRQ), which in turn talks to a non-blocking crossbar (XBar). The crossbar is connected to 
the memory controller (MCT) and to the various HyperTransport links. The MCT is connected to the 
physical memory (DRAM) for that node. The MCT, the SRQ and the XBar on each node all have 
internal buffers that are used to queue the coherent HyperTransport transaction packets to be 
transmitted. The SRQ, XBar and MCT collectively make up the Northbridge on the node.
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The four cores on each node of the AMD family 10h processor share the Northbridge, memory and 
HyperTransport technology resources available on that node. Scheduling should be carried out in 
such a way as to avoid overloading the resources on a single node, while leaving the resources on the 
rest of the system unused—in other words, loads should be balanced.

Scheduling multiple threads across nodes and cores of a system is complicated by a number of 
factors:

• Whether multiple threads access independent data.

• Whether multiple threads access shared data.

• Whether the system is idle.

Multiple Threads-Independent Data

When scheduling multiple threads that access independent data on an idle system, it is preferable, 
first, to schedule the threads to an idle core of each node until all nodes are exhausted and, then, to 
schedule the other idle core of each node. In other words, schedule using node major order first, 
followed by core major order. This is the suggested policy for a ccNUMA aware operating system on 
an AMD dual-core multiprocessor system.

For example, when scheduling threads that access independent data on a four-way quad-core AMD 
family 10h system, scheduling the threads in the following order is recommended (see Figure 6 on 
page 180):

• Core 0 on node 0, node 1, node 2 and node 3 in any order

• Core 1 on node 0, node 1, node 2 and node 3 in any order

• Core 2 on node 0, node 1, node 2 and node 3 in any order

• Core 3 on node 0, node 1, node 2 and node 3 in any order

Multiple Threads-Shared Data

When scheduling multiple threads that share data on an idle system, it is preferable to schedule the 
threads on both cores of an idle node first, then on both cores of the the next idle node, and so on. In 
other words, schedule using core major order first followed by node major order.

For example, when scheduling threads that share data on a four-way quad-core AMD family 10h 
system, AMD recommends using the following order:

• Core 0, 1, 2, or 3 on node 0 in any order

• Core 0, 1, 2, or 3 on node 1 in any order

• Core 0, 1, 2, or 3 on node 2 in any order

• Core 0, 1, 2, or 3 on node 3 in any order
182 Multiprocessor Considerations Chapter 11



Software Optimization Guide for AMD Family 10h Processors40546 Rev. 3.08 October 2008
Scheduling on a Non-Idle System

It is a more difficult task to schedule multiple threads optimally for an application on a non-idle 
system. It requires that the application make global holistic decisions about machine resources, 
coordinate itself with other applications already running, and balance decisions between them. In 
such cases, it is better to rely on the OS to do the appropriate load balancing. In general, most 
developers will achieve good performance by relying on the ccNUMA-aware OS to make the right 
scheduling decisions on idle and non-idle systems.

In addition to the scheduler, several NUMA-aware operating systems provide tools and APIs to allow 
the developer to explicitly bind a thread (set thread affinity) to a certain core or node. Using these 
tools or APIs overrides the scheduler and hands over control for thread placement to the program. For 
additional details on the thread/process affinity tools and APIs supported in various OSs, refer to 
Appendix D, “Tools and APIs for AMD Family 10h ccNUMA Multiprocessor Systems,” on 
page 279.

11.1.2  Data Locality Considerations on Multiprocessor Systems

Optimization

Keep data accessed by a thread local to the node on which the thread runs. In a multithreaded 
application in which each thread operates on largely independent data, each thread should allocate 
and initialize the data it accesses and allow the ccNUMA-aware operating system to make the right 
data locality decisions.

In multithreaded applications, performance may benefit from taking advantage of API functions or 
tools for thread and memory placement (thread and memory affinity) offered by the operating system.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

It is best to keep data local to the node from which it is being accessed. Accessing data remotely is 
slower than accessing data locally. The further the hop distance to the data, the greater the cost of 
accessing remote memory. For most memory latency-sensitive applications, keeping data local is the 
single most important recommendation to consider.

Almost all ccNUMA-aware operating systems by default rely on the first-touch policy: the physical 
memory for data is only committed on the node on which the thread or process writing to it for the 
first time runs. Commitment implies mapping of virtual pages to zeroed out physical pages. This is 
done by the OS when it detects a first-touch and takes a page fault. (Windows Vista is the exception. 
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For additional details, refer to “NUMA Optimization in Windows Applications” at Develop with 
AMD (http://developer.amd.com/articlex.jsp?id=106.) Thus, data is kept local on the node where the 
thread or process that writes to it for the first time is run.

The OS keeps data local on the node where first-touch occurs as long as there is enough physical 
memory available on that node. If enough physical memory is not available on the node, then 
different OSs use various advanced techniques to determine where to bind the data.

Memory once bound to a node by the first touch policy normally resides on that node for its lifetime. 
However, the OS scheduler could migrate the thread or process that first touched the memory from 
one core to another core even on a different node. This can be done by the OS for the purpose of load 
balancing.

This can move the process/thread farther from its allocated memory. Most schedulers will try to bring 
the thread or the process back to the core on which the thread was previously running and on which its 
memory was local, but this is not guaranteed. Furthermore, the thread or process can dynamically 
allocate and first-touch more memory on the node to which it was moved before it is moved back. 
This is a difficult problem for the OS to resolve, since it has no prior information as to how long the 
thread or process is going to run and, hence, whether migrating it back is optimal or not. 

If an application demonstrates that threads are being moved away from their associated memory by 
the scheduler, it is typically useful to explicitly set thread placement. By explicitly pinning a thread to 
a node, the application can tell the OS to keep the thread on that node and, thus, keep data accessed by 
the thread local to it by the virtue of the first touch policy.

The performance improvement obtained by explicit thread placement may vary depending on whether 
the application is multithreaded, whether it needs more memory than available on a node, whether 
threads are being moved away from their data, etc.

In cases in which threads are scheduled from the outset on a core that is remote from their data, it 
might be useful to explicitly control data placement. This is discussed in detail in the “Scheduling on 
a Non-Idle System” on page 183. Advanced software developers can refer to Appendix D, “Tools and 
APIs for AMD Family 10h ccNUMA Multiprocessor Systems,” on page 279 for additional details on 
support for these tools and APIs in various OSs.

11.1.3  Techniques to Minimize and Alleviate Data Sharing

Optimization

Avoid accessing data in memory that was first touched by a thread running on a different node.

Application

This optimization applies to:

• 32-bit software

• 64-bit software
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Rationale

When data is shared between threads running on different nodes, the default policy of local allocation 
by first touch used by the OS can become non-optimal.

For example, a multithreaded application may have a startup thread that sets up the environment, 
allocates and initializes a data structure and forks off worker threads. As per the default local 
allocation policy, the data structure is placed in the physical memory of the node where the start up 
thread performed the first touch. Forked worker threads are then spread around by the scheduler to be 
balanced across all nodes and their cores. A worker thread starts accessing the data structure remotely 
from the memory on the node where the first touch occurred. This scenario could lead to significant 
memory and HyperTransport traffic in the system, with the node where the data resides becoming the 
bottleneck. This situation is especially bad for performance, firstly, if the startup thread only performs 
the initialization and afterwords no longer needs the data structure and, secondly, if only one of the 
worker threads needs the data structure. In other words, the data structure is not truly shared between 
the worker threads.

It is best in this case to use a data initialization scheme that avoids incorrect data placement due to 
first touch. This is done by allowing each worker thread to first-touch its own data or by explicitly 
pinning the data associated with each worker thread on the node where the worker thread runs.

Certain OSs provide memory placement tools and APIs that also permit data migration. A worker 
thread can use these to migrate the data from the node where the start up thread performed the first 
touch to the node where the worker thread needs it. There is a cost associated with the migration and 
it would be less efficient than using the correct data initialization scheme in the first place.

If it is not possible to modify the application to use a correct data initialization scheme or if data is 
truly being shared by the various worker threads—as in a database application—then a technique 
called node interleaving can be used to improve performance. Node interleaving allows for memory 
to be interleaved across any subset of nodes in the multiprocessor system. When the node interleaving 
policy is used, it overrides the default local allocation policy used by the OS on first touch. 

Let us assume that the data structure shared between the worker threads in this case is of size 16 KB. 
If the default policy of local allocation is used, then the entire 16 KB data structure resides on the 
node where the startup thread does first touch. However, using the policy of node interleaving, the 16-
KB data structure can be interleaved on first touch such that the first 4 KB ends up on node 0, the next 
4 KB ends up on node 1, and the next 4 KB ends up on node 2 and so on. This assumes that there is 
enough physical memory available on each node. Thus, instead of having all memory resident on a 
single node and making that the bottleneck, memory is now spread out across all nodes.

The tools and APIs that support explicit thread and memory placement mentioned in the previous 
sections can also be used by an application to use the node interleaving policy for its memory. (See 
Appendix D, “Tools and APIs for AMD Family 10h ccNUMA Multiprocessor Systems,” on 
page 279.)

By default, the granularity of interleaving offered by the tools/APIs is usually set to the size of the 
virtual page supported by the hardware, which is 4 K (when system is configured for normal pages, 
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which is the default) and 2 M (when system is configured for large pages). Therefore any benefit from 
node interleaving will only be obtained if the data being accessed is significantly larger than a virtual 
page size.

If data is being accessed by three or more cores, then it is better to interleave data across the nodes 
that access the data than to leave it resident on a single node. We anticipate that using this rule of 
thumb could give a significant performance improvement. However, developers are advised to 
experiment with their applications to measure any performance change.

11.1.4  Keep Locks Cacheable and Aligned to a Cache Line Boundary

Optimization

In general, it is good practice for user-level and kernel-level code to keep locks aligned to their natural 
boundaries. In some hardware implementations, locks that are not naturally aligned are handled with 
the mechanisms used for legacy memory mapped I/O and should absolutely be avoided if possible.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

If a lock is aligned properly, it is treated as a faster cache lock. The significantly slower alternative to 
a cache lock is a bus lock, which should be avoided at all costs. Bus locks are very slow and force 
serialization of many operations unrelated to the lock within the processor. Furthermore, bus locks 
prevent the entire HyperTransport fabric from making forward progress until the bus lock completes. 
Cache locks on the other hand are guaranteed atomicity by using the underlying cache coherence of 
the ccNUMA system and are much faster.

11.1.5  Cache-Line Data Sharing

In a ccNUMA multiprocessor system, data within a single cache line that is shared between cores, 
even on the same node, can reduce performance. In certain cases (for example, semaphores), this kind 
of cache-line data sharing cannot be avoided, but it should be minimized where possible.

Application

This optimization applies to:

• 32-bit software

• 64-bit software
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Rationale

Data can often be restructured, so that this does not occur. Cache lines on AMD family 10h 
processors are presently 64 bytes, but a scheme that avoids this problem regardless of cache-line size 
makes for more performance-portable code.

For example, per-thread data can be allocated on the heap (for example, by means of calls to 
malloc()); this is preferred over statically defined shared arrays and variables that are potentially 
located in a single cache line. Furthermore, some software environments even provide special 
versions of malloc() that guarantee data alignment to a specified value (size). These can be useful in 
aligning data and eliminating unwanted cache line overlap.

11.2 Writing Instruction Bytes to Memory on 
Multiprocessor Systems

A common situation in dynamically optimized applications is that in which a thread on one processor 
in a multiprocessor system (which we will call the writer) is required to replace an original code 
segment with some new code segment, while there are one or more other threads (executors) on other 
processors that could possibly execute the original code. This can occur, for example, when a function 
is recompiled or reoptimized at run time.

For simplicity, this section discusses the case in which the original code consists of a single 
instruction. If the original code consists of multiple instructions, the writer must always ensure in 
some way that an executor is not in the middle of the original code.

Rule 1

If the part of the original code that needs to be patched fits within an aligned 8-byte boundary, then no 
special considerations are necessary. The writer may simply store the new code into memory.

In the following example, the instruction itself crosses an aligned 8-byte boundary but since the first 
byte is not changing, the part to be changed does not cross an aligned 8-byte boundary and so can be 
changed with a single store.

Original Code xxxxxF: E8 78 56 34 12 Call $+12345678
New Code xxxxxF: E8 44 33 22 11 Call $+11223344

When a modification does cross an aligned 8-byte boundary, then care must be taken that the executor 
not see an invalid combination of the original code and the new code. There is no architectural store 
instruction, including instructions that use the lock prefix, to ensure that an executor will not see a 
combination of the original code and the new code. Instead, one of the following methods can be 
used:

• Software semaphores can be used between the writer and the executors to prevent executors from 
entering the original code

or
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• The original code can be modified in stages by first writing a branch at the beginning of the 
original code to catch an executor and then modifying the remaining code. In this case a 
systemdependent delay must be used after writing the branch. This delay is necessary to ensure 
that any executor that had already fetched the first bytes of the original code (before the branch 
was written) has finished fetching the rest of the original code.

To modify in stages, the writer uses the following steps:

1. Modify the beginning of the original code with a branch that will catch any executor that enters 
the original code. The easiest branch to use is the two-byte short JMP to self (bytes EB, FE). This 
requires that the first two bytes of the original code not cross an 8-byte boundary. When the 
original code is generated and the compiler knows that it is a candidate for patching, it is 
recommended that a NOP be inserted. If the first two bytes of the original code do cross an 8-byte 
boundary, a one-byte BPT instruction and a special BPT trap handler that returns to the BPT 
instruction must be used.

2. Wait for a system-dependent delay. This delay ensures that any Executor who had fetched the 
beginning of the Original Code before the branch was written has finished fetching the rest of the 
Original Code.

• The maximum amount of delay can be lessened by avoiding patches across a 4K byte page 
boundary and lessened further by avoiding patches which cross a 64 byte cache-line boundary.

3. Leaving the self-branch in place, modify the rest of the original code with the new code.

4. Replace the self-branch with the corresponding bytes of the new code.

11.3 Multithreading
The subject of creating multithreaded software is quite broad, and many resources exist that address 
its various aspects. Here we briefly discuss those aspects of multithreading that are most relevant 
from a hardware perspective.

To fully utilize the CPU power of multicore processors, applications must implement scalable 
threading. In other words, the application must be able to partition the work load into a variable 
number of threads, to match the available resources on the particular machine.

Many of problems can be resolved by the implementation of various programming practices, 
including task decomposition, careful data organization, and data caching and sharing. Two of the 
most important and straightforward ways to implement scalable threading are by means of data-
parallel threading and stream processing. These methods are described in detail in the followuing 
sections.
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11.3.1  Task Decomposition

Optimization

For each task, use multiple threads in parallel to process equal workloads involving different data 
items.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Historically, multithreading has been used to implement separate functions. For example, one thread 
might perform I/O operations while another thread handles user input. This approach, called 
functional threading or task-parallel threading, can sometimes simplify the structure of a program, 
especially when the program is performing several asynchronous tasks.

However, functional threading has limitations. Only a fixed, limited number of threads are used. Also, 
the workloads in different threads are not balanced. For these reasons, functional threading is not a 
good match for present and future multicore processors. It doesn't scale up to utilize the hardware.

A much better approach is data-parallel threading. In data-parallel threading, each CPU-intensive task 
is handled in sequence. For each task, multiple threads are used in parallel to process equal workloads 
involving different data items. Ideally, the application can use N threads, to match an N-core 
processor or system. Not every processing task can be implemented using data-parallel threading. For 
example, data decompression and decryption are often inherently sequential tasks. 

11.3.2  Data Organization

Optimization

Divide data cleanly into many largely independent sets.

Application

This optimization applies to:

• 32-bit software

• 64-bit software
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Rationale

Clearly, data parallel threading requires a certain class of algorithms. For example, if data is organized 
as a single linked list, the operation of accessing the list is not well suited to multithreading. On the 
other hand, an array of uniformly sized structures can usually be accessed in parallel as N chunks.

Double buffering can be used to good effect. Creating one set of data which is 100% "read only" can 
be valuable, even if this involves total replication of data sets in memory. Processing can read one 
copy of the data, while writing to the other copy. This can greatly reduce or eliminate cache thrashing 
and race conditions. Copying all the data might not be a performance win if you are just running two 
threads, but it can pay off as the number of threads grows.

11.3.3  Data Caching

Optimization

Make good use of the data caches.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Single-threaded applications are influenced by cache effects. The processor stores recently used data 
in a local cache memory, making subsequent operations on that data run faster. All of the traditional 
cache factors apply to multithreaded code: limited cache size, data replacement policy, how many 
cache ways the cache implements, L1 vs. L2 cache, and related criteria. (For additional information 
on cache architecture and optmizations, see section 7.5, “Memory Caches” in the AMD64 
Architecture Programmer’s Manual: Volume 2 System Instructions (order#  24593), and Chapter 5, 
“Cache and Memory Optimizations” on page 71. Two additional factors enter the picture when 
multiple threads are running on multiple cores: data sharing between caches, and false sharing 
between caches.

11.3.4  Data Sharing between Caches

Optimization

Design threads so that each thread operates on separate data.
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Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

All threads in a process have a coherent view of memory. If certain data is used by multiple threads, 
then every time that data is modified, it must be copied into more than one cache. This data copying is 
avoided if threads are designed so that each thread operates on separate data. Of course, if threads are 
only reading the data and not modifying it, they can all safely share the same data.

11.3.5  False Data Sharing

Optimization

To avoid false data sharing, keep each thread's data carefully separate by enforcing, for example, 64-
byte alignment during allocation.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

False sharing is a subtle variation on data sharing. The data cache is managed on a cache-line basis, 
where each naturally aligned 64-byte cache line is treated as a unit. If any byte is modified, the entire 
cache line is tagged as modified. So if multiple threads access different parts of the same cache line, 
and at least one thread is modifying the data, that cache line must be copied into the other caches to 
maintain coherence. The threads are functionally independent, but they incur a performance penalty 
as if they were actually sharing data. False sharing can be avoided by keeping each thread's data 
carefully separate, for example by enforcing 64-byte alignment during allocation. 

Clean data separation at the algorithm level will minimize the occurrence of real or false data sharing.
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11.3.6  Data-Parallel Threading

Optimization

Break up a workload into multiple data sets and use threads to perform the same operations on 
different data in parallel.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Data-parallel threading involves breaking up a workload into multiple data sets and using threads to 
perform the same operations on different data in parallel. The data organization and algorithms used 
by the application must be carefully designed to efficiently support this form of parallelism to avoid 
race conditions or expensive synchronization mechanisms.

Data-parallel threading can usually be made to achieve very good load balancing between threads, 
efficiently utilizing all available CPU resources. Furthermore, if an application is designed for data-
parallel threading, the threads do not alter the overall logical order of operations in the application, so 
they do not introduce as many potential deadlocks or race conditions that can complicate other 
threading strategies.

A trivial example of data-parallel threading involves the addition of two arrays of numbers. The basic 
operation might be expressed in C++ as:

    for (int i=0; i < 10000; i++) {
      c[i] = a[i] + b[i];
    }

A data-parallel multithreaded implementation would process the arrays in chunks, for example if four 
threads are used, the values of array index i would be assigned to each of the four threads as follows:

Threading can be implemented explicitly, for example, using Win32 thread APIs on Windows® or 
Pthreads on Linux®. The application must choose how many threads to run, create and/or start the 
threads, and detect their completion. The application is also typically responsible for detecting the 
number of processors available at run time.

thread #0 i = 0 through 2499

thread #1 i = 2500 through 4999

thread #2 i = 5000 through 7499

thread #3 i = 7500 through 9999
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Most modern compilers also support OpenMP, which greatly simplifies the syntax for data-parallel 
threading in loops. For the following loop, using OpenMP requires just one extra line of code (a 
pragma), which partitions the workload across an appropriate number of threads:

    #pragma omp parallel for
    for (int i=0; i < 10000; i++) {
      c[i] = a[i] + b[i];
    }

OpenMP has a simple API, and it supports many options for controlling how the data-parallel 
threading is executed. For details see  http://www.openmp.org.

On platforms that support multiple CPU nodes (as opposed to simply supporting one multicore CPU), 
additional performance gains can be achieved because of greater system memory bandwidth 
available. Memory buffers for storing thread-specific data should be allocated locally to the NUMA 
node, by calling the allocation function from within the thread. In some heavily threaded applications, 
it also makes sense to set thread affinity at the time of thread creation to distribute them across 
multiple NUMA nodes. Care must be taken when manually setting affinity. Read more about NUMA 
optimization in “ccNUMA Optimizations” on page 177, above, and in http://www.amd.com/us-
en/assets/content_type/white_papers_and_tech_docs/40555.pdf and other papers on the Develop with 
AMD Website.

11.3.7  Stream Processing

Use stream processing to operate on large arrays of related data.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

With the advent of truly programmable graphics processing units (GPUs), the programming paradigm 
of stream processing has become much more relevant. Strictly speaking, stream processing is not a 
form of multithreading, but it shares many of the same constraints on data organization and algorithm 
choice as data-parallel threading does.

In stream processing, a set of kernels (i.e., functions) operate on streams—large arrays of related data. 
Typically, kernels implement math operations that can be vectorized, for instance, by using vector 
SSE instructions for best performance. For maximum efficiency, kernels consume streams that are 
generated as output by other kernels; these streams persist locally in the low-latency CPU data cache, 
instead of making a trip through system memory. 
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At the appropriate time, streams are explicitly moved between CPU cache and system memory, as a 
logically separate process from the kernel operations, so data movement is only loosely coupled to 
processing. In principle, this decoupling can enable more efficient gather/scatter operations on blocks 
of data that comprise the streams. For maximum efficiency, stream data should be organized 
contiguously in memory. In many cases, for best performance the stream data can be read from 
memory using software prefetch instructions and, finally, written back to memory using the streaming 
store instructions, which avoid disturbing the L2 cache.

If the application's algorithms and data structures are mappable onto the stream/kernel model, then a 
stream processing approach can be profitably implemented. This can result in increased CPU 
performance because data cache locality and memory bandwidth are well utilized and also because 
data-parallel threading can usually be employed in conjunction with the stream processing. Perhaps 
even more importantly, organizing an application to fit the stream processing model can pave the way 
for off-loading the heavy computational workloads to a highly parallel GPU chip or other specialized 
processor. 

11.3.8  Multithreaded Libraries

Programmers can use multithreaded code libraries, such as the AMD Performance Library (APL) and 
AMD Core Math Library (ACML), to great advantage in writing applications that incorporate the 
multithreading paradigm.

11.4 Memory Barrier Operations
Memory barriers of type A/B, where A and B represent either a load or store memory operation and A 
is ordered prior to B in program order, allow the programmer to specify that older memory operations 
of type A (load or store) cannot appear to be passed by any younger memory operations of type B 
(load or store). Here, B passing A means that although A precedes B in program order, the results of 
instructions A and B may be returned in any order.

There are four types of memory barriers:

• Load/Load—older loads are not passed by younger loads.

• Store/Store—older stores are not passed by younger stores.

• Load/Store—older loads are not passed by younger stores.

• Store/Load—older stores are not passed by younger loads.

Memory Barriers in WB Memory

On the AMD64 architecture, when using writeback (WB) type memory without streaming stores, the 
only type of barrier that requires an explicit barrier instruction is Store/Load. When streaming stores 
are used, the Store/Store barrier also requires an explicit barrier instruction. In WB memory, all other 
barriers are implicit in the AMD64 architecture. For additional information on memory and memory 
barrier instructions, see “Forcing Memory Order” in the AMD64 Architecture Programmer’s Manual 
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Volume 1: Application Programming and Chapter 7, “Memory System” in the AMD64 Architecture 
Programmer’s Manual Volume 2: System Programming.

Memory barriers in WB memory are unnecessary in systems consisting of a single processor core.

Store/Load Barriers in WB Memory

On the AMD64 architecture there are three ways to achieve the Store/Load barrier in WB memory 
(see section 3.9 in APM volume 1):

• MFENCE instruction

• A locked instruction that reads and writes memory—any instruction of the form LOCK op mem, 
reg or LOCK op mem,imm. (The specific instruction XCHG mem, reg is treated as locked whether 
or not a LOCK prefix is used.)

• Architecturally serializing instructions such as CPUID.

•
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11.4.1  Locked Instructions as Memory Barriers

Optimization

Use locked instructions to implement Store/Load barriers.

Application

Applies to programs running on multicore processors or on multiple single core processors.

Rationale

On AMD family 10h processors, the MFENCE instruction is a serializing instruction. This stalls the 
pipeline and the processor cannot begin processing any further instructions until all previous 
instructions are completed and any outstanding memory operations (such as prefetches and stores) 
have completed. Architecturally serializing instructions such as CPUID have the same pipeline stall 
behavior as MFENCE. The LOCKed instructions do not stall the pipeline and, thus, allow more 
parallelism.

LOCKed instructions that access shared memory (memory shared between processor cores) incur a 
delay while the cache line is changed to modified state and data is (potentially) transfered between 
caches in the system. LOCKed instructions that are not naturally aligned incur the very high overhead 
of a bus lock.

When possible, make the LOCKed instruction perform a useful store (an XCHG mem,reg instruction 
can be used for this purpose, assuming the reg can be overwritten). The memory location that is the 
target of the store (e.g., XCHG) instruction should be in the exclusive state in the processor core's 
local L1 cache. Avoid using a memory location that is shared with other processor cores (even if it is 
only written by the local processor core). It is also very important to avoid using a memory location 
that is not naturally aligned.

Thus, for a pattern such as:

     mov   localmem2, rax          ;; store to local memory
     mov   sharedmem1, rbx         ;; store to shared memory
     StoreLoad_Barrier
     mov   rcx, sharedmem3         ;; load from shared memory

Preferred:

     mov   sharedmem1, rbx
     xchg  localmem2, rax   ;; performs local store and StoreLoad barrier
                            ;; in one instruction (note: modifies rax)
     mov   rcx, sharedmem3

Avoid:

     mov   localmem2, rax
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     xchg   sharedmem1, rbx   ;; avoid using shared mem for locked operation
     mov   rcx, sharedmem3

Avoid:

     mov   sharedmem1, rbx
     mov   localmem2, rax
     mfence                  ;; avoid MFENCE which is serializing
     mov   rcx, sharedmem3

When the locked instruction cannot be made to do a useful store, there are several variations of  
LOCK op mem, imm that do not modify the memory contents or any registers other than the FLAGS 
register, for example:

LOCK OR DWORD PTR localmem, 0

To repeat, the memory location that is the target of the locked instruction should be in the exclusive 
state in the processor's local L1 cache. A location on the stack such as [RSP] in 64-bit mode or [ESP] 
in 32-bit mode generally meets this criteria. To avoid Store-To-Load forwarding issues, the location 
should be addressed using the same data width with which it is otherwise accessed. 

11.4.2  Store/Store Barriers in WB Memory

When performing a Store/Store in WB memory, a Store/Store barrier is only required when using 
streaming stores and then only in systems with more than one processor core. Store/Store barriers can 
be achieved in one of the following ways (see section 3.9, “Memory Optimization” in AMD64 
Architecture Programmer’s Manual Volume 1: Application Programming):

• Using the SFENCE instruction

• Using any of the methods covered under the topic of Store/Load barriers.

Optimization

Use the SFENCE instruction to implement a Store/Store barrier.

Application

Applies to programs running on multicore processors or on multiple single core processors.

Rationale

The SFENCE instruction is not a serializing instruction, so it achieves the desired effect of waiting for 
the write-combining buffers to drain, while allowing parallelism with other non-store instructions.

11.5 Optimizing Inter-Core Data Transfer
AMD family 10h processors are the first to incorporate four distinct cores on a single die and the first 
to have a cache that all the cores share. This shared cache provides an efficient way to handle a group 
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of computional problems belonging to a producer/consumer model: a program thread running on one 
core produces data that is intended for consumption by a thread that is running on another core. In 
such cases, round trips to and from main memory can be avoided by arranging for pairs of cores to 
communicate through the shared cache.

A naïve implementation of a producer/consumer program on AMD family 10h processors will 
produce bandwidth results that appear to be throttled by main memory speeds. Main memory speeds 
can vary, but with DDR2 533 memory (average grade), this is around ~4 GB/s. Yet, with some 
knowledge of AMD Family 10h cache architecture, it is possible to boost throughput approximate 3x. 
(These numbers represent the aggregated bandwidth from all four cores transferring data to each 
other, or two producer/consumer pairs on a four core processor.)

The producer/consumer program is handled by setting up a system in which the producer and 
consumer threads chase each other around a ring buffer through which they communicate and share 
data. When a thread reaches the end of the buffer, it wraps back around to the beginning and keeps 
reading or writing. There are three constraints on such constructs:

• The consumer thread must lag the producer thread by an amount determined by the size of the L1 
+ L2 caches. The ring buffer cannot be smaller than the minimum distance by which the threads 
must be separated or the producer thread will not have time to spill its data into the L3 cache when 
the consumer wants to read it, causing a cache miss for the consumer. 

• There is similar constraint on the distance that the producer thread must lag behind the consumer 
thread. This is explained below. 

• If the ring buffer is of significant size, as explained below, the producer thread must not lead the 
consumer thread by too much or the data it places in the L3 cache will more than likely be evicted 
to main memory before the producer thread wraps back around again.

These caveats are discussed in the following sections.

Cache sizes and thread distances

The AMD Family 10h processor has three levels of cache, a 64KB L1, a 512KB L2, and a 2MB or 
greater L3. The lower L1 and L2 caches are private to the individual cores; The highest level L3 cache 
is shared by all four cores. AMD family 10h cache design is a “mostly exclusive” “victim” cache.

“Mostly” exclusive cache hierarchies. In an exclusive cache hierarchy, only one copy of the data 
exists anywhere in the entire cache hierarchy. In such a system, when a thread hits in the L3 cache, it 
moves the cache line to a lower level of cache (which is private to the particular core running the 
thread) without leaving a copy in the L3 cache. However, in AMD Family 10h processors, for 
purposes of optimizing for multiple readers, multiple cores may generate local copies when they 
access the shared L3 cache line. For this reason, the cache is termed “mostly” exclusive.

Victims. Bringing a chunk of new data into a cache requires allocation of cache space by displacing 
an older chunk, the so-called "victim," from that cache. This victim cache line is then pushed into the 
next higher level cache in the hierarchy; of course this, in turn, triggers the displacement of a victim 
from the higher level cache. For this reason, the L3 (shared) cache is only filled with victims from the 
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L2 cache. When a thread running on a specified core fills the local L1 cache, no data is reflected into 
the L3 cache.

Thread sizes and distances. When the producer thread produces a cache-line of data, it exists only in 
the L1 cache of the producer core; it does not get written-through to the L2 or L3 caches. When the 
L1 cache is full, the old data (victim) gets pushed up to the L2 cache; likewise, when the L2 cache is 
full, data is evicted to the L3 cache. For a program to maximize the bandwidth between two cores 
through the processor L3 cache, the lag distance between the consumer threads and the producer 
threads must be greater than the sum of sizes of the L1 and L2 caches (64K + 512K = 576K), so that 
the consumer core can read victim blocks from the producer core.

However, the producer thread cannot get too far ahead of the consumer thread, or it will flood the L3 
cache with victims and start spilling unread cache-lines to memory. On a four core processor, two 
producer/consumer pairs can run simultaneously, so the most optimal allocation would be to divide up 
the L3 cache evenly between pairs; for example, on current AMD microprocessors having a 2MB L3 
cache, each pair should be allocated 2MB/2 = 1MB of L3 cache. Therefore, the producer thread 
should be at least 576K ahead of the consumer, but no more than 1024K + 576K = 1600KB or 
1.56MB or it will evict its own data from the L3 cache. If only one producer/consumer pair is running 
on the processor, the entire L3 cache can be dedicated to the pair.

MOESI protocol issues

Even if the abovementioned distance constraints are followed, the measured bandwidth will still be 
limited by the performance of the DRAM controller. This results from the subtle interaction of the 
cache lines as they are touched by the producer and consumer threads and the MOESI protocol that 
AMD family 10h processors implement to maintain cache coherency. (For a complete description of 
the MOESI protocol, see the (AMD64 Architecture Programmer’s Manual Vol 2: System 
Programming, order# 24593.)

The MOESI cache coherency protocol is defined by the state of data in a cache line in relation to other 
copies of the data (in memory, another processory cache, etc.). These states are summarized as 
follows:

• Modified(M)—The cache line holds the most recent correct copy of the data and the copy in 
memory is stale. (No other copies exist.)

• Owned (O)—A cache line in the owned state holds the most recent, correct copy of the data, 
which may be shared by other processors. This copy is responsible for updating main memory, 
when evicted. (The copy in memory may be stale and other processors may hold a copy in the S 
state.)

• Exclusive (E)—A cache line holds the most recent, correct copy of the data, which is identical to 
the copy in memory. (No other processor holds a copy of the data.)

• Shared (S)—A cache line in the shared state holds the most recent, correct copy of the data, which 
may be shared by other processors. (The copy in memory is stale.)

• Invalid (I)—A cache line does not hold a valid copy of the data. (valid copies are in main memory 
or another processor cache.)
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The producer thread allocates cache-lines in the modified (M) state, as an automatic consequence of 
writing a new entry. Eventually, these M-marked cache lines will start to fill the L3 cache, thanks to 
the adherence to the abovementioned rules defining the allowable distance between threads. When the 
the consumer reads the cache line, the MOESI protocol changes the state of the cache line to owned 
(O) in the L3 cache and pulls down a shared (S) copy for its own use. Now, the producer thread circles 
the ring buffer to arrive back to the same cache line it had previously written. However, when the 
producer attempts to write new data to the owned (marked ‘O’) cache line, it finds that it cannot, since 
a cache line marked ‘O’ by the previous consumer read does not have sufficient permission for a write 
request (in the MOESI parlance). To maintain coherence, the memory controller must initiate probes 
in the other caches (to handle any other S copies that may exist)—and this is slow. 

Thus, it is preferable to keep the cache line in the ‘M’ state in the L3 cache. Then, when the producer 
comes back around the ring buffer, it finds the previously written cache line still marked ‘M’, to 
which it is safe to write without coherency concerns.

The PREFETCHW instruction provides the means to control this cache allocation restriction. The 
PREFETCHW instruction provides a hint to the processor that the program intends to modify the 
cache line, so the processor keeps the cache line in the ‘M’ state. To clarify how this works, we will 
step through a scenario in which the consumer thread uses PREFETCHW to proactively fetch cache 
lines.

As previously mentioned, the producer thread first spills a cache line marked ‘M’ into the L3 cache. 
At some later time, the consumer thread calls the PREFETCHW instruction to load the cache line into 
the L1 data cache; this time, the processor keeps the cache line marked ‘M’, removes the cache line 
from L3 and pulls the line down the cache hierarchy, into the consuming core’s L1 cache. No ‘S’ copy 
is handed to the consumer core, and no ‘O’ copy remains in the L3 cache. As far as the producer core 
is concerned, the cache line is gone. 

If the producing thread were to wrap around the buffer and attempt to write to the cache line, it would 
register as a cache miss and a request would be sent to the memory controller. To avoid this, the 
consumer needs to evict the cache line back out to the processor shared L3. As discussed previously, 
the only way to acheive this is to have the cache line trickle back up the cache hierarchy, until it 
eventually becomes a victim block into the L3 cache again; in other words, the consumer reads 
enough memory to equal its L1 + L2 cache size (576K), forcing the cache line to evict before the 
producer thread needs to write to that memory. When that happens, it’s as if the producer never knew 
that the cache line was gone. When it writes new data to the cache line and it finds it in the L3 cache; 
the producer and consumer are communicating through the L3 cache, fully utilizing the inherent 
speed and bandwidth.

To assure that the consumer has enough time to spill its contents into the L3 cache, the producer 
thread must lag the consumer thread by a distance that is at least equal to the sum of the sizes of the 
L1 + L2 cache in modulo arithmetic. This has further implications for the size of the ring buffer. If the 
consumer must lag the producer by X bytes, and the producer must lag the consumer by X bytes, then 
the buffer must be at least 2 × X in size to achieve maximum performance. In practice, it is not a bad 
idea to pad the numbers by at least two units of granularity to allow for some extra space, since cache 
eviction is not controllable or precise. For instance, assuming that the producer and consumer threads 
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write data in 16K chunks before checking their positions relative to each other, it would be safe to 
have the producer and consumer enforce a distance of ((L1 + L2) + 2 × granularity) or (64K + 512K) 
+ 2 × 16K = 608K apart. This in turn implies that the ring buffer size should be at least 1216K.

Summary

A producer/consumer program can achieve harmony by successfully bouncing an ‘M’ marked cache 
line back and forth between the consuming and producing threads through the fast L3 cache. A quick 
review of the constraints to keep in mind to achieve this behavior follows:

• The consumer thread needs to ‘lag’ the producer thread by at least L1 + L2 cache size (modulo 
arithmetic).

• The producer thread needs to lag the consumer thread by at least L1 + L2 cache size (modulo 
arithmetic).

• The ring buffer should be at least 2 × (L1 + L2).

• The producer thread should not get so far ahead of the consumer to flood the L3, if larger ring 
buffers are used.

• Use PREFETCHW on the consumer side, even if the consumer will not modify the data. 

• Add a small extra factor to the calculated sizes to give the threads additional space when 
communicating through the caches.

In general, the AMD family 10h cache is optimized for widely shared data, i.e. one core produces 
data that may be of interest to several other cores. The ‘S’ and ‘O’ states provide coherence for 
multiple readers of the same data. One core is responsible for the data in the ‘O’ state, but that data 
can be safely shared with many other cores through the ‘S’ state. In the producer/consumer program 
however, it is known ahead of time that the data the producer creates is only interesting to the 
matching consumer thread, and not to any other thread. Following the constraints listed above, it is 
possible to achieve an approximate 3x increase in throughput for two producer/consumer pairs on 
AMD family 10h processors.
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Chapter 12 Optimizing Secure Virtual 
Machines

The goal of this chapter is to enable virtual machine monitor (VMM) software engineers to minimize 
the performance overhead imposed by the virtualization of a guest. A significant consumer of 
processor cycles on microprocessors enabled for AMD Virtualization™ (AMD-V™) is the world 
switch, which refers to the process of running either a VMRUN instruction to enter a guest context or 
running the #VMEXIT mechanism to leave a guest context. World switch can also broadly apply to 
the requisite software effort surrounding VMRUN and #VMEXIT; software effort for some intercepts 
may be significantly longer than the VMRUN/#VMEXIT portion of the world switch. Several of the 
optimizations proposed in this chapter attempt to reduce the frequency of world switches. Other 
optimizations provide techniques to reduce software or processor effort required for performing other 
virtualization tasks.

For additional information on virtualization and related topics, see Chapter 15, “Secure Virtual 
Machine,” in the AMD64 Architecture Programmer’s Manual Volume 2: System Programming 
(order# 24593).

This chapter covers the following topics:
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12.1 Use Nested Paging

Optimization

Use nested paging instead of shadow paging.

Application

This optimization applies to:

• VMMs

Rationale

To virtualize guests fully, virtual machine monitor (VMM or hypervisor) software must virtualize 
guests' physical memory mappings without the guests' knowledge. On processors that do not 
implement nested paging, a method called shadow paging is commonly used for this purpose. But that 
method is complex to implement efficiently, it is significantly slower than native virtual-to-physical 
address translation, and performance tuning often requires significant memory to store cached 
shadow page tables for each guest page table. (There is typically one page table per guest user 
process.) Shadow paging requires both significant time for the VMM to manage shadow page tables 
and frequent VMM intervention during guest page faults, guest CR0, CR3, and CR4 accesses, guest 
INVLPG execution, and guest modifications to page table contents.

In contrast to shadow paging, nested paging requires minimal VMM attention. The CRx, INVLPG, 
and page fault intercepts are unnecessary, and the VMMs need only set up an initial nested page table 
that maps guest physical addresses to system physical addresses. Each guest requires its own nested 
page table. A VMM that uses nested paging is significantly less complex and, thus, is easier to 
validate and verify than a VMM using shadow paging.

A TLB miss under nested paging incurs potentially more memory accesses than a TLB miss under 
shadow paging, but AMD-V microprocessors that support nested paging employ intelligent caching 
to minimize the latency of a nested paging TLB miss.

TLB Miss Latency under Nested Paging

TLB entries cache translations from the virtual address to the system physical address for non-
virtualized programs and from the guest virtual address to the system physical address for shadow and 
nested paging. A TLB hit under nested paging performs the same as a TLB hit under shadow paging 
or in a non-virtualized environment. A TLB miss under nested paging is potentially more expensive 
than a non-nested TLB miss; nested paging page table walks are accelerated by the CPU's caching of 
page table information.
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12.2 VMCB.G_PAT Configuration

Optimization

Properly configure the guest page attribute table (G_PAT) in the virtual machine control block 
(VMCB).G_PAT field.

Application

This optimization applies to:

• VMMs using nested paging

Rationale

When nested paging is enabled, the VMCB.G_PAT field is used to virtualize the guest's PAT register. 
For a description of how the final memory type of a guest page is determined, see section 15.24.8 
“Combining Memory Types, MTRRs” in the AMD64 Architecture Programmer’s Manual Volume 2: 
System Programming (order# 24593). For details on the organization and layout of the VMCB, see 
Appendix B “Layout of VMCB” in the same volume.

Operating systems typically leave the PAT at its default reset value of 0x00070406_00070406, 
although they are free to change the PAT register's contents. The VMM software should start up guest 
virtual machines with the same default value. A VMM that leaves the G_PAT value equal to 0x0 will 
experience significant performance degradation in the guest because all guest memory accesses will 
be forced to the effective PAT type of uncacheable (UC).

12.3 State Swapping

Optimization

Avoid unnecessary VMSAVE, VMLOAD, STGI, CLGI, and guest GPR and FPR state swapping.

Application

This optimization applies to:

• VMMs for guests in all modes

Rationale

Avoiding unnecessary instructions that would occur on every world switch can reduce the cost of a 
world switch.

For example, a VMM may need only a small subset of the state swapped by VMSAVE and 
VMLOAD, so the VMM that expects to return to the same guest can skip VMSAVEing the guest's 
Chapter 12 Optimizing Secure Virtual Machines 205



40546 Rev. 3.08 October 2008Software Optimization Guide for AMD Family 10h Processors
state and, instead, leave that guest state active in the CPU. If the VMM needs to use any of the 
VMSAVE values, such as the task register (TR), the VMM can use the LTR instruction to install the 
VMM's TR value, while leaving the other guest values intact. Upon returning to the guest, the VMM 
can VMLOAD the guest or execute the LTR instruction to restore guest state from an artificial TR 
entry in VMM context. To ensure that the guest VMCB contains the correct TR values, the VMM 
must intercept the LTR instruction in the guest. 

Similar work can be done on other pieces of state represented in VMLOAD and VMSAVE.

VMRUN sets the global interrupt flag (GIF) to 1—equivalent to executing an implicit STGI 
instruction. Similarly, #VMEXIT clears GIF with an implicit CLGI instruction. A VMM that 
performs only a minimal amount of work between a #VMEXIT and the next VMRUN may wish to 
skip executing explicit STGI and CLGI instructions.

VMMs can use methods similar to callee-save to avoid saving and restoring all guest general-purpose 
registers and floating-point registers if the VMM intends to return to the same guest. This approach is 
probably most useful for performing lazy floating-point state saves and saving debug registers DR0-
DR3.

12.4 Economizing Interceptions

Optimization

Intercept as few MSRs, events, and instructions as possible.

Application

This optimization applies to:

• VMMs

Rationale

To minimize virtualization overhead, VMMs should try to minimize the number of #VMEXITs due to 
MSR and instruction intercepts. 

The VMM should intercept only those MSRs that are critical for system function or security, and 
which, therefore, must be protected from guest access. The VMM can avoid intercepting MSRs that 
are frequently used and changed by operating systems, such as GSBASE and KernelGSBase, and all 
other MSRs that are loaded by VMLOAD, since these MSRs have no system-level side-effects and 
can be efficiently context switched. VMM writers may evaluate the frequency of reads to specific 
MSRs that must be intercepted to determine if the following optimization is worthwhile: if the read 
value is equal to the value the guest expects, then the MSR write may be intercepted while leaving the 
MSR read unintercepted.
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The state that is context switched by AMD-V instructions often does not require intercepts. For 
example, the IDTR, GDTR, LDTR, and TR read and write intercepts, and PUSHF and POPF 
intercepts often do not need to be set because VMRUN/#VMEXIT and VMLOAD/VMSAVE 
appropriately virtualize the related state.

Under nested paging, the paging-related control registers (CR0, CR2, CR3, CR4) and PAT MSR are 
context switched by VMRUN and #VMEXIT and, thus, often do not need to be intercepted. 
Similarly, the INVLPG intercept is not necessary under nested paging. In comparison, most shadow 
paging implementations need to intercept CR0, CR3, and CR4 read and write accesses and the 
INVLPG instruction, although they can avoid intercepting CR2 accesses.

To avoid the overhead of context switching floating-point state, VMMs can use lazy floating point 
context switching methods by controlling guest CR0.TS. When the VMM forces CR0.TS to a value 
other than the value the guest had written, the VMM should intercept CR0 reads and writes in order to 
properly virtualize CR0.TS.

12.5 Nested Page Size

Optimization

Where possible, use large pages in nested page tables.

Application

This optimization applies to:

• VMMs using nested paging

Rationale

VMMs can realize several performance advantages by using large (2 MB or 1 GB) pages in nested 
page tables, when it is possible for the VMM to allocate naturally-aligned large pages for portions of 
guest physical memory images.

The first performance increase comes from reducing multiplicative factors in the cost of TLB misses 
under nested paging. 

Secondly, a common use of large pages is to reduce TLB pressure. For best performance, nested page 
table entries should be larger than or equal to the size of the corresponding guest page size. 

Large pages allow the reduction of the memory footprint used by nested page tables. For each 2-MB 
large page in a nested page table, an entire 4-KB bottom-level page table becomes unnecessary. For 
each 1-GB large page, a 4-KB page-directory table becomes unnecessary, as do up to 512 bottom 
level page tables (each of which occupy 4 KB). 
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12.6 Shadow Page Size

Optimization

Use large pages where possible in shadow paging.

Application

This optimization applies to:

• VMMs using shadow paging

Rationale

For reasons similar to those enumerated in section 12.5, “Nested Page Size” above, VMMs should 
attempt to use large pages in shadow page tables for address ranges that the guest maps using large 
pages. This avoids increasing TLB pressure by the fracturing of large pages into smaller TLB entries 
and reduces software complexity and memory usage.

When a VMM encounters a 2-MB (or 4-MB or 1-GB) guest page and decides to map it using 4-KB 
shadow page table entries, the VMM must use memory to store an additional 512 derived entries, or 4 
KB, for a shadow page table that does not correspond to any page table in the guest. Additionally, if 
the guest performs an INVLPG instruction to the guest's 2-MB page, the VMM must clear all 512 of 
the derived 4-KB entries and must invalidate each 4 KB derived page (in which case it is likely to be 
more efficient to flush the entire TLB, than to execute 512 INVLPG instructions).

12.7 Setting VMCB.TLB_Control

Optimization

When possible, avoid setting VMCB.TLB_Control to 1.

Application

This optimization applies to:

• VMMs
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Rationale

Setting VMCB.TLB_Control to 1 and then VMRUNning that VMCB flushes the entire TLB of all 
entries, local and global, for all ASID values. Flushing the entire TLB can have minor but noticeable 
adverse effects on performance by unnecessarily flushing TLB entries from ASIDs other than the 
current ASID. If capacity misses would not have evicted the other ASIDs' TLB entries, then those 
TLB entries would be available and useful for avoiding page table walks when the VMM or other 
guests are executed. 

12.8 TLB Flushes in Shadow Paging

Optimization

Change the guest ASID instead of causing TLB flushes in shadow paging.

Application

This optimization applies to:

• VMMs using shadow paging

Rationale

When a VMM is using shadow paging, it must intercept every event in the guest that is defined to 
cause a TLB flush or TLB line invalidation. The most common case of TLB flush cases is the 
MOV CR3 instruction. Another frequently-seen instruction, INVLPG, invalidates specified TLB 
entries. When these instructions are intercepted by an AMD-V processor, the TLB flush or invalidate 
is suppressed and the VMM is responsible for doing appropriate invalidations after performing 
appropriate shadow page table manipulations. A simplistic solution is to set VMCB.TLB_CONTROL 
to 1 to cause a complete TLB flush on the next VMRUN. This simplistic solution may have a negative 
performance impact due to the complete flushing of global entries and TLB entries for all other 
ASIDs. Notably, the VMM TLB entries that might otherwise be useful after #VMEXIT are lost. To a 
second order, the TLB entries of other guests may also have been usefully retained had the 
TLB_CONTROL field not been set.

In order to retain TLB entries of all other contexts, while properly invalidating the TLB entries for the 
guest that had executed the TLB flushing instruction, a VMM may retire an ASID from use, rather 
than flushing the entire TLB. For correctness, the VMM must not allocate that ASID for use again 
until the TLB has been flushed by setting TLB_CONTROL to 1 in any guest's VMCB and then 
VMRUNning that guest. Retired ASIDs should be un-retired after executing VMRUN with 
TLB_CONTROL = 1. (Note that ASIDs and TLB flushes are local to the CPU core on which they are 
used, so each core may have a different guest running with a given value of ASID.) 

For example, if we have guests occupying ASIDs 1, 2, 3, and 4, and the guest with ASID == 3 
executes MOV-TO-CR3, then the VMM can mark ASID 3 as unusable, allocate ASID 5, and change 
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the guest's ASID to 5. This has the side-effect of effectively invalidating all of that guest's global 
pages.

Note that an intercepted INVLPG instruction can be turned into a shadow page table operation 
followed by an INVLPGA instruction and does not necessarily require a TLB flush. 

12.9 Use of Virtual Interrupt VMCB Field

Optimization

Use the Virtual Interrupt VMCB field instead of event injection when there is only one interrupt 
pending for the guest.

Application

This optimization applies to:

• VMMs, when VMCB.V_INTR_MASKING == 1 for the guest.

Rationale

VMMs commonly do not allow guests direct access to physical interrupts, choosing instead to 
virtualize the interrupts using the V_INTR_MASKING and virtual interrupt mechanisms.

AMD-V processors automatically deliver a pending virtual interrupt to the guest when the guest is not 
masking interrupts due to any of the following:

• Guest EFLAGS.IF == 0

• Guest TPR > priority of pending virtual interrupt

• Guest is in an interrupt shadow

VMMs can avoid the overhead and complexity in software of determining if a guest is ready to take 
the interrupt by appropriately filling the virtual interrupt fields in the guest VMCB, and can avoid one 
or more unnecessary world switches. An AMD-V processor automatically clears the V_IRQ valid bit 
when the interrupt is taken.

By taking these steps, VMMs can provide correct interrupt behavior to the guest while using the 
smallest possible number of world switches.
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12.10 Avoid Instruction Fetch for Intercepted (REP) 
OUTS Instructions

Optimization

Avoid guest instruction fetch in the common case of VMEXIT_IOIO by inferring the absence of the 
segment override.

Application

This optimization applies to:

• VMMs

Rationale

EXITINFO1 provides most, but not all, information about the state of an intercepted (REP) OUTS 
instruction. Specifically, segment override information is not provided, but can be inferred or ignored 
in the common case. The other IOIO instructions (IN, OUT, and (REP) INS) ignore segment prefixes, 
so the EXITINFO1 field provides all needed decode information. The state that is provided includes 
indications as to whether the instruction was an IN, OUT, INS, or OUTS instruction (encoded in the 
TYPE and STR bits), whether there was a REP prefix, effective address and data sizes, the RIP of the 
next instruction, and the starting port number. 

The OUTS instruction defaults to using the DS segment but obeys segment-override prefixes. 
Discovering the effective segment in a straightforward manner requires fetching the guest instruction 
and decoding it.

It may be an expensive operation to fetch and decode guest instruction bytes, though some VMMs 
may implement fast ways to do so, and these operations can be avoided in most common cases of 
intercepted (REP) OUTS instructions and can be avoided in all cases for IN, OUT, and (REP) INS.

The VMM can infer the minimum length of the (REP) OUTS instruction by calculating the number of 
prefixes implied by the EXITINFO1 information. The VMM can then compare the minimum length 
of the instruction against the known length of the instruction and thus determine if any unaccounted 
prefixes are present that would require instruction decode.

Example
if (exitcode == VMEXIT_IOIO && exitinfo1 & 5 == 4) 
      // OUTS instruction: STR and TYPE == 0
    {
     int min_length = 1; // All OUTS instructions are 1-byte opcodes
     int default_addr_size; 

     // The default address size is encoded one-hot to match the EXITINFO1
     // encoding: 16-bit mode == 0x1, 32-bit mode == 0x2, 64-bit mode = 0x4
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     int default_data_size; 

     // The default data size is encoded one-hot to match the EXITINFO1 encoding:
     // 8 bits == 0x1, 16 bits == 0x2, 32 bits = 0x4

     int instr_length = vmcb.exitinfo2 - vmcb.rip;

     if (CS.L == 0 && CS.D == 0) {            // 16-bit mode 
       default_addr_size = 0x1;

          default_data_size = 0x2; }

     else if (CS.L == 0 && CS.D == 1) {       // 32-bit or compatibility mode
          default_addr_size = 0x2;

               default_data_size = 0x4; }

     else if (CS.L == 1 && CS.D == 0) {       // 64-bit mode
          default_addr_size = 0x4;

               default_data_size = 0x4; }

     // Default data size for this instruction is 32 bits in 64-bit mode.

     else error;                         //CS.L == 1 and CS.D == 1 are reserved

     if (default_addr_size != (exitinfo1 >> 7) & 7)
     min_length++;                 // infer an address-size override prefix

     if (default_data_size != (exitinfo1 >> 4) & 7 && (exitinfo1 >> 4) != 1)
       min_length++; 

         // infer a data-size override prefix unless data size is 8-bit
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     if (exitinfo1 & 8)
     min_length++;                   // infer a rep prefix

     if (instr_length != min_length)
         there are more prefixes than can be inferred; must decode instruction 
         to determine effective segment
     else

       segment is ES
}

12.11 Share IOIO and MSR Protection Maps

Optimization

Share IOIO and MSR protection maps, if possible, to save memory.

Application

This optimization applies to:

• VMMs

Rationale

A VMM running multiple guests typically enforces the same I/O port and MSR restrictions on most 
or all guests in the system. While a VMM must allocate one VMCB per guest virtual CPU, the VMM 
can conserve memory by sharing common IOIO and MSR protection maps. These structures can be 
shared because they are read, but never written, by the CPU. The VMM should be careful about using 
proper mutual exclusion to handle modifications done to protection maps that are in use on other 
CPUs. 

12.12 Obey CPUID Results

Optimization

Guests should obey CPUID results.

Application

This optimization applies to:

• All programs, operating systems, and libraries
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Rationale

Any existing or future operating system, program, or library may be executed in a virtualized 
environment. A VMM may control the results of CPUID to hide certain capabilities from the guest 
for various reasons. The VMM may wish to enable migration of a guest from one processor to a 
processor of a different generation with different features enabled. The VMM provides a set of 
CPUID results to its guests that represents a common subset of features. That subset may not 
represent any existing physical processor.

To ensure that programs, libraries, and operating systems work properly in the face of virtualization, 
all software should obey the results returned by CPUID. The most straightforward way to obey 
CPUID is to execute CPUID once per program or library initialization and then record the result in an 
internal data structure. For example, a program may detect the RDTSCP indicator in CPUID and then 
configure code paths to reflect the presence or absence of RDTSCP. The VMM's control over the 
RDTSCP CPUID bit will cause the program to exhibit the correct behavior based on whether the 
VMM wishes to advertise the fact that the current CPU implements the RDTSCP instruction.

This restriction is eased for existing programs and existing methods to detect processor features that 
already existed at the time AMD-V microprocessors were introduced. For example, before using 
SSE1 instructions, user programs are required to do a try-catch sequence to determine if the operating 
system has enabled the XMM registers. This try-catch sequence is still required for SSE1 instructions, 
but software must adhere to the results of CPUID instruction without a try-catch sequence for 
detecting new instructions like the SSE3 instruction set.

Future CPU versions may add new instruction encodings to replace formerly undefined encodings. 
Software should never depend on #UD exceptions from instructions that are currently undefined on 
any given processor. The UD2 opcode should be used if software wishes to create #UD exceptions.

12.13 Using Time Sources

Optimization

Guests should be careful about using time sources.

Application

This optimization applies to:

• All programs, operating systems, and libraries

Rationale

Programs and operating systems that are not virtualization-aware might assume that the RDTSC 
instruction, high precision event timers (HPETs), programmable interrupt timers (PITs), and other 
time sources are monotonically increasing by constant amounts and are usable as a measure of both 
elapsed time and wall-clock time. When a VMM is present, it necessarily intercepts guest operation 
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for variable lengths of time, and must make adjustments to the time values read by the guest. These 
adjustments may break one or more assumptions about time sources. A VMM may choose to adjust 
the time sources to synchronize them with a wall-clock time so that the guest's time of day 
measurements are correct, in which case a guest that is continuously monitoring the time will see 
occasional jumps in the apparent wall-clock time; this may cause fairness problems with the guest's 
process scheduling. A VMM may choose to adjust the time sources so the guest correctly measures 
elapsed guest time, which would cause the guest's TSC-based measurement of wall-clock time to be 
incorrect and may affect time-critical applications such as media playback.

It is unlikely that a guest that is unaware of virtualization will be able to use time sources for all 
common purposes at the same time. Users should be aware of these pitfalls and understand their 
implications. As operating systems and programs are written to be aware of virtualization, they 
should take advantage of any available paravirtualized access to time resources. For their part, VMMs 
should strive to provide a sufficiently rich and standardized set of paravirtualized timer resources. 

12.14 Paravirtualized Resources

Optimization

Guests should detect VMM presence and use paravirtualized resources

Application

This optimization applies to:

• All guests that are aware of virtualization

Rationale

An OS does not implicitly know whether it is a guest or if the OS is running without a VMM present. 
Some VMMs may support paravirtualization as a means to improve performance or create features. 
When this is the case, guests should use industry-standard methods to detect VMMs and enumerate 
the available paravirtualized functions. System resources, such as paging controls in non-nested 
paging environments, time references, network and video drivers, storage and other device drivers can 
benefit from paravirtualization.
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Appendix A Microarchitecture of 
AMD Family 10h Processors

An understanding of the terms architecture, microarchitecture, and design implementation is 
important when discussing processor design.

The architecture consists of the instruction set and those features of a processor that are visible to 
software programs running on the processor. The architecture determines what software the processor 
can run. The AMD64 architecture of the AMD Family 10h processors is compatible with the 
industry-standard x86 instruction set.

The term microarchitecture refers to the design features used to reach the target cost, performance, 
and functionality goals of the processor. The AMD Family 10h processor employs a decoupled 
decode/execution design approach. In other words, decoders and execution units operate essentially 
independently; the execution core uses a small number of instructions and a simplified circuit design 
implementation to achieve fast single-cycle execution with fast operating frequencies.

The design implementation refers to a particular combination of physical logic and circuit elements 
that comprise a processor that meets the microarchitecture specifications.

This appendix covers the following topics:

Topic Page

Key Microarchitecture Features 218

Microarchitecture of AMD Family 10h Processors 218

Superscalar Processor 219

Processor Block Diagram 219

AMD Family 10h Processor Cache Operations 220

Branch-Prediction Table 222

Fetch-Decode Unit 222

Sideband Stack Optimizer 223

Instruction Control Unit 223

Translation-Lookaside Buffer 223

Integer Unit 224

Floating-Point Unit 225

Load-Store Unit 227

Write Combining 228

Integrated Memory Controller 228

HyperTransport™ Technology Interface 229
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A.1 Key Microarchitecture Features
AMD Family 10h processors include many features designed to improve software performance. The 
internal design, or microarchitecture, of these processors provides the following key features:

• Integrated DDR2 memory controller with memory prefetcher

• 64-Kbyte L1 instruction cache and 64-Kbyte L1 data cache

• On-chip L2 cache

• On-chip L3 cache

• 32-byte instruction fetch

• Instruction predecode and branch prediction during cache-line fills

• Decoupled decode/execution core

• Three-way AMD64 instruction decoding

• Sideband stack optimizer

• Dynamic scheduling and speculative execution

• Three-way integer execution

• Three-way address generation

• Three-way 128-bit wide floating-point execution

• 3DNow!™ technology, MMX™, SSE, SSE2, SSE3 and SSE4a single-instruction multiple-data 
(SIMD) instruction extensions

• Advanced Bit Manipulation instructions

• Superforwarding

• Prefetch into L1 data cache

• Deep out-of-order integer and floating-point execution

• In 64-bit mode, eight additional XMM registers (for use with SSE, SSE2, SSE3, and SSE4a 
instructions) and eight additional general-purpose registers (GPRs)

• HyperTransport™ technology

A.2 Microarchitecture of AMD Family 10h Processors
AMD Family 10h processors implement the AMD64 instruction set by means of macro-ops (the 
primary units of work managed by the processor) and micro-ops (the primitive operations executed in 
the processor's execution units).  These are simple fixed-length operations designed to include direct 
support for AMD64 instructions and adhere to the high-performance principles of fixed-length 
encoding, regularized instruction fields, and a large register set. This enhanced microarchitecture 
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enables higher processor core performance and promotes straightforward extensibility for future 
designs.

A.3 Superscalar Processor
The AMD Family 10h processors are aggressive, out-of-order, three-way superscalar AMD64 
processors. They can fetch, decode, and issue up to three AMD64 instructions per cycle with a 
centralized instruction control unit (ICU) and two independent instruction schedulers—an integer 
scheduler and a floating-point scheduler. These two schedulers can simultaneously issue up to nine 
micro-ops to the three general-purpose integer execution units (ALUs), three address-generation units 
(AGUs), and three floating-point execution units. The processors move integer instructions through 
the integer execution pipeline, which consists of the integer scheduler and the ALUs, as shown in 
Figure 8. Floating-point instructions are handled by the floating-point execution pipeline, which 
consists of the floating-point scheduler and the floating-point execution units.

A.4 Processor Block Diagram
A block diagram of the AMD Family 10h processors is shown in Figure 8 on page 220.
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Figure 8. AMD Family 10h Processors Block Diagram

A.5 AMD Family 10h Processor Cache Operations
AMD Family 10h processors use four different caches to accelerate instruction execution and data 
processing:

• L1 instruction cache

• L1 data cache

• L2 cache

• L3 cache
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A.5.1 L1 Instruction Cache

The out-of-order execution engine of AMD Family 10h processors contains a 64-Kbyte, 2-way set-
associative L1 instruction cache. Each line in this cache is 64 bytes long. Functions associated with 
the L1 instruction cache are instruction loads, instruction prefetching, instruction predecoding, and 
branch prediction. Requests that miss in the L1 instruction cache are fetched from the L2 cache or, 
subsequently, from the L3 cache or system memory using Direct Connect Architecture.

On misses, the L1 instruction cache generates fill requests to a naturally aligned 64-byte line 
containing the instructions and the next sequential line of 64 bytes (a prefetch). Because code 
typically exhibits spatial locality, prefetching is an effective technique for avoiding decode stalls. 
Cache-line replacement is based on a least-recently-used replacement algorithm.

Predecoding begins as the L1 instruction cache is filled. Predecode information is generated and 
stored alongside the instruction cache. This information is used to help efficiently identify the 
boundaries between variable length AMD64 instructions.

A.5.2 L1 Data Cache

The AMD Family 10h processor contains a 64-Kbyte, 2-way set-associative L1 data cache with two 
128-bit ports. This cache is a write-allocate and writeback cache that uses a least-recently-used 
replacement policy. It is divided into eight banks, each 16 bytes wide. In addition, the L1 cache 
supports the MOESI (Modified, Owner, Exclusive, Shared, and Invalid) cache-coherency protocol 
and ECC. There is a prefetcher that brings data into the L1 cache to avoid misses. The L1 data cache 
has a 3-cycle load-to-use latency.

A.5.3 L2 Cache

The AMD Family 10h processor has one integrated L2 cache per core. This full-speed on-die L2 
cache features an exclusive cache architecture. The L2 cache contains only victim or copy-back cache 
blocks that are to be written back to the memory subsystem as a result of a conflict miss. These terms, 
victim or copy-back, refer to cache blocks that were previously held in the L1 cache but which had to 
be overwritten (evicted) to make room for newer data. The victim buffer contains data evicted from 
the L1 cache. The latency of the L2 cache is 9 cycles beyond the L1 cache.

Size and associativity of the AMD Family 10h processor L2 cache is implementation dependent. See 
the appropriate BIOS and Kernel Developer’s Guide for details.

A.5.4 L3 Cache

The AMD Family 10h processor contains an integrated L3 cache which is dynamically shared 
between all cores in AMD multi-core processors. The L3 cache is considered a non-inclusive victim 
cache architecture optimized for multi-core AMD processors. Blocks are allocated into the L3 on L2 
victim/copy-backs. Requests that hit in the L3 cache can either leave the data in the L3 cache—if it is 
likely the data is being accessed by multiple cores—or remove the data from the L3 cache (and place 
it solely in the L1 cache, creating space for other L2 victim/copy-backs), if it is likely the data is only 
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being accessed by a single core. Furthermore, the cache features bandwidth-adaptive policies that 
optimize latency when requested bandwidth is low, but allows scaling to higher aggregate L3 
bandwidth when required (such as in a multi-core environment).

A.6 Branch-Prediction Table
AMD Family 10h processors predict that a branch is not taken until it is taken once. Then it is 
predicted that the branch is taken, until it is not taken. Thereafter, the branch prediction table is used.

The fetch logic accesses the branch prediction table in parallel with the L1 instruction cache. The 
information stored in the branch prediction table is used to predict the direction of branch 
instructions. When instruction cache lines are evicted to the L2 cache, branch selectors and predecode 
information are also stored in the L2 cache.

AMD Family 10h processors employ combinations of a branch target address buffer (BTB), a global 
history bimodal counter (GHBC) table, and a return address stack (RAS) to predict and accelerate 
branches. Predicted-taken branches incur only a single-cycle delay to redirect the instruction fetcher 
to the target instruction. In the event of a misprediction, the minimum penalty is 10 cycles.

The BTB is a 2048-entry table that contains the predicted target address of a branch in each entry. The 
16384-entry GHBC table contains 2-bit saturating counters that are used to predict whether a 
conditional branch is taken. The GHBC table is indexed using the outcome (taken or not taken) of the 
last conditional branches and the branch address.

AMD Family 10h processors implement a separate 512- entry target array used to predict indirect 
branches with multiple dynamic targets.

In addition, the processors implement a 24-entry return address stack to predict return addresses from 
a near or far call. As calls are fetched, the next return address is pushed onto the return stack. 
Subsequent returns pop a predicted return address off the top of the stack.

A.7 Fetch-Decode Unit
The fetch-decode unit performs early decoding of AMD64 instructions into macro-ops. 
AMD Family 10h processors contain two separate decoders; one to decode DirectPath instructions 
and one to decode VectorPath instructions. When the target 32-byte instruction window is obtained 
from the L1 instruction cache, the instruction bytes are examined to determine whether the type of 
basic decode to take place is DirectPath or VectorPath. The outputs of the early decoders keep all 
(DirectPath or VectorPath) instructions in program order. Early decoding produces three macro-ops 
per cycle from either path. The outputs of both decoders are multiplexed together and passed to the 
next stage in the pipeline, the instruction control unit. Decoding a VectorPath instruction may prevent 
the simultaneous decoding of a DirectPath instruction.
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A.8 Sideband Stack Optimizer
The Sideband Stack Optimizer tracks the stack-pointer value. This allows the processor to execute in 
parallel any set of one or more instructions that implicitly or explicitly reference the stack-pointer. 
“Stack Operations” on page 59 discusses the Sideband Stack Optimizer in greater detail.

A.9 Instruction Control Unit
The instruction control unit (ICU) is the control center for the AMD Family 10h processor. It controls 
the centralized in-flight reorder buffer, the integer scheduler, and the floating-point scheduler. In turn, 
the ICU is responsible for the following functions: macro-op dispatch, macro-op retirement, register 
and flag dependency resolution and renaming, execution resource management, interrupts, 
exceptions, and branch mispredictions.

The instruction control unit takes the three macro-ops that are produced during each cycle from the 
early decoders and places them in a centralized, fixed-issue reorder buffer. This buffer is organized 
into 24 lines of three macro-ops each. The reorder buffer allows the instruction control unit to track 
and monitor up to 72 in-flight macro-ops (whether integer or floating-point) for maximum instruction 
throughput. The instruction control unit can simultaneously dispatch multiple macro-ops from the 
reorder buffer to both the integer and floating-point schedulers for final decode, issue, and execution 
as micro-ops.

A.10 Translation-Lookaside Buffer
A translation-lookaside buffer (TLB) holds the most-recently-used page mapping information.  It 
assists and accelerates the translation of virtual addresses to physical addresses.

The AMD Family 10h processors utilize a two-level TLB structure.

A.10.1 L1 Instruction TLB Specifications

The AMD Family 10h processor contains a fully-associative L1 instruction TLB with 32 4-Kbyte 
page entries and 16 2-Mbyte page entries. 4-Mbyte pages require two 2-Mbyte entries; thus, the 
number of entries available for 4-Mbyte pages is one half the number of 2-Mbyte page entries.

A.10.2 L1 Data TLB Specifications

The AMD Family 10h processor contains a fully-associative L1 data TLB with 48 entries for 4-
Kbyte, 2-Mbyte, and 1-Gbyte pages. 4-Mbyte pages require two 2-Mbyte entries; thus, the number of 
entries available for 4-Mbyte pages is one half the number of 2-Mbyte page entries.
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A.10.3 L2 Instruction TLB Specifications

The AMD Family 10h processor contains a 4-way set-associative L2 instruction TLB with 512 4-
Kbyte page entries.

A.10.4 L2 Data TLB Specifications

The AMD Family 10h processor contains an L2 data TLB with 512 4-Kbyte page entries (4-way set-
associative), 128 2-Mbyte page entries (2-way set-associative), and 16 1-Gbyte page entries (8-way 
set-associative). 4-Mbyte pages require two 2-Mbyte entries; thus, the number of entries available for 
4-Mbyte pages is one half the number of 2-Mbyte page entries.

A.11 Integer Unit
The integer unit consists of two components, the integer scheduler, which feeds the integer execution 
pipes, and the integer execution unit, which carries out several types of operations discussed below.

A.11.1 Integer Scheduler

The integer scheduler is based on a three-wide queuing system (also known as a reservation station) 
that feeds three integer execution positions or pipes. The reservation stations are eight entries deep, 
for a total queuing system of 24 integer macro-ops. Each reservation station divides the macro-ops 
into integer and address generation micro-ops, as required.

A.11.2 Integer Execution Unit

The integer execution pipeline consists of three identical pipes (0, 1, and 2). Each integer pipe 
consists of an arithmetic-logic unit (ALU) and an address generation unit (AGU). The integer 
execution pipeline is organized to match the three macro-op dispatch pipes in the ICU as shown in 
Figure 9.
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Figure 9. Integer Execution Pipeline

Macro-ops are broken down into micro-ops in the schedulers. Micro-ops are executed when their 
operands are available, either from the register file or result buses. Micro-ops from a single operation 
can execute out-of-order. In addition, a particular integer pipe can execute two micro-ops from 
different macro-ops (one in the ALU and one in the AGU) at the same time. (See Figure 9.)

Each of the three ALUs performs general purpose logic functions, arithmetic functions, conditional 
functions, divide step functions, status flag multiplexing, and branch resolutions. The AGUs calculate 
the logical addresses for loads, stores, and LEAs. A load and store unit reads and writes data to and 
from the L1 data cache. The integer scheduler sends a completion status to the ICU when the 
outstanding micro-ops for a given macro-op are executed. (For more information on the LSU, see 
section A.13 on page 227.)

All integer operations can be handled within any of the three ALUs with the exception of 
multiplication, LZCNT, and POPCNT operations. Multiplication is handled by a pipelined multiplier 
that is attached to the pipeline at pipe 0, as shown in Figure 9 on page 225. Multiplication operations 
always issue to integer pipe 0, and the issue logic creates result bus bubbles for the multiplier in 
integer pipes 0 and 1 by preventing non-multiply micro-ops from issuing at the appropriate time. The 
LZCNT and POPCNT operations are handled in a pipelined unit attached to pipe 2, as shown in 
Figure 9 on page 225. The LZCNT/POPCNT operations always issue to integer pipe 2, and the issue 
logic creates a result bus bubble in integer pipe 2 by preventing non-LZCNT/POPCNT operations 
from issuing at the appropriate time.

A.12 Floating-Point Unit
The floating-point unit consists of two components, the floating-point scheduler, which performs 
several complex functions prior to actually feeding into the floating-point execution unit, which 
carries out several types of operations discussed below.
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A.12.1 Floating-Point Scheduler

The floating-point logic of the AMD Family 10h processor is a high-performance, fully pipelined, 
superscalar, out-of-order execution unit. It is capable of accepting three macro-ops per cycle from any 
mixture of the following types of instructions:

• x87 floating-point

• 3DNow! technology

• MMX

• SSE

• SSE2

• SSE3

• SSE4a

The floating-point scheduler handles register renaming and has a dedicated 42-entry scheduler buffer 
organized as 14 lines of three macro-ops each. It also performs data superforwarding, micro-op issue, 
and out-of-order execution. The floating-point scheduler communicates with the ICU to retire a 
macro-op, to manage results of *COMI* and FP-to-INT movement and conversion instructions using 
a 64-bit-wide FP-to-INT bus, and to back out results from a branch misprediction.

Superforwarding is a performance optimization. It allows faster scheduling of a floating point 
operation having a dependency on a register when that register is waiting to be filled by a pure load 
from memory. Instead of waiting for the first instruction to write its load-data to the register and then 
waiting for the second instruction to read it, the load-data can be provided directly to the dependent 
instruction, much like regular forwarding between FPU-only operations. The result from the load is 
said to be "superforwarded" to the floating-point operation. In the following example, the FADD can 
be scheduled to execute as soon as the load operation fetches its data rather than having to wait and 
read it out of the register file.

      fld    [somefloat]       ;Load a floating point 
                                ;value from memory into ST(0)
      fadd   st(0),st(1)       ;The data from the load will be 
                                ;forwarded directly to this instruction,
                                ;no need to read the register file

A.12.2 Floating-Point Execution Unit

The floating-point execution unit (FPU) has its own out-of-order execution control and datapath. The 
FPU handles all register operations for x87 instructions, all 3DNow! technology operations, all MMX 
operations, and all SSE, SSE2, SSE3, and SSE4a operations. The FPU consists of a stack renaming 
unit, a register renaming unit, a scheduler, a register file, and execution units that are each capable of 
computing and delivering results of up to 128 bits per cycle. Figure 10 shows a block diagram of the 
dataflow through the FPU.
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Figure 10. Floating-Point Unit

As shown in Figure 10, the floating-point logic uses three separate execution positions or pipes 
(FADD, FMUL, and FSTORE). Details on which instructions can use which pipes are specified in 
Appendix C.

A.13 Load-Store Unit
The L1 data cache and load-store unit (LSU) are shown in Figure 11. The L1 data cache can support 
two 128-bit loads or two 64-bit store writes per cycle or a mix of those. The LSU consists of two 
queues—LS1 and LS2. LS1 can issue two L1 cache operations (loads or store tag checks) per cycle.  
It can issue load operations out-of-order, subject to certain dependency restrictions. LS2 effectively 
holds requests that missed in the L1 cache after they probe out of LS1. Store writes are done exclu-
sively from LS2. 128-bit stores are specially handled in that they take two LS2 entries, and the store 
writes are performed as two 64-bit writes. Finally, the LSU helps ensure that the architectural load 
and store ordering rules are preserved (a requirement for AMD64 architecture compatibility).
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Figure 11. Load-Store Unit

A.14 Write Combining
AMD Family 10h processors provide four write-combining data buffers that allow four simultaneous 
streams. For details, see Appendix B “Implementation of Write-Combining” on page 233.

A.15 Integrated Memory Controller
AMD Family 10h processors provide an integrated low-latency, high-bandwidth DDR2 memory 
controller.

The memory controller supports:

• DRAM chips that are 4, 8, and 16 bits wide within a DIMM.

• Interleaving memory within DIMMs.

• ECC checking with double-bit detection and single-bit correction.

• Both dual-independent 64-bit channel and single 128-bit channel operation. 

• Optimized scheduling algorithms and access pattern predictors to improve latency and achieved 
bandwidth, particularly for interleaved streams of read and write DRAM accesses. 
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• A data prefetcher.

Prefetched data is held in the memory controller itself and is not speculatively filled into the L1, L2, 
or L3 caches. This prefetcher is able to capture both positive and negative stride values (both unit and 
non-unit) of cache-line size, as well as some more complicated access patterns.

For specifications on a certain processor’s memory controller, see the data sheet for that processor. 
For information on how to program the memory controller, see the BIOS and Kernel Developer’s 
Guide for AMD Family 10h Processors, order# 31116.

A.16 HyperTransport™ Technology Interface
HyperTransport technology is a scalable, high-speed, low-latency, point-to-point, packetized link 
that:

• Enables high data transfer rates.

• Simplifies connectivity by replacing legacy buses and bridges.

• Reduces latencies and bottlenecks within systems.

When compared with traditional technologies, HyperTransport technology allows much faster data-
transfer rates. For more information on HyperTransport technology, see the HyperTransport I/O Link 
Specification, available at www.hypertransport.org.

On AMD Family 10h processors, HyperTransport technology provides the link to I/O devices. Some 
processor models—for example, those designed for use in multiprocessing systems—also utilize 
HyperTransport technology to connect to other processors. See the BIOS and Kernel Developer's 
Guide for your particular processor for details concerning HyperTransport technology 
implementation details.

In addition to supporting previous HyperTransport interfaces, AMD Family 10h processors support a 
newer version of the HyperTransport standard: HyperTransport3. HyperTransport3 increases the 
aggregate link bandwidth to a maximum of 20.8 Gbyte/s (16-bit link). HyperTransport3 also adds 
HyperTransport Retry which improves RAS by allowing detection and retransmission of packets 
corrupted in transit. 

Additional features in the AMD Family 10h HyperTransport implementation include: 

• HyperTransport Link Bandwidth Balancing which allows multiple HyperTransport links to be 
"teamed" (subject to platform design and AMD Family 10h processors) to carry coherent traffic. 

• HyperTransport Link Splitting, which allows a single 16-bit link to be split into two 8-bit links. 

These features allow for further optimized platform designs which can increase system bandwidth 
and reduce latency.
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Appendix B Implementation of  
Write-Combining

This appendix describes the memory write-combining feature implemented in AMD Family 10h 
processors. Write-combining is the merging of multiple memory write cycles that target locations 
within the address range of a write buffer.

AMD Family 10h processors support the memory type range register (MTRR) and the page attribute 
table (PAT) extensions, which allow software to define ranges of memory as either writeback (WB), 
write-protected (WP), writethrough (WT), uncacheable (UC), or write-combining (WC). 

Defining the memory type for a range of memory as WC or WT allows the processor to conditionally 
combine data from multiple write cycles that are addressed within this range into a merge buffer. 
Merging multiple write cycles into a single write cycle reduces processor bus utilization and 
processor stalls. Write combining buffers are also used for streaming store instructions such as 
MOVNTQ and MOVNTI. See “Use of Streaming Instructions” on page 84.

This appendix covers the following topics:

B.1 Write-Combining Definitions and Abbreviations
This appendix uses the following definitions and abbreviations:

• MTRR—Memory type range register

• PAT—Page attribute table

• UC—Uncacheable memory type

• WC—Write-combining memory type

• WT—Writethrough memory type

• WP—Write-protected memory type

• WB—Writeback memory type

Topic Page

Write-Combining Definitions and Abbreviations 231

Programming Details 232

Write-Combining Operations 232

Sending Write-Buffer Data to the System 233

Write Combining to MMI/O Devices that Support Write Chaining 233
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B.2 Programming Details
Write-combining regions are controlled by the MTRRs and PAT extensions. Write-combining should 
be enabled for the appropriate memory ranges. (For more information on the MTRRs and the PAT 
extensions, see the AMD64 Architecture Programmer’s Manual, Volume 2, order# 24593, and the 
BIOS and Kernel Developer’s Guide for AMD Family 10h Processors, order# 31116.)

B.3 Write-Combining Operations
To improve system performance, AMD Family 10h processors aggressively combine multiple 
memory-write cycles of any data size that address locations within a 64-byte write buffer that is 
aligned to a cache-line boundary. The processor continues to combine writes to this buffer without 
writing the data to the system, as long as certain rules apply (see Table 10 for more information). The 
data sizes can be bytes, words, doublewords, or quadwords.

• WC memory type writes can be combined in any order up to a full 64-byte write buffer.

• All other memory types for stores that go through the write buffer (UC, WP, WT and WB) cannot 
be combined except when the WB memory type is over-ridden for streaming store instructions 
such as the MOVNTQ and MOVNTI instructions, etc. These instructions use the write buffers and 
will be write-combined in the same way as address spaces mapped by the MTTR registers and 
PAT extensions. When WC is used for streaming store instructions, then the buffers are subject to 
the same flushing events as write-combined address spaces. 

Combining continues until interrupted by one of the conditions listed in Table 10. When combining is 
interrupted, one or more bus commands are issued to the system for that write buffer, as described in 
“Sending Write-Buffer Data to the System” on page 233.

Table 10. Write-Combining Completion Events 

Event Comment

I/O Read or Write Any IN/INS or OUT/OUTS instruction closes combining. The implied 
memory type for all IN/OUT instructions is UC, which cannot be 
combined.

Serializing instructions Any serializing instruction closes combining. These instructions 
include: MOVCRx, MOVDRx, WRMSR, INVD, INVLPG, WBINVD, 
LGDT, LLDT, LIDT, LTR, CPUID, IRET, RSM, INIT, and HALT.

Flushing instructions Any flush instruction causes the WC to complete.

Locks Any instruction or processor operation that requires a cache or bus 
lock closes write-combining before starting the lock. Writes within a 
lock can be combined.

Uncacheable Read A UC read closes write-combining. A WC read closes combining 
only if a cache block address match occurs between the WC read 
and a write in the write buffer.
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B.4 Sending Write-Buffer Data to the System
Maximum throughput is achieved by write combining when all quadwords or doublewords are valid 
and the AMD Family 10h processors can use one efficient 64-byte memory write instead of multiple 
8-byte memory writes.

B.5 Write Combining to MMI/O Devices that Support 
Write Chaining

AMD Family 10h processors support four write-combining buffers. Although the number of buffers 
available for write combining depends on the specific CPU revision, current designs provide as many 
as four write buffers for WC memory mapped I/O address spaces. These same buffers are used for 
streaming store instructions. The number of write-buffers determines how many independent linear 
64-byte streams of WC data the CPU can simultaneously buffer.

Having multiple write-combining buffers that can combine independent WC streams has implications 
on data throughput rates (bandwidth), especially when data is written by the CPU to WC memory 
mapped I/O devices, residing on the AGP, PCI, PCI-X® and PCI Express® buses including:  

• Memory Mapped I/O registers—command FIFO, etc.

• Memory Mapped I/O apertures—windows to which the CPU use programmed I/O to send data to 
a hardware device

• Sequential block of 2D/3D graphic engine registers written using programmed I/O

• Video memory residing on the graphics accelerator—frame buffer, render buffers, textures, etc.

HyperTransport™ Tunnels and Write Chaining

HyperTransport™ tunnels are HyperTransport-to-bus bridges. Many HyperTransport tunnels use a 
hardware optimization feature called write-chaining. In write-chaining, the tunnel device buffers and 
combines separate HyperTransport packets of data sent by the CPU, creating one large burst on the 
underlying bus when the data is received by the tunnel in sequential address order. Using larger bursts 
results in better throughput since bus efficiency is increased. This is because bus arbitration overhead 

Different memory type When a store hits on a write buffer that has been written to earlier 
with a different memory type than that store, the buffer is closed and 
flushed.

Buffer full Write-combining is closed if all 64 bytes of the write buffer are valid.

TLB AD bit set Write-combining is closed whenever a TLB reload sets the accessed 
[A] or dirty [D] bits of a PDE or PTE.

Table 10. Write-Combining Completion Events (Continued)

Event Comment
Appendix B Implementation of Write-Combining 233



40546 Rev. 3.08 October 2008Software Optimization Guide for AMD Family 10h Processors
is lower: only one address/attribute phase is issued per burst in the PCI-X case, and one 
address/command phase is issued for the AGP Fast Writes case.

For reasons cited in the preceding paragraph, to utilize hardware write chaining efficiently, software 
should flush the CPU write-combining buffer in sequential linear address order, any time a target 
hardware device is capable of receiving large bursts of CPU write data. 

Software should be aware that on AMD64 processors that have multiple write-combining buffers, 
events that flush the write-combining buffers (see Appendix B, Table 8.) send out the 64-byte WC 
buffers in the order that the streams were opened. This means that if the CPU writes to the WC space 
in the highest 64-byte addressed buffer first (for example address 40h), and then writes to a lower 64-
byte buffer next, (for example address 00h), when those buffers are sent by the CPU (by 
HyperTransport to the tunnel), the highest address 64-byte buffer will be sent first, followed by the 
second (lower address) 64-byte buffer.  Since the addressing is not sequential the tunnel device will 
not "chain" both 64-byte WC buffers and must issue 2 separate transactions on the target bus.

If the above example were targeted for AGP fast writes, issuing two fast write transactions (rather 
than issuing one Fast Write transaction) will reduce the bandwidth (data throughput) by 1/3. 

Optimizations

Adhere to the following guidelines to ensure that AMD Family 10h processors issue WC buffers in 
sequential address order: 

• When practical, shadow the data structure in memory (rather than writing the actual WC buffer in 
MMI/O space), prior to copying the structure to WC MMI/O space. This will also ensure that the 
write-combining buffers are not emptied prematurely by external events (such as a UC read—
perhaps issued by another device driver thread or a hardware interrupt, etc.). Shadowing also 
ensures that writes that occur to different cache lines in the structure do not send out the WC 
buffers, since the number of WC buffers that can be open at one time is CPU implementation 
dependent.

• When ready to update the actual WC MMI/O address space, copy the shadowed structure from 
memory to MMI/O, from the lowest address 64-byte block upward. To do the copy, use discrete 
loads and stores for up to 64 bytes of data. Use a loop of discrete loads and stores for up to 4KB of 
data.  Use REP MOVS instructions for up to 32KB of data. To do discrete loads use assembly 
language, or, if available, compiler intrinsic functions available (__movsb(), __movsw(),  
__movsd()), etc. (For more information, see “Memory and String Routines” on page 92.)

• In general, using these methods to do the copy will exhibit less overhead in a data movement 
function than calling a memcpy() LIBC function, which is usually optimized for copying larger 
blocks of memory.
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Appendix C Instruction Latencies

This appendix provides a listing of AMD64 instructions, decode types, and execution latencies. For 
more information on these instructions, see the AMD64 Architecture Programmer’s Manual, 
Volumes 3, 4, and 5 (order# 24594, 26568, and 26569).

The instruction entries in this appendix are grouped into categories as follows and are presented 
within each category in alphabetical order by mnemonic:

Topic Page

Understanding Instruction Entries 236

General Purpose and Integer Instruction Latencies 240

System Instruction Latencies 250

128-Bit Media Instruction Latencies 254

64-Bit Media Instruction Latencies 268

x87 Floating-Point Instruction Latencies 273
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C.1 Understanding Instruction Entries
To use the information in this appendix effectively, you need to understand how the entry for an 
instruction is organized and how to interpret certain items.

Example: Instruction Entry

The entry for an instruction begins with its syntax. Subsequent columns provide additional 
information about the instruction.

Parts of the Instruction Entry

Columns in the latency tables are defined as follows. Not all categories are relevant to all instruction 
sets. Thus, only the decode type and latency are relevant to general purpose integer instructions, while 
SSEx latency tables use all six categories.

Syntax
Decode 

Type
FPU Pipe(s) Latency Throughput Notes

MOVAPS mem, reg DirectPath 
Double 

FSTORE 2 1/1 4

Category Description

Syntax Shows the syntax for the instruction—the permitted arrangement of its parts. Items in 
italics are placeholders for operands that you must provide. For information on how to 
interpret the placeholders, see “Interpreting Placeholders” on page 237

Decode type Shows the method that the processor uses to decode the instruction—DirectPath 
Single, DirectPath Double, or VectorPath.

FPU Pipes Lists the possible floating-point unit (FPU) pipelines available for use by any particular 
DirectPath or Double decoded operation. (See below.)

Latency Shows the static execution latency for the instruction. For details on how to interpret the 
latency information, see “Interpreting Latencies” on page 238.

Throughput This value indicates the maximum theoretical rate of execution of that instruction. For 
example, a value of 1/2 means that one such instruction executes every two clocks, or 
two such instructions in four clocks and so on. A value of 3/1 indicates that three such 
instructions can be executed every clock, but fewer than three such instructions would 
still take one clock.

Notes Specifies clarifying information
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Decode Type

The ★ and !  symbols indicate a one step change in the decode type hierarchy on AMD Family 10h 
processors as compared to the decode type of the identical instruction on 8th generation AMD 
processors. The decode type hierarchy, from simplest to most complex is: 

DirectPath Single↔DirectPath Double↔VectorPath.

Instructions having more complex decode types decompose into more micro-operations, each of 
which consumes important system resources. A positive two-step decode-type change (from 
VectorPath to DirectPath) is indicated by ★★; a negative two-step change in decode-type (from 
DirectPath to VectorPath) is indicated by ! ! .

FPU Pipes

The entries for floating-point, MMX, SSE, SSE2, SSE3, and SSE4a instructions have an additional 
column [FPU Pipe(s)] that lists the possible floating-point unit (FPU) pipelines available for use by 
any particular DirectPath Single or DirectPath Double decoded operation. The floating-point add pipe 
is represented by FADD, the floating point multiply pipe is represented by FMUL and the floating-
point store pipe is represented by FSTORE. A ‘/’ between two pipe names indicates that an 
instruction can use either of the two pipes. An ‘&’ between pipe names indicates that both pipes are 
required. An entry such as “FADD & FSTORE” thus indicates that both an FADD pipe and an FSTORE 
pipe are used; “(FADD/FMUL) & FSTORE” indicates that either an FADD or an FMUL pipe is used in 
addition to a (required) FSTORE pipe.

Interpreting Placeholders

The Syntax column for an instruction entry shows the mnemonic for the instruction followed by any 
operands. Items in italics are placeholders for operands that you must provide. A placeholder 
indicates the size and type of operand that is allowed.

This operand Is a placeholder for

reg A general-purpose register

mmreg An MMX™ register

xmmreg An XMM, SSE, SSE2, SSE3, SSE4a register

ST(i) X87 stack register

mem A memory location

imm An immediate value

disp A memory displacement or offset

x/y Operand type x or y

x (mem) Operand type x or mem (used only for media instructions)
Note: Operands with numbers indicate operand sizes, for example mem32/64 indicates that this operand can either be a 

32-bit or a 64-bit memory location.  When sizes are not indicated, the information in the entry is identical for any 
legal operand size.  Please consult the AMD64 Architecture Programmer’s Manual Volumes 3–5 to determine the 
legal operand sizes for a given instruction type.
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In many if not most cases, an instruction takes more that one operand. When an instruction takes two 
register operands, as in ADD reg1, reg2, the first register (reg1) is the destination operand (or 
register) and the second register (reg2) is the source operand (or register). In the latency table that 
follows, numeric suffixes are used to discriminate between operands in all such cases (i.e., xmmreg2, 
mmreg1, etc.). A few instructions take three operands; the same conventions for designating operands 
apply in these cases as well, as in:

EXTRQ xmmreg, imm1, imm2
CMPSS xmmreg1, xmmreg2 (mem), imm

Interpreting Latencies

The Latency column for an instruction entry shows the static execution latency for the instruction. 
The static execution latency is the number of clock cycles it takes to execute the serially dependent 
sequence of micro-ops that comprise the instruction.

The latencies in this appendix are estimates and are subject to change. They assume that:

• The instruction is an L1-cache hit that has already been fetched and decoded, with the operations 
loaded into the scheduler.

• Memory operands are in the L1 data cache.

• There is no contention for execution resources or load-store unit resources.

Each latency in the table denotes the typical execution time of the instruction when run in isolation on 
a processor with any referenced memory locations already in the L1 cache.  For real programs 
executed on this highly aggressive superscalar family of processors, multiple instructions can execute 
simultaneously; therefore, the effective latency for any given instruction's execution may be 
overlapped with the latency of other instructions executing in parallel.  An example of this effect can 
be seen for an SSE load-compute instruction like ADDPD reg, mem, which effectively adds 2 cycles of 
latency (6 cycles total) versus ADDPD reg, reg (4 cycles) when run in isolation.  In a real program, 
however, the load portion of the instruction often occurs in parallel with earlier work, effectively 
hiding the extra 2 cycles from the critical execution path.  There are also other cases of additional 
latencies that may be incurred in a real program that are not described in the latency table, such as 
delays caused by L1 cache misses or contention for execution or load-store unit resources.
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The following formats are used to indicate the static execution latency:

VectorPath Instruction Latencies

In the following tables, certain VectorPath instruction latencies may not precisely reflect all versions 
of the processor.

Table 11. Latency Formats

Latency format Description Example

x The latency is the indicated value. 3

x/y/z The latency differs according to the size of the operands. The values 
x, y, and z are the 16-, 32-, and 64-bit latencies, respectively. When 
used in latency values for x87 instructions, this notation is used to 
indicate latencies for different precision control modes (single 
precision/double precision/extended precision).

26/42/74

x (y) The latency depends on whether the particular form of the instruction 
takes a memory operand or a register operand. The latency of the 
register-operand form of the instruction is specified first; the latency 
of the memory-operand form is given in parentheses.

2 (4)
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C.2 General Purpose and Integer Instruction 
Latencies

The latency table for general purpose and integer instructions gives the decode type and latency 
corresponding to each instruction mnemonic. For more detailed information on the operation of a 
particular general purpose integer instruction, as well as encoding information, see the AMD64 
Architecture Programmer’s Manual Volume 3: General-Purpose and System Instructions, order# 
24594.

Table 12. General Purpose and Integer Instruction Latencies 

Syntax Decode Type1 Latency Notes

AAA VectorPath 5

AAD VectorPath 5

AAM VectorPath 14

AAS VectorPath 5

ADC reg, reg/imm DirectPath Single 1

ADC mem, reg/imm DirectPath Single 4

ADC reg, mem DirectPath Single 4

ADD reg, reg/imm DirectPath Single 1

ADD mem, reg/imm DirectPath Single 4

ADD reg, mem DirectPath Single 4

AND reg, reg/imm DirectPath Single 1

AND mem, reg/imm DirectPath Single 4

AND reg, mem DirectPath Single 4

BOUND reg32, mem64 VectorPath 6

Note:
1. For interpretation of special symbols, see “Decode Type” on page 237.
2. See “Repeated String Instructions” on page 126.
3. For information on calculating the latencies for the DIV/IDIV instructions, see “Optimizing Integer Division” on 

page 141.
4. The NOP instruction does not consume any execution resources.
5. This operation is restricted to scheduling in pipe 0.
6. This operation is restricted to scheduling in pipe 2.
7. These instructions use the processor's write-combining resources.
8. LEA instructions have a latency of 1 when there are two source operands (as in the case of the base + index 

form LEA EAX, [EDX+EDI]). Forms with a scale or more than two source operands have a latency of 2 
(LEA EAX, [EBX+EBX*8]).
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BSF reg, reg VectorPath 4

BSF reg, mem VectorPath 7

BSR reg, reg VectorPath 4

BSR reg, mem VectorPath 7

BSWAP reg DirectPath Single 1

BT reg, reg/imm DirectPath Single 1

BT mem, imm DirectPath Single 4

BT mem, reg VectorPath 7

BTC reg, reg/imm DirectPath Double 2

BTC mem, imm VectorPath 5

BTC mem, reg VectorPath 8

BTR reg, reg/imm DirectPath Double 2

BTR mem, imm VectorPath 5

BTR mem, reg VectorPath 8

BTS reg, reg/imm DirectPath Double 2

BTS mem, imm VectorPath 5

BTS mem, reg VectorPath 8

CALL disp (near) DirectPath Double★ 3

CALL reg (near) DirectPath Double★ 3

CALL mem (near) VectorPath 4

CBW/CWDE/CDQE DirectPath Single 1

CWD/CDQ/CQO DirectPath Single 1

Table 12. General Purpose and Integer Instruction Latencies (Continued)

Syntax Decode Type1 Latency Notes

Note:
1. For interpretation of special symbols, see “Decode Type” on page 237.
2. See “Repeated String Instructions” on page 126.
3. For information on calculating the latencies for the DIV/IDIV instructions, see “Optimizing Integer Division” on 

page 141.
4. The NOP instruction does not consume any execution resources.
5. This operation is restricted to scheduling in pipe 0.
6. This operation is restricted to scheduling in pipe 2.
7. These instructions use the processor's write-combining resources.
8. LEA instructions have a latency of 1 when there are two source operands (as in the case of the base + index 

form LEA EAX, [EDX+EDI]). Forms with a scale or more than two source operands have a latency of 2 
(LEA EAX, [EBX+EBX*8]).
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CLC DirectPath Single 1

CLD DirectPath Single 1

CMC DirectPath Single 1

CMOVcc reg, reg DirectPath Single 1

CMOVcc reg, mem DirectPath Single 4

CMP reg, reg/imm DirectPath Single 1

CMP mem, reg/imm DirectPath Single 4

CMP reg, mem DirectPath Single 4

CMPS/CMPSB/CMPSW/CMPSD/CMPSQ VectorPath 6 2

CMPXCHG reg, reg VectorPath 3

CMPXCHG mem8, reg8 VectorPath 6

CMPXCHG mem16/32/64, reg16/32/64 VectorPath 5

CMPXCHG8B mem64 VectorPath 10

CMPXCHG16B mem128 VectorPath 11

CPUID fn0x0 VectorPath 41

CPUID fn0x1 VectorPath 127

CPUID fn0x2 VectorPath 37

DAA VectorPath 7

DAS VectorPath 7

DEC reg DirectPath Single 1

DEC mem DirectPath Single 4

DIV reg/mem VectorPath 3

Table 12. General Purpose and Integer Instruction Latencies (Continued)

Syntax Decode Type1 Latency Notes

Note:
1. For interpretation of special symbols, see “Decode Type” on page 237.
2. See “Repeated String Instructions” on page 126.
3. For information on calculating the latencies for the DIV/IDIV instructions, see “Optimizing Integer Division” on 

page 141.
4. The NOP instruction does not consume any execution resources.
5. This operation is restricted to scheduling in pipe 0.
6. This operation is restricted to scheduling in pipe 2.
7. These instructions use the processor's write-combining resources.
8. LEA instructions have a latency of 1 when there are two source operands (as in the case of the base + index 

form LEA EAX, [EDX+EDI]). Forms with a scale or more than two source operands have a latency of 2 
(LEA EAX, [EBX+EBX*8]).
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ENTER imm32, 0/1/2 VectorPath 14/17/19

IDIV reg/mem VectorPath 3

IMUL reg8 DirectPath Single 3 5

IMUL reg16 VectorPath 4 5

IMUL reg16, imm16 VectorPath 4 5

IMUL reg16, mem16 DirectPath Single 6 5

IMUL reg16, mem16, imm VectorPath 7 5

IMUL reg16, reg16 DirectPath Single 3 5

IMUL reg16, reg16, imm VectorPath 4 5

IMUL reg32 DirectPath Double 3 5

IMUL reg32, imm32 DirectPath Single 3 5

IMUL reg32, mem32 DirectPath Single 6 5

IMUL reg32, mem32, imm VectorPath 7 5

IMUL reg32, reg32 DirectPath Single 3 5

IMUL reg32, reg32, imm DirectPath Single 3 5

IMUL reg64 DirectPath Double 5 5

IMUL reg64, imm32 DirectPath Single 4 5

IMUL reg64, mem64 DirectPath Single 7 5

IMUL reg64, mem64, imm VectorPath 8 5

IMUL reg64, reg64 DirectPath Single 4 5

IMUL reg64, reg64, imm32 DirectPath Single 4 5

IMUL mem8 DirectPath Single 6 5

Table 12. General Purpose and Integer Instruction Latencies (Continued)

Syntax Decode Type1 Latency Notes

Note:
1. For interpretation of special symbols, see “Decode Type” on page 237.
2. See “Repeated String Instructions” on page 126.
3. For information on calculating the latencies for the DIV/IDIV instructions, see “Optimizing Integer Division” on 

page 141.
4. The NOP instruction does not consume any execution resources.
5. This operation is restricted to scheduling in pipe 0.
6. This operation is restricted to scheduling in pipe 2.
7. These instructions use the processor's write-combining resources.
8. LEA instructions have a latency of 1 when there are two source operands (as in the case of the base + index 

form LEA EAX, [EDX+EDI]). Forms with a scale or more than two source operands have a latency of 2 
(LEA EAX, [EBX+EBX*8]).
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IMUL mem16 VectorPath 7 5

IMUL mem32 DirectPath Double 6 5

IMUL mem64 DirectPath Double 8 5

INC reg DirectPath Single 1

INC mem DirectPath Single 4

Jcc disp DirectPath Single 1

JCXZ/JECXZ/JRCXZ disp DirectPath Double 2

JMP reg (near) DirectPath Single 1

JMP disp (near) DirectPath Single 1

JMP mem (near) DirectPath Single 4

JMP disp (far, no call gate) VectorPath 21

JMP mem (far, no call gate) VectorPath 22

LAHF VectorPath 3

LEA reg16, mem  VectorPath 3

LEA reg32/64, mem DirectPath Single 1/2 8

LEAVE DirectPath Double★ 3

LODS/LODSB VectorPath 5 2

LODS/LODSW VectorPath 5 2

LODS/LODSD VectorPath 4 2

LOOP/LOOPcc pm32 VectorPath 8

LOOP/LOOPcc pm64 VectorPath 7

LZCNT reg, reg DirectPath Single 2 6

Table 12. General Purpose and Integer Instruction Latencies (Continued)

Syntax Decode Type1 Latency Notes

Note:
1. For interpretation of special symbols, see “Decode Type” on page 237.
2. See “Repeated String Instructions” on page 126.
3. For information on calculating the latencies for the DIV/IDIV instructions, see “Optimizing Integer Division” on 

page 141.
4. The NOP instruction does not consume any execution resources.
5. This operation is restricted to scheduling in pipe 0.
6. This operation is restricted to scheduling in pipe 2.
7. These instructions use the processor's write-combining resources.
8. LEA instructions have a latency of 1 when there are two source operands (as in the case of the base + index 

form LEA EAX, [EDX+EDI]). Forms with a scale or more than two source operands have a latency of 2 
(LEA EAX, [EBX+EBX*8]).
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LZCNT reg, mem DirectPath Single 5 6

MOV reg, reg DirectPath Single 1

MOV reg, mem8/16 DirectPath Single 4

MOV reg, mem32/63 DirectPath Single 3

MOV mem, reg/imm DirectPath Single 3

MOV mem16, FS DirectPath Double 4

MOV mem32, SS DirectPath Double 4

MOV mem32, DS DirectPath Double 4

MOV reg32, SS DirectPath Single 4

MOV reg32, DS DirectPath Single 4

MOV reg32, FS DirectPath Single 3

MOV reg64, FS DirectPath Single 3

MOV SS, mem32 VectorPath 26

MOV SS, reg32 VectorPath 10

MOV DS, mem32 VectorPath 10

MOV DS, reg32 VectorPath 8

MOV FS, mem16 VectorPath 10

MOV FS, reg32 VectorPath 8

MOV FS, reg64 VectorPath 8

MOVNTI mem,  reg DirectPath Single 7

MOVS/MOVSB/MOVSW/MOVSD/MOVSQ1 VectorPath 5 2

MOVSX reg, reg DirectPath Single 1

Table 12. General Purpose and Integer Instruction Latencies (Continued)

Syntax Decode Type1 Latency Notes

Note:
1. For interpretation of special symbols, see “Decode Type” on page 237.
2. See “Repeated String Instructions” on page 126.
3. For information on calculating the latencies for the DIV/IDIV instructions, see “Optimizing Integer Division” on 

page 141.
4. The NOP instruction does not consume any execution resources.
5. This operation is restricted to scheduling in pipe 0.
6. This operation is restricted to scheduling in pipe 2.
7. These instructions use the processor's write-combining resources.
8. LEA instructions have a latency of 1 when there are two source operands (as in the case of the base + index 

form LEA EAX, [EDX+EDI]). Forms with a scale or more than two source operands have a latency of 2 
(LEA EAX, [EBX+EBX*8]).
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MOVSX reg, mem DirectPath Single 4

MOVSXD reg, reg DirectPath Single 1

MOVSXD reg, mem DirectPath Single 4

MOVZX reg, reg DirectPath Single 1

MOVZX reg, mem DirectPath Single 4

MUL reg8 DirectPath Single 3 5

MUL reg16 VectorPath 4 5

MUL reg32 DirectPath Double 3 5

MUL reg64 DirectPath Double 5 5

MUL mem8 DirectPath Single 6 5

MUL mem16 VectorPath 7 5

MUL mem32 DirectPath Double 6 5

MUL mem64 DirectPath Double 8 5

NEG reg DirectPath Single 1

NEG mem DirectPath Single 4

NOP DirectPath Single ~0 4

NOT reg DirectPath Single 1

NOT mem DirectPath Single 4

OR reg, reg/imm DirectPath Single 1

OR mem, reg/imm DirectPath Single 4

OR reg, mem DirectPath Single 4

POP reg16 DirectPath Double★ 4

Table 12. General Purpose and Integer Instruction Latencies (Continued)

Syntax Decode Type1 Latency Notes

Note:
1. For interpretation of special symbols, see “Decode Type” on page 237.
2. See “Repeated String Instructions” on page 126.
3. For information on calculating the latencies for the DIV/IDIV instructions, see “Optimizing Integer Division” on 

page 141.
4. The NOP instruction does not consume any execution resources.
5. This operation is restricted to scheduling in pipe 0.
6. This operation is restricted to scheduling in pipe 2.
7. These instructions use the processor's write-combining resources.
8. LEA instructions have a latency of 1 when there are two source operands (as in the case of the base + index 

form LEA EAX, [EDX+EDI]). Forms with a scale or more than two source operands have a latency of 2 
(LEA EAX, [EBX+EBX*8]).
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POP reg32/64 DirectPath Single★★ 3

POP mem VectorPath 3

POP DS/ES/FS/GS VectorPath 10

POP SS VectorPath 26

POPA/POPAD VectorPath 6

POPCNT reg, reg DirectPath Single 2 6

POPCNT reg, mem DirectPath Single 5 6

POPF/POPFD/POPFQ VectorPath 15

PUSH reg/imm DirectPath Single 3

PUSH mem DirectPath Double 3

PUSH CS/DS/ES/FS/GS/SS DirectPath Double★ 3

PUSHA/PUSHAD VectorPath 6

PUSHF/PUSHFD/PUSHFQ VectorPath –

RCL reg, 1 DirectPath Single 1

RCL reg, imm VectorPath 7

RCL reg, CL VectorPath 6

RCL mem, 1 DirectPath Single 4

RCL mem, imm VectorPath 7

RCL mem, CL VectorPath 7

RCR reg, 1 DirectPath Single 1

RCR reg, imm VectorPath 5

RCR reg, CL VectorPath 4

Table 12. General Purpose and Integer Instruction Latencies (Continued)

Syntax Decode Type1 Latency Notes

Note:
1. For interpretation of special symbols, see “Decode Type” on page 237.
2. See “Repeated String Instructions” on page 126.
3. For information on calculating the latencies for the DIV/IDIV instructions, see “Optimizing Integer Division” on 

page 141.
4. The NOP instruction does not consume any execution resources.
5. This operation is restricted to scheduling in pipe 0.
6. This operation is restricted to scheduling in pipe 2.
7. These instructions use the processor's write-combining resources.
8. LEA instructions have a latency of 1 when there are two source operands (as in the case of the base + index 

form LEA EAX, [EDX+EDI]). Forms with a scale or more than two source operands have a latency of 2 
(LEA EAX, [EBX+EBX*8]).
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RCR mem, 1 DirectPath Single 4

RCR mem, imm VectorPath 6

RCR mem, CL VectorPath 6

RET DirectPath Single★ 4

RET imm16 DirectPath Double★ 4

ROL reg, 1/CL/imm DirectPath Single 1

ROL mem, 1/CL/imm DirectPath Single 4

ROR reg, 1/CL/imm DirectPath Single 1

ROR mem, 1/CL/imm DirectPath Single 4

SAHF DirectPath Single 1

SAL/SHL reg, 1/CL/imm DirectPath Single 1

SAL/SHL mem, 1/CL/imm DirectPath Single 4

SAR reg, 1/CL/imm DirectPath Single 1

SAR mem, 1/CL/imm DirectPath Single 4

SBB reg, reg/imm DirectPath Single 1

SBB mem, reg/imm DirectPath Single 4

SBB reg, mem DirectPath Single 4

SCAS/SCASB/SCASW/SCASD/SCASQ VectorPath 4 2

SETcc reg DirectPath Single 1

SETcc mem DirectPath Single 3

SHLD reg, reg, CL/imm VectorPath 4

SHLD mem, reg, CL/imm VectorPath 6

Table 12. General Purpose and Integer Instruction Latencies (Continued)

Syntax Decode Type1 Latency Notes

Note:
1. For interpretation of special symbols, see “Decode Type” on page 237.
2. See “Repeated String Instructions” on page 126.
3. For information on calculating the latencies for the DIV/IDIV instructions, see “Optimizing Integer Division” on 

page 141.
4. The NOP instruction does not consume any execution resources.
5. This operation is restricted to scheduling in pipe 0.
6. This operation is restricted to scheduling in pipe 2.
7. These instructions use the processor's write-combining resources.
8. LEA instructions have a latency of 1 when there are two source operands (as in the case of the base + index 

form LEA EAX, [EDX+EDI]). Forms with a scale or more than two source operands have a latency of 2 
(LEA EAX, [EBX+EBX*8]).
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SHR reg, 1/CL/imm DirectPath Single 1

SHR mem, 1/CL/imm DirectPath Single 4

SHRD reg, reg, CL/imm VectorPath 4

SHRD mem, reg, CL/imm VectorPath 6

STC DirectPath Single 1

STD DirectPath Double 2

STOS/STOSB/STOSW/STOSD/STOSQ VectorPath 4 2

SUB reg, reg/imm DirectPath Single 1

SUB mem, reg/imm DirectPath Single 4

SUB reg, mem DirectPath Single 4

TEST reg, reg/imm DirectPath Single 1

TEST mem, reg/imm DirectPath Single 4

XADD reg, reg VectorPath 2

XADD mem, reg VectorPath 5

XCHG reg8, reg8 VectorPath 2

XCHG reg16/32/64, reg16/32/64 DirectPath Double★ 1

XCHG reg8, mem8 VectorPath 16

XCHG reg16, mem16 DirectPath Double★ 16

XCHG reg32/64, mem32/64 DirectPath Double★ 15

XCHG mem8, reg8 VectorPath 16

XCHG mem16, reg16 DirectPath Double★ 16

XCHG mem32/64, reg32/64 DirectPath Double★ 15

Table 12. General Purpose and Integer Instruction Latencies (Continued)

Syntax Decode Type1 Latency Notes

Note:
1. For interpretation of special symbols, see “Decode Type” on page 237.
2. See “Repeated String Instructions” on page 126.
3. For information on calculating the latencies for the DIV/IDIV instructions, see “Optimizing Integer Division” on 

page 141.
4. The NOP instruction does not consume any execution resources.
5. This operation is restricted to scheduling in pipe 0.
6. This operation is restricted to scheduling in pipe 2.
7. These instructions use the processor's write-combining resources.
8. LEA instructions have a latency of 1 when there are two source operands (as in the case of the base + index 

form LEA EAX, [EDX+EDI]). Forms with a scale or more than two source operands have a latency of 2 
(LEA EAX, [EBX+EBX*8]).
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C.3 System Instruction Latencies
The latency table for system instructions gives the decode type and latency corresponding to each 
instruction mnemonic. For more detailed information on the operation of a particular system 
instruction, as well as encoding information, see the AMD64 Architecture Programmer’s Manual 
Volume 3: General-Purpose and System Instructions, order# 24594 .

XLAT/XLATB VectorPath 5

XOR reg, reg/imm DirectPath Single 1

XOR mem, reg/imm DirectPath Single 4

XOR reg, mem DirectPath Single 4

Table 13. System Instruction Latencies 

Syntax Decode Type1 Latency Notes

ARPL reg16, reg16 VectorPath 13

ARPL mem16, reg16 VectorPath 18

Note:
1. For interpretation of special symbols, see “Decode Type” on page 237.
2. Values correspond to 64-bit mode/32-bit mode.
3. 45 core clocks + 16 Northbridge clocks.
4. The latency of RDMSR and WRMSR are dependent on the particular machine register being accessed.
5. MONITOR and MWAIT are only used in multi-threaded environments; thus, the latency of the 

MONITOR/MWAIT idiom is highly variable. The latencies provided here are estimations of a lower bound.  For 
MWAIT this encompasses the entire latency of the instruction (both the time before and after an incoming store 
to the monitored region).

6. The latency of this instruction is variable and depends on which register bits change.

Table 12. General Purpose and Integer Instruction Latencies (Continued)

Syntax Decode Type1 Latency Notes

Note:
1. For interpretation of special symbols, see “Decode Type” on page 237.
2. See “Repeated String Instructions” on page 126.
3. For information on calculating the latencies for the DIV/IDIV instructions, see “Optimizing Integer Division” on 

page 141.
4. The NOP instruction does not consume any execution resources.
5. This operation is restricted to scheduling in pipe 0.
6. This operation is restricted to scheduling in pipe 2.
7. These instructions use the processor's write-combining resources.
8. LEA instructions have a latency of 1 when there are two source operands (as in the case of the base + index 

form LEA EAX, [EDX+EDI]). Forms with a scale or more than two source operands have a latency of 2 
(LEA EAX, [EBX+EBX*8]).
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CLI VectorPath 3

CLTS VectorPath 11

INVLPG mem8 DirectPath 70/91 2

IRETQ VectorPath 80

LAR reg, reg VectorPath 15

LAR reg, mem VectorPath 17

LGDT mem32 VectorPath 36

LIDT mem32 VectorPath 36

LLDT reg32 VectorPath 32

LLDT mem32 VectorPath 33

LMSW reg VectorPath 14

LMSW mem VectorPath 15

LSL reg, reg16 VectorPath 15

LSL reg, reg32/64 VectorPath 14

LSL reg, mem16 VectorPath 17

LSL reg, mem32/64 VectorPath 16

MONITOR DirectPath 5

MOV CR0, reg32 VectorPath 60 6

MOV CR0, reg64 VectorPath 61 6

MOV CR2, reg32 VectorPath 40

MOV CR4, reg32/64 VectorPath 55 6

MOV CR8, reg32 VectorPath 33

MOV DR0–3, reg32 VectorPath 63

Table 13. System Instruction Latencies (Continued)

Syntax Decode Type1 Latency Notes

Note:
1. For interpretation of special symbols, see “Decode Type” on page 237.
2. Values correspond to 64-bit mode/32-bit mode.
3. 45 core clocks + 16 Northbridge clocks.
4. The latency of RDMSR and WRMSR are dependent on the particular machine register being accessed.
5. MONITOR and MWAIT are only used in multi-threaded environments; thus, the latency of the 

MONITOR/MWAIT idiom is highly variable. The latencies provided here are estimations of a lower bound.  For 
MWAIT this encompasses the entire latency of the instruction (both the time before and after an incoming store 
to the monitored region).

6. The latency of this instruction is variable and depends on which register bits change.
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MOV DR0, reg64 VectorPath 65

MOV DR6–7, reg32 VectorPath 52

MOV DR6, reg64 VectorPath 54

MOV reg32, CR0 VectorPath 14

MOV reg32, CR2 VectorPath 16

MOV reg32, CR3 VectorPath 14

MOV reg32, CR4 VectorPath 14

MOV reg32, CR8 VectorPath 16

MOV reg32, DR0–3 VectorPath 16

MOV reg32, DR6–7 VectorPath 16

MOV reg64, CR0 VectorPath 16

MOV reg64, CR3 VectorPath 16

MOV reg64, CR4 VectorPath 16

MOV reg64, DR0 VectorPath 16

MOV reg64, DR6 VectorPath 16

MWAIT DirectPath 5

RDMSR APIC base VectorPath 68

RDMSR FS base VectorPath 38

RDMSR GS base VectorPath 38

RDMSR VectorPath 4

RDPMC VectorPath 9

RDTSC VectorPath 45 + 16 3

RDTSCP VectorPath 45 + 16 3

Table 13. System Instruction Latencies (Continued)

Syntax Decode Type1 Latency Notes

Note:
1. For interpretation of special symbols, see “Decode Type” on page 237.
2. Values correspond to 64-bit mode/32-bit mode.
3. 45 core clocks + 16 Northbridge clocks.
4. The latency of RDMSR and WRMSR are dependent on the particular machine register being accessed.
5. MONITOR and MWAIT are only used in multi-threaded environments; thus, the latency of the 

MONITOR/MWAIT idiom is highly variable. The latencies provided here are estimations of a lower bound.  For 
MWAIT this encompasses the entire latency of the instruction (both the time before and after an incoming store 
to the monitored region).

6. The latency of this instruction is variable and depends on which register bits change.
252 Instruction Latencies Appendix C



Software Optimization Guide for AMD Family 10h Processors40546 Rev. 3.08 October 2008
SGDT mem VectorPath 7

SIDT mem VectorPath 7

SLDT reg/mem VectorPath 5

SMSW reg/mem VectorPath 5

STI VectorPath 3

STR reg/mem VectorPath 5

SWAPGS VectorPath 18

VERR/VERW reg16 VectorPath 8

VERR/VERW mem16 VectorPath 10

WRMSR APIC base VectorPath 119

WRMSR FS base VectorPath 59

WRMSR GS base VectorPath 59

WRMSR VectorPath 4

Table 13. System Instruction Latencies (Continued)

Syntax Decode Type1 Latency Notes

Note:
1. For interpretation of special symbols, see “Decode Type” on page 237.
2. Values correspond to 64-bit mode/32-bit mode.
3. 45 core clocks + 16 Northbridge clocks.
4. The latency of RDMSR and WRMSR are dependent on the particular machine register being accessed.
5. MONITOR and MWAIT are only used in multi-threaded environments; thus, the latency of the 

MONITOR/MWAIT idiom is highly variable. The latencies provided here are estimations of a lower bound.  For 
MWAIT this encompasses the entire latency of the instruction (both the time before and after an incoming store 
to the monitored region).

6. The latency of this instruction is variable and depends on which register bits change.
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C.4 128-Bit Media Instruction Latencies
The table that follow provides the syntax, decode type, FPU pipes, latency, and throughput for the 
128-bit media instructions, comprised of the SSE, SSE2, SSE3 and SSE4a instruction sets. For 
detailed information on the operation of these instructions, as well as opcodes, see the AMD64 
Architecture Programmer’s Manual, Volume 4: 128-Bit Media Instructions, order# 26568.

Table 14. 128-Bit Media Instruction Latencies 

Syntax
Decode 
Type7 FPU Pipes Lat

Through
-put

Notes

ADDPD xmmreg1, xmmreg2 (mem) DirectPath 
Single★

FADD 4 (6) 1/1

ADDPS xmmreg1, xmmreg2 (mem) DirectPath 
Single★

FADD 4 (6) 1/1

ADDSD xmmreg1, xmmreg2 (mem) DirectPath 
Single

FADD 4 (6) 1/1

ADDSS xmmreg1, xmmreg2 (mem) DirectPath 
Single

FADD 4 (6) 1/1

ADDSUBPD xmmreg1, xmmreg2 (mem) DirectPath 
Single★

FADD 4 (6) 1/1

ADDSUBPS xmmreg1, xmmreg2 (mem) DirectPath 
Single★ 

FADD 4 (6) 1/1

ANDNPD xmmreg1, xmmreg2 (mem) DirectPath 
Single★

FADD/FMUL 2 (4) 2/1

ANDNPS xmmreg1, xmmreg2 (mem) DirectPath 
Single★

FADD/FMUL 2 (4) 2/1

ANDPD xmmreg1, xmmreg2 (mem) DirectPath 
Single★

FADD/FMUL 2 (4) 2/1

Notes:
1. Also uses INT resources.
2. Uses multiple FP and INT resources. 
3. Latency and throughput are only from FPU perspective and do not account for Load-Store unit and memory 

hierarchy complexities. 
4. Does not use FPU execution units.
5. One 128-bit store requires two 64-bit access in the Load-Store Unit.
6. Latency and throughput assume aligned data and do not account for Load-Store Unit and memory hierarchy 

complexities. Unaligned locations typically add an extra cycle and halve the throughput.
7. For interpretation of special symbols, see “Decode Type” on page 237.
8. Uses multiple FP resources.
9. These instructions use the processor's write-combining resources.
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ANDPS xmmreg1, xmmreg2 (mem) DirectPath 
Single★

FADD/FMUL 2 (4) 2/1

CMPPD xmmreg1, xmmreg2 (mem), imm DirectPath 
Single★

FADD 2 (4) 1/1

CMPPS xmmreg1, xmmreg2 (mem), imm DirectPath 
Single★

FADD 2 (4) 1/1

CMPSD xmmreg1, xmmreg2 (mem), imm DirectPath 
Single

FADD 2 (4) 1/1

CMPSS xmmreg1, xmmreg2 (mem), imm DirectPath 
Single

FADD 2 (4) 1/1

COMISD xmmreg1, xmmreg2 (mem) DirectPath 
Single★★

FADD 3 (5) 1/1

COMISS xmmreg1, xmmreg2 (mem) DirectPath 
Single★★

FADD 3 (5) 1/1

CVTDQ2PD xmmreg1, xmmreg2 (mem) DirectPath 
Single★

FSTORE 4 (6) 1/1

CVTDQ2PS xmmreg1, xmmreg2 (mem) DirectPath 
Single★

FSTORE 4 (6) 1/1

CVTPD2DQ/ 
CVTTPD2DQ xmmreg1, xmmreg2 (mem)

DirectPath 
Double★

(FADD/FMUL)
&

FSTORE
7 (9) 1/1

CVTPD2PI/ 
CVTTPD2PI mmreg, xmmreg (mem)

DirectPath 
Double★

(FADD/FMUL)
&

FSTORE
7 (9) 1/1

CVTPD2PS xmmreg1, xmmreg2 (mem) DirectPath 
Double★

(FADD/FMUL)
&

FSTORE
7 (9) 1/1

Table 14. 128-Bit Media Instruction Latencies (Continued)

Syntax
Decode 
Type7 FPU Pipes Lat

Through
-put

Notes

Notes:
1. Also uses INT resources.
2. Uses multiple FP and INT resources. 
3. Latency and throughput are only from FPU perspective and do not account for Load-Store unit and memory 

hierarchy complexities. 
4. Does not use FPU execution units.
5. One 128-bit store requires two 64-bit access in the Load-Store Unit.
6. Latency and throughput assume aligned data and do not account for Load-Store Unit and memory hierarchy 

complexities. Unaligned locations typically add an extra cycle and halve the throughput.
7. For interpretation of special symbols, see “Decode Type” on page 237.
8. Uses multiple FP resources.
9. These instructions use the processor's write-combining resources.
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CVTPI2PD xmmreg, mmreg (mem) DirectPath 
Single★

FSTORE 4 (6) 1/1

CVTPI2PS xmmreg, mmreg (mem) DirectPath 

Double

(FADD/FMUL)
&

FSTORE
7 (9) 1/1

CVTPS2DQ/ 
CVTTPS2DQ xmmreg1, xmmreg2 (mem)

DirectPath 
Single★

FSTORE 4 (6) 1/1

CVTPS2PD xmmreg1, xmmreg2 (mem) DirectPath 
Single★

FSTORE 2 (4) 1/1

CVTPS2PI/

CVTTPS2PI mmreg, xmmreg (mem)
DirectPath 

Single
FSTORE 4 (6) 1/1

CVTSD2SI/ 
CVTTSD2SI reg,  xmmreg (mem)

DirectPath 
Double(★)

FADD
&

FSTORE
8 (10) 1/1 1

CVTSD2SS xmmreg1,  xmmreg2
VectorPath

(FADD/FMUL)
&

FSTORE
8

CVTSD2SS xmmreg,  mem
DirectPath 

Double

(FADD/FMUL)
&

FSTORE
9 1/1

CVTSI2SD xmmreg,  reg VectorPath (FADD/FMUL)
&

FSTORE
14

CVTSI2SD xmmreg,  mem DirectPath 

Double

(FADD/FMUL)
&

FSTORE
9 1/1

CVTSI2SS xmmreg, reg 
VectorPath

(FADD/FMUL)
&

FSTORE
14 1

Table 14. 128-Bit Media Instruction Latencies (Continued)

Syntax
Decode 
Type7 FPU Pipes Lat

Through
-put

Notes

Notes:
1. Also uses INT resources.
2. Uses multiple FP and INT resources. 
3. Latency and throughput are only from FPU perspective and do not account for Load-Store unit and memory 

hierarchy complexities. 
4. Does not use FPU execution units.
5. One 128-bit store requires two 64-bit access in the Load-Store Unit.
6. Latency and throughput assume aligned data and do not account for Load-Store Unit and memory hierarchy 

complexities. Unaligned locations typically add an extra cycle and halve the throughput.
7. For interpretation of special symbols, see “Decode Type” on page 237.
8. Uses multiple FP resources.
9. These instructions use the processor's write-combining resources.

!

! !

!
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CVTSI2SS xmmreg, mem 
DirectPath 

Double

(FADD/FMUL)
&

FSTORE
9 1/1

CVTSS2SD xmmreg1,  xmmreg2
VectorPath

(FADD/FMUL)
&

FSTORE
7

CVTSS2SD xmmreg,  mem DirectPath 

Double

(FADD/FMUL)
&

FSTORE
7 1/1

CVTSS2SI/CVTTSS2SI reg, xmmreg (mem)
DirectPath 

Double 

FADD
&

FSTORE
8 (10) 1/1 1

DIVPD xmmreg1, xmmreg2 (mem) DirectPath 
Single★

FMUL 20 (22) 1/17

DIVPS xmmreg1, xmmreg2 (mem) DirectPath 
Single★

FMUL 18 (20) 1/15 

DIVSD xmmreg1, xmmreg2 (mem) DirectPath 
Single

FMUL 20 (22) 1/17

DIVSS xmmreg1, xmmreg2 (mem) DirectPath 
Single

FMUL 16 (18) 1/13

EXTRQ xmmreg1, xmmreg2  DirectPath 
Single

FADD/FMUL 2 2/1 

EXTRQ xmmreg1, imm1, imm2  DirectPath 
Single

FADD/FMUL 2 2/1 

FXRSTOR VectorPath – 89

FXSAVE VectorPath – 63

HADDPD xmmreg1, xmmreg2 DirectPath 
Single★ 

FADD 4 1/1

Table 14. 128-Bit Media Instruction Latencies (Continued)

Syntax
Decode 
Type7 FPU Pipes Lat

Through
-put

Notes

Notes:
1. Also uses INT resources.
2. Uses multiple FP and INT resources. 
3. Latency and throughput are only from FPU perspective and do not account for Load-Store unit and memory 

hierarchy complexities. 
4. Does not use FPU execution units.
5. One 128-bit store requires two 64-bit access in the Load-Store Unit.
6. Latency and throughput assume aligned data and do not account for Load-Store Unit and memory hierarchy 

complexities. Unaligned locations typically add an extra cycle and halve the throughput.
7. For interpretation of special symbols, see “Decode Type” on page 237.
8. Uses multiple FP resources.
9. These instructions use the processor's write-combining resources.

! !

!

Appendix C Instruction Latencies 257



40546 Rev. 3.08 October 2008Software Optimization Guide for AMD Family 10h Processors
HADDPD xmmreg1, mem DirectPath 
Single★★

FADD  6 1/1

HADDPS xmmreg1, xmmreg2 DirectPath 
Single★ 

FADD 4 1/1

HADDPS xmmreg1, mem DirectPath 
Single★★

FADD
6

1/1

HSUBPD xmmreg1, xmmreg2 DirectPath 
Single★

FADD 4 1/1

HSUBPD xmmreg1, mem DirectPath 
Single★★

FADD 6
1/1

HSUBPS xmmreg1, xmmreg2 DirectPath 
Single★

FADD 4 1/1

HSUBPS xmmreg1, mem DirectPath 
Single★★

FADD 6 1/1

INSERTQ xmmreg1, xmmreg2 VectorPath – 5 8

INSERTQ xmmreg1, xmmreg2, imm1, imm2 VectorPath – 5 8

LDDQU xmmreg, mem DirectPath 
Single★★

2 2/1 4, 6

LDMXCSR mem VectorPath – 12 2

MASKMOVDQU xmmreg1,  xmmreg2 VectorPath – 9

MAXPD xmmreg1, xmmreg2 (mem) DirectPath 
Single★

FADD 2 (4) 1/1

MAXPS xmmreg1, xmmreg2 (mem) DirectPath 
Single★

FADD 2 (4) 1/1

Table 14. 128-Bit Media Instruction Latencies (Continued)

Syntax
Decode 
Type7 FPU Pipes Lat

Through
-put

Notes

Notes:
1. Also uses INT resources.
2. Uses multiple FP and INT resources. 
3. Latency and throughput are only from FPU perspective and do not account for Load-Store unit and memory 

hierarchy complexities. 
4. Does not use FPU execution units.
5. One 128-bit store requires two 64-bit access in the Load-Store Unit.
6. Latency and throughput assume aligned data and do not account for Load-Store Unit and memory hierarchy 

complexities. Unaligned locations typically add an extra cycle and halve the throughput.
7. For interpretation of special symbols, see “Decode Type” on page 237.
8. Uses multiple FP resources.
9. These instructions use the processor's write-combining resources.
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MAXSD xmmreg1, xmmreg2 (mem) DirectPath 
Single

FADD 2 (4) 1/1

MAXSS xmmreg1, xmmreg2 (mem) DirectPath 
Single

FADD 2 (4) 1/1

MINPD xmmreg1, xmmreg2 (mem) DirectPath 
Single★

FADD 2 (4) 1/1

MINPS xmmreg1, xmmreg2 (mem) DirectPath 
Single★

FADD 2 (4) 1/1

MINSD xmmreg1, xmmreg2 (mem) DirectPath 
Single

FADD 2 (4) 1/1

MINSS xmmreg1, xmmreg2 (mem) DirectPath 
Single

FADD 2 (4) 1/1

MOVAPD xmmreg1,  xmmreg2 DirectPath 
Single★

FADD/FMUL/
FSTORE

2 3/1

MOVAPD mem,  xmmreg DirectPath 
Double

FSTORE 2 1/1 3, 5

MOVAPD xmmreg,  mem DirectPath 
Single★

2 2/1 4

MOVAPS xmmreg1, xmmreg2 DirectPath 
Single★

FADD/FMUL/
FSTORE

2 3/1

MOVAPS mem, xmmreg DirectPath 
Double

FSTORE 2 1/1 3, 5

MOVAPS xmmreg, mem DirectPath 
Single★

2 2/1 4

MOVD xmmreg,  reg DirectPath 
Double★

6 1, 4

Table 14. 128-Bit Media Instruction Latencies (Continued)

Syntax
Decode 
Type7 FPU Pipes Lat

Through
-put

Notes

Notes:
1. Also uses INT resources.
2. Uses multiple FP and INT resources. 
3. Latency and throughput are only from FPU perspective and do not account for Load-Store unit and memory 

hierarchy complexities. 
4. Does not use FPU execution units.
5. One 128-bit store requires two 64-bit access in the Load-Store Unit.
6. Latency and throughput assume aligned data and do not account for Load-Store Unit and memory hierarchy 

complexities. Unaligned locations typically add an extra cycle and halve the throughput.
7. For interpretation of special symbols, see “Decode Type” on page 237.
8. Uses multiple FP resources.
9. These instructions use the processor's write-combining resources.
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MOVD reg,  xmmreg DirectPath 
Single★

FADD 3 1/1 1

MOVD mem,  xmmreg DirectPath 
Single

FSTORE 2 1/1 3

MOVD xmmreg,  mem DirectPath 
Single★

2 2/1 4

MOVDDUP xmmreg1, xmmreg2 DirectPath 
Single★ 

FADD/FMUL/
FSTORE

2 3/1

MOVDDUP xmmreg, mem DirectPath 
Single★ 

2 2/1 4

MOVDQ2Q mmreg,  xmmreg DirectPath 
Single

FADD/FMUL/
FSTORE

2 3/1

MOVDQA xmmreg1,  xmmreg2 DirectPath 
Single★

FADD/FMUL/
FSTORE

2 3/1

MOVDQA mem,  xmmreg DirectPath 
Double

FSTORE 2 1/1 3, 5

MOVDQA xmmreg,  mem DirectPath 
Single★

2 2/1 4

MOVDQU xmmreg1,  xmmreg2 DirectPath 
Single★

FADD/FMUL/
FSTORE

2 3/1

MOVDQU mem,  xmmreg VectorPath FSTORE 3 1/2 3

MOVDQU xmmreg,  mem DirectPath 
Single★★

2 2/1 4, 6

MOVHLPS xmmreg1, xmmreg2 DirectPath 
Single

FADD/FMUL 2 2/1

Table 14. 128-Bit Media Instruction Latencies (Continued)

Syntax
Decode 
Type7 FPU Pipes Lat

Through
-put

Notes

Notes:
1. Also uses INT resources.
2. Uses multiple FP and INT resources. 
3. Latency and throughput are only from FPU perspective and do not account for Load-Store unit and memory 

hierarchy complexities. 
4. Does not use FPU execution units.
5. One 128-bit store requires two 64-bit access in the Load-Store Unit.
6. Latency and throughput assume aligned data and do not account for Load-Store Unit and memory hierarchy 

complexities. Unaligned locations typically add an extra cycle and halve the throughput.
7. For interpretation of special symbols, see “Decode Type” on page 237.
8. Uses multiple FP resources.
9. These instructions use the processor's write-combining resources.
260 Instruction Latencies Appendix C



Software Optimization Guide for AMD Family 10h Processors40546 Rev. 3.08 October 2008
MOVHPD mem, xmmreg DirectPath 
Single

FSTORE 2 1/1 3

MOVHPD xmmreg, mem DirectPath 
Single

FADD/FMUL 4 2/1

MOVHPS mem, xmmreg DirectPath 
Single

FSTORE 2 1/1 3

MOVHPS xmmreg, mem DirectPath 
Single

FADD/FMUL 4 2/1

MOVLHPS xmmreg1, xmmreg2 DirectPath 
Single

FADD/FMUL 2 2/1

MOVLPD mem, xmmreg DirectPath 
Single

FSTORE 2 1/1 3

MOVLPD xmmreg,  mem DirectPath 
Single

FADD/FMUL 4 2/1

MOVLPS mem, xmmreg DirectPath 
Single 

FSTORE 2 1/1 3

MOVLPS xmmreg, mem DirectPath 
Single 

FADD/FMUL 4 2/1

MOVMSKPD reg,  xmmreg DirectPath 
Single★★

FADD 3 1/1

MOVMSKPS reg, xmmreg DirectPath 
Single★★ 

FADD 3 1/1

MOVNTDQ mem,  xmmreg DirectPath 
Double

FSTORE 5, 9

MOVNTPD mem,  xmmreg DirectPath 
Double

FSTORE 5, 9

Table 14. 128-Bit Media Instruction Latencies (Continued)

Syntax
Decode 
Type7 FPU Pipes Lat

Through
-put

Notes

Notes:
1. Also uses INT resources.
2. Uses multiple FP and INT resources. 
3. Latency and throughput are only from FPU perspective and do not account for Load-Store unit and memory 

hierarchy complexities. 
4. Does not use FPU execution units.
5. One 128-bit store requires two 64-bit access in the Load-Store Unit.
6. Latency and throughput assume aligned data and do not account for Load-Store Unit and memory hierarchy 

complexities. Unaligned locations typically add an extra cycle and halve the throughput.
7. For interpretation of special symbols, see “Decode Type” on page 237.
8. Uses multiple FP resources.
9. These instructions use the processor's write-combining resources.
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MOVNTPS mem, xmmreg DirectPath 
Double 

FSTORE 5, 9

MOVNTSD mem, xmmreg  DirectPath 
Single

FSTORE  9

MOVNTSS mem, xmmreg DirectPath 
Single

FSTORE 9

MOVQ xmmreg1, xmmreg2 DirectPath 
Single★

FADD/FMUL/
FSTORE

2 3/1

MOVQ mem, xmmreg DirectPath 
Single

FSTORE 2 1/1 3

MOVQ xmmreg, mem DirectPath 
Single★

2 2/1 4

MOVQ2DQ xmmreg, mmreg DirectPath 
Single★

FADD/FMUL/
FSTORE

2 3/1

MOVSD xmmreg1, xmmreg2 DirectPath 
Single

FADD/FMUL 2 2/1

MOVSD mem,  xmmreg DirectPath 
Single

FSTORE 2 1/1 3

MOVSD xmmreg,  mem DirectPath 
Single★

2 2/1 4

MOVSHDUP xmmreg1, xmmreg2 DirectPath 
Single★

FADD/FMUL 2 2/1

MOVSHDUP xmmreg, mem DirectPath 
Single★ 

2 2/1 4

MOVSLDUP xmmreg1, xmmreg2 DirectPath 
Single★ 

FADD/FMUL 2 2/1

Table 14. 128-Bit Media Instruction Latencies (Continued)

Syntax
Decode 
Type7 FPU Pipes Lat

Through
-put

Notes

Notes:
1. Also uses INT resources.
2. Uses multiple FP and INT resources. 
3. Latency and throughput are only from FPU perspective and do not account for Load-Store unit and memory 

hierarchy complexities. 
4. Does not use FPU execution units.
5. One 128-bit store requires two 64-bit access in the Load-Store Unit.
6. Latency and throughput assume aligned data and do not account for Load-Store Unit and memory hierarchy 

complexities. Unaligned locations typically add an extra cycle and halve the throughput.
7. For interpretation of special symbols, see “Decode Type” on page 237.
8. Uses multiple FP resources.
9. These instructions use the processor's write-combining resources.
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MOVSLDUP xmmreg, mem DirectPath 
Single★ 

2 2/1 4

MOVSS xmmreg1, xmmreg2 DirectPath 
Single 

FADD/FMUL 2 2/1

MOVSS mem, xmmreg DirectPath 
Single 

FSTORE 2 1/1 3

MOVSS xmmreg, mem DirectPath 
Single★

2 2/1 4

MOVUPD xmmreg1,  xmmreg2 DirectPath 
Single★

FADD/FMUL/
FSTORE

2 3/1

MOVUPD mem, xmmreg VectorPath FSTORE 3 1/2 3

MOVUPD xmmreg, mem DirectPath 
Single★★

2 2/1 4, 6

MOVUPS xmmreg1, xmmreg2 DirectPath 
Single★ 

FADD/FMUL/
FSTORE

2 3/1

MOVUPS mem, xmmreg VectorPath FSTORE 3 1/2 3

MOVUPS xmmreg, mem DirectPath 
Single★★ 

2 2/1 4, 6

MULPD xmmreg1, xmmreg2 (mem) DirectPath 
Single★

FMUL 4 (6) 1/1

MULPS xmmreg1, xmmreg2 (mem) DirectPath 
Single ★

FMUL 4 (6) 1/1

MULSD xmmreg1, xmmreg2 (mem) DirectPath 
Single

FMUL 4 (6) 1/1

MULSS xmmreg1, xmmreg2 (mem) DirectPath 
Single 

FMUL 4 (6) 1/1

Table 14. 128-Bit Media Instruction Latencies (Continued)

Syntax
Decode 
Type7 FPU Pipes Lat

Through
-put

Notes

Notes:
1. Also uses INT resources.
2. Uses multiple FP and INT resources. 
3. Latency and throughput are only from FPU perspective and do not account for Load-Store unit and memory 

hierarchy complexities. 
4. Does not use FPU execution units.
5. One 128-bit store requires two 64-bit access in the Load-Store Unit.
6. Latency and throughput assume aligned data and do not account for Load-Store Unit and memory hierarchy 

complexities. Unaligned locations typically add an extra cycle and halve the throughput.
7. For interpretation of special symbols, see “Decode Type” on page 237.
8. Uses multiple FP resources.
9. These instructions use the processor's write-combining resources.
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ORPD xmmreg1, xmmreg2 (mem) DirectPath 
Single★

FADD/FMUL 2 (4) 2/1

ORPS xmmreg1, xmmreg2 (mem) DirectPath 
Single★ 

FADD/FMUL 2 (4) 2/1

PACKSSDW/PACKSSWB/ 
PACKUSWB xmmreg1, xmmreg1 (mem)

DirectPath 
Single★★

FADD/FMUL 2 (4) 2/1

PADDB/PADDW/PADDD 
xmmreg1, xmmreg2 (mem) 

DirectPath 
Single★

FADD/FMUL 2 (4) 2/1

PADDQ xmmreg1, xmmreg2 (mem) DirectPath 
Single

FADD/FMUL 2 (4) 2/1

PADDSB/PADDSW xmmreg1, xmmreg2 (mem) DirectPath 
Single★

FADD/FMUL 2 (4) 2/1

PADDUSB/ 
PADDUSW xmmreg1, xmmreg2 (mem)

DirectPath 
Single★

FADD/FMUL 2 (4) 2/1

PAND xmmreg1, xmmreg2 (mem) DirectPath 
Single★

FADD/FMUL 2 (4) 2/1

PANDN xmmreg1, xmmreg2 (mem) DirectPath 
Single★

FADD/FMUL 2 (4) 2/1

PAVGB/ 
PAVGW xmmreg1, xmmreg2 (mem)

DirectPath 
Single★

FADD/FMUL 2 (4) 2/1

PCMPEQB/PCMPEQW/ 
PCMPEQD xmmreg1, xmmreg2 (mem)

DirectPath 
Single★

FADD/FMUL 2 (4) 2/1

PCMPGTB/PCMPGTW/ 
PCMPGTD xmmreg1, xmmreg2 (mem)

DirectPath 
Single★

FADD/FMUL 2 (4) 2/1

PEXTRW reg,  xmmreg, imm
DirectPath 

Double 

FADD
&

FSTORE
6 1/1 1

Table 14. 128-Bit Media Instruction Latencies (Continued)

Syntax
Decode 
Type7 FPU Pipes Lat

Through
-put

Notes

Notes:
1. Also uses INT resources.
2. Uses multiple FP and INT resources. 
3. Latency and throughput are only from FPU perspective and do not account for Load-Store unit and memory 

hierarchy complexities. 
4. Does not use FPU execution units.
5. One 128-bit store requires two 64-bit access in the Load-Store Unit.
6. Latency and throughput assume aligned data and do not account for Load-Store Unit and memory hierarchy 

complexities. Unaligned locations typically add an extra cycle and halve the throughput.
7. For interpretation of special symbols, see “Decode Type” on page 237.
8. Uses multiple FP resources.
9. These instructions use the processor's write-combining resources.
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PINSRW xmmreg,  reg,  imm DirectPath 
Double★

FADD/FMUL 9 1

PINSRW xmmreg,  mem,  imm DirectPath 
Single★

FADD/FMUL 4 1/1

PMADDWD xmmreg1,  xmmreg2 (mem) DirectPath 
Single★

FMUL 3 (5) 1/1

PMAXSW/ 
PMAXUB xmmreg1, xmmreg2 (mem)

DirectPath 
Single★

FADD/FMUL 2 (4) 2/1

PMINSW/ 
PMINUB xmmreg1, xmmreg2 (mem)

DirectPath 
Single★

FADD/FMUL 2 (4) 2/1

PMOVMSKB reg,  xmmreg DirectPath 
Single★★

FADD 3 1/1

PMULHUW/ 
PMULHW xmmreg1,  xmmreg2 (mem)

DirectPath 
Single★

FMUL 3 (5) 1/1

PMULLW xmmreg1,  xmmreg2 (mem) DirectPath 
Single★

FMUL 3 (5) 1/1

PMULUDQ xmmreg1, xmmreg2 (mem) DirectPath 
Single★

FMUL 3 (5) 1/1

POR xmmreg1, xmmreg2 (mem) DirectPath 
Single★

FADD/FMUL 2 (4) 2/1

PSADBW xmmreg1, xmmreg2 (mem) DirectPath 
Single★

FADD 3 (5) 1/1

PSHUFD xmmreg1, xmmreg2 (mem) DirectPath 
Single★★

FADD/FMUL 2 (4) 2/1

PSHUFHW xmmreg1, xmmreg2 (mem) DirectPath 
Single★

FADD/FMUL 2 (4) 2/1

Table 14. 128-Bit Media Instruction Latencies (Continued)

Syntax
Decode 
Type7 FPU Pipes Lat

Through
-put

Notes

Notes:
1. Also uses INT resources.
2. Uses multiple FP and INT resources. 
3. Latency and throughput are only from FPU perspective and do not account for Load-Store unit and memory 

hierarchy complexities. 
4. Does not use FPU execution units.
5. One 128-bit store requires two 64-bit access in the Load-Store Unit.
6. Latency and throughput assume aligned data and do not account for Load-Store Unit and memory hierarchy 

complexities. Unaligned locations typically add an extra cycle and halve the throughput.
7. For interpretation of special symbols, see “Decode Type” on page 237.
8. Uses multiple FP resources.
9. These instructions use the processor's write-combining resources.
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PSHUFLW xmmreg1, xmmreg2 (mem) DirectPath 
Single★

FADD/FMUL 2 (4) 2/1

PSLLW/PSLLD/ 
PSLLQ xmmreg1, xmmreg2/imm (mem)

DirectPath 
Single★

FADD/FMUL 2 (4) 2/1

PSLLDQ xmmreg,  imm DirectPath 
Single★

FADD/FMUL 2 2/1

PSRAW/ 
PSRAD xmmreg1, xmmreg2/imm (mem)

DirectPath 
Single★

FADD/FMUL 2 (4) 2/1

PSRLW/PSRLD/ 
PSRLQ xmmreg1, xmmreg2/imm (mem)

DirectPath 
Single★

FADD/FMUL 2 (4) 2/1

PSRLDQ xmmreg, imm DirectPath 
Single★

FADD/FMUL 2 2/1

PSUBB/PSUBW/PSUBD/ 
PSUBQ xmmreg1,  xmmreg2 (mem)

DirectPath 
Single★

FADD/FMUL 2 (4) 2/1

PSUBSB/ 
PSUBSW xmmreg1, xmmreg2 (mem)

DirectPath 
Single★

FADD/FMUL 2 (4) 2/1

PSUBUSB/ 
PSUBUSW xmmreg1, xmmreg2 (mem)

DirectPath 
Single★

FADD/FMUL 2 (4) 2/1

PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/

PUNPCKHQDQ xmmreg1, xmmreg2 (mem)

DirectPath 
Single★

FADD/FMUL 2 (4) 2/1

PUNPCKLBW/PUNPCKLWD/ 
PUNPCKLDQ xmmreg1, xmmreg2 (mem)

DirectPath 
Single★

FADD/FMUL 2 (4) 2/1

PUNPCKLQDQ xmmreg1, xmmreg2 (mem) DirectPath 
Single

FADD/FMUL 2 (4) 2/1

PXOR xmmreg1, xmmreg2 (mem) DirectPath 
Single★

FADD/FMUL 2 (4) 2/1

Table 14. 128-Bit Media Instruction Latencies (Continued)

Syntax
Decode 
Type7 FPU Pipes Lat

Through
-put

Notes

Notes:
1. Also uses INT resources.
2. Uses multiple FP and INT resources. 
3. Latency and throughput are only from FPU perspective and do not account for Load-Store unit and memory 

hierarchy complexities. 
4. Does not use FPU execution units.
5. One 128-bit store requires two 64-bit access in the Load-Store Unit.
6. Latency and throughput assume aligned data and do not account for Load-Store Unit and memory hierarchy 

complexities. Unaligned locations typically add an extra cycle and halve the throughput.
7. For interpretation of special symbols, see “Decode Type” on page 237.
8. Uses multiple FP resources.
9. These instructions use the processor's write-combining resources.
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RCPPS xmmreg1, xmmreg2 (mem) DirectPath 
Single★

FMUL 3 (5) 1/1

RCPSS xmmreg1, xmmreg2 (mem) DirectPath 
Single

FMUL 3 (5) 1/1

RSQRTPS xmmreg1, xmmreg2 (mem) DirectPath 
Single★

FMUL 3 (5) 1/1

RSQRTSS xmmreg1, xmmreg2 (mem) DirectPath 
Single

FMUL 3 (5) 1/1

SHUFPD xmmreg1, xmmreg2 (mem), imm8 DirectPath 
Single★★

FADD/FMUL 2 (4) 2/1

SHUFPS xmmreg1, xmmreg2 (mem), imm8 DirectPath 
Single★★

FADD/FMUL 2 (4) 2/1

SQRTPD xmmreg1, xmmreg2 (mem) DirectPath 
Single★

FMUL 27 (29) 1/24

SQRTPS xmmreg1, xmmreg2 (mem) DirectPath 
Single★

FMUL 21 (23) 1/18

SQRTSD xmmreg1, xmmreg2 (mem) DirectPath 
Single

FMUL 27 (29) 1/24

SQRTSS xmmreg1, xmmreg2 (mem) DirectPath 
Single

FMUL 19 (21) 1/16

STMXCSR VectorPath 12

SUBPD xmmreg1, xmmreg2 (mem) DirectPath 
Single★

FADD 4 (6) 1/1

SUBPS xmmreg1, xmmreg2 (mem) DirectPath 
Single★

FADD 4 (6) 1/1

Table 14. 128-Bit Media Instruction Latencies (Continued)

Syntax
Decode 
Type7 FPU Pipes Lat

Through
-put

Notes

Notes:
1. Also uses INT resources.
2. Uses multiple FP and INT resources. 
3. Latency and throughput are only from FPU perspective and do not account for Load-Store unit and memory 

hierarchy complexities. 
4. Does not use FPU execution units.
5. One 128-bit store requires two 64-bit access in the Load-Store Unit.
6. Latency and throughput assume aligned data and do not account for Load-Store Unit and memory hierarchy 

complexities. Unaligned locations typically add an extra cycle and halve the throughput.
7. For interpretation of special symbols, see “Decode Type” on page 237.
8. Uses multiple FP resources.
9. These instructions use the processor's write-combining resources.
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C.5 64-Bit Media Instruction Latencies
The 64-bit media instructions consist of the AMD 3DNow!™ instructions and AMD 3DNow! 
extensions and the MMX™ instructions and MMX extensions. The following tables provide the 
decode type, FPU pipe(s), latency and throughput corresponding to each instruction mnemonic. For 
more detailed information on the operation of a particular instruction, as well as encoding 

SUBSD xmmreg1, xmmreg2 (mem) DirectPath 
Single

FADD 4 (6) 1/1

SUBSS xmmreg1, xmmreg2 (mem) DirectPath 
Single

FADD 4 (6) 1/1

UCOMISD xmmreg1, xmmreg2 (mem) DirectPath 
Single★★

FADD 3 (5) 1/1

UCOMISS xmmreg1, xmmreg2 (mem) DirectPath 
Single★★

FADD 3 (5) 1/1

UNPCKHPD xmmreg1, xmmreg2 (mem) DirectPath 
Single★

FADD/FMUL 2 (4) 2/1

UNPCKHPS xmmreg1, xmmreg2 (mem) DirectPath 
Single★

FADD/FMUL 2 (4) 2/1

UNPCKLPD xmmreg1, xmmreg2 (mem) DirectPath 
Single

FADD/FMUL 2 (4) 2/1

UNPCKLPS xmmreg1, xmmreg2 (mem) DirectPath 
Single★

FADD/FMUL 2 (4) 2/1

XORPD xmmreg1, xmmreg2 (mem) DirectPath 
Single★

FADD/FMUL 2 (4) 2/1

XORPS xmmreg1, xmmreg2 (mem) DirectPath 
Single★

FADD/FMUL 2 (4) 2/1

Table 14. 128-Bit Media Instruction Latencies (Continued)

Syntax
Decode 
Type7 FPU Pipes Lat

Through
-put

Notes

Notes:
1. Also uses INT resources.
2. Uses multiple FP and INT resources. 
3. Latency and throughput are only from FPU perspective and do not account for Load-Store unit and memory 

hierarchy complexities. 
4. Does not use FPU execution units.
5. One 128-bit store requires two 64-bit access in the Load-Store Unit.
6. Latency and throughput assume aligned data and do not account for Load-Store Unit and memory hierarchy 

complexities. Unaligned locations typically add an extra cycle and halve the throughput.
7. For interpretation of special symbols, see “Decode Type” on page 237.
8. Uses multiple FP resources.
9. These instructions use the processor's write-combining resources.
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information, see the AMD64 Architecture Programmer’s Manual Volume 5: 64-Bit Media and x87 
Instructions, order# 26569.

Table 15. 64-Bit Media Instruction Latencies 

Syntax
Decode 
Type2 FPU Pipe(s) Lat

Through
-put

Notes

CVTPD2PI/ 
CVTTPD2PI mmreg, xmmreg (mem)

DirectPath 
Double★

(FADD/FMUL)
&

FSTORE
7 (9) 1/1

CVTPI2PD xmmreg, mmreg (mem) DirectPath 
Single★

FSTORE 4 (6) 1/1

CVTPI2PS xmmreg, mmreg (mem) DirectPath 

Double

(FADD/FMUL)
&

FSTORE
7 (9) 1/1

CVTPS2PI/ 
CVTTPS2PI mmreg, xmmreg (mem)

DirectPath 
Single

FSTORE 4 (6) 1/1

EMMS DirectPath 
Single 

FADD/FMUL/
FSTORE

2

FEMMS DirectPath 
Single

FADD/FMUL/
FSTORE

2 

FRSTOR VectorPath – 133

FSAVE (FNSAVE) VectorPath – 162

FXRSTOR VectorPath – 89

FXSAVE VectorPath – 63

MASKMOVQ mmreg1, mmreg2 VectorPath 3

MOVD mmreg, reg DirectPath 
Double

– 6

MOVD reg, mmreg DirectPath 
Single★

– 3

MOVD mmreg, mem DirectPath 
Single

FADD/FMUL/
FSTORE

4

MOVD mem, mmreg DirectPath 
Single

FSTORE 2

Notes:
1. Also uses INT resources.
2. For interpretation of special symbols, see “Decode Type” on page 237.
3. Uses multiple INT and FP resources.
4. These instructions use the processor's write-combining resources.

!
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MOVDQ2Q mmreg,  xmmreg DirectPath 
Single

FADD/FMUL/
FSTORE

2 3/1

MOVNTQ mem, mmreg DirectPath 
Single 

FSTORE 4

MOVQ mmreg1, mmreg2 DirectPath 
Single

FADD/FMUL 2

MOVQ mmreg, mem DirectPath 
Single

FADD/FMUL/
FSTORE 

4

MOVQ mem, mmreg DirectPath 
Single

FSTORE 2

MOVQ2DQ xmmreg, mmreg DirectPath 
Single★

FADD/FMUL/
FSTORE

2 3/1

PACKSSDW/PACKSSWB/ 
PACKUSWB mmreg1, mmreg2 (mem64)

DirectPath 
Single

FADD/FMUL 2 (4) 2/1

PADDB/PADDW/PADDD/PADDQ mmreg1, 
mmreg2 (mem64)

DirectPath 
Single

FADD/FMUL 2 (4) 2/1

PADDSB/PADDSW mmreg1, mmreg2 (mem64) DirectPath 
Single

FADD/FMUL 2 (4) 2/1

PADDUSB/PADDUSW mmreg1, mmreg2 
(mem64)

DirectPath 
Single

FADD/FMUL 2 (4) 2/1

PAND mmreg1, mmreg2 (mem64) DirectPath 
Single

FADD/FMUL 2 (4) 2/1

PANDN mmreg1, mmreg2 (mem64) DirectPath 
Single

FADD/FMUL 2 (4) 2/1

PAVGB/ 
PAVGW/PAVGUSB mmreg1, mmreg2 (mem)

DirectPath 
Single 

FADD/FMUL 2 (4) 2/1

PCMPEQB/PCMPEQW/ 
PCMPEQD mmreg1, mmreg2 (mem64)

DirectPath 
Single

FADD/FMUL 2 (4) 2/1

PCMPGTB/PCMPGTW/ 
PCMPGTD mmreg1, mmreg2 (mem64)

DirectPath 
Single

FADD/FMUL 2 (4) 2/1

PEXTRW reg, mmreg, imm
DirectPath 

Double

FADD
&

FSTORE
6 1/1 1

Table 15. 64-Bit Media Instruction Latencies (Continued)

Syntax
Decode 
Type2 FPU Pipe(s) Lat

Through
-put

Notes

Notes:
1. Also uses INT resources.
2. For interpretation of special symbols, see “Decode Type” on page 237.
3. Uses multiple INT and FP resources.
4. These instructions use the processor's write-combining resources.
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PF2ID mmreg1, mmreg2 (mem64) DirectPath 
Single

FADD 4 (6) 1/1

PF2IW mmreg1, mmreg2 (mem64) DirectPath 
Single

FADD 4 (6) 1/1

PFACC mmreg1, mmreg2 (mem64) DirectPath 
Single

FADD 4 (6) 1/1

PFADD mmreg1, mmreg2 (mem64) DirectPath 
Single

FADD 4 (6) 1/1

PFCMPEQ mmreg1, mmreg2 (mem64) DirectPath 
Single

FADD 2 (4) 1/1

PFCMPGE mmreg1, mmreg2 (mem64) DirectPath 
Single

FADD 2 (4) 1/1

PFCMPGT mmreg1, mmreg2 (mem64) DirectPath 
Single

FADD 2 (4) 1/1

PFMAX mmreg1, mmreg2 (mem64) DirectPath 
Single

FADD 2 (4) 1/1

PFMIN mmreg1, mmreg2 (mem64) DirectPath 
Single

FADD 2 (4) 1/1

PFMUL mmreg1, mmreg2 (mem64) DirectPath 
Single

FMUL 4 (6) 1/1

PFNACC mmreg1, mmreg2 (mem64) DirectPath 
Single

FADD 4 (6) 1/1

PFPNACC mmreg1, mmreg2 (mem64) DirectPath 
Single

FADD 4 (6) 1/1

PFRCP mmreg1, mmreg2 (mem64) DirectPath 
Single

FMUL 3 (5) 1/1

PFRCPIT1 mmreg1, mmreg2 (mem64) DirectPath 
Single

FMUL 4 (6) 1/1

PFRCPIT2 mmreg1, mmreg2 (mem64) DirectPath 
Single

FMUL 4 (6) 1/1

PFRSQIT1 mmreg1, mmreg2 (mem64) DirectPath 
Single

FMUL 4 (6) 1/1

Table 15. 64-Bit Media Instruction Latencies (Continued)

Syntax
Decode 
Type2 FPU Pipe(s) Lat

Through
-put

Notes

Notes:
1. Also uses INT resources.
2. For interpretation of special symbols, see “Decode Type” on page 237.
3. Uses multiple INT and FP resources.
4. These instructions use the processor's write-combining resources.
Appendix C Instruction Latencies 271



40546 Rev. 3.08 October 2008Software Optimization Guide for AMD Family 10h Processors
PFRSQRT mmreg1, mmreg2 (mem64) DirectPath 
Single

FMUL 3 (5) 1/1

PFSUB mmreg1, mmreg2 (mem64) DirectPath 
Single

FADD 4 (6) 1/1

PFSUBR mmreg1, mmreg2 (mem64) DirectPath 
Single

FADD 4 (6) 1/1

PI2FD mmreg1, mmreg2 (mem64) DirectPath 
Single

FADD 4 (6) 1/1

PI2FW mmreg1, mmreg2 (mem64) DirectPath 
Single

FADD 4 (6) 1/1

PINSRW mmreg, reg, imm DirectPath 
Double

FADD/FMUL 9 1

PINSRW mmreg, mem, imm DirectPath 
Single

FADD/FMUL 4 2/1

PMADDWD mmreg1, mmreg2 (mem64) DirectPath 
Single

FMUL 3 (5) 1/1

PMAXSW/ 
PMAXUB mmreg1, mmreg2 (mem)

DirectPath 
Single

FADD/FMUL 2 (4) 2/1

PMINSW/PMINUB mmreg1, mmreg2 (mem) DirectPath 
Single

FADD/FMUL 2 (4) 2/1

PMOVMSKB reg, mmreg DirectPath 
Single★★

FADD 3 1/1

PMULHRW mmreg1, mmreg2 (mem64) DirectPath 
Single

FMUL 3 (5) 1/1

PMULHUW mmreg1, mmreg2 (mem) DirectPath 
Single

FMUL 3 (5) 1/1

PMULHW mmreg1, mmreg2 (mem64) DirectPath 
Single

FMUL 3 (5) 1/1

PMULLW mmreg1, mmreg2 (mem64) DirectPath 
Single

FMUL 3 (5) 1/1

PMULUDQ mmreg1, mmreg2 (mem) DirectPath 
Single

FMUL 3 (5) 1/1

Table 15. 64-Bit Media Instruction Latencies (Continued)

Syntax
Decode 
Type2 FPU Pipe(s) Lat

Through
-put

Notes

Notes:
1. Also uses INT resources.
2. For interpretation of special symbols, see “Decode Type” on page 237.
3. Uses multiple INT and FP resources.
4. These instructions use the processor's write-combining resources.
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C.6 x87 Floating-Point Instruction Latencies
The following tables provide the decode type, FPU pipe(s), latency and throughput corresponding to 
each x87 floating-point instruction mnemonic. For more detailed information on the operation of a 
particular instruction, as well as encoding information, see the AMD64 Architecture Programmer’s 
Manual Volume 5: 64-Bit Media and x87 Instructions, order# 26569.

POR mmreg1, mmreg2 (mem64) DirectPath 
Single

FADD/FMUL 2 (4) 2/1

PSADBW mmreg1, mmreg2 (mem) DirectPath 
Single

FADD 3 (5) 1/1

PSHUFW mmreg1, mmreg2 (mem) DirectPath 
Single

FADD/FMUL 2 (4) 2/1

PSLLW/PSLLD/PSLLQ mmreg1, mmreg2/imm 
(mem64)

DirectPath 
Single

FADD/FMUL 2 (4) 2/1

PSRAW/PSRAD mmreg1, mmreg2/imm 
(mem64)

DirectPath 
Single

FADD/FMUL 2 (4) 2/1

PSRLW/PSRLD/PSRLQ mmreg1, mmreg2/imm 
(mem64)

DirectPath 
Single

FADD/FMUL 2 (4) 2/1

PSUBB/PSUBW/PSUBD/ 
PSUBQ mmreg1, mmreg2 (mem64)

DirectPath 
Single

FADD/FMUL 2 (4) 2/1

PSUBSB/ 
PSUBSWmmreg1, mmreg2 (mem64)

DirectPath 
Single

FADD/FMUL 2 (4) 2/1

PSUBUSB/ 
PSUBUSW mmreg1, mmreg2 (mem64)

DirectPath 
Single

FADD/FMUL 2 (4) 2/1

PSWAPD mmreg1, mmreg2 (mem64) DirectPath 
Single

FADD/MUL 2 (4) 2/1

PUNPCKHBW/PUNPCKHWD/ 
PUNPCKHDQ mmreg1, mmreg2 (mem64)

DirectPath 
Single

FADD/FMUL 2 (4) 2/1

PUNPCKLBW/PUNPCKLWD/ 
PUNPCKLDQ mmreg1, mmreg2 (mem64)

DirectPath 
Single

FADD/FMUL 2 (4) 2/1

PXOR mmreg1, mmreg2 (mem64) DirectPath 
Single

FADD/FMUL 2 (4) 2/1

Table 15. 64-Bit Media Instruction Latencies (Continued)

Syntax
Decode 
Type2 FPU Pipe(s) Lat

Through
-put

Notes

Notes:
1. Also uses INT resources.
2. For interpretation of special symbols, see “Decode Type” on page 237.
3. Uses multiple INT and FP resources.
4. These instructions use the processor's write-combining resources.
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Table 16. x87 Floating-Point Instruction Latencies  

Instruction Decode Type FPU Pipes Latency

F2XM1 VectorPath – 65

FABS DirectPath Single FMUL 2

FADD/FADDP ST(i) DirectPath Single FADD 4

FADD/FADDP mem32/64 DirectPath Single FADD 6

FBLD VectorPath – 94

FBSTP VectorPath – 160

FCHS DirectPath Single FMUL 2

FCMOVcc ST(i) VectorPath – 15

FCOM/FCOMP/FCOMPP DirectPath Single FADD 2

FCOM/FCOMP ST(i) DirectPath Single FADD 2

FCOM/FCOMP mem32/64 DirectPath Single FADD 4

FCOMI/FCOMIP ST(i) VectorPath FADD 3

FCOS VectorPath – 93

FDECSTP DirectPath Single FADD/FMUL/FSTORE 2

FDIV/FDIVP/FDIVR/FDIVRP ST(i) DirectPath Single FMUL 16/20/24

FDIV/FDIVR mem32/64 DirectPath Single FMUL 18/22/26

FFREE ST(i) DirectPath Single FADD/FMUL/FSTORE 2

FIADD  mem16/32 DirectPath Double – 11

FICOM/FICOMP mem16/32 DirectPath Double – 9

FIDIV/FIDIVR mem16/32 DirectPath Double – 31

FILD mem16/32/64 DirectPath Single FSTORE 6

FIMUL mem16/32 DirectPath Double – 11

FINCSTP DirectPath Single FADD/FMUL/FSTORE 2

FIST/FISTP mem16/32/64 DirectPath Single FSTORE 4

FISTTP mem DirectPath Single FSTORE 4

FISUB/FISUBR mem16/32 DirectPath Double – 11

Notes:
1. There is additional latency associated with this instruction. "e" represents the difference between the exponents 

of the divisor and the dividend. If "s" is the number of normalization shifts performed on the result, then  
n = (s+1)/2 where (0 ≤ n ≤ 32).
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FLD ST(i) DirectPath Single FADD/FMUL 2

FLD mem32/64 DirectPath Single FADD/FMUL/FSTORE 4

FLD mem80 VectorPath FADD/FMUL 13

FLD1/FLDL2E/FLDL2T/FLDLG2/ 
FLDLN2/FLDPI/FLDZ

DirectPath Single FSTORE 4

FLDCW VectorPath – 12

FLDENV VectorPath – 116

FMUL/FMULP ST(i) DirectPath Single FMUL 4

FMUL/FMULP mem32/64 DirectPath Single FMUL 6

FNCLEX VectorPath – 17

FNINIT VectorPath – 92

FNOP DirectPath Single FADD/FMUL/FSTORE 2

FNSAVE VectorPath – 162

FNSTCW VectorPath – 2

FNSTENV VectorPath – 76

FNSTSW AX VectorPath – 9

FNSTSW mem VectorPath – 4

FPATAN VectorPath – 151

FPREM DirectPath Single FMUL 9+e+n1

FPREM1 DirectPath Single FMUL 9+e+n1

FPTAN VectorPath – 109

FRNDINT VectorPath – 10

FRSTOR VectorPath – 132

FSCALE VectorPath – 9

FSIN VectorPath – 93

FSINCOS VectorPath – 105

FSQRT ST(i) DirectPath Single FMUL 19/27/35

Table 16. x87 Floating-Point Instruction Latencies  (Continued)

Instruction Decode Type FPU Pipes Latency

Notes:
1. There is additional latency associated with this instruction. "e" represents the difference between the exponents 

of the divisor and the dividend. If "s" is the number of normalization shifts performed on the result, then  
n = (s+1)/2 where (0 ≤ n ≤ 32).
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FST/FSTP ST(i) DirectPath Single FADD/FMUL 2

FST/FSTP mem32/64 DirectPath Single FSTORE 2

FSTP mem80 VectorPath – 8

FSUB/FSUBP/FSUBR/FSUBRP ST(i) DirectPath Single FADD 4

FSUB/FSUBR mem32/64 DirectPath Single FADD 6

FTST DirectPath Single FADD 2

FUCOM/FUCOMP/FUCOMPP DirectPath Single FADD 2

FUCOMI/FUCOMIP ST(i) VectorPath FADD 3

FWAIT DirectPath Single – ~0

FXAM VectorPath – 2

FXCH ST(i) DirectPath Single FADD/FMUL/FSTORE 2

FXRSTOR VectorPath – 87

FXSAVE VectorPath – 60

FXTRACT VectorPath – 9

FYL2X VectorPath – 13

FYL2XP1 VectorPath – 114

Table 16. x87 Floating-Point Instruction Latencies  (Continued)

Instruction Decode Type FPU Pipes Latency

Notes:
1. There is additional latency associated with this instruction. "e" represents the difference between the exponents 

of the divisor and the dividend. If "s" is the number of normalization shifts performed on the result, then  
n = (s+1)/2 where (0 ≤ n ≤ 32).
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Appendix D Tools and APIs for  
AMD Family 10h ccNUMA 
Multiprocessor Systems

The following sections discuss tools and APIs available to support AMD Family 10h ccNUMA 
multiprocessor systems.

D.1 Thread/Process Scheduling, Memory Affinity
This following sections discuss tools and APIs available for assigning thread/process and memory 
affinity under various operating systems.

D.1.1 Support Under Linux®

Linux provides command-line utilities to explicitly set process/thread and memory affinity to both 
nodes and cores on a node. Additionally, libnuma, a shared library, is provided for more precise 
affinity control from within applications.

D.1.1.1 Controlling Process and Thread Affinity

The Linux command-line utlities offer high-level affinity control options. The numactl utility is a 
command line tool for running a process with a specific node affinity.

For example, to run the foobar program on the cores of node 0, enter the following at the command 
prompt: 

numactl --cpubind=0  foobar

Application and kernel developers can use the libnuma shared library, which can be linked to 
programs and offers a stable API for setting thread affinity to a given node or set of nodes. Interested 
developers should consult the Linux man pages for details on the various functions available.

On a quad-core processor, a process or thread affined to a particular node using the tools or API 
discussed above may still migrate back and forth between the cores of that node. This migration may 
or may not affect performance.

The taskset utility is a command-line tool for setting the process affinity for a specified program to 
any core. For example, to run the foobar program on the first two cores of node 0, enter the following 
on the command line: 

taskset -c 0,1  foobar

In SuSE Linux Enterprise Server 10/10.1, the numactl utility can be used instead of taskset to set 
process affinity to any core.
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Linux provides several functions by which to set the thread affinity to any core or set of cores:

• pthread_attr_setaffinity_np( ) and pthread_create( ) are provided as a part of the older nptl 
library; they can be used to set the affinity parameter and then create a thread using that affinity.

• sched_setaffinity( ) system call and schedutils scheduler utilities.

D.1.1.2 Controlling Memory Affinity

Both numactl and libnuma library functions can be used to set memory affinity[5]. Memory affinity 
set by tools like numactl applies to all the data accessed by the entire program (including child 
processes). Memory affinity set by libnuma or other library functions can be made to apply only to 
specific data as determined by the program.

Both numactl and the libnuma API can be used to set a preferred memory affinity instead of forcibly 
binding it. In this case the binding specified is a hint to the OS; the OS may choose not to adhere to it.

At a high level, normal first touch binding, explicit binding and preferred binding are all available as 
memory policies on Linux.

By default, when none of the tools/API is used, Linux uses the first touch binding policy for all data. 
Once memory is bound, either by the OS, or by using the tools/API, the memory will normally remain 
resident on that node for its lifetime.

D.1.2 Support under Solaris™ 

Sun Solaris™ provides several tools and API's for influencing thread/process and memory affinity[6]. 

Solaris provides a command line tool called pbind to set process affinity. There is also a shared 
library called liblgrp that provides an API that a program can call to set thread affinity.

Solaris provides a memory placement API to affect memory placement. A program can call the 
madvise( ) function to provide hints to the OS as to the memory policy to use. This API does not 
allow binding of memory to an explicit node or set of nodes specified on the command line or in the 
program. But there are several policies other than the first touch policy that can be used.

For example, a thread can use madvise to migrate the data it needs to the node where it runs, instead 
of leaving it on a different node, on which it was first touched by another thread. There is, naturally, a 
cost associated with the migration.

Solaris provides a library called madv.so.1 that can interpose on memory allocation system calls and 
call the madvise function internally for the memory policy.

By default, Solaris uses the first touch binding policy for data that is not shared. Once memory is 
bound to a node it normally remains resident on that node for its lifetime.

Sun is also working on supporting several command line tools to control thread and memory 
placement. These are expected to be integrated in the upcoming versions of Solaris, but experimental 
versions are currently available[7].
278 Tools and APIs for AMD Family 10h ccNUMA Multiprocessor Systems Appendix D

http://www.novell.com/collateral/4621437/4621437.pdf
http://www.novell.com/collateral/4621437/4621437.pdf
http://opensolaris.org/os/community/performance/mpo_overview.pdf 
http://www.opensolaris.org/os/community/performance/numa/observability/
http://www.opensolaris.org/os/community/performance/numa/observability/


Software Optimization Guide for AMD Family 10h Processors40546 Rev. 3.08 October 2008
D.1.3 Support under Microsoft® Windows®

In the Microsoft Windows environment, the function to bind a thread on particular core or cores is 
SetThreadAffinityMask( ). The function to run all threads in a process on particular core or cores is 
SetProcessAffinityMask( )[8]. 

The function to set memory affinity for a thread is VirtualAlloc( )[9]. This function gives the 
developer the choice to bind memory immediately on allocation or to defer binding until first touch. 

The start /affinity xxx command can be used to confine all of a process's threads to a specified subset 
of cores in the system.  The memory that these threads allocate or touch will also be confined to that 
subset of cores. In addition, several Microsoft Enterprise products provide NUMA support and 
configurability, such as SQL Server 2005 [10] and IIS [11].

If an application relies on heaps in Windows, we recommend using a low fragmentation heap (LFH) 
and using a local heap instead of a global heap[12][13]. 

By default, Windows uses the first touch binding policy for all data. Once memory is bound to a node, 
it normally resides on that node for its lifetime.

D.2 Tools and APIs for Node Interleaving
This section discusses tools and APIs available for performing node interleaving under various 
operating systems.

D.2.1 Support under Linux®

Linux provides several ways for an application to use node interleaving [5].

• numactl is a command line tool, which is used for node interleaving all memory accessed by a 
program across a set of chosen nodes.

For example, to interleave all memory accessed by program foobar on nodes 0 and 1, use: 

numactl --interleave=0x03  foobar

• libnuma offers several functions a program can use to interleave a given memory region across a 
set of chosen nodes.

Linux only supports the round robin node interleaving policy.

D.2.2 Support under Solaris™

Solaris offers an API called madvise, which can be usedwith the MADV_ACCESS_MANY flag to 
tell the OS to use a memory policy that causes the OS to bind memory randomly across the nodes. 
This offers behavior similar to the round robin node interleaving of memory offered by Linux. 

This random policy is the default memory placement policy used by Solaris for shared memory.
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D.2.3 Support under Microsoft® Windows®

Microsoft Windows does not offer node interleaving.

D.2.4 Node Interleaving Configuration in the BIOS

AMD family 10h ccNUMA multiprocessor systems can be configured in the BIOS to interleave all 
memory across all nodes on a page basis (4KB for regular pages and 2M for large pages). Enabling 
node interleaving in the BIOS overrides the use of any tools and causes the OS to interleave all 
memory available to the system across all nodes in a round robin manner.
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Appendix E NUMA Optimizations for I/O 
Devices

E.1 AMD64 System Topologies
AMD family 10h and AMD Opteron™ systems range from single-node desktop to two, four, and 
eight node systems. Each node in the AMD family 10h system consists of four CPU cores attached to 
an integrated memory controller and up to four HyperTransport™ links. I/O devices (PCIe™, AGP, 
PCI-X, and PCI) connect to the system over non-coherent HyperTransport™ links. The term non-
coherent I/O refers to a configuration in which the CPU does not cache memory residing on an I/O 
device and in which the I/O device does not cache system memory shared by the CPU(s).

The integrated Northbridge converts requests issued on the non-coherent HyperTransport link into 
coherent requests before forwarding them into the CPU coherent fabric. Since memory is sharable 
and coherent to all of the CPUs in the system, it is possible that the latest copy of the requested 
memory location is not in memory, but is located in one of the CPU caches, if that memory location is 
cached and that cache-line has subsequently been modified by one of the CPU cores. In this case, the 
CPU core holding the data must recognize that it is the owner of the data and must return this data to 
the I/O device. This is often referred to as probing the caches. This implies that the latency to obtain 
the data will be directly affected by the location of the latest data at the time the I/O device requests it.

There are no existing API/BIOS interfaces that allow the association of a particular I/O device with a 
specific node in a NUMA system or that provide detailed information on device-to-node topology. 
Thus, developers should adhere to the guidelines provided in the following sections.

E.2 Key Optimizations
The OS can help manage device NUMA topology information to supplement existing OS NUMA 
support by means of affinity for device-driver buffers and resources (interrupt-pin assignment, ISR, 
DPC), when device drivers are loaded. The application I/O-thread is the portion of application code 
that calls the device's I/O API, which in turn will call the I/O device-driver. On AMD family 10h and 
AMD Opteron systems, applications that interface with an I/O device (through API/device drivers) 
usually perform best when the following conditions are true:

• The application or device driver uses a hardware device on one of the I/O buses and the device 
depends upon system memory latency/bandwidth as a primary performance determinant.

For example, a device that processes operations from its own adapter memory is not as sensitive to 
system memory latency as an adapter that primarily accesses system memory. Latencies of local 
memory reads by I/O devices can be ~10%–25% more efficient than reads that access remote or 
non-node local memory.
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• The device uses a significant amount of memory-mapped I/O (MMIO) from the CPU directly to 
the device.

For instance, some SCI interconnections use programmed I/O to memory-mapped I/O ports to 
pass low-latency messages between machines in a cluster.

• The actual code modules for the application and device driver are located on the node to which the 
I/O device is attached. I.e., the linear address of the code is physically mapped to memory on that 
node.

• The I/O buffers are located on the node to which the I/O device is attached.

To take advantage of these performance factors, the following practices are recommended:

• Locate a driver's specific I/O device in the system and allocate memory to that node.

• Specify interrupt (ISR and DPC) affinity to a specific CPU core and node and relocate driver code 
to the node where the driver, ISR, and DPC will execute.

• Stream data to buffers on the node where the I/O device is resident.

The conditions listed above increase performance primarily due to:

• Latency to/from the I/O device to the NUMA-closest memory, and CPU cache(s) is lower.

• OS scheduler opportunities—the code-flow sequence from application code to I/O API to kernel 
dispatcher to device driver code transition remains on one CPU core (for OSs that run a device 
from specific CPU cores) and is uninterrupted.

• The code fetched for the application and device driver is mapped to the closest memory. The 
coherent HyperTransport link no longer needs to fetch code blocks from far nodes, freeing 
coherent HyperTransport bandwidth for other traffic.

NUMA aware applications and drivers will ensure that your software will run with the highest 
performance possible across the many varying system topologies, from the single node desktop with a 
single noncoherent HyperTransport link to the eight socket server with multiple noncoherent 
HyperTransport links.

The discussion that follows makes frequent reference to Microsoft APIs. Developers creating 
applications to run under Linux™, Solaris or other operating systems should consult the NUMA API 
documentation specific to their target environment. The following recommendations are intended to 
compliment mechanisms provided by operating system to correctly establish the optimal device 
NUMA configuration.

E.3 Determining Number Of Nodes in AMD Family 10h 
Processor Systems in User-Mode

User mode programs can take advantage of the NUMA API support functions provided for various 
OSs to determine the number of nodes in the system, schedule threads, and allocate memory. While 
existing NUMA APIs provide traditional CPU-to-memory NUMA support, support functions to 
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enumerate the system topology for I/O devices in a device-class independent manner are still under 
development.

A user-mode program must therefore create/allocate buffers and must depend to a large degree upon 
the operating system to allocate buffers optimally for the system into which the device is plugged. 
Currently most NUMA configuration information comes from the device-drivers and OS. 

Applications should strive to allocate memory and schedule threads in a consistent manner (assigning 
threads to specific CPU(s) on a node) by using the NUMA API and allowing device drivers to do 
whatever is optimal—such as remapping linear to physical static I/O-buffers closer to the I/O device, 
copying buffers, etc., depending on the specific device and its latency characteristics. By grouping the 
threads that perform I/O to a specific core or cores on a node, it becomes easier to dynamically switch 
the entire device NUMA configuration to another CPU-cluster on another node to verify whether 
performance increases or decreases. However, the memory buffers do not “switch” automatically, 
even if the thread switches. The buffers remain on the nodes to which they were allocated and must be 
reallocated, if desired. 

The examples that follow use Microsoft APIs. Developers who are creating applications running 
under Linux™, Solaris and other operating systems should consult the NUMA API documentation 
specific to their target environment. The guidelines in following section are recommended to 
compliment operating system mechanisms to correctly establish the optimal device NUMA 
configuration for a device.

E.4 Allocating I/O Device Buffers 

Optimization

Allocate I/O device buffers on the node where the operating system created the primary (main) 
thread.

Rationale

By default, the operating system may correctly create and run the primary thread on a CPU core on 
the node closest to the I/O device. By allocating all of the I/O device buffers from the same node, it 
then it becomes possible to dynamically reconfigure and optimize application performance.

Identify the CPU Core Running the Primary Thread

To determine the CPU core that is running the primary thread:

• On program entry call an operating system function such as GetCurrentProcessorNumber() 
from Main():  

DWORD WINAPI GetCurrentProcessorNumber(void); 

• Use the value returned to get the node by calling:

GetNumaProcessorNode(currentProcessor, &currentNode);
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E.5 I/O Thread Scheduling

Optimization

Keep the I/O thread scheduled on the same node as the I/O device buffers.

Rationale

By assigning CPU affinity, threads can be maintained on the CPU closest to the I/O device buffers. 
Operating system functions, such as VirtualAllocExNuma( ) can be used to specify the node to 
which to allocate the I/O device buffer-memory. The CPU affinity with the I/O threads to that node 
can be mapped using operating system functions, such as SetThreadAffinityMask( ).

E.6 Using Write-Only Buffers for Device Consumption

Optimization

Use streaming-stores to optimize data for IO-device consumption, if the application is using a 
write-only buffer.

Rationale

The CPU writes to write-only output buffers, but does not read them. When using a write-only output 
buffer to be consumed by a device:

• Create the buffer on the node where the I/O device buffers are established.

• Use streaming-store instructions to avoid moving the buffer into the L1 cache of the writing CPU. 

• Use the non-temporal streaming store instructions such as:

MOVNTI—Stream to memory-integer

MOVNTPS—Stream to memory-packed scalar floating-point

• Consult compiler intrinsic support to avoid assembly-language, such as:
void _mm_stream_ps(float * p , __m128 a ); // Uses MOVNTPS

When streaming the data by use of non-temporal instructions, data is write-combined on the node 
sending the data and then is forwarded to the node where the I/O-device buffer exists (see 
“Implementation of Write-Combining” on page 233).  Streaming the data has two advantages:

• First, there is no coherent HyperTransport read traffic from memory into the L1 cache.

• Second the device read/write latency to the buffer can be lower if the buffer is closer to device.
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E.7 Access of PCI Configuration Register

Optimization

Assure exclusive use of the PCI configuration address and data registers.

Rationale

Kernel mode drivers can use the operating system’s low-level port access functions to read PCI 
configuration registers in the AMD64 CPU and integrated host bridge. These registers specify the 
system topology—the nodes on which each device resides.

Unlike user mode, software running in kernel mode (such as a driver) can locate a specific I/O Device 
in an AMD64 system.

A brief description of how to generate PCI configuration space reads is described below. Consult the 
BIOS and Kernel Developer’s Guide for AMD Family 10h Processors, order# 31116, for a more 
detailed description of PCI configuration space. The following scheme uses a configuration index 
port (configuration address register 0CF8h) as shown in Figure 12 and a configuration data port 
(configuration data register 0CFCh) as shown in Figure 13.
 

Figure 12. Configuration Address Register (0CF8h)

 

Figure 13. Configuration Data Register (0CFCh)
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Assuring Exclusive Use of Index and Data Ports

For thread-safety reasons, kernel mode function drivers should avoid performing the I/O directly to  
ports 0CF8h and 0CFCh in order to ensure that only a single thread is using the index and data ports 
exclusively.

For software performance testing, however, performing the I/O directly from a PCI-utility or 
debugger should not be problematic. A developer can use a PCI utility to enumerate the I/O topology 
and test performance, for example, of the I/O buffer allocations that are applicable, based on a given 
system's I/O topology. A PCI utility can also be useful for creating OEM system-specific topology for 
use by the I/O application/and or drivers.

The following pseudocode shows how (after ensuring exclusive access), an OS support routine or 
command-line debugger, performs I/O to read PCI configuration registers in the AMD 
CPU/Northbridge.

BUS 0x0, Device x18h (24), Function 0x1, register 0x60h // Node ID Register:

unsigned int busNum;
unsigned int devNum;
unsigned int funcNum; 
unsigned int regNum; 
unsigned int pci_registerSelect;
unsigned int pci_configData;

// Setup desired bus, device, and function number.

busNum=0x0;
devNum=0x18;
funcNum=0x1;
regNum=0x60;

// Setup the register with bus, device, and function.
// Also set the enable register read bit 31 0x80000000. 

pci_register=(pci_registerSelect | 0x80000000); 
pci_register=(pci_registerSelect | (busNum << 16));
pci_register=(pci_registerSelect | devNum << 11);
pci_register=(pci_registerSelect | (funcNum <<8));
pci_register=(pci_registerSelect | regNum);

// setup for PCI-configuration Read

#define PCI_CONFIGURATION_ADRESS 0xCF8
#define PCI_CONFIGURATION_DATA   0xCFC

__asm{
mov  edx, PCI_CONFIGURATION_ADRESS;
mov  eax, pci_registerSelect;
out  edx, eax; //32-bit write 
mov  edx, PCI_CONFIGURATION_DATA
in   eax, edx// read data
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mov  pci_configData, eax
      } // endasm here

When the system is operating under the runtime environment, the ideal thread-safe method by which 
to access the device-specific PCI configuration space is to use the operating system's PCI-bus driver. 
The methods to do this depend on the operating system.

E.8 Determine the Nodes that Have Noncoherent 
HyperTransport™ I/O Links

Optimization

Inspect HyperTransport links on all nodes to whether it is both connected and configured as a 
noncoherent HyperTransport link.

Rationale

After determining the system node count, software can identify the nodes attached to noncoherent 
HyperTransport links. If any link on the node is configured as a noncoherent HyperTransport link, 
record that node's number.

There are several ways to do this. For instance, in the following sections there are examples of how to 
associate an I/O device to a node by using the device's known PCI Bus number and by using the 
memory-mapped I/O address of the device that is provided in the device’s base address register 
(BAR).

Systems can have up to eight nodes. Every I/O-device in the system must be connected to one or more 
of nodes. Each node (cluster of CPUs) can be identified in the PCI configuration space using the PCI 
device ID on PCI bus 0 starting with device 24 (18h) function 0h and counting up to device 31 (1Fh) 
function 0h. Systems can have up to eight nodes; each node appears as one PCI device. Nodes with 
noncoherent HyperTransport links can be identified by reading the initialized values of the link 
connected bit (bit 0) and the noncoherent bit (bit 2) of the HyperTransport link type register for each 
HyperTransport link. There is one link type register for each link. Opteron supports up to three 
Hypertransport links; for each node, the registers are located at function 0h, registers 98h, B8h, D8h, 
F8h (links 0 through 3, respectively). The layout of the link type registers is shown in Figure 14.
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2 

Figure 14. Link Type Registers F0x[F8, D8, B8, 98]
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the I/O device(s) for DMA should be allocated on this node for lowest device-to-memory latency. 
Optimally, the I/O driver code should also run on a CPU core on this node, resulting in the lowest 
latency for MMIO writes/reads to the device.

More Than One Node in System Has Noncoherent HyperTransport I/O 
Links

If more than one node contains a noncoherent HyperTransport link (or links), then the driver will need 
to associate the specific I/O device to a specific node in the system. This can be done using either of 
the following methods:

• Using the device's PCI-configuration base address register (BAR), software determines the node 
to which the I/O-Device is attached by comparing its base address to the contents of the MMIO 
routing table.

• Using the device's bus-number, the software obtains the node to which the I/O device is attached, 
based on the PCI bus to which PCI configuration cycles are steered.

Be sure to check the operating-system's API for other possible methods as well.

Determining the Location of the I/O-Device Using PCI-Configuration Base 
Address Registers

The first method uses the MMIO base and limit address registers (See Figure 15 and Figure 16 on 
page 289) to determine the location of the I/O device.

PCI/PCI-X/PCIe devices have a base address register (BAR) that allows the system BIOS and OS to 
map the device into the system address space. The BAR is either a 64-bit octword-aligned address in 
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the eight bytes starting at offset 10h, or a 32-bit octword-aligned address in the four bytes starting at 
offset 10h. Bits 2:1 of the byte at offset 10h distinguish the size of BAR as follows:

Most hardware is designed so that the BAR register contents can be read using MMIO or PCI 
configuration reads, if the driver can obtain the bus, device, and function of its device. Driver-code 
reads the BAR field and uses the address to find the node in the system that acts as the device bridge 
to decode this address in order to steer MMIO cycles into the appropriate down-stream bus (PCI, 
PCIe, PCI-X).
 

Figure 15. MMIO Base Address Registers F1x(B8h, B0h, A8h, A0h, 98h, 90h, 88h, 80h)

 

Figure 16. MMIO Limit Address Registers F1x[BC, B4, AC, A4, 9C, 94, 8C, 84]
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The following procedure uses the physical address of the device as an inclusive field to find the 
correct node hosting the device. This procedure compares addresses at a granularity of 64K, which is 
the granularity of allocation for MMIO regions. The offset is relative to bus 0, device 24, Function 1.

Step 1. Create 64-bit or 32-bit integer from the BAR Register based on bits 2:1.

Mask off bottom 4 bits (3:0) to create INT64 deviceBaseAddress; 0x00000000A0000000h. 

Step 2. Select any (present in the system)  node (node 0 etc), and check each of the 8 memory-
mapped I/O address map registers to determine the node that will decode the I/O-Device. 
The memory-mapped I/O address map registers decode MMIO, if the physical address is 
less than or equal to, but not greater than, the limit field programmed into these registers. 

Step 3.  Initialize loop counter to 8.

Step 4. Move 0x80h to start_index (Bus 0, Device N (N=AMD Node Number, 18h, 19h, etc), 
Function 1, Register 0x80).

Step 5. Read PCI configuration register start_index into variable (int64) nodeMMIOaddress. 

Step 6. Zero nodeMMIOaddress bottom 8 bits 7:0.

Step 7. Left-shift nodeMMIOaddress by 8.

Step 8. Now get node's MMIO limit by reading register start_index + 4 into int64 variable 
mmioLimit. Save a copy of mmioLimit to temporary variable (int64) orgMMIOlimit.

Step 9.  Zero mmioLimit bottom 8 bits 7:0.

Step 10. Left-shift mmioLimit value by 8, then OR in bottom 16-bits to all '1's (0xFFFF). This is 
because the hardware effectively uses all '1's in lower 16-bits of the address.

Step 11. Compare deviceBaseAddress, to see if it is greater than or equal to nodeMMIOaddress. If 
so, we then need to check that deviceBaseAddress falls within the MMIO limit of the node, 
do this by checking that deviceBaseAddress is lower than or equal to mmioLimit. If this is 
true, we're done, save the node ID number by extracting bits 2:0 in orgMMIOlimit.

Step 12. If Step 12 did not provide match, increment start_index by 8 (i.e. 80h becomes 88h, which 
is the next Memory-Mapped I/O Base register), decrement loop counter and loop back to 
Step 5.

Determining Where the I/O-Device Is Located Using PCI-Bus Number of 
Device

Some operating systems provide a way for the driver to get system resources assigned to the device by 
use of a resource descriptor.  For example Windows kernel-mode drivers can use the 
CM_PARTIAL_RESOURCE_DESCRIPTOR to obtain the bus number, interrupt-pin assignment, 
etc. Based on this information, the device node can be determined by querying the configuration map 
registers (see Figure 17 on page 291) to find the node into which the device is plugged.
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Figure 17. Configuration Map Registers F1x[E0h, E4h, E8h, ECh]

First, get the PCI bus number of the device.

Step 1. Get Bus number. Create 32-bit integer. Save bus as DevBusNum.

Step 2. Check the bus number against the contents of the four configuration base/limit registers to 
determine the node with which the bus is associated. These registers reside in the 
Northbridge PCI configuration space at offsets E0h through ECh. Each register maps a 
contiguous range of PCI bus numbers to a particular node, allowing up to four separate bus 
ranges to be mapped to as many as four different nodes. The registers are replicated on each 
node so is it necessary to check the registers of only one node. 

The remaining steps use the configuration map registers (Figure 17) to determine the node to which 
the device is attached.

Step 3. Read Northbridge PCI configuration space offset E0h and, test the device compare mode 
enable bit (bit 2 DevCmpEn).

Step 4. If bit is set, use the PCI bus Device number in place of the PCI bus number for this check 
(save device number as DevBusNum).

Step 5. Read each configuration base/limit register and compare DevBusNum against the range 
defined by the BusNumBase and BusNumLimit fields until the desired bus range is found.

Step 6. Get the node number from the DstNode field of that register. The IO device is attached to 
this node and the device’s buffers should be allocated on this node. The range comparison 
succeeds if DevBusNum is greater than or equal to BusNumBase and less than or equal to 
BusNumLimit.
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E.9 Using Interrupt Affinity

Optimization

Make sure that interrupts from a device are serviced by a processor core that is on the same node 
as the device.

Rationale

Interrupt affinity is maintained by assuring that interrupt service routines (ISRs) from a device are run 
on a core that is on the same node as the device.  There are various ways this enhances performance:

• Interrupt affinity can improve the service routine's cache locality—code and data have a better 
chance of being resident in the AMD family 10h processor’s L1, L2, or L3 cache.

• Handling the interrupt on the node where the device is located lowers the latency (number of 
hops) for any MMIO reads or writes that the service routine may make to the device.

• Performance can be further increased if memory, including device buffers, that the service routine 
accesses are allocated on the same node.

Setting up Interrupt Affinity

There are several ways to set up interrupt affinity.

• Use an OS-provided API to specify which CPU cores should run the interrupt service routine 
(ISR). Some OSs can allow the device’s ISR to run on a set of primary CPUs. Select the cores on 
the node to which the I/O device is connected. Under Windows the driver can use the 
WdfInterruptSetPolicy( ) function in conjunction with the IoConnectInterrrupt( ) 
function to accomplish this (consult Microsoft driver development documentation for full details).  
Device buffers that the ISR accesses should be allocated on this node as well.

• Devices that are message-signaled interrupt (MSI or MSI-X) capable can specify interrupt affinity 
in the MSI message. Specify CPU cores on the node into which the I/O device is plugged. 
Message-signaled interrupts offer many performance improvements over legacy PCI/PCI-X line-
based interrupts. Less interrupt sharing occurs, which decreases the latency required to service the 
interrupt.

• Specify which CPU cores should run the deferred procedure call (DPC) for further processing. If 
possible, queue the DPC that will be run after the ISR on the node into which the I/O-Device is 
plugged. Map the buffers used by the DPC to the node closest to the I/O-Device. For example, the 
Microsoft Windows operating system provides one DPC queue for each processor. Drivers can 
control the queue to which the operating system assigns the DPC. By default, when the driver 
calls KeInsertQueueDpc( ) or IoRequestDpc( ), the DPC is queued on the currently active 
processor. In addition, drivers can specify the processor queue by calling 
KeSetTargetProcessorDpc( ) before calling KeInsertQueueDpc( ) or IoRequestDpc( ).
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Appendix F Remarks on the RDTSC(P) 
Instruction

The RDTSC and RDTSCP instructions are used to load the value of the time stamp counter (TSC) 
into the EDX:EAX register pair. These two instructions differ as follows: the RDTSC instruction may 
execute speculatively and out of order with respect to other instructions (except other RDTSC 
instructions), while the RDTSCP instruction does not. The RDTSCP also identifies the processor core 
on which it is executed. When a code sequence ending in an RDTSC instruction is executed, there is 
no guarantee that all prior instructions in the code sequence have been retired at the time when the 
TSC is read.

On the other hand, the RDTSCP instruction waits for all the previous instructions to be retired before 
reading the TSC, thus producing the expected TSC value. For this reason, it is recommended that 
RDTSCP be used to measure the clock cycles consumed by a hotspot function. Both RDTSC and 
RDTSCP are executed in program order with respect to other RDTSC(P) instructions. 

If RDTSC is used, it should be accompanied by a separate serializing instruction (such as a CPUID 
instruction). In AMD Family 10h processors, the MFENCE instruction, which is not intercepted in 
virtualized environments, can be used in place of the CPUID instruction as a serializing instruction.

In the previous generation multi-core processors, each core has its own timestamp counter locked to 
its core. Starting with AMD Family 10h processors, there exists a single clock source in the 
NorthBridge for all timestamp counters in a processor and these counters are incremented in lockstep. 
This enables the cycle counter to provide monotonically increasing values at a constant rate even 
when the cores are in power saving modes. This behavior of RDTSC(P) is indicated if EDX bit 8 is 
set to 1, as returned by CPUID function 8000_0007h. Note that an operating system can write 
different values to each core's TSC and can establish or correct a core-to-core skew, after which the 
TSCs all advance in lockstep with each other and thus maintain a constant core-to-core skew. The 
precision with which software can synchronize the TSCs across cores is dependent on the approach 
used, as well as platform factors, such as the consistency of inter-core communication latency through 
shared memory.  This precision is typically limited to a few tens of cycles.  In particular, the skew 
may exceed inter-core communication latencies such that inter-core observation of TSC values may 
not show strict monotonic behavior—a TSC value acquired from another core after the local TSC is 
read may have a lower value. Successive TSC reads within a core, however, give monotonically 
increasing values.

The HWCR[TscFreqSel] bit is set by the BIOS to scale the TSC frequency to the P(0) frequency of 
the CPU. To calculate the elapsed wall clock time from the values returned by two RDTSC(P) 
instructions, use the following formula.

Elapsed Wall Clock Time (in seconds) = (Second RDTSC result – First RDTSC result) /  CPU's P(0) frequency.
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The following example explains how to use the RDTSC(P) instruction to measure the clock cycles 
consumed by a hot spot function: 

unsigned long long RDTSCP()
{
  unsigned long long tsc;
  asm volatile (".byte 0x0f, 0x01, 0xf9" : "=A" (tsc) : : "%ecx");
  return tsc;
}

#define MFENCE() asm volatile("mfence")

unsigned long long compute_mfence_overhead(int N)
{
  int i;
  unsigned long long tsc, next_tsc;
  tsc = RDTSCP();
  for (i = 0; i < N; i++)
    MFENCE();
  next_tsc = RDTSCP();
  return ((next_tsc - tsc)/N);
}
  
unsigned long long time_hotspot(int N)
{
  unsigned long long tsc, next_tsc, avg_hotspot_time;
  int i;

  /* start the timer */
  tsc = RDTSCP();
  /* N is the number of iterations. The higher the value of N,
     the more accurate the avg_hotspot_time (except for OS context switches.*/
  for (i = 0; i < N; i++)
    {

    /* MFENCE is used to serialize the control flow  
                 between iterations.  */
      MFENCE(); 
      hotspot(); /* HotSpot function */
    }
  next_tsc = RDTSCP();

  avg_hotspot_time = (next_tsc - tsc)/N - compute_mfence_overhead(N);
  return (avg_hotspot_time);
}
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Appendix G Guide to Instruction-Based 
Sampling on AMD Family 10h 
Processors

Instruction-Based Sampling (IBS) is a performance monitoring technique that provides precise 
information about AMD64 instruction fetch behavior and about the execution of operations that are 
issued from AMD64 instructions. This information can be used to analyze and improve the 
performance of programs executing on AMD Family 10h Processors.

IBS provides four important advantages over conventional performance counter sampling:

• Hardware events are attributed precisely to the instructions that cause the events. Conventional 
performance counter sampling is not precise, making it difficult, if not impossible, to attribute 
events to specific instructions. This limits the ability to pin-point performance issues at the 
instruction and source code levels.

• A wide range of events are monitored and collected with each IBS sample. Either multiple 
sampling runs or counter multiplexing must be used to collect the same range of information with 
conventional performance counter sampling.

• The virtual and physical addresses of load/store operands are collected. Profiling tools can use 
this information to associate specific data structures with the x86 instructions performing 
load/store operations.

• Latency is measured for key performance parameters such as data cache miss latency.

The precision afforded by IBS also enables automated optimization techniques (e.g., profile-directed 
optimization) which require detailed, precise information about instruction-level program behavior.

G.1 Background
Some familiarity with the microarchitecture of AMD Family 10h processors is required to understand 
how instruction-based sampling works and to interpret the data produced by IBS.  Important 
information on the microarchitecture of AMD Family 10h Processors can be found in Appendix A, 
“Microarchitecture of AMD Family 10h Processors,” on page 219 of this volume. This section 
summarizes a few important points.

The BIOS and Kernel Developers Guide (BKDG) for AMD Family 10h Processors," order# 31116, 
provides many specific details about IBS (events, model specific registers, etc.) This appendix is 
intended to complement the information in the BKDG. The BKDG should be regarded as the 
definitive resource about IBS features.
Appendix G Guide to Instruction-Based Sampling on AMD Family 10h Processors 295



40546 Rev. 3.08 October 2008Software Optimization Guide for AMD Family 10h Processors
G.2 Overview
The successive pipeline phases of fetch, decode, dispatch and execution decouple the fetching of 
AMD64 instructions from their eventual conversion and execution as macro-ops. The separation 
between fetch and execution is reflected in the IBS mechanism. Instruction-based sampling consists 
of two parts:

• Fetch sampling—collects and reports performance data on AMD64 instruction fetch behavior. 
Fetch sampling provides information about instruction TLB and instruction cache behavior for 
fetched instruction bytes. 

• Op sampling—collects and reports performance data on the execution of instruction operations 
(ops). Op sampling produces retirement cycle counts that are common to all sampled operations 
and execution-related data that are specific to the kind of operation (e.g., branch or return) that 
was sampled, including load and store operations.

A fetch is an access to the instruction cache that results in bytes being delivered to the decode 
instruction buffer and can contain multiple instructions.

Op sampling records and reports the address of the AMD64 instruction from which the op was 
generated and issued. This allows profilers and other supporting software tools to associate op 
performance data with a “parent” AMD64 instruction.

Fetch sampling and op sampling are independent and may be separately enabled. Fetch and op 
sampling may also be enabled at the same time. When fetch and op sampling are enabled at the same 
time, some additional interference will result due to the larger number of samples taken, effect on 
pipeline behavior, cache effects, etc. This behavior is a natural consequence of sampling. Fetch and 
op sampling each have their own model specific registers (MSRs) to control sampling and to report 
results.

The same overall process is used to take a fetch sample or an op sample. Generically, an IBS sample 
is taken in the following way:

1. A maximum instruction fetch (or op) selection count is loaded into the appropriate IBS control 
MSR.

2. IBS mode is enabled in the appropriate control MSR.

3. The periodic selection counter is incremented. For fetch sampling, the periodic fetch counter is 
incremented for each completed fetch. For op sampling, the periodic op counter is incremented 
each processor cycle.

4. When the selection counter reaches the maximum selection count, an instruction fetch (or op) is 
selected and the instruction fetch (or op) is tagged.

5. As the tagged instruction fetch (or op) is processed by the hardware, events that occur due to the 
tagged instruction fetch (or tagged op) are recorded by the hardware (e.g., did it cause a cache 
miss, branch mispredict, etc.).
296 Guide to Instruction-Based Sampling on AMD Family 10h Processors Appendix G



Software Optimization Guide for AMD Family 10h Processors40546 Rev. 3.08 October 2008
6. If the tagged instruction fetch (or tagged op) finishes, an interrupt is raised and all of the collected 
information is passed to an interrupt service routine (ISR) through the IBS MSRs.

7. The ISR saves the information producing an IBS sample. After collecting the sample, the ISR 
clears the current count and goes to step 2.

Software using IBS needs to take a few differences between fetch and op sampling into account in 
order to handle both kinds of performance data. The differences between fetch and op sampling are 
described in the following sections.

G.3 IBS fetch sampling
This section describes IBS fetch sampling in more depth. IBS fetch sampling captures information 
about the process of fetching instruction bytes.

An “attempted fetch” is a request to load instruction bytes from a specific virtual memory address. 
(The term “linear” is sometimes used in place of “virtual” when referring to virtual addresses.) A 
“completed fetch” is an attempted fetch (a request) that eventually delivers instruction bytes to the 
decoders. An “aborted fetch” is a request that does not complete. 

G.3.1 Taking an IBS fetch sample

IBS fetch sampling is controlled by values that are configured into specific IBS MSRs. (See the 
BKDG for details.) The periodic fetch counter and the maximum fetch count value control the 
sampling process. The IBS fetch sampling mechanism counts completed fetches in the periodic fetch 
counter in order to select the next attempted fetch to tag and monitor. When the periodic fetch counter 
reaches the maximum fetch count, the next attempted fetch is tagged and monitored. Thus, the 
maximum fetch select count determines how often an attempted fetch is selected and tagged. This 
quantity is often called the “sampling period.” An interrupt is generated when the tagged fetch 
completes or aborts. IBS information is reported for both completed and aborted fetches.

Both the periodic fetch counter and the maximum fetch count are 20-bit values. Software can set the 
high order 16 bits of the maximum fetch count; the low order 4 bits are always set to zero. The 
periodic fetch counter is reset when the maximum fetch count is reached. Under software control, the 
low order 4 bits of the periodic fetch counter can be set to a pseudo-random 4-bit value. The 4-bit 
value is generated by a 7-bit, maximum period LFSR. Randomization helps to prevent the sampling 
process from “syncing up” with tight loops that are being executed—a periodicity effect that could 
affect the accuracy of performance statistics. Software may also choose to randomize the maximum 
fetch count by generating its own randomized maximum fetch count.

IBS fetch sampling data are returned in MSRs that are read by the interrupt service routine. The 
following information about the tagged  fetch is returned:

• The virtual fetch address (always valid),

• The corresponding physical fetch address (valid when the MSR flag IbsPhysAddrValid is set),
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• Event flags indicating completion, IC miss, L1 ITLB miss or L2 ITLB miss,

• Size of the page translation in the L1 ITLB (a 2-bit field that is valid when the MSR flag 
IbsPhysAddrValid is set), and

• The instruction fetch latency in cycles.

Software may augment the IBS fetch data with other information such as a timestamp, the process 
identifier, etc. The virtual fetch address directly relates the information in the sample to the fetched 
instruction bytes—something which cannot be done with counter sampling since conventional 
counter sampling records the interrupt restart IP instead of the instruction that actually caused the 
events. Out-of-order execution further complicates the attribution of an IP to events since many 
instructions may be in-flight. The IBS virtual and physical fetch addresses precisely identify the 
instruction that caused the events reported by the hardware—the key advantage of IBS.

The following table summarizes the hardware event flags and values that are available for analysis.

The flag/field names used in this table correspond to the flags and fields in the IBS model-specific 
registers. Please see the BIOS and Kernel Developer’s Guide for AMD Family 10h Processors, order# 
31116, for the location, size and position of these flags and fields.

The IBS fetch latency value (IbsFetchLat) reports the number of cycles between the instant the fetch 
was initiated and the instant an instruction was delivered to the decoder (completion) or until the 
instant when the fetch was aborted. The translation page size (IbsL1TlbPgSz) is a 2-bit field that 
indicates the size of the page that was used during virtual to physical address translation as performed 
in the L1 ITLB.

G.3.2 Interpreting IBS fetch data

Before discussing the interpretation of IBS fetch data, it helps to have a little background on the 
process of fetching instruction bytes.

An attempted fetch must first be processed by the instruction translation lookaside buffers (ITLB) to 
convert the virtual address to a physical address. AMD Family 10h Processors use a two-level ITLB 
structure consisting of a level 1 (L1) ITLB and a level 2 (L2) ITLB. If page translation information is 
found in the L1 ITLB, the virtual address is translated using that information. If translation 

Table 18. IBS Hardware Event Flags

Flag/Field Purpose/meaning

IbsPhyAddrValid Physical address and page size are valid

IbsL1TlbMiss Fetch initially missed in L1 ITLB

IbsL2TlbMiss Fetch initially missed in L2 ITLB

IbsL1TlbPgSz Size of page translation in L1 ITLB

IbsIcMiss Fetch initially missed in the instruction cache

IbsFetchComp Fetch completed

IbsFetchLat Cycles from fetch initiated to completed/aborted
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information is not in the L1 ITLB (an L1 miss) and it is available in the L2 ITLB, the L1 ITLB is 
reloaded with the information from the L2 ITLB and address translation completes. If neither ITLB 
contains the page translation information (an L1 ITLB miss and an L2 ITLB miss), then the 
information is loaded from memory-resident page tables.

Once the physical address is available, the instruction cache (IC) is accessed using the physical 
address. If the instruction bytes for that address are present in the IC, it is returned and is delivered to 
the decoders. If the instruction bytes are not present in the IC (an IC miss), it must be obtained from 
either the L2 cache, L3 cache, or system memory. In any case, the instruction bytes are delivered to 
the decoders once it is available.

As stated earlier, an attempted fetch is said to complete when its instruction bytes are delivered to the 
decoders. An attempted fetch that did not complete is an aborted fetch. An attempted fetch may abort 
at any point in the process of fetching instruction bytes. A fetch may abort due to a control transfer 
misprediction from an earlier fetch.

Instruction fetch is a highly speculative activity. Some completed fetches could also be on the wrong 
path, but the redirection does not arrive until after the instruction has left the IC. Thus, some 
completed fetches are speculative and the corresponding instructions may not be executed or retired.

The hardware event flags and values in the previous table are made available to software when an IBS 
fetch sampling interrupt is generated. The miss event flags indicate whether the attempted fetch 
initially missed the L1 ITLB, L2 ITLB, or IC. Address translation and IC access may eventually 
succeed. These flags show the hardware condition on the first attempt at translation/access. Eight 
combinations of the event flags, as shown in the table below, are produced by the hardware.

In Table 19, “TlbMiss” means “IbsL1TlbMiss or IbsL2TlbMiss.” 

The first case, in which IbsL1TlbMiss, IbsL2TlbMiss, IbsPhyAddrValid, IbsFetchComp, and 
IbsIcMiss are all clear, does not provide any useful information since the attempted fetch is killed 
very early before ITLB or IC access. We refer to such fetches as “killed fetches.” 

Table 19. Event Flag Combinations

TlbMiss IbsPhyAddrValid IbsFetchComp IbsIcMiss Interpetation

0 0 0 0 Killed by redirect before ITLB/IC 
access

0 1 0 1 L1 ITLB hit, IC miss, likely redirect 
during IC fill

0 1 1 0 L1 ITLB hit, IC hit

0 1 1 1 L1 ITLB hit, IC miss

1 0 0 0 ITLB miss, likely redirect during 
reload of L1 ITLB

1 1 0 1 ITLB miss, IC miss, likely redirect 
during IC fill

1 1 1 0 ITLB miss, IC hit

1 1 1 1 ITLB miss, IC miss
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The other three cases in which a fetch does not complete are also likely due to a redirection. These 
four cases are the result of incorrect branch speculation. While completed fetches have “full” 
information, the IC and ITLB information for aborted fetches is just as important. Instruction cache 
and TLB accesses can be both constructively and destructively influenced by earlier wrong path 
accesses.

G.4 IBS op sampling
This section describes IBS op sampling in more detail. IBS op sampling provides information about 
the execution of ops.

G.4.1 Taking an IBS op sample

IBS op sampling counts processor cycles in order to select and tag an op for sampling. The current 
periodic op selection count is maintained in an internal 20-bit counter. A 20-bit maximum op 
selection count value determines how often a micro-op is sampled (the sampling period.) The high 
order 16 bits of the maximum op selection count are configured by software through an MSR. The 
low order 4 bits of the maximum op selection count are set to zero when loaded by software. 

The current periodic op selection count is incremented each processor cycle. When the current count 
reaches the maximum count value, an op will be tagged. An interrupt is generated when a tagged op is 
retired. The IBS event and latency values are then read from the MSRs by the interrupt service 
routine. The interrupt service routine may combine the IBS op data with other information (such as a 
timestamp and process ID) forming a complete software sample to be saved for post-processing.

Ops may stall in the pipeline stage in which they are tagged. When an op is stalled, it is more likely to 
be tagged. This behavior affects the statistical distribution of ops in the resulting program profile.

IBS only returns data for tagged ops that retire. However, a tagged op may be flushed before 
retirement. In this case, IBS data for the flushed op is discarded (i.e., the sample is dropped.). The 
number of dropped samples due to a flushed tagged op can be counted by a performance monitoring 
event (see BKDG). After a tagged op is flushed, the current count is set to a pseudo-randomized 7-bit 
value and a new op is tagged when the current count again reaches the maximum count value. 

G.4.2 Interpreting IBS op data

An op can be classified into one of several broad categories according to the major operation which it 
performs: arithmetic, logic, shift, etc. In general, IBS treats ops as undifferentiated, that is, the 
category or function is not explicitly identified by IBS. However, two categories of  ops are explicitly 
identified: branch and resync. A branch op implements AMD64 branch semantics and includes 
unconditional jumps, conditional jumps, subroutine call and return. One subtype of branch op is also 
explicitly identified by IBS: return. A return op implements AMD64 return semantics. A resync op is 
only found in certain micro-coded instructions and causes a complete pipeline flush. Branch, return 
and resync are explicitly identified since interesting information about program control flow can be 
obtained by monitoring their behavior.
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In addition to performing a major function (such as arithmetic, branch, etc.), an op may initiate a 
memory read, memory write, or a read and write to the same memory address. IBS explicitly 
identifies those ops which perform a load (memory read) and/or store (memory write) operation. 
When interpreting IBS data, please note:

• Some ops can perform a “load-operate-store” sequence to the same address and are identified by 
IBS as performing both a load and a store operation.

• Some branch ops perform a load operation and will be identified by IBS as performing a load. 

The exact type of the sampled op is specified by one or more bits in the IBS MSRs that return sample 
information:

• The IbsOpBrnRet (where the “Ret” suffix stands for “retired”) and IbsOpReturn bits in the 
IbsOpData MSR indicate whether the op was a branch or return.

• The IbsOpBrnResync bit in the IbsOpData MSR indicates whether the op was a resync.

If none of these bits are set, the op is undifferentiated. Undifferentiated ops are still important as they 
provide information about program execution. The IbsLdOp and IbsStOp bits in the IbsOpData3 
MSR indicate whether the op performed a load operation or a store operation, respectively.

Three values are reported for all ops:

• The virtual address of the parent AMD64 instruction from which the tagged op was issued 
(IbsOpRip)

• The tag-to-retire count in cycles (IbsTagToRetCtr), and

• The completion-to-retire count in cycles (IbsCompToRetCtr).

These values are returned in model-specific registers.

The virtual address of the parent AMD64 instruction can be used to associate the IBS op sample with 
the AMD64 instruction from which the op was issued. More than one op may be issued from a single 
AMD64 instruction. All such ops have the same virtual instruction address (RIP) as the parent 
AMD64 instruction.

Tag-to-retire count and completion-to-retire count are retire-related cycle counts.

Tag-to-retire Count

The tag-to-retire count is the number of cycles between the instant the op is tagged to the instant the 
op is retired. The op is tagged when it leaves the decode unit.

Instructions can stall after they are decoded due to a lack of resources, such as reservation station 
entries. These cycles are included in the tag-to-retire count. 

The tag-to-retire time includes the time spent waiting for operands, time spent waiting to issue after 
operands are available, time spent in an execution unit, and time spent waiting for all the younger ops 
in the scheduling window to retire.
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Completion-to-retire count

The completion-to-retire count is the number of cycles between the instant the op completed and the 
instant the op was retired. An operation is complete when it has finished execution. The completion-
to-retire count indicates how long retirement was delayed after completion.

The difference between the completion-to-retire count and the tag-to-retire count is the number of 
cycles that occur between tagging and completion.

G.4.3 Interpreting IBS branch/return/resync op data

Information about branch, return and resync ops are reported in the the IbsOpData MSR.  The event 
flags and counts returned by the IbsOpData MSR are summarized in the following table. 

As noted earlier, the IbsTagToRetCtr and IbsCompToRetCtr fields are valid for all op samples, not 
just branch, return and resync ops.

A branch operation is a change in program control flow (or micro-code control flow for 
IbsOpBrnMisp and IbsOpBrnTaken). Information is reported only for retired branches since IBS data 
is only reported for retired ops. (Information for flushed ops is not reported.) Mispredicted branches 
retire then kill all younger ops after them and redirect the front end of the pipeline.

The IbsOpBrnRet flag indicates whether the tagged op was an operation with AMD64 branch 
semantics (set) or not (clear.) If the IbsOpBrnFlag is set then the IbsOpBrnMisp and IbsOpBrnTaken 
flags indicate the execution status of the op in the following way:

Table 20. IbsOpData MSR Event Flags and Counts

Flag/field Purpose/meaning

IbsOpBrnRet Op was a retired branch

IbsOpBrnMisp Op was a branch that mispredicted

IbsOpBrnTaken Op was a branch that was taken

IbsOpReturn Op was a return

IbsOpMispReturn Op was a return that mispredicted

IbsOpBrnResync Op was a resync

IbsTagToRetCtr Cycles from op tagging to retirement

IbsCompToRetCtr Cycles from op completion to retirement

Table 21. Execution Status Indicated by IbsOpBrnMisp and IbsOpBrnTaken Flags
IbsOpBrnMisp IbsOpBrnTaken Execution status

0 0 Was not mispredicted and was not taken

0 1 Was not mispredicted and was taken

1 0 Was mispredicted and was not taken

1 1 Was mispredicted and was taken
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The IbsOpBrnMisp and IbsOpBrnTaken bits can be viewed as a property of the tagged branch op.

The IbsOpReturn and IbsOpMispReturn flags can also be considered to be properties of the tagged 
AMD64 or micro-coded branch op. The IbsOpReturn flag is set when the tagged op was, specifically, 
a return op. The IbsOpMispReturn flag indicates whether the return op was mispredicted or not. A 
resync op is not predicted and is always taken.

IbsOpBrnMisp and IbsOpBrnTaken are valid for all branch ops including micro-code ops and return 
ops. The IbsOpReturn and IbsOpMispReturn flags merely provide additional information for return 
ops.

G.4.4 Interpreting IBS Load/Store Data

If the sampled op accesses memory, information about the load and/or store operation is returned in 
four model specific registers:

• The IbsOpData2 and IbsOpData3 registers contain event flag and latency information 
accumulated in the Northbridge and load/store unit, respectively.

• The IbsDcLinAd and IbsDcPhysAd registers contain the virtual (linear) and physical address of 
the memory operand, i.e., the address of the memory location read and/or written.

The address of the memory operand can be used to associate the load or store operation with a data 
structure in memory. The virtual and physical addresses are valid when the IbsDcLinAddrValid and 
IbsDcPhyAddrValid bits are set, respectively, in the IbsOpData3 register. Some ops that are issued 
from micro-coded instructions use a physical address directly. Thus, it is possible to have an IBS 
sample with a valid physical address and an invalid virtual address.

The flags and fields in the IbsOpData3 MSR provide basic information about any memory access 
initiated by the sampled op. The IbsLdOp and IbsStOp fields indicate whether a load and/or store 
were initiated by the sampled op. If a load operation initially misses in the data cache (as indicated by 
IbsDcMiss), the IbsDcMissLat field returns the number of clock cycles from when the miss was 
detected until data was delivered to the core. This field is not valid for store operations.

IbsDcStBnkCon and IbsDcLdBnkCon fields are set when a memory op cannot access the cache due 
to a bank conflict, resulting in a delay of the op.

The data cache miss latency (IbsDcMissLat Dcache) is only valid for loads that miss in the data 
cache. The timed latency interval for the IbsDcMissLat is is calculated from the data cache miss to 
data cache write.

Table 22. Execution Status Indicated by IbsOpReturn and IbsOpMispReturn Flags

IbsOpReturn IbsOpMispReturn Execution status

0 N/A Branch op was not a return

1 0 Was a correctly predicted return op

1 1 Was a mispredicted return op
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The following table summarizes the information in the IbsOpData3 register.

G.4.5 Interpreting IBS load/store Northbridge data

The memory hierarchy in the AMD Family 10h Processor consists of  separate L1 data and 
instruction caches, L2 cache, L3 cache and system memory. Each core has its own L1 data and 
instruction caches and L2 cache. The L3 cache is shared among the cores within a multi-core 
processor. System memory is supported by a non-uniform memory access (NUMA) architecture in 
which some portion of physical memory is local to the processor while the remaining portions of 
physical memory are remote. Access to remote memory is implemented through the AMD Direct 
Connect Architecture via coherent HyperTransport™ links.

If a core cannot satisfy a load or store operation from L1 data cache or L2 cache, it communicates a 
request to the Northbridge through its System Request Interface. The Northbridge is shared across 
cores. The Northbridge consists of:

• A System Request Interface (SRI) to each core,

• A shared L3 cache (if present),

Table 23. IbsOpData3 Register Information

Flag/field Purpose/Meaning

IbsLdOp Tagged op initiated a load operation

IbsStOp Tagged op initiated a store operation

IbsDcL1tlbMiss Translation info not initially present in L1 DTLB

IbsDcL2tlbMiss Translation info not initially present in L2 DTLB

IbsDcL1tlbHit2M Translation info was eventually present in a 2M page entry in L1 
DTLB

IbsDcL1tlbHit1G Translation info was eventually present in a 1G page entry in L1 
DTLB

IbsDcL2tlbHit2M Translation info was initially present in a 2M page entry in L2 DTLB

IbsDcMiss Load/store initially missed in the data cache

IbsDcMisAcc Load/store crossed a 128-bit address boundary (misaligned)

IbsDcLdBnkCon Load/store had a bank conflict with a load. 
IbsDcStBnkCon Load/store had a bank conflict with a store.
IbsDcStToLdFwd Data was forwarded from a store to the tagged load

IbsDcStToLdCan Forwarding from a store to the tagged load was cancelled

IbsDcUcMemAcc Load/store accessed uncacheable memory

IbsDcWcMemAcc Load/store accessed write combining memory

IbsDcLockedOp Load/store was a locked operation

IbsDcMabHit Load/store hit on an allocated MAB entry

IbsDcLinAddrValid Virtual (linear) address valid

IbsDcPhyAddrValid Physical address valid

IbsDcMissLat Data cache miss latency (load only)
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• A memory controller (MCT) to handle communication with local memory,

• One or more HyperTransport (HT) link interfaces, and

• A crossbar (XBAR) to handle communication between the SRI, MCT and HT links.

Further, the Northbridge performs address space routing. There are four main types of address space 
routing: system memory (DRAM), Memory-mapped IO (MMIO), IO space, and configuration space. 
(See the BIOS and Kernel Developer’s Guide for AMD Family 10h Processors, order# 31116, for 
more information about this and other aspects of the Northbridge.) The Northbridge also handles 
communication between a core and its local Advanced Programmable Interrupt Controller (APIC.)

When the Northbridge receives a request for data through the SRI, the data will be retrieved from one 
of several data sources depending upon the physical location of the data and possibly its coherency 
state. Relative to the processor making the request, data may be returned from:

• L1 or L2 cache in one of the other local cores

• Local L3 cache

• Remote L1/L2/L3 cache (after traversing a coherent HT link)

• Local system memory (via the local MCT)

• Remote system memory (after traversing a coherent HT link and via the remote MCT)

• Local MMIO, configuration space, or APIC

• Remote MMIO or configuration space

Information about Northbridge activity is gathered and returned when IBS op sampling is enabled and 
a load operation misses in both the L1 data cache and the L2 cache. The IbsOpData2 register returns 
information from the Northbridge. Data in this register is valid when a load misses in both the L1 data 
cache and the L2 cache. The fields in the IbsOpData2 register are summarized in the following table.

It is important to emphasize that Northbridge data are only valid for load operations. Store operations 
may retire before they read data into the local cache. Thus, a subset of IBS information is either 
invalid or unreliable for store operations because a store operation may have retired and caused a 
sampling interrupt before store-related Northbridge events even occur. This behavior affects the 
validity of IBS data cache miss latency, which is only valid for load operations. Software developers 
should filter out NB and IBS data cache miss latency for store operations and report data only for load 
operations.

Table 24. IbsOpData2 Register Fields

Flag/field Purpose/Meaning

NbIbsReqCacheHitSt M state (0), O state (1)

NbIbsReqDstProc Request serviced by local (0) or remote (1) memory

NbIbsReqSrc Data source (See table below)
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The NbIbsReqDstProc bit indicates whether the request was serviced locally or by a remote 
processor. Local service is typically faster. The NbIbsReqSrc field indicates the data source which 
satisfied the request, as described in Table 25. The NbIbsReqCacheHitSt indicates the cache state 
(modified or owned) when the data source type is “Cache.”

IBS Northbridge event data may be interpreted according to the following table.

G.5 Software-based analysis
The approach to event computation and reporting described in this section is based upon concepts and 
methods that are used to compute and report results obtained through conventional performance 
counter sampling. This approach has two main advantages:

• Software developers and other end users are already familiar with performance counter sampling 
and the hardware events that are measured and reported.

Table 25. Northbridge Request Data Source Field

NbIbsReqSrc Northbridge Request Data Source

0x0 No valid status

0x1 Data returned from local L3 cache

0x2 Data returned from local CPU cache in another core or remote L1/L2/L3 cache

0x3 Data returned from DRAM

0x4 Reserved

0x5 Reserved

0x6 Reserved

0x7 Data returned from MMIO/configuration space/PCI/APIC

Table 26. IBS Northbridge Event Data

NbIbsReqSrc NbIbsReqDstProc Meaning

0 0 Northbridge data is invalid

0 1 Northbridge data is invalid

1 0 Request served from local L3 cache

1 1 N/A

2 0 Request served from L1 or L2 of a local core

2 1 Request served from L1 or L2 of a remote core or a 
remote L3 cache

3 0 Request served from local DRAM

3 1 Request served from remote DRAM

7 0 Request served from local MMIO/Config/PCI/APIC

7 1 Request served from remote MMIO/Config/PCI
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• Profilers and other software tools can exploit existing data structures and methods to post-process 
IBS sample data and to correlate events with instructions, source lines, functions, modules, 
threads and processes.

The main disadvantage is that the full flexibility of analysis afforded by IBS data is not fully realized. 
Unfortunately, description of alternative approaches is beyond the scope of this paper.

G.5.1 Derived events and post-processing

The method described here converts IBS sample data into a set of derived event counts. A derived 
event is a specific, useful hardware condition that can be determined through a combination of one or 
more IBS event flags or values (such as the translation page size, tag-to-retire count, etc.) Example 
derived events include IBS instruction cache miss, IBS mispredicted branch and IBS data cache miss. 

Caution: End users should be discouraged from making direct comparison between IBS derived 
events and the performance counter events with the same or similar names because the 
sampling method and populations are different. Performance counter sampling is 
triggered by an event configured for a counter. IBS fetch sampling is triggered by 
completed fetches and IBS op sampling is triggered by processor cycles. Also, PMC 
execution events may be triggered by any op while IBS op events are counted only for 
retired ops.

The process of converting IBS sample data to derived event counts is straightforward. An IBS fetch 
sample may be drawn as shown in :

Each column represents a hardware flag or value returned with an IBS sample. The virtual fetch 
address can be correlated back to an instruction in a software process using the same well-known 
techniques employed in conventional performance counter sampling. To visualize the process of 
computing derived events, consider the ten IBS fetch samples arranged as a 2-D table, where each 
row is a sample:

Table 27. An IBS Fetch Sample

Virtual fetch 
address

IbsIcMiss IbsL1TlbMiss IbsL2TlbMiss IbsComp …

0x04000020 1 0 1

Table 28. 2-D Table of IBS Fetch Samples

Virtual fetch 
address

IbsIcMiss IbsL1TlbMiss IbsL2TlbMiss IbsComp …

0x0400020 1 1 0 1

0x0400040 0 0 0 1

0x0400020 0 0 0 1

0x0400040 0 0 0 1

0x0400020 0 0 0 0
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To compute the three derived events:

– IBS instruction cache miss

– IBS L1 ITLB miss, L2 ITLB hit

– IBS fetch completed

scan sequentially through the table from top to bottom and count the number of occurrences of the 
hardware conditions associated with the three events. (In practice, post-processing software must 
keep a running count for all derived events.) In the case of IBS instruction cache miss, for example, 
there are two samples with the IbsIcMiss = 1 condition, so the total count reported for this event is 
two. The number of IBS fetch completed events is nine.

The IBS L1 ITLB miss, L2 ITLB hit event requires the use of a slightly more complicated condition, 
(IbsL1TlbMiss & ~IbsL2TlbMiss), but the counting procedure is the same. The count reported for 
this event is one, since only one IBS fetch sample satisfies the condition.

Derived events can be placed into a histogram to obtain a program profile. The histogram for the IBS 
fetch completed derived event.

0
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4

5

0x0400020 0x0400040 0x0400044 0x0400060 0x00080

IBS fetch completed

Figure 18. Histogram for the IBS Fetch Completed Derived Event

The following sections define derived events for IBS fetch and op data.

0x0400040 0 0 0 1

0x0400040 0 0 0 1

0x0400020 0 0 0 1

0x0400044 0 0 0 1

0x0400080 1 0 0 1

Table 28. 2-D Table of IBS Fetch Samples
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G.5.2 Derived events for IBS fetch data

Performance analysis tools (e.g., a profiler) can combine event flags to derive new events. Table 29 
illustrates the kinds of events that can be derived from the basic flags and fields provided in an IBS 
fetch sample.

The ID numbers in Table 29 are the event identifiers that the AMD CodeAnalyst™ profiler uses to 
identify a derived event.

The first five derived events break down the IBS fetch samples by five broad categories. 

• IBS fetch samples is the number of all IBS fetch samples that were taken. 

• IBS fetch killed is the number of all IBS fetch samples that were killed before ITLB/IC access 
IbsL1TlbMiss, IbsL2TlbMiss, IbsPhyAddrValid, IbsFetchComp and IbsIcMiss are all clear. 

• IBS fetch attempted is the number of IBS fetch samples minus the number of IBS fetch killed 
samples.

• IBS fetch completed is the number of attempted fetches that completed, i.e., delivered instruction 
bytes to the decoder.

• IBS fetch aborted is the number of attempted fetches that did not complete.

It should be noted that the notion of an attempted fetch here excludes killed fetches. Killed fetches do 
not provide useful analytical information and are filtered out. Killed fetches are not included in the 
IBS fetch aborted derived event.

Table 29. New Events Derived from Combined Event Flags  

ID Name Derivation

F000 IBS fetch samples Number of all IBS fetch samples

F001 IBS fetch killed Number of killed IBS fetch samples

F002 IBS fetch attempted Number of non-killed IBS fetch samples

F003 IBS fetch completed IbsFetchComp

F004 IBS fetch aborted ~IbsFetchComp

F005 IBS L1 ITLB hit ~IbsL1TlbMiss & IbsPhyAddrValid

F006 IBS L1 ITLB miss, L2 ITLB hit IbsL1TlbMiss & ~IbsL2TlbMiss

F007 IBS L1 ITLB miss, L2 ITLB miss IbsL1TlbMiss & IbsL2TlbMiss

F008 IBS instruction cache miss IbsIcMiss

F009 IBS instruction cache hit IbsFetchComp && ~IbsIcMiss

F00A IBS 4K page translation IbsL1TlbPgSz=0 & IbsPhyAddrValid

F00B IBS 2M page translation IbsL1TlbPgSz=1 & IbsPhyAddrValid

F00C Reserved

F00D Reserved

F00E IBS fetch latency IbsfetchLat
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For the remaining derived events, an occurrence of an event is tallied if it meets the specified 
condition in the Derivation column.

The IbsPhysAddrValid bit is needed to form the derived event “IBS L1 ITLB hit” because the 
condition (IbsL1TlbMiss=0 & IbsL2TlbMiss=0) alone is not sufficient to determine whether the 
attempted fetch hit in both the L1 and L2 ITLB or that the attempted fetch completed the initial ITLB 
access. When IbsPhysAddrValid is set, it indicates that address translation completed and produced a 
physical address. This bit must also be used to detect valid page translation information.

G.5.3 Derived Events for all Ops

A derived event is an event that is formed using a combination of IBS event flags and field values. 
The quantity of each derived event is computed and reported to end users by profiling software.

There are three derived events that are defined for all ops regardless of type:

The IBS all op samples derived event is a count of all IBS op samples taken without regard to op type 
(i.e., undifferentiated, branch/return/resync.) Similarly, the IBS tag to retire cycles and  
IBS completion to retire cycles are computed across all IBS op samples for a given IP.

G.5.4 Derived events for IBS branch/return/resync ops

The following derived events measure the behavior of branch, return and resync ops:

All events in Table 31 (F103-F109) are applicable only for ops that follow AMD64 branch semantics 
and therefore does not include micro-code branches.

Table 30. Derived Events for All Ops

ID Name Derivation

F100 IBS all op oamples Number of all IBS op samples

F101 IBS tag to retire cycles Sum of all tag to retire cycles

F102 ibs completion to retire cycles Sum of all completion to retire cycles

Table 31. Derived Events to Measure Branch, Return and Resync Ops

ID Name Derivation

F103 IBS branch op IbsOpBrnRet

F104 IBS mispredicted branch op IbsOpBrnRet & IbsOpBrnMisp

F105 IBS taken branch op IbsOpBrnRet & IbsOpBrnTaken

F106 IBS mispredicted taken branch op IbsOpBrnRet & IbsOpBrnTaken & 
IbsOpBrnMisp

F107 IBS return op IbsOpReturn

F108 IBS mispredicted return op IbsOpReturn & IbsOpMispReturn

F109 IBS resync op IbsOpBrnResync                     
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G.5.5 Derived events for IBS load/store operations

Table 32 summarizes derived events for ops that perform load and/or store operations. With the 
exception of the first three derived events, the condition (IbsLdOp | IbsStOp) is assumed.

The IBS all load/store ops derived event is a count of all IBS op samples that involve either a load 
and/or store operation. The IBS Load Ops and IBS Store Ops events break out the number of load 
and store operations performed by all sampled ops.

The IBS WC Memory Access derived event includes streaming stores to WB memory.

Table 32. Derived Events for Ops That Perform Load and/or Store Operations  

ID Name Derivation

F200 IBS All Load/Store Ops IbsLdOp | IbsStOp

F201 IBS Load Ops IbsLdOp

F202 IBS Store Ops IbsStOp

F203 IBS L1 DTLB Hit ~IbsDcL1tlbMiss & IbsDcLinAddrValid

F204 IBS L1 DTLB Miss L2 DTLB Hit IbsDcL1tlbMiss & ~IbsDcL2tlbMiss

F205 IBS L1 DTLB Miss L2 DTLB Miss IbsDcL1tlbMiss & IbsDcL2tlbMiss

F206 IBS DC Miss IbsDcMiss

F207 IBS DC Hit ~IbsDcMiss

F208 IBS Misaligned Access IbsDcMisAcc

F209 IBS Bank Conflict On Load Op IbsDcLdBnkCon

F20A IBS Bank Conflict On Store Op IbsDcStBnkCon

F20B IBS Store to Load Forwarded IbsDcStToLdFwd

F20C IBSStore to Load Forwarding Cancelled IbsDcStToLdCan

F20D IBS UC memory access IbsDcUcMemAcc

F20E IBS WC memory access IbsDcWcMemAcc

F20F IBS locked operation IbsDcLockedOp

F210 IBS MAB hit IbsDcMabHit

F211 IBS L1 DTLB 4K page ~IbsDcL1tlbHit2M & ~IbsDcL1tlbHit1G & 
IbsDcLinAddrValid

F212 IBS L1 DTLB 2M page IbsDcL1tlbHit2M & IbsDcLinAddrValid

F213 IBS L1 DTLB 1G page IbsDcL1tlbHit1G & IbsDcLinAddrValid

F214 Reserved

F215 IBS L2 DTLB 4K page ~IbsDcL2tlbMiss &  IbsDcL1tlbMiss  & 
~IbsDcL2tlbHit2M & IbsDcLinAddrValid

F216 IBS L2 DTLB 2M page ~IbsDcL2tlbMiss &  IbsDcL1tlbMiss  &  
IbsDcL2tlbHit2M & IbsDcLinAddrValid

F217 Reserved

F218 Reserved

F219 IBS DC miss load latency IbsDcMissLat when IbsLdOp & IbsDcMiss
Appendix G Guide to Instruction-Based Sampling on AMD Family 10h Processors 311



40546 Rev. 3.08 October 2008Software Optimization Guide for AMD Family 10h Processors
Detection of L1 and L2 DTLB miss events are more easily decoded than the similar events in IBS 
fetch samples, since all sampled ops are retired ops. Retired ops do not include speculative activity. 
All address translations must eventually complete in the L1 DTLB. Thus, the IBS translation page 
size flags for the L1 DTLB are always set according to the size of the completed translation. A 4K 
page L1 DTLB translation occurrs when both the IbsDcL1tlbHit2M and IbsDcL1tlbHit1G bits are 
clear. The L2 DTLB translation page size is valid when IbsDcL1tlbMiss is set. A 4K page L2 DTLB 
translation occurrs when both the IbsDcL2tlbMiss and IbsDcL2tlbHit2M are clear. Checking the 
IbsDcLinAddrValid bit is necessary to be sure that an address translation was attempted.

The IBS DC miss load latency is only valid for load operations. Miss load latency should only be 
tallied by software when the IbsLdOp bit is set.

The remaining derived events are simply the number of IBS op samples for which an event bit is set 
(or clear), e.g., IBS MAB hit is tallied when the IbsDcMabHit bit is set.

G.6 Derived Events for Northbridge Activity
The IBS Northbridge derived events measure the number of local and remote accesses (without 
regard to data source) and measure the number of local and remote accesses by data source. The event 
derivations in Table 33 assume that the overall Northbridge IBS data validity condition:

IbsLdOp & IbsDcMiss & (NbIbsReqSrc = 0)

is true.

These derived events correspond to the seven kinds of Northbridge activity described in Section 4.5.

Table 33. IBS Northbridge Derived Events

ID Name Derivation

F240 IBS NB local ~NbIbsReqDstProc

F241 IBS NB remote NbIbsReqDstProc

F242 IBS NB local L3 NbIbsReqSrc=0x1 & ~NbIbsReqDstProc

F243 IBS NB local L1/L2 (inter-core) NbIbsReqSrc=0x2 & ~NbIbsReqDstProc

F244 IBS NB remote L1/L2/L3 cache NbIbsReqSrc=0x2 &  NbIbsReqDstProc

F245 IBS NB local DRAM NbIbsReqSrc=0x3 & ~NbIbsReqDstProc

F246 IBS NB remote DRAM NbIbsReqSrc=0x3 &  NbIbsReqDstProc

F247 IBS NB local other NbIbsReqSrc=0x7 & ~NbIbsReqDstProc

F248 IBS NB remote other NbIbsReqSrc=0x7 &  NbIbsReqDstProc

F249 IBS NB cache M state NbIbsReqSrc=0x2 & ~NbIbsReqCacheHitSt

F24A IBS NB cache O state NbIbsReqSrc=0x2 &  NbIbsReqCacheHitSt

F24B IBS NB local latency IbsDcMissLat when ~NbIbsReqDstProc

F24C IBS NB remote latency IbsDcMissLat when  NbIbsReqDstProc
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