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Chapter 1 Introduction

This guide provides optimization information and recommendations for AMD Family 17h Models 
30h and greater processors. In this guide the term “the processor” is used to refer to all processors 
within Family 17h Models 30h and greater.

This chapter covers the following topics:

1.1 Intended Audience

This book is intended for compiler and assembler designers, as well as C, C++, and assembly 
language programmers writing performance-sensitive code sequences. This guide assumes that you 
are familiar with the AMD64 instruction set and the AMD64 architecture (registers and programming 
modes). 

For complete information on the AMD64 architecture and instruction set, see the multivolume 
AMD64 Architecture Programmer’s Manual available from AMD.com. Individual volumes and their 
order numbers are provided below.

The following documents provide a useful set of guidelines for writing efficient code that have 
general applicability to the Family 17h processor:

• AMD Family 15h Processors Software Optimization Guide (Order # 47414)

• Software Optimization Guide for AMD Family 10h and 12h Processors (Order # 40546)

Refer to the  Processor Programming Reference (PPR) for AMD Family 17h Models 30h-3Fh 
Processors (Order # 55803) for more information about machine-specific registers, debug, and 
performance profiling tools.

Topic Page

Intended Audience 15

Specialized Terminology 16

Title Order Number

Volume 1: Application Programming 24592

Volume 2: System Programming 24593

Volume 3: General-Purpose and System Instructions 24594

Volume 4: 128-Bit and 256-Bit Media Instructions 26568

Volume 5: 64-Bit Media and x87 Floating-Point Instructions 26569
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1.2 Specialized Terminology

The following specialized terminology is used in this document:

Smashing Smashing (also known as Page smashing) occurs when a processor produces a 
TLB entry whose page size is smaller than the page size specified by the page 
tables for that linear address. Such TLB entries are referred to as smashed TLB 
entries.

For example, when the Family 17h processor encounters a larger page size in the 
guest page tables which is backed by a smaller page in the host page tables, it 
will smash translations of the larger page size into the smaller page size found in 
the host.

Superforwarding Superforwarding is the capability of a processor to send (forward) the results of 
a load instruction to a dependent floating-point instruction bypassing the need to 
write and then read a register in the FPU register file.



Chapter 2 Microarchitecture of AMD Family 17h Processor 17

Software Optimization Guide for AMD Family 17h
 Models 30h and Greater Processors

56305 Rev. 3.00 August 2019

Chapter 2 Microarchitecture of 
AMD Family 17h Processor

An understanding of the terms architecture, microarchitecture, and design implementation is 
important when discussing processor design.

The architecture consists of the instruction set and those features of a processor that are visible to 
software programs running on the processor. The architecture determines what software the processor 
can run. The AMD64 architecture of the AMD Family 17h processor is compatible with the industry-
standard x86 instruction set.

The term microarchitecture refers to the design features used to reach the target cost, performance, 
and functionality goals of the processor.

The design implementation refers to a particular combination of physical logic and circuit elements 
that comprise a processor that meets the microarchitecture specifications.

The processor employs a reduced instruction set execution core with a preprocessor that decodes and 
decomposes most of the simpler AMD64 instructions into a sequence of one or two macro ops. More 
complex instructions are implemented using microcode routines.

Decode is decoupled from execution and the execution core employs a super-scalar organization in 
which multiple execution units operate essentially independently. The design of the execution core 
allows it to implement a small number of simple instructions which can be executed in a single 
processor cycle. This design simplifies circuit design, achieving lower power consumption and fast 
execution at optimized processor clock frequencies.

This chapter covers the following topics:
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Key Microarchitecture Features 18

Instruction Decomposition 20

Superscalar Organization 21

Processor Block Diagram 22

Processor Cache Operation 22

Memory Address Translation 25

Optimizing Branching 26

Instruction Fetch and Decode 31

Integer Execution Unit 32

Floating-Point Unit 34

Load-Store Unit 39

Optimizing Writing Data 41
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2.1 Key Microarchitecture Features

The processor implements a specific subset of the AMD64 instruction set architecture defined by the 
APM.

The following major classes of instructions are supported:

• General-purpose instructions, including support for 64-bit operands

• x87 Floating-point instructions

• 64-bit Multi-media (MMX™) instructions

• 128-bit and 256-bit single-instruction / multiple-data (SIMD) instructions. 

• AMD Virtualization™ technology (AMD-V™)

The following Streaming SIMD Extensions subsets are supported:

• Streaming SIMD Extensions 1 (SSE1)

• Streaming SIMD Extensions 2 (SSE2)

• Streaming SIMD Extensions 3 (SSE3)

• Supplemental Streaming SIMD Extensions 3 (SSSE3)

• Streaming SIMD Extensions 4a (SSE4a)

• Streaming SIMD Extensions 4.1 (SSE4.1)

• Streaming SIMD Extensions 4.2 (SSE4.2)

• Advanced Vector Extensions (AVX)

• Advanced Vector Extensions 2 (AVX2)

• Advanced Encryption Standard (AES) acceleration instructions

The following miscellaneous instruction subsets are supported:

• SHA, RDRAND

• Read and write FS.base and GS.base instructions

• Half-precision floating-point conversion (F16C)

• Carry-less Multiply (CLMUL) instructions

• Move Big-Endian instruction (MOVBE)

• XSAVE / XSAVEOPT

Simultaneous Multi-Threading 43

LOCKs 45

Topic Page
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• LZCNT / POPCNT

The following Bit Manipulation Instruction subsets are supported:

• BMI1

• BMI2

The processor does not support the following instructions/instruction subsets:

• Four operand Fused Multiply/Add instructions (FMA4)

• XOP instructions

• Trailing bit manipulation (TBM) instructions

• Light-weight profiling (LWP) instructions

• INVPCID 

The processor adds support for the following new instructions:

• WBNOINVD

• RDPRU

• UMIP

• CLWB

The processor includes many features designed to improve software performance. These include the 
following key features:

• Simultaneous Multi-threading

• Unified 512-Kbyte L2 cache per core

• 4-Mbyte or 16-Mbyte shared, victim L3, depending on configuration

• Integrated memory controller

• 32-Kbyte L1 instruction cache (IC) per core

• 32-Kbyte L1 data cache (DC) per core

• 4K op cache (OC)

• Prefetchers for L2 cache, L1 data cache, and L1 instruction cache

• Advanced dynamic branch prediction

• 32-byte instruction cache fetch

• 4-way x86 instruction decoding with sideband stack optimizer

• Dynamic out-of-order scheduling and speculative execution

• Four-way integer execution

• Three-way address generation (2 load/store, 1 store)
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• Four-way 256-bit wide floating-point and packed integer execution

• Integer hardware divider

• Superforwarding

• L1 Instruction TLB and L1 Data TLB

• Six fully-symmetric core performance counters per thread

2.2 Cache Line, Fetch and Data Type Widths

The following figures diagram the cache line size and the widths of various data pipes and registers.

Figure 1. Cache Line Size, Fetch and Decode Widths in Bytes

Figure 2. Data Pipe Widths in Bytes

Figure 3. Data Type Widths in Bytes

2.3 Instruction Decomposition

The processor implements the AMD64 instruction set by means of macro ops (the primary units of 
work managed by the processor) and micro ops (the primitive operations executed in the processor's 

Instruction
Cacheline
OC Fetch
IC Fetch
Decode

64

32 32
16 16 16 16

64

Data Types
YMMWORD
XMMWORD
QWORD
DWORD 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

8 88 8 8 8 8 8

32 32
16 16 16 16
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execution units). These operations are designed to include direct support for AMD64 instructions and 
adhere to the high-performance principles of fixed-length encoding, regularized instruction fields, 
and a large register set. This enhanced microarchitecture enables higher processor core performance 
and promotes straightforward extensibility for future designs.

Instructions are marked as fastpath single (one macro-op), fastpath double (two macro ops), or 
microcode (greater than two (2) macro ops). Macro ops can normally contain up to two (2) micro ops. 
The table below lists some examples showing how instructions are mapped to macro ops and how 
these macro ops are mapped into one or more micro ops.

2.4 Superscalar Organization

The processor is an out-of-order, two thread superscalar AMD64 processor. The processor uses 
decoupled execution units to process instructions through fetch/branch-predict, decode, 
schedule/execute, and retirement pipelines. 

The processor uses decoupled independent schedulers, consisting of four integer ALU schedulers,  a 
unified AGU scheduler servicing the three AGU pipelines, and a unified floating-point scheduler 
servicing the four FP pipelines. These schedulers can simultaneously issue up to eleven micro ops to 
the four integer ALU pipes, three AGU pipes, and the four FPU pipes.

Table 1. Typical Instruction Mappings

Instruction Macro ops Micro ops Comments

MOV reg,[mem] 1 1: load Fastpath single

MOV [mem],reg 1 1: store Fastpath single

MOV [mem],imm 1 2: move-imm, store Fastpath single

REP MOVS [mem],[mem] Many Many Microcode

ADD reg,reg 1 1: add Fastpath single

ADD reg,[mem] 1 2: load, add Fastpath single

ADD [mem],reg 1 2: load/store, add Fastpath single

MOVAPD [mem],xmm 1 2: store, FP-store-data Fastpath single

VMOVAPD [mem],ymm 1 2: store, FP-store-data 256b AVX Fastpath single

ADDPD xmm,xmm 1 1: addpd Fastpath single

ADDPD xmm,[mem] 1 2: load, addpd Fastpath single

VADDPD ymm,ymm 1 1:  addpd 256b AVX Fastpath single

VADDPD ymm,[mem] 1 2: load, addpd256b AVX Fastpath single
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2.5 Processor Block Diagram

A block diagram of the processor is shown in Figure 4 below.

Figure 4. Block Diagram - AMD Family 17h Models 30h - 3Fh

2.6 Processor Cache Operation

The AMD Family 17h processor uses five caches at three hierarchy levels to accelerate instruction 
execution and data processing:

• Dedicated L1 instruction cache

• Dedicated L1 data cache
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• Dedicated L1 op cache

• Unified (instruction and data) L2 cache per core

• 4-Mbyte or 16-Mbyte L3 cache (depending on configuration)

2.6.1 L1 Instruction Cache

The processor contains a 32-Kbyte, 8-way set associative L1 instruction cache. Cache line size is 64 
bytes; 32 bytes are fetched in a cycle. Functions associated with the L1 instruction cache are fetching 
cache lines from the L2 cache, providing instruction bytes to the decoder, and prefetching 
instructions. Requests that miss in the L1 instruction cache are fetched from the L2 cache or, if not 
resident in the L2 cache, from the L3 cache, if present. Requests that miss in all levels of cache are 
fetched from system memory.

On misses, the L1 instruction cache generates fill requests for the naturally-aligned 64-byte block that 
includes the miss address and up to thirteen additional  blocks. These blocks are prefetched from 
addresses generated by the Branch Predict unit. Because code typically exhibits spatial locality, 
prefetching is an effective technique for avoiding decode stalls. Cache-line replacement is based on a 
least recently-used replacement algorithm. The L1 instruction cache is protected from error through 
the use of parity.

2.6.2 L1 Data Cache

The processor contains a 32-Kbyte, 8-way set associative L1 data cache. This is a write-back cache 
that supports two 256-bit loads and one 256-bit store per cycle. In addition, the L1 cache is protected 
from bit errors through the use of ECC. There is a hardware prefetcher that brings data into the L1 
data cache to avoid misses. The L1 data cache has a 4- or 5-cycle integer load-to-use latency, and a 7- 
or 8-cycle FPU load-to-use latency. See section 2.12, "Load Store Unit", for more information on 
load-to-use latency.

The data cache natural alignment boundary is 64 bytes for loads. A misaligned load operation suffers, 
at minimum, a one cycle penalty in the load-store pipeline if it spans a 64-byte boundary. Stores have 
two different alignment boundaries. The alignment boundary for accessing TLB and tags is 64 bytes, 
and the alignment boundary for writing data to the cache or memory system is 32 bytes. Throughput 
for misaligned loads and stores is half that of aligned loads and stores since a misaligned load or store 
requires two cycles to access the data cache (versus a single cycle for aligned loads and stores).

For aligned memory accesses, the aligned and unaligned load and store instructions (for example, 
MOVUPS/MOVAPS) provide identical performance.

Natural alignment for 256-bit vector is 32 bytes and aligning them to a 32-byte boundary provides a 
performance advantage.

2.6.2.1 Bank Conflicts

The L1 DC is a banked structure.  Two loads per cycle can access the DC if they are to different 
banks.  The DC banks that are accessed by a load are determined by address bits 5:3, the size of the 
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load, and the DC way.  DC way is determined using the linear-address-based utag/way-predictor (see 
section below).  A bank conflict will result in a reflow of one of the loads, which will appear as a 
longer-latency load.

2.6.2.2 Linear address utag/way-predictor

The L1 data cache tags contain a linear-address-based microtag (utag) that tags each cacheline with 
the linear address that was used to access the cacheline initially.  Loads use this utag to determine 
which way of the cache to read using their linear address, which is available before the load's physical 
address has been determined via the TLB.  The utag is a hash of the load's linear address.  This linear 
address based lookup enables a very accurate prediction of in which way the cacheline is located prior 
to a read of the cache data.  This allows a load to read just a single cache way, instead of all 8.  This 
saves power and reduces bank conflicts.

It is possible for the utag to be wrong in both directions: it can predict hit when the access will miss, 
and it can predict miss when the access could have hit.  In either case, a fill request to the L2 cache is 
initiated and the utag is updated when L2 responds to the fill request.

Linear aliasing occurs when two different linear addresses are mapped to the same physical address.  
This can cause performance penalties for loads and stores to the aliased cachelines.  A load to an 
address that is valid in the L1 DC but under a different linear alias will see an L1 DC miss, which 
requires an L2 cache request to be made.  The latency will generally be no larger than that of an L2 
cache hit.  However, if multiple aliased loads or stores are in-flight simultaneously, they each may 
experience L1 DC misses as they update the utag with a particular linear address and remove another 
linear address from being able to access the cacheline.

It is also possible for two different linear addresses that are NOT aliased to the same physical address 
to conflict in the utag, if they have the same linear hash.  At a given L1 DC index (11:6), only one 
cacheline with a given linear hash is accessible at any time; any cachelines with matching linear 
hashes are marked invalid in the utag and are not accessible.

2.6.3 L2 Cache

The processor implements a unified 8-way set associative write-back L2 cache per core. This on-die 
L2 cache is inclusive of the L1 caches in the core. The L2 cache size is 512 Kbytes with a variable 
load-to-use latency of no less than 12 cycles. The L2 to L1 data path is 32 bytes wide. 

2.6.4 L3 Cache

The AMD Family 17h processor implements a 4 MB or 16-MB L3 cache (depending on SOC 
configuration) that is 16-way set associative and shared by four cores inside a CPU complex.  The L3 
is a write-back cache populated by L2 victims.  When there is an L3 hit, the line is invalidated from 
the L3 if the access was a store.  It is invalidated from the L3 if the access was a load and the line was 
read by just one core.  It stays valid in the L3 if it was a code fetch.  It stays valid in the L3 if it was a 
load and the line has been read by more than one core. The L3 maintains shadow tags for each L2 
cache in the complex. If a core misses in its local L2 and also in the L3, the shadow tags are 
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consulted. If the shadow tags indicate that the data resides in another L2 within the complex, a cache-
to-cache transfer is initiated within the complex. The L3 has an average load-to-use latency of 39 
cycles. The non-temporal cache fill hint, indicated with PREFETCHNTA, reduces cache pollution for 
data that will only be used once.  It is not suitable for cache blocking of small data sets.  Lines filled 
into the L2 cache with PREFETCHNTA are marked for quicker eviction from the L2, and when 
evicted from the L2 are not inserted into the L3.

2.7 Memory Address Translation

A translation-lookaside buffer (TLB) holds the most-recently-used page mapping information. It 
assists and accelerates the translation of virtual addresses to physical addresses. A hardware table 
walker loads page table information into the TLBs. 

The AMD processor utilizes a two-level TLB structure.

2.7.1 L1 Translation Lookaside Buffers

The processor contains a fully-associative L1 instruction TLB (ITLB) with 64 entries that can hold 4-
Kbyte, 2-Mbyte, or 1-Gbyte page entries.

The fully-associative L1 data TLB (DTLB) provides 64 entries that hold 4-Kbyte, 2-Mbyte, or 1-
Gbyte page entries.

2.7.2 L2 Translation Lookaside Buffers

The processor provides an 8-way set associative L2 instruction TLB with 512 entries capable of 
holding 4-Kbyte pages, and 2-Mbyte pages.  1-Gbyte pages are not held in the L2 instruction TLB; 
they are smashed into 2-Mbyte pages in the L2 ITLB.

The L2 data TLB provides a unified 16-way set-associative L2 data TLB with 2048 entries capable of 
holding 4-Kbyte pages, 2-Mbyte pages, and page-directory entries (PDEs) used to speed up table 
walks, and 1-Gbyte pages smashed into  2-Mbyte pages. When a 1-Gbyte smashed page held in the 
L2 data TLB is reloaded into the L1 data TLB, it is installed as a 1-Gbyte page in the L1 data TLB.

2.7.3 Hardware Page Table Walkers

The processor has two hardware page table walkers to handle L2 TLB misses. Misses can start 
speculatively from either the instruction or the data side. As was described in section 2.6.2, the L2 
data TLB holds PDEs, which are used to speed up tablewalks by skipping three levels of page table 
reads.  In addition to the PDE storage in the L2 data TLB, the table walker includes a 64-entry Page 
Directory Cache (PDC) which holds page-map-level-4 entries (PML4Es) and page-directory-pointer 
entries (PDPEs) to speed up table walks. The PDC entries and the PDE entries in the L2 data TLB are 
usable by all tablewalk requests, including instruction-side table walks.

The table walker natively supports the architecturally-defined 4-Kbyte, 2-Mbyte, and 1-Gbyte pages.  
In legacy mode, 4-Mbyte entries are also supported by returning a smashed 2-Mbyte TLB entry.
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In the L1TLBs, INVLPG and INVLPGA instructions cause a flush of all smashed entries 
corresponding to the same 1-Gbyte guest linear address page.  In the L2TLBs, INVLPG and 
INVLPGA cause a flush of all smashed entries.

See the definition of the terms smashing and smashed in the Section 1.2 on page 16.

2.8 Optimizing Branching

Branching can reduce throughput when instruction execution must wait on the completion of the 
instructions prior to the branch that determine whether the branch is taken. The processor integrates 
logic that is designed to reduce the average cost of conditional branching by attempting to predict the 
outcome of a branch decision prior to the resolution of the condition upon which the decision is 
based. 

This prediction is used to speculatively fetch, decode, and execute instructions on the predicted path. 
When the prediction is correct, waiting is avoided and the instruction throughput is increased. The 
branch misprediction penalty is in the range from 12 to 18 cycles, depending on the type of 
mispredicted branch and whether or not the instructions are being fed from the op cache. The 
common case penalty is 16 cycles.

2.8.1 Branch Prediction

To predict and accelerate branches, the processor employs:

• next-address logic

• branch target buffer

• return address stack (RAS)

• indirect target predictor

• advanced conditional branch direction predictor

• fetch window tracking structure

The following sections discuss these features.

2.8.1.1 Next Address Logic

The next-address logic determines addresses for instruction fetch. When no branches are identified in 
the current fetch block, the next-address logic calculates the starting address of the next sequential 64-
byte fetch block. This calculation is performed every cycle to support the 64 byte per cycle fetch 
bandwidth of the op cache. When branches are identified, the next-address logic is redirected by the 
branch target and branch direction prediction hardware to generate a non-sequential fetch block 
address. The processor facilities that are designed to predict the next instruction to be executed 
following a branch are detailed in the following sections.
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2.8.1.2 Branch Target Buffer

The branch target buffer (BTB) is a three-level structure accessed using the fetch address of the 
current fetch block. Each BTB entry includes information for branches and their targets. Each BTB 
entry can hold up to two branches if the branches reside in the same 64-byte aligned cache line and 
the first branch is a conditional branch. 

Each level of BTB holds an increasing number of entries, and prediction from the larger BTBs have 
higher latencies. When possible, keep the critical working set of branches in the code as small as 
possible (see Software Optimization Guide for AMD Family 15h, Section 7.6). L0BTB holds 8 
forward taken branches and 8 backward taken branches, and predicts with zero bubbles. L1BTB has 
512 entries and creates one bubble if prediction differs from L0BTB. L2BTB has 7168 entries and 
creates four bubbles if its prediction differs from L1BTB.

2.8.1.3 Return Address Stack

The processor implements a 32-entry return address stack (RAS) to predict return addresses from a 
near call. One of the entries is unusable for pointer logic simplification. In dual-threaded mode, each 
thread is allocated 15 entries. As calls are fetched, the address of the following instruction is pushed 
onto the return address stack. Typically, the return address is correctly predicted by the address 
popped off the top of the return address stack. However, mispredictions sometimes arise during 
speculative execution that can cause incorrect pushes and/or pops to the return address stack. The 
processor implements mechanisms that correctly recover the return address stack in most cases. If the 
return address stack cannot be recovered, it is invalidated and the execution hardware restores it to a 
consistent state.

The following sections discuss some common coding practices used to optimize subroutine calls and 
returns.

2.8.1.3.1 CALL 0h

When the CALL instruction is used with a displacement of zero, it is recognized and treated specially; 
the RAS remains consistent even if there is not a corresponding RET instruction.

To get the value in the RIP register into a general-purpose register in 64-bit software, you can use 
RIP-relative addressing, as in the following example:

LEA RAX, [RIP+0] ;RAX contains the value of RIP

2.8.1.3.2 REP RET

For prior processor families, such as Family 10h and 12h, a three-byte return-immediate RET 
instruction had been recommended as an optimization to improve performance over a single-byte 
near-return. For processor Families 15h, 16h, and 17h this is no longer recommended and a single-
byte near-return (opcode C3h) can be used with no negative performance impact. This will result in 
smaller code size over the three-byte method. For the rationale for the former recommendation, see 
section 6.2 in the Software Optimization Guide for AMD Family 10h and 12h Processors.
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2.8.1.3.3 Function Inlining

Calls and returns are not eligible to be stored in the zero-bubble predictor (L0 BTB). Therefore, 
function calls within hot loops can be inlined for better performance if there are few callers to the 
function or if the function is small (See section 8.3 of Software Optimization Guide for AMD Family 
15h Processor).

2.8.1.4 Indirect Target Predictor

The processor implements a 1024-entry indirect target array used to predict the target of some non-
RET indirect branches. If a branch has had multiple different targets, the indirect target predictor 
chooses among them using global history at L2 BTB correction latency.

Branches that have so far always had the same target are predicted using the static target from the 
branch's BTB entry. This means the prediction latency for correctly predicted indirect branches is 
roughly 5-(3/N), where N is the number of different targets of the indirect branch. For these reasons, 
code should attempt to reduce the number of different targets per indirect branch.

2.8.1.5 Advanced Conditional Branch Direction Predictor

The conditional branch predictor is used for predicting the direction of conditional near branches. 
Only branches that have been previously discovered to have both taken and fall-through behavior will 
use the conditional predictor. The conditional branch predictor uses a global history scheme that 
keeps track of the previously executed branches. Global history is not updated for not-taken branches. 
For this reason, dynamic branches which are biased towards not-taken are preferred. Branch behavior 
which depends on deep history or which does not correlate well with global history will be 
mispredicted often.

When possible, avoid branches which alternate between taken and not-taken. If a loop is executed 
twice and it is a small loop, it may be beneficial to unroll it.

Conditional branches that have not yet been discovered to be taken are not marked in the BTBs. 
These branches are implicitly predicted not-taken. Conditional branches are predicted as always-
taken after they are first discovered to be taken. Conditional branches that are in the always-taken 
state are subsequently changed to the dynamic state if they are subsequently discovered to be not-
taken, at which point they are eligible for prediction with the dynamic conditional predictor.

2.8.1.6 Fetch Window Tracking Structure

Fetch windows are tracked in a 64-entry (32 entries in SMT mode) FIFO from fetch until retirement. 
Each entry holds branch and cacheline information for up to a full 64-byte cacheline. If a single BTB 
entry is not sufficient to allow prediction to the end of the cache line, additional entries are used. If no 
branches are identified in a cacheline, the fetch window tracking structure will use a single entry to 
track the entire cacheline.

If the fetch window tracking structure becomes full, instruction fetch stalls until instructions retire 
from the retire control unit or a branch misprediction flushes some entries.
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2.8.2 Boundary Crossing Branches

Branches whose target crosses a half-megabyte aligned boundary are unable to be installed in the L0 
BTB or to share BTB entries with other branches. Excessive occurrences of this scenario can reduce 
effective BTB capacity if the BTB entry could have otherwise been shared.

2.8.3 Loop Alignment

For the processor loop alignment is not usually a significant issue. However, for hot loops, some 
further knowledge of trade-offs can be helpful. Since the processor can read an aligned 64-byte fetch 
block every cycle, aligning the end of the loop to the last byte of a 64-byte cache line is the best thing 
to do, if possible.

For very hot loops, it may be useful to further consider branch placement. The branch predictor can 
process the first two branches after the cache line entry point with a single BTB entry. For best 
performance, keep the number of predicted branches per cache line entry point at two or below. Since 
BTB entries can hold up to two branches, predicting a third branch will require an additional BTB 
entry and additional cycles of prediction latency.  

This should not be confused with branches per cache line. For example, it is still optimal to have three 
or four branches per cache line if the second branch is unconditional or if the first or second branch is 
taken so frequently that the third and fourth branches are seldom executed.

2.8.3.1 Encoding Padding for Loop Alignment

Aligning loops is typically accomplished by adding NOP instructions ahead of the loop. This section 
provides guidance on the proper way to encode NOP padding to minimize its cost. Generally, it is 
beneficial to code fewer and longer NOP instructions rather than many short NOP instructions, 
because while NOP instructions do not consume execution unit resources, they still must be 
forwarded from the Decoder and tracked by the Retire Control Unit.

The table below lists encodings for NOP instructions of lengths from 1 to 15. Beyond length 8, longer 
NOP instructions are encoded by adding one or more operand size override prefixes (66h) to the 
beginning of the instruction.

Length Encoding

1 90

2 66 90

3 0F 1F 00

4 0F 1F 40 00

5 0F 1F 44 00 00

6 66 0F 1F 44 00 00

7 0F 1F 80 00 00 00 00

8 0F 1F 84 00 00 00 00 00

9 66 0F 1F 84 00 00 00 00 00
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The recommendation above is optimized for the processor.

Some earlier AMD processors, such as the Family 15h processor, suffer a performance penalty when 
decoding any instruction with more than 3 operand-size override prefixes. While this penalty is not 
present in Family 16h and 17h processors, it may be desirable to choose an encoding that avoids this 
penalty in case the code is run on a processor that does have the penalty.

The 11-byte NOP is the longest of the above encodings that uses no more than 3 operand size override 
prefixes (byte 66h). Beyond 11 bytes, the best single solution applicable to all AMD processors is to 
encode multiple NOP instructions. Except for very long sequences, this is superior to encoding a JMP 
around the padding.

The table below shows encodings for NOP instructions of length 12–15 formed from two NOP 
instructions (a NOP of length 4 followed by a NOP of length 8–11).

The AMD64 ISA specifies that the maximum length of any single instruction is 15 bytes. To achieve 
padding longer than that it is necessary to use multiple NOP instructions. For the processor use a 
series of 15-byte NOP instructions followed by a shorter NOP instruction. If taking earlier AMD 
processor families into account, use a series of 11-byte NOPs followed by a shorter NOP instruction.

As a slightly more efficient alternative to inserting NOPs for padding, redundant prefixes can be used 
to pad existing instructions without affecting function. This has the advantage of fewer instructions 
being kept in the op cache and maintained throughout the machine pipeline. For example, operand 
overrides (byte 66h) can be added to an instruction that already has operand overrides without 
changing function. Whereas padding with NOPs is always possible, this method of using redundant 
prefixes is only practical when there are already useful instructions present that use prefixes.

10 66 66 0F 1F 84 00 00 00 00 00

11 66 66 66 0F 1F 84 00 00 00 00 00

12 66 66 66 66 0F 1F 84 00 00 00 00 00

13 66 66 66 66 66 0F 1F 84 00 00 00 00 00

14 66 66 66 66 66 66 0F 1F 84 00 00 00 00 00

15 66 66 66 66 66 66 66 0F 1F 84 00 00 00 00 00

Length Encoding

12 0F 1F 40 00 0F 1F 84 00 00 00 00 00

13 0F 1F 40 00 66 0F 1F 84 00 00 00 00 00

14 0F 1F 40 00 66 66 0F 1F 84 00 00 00 00 00

15 0F 1F 40 00 66 66 66 0F 1F 84 00 00 00 00 00

Length Encoding
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2.9 Instruction Fetch and Decode

The processor fetches instructions from the instruction cache in 32-byte naturally aligned blocks. The 
processor can perform an instruction block fetch every cycle.

The fetch unit sends these bytes to the decode unit through a 20 entry Instruction Byte Queue (IBQ), 
each entry holding 16 instruction bytes.  In SMT mode each thread has 10 dedicated IBQ entries. The 
IBQ acts as a decoupling queue between the fetch/branch-predict unit and the decode unit.

The decode unit scans two of these windows in a given cycle, decoding a maximum of four 
instructions. The decode unit also contains a sideband stack optimizer, which tracks the stack-pointer 
value. This optimization removes the dependencies that arise during chains of PUSH and POP 
operations on the rSP register, and thereby improves the efficiency of the PUSH and POP 
instructions.

The pick window is 32 bytes, aligned on a 16-byte boundary. Having 16 byte aligned branch targets 
gets maximum picker throughput and avoids end-of-cacheline short op cache (OC) entries.

Only the first pick slot (of 4) can pick instructions greater than eight bytes in length. Avoid having 
more than one instruction in a sequence of four that is greater than eight bytes in length.

2.9.1 Op Cache

The op cache (OC) is a cache of previously decoded instructions. When instructions are being served 
from the op cache, normal instruction fetch and decode are bypassed. This improves pipeline latency 
because the op cache pipeline is shorter than the traditional fetch and decode pipeline. It improves 
bandwidth because the maximum throughput from the op cache is 8 instructions per cycle whereas 
the maximum throughput from the traditional fetch and decode pipeline is 4 instructions per cycle. 
Finally, it improves power because there is no need to re-decode instructions.

The op cache is organized as an associative cache with 64 sets and 8 ways. At each set-way 
intersection is an entry containing up to 8 instructions, so the maximum capacity of the op cache is 
then 4K ops. The actual limit may be less due to efficiency considerations. Avoid hot code regions 
that approach this size for a single thread or half this size for two SMT threads.

When instructions are decoded, they are also built into the op cache. Multiple instructions are built 
together into an op cache "entry". Up to 8 sequential instructions ending in the same 64-byte aligned 
memory region may be cached together in an entry.

Op cache entry limits:

• 8 instructions

• 8 32-bit immediates/displacements (64-bit immediates/displacements take two slots)

• 4 microcode instructions
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The op cache is modal and the machine can only transition between instruction cache mode (IC 
mode) and op cache mode (OC mode) at certain points. The machine can only transition from IC 
mode to OC mode at a branch target. Once in OC mode, the machine will generally remain in this 
mode until there is a fetch address for which there is no corresponding OC entry (a miss).

If there are an excess of mode transitions, IPC can be negatively impacted. Limiting hot regions of 
code to fit in the capacity of the op cache will minimize the possibility of mode transitions, and it is 
particularly important when unrolling loops to avoid exceeding the capacity of the op cache.

An OC entry terminates at the end of a 64-byte aligned memory region, so branching to one of the last 
few instructions in a region will result in an inefficient OC entry being built (that is less than the 
maximum 8 instructions that could be stored in that entry).

Use of the OC requires a flat memory model (64-bit or 32-bit with CS base of 0 and CS limit at max).

2.10 Integer Execution Unit

Figure 5 on page 33 diagrams the integer execution unit.

The integer execution unit for the processor consists of the following major components:

• schedulers

• execution units

• retire control



Chapter 2 Microarchitecture of AMD Family 17h Processor 33

Software Optimization Guide for AMD Family 17h
 Models 30h and Greater Processors

56305 Rev. 3.00 August 2019

Figure 5. Integer Execution Unit Block Diagram

2.10.1 Schedulers

The schedulers can receive up to six macro ops per cycle, where they are broken down into micro ops. 
ALU micro ops are sent to one of four 16-entry ALU schedulers. Load and Store micro ops are sent to 
one  28-entry address generation unit (AGU) scheduler. Each scheduler can issue one micro op per 
cycle. The scheduler tracks operand availability and dependency information as part of its task of 
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issuing micro ops to be executed. It also ensures that older micro ops which have been waiting for 
operands are executed in a timely manner. Micro ops can be issued and executed out-of-order.

2.10.2 Execution Units

The processor contains 4 integer execution pipes. There are four ALUs capable of all integer 
operations with the exception of multiplies, divides, and CRC which are dedicated to one ALU each. 
There are 3 AGUs for all load and store address generation.

While two-operand LEA instructions are mapped as a single-cycle micro-op in the ALUs, three-
operand LEA instructions are mapped to an AGU and have 2 cycle latency, with results inserted back 
in to either the ALU2 or ALU3 pipeline. 

The integer multiply unit can handle multiplies of up to 64 bits × 64 bits with 3 cycle latency, fully 
pipelined. If the multiply instruction has 2 destination registers, an additional one-cycle latency for 
the second result is required with a reduction in throughput to one every two cycles.

The radix-4 hardware integer divider unit can compute 2 bits of results per cycle.

2.10.3 Retire Control Unit

The retire control unit (RCU) tracks the completion status of all outstanding operations (integer, 
load/store, and floating-point) and is the final arbiter for exception processing and recovery. The unit 
can receive up to 6 macro ops dispatched per cycle and track up to 224 macro ops in-flight. A macro-
op is eligible to be committed by the retire unit when all corresponding micro ops have finished 
execution. For most cases of fastpath double macro ops, it is further required that both macro ops 
have finished execution before commitment can occur. The retire unit handles in-order commit of up 
to eight macro ops per cycle.

The retire control unit also manages internal integer register mapping and renaming. The integer 
physical register file (PRF) consists of 180 registers, with up to 38 per thread mapped to architectural 
state or microarchitectural temporary state. The remaining registers are available for out-of-order 
renames.

2.11 Floating-Point Unit

The processor provides native support for 32 bit single precision 64 bit double precision and 80 bit 
extended precision primary floating-point data types as well as 128 bit and 256 bit packed integer, 
single and double precision vector floating-point data types. The floating-point load and store paths 
are 256 bits wide.

The floating-point unit (FPU) utilizes a coprocessor model for all operations that use X87, MMX™, 
XMM, YMM, or floating point control/status registers. As such, it contains its own scheduler, register 
file, and renamer; it does not share them with the integer units. It can handle dispatch and renaming of 
4 floating point micro ops per cycle and the scheduler can issue 1 micro op per cycle for each pipe. 
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The floating-point scheduler has a 36 entry micro-op capacity. The floating-point unit shares the retire 
queue with the integer unit. The retire queue can hold up to 224 micro ops or 112 per thread in SMT 
mode. Micro ops can be dispatched to the Execution unit even if floating-point scheduler is full to 
allow loads and stores to be accelerated.

Figure 6 below shows a basic diagram of the floating point unit and how it interfaces with the other 
units in the processor. Notice that there are 4 execution pipes which can execute an operation every 
cycle. The FP unit receives 2 loads from the load/store unit every cycle that are up to 256b each. 
There are dedicated busses to enable fast moves between the floating point registers and the general 
registers in the EX unit. Stores are serviced out of execution pipe 2.

Figure 6. Floating-Point Unit Block Diagram
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Pipes 0 and 1 support operations that require three operands. When three operands are required for an 
operation, it uses ones of the source busses normally allocated to pipe3, which can block any 
execution in pipe3. If data for pipe3 or the 3rd operand can be bypassed from a result generated that 
same cycle, then pipe3 can execute an operation even when either pipe0 or pipe1 require a third 
source.

2.11.1 Floating Point Execution Resources

Notes:

1. FDIV unit can support 2 simultaneous operations in flight even though it occupies a single pipe.

2. Some complex VADD operations are not available in all pipes.

3. Some complex shuffle operations are only available in pipe1.

4. There is 1 cycle of added latency for a result to cross from F to I or I to F domain.

Unit Pipe Domain2 Ops Supported 

0 1 2 3 

FMUL X X   F (v)FMUL*, (v)FMA*, Floating Point Compares, Blendv(DQ) 

FADD   X X F (v)FADD* 

FCVT    X F All convert operations except pack/unpack 

FDIV1    X F All Divide and Square Root except Reciprocal Approximation  

FMISC X X X X F Moves and Logical operations on Floating Point Data Types 

STORE   X  S Stores and Move to General Register (EX) Operations 

VADD2 X X  X I Integer Adds, Subtracts, and Compares 

VMUL X    I Integer Multiplies, SAD, Blendvb 

VSHUF3  X X  I Data Shuffles, Packs, Unpacks, Permute 

VSHIFT   X  I Bit Shift Left/Right operations 

VMISC X X X X I Moves and Logical operations on Packed Integer Data Types 

AES X X   I *AES*  

CLM  S    *CLM* 
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2.11.2 Code recommendations

1. Use the SIMD nature of the SSE or AVX instruction sets to achieve significantly higher 
throughput. The processor supports SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, SSE4a, F16C, 
FMA, AVX, and AVX2. The datapath is 256 bits across all operations, so optimal code will 
operate on 256b (YMM registers) with every operation using the SIMD instructions.

2. Do full width loads and stores. For example, use vmovapd instead of movapd or movlpd/movhpd. 
Loading or storing a single register in multiple chunks is slower than doing it with a single 
operation. If one has no choice but to use multiple loads, try to make sure they are back to back in 
the code. 

3. Clear floating point registers when done using them. This allows the physical register to be freed 
up for speculative results and enables the machine to break merging dependencies for ops that do 
not write the entire result width such as scalar operations.

4. If possible, set MXCSR.DAZ (Denorm as Zero) or MXCSR.FTZ (Flush Denorm to Zero) to 1. 
The hardware supports denormal inputs and outputs with no latency impact on most operations. A 
few operations execute assuming normal floating point inputs or outputs. When the ops discover a 
denormal input or output, they may be re-executed with a longer latency. These ops include 
multiply, divide, and square root. Re-executing with the longer latency is avoided if the DAZ and 
FTZ flags are set.

5. Avoid branches/jumps in the calculation of values. For example, if one needs to do if(a > 1.1) then 
b = 4 else b=6, then use vcmpgtsd followed by a predicated mov into b.

6. XMM/YMM register-to-register moves have no latency; These instructions may be used without 
penalty.

7. Try to use consistent data types for instructions operating on the same data. For example, use 
VANDPS, VMAXPS, and so on when consuming the output of VMULPS.

2.11.3 FP performance on x87 code

1. Use fxch instead of push/pop if possible as it is much faster at swapping register values.

2. Avoid instructions between FCOM and FSTSW in floating point compares.

2.11.4 Denormals

Denormal floating-point values (also called subnormals) can be created by a program either by 
explicitly specifying a denormal value in the source code or by calculations on normal floating-point 
values. In some instances, (MUL/DIV/SQRT) a small penalty may be incurred when these values are 
encountered. For SSE/AVX instructions, the denormal penalties are a function of the configuration of 
MXCSR and the instruction sequences that are executed in the presence of a denormal value. 

If denormal precision is not required, it is recommended that software set both MXCSR.DAZ and 
MXCSR.FTZ. Note that setting MXCSR.DAZ or MXCSR.FTZ will cause the processor to produce 
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results that are not compliant with the IEEE-754 standard when operating on or producing denormal 
values. 

The x87 FCW does not provide functionality equivalent to MXCSR.DAZ or MXCSR.FTZ, so it is 
not possible to avoid these denormal penalties when using x87 instructions that encounter or produce 
denormal values. 

2.11.5 XMM Register Merge Optimization

The processor implements an XMM register merge optimization. The processor keeps track of XMM 
registers whose upper portions have been cleared to zeros. This information can be followed through 
multiple operations and register destinations until non-zero data is written into a register. For certain 
instructions, this information can be used to bypass the usual result merging for the upper parts of the 
register. For instance, SQRTSS does not change the upper 96 bits of the destination register. If some 
instruction clears the upper 96 bits of its destination register and any arbitrary following sequence of 
instructions fails to write non-zero data in these upper 96 bits, then the SQRTSS instruction can 
proceed without waiting for any instructions that wrote to that destination register.

The instructions that benefit from this merge optimization are:

• CVTPI2PS

• CVTSI2SS (32-/64-BIT)

• MOVSS xmm1,xmm2

• CVTSD2SS

• CVTSS2SD

• MOVLPS xmm1,[mem]

• CVTSI2SD (32-/64-BIT)

• MOVSD xmm1,xmm2

• MOVLPD xmm1,[mem]

• RCPSS

• ROUNDSS

• ROUNDSD

• RSQRTSS

• SQRTSD

• SQRTSS

2.11.6 Mixing AVX and SSE

There is a significant penalty for mixing SSE and AVX instructions when the upper 128 bits of the 
YMM registers contain non-zero data. Transitioning in either direction will cause a micro-fault to 
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spill or fill the upper 128 bits of all 16 YMM registers. There will be an approximately 100 cycle 
penalty to signal and handle this fault. To avoid this penalty, a VZEROUPPER or VZEROALL 
instruction should be used to clear the upper 128 bits of all YMM registers when transitioning from 
AVX code to SSE or unknown code.

2.12 Load-Store Unit

The processor load-store (LS) unit handles data accesses. The LS unit contains three largely indepen-
dent pipelines enabling the execution of two 256-bit load memory operations and one 256-bit store 
memory operation per cycle.

The LS unit includes a 44-entry load queue (LDQ). The LDQ receives load operations at dispatch. 
Loads leave the LDQ when the load has completed and delivered data to the integer unit or the float-
ing-point unit.

The LS unit utilizes a 48-entry store queue which holds stores from dispatch until the store data can 
be written to the data cache.

The LS unit dynamically reorders operations, supporting both load operations bypassing older loads 
and loads bypassing older non-conflicting stores. The LS unit ensures that the processor adheres to 
the architectural load and store ordering rules as defined by the AMD64 architecture.

The LS unit supports store-to-load forwarding (STLF) when there is an older store that contains all of 
the load's bytes, and the store's data has been produced and is available in the store queue.  The load 
does not require any particular alignment relative to the store or to the 64B load alignment boundary 
as long as it is fully contained within the store.

The processor uses address bits 11:0 to determine STLF eligiblity.  Avoid having multiple stores with 
the same 11:0 address bits, but to different addresses (different 47:12 bits) in-flight simultaneously 
where a load may need STLF from one of them. Loads that follow stores to similar address space 
should use the same registers and accesses should be grouped closely together, avoiding intervening 
modifications or writes to the base or index register used by the store and load when possible.  Also, 
minimize displacement values such that the range will fit within 8 bits when possible. 

The LS unit can track up to 22 outstanding in-flight cache misses.

The AGU and LS pipelines are optimized for simple address generation modes.  Base+displacement, 
base+index, and displacement-only addressing modes  (regardless of displacement size) are consid-
ered simple addressing modes and can achieve 4-cycle load-to-use integer load latency and 7-cycle 
load-to-use FP load latency.  Addressing modes where both an index and displacement are present 
(most commonly 3-source addressing modes with base+index+displacement), and any addressing 
mode utilizing a scaled index (*2, *4, or *8 scales) are considered complex addressing modes and 
require an additional cycle of latency to compute the address.  Complex addressing modes can 
achieve a 5-cycle (integer)/8-cycle (FP) load-to-use latency.  It is recommended that compilers avoid 
complex (scaled-index, or index+displacement) addressing modes in latency-sensitive code.
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The load store pipelines are optimized for zero-segment-base operations. A load or store that has a 
non-zero segment base suffers a one-cycle penalty in the load-store pipeline. Most modern operating 
systems use zero segment bases while running user processes and thus applications will not normally 
experience this penalty.

This segment-base latency penalty is not additive with the above-mentioned complex addressing-
mode penalty.  If an LS operation has both a non-zero base and a complex addressing mode, it 
requires just a single additional cycle of latency and can still achieve 5-cycle (integer)/8-cycle (FP) 
load-to-use latency.

Figure 7. Load-Store Unit
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2.13 Optimizing Writing Data
Write-combining is the merging of multiple memory write cycles that target locations within the 
address range of a write buffer. AMD Family 17h processor supports the memory type range register 
(MTRR) and the page attribute table (PAT) extensions, which allow software to define ranges of 
memory as either writeback (WB), write-protected (WP), writethrough (WT), uncacheable (UC), or 
write-combining (WC). 

Defining the memory type for a range of memory as WC allows the processor to conditionally 
combine data from multiple write cycles that are addressed within this range into a merge buffer. 
Merging multiple write cycles into a single write cycle reduces processor bus utilization and 
processor stalls. Write combining buffers are also used for streaming store instructions such as 
MOVNTQ and MOVNTI.

2.13.1 Write-Combining Definitions and Abbreviations

This appendix uses the following definitions and abbreviations:

• MTRR—Memory type range register

• PAT—Page attribute table

• UC—Uncacheable memory type

• WC—Write-combining memory type

• WT—Writethrough memory type

• WP—Write-protected memory type

• WB—Writeback memory type

2.13.2 Programming Details

Write-combining regions are controlled by the MTRRs and PAT extensions. Write-combining should 
be enabled for the appropriate memory ranges. 

For more information on the MTRRs and the PAT extensions, see the following documents:

• AMD64 Architecture Programmer’s Manual, Volume 2, order# 24593 

• Processor Programming Reference (PPR) for AMD Family 17h Models 30h-3Fh Processors, 
order# 55803

2.13.3 Write-Combining Operations

To improve system performance, AMD Family 17h processor aggressively combines multiple 
memory-write cycles of any data size that address locations within a 64-byte write buffer that is 
aligned to a cache-line boundary. The processor continues to combine writes to this buffer without 
writing the data to the system, as long as certain rules apply (see Table 2 for more information). The 
data sizes can be bytes, words, doublewords, or quadwords.
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• WC memory type writes can be combined in any order up to a full 64-byte write buffer.

• All other memory types for stores that go through the write buffer (UC, WP, WT and WB) cannot 
be combined except when the WB memory type is over-ridden for streaming store instructions 
such as the MOVNTQ and MOVNTI instructions, etc. These instructions use the write buffers 
and will be write-combined in the same way as address spaces mapped by the MTTR registers 
and PAT extensions. When WCB is used for streaming store instructions, the buffers are subject to 
the same flushing events as write-combined address spaces.

The processor may combine writes that do not store all bytes of a 64-byte write buffer. These partially 
filled buffers may not be closed for significant periods of time and may affect the bandwidth of the 
remaining writes in a stream. Aligning write-combining operations to 64-byte cache line boundaries 
avoids having partially full buffers. When software starts a long write-combining operation on a non-
cache line boundary, it may be beneficial to place a write-combining completion event (listed in 
Table 2 below) to ensure that the first partially filled buffer is closed and available to the remaining 
stores.

Combining continues until interrupted by one of the conditions listed in Table 2. When combining is 
interrupted, one or more bus commands are issued to the system for that write buffer and all older 
write buffers, even if they are not full, as described in “Sending Write-Buffer Data to the System” on 
page 43.

Table 2. Write-Combining Completion Events

Event Comment

I/O Read or Write Any IN/INS or OUT/OUTS instruction closes combining. The implied 
memory type for all IN/OUT instructions is UC, which cannot be 
combined.

Serializing instructions Any serializing instruction closes combining. These instructions 
include: MOVCRx, MOVDRx, WRMSR, INVD, INVLPG, WBINVD, 
LGDT, LLDT, LIDT, LTR, CPUID, IRET, RSM, INIT, and HALT.

Flushing instructions CLFLUSH will only close the WCB if it is for WC or UC memory type.

Locks Any instruction or processor operation that requires a cache or bus 
lock closes write-combining before starting the lock. Writes within a 
lock can be combined.

Uncacheable Read A UC read closes write-combining. A WC read closes combining 
only if a cache block address match occurs between the WC read 
and a write in the write buffer.

Different memory type When a store hits on a write buffer that has been written to earlier 
with a different memory type than that store, the buffer is closed and 
flushed.

Buffer full Write-combining is closed if all 64 bytes of the write buffer are valid.

TLB AD bit set Write-combining is closed whenever a TLB reload sets the accessed 
[A] or dirty [D] bits of a PDE or PTE.

Executing SFENCE (Store Fence) 
and MFENCE (Memory Fence) 
instructions.

These instructions force the completion of pending stores, including 
those within the WC memory type, making these globally visible and 
emptying the store buffer and all write-combining buffers.
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Note: See Section 2.15 on page 45 for more info on locks and memory barriers.

2.13.4 Sending Write-Buffer Data to the System

Maximum throughput is achieved by write combining when all quadwords or doublewords are valid 
and the processor can use one efficient 64-byte memory write instead of multiple 16-byte memory 
writes. The processor can gather writes from 8 different 64B cache lines (up to 7 from one thread).  
Throughput will be best when the number of simultaneous write-combining streams is low.

2.14 Simultaneous Multi-Threading

In order to improve instruction throughput, the processor implements Simultaneous Multi-Threading 
(SMT). Single-threaded applications do not always occupy all resources of the processor at all times. 
The processor can take advantage of the unused resources to execute a second thread concurrently. 

Resources such as queue entries, caches, pipelines, and execution units can be competitively shared, 
watermarked, or statically partitioned in two-threaded mode (see Figure 8 below). 

An interrupt or exception occurs. Interrupts and exceptions are serializing events that force the 
processor to write all results to memory before fetching the first 
instruction from the interrupt or exception service routine

Table 2. Write-Combining Completion Events (Continued)

Event Comment
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Figure 8. Resource Sharing

For partitioned resources, arbitration between threads is generally round-robin unless a given thread 
is stalled.

It is expensive to transition between single-threaded (1T) mode and dual-threaded (2T) mode and 
vice versa, so software should restrict the number of transitions. If running in 2T mode, and one 
thread finishes execution, it may be beneficial to avoid transitioning to 1T mode if the second thread 
is also about to finish execution.

If the two threads are running different code, they should run in different linear pages to reduce BTB 
collisions.

Resource Competitively 
Shared Watermarked Statically 

Partitioned
ICACHE x
ITLB x
Micro-op Cache x
Dispatch Interface x
Microcode ROM x
DCACHE x
DTLB x
L2 Cache x
L3 Cache x
Scheduler tokens x
Physical Registers x
Load Queue x
Floating Point Physical Registers x
Floating Point Scheduler x
Memory Request Buffers x
Micro-op Queue x
Store Queue x
Retire Queue x
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Two threads which concurrently run the same code should run at the same linear and physical 
addresses. Operating system features which randomize the address layout such as Windows® ASLR 
should be configured appropriately. This is to facilitate BTB sharing between threads.

2.15 LOCKs

The processor implements logic to improve the performance of LOCKed instructions.  In order to 
benefit from this logic, the following guidelines are recommended:

• Ensure that LOCKed memory accesses do not cross 16-byte aligned boundaries.

• Following a LOCKed instruction, refrain from using floating point instructions as long as 
possible.

• Ensure that the Last Branch Record is disabled (DBG_CTL_MSR.LBR)
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Appendix A Understanding and Using 
Instruction Latency Tables 

The companion file Family 17h Instruction Latencies version_1-00.xlsx distributed with this 
Software Optimization Guide provides additional detailed information for the AMD Family 17h 
processor. This appendix explains the columns and definitions used in the table of latencies. 
Information in the spreadsheet is based on estimates and is subject to change.

A.1 Instruction Latency Assumptions

The term instruction latency refers to the number of processor clock cycles required to complete the 
execution of a particular instruction from the time that it is issued. Throughput refers to the number of 
results that can be generated in a unit of time given the repeated execution of a given instruction.

Many factors affect instruction execution time. For instance, when a source operand must be loaded 
from a memory location, the time required to read the operand from system memory adds to the 
execution time. Furthermore, latency is highly variable due to the fact that a memory operand may or 
may not be found in one of the levels of data cache. In some cases, the target memory location may 
not even be resident in system memory due to being paged out to backing storage.

In estimating the instruction latency and reciprocal throughput, the following assumptions are 
necessary:

• The instruction is an L1 I-cache hit that has already been fetched and decoded, with the operations 
loaded into the scheduler.

• Memory operands are in the L1 data cache.

• There is no contention for execution resources or load-store unit resources.

Each latency value listed in the spreadsheet denotes the typical execution time of the instruction when 
run in isolation on a processor. For real programs executed on this highly aggressive super-scalar 
processor, multiple instructions can execute simultaneously; therefore, the effective latency for any 
given instruction's execution may be overlapped with the latency of other instructions executing in 
parallel.

The latencies in the spreadsheet reflect the number of cycles from instruction issuance to instruction 
retirement. This includes the time to write results to registers or the write buffer, but not the time for 
results to be written from the write buffer to L1 D-cache, which may not occur until after the 
instruction is retired.

For most instructions, the only forms listed are the ones without memory operands. The latency for 
instruction forms that load from memory can be calculated by adding the load latencies listed on the 
overview worksheet to the latency for the register-only form. To measure the latency of an instruction 
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which stores data to memory, it is necessary to define an end-point at which the instruction is said to 
be complete. This guide has chosen instruction retirement as the end point, and under that definition 
writes add no additional latency. Choosing another end point, such as the point at which the data has 
been written to the L1 cache, would result in variable latencies and would not be meaningful without 
taking into account the context in which the instruction is executed.

There are cases where additional latencies may be incurred in a real program that are not described in 
the spreadsheet, such as delays caused by L1 cache misses or contention for execution or load-store 
unit resources.

A.2 Spreadsheet Column Descriptions

The following table describes the information provided in each column of the spreadsheet:

Cols Label Description

A Instruction • Instruction mnemonic

B–E Instruction 
operands

The following notations are used in these columns:
• imm—an immediate operand (value range left unspecified)
• imm8—an 8-bit immediate operand
• m—an 8, 16, 32 or 64-bit memory operand (128 and 256 bit memory 

operands are always explicitly specified as m128 or m256)
• mm—any 64-bit MMX register
• mN—an N-bit memory operand
• r—any general purpose (integer) register
• N—an N-bit general purpose register
• xmmN—any xmm register, the N distinguishes among multiple operands of 

the same type
• ymmN—any ymm register, the N distinguishes among multiple operands of 

the same type

A slash denotes an alternative, for example m64/m32 is a 32-bit or 64-bit 
memory operand. The notation "<xmm0>" denotes that the register xmm0 is an 
implicit operand of the instruction.

F APM Vol AMD64 Programmer’s Manual Volume that describes the instruction.

G Cpuid flag CPUID feature flag for the instruction.

H Macro Ops Number of macro ops for the instruction.
Any number greater than 2 implies that the instruction is microcoded, with the 
given number of macro ops in the micro-program. If the entry in this column is 
simply ‘ucode’ then the instruction is microcoded but the exact number of 
macro ops is variable.
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I Unit Execution units. The following abbreviations are used:
• ucode—instruction is implemented using a variable number of macro ops.
• ucode(n)—instruction is implemented using exactly n macro ops.
• ALU—instruction can execute in any of the 4 ALU pipes.
• ALUn—instruction can only execute in ALU pipe n.
• FPU—instruction can execute in any of the 4 FPU pipes.
• FPn—instruction can only execute in FP pipe n.
• FPn+m—instruction requires both FP pipes n and m.
• FPn/FPm—instruction can execute in either FP pipe n or m.
• FPn,FPm—instruction execution uses FP pipe n followed by FP pipe m.
• DIV—Integer divide functional element within the integer unit
• MUL—Integer multiply functional element within the integer unit.
• ST—instruction utilizes the LD/ST unit to execute a store.
• LD—instruction utilizes the LD/ST unit to execute a load.
• LD/ST—Load/Store unit.
• (dash)—instruction does not utilize an execution pipe.
• NA—instruction is not supported.

J Latency Instruction latency in processor cycles.
Refer to the section "Instruction Latency Assumptions" above for more 
information about this column.

K Throughpu
t

Throughput of the instruction.
A value of 2 indicates that two such instructions can be retired in the same 
clock cycle. This value is subject to the same assumptions as the latency 
values.
Refer to the section "Instruction Latency Assumptions" above for more 
information.

L Notes Additional information about the entry.

Cols Label Description
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