AMDA

Software Optimization
Guide for
AMD Family 19h Processors
(PUB)

Advanced Micro Devices g\

[AMD Public Use]

© 2019-2020 Advanced Micro Devices, Inc. All rights reserved.

The information contained herein is for informational purposes only, and is subject to change without notice.
While every precaution has been taken in the preparation of this document, it may contain technical
inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise
correct thisinformation. Advanced Micro Devices, Inc. makes no representations or warranties with respect to
the accuracy or completeness of the contents of this document, and assumes no liability of any kind, including
the implied warranties of noninfringement, merchantability or fitnessfor particular purposes, with respect to the
operation or use of AMD hardware, software or other products described herein. No license, including implied
or arising by estoppel, to any intellectual property rights is granted by this document. Terms and limitations
applicable to the purchase or use of AMD’s products are as set forth in a signed agreement between the parties
or in AMD's Standard Terms and Conditions of Sale. Any unauthorized copying, ateration, distribution,
transmission, performance, display or other use of this materia is prohibited.

Trademarks

AMD, the AMD Arrow logo, AMD-V, AMD Virtualization, and combinations thereof, are
trademarks of Advanced Micro Devices, Inc.

Windows is aregistered trademark of Microsoft Corporation.
MMX isatrademark of Intel Corporation.

Other product names used in this publication are for identification purposes only and may be
trademarks of their respective companies.

[AMD Public Use]

AMDA

56665 Rev.3.00 November 2020 Software Optimization Guide for AMD Family 19h (NDA)
Contents

Chapter 1 IntroducCtion e e e 15

1.1 Intended AUTIENCEottt 15

12 Specidized TerminoOlogycinii i e 16

Chapter 2 Microarchitecture of AMD Family 19h Processorcoovuuuun.. 17

21 Key Microarchitecture Featurest 18

2.2 Cacheline Fetchand DataTypeWidths 20

2.3 Instruction DeCOmMpOSItiONttt 21

24 Superscalar Organizationouuuii i e 22

25 Processor Block Diagramoo it 23

26 Processor Cache Operationt e e 24

27 Memory Address Tranglationt e 26

28 OptimizingBranChingo i e e e 28

29 Instruction Fetchand Decodet e 33

210 Integer Execution Unit i e 39

211 Hoating-Point Unit 41

212 Load-StoreUnit 46

213 OptimizingWritingData e 49

214 Simultaneous Multi-Threadingt e 52

2,05 LOCK S ot 53

Appendix A Understanding and Using Instruction Latency Tables 55

A.1 Instruction Latency ASSUMPLIONS oottt e et 55

A.2 Spreadsheet Column DeSCriptionNsouiiiiii e e 56

INOEX . o 59

Contents 3

[AMD Public Use]

AMDAA
Software Optimization Guide for AMD Family 19h (NDA) 56665 Rev.3.00 November 2020

4 Contents

[AMD Public Use]

AMDA

56665 Rev.3.00 November 2020 Software Optimization Guide for AMD Family 19h (NDA)

List of Figures

Figurel. CacheLine Size, Fetch and Decode Widths in Bytes...........ccoooviiiiieiinienecie e 21
Figure2. DataPipe WIdthSiN BYLES........cociiiiiiiiicieeeesese e 21
Figure3. DataType WIdthSIN BYLES.........coi it 21
Figure4. Block Diagram - AMD Family 19N ... 23
Figure5. Integer Execution Unit BIOCK Diagramcccooeieiinininininieeee e 39
Figure6. Floating-Point Unit BIOCK Diagram...........cccceeiiiieiieii et 42
FIgure 7. LOa0-SLOrE UNITc.ooiiiieeieieee ettt st st 48

List of Figures 5

[AMD Public Use]

AMDAA
Software Optimization Guide for AMD Family 19h (NDA) 56665 Rev.3.00 November 2020

6 List of Figures

[AMD Public Use]

AMDA

56665 Rev.3.00 November 2020 Software Optimization Guide for AMD Family 19h (NDA)

List of Tables

Table 1. Typical INSIrUCTION MaPPINGS -....eeveeieeiiesieeiesee ettt saeeeesseesseeeesneeseeas 22
Table 2. Write-Combining Completion EVENES...........cooieiiiiiinineneeeee s 50
Table 3. S o LU o =3 = oo TS 52

List of Tables 11

[AMD Public Use]

AMDAA
Software Optimization Guide for AMD Family 19h (NDA) 56665 Rev.3.00 November 2020

12 List of Tables

[AMD Public Use]

AMDA

56665 Rev.3.00 November 2020

Revision History

Software Optimization Guide for AMD Family 19h (NDA)

Date

Rev.

Description

November 2020

3.00

Initial Public Release.

[AMD Public Use]

13

AMDAA
Software Optimization Guide for AMD Family 19h (NDA) 56665 Rev.3.00 November 2020

14

[AMD Public Use]

AMDA

56665 Rev.3.00 November 2020 Software Optimization Guide for AMD Family 19h (NDA)

Chapter 1 Introduction

This guide provides optimization information and recommendations for AMD Family 19h
processors. In this guide the term “the processor” is used to refer to all processors within Family 19h.

This chapter covers the following topics:

Topic Page
Intended Audience 15
Specialized Terminology 16

1.1 Intended Audience

This book isintended for compiler and assembler designers, aswell as C, C++, and assembly
language programmers writing performance-sensitive code sequences. This guide assumes that you
are familiar with the AMDG64 instruction set and the AM D64 architecture (registers and programming
modes).

For complete information on the AM D64 architecture and instruction set, see the multivolume
AMD®64 Architecture Programmer’s Manual available from AMD.com. Individual volumes and their
order numbers are provided below.

Title Order Number
Volume 1: Application Programming 24592
Volume 2: System Programming 24593
Volume 3: General-Purpose and System Instructions 24594
Volume 4: 128-Bit and 256-Bit Media Instructions 26568
Volume 5: 64-Bit Media and x87 Floating-Point Instructions 26569

The following documents provide a useful set of guidelines for writing efficient code that have
general applicability to the Family 19h processor:

e AMD Family 15h Processors Software Optimization Guide (Order # 47414)
» Software Optimization Guide for AMD Family 10h and 12h Processors (Order # 40546)

e AMD Family 17h Processors Software Optimization Guide (Order # 55723)
Refer to the Processor Programming Reference (PPR) for AMD Family 19h Models 00h-OFh

Processors (Order # 55898) for more information about machine-specific registers, debug, and
performance profiling tools.

Chapter 1 Introduction 15

[AMD Public Use]

AMDAQ

Software Optimization Guide for AMD Family 19h (NDA) 56665 Rev.3.00 November 2020

1.2 Specialized Terminology

The following specialized terminology is used in this document:

Smashing

Dispatching

Issuing

Smashing (also known as Page smashing) occurs when a processor produces a
TLB entry whose page size is smaller than the page size specified by the page

tables for that linear address. Such TLB entries are referred to as smashed TLB
entries.

For example, when the Family 17h processor encounters alarger page sizein the
guest page tables which is backed by a smaller page in the host page tables, it
will smash trandations of the larger page size into the smaller page sizefoundin
the host.

Dispatching refers to the act of transferring macro ops from the front end of the
processor to the schedulers.

Issuing refersto the act of picking from the scheduler to send amicro op into an
execution pipeline. Some macro ops may be issued as multiple micro opsinto
different execution pipelines.

16

Introduction Chapter 1

[AMD Public Use]

AMDA

56665 Rev.3.00 November 2020 Software Optimization Guide for AMD Family 19h (NDA)

Chapter 2 Microarchitecture of
AMD Family 19h Processor

An understanding of the terms architecture, microarchitecture, and design implementation is
important when discussing processor design.

The architecture consists of the instruction set and those features of a processor that are visible to
software programs running on the processor. The architecture determines what software the processor
can run. The AMDG64 architecture of the AMD Family 19h processor is compatible with the industry-
standard x86 instruction set.

The term microarchitecture refers to the design features used to reach the target cost, performance,
and functionality goals of the processor.

The design implementation refers to a particular combination of physical logic and circuit elements
that comprise a processor that meets the microarchitecture specifications.

The processor employs a reduced instruction set execution core with a preprocessor that decodes and
decomposes most of the simpler AM D64 instructions into a sequence of one or two macro ops. More
complex instructions are implemented using microcode routines.

Decode is decoupled from execution and the execution core employs a super-scalar organization in
which multiple execution units operate essentially independently. The design of the execution core
allowsit to implement a small number of simple instructions which can be executed in asingle
processor cycle. This design ssmplifies circuit design, achieving lower power consumption and fast
execution at optimized processor clock frequencies.

This chapter covers the following topics:

Topic Page
Key Microarchitecture Features 18
Instruction Decomposition 21
Superscalar Organization 22
Processor Block Diagram 23
Processor Cache Operation 24
Memory Address Translation 26
Optimizing Branching 28
Instruction Fetch and Decode 33
Integer Execution Unit 39
Floating-Point Unit 41
Load-Store Unit 46
Optimizing Writing Data 49

Chapter 2 Microarchimwf [SMBrl:émU)é]egr Processor 17

AMDAQ

Software Optimization Guide for AMD Family 19h (NDA) 56665 Rev.3.00 November 2020
Topic Page
Simultaneous Multi-Threading 52
LOCKs 53

2.1 Key Microarchitecture Features

The processor implements a specific subset of the AMD64 instruction set architecture defined by the
APM.

The following major classes of instructions are supported:

General-purpose instructions, including support for 64-bit operands

x87 Floating-point instructions

64-bit Multi-media (MM X ™) instructions

128-hit and 256-bit single-instruction / multiple-data (SIMD) instructions.
AMD Virtuaization™ technology (AMD-V ™)

The following Streaming SIMD Extensions subsets are supported:

Streaming SIMD Extensions 1 (SSE1)

Streaming SIMD Extensions 2 (SSE2)

Streaming SIMD Extensions 3 (SSE3)

Supplemental Streaming SIMD Extensions 3 (SSSE3)
Streaming SIMD Extensions 4a (SSE4a)

Streaming SIMD Extensions 4.1 (SSE4.1)

Streaming SIMD Extensions 4.2 (SSE4.2)

Advanced Vector Extensions (AV X)

Advanced Vector Extensions 2 (AV X2)

Advanced Encryption Standard (AES) acceleration instructions

The following miscellaneous instruction subsets are supported:

SHA, RDRAND

Read and write FS.base and GS.base instructions
Half-precision floating-point conversion (F16C)
Carry-less Multiply (CLMUL) instructions
Move Big-Endian instruction (MOVBE)

XSAVE / XSAVECPT

18 Microarchimwf [SMBh:BmU)éJQET Processor Chapter 2

AMDA

56665 Rev.3.00 November 2020 Software Optimization Guide for AMD Family 19h (NDA)

LZCNT / POPCNT
VIBNO NVD
RDPRU

UM P

CLW\B

The following Bit Manipulation Instruction subsets are supported:

BMI1
BMI2

The processor does not support the following instructions/instruction subsets:

Four operand Fused Multiply/Add instructions (FMA4)
XOP instructions

Trailing bit manipulation (TBM) instructions
Light-weight profiling (LWP) instructions

The processor adds support for the following new instructions:

I NVLPGB (support varies by model number, refer to the PPR for individual model support)
TLBSYNC (support varies by model number, refer to the PPR for individual model support)
I NVPCI D (support varies by model number, refer to the PPR for individual model support)
RDPKRU

V\RPKRU

AV X2 variantsof VAES / VPCLMULQDQ

The processor also adds support for shadow stack protection:

| NCSSP
RDSSP
SAVEPREVSSP
RSTORSSP
V\RSS

V\RUSS
SETSSBSY
CLRSSBSY

Chapter 2 Microarchiﬁ%f [SMBrl:émU)é]egr Processor 19

AMDAQ

Software Optimization Guide for AMD Family 19h (NDA) 56665 Rev.3.00 November 2020

The processor also adds support for Secure Nested Paging (support varies by model number, refer to
the PPR for individual model support):

RMPUPDATE
* PVALI DATE
* PSMASH

* RMPADJUST

The processor includes many features designed to improve software performance. These include the
following key features:

» Simultaneous Multi-threading

* Unified 512-Kbyte L2 cache per core

* Upto 32-Mbyte shared, victim L3, depending on configuration

* Integrated memory controller

e 32-Kbyte L1 instruction cache (IC) per core

e 32-Kbyte L1 data cache (DC) per core

* 4K op cache (OC)

» Prefetchersfor L2 cache, L1 data cache, and L1 instruction cache
* Advanced dynamic branch prediction

» 32-byteinstruction cache fetch

* 4-way x86 instruction decoding with sideband stack optimizer

* Dynamic out-of-order scheduling and specul ative execution

* Five-way integer execution plus dedicated store data movement units
* Three-way address generation (loads or stores)

» Four-way 256-bit wide floating-point and packed integer execution plus dedicated floating-point
store data movement unit and floating-point to integer data movement unit

* Integer hardware divider
e LlandL2Instruction TLB andL1land L2 DataTLB

» Six fully-symmetric core performance counters per thread

2.2 Cache Line, Fetch and Data Type Widths

The following figures diagram the cache line size and the widths of various data pipes and registers.

20 Microarchimwf [SMBFI:@U%]@T Processor Chapter 2

AMDA

56665 Rev.3.00 November 2020 Software Optimization Guide for AMD Family 19h (NDA)
OC Fetch 128 |
128
Cacheline 64 64 64
€ fetch 32 | 32 | 32] 32] 32| 3
32 32 32
Decode 16/16]16|16|16]16]16|16|16]16]16] 16

Figure 1. Cache Line Size, Fetch and Decode Widths in Bytes

Data

Cacheline
Data Pipe
Store Commit 32 32

2R

Figure 2. Data Pipe Widths in Bytes

Data Types

YMMWORD 32 32
XMMWORD 16 16 16 16
QWORD 8| 8| s8][8| s]s8s]| s8] s
DWORD alalalalalalalala]ala]alala]a]a

Figure 3. Data Type Widths in Bytes

2.3 Instruction Decomposition

The processor implements the AM D64 instruction set by means of macro ops (the primary units of
work managed by the processor) and micro ops (the primitive operations executed in the processor's
execution units). These operations are designed to include direct support for AMD64 instructions and
adhere to the high-performance principles of fixed-length encoding, regularized instruction fields,
and alarge register set. This enhanced microarchitecture enables higher processor core performance
and promotes straightforward extensibility for future designs.

Instructions are marked as fastpath single (one macro op), fastpath double (two macro ops), or
microcode (greater than two (2) macro ops). Macro ops can normally contain up to two (2) micro ops.
The table below lists some examples showing how instructions are mapped to macro ops and how
these macro ops are mapped into one or more micro ops. Note that a store or an integer instruction

Chapter 2 Microarchimwf [SMBrl:émU)é]egr Processor 21

AMDAQ

Software Optimization Guide for AMD Family 19h (NDA) 56665 Rev.3.00 November 2020

using amemory operand that is listed as a fastpath single becomes a fastpath double when using an
addressing mode with two register sources. For these instructions it is recommended that compilers
avoid addressing modes with two register sources (baset+index, or base+index-+displacement).

Table 1. Typical Instruction Mappings

Instruction Macro ops | Micro ops Comments

MOV reg,[mem] 1 1: load Fastpath single
MOV [mem],reg 1 2: store data, store Fastpath single
MOV [mem],imm 1 2: store data, store Fastpath single
REP MOVS [mem],[mem] | Many Many Microcode

ADD reg,reg 1 1: add Fastpath single
ADD reg,[mem] 1 2: load, add Fastpath single
ADD [mem],reg 2 2: load/store, add Fastpath double
MOVAPD [mem],xmm 1 2: store, FP-store-data Fastpath single
VMOVAPD [mem],ymm 1 2: store, FP-store-data 256b AVX Fastpath single
ADDPD xmm,xmm 1 1. addpd Fastpath single
ADDPD xmm,[mem] 1 2: load, addpd Fastpath single
VADDPD ymm,ymm 1 1. addpd 256b AVX Fastpath single
VADDPD ymm,[mem] 1 2: load, addpd256b AVX Fastpath single

2.4 Superscalar Organization

The processor is an out-of-order, two thread superscalar AMDG64 processor. The processor uses
decoupled execution units to process instructions through fetch/branch-predict, decode,
schedule/execute, and retirement pipelines.

The processor uses four decoupled independent integer scheduler queues, each one servicing one
ALU pipeline and one or two other pipelines, and two decoupled independent floating point
schedulers each servicing two FP pipelines and one store or FP-to-integer pipeline. These schedulers
can simultaneously issue up to sixteen micro ops to the four ALU pipes, one branch pipe, two store
data pipes, three Address Generation Unit (AGU) pipes, and six FPU pipes.

22 Microarchimwf lslﬂBlll:emﬂ)éﬁ Processor Chapter 2

AMDA
56665 Rev.3.00 November 2020 Software Optimization Guide for AMD Family 19h (NDA)

2.5 Processor Block Diagram

A block diagram of the processor is shown in Figure 4 below.

32K I-Cache
8 way

Branch Prediction

Decode Op Cache

L

4 instructions/cycle 8 macro ops/cycle

Dispatch

6 macro ops/cycle dispatched

INTEGER FLOATING POINT

Integer Rename Floating Point Rename
Scheduler Scheduler Scheduler Scheduler Scheduler Scheduler

Integer Register File FP/SIMD Register File

ALU

BR AGU AIU AGU AILU AGU AlU BR

3 loads per cycle]53-25;2}]
2 stores per cycle Load/Store S8 32K D-Cache (1+D) Cache
Queues 8 Way 8 Way

Figure 4. Block Diagram - AMD Family 19h

Chapter 2 Microarchi[ﬁtwlet?f ﬁlﬂBlll:é\lej)éJeT Processor 23

AMDAQ

Software Optimization Guide for AMD Family 19h (NDA) 56665 Rev.3.00 November 2020

2.6 Processor Cache Operation

The AMD Family 19h processor uses five caches at three hierarchy levelsto accelerate instruction
execution and data processing:

» Dedicated L1 instruction cache

» Dedicated L1 data cache

* Dedicated L1 op cache

» Unified (instruction and data) L2 cache per core

* 16-Mbyte or 32-Mbyte L 3 cache (depending on configuration)

2.6.1 L1 Instruction Cache

The processor contains a 32-K byte, 8-way set associative L1 instruction cache. Cacheline sizeis 64
bytes; 32 bytes (two 16-byte aligned blocks from within a cache line) are fetched in acycle. Functions
associated with the L1 instruction cache are fetching cache lines from the L2 cache, providing
instruction bytes to the decoder, and prefetching instructions. Requests that missin the L1 instruction
cache are fetched from the L2 cache or, if not resident in the L2 cache, from the L3 cache, if present.
Requests that missin al levels of cache are fetched from system memory.

On misses, the L1 instruction cache generatesfill requestsfor the naturally-aligned 64-byte cacheline
that includes the miss address and up to fifteen additional cache lines. These cache lines are
prefetched from addresses generated by the Branch Predict unit. For never before seen cache lines,
the branch predictor typically predicts sequential accesses, thus acting like a line prefetcher for
avoiding downstream cache miss stalls. Because code typically exhibits spatial locality, prefetchingis
an effective technique for avoiding cache miss stalls. Cacheline replacement is based on a least
recently-used replacement algorithm. The L1 instruction cacheis protected from error through the use
of parity.

2.6.2 L1 Data Cache

The processor contains a 32-Kbyte, 8-way set associative L1 data cache. Thisis awrite-back cache
that supports up to three memory operations per cycle. All three may be loads, but at most two may be
256-bit or 128-bit loads. Up to two may be stores, but at most one may be a 256-hit or 128-hit store.
In addition, the L1 cache is protected from bit errors through the use of ECC. Thereis a hardware
prefetcher that brings datainto the L1 data cache to avoid misses. The L1 data cache has a4- or 5-
cycleinteger load-to-use latency, and a 7- or 8-cycle FPU |oad-to-use latency. See section 2.12, "L oad
Store Unit", for more information on |oad-to-use latency.

The data cache natural alignment boundary is 64 bytesfor loads. A misaligned load operation suffers,
at minimum, a one cycle penalty in the load-store pipelineif it spans a 64-byte boundary. Stores have
two different alignment boundaries. The alignment boundary for accessing TLB and tags is 64 bytes,
and the alignment boundary for writing data to the cache or memory system is 32 bytes. Throughput
for misaligned loads and storesis half that of aligned loads and stores since a misaligned load or store

24 Microarchimwf lslﬂBlll:emﬁ)éﬁ Processor Chapter 2

AMDA

56665 Rev.3.00 November 2020 Software Optimization Guide for AMD Family 19h (NDA)

requires two cycles to access the data cache (versus asingle cycle for aligned loads and stores).
Operations that are misaligned across a 4K byte boundary will in some cases incur additional
significant penalties.

For aligned memory accesses, the aligned and unaligned load and store instructions (for example,
MOV UPS/MOVAPS) provide identical performance.

Natural alignment for 256-bit vector is 32 bytes and aligning them to a 32-byte boundary provides a
performance advantage.

2.6.2.1 Bank Conflicts

The L1 DC provides multiple access ports using a banked structure. The ports are shared by three
load pipes, victim reads, and store commits. Which DC banks are accessed is determined by address
bits 5:3 by the access, the size of the access, and the DC way. DC way is determined using the linear-
address-based utag/way-predictor (see section below). Port or bank conflicts can result in
performance degradation due to the need to re-flow one of the conflicting loads, which will appear as
alonger-latency load.

When port or bank conflicts are suspected, they can be reduced by the following methods:
e Usealigned memory accesses. Misaligned memory accesses may use more banks or ports

» Consolidate smaller (i.e. byte) consecutive loads or storesinto larger (i.e. doubleword or
quadword) loads or stores when possible.

* Storesthat are misaligned or less than doubleword size use banks and ports the least efficiently

» Aligned loads to consecutive addresses will never have bank conflicts with each other. In aloop
that streams through multiple regions, consider unrolling the loop and placing up to three loads
(two if floating point) from each stream together to reduce bank conflicts. Note that placing more
than three loads (two if floating point) consecutively in the code stream may reduce dispatch
bandwidth in some cases. Note also that due to out-of-order execution, placing loads together
does not guarantee that they will be executed together.

2.6.2.2 Linear address utag/way-predictor

The L1 data cache tags contain alinear-address-based microtag (utag) that tags each cacheline with
the linear address that was used to access the cachelineinitially. Loads use this utag to determine
which way of the cacheto read using their linear address, which is available before the load's physical
address has been determined viathe TLB. The utag is a hash of the load's linear address. Thislinear
address based |ookup enables a very accurate prediction of the way the cachelineislocated in prior to
aread of the cache data. Thisallows aload to read just asingle cache way, instead of all 8. This saves
power and reduces bank conflicts.

It is possible for the utag to be wrong in both directions: it can predict hit when the access will miss,
and it can predict miss when the access could have hit. In either case, afill request to the L2 cacheis
initiated and the utag is updated when L 2 responds to the fill request.

Chapter 2 Microarchimwﬁj)f [SMBrl:émU)é]egr Processor 25

AMDAQ

Software Optimization Guide for AMD Family 19h (NDA) 56665 Rev.3.00 November 2020

Linear aliasing occurs when two different linear addresses are mapped to the same physical address.
This can cause performance penalties for loads and stores to the aliased cachelines. A load to an
addressthat isvalid in the L1 DC but under a different linear aliaswill see an L1 DC miss, which
requires an L2 cache request to be made. The latency will generally be no larger than that of an L2
cache hit. However, if multiple aliased loads or stores are in-flight simultaneously, they each may
experience L1 DC misses as they update the utag with a particular linear address and remove another
linear address from being able to access the cacheline.

Itisalso possible for two different linear addresses that are NOT aliased to the same physical address
to conflict in the utag, if they have the same linear hash. At agiven L1 DC index (11:6), only one
cacheline with agiven linear hash is accessible at any time; any cachelines with matching linear
hashes are marked invalid in the utag and are not accessible.

2.6.3 L2 Cache

The processor implements a unified 8-way set associative write-back L2 cache per core. Thison-die
L2 cacheisinclusive of the L1 cachesin the core. The L2 cache sizeis 512 Kbytes with avariable
load-to-use latency of no lessthan 12 cycles. The L2 to L1 data path is 32 bytes wide.

2.6.4 L3 Cache

The AMD Family 19h processor implements an up to 32-MB L3 cache (depending on SOC
configuration) that is 16-way set associative and shared by eight coresinside a CPU complex. The L3
isawrite-back cache populated by L2 victims. When thereisan L3 hit, the line isinvalidated from
the L3 if the accesswas a store. It isinvalidated from the L3 if the access was aload and the line was
read by just one core. It staysvalidinthe L3 if it was acode fetch. It staysvalid inthe L3 if it wasa
load and the line has been read by more than one core. The L3 maintains shadow tags for each L2
cache in the complex. If acore missesinitslocal L2 and also in the L3, the shadow tags are
consulted. If the shadow tags indicate that the data resides in another L2 within the complex, a cache-
to-cache transfer isinitiated within the complex. The L3 has an average |oad-to-use latency of 46
cycles. The non-temporal cachefill hint, indicated with PREFETCHNTA, reduces cache pollution for
data that will only be used once. It is not suitable for cache blocking of small data sets. Linesfilled
into the L2 cache with PREFETCHNTA are marked for quicker eviction from the L2, and when
evicted from the L2 are not inserted into the L 3.

2.7 Memory Address Translation

A trandation-lookaside buffer (TLB) holds the most-recently-used page mapping information. It
assists and accelerates the trandlation of virtual addressesto physical addresses. A hardware table
walker loads page table information into the TLBs.

The AMD processor utilizes atwo-level TLB structure.

26 Microarchimwf lslﬂBlll:emﬁ)éﬁ Processor Chapter 2

AMDA

56665 Rev.3.00 November 2020 Software Optimization Guide for AMD Family 19h (NDA)

2.7.1 L1 Translation Lookaside Buffers

The processor contains a fully-associative L1 instruction TLB (ITLB) with 64 entries that can hold 4-
Kbyte, 2-Mbyte, or 1-Gbyte page entries.

The fully-associative L1 data TLB (DTLB) provides 64 entries that hold 4-Kbyte, 2-Mbyte, or 1-
Gbyte page entries.

If a16-Kbyte aligned block of four consecutive 4-Kbyte pages are also consecutive and 16-Kbyte
aligned in physical address space and have identical page attributes, the processor may
opportunistically store them in asingle TLB entry resulting in increased effective capacity for both
L1and L2 DTLB and ITLB. Thisisonly done when the processor is operating in long mode.

2.7.2 L2 Translation Lookaside Buffers

The processor provides an 8-way set associative L2 ITLB with 512 entries capable of holding 4-
Kbyte pages, and 2-Mbyte pages. 1-Gbyte pages are not held in the L2 ITLB; they are smashed into
2-Mbyte pagesinthe L2 ITLB.

The L2 DTLB provides aunified 16-way set-associative L2 DTLB with 2048 entries capable of
holding 4-Kbyte pages, 2-Mbyte pages, and page-directory entries (PDES) used to speed up table
walks.

2.7.3 Hardware Page Table Walkers

The processor has six hardware page table walkers to handle L2 TLB misses. Misses can start
speculatively from either the instruction or the data side. As was described in section 2.7.2, the L2
DTLB holds PDEs, which are used to speed up tablewalks by skipping three levels of page table
reads. In addition to the PDE storage in the L2 DTLB, the table walker includes a 64-entry Page
Directory Cache (PDC) which holds page-map-level-4 entries (PML4Es) and page-directory-pointer
entries (PDPES) to speed up table walks. The PDC entries and the PDE entriesinthe L2 DTLB are
usable by all tablewalk requests, including instruction-side table walks. The PDC can also hold 1-
Gbyte pages evicted fromthe L1 DTLB.

Thetable walker natively supports the architecturally-defined 4-Kbyte, 2-Mbyte, and 1-Gbyte pages.
In legacy mode, 4-Mbyte entries are also supported by returning a smashed 2-Mbyte TLB entry.

Inthe L1TLBs, INVLPG, INVPCID, INVLPGB, and INVLPGA instructions cause a flush of all
smashed entries corresponding to the same 1-Gbyte guest linear address page. In the L2TLBs,
INVLPG, INVPCID, INVLPGB, and INVLPGA cause aflush of al smashed entriesin the same
context.

See the definition of the terms smashing and smashed in the Section 1.2 on page 16.

Chapter 2 Microarchimwﬁj)f [SMBrl:émU)é]egr Processor 27

AMDAQ

Software Optimization Guide for AMD Family 19h (NDA) 56665 Rev.3.00 November 2020

2.8 Optimizing Branching

Branching can reduce throughput when instruction execution must wait on the completion of the
instructions prior to the branch that determine whether the branch is taken. The processor integrates
logic that is designed to reduce the average cost of conditional branching by attempting to predict the
outcome of a branch decision prior to the resolution of the condition upon which the decision is
based.

This prediction is used to speculatively fetch, decode, and execute instructions on the predicted path.
When the prediction is correct, waiting is avoided and the instruction throughput is increased. The
branch misprediction penalty isin the range from 11 to 18 cycles, depending on the type of
mispredicted branch and whether or not the instructions are being fed from the op cache. The
common case penalty is 13 cycles.

2.8.1 Branch Prediction

To predict and accelerate branches, the processor employs:
* next-addresslogic

» branch target buffer

e return address stack (RAS)

* indirect target predictor

» advanced conditional branch direction predictor

« fetch window tracking structure

The following sections discuss these features.

28.1.1 Next Address Logic

The next-address logic determines addresses for instruction fetch. When no branches areidentified in
the current fetch block, the next-address logic calculates the starting address of the next sequential
naturally aligned 64-byte fetch block. This calculation is performed every cycle to support the
bandwidth of the op cache. Branching to the end of a 64-byte fetch block can result in loss of
prediction bandwidth as it will result in a shortened fetch block. When branches are identified, the
next-address logic is redirected by the branch target and branch direction prediction hardware to
generate a non-sequential fetch block address. The processor facilities that are designed to predict the
next instruction to be executed following a branch are detailed in the following sections.

2.8.1.2 Branch Target Buffer

The branch target buffer (BTB) isatwo-level structure accessed using the fetch address of the
previous fetch block. Each BTB entry includes information for branches and their targets. Each BTB
entry can hold up to two branches if the last bytes of the branches reside in the same 64-byte aligned
cache line and the first branch is a conditional branch. Each BTB entry has limited target address

28 Microarchimwf lslﬂBlll:emﬁ)éﬁ Processor Chapter 2

AMDA

56665 Rev.3.00 November 2020 Software Optimization Guide for AMD Family 19h (NDA)

storage shared between the two branches; Branch targets that differ from the fetch addressin alarge
number of the least significant bits can limit aBTB entry to holding a single branch.

Each level of BTB holds an increasing number of entries, and prediction from the larger BTBs have
higher latencies. When possible, keep the critical working set of branchesin the code as small as
possible (see Software Optimization Guide for AMD Family 15h, Section 7.6). L1BTB has 1024
entries and predicts with zero bubbles for conditional and unconditional direct branches, and one
cyclefor calls, returns and indirect branches. L2BTB has 6656 entries and creates three bubbles if its
prediction differsfrom L1BTB.

2.8.1.3 Return Address Stack

The processor implements a 32-entry return address stack (RAYS) per thread to predict return
addresses from anear call. As calls are fetched, the address of the following instruction is pushed
onto the return address stack. Typically, the return addressis correctly predicted by the address
popped off the top of the return address stack. However, mispredictions sometimes arise during
specul ative execution that can cause incorrect pushes and/or pops to the return address stack. The
processor implements mechanisms that correctly recover the return address stack in most cases. If the
return address stack cannot be recovered, it isinvalidated and the execution hardware restoresit to a
consistent state.

The following sections discuss some common coding practices used to optimize subroutine calls and
returns.

2.8.1.3.1 CALL Oh

When the CALL instruction is used with adisplacement of zero, it is recognized and treated specialy;
the RAS remains consistent even if there is not a corresponding RET instruction.

To get the value in the RIP register into a general-purpose register in 64-bit software, you can use
RIP-relative addressing, as in the following example:

LEA RAX, [RIP+0] ; RAX contains the value of RIP

28.1.3.2 REP RET

For prior processor families, such as Family 10h and 12h, athree-byte return-immediate RET
instruction had been recommended as an optimization to improve performance over asingle-byte
near-return. For processor Family 19h thisis no longer recommended and a single-byte near-return
(opcode C3h) can be used with no negative performance impact. Thiswill result in smaller code size
over the three-byte method. For the rationale for the former recommendation, see section 6.2 in the
Software Optimization Guide for AMD Family 10h and 12h Processors.

Chapter 2 Microarchimwﬁj)f [SMBrl:émU)é]egr Processor 29

AMDAQ

Software Optimization Guide for AMD Family 19h (NDA) 56665 Rev.3.00 November 2020

2.8.1.3.3 Function Inlining

Calls and returnsincur asingle cycle bubble for an L1 BTB prediction. Therefore, function calls
within hot loops can be inlined for better performance if there are few callers to the function or if the
function is small (See section 8.3 of Software Optimization Guide for AMD Family 15h Processor).

2.8.1.4 Indirect Target Predictor

The processor implements a 1536-entry indirect target array used to predict the target of some non-
RET indirect branches. If a branch has had multiple different targets, the indirect target predictor
chooses among them using global history at L2 BTB correction latency. Only alimited number of
indirect targets that cross a 64MB aligned boundary relative to the branch address can be tracked in
the indirect target predictor. Software should limit the number of indirect branch targets that cross
such a boundary.

Branches that have always had the same target are predicted using the static target from the branch's
BTB entry. For thisreason, code should attempt to reduce the number of different targets per indirect
branch.

2.8.1.5 Advanced Conditional Branch Direction Predictor

The conditional branch predictor is used for predicting the direction of conditional near branches.
Only branches that have been previously discovered to have both taken and fall-through behavior will
use the conditional predictor. The conditional branch predictor uses a global history scheme that
keeps track of the previously executed branches. Global history is not updated for never-taken
branches. For this reason, dynamic branches which are biased towards not-taken are preferred.
Branch behavior which depends on deep history or which does not correlate well with global history
will be mispredicted often.

When possible, avoid branches which alternate between taken and not-taken. If aloop is executed
twiceand it isasmall loop, it may be beneficial to unroll it.

Conditional branches that have not yet been discovered to be taken are not marked in the BTBs.
These branches are implicitly predicted not-taken. Conditional branches are predicted as always-
taken after they are first discovered to be taken. Conditional branches that are in the aways-taken
state are subsequently changed to the dynamic state if they are subsequently discovered to be not-
taken, at which point they are eligible for prediction with the dynamic conditional predictor.

2.8.1.6 Fetch Window Tracking Structure

Fetch windows are tracked in a 64-entry (32 entriesin SMT mode) FIFO from fetch until retirement.
Each entry holds branch and cacheline information for up to afull 64-byte cacheline. If asingle BTB
entry isnot sufficient to allow prediction to the end of the cache line, additional entriesare used. If no
branches are identified in a cacheline, the fetch window tracking structure will use asingle entry to
track the entire cacheline.

30 Microarchimwf lslﬂBllliemﬁ)éﬁ Processor Chapter 2

AMDA

56665 Rev.3.00 November 2020 Software Optimization Guide for AMD Family 19h (NDA)

If the fetch window tracking structure becomes full, instruction fetch stalls until instructions retire
from the retire control unit or a branch misprediction flushes some entries. Both mispredicting and
retiring branches use information from this structure to update the prediction structures as needed.

2.8.2 Boundary Crossing Branches

Branches whose target crosses a one-megabyte aligned boundary are unable to share BTB entries
with other branches. Excessive occurrences of this scenario can reduce effective BTB capacity if the
BTB entry could have otherwise been shared. Only alimited number of targets that cross a 128GB
aligned boundary relative to the branch address can be tracked in the L1 and L2 BTBs. Software
should limit the number of branch targets that cross such a boundary.

2.8.3 Loop Alignment

For the processor loop alignment is not usually a significant issue. However, for hot loops, some
further knowledge of trade-offs can be helpful. Since the processor can read an aligned 64-byte fetch
block every cycle, aligning the end of the loop to the last byte of a 64-byte cache lineisthe best thing
to do, if possible.

For very hot loops, it may be useful to further consider branch placement. The branch predictor can
process the first two branches after the cache line entry point with asingle BTB entry. For best
performance, keep the number of predicted branches per cache line entry point at two or below. Since
BTB entries can hold up to two branches, predicting a third branch will require a additional BTB
entry and additional cycles of prediction latency.

This should not be confused with branches per cache line. For example, it isstill optimal to have three
or four branches per cache line if the second branch is unconditional or if thefirst or second branchis
taken so frequently that the third and fourth branches are seldom executed.

2.8.3.1 Encoding Padding for Loop Alignment

Aligning loops is typically accomplished by adding NOP instructions ahead of the loop. This section
provides guidance on the proper way to encode NOP padding to minimize its cost. Generally, it is
beneficial to code fewer and longer NOP instructions rather than many short NOP instructions,
because while NOP instructions do not consume execution unit resources, they still must be
forwarded from the Decoder and tracked by the Retire Control Unit.

Thetable below lists encodings for NOP instructions of lengthsfrom 1 to 15. Beyond length 8, longer
NOP instructions are encoded by adding one or more operand size override prefixes (66h) to the
beginning of the instruction.

Length | Encoding

1 90
2 66 90
3 OF 1F 00

Chapter 2 Microarchimwf [SMBrl:émU)é]egr Processor 31

AMDAQ

Software Optimization Guide for AMD Family 19h (NDA)

56665 Rev.3.00 November 2020

Length | Encoding

4 OF 1F 40 00

5 OF 1F 44 00 00

6 66 OF 1F 44 00 00

7 OF 1F 80 00 00 00 00

8 OF 1F 84 00 00 00 00 00

9 66 OF 1F 84 00 00 00 00 00

10 66 66 OF 1F 84 00 00 00 00 00

11 66 66 66 OF 1F 84 00 00 00 00 00

12 66 66 66 66 OF 1F 84 00 00 00 00 00

13 66 66 66 66 66 OF 1F 84 00 00 00 00 00

14 66 66 66 66 66 66 OF 1F 84 00 00 00 00 00
15 66 66 66 66 66 66 66 OF 1F 84 00 00 00 00 00

The recommendation above is optimized for the processor.

Some earlier AMD processors, such as the Family 15h processor, suffer a performance penalty when
decoding any instruction with more than 3 operand-size override prefixes. While this penalty is not
present in Family 19h processors, it may be desirable to choose an encoding that avoids this penalty
in case the code is run on a processor that does have the penalty.

The 11-byte NOPisthe longest of the above encodings that uses no more than 3 operand size override
prefixes (byte 66h). Beyond 11 bytes, the best single solution applicable to all AMD processorsis to
encode multiple NOP instructions. Except for very long sequences, thisis superior to encoding a JIMP
around the padding.

The table below shows encodings for NOP instructions of length 12—15 formed from two NOP
instructions (a NOP of length 4 followed by a NOP of length 8-11).

Length | Encoding

12 OF 1F 40 00 OF 1F 84 00 00 00 00 00

13 OF 1F 40 00 66 OF 1F 84 00 00 00 00 00

14 OF 1F 40 00 66 66 OF 1F 84 00 00 00 00 00
15 OF 1F 40 00 66 66 66 OF 1F 84 00 00 00 00 00

The AMDG64 | SA specifies that the maximum length of any single instruction is 15 bytes. To achieve
padding longer than that it is necessary to use multiple NOP instructions. For the processor use a
series of 15-byte NOP instructions followed by a shorter NOP instruction. If taking earlier AMD

processor families into account, use a series of 11-byte NOPs followed by a shorter NOP instruction.
Software should avoid instructions (including NOPs) longer than 8 bytesif code footprint islarge and
unlikely to be fetched from Op Cache. Only the first of the four instruction decoders in Family 19h
processors can decode instructions longer than 8 bytes.

32 Microarchimwf [SMBh:BmU)éJQET Processor Chapter 2

AMDA

56665 Rev.3.00 November 2020 Software Optimization Guide for AMD Family 19h (NDA)

Asadlightly more efficient alternative to inserting NOPs for padding, redundant prefixes can be used
to pad existing instructions without affecting function. This has the advantage of fewer instructions
being kept in the op cache and maintained throughout the machine pipeline. For example, operand
overrides (byte 66h) can be added to an instruction that already has operand overrides without
changing function. Whereas padding with NOPs is aways possible, this method of using redundant
prefixesis only practical when there are already useful instructions present that use prefixes.

2.9 Instruction Fetch and Decode

The processor fetches instructions from the instruction cache in 32-byte blocks that are 16-byte
aligned and contained within a 64-byte aligned block. The processor can perform such a 32-byte fetch
every cycle.

The fetch unit sends these bytes to the decode unit through a 24 entry Instruction Byte Queue (IBQ),
each entry holding 16 instruction bytes. In SMT mode each thread has 12 dedicated IBQ entries. The
IBQ acts as a decoupling queue between the fetch/branch-predict unit and the decode unit.

The decode unit scans two of these IBQ entriesin a given cycle, decoding a maximum of four
instructions.

The instruction decode window is 32 bytes, aligned on a 16-byte boundary. Having 16 byte aligned
branch targets gets maximum picker throughput.

Only thefirst pick slot (of 4) can pick instructions greater than eight bytesin length. Avoid having
more than one instruction in a sequence of four that is greater than eight bytes in length.

2.9.1 Op Cache

The op cache (OC) isacache of previously decoded instructions. When instructions are being served
from the op cache, normal instruction fetch and decode are bypassed. Thisimproves pipeline latency
because the op cache pipeline is shorter than the traditional fetch and decode pipeline. It improves
bandwidth because the maximum throughput from the op cache is 8 macro ops per cycle whereas the
maximum throughput from the traditional fetch and decode pipeline is 4 instructions per cycle.
Finally, it improves power because there is no need to re-decode instructions.

The op cache is organized as an associative cache with 64 sets and 8 ways. At each set-way
intersection is an entry containing up to 8 macro ops. The maximum capacity of the op cacheis 4K
ops. The actual limit may be less due to efficiency considerations. Avoid hot code regions that
approach this size for asingle thread or half this size for two SMT threads. The OC is physically
tagged, so OC entries can be shared between the two threads when fetching shared code.

When instructions are decoded, they are also built into the op cache. Multiple instructions are built
together into an op cache "entry". Up to 8 sequential macro ops may be cached together in an entry.

Op cache entry limits:
e 8 macro ops

Chapter 2 Microarchimwf ﬁlﬂBllfélmU)éﬁ Processor 33

AMDAQ

Software Optimization Guide for AMD Family 19h (NDA) 56665 Rev.3.00 November 2020

* 8 32-bit immediates/displacements (64-bit immediates/displacements take two slots), but every
two 32-bit immediates/displacements or part thereof beyond 4 reduce the max number of macro
ops by 1.

* 4 microcoded instructions. The normal macro op restriction does not apply when microcoded
instructions are present. Instead alimit of 5 is applied on the sum of microcoded instructions and
non-microcoded macro ops.

The op cache is modal and the machine can only transition between instruction cache mode (IC
mode) and op cache mode (OC mode) at certain points. The machine can only transition from IC
mode to OC mode at a branch target. Once in OC mode, the machine will generally remainin this
mode until there is a fetch address for which there is no corresponding OC entry (a miss).

If there are an excess of mode transitions, |PC can be negatively impacted. Limiting hot regions of
code to fit in the capacity of the op cache will minimize the possibility of mode transitions, and it is
particularly important when unrolling loops to avoid exceeding the capacity of the op cache.

Use of the OC requires aflat memory model (64-bit or 32-bit with CS base of 0 and CS limit at max).

2.9.2 Idioms for Dependency removal

A number of instructions can be used clear aregister and break the dependency without the need to
load an immediate value of zero. These are referred to as Zeroing Idioms.

The processor supports the following Zeroing idioms:

GPR Zeroing Idioms

* XOR reg, reg (clearsregand theflags, O-cycle operation)

e SUB reg, reg (clearsregand theflags, O-cycle operation)

« CM reg, reg(setsZflagand clearsother flags, O-cycle operation)

e SBB reg, reg (copiesthezeroextended value of the carry flag into reg without a dependency
on the previous value of reg, 1-cycle operation)

SIMD Zeroing idioms (all clear destination register as a O-cycle operation)
e XORP(S/D) xmm xnm

e VXORP(S/ D) ynmmi xmm ynmi Xxmm ynmm xnm

« ANDNP(S/ D) xmm xmm

« VANDNP(S/ D) ynm xnmm ynmmi xnmm ynmi xnmm

e PCMPGI(B/WD Q xmm xmm

e VPCMPGT(B/WD/ Q ymi xmm ynm xnm ynm xmm

« PANDNXNMM xnmm

34 Microarchimwf [SMBFI:@U%]@T Processor Chapter 2

AMDA

56665 Rev.3.00 November 2020 Software Optimization Guide for AMD Family 19h (NDA)

e VPANDN Y xmm ymi xmm ynm xnm

e PXORXxmm xnm

e VPXORynmm xnm ynm xnmm ymi xmm

e PSUBB(B/WDQ) xmm xmm

« VPSUB(B/WD Q ynmm xnm ynmi xnmm ynmi Xxmm

A number of instructions can be used to set aregister to all ones and break input dependencies. These
arereferred to as Ones [dioms:

The processor supports the following Ones idioms:
e PCVPEQ B/WD Q xnmm xmm
* VPCVPEQ B/WD Q ynmm xnm ynmmi xmm ynm xnmm

2.9.3 Branch Fusion

The processor’ s decode unit is able to fuse conditional branch instructions with certain flag writing
instructions into one or two macro ops depending on the number of macro ops that the flag writing
instruction produces. The resulting macro ops are built into the Op Cache. Since Branch Fusion
eliminates 1 macro op, it increases the dispatch, issue and retire bandwidth.

The following conditions need to be met for fusion to happen:
The conditional branch needs to follow the flag writing instruction

The following flag writing instructions support branch fusion with their reg/reg, reg/imm and
reg/mem forms

« CWP
e TEST
« SUB
e ADD

* | NC (no fusion with branches dependent on CF)
e DEC (no fusion with branches dependent on CF)

« OR
« AND
« XOR

Chapter 2 Microarchimwf ﬁlﬂBllliémU)éﬁ Processor 35

AMDAQ

Software Optimization Guide for AMD Family 19h (NDA) 56665 Rev.3.00 November 2020

CMP and TEST instructions also support branch fusion with their mem/reg and mem/imm forms.
However, when a CMP instruction uses a memory operand and aregister operand, it is recommended
that software place the memory operand as the second operand using the 0x3A or 0x3B opcode for
best performance.

JCXZ branches do not support fusion
The flag writing instruction cannot have both an immediate and a displacement operand
The flag writing instruction cannot use rlP relative memory addressing

The combined length of the two instructions cannot exceed 15 bytes

2.9.4 Zero Cycle Move

The processor is able to execute certain register to register mov operations with zero cycle delay. The
following instructions use perform the mov operation with zero cycle delay:

MOV r32, r32, MOV r64, r64

MOVSXD r 32, r32

XCHG EAX, r32, XCHG RAX, r64

XCHG r32, r32, XCHG r64, ro64

(V) MOVAPD xnmi, xnm®2, (V) MOVAPS xnmil, xnmR
VMOVAPD ym, ym®2, VMOVAPS ymi, ymm?P

(V) MOVDQA xmmil, xmm?2, (V) MOVDQU xnmil, xnmmP
VMOVDA ymmi, ym®2, VMOVDQUymi, ymP

(V) MOVUPD xmmL, xmm?® (V) MOVUPD xmmil, xnmR
VMOVUPS ynmil, ym®2 VMOVUPSYy L, ynm®

2.9.5 Stack Pointer Tracking for Dependency Removal

The integer rename unit provides a mechanism to optimize the execution of certain implicit
operations on the stack pointer as well as certain references to the stack pointer. The term stack
pointer refersto the rSP register. When the stack pointer is tracked supported instructions no longer
have an execution dependency on older instructions which perform implicit updates of the stack
pointer.

The following instructions with implicit stack pointer update support Stack Pointer Tracking.

36 Microarchimwf lslﬂBllliemﬁ)éﬁ Processor Chapter 2

AMDA

56665 Rev.3.00 November 2020 Software Optimization Guide for AMD Family 19h (NDA)

PUSH r eg/ mem i mm (excluding PUSH rSP)
POP r eg/ mem(excluding POPrSP)

CALL near rel

CALL near abs reg

RET near

RET near imm

The following instructions referencing the stack pointer can take advantage of Stack Pointer
Tracking:

Memory references for load and store using rSP as base or index register
MOV reg, rSP
L EA with the following memory addressing forms [rSP + displ], [rSP], [rSP + index* scale + displ]

Instructions updating rSP, not mentioned as supporting Stack Pointer Tracking, and instructions
referencing rSP, not listed as using Stack Pointer Tracking, incur a penalty of an additional op and
reset the tracking. Once tracking is reset there is no additional penalty until a supported update of rSP
starts tracking again.

2.9.6 Dispatch

The processor may dispatch up to 6 macro ops per cycle into the execution engine. For some
instruction mixes, the processor may be limited by internal restrictions to less than 6 macro ops of
dispatch. However, software may optimize dispatch bandwidth by balancing the operations in any
rolling window of 6 macro ops. If the set of operations within such awindow are a mix of operation
types that can be executed concurrently in the execution engine, they may also be dispatched
concurrently.

To optimize dispatch bandwidth, arolling window of 6 macro ops should contain at most:
Maximum of 1 Integer Divide

Maximum of 2 Integer Multiplies

Maximum of 2 Floating Point L oads

Maximum of 2 Branches

Maximum of 3 Stores + Loads without an ALU component

Maximum of 3 Operations with both aLoad and ALU component

Maximum of 4 ALU operations, including Loads with both aLoad and ALU component

Chapter 2 Microarchimwf [SMBrl:émU)é]egr Processor 37

AMDAQ

Software Optimization Guide for AMD Family 19h (NDA) 56665 Rev.3.00 November 2020

Some AL U operations can only be executed on a subset of execution units and therefore have alower
limit than above. See appendix A for the assignment mapping between instructions and number of
macro ops and which execution units they may use. Thiswill help determine whether a set of
instructions may be executed concurrently, and therefore whether they may be subject to the dispatch
restriction described above. For operations other than integer divide that are only supported on one
functional unit, optimal dispatch bandwidth is still alowed with two such operations in the window.
No specific limitations are placed on the dispatch of floating point computational instructions except
for their load/store components.

2.9.7 Using Pause Instruction to Optimize Spin Loops

Software may use the PAUSE instruction to reduce power consumption and other resource usagein a
spin loop while waiting after failing to acquire a contended lock. The exact effect of the PAUSE
instruction isimplementation dependent, but in Family 19h Processors the PAUSE instruction causes
the executing thread to stop dispatch of macro ops for a period of approximately 64 cycles.

38 Microarchimwf lslﬂBllliemﬁ)éﬁ Processor Chapter 2

AMDA

56665 Rev.3.00 November 2020 Software Optimization Guide for AMD Family 19h (NDA)

2.10 Integer Execution Unit

Figure 5 on page 39 diagrams the integer execution unit.

The integer execution unit for the processor consists of the following major components:
» schedulers

e execution units

* retire control

6 macro ops per cycle dispatch

]

Integer Rename

(]

\ | il

Scheduler 3| |Scheduler 2| Scheduler1 Eciheduero
mll ﬂJ 1

Integer Register File

PSR Ry

o -
-
s
-

™M — o~ o = o O o
2|2 (2|2 3|22 | ©
. < m < < < < m <
3x 64-bit
T 1
L L

Load-Store Unit

Figure 5. Integer Execution Unit Block Diagram

Chapter 2 Microarchiﬁwf ISIUBllliélej)éJéT Processor 39

AMDAQ

Software Optimization Guide for AMD Family 19h (NDA) 56665 Rev.3.00 November 2020

2.10.1 Schedulers

The schedulers can receive up to six macro ops per cycle, with alimit of two per scheduler. Each
scheduler can issue one micro op per cycleinto each of its associated pipelines shown in the diagram.
In addition to the pipelines shown, scheduler 0, 1, and 2 also can issue operations for store data
movement in addition to issuing ops to the other two pipelines associated to each scheduler. The
scheduler tracks operand availability and dependency information as part of itstask of issuing micro
ops to be executed. It al'so ensures that older micro ops which have been waiting for operands are
executed in atimely manner. Micro ops can be issued and executed out-of-order.

2.10.2 Execution Units

The processor contains 4 general purpose integer execution pipes. Each pipe has an ALU capable of
general purpose integer operations. ALUL additionally has multiply/CRC/PDEP/PEXT capability
and ALUO additionally has divide and branch execution capability. There is also a separate branch
execution unit (BRU) attached to scheduler 3. There are three Address Generation Units (AGUS) for
all load and store address generation. There are also 3 store data movement units associated with the
same schedulers as the AGUSs.

Many ssmple ALU operations, including most ssmple integer arithmetic, logical, branch, and
conditional move instructions can be executed in asingle cycle.

Shift instructions SHLD and SHRD have athree-cycle latency.

The AMD family 19h processor has native ALU support for PDEP/PEXT, so one such instruction can
be sustained per cycle, with athree-cycle latency for producing the result. Software that uses different
codepaths for processors with fast and slow PDEP/PEXT instructions should choose the fast
PDEP/PEXT codepath for family 19h processors.

While two-operand LEA instructions are mapped as a single-cycle micro op in the ALUS, three-
operand LEA instructions are mapped as two macro opsto ALU.

The integer multiply unit can handle multiplies of up to 64 bits x 64 bits with 3 cycle latency, fully
pipelined. If the multiply instruction has 2 destination registers, an additional one-cycle latency for
the second result is required.

The hardware integer divider unit has atypical latency of 8 cyclesplus 1 cycle for every 9 bits of
quotient. The divider allows limited overlap between two consecutive independent divide operations.
“Typical” 64-bit divides allow athroughput of one divide per 8 cycles (where the actual throughput is
data dependent). For further information on instruction latencies and throughput, see Appendix A.

2.10.3 Retire Control Unit

Theretire control unit (RCU) tracks the completion status of all outstanding operations (integer,
load/store, and floating-point) and is the final arbiter for exception processing and recovery. The unit
can receive up to 6 macro ops dispatched per cycle and track up to 256 macro ops in-flight in non-

40 Microarchimwf lslﬂBlll:emﬁ)éﬁ Processor Chapter 2

AMDA

56665 Rev.3.00 November 2020 Software Optimization Guide for AMD Family 19h (NDA)

SMT mode or 128 per thread in SMT mode. In cases where a fastpath single was turned into a
fastpath double due to addressing mode, a single retire queue entry can still track both macro ops. A
macro op is eligible to be committed by the retire unit when all corresponding micro ops have
finished execution. For most cases of fastpath double macro ops, it is further required that both macro
ops have finished execution before commitment can occur. The retire unit handles in-order commit of
up to eight macro ops per cycle.

The retire control unit also manages internal integer register mapping and renaming. The integer
physical register file (PRF) consists of 192 registers, with up to 38 per thread mapped to architectural
state or micro-architectural temporary state. The remaining registers are available for out-of-order
renames.

2.11 Floating-Point Unit

The processor provides native support for 32 bit single precision, 64 bit double precision and 80 bit
extended precision primary floating-point data types as well as 128 bit and 256 bit packed integer,
single and double precision vector floating-point data types. The floating-point load and store paths
are 256 bits wide.

The floating-point unit (FPU) utilizes a coprocessor model for all operations that use X87, MMX ™,
XMM, YMM, or floating point control/status registers. As such, it contains its own scheduler, register
file, and renamer; it does not share them with the integer units. It can handle dispatch and renaming of
6 floating point macro ops per cycle and the scheduler can issue 1 micro op per cycle for each pipe.
The floating-point scheduler has a 2* 32 entry macro op capacity. The floating-point unit shares the
retire queue with the integer unit. The retire queue can hold up to 256 macro ops or 128 per thread in
SMT mode. Macro ops can be dispatched to the 64 entry Non Scheduling Queue (NSQ) even if
floating-point scheduler isfull to allow loads and stores to be accel erated.

Figure 6 below shows a basic diagram of the floating point unit and how it interfaces with the other
unitsin the processor. Notice that there are 4 execution pipes (pipes 0 through 3) which can execute
an operation every cycle. The FP unit receives 2 loads from the load/store unit every cycle that are up
to 256b each. There are dedi cated busses to enable fast moves between the floating point registers and
the general registersin the EX unit. Stores and floating point to general purpose register transfer have
2 dedicated pipelines (pipe 5 and 6). Note that FP stores are supported on two pipelines, but
throughput is limited to one per cycle. Family 19h processors have reduced the latency of executing
FMA instructionsto 4 cycles. For further information on instruction latencies and throughput, see
Appendix A.

Chapter 2 Microarchimwﬁj)f [SMBrl:émU)é]egr Processor 41

AMDAQ

Software Optimization Guide for AMD Family 19h (NDA) 56665 Rev.3.00 November 2020

iy

Floating Point/SIMD Rename
]

64 entry NSQ

| I

Scheduler 0 Scheduler 1
32 e'ﬂ|tries 32 entries
]
11 1

FP/SIMD Register File
(o))

2x 256-bit —
o
loads [[a I [a | Integer
[I I

Execution
256-bit stores ’ Unit

Load-Store Unit |

Convert

LN

Pipe O
Pipe 2
ipe 4

Pipe 1
Pipe 3

Figure 6. Floating-Point Unit Block Diagram

Pipes 0 and 1 support operations that require three operands. When three operands are required for an
operation, it uses ones of the source busses normally allocated to pipe3, which can block any
execution in pipe3. If datafor pipe3 or the 3rd operand can be bypassed from a result generated that
same cycle, then pipe3 can execute an operation even when either pipe0 or pipel require athird
source.

42

Microarchimwf ﬁlﬂBﬁ&m@gﬁ Processor Chapter 2

AMDA

56665 Rev.3.00 November 2020 Software Optimization Guide for AMD Family 19h (NDA)
2111 Floating Point Execution Resources
Unit A Domein | Ops Supported
0[1]2]|3]4]¢&
AVIUL XX F (VAMUL*, (v)AMA*, Hoating Point Compares, Blendv(DQ)
FADD X | X F (V)FADD*
FOVT XX F All convert gperati ons exaept pedk/unpack
FIV* X F All Divideand Souare Root exogpt Rediprocal Approximmetion
AVISC XX XX F Movesand Logicd operdions on Hoating Roint Data Types
STORE X[IX]|€ Sares and Moveto Generd Regigter (EX) Opardions
VADD? | X|X|X|X [Integer Adds, Subtracts, and Compares
VMUL | X X | Integer Multiplies, SAD, Blendvb
VSHUF? X[X I Data Shuffles, Packs, Unpacks, Parmute
VHIFT XX | Bit Shift Left/Right gperations
VMISC | X[X[XX I Moves and Logicd opardions on Padked Integer Deta Types
AES XX I *AES
aMm XX *COLM*
Notes:
1. FDIV unit can support 2 simultaneous operations in flight even though it occupies a single pipe.

A 0D

2.
1. Usethe SIMD nature of the SSE or AV X instruction sets to achieve significantly higher

Some complex VADD operations are not available in all pipes.
Some complex shuffle operations are only available in pipel.

Thereis 1 cycle of added latency for aresult to crossfrom Fto | or | to F domain.

11.2 Code recommendations

throughput. The processor supports SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, SSE4a, F16C,
FMA, AV X, and AV X2. The datapath is 256 bits across all operations, so optimal code will
operate on 256b (Y MM registers) with every operation using the SIMD instructions.

Do full width loads and stores. For example, use vmovapd instead of movapd or movlpd/movhpd.
Loading or storing asingle register in multiple chunksis slower than doing it with asingle
operation. If one has no choice but to use multiple loads, try to make sure they are back to back in
the code.

Clear floating point registers using one of the zeroing idioms listed in section 2.9.2 when done
using them. This allows the physical register to be freed up for speculative results and enables the
machine to break merging dependencies for ops that do not write the entire result width such as
scalar operations.

. If possible, set MXCSR.DAZ (Denorm as Zero) or MXCSR.FTZ (Flush Denorm to Zero) to 1.

The hardware supports denormal inputs and outputs with no latency impact on most operations. A

Chapter 2 Microarchimwf ﬁ'ﬂBI’T@mU)é]egr Processor 43

AMDAQ

Software Optimization Guide for AMD Family 19h (NDA) 56665 Rev.3.00 November 2020

few operations execute assuming normal floating point inputs or outputs. When the ops discover a
denormal input or output, they may be re-executed with alonger latency. These ops include
multiply, divide, and square root. Re-executing with the longer latency is avoided if the DAZ and
FTZ flags are set.

5. Avoid branches/jumpsin the calculation of values. For example, if oneneedstodoif (a > 1. 1)
then b = 4 el se b=6, then use vempgtsd followed by a predicated mov into b.

6. XMM/Y MM register-to-register moves have no latency; These instructions may be used without
penalty.

7. Try to use consistent data types for instructions operating on the same data. For example, use
VANDPS, VMAXPS, and so on when consuming the output of VMULPS.

2.11.3 FP performance on x87 code

1. Usefxchinstead of push/pop if possible asit is much faster at swapping register values.
2. Avoid instructions between FCOMand FSTSWin floating point compares.

2.11.4 Denormals

Denormal floating-point values (also called subnormals) can be created by a program either by
explicitly specifying a denormal value in the source code or by calculations on normal floating-point
values. In some instances, (MUL/DIV/SQRT) a small penalty may be incurred when these values are
encountered. For SSE/AV X instructions, the denormal penalties are afunction of the configuration of
MXCSR and the instruction sequences that are executed in the presence of a denormal value.

If denormal precision is not required, it is recommended that software set both MXCSR.DAZ and
MXCSR.FTZ. Note that setting MXCSR.DAZ or MXCSR.FTZ will cause the processor to produce
results that are not compliant with the |EEE-754 standard when operating on or producing denormal
values.

The x87 FCW does not provide functionality equivalent to MXCSR.DAZ or MXCSR.FTZ, soiitis
not possible to avoid these denormal penalties when using x87 instructions that encounter or produce
denormal values.

2.11.5 XMM Register Merge Optimization

The processor implements an XMM register merge optimization. The processor keeps track of XMM
registers whose upper portions have been cleared to zeros. This information can be followed through
multiple operations and register destinations until non-zero data is written into aregister. For certain
instructions, this information can be used to bypass the usual result merging for the upper parts of the
register. For instance, SQRTSS does not change the upper 96 bits of the destination register. If some
instruction clears the upper 96 bits of its destination register and any arbitrary following sequence of
instructions fails to write non-zero data in these upper 96 bits, then the SQRTSS instruction can
proceed without waiting for any instructions that wrote to that destination register.

44 Microarchimwf lslﬂBlll:emﬁ)éﬁ Processor Chapter 2

AMDA

56665 Rev.3.00 November 2020 Software Optimization Guide for AMD Family 19h (NDA)

The instructions that benefit from this merge optimization are:
 CVTPI 2PS

* CVTSI 2SS (32-/64-hit)
e MOVSS xmmil, xnmf

» CVTSD2SS
 CVTSS2SD

e MOLPS xnmi, [meni
e CVTSI 2SD (32-/64-hit)
e MOVSD xmmil, xnm

e MOVLPD xnmi, [meni
 RCPSS

* ROUNDSS

* ROUNDSD

* RSQRTSS

» SQRTSD

* SQRTSS

2.11.6 Mixing AVX and SSE

There isasignificant penalty for mixing SSE and AV X instructions when the upper 128 bits of the
YMM registers contain non-zero data. Transitioning in either direction will cause a micro-fault to
spill or fill the upper 128 bits of all 16 YMM registers. There will be an approximately 100 cycle
penalty to signal and handle this fault. To avoid this penalty, aVZEROUPPER or VZEROALL
instruction should be used to clear the upper 128 bits of all YMM registers when transitioning from
AV X codeto SSE or unknown code.

2.11.7 When to use FMA instead of FMUL / FADD

Software will sometimes need to choose between using FMA (multiply accumulate) or separate
FMUL / FADD operations. In those cases, the following guidelines are offered.

Do not use FMA if:

» Thecritical dependency isthrough the addend input of an FMA instruction. In this case, an FADD
provides a shorter latency. However, if in aloop you may be able to unroll to remove the dependency
and this will often result in highest performance.

Chapter 2 Microarchimwf [SMBrl:émU)é]egr Processor 45

AMDAQ

Software Optimization Guide for AMD Family 19h (NDA) 56665 Rev.3.00 November 2020

Use FMA if:

» Thecritical dependency isthrough an FMUL instruction that feeds its result as an input to an
FADD instruction. In this case, FMA provides a shorter latency than the combined FMUL + FADD
latency.

* None of the operands are in the critical dependency chain. In this case, an FMA instruction
provides more efficient use of processor resources, reduces code footprint, and in most cases reduces
power consumption.

2.12 Load-Store Unit

The load-store (L S) unit handles data accesses. The LS unit contains three largely independent pipe-
lines enabling the execution of three 256-bit memory operations per cycle. All three memory opera-

tions can be loads, with a separate maximum of two 128- or 256-bit loads. A maximum of two of the
memory operations can be stores, with a maximum of one store if the store is a 128- or 256-hit store.

The LS unit includes aload queue (LDQ). The LDQ receives|oad operations at dispatch. Loads leave
the LDQ when the load has completed and delivered data to the integer unit or the floating-point unit.
The LS unit can process up to 72 out-of-order |oads.

The LS unit utilizes a 64-entry store queue (STQ) which holds stores from dispatch until the store
data can be written to the data cache.

The LS unit dynamically reorders operations, supporting both load operations bypassing older |oads
and loads bypassing older non-conflicting stores. The LS unit ensures that the processor adheres to
the architectural load and store ordering rules as defined by the AM D64 architecture.

The LS unit supports store-to-load forwarding (STLF) when thereis an older store that contains all of
the load's bytes, and the store's data has been produced and is available in the store queue. The load
does not require any particular alignment relative to the store or to the 64B load alignment boundary
aslong asit isfully contained within the store.

The processor uses linear address bits 11:0 to determine STLF eligiblity. Avoid having multiple stores
with the same 11:0 address bits, but to different addresses (different 47:12 bits) in-flight simultane-
ously where aload may need STLF from one of them. Loads that follow stores to similar address
space should be grouped closely together, when possible.

The LS unit can track up to 24 outstanding in-flight cache misses in the Miss Address Buffer (MAB).

The AGU and LS pipelines are optimized for simple address generation modes. Base+displacement,
base+index, unscaled index+displacement, and displacement-only addressing modes (regardless of
displacement size) are considered simple addressing modes and can achieve 4-cycle load-to-use inte-
ger load latency and 7-cycle load-to-use FP load latency. Addressing modes with base+index+dis-
placement, and any addressing mode utilizing a scaled index (*2, *4, or *8 scales) are considered

46 Microarchimwf lslﬂBlll:emﬁ)éﬁ Processor Chapter 2

AMDA

56665 Rev.3.00 November 2020 Software Optimization Guide for AMD Family 19h (NDA)

complex addressing modes and require an additional cycle of latency to compute the address. Com-
plex addressing modes can achieve a 5-cycle (integer)/8-cycle (FP) load-to-use latency. It isrecom-
mended that compilers avoid complex addressing modes in latency-sensitive code.

The load store pipelines are optimized for zero-segment-base operations. A load or store that has a
non-zero segment base suffers a one-cycle penalty in the load-store pipeline. Most modern operating
systems use zero segment bases while running user processes and thus applications will not normally
experience this penalty.

This segment-base latency penalty is not additive with the above-mentioned complex addressing-
mode penalty. If an LS operation has both a non-zero base and a complex addressing mode, it requires
just asingle additional cycle of latency and can still achieve 5-cycle (integer)/8-cycle (FP) load-to-
use latency.

Chapter 2 Microarchiﬁ%f [SMBrl:émU)é]egr Processor 47

AMDAQ

Software Optimization Guide for AMD Family 19h (NDA) 56665 Rev.3.00 November 2020

3 addresses from Integer Unit
] AGUO, AGU1, AGU2

LDQ STQ

L1/L2 DTLB
and _—

Data Cache Microtags

P Tabl j 32 KB Data Cache : R;:;rrid
age Table —
Walker %::# MAB w/ 3 Load Ports e

Il

Combining
Buffer

L2 requests 3x load data to 2x load data L2 read/write L2 write data
Integer Unit to FP Unit 32 byte data

Figure 7. Load-Store Unit

2.12.1 Prefetching of Data

AMD family 19h processors implement data prefetch logic for its L1 data cache and L2 cache. In
general, the L1 data prefetchersfetch linesinto both the L1 data cache and the L2 cache, whilethe L2
data prefetchers fetch lines into the L2 cache.

The following prefetchers are included:

e L1 Stream: Uses history of memory access patterns to fetch additional sequential linesin
ascending or descending order.

48 Microarchimwf ﬁlﬂBﬁ&m@gﬁ Processor Chapter 2

AMDA

56665 Rev.3.00 November 2020 Software Optimization Guide for AMD Family 19h (NDA)

e L1 Stride: Uses memory access history of individual instructions to fetch additional lines when
each access is a constant distance from the previous.

* L1 Region: Uses memory access history to fetch additional lines when the data access for agiven
instruction tends to be followed by a consistent pattern of other accesses within alocalized region.

e L2 Stream: Uses history of memory access patterns to fetch additional sequential linesin
ascending or descending order.

e L2 Up/Down: Uses memory access history to determine whether to fetch the next or previousline
for all memory accesses.

For workloads that missin the L1 or L2 caches, software may get improved performance if data
structures are designed such that data access patterns match one of the above listed behaviors.

While prefetcher logic has been tuned to improve performance in most cases, for some programs the
access patterns may be hard to predict. This can lead to prefetching data that will not eventually be
used causing excess cache and memory bandwidth usage. This can be the case for workloads with
random access patterns or less regular access patterns such as some database applications, etc. For
this reason, some server variants of the family 19h processors support a prefetch control M SR that
can individually disable or enable the prefetchers. See Processor Programming Reference for details
on CPUID enumeration and M SR details.

2.13 Optimizing Writing Data

Write-combining is the merging of multiple memory write cycles that target locations within the
address range of awrite buffer. AMD Family 19h processor supports the memory type range register
(MTRR) and the page attribute table (PAT) extensions, which alow software to define ranges of
memory as either writeback (WB), write-protected (WP), writethrough (WT), uncacheable (UC), or
write-combining (WC).

Defining the memory type for arange of memory as WC allows the processor to conditionally
combine data from multiple write cycles that are addressed within this range into a merge buffer.
Merging multiple write cycles into a single write cycle reduces processor bus utilization and
processor stalls. Write combining buffers are al'so used for streaming store instructions such as
MOVNTQ and MOV NTI.

2.13.1 Write-Combining Definitions and Abbreviations

This section uses the following definitions and abbreviations:
* MTRR—Memory type range register

* PAT—Page attribute table

* UC—Uncacheable memory type

* WC—Write-combining memory type

Chapter 2 Microarchimwﬁj)f [SMBrl:émU)é]egr Processor 49

AMDAQ

Software Optimization Guide for AMD Family 19h (NDA) 56665 Rev.3.00 November 2020

e WT—Writethrough memory type
e WP—Write-protected memory type
WB—Writeback memory type

2.13.2 Programming Details

Write-combining regions are controlled by the MTRRs and PAT extensions. Write-combining should
be enabled for the appropriate memory ranges.

For more information on the MTRRs and the PAT extensions, see the following documents:
* AMDG64 Architecture Programmer’s Manual, Volume 2, order# 24593

* Processor Programming Reference (PPR) for AMD Family 19h Models 00h-OFh Processors,
order# 55898

2.13.3 Write-Combining Operations

To improve system performance, AMD Family 19h processor includes a Write Combining Buffer
(WCB) that consists of multiple 64-byte write buffers that are aligned to cache-line boundaries. The
write buffers aggressively combine multiple memory-write cycles of any data size that address
locations within 64-byte aligned regions. The processor continues to combine writes to this buffer
without writing the data to the system, aslong as certain rules apply (see Table 2 for more
information). The data sizes can be bytes, words, doublewords, or quadwords.

* WC memory type writes can be combined in any order up to afull 64-byte write buffer.

» All other memory typesfor storesthat go through the write buffer (UC, WP, WT and WB) cannot
be combined except when the WB memory type is over-ridden for streaming store instructions
such asthe MOVNTQ and MOV NTI instructions, etc. These instructions use the write buffers
and will be write-combined in the same way as address spaces mapped by the MTTR registers
and PAT extensions. When WCB is used for streaming store instructions, the buffers are subject to
the same flushing events as write-combined address spaces.

The processor may combine writesthat do not store all bytes of a 64-byte write buffer. These partially
filled buffers may not be closed for significant periods of time and may affect the bandwidth of the
remaining writes in a stream. Aligning write-combining operations to 64-byte cache line boundaries
avoids having partially full buffers. When software starts a long write-combining operation on a non-
cache line boundary, it may be beneficial to place awrite-combining completion event (listed in
Table 2 below) to ensure that the first partially filled buffer is closed and available to the remaining
stores.

Combining continues until interrupted by one of the conditions listed in Table 2. When combining is
interrupted, one or more bus commands are issued to the system for that write buffer and all older
write buffers, even if they are not full, as described in “ Sending Write-Buffer Data to the System” on

page 51.

50 Microarchimwf lslﬂBllliemﬁ)éﬁ Processor Chapter 2

AMDA

56665 Rev.3.00 November 2020

Software Optimization Guide for AMD Family 19h (NDA)

Table 2. Write-Combining Completion Events

Event

Comment

No Write Buffers Available

If a write needs to allocate in the write buffer when no entries
are available, the oldest write buffer is closed.

I/0 Read or Write

Any IN/INS or OUT/OUTS instruction closes combining. The
implied memory type for all INJOUT instructions is UC, which
cannot be combined.

Serializing instructions

Any serializing instruction closes combining. These
instructions include: MOVCRx, MOVDRx, WRMSR, INVD,
INVLPG, WBINVD, LGDT, LLDT, LIDT, LTR, CPUID, IRET, RSM,
INIT, and HALT.

Flushing instructions

CLFLUSH will only close the WCB if it is for WC or UC memory
type.

Locks

Any instruction or processor operation that requires a cache or
bus lock closes write-combining before starting the lock. Writes
within a lock can be combined.

Uncacheable Reads and Writes

A UC read or write closes write-combining. A WC read closes
combining only if a cache block address match occurs between
the WC read and a write in the write buffer.

Different memory type

When a store hits on a write buffer that has been written to
earlier with a different memory type than that store, the buffer is
closed and flushed.

Buffer full

Write-combining is closed if all 64 bytes of the write buffer are
valid.

TLB AD bit set

Write-combining is closed whenever a TLB reload sets the
accessed [A] or dirty [D] bits of a PDE or PTE.

Executing SFENCE (Store Fence)
and MFENCE (Memory Fence)
instructions.

These instructions force the completion of pending stores,
including those within the WC memory type, making these
globally visible and emptying the store buffer and all write-
combining buffers.

An interrupt or exception occurs.

Interrupts and exceptions are serializing events that force the
processor to write all results to memory before fetching the first
instruction from the interrupt or exception service routine

Note: See Section 2.15 on page 53 for more info on locks and memory barriers.

2.13.4 Sending Write-Buffer Data to the System

Maximum throughput is achieved by write combining when all quadwords or doublewords are valid
and the processor can use one efficient 64-byte memory write instead of multiple 16-byte memory
writes. The processor can gather writes from 8 different 64B cache lines (up to 7 from one thread).
Throughput will be best when the number of simultaneous write-combining streamsis low.

Chapter 2 Microarchiﬁ%f [SMBrl:émU)é]egr Processor 51

AMDAQ

Software Optimization Guide for AMD Family 19h (NDA)

2.14 Simultaneous Multi-Threading

56665 Rev.3.00 November 2020

In order to improve instruction throughput, the processor implements Simultaneous Multi-Threading
(SMT). Single-threaded applications do not always occupy all resources of the processor at all times.
The processor can take advantage of the unused resources to execute a second thread concurrently.

Resources such as queue entries, caches, pipelines, and execution units can be competitively shared,
watermarked, or statically partitioned in two-threaded mode (see Table 3 below).

These categories are defined as:

» Competitively Shared: Resource entries are assigned on demand. A thread may use all resource

entries.

» Watermarked: Resource entries are assigned on demand. When in two-threaded mode a thread
may not use more resource entries than are specified by awatermark threshold.

» Statically Partitioned: Resource entries are partitioned when entering two-threaded mode. A
thread may not use more resource entries than are available in its partition.

Note that "Competitively Shared" islisted as the default protocol for the L3 cache, but sharing policy
can be configured. See document 56375 "AMDG64 Platform Quality of Service Extensions’ and
Processor Programming Reference for details.

Table 3. Resource Sharing

Resource

Competitively Shared

Watermarked

Statically Partitioned

L1 Instruction Cache

X

ITLB

Op Cache

Dispatch Interface

L1 Data Cache

DTLB

L2 Cache

L3 Cache

XX X[X[X[X]| X

Integer Scheduler

>

Integer Register File

x

Load Queue

Floating Point Physical Register

Floating Point Scheduler

x

Memory Request Buffers

Op Queue

x

Store Queue

Write Combining Buffer

Retire Queue

52 Microarchimwf ﬁlﬂBﬁ&m@gﬁ Processor

Chapter 2

AMDA

56665 Rev.3.00 November 2020 Software Optimization Guide for AMD Family 19h (NDA)

For partitioned resources, arbitration between threads is generally round-robin unless a given thread
is stalled.

It is expensive to transition between single-threaded (1T) mode and dual-threaded (2T) mode and
vice versa, so software should restrict the number of transitions. If running in 2T mode, and one
thread finishes execution, it may be beneficia to avoid transitioning to 1T mode if the second thread
Is also about to finish execution.

If the two threads are running different code, they should run in different linear pages to reduce BTB
collisions,

Two threads which concurrently run the same code should run at the same linear and physical
addresses. Operating system features which randomize the address layout such as Wi ndows® ASLR
should be configured appropriately. Thisisto facilitate BTB sharing between threads.

2.15 LOCKs

The processor implements logic to improve the performance of LOCKed instructions. In order to
benefit from thislogic, the following guidelines are recommended:

* Ensurethat LOCKed memory accesses do not cross 16-byte aligned boundaries.

* Following a LOCKed instruction, refrain from using floating point instructions as long as
possible.

* Ensurethat Last Branch Record isdisabled (DBG_CTL_MSR.LBR)

Chapter 2 Microarchimwf ﬁlﬂBllliémU)éﬁ Processor 53

AMDA1
Software Optimization Guide for AMD Family 19h (NDA) 56665 Rev.3.00 November 2020

54 Microarchi[%\tmeb)f ﬁl\dBﬁ&m@gﬁ Processor Chapter 2

AMDA

56665 Rev.3.00 November 2020 Software Optimization Guide for AMD Family 19h (NDA)

Appendix A Understanding and Using
Instruction Latency Tables

The companion file Family 19h Instruction Latencies version_1-00.xIsx distributed with this
Software Optimization Guide provides additional detailed information for the AMD Family 19h
processor. This appendix explains the columns and definitions used in the table of latencies.
Information in the spreadsheet is based on estimates and is subject to change.

A.1 Instruction Latency Assumptions

The term instruction latency refers to the number of processor clock cycles required to complete the
execution of a particular instruction from the time that it isissued. Throughput refersto the number of
results that can be generated in a unit of time given the repeated execution of a given instruction.

Many factors affect instruction execution time. For instance, when a source operand must be loaded
from amemory location, the time required to read the operand from system memory adds to the
execution time. Furthermore, latency is highly variable due to the fact that a memory operand may or
may not be found in one of the levels of data cache. In some cases, the target memory location may
not even be resident in system memory due to being paged out to backing storage.

In estimating the instruction latency and reciprocal throughput, the following assumptions are
necessary:

* Theinstructionisan L1 I-cache hit that has already been fetched and decoded, with the operations
loaded into the scheduler.

* Memory operands are in the L1 data cache.

* Thereisno contention for execution resources or |oad-store unit resources.

Each latency valuelisted in the spreadsheet denotes the typical execution time of the instruction when
run in isolation on a processor. For real programs executed on this highly aggressive super-scalar
processor, multiple instructions can execute simultaneously; therefore, the effective latency for any
given instruction's execution may be overlapped with the latency of other instructions executing in
paralel.

The latenciesin the spreadsheet reflect the number of cycles from instruction issuance to instruction
retirement. Thisincludes the time to write results to registers or the write buffer, but not the time for
results to be written from the write buffer to L1 D-cache, which may not occur until after the
instruction is retired.

For most instructions, the only forms listed are the ones without memory operands. The latency for
instruction forms that load from memory can be calculated by adding the load latencies listed on the
overview worksheet to the latency for the register-only form. To measure the latency of an instruction

Appendix A Understanding and Using Instruction Latency Tables 55

[AMD Public Use]

AMDAQ

Software Optimization Guide for AMD Family 19h (NDA) 56665 Rev.3.00 November 2020

which stores data to memory, it is necessary to define an end-point at which the instruction is said to
be complete. This guide has chosen instruction retirement as the end point, and under that definition
writes add no additional latency. Choosing another end point, such as the point at which the data has
been written to the L1 cache, would result in variable latencies and would not be meaningful without
taking into account the context in which the instruction is executed.

There are cases where additional |atencies may beincurred in areal program that are not described in
the spreadsheet, such as delays caused by L1 cache misses or contention for execution or load-store

unit resources.

A.2 Spreadsheet Column Descriptions

The following table describes the information provided in each column of the spreadsheet:

Cols |Label Description
A Instruction ¢ Instruction mnemonic
B-E | Instruction The following notations are used in these columns:
operands « imm—an immediate operand (value range left unspecified)
¢ imm8—an 8-bit immediate operand
e m—an 8, 16, 32 or 64-bit memory operand (128 and 256 bit memory
operands are always explicitly specified as m128 or m256)
e mm—any 64-bit MMX register
« mN—an N-bit memory operand
e r—any general purpose (integer) register
« N—an N-bit general purpose register
« xmmN—any xmm register, the N distinguishes among multiple operands
of the same type
« ymmN—any ymm register, the N distinguishes among multiple operands
of the same type
A slash denotes an alternative, for example m64/m32 is a 32-bit or 64-bit
memory operand. The notation "<xmmO0>" denotes that the register xmmO0
is an implicit operand of the instruction.
F APM Vol AMDG64 Programmer’s Manual Volume that describes the instruction.
G Cpuid flag CPUID feature flag for the instruction.
H Macro Ops Number of macro ops for the instruction.
Any number greater than 2 implies that the instruction is microcoded, with
the given number of macro ops in the micro-program. If the entry in this
column is simply ‘ucode’ then the instruction is microcoded but the exact
number of macro ops is variable. Note that stores and integer instructions
using a memory operand that are listed as 1 op in the spreadsheet will
require 2 ops when using an addressing mode with two register sources.

56

Understanding and Using Instruction Latency Tables Appendix A

[AMD Public Use]

AMDA

56665 Rev.3.00 November 2020 Software Optimization Guide for AMD Family 19h (NDA)
Cols |Label Description
I Unit Execution units. The following abbreviations are used:

» ucode—instruction is implemented using a variable number of macro
ops.

ucode(n)—instruction is implemented using exactly n macro ops.
ALU—instruction can execute in any of the 4 ALU pipes.
ALUn—instruction can only execute in ALU pipe n.

BRU - instruction can execute in any of the 2 BRU pipes.
FPU—instruction can execute in any of the 6 FPU pipes.
FPn—instruction can only execute in FP pipe n.

FPn+m—instruction requires both FP pipes nand m.
FPn/FPmM—instruction can execute in either FP pipe nor m.
FPn,FPmM—instruction execution uses FP pipe nfollowed by FP pipe m.
DIV—Integer divide functional element within the integer unit
MUL—Integer multiply functional element within the integer unit.
ST—instruction utilizes the LD/ST unit to execute a store.
LD—instruction utilizes the LD/ST unit to execute a load.
LD/ST—Load/Store unit.

(dash)—instruction does not utilize an execution pipe.

* NA—instruction is not supported.

J Latency Instruction latency in processor cycles.
Refer to the section "Instruction Latency Assumptions" above for more
information about this column.

K Throughput | Throughput of the instruction.
A value of 2 indicates that two such instructions can be retired in the same
clock cycle. This value is subject to the same assumptions as the latency
values.
Refer to the section "Instruction Latency Assumptions" above for more
information.

L Notes Additional information about the entry.

Appendix A Understanding and Using Instruction Latency Tables 57

[AMD Public Use]

AMDAQ

Software Optimization Guide for AMD Family 19h (NDA) 56665 Rev.3.00 November 2020

58 Understanding and Using Instruction Latency Tables Appendix A

[AMD Public Use]

AMDA

56665 Rev.3.00 November 2020

Software Optimization Guide for AMD Family 19h (NDA)

Index
A I
address tranglation 26 instruction
fetch and decoding 33
B integer execution 39
branch L
optimization 28
prediction 28 linear address tagging 25
c load/store unit 46
cache M
L1 data24 memory address translation 26
L1 instruction 24 microarchitecture features 18
L2 26
L326 O
D optimizing writing 49
data and pipe widths 20 P
e processor, microarchitecture 18

execution unit
floating-point 41
integer 39

F

floating-point
block diagram 41
denormals 44
unit 41
x87 code 44

H
hardware page table walker 27

S

smashing, definition 16
superscalar processor 22

T

terminology, specialized 16
TLB

L127

L2 27

w

write combining 51

[AMD Public Use] >

	Software Optimization Guide for AMD Family 19h Processors (PUB)
	Contents
	List of Figures
	List of Tables
	Revision History
	Chapter 1 Introduction
	1.1 Intended Audience
	1.2 Specialized Terminology

	Chapter 2 Microarchitecture of AMD Family 19h Processor
	2.1 Key Microarchitecture Features
	2.2 Cache Line, Fetch and Data Type Widths
	2.3 Instruction Decomposition
	2.4 Superscalar Organization
	2.5 Processor Block Diagram
	2.6 Processor Cache Operation
	2.6.1 L1 Instruction Cache
	2.6.2 L1 Data Cache
	2.6.3 L2 Cache
	2.6.4 L3 Cache

	2.7 Memory Address Translation
	2.7.1 L1 Translation Lookaside Buffers
	2.7.2 L2 Translation Lookaside Buffers
	2.7.3 Hardware Page Table Walkers

	2.8 Optimizing Branching
	2.8.1 Branch Prediction
	2.8.2 Boundary Crossing Branches
	2.8.3 Loop Alignment

	2.9 Instruction Fetch and Decode
	2.9.1 Op Cache
	2.9.2 Idioms for Dependency removal
	2.9.3 Branch Fusion
	2.9.4 Zero Cycle Move
	2.9.5 Stack Pointer Tracking for Dependency Removal
	2.9.6 Dispatch
	2.9.7 Using Pause Instruction to Optimize Spin Loops

	2.10 Integer Execution Unit
	2.10.1 Schedulers
	2.10.2 Execution Units
	2.10.3 Retire Control Unit

	2.11 Floating-Point Unit
	2.11.1 Floating Point Execution Resources
	2.11.2 Code recommendations
	2.11.3 FP performance on x87 code
	2.11.4 Denormals
	2.11.5 XMM Register Merge Optimization
	2.11.6 Mixing AVX and SSE
	2.11.7 When to use FMA instead of FMUL / FADD

	2.12 Load-Store Unit
	2.12.1 Prefetching of Data

	2.13 Optimizing Writing Data
	2.13.1 Write-Combining Definitions and Abbreviations
	2.13.2 Programming Details
	2.13.3 Write-Combining Operations
	2.13.4 Sending Write-Buffer Data to the System

	2.14 Simultaneous Multi-Threading
	2.15 LOCKs

	Appendix A Understanding and Using Instruction Latency Tables
	A.1 Instruction Latency Assumptions
	A.2 Spreadsheet Column Descriptions

