

 Advanced Micro Devices

Secure Encrypted
Virtualization Key

Management
Technical Preview

 Publication # 55766 Revision: 3.01
 Issue Date: August 2016

Specification Agreement

This Specification Agreement (this “Agreement”) is a legal agreement between Advanced Micro Devices, Inc. (“AMD”) and “You” as
the recipient of the attached AMD Specification (the “Specification”). If you are accessing the Specification as part of your
performance of work for another party, you acknowledge that you have authority to bind such party to the terms and conditions of this
Agreement. If you accessed the Specification by any means or otherwise use or provide Feedback (defined below) on the Specification,
You agree to the terms and conditions set forth in this Agreement. If You do not agree to the terms and conditions set forth in this
Agreement, you are not licensed to use the Specification; do not use, access or provide Feedback about the Specification.

In consideration of Your use or access of the Specification (in whole or in part), the receipt and sufficiency of which are acknowledged,
You agree as follows:

1. You may review the Specification only (a) as a reference to assist You in planning and designing Your product, service or
technology (“Product”) to interface with an AMD product in compliance with the requirements as set forth in the Specification and (b)
to provide Feedback about the information disclosed in the Specification to AMD.

2. Except as expressly set forth in Paragraph 1, all rights in and to the Specification are retained by AMD. This Agreement does not
give You any rights under any AMD patents, copyrights, trademarks or other intellectual property rights. You may not (i) duplicate any
part of the Specification; (ii) remove this Agreement or any notices from the Specification, or (iii) give any part of the Specification, or
assign or otherwise provide Your rights under this Agreement, to anyone else.

3. The Specification may contain preliminary information, errors, or inaccuracies, or may not include certain necessary information.
Additionally, AMD reserves the right to discontinue or make changes to the Specification and its products at any time without notice.
The Specification is provided entirely “AS IS.” AMD MAKES NO WARRANTY OF ANY KIND AND DISCLAIMS ALL
EXPRESS, IMPLIED AND STATUTORY WARRANTIES, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, TITLE OR THOSE WARRANTIES
ARISING AS A COURSE OF DEALING OR CUSTOM OF TRADE. AMD SHALL NOT BE LIABLE FOR DIRECT, INDIRECT,
CONSEQUENTIAL, SPECIAL, INCIDENTAL, PUNITIVE OR EXEMPLARY DAMAGES OF ANY KIND (INCLUDING LOSS
OF BUSINESS, LOSS OF INFORMATION OR DATA, LOST PROFITS, LOSS OF CAPITAL, LOSS OF GOODWILL)
REGARDLESS OF THE FORM OF ACTION WHETHER IN CONTRACT, TORT (INCLUDING NEGLIGENCE) AND STRICT
PRODUCT LIABILITY OR OTHERWISE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

4. Furthermore, AMD’s products are not designed, intended, authorized or warranted for use as components in systems intended for
surgical implant into the body, or in other applications intended to support or sustain life, or in any other application in which the
failure of AMD’s product could create a situation where personal injury, death, or severe property or environmental damage may
occur.

5. You have no obligation to give AMD any suggestions, comments or feedback (“Feedback”) relating to the Specification. However,
any Feedback You voluntarily provide may be used by AMD without restriction, fee or obligation of confidentiality. Accordingly, if
You do give AMD Feedback on any version of the Specification, You agree AMD may freely use, reproduce, license, distribute, and
otherwise commercialize Your Feedback in any product, as well as has the right to sublicense third parties to do the same. Further, You
will not give AMD any Feedback that You may have reason to believe is (i) subject to any patent, copyright or other intellectual
property claim or right of any third party; or (ii) subject to license terms which seek to require any product or intellectual property
incorporating or derived from Feedback or any Product or other AMD intellectual property to be licensed to or otherwise provided to
any third party.

6. You shall adhere to all applicable U.S., European, and other export laws, including but not limited to the U.S. Export Administration
Regulations (“EAR”), (15 C.F.R. Sections 730 through 774), and E.U. Council Regulation (EC) No 428/2009 of 5 May 2009. Further,
pursuant to Section 740.6 of the EAR, You hereby certifies that, except pursuant to a license granted by the United States Department
of Commerce Bureau of Industry and Security or as otherwise permitted pursuant to a License Exception under the U.S. Export
Administration Regulations ("EAR"), You will not (1) export, re-export or release to a national of a country in Country Groups D:1,
E:1 or E:2 any restricted technology, software, or source code You receive hereunder, or (2) export to Country Groups D:1, E:1 or E:2
the direct product of such technology or software, if such foreign produced direct product is subject to national security controls as
identified on the Commerce Control List (currently found in Supplement 1 to Part 774 of EAR). For the most current Country Group
listings, or for additional information about the EAR or Your obligations under those regulations, please refer to the U.S. Bureau of
Industry and Security’s website at http://www.bis.doc.gov/.

7. If You are a part of the U.S. Government, then the Specification is provided with “RESTRICTED RIGHTS” as set forth in
subparagraphs (c) (1) and (2) of the Commercial Computer Software-Restricted Rights clause at FAR 52.227-14 or subparagraph (c)
(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.277-7013, as applicable.

8. This Agreement is governed by the laws of the State of California without regard to its choice of law principles. Any dispute
involving it must be brought in a court having jurisdiction of such dispute in Santa Clara County, California, and You waive any
defenses and rights allowing the dispute to be litigated elsewhere. If any part of this agreement is unenforceable, it will be considered
modified to the extent necessary to make it enforceable, and the remainder shall continue in effect. The failure of AMD to enforce any
rights granted hereunder or to take action against You in the event of any breach hereunder shall not be deemed a waiver by AMD as to
subsequent enforcement of rights or subsequent actions in the event of future breaches. This Agreement is the entire agreement
between You and AMD concerning the Specification; it may be changed only by a written document signed by both You and an
authorized representative of AMD.

© 2016 Advanced Micro Devices, Inc. All rights reserved.

The information contained herein is for informational purposes only, and is subject to change without notice. While
every precaution has been taken in the preparation of this document, it may contain technical inaccuracies, omissions
and typographical errors, and AMD is under no obligation to update or otherwise correct this information. Advanced
Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document, and assumes no liability of any kind, including the implied warranties of noninfringement,
merchantability or fitness for particular purposes, with respect to the operation or use of AMD hardware, software
or other products described herein. No license, including implied or arising by estoppel, to any intellectual property
rights is granted by this document. Terms and limitations applicable to the purchase or use of AMD’s products are
as set forth in a signed agreement between the parties or in AMD's Standard Terms and Conditions of Sale.
Trademarks

AMD, the AMD Arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other
product names used in this publication are for identification purposes only and may be trademarks of their respective
companies.
Reverse engineering or disassembly is prohibited.

Dolby Laboratories, Inc.
Manufactured under license from Dolby Laboratories.

Rovi Corporation
This device is protected by U.S. patents and other intellectual property rights. The use of Rovi Corporation's copy
protection technology in the device must be authorized by Rovi Corporation and is intended for home and other
limited pay-per-view uses only, unless otherwise authorized in writing by Rovi Corporation.

USE OF THIS PRODUCT IN ANY MANNER THAT COMPLIES WITH THE MPEG ACTUAL OR DE FACTO
VIDEO AND/OR AUDIO STANDARDS IS EXPRESSLY PROHIBITED WITHOUT ALL NECESSARY
LICENSES UNDER APPLICABLE PATENTS. SUCH LICENSES MAY BE ACQUIRED FROM VARIOUS
THIRD PARTIES INCLUDING, BUT NOT LIMITED TO, IN THE MPEG PATENT PORTFOLIO, WHICH
LICENSE IS AVAILABLE FROM MPEG LA, L.L.C., 6312 S. FIDDLERS GREEN CIRCLE, SUITE 400E,
GREENWOOD VILLAGE, COLORADO 80111.

Secure Encrypted Virtualization Key Management 55766 Rev. 3.01 August 2016

4 Contents

Contents
Revision History .. 12

Chapter 1 Overview .. 14

1.1 Operational Model... 14

1.2 Platform Management ... 14

1.2.1 Platform Lifecycle ... 14

1.2.2 Identity .. 15

1.2.3 Device Authenticity ... 15

1.2.4 Ownership ... 15

1.3 Guest Lifecycle ... 16

1.3.1 Launch ... 16

1.3.2 Activate and Deactivate .. 16

1.3.3 Snapshot and Migrate .. 17

1.3.4 Decommission ... 18

1.3.5 Debugging ... 18

Chapter 2 Key Management ... 19

2.1 Keys ... 19

2.1.1 Platform Diffie-Hellman Key .. 19

2.1.2 Platform Endorsement Key ... 19

2.1.3 Chip Endorsement Key ... 20

2.1.4 AMD Signing Key .. 20

2.1.5 Certificate Authority Signing Key .. 20

2.1.6 Transport Integrity Key ... 20

2.1.7 Transport Encryption Key ... 21

2.1.8 Launch Measurement Key .. 21

2.1.9 VM Encryption Key .. 21

2.2 Usage ... 21

2.2.1 Digital Signatures .. 21

2.2.2 Key Agreement ... 21

2.2.3 Launch Measurements ... 22

2.2.4 Key Wrapping ... 22

55766 Rev. 3.01 August 2016 Secure Encrypted Virtualization Key Management

 Contents 5

2.2.5 Transport Protection ... 22

Chapter 3 Guest Policy .. 23

Chapter 4 Mailbox Register Protocol ... 24

4.1 Mailboxes ... 24

4.2 Command Buffer ... 24

4.3 Command Identifiers ... 25

4.4 Status Codes ... 26

4.5 Endianness ... 27

Chapter 5 Platform Management API ... 28

5.1 INIT ... 29

5.1.1 Usage.. 29

5.1.2 Actions ... 29

5.1.3 Parameters .. 30

5.1.4 Return Values... 30

5.2 SHUTDOWN ... 30

5.2.1 Usage.. 30

5.2.2 Actions ... 30

5.2.3 Parameters .. 30

5.2.4 Return Values... 30

5.3 FACTORY_RESET ... 31

5.3.1 Usage.. 31

5.3.2 Actions ... 31

5.3.3 Parameters .. 31

5.3.4 Return Values... 31

5.4 PLATFORM_STATUS ... 31

5.4.1 Usage.. 31

5.4.2 Actions ... 31

5.4.3 Parameters .. 32

5.4.4 Return Values... 32

5.5 PEK_GEN .. 32

5.5.1 Usage.. 33

5.5.2 Actions ... 33

Secure Encrypted Virtualization Key Management 55766 Rev. 3.01 August 2016

6 Contents

5.5.3 Parameters ... 33

5.5.4 Return Values .. 33

5.6 PEK_CSR .. 33

5.6.1 Usage ... 33

5.6.2 Actions .. 34

5.6.3 Parameters ... 34

5.6.4 Return Values .. 34

5.7 PEK_CERT_IMPORT .. 34

5.7.1 Usage ... 34

5.7.2 Actions .. 35

5.7.3 Parameters ... 35

5.7.4 Return Values .. 35

5.8 PDH_GEN ... 36

5.8.1 Usage ... 36

5.8.2 Actions .. 36

5.8.3 Parameters ... 36

5.8.4 Return Values .. 36

5.9 PDH_CERT_EXPORT ... 37

5.9.1 Usage ... 37

5.9.2 Actions .. 37

5.9.3 Parameters ... 38

5.9.4 Return Values .. 38

Chapter 6 Guest Management API .. 39

6.1 LAUNCH_START.. 40

6.1.1 Usage ... 40

6.1.2 Actions .. 40

6.1.3 Parameters ... 41

6.1.4 Return Values .. 41

6.2 LAUNCH_UPDATE .. 41

6.2.1 Usage ... 41

6.2.2 Actions .. 42

6.2.3 Parameters ... 42

55766 Rev. 3.01 August 2016 Secure Encrypted Virtualization Key Management

 Contents 7

6.2.4 Return Values... 42

6.3 LAUNCH_FINISH .. 43

6.3.1 Usage.. 43

6.3.2 Actions ... 43

6.3.3 Parameters .. 43

6.3.4 Return Values... 44

6.4 SEND_START .. 44

6.4.1 Usage.. 44

6.4.2 Actions ... 45

6.4.3 Parameters .. 46

6.4.4 Return Values... 47

6.5 SEND_UPDATE ... 47

6.5.1 Usage.. 47

6.5.2 Actions ... 48

6.5.3 Parameters .. 48

6.5.4 Return Values... 49

6.6 SEND_FINISH .. 49

6.6.1 Usage.. 49

6.6.2 Actions ... 49

6.6.3 Parameters .. 49

6.6.4 Return Values... 50

6.7 RECEIVE_START .. 50

6.7.1 Usage.. 50

6.7.2 Actions ... 50

6.7.3 Parameters .. 51

6.7.4 Return Values... 52

6.8 RECEIVE_UPDATE ... 52

6.8.1 Usage.. 52

6.8.2 Actions ... 52

6.8.3 Parameters. ... 53

6.8.4 Return Values... 53

6.9 RECEIVE_FINISH .. 53

Secure Encrypted Virtualization Key Management 55766 Rev. 3.01 August 2016

8 Contents

6.9.1 Usage ... 53

6.9.2 Actions .. 54

6.9.3 Parameters ... 54

6.9.4 Return Values .. 54

6.10 GUEST_STATUS ... 54

6.10.1 Usage ... 54

6.10.2 Actions .. 54

6.10.3 Parameters ... 55

6.10.4 Return Values .. 55

6.11 ACTIVATE ... 55

6.11.1 Usage ... 55

6.11.2 Actions .. 55

6.11.3 Parameters ... 56

6.11.4 Return Values .. 56

6.12 DEACTIVATE.. 56

6.12.1 Usage ... 56

6.12.2 Actions .. 56

6.12.3 Parameters ... 57

6.12.4 Return Values .. 57

6.13 DF_FLUSH ... 57

6.13.1 Usage ... 57

6.13.2 Actions .. 57

6.13.3 Parameters ... 57

6.13.4 Return Values .. 58

6.14 DECOMMISSION .. 58

6.14.1 Usage ... 58

6.14.2 Actions .. 58

6.14.3 Parameters ... 58

6.14.4 Return Values .. 58

Chapter 7 Debugging API ... 60

7.1 DBG_DECRYPT .. 60

7.1.1 Usage ... 60

55766 Rev. 3.01 August 2016 Secure Encrypted Virtualization Key Management

 Contents 9

7.1.2 Actions ... 60

7.1.3 Parameters .. 60

7.1.4 Return Values... 60

7.2 DBG_ENCRYPT ... 61

7.2.1 Usage.. 61

7.2.2 Actions ... 61

7.2.3 Parameters .. 61

7.2.4 Return Values... 61

Appendix A Usage Flows .. 63

Secure Encrypted Virtualization Key Management 55766 Rev. 3.01 August 2016

10 List of Figures

List of Figures
Figure 1. Platform Management State Machine .. 28

Figure 2. Guest Management State Machine .. 39

55766 Rev. 3.01 August 2016 Secure Encrypted Virtualization Key Management

 List of Tables 11

List of Tables
Table 1. Summary of Keys .. 19

Table 2. Guest Policy Structure ... 23

Table 3. CmdResp Layout ... 24

Table 4. Command Buffer Layout ... 24

Table 5. Command Identifiers ... 25

Table 6. Status Codes ... 26

Secure Encrypted Virtualization Key Management 55766 Rev. 3.01 August 2016

12 Revision History

Revision History

Date Revision Description

August 2016 3.01 Bug fixes and minor edits.

May 2016 3.00 Initial Release

55766 Rev. 3.01 August 2016 Secure Encrypted Virtualization Key Management

 Revision History 13

References

FIPS 186-4 Digital Signature Standard (DSS). Federal Information Processing Standards
Publication 186-4.
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

FIPS 198-1 The Keyed-Hash Message Authentication Code (HMAC). Federal Information
Processing Standards Publication 198-1.
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf

SP 800-38F Recommendation for Block Cipher Modes of Operation: Methods for Key
Wrapping. NIST Special Publication 800-38F
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf

SP 800-56A Recommendation for Pair-Wise Key Establishment Schemes Using Discrete
Logarithm Cryptography. NIST Special Publication 800-56A Revision 2.
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf

SP 800-108 Recommendation for Key Derivation Using Pseudorandom Functions. NIST
Special Publication 800-108.
http://csrc.nist.gov/publications/nistpubs/800-108/sp800-108.pdf

RFC 3279 Algorithms and Identifiers for the Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile. IETF RFC 3279.
https://www.ietf.org/rfc/rfc3279.txt

RFC 5480 Elliptic Curve Cryptography Subject Public Key Information. IETF RFC 5480.
https://www.ietf.org/rfc/rfc5480.txt

RFC 5758 Internet X.509 Public Key Infrastructure: Additional Algorithms and Identifiers
for DSA and ECDSA. IETF RFC 5758.
https://www.ietf.org/rfc/rfc5758.txt

Secure Encrypted Virtualization Key Management 55766 Rev. 3.01 August 2016

14 Overview Chapter 1

Chapter 1 Overview

The Secure Encrypted Virtualization (SEV) feature allows the memory contents of a virtual
machine (VM) to be transparently encrypted with a key unique to the guest VM. The memory
controller contains a high performance encryption engine which can be programmed with multiple
keys for use by different VMs in the system. The programming and management of these keys is
handled by the AMD Secure Processor firmware which exposes an API for these tasks. The key
management API is the focus of this document.

1.1 Operational Model
The capabilities of the SEV feature can support many operational environments. It is capable of
supporting both lightweight virtualized containers as well as conventional virtual machines within
an enterprise cloud environment. In either case, there are two parties concerned in the deployment
of SEV guests: the guest owner and the platform owner. For example, in a cloud environment, the
platform owner would be the cloud vendor and the guest owner would be the user that wishes to
run their workload in the cloud.

Guest owners wish to protect the confidentiality of the data running within their guests. While
they trust the platform owner to provide the infrastructure to run their guest, they benefit from
reducing their risk exposure to vulnerabilities within that infrastructure. The SEV feature encrypts
the contents of the memory of the guest and provides assurances that it was encrypted properly.
The encryption of memory places an additional burden on attackers within the operational
environment who may have already obtained some illicit access to the guest’s memory through a
vulnerability in the hypervisor or other supporting enterprise software.

Platform owners wish to provide such protection to guest owners, but also must manage the
computing resources efficiently and effectively. Resource allocation needs to be fluid and their
customers data must be safely backed up in case of failure. The SEV feature has been developed to
be sensitive to this requirement; it integrates into the conventional guest lifecycle surrounding
launching, migration, and snapshotting of guests.

1.2 Platform Management
1.2.1 Platform Lifecycle

The firmware maintains a state for the platform. To initialize the platform, the INIT command is
executed to initialize and configure the platform state. The INIT command accepts configuration
parameters that affect the behavior of the platform until the system is reset or the SHUTDOWN
command is invoked. The SHUTDOWN command clears all platform and guest state that exists in
non-persistent storage.

The status of the platform can be queried using the PLATFORM_STATUS command. This
command provides information about the state of the platform.

55766 Rev. 3.01 August 2016 Secure Encrypted Virtualization Key Management

 Chapter 1 Overview 15

If the platform needs to be reset to factory settings, the FACTORY_RESET command can be
issued by the hypervisor. This command clears all persistently stored platform state including the
platform certificates and signing keys (see below).

1.2.2 Identity

The firmware identifies itself by an asymmetric signing key generated during the one-time
configuration steps taken before the platform may be put into production. This key is called the
Platform Endorsement Key (PEK) and is used to sign the Platform Diffie-Hellman key (PDH). By
signing this key, the firmware authenticates the cryptographic contexts built with the PDH.

The firmware provides interfaces to manage the PDH: PDH_GEN and PDH_CERT_EXPORT.
The PDH_GEN command generates a new PDH, which is then signed by the PEK. This command
is not necessary for normal operation; it is provided to support the ability to generate a fresh PDH
in case the platform owner’s security policies require it.

The PDH_CERT_EXPORT command exports the PDH and its PEK signature. The PEK is signed
by two keys to connect it to two different roots of trust. These roots of trust provide authenticity
and ownership proof to third parties, described in the following sections. These signatures are also
exported via the PDH_CERT_EXPORT command.

1.2.3 Device Authenticity

The firmware provides a mechanism to verify that it is executing on AMD hardware that is
capable of supporting SEV. Each platform contains a chip-unique signing key signed by the root
AMD signing key. A guest owner or remote platform interacting with the firmware can obtain the
public component of the AMD signing key to prove the hardware authenticity. The mechanism to
obtain the public key is outside the scope of this document.

The chip-unique signing key signs the PEK. This signature connects the PEK to the AMD signing
key, which is a root of trust.

1.2.4 Ownership

The firmware also provides interfaces to verify the identity of the owner of the platform on which
it is executing: PEK_CSR and PEK_CERT_IMPORT.

PEK_CSR generates a certificate signing request (CSR) for the PEK. This signing request
contains the PEK public key and other identifying information about the platform. When the
platform owner’s certificate authority is provided this CSR, it generates a certificate using the
public key of the PEK and signs it with its root signing key. This signed certificate connects the
PEK to the platform owner’s root of trust. It can be used by external parties to verify ownership of
the platform.

The platform itself keeps a copy of the PEK certificate in persistent storage. In order to install the
certificate in the platform, the PEK_CERT_IMPORT command is issued. Once the certificate is
imported, the platform owner has taken ownership of the platform.

Secure Encrypted Virtualization Key Management 55766 Rev. 3.01 August 2016

16 Overview Chapter 1

1.3 Guest Lifecycle
The SEV feature supports the common guest lifecycle events so that SEV can integrate well
within already existing cloud infrastructures. These events include launching, running,
snapshotting, migrating, and decommissioning guests.

The status of a guest is available via the GUEST_STATUS command. This command reports the
current SEV state the guest is in and other information.

1.3.1 Launch

When a guest is launched, its memory must first be encrypted before SEV can be enabled in
hardware for this guest. The firmware provides interfaces to bootstrap the memory encryption for
this purpose: LAUNCH_START, LAUNCH_UPDATE, and LAUNCH_FINISH. These three
commands together generate a fresh memory encryption key for the guest, encrypt guest memory,
and provide an attestation of the successful launch.

LAUNCH_START is called first to create a guest context within the firmware. The hypervisor
provides the firmware with the guest’s security policy and the public key of the guest owner. The
guest policy constrains the use and features activated for the lifetime of the launched guest, such
as disallowing debugging, enabling key sharing, or turning on other SEV related features. The
provided public key allows the firmware to establish a cryptographic session with the guest owner
to negotiate keys used for attestation (see below).

The hypervisor loads the guest into memory and begins calling subsequent LAUNCH_UPDATE
commands. LAUNCH_UPDATE encrypts the memory provided to it by the hypervisor. It also
calculates a measurement of the memory. This measurement is a signature of the memory contents
that can be sent to the guest owner as an attestation that the memory was encrypted correctly by
the firmware.

The guest owner may wait to provide the guest with confidential information until it can verify the
attestation measurement. Since the guest owner knows the initial contents of the guest at boot, the
attestation measurement can be verified by comparing it to what the guest owner expects.

1.3.2 Activate and Deactivate

After the guest has been launched and SEV has been enabled, the guest is ready to be executed.
AMD-V requires the guest to be associated with an ASID within its VMCB. An ASID is an
identifier associated with all memory accesses of the guest. SEV uses ASIDs to associate memory
encryption keys with the guest. The number of keys that the firmware supports is unlimited.
However, there are only a limited number of ASIDs that can be associated with keys. The
firmware provides to the hypervisor interfaces to manage this association: ACTIVATE,
DEACTIVATE, and DF_FLUSH.

The ACTIVATE command allows the hypervisor to inform the firmware that a given guest is
associated with an ASID. When this command is issued, the firmware programs the memory

55766 Rev. 3.01 August 2016 Secure Encrypted Virtualization Key Management

 Chapter 1 Overview 17

controller with the guest’s memory encryption key. This key is then associated with the guest’s
ASID.

The hypervisor uses the DEACTIVATE command to de-allocate an ASID from a guest. This
removes the association in the memory controller between the guest and the ASID. A hypervisor
may wish to re-allocate this ASID due to operating system specific ASID scheduling protocols. It
may also need to re-allocate ASIDs if there are no SEV-capable ASIDs currently available.

Before re-activating an ASID, the firmware requires the hypervisor to flush the cache back to
memory with a WBINVD instruction. Once this flushing instruction completes, the hypervisor
calls DF_FLUSH to ensure that the data fabric is completely flushed. This command checks that a
WBINVD has been executed since the last DEACTIVATE. These steps are necessary to ensure
any unencrypted data in the cache and data fabric write buffers associated with the previous key
value is written back to memory before the key can be changed. On success, the DF_FLUSH
marks the previously deactivated ASIDs as usable. The DF_FLUSH command provides the
hypervisor flexibility to batch multiple DEACTIVATE calls together and flushing the cache and
data fabric only once afterwards.

1.3.3 Snapshot and Migrate

Snapshotting and migration both require the memory image of a guest to be removed from the
system to be reconstituted at another platform later in time. To protect the confidentiality of an
SEV protected guest while in transit and storage, its memory image must be encrypted with a key
that can be recovered by the next platform to execute it. The firmware provides the same set of
interfaces to support this protection: SEND_START, SEND_UPDATE, and SEND_FINISH for
the sending or snapshotting platform and RECEIVE_START, RECEIVE_UPDATE, and
RECEIVE_FINISH for the receiving or reconstituting platform.

The SEND_START, SEND_UPDATE, and SEND_FINISH commands prepare the guest’s
memory image for storage or transmission. SEND_START re-encrypted the image within a
cryptographic context that is established with the remote platform. Subsequent invocations of
SEND_UPDATE may be used to encrypt additional memory regions. When the guest is fully re-
encrypted, the SEND_FINISH completes and produces an integrity measurement of the pages the
firmware re-encrypted. The integrity measurement will be verified by the receiving platform.

The SEND_START command enforces the guest’s policy restriction on which platforms it may be
transferred to. The policy can require the destination to be an SEV-capable platform or require the
receiving platform to have the same owner as the sending one—or both. This check is performed
by verifying the receiving platform’s platform certificates and certificate chains.

The receiving platform uses the related RECEIVE_START, RECEIVE_UPDATE, and
RECEIVE_FINISH in the same manner as the sending platform. The RECEIVE_START derives
the cryptographic context necessary to re-encrypt the guest. The RECEIVE_UPDATE command
re-encrypts memory regions provided by the hypervisor. The RECEIVE_FINISH finalizes
operation. However, the RECEIVE_START command does not verify the identity of the sending
platform.

Secure Encrypted Virtualization Key Management 55766 Rev. 3.01 August 2016

18 Overview Chapter 1

The RECEIVE_START command is the only command other than the LAUNCH_START
command that generates a new guest context and guest handle.

1.3.4 Decommission

When the hypervisor needs to shutdown a guest, it issues the DECOMMISSION command to the
firmware. The firmware then deletes the memory encryption key and all other internal state the
firmware has kept for the guest.

1.3.5 Debugging

The firmware provides two interfaces to assist in the debugging of an SEV enabled guest:
DBG_ENCRYPT and DBG_DECRYPT. These commands request the firmware to encrypt or
decrypt the data at the given memory regions provided by the hypervisor. Since decrypting
protected memory allows the hypervisor to gain access to guest memory, the guest policy must
explicitly allow debugging to enable these two commands.

55766 Rev. 3.01 August 2016 Secure Encrypted Virtualization Key Management

 Chapter 2 Key Management 19

Chapter 2 Key Management

The primary purpose of the firmware is to manage the memory encryption keys and the keys to
support the guest lifecycle within an enterprise environment. This section describes each of these
keys. Table 1 summarizes all the keys, their abbreviations, their algorithm, and their usage.

Table 1. Summary of Keys
Key Abbr. Algorithm Usage

Platform Diffie-Hellman Key PDH ECDH curve P-256 Key agreement

Platform Endorsement Key PEK ECDSA curve P-256 Platform authentication and
ownership. Signed by CA and
CEK.

Chip Endorsement Key CEK ECDSA curve P-256 Platform authentication. Signed
by ASK

AMD Signing Key ASK ECDSA curve P-256 Root of trust for platform
authenticity.

Certificate Authority Signing Key CA Various Root of trust for platform
ownership

Transport Integrity Key TIK HMAC SHA-256 Integrity of transported guest

Transport Encryption Key TEK AES 128 Encryption of transported guest

Launch Measurement Key LMK HMAC SHA-256 Measurement of guest launch

VM Encryption Key VEK AES 128 Guest memory encryption

2.1 Keys
2.1.1 Platform Diffie-Hellman Key

The Platform Diffie-Hellman key (PDH) is an Elliptic Curve Diffie Hellman (ECDH) key using
curve P-256 as defined in section D.1.2.3 of [FIPS 186-4] that is unique to each platform. It is
generated on system reset or when the PDH_GEN command is invoked. The PDH is stored in
private volatile memory accessible only by the AMD Secure Processor firmware. The PDH is used
to perform key agreement with remote parties such as guest owners and other instances of the SEV
firmware.

The PDH public key is exported via the PDH_CERT_EXPORT command.

2.1.2 Platform Endorsement Key

The Platform Endorsement Key (PEK) is an ECDSA signing key using curve P-256 as defined in
section D.1.2.3 of [FIPS 186-4] that is unique to each platform. It is generated when the SEV

Secure Encrypted Virtualization Key Management 55766 Rev. 3.01 August 2016

20 Key Management Chapter 2

firmware is provisioned and stored in non-volatile storage available only to the firmware. It will be
regenerated when either the INIT command or PEK_GEN command are successfully invoked.

The PEK signs the PDH of its platform. This asserts that the PDH is owned by the hardware that
possesses the PEK private key.

The PEK certificates are exported via the PDH_CERT_EXPORT command.

2.1.3 Chip Endorsement Key

The Chip Endorsement Key (CEK) is an ECDSA signing key using curve P-256 as defined in
section D.1.2.3 of [FIPS 186-4] that is unique to each platform. It exists for the lifetime of the
platform and is stored within the hardware of the AMD Secure Processor. The CEK is signed by
the ASK (see below). This signature asserts that the hardware that possesses the CEK private key
is authentic AMD hardware and capable of executing SEV enabled guests.

The CEK certificate is exported in the PDH_CERT_EXPORT command.

2.1.4 AMD Signing Key

The AMD Signing Key (ASK) is an ECDSA signing key using curve P-256 as defined in section
D.1.2.3 of [FIPS 186-4] that is owned by AMD. It is stored in and protected by an internal key
server operated by AMD. The ASK is used as the root of trust that asserts the authenticity of
platforms by signing the CEK of every platform.

The ASK certificate and the CEK certificates for each platform are publicly accessible through the
AMD certificate authority.

2.1.5 Certificate Authority Signing Key

The platform owner’s Certificate Authority signing key (CA) is protected by the platform owner’s
policies and security controls. The platform owner uses the CA to create and sign a certificate for
the PEK. It loads the PEK into the firmware via the PEK_CERT_IMPORT command. This
certificate asserts ownership of the platform by the platform owner.

The firmware supports RSA, DSA, and ECDSA algorithms.

2.1.6 Transport Integrity Key

The Transport Integrity Key (TIK) is a 256-bit HMAC SHA-256 integrity key. The TIK protects
the integrity of the transport session between two firmware instances during image migration or
snapshotting. The TIK is agreed upon during a Diffie-Hellman key agreement protocol and is
unique to the session.

55766 Rev. 3.01 August 2016 Secure Encrypted Virtualization Key Management

 Chapter 2 Key Management 21

2.1.7 Transport Encryption Key

The Transport Encryption Key (TEK) is a 128-bit AES-128 encryption key. The TEK protects the
confidentiality of the transport session between two firmware instances during image migration or
snapshotting. The TEK is agreed upon during a Diffie-Hellman key agreement protocol and is
unique to the session.

2.1.8 Launch Measurement Key

The Launch Measurement Key (LMK) is a 256-bit HMAC SHA-256 integrity key. The firmware
uses the LMK to measure the launch process and demonstrate that the guest was encrypted
without interference. The LMK is agreed upon during a Diffie-Hellman key agreement protocol
and is unique to the launch session.

2.1.9 VM Encryption Key

The VM Encryption Key (VEK) is a 128-bit AES-128 key used to encrypt memory of the guest.
The VEK is generated by using the LAUNCH_START and RECEIVE_START commands. The
lifetime of the VEK lasts until the guest is decommissioned, after using the DECOMMISSION
command. This key is not exportable outside of the firmware.

2.2 Usage
2.2.1 Digital Signatures

Three signatures are verified by the firmware: The PEK signature of the PDH of remote platforms,
the CEK signature of the PEK, and the CA signatures of the PEK. These verifications occur on
invocation of the SEND_START command. The supported signature algorithms are the ones
described in [RFC 3279] (excluding MD2 and MD5), [RFC 5480], and [RFC 5758]. The firmware
is also capable of verifying ECDSA signatures using SHA-256 and curve P-256 as defined in
[FIPS 186-4].

The firmware generates two signatures; it signs the PDH with the PEK, and it signs the PEK with
the CEK. The firmware uses the ECDSA signature algorithm with SHA-256 and curve P-256 as
defined in [FIPS 186-4].

2.2.2 Key Agreement

A master secret is derived between the firmware and a remote party to establish a trusted channel.

The master secret agreement is accomplished with the Elliptic Curve Diffie-Hellman key
agreement algorithm as defined in [SP 800-56A]. The elliptic curve used is P-256 as defined in
section D.1.2.3 of [FIPS 186-4]. In both cases, static Diffie-Hellman keys are used as described in
section 6.3 of [SP 800-56A]. This key agreement process involves transmitting fresh nonce
between the parties to agree on a key.

Secure Encrypted Virtualization Key Management 55766 Rev. 3.01 August 2016

22 Key Management Chapter 2

To produce keys for secure communication based on the master secret, the firmware uses the
counter mode KDF defined in section 5.1 of [SP 800-108] using HMAC-SHA-256 as the
pseudorandom function. The KDF is supplied the nonce for context. The labels used are ASCII-
encoded null-terminated strings.

2.2.3 Launch Measurements

The launch measurement uses an HMAC-SHA-256 keyed with the LMK established with the
guest owner. HMAC-SHA-256 is defined in [FIPS 198-1].

The launch measurement key is derived from the master secret that is established between the
firmware and the guest owner. The derivation function is specified in Section 2.2.2 on page 21.
The label used for the launch measurement key is the ASCII-encoded null-terminated string “sev-
launch-measurement-key”.

2.2.4 Key Wrapping

To establish the transport keys, the firmware and the remote party use a key encryption key to
wrap the transport encryption key and the transport integrity key during transmission to the remote
entity. It also uses a key encryption key to unwrap keys sent to it in the same manner. The key
wrapping algorithm is specified in [SP 800-38F], and the firmware uses the AES-based algorithm.

The key encryption key is an AES 128 key derived from the master secret that is established
between the firmware and the remote entity sending a guest memory image. The derivation
function is specified in Section 2.2.2 on page 21. The label used for the key encryption key is the
ASCII-encoded null-terminated string “sev-key-encryption-key”.

2.2.5 Transport Protection

The firmware protects the confidentiality and integrity of a guest during migration or snapshotting.
The guest memory image and SEV metadata is encrypted with the TEK and integrity protected
with the TIK. The firmware encrypts decrypts guests using AES-128 using the CTR block cipher
mode. The firmware provides a message authentication code using HMAC SHA-256 keyed with
the TIK.

55766 Rev. 3.01 August 2016 Secure Encrypted Virtualization Key Management

 Chapter 3 Guest Policy 23

Chapter 3 Guest Policy

The firmware maintains a guest policy provided by the guest owner. This policy is enforced by the
firmware and restricts what configuration and operational commands can be performed on this
guest by the hypervisor. For instance, the POLICY.DBG flag disallows debugging commands for
the guest. The POLICY.SEV requires that the guest only be transmitted to platforms that are only
SEV capable platforms. The policy also requires a minimum firmware level.

The guest policy is provided to firmware during guest launch. The policy is then bound to the
guest and cannot be changed throughout the lifetime of the guest. The policy is also transmitted
during snapshot and migration flows and enforced on the destination platform.

The guest policy is a 4-byte structure with the fields shown in Table 2:

Table 2. Guest Policy Structure
Offset Bit(s) Name Description

000h 0 DBG Debugging of the guest is disallowed when set

1 KS Sharing keys with other guests is disallowed when
set

2 Reserved. Must be one.

3 NOSEND Sending the guest to another platform is disallowed
when set

4 DOMAIN The guest must not be transmitted to another
platform that is not in the domain when set.

5 SEV The guest must not be transmitted to another
platform that is not SEV capable when set.

15:6 Reserved. Should be zero.

002h 7:0 FW_MAJOR The guest must not be transmitted to another
platform with a lower firmware version. 003h 7:0 FW_MINOR

The policy bits for a given guest are referenced with the format POLICY.<FLAG_NAME>. For
instance, the key sharing flag is referred to as POLICY.KS.

Secure Encrypted Virtualization Key Management 55766 Rev. 3.01 August 2016

24 Mailbox Register Protocol Chapter 4

Chapter 4 Mailbox Register Protocol

Software on the x86 CPUs communicate with the AMD Secure Processor through a set of MMIO
registers, referred to as mailbox registers. This section describes the protocol used by the x86
SEV driver for communicating through these mailbox registers in order to invoke the SEV key
management functions described in this API.
In a nutshell, the driver writes the 7-bit command and 64-bit physical address of a command
buffer (if parameters are required) into the mailbox registers. The SEV firmware takes action and
returns a 16-bit return code and potentially writes output to the same physical address parameter
region.

4.1 Mailboxes
The driver communicates with the SEV firmware via three 32-bit MMIO registers and a command
buffer in DRAM that contains additional parameters. The first register, CmdResp, has the
following layout:

Table 3. CmdResp Layout
Bit# Description/Purpose

31 0: Command; 1: Response

[30:24] Reserved

[23:16] Command ID

[15:0] Error code; valid when Response (bit #31) is set to 1

The other two registers, CmdBufAddr_Hi and CmdBufAddr_Lo are the high and low bits,
respectively, of a 64-bit DRAM system physical address. This address points to the command
buffer which contains additional parameters.

4.2 Command Buffer
When the command takes no parameters, CmdBufAddr_Hi and CmdBufAddr_Lo are ignored by
firmware. For commands that take one or more parameters, the command buffer has the following
format:

Table 4. Command Buffer Layout
Size (bytes) In / Out Name Description

4 In, Out CBUF_LEN In: Number of bytes allocated to command buffer

Out: The number of bytes used by the command

CBUF_LEN Command specific.

55766 Rev. 3.01 August 2016 Secure Encrypted Virtualization Key Management

 Chapter 4 Mailbox Register Protocol 25

For every command that takes parameters in the command buffer, the firmware checks that there
is enough memory allocated to complete the necessary operations for this command. There are
several commands, for instance, that output data whose length are not determined until the
command is invoked, such as exporting X.509 certificates.

If the firmware does not have enough memory allocated in the command buffer, no action is taken
and the amount of bytes needed for this command is written to CBUF_LEN. The firmware then
exits with error code CBUF_TOO_SMALL.

If the firmware does have enough memory allocated in the command buffer for the command,
after the command completes successfully, the firmware writes the number of bytes of the buffer
that were used into the CBUF_LEN field, and returns a success code.

Note: The above CBUF_LEN parameter is reflected in all of the command descriptions below for
clarity.

4.3 Command Identifiers
Table 5 summarizes the platform management, guest management, and debugging commands. See
the command definitions for further details.

Table 5. Command Identifiers
Command ID Description

INIT 0x01 Initialize the platform
SHUTDOWN 0x07 Shut down the platform
FACTORY_RESET 0x08 Delete the persistent platform state
PLATFORM_STATUS 0x09 Return status of the platform
PEK_GEN 0x0A Generate a new PEK
PEK_CSR 0x0B Generate a PEK certificate signing request
PEK_CERT_IMPORT 0x0C Import the signed PEK certificate
PDH_GEN 0x0D Generate a new PDH and PEK signature
PDH_CERT_EXPORT 0x0E Export the PDH and its certificate chains
LAUNCH_START 0x02 Begin to launch a new SEV enabled guest
LAUNCH_UPDATE 0x03 Encrypt guest memory for launch
LAUNCH_FINISH 0x04 Complete launch of guest
SEND_START 0x0F Begin to send guest to new remote platform
SEND_UPDATE 0x10 Re-encrypt guest memory for transmission
SEND_FIINISH 0x11 Complete sending guest to remote platform
RECEIVE_START 0x12 Begin to receive guest from remote platform
RECEIVE_UPDATE 0x13 Re-encrypt guest memory from transmission

Secure Encrypted Virtualization Key Management 55766 Rev. 3.01 August 2016

26 Mailbox Register Protocol Chapter 4

Table 5. Command Identifiers (Continued)

Command ID Description
RECEIVE_FINISH 0x14 Complete receiving guest from remote platform
GUEST_STATUS 0x15 Query the status and metadata of a guest
ACTIVATE 0x05 Load a guest’s key into the memory controller
DEACTIVATE 0x16 Unload a guest’s key into the memory controller
DF_FLUSH 0x06 Flush the data fabric
DECOMMISSION 0x17 Delete the guest’s SEV context in firmware
DBG_DECRYPT 0x18 Decrypt guest memory region for debugging
DBG_ENCRYPT 0x19 Encrypt guest memory region for debugging

4.4 Status Codes
Table 6 summarizes the status codes that can be returned by the firmware commands. See the
command definitions for further details.

Table 6. Status Codes
Status Code Description

SUCCESS 0x0000 Successful completion

INVALID_PLATFORM_STATE 0x0001 The platform state is invalid for this command

INVALID_GUEST_STATE 0x0002 The guest state is invalid for this command

INVALID_CONFIG 0x0003 The platform configuration is invalid

CMDBUF_TOO_SMALL 0x0004 The command buffer is too small.

ALREADY_OWNED 0x0005 The platform is already owned

INVALID_CERTIFICATE 0x0006 The certificate is invalid

POLICY_FAILURE 0x0007 Request is not allowed by guest policy

INACTIVE 0x0008 The guest is inactive

INVALID_ADDRESS 0x0009 The address provided is invalid

BAD_SIGNATURE 0x000A The provided signature is invalid

BAD_MEASUREMENT 0x000B The provided measurement is invalid

ASID_OWNED 0x000C The ASID is already owned

INVALID_ASID 0x000D The ASID is invalid

WBINVD_REQUIRED 0x000E WBINVD instruction required

DFFLUSH_REQUIRED 0x000F DF_FLUSH invocation required

INVALID_GUEST 0x0010 The guest handle is invalid

55766 Rev. 3.01 August 2016 Secure Encrypted Virtualization Key Management

 Chapter 4 Mailbox Register Protocol 27

4.5 Endianness
All integral values passed between the firmware and the CPU driver are little-endian formatted
unless otherwise specified. That is, the first byte of the integer representation is the least
significant byte. Note that this applies to elliptic curve integral values too, such as the QX and QY
components of a curve point and the r and s components of the ECDSA signature.

Secure Encrypted Virtualization Key Management 55766 Rev. 3.01 August 2016

28 Platform Management API Chapter 5

Chapter 5 Platform Management API

The firmware maintains the state of the SEV platform. Valid platform states are as follows:

 Uninitialized
 Initialized
 Working

The uninitialized state is the default state the firmware enters when the system is initially booted.
When the platform is in the initialized state, it is able to provide support for guest management
commands. The working state indicates that one or more guests are being managed by the
firmware.

Commands related to altering the identity of the platform are restricted to the initialized state.
This requirement is due to the fact that regenerating identities while those guests are active
(Working state) within the system may potentially violate the security invariants expected by the
guests.

Figure 1. Platform Management State Machine

See Figure 1 for an illustration of the state machine. The LAUNCH_START, RECEIVE_START,
and DECOMMISSION commands are part of the guest management interface. If an edge does not
exist in a state for a command, no action is taken and an error is returned to the caller.

The platform is in the working state when it is maintains state for guests. The first
LAUNCH_START or RECEIVE_START commands transition the platform into the working
state. When the last guest is decommissioned with the DECOMMISSION command, the platform
transitions back to the initialized state.

The firmware manages platform-level data. These include:

55766 Rev. 3.01 August 2016 Secure Encrypted Virtualization Key Management

 Chapter 5 Platform Management API 29

 The platform Diffie-Hellman key (PDH) used to establish keys with external parties
 The platform endorsement key (PEK) that signs the PDH
 The chip endorsement key (CEK) that signs the PEK to prove authenticity of the part
 The certificate authority (CA) and a certificate chain linking the PEK to the CA root of trust
 The API version
 The platform serial number
The owner of the CA private key is considered to be the owner of the platform. The platform can
generate its own CA key pair, which defines the platform as self-owned. If the platform imports an
external CA certificate, the platform is then defined to be owned by that CA.

The firmware, via specific policy, controls whether guests are allowed to be migrated to platforms
with different owners. This depends on the migration policy of both the guest and the platform.

5.1 INIT
Initialize the platform.

5.1.1 Usage

This command is used to transition the platform to the initialized state. The INIT command must
be called before any other platform management commands are called (except
FACTORY_RESET). The firmware will only accept the INIT command from the uninitialized
state.

5.1.2 Actions

The firmware first loads the persistent state into its private memory, and then performs the
following actions:

 The Chip Endorsement Key (CEK) is derived from the chip unique values.
 If no CA certificate exists, a CA signing key is generated and a self-signed CA X.509

certificate is created. The signing key and certificate are written to persistent memory.
 If no PEK exists or the CA was just regenerated, a PEK signing key is generated and a PEK

X.509 certificate is created and signed by the CA. The PEK and its certificate are written to
persistent memory.

 A new PDH key is generated. Its public key and platform metadata are signed by the PEK and
the CEK.

 All SEV-related ASIDs on all cores are marked invalid. See ACTIVATE and DEACTIVATE
for further details.

The platform must be in the uninitialized state. Otherwise an error is returned.

Secure Encrypted Virtualization Key Management 55766 Rev. 3.01 August 2016

30 Platform Management API Chapter 5

5.1.3 Parameters

Size (bytes) In / Out Name Description

4 In, Out CBUF_LEN Command buffer length in bytes

4 In FLAGS Flags describing various status; Reserved for future
use. Must be zero.

5.1.4 Return Values

Return Value Reason

SUCCESS Successful completion

INVALID_PLATFORM_STATE The platform is not in the uninitialized state

INVALID_CONFIG The configuration is invalid or unsupported

CMDBUF_TOO_SMALL The command buffer is too small

INVALID_ADDRESS An address is invalid

5.2 SHUTDOWN
Securely de-initialize the platform.

5.2.1 Usage

This command is used to transition the platform to the uninitialized state.

5.2.2 Actions

All platform and guest state maintained by the firmware is securely deleted from volatile storage.

This command is valid when the platform is in any state. After completion, the platform
transitions into the uninitialized state.

5.2.3 Parameters

None.

5.2.4 Return Values

Return Value Reason

SUCCESS Successful completion

55766 Rev. 3.01 August 2016 Secure Encrypted Virtualization Key Management

 Chapter 5 Platform Management API 31

5.3 FACTORY_RESET
Reset the persistent state information of the platform.

5.3.1 Usage

This command is invoked when the platform is:

 decommissioned
 transferred to a new owner
 re-allocated to another domain

5.3.2 Actions

The persistent state is securely deleted from non-volatile storage.

This platform must be in the uninitialized state. Otherwise, a SHUTDOWN command must first
be invoked to transition the platform into the uninitialized state.

5.3.3 Parameters

None.

5.3.4 Return Values

Return Value Reason

SUCCESS Successful completion

INVALID_PLATFORM_STATE The platform is not in the uninitialized state

5.4 PLATFORM_STATUS
Returns the current status of the platform.

5.4.1 Usage

Used to collect the current state of the platform.

5.4.2 Actions

If the platform is in the uninitialized state, then FLAGS, CERT_STATUS, and GUEST_COUNT
values are not written out.

Secure Encrypted Virtualization Key Management 55766 Rev. 3.01 August 2016

32 Platform Management API Chapter 5

The CERT_STATUS[0] bit is set to 1 if the platform is owned by a domain. The firmware checks
domain ownership by determining if the CA certificate that signed its PEK was generated by the
platform or whether the CA certification was imported by the domain owner.

The CERT_STATUS[1] bit is set to 1 if the certificate chain is valid. The firmware checks that the
signatures on the certificates are valid and that the validity dates on the certificate are valid. The
firmware also reports an invalid certificate chain if one of the certificates is known to the firmware
to have been revoked.

The FLAGS parameter is equal to the value passed to the INIT command.

5.4.3 Parameters

Size (bytes) In / Out Name Description

4 In, Out CBUF_LEN Command buffer length in bytes

1 Out API_MAJOR Major API version

1 Out API_MINOR Minor API version.

1 Out STATE Current platform state:

0x00: Uninitialized

0x01: Initialized

0x02: Working

All other encodings are reserved.

1 Out CERT_STATUS Bit field describing certificate status:

Bit 0: Domain owned

Bit 1: Valid certificate chain

Bits 7:2 are reserved.

4 Out FLAGS Flags describing configuration. All bits reserved.

4 Out GUEST_COUNT Number of valid guests maintained by the firmware

5.4.4 Return Values

Return Value Reason

SUCCESS Successful completion

CMDBUF_TOO_SMALL The command buffer is too small

5.5 PEK_GEN
Generates a new PEK signing key and certificate.

55766 Rev. 3.01 August 2016 Secure Encrypted Virtualization Key Management

 Chapter 5 Platform Management API 33

5.5.1 Usage

This command is used to generate a new PEK. This should be invoked only once during the
provisioning of the platform.

5.5.2 Actions

Various keys and certificates are securely deleted from volatile and non-volatile storage including
the current certificate chain, CA signing key (if it exists), and the PEK. The current PDH is also
deleted from volatile storage.

A new CA signing key and self-signed certificate are generated and stored in non-volatile storage.
The CA is an ECDSA key pair using the NIST curve P-256.

A new PEK signing key and certificate signed by the new CA are generated and stored in non-
volatile storage. The PEK is an ECDSA key pair using curve P-256.

This call automatically invokes a regeneration of the PDH. See PDH_GEN section for
regeneration details.

If a CSR has been generated for the previous PEK, it is deleted. See PEK_CSR for more details.

The platform must be in the initialized state.

Note that in this version of the API, this command is an alias for an invocation of a SHUTDOWN,
FACTORY_RESET, and INIT in that order.

5.5.3 Parameters

None.

5.5.4 Return Values

Return Value Reason

SUCCESS Successful completion

INVALID_PLATFORM_STATE The platform is not in the initialized state

5.6 PEK_CSR
Generates a certificate signing request (CSR) for the PEK signing key.

5.6.1 Usage

During the provisioning process, the platform can be joined to a domain using this command in
conjunction with the PEK_CERT_IMPORT command. The CSR contains identifying information

Secure Encrypted Virtualization Key Management 55766 Rev. 3.01 August 2016

34 Platform Management API Chapter 5

of this platform and also contains the PEK public key. A certificate authority processes the CSR
by generating an X.509 certificate with the information from the CSR and signing it with its key.

5.6.2 Actions

A CSR is generated in the format of PKCS #10. The subject of the CSR has the common name
“SEV-PEK-“ concatenated with the serial number of the platform character encoded. The subject
also has a serial number attribute which is set to the serial number of the platform. The CSR
contains the PEK public key and is signed by the PEK private key.

Each CSR produced is stored in volatile storage. Subsequent invocations of this command return
the same CSR until a new PEK is generated or until the platform transitions to the uninitialized
state.

The platform must be in the initialized or working states.

5.6.3 Parameters

Size (bytes) In / Out Name Description

4 In, Out CBUF_LEN Command buffer length in bytes

Variable Out CSR Certificate signing request formatted with PKCS #10

5.6.4 Return Values

Return Value Reason

SUCCESS Successful completion

INVALID_PLATFORM_STATE The platform is not in the initialized or working states

CMDBUF_TOO_SMALL The command buffer is too small

5.7 PEK_CERT_IMPORT
Import the X.509 certificate of the PEK and its certificate chain.

5.7.1 Usage

During the provisioning process, the platform can be joined to a domain using this command in
conjunction with the PEK_CSR command. The CSR contains the identifying information of this
platform and the PEK public key. A certificate authority processes the CSR by generating an
X.509 certificate with the information from the CSR and signing it with its key. This command
imports the X.509 certificate of the PEK and its X.509 certificate chain into the platform.

55766 Rev. 3.01 August 2016 Secure Encrypted Virtualization Key Management

 Chapter 5 Platform Management API 35

Note that this provisioning process should be performed by the platform owner in a trusted
environment. In an untrusted environment—particularly where the x86 software is untrusted—this
request could be intercepted and replaced with a certificate chain crafted by the attacker.

5.7.2 Actions

The certificate chain consists of one or more certificates, where the first certificate is signed the
PEK and the last certificate provided is the root CA certificate. The platform validates the
certificate chain to ensure that each signature is valid and that each certificate has not expired. The
certificates must be X.509 certificates in the DER format.

The PEK X.509 certificate is checked to ensure that it matches the CSR exported via the
PEK_CSR command. Also, the firmware checks that the public key in the PEK certificate matches
its PEK public key.

The platform must be self-owned or an error is returned. A successful call to this command
transitions the platform from a self-owned platform to a domain-owned platform, where the owner
is the owner of the root CA signing key. The current CA signing key, CA certificate, and PEK
certificate are overwritten in volatile and non-volatile storage.

This call automatically invokes a regeneration of the PDH. See Section 5.8, PDH_GEN, on page
36.

The platform must be in the initialized state.

5.7.3 Parameters

Size (bytes) In / Out Name Description

4 In, Out CBUF_LEN Command buffer length in bytes

4 In N Number of certificates in CERTS

4 In CERTS_LEN Length of the CERTS field in bytes

Variable In CERTS Certificate chain, starting with the PEK and ending
with the CA certificate.

5.7.4 Return Values

Return Value Reason

SUCCESS Successful completion

INVALID_CONFIG The configuration is invalid or unsupported

CMDBUF_TOO_SMALL The command buffer is too small

ALREADY_OWNED The platform is already owned.

INVALID_CERTIFICATE The certificate is improperly formatted.

Secure Encrypted Virtualization Key Management 55766 Rev. 3.01 August 2016

36 Platform Management API Chapter 5

The certificate’s public key does not match the PEK.

5.8 PDH_GEN
Regenerates the PDH.

5.8.1 Usage

This command may be used to re-generate the PDH as often as desired. Note that if other entities
are using the current PDH to establish keys to encrypt data or provide integrity checking,
regenerating the PDH will invalidate any ongoing key establishment work. In this case, the other
entities must retrieve the new PDH in order to perform key establishment.

5.8.2 Actions

Generates a new PDH key pair. The PDH is an ECDH key agreement key with NIST curve P-256.
After generation of the PDH key, the firmware then signs the PDH public key with the CEK and
the PEK along with other metadata. Specifically, this operation is a signature of the following
values (where `||’ is the concatenation operator)

 PDH_PUB_QX || PDH_PUB_QY || API_MAJOR || API_MINOR || SERIAL

where PDH_PUB_QX and PDH_PUB_QY are the public component of the PDH, the
API_MAJOR and API_MINOR are the major and minor API versions of this platform, and
SERIAL is the serial number of this platform.

The platform must be in the initialized or working states or an error is returned. The PDH is never
stored in non-volatile or other persistent storage and is regenerated after each call to INIT,
PEK_GEN, and PEK_IMPORT_CERT.

5.8.3 Parameters

None.

5.8.4 Return Values

Return Value Reason

SUCCESS Successful completion

INVALID_PLATFORM_STATE The platform must be in the initialized state.

55766 Rev. 3.01 August 2016 Secure Encrypted Virtualization Key Management

 Chapter 5 Platform Management API 37

5.9 PDH_CERT_EXPORT
Exports the PDH public key and all the signatures and certificates necessary to authenticate the
PDH.

5.9.1 Usage

This command is used to to retrieve the PDH and identity of the platform. This information may
then be exported to remote entities which wish to establish a secure transport context with the
platform in order to transmit data securely.

5.9.2 Actions

Exports the following data that can be used by an external party to authenticate the identity of the
platform and establish keys:

 The PDH public key and its metadata
 The CEK signature of the PDH public key and its metadata
 The PEK signature of the PDH public key and its metadata
 The PEK certificate chain
The CEK and PEK signatures exported by this command are generated by the PDH_GEN
command.

The platform must be in the initialized or working state.

Secure Encrypted Virtualization Key Management 55766 Rev. 3.01 August 2016

38 Platform Management API Chapter 5

5.9.3 Parameters

Size (bytes) In / Out Name Description

4 In, Out CBUF_LEN Command buffer length in bytes

1 Out API_MAJOR API major version

1 Out API_MINOR API minor version

2 Reserved.

4 Out SERIAL Platform serial number

32 Out PDH_PUB_QX The Qx parameter of the PDH public key

32 Out PDH_PUB_QY The Qy parameter of the PDH public key

32 Out PEK_SIG_R The r component of the PEK signature

32 Out PEK_SIG_S The s component of the PEK signature

32 Out CEK_SIG_R The r component of the CEK signature

32 Out CEK_SIG_S The s component of the CEK signature

32 Out CEK_PUB_QX The Qx parameter of the CEK public key

32 Out CEK_PUB_QY The Qy parameter of the CEK public key

4 Out N Number of certificates in the certificate chain
(excluding the PEK certificate

Variable Out PEK_CERT PEK certificate signed by the domain CA. Signed by
CERT1.

Variable Out CERT1 First certificate in the chain. Signed by CERT2.

Variable Out CERT2 Second certificate in the chain. Signed by CERT3.

…

Variable Out CERTn nth certificate in the chain and the root CA

5.9.4 Return Values

Return Value Reason

SUCCESS Successful completion

INVALID_PLATFORM_STATE The platform is not in the initialized or working states

CMDBUF_TOO_SMALL The command buffer is too small

55766 Rev. 3.01 August 2016 Secure Encrypted Virtualization Key Management

 Chapter 6 Guest Management API 39

Chapter 6 Guest Management API

The firmware maintains state of each guest. Valid guest states are as follows:

 Invalid
 Launching
 Running
 Sending
 Receiving
A guest can also be in the off, booted, or sent states as shown below, but these states are not
tracked by the firmware; in these cases, the firmware reports invalid for guest state status requests
via GUEST_STATUS. A guest is identified by its guest handle, which is provided by the firmware
to the hypervisor through which it manages the guest.

Off Booted Launching Running

SendingReceiving

VM
Boot

LAUNCH_START

LAUNCH_UPDATE,
ACTIVATE,
DEACTIVATE,
GUEST_STATUS,
DF_FLUSH,
Debugging commands

LAUNCH_FINISH

ACTIVATE,
DEACTIVATE,
GUEST_STATUS,
DF_FLUSH,
Debugging commands

Sent

RECEIVE_FINISH SEND_FINISH

SEND_START

RECEIVE_START

RECEIVE_UPDATE,
ACTIVATE,
DEACTIVATE,
GUEST_STATUS,
DF_FLUSH,
Debugging commands

SEND_UPDATE,
ACTIVATE,
DEACTIVATE,
GUEST_STATUS,
DF_FLUSH,
Debugging commands

SEND_FINISH

Reset,
DECOMMISSION

Figure 2. Guest Management State Machine

See Figure 2 for an illustration of the state machine. If an edge does not exist in a state for a
command, no action is taken and an error is returned to the caller.

The reset edge into the off state represents a power cycle or reboot taken by the system that causes
volatile storage to be cleared.

The debugging commands are described in Chapter 7 on page 60. These commands allow the
hypervisor to decrypt guest memory. The guest’s policy may disallow debugging.

Secure Encrypted Virtualization Key Management 55766 Rev. 3.01 August 2016

40 Guest Management API Chapter 6

The SEND_FINISH command returns the guest back to the running state. The dashed edge in the
state machine from the sending state to the sent state reflects the fact that the guest is essentially
copied, where one copy continues running and the other is sent. If the hypervisor needs to migrate
the guest, it could invoke DECOMMISSION immediately afterward to remove the running guest
from the platform.

6.1 LAUNCH_START
Command to initiate the process to launch a guest into SEV-enabled mode.

6.1.1 Usage

This command is used to prepare a guest for the transition into SEV-enabled mode.

This command produces a new guest handle and generates a new VEK.

6.1.2 Actions

The firmware establishes a launch measurement key using

 The guest owner’s public ECDH key (DH_PUB_QX and DH_PUB_QY)
 The NONCE generated by the guest owner
 The platform’s PDH private key
This master secret establishment is described in Section 2.2.2 on page 21. Section 2.2.3 on page 22
describes the derivation of the launch measurement key from the master secret.

A guest handle is returned to the caller in the HANDLE field. This guest handle is unique to all
guests on the platform and is used by the hypervisor to manage the guest from this point onward.
The guest handle refers to the firmware’s internal structures that describe the current state of the
guest. The guest handle returned by the firmware will never equal 0. The guest’s VM Encryption
Key (VEK) is generated at this point and stored in the guest state structure. The guest’s policy is
also stored in this state structure.

If the hypervisor requests this guest to share keys with another guest (FLAGS.KS=1), then the
VEK of the other guest specified in HANDLE is used for this guest. For key sharing to be
allowed, POLICY.KS must be clear and POLICY.DBG, POLICY.DOMAIN, and POLICY.SEV
should be identical for both guests. If key sharing is not requested (FLAGS.KS=0), HANDLE is
ignored and a newly generated VEK is used for memory encryption.

A version check is performed to ensure that the API version implemented on the platform provides
the proper functionality requested by the initiator of the guest VM. The major API version of this
platform must be greater than the guest’s POLICY.API_MAJOR field value, or the major API
version is equal to POLICY.API_MAJOR, and the minor API version of this platform is greater
than or equal to POLICY.API_MINOR. If all of these conditions are not met then an error is
returned.

55766 Rev. 3.01 August 2016 Secure Encrypted Virtualization Key Management

 Chapter 6 Guest Management API 41

After successful completion of this command, the guest is transitioned to the launching state.

If the platform is in the initialized state, the successful completion of this command transitions the
platform into the working, respectively. The platform must be in the initialized or working states.

6.1.3 Parameters

Size (bytes) In / Out Name Description

4 In, Out CBUF_LEN Command buffer length in bytes

4 In, Out HANDLE

In: If FLAGS.KS is set to 1, share key with guest
referenced by this handle. Otherwise ignored.

Out: New guest handle. Nothing written on failure.

4 In FLAGS Guest configuration flags:

Bit 0: (KS) Key sharing is requested

Bits 31:1 are reserved. SBZ

4 In POLICY Guest flags describing its policy. See Chapter 3 on
page 23 for the policy format.

32 In DH_PUB_QX The Qx parameter of the owner’s ECDH public key

32 In DH_PUB_QY The Qy parameter of the owner’s ECDH public key

16 In NONCE A nonce freshly generated by guest owner

6.1.4 Return Values

Return Value Reason

SUCCESS Successful completion

INVALID_PLATFORM_STATE The platform is not in the initialized or working states

CMDBUF_TOO_SMALL The command buffer is too small

INVALID_GUEST The guest handle is invalid

6.2 LAUNCH_UPDATE
This command is used to continue required steps in the launching process for the target guest.

6.2.1 Usage

For the LAUNCH_UPDATE command, the platform must be in the working state, and the guest
must be in the launching state, else an error is returned. The LAUNCH_UPDATE command
provides a method for physical pages of the guest to be encrypted securely by the firmware.

Secure Encrypted Virtualization Key Management 55766 Rev. 3.01 August 2016

42 Guest Management API Chapter 6

During launch, the firmware builds a measurement of the memory contents that is encrypted. This
measurement can then be used by the guest owner (or the guest owner’s delegate) to verify the
guest was successfully launched on the SEV enabled platform.

6.2.2 Actions

The launch measurement is updated with the contents of the memory region in the order contained
within the LAUNCH_UPDATE command. The key used for the measurement process is the
launch measurement key of the guest associated with the HANDLE parameter. See Section 2.2.3
on page 22 for details concerning the measurement algorithm.

This command requires that the guest be already activated using the ACTIVATE command. If the
guest has not been activated, this command fails without altering the provided memory regions.

Once the measurement process has completed, the memory region is then encrypted in place with
the VEK of the guest associated with the HANDLE parameter.

The system physical addresses must be 16-byte aligned and the lengths must be divisible by 16. It
must also be a valid physical address.

6.2.3 Parameters

Size (bytes) In / Out Name Description

4 In, Out CBUF_LEN Command buffer length in bytes

4 In HANDLE The guest being launched

8 In PADDR System physical address of memory region to
encrypt and measure. Must be 16-byte aligned.

4 In LENGTH Length of PADDR region. Must be divisible by 16.

6.2.4 Return Values

Return Value Reason

SUCCESS Successful completion

INVALID_PLATFORM_STATE The platform is not in the working state

INVALID_GUEST_STATE The guest is not in the launching state

CMDBUF_TOO_SMALL The command buffer is too small

INACTIVE The guest is currently inactive

INVALID_ADDRESS An address is invalid

INVALID_GUEST The guest handle is invalid

55766 Rev. 3.01 August 2016 Secure Encrypted Virtualization Key Management

 Chapter 6 Guest Management API 43

6.3 LAUNCH_FINISH
Finalize launching the guest.

6.3.1 Usage

After the hypervisor has finished encrypting the guest’s memory (via the firmware
LAUNCH_UPDATE command), the hypervisor concludes the launch operation with this
command. The LAUNCH_FINISH command returns a measurement value to the hypervisor.
This measurement value can be handed to the guest owner (or the guest owner’s delegate) to
verify that the guest was launched successfully.

The guest has one or more VMCBs managed by the hypervisor. The register save state areas of
these VMCBs represents the current state of the virtual CPUs (VCPU) of the guest. Each of these
save state areas are provided by the hypervisor to the firmware. The firmware includes these save
state areas in the measurement value.

6.3.2 Actions

The measurement value is updated with the selected bytes of each VCPU in the order provided in
the LAUNCH_FINISH command issued by the hypervisor. The ith byte of the VCPU is selected
if the ith bit of the VCPU mask is set to one (1), where bits are ordered from least to most
significant within each byte. In other words, if the jth bit of the kth byte of the VCPU mask is set
then the (j+k*8) byte of the VCPU is included in the measurement.

The measurement is then updated with the VCPU_COUNT value. The measurement is then
finalized and provided in the MEASUREMENT field. The key used for the measurement is the
launch measurement key of the guest established during the LAUNCH_START command. See
Section 2.2.3 on page 22 for more details regarding the launch measurement.

When the LAUNCH_FINISH command is issued, the platform must be in the working state, and
the guest must be in the launching state or an error is returned. After successful completion of this
command, the guest is transitioned into the running state.

The system physical addresses must be 16-byte aligned. It must also be a valid physical address.

6.3.3 Parameters

Size (bytes) In / Out Name Description

4 In, Out CBUF_LEN Command buffer length in bytes

4 In HANDLE The guest being launched

32 In MEASUREMENT Host physical address to store measurement

4 In VCPU_LENGTH The length of each VCPU in bytes

8 In VCPU_MASK_ADDR A pointer to the mask of bytes to include in the

Secure Encrypted Virtualization Key Management 55766 Rev. 3.01 August 2016

44 Guest Management API Chapter 6

measurement. L is equal to ceiling (VCPU_LENGTH /
8). The remaining bits must be zero.

4 In VCPU_COUNT Number of VCPUs for this guest

8 In VCPU1 System physical address of first VCPU. This must be
the bootstrap CPU

8 In VCPU2 System physical address of second VCPU

…

8 In VCPUn System physical address of nth VCPU, where n is
VCPU_COUNT.

6.3.4 Return Values

Return Value Reason

SUCCESS Successful completion

INVALID_PLATFORM_STATE The platform is not in the working state

INVALID_GUEST_STATE The guest is not in the launching state

CMDBUF_TOO_SMALL The command buffer is too small

INVALID_ADDRESS An address is invalid

INVALID_GUEST The guest handle is invalid

6.4 SEND_START
Begins the guest send process.

6.4.1 Usage

The hypervisor plans to send the guest to a target platform either for the purpose of saving to disk
or to migrate the guest to a target platform.

There are four possible target platform types:

 SEV capable platforms inside this platform’s domain
 SEV capable platforms outside this platform’s domain
 Non-SEV platforms inside this platform’s domain
 Non-SEV platforms outside this platform’s domain
The guest has the ability to choose which of these targets are allowed with its policy. The
hypervisor indicates which target type it is and the firmware ensures the guest’s policy is enforced.

55766 Rev. 3.01 August 2016 Secure Encrypted Virtualization Key Management

 Chapter 6 Guest Management API 45

6.4.2 Actions

If FLAGS.DOMAIN is set to 1, the PEK signature (PEK_SIG_R and PEK_SIG_S) is verified
using the public key found in PEK_CERT. This is a signature of the following values (where `||’ is
the concatenation operator)

 DH_PUB_QX || DH_PUB_QY || API_MAJOR || API_MINOR || SERIAL

Then, the certificate chain of the PEK (CERT1, CERT2, …, CERTN) is validated. This involves
verifying each of their signatures, checking the expiration dates on each of the certificates, and
ensuring that the root certificate (CERTN) matches the root certificate of this platform. The PEK
signature and the certificate chain must be valid.

If FLAGS.NOSEND is set to 1, this command returns an error.

If FLAGS.DOMAIN is clear, the PEK signature and certificate chain are not checked.
POLICY.DOMAIN must be clear in the policy for the guest associated with HANDLE.

If FLAGS.SEV is set to 1, the CEK signature (CEK_SIG_R and CEK_SIG_S) is verified using
the CEK public key (CEK_PUB_QX and CEK_PUB_QY). This is a signature of the following
values (where `||’ is the concatenation operator)

 DH_PUB_QX || DH_PUB_QY || API_MAJOR || API_MINOR || SERIAL

Then, the ASK signature (ASK_SIG_R and ASK_SIG_S) is verified using the ASK public key
that is retrieved from internal firmware storage. This is a signature of the following values (where
`||’ is the concatenation operator)

 CEK_PUB_QX || CEK_PUB_QY

The ASK and CEK signatures must be valid.

If FLAGS.SEV is clear, the CEK and ASK signatures are not checked. POLICY.SEV must be
clear in the policy for the guest associated with HANDLE.

API_MAJOR must be greater than the guest’s POLICY.API_MAJOR, or API_MAJOR is equal to
POLICY.API_MAJOR and API_MINOR is greater than or equal to POLICY.API_MINOR.

The firmware generates a 16-byte nonce and outputs it to NONCE. The firmware then derives the
master secret using the guest owner’s public ECDH key (DH_PUB_QX and DH_PUB_QY), the
NONCE generated by the firmware, and the platform’s PDH private key. This key establishment
is described in Section 2.2.2 on page 21.

The firmware generates a transport encryption nonce, a transport encryption key, and a transport
integrity key for the purpose of protecting the guest memory image during transmission. The keys
are generated according to Section 2.2.5 on page 22 and wrapped as described in 2.2.4. The

Secure Encrypted Virtualization Key Management 55766 Rev. 3.01 August 2016

46 Guest Management API Chapter 6

wrapped keys are output in the WRAPPED_TEK and WRAPPED_TIK fields. The transport
encryption nonce is input into the TEN field.

The IV field is output from the firmware and used by the RECEIVE_UPDATE command as the
IV input to the block cipher.

The guest’s policy is output to POLICY, along with an integrity measurement of the policy which
is output to POLICY_MEAS. The measurement uses an HMAC-SHA-256 keyed with the
transport integrity key.

The platform must be in the initialized or working states. The guest must be in the running state.
After successful completion of this command, the guest is transitioned into the sending state.

6.4.3 Parameters

Size (bytes) In / Out Name Description

4 In, Out CBUF_LEN Command buffer length in bytes

16 Out NONCE Nonce generated by firmware for KDF freshness

4 Out POLICY Guest flags describing its policy. See Chapter 3 on
page 23 for the policy format.

32 Out POLICY_MEAS HMAC of POLICY keyed with the transport
integrity key.

24 Out WRAPPED_TEK The wrapped transport encryption key

8 Reserved.

24 Out WRAPPED_TIK The wrapped transport integrity key

8 Reserved

16 Out TEN The transport encryption nonce for key wrapping

16 Out IV The IV for the transport encryption block cipher

4 In HANDLE The guest being sent

4 In FLAGS Flags for this command:

Bit 0: (DOMAIN) Target entity is part of the
domain

Bit 1: (SEV) Target entity is SEV capable platform

Bits 31:2 are reserved. MBZ

1 In API_MAJOR API major version of target platform

1 In API_MINOR API minor version of target platform

2 Reserved.

4 In SERIAL Platform serial number

32 In DH_PUB_QX The Qx parameter of the target’s DH public key

55766 Rev. 3.01 August 2016 Secure Encrypted Virtualization Key Management

 Chapter 6 Guest Management API 47

Size (bytes) In / Out Name Description

32 In DH_PUB_QY The Qy parameter of the target’s DH public key

32 In PEK_SIG_R The r component of the PEK signature

32 In PEK_SIG_S The s component of the PEK signature

32 In CEK_SIG_R The r component of the CEK signature

32 In CEK_SIG_S The s component of the CEK signature

32 In CEK_PUB_QX The Qx parameter of the CEK public key

32 In CEK_PUB_QY The Qy parameter of the CEK public key

32 In ASK_SIG_R The r component of the ASK signature.

32 In ASK_SIG_S The s component of the ASK signature.

4 In N Number of certificates CERTS

4 In CERTS_LEN Length of the CERTS field in bytes

Variable In CERTS Certificate chain, starting with the PEK and
ending with the CA certificate.

6.4.4 Return Values

Return Value Reason

SUCCESS Successful completion

INVALID_PLATFORM_STATE The platform is not in the working state

INVALID_GUEST_STATE The guest is not in the running state

CMDBUF_TOO_SMALL The command buffer is too small

INVALID_CERTIFICATE The remote PEK or its certificates are not formatted correctly.

POLICY_FAILURE The guest policy disallows sending this guest to the remote platform

INACTIVE The guest is currently inactive

BAD_SIGNATURE The remote PEK or its certificates do not have valid signatures

INVALID_GUEST The guest handle is invalid

6.5 SEND_UPDATE
Continue re-encrypting the guest’s encrypted pages.

6.5.1 Usage

The hypervisor provides a handle to the guest being sent as well as a list of physical addresses of
encrypted pages to perform the send operations on. The firmware generates a new IV, decrypts
each page with the VEK and then re-encrypts the page with the transport encryption key. This

Secure Encrypted Virtualization Key Management 55766 Rev. 3.01 August 2016

48 Guest Management API Chapter 6

process is performed in such a way that there is no race condition in which the hypervisor can take
advantage to access the decrypted data. After this command successfully completes, each of the
destination pages contain the re-encrypted contents of the source page.

6.5.2 Actions

The firmware initializes a new measurement context. The measurement used is HMAC-SHA-256
keyed with the transport integrity key. The firmware also initializes a new encryption context. The
encryption uses AES-128 in CTR mode with the transport encryption key. The nonce used was
derived from the master secret in SEND_START.

This command requires that the guest be already activated using the ACTIVATE command. If the
guest has not been activated, this command fails without altering the provided memory region.

For the source memory region, the plaintext contents of that region (starting at SRC_PADDR and
extending LENGTH bytes) are encrypted using the transport encryption context and saved into the
destination memory region (starting at DST_PADDR and extending LENGTH bytes). Then, the
measurement is updated with the contents of the destination memory region.

The system physical addresses must be 16-byte aligned and the lengths must be divisible by 16. It
must also be a valid physical address.

The platform must be in the initialized or working states, and the guest must be in the sending
state or an error is returned.

6.5.3 Parameters

Size (bytes) In / Out Name Description

4 In, Out CBUF_LEN Command buffer length in bytes

4 In HANDLE The guest being sent

8 In SRC_PADDR System physical address of memory region to re-
encrypt from. Must be 16-byte aligned.

8 In DST_PADDR System physical address of memory region to re-
encrypt into. Must be 16-byte aligned.

4 In LENGTH Length of the SRC_PADDR and DST_PADDR regions.
Must be divisible by 16.

55766 Rev. 3.01 August 2016 Secure Encrypted Virtualization Key Management

 Chapter 6 Guest Management API 49

6.5.4 Return Values

Return Value Reason

SUCCESS Successful completion

INVALID_PLATFORM_STATE The platform is not in the working state

INVALID_GUEST_STATE The guest is not in the sending state

CMDBUF_TOO_SMALL The command buffer is too small

INACTIVE The guest is currently inactive

INVALID_ADDRESS An address is invalid

INVALID_GUEST The guest handle is invalid

6.6 SEND_FINISH
Finish sending the guest.

6.6.1 Usage

The hypervisor informs the firmware that the hypervisor has completed re-encrypting the memory
of the guest.

6.6.2 Actions

The measurement of the re-encrypted memory is finalized and output into MEASUREMENT. The
transport keys are securely deleted from firmware memory.

The platform must be in the working state, and the guest must be in the sending state or an error is
returned. After this call completes successfully, the guest transitions to the running state.

6.6.3 Parameters

Size (bytes) In / Out Name Description

4 In, Out CBUF_LEN Command buffer length in bytes

4 In HANDLE The guest being sent

32 Out MEASUREMENT The measurement of the re-encrypted guest
memory

Secure Encrypted Virtualization Key Management 55766 Rev. 3.01 August 2016

50 Guest Management API Chapter 6

6.6.4 Return Values

Return Value Reason

SUCCESS Successful completion

INVALID_PLATFORM_STATE The platform is not in the working state

INVALID_GUEST_STATE The guest is not in the sending state

CMDBUF_TOO_SMALL The command buffer is too small

INACTIVE The guest is currently inactive

INVALID_ADDRESS An address is invalid

INVALID_GUEST The guest handle is invalid

6.7 RECEIVE_START
Begin the process to receive an SEV-enabled guest.

6.7.1 Usage

The hypervisor has received a guest from an external entity, and initiates a receive process with
the RECEIVE_START command. The RECEIVE_START command requests the firmware to
generate a guest context. This generated guest context includes a VEK, the provided guest policy,
transport encryption and integrity keys derived from the provided ECDH public keys of the
originator of the image, and a measurement context. As the receive process continues, the
hypervisor provides portions of the guest to be re-encrypted, integrity checked, and prepared to
start as an SEV enabled guest.

6.7.2 Actions

The firmware establishes a master secret using the origin’s public ECDH key (DH_PUB_QX and
DH_PUB_QY), the NONCE generated by the guest owner, and the platform’s PDH private key.
This key establishment is described in Section 2.2.2 on page 21.

The firmware receives a wrapped transport encryption key and a transport integrity key for the
purpose of protecting the guest memory image during transmission. These keys are wrapped as
described in Section 2.2.4 on page 22. The wrapped keys are input in the WRAPPED_TEK and
WRAPPED_TIK fields. The transport encryption nonce is input into the TEN field.

An integrity measurement of POLICY is generated and compared with POLICY_MEAS. The
measurement uses an HMAC-SHA-256 keyed with the transport integrity key. The
POLICY_MEAS must be successfully verified, or an error is returned.

Upon command success, a guest handle is returned to the caller in HANDLE. The guest handle is
unique to all guests on the platform and is used by the hypervisor to manage the guest from this

55766 Rev. 3.01 August 2016 Secure Encrypted Virtualization Key Management

 Chapter 6 Guest Management API 51

point onward. The guest handle refers to the firmware’s internal structures that describe the
current state of the guest. The guest handle returned by the firmware will never equal 0.The
guest’s VM Encryption Key (VEK) is generated at this point and stored in the guest state
structure. The guest’s policy is also stored in this guest state structure.

If the hypervisor requests this guest to share keys with another guest (FLAGS.KS=1), the VEK of
the other guest specified in HANDLE is used for this guest. For key sharing to be enabled,
POLICY.KS must be clear and POLICY.DBG, POLICY.DOMAIN, and POLICY.SEV should be
identical for both guests. If key sharing is not requested (FLAGS.KS=0), HANDLE is ignored and
a newly generated VEK is used for memory encryption.

The major API version of this platform must be greater than the guest’s POLICY.API_MAJOR, or
the major API version is equal to POLICY.API_MAJOR and the minor API version of this
platform is greater than or equal to POLICY.API_MINOR. If any of these conditions fail, then an
error code is returned.

After successful completion of this command, the guest is transitioned to the receiving state.

If the platform is in the initialized state, the successful completion of this command transitions the
platform into the working, respectively. The platform must be in the initialized or working states.
See Figure 1 on page 28 in Chapter 5 for more details.

6.7.3 Parameters

Size (bytes) In / Out Name Description

4 In, Out CBUF_LEN Command buffer length in bytes

4 In, Out HANDLE In: If FLAGS.KS is set to 1, share key with guest
referenced by this handle. Otherwise ignored.

Out: New guest handle.

4 In FLAGS Flags for the receive process:

Bit 0: (KS) Key sharing requested

Bits 31:1 are reserved. SBZ

4 In POLICY Guest flags describing its policy. See Chapter 3 on
page 23 for the policy format.

32 In POLICY_MEAS HMAC of POLICY keyed with the transport integrity
key.

24 In WRAPPED_TEK The wrapped transport encryption key

8 Reserved.

24 In WRAPPED_TIK The wrapped transport integrity key

8 Reserved

16 In TEN The transport encryption nonce

32 In DH_PUB_QX The Qx parameter of the origin’s ECDH public key

Secure Encrypted Virtualization Key Management 55766 Rev. 3.01 August 2016

52 Guest Management API Chapter 6

Size (bytes) In / Out Name Description

32 In DH_PUB_QY The Qy parameter of the origin’s ECDH public key

16 In NONCE Nonce generated by the origin

6.7.4 Return Values

Return Value Reason

SUCCESS Successful completion

INVALID_PLATFORM_STATE The platform is not in the working state

INVALID_GUEST_STATE The guest is not in the running state

CMDBUF_TOO_SMALL The command buffer is too small

POLICY_FAILURE The guest policy does not allow key sharing

INACTIVE The guest is currently inactive

INVALID_ADDRESS An address is invalid

BAD_MEASUREMENT The policy measurement is invalid

6.8 RECEIVE_UPDATE
Continue re-encrypting the guest’s encrypted pages.

6.8.1 Usage

The hypervisor provides a handle to the guest being received as well as a list of physical addresses
of pages to re-encrypt. After this command successfully completes, each of the destination pages
contain the re-encrypted contents of the source page.

6.8.2 Actions

The firmware initializes a new measurement context. The measurement used is HMAC-SHA-256
keyed with the transport integrity key. The firmware also initializes a new encryption context. The
encryption uses AES-128 in CTR mode with the transport encryption key. The nonce used was
derived from the master secret in SEND_START.

This command requires that the guest be already activated using the ACTIVATE command. If the
guest has not been activated, this command fails without altering the provided memory regions.

For the memory region contained within the RECEIVE_UPDATE command, the contents of that
region (starting at PADDR and extending LENGTH bytes) is measured using the transport
integrity context. The firmware processes the memory regions in the order provided by the
hypervisor. The memory region is then decrypted using the transport encryption context and re-

55766 Rev. 3.01 August 2016 Secure Encrypted Virtualization Key Management

 Chapter 6 Guest Management API 53

encrypted with the VEK in place. This is performed in such a way that the hypervisor cannot race
to the decrypted data.

The system physical addresses must be 16-byte aligned and the lengths must be divisible by 16. It
must also be a valid physical address.

The platform must be in the working state, and the guest must be in the receiving state or an error
is returned.

6.8.3 Parameters.

Size (bytes) In / Out Name Description

4 In, Out CBUF_LEN Command buffer length in bytes

4 In HANDLE The guest being received

16 In IV The initialization vector for this block of memory

8 In PADDR System physical address of first memory region to
re-encrypt. Must be 16-byte aligned.

4 In LENGTH Length of PADDR region. Must be divisible by 16

6.8.4 Return Values

Return Value Reason

SUCCESS Successful completion

INVALID_PLATFORM_STATE The platform is not in the working state

INVALID_GUEST_STATE The guest is not in the receiving state

CMDBUF_TOO_SMALL The command buffer is too small

INACTIVE The guest is currently inactive

INVALID_ADDRESS An address is invalid

INVALID_GUEST The guest handle is invalid

6.9 RECEIVE_FINISH
Finish receiving the guest.

6.9.1 Usage

This command is used to complete the receipt of a transmitted guest.

Secure Encrypted Virtualization Key Management 55766 Rev. 3.01 August 2016

54 Guest Management API Chapter 6

6.9.2 Actions

The transport keys are securely deleted from firmware memory. The measurement provided by the
sending platform is input into the MEASUREMENT field. The firmware verifies the measurement
using the TIK established in the RECEIVE_START key agreement. If the measurement fails, then
an error is returned, the guest handle is invalidated, and the VM encryption keys are deleted.

The platform must be in the working state, and the guest must be in the receiving state or an error
is returned. After this command completes successfully, the guest is transitioned to the running
state.

6.9.3 Parameters

Size (bytes) In / Out Name Description

4 In, Out CBUF_LEN Command buffer length in bytes

4 In HANDLE The guest being received

32 In MEASUREMENT The measurement of the transported guest

6.9.4 Return Values

Return Value Reason

SUCCESS Successful completion

INVALID_PLATFORM_STATE The platform is not in the working state

INVALID_GUEST_STATE The guest is not in the receiving state

CMDBUF_TOO_SMALL The command buffer is too small

BAD_MEASUREMENT The policy measurement is invalid

INVALID_GUEST The guest handle is invalid

6.10 GUEST_STATUS
Returns the current status of the guest.

6.10.1 Usage

Used by the hypervisor to collect the current state of the guest.

6.10.2 Actions

If the HANDLE is invalid, then STATE=0x00 and all other parameters are untouched.

The platform must be in the initialized or working states.

55766 Rev. 3.01 August 2016 Secure Encrypted Virtualization Key Management

 Chapter 6 Guest Management API 55

6.10.3 Parameters

Size (bytes) In / Out Name Description

4 In, Out CBUF_LEN Command buffer length in bytes

4 In HANDLE Guest handle

4 Out POLICY Guest flags describing its policy. See Chapter 3 on
page 23 for the policy format.

4 Out ASID Current ASID. If not active, set to 0.

1 Out STATE Current platform state:

0x00: Invalid

0x01: Launching

0x02: Receiving

0x03: Sending

0x04: Running

All other encodings are reserved.

6.10.4 Return Values

Return Value Reason

SUCCESS Successful completion

INVALID_PLATFORM_STATE The platform is not in the working state

CMDBUF_TOO_SMALL The command buffer is too small

INVALID_GUEST The guest handle is invalid

6.11 ACTIVATE
Activate a guest.

6.11.1 Usage

This command is used to inform the firmware that the guest is bound to a particular ASID. The
firmware then loads the guest’s VEK into the memory controller at the key slot for that ASID.

6.11.2 Actions

The guest must either be inactive or its ASID must be equal to the ASID parameter. The ASID
parameter must not be zero and must be a valid ASID. The ASID must not be currently used by
another guest.

Secure Encrypted Virtualization Key Management 55766 Rev. 3.01 August 2016

56 Guest Management API Chapter 6

A WBINVD and subsequent call to DF_FLUSH is required to be executed before the hypervisor
executes the ACTIVATE instruction. A WBINVD is required on all cores. The firmware checks
that a DF_FLUSH has been performed. If it has not, an error is returned.

The platform must be in the working state. The guest must be in the launching, sending, receiving,
or running state.

6.11.3 Parameters

Size (bytes) In / Out Name Description

4 In, Out CBUF_LEN Command buffer length in bytes

4 In HANDLE Guest handle

4 In ASID ASID to activate the guest with.

6.11.4 Return Values

Return Value Reason

SUCCESS Successful completion

INVALID_PLATFORM_STATE The platform is not in the working state

CMDBUF_TOO_SMALL The command buffer is too small

ACTIVE Guest is already active

ASID_OWNED ASID is already owned by another guest

INVALID_ASID ASID is not valid

WBINVD_REQUIRED WBINVD has not been executed

DFFLUSH_REQUIRED DF_FLUSH has not been invoked

INVALID_GUEST The guest handle is invalid

6.12 DEACTIVATE
Deactivate a guest.

6.12.1 Usage

This command is used to dissociate the guest from its current ASID. The firmware will uninstall
the guest’s key from the memory controller.

6.12.2 Actions

The firmware uninstalls the guest’s key from the memory controller and records that a
DF_FLUSH is required for this ASID.

55766 Rev. 3.01 August 2016 Secure Encrypted Virtualization Key Management

 Chapter 6 Guest Management API 57

The platform must be in the initialized or working states. The guest must be in the launching,
sending, receiving, or running state.

6.12.3 Parameters

Size (bytes) In / Out Name Description

4 In, Out CBUF_LEN Command buffer length in bytes

4 In HANDLE Guest handle

6.12.4 Return Values

Return Value Reason

SUCCESS Successful completion

INVALID_PLATFORM_STATE The platform is not in the working state

CMDBUF_TOO_SMALL The command buffer is too small

INACTIVE Guest is already inactive

INVALID_GUEST The guest handle is invalid

6.13 DF_FLUSH
Flush the internal data fabric write buffers.

6.13.1 Usage

The hypervisor invokes this command after deactivating one or more guests. The hypervisor must
execute a WBINVD on the hardware threads that the previous guest was active on before invoking
the DF_FLUSH command.

6.13.2 Actions

The firmware checks that the hypervisor executed a WBINVD instruction on all cores. If not, an
error is returned.

The firmware executes a data fabric flush which causes all internal CPU write buffers to be
flushed. The firmware also records that a flush has been performed for all ASIDs.

The platform must be in the initialized or working states. Otherwise an error is returned.

6.13.3 Parameters

None.

Secure Encrypted Virtualization Key Management 55766 Rev. 3.01 August 2016

58 Guest Management API Chapter 6

6.13.4 Return Values

Return Value Reason

SUCCESS Successful completion

INVALID_PLATFORM_STATE The platform is not in the working state

ACTIVE The guest is active

WBINVD_REQUIRED WBINVD has not been executed

INVALID_GUEST The guest handle is invalid

6.14 DECOMMISSION
Decommission a guest.

6.14.1 Usage

The hypervisor no longer intends to run the guest. Invoking this command deletes all guest context
for this guest. Upon successful completion of this command, HANDLE is no longer a valid guest
handle. Guests that shared their VEK with this guest are not affected.

6.14.2 Actions

The guest must not be active. Otherwise, an error is returned. The hypervisor must invoke
DEACTIVATE for the guest before invoking DECOMMISSION.

All guest context is securely deleted from firmware memory.

The platform must be in the initialized or working states. The guest must be in any state but the
invalid state; if this command is invoked during launch, receive, or send operations, all context is
lost.

6.14.3 Parameters

Size (bytes) In / Out Name Description

4 In, Out CBUF_LEN Command buffer length in bytes

4 In HANDLE Guest handle

6.14.4 Return Values

Return Value Reason

SUCCESS Successful completion

55766 Rev. 3.01 August 2016 Secure Encrypted Virtualization Key Management

 Chapter 6 Guest Management API 59

INVALID_PLATFORM_STATE The platform is not in the working state

ACTIVE The guest is currently active

CMDBUF_TOO_SMALL The command buffer is too small

INVALID_GUEST The guest handle is invalid

Secure Encrypted Virtualization Key Management 55766 Rev. 3.01 August 2016

60 Debugging API Chapter 7

Chapter 7 Debugging API

The debugging API provides a simple interface to decrypt and encrypt memory with a guest’s
VEK. This allows developers of guest kernels and hypervisor to troubleshoot bugs.

7.1 DBG_DECRYPT
Decrypts a page of guest memory.

7.1.1 Usage

This command enables developers of hypervisors and guest kernels to access encrypted memory.

7.1.2 Actions

The guest policy must allow debugging.

The contents of the source region (starting at SRC_PADDR and extending LENGTH bytes) are
decrypted using the VEK and saved into the destination memory region (starting at DST_PADDR
and extending LENGTH bytes).

The system physical addresses must be 16-byte aligned. It must also be a valid physical address.

7.1.3 Parameters

Size (bytes) In / Out Name Description

4 In, Out CBUF_LEN Command buffer length in bytes

4 In HANDLE The guest being debugged

8 In SRC_PADDR System physical address of memory region to debug
from. Must be 16-byte aligned.

8 In DST_PADDR System physical address of first memory region to
write decrypted contents into. Must be 16-byte
aligned.

4 In LENGTH Length of PADDR region. Must be divisible by 16

7.1.4 Return Values

Return Value Reason

SUCCESS Successful completion

INVALID_PLATFORM_STATE The platform is not in the working state

55766 Rev. 3.01 August 2016 Secure Encrypted Virtualization Key Management

 Chapter 7 Debugging API 61

INVALID_ADDRESS An address is invalid

CMDBUF_TOO_SMALL The command buffer is too small

POLICY_FAILURE Debugging is not allowed by guest policy

INVALID_GUEST The guest handle is invalid

7.2 DBG_ENCRYPT
Encrypts a region of guest memory.

7.2.1 Usage

This command enables developers of hypervisors and guest kernels to access guest encrypted
memory.

7.2.2 Actions

The guest policy must allow debugging.

The contents of the source region (starting at SRC_PADDR and extending LENGTH bytes) are
encrypted using the VEK and saved into the destination memory region (starting at DST_PADDR
and extending LENGTH bytes).

The system physical addresses must be 16-byte aligned.

7.2.3 Parameters

Size (bytes) In / Out Name Description

4 In, Out CBUF_LEN Command buffer length in bytes

4 In HANDLE The guest being debugged

8 In SRC_PADDR System physical address of memory region to debug
from. Must be 16-byte aligned.

8 In DST_PADDR System physical address of first memory region to
write encrypted contents into. Must be 16-byte
aligned.

4 In LENGTH Length of PADDR region. Must be divisible by 16

7.2.4 Return Values

Return Value Reason

SUCCESS Successful completion

Secure Encrypted Virtualization Key Management 55766 Rev. 3.01 August 2016

62 Debugging API Chapter 7

INVALID_PLATFORM_STATE The platform is not in the working state

INVALID_ADDRESS An address is invalid

CMDBUF_TOO_SMALL The command buffer is too small

POLICY_FAILURE Debugging is not allowed by guest policy

INVALID_GUEST The guest handle is invalid

55766 Rev. 3.01 August 2016 Secure Encrypted Virtualization Key Management

 Appendix A Usage Flows 63

Appendix A Usage Flows
The following flow charts are provided to illustrate the how the usage of the SEV API might be
implemented. Note that these are only examples and there may be other implementation strategies.

Secure Encrypted Virtualization Key Management 55766 Rev. 3.01 August 2016

64 Usage Flows Appendix A

Platform Provisioning

AMD Secure
Processor

Cloud Provider

SEV Platform from
factory

Boots platform and
initializes SEV

INIT

Retrieves PEK
certificate signing

request

Generates PEK
certificate and signs
with CA signing key

Imports PEK
certificate into

platform

PEK_CSR

FACTORY_RESET

SEV Platform re-
allocated

Resets platform to
factory state

PEK_CERT_IMPORT

All interactions between
provider and AMD Secure

Processor are facilitated by
hypervisor

55766 Rev. 3.01 August 2016 Secure Encrypted Virtualization Key Management

 Appendix A Usage Flows 65

Launching a Guest

HypervisorGuest Owner
AMD Secure

Processor
Cloud Provider

G
u

es
t

St
ar

tu
p

Pr
ov

is
io

ni
ng

Create unencrypted
guest image

Send unencrypted
guest to cloud

provider

Store unencrypted
guest in image

library

Ask cloud provider
to boot its guest.

Provides its DH key

Asks hypervisor to
boot guest

Retrieves guest from
library and loads it

into memory

Boots guest

Provides the
customer DH key

VMRUN

VMEXIT

LAUNCH_START

Continues to ask
firmware to encrypt

guest memory
LAUNCH_UPDATE

Guest causes a VMEXIT when
it is ready to enable paging

with SEV enabled. Guest has
also provided hypervisor the
pages that will have the C-bit

set.

Initialize SEV
firmwware

INITBoots SEV platform

Secure Encrypted Virtualization Key Management 55766 Rev. 3.01 August 2016

66 Usage Flows Appendix A

Launching a Guest (continued)

HypervisorGuest Owner
AMD Secure

Processor
Cloud Provider

G
u

es
t

St
a

rt
u

p

Completes
encrypting guest

image.

Retrieves the PDH
from the firmware

Measurement

LAUNCH_FINISH

PDH_CERT_EXPORT

Returns the PDH,
certificate chain,

and measurement
to customer (via

provider)

Customer (or
delegate)

authenticates PSP
and verifies

measurement

Via provider

Securely sends disk
decryption key to

guest

Allocate ASID ACTIVATE

Sets SEV-enable bit
in VMCB

VMRUN

Via a secure channel (e.g. TLS)

Guest is running

55766 Rev. 3.01 August 2016 Secure Encrypted Virtualization Key Management

 Appendix A Usage Flows 67

Migration and Snapshot

Destination
Hypervisor

Source AMD Secure
Processor

Destination AMD
Secure Processor

Source Hypervisor

Guest is running

Stops guest

Requests PDH of
destination platform

Retrieves PDH and
certificate chain
from destination

firmware

PDH_CERT_EXPORT

Begins re-encryption
process by providing
PDH and certificate

chain to source
firmware

Sends PDH and
certificate chain to

source
SEND_START

Continues re-
encrypting guest

SEND_UPDATE

Finalizes re-
encryption process

SEND_FINISH

Transmits encrypted
memory image and

disk image to
destination platform

Receives memory
image and platform.

Loads memory
image into memory

SEND_START authenticates
the PDH and certificate

chain.

If the hypervisor wishes to
snapshot instead of migrate,

this process remains the
same, but the target is set to
the platform s own identity
information. i.e. the guest is
 sent back to the platform.

Secure Encrypted Virtualization Key Management 55766 Rev. 3.01 August 2016

68 Usage Flows Appendix A

Migration and Snapshot (continued)

Destination
Hypervisor

Source AMD Secure
Processor

Destination AMD
Secure Processor

Source Hypervisor

Begins re-encryption
process

RECEIVE_START

Continues re-
encrypting guest

Finalizes re-
encryption process

RECEIVE_UPDATE

RECEIVE_FINISH

Allocates ASID

Starts guest

VMRUN

ACTIVATE

Guest is running

	Secure Encrypted Virtualization Key Management Technical Preview
	Contents
	List of Figures
	List of Tables
	Revision History
	References
	Chapter 1 Overview
	1.1 Operational Model
	1.2 Platform Management
	1.2.1 Platform Lifecycle
	1.2.2 Identity
	1.2.3 Device Authenticity
	1.2.4 Ownership

	1.3 Guest Lifecycle
	1.3.1 Launch
	1.3.2 Activate and Deactivate
	1.3.3 Snapshot and Migrate
	1.3.4 Decommission
	1.3.5 Debugging

	Chapter 2 Key Management
	2.1 Keys
	2.1.1 Platform Diffie-Hellman Key
	2.1.2 Platform Endorsement Key
	2.1.3 Chip Endorsement Key
	2.1.4 AMD Signing Key
	2.1.5 Certificate Authority Signing Key
	2.1.6 Transport Integrity Key
	2.1.7 Transport Encryption Key
	2.1.8 Launch Measurement Key
	2.1.9 VM Encryption Key

	2.2 Usage
	2.2.1 Digital Signatures
	2.2.2 Key Agreement
	2.2.3 Launch Measurements
	2.2.4 Key Wrapping
	2.2.5 Transport Protection

	Chapter 3 Guest Policy
	Chapter 4 Mailbox Register Protocol
	4.1 Mailboxes
	4.2 Command Buffer
	4.3 Command Identifiers
	4.4 Status Codes
	4.5 Endianness

	Chapter 5 Platform Management API
	5.1 INIT
	5.1.1 Usage
	5.1.2 Actions
	5.1.3 Parameters
	5.1.4 Return Values

	5.2 SHUTDOWN
	5.2.1 Usage
	5.2.2 Actions
	5.2.3 Parameters
	5.2.4 Return Values

	5.3 FACTORY_RESET
	5.3.1 Usage
	5.3.2 Actions
	5.3.3 Parameters
	5.3.4 Return Values

	5.4 PLATFORM_STATUS
	5.4.1 Usage
	5.4.2 Actions
	5.4.3 Parameters
	5.4.4 Return Values

	5.5 PEK_GEN
	5.5.1 Usage
	5.5.2 Actions
	5.5.3 Parameters
	5.5.4 Return Values

	5.6 PEK_CSR
	5.6.1 Usage
	5.6.2 Actions
	5.6.3 Parameters
	5.6.4 Return Values

	5.7 PEK_CERT_IMPORT
	5.7.1 Usage
	5.7.2 Actions
	5.7.3 Parameters
	5.7.4 Return Values

	5.8 PDH_GEN
	5.8.1 Usage
	5.8.2 Actions
	5.8.3 Parameters
	5.8.4 Return Values

	5.9 PDH_CERT_EXPORT
	5.9.1 Usage
	5.9.2 Actions
	5.9.3 Parameters
	5.9.4 Return Values

	Chapter 6 Guest Management API
	6.1 LAUNCH_START
	6.1.1 Usage
	6.1.2 Actions
	6.1.3 Parameters
	6.1.4 Return Values

	6.2 LAUNCH_UPDATE
	6.2.1 Usage
	6.2.2 Actions
	6.2.3 Parameters
	6.2.4 Return Values

	6.3 LAUNCH_FINISH
	6.3.1 Usage
	6.3.2 Actions
	6.3.3 Parameters
	6.3.4 Return Values

	6.4 SEND_START
	6.4.1 Usage
	6.4.2 Actions
	6.4.3 Parameters
	6.4.4 Return Values

	6.5 SEND_UPDATE
	6.5.1 Usage
	6.5.2 Actions
	6.5.3 Parameters
	6.5.4 Return Values

	6.6 SEND_FINISH
	6.6.1 Usage
	6.6.2 Actions
	6.6.3 Parameters
	6.6.4 Return Values

	6.7 RECEIVE_START
	6.7.1 Usage
	6.7.2 Actions
	6.7.3 Parameters
	6.7.4 Return Values

	6.8 RECEIVE_UPDATE
	6.8.1 Usage
	6.8.2 Actions
	6.8.3 Parameters.
	6.8.4 Return Values

	6.9 RECEIVE_FINISH
	6.9.1 Usage
	6.9.2 Actions
	6.9.3 Parameters
	6.9.4 Return Values

	6.10 GUEST_STATUS
	6.10.1 Usage
	6.10.2 Actions
	6.10.3 Parameters
	6.10.4 Return Values

	6.11 ACTIVATE
	6.11.1 Usage
	6.11.2 Actions
	6.11.3 Parameters
	6.11.4 Return Values

	6.12 DEACTIVATE
	6.12.1 Usage
	6.12.2 Actions
	6.12.3 Parameters
	6.12.4 Return Values

	6.13 DF_FLUSH
	6.13.1 Usage
	6.13.2 Actions
	6.13.3 Parameters
	6.13.4 Return Values

	6.14 DECOMMISSION
	6.14.1 Usage
	6.14.2 Actions
	6.14.3 Parameters
	6.14.4 Return Values

	Chapter 7 Debugging API
	7.1 DBG_DECRYPT
	7.1.1 Usage
	7.1.2 Actions
	7.1.3 Parameters
	7.1.4 Return Values

	7.2 DBG_ENCRYPT
	7.2.1 Usage
	7.2.2 Actions
	7.2.3 Parameters
	7.2.4 Return Values

	Appendix A Usage Flows

