

 Advanced Micro Devices

Secure Encrypted

Virtualization API

Version 0.14

Technical Preview

 Publication # 55766 Revision: 3.03
 Issue Date: August 2017

Specification Agreement

This Specification Agreement (this “Agreement”) is a legal agreement between Advanced Micro Devices, Inc. (“AMD”) and “You” as

the recipient of the attached AMD Specification (the “Specification”). If you are accessing the Specification as part of your

performance of work for another party, you acknowledge that you have authority to bind such party to the terms and conditions of this

Agreement. If you accessed the Specification by any means or otherwise use or provide Feedback (defined below) on the Specification,

You agree to the terms and conditions set forth in this Agreement. If You do not agree to the terms and conditions set forth in this

Agreement, you are not licensed to use the Specification; do not use, access or provide Feedback about the Specification.

In consideration of Your use or access of the Specification (in whole or in part), the receipt and sufficiency of which are acknowledged,

You agree as follows:

1. You may review the Specification only (a) as a reference to assist You in planning and designing Your product, service or

technology (“Product”) to interface with an AMD product in compliance with the requirements as set forth in the Specification and (b)

to provide Feedback about the information disclosed in the Specification to AMD.

2. Except as expressly set forth in Paragraph 1, all rights in and to the Specification are retained by AMD. This Agreement does not

give You any rights under any AMD patents, copyrights, trademarks or other intellectual property rights. You may not (i) duplicate any

part of the Specification; (ii) remove this Agreement or any notices from the Specification, or (iii) give any part of the Specification, or

assign or otherwise provide Your rights under this Agreement, to anyone else.

3. The Specification may contain preliminary information, errors, or inaccuracies, or may not include certain necessary information.

Additionally, AMD reserves the right to discontinue or make changes to the Specification and its products at any time without notice.

The Specification is provided entirely “AS IS.” AMD MAKES NO WARRANTY OF ANY KIND AND DISCLAIMS ALL

EXPRESS, IMPLIED AND STATUTORY WARRANTIES, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, TITLE OR THOSE WARRANTIES

ARISING AS A COURSE OF DEALING OR CUSTOM OF TRADE. AMD SHALL NOT BE LIABLE FOR DIRECT, INDIRECT,

CONSEQUENTIAL, SPECIAL, INCIDENTAL, PUNITIVE OR EXEMPLARY DAMAGES OF ANY KIND (INCLUDING LOSS

OF BUSINESS, LOSS OF INFORMATION OR DATA, LOST PROFITS, LOSS OF CAPITAL, LOSS OF GOODWILL)

REGARDLESS OF THE FORM OF ACTION WHETHER IN CONTRACT, TORT (INCLUDING NEGLIGENCE) AND STRICT

PRODUCT LIABILITY OR OTHERWISE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

4. Furthermore, AMD’s products are not designed, intended, authorized or warranted for use as components in systems intended for

surgical implant into the body, or in other applications intended to support or sustain life, or in any other application in which the

failure of AMD’s product could create a situation where personal injury, death, or severe property or environmental damage may

occur.

5. You have no obligation to give AMD any suggestions, comments or feedback (“Feedback”) relating to the Specification. However,

any Feedback You voluntarily provide may be used by AMD without restriction, fee or obligation of confidentiality. Accordingly, if

You do give AMD Feedback on any version of the Specification, You agree AMD may freely use, reproduce, license, distribute, and

otherwise commercialize Your Feedback in any product, as well as has the right to sublicense third parties to do the same. Further, You

will not give AMD any Feedback that You may have reason to believe is (i) subject to any patent, copyright or other intellectual

property claim or right of any third party; or (ii) subject to license terms which seek to require any product or intellectual property

incorporating or derived from Feedback or any Product or other AMD intellectual property to be licensed to or otherwise provided to

any third party.

6. You shall adhere to all applicable U.S., European, and other export laws, including but not limited to the U.S. Export Administration

Regulations (“EAR”), (15 C.F.R. Sections 730 through 774), and E.U. Council Regulation (EC) No 428/2009 of 5 May 2009. Furthe r,

pursuant to Section 740.6 of the EAR, You hereby certifies that, except pursuant to a license granted by the United States Department

of Commerce Bureau of Industry and Security or as otherwise permitted pursuant to a License Exception under the U.S. Export

Administration Regulations ("EAR"), You will not (1) export, re-export or release to a national of a country in Country Groups D:1,

E:1 or E:2 any restricted technology, software, or source code You receive hereunder, or (2) export to Country Groups D:1, E:1 or E:2

the direct product of such technology or software, if such foreign produced direct product is subject to national security controls as

identified on the Commerce Control List (currently found in Supplement 1 to Part 774 of EAR). For the most current Country Group

listings, or for additional information about the EAR or Your obligations under those regulations, please refer to the U.S. Bureau of

Industry and Security’s website at http://www.bis.doc.gov/.

7. If You are a part of the U.S. Government, then the Specification is provided with “RESTRICTED RIGHTS” as set forth in

subparagraphs (c) (1) and (2) of the Commercial Computer Software-Restricted Rights clause at FAR 52.227-14 or subparagraph (c)

(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.277-7013, as applicable.

8. This Agreement is governed by the laws of the State of California without regard to its choice of law principles. Any dispute

involving it must be brought in a court having jurisdiction of such dispute in Santa Clara County, California, and You waive any

defenses and rights allowing the dispute to be litigated elsewhere. If any part of this agreement is unenforceable, it will be considered

modified to the extent necessary to make it enforceable, and the remainder shall continue in effect. The failure of AMD to enforce any

rights granted hereunder or to take action against You in the event of any breach hereunder shall not be deemed a waiver by AMD as to

subsequent enforcement of rights or subsequent actions in the event of future breaches. This Agreement is the entire agreement

between You and AMD concerning the Specification; it may be changed only by a written document signed by both You and an

authorized representative of AMD.

© 2016, 2017 Advanced Micro Devices, Inc. All rights reserved.

The information contained herein is for informational purposes only, and is subject to change without notice. While

every precaution has been taken in the preparation of this document, it may contain technical inaccuracies, omissions

and typographical errors, and AMD is under no obligation to update or otherwise correct this information. Advanced

Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the

contents of this document, and assumes no liability of any kind, including the implied warranties of noninfringement,
merchantability or fitness for particular purposes, with respect to the operation or use of AMD hardware, software

or other products described herein. No license, including implied or arising by estoppel, to any intellectual property

rights is granted by this document. Terms and limitations applicable to the purchase or use of AMD’s products are

as set forth in a signed agreement between the parties or in AMD's Standard Terms and Conditions of Sale.

Trademarks

AMD, the AMD Arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other

product names used in this publication are for identification purposes only and may be trademarks of their respective

companies.

Reverse engineering or disassembly is prohibited.

Dolby Laboratories, Inc.

Manufactured under license from Dolby Laboratories.

Rovi Corporation

This device is protected by U.S. patents and other intellectual property rights. The use of Rovi Corporation's copy

protection technology in the device must be authorized by Rovi Corporation and is intended for home and other
limited pay-per-view uses only, unless otherwise authorized in writing by Rovi Corporation.

USE OF THIS PRODUCT IN ANY MANNER THAT COMPLIES WITH THE MPEG ACTUAL OR DE FACTO

VIDEO AND/OR AUDIO STANDARDS IS EXPRESSLY PROHIBITED WITHOUT ALL NECESSARY

LICENSES UNDER APPLICABLE PATENTS. SUCH LICENSES MAY BE ACQUIRED FROM VARIOUS

THIRD PARTIES INCLUDING, BUT NOT LIMITED TO, IN THE MPEG PATENT PORTFOLIO, WHICH

LICENSE IS AVAILABLE FROM MPEG LA, L.L.C., 6312 S. FIDDLERS GREEN CIRCLE, SUITE 400E,

GREENWOOD VILLAGE, COLORADO 80111.

Secure Encrypted Virtualization API

Version 0.14

55766 Rev. 3.03 August 2017

4 Revision History

Contents

Revision History .. 14

Chapter 1 Overview ... 16

1.1 Operational Model ...16

1.2 Platform Management ..16

1.2.1 Platform Lifecycle .. 16

1.2.2 Identity ... 17

1.2.3 Device Authenticity .. 17

1.2.4 Ownership .. 17

1.2.5 Encrypted State .. 18

1.3 Guest Lifecycle ..18

1.3.1 Launch ... 18

1.3.2 Activate and Deactivate .. 19

1.3.3 Snapshot and Migrate ... 20

1.3.4 Decommission .. 20

1.3.5 Debugging .. 20

Chapter 2 Key Management.. 22

2.1 Keys ..22

2.1.1 Platform Diffie-Hellman Key ... 22

2.1.2 Platform Endorsement Key ... 23

2.1.3 Chip Endorsement Key ... 23

2.1.4 AMD Signing Key ... 23

2.1.5 Owner Certificate Authority Signing Key ... 23

2.1.6 AMD Root Key .. 24

2.1.7 Transport Integrity Key .. 24

2.1.8 Transport Encryption Key .. 24

2.1.9 Key Encryption Key ... 24

2.1.10 Key Integrity Key ... 25

2.1.11 VM Encryption Key ... 25

2.2 Usage ...25

55766 Rev. 3.03 August 2017 Secure Encrypted Virtualization API

Version 0.14

 Revision History 5

2.2.1 Key Derivation Function .. 25

2.2.2 Master Secret Derivation .. 26

2.2.3 Transport Key Establishment ... 26

2.2.4 Data Protection .. 27

Chapter 3 Guest Policy .. 28

Chapter 4 Mailbox Register Protocol ... 29

4.1 Mailboxes .. 29

4.2 Command Buffer ... 30

4.3 Command Identifiers ... 30

4.4 Status Codes .. 32

4.5 Endianness .. 33

4.6 Synchrony ... 33

4.7 Address Validation .. 33

Chapter 5 Platform Management API.. 35

5.1 Overview ... 35

5.1.1 Platform Context .. 35

5.1.2 Platform State Machine .. 36

5.1.3 Authenticity ... 36

5.1.4 Ownership.. 36

5.1.5 Non-volatile Storage .. 36

5.1.6 Power State Transitions .. 37

5.1.7 SEV-ES Trusted Memory Region .. 37

5.2 INIT .. 37

5.2.1 Actions .. 38

5.2.2 Parameters ... 38

5.2.3 Status Codes .. 39

5.3 SHUTDOWN .. 39

5.3.1 Actions .. 39

5.3.2 Parameters ... 40

5.3.3 Status Codes .. 40

5.4 PLATFORM_RESET .. 40

Secure Encrypted Virtualization API

Version 0.14

55766 Rev. 3.03 August 2017

6 Revision History

5.4.1 Actions ... 40

5.4.2 Parameters .. 40

5.4.3 Status Codes ... 41

5.5 PLATFORM_STATUS ...41

5.5.1 Actions ... 41

5.5.2 Parameters .. 42

5.5.3 Status Codes ... 42

5.6 PEK_GEN ...42

5.6.1 Actions ... 43

5.6.2 Parameters .. 43

5.6.3 Status Codes ... 43

5.7 PEK_CSR ..44

5.7.1 Actions ... 44

5.7.2 Parameters .. 44

5.7.3 Status Codes ... 45

5.8 PEK_CERT_IMPORT ...45

5.8.1 Actions ... 45

5.8.2 Parameters .. 46

5.8.3 Status Codes ... 46

5.9 PDH_GEN ...47

5.9.1 Actions ... 47

5.9.2 Parameters .. 47

5.9.3 Status Codes ... 47

5.10 PDH_CERT_EXPORT ..48

5.10.1 Actions ... 48

5.10.2 Parameters .. 48

5.10.3 Status Codes ... 49

Chapter 6 Guest Management API ... 50

6.1 Overview ...50

6.1.1 Guest Context ... 50

6.1.2 Activation and Deactivation ... 51

55766 Rev. 3.03 August 2017 Secure Encrypted Virtualization API

Version 0.14

 Revision History 7

6.2 LAUNCH_START .. 51

6.2.1 Actions .. 51

6.2.2 Parameters ... 53

6.2.3 Status Codes .. 53

6.3 LAUNCH_UPDATE_DATA .. 54

6.3.1 Actions .. 54

6.3.2 Parameters ... 54

6.3.3 Status Codes .. 55

6.4 LAUNCH_UPDATE_VMSA .. 55

6.4.1 Actions .. 55

6.4.2 Parameters ... 56

6.4.3 Status Codes .. 56

6.5 LAUNCH_MEASURE .. 56

6.5.1 Actions .. 57

6.5.2 Parameters ... 57

6.5.3 Status Codes .. 58

6.6 LAUNCH_SECRET .. 58

6.6.1 Actions .. 58

6.6.2 Parameters ... 59

6.6.3 Status Codes .. 60

6.7 LAUNCH_FINISH .. 60

6.7.1 Actions .. 60

6.7.2 Parameters ... 61

6.7.3 Status Codes .. 61

6.8 SEND_START .. 61

6.8.1 Actions .. 61

6.8.2 Parameters ... 62

6.8.3 Status Codes .. 64

6.9 SEND_UPDATE_DATA .. 64

6.9.1 Actions .. 64

6.9.2 Parameters ... 65

Secure Encrypted Virtualization API

Version 0.14

55766 Rev. 3.03 August 2017

8 Revision History

6.9.3 Status Codes ... 66

6.10 SEND_UPDATE_VMSA ..67

6.10.1 Actions ... 67

6.10.2 Parameters .. 68

6.10.3 Status Codes ... 69

6.11 SEND_FINISH ..69

6.11.1 Actions ... 69

6.11.2 Parameters .. 70

6.11.3 Status Codes ... 70

6.12 RECEIVE_START ..70

6.12.1 Actions ... 70

6.12.2 Parameters .. 71

6.12.3 Status Codes ... 72

6.13 RECEIVE_UPDATE_DATA ..72

6.13.1 Actions ... 72

6.13.2 Parameters .. 73

6.13.3 Status Codes ... 74

6.14 RECEIVE_UPDATE_VMSA ..74

6.14.1 Actions ... 74

6.14.2 Parameters .. 75

6.14.3 Status Codes ... 76

6.15 RECEIVE_FINISH ..76

6.15.1 Actions ... 76

6.15.2 Parameters .. 77

6.15.3 Status Codes ... 77

6.16 GUEST_STATUS ...78

6.16.1 Actions ... 78

6.16.2 Parameters .. 78

6.16.3 Status Codes ... 78

6.17 ACTIVATE ...79

6.17.1 Actions ... 79

55766 Rev. 3.03 August 2017 Secure Encrypted Virtualization API

Version 0.14

 Revision History 9

6.17.2 Parameters ... 79

6.17.3 Status Codes .. 80

6.18 DEACTIVATE .. 80

6.18.1 Actions .. 80

6.18.2 Parameters ... 81

6.18.3 Status Codes .. 81

6.19 DF_FLUSH ... 81

6.19.1 Actions .. 81

6.19.2 Parameters ... 82

6.19.3 Status Codes .. 82

6.20 DECOMMISSION .. 82

6.20.1 Actions .. 82

6.20.2 Parameters ... 83

6.20.3 Status Codes .. 83

Chapter 7 Debugging API ... 84

7.1 DBG_DECRYPT .. 84

7.1.1 Actions .. 84

7.1.2 Parameters ... 84

7.1.3 Status Codes .. 85

7.2 DBG_ENCRYPT .. 85

7.2.1 Actions .. 85

7.2.2 Parameters ... 86

7.2.3 Status Codes .. 86

Appendix A Usage Flows .. 87

Appendix B AMD Certificate Authority Certificates.. 91

B.1 Certificate Format .. 91

B.2 Certificate Signature .. 92

B.3 Certificate Validation ... 92

Appendix C SEV Certificates ... 93

C.1 Certificate Format .. 93

C.2 Elliptic Curve Enumeration ... 94

Secure Encrypted Virtualization API

Version 0.14

55766 Rev. 3.03 August 2017

10 Revision History

C.3 Public Key Formats..95

C.3.1 RSA Public Key ... 95

C.3.2 ECDSA Public Key .. 95

C.3.3 ECDH Public Key .. 95

C.4 Signature Formats ..96

C.4.1 RSA Signature.. 96

C.4.2 ECDSA Signature .. 96

C.5 Certificate Validation ...96

55766 Rev. 3.03 August 2017 Secure Encrypted Virtualization API

Version 0.14

 Revision History 11

List of Tables

Table 1. Summary of Keys .. 22

Table 2. Guest Policy Structure ... 28

Table 3. CmdResp Register Layout ... 29

Table 4. CmdBufAddr_Hi Register Layout ... 29

Table 5. CmdBufAddr_Lo Register Layout ... 29

Table 6. Command Identifiers ... 30

Table 7. Status Codes .. 32

Table 8. Platform Context (PCTX) Fields .. 35

Table 9. PSTATE Finite State Machine ... 36

Table 10. Power Management Transitions ... 37

Table 11. INIT Command Buffer .. 38

Table 12. INIT Command Status Codes .. 39

Table 13. SHUTDOWN Command Status Codes .. 40

Table 14. PLATFORM_RESET Command Status Codes .. 41

Table 15. PLATFORM_STATUS Command Buffer ... 42

Table 16. PLATFORM_STATUS Command Status Codes ... 42

Table 17. PEK_GEN Command Status Codes ... 43

Table 18. PEK_CSR Command Buffer.. 44

Table 19. PEK_CSR Command Status Codes .. 45

Table 20. PEK_CERT_IMPORT Command Buffer... 46

Table 21. PEK_CERT_IMPORT Command Status Codes ... 46

Table 22. PDH_GEN Command Status Codes... 47

Table 23. PDH_CERT_EXPORT Command Buffer .. 48

Table 24. PDH_CERT_EXPORT Certificates Buffer .. 49

Table 25. PDH_CERT_EXPORT Command Status Codes .. 49

Table 26. Guest Context (GCTX) Fields.. 50

Table 27. GSTATE Finite State Machine .. 50

Table 28. LAUNCH_START Command Buffer .. 53

Table 29. LAUNCH_START Session Data Buffer .. 53

Secure Encrypted Virtualization API

Version 0.14

55766 Rev. 3.03 August 2017

12 Revision History

Table 30. LAUNCH_START Status Codes ... 53

Table 31. LAUNCH_UPDATE_DATA Command Buffer ... 54

Table 32. LAUNCH_UPDATE_DATA Status Codes .. 55

Table 33. LAUNCH_UPDATE_VMSA Command Buffer .. 56

Table 34. LAUNCH_UPDATE_VMSA Status Codes ... 56

Table 35. LAUNCH_MEASURE Command Buffer .. 57

Table 36. LAUNCH_MEASURE Measurement Buffer ... 57

Table 37. LAUNCH_MEASURE Status Codes ... 58

Table 38. LAUNCH_SECRET Command Buffer .. 59

Table 39. LAUNCH_SECRET Packet Header Buffer .. 59

Table 40. LAUNCH_SECRET Status Codes ... 60

Table 41. LAUNCH_FINISH Command Buffer .. 61

Table 42. LAUNCH_FINISH Status Codes ... 61

Table 43. SEND_START Command Buffer .. 62

Table 44. SEND_START Platform Certificates Buffer .. 63

Table 45. SEND_START AMD Certificates Buffer .. 63

Table 46. SEND_START Session Data Buffer .. 64

Table 47. SEND_START Status Codes ... 64

Table 48. SEND_UPDATE_DATA Command Buffer ... 65

Table 49. SEND_UPDATE_DATA Packet Header Buffer .. 66

Table 50. SEND_UPDATE_DATA Status Codes .. 66

Table 51. SEND_UPDATE_VMSA Command Buffer .. 68

Table 52. SEND_UPDATE_VMSA Packet Header Buffer .. 68

Table 53. SEND_UPDATE_VMSA Status Codes ... 69

Table 54. SEND_FINISH Command Buffer .. 70

Table 55. SEND_FINISH Status Codes ... 70

Table 56. RECEIVE_START Command Buffer .. 71

Table 57. RECEIVE_START Session Data Buffer .. 72

Table 58. RECEIVE_START Status Codes ... 72

Table 59. RECEIVE_UPDATE_DATA Command Buffer .. 73

Table 60. RECEIVE_UPDATE_DATA Packet Header Buffer .. 74

55766 Rev. 3.03 August 2017 Secure Encrypted Virtualization API

Version 0.14

 Revision History 13

Table 61. RECEIVE_UPDATE_DATA Status Codes ... 74

Table 62. RECEIVE_UPDATE_VMSA Command Buffer .. 75

Table 63. RECEIVE_UPDATE_VMSA Packet Header Buffer ... 76

Table 64. RECEIVE_UPDATE_VMSA Status Codes ... 76

Table 65. RECEIVE_FINISH Command Buffer ... 77

Table 66. RECEIVE_FINISH Status Codes .. 77

Table 67. GUEST_STATUS Command Buffer ... 78

Table 68. GUEST_STATUS Status Codes .. 78

Table 69. ACTIVATE Command Buffer ... 79

Table 70. ACTIVATE Status Codes .. 80

Table 71. DEACTIVATE Command Buffer .. 81

Table 72. DEACTIVATE Status Codes ... 81

Table 73. DF_FLUSH Command Status Codes ... 82

Table 74. DECOMMISSION Command Buffer .. 83

Table 75. DECOMMISSION Status Codes ... 83

Table 76. DBG_DECRYPT Command Buffer .. 84

Table 77. DBG_DECRYPT Status Codes ... 85

Table 78. DBG_ENCRYPT Command Buffer .. 86

Table 79. DBG_ENCRYPT Status Codes ... 86

Table 80. AMD Signing Key Certificate Format ... 91

Table 81. Key Usage Encoding ... 91

Table 82. SEV Certificate Format ... 93

Table 83. USAGE Enumeration (All other encodings are reserved) ... 93

Table 84. ALGO Enumeration (All other encodings are reserved) ... 94

Table 85. CURVE Enumeration (All other encodings are reserved) ... 94

Table 86. RSA Public Key .. 95

Table 87. ECDSA Public Key ... 95

Table 88. ECDH Public Key ... 95

Table 89. RSA Signature ... 96

Table 90. ECDSA Signature .. 96

Secure Encrypted Virtualization API

Version 0.14

55766 Rev. 3.03 August 2017

14 Revision History

Revision History

Date Revision Description

August 2017 3.03 • Move Policy to command buffer in all commands

• SEND_UPDATE_DATA TRANS_LENGTH parameter is In and

Out.

• Document MNONCE generation

• Insert documentation for RECEIVE_UPDATE_DATA

• Removed “Key Management” from title

• Many other minor edits

January 2017 3.02 • Split all the *_UPDATE commands into *_UPDATE_DATA

and *_UPDATE_VMSA

• Added LAUNCH_SECRET command to allow for secret data to

be injected into a launched guest. Updated state machine to

reflect new command.

• Replaced X.509 certificate usage with API-specific formatted

certificates.

• Added clarity around cryptographic algorithms; Switched from

ECC curve P-256 to ECC P-384.

• Addressed industry partner inputs to command buffer structures.

• General clarifications.

August 2016 3.01 Bug fixes and minor edits.

May 2016 3.00 Initial Release

55766 Rev. 3.03 August 2017 Secure Encrypted Virtualization API

Version 0.14

 Revision History 15

References

FIPS 186-4 Digital Signature Standard (DSS). Federal Information Processing Standards

Publication 186-4.

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

FIPS 198-1 The Keyed-Hash Message Authentication Code (HMAC). Federal Information

Processing Standards Publication 198-1.

http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf

SP 800-38F Recommendation for Block Cipher Modes of Operation: Methods for Key

Wrapping. NIST Special Publication 800-38F

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf

SP 800-56A Recommendation for Pair-Wise Key Establishment Schemes Using Discrete

Logarithm Cryptography. NIST Special Publication 800-56A Revision 2.

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf

SP 800-108 Recommendation for Key Derivation Using Pseudorandom Functions. NIST

Special Publication 800-108.

http://csrc.nist.gov/publications/nistpubs/800-108/sp800-108.pdf

RFC 3279 Algorithms and Identifiers for the Internet X.509 Public Key Infrastructure

Certificate and Certificate Revocation List (CRL) Profile. IETF RFC 3279.

https://www.ietf.org/rfc/rfc3279.txt

RFC 5480 Elliptic Curve Cryptography Subject Public Key Information. IETF RFC 5480.

https://www.ietf.org/rfc/rfc5480.txt

RFC 5758 Internet X.509 Public Key Infrastructure: Additional Algorithms and Identifiers

for DSA and ECDSA. IETF RFC 5758.

https://www.ietf.org/rfc/rfc5758.txt

Secure Encrypted Virtualization API

Version 0.14

55766 Rev. 3.03 August 2017

16 Overview Chapter 1

Chapter 1 Overview

The Secure Encrypted Virtualization (SEV) feature allows the memory contents of a virtual

machine (VM) to be transparently encrypted with a key unique to the guest virtual machine (VM).

The memory controller contains a high-performance encryption engine which can be programmed

with multiple keys for use by different VMs in the system. The programming and management of

these keys and secure data transfer between host hypervisor and guest VM memory is handled by

the SEV firmware running AMD Secure Processor. The API available to the host hypervisor for

these operations is the focus of this document.

1.1 Operational Model

The capabilities of the SEV feature can support many operational environments. It is capable of

supporting both lightweight virtualized containers as well as conventional virtual machines within

an enterprise cloud environment. In either case, there are two parties concerned in the deployment

of SEV guests: the guest owner and the platform owner. For example, in a cloud environment, the

platform owner would be the cloud vendor and the guest owner would be the user that wishes to

run their workload in the cloud.

Guest owners wish to protect the confidentiality of the data running within their guests. While

they trust the platform owner to provide the infrastructure to run their guest, they benefit from

reducing their risk exposure to vulnerabilities within that infrastructure. The SEV feature encrypts

the contents of the memory of the guest and provides assurances that it was encrypted properly.

The encryption of memory places an additional burden on attackers within the operational

environment who may have already obtained some illicit access to the guest’s memory through a

vulnerability in the hypervisor or other supporting enterprise software.

Platform owners wish to provide such protection to guest owners, but also must manage the

computing resources efficiently and effectively. Resource allocation needs to be fluid and their

customers data must be safely backed up in case of failure. The SEV feature has been developed to

be sensitive to this requirement; it integrates into the conventional guest lifecycle surrounding

launching, migration, and snapshotting of guests.

1.2 Platform Management

This section describes the management of the platform by the platform owner.

1.2.1 Platform Lifecycle

The firmware maintains context for the platform. To initialize the platform, the INIT command is

executed to initialize and configure the platform context. The INIT command accepts

configuration parameters that affect the behavior of the platform until the system is reset or the

55766 Rev. 3.03 August 2017 Secure Encrypted Virtualization API

Version 0.14

 Chapter 1 Overview 17

SHUTDOWN command is invoked. The SHUTDOWN command clears all platform and guest

state that exists in non-persistent storage.

The status of the platform can be queried using the PLATFORM_STATUS command. This

command provides information about the state of the platform.

If the platform needs to be reset to factory settings, the PLATFORM_RESET command can be

issued by the hypervisor. This command clears all persistently stored platform state including the

platform certificates and signing keys (see below).

1.2.2 Identity

The firmware identifies itself by an asymmetric signing key generated during the one-time

configuration steps taken before the platform may be put into production. This key is called the

Platform Endorsement Key (PEK) and is used to sign the Platform Diffie-Hellman key (PDH). By

signing this key, the firmware authenticates the cryptographic contexts built with the PDH.

The firmware provides interfaces to manage the PDH: PDH_GEN and PDH_CERT_EXPORT.

The PDH_GEN command generates a new PDH, which is then signed by the PEK. This command

is not necessary for normal operation; it is provided to support the ability to generate a fresh PDH

in case the platform owner’s security policies require it.

The PDH_CERT_EXPORT command exports the PDH and its PEK signature. The PEK is signed

by two keys to connect it to two different roots of trust. These roots of trust provide authenticity

and ownership proof to third parties, described in the following sections. These signatures are also

exported via the PDH_CERT_EXPORT command.

1.2.3 Device Authenticity

The firmware provides a mechanism to verify that it is executing on AMD hardware that is

capable of supporting SEV. Each platform contains a chip-unique signing key called the Chip

Endorsement Key (CEK). The CEK is signed by the AMD SEV Signing Key (ASK), which is

signed by the AMD root signing key (ARK). A guest owner or remote platform interacting with

the firmware can obtain the public component of the AMD signing keys to prove the hardware

authenticity. The mechanism to obtain the public key is outside the scope of this document.

The CEK signs the PEK. This signature connects the PEK to the ARK, which is a root of trust.

1.2.4 Ownership

The firmware also provides interfaces to verify the identity of the owner of the platform on which

it is executing: PEK_CSR and PEK_CERT_IMPORT.

PEK_CSR generates a certificate signing request (CSR) for the PEK. This signing request

contains the PEK public key and other identifying information about the platform. When the

platform owner’s certificate authority is provided this CSR, it generates a certificate using the

Secure Encrypted Virtualization API

Version 0.14

55766 Rev. 3.03 August 2017

18 Overview Chapter 1

public key of the PEK and signs it with its root signing key. This signed certificate connects the

PEK to the platform owner’s root of trust. It can be used by external parties to verify ownership of

the platform.

The platform itself keeps a copy of the PEK certificate in persistent storage. In order to install the

certificate in the platform, the PEK_CERT_IMPORT command is issued. Once the certificate is

imported, the platform owner has taken ownership of the platform.

1.2.5 Encrypted State

When a #VMEXIT occurs, the register state of the guest is saved to memory in the VMCB save

area. Access to this save area exposes the guest register state to manipulation and observation by

attackers. To mitigate this, some SEV capable platforms support the AMD SEV Encrypted State

(SEV-ES) feature. When enabled, SEV-ES encrypts and integrity protects the VMCB save area

with the memory encryption key.

1.3 Guest Lifecycle

The SEV feature supports the common guest lifecycle events so that SEV can integrate well

within already existing cloud infrastructures. These events include launching, running,

snapshotting, migrating, and decommissioning guests.

The status of a guest is available via the GUEST_STATUS command. This command reports the

current SEV state the guest is in and other information.

1.3.1 Launch

When a guest is launched, its memory must first be encrypted before SEV can be enabled in

hardware for this guest. The firmware provides interfaces to bootstrap the memory encryption for

this purpose: LAUNCH_START, LAUNCH_UPDATE, and LAUNCH_FINISH. These three

commands together generate a fresh memory encryption key for the guest, encrypt guest memory,

and provide an attestation of the successful launch.

LAUNCH_START is called first to create a guest context within the firmware. The hypervisor

provides the firmware with the guest’s security policy and the public key of the guest owner. The

guest policy constrains the use and features activated for the lifetime of the launched guest, such

as disallowing debugging, enabling key sharing, or turning on other SEV related features. The

provided public key allows the firmware to establish a cryptographic session with the guest owner

to negotiate keys used for attestation (see below).

The hypervisor loads the guest into memory and begins calling subsequent

LAUNCH_UPDATE_DATA commands.

LAUNCH_UPDATE_DATA encrypts the memory provided to it by the hypervisor. It also

calculates a measurement of the memory. This measurement is a signature of the memory contents

55766 Rev. 3.03 August 2017 Secure Encrypted Virtualization API

Version 0.14

 Chapter 1 Overview 19

that can be sent to the guest owner as an attestation that the memory was encrypted correctly by

the firmware.

The hypervisor also initializes the VM save area within the VMCB by issuing

LAUNCH_UPDATE_VMSA. This command encrypts the VM save area. The

LAUNCH_UPDATE_VMSA command is only used when the SEV-ES feature is enabled.

Once the guest data and VM save areas are encrypted, the hypervisor issues the

LAUNCH_MEASURE command to produce a measurement of the data encrypted by the launch

flow. The guest owner may wait to provide the guest with confidential information until it can

verify the attestation measurement. Since the guest owner knows the initial contents of the guest at

boot, the attestation measurement can be verified by comparing it to what the guest owner expects.

To provide the guest with secret data after the measurement is validated, the guest owner wraps a

secret and sends it to the guest through the LAUNCH_SECRET command.

After completion of the launch work flow, the hypervisor issues LAUNCH_FINISH to ready the

guest for execution.

1.3.2 Activate and Deactivate

After the guest has been launched and SEV has been enabled, the guest is ready to be executed.

AMD-V requires the guest to be associated with an ASID within its VMCB. An ASID is an

identifier associated with all memory accesses of the guest. SEV uses ASIDs to associate memory

encryption keys with the guest. The number of keys that the firmware supports is unlimited.

However, there are only a limited number of ASIDs that can be associated with keys. The

firmware provides to the hypervisor interfaces to overcommit ASIDs to guests using the

ACTIVATE, DEACTIVATE, and DF_FLUSH commands.

The ACTIVATE command allows the hypervisor to inform the firmware that a given guest is

associated with an ASID. When this command is issued, the firmware programs the memory

controller with the guest’s memory encryption key. This key is then associated with the guest’s

ASID.

The hypervisor uses the DEACTIVATE command to de-allocate an ASID from a guest. This

removes the association in the memory controller between the guest and the ASID. A hypervisor

may wish to re-allocate this ASID due to operating system specific ASID scheduling protocols. It

may also need to re-allocate ASIDs if there are no SEV-capable ASIDs currently available.

Before re-activating an ASID, the firmware requires the hypervisor to flush the cache back to

memory with a WBINVD instruction on each core. Once WBINVD completes, the hypervisor

must call DF_FLUSH to ensure that the data fabric is completely flushed. This command checks

that a WBINVD has been executed since the last DEACTIVATE. This command checks that a

WBINVD has been executed since the last DEACTIVATE. The firmware enforces the WBINVD

and DF_FLUSH flow to ensure any unencrypted data in the cache and data fabric write buffers

associated with the previous key value is written back to memory before the key can be changed.

Secure Encrypted Virtualization API

Version 0.14

55766 Rev. 3.03 August 2017

20 Overview Chapter 1

On success, the DF_FLUSH marks the previously deactivated ASIDs as usable. The DF_FLUSH

command provides the hypervisor flexibility to batch multiple DEACTIVATE calls together and

flushing the cache and data fabric only once afterwards.

1.3.3 Snapshot and Migrate

Snapshotting and migration both require the memory image of a guest to be removed from the

system to be reconstituted at another platform later in time. To protect the confidentiality of an

SEV protected guest while in transit and storage, its memory image must be encrypted with a key

that can be recovered by the next platform to execute it. The firmware provides the same set of

interfaces to support this protection: SEND_START, SEND_UPDATE_DATA,

SEND_UPDATE_VMSA, and SEND_FINISH for the sending or snapshotting platform and

RECEIVE_START, RECEIVE_UPDATE_DATA, RECEIVE_UPDATE_VMSA, and

RECEIVE_FINISH for the receiving or reconstituting platform.

The SEND_START, SEND_UPDATE_DATA, SEND_UPDATE_VMSA, and SEND_FINISH

commands prepare the guest’s memory image for storage or transmission. SEND_START re-

encrypted the image within a cryptographic context that is established with the remote platform.

Subsequent invocations of SEND_UPDATE_DATA may be used to encrypt additional memory

regions. Each UPDATE operation is integrity protected.

The SEND_START command enforces the guest’s policy restriction on which platforms it may be

transferred to. The policy can require the destination to be an SEV-capable platform or require the

receiving platform to have the same owner as the sending one—or both. This check is performed

by verifying the receiving platform’s platform certificates and certificate chains.

The receiving platform uses the related RECEIVE_START, RECEIVE_UPDATE_DATA,

RECEIVE_UPDATE_VMSA, and RECEIVE_FINISH in the same manner as the sending

platform. The RECEIVE_START derives the cryptographic context necessary to re-encrypt the

guest. The RECEIVE_UPDATE_DATA and RECEIVE_UPDATE_VMSA commands re-

encrypts memory regions provided by the hypervisor. The RECEIVE_FINISH finalizes operation.

However, the RECEIVE_START command does not verify the identity of the sending platform.

The RECEIVE_START command is the only command other than the LAUNCH_START

command that generates a new guest context and guest handle.

1.3.4 Decommission

When the hypervisor needs to shut down a guest, it issues the DECOMMISSION command to the

firmware. The firmware then deletes the memory encryption key and all other internal state the

firmware has kept for the guest.

1.3.5 Debugging

The firmware provides two interfaces to assist in the debugging of an SEV enabled guest:

DBG_ENCRYPT and DBG_DECRYPT. These commands request the firmware to encrypt or

55766 Rev. 3.03 August 2017 Secure Encrypted Virtualization API

Version 0.14

 Chapter 1 Overview 21

decrypt the data at the given memory regions provided by the hypervisor. Since decrypting

protected memory allows the hypervisor to gain access to guest memory, the guest policy must

explicitly allow debugging to enable these two commands.

Secure Encrypted Virtualization API

Version 0.14

55766 Rev. 3.03 August 2017

22 Key Management Chapter 2

Chapter 2 Key Management

The primary purpose of the firmware is to manage the memory encryption keys and the keys to

support the guest lifecycle within an enterprise environment. This section describes each of these

keys. Table 1 summarizes all the keys, their abbreviations, their algorithm, and their usage.

Table 1. Summary of Keys

Key Abbr. Algorithm Usage

Platform Diffie-Hellman Key PDH ECDH curve P-384 Key agreement

Platform Endorsement Key PEK ECDSA curve P-384 Signing the PDH

Chip Endorsement Key CEK ECDSA curve P-384 Signing the PEK

AMD SEV Signing Key ASK RSA 2048 Signing the CEK

AMD Root Key ARK RSA 2048 Signing the ASK; AMD root of

trust

Owner Certificate Authority OCA ECDSA curve P-384 Signing the PEK; platform

owner root of trust

Transport Integrity Key TIK HMAC SHA-256 Trusted channel Integrity

Transport Encryption Key TEK AES 128 Trusted channel confidentiality

Key Encryption Key KEK AES 128 Key wrapping

Key Integrity Key KIK HMAC SHA-256 Key wrapping

VM Encryption Key VEK AES 128 Guest memory encryption

2.1 Keys

This section describes the management of the platform by the platform owner.

2.1.1 Platform Diffie-Hellman Key

The Platform Diffie-Hellman key (PDH) is an Elliptic Curve Diffie Hellman (ECDH) key using

curve P-384 as defined in section D.1.2.3 of [FIPS 186-4]. The PDH is used to negotiate a master

secret between the SEV firmware and external entities. This master secret is then used with a KDF

to establish a trusted channel.

The SEV firmware generates the PDH using output from a secure entropy source. The lifetime of

this key is the lifetime of the platform’s membership in its cloud or domain. When the PEK

changes, the PDH is regenerated.

55766 Rev. 3.03 August 2017 Secure Encrypted Virtualization API

Version 0.14

 Chapter 2 Key Management 23

2.1.2 Platform Endorsement Key

The Platform Endorsement Key (PEK) is an ECDSA signing key using curve P-384 as defined in

section D.1.2.3 of [FIPS 186-4] It signs the PDH to anchor the PDH to the AMD root of trust and

the platform owner’s root of trust.

The SEV firmware generates the PEK using a secure entropy source. The lifetime of this key is the

lifetime of the platform's membership in its cloud or domain. When the OCA changes, the PEK is

regenerated.

2.1.3 Chip Endorsement Key

The Chip Endorsement Key (CEK) is an ECDSA signing key using curve P-384 as defined in

section D.1.2.3 of [FIPS 186-4]. It signs the PEK to anchor the PEK to the ARK root of trust.

Each chip has a unique CEK which is derived from secrets stored in chip-unique OTP fuses. The

lifetime of this key is the lifetime of the individual chip.

2.1.4 AMD Signing Key

The AMD SEV Signing Key (ASK) is an RSA 4096 key pair. It is an intermediate signing key,

signed by the ARK. The ASK private key signs the CEK public key to demonstrate that the CEK

is an authentic AMD key.

The AMD KDS managed by AMD contains the ASK private key. The lifetime of this key is the

lifetime of the product line.

2.1.5 Owner Certificate Authority Signing Key

The platform owner’s Certificate Authority key (OCA) an ECDSA signing key using curve P-384

as defined in section D.1.2.3 of [FIPS 186-4]. It is the root of trust of the platform owner and its

signatures signify platform ownership. The OCA private key signs the PEK public key to

demonstrate that the PEK is owned by the platform owner.

When the platform is self-owned, the firmware stores both the OCA private key and public key. In

this case, no entity outside of the SEV firmware has access to the OCA private key; the SEV

firmware generates the OCA key pair using a secure entropy source.

When the platform is owned by an external entity, the firmware stores only the OCA public key.

In this case, only the platform owner has access to the private key; the platform owner must

generate the OCA key pair according to its own security policies.

When the SEV firmware stores the OCA public key in non-volatile storage, the public key is

integrity protected. When the SEV firmware stores the OCA private key in non-volatile storage,

the private key is both integrity protected and confidentiality protected.

Secure Encrypted Virtualization API

Version 0.14

55766 Rev. 3.03 August 2017

24 Key Management Chapter 2

2.1.6 AMD Root Key

The AMD Root key (ARK) is an RSA 2048 key pair. It is the root of trust of AMD and its

signatures signify AMD authenticity. The ARK private key signs the ASK public key to

demonstrate that the ASK is an authentic AMD key.

The AMD Key Distribution Server (KDS) that is managed by AMD contains the ARK private

key. The lifetime of this key is the lifetime of the product line.

2.1.7 Transport Integrity Key

The Transport Integrity Key (TIK) is an HMAC SHA-256 integrity key. The SEV firmware uses

the TIK to integrity protect all trusted information transferred between the firmware and external

entities such as the guest owner or another SEV firmware instance.

The SEV firmware generates the TIK during the sending operational flows. In this case, the

firmware generates the TIK from a secure entropy source.

The SEV firmware imports a wrapped TIK during the launching and receiving operational flows.

The lifetime of this key is the lifetime of a single send, receive, or launch session. Once

SEND_FINISH, RECEIVE_FINISH, or LAUNCH_FINISH are invoked respectively, the TIK is

destroyed.

2.1.8 Transport Encryption Key

The Transport Encryption Key (TEK) is an AES-128 encryption key. The SEV firmware uses the

TEK to encrypt all confidential information transferred between the firmware and external entities

such as the guest owner or another SEV firmware instance.

The SEV firmware generates the TEK during the sending operational flows. In this case, the

firmware generates the TEK from a secure entropy source.

The SEV firmware imports a wrapped TEK during the launching and receiving operational flows.

The lifetime of this key is the lifetime of a single send, receive, or launch session. Once

SEND_FINISH, RECEIVE_FINISH, or LAUNCH_FINISH are invoked respectively, the TEK is

destroyed.

2.1.9 Key Encryption Key

The Key Encryption Key (KEK) is an AES-128 encryption key. It is used to wrap the TEK and

TIK during session establishment.

The SEV firmware derives the KEK from the master secret negotiated during the key agreement

protocol. The lifetime of this key is the lifetime of a single send, receive, or launch session. Once

55766 Rev. 3.03 August 2017 Secure Encrypted Virtualization API

Version 0.14

 Chapter 2 Key Management 25

SEND_FINISH, RECEIVE_FINISH, or LAUNCH_FINISH are invoked respectively, the KEK is

destroyed.

2.1.10 Key Integrity Key

The Key Integrity Key (KIK) is an HMAC-SHA-256 key. It is used to wrap the TEK and TIK

during session establishment.

The SEV firmware derives the KIK from the master secret negotiated during the key agreement

protocol. The lifetime of this key is the lifetime of a single send, receive, or launch session. Once

SEND_FINISH, RECEIVE_FINISH, or LAUNCH_FINISH are invoked respectively, the KIK is

destroyed.

2.1.11 VM Encryption Key

The VM Encryption Key (VEK) is an AES-128 encryption key. The UMC uses the memory

encryption key to encrypt guest data while the guest is operating.

The SEV firmware generates the memory encryption key from a secure entropy source. The

lifetime of this key is the lifetime of the guest while it executes on this platform. The guest will

use a different VEK when migrated to a remote platform. The remote platform is responsible for

generation of the new VEK.

2.2 Usage

The SEV firmware must be capable of communicating securely with other parties. This section

describes how the firmware establishes a trusted channel between itself and the remote party.

Each trusted channel has a client and server. In the SEV API, the guest owner and the SEV

firmware instance issuing send commands are designated the client parties. The SEV firmware

issuing launch and receive commands are designated the servers. These designations do not imply

any further semantics beyond this trusted channel protocol.

2.2.1 Key Derivation Function

The SEV firmware uses a key derivation function (KDF) to securely derive new secrets from old

secrets. Specifically, it uses the KDF to derive the CEK from fused secrets, to derive transport

keys from a negotiated master secret, and to derive the MNONCE used in LAUNCH_MEASURE.

The KDF used is the counter mode KDF specified in NIST SP 800-108, Section 5.1. It uses the

HMAC-SHA-256 as the underlying pseudorandom function (PRF). The parameter r is set to 32

and the length in bits of [L]¬2 is 32.

Secure Encrypted Virtualization API

Version 0.14

55766 Rev. 3.03 August 2017

26 Key Management Chapter 2

2.2.2 Master Secret Derivation

Key agreement is accomplished using the Elliptic Curve Diffie-Hellman (ECDH) protocol. The

protocol follows the Static Unified Model described in Section 6.3.2 of NIST SP 800-56A [XXX].

In summary, the following occurs:

• The client retrieves the server’s ECDH public key, Q¬¬S

• The client transmits its ECDH public key, QC, to the server

• The client transmits a fresh nonce, N, to the server

• The client calculates a shared secret, Z, from Q¬¬S and its private key, dC.

• The server calculates a shared secret, Z, from Q¬¬C and its private key, dS.

• The client and server calculate the master secret, M, from Z and N using the KDF.

The derivation of M uses the KDF. The parameters to the KDF are:

• Secret input: Z

• Label: “sev-master-secret”, ASCII encoded (17 bytes).

• Context: N

The intermediate secret Z must be securely deleted after the master secret is derived.

2.2.3 Transport Key Establishment

The client generates the transport encryption key (TEK) and the transport integrity key (TIK). The

TEK and TIK are then transmitted to the server using key wrapping keys derived from the master

secret, M.

The Key Encryption Key (KEK) is derived using the KDF with the following parameters:

• Secret input: M

• Label: “sev-kek”, ASCII encoded (7 bytes).

• Context: None

The Key Integrity Key (KIK) is derived using the KDF with the following parameters:

• Secret input: M

• Label: “sev-kik”, ASCII encoded (7 bytes).

• Context: None

The TEK and TIK are concatenated together in that order, encrypted, and integrity protected using

the scheme specified in Section 2.2 on page 25, using the KEK as the encryption key, the KIK as

the integrity key, and a freshly generated IV.

When transmitted guest data from client to server, the TEK and TIK are used with the data

protection scheme specified in Section 2.2 on page 25, according to the command specification.

55766 Rev. 3.03 August 2017 Secure Encrypted Virtualization API

Version 0.14

 Chapter 2 Key Management 27

2.2.4 Data Protection

The SEV API uses a common data protection scheme for multiple uses. The data protection

scheme requires the following input parameters:

• A 128-bit initialization vector, IV

• A 128-bit encryption key, K

• A 128-bit integrity protection key, I

• A message to protect, M

Two different messages should never be protected with the same IV and K. The IV may be

repeated only when used with a different K.

The data protection scheme used by this API utilizes AES-128 CTR mode for confidentiality

protection and HMAC-SHA-256 for integrity protection. The output of this data protection is:

• C = AES-128-CTR(M; K, IV)

• MAC = HMAC-SHA-256(C; I)

The client must send C, MAC, and IV to the server to allow the server to recover the plaintext.

Secure Encrypted Virtualization API

Version 0.14

55766 Rev. 3.03 August 2017

28 Guest Policy Chapter 3

Chapter 3 Guest Policy

The firmware maintains a guest policy provided by the guest owner. This policy is enforced by the

firmware and restricts what configuration and operational commands can be performed on this

guest by the hypervisor. For instance, the POLICY.NODBG flag disallows debugging commands

for the guest. The POLICY.SEV requires that the guest only be transmitted to platforms that are

only SEV capable platforms. The policy also requires a minimum firmware level.

The guest policy is provided to firmware during guest launch. The policy is then bound to the

guest and cannot be changed throughout the lifetime of the guest. The policy is also transmitted

during snapshot and migration flows and enforced on the destination platform.

The guest policy is a 4-byte structure with the fields shown in Table 2:

Table 2. Guest Policy Structure

Offset Bit(s) Name Description

000h 0 NODBG Debugging of the guest is disallowed when set

1 NOKS Sharing keys with other guests is disallowed when

set

2 ES SEV-ES is required when set

3 NOSEND Sending the guest to another platform is disallowed

when set

4 DOMAIN The guest must not be transmitted to another

platform that is not in the domain when set.

5 SEV The guest must not be transmitted to another

platform that is not SEV capable when set.

15:6 Reserved. Should be zero.

002h 7:0 API_MAJOR The guest must not be transmitted to another

platform with a lower firmware version. 003h 7:0 API_MINOR

The policy bits for a given guest are referenced with the format POLICY.<FLAG_NAME>. For

instance, the key sharing flag is referred to as POLICY.NOKS.

55766 Rev. 3.03 August 2017 Secure Encrypted Virtualization API

Version 0.14

 Chapter 4 Mailbox Register Protocol 29

Chapter 4 Mailbox Register Protocol

Software on the x86 CPUs communicate with the AMD Secure Processor through a set of MMIO

registers, referred to as mailbox registers. This section describes the protocol used by the x86

SEV driver for communicating through these mailbox registers in order to invoke the SEV key

management functions described in this API.

In a nutshell, the driver writes the command ID and 64-bit physical address of a command buffer

(if parameters are required) into the mailbox registers. The SEV firmware takes action and returns

a 16-bit return code and potentially writes output to the same physical address parameter region.

4.1 Mailboxes

The SEV API exposes an external interface to the x86 system software through three memory

mapped registers: CmdResp, CmdBufAddr_Hi, and CmdBufAddr_Lo. Their formats are

described in Table 3, Table 4, and Table 5 respectively.

Table 3. CmdResp Register Layout

Bit# Description/Purpose

31 0: Command; 1: Response

[30:26] Reserved. Must be zero.

[25:16] Command ID

[15:0] Error code; valid when Response (bit #31) is set to 1

Table 4. CmdBufAddr_Hi Register Layout

Bit# Description/Purpose

31:0 Most significant 32 bits of the physical address of the command buffer

Table 5. CmdBufAddr_Lo Register Layout

Bit# Description/Purpose

31:0 Least significant 32 bits of the physical address of the command buffer

The x86 system software issues commands to the firmware by writing to these registers. The x86

system software first constructs a command buffer (formatted specifically for the given command)

within system DRAM. The x86 system software then writes the most significant 32 bits of the

command buffer's physical address into the CmdBufAddr_Hi register and the least significant 32

bits into the CmdBufAddr_Lo address.

The x86 software then writes to the CmdResp register to issue the command with bit 31 set to 0 to

indicate that this an issued command and bits [25:16] containing the command identifier. Bits

[15:0] are reserved for error response. The values written into bits [15:1] are ignored. The x86

Secure Encrypted Virtualization API

Version 0.14

55766 Rev. 3.03 August 2017

30 Mailbox Register Protocol Chapter 4

software may set bit 0 to inform the SEV firmware to interrupt the x86 core upon command

completion.

Upon command completion, the PSP firmware writes to the CmdResp register. The PSP firmware

sets bit 31 to 1 to indicate that this is a command response and bits [15:0] set to the 16-bit status

code.

If the command is not recognized, an INVALID_COMMAND status code is returned.

4.2 Command Buffer

The x86 system software is responsible for allocating the command buffer. The size of the

command buffer is fixed for a given command. Some commands require the command buffer to

be populated with pointers to secondary buffers. The x86 system software is also responsible for

allocating these secondary buffers.

The command buffer and all secondary buffers must reside within memory accessible to the x86

system software. The SEV API enforces this by checking the validity of all pointers provided by

the x86 system software before use.

All pointers provided by the x86 software are 64-bit system physical addresses.

4.3 Command Identifiers

Table 6 summarizes the platform management, guest management, and debugging commands. See

the command definitions for further details.

Table 6. Command Identifiers

Command ID Description

INIT 001h Initialize the platform

SHUTDOWN 002h Shut down the platform

PLATFORM_RESET 003h Delete the persistent platform state

PLATFORM_STATUS 004h Return status of the platform

PEK_GEN 005h Generate a new PEK

PEK_CSR 006h Generate a PEK certificate signing request

PEK_CERT_IMPORT 007h Import the signed PEK certificate

PDH_CERT_EXPORT 008h Export the PDH and its certificate chains

PDH_GEN 009h Generate a new PDH and PEK signature

LAUNCH_START 030h Begin to launch a new SEV enabled guest

LAUNCH_UPDATE_DATA 031h Encrypt guest data for launch

LAUNCH_UPDATE_VMSA 032h Encrypt guest VMCB save area for launch

LAUNCH_MEASURE 033h Output the launch measurement

LAUNCH_UPDATE_SECRET 034h Import a guest secret sent from the guest owner

55766 Rev. 3.03 August 2017 Secure Encrypted Virtualization API

Version 0.14

 Chapter 4 Mailbox Register Protocol 31

Table 6. Command Identifiers (Continued)

Command ID Description

LAUNCH_FINISH 035h Complete launch of guest

SEND_START 040h Begin to send guest to new remote platform

SEND_UPDATE_DATA 041h Re-encrypt guest data for transmission

SEND_UPDATE_VMSA 042h Re-encrypt guest VMCB save area for transmission

SEND_FINISH 043h Complete sending guest to remote platform

RECEIVE_START 050h Begin to receive guest from remote platform

RECEIVE_UPDATE_DATA 051h Re-encrypt guest data from transmission

RECEIVE_UPDATE_VMSA 052h Re-encrypt guest VMCB save area from transmission

Secure Encrypted Virtualization API

Version 0.14

55766 Rev. 3.03 August 2017

32 Mailbox Register Protocol Chapter 4

Table 6. Command Identifiers (Continued)

Command ID Description

RECEIVE_FINISH 053h Complete receiving guest from remote platform

GUEST_STATUS 023h Query the status and metadata of a guest

ACTIVATE 021h Load a guest’s key into the memory controller

DEACTIVATE 022h Unload a guest’s key into the memory controller

DF_FLUSH 00Ah Flush the data fabric

DECOMMISSION 020h Delete the guest’s SEV context in firmware

DBG_DECRYPT 060h Decrypt guest memory region for debugging

DBG_ENCRYPT 061h Encrypt guest memory region for debugging

4.4 Status Codes

Table 7 summarizes the status codes that can be returned by the firmware commands. See the

command definitions for further details.

Table 7. Status Codes

Status Code Description

SUCCESS 0x0000 Successful completion

INVALID_PLATFORM_STATE 0x0001 The platform state is invalid for this command

INVALID_GUEST_STATE 0x0002 The guest state is invalid for this command

INVALID_CONFIG 0x0003 The platform configuration is invalid

INVALID_LENGTH 0x0004 A memory buffer is too small.

ALREADY_OWNED 0x0005 The platform is already owned

INVALID_CERTIFICATE 0x0006 The certificate is invalid

POLICY_FAILURE 0x0007 Request is not allowed by guest policy

INACTIVE 0x0008 The guest is inactive

INVALID_ADDRESS 0x0009 The address provided is invalid

BAD_SIGNATURE 0x000A The provided signature is invalid

BAD_MEASUREMENT 0x000B The provided measurement is invalid

ASID_OWNED 0x000C The ASID is already owned

INVALID_ASID 0x000D The ASID is invalid

WBINVD_REQUIRED 0x000E WBINVD instruction required

DFFLUSH_REQUIRED 0x000F DF_FLUSH invocation required

55766 Rev. 3.03 August 2017 Secure Encrypted Virtualization API

Version 0.14

 Chapter 4 Mailbox Register Protocol 33

Table 7. Status Codes (Continued)

Status Code Description

INVALID_GUEST 0x0010 The guest handle is invalid

INVALID_COMMAND 0x0011 The command issued is invalid.

ACTIVE 0x0012 The guest is active.

HWERROR_PLATFORM 0x0013 A hardware condition has occurred affecting the

platform. It is safe to re-allocate parameter

buffers.

HWERROR_UNSAFE 0x0014 A hardware condition has occurred affecting the

platform. It is not safe to re-allocate parameter

buffers.

UNSUPPORTED 0x0015 Feature is unsupported.

INVALID_PARAM 0x0016 A parameter is invalid.

4.5 Endianness

All integral values passed between the firmware and the CPU driver are little-endian formatted

unless otherwise specified. That is, the first byte of the integer representation is the least

significant byte. Note that this applies to all bit integer values in public keys and signatures unless

explicitly stated otherwise.

4.6 Synchrony

The SEV API processes commands serially. The x86 system software receives a response when

the SEV firmware has completed processing the command. The x86 system software must not

send subsequent commands before receiving a response from the SEV firmware for the first sent

command.

Any subsequent commands sent by the x86 system software before receiving a response must be

ignored by the SEV firmware and must not result in any change to the platform or any guest

context.

4.7 Address Validation

All physical memory regions accessed by the x86 system software by the SEV firmware are

checked to ensure that the regions do not overlap invalid memory regions. Each address in the

physical memory region is checked that it does not have any of the following properties:

• Bits 46:43 != 0

• Overlaps TSseg

Secure Encrypted Virtualization API

Version 0.14

55766 Rev. 3.03 August 2017

34 Mailbox Register Protocol Chapter 4

• Overlaps ASeg

• Is above the max physical address (7FD_0000_0000)

• Lies within any TMR that disallows x86 software access

This check is performed before any action is taken on the contents of addresses provided by the

x86 system software as parameters. If the check fails, an INVALID_ADDRESS status code is

returned.

55766 Rev. 3.03 August 2017 Secure Encrypted Virtualization API

Version 0.14

 Chapter 5 Platform Management API 35

Chapter 5 Platform Management API

This chapter describes the platform management commands. Platform management commands are

used by the platform owner to provision the platform and query platform-wide data.

5.1 Overview

This section overviews the platform management and provides the background to understand the

semantics of each command.

5.1.1 Platform Context

The SEV firmware maintains a platform context throughout the lifetime of the platform. This

context contains data and metadata necessary to implement the SEV API.

Table 8. Platform Context (PCTX) Fields

Field Field Description

STATE The current state of the platform in the PSTATE finite state machine.

CONFIG The configuration of the platform.

PDH Platform Diffie Hellman key.

PEK Platform Endorsement Key.

CEK Chip Endorsement Key.

OCA Owner Certificate Authority key.

GUEST_COUNT Number of guest contexts currently managed by the firmware.

GUESTS The guest contexts currently managed by the firmware.

The platform context is denoted PCTX. The PCTX fields are referenced as PCTX.<FIELD>. For

instance, the number of guests currently managed by the platform would be denoted

PCTX.GUEST_COUNT. When unambiguous, the PCTX portion may be omitted.

Secure Encrypted Virtualization API

Version 0.14

55766 Rev. 3.03 August 2017

36 Platform Management API Chapter 5

5.1.2 Platform State Machine

The SEV firmware traverses a platform finite state machine during operation. The firmware may

only execute certain commands in each platform state.

Table 9. PSTATE Finite State Machine

State Value Description Allowed Platform Commands

UNINIT 0h The platform is uninitialized. INIT, PLATFORM_RESET,

PLATFORM_STATUS

INIT 1h The platform is initialized but not

currently managing any guests.

SHUTDOWN, PLATFORM_STATUS,
PEK_GEN, PEK_CSR,

PEK_CERT_IMPORT, PDH_GEN,

PDH_CERT_EXPORT, DF_FLUSH

WORKING 2h The platform is initialized and current

managing guests.

SHUTDOWN, PLATFORM_STATUS,

PDH_GEN, PDH_CERT_EXPORT,

DF_FLUSH

The platform finite state machine is denoted PSTATE. The PSTATE states are referenced as

PSTATE.<STATE>. For instance, the uninitialized state is denoted PSTATE.UNINIT.

5.1.3 Authenticity

An authentic platform is a platform that is executing AMD developed firmware on AMD

hardware. Authenticity allows the guest owner to trust that the platform it communicates with will

implement SEV correctly and securely.

The authenticity of the platform is defined by a certificate chain rooted in the ARK, the AMD root

of trust. The ARK signs the ASK, which in turn signs the CEK. The CEK signs the PEK which

roots the PEK in the AMD root of trust, asserting that this platform is an authentic AMD platform.

5.1.4 Ownership

A platform may be owned by an external entity or it may be self-owned. Platforms can disallow

migration of guests to platforms that do not share the same owner. This allows platform owners to

contain guests within a known set of servers.

The platform ownership is defined by a certificate chain rooted in the OCA, the owner’s root of

trust. The OCA signs the PEK. When the platform is not owned by an external entity, the platform

generates its own OCA key pair.

5.1.5 Non-volatile Storage

The platform stores identity information in non-volatile storage available to the firmware. The

identity information includes the following:

55766 Rev. 3.03 August 2017 Secure Encrypted Virtualization API

Version 0.14

 Chapter 5 Platform Management API 37

• PDH key pair

• PDH certificate

• PEK key pair

• PEK certificate

• OCA public key

• OCA private key (only if self-owned)

• OCA certificate

The firmware writes each of these keys immediately after generation, derivation, or import. The

persistent data is stored encrypted and integrity protected.

If a power failure occurs during a write operation to non-volatile storage, the persistent data may

become corrupted. Upon executing the INIT command immediately after the power failure, the

command will return an integrity check failure status code. In such a case, the platform must be

reset with the PLATFORM_RESET command.

5.1.6 Power State Transitions

Table 10 summarizes the effects of power state transitions on the firmware.

Table 10. Power Management Transitions

Power State Effect

S0, S1, S2, S3 The firmware volatile state is not affected and resumes execution after

transitioning out of the low power states.

Hybrid Sleep This is equivalent to preparing to transition to S4, but transitioning to S3. If a

power failure occurs, the system resumes as if it transitioned to S4. If not, it

the system resumes as if it transitioned to S3.

S4, S5, Mechanical

Off

The firmware starts from the reset state and must be re-initialized. No non-

persistent state is recovered from the point before the power state transition.

5.1.7 SEV-ES Trusted Memory Region

The SEV-ES product feature requires that the x86 system software donate a 1 MB region aligned

on a 1 MB boundary to the firmware for exclusive use by the firmware during the lifetime of the

platform (until a SHUTDOWN command invocation). The firmware uses the memory region to

store integrity data necessary to support the SEV-ES functionality.

5.2 INIT

This command is used by the platform owner to the initialize the platform. This command loads

the SEV related persistent data from non-volatile storage and initializes the platform context. In

Secure Encrypted Virtualization API

Version 0.14

55766 Rev. 3.03 August 2017

38 Platform Management API Chapter 5

typical workflows, this command should be the first command issued, aside from the possible

invocation of PLATFORM_STATUS to determine the supported API version.

5.2.1 Actions

The platform must be in the PSTATE.UNINIT state.

The firmware first loads the persistent state into its private memory, and then performs the

following actions:

• The CEK is derived from the chip unique values.

• If no OCA certificate exists, a OCA signing key is generated and a self-signed OCA certificate

is created. The signing key and certificate are written to persistent storage.

• If no PEK exists or the OCA was just regenerated, a PEK signing key is generated and a PEK

certificate is created and signed by the OCA and CEK. The PEK and its certificate are written

to persistent storage.

• If no PDH exists or the PEK was just regenerated, a PDH key is generated. A certificate is

created for the PDH and is signed by the PEK.

• All SEV-related ASIDs on all cores are marked invalid. Each core requires a WBINVD before

activating any guest. See ACTIVATE and DEACTIVATE for further details.

Upon successful completion, the platform transitions to the PSTATE.INIT state.

5.2.2 Parameters

Table 11 specifies the parameters for the INIT command.

Table 11. INIT Command Buffer

Byte Offset Bits In / Out Name Description

00h 0 In – SEV-ES is initialized for the platform when set. It

is disabled for all guests when not set.

31:1 – – Reserved. Must be zero.

04h 31:0 – – Reserved. Must be zero.

08h 63:0 In TMR_PADDR If CONFIG.ES=1, system physical address to

memory region donated by hypervisor for SEV-

ES operations. Must be 1MB aligned.

Ignored if CONFIG.ES=0

10h 31:0 In TMR_LENGTH If CONFIG.ES=1, length of the memory region

donated by hypervisor for SEV-ES operation.

Must equal 1MB.

Ignored if CONFIG.ES=0

55766 Rev. 3.03 August 2017 Secure Encrypted Virtualization API

Version 0.14

 Chapter 5 Platform Management API 39

5.2.3 Status Codes

Table 12 enumerates the possible status codes returned by this command.

Table 12. INIT Command Status Codes

Return Value Reason

SUCCESS Successful completion

INVALID_PARAM A parameter is invalid

INVALID_PLATFORM_STATE The platform is not in the PSTATE.UNINIT state

INVALID_LENGTH A buffer length is not correct

INVALID_CONFIG The configuration flags are invalid or unsupported

INVALID_ADDRESS A memory region provided contains invalid physical addresses.

HWERROR_PLATFORM A hardware condition has occurred affecting the platform. It is safe

to re-allocate parameter buffers.

HWERROR_UNSAFE A hardware condition has occurred affecting the platform. It is

unsafe to re-allocate parameter buffers.

5.3 SHUTDOWN

The SHUTDOWN command is used by the platform owner to transition the platform to the

uninitialized state.

5.3.1 Actions

The platform may be in any state.

All platform and guest state maintained by the firmware is securely deleted from volatile storage.

If SEV-ES is enabled during platform initialization, the firmware returns control of the SEV-ES

TMR back to the x86. After this command completes, the TMR will be accessible by x86

software.

Upon successful completion, the platform transitions to the PSTATE.UNINIT state.

Secure Encrypted Virtualization API

Version 0.14

55766 Rev. 3.03 August 2017

40 Platform Management API Chapter 5

5.3.2 Parameters

None. CmdBuf_Lo and CmdBuf_Hi registers are ignored.

5.3.3 Status Codes

Table 13 enumerates the possible status codes returned by this command.

Table 13. SHUTDOWN Command Status Codes

Return Value Reason

SUCCESS Successful completion

INVALID_ADDRESS A memory region provided contains invalid physical addresses

HWERROR_PLATFORM A hardware condition has occurred affecting the platform. It is safe to

re-allocate parameter buffers.

HWERROR_UNSAFE A hardware condition has occurred affecting the platform. It is unsafe to

re-allocate parameter buffers.

5.4 PLATFORM_RESET

The PLATFORM_RESET command is used by the platform owner to reset the non-volatile SEV

related data. Invoking this command is useful when the owner wishes to transfer the platform to a

new owner or securely dispose of the system.

5.4.1 Actions

The platform must be in the PSTATE.UNINIT state. Otherwise, an error is returned.

The persistent state is securely deleted from non-volatile storage.

The platform remains in the PSTATE.UNINIT state after completion.

5.4.2 Parameters

None. CmdBuf_Lo and CmdBuf_Hi registers are ignored.

55766 Rev. 3.03 August 2017 Secure Encrypted Virtualization API

Version 0.14

 Chapter 5 Platform Management API 41

5.4.3 Status Codes

Table 14 enumerates the possible status codes returned by the PLATFORM_RESET command.

Table 14. PLATFORM_RESET Command Status Codes

Return Value Reason

SUCCESS Successful completion.

INVALID_PLATFORM_STATE The platform is not in the PSTATE.UNINIT state.

INVALID_ADDRESS A memory region provided contains invalid physical addresses.

HWERROR_PLATFORM A hardware condition has occurred affecting the platform. It is safe

to re-allocate parameter buffers.

HWERROR_UNSAFE A hardware condition has occurred affecting the platform. It is

unsafe to re-allocate parameter buffers.

5.5 PLATFORM_STATUS

The PLATFORM_STATUS command is used by the platform owner to collect the current status

of the platform.

5.5.1 Actions

The platform may be in any state.

If the platform is in the PSTATE.UNINIT state, then the following fields are set to zero:

• OWNER

• CONFIG.ES

• GUEST_COUNT

The OWNER bit is set to 1 if the platform is owned by an external owner. The OWNER bit is set

to 0 if the platform is self-owned.

Secure Encrypted Virtualization API

Version 0.14

55766 Rev. 3.03 August 2017

42 Platform Management API Chapter 5

The CONFIG flags are equal to the values passed to the INIT command.

The platform remains in the same state after completion.

5.5.2 Parameters

Table 15 specifies the parameters for the PLATFORM_STATUS command.

Table 15. PLATFORM_STATUS Command Buffer

Byte Offset Bits In / Out Name Description

00h 7:0 Out API_MAJOR Major API version

01h 7:0 Out API_MINOR Minor API version

02h 7:0 Out STATE Current platform state. See Table 3.

03h 0 Out OWNER OWNER=0: Self-owned

OWNER=1: Externally owned.

 7:1 – – Reserved. Set to zero.

04h 0 Out CONFIG.ES SEV-ES is initialized for the platform when set.

It is disabled for all guests when not set.

 23:1 – – Reserved. Set to zero.

 31:24 Out BUILD Firmware Build ID for this API version.

08h 31:0 Out GUEST_COUNT Number of valid guests maintained by the

firmware

5.5.3 Status Codes

Table 16 enumerates the possible status codes returned by the PLATFORM_STATUS command.

Table 16. PLATFORM_STATUS Command Status Codes

Return Value Reason

SUCCESS Successful completion

INVALID_ADDRESS A memory region provided contains invalid physical addresses

5.6 PEK_GEN

This command is used to generate a new PEK. This may be used to regenerate the identity of the

platform if required by the user’s policy. This command is not necessary for normal workflows as

the INIT command regenerates this after being invoked for the first time after a platform reset.

55766 Rev. 3.03 August 2017 Secure Encrypted Virtualization API

Version 0.14

 Chapter 5 Platform Management API 43

5.6.1 Actions

The platform must be in the PSTATE.INIT state. Otherwise, an error is returned.

The following objects are securely deleted from volatile and non-volatile storage:

• PEK key pair

• PEK certificate

• PDH key pair

• PDH certificate

• OCA key pair (if the platform is self-owned)

• OCA certificate

A new OCA signing key pair and self-signed certificate are generated and stored in non-volatile

storage. The previous OCA certificate (and signing key if self-owned) is securely deleted.

A new PEK signing key pair and certificate signed by the new OCA are generated and stored in

non-volatile storage. The previous PEK signing key and certificate are securely deleted.

A new PDH key pair is generated and signed by the PEK. Regeneration of the PDH is equivalent

to the invocation of the PDH_GEN command.

Note that in this version of the API, this command is an alias for an invocation of SHUTDOWN,

PLATFORM_RESET, and INIT, in that order.

The platform remains in the same state after completion.

5.6.2 Parameters

None. The CmdBuf_Lo and CmdBuf_Hi mailbox registers are ignored.

5.6.3 Status Codes

Table 17 enumerates the possible status codes returned by the PEK_GEN command.

Table 17. PEK_GEN Command Status Codes

Return Value Reason

SUCCESS Successful completion

INVALID_PLATFORM_STATE The platform is not in the PSTATE.INIT state

INVALID_ADDRESS A memory region provided contains invalid physical addresses

HWERROR_PLATFORM A hardware condition has occurred affecting the platform. It is safe

to re-allocate parameter buffers

HWERROR_UNSAFE A hardware condition has occurred affecting the platform. It is

Secure Encrypted Virtualization API

Version 0.14

55766 Rev. 3.03 August 2017

44 Platform Management API Chapter 5

unsafe to re-allocate parameter buffers.

5.7 PEK_CSR

During the provisioning process, the owner of the platform can take ownership using this

command in conjunction with the PEK_CERT_IMPORT command. The CSR contains identifying

information of this platform and also contains the PEK public key. A certificate authority

processes the CSR by generating a certificate with the information from the CSR and signing it

with its key.

The caller can issue this command with the PEK_CSR_LEN field set to zero to query the correct

amount of memory to allocate for the CSR.

5.7.1 Actions

The platform must be in the PSTATE.INIT or PSTATE.WORKING states. Otherwise, an error is

returned.

A CSR is generated which contains the PEK public key to be signed. The CSR format identical to

the SEV certificate with zero signatures. See Appendix C on page 93 for the certificate format.

If the PEK_CSR_LEN is too small, the required length is written out to that field and an error is

returned. Otherwise, the number of bytes written to the buffer are written into PEK_CSR_LEN.

The platform remains in the same state after completion.

5.7.2 Parameters

Table 18 specifies the parameters for the PEK_CSR command.

Table 18. PEK_CSR Command Buffer

Byte Offset Bits In / Out Name Description

00h 63:0 In PEK_CSR_PADDR System physical address of the region to

output the PEK certificate signing request.

See Appendix C for layout.

08h 31:0 In, Out PEK_CSR_LEN Length of the region to output the PEK

certificate signing request in bytes.

55766 Rev. 3.03 August 2017 Secure Encrypted Virtualization API

Version 0.14

 Chapter 5 Platform Management API 45

5.7.3 Status Codes

Table 19 enumerates the possible status codes returned by the PEK_CSR command.

Table 19. PEK_CSR Command Status Codes

Return Value Reason

SUCCESS Successful completion.

INVALID_LENGTH A length field is invalid.

INVALID_PLATFORM_STATE The platform is not in the PSTATE.INIT or PSTATE.WORKING

states.

INVALID_ADDRESS A memory region provided contains invalid physical addresses.

HWERROR_PLATFORM A hardware condition has occurred affecting the platform. It is safe

to re-allocate parameter buffers.

HWERROR_UNSAFE A hardware condition has occurred affecting the platform. It is

unsafe to re-allocate parameter buffers.

5.8 PEK_CERT_IMPORT

During the provisioning process, the platform can be joined to a domain using this command in

conjunction with the PEK_CSR command. The CSR contains the identifying information of this

platform and the PEK public key. A certificate authority processes the CSR by generating a

certificate with the information from the CSR and signing it with its key. This command imports

the certificate of the PEK and OCA into the platform.

Note that this provisioning process should be performed by the platform owner in a trusted

environment. In an untrusted environment—particularly where the x86 software is untrusted—this

request could be intercepted and replaced with a certificate chain crafted by the attacker.

5.8.1 Actions

The platform must be in the PSTATE.INIT state. Otherwise, an error is returned.

The platform must be self-owned. This requirement ensures that the caller has regenerated the

PEK via PEK_GEN and therefore PEKs will never be shared by owners.

The OCA and PEK certificates are validated. Validation involves the following steps:

• The algorithms of the PEK and OCA must be supported

• The version of the PEK and OCA certificates must be supported

• The PEK certificate must match the current PEK

• The OCA signature on the PEK certificate must be valid

Secure Encrypted Virtualization API

Version 0.14

55766 Rev. 3.03 August 2017

46 Platform Management API Chapter 5

The OCA certificate and PEK signature are then written into the platform context as well as to

non-volatile storage.

The PDH is regenerated and signed with the new PEK. This action is equivalent to the PDH_GEN

command.

The platform remains in the same state after completion.

5.8.2 Parameters

Table 20 specifies the parameters for the PEK_CERT_IMPORT command.

Table 20. PEK_CERT_IMPORT Command Buffer

Byte Offset Bits In / Out Name Description

00h 63:0 In PEK_CERT_PADDR System physical address of the region

containing the PEK certificate. See

Appendix C for layout.

08h 31:0 In PEK_CERT_LEN Length of the region containing the PEK

certificate, in bytes.

0Ch 31:0 — — Reserved. Must be zero.

10h 63:0 In OCA_CERT_PADDR System physical address of the region

containing the OCA certificate. See

Appendix C.

18h 31:0 In OCA_CERT_LEN First certificate in the chain. Signed by

CERT2. Length of the region containing the

OCA certificate, in bytes.

5.8.3 Status Codes

Table 21 enumerates the possible status codes returned by the PEK_CERT_IMPORT command.

Table 21. PEK_CERT_IMPORT Command Status Codes

Return Value Reason

SUCCESS Successful completion.

INVALID_PLATFORM_STATE The platform is not in the PSTATE.INIT states.

INVALID_LENGTH A buffer length is not correct.

ALREADY_OWNED The platform is already owned.

INVALID_CERTIFICATE A provided certificate is invalid or the PEK does not match the

current PEK.

INVALID_ADDRESS A memory region provided contains invalid physical addresses.

HWERROR_PLATFORM A hardware condition has occurred affecting the platform. It is safe

to re-allocate parameter buffers.

HWERROR_UNSAFE A hardware condition has occurred affecting the platform. It is

55766 Rev. 3.03 August 2017 Secure Encrypted Virtualization API

Version 0.14

 Chapter 5 Platform Management API 47

unsafe to re-allocate parameter buffers.

5.9 PDH_GEN

This command may be used to re-generate the PDH as often as desired. Note that if other entities

are using the current PDH to establish keys to encrypt data or provide integrity checking,

regenerating the PDH will invalidate any ongoing key establishment work. In this case, the other

entities must retrieve the new PDH in order to perform key establishment.

5.9.1 Actions

The platform must be in the PSTATE.INIT or PSTATE.WORKING states. Otherwise, an error is

returned.

The PDH key pair is regenerated. The PDH certificate is created and signed by the PEK. The

current PDH key pair and certificate are replaced with the new PDH key pair and certificate.

The platform remains in the same state after completion.

5.9.2 Parameters

None. The CmdBuf_Lo and CmdBuf_Hi mailbox registers are ignored.

5.9.3 Status Codes

Table 22 enumerates the possible status codes returned by the PHD_GEN command.

Table 22. PDH_GEN Command Status Codes

Return Value Reason

SUCCESS Successful completion.

INVALID_PLATFORM_STATE The platform must be in the PSTATE.INIT or

PSTATE.WORKING states.

HWERROR_PLATFORM A hardware condition has occurred affecting the platform. It is safe

to re-allocate parameter buffers.

HWERROR_UNSAFE A hardware condition has occurred affecting the platform. It is

unsafe to re-allocate parameter buffers.

Secure Encrypted Virtualization API

Version 0.14

55766 Rev. 3.03 August 2017

48 Platform Management API Chapter 5

5.10 PDH_CERT_EXPORT

This command is used to to retrieve the PDH and identity of the platform. This information may

then be exported to remote entities which wish to establish a secure transport context with the

platform in order to transmit data securely.

5.10.1 Actions

The platform must be in the PSTATE.INIT or PSTATE.WORKING states. Otherwise, an error is

returned.

Exports the following data that can be used by an external party to authenticate the identity of the

platform and establish keys:

• The PDH certificate

• The CEK certificate

• The PEK certificate

• The OCA certificate

• If the PDH_CERT_LEN or CERT_CHAIN_LEN fields are too small, the required length is

written out to those fields and an error is returned. Otherwise, the number of bytes written

to the buffers are written into PDH_CERT_LEN and CERT_CHAIN_LEN, respectively.

The platform remains be in the same state after completion.

5.10.2 Parameters

Table 23 and Table 24 specify the parameters for the PDH_CERT_EXPORT command.

Table 23. PDH_CERT_EXPORT Command Buffer

Byte Offset Bits In / Out Name Description

00h 63:0 In PDH_CERT_PADDR System physical address of the region

containing the PDH certificate. See

Appendix C for layout.

08h 31:0 In, Out PDH_CERT_LEN Length of the region containing the

PDH certificate, in bytes.

0Ch 31:0 — — Reserved. Must be zero.

10h 63:0 In CERT_CHAIN_PADDR System physical address of the region
containing the PDH certificate chain.

See Table 24 for the layout.

18h 31:0 In, Out CERTS_LEN Length of the region containing the

PDH certificate chain, in bytes.

55766 Rev. 3.03 August 2017 Secure Encrypted Virtualization API

Version 0.14

 Chapter 5 Platform Management API 49

Table 24. PDH_CERT_EXPORT Certificates Buffer

Byte Offset Bits In / Out Name Description

0000h – 0823h — Out PEK_CERT The PEK certificate. See Appendix C for

layout.

0824h – 1047h — Out OCA_CERT The OCA certificate. See Appendix C for

layout.

1048h – 186Bh — Out CEK_CERT The CEK certificate. See Appendix C for

layout.

5.10.3 Status Codes

Table 25 enumerates the possible status codes returned by the PDH_CERT_EXPORT command.

Table 25. PDH_CERT_EXPORT Command Status Codes

Return Value Reason

SUCCESS Successful completion.

INVALID_LENGTH A buffer length is not correct.

INVALID_PLATFORM_STATE The platform is not in the PSTATE.INIT or PSTATE.WORKING

states.

INVALID_ADDRESS A memory region provided contains invalid physical addresses.

HWERROR_PLATFORM A hardware condition has occurred affecting the platform. It is

safe to re-allocate parameter buffers.

HWERROR_UNSAFE A hardware condition has occurred affecting the platform. It is

unsafe to re-allocate parameter buffers.

Secure Encrypted Virtualization API

Version 0.14

55766 Rev. 3.03 August 2017

50 Guest Management API Chapter 6

Chapter 6 Guest Management API

This chapter describes the management of guest contexts throughout the guest lifecycle.

6.1 Overview

This chapter describes the SEV context of an SEV-enabled guest.

6.1.1 Guest Context

The SEV firmware maintains guest contexts throughout the lifetime of the platform. The guest

context contains data and metadata necessary to implement the SEV API specific to a guest.

Table 26. Guest Context (GCTX) Fields

Field Field Description

STATE The current state of this guest in the GSTATE finite state machine

HANDLE The handle of this guest

ASID The ASID currently associate with this guest.

ACTIVE Flag describing whether this guest is currently active

POLICY This guest’s policy

VEK The memory encryption key of the guest

NONCE The trusted channel nonce currently associated with this guest

MS The master secret current associated with this guest

TEK The transport encryption key currently associated with this guest

TIK The transport integrity key currently associated with this guest

LD The launch digest context for this guest

A guest context is denoted GCTX. The GCTX fields are referenced as GCTX.<FIELD>. The

GCTX prefix is omitted if it’s unnecessary in context.

Table 27. GSTATE Finite State Machine

State Value Description Allowed Guest Commands

UNINIT 0h The guest is uninitialized. LAUNCH_START,

RECEIVE_START

LUPDATE 1h The guest is currently being

launched and plaintext data and

VMCB save areas are being

imported.

LAUNCH_UPDATE_DATA,

LAUNCH_UPDATE_VMSA,

LAUNCH_MEASURE, ACTIVATE,
DEACTIVATE, DECOMMISSION,

GUEST_STATUS

55766 Rev. 3.03 August 2017 Secure Encrypted Virtualization API

Version 0.14

 Chapter 6 Guest Management API 51

Table 27. GSTATE Finite State Machine (Continued)

State Value Description Allowed Guest Commands

LSECRET 2h The guest is currently being launched

and ciphertext data are being

imported.

LAUNCH_SECRET,

LAUNCH_FINISH, ACTIVATE,

DEACTIVATE, DECOMMISSION,

GUEST_STATUS

RUNNING 3h The guest is fully launched or
migrated in, and not being migrated

out to another machine.

ACTIVATE, DEACTIVATE,
DECOMMISSION, SEND_START,

GUEST_STATUS

SUPDATE 4h The guest is currently being migrated

out to another machine.

SEND_UPDATE_DATA,
SEND_UPDATE_VMSA,

SEND_FINISH, ACTIVATE,

DEACTIVATE, DECOMMISSION,

GUEST_STATUS

RUPDATE 5h The guest is currently being migrated

I from another machine.

RECEIVE_UPDATE_DATA,

RECEIVE_UPDATE_VMSA,
RECEIVE_FINISH, ACTIVATE,

DEACTIVATE, DECOMMISSION,

GUEST_STATUS

Each SEV guest managed by the SEV firmware traverses a finite state machine during operation.

The firmware will only execute certain commands in each guest state.

The guest finite state machine is denoted GSTATE. The GSTATE states are referenced as

GSTATE.<STATE>. For instance, the uninitialized state is denoted GSTATE.UNINIT.

6.1.2 Activation and Deactivation

The number of ASIDs that can be associated with a VEK and used with SEV are limited. The limit

is implementation specific and can be retrieved via CPUID Fn8000_001F[ECX]. To allow for the

execution of a larger number of guests, the SEV firmware provides the ability to activate and

deactivate guests.

6.2 LAUNCH_START

This command is used to bootstrap a guest by encrypting its memory with a new VEK. This

command creates a guest context managed by the SEV firmware which can then be referred to by

the handle passed out to the caller.

6.2.1 Actions

A new guest context is created and assigned to an available guest handle.

Secure Encrypted Virtualization API

Version 0.14

55766 Rev. 3.03 August 2017

52 Guest Management API Chapter 6

If the HANDLE field is zero, a new VEK is generated for this guest. If the HANDLE field is non-

zero, the following checks are performed:

• HANDLE is a valid guest

• GUESTS[HANDLE].POLICY is equal to the POLICY field

• POLICY.NOKS is zero

If the above checks pass, then the VEK from the guest referred to by HANDLE is copied into the

new guest context.

The handle of the new guest is written to the HANDLE field.

The launch digest stored in GCTX.LD field is initialized.

If POLICY.ES is set and the platform is configured with SEV-ES, then SEV-ES is enabled. If

POLICY.ES is set and the platform is not configured with SEV-ES, an error is returned.

Otherwise, SEV-ES is disabled.

A version check is performed to ensure that the API version implemented on the platform provides

the proper functionality requested by the initiator of the guest VM. The major API version of this

platform must be greater than the guest’s POLICY.API_MAJOR field value, or the major API

version is equal to POLICY.API_MAJOR, and the minor API version of this platform is greater

than or equal to POLICY.API_MINOR. If all of these conditions are not met then an error is

returned.

If DH_CERT_PADDR is equal to 0h, then the DH_CERT_LEN, SESSION_PADDR, and

SESSION_LEN fields are ignored. The subsequent launch commands will use 0h for both the

TEK and TIK.

After successful completion of this command, the guest is transitioned to the GSTATE.LUPDATE

state.

The platform transitions to the PSTATE.WORKING state.

55766 Rev. 3.03 August 2017 Secure Encrypted Virtualization API

Version 0.14

 Chapter 6 Guest Management API 53

6.2.2 Parameters

Table 28 and Table 29 specify the parameters for the LAUNCH_START command.

Table 28. LAUNCH_START Command Buffer

Byte Offset Bits In / Out Name Description

00h 31:0 In, Out HANDLE Guest handle.

04h 31:0 In POLICY Guest policy.

08h 63:0 In DH_CERT_PADDR System physical address of the region
containing the guest owner DH certificate.

See Appendix C for the layout.

10h 31:0 In DH_CERT_LEN Length of the region containing the guest

owner DH certificate, in bytes.

14h 31:0 – – Reserved. Must be zero.

18h 63:0 In SESSION_PADDR System physical address of the region

containing the session parameters.

20h 31:0 In SESSION_LEN Length of the region containing the session

parameters, in bytes.

Table 29. LAUNCH_START Session Data Buffer

Byte Offset Bits In / Out Name Description

00h 127:0 In NONCE Session nonce.

10h 255:0 In WRAP_TK Encrypted TEK and TIK.

30h 127:0 In WRAP_IV IV for key wrap.

40h 255:0 In WRAP_MAC MAC for key wrap.

60h 255:0 In POLICY_MAC Guest policy MAC.

6.2.3 Status Codes

Table 30 enumerates the possible status codes returned by the LAUNCH_START command.

Table 30. LAUNCH_START Status Codes

Return Value Reason

SUCCESS Successful completion.

INVALID_PLATFORM_STATE The platform is not in the PSTATE.INIT or PSTATE.WORKING

states.

INVALID_LENGTH A buffer length is not correct

INVALID_GUEST The guest handle is invalid.

POLICY_FAILURE The guest policy was violated.

Secure Encrypted Virtualization API

Version 0.14

55766 Rev. 3.03 August 2017

54 Guest Management API Chapter 6

Table 30. LAUNCH_START Status Codes (Continued)

Return Value Reason

BAD_MEASUREMENT Failed to verify the integrity of the wrapped key.

INVALID_ADDRESS A memory region provided contains invalid physical addresses.

UNSUPPORTED SEV-ES has not been configured.

HWERROR_PLATFORM A hardware condition has occurred affecting the platform. It is safe to

re-allocate parameter buffers.

HWERROR_UNSAFE A hardware condition has occurred affecting the platform. It is unsafe to

re-allocate parameter buffers.

6.3 LAUNCH_UPDATE_DATA

This command is used to encrypt guest data with its VEK.

6.3.1 Actions

The platform must be in the PSTATE.WORKING state.

The guest must be in the GSTATE.LUPDATE state. The guest must be activated with an ASID

using the ACTIVATE command.

The GCTX.LD is updated with the plaintext contents of the memory region pointed to by

PADDR. The plaintext context is then encrypted with the guest’s VEK in place.

The platform remains in the same state after completion.

The guest remains in the same state after completion.

6.3.2 Parameters

Table 31 specifies the parameters for the LAUNCH_UPDATE_DATA command.

Table 31. LAUNCH_UPDATE_DATA Command Buffer

Byte

Offset

Bits In / Out Name Description

00h 31:0 In HANDLE Guest handle

04h 31:0 - - Reserved. Must be zero.

08h 63:0 In PADDR System physical address of the data to be encrypted.

Must be 16 B aligned.

10h 31:0 In LENGTH Length of the data to be encrypted. Must be a multiple

of 16 B.

55766 Rev. 3.03 August 2017 Secure Encrypted Virtualization API

Version 0.14

 Chapter 6 Guest Management API 55

6.3.3 Status Codes

Table 32 enumerates the possible status codes returned by the LAUNCH_UPDATE_DATA

command.

Table 32. LAUNCH_UPDATE_DATA Status Codes

Return Value Reason

SUCCESS Successful completion.

INVALID_PLATFORM_STATE The platform is not in the PSTATE.WORKING state.

INVALID_LENGTH A buffer length is not correct.

INVALID_GUEST_STATE The guest state is not in the GSTATE.LUPDATE state.

INVALID_GUEST The guest handle is invalid.

INACTIVE The guest is inactive.

INVALID_ADDRESS A memory region provided contains invalid physical addresses.

HWERROR_PLATFORM A hardware condition has occurred affecting the platform. It is safe

to re-allocate parameter buffers.

HWERROR_UNSAFE A hardware condition has occurred affecting the platform. It is

unsafe to re-allocate parameter buffers.

6.4 LAUNCH_UPDATE_VMSA

This command is used to encrypt guest VMCB save area with its VEK. This command is only

allowed when SEV-ES is enabled for this guest and when SEV-ES is configured for the platform.

6.4.1 Actions

The platform must be in the PSTATE.WORKING state.

The guest must be in the GSTATE.LUPDATE state. The guest must be activated with an ASID

using the ACTIVATE command.

The GCTX.LD is updated with the plaintext contents of the VMCB save area pointed to by

PADDR. The VMCB save area is prepared for SEV-ES usage and is then encrypted with the

guest’s VEK in place.

The platform remains in the same state after completion.

The guest remains in the same state after completion.

Secure Encrypted Virtualization API

Version 0.14

55766 Rev. 3.03 August 2017

56 Guest Management API Chapter 6

6.4.2 Parameters

Table 33 specifies the parameters for the LAUNCH_UPDATE_VMSA command.

Table 33. LAUNCH_UPDATE_VMSA Command Buffer

Byte Offset Bits In / Out Name Description

00h 31:0 In HANDLE Guest handle.

04h 31:0 - - Reserved. Must be zero.

08h 63:0 In PADDR System physical address of the data to be encrypted.

Must be 16 B aligned.

10h 31:0 In LENGTH Length of the data to be encrypted. Must be 4096 B.

6.4.3 Status Codes

Table 34 enumerates the possible status codes returned by the LAUNCH_UPDATE_VMSA

command

Table 34. LAUNCH_UPDATE_VMSA Status Codes

Return Value Reason

SUCCESS Successful completion.

INVALID_PLATFORM_STATE The platform is not in the PSTATE.WORKING state.

INVALID_LENGTH A buffer length is not correct

INVALID_GUEST_STATE The guest state is not in the GSTATE.LUPDATE state.

INVALID_GUEST The guest handle is invalid.

INACTIVE The guest is inactive.

INVALID_ADDRESS A memory region provided contains invalid physical addresses.

UNSUPPORTED SEV-ES has not been configured.

HWERROR_PLATFORM A hardware condition has occurred affecting the platform. It is safe

to re-allocate parameter buffers.

HWERROR_UNSAFE A hardware condition has occurred affecting the platform. It is

unsafe to re-allocate parameter buffers.

6.5 LAUNCH_MEASURE

This command returns the measurement of the launched guest’s memory pages and VMCB save

areas (if ES is enabled). The measurement is keyed with the TIK so that the guest owner can use

the measurement to verify that the guest was properly launched without tampering.

55766 Rev. 3.03 August 2017 Secure Encrypted Virtualization API

Version 0.14

 Chapter 6 Guest Management API 57

6.5.1 Actions

The platform must be in the PSTATE.WORKING state.

The guest must be in the GSTATE.LUPDATE state.

If the MEASURE_LEN is too small, the required length is written out to that field and an error is

returned. Otherwise, the number of bytes written to the buffer are written into MEASURE_LEN.

GCTX.LD is finalized, producing the hash digest of all plaintext data imported into the guest. A

nonce is generated and written into the MNONCE field. The MNONCE value is generated using

the KDF based on the master secret (see 2.2.1) and the value "sev-mnonce".

The launch measurement is calculated as:

 HMAC(GCTX.POLICY || GCTX.LD || MNONCE; GCTX.TIK)

where “||” represents concatenation. The launch measurement is written into the MEASURE field.

The platform remains in the same state after completion.

The guest transitions to the GSTATE.LSECRET state.

6.5.2 Parameters

Table 35 and Table 36 specify the parameters for the LAUNCH_MEASURE command.

Table 35. LAUNCH_MEASURE Command Buffer

Byte Offset Bits In / Out Name Description

00h 31:0 In HANDLE Guest handle

04h 31:0 - - Reserved. Must be zero.

08h 63:0 In MEASURE_PAD

DR

System physical address of the region

containing the launch measurement. See Table

36 for layout.

10h 31:0 In, Out MEASURE_LEN Length of the region containing the launch

measurement, in bytes.

Table 36. LAUNCH_MEASURE Measurement Buffer

Byte Offset Bits In / Out Name Description

00h 255:0 Out MEASURE Measurement of the launched guest

20h 127:0 Out MNONCE Nonce used in the measurement

Secure Encrypted Virtualization API

Version 0.14

55766 Rev. 3.03 August 2017

58 Guest Management API Chapter 6

6.5.3 Status Codes

Table 37 enumerates the possible status codes returned by the LAUNCH_MEASURE command.

Table 37. LAUNCH_MEASURE Status Codes

Return Value Reason

SUCCESS Successful completion

INVALID_PLATFORM_STATE The platform is not in the PSTATE.WORKING state

INVALID_LENGTH A buffer length is not correct.

INVALID_GUEST_STATE The guest state is not in the GSTATE.LUPDATE state

INVALID_GUEST The guest handle is invalid

INVALID_ADDRESS A memory region provided contains invalid physical addresses

HWERROR_PLATFORM A hardware condition has occurred affecting the platform. It is safe

to re-allocate parameter buffers.

HWERROR_UNSAFE A hardware condition has occurred affecting the platform. It is

unsafe to re-allocate parameter buffers.

6.6 LAUNCH_SECRET

This command is used by the guest owner to inject a secret into the guest. This can be done after

the launch measurement is retrieved and verified by the guest owner.

6.6.1 Actions

The platform must be in the PSTATE.WORKING state.

The guest must be in the GSTATE.LSECRET state.

Before all other processing, the MAC field is verified. The MAC is calculated as follows:

 HMAC(0x01 || FLAGS || IV || GUEST_LENGTH || TRANS_LENGTH || DATA;

GCTX.TIK)

Where “||” represents concatenation, FLAGS is the full 32-bit FLAGS field, and DATA is

ciphertext pointed to by TRANS_PADDR.

The FLAGS.ENCRYPTED field must be set to 1.

The data pointed to by TRANS_PADDR is decrypted with GCTX.TEK. If

FLAGS.COMPRESSED is set to 1, then the resulting plaintext is then decompressed. The result is

then written to GUEST_PADDR, encrypted with the guest’s VEK.

55766 Rev. 3.03 August 2017 Secure Encrypted Virtualization API

Version 0.14

 Chapter 6 Guest Management API 59

The platform remains in the same state after completion.

The guest remains in the same state after completion.

6.6.2 Parameters

Table 38 and Table 39 specify the parameters for the LAUNCH_SECRET command.

Table 38. LAUNCH_SECRET Command Buffer

Byte

Offset

Bits In / Out Name Description

00h 31:0 In HANDLE Guest handle.

04h 31:0 - - Reserved. Must be zero.

08h 63:0 In HDR_PADDR System physical address of the region

containing the packet header. See Table 39 for

the layout.

10h 31:0 In HDR_LEN Length of the region containing the packet

header in bytes.

14h 31:0 - - Reserved. Must be zero.

18h 63:0 In GUEST_PADDR System physical of the guest memory region.

Must be 16 B aligned.

20h 31:0 In GUEST_LENGTH Length of guest memory region. Must be a

multiple of 16 B and no more than 16 kB.

24h 31:0 - -

28h 63:0 In TRANS_PADDR System physical address of the transport

memory buffer.

30h 31:0 In TRANS_LENGTH Length of the transport memory buffer.

Table 39. LAUNCH_SECRET Packet Header Buffer

Byte Offset Bits In / Out Name Description

00h 0 In FLAGS.COMPRESS

ED

If set, data is compressed.

31:1 - - Reserved. Must be zero.

04h 127:0 In IV Initialization vector.

14h 255:0 In MAC Integrity protection MAC.

Secure Encrypted Virtualization API

Version 0.14

55766 Rev. 3.03 August 2017

60 Guest Management API Chapter 6

6.6.3 Status Codes

Table 40 enumerates the possible status codes returned by the LAUNCH_SECRET command

Table 40. LAUNCH_SECRET Status Codes

Return Value Reason

SUCCESS Successful completion.

INVALID_PLATFORM_STATE The platform is not in the PSTATE.WORKING state.

INVALID_LENGTH A buffer length is not correct.

INVALID_GUEST_STATE The guest state is not in the GSTATE.LSECRET state.

INVALID_PARAM A parameter is invalid.

INVALID_GUEST The guest handle is invalid.

INACTIVE The guest is inactive.

INVALID_ADDRESS A memory region provided contains invalid physical addresses.

BAD_MEASUREMENT The measurement of the secret is invalid.

HWERROR_PLATFORM A hardware condition has occurred affecting the platform. It is safe

to re-allocate parameter buffers.

HWERROR_UNSAFE A hardware condition has occurred affecting the platform. It is

unsafe to re-allocate parameter buffers.

6.7 LAUNCH_FINISH

After the launch flow is completed, this command is used to transition the guest into a state ready

to be run.

6.7.1 Actions

The platform must be in the PSTATE.WORKING state.

The guest must be in the GSTATE.LSECRET state.

The following fields of the guest context are zeroed:

• GCTX.TEK

• GCTX.TIK

• GCTX.MS

• GCTX.NONCE

• GCTX.LD

The platform remains in the same state after completion.

55766 Rev. 3.03 August 2017 Secure Encrypted Virtualization API

Version 0.14

 Chapter 6 Guest Management API 61

The guest transitions to the GSTATE.RUNNING state.

6.7.2 Parameters

Table 41 specifies the parameters for the LAUNCH_FINISH command.

Table 41. LAUNCH_FINISH Command Buffer

Byte Offset Bits In / Out Name Description

00h 31:0 In HANDLE Guest handle.

6.7.3 Status Codes

Table 42 enumerates the possible status codes returned by the LAUNCH_FINISH command.

Table 42. LAUNCH_FINISH Status Codes

Return Value Reason

SUCCESS Successful completion.

INVALID_PLATFORM_STATE The platform is not in the PSTATE.WORKING state.

INVALID_GUEST_STATE The guest state is not in the GSTATE.LSECRET state.

INVALID_GUEST The guest handle is invalid.

INACTIVE The guest is inactive.

INVALID_ADDRESS A memory region provided contains invalid physical addresses.

HWERROR_PLATFORM A hardware condition has occurred affecting the platform. It is safe

to re-allocate parameter buffers.

HWERROR_UNSAFE A hardware condition has occurred affecting the platform. It is

unsafe to re-allocate parameter buffers.

6.8 SEND_START

This command is used to export a guest from one platform to another. It can be used for saving a

guest to disk to be resumed later, or it can be used to migrate a guest across the network to a

receiving platform.

6.8.1 Actions

The platform must be in the PSTATE.WORKING state.

The guest must be in the GSTATE.RUNNING state.

GCTX.POLICY.NOSEND must be zero. Otherwise, an error is returned.

Secure Encrypted Virtualization API

Version 0.14

55766 Rev. 3.03 August 2017

62 Guest Management API Chapter 6

If GCTX.POLICY.SEV is 1, the PDH, PEK, CEK, ASK, and ARK certificates are validated.

A version check is performed to ensure that the API version implemented on the receiving

platform provides the proper functionality requested by the initiator of the guest. The receiving

platform API version is read from the PEK certificate. The major API version of the receiving

platform must be greater than the guest’s POLICY.API_MAJOR field value, or the major API

version is equal to POLICY.API_MAJOR, and the minor API version of the receiving platform is

greater than or equal to POLICY.API_MINOR. If all of these conditions are not met then an error

is returned.

If GCTX.POLICY.SEV is 0, this certificate chain is ignored and no version check is performed.

If GCTX.POLICY.DOMAIN is 1, the PDH-PEK-OCA are validated. If

GCTX.POLICY.DOMAIN is 0, this certificate chain is ignored.

When required by the guest policy, the PDH, PEK, OCA, and CEK certificates are validated

according to Appendix C on page 93. The ASK and ARK certificates are validated according to

Appendix B on page 91.

A fresh nonce is generated and written into the NONCE field. The master secret is calculated with

NONCE and PDH_CERT fields and the PCTX.PDH private key according to the key

establishment protocol specified in Chapter 2 on page 22. Fresh TEK and TIK transport keys are

generated. The transport keys are then wrapped according to Chapter 2 on page 22, and the output

is placed in the WRAP_TK, WRAP_IV, and WRAP_MAC fields.

GCTX.POLICY is written to the POLICY field and a MAC of GCTX.POLICY is calculated,

keyed with TIK. The MAC is written to the POLICY_MAC field.

The platform remains in the same state after completion.

The guest transitions to the GSTATE.SUPDATE state.

6.8.2 Parameters

Table 43, Table 44, Table 45 and Table 46 specify the parameters for the SEND_START

command.

Table 43. SEND_START Command Buffer

Byte Offset Bits In / Out Name Description

00h 31:0 In HANDLE Guest handle.

04h 31:0 Out POLICY Guest policy

08h 63:0 In PDH_CERT_PADDR System physical address of the region

containing the PDH certificate. See

Appendix C for the layout.

55766 Rev. 3.03 August 2017 Secure Encrypted Virtualization API

Version 0.14

 Chapter 6 Guest Management API 63

Table 43. SEND_START Command Buffer (Continued)

Byte Offset Bits In / Out Name Description

10h 31:0 In PDH_CERT_LEN Length of the region containing the PDH

certificate in bytes.

14h - - - Reserved. Must be zero.

18h 63:0 In PLAT_CERTS_PADDR System physical address of the region

containing the platform certificates. See

Table 44 for the layout.

20h 31:0 In PLAT_CERTS_LEN Length of the region containing the

platform certificate in bytes.

24h - - - Reserved. Must be zero.

28h 63:0 In AMD_CERTS_PADDR System physical address of the region

containing the AMD certificates. See

Table 45 for the layout.

30h 31:0 In AMD_CERTS_LEN Length of the region containing the AMD

certificates in bytes.

34h - - - Reserved. Must be zero.

38h 63:0 In SESSION_PADDR System physical address of the region

containing the session data. Table 46 for

the layout.

40h 31:0 In, Out SESSION_LEN Length of the region containing the

session data in bytes.

Table 44. SEND_START Platform Certificates Buffer

Byte Offset Bits In / Out Name Description

0000h – 0823h - In PEK_CERT The PEK certificate. See Appendix C for the

layout.

0824h – 1047h - In OCA_CERT The OCA certificate. See Appendix C for the

layout.

1048h – 186Bh - In CEK_CERT The CEK certificate. See Appendix C for the

layout.

Table 45. SEND_START AMD Certificates Buffer

Byte Offset Bits In / Out Name Description

Variable - In ASK_CERT The ASK certificate. See Appendix B for the layout.

Variable - In ARK_CERT The ARK certificate. See Appendix B for the layout.

Secure Encrypted Virtualization API

Version 0.14

55766 Rev. 3.03 August 2017

64 Guest Management API Chapter 6

Table 46. SEND_START Session Data Buffer

Byte Offset Bits In /

Out

Name Description

00h 127:0 Out NONCE Session nonce.

10h 255:0 Out WRAP_TK Encrypted TEK and TIK.

30h 127:0 Out WRAP_IV IV for key wrap.

40h 255:0 Out WRAP_MAC MAC for key wrap.

60h 255:0 Out POLICY_MAC Guest policy MAC.

6.8.3 Status Codes

Table 47 enumerates the possible status codes returned by the SEND_START command.

Table 47. SEND_START Status Codes

Return Value Reason

SUCCESS Successful completion

INVALID_PLATFORM_STATE The platform is not in the PSTATE.WORKING state

INVALID_LENGTH A buffer length is not correct

INVALID_GUEST_STATE The guest state is not in the GSTATE.RUNNING state

INVALID_GUEST The guest handle is invalid

INVALID_CERTIFICATE The certificate chain is not valid

BAD_SIGNATURE A signature on the certificates are incorrect

INVALID_ADDRESS A memory region provided contains invalid physical addresses

HWERROR_PLATFORM A hardware condition has occurred affecting the platform. It is safe

to re-allocate parameter buffers.

HWERROR_UNSAFE A hardware condition has occurred affecting the platform. It is

unsafe to re-allocate parameter buffers.

6.9 SEND_UPDATE_DATA

This command is used to export guest memory regions to another platform.

6.9.1 Actions

The platform must be in the PSTATE.WORKING state.

The guest must be in the GSTATE.SUPDATE state.

55766 Rev. 3.03 August 2017 Secure Encrypted Virtualization API

Version 0.14

 Chapter 6 Guest Management API 65

If the HDR_LEN is too small, the required length is written out to that field and an error is

returned. Otherwise, the number of bytes written to the buffer are written into HDR_LEN.

If FLAGS.COMPRESSED is 1, the data pointed to by GUEST_PADDR will first be compressed

before encryption and integrity protection. If FLAGS.COMPRESSED is 0, no compression is

performed.

A fresh IV is generated and written to the IV field. The data pointed to by GUEST_PADDR is

encrypted with the GCTX.TEK. The result is then written to the TRANS_PADDR field. If the

input TRANS_LENGTH field is greater than output length of the compressed and encrypted

plaintext, the new length is written into the TRANS_LENGTH field. If TRANS_LENGTH is less

than the output length of the compressed and encrypted plaintext, an error is returned.

A MAC is computed to integrity protect the data. The MAC is calculated as follows:

 HMAC(0x02 || FLAGS || IV || GUEST_LENGTH || TRANS_LENGTH || DATA;

GCTX.TIK)

Where “||” represents concatenation, FLAGS is the full 32-bit FLAGS field, and DATA is

ciphertext pointed to by TRANS_PADDR. TRANS_LENGTH is the new length written out to the

TRANS_LENGTH field. The MAC is written out to the MAC field.

The platform remains in the same state after completion.

The guest remains in the same state after completion.

6.9.2 Parameters

Table 48 specifies the parameters for the SEND_UPDATE_DATA command.

Table 48. SEND_UPDATE_DATA Command Buffer

Byte Offset Bits In / Out Name Description

00h 31:0 In HANDLE Guest handle

04h 31:0 - - Reserved. Must be zero.

08h 63:0 In HDR_PADDR System physical address of the region

containing the packet header.

10h 31:0 In, Out HDR_LEN Length of the region containing the packet

header in bytes.

14h 31:0 - - Reserved. Must be zero

18h 63:0 In GUEST_PADDR System physical of the guest memory region.

Must be 16 B aligned.

20h 31:0 In GUEST_LENGTH Length of guest memory region. Must be a

multiple of 16 B and no more than 16 kB.

Secure Encrypted Virtualization API

Version 0.14

55766 Rev. 3.03 August 2017

66 Guest Management API Chapter 6

Table 48. SEND_UPDATE_DATA Command Buffer (Continued)

Byte Offset Bits In / Out Name Description

24h 31:0 - -

28h 63:0 In TRANS_PADDR System physical address of the transport

memory buffer.

30h 31:0 In, Out TRANS_LENGTH Length of the transport memory buffer.

Table 49. SEND_UPDATE_DATA Packet Header Buffer

Byte Offset Bits In / Out Name Description

00h 0 Out FLAGS.COMPRESSED If set, data is compressed.

31:1 - - Reserved. Must be zero.

04h 127:0 Out IV Initialization vector.

14h 255:0 Out MAC Integrity protection MAC.

6.9.3 Status Codes

Table 50 enumerates the possible status codes returned by the SEND_UPDATE_DATA

command.

Table 50. SEND_UPDATE_DATA Status Codes

Return Value Reason

SUCCESS Successful completion.

INVALID_LENGTH A buffer length is not correct.

INVALID_PLATFORM_STATE The platform is not in the PSTATE.WORKING state.

INVALID_GUEST_STATE The guest state is not in the GSTATE.SUPDATE state.

INVALID_PARAM A parameter is invalid.

INVALID_GUEST The guest handle is invalid.

INACTIVE The guest is inactive.

INVALID_ADDRESS A memory region provided contains invalid physical addresses.

HWERROR_PLATFORM A hardware condition has occurred affecting the platform. It is safe

to re-allocate parameter buffers.

HWERROR_UNSAFE A hardware condition has occurred affecting the platform. It is

unsafe to re-allocate parameter buffers.

55766 Rev. 3.03 August 2017 Secure Encrypted Virtualization API

Version 0.14

 Chapter 6 Guest Management API 67

6.10 SEND_UPDATE_VMSA

This command is used to export guest VMCB save areas to another platform.

6.10.1 Actions

The platform must be in the PSTATE.WORKING state.

The guest must be in the GSTATE.SUPDATE state.

If the HDR_LEN is too small, the required length is written out to that field and an error is

returned. Otherwise, the number of bytes written to the buffer are written into HDR_LEN.

If FLAGS.COMPRESSED is 1, the data pointed to by GUEST_PADDR will first be compressed

before encryption and integrity protection. If FLAGS.COMPRESSED is 0, no compression is

performed.

A fresh IV is generated and written to the IV field. The data pointed to by GUEST_PADDR is

encrypted with the GCTX.TEK. The result is then written to the TRANS_PADDR field. If the

input TRANS_LENGTH field is greater than output length of the compressed and encrypted

plaintext, the new length is written into the TRANS_LENGTH field. If TRANS_LENGTH is less

than the output length of the compressed and encrypted plaintext, an error is returned.

A MAC is computed to integrity protected the data. The MAC is calculated as follows:

 HMAC(0x03 || FLAGS || IV || GUEST_LENGTH || TRANS_LENGTH || DATA;

GCTX.TIK)

Where “||” represents concatenation, FLAGS is the full 32-bit FLAGS field, and DATA is

ciphertext pointed to by TRANS_PADDR. TRANS_LENGTH is the new length written out to the

TRANS_LENGTH field. The MAC is written out to the MAC field.

The platform remains in the same state after completion.

The guest remains in the same state after completion.

Secure Encrypted Virtualization API

Version 0.14

55766 Rev. 3.03 August 2017

68 Guest Management API Chapter 6

6.10.2 Parameters

Table 51 and Table 52 specifies the parameters for the SEND_UPDATE_VMSA command.

Table 51. SEND_UPDATE_VMSA Command Buffer

Byte

Offset

Bits In / Out Name Description

00h 31:0 In HANDLE Guest handle.

04h 31:0 - - Reserved. Must be zero.

08h 63:0 In HDR_PADDR System physical address of the region

containing the packet header.

10h 31:0 In, Out HDR_LEN Length of the region containing the packet

header in bytes.

14h 31:0 - - Reserved. Must be zero.

18h 63:0 In GUEST_PADDR System physical of the guest memory region.

Must be 16 B aligned.

20h 31:0 In GUEST_LENGTH Length of guest memory region. Must be a

multiple of 16 B and no more than 16 kB.

24h 31:0 - -

28h 63:0 In TRANS_PADDR System physical address of the transport

memory buffer.

30h 31:0 In, Out TRANS_LENGTH Length of the transport memory buffer.

Table 52. SEND_UPDATE_VMSA Packet Header Buffer

Byte Offset Bits In / Out Name Description

00h 0 Out FLAGS.COMPRESSED If set, data is compressed.

31:1 - - Reserved. Must be zero.

04h 127:0 Out IV Initialization vector.

14h 255:0 Out MAC Integrity protection MAC.

55766 Rev. 3.03 August 2017 Secure Encrypted Virtualization API

Version 0.14

 Chapter 6 Guest Management API 69

6.10.3 Status Codes

Table 53 enumerates the possible status codes returned by the SEND_UPDATE_VMSA

command.

Table 53. SEND_UPDATE_VMSA Status Codes

Return Value Reason

SUCCESS Successful completion.

INVALID_LENGTH A buffer length is not correct.

INVALID_PLATFORM_STATE The platform is not in the PSTATE.WORKING state.

INVALID_GUEST_STATE The guest state is not in the GSTATE.SUPDATE state.

INVALID_PARAM A parameter is invalid.

INVALID_GUEST The guest handle is invalid.

UNSUPPORTED SEV-ES is not configured.

INACTIVE The guest is inactive.

INVALID_ADDRESS A memory region provided contains invalid physical addresses.

HWERROR_PLATFORM A hardware condition has occurred affecting the platform. It is safe

to re-allocate parameter buffers.

HWERROR_UNSAFE A hardware condition has occurred affecting the platform. It is

unsafe to re-allocate parameter buffers.

6.11 SEND_FINISH

This command finalizes the send operational flow.

6.11.1 Actions

The platform must be in the PSTATE.WORKING state.

The guest must be in the GSTATE.SUPDATE state.

The following fields of the guest context are zeroed:

• GCTX.TEK

• GCTX.TIK

• GCTX.MS

• GCTX.NONCE

The platform remains in the same state after completion.

The guest transitions to the GSTATE.RUNNING state.

Secure Encrypted Virtualization API

Version 0.14

55766 Rev. 3.03 August 2017

70 Guest Management API Chapter 6

6.11.2 Parameters

Table 54 specify the parameters for the SEND_FINISH command.

Table 54. SEND_FINISH Command Buffer

Byte Offset Bits In / Out Name Description

00h 31:0 In HANDLE Guest handle.

6.11.3 Status Codes

Table 55 enumerates the possible status codes returned by the SEND_FINISH command.

Table 55. SEND_FINISH Status Codes

Return Value Reason

SUCCESS Successful completion

INVALID_PLATFORM_STATE The platform is not in the PSTATE.WORKING state

INVALID_GUEST_STATE The guest state is not in the GSTATE.SUPDATE state

INVALID_GUEST The guest handle is invalid

INACTIVE The guest is inactive

INVALID_ADDRESS A memory region provided contains invalid physical addresses

HWERROR_PLATFORM A hardware condition has occurred affecting the platform. It is safe

to re-allocate parameter buffers.

HWERROR_UNSAFE A hardware condition has occurred affecting the platform. It is

unsafe to re-allocate parameter buffers.

6.12 RECEIVE_START

This command is used to import a guest from one platform to another. It can be used for restoring

a guest from disk, or it can be used to migrate a guest across the network from a sending platform.

6.12.1 Actions

The platform must be in the PSTATE.WORKING state.

A new guest context is created and assigned to an available guest handle.

The MAC of GCTX.POLICY is calculated, keyed with TIK. The MAC is compared to the

POLICY_MAC field to verify the integrity of the guest policy.

If the HANDLE field is zero, a new VEK is generated for this guest. If the HANDLE field is non-

zero, the following checks are performed:

• HANDLE is a valid guest

55766 Rev. 3.03 August 2017 Secure Encrypted Virtualization API

Version 0.14

 Chapter 6 Guest Management API 71

• GUESTS[HANDLE].POLICY is equal to the POLICY field

• The MAC of the POLICY is valid

• POLICY.NOKS is zero

If the above checks pass, then the VEK from the guest referred to by HANDLE is copied into the

new guest context.

The handle of the new guest is written to the HANDLE field.

The master secret is calculated with NONCE and PDH_CERT fields and the PCTX.PDH private

key according to the key establishment protocol specified in Chapter 2 on page 22. The transport

keys in the WRAPPED_TK field are then unwrapped according to Chapter 2 on page 22 using the

WRAP_IV and WRAP_MAC fields as the IV and MAC parameters, respectively.

A version check is performed to ensure that the API version implemented on the platform provides

the proper functionality requested by the initiator of the guest. The major API version of this

platform must be greater than the guest's POLICY.API_MAJOR field value, or the major API

version is equal to POLICY.API_MAJOR, and the minor API version of this platform is greater

than or equal to POLICY.API_MINOR. If all of these conditions are not met then an error is

returned.

If POLICY.ES is set and the platform is configured with SEV-ES, then SEV-ES is enabled. If

POLICY.ES is set and the platform is not configured with SEV-ES, an error is returned.

Otherwise, SEV-ES is disabled.

The platform remains in the same state after completion.

The guest transitions to the GSTATE.RUPDATE state.

6.12.2 Parameters

Table 53 and Table 54 specify the parameters for the RECEIVE_START command.

Table 56. RECEIVE_START Command Buffer

Byte Offset Bits In / Out Name Description

00h 31:0 In, Out HANDLE Guest handle

04h 31:0 In POLICY Guest policy

08h 63:0 In PDH_CERT_PADDR System physical address of the region

containing the PDH certificate.

10h 31:0 In PDH_CERT_LEN Length of the region containing the PDH

certificate in bytes.

14h 31:0 - - Reserved. Must be zero

18h 63:0 In SESSION_PADDR System physical address of the region

containing the session data.

20h 31:0 In SESSION_LEN Length of the region containing the session

data in bytes.

Secure Encrypted Virtualization API

Version 0.14

55766 Rev. 3.03 August 2017

72 Guest Management API Chapter 6

Table 57. RECEIVE_START Session Data Buffer

Byte Offset Bits In / Out Name Description

00h 127:0 In NONCE Session nonce.

10h 255:0 In WRAP_TK Encrypted TEK and TIK.

30h 127:0 In WRAP_IV IV for key wrap.

40h 255:0 In WRAP_MAC MAC for key wrap.

60h 255:0 In POLICY_MAC Guest policy MAC.

6.12.3 Status Codes

Table 58 enumerates the possible status codes returned by the RECEIVE_START command.

Table 58. RECEIVE_START Status Codes

Return Value Reason

SUCCESS Successful completion

INVALID_PLATFORM_STATE The platform is not in the PSTATE.WORKING state

INVALID_LENGTH A buffer length is not correct

INVALID_GUEST The guest handle is invalid

INVALID_CERTIFICATE The certificate chain is not valid

BAD_SIGNATURE A signature on the certificates are incorrect

BAD_MEASUREMENT The measurement of the wrapped key or policy is invalid

INVALID_ADDRESS A memory region provided contains invalid physical addresses

UNSUPPORTED SEV-ES has not been configured

HWERROR_PLATFORM A hardware condition has occurred affecting the platform. It is safe

to re-allocate parameter buffers.

HWERROR_UNSAFE A hardware condition has occurred affecting the platform. It is

unsafe to re-allocate parameter buffers.

6.13 RECEIVE_UPDATE_DATA

This command is used to import guest memory from a sending platform.

6.13.1 Actions

The platform must be in the PSTATE.WORKING state.

The guest must be in the GSTATE.RUPDATE state.

55766 Rev. 3.03 August 2017 Secure Encrypted Virtualization API

Version 0.14

 Chapter 6 Guest Management API 73

A MAC is computed to verify the integrity of the VMCB save area. The MAC is calculated as

follows:

 HMAC(0x02 || FLAGS || IV || GUEST_LENGTH || TRANS_LENGTH || DATA;

GCTX.TIK)

Where “||” represents concatenation, FLAGS is the full 32-bit FLAGS field, and DATA is

ciphertext pointed to by TRANS_PADDR. The MAC is compared against the MAC field which

must be equal.

The ciphertext data pointed to by TRANS_PADDR is decrypted with the GCTX.TEK and the IV

field. If FLAGS.COMPRESSED is 1, the resulting plaintext data will be decompressed. If

FLAGS.COMPRESSED is 0, no compression is performed. The result is then encrypted with

GCTX.VEK and written to the memory pointed to by GUEST_PADDR field.

The platform remains in the same state after completion.

The guest remains in the same state after completion.

6.13.2 Parameters

Table 59 and Table 60 specify the parameters for the RECEIVE_UPDATE_DATA command.

Table 59. RECEIVE_UPDATE_DATA Command Buffer

Byte Offset Bits In / Out Name Description

00h 31:0 In HANDLE Guest handle.

04h 31:0 - - Reserved. Must be zero.

08h 63:0 In HDR_PADDR System physical address of the region

containing the packet header.

10h 31:0 In HDR_LEN Length of the region containing the packet

header in bytes.

14h 31:0 - - Reserved. Must be zero.

18h 63:0 In GUEST_PADDR System physical of the VMCB save area.

Must be 16 B aligned.

20h 31:0 In GUEST_LENGTH Length of guest memory region. Must be a

multiple of 16 B and no more than 16 kB.

24h 31:0 - - Reserved. Must be zero.

28h 63:0 In TRANS_PADDR System physical address of the transport

memory buffer.

30h 31:0 In TRANS_LENGTH Length of the transport memory buffer.

Secure Encrypted Virtualization API

Version 0.14

55766 Rev. 3.03 August 2017

74 Guest Management API Chapter 6

Table 60. RECEIVE_UPDATE_DATA Packet Header Buffer

Byte Offset Bits In / Out Name Description

00h 0 In FLAGS.COMPRESSED If set, data is compressed.

31:1 - - Reserved. Must be zero.

04h 127:0 In IV Initialization vector.

14h 255:0 In MAC Integrity protection MAC.

6.13.3 Status Codes

Table 61 enumerates the possible status codes returned by the RECEIVE_UPDATE_DATA

command.

Table 61. RECEIVE_UPDATE_DATA Status Codes

Return Value Reason

SUCCESS Successful completion.

INVALID_PLATFORM_STATE The platform is not in the PSTATE.WORKING state.

INVALID_LENGTH A buffer length is not correct.

INVALID_GUEST_STATE The guest state is not in the GSTATE.RUPDATE state.

INVALID_PARAM A parameter is invalid.

INVALID_GUEST The guest handle is invalid.

INACTIVE The guest is inactive.

UNSUPPORTED SEV-ES is not configured

INVALID_ADDRESS A memory region provided contains invalid physical addresses.

BAD_MEASUREMENT The measurement of the secret is invalid.

HWERROR_PLATFORM A hardware condition has occurred affecting the platform. It is safe

to re-allocate parameter buffers.

HWERROR_UNSAFE A hardware condition has occurred affecting the platform. It is

unsafe to re-allocate parameter buffers.

6.14 RECEIVE_UPDATE_VMSA

This command is used to import a VMCB save area from another platform.

6.14.1 Actions

The platform must be in the PSTATE.WORKING state.

The guest must be in the GSTATE.RUPDATE state.

55766 Rev. 3.03 August 2017 Secure Encrypted Virtualization API

Version 0.14

 Chapter 6 Guest Management API 75

A MAC is computed to verify the integrity of the VMCB save area.. The MAC is calculated as

follows:

 HMAC(0x03 || FLAGS || IV || GUEST_LENGTH || TRANS_LENGTH || DATA;

GCTX.TIK)

Where “||” represents concatenation, FLAGS is the full 32-bit FLAGS field, and DATA is

ciphertext pointed to by TRANS_PADDR. The MAC is compared against the MAC field which

must be equal.

The ciphertext data pointed to by TRANS_PADDR is decrypted with the GCTX.TEK and the IV

field. If FLAGS.COMPRESSED is 1, the resulting plaintext data will be decompressed. If

FLAGS.COMPRESSED is 0, no compression is performed. The result is then encrypted with

GCTX.VEK and written to the memory pointed to by GUEST_PADDR field.

The platform remains in the same state after completion.

The guest remains in the same state after completion.

6.14.2 Parameters

Table 62 and Table 63 specify the parameters for the RECEIVE_UPDATE_VMSA command.

Table 62. RECEIVE_UPDATE_VMSA Command Buffer

Byte Offset Bits In / Out Name Description

00h 31:0 In HANDLE Guest handle.

04h 31:0 - - Reserved. Must be zero.

08h 63:0 In HDR_PADDR System physical address of the region

containing the packet header.

10h 31:0 In HDR_LEN Length of the region containing the packet

header in bytes.

14h 31:0 - - Reserved. Must be zero.

18h 63:0 In GUEST_PADDR System physical of the VMCB save area.

Must be 16 B aligned.

20h 31:0 In GUEST_LENGTH Length of guest memory region. Must be a

multiple of 16 B and no more than 16 kB.

24h 31:0 - - Reserved. Must be zero.

28h 63:0 In TRANS_PADDR System physical address of the transport

memory buffer.

30h 31:0 In TRANS_LENGTH Length of the transport memory buffer.

Secure Encrypted Virtualization API

Version 0.14

55766 Rev. 3.03 August 2017

76 Guest Management API Chapter 6

Table 63. RECEIVE_UPDATE_VMSA Packet Header Buffer

Byte Offset Bits In / Out Name Description

00h 0 In FLAGS.COMPRESSED If set, data is compressed.

31:1 - - Reserved. Must be zero.

04h 127:0 In IV Initialization vector.

14h 255:0 In MAC Integrity protection MAC.

6.14.3 Status Codes

Table 64 enumerates the possible status codes returned by the RECEIVE_UPDATE_VMSA

command.

Table 64. RECEIVE_UPDATE_VMSA Status Codes

Return Value Reason

SUCCESS Successful completion.

INVALID_PLATFORM_STATE The platform is not in the PSTATE.WORKING state.

INVALID_LENGTH A buffer length is not correct.

INVALID_GUEST_STATE The guest state is not in the GSTATE.RUPDATE state.

INVALID_PARAM A parameter is invalid.

INVALID_GUEST The guest handle is invalid.

INACTIVE The guest is inactive.

UNSUPPORTED SEV-ES is not configured

INVALID_ADDRESS A memory region provided contains invalid physical addresses.

BAD_MEASUREMENT The measurement of the secret is invalid.

HWERROR_PLATFORM A hardware condition has occurred affecting the platform. It is safe

to re-allocate parameter buffers.

HWERROR_UNSAFE A hardware condition has occurred affecting the platform. It is

unsafe to re-allocate parameter buffers.

6.15 RECEIVE_FINISH

This command is used to complete the receive work flow and bring the guest to a state that can be

executed.

6.15.1 Actions

The platform must be in the PSTATE.WORKING state.

55766 Rev. 3.03 August 2017 Secure Encrypted Virtualization API

Version 0.14

 Chapter 6 Guest Management API 77

The guest must be in the GSTATE.RUPDATE state.

The following fields of the guest context are zeroed:

• GCTX.TEK

• GCTX.TIK

• GCTX.MS

• GCTX.NONCE

The platform remains in the same state after completion.

The guest transitions to the GSTATE.RUNNING state.

6.15.2 Parameters

Table 65 specifies the parameters for the RECEIVE_FINISH command.

Table 65. RECEIVE_FINISH Command Buffer

Byte Offset Bits In / Out Name Description

00h 31:0 In HANDLE Guest handle.

6.15.3 Status Codes

Table 66 enumerates the possible status codes returned by the RECEIVE_FINISH command.

Table 66. RECEIVE_FINISH Status Codes

Return Value Reason

SUCCESS Successful completion.

INVALID_PLATFORM_STATE The platform is not in the PSTATE.WORKING state.

INVALID_LENGTH A buffer length is not correct.

INVALID_GUEST_STATE The guest state is not in the GSTATE.RUPDATE state.

INVALID_GUEST The guest handle is invalid.

INACTIVE The guest is inactive.

INVALID_ADDRESS A memory region provided contains invalid physical addresses.

HWERROR_PLATFORM A hardware condition has occurred affecting the platform. It is safe

to re-allocate parameter buffers.

HWERROR_UNSAFE A hardware condition has occurred affecting the platform. It is

unsafe to re-allocate parameter buffers.

Secure Encrypted Virtualization API

Version 0.14

55766 Rev. 3.03 August 2017

78 Guest Management API Chapter 6

6.16 GUEST_STATUS

This command is used to retrieve status information about an SEV-enabled guest.

6.16.1 Actions

The platform must be in the PSTATE.INIT or PSTATE.WORKING states.

The guest may be in any state.

If the HANDLE field is invalid, the STATE field is set to 0h and all other parameters are

untouched.

The platform remains in the same state after completion.

The guest remains in the same state after completion.

6.16.2 Parameters

Table 67 specify the parameters for the GUEST_STATUS command.

Table 67. GUEST_STATUS Command Buffer

Byte Offset Bits In / Out Name Description

00h 31:0 In HANDLE Guest handle.

04h 31:0 Out POLICY Guest policy.

08h 31:0 Out ASID Current ASID. If not active, set to 0h.

0Ch 7:0 Out STATE Current guest state.

6.16.3 Status Codes

Table 68 enumerates the possible status codes returned by the DEACTIVATE command.

Table 68. GUEST_STATUS Status Codes

Return Value Reason

SUCCESS Successful completion.

INVALID_PLATFORM_STATE The platform is not in the PSTATE.WORKING state.

INVALID_ADDRESS A memory region provided contains invalid physical addresses.

HWERROR_PLATFORM A hardware condition has occurred affecting the platform. It is safe

to re-allocate parameter buffers.

HWERROR_UNSAFE A hardware condition has occurred affecting the platform. It is

unsafe to re-allocate parameter buffers.

55766 Rev. 3.03 August 2017 Secure Encrypted Virtualization API

Version 0.14

 Chapter 6 Guest Management API 79

6.17 ACTIVATE

This command is used to inform the firmware that the guest is bound to a particular ASID. The

firmware then loads the guest’s VEK into the memory controller at the key slot for that ASID.

6.17.1 Actions

The platform must be in the PSTATE.WORKING state.

The guest may be in any state.

The guest must be inactive. The ASID parameter must not be zero and must be a valid SEV ASID.

The ASID must not be currently used by another guest.

If the guest is SEV-ES enabled, then the ASID must be at least 1h and at most (MIN_SEV_ASID-

1). If the guest is not SEV-ES enabled, then the ASID must be at least MIN_SEV_ASID and at

most the maximum SEV ASID available. The MIN_SEV_ASID value is discovered by CPUID

Fn8000_001F[EDX]. The maximum SEV ASID available is discovered by CPUID

Fn8000_001F[ECX].

DF_FLUSH must be executed since the last DEACTIVATE command was issued.

The VEK of the guest identified by HANDLE is loaded into the memory controller in the slot

identified by ASID. The ASID is then marked valid on all cores.

The platform remains in the same state after completion.

The guest remains in the same state after completion..

6.17.2 Parameters

Table 69 specifies the parameters for the ACTIVATE command.

Table 69. ACTIVATE Command Buffer

Byte Offset Bits In / Out Name Description

00h 31:0 In HANDLE Guest handle.

04h 31:0 In ASID ASID to activate the guest with.

Secure Encrypted Virtualization API

Version 0.14

55766 Rev. 3.03 August 2017

80 Guest Management API Chapter 6

6.17.3 Status Codes

Table 70 enumerates the possible status codes returned by the ACTIVATE command.

Table 70. ACTIVATE Status Codes

Return Value Reason

SUCCESS Successful completion.

INVALID_PLATFORM_STATE The platform is not in the working state.

ACTIVE The guest is currently active.

INVALID_GUEST The guest handle is invalid.

ASID_OWNED The ASID is already in use by another guest.

INVALID_ASID The ASID is invalid.

INVALID_ADDRESS A memory region provided contains invalid physical addresses.

DFFLUSH_REQUIRED A DF_FLUSH has not be invoked since the last DEACTIVATE

invocation.

HWERROR_PLATFORM A hardware condition has occurred affecting the platform. It is safe

to re-allocate parameter buffers.

HWERROR_UNSAFE A hardware condition has occurred affecting the platform. It is

unsafe to re-allocate parameter buffers.

6.18 DEACTIVATE

This command is used to dissociate the guest from its current ASID. The firmware will uninstall

the guest’s key from the memory controller.

6.18.1 Actions

The platform must be in the PSTATE.WORKING state.

The guest may be in any state.

The firmware uninstalls the guest’s key from the memory controller and records that a

DF_FLUSH is required for this ASID. The ASID is marked invalid on all cores.

The platform remains in the same state after completion.

The guest remains in the same state after completion.

55766 Rev. 3.03 August 2017 Secure Encrypted Virtualization API

Version 0.14

 Chapter 6 Guest Management API 81

6.18.2 Parameters

Table 71 specifies the parameters for the DEACTIVATE command.

Table 71. DEACTIVATE Command Buffer

Byte Offset Bits In / Out Name Description

00h 31:0 In HANDLE Guest handle.

6.18.3 Status Codes

Table 72 enumerates the possible status codes returned by the DEACTIVATE command.

Table 72. DEACTIVATE Status Codes

Return Value Reason

SUCCESS Successful completion.

INVALID_PLATFORM_STATE The platform is not in the PSTATE.WORKING state.

INVALID_ASID The ASID is invalid.

INVALID_GUEST The guest handle is invalid.

INVALID_ADDRESS A memory region provided contains invalid physical addresses.

HWERROR_PLATFORM A hardware condition has occurred affecting the platform. It is safe

to re-allocate parameter buffers.

HWERROR_UNSAFE A hardware condition has occurred affecting the platform. It is

unsafe to re-allocate parameter buffers.

6.19 DF_FLUSH

The x86 system software invokes this command after deactivating one or more guests. The x86

system software must execute a WBINVD on the hardware threads that the previous guest was

active on before invoking the DF_FLUSH command.

6.19.1 Actions

The platform must be in the PSTATE.INIT or PSTATE.WORKING states. Otherwise, an error is

returned.

Each core must have executed a WBINVD instruction since the last DEACTIVATE command

was invoked.

The data fabric write buffers are flushed for each core. The firmware also records that a flush has

been performed for all ASIDs.

The platform remains in the same state after completion.

Secure Encrypted Virtualization API

Version 0.14

55766 Rev. 3.03 August 2017

82 Guest Management API Chapter 6

6.19.2 Parameters

None. The CmdBuf_Lo and CmdBuf_Hi mailbox registers are ignored.

6.19.3 Status Codes

Table 73 enumerates the possible status codes returned by the DF_FLUSH command.

Table 73. DF_FLUSH Command Status Codes

Return Value Reason

SUCCESS Successful completion

INVALID_PLATFORM_STATE The platform is not in the PSTAET.INIT or PSTATE.WORKING

states

WBINVD_REQUIRED WBINVD has not been executed

HWERROR_PLATFORM A hardware condition has occurred affecting the platform. It is safe

to re-allocate parameter buffers.

HWERROR_UNSAFE A hardware condition has occurred affecting the platform. It is

unsafe to re-allocate parameter buffers.

6.20 DECOMMISSION

The hypervisor no longer intends to run the guest. Invoking this command deletes all guest context

for this guest. Upon successful completion of this command, HANDLE is no longer a valid guest

handle. Guests that shared their VEK with this guest are not affected.

6.20.1 Actions

The platform must be in the PSTATE.WORKING state.

The guest handle must be valid. The guest may be in any state.

The guest must not be active. The hypervisor must invoke DEACTIVATE for the guest before

invoking DECOMMISSION.

All guest context is securely deleted from firmware memory. After completion, the guest handle

will not be valid.

The platform transitions to the PSTATE.INIT state if PCTX.GUEST_COUNT is zero. Otherwise,

the platform remains in the PSTATE.WORKING state.

55766 Rev. 3.03 August 2017 Secure Encrypted Virtualization API

Version 0.14

 Chapter 6 Guest Management API 83

6.20.2 Parameters

Table 74 specifies the parameters for the DECOMMISSION command.

Table 74. DECOMMISSION Command Buffer

Byte

Offset

Bits In /

Out

Name Description

00h 31:0 In HANDLE Guest handle.

6.20.3 Status Codes

Table 75 enumerates the possible status codes returned by the DECOMMISSION command.

Table 75. DECOMMISSION Status Codes

Return Value Reason

SUCCESS Successful completion.

INVALID_PLATFORM_STATE The platform is not in the PSTATE.WORKING state.

ACTIVE The guest is currently active.

INVALID_GUEST The guest handle is invalid.

INVALID_ADDRESS A memory region provided contains invalid physical addresses.

HWERROR_PLATFORM A hardware condition has occurred affecting the platform. It is safe

to re-allocate parameter buffers.

HWERROR_UNSAFE A hardware condition has occurred affecting the platform. It is

unsafe to re-allocate parameter buffers.

Secure Encrypted Virtualization API

Version 0.14

55766 Rev. 3.03 August 2017

84 Debugging API Chapter 7

Chapter 7 Debugging API

The debugging API provides a simple interface to decrypt and encrypt memory with a guest’s

VEK. This allows developers of guest kernels and hypervisor to troubleshoot bugs. The

commands in this chapter can be (and, in production environments, should be) disabled via the

Guest Policy bit NODBG (see Table 2. Guest Policy Structure) established in LAUNCH_START.

7.1 DBG_DECRYPT

This command enables developers of hypervisors and guest kernels to access encrypted memory.

7.1.1 Actions

The guest policy must allow debugging.

The contents of the source region starting at SRC_PADDR and extending LENGTH bytes are

decrypted using GCTX.VEK and saved into the destination memory region starting at

DST_PADDR and extending LENGTH bytes.

The guest and platform states are unaffected.

7.1.2 Parameters

Table 76 specifies the parameters for the DBG_DECRYPT command.

Table 76. DBG_DECRYPT Command Buffer

Byte Offset Bits In / Out Name Description

00h 31:0 In HANDLE Guest handle.

04h 31:0 - - Reserved. Must be zero.

08h 63:0 In SRC_PADDR System physical address of data to decrypt. Must

be 16 B aligned.

10h 63:0 In DST_PADDR System physical address of destination. Must be

16 B aligned.

18h 31:0 In LENGTH Length of regions. Must be 16 B aligned.

55766 Rev. 3.03 August 2017 Secure Encrypted Virtualization API

Version 0.14

 Chapter 7 Debugging API 85

7.1.3 Status Codes

Table 77 enumerates the possible status codes returned by the DBG_DECRYPT command.

Table 77. DBG_DECRYPT Status Codes

Return Value Reason

SUCCESS Successful completion.

INVALID_PLATFORM_STATE The platform is not in the PSTATE.WORKING state.

INVALID_LENGTH A buffer length is not correct.

INVALID_GUEST The guest handle is invalid.

INACTIVE The guest is inactive.

INVALID_ADDRESS A memory region provided contains invalid physical addresses.

POLICY_FAILURE The policy disallows debugging.

HWERROR_PLATFORM A hardware condition has occurred affecting the platform. It is safe

to re-allocate parameter buffers.

HWERROR_UNSAFE A hardware condition has occurred affecting the platform. It is

unsafe to re-allocate parameter buffers.

7.2 DBG_ENCRYPT

This command allows a developer to encrypt memory for debugging purposes.

7.2.1 Actions

The guest policy must allow debugging.

The contents of the source region, starting at SRC_PADDR and extending LENGTH bytes, are

encrypted using GCTX.VEK and saved into the destination memory region, starting at

DST_PADDR and extending LENGTH bytes.

The guest and platform states are unaffected.

Secure Encrypted Virtualization API

Version 0.14

55766 Rev. 3.03 August 2017

86 Debugging API Chapter 7

7.2.2 Parameters

Table 78 specifies the parameters for the DBG_ENCRYPT command.

Table 78. DBG_ENCRYPT Command Buffer

Byte Offset Bits In / Out Name Description

00h 31:0 In HANDLE Guest handle.

04h 31:0 - - Reserved. Must be zero.

08h 63:0 In SRC_PADDR System physical address of data to encrypt. Must be

16 B aligned.

10h 63:0 In DST_PADDR System physical address of destination. Must be 16

B aligned.

18h 31:0 In LENGTH Length of regions. Must be 16 B aligned.

7.2.3 Status Codes

Table 79 enumerates the possible status codes returned by the DBG_ENCRYPT command.

Table 79. DBG_ENCRYPT Status Codes

Return Value Reason

SUCCESS Successful completion.

INVALID_PLATFORM_STATE The platform is not in the PSTATE.WORKING state.

INVALID_LENGTH A buffer length is not correct.

INVALID_GUEST The guest handle is invalid.

INACTIVE The guest is inactive.

INVALID_ADDRESS A memory region provided contains invalid physical addresses.

POLICY_FAILURE The policy disallows debugging.

HWERROR_PLATFORM A hardware condition has occurred affecting the platform. It is safe

to re-allocate parameter buffers.

HWERROR_UNSAFE A hardware condition has occurred affecting the platform. It is

unsafe to re-allocate parameter buffers.

55766 Rev. 3.03 August 2017 Secure Encrypted Virtualization API

Version 0.14

 Appendix A Usage Flows 87

Appendix A Usage Flows

The following flow charts are provided to illustrate the how the usage of the SEV API might be

implemented. Note that these are only examples and there may be other implementation strategies.

Platform Provisioning

AMD Secure
Processor

Cloud Provider

SEV Platform from
factory

Boots platform and
initializes SEV

INIT

Retrieves PEK
certificate signing

request

Generates PEK
certificate and signs
with CA signing key

Imports PEK
certificate into

platform

PEK_CSR

FACTORY_RESET

SEV Platform re-
allocated

Resets platform to
factory state

PEK_CERT_IMPORT

All interactions between
provider and AMD Secure

Processor are facilitated by
hypervisor

Secure Encrypted Virtualization API

Version 0.14

55766 Rev. 3.03 August 2017

88 Usage Flows Appendix A

Launching a Guest

HypervisorGuest Owner
AMD Secure

Processor
Cloud Provider

G
u

es
t

St
ar

tu
p

Pr
ov

is
io

ni
ng

Create unencrypted
guest image

Send unencrypted
guest to cloud

provider

Store unencrypted
guest in image

library

Ask cloud provider
to boot its guest.

Provides its DH key
and session info

Asks hypervisor to
boot guest

Retrieves guest from
library and loads it

into memory

Provides the
customer DH key
and session info

LAUNCH_START

Continues to ask
firmware to encrypt

guest memory

LAUNCH_UPDATE_DATA
LAUNCH_UPDATE_VMSA

Initialize SEV
firmwware

INITBoots SEV platform

Allocates an ASID
and activates guest

ACTIVATE

Update commands are called
as many times as needed.

55766 Rev. 3.03 August 2017 Secure Encrypted Virtualization API

Version 0.14

 Appendix A Usage Flows 89

Launching a Guest (continued)

HypervisorGuest Owner
AMD Secure

Processor
Cloud Provider

G
u

es
t

St
a

rt
u

p

Completes
encrypting guest

image

Sends measurement
to guest owner

Measurement

LAUNCH_MEASURE

LAUNCH_SECRET
Inject guest with

secret (disk
encryption key)

Customer (or
delegate)

authenticates
platform and verifies

measurement

Via provider

Encrypts disk
encryption key and

sends to guest

Finalize launch
process

LAUNCH_FINISH

Sets SEV-enable bit
in VMCB

VMRUN

Guest is running

Via provider

Secure Encrypted Virtualization API

Version 0.14

55766 Rev. 3.03 August 2017

90 Usage Flows Appendix A

Live Migration

Destination
Hypervisor

Source AMD Secure
Processor

Destination AMD Secure
Processor

Source Hypervisor /
Cloud Provider

Guest is running

Requests PDH of
destination platform

Retrieves PDH and
certificate chain
from destination

firmware

PDH_CERT_EXPORT

Begins re-encryption
process by providing
PDH and certificate

chain to source
firmware

Sends PDH and
certificate chain to

source
SEND_START

Retrieves encrypted
guest pages and

sends to destination

SEND_UPDATE_DATA
SEND_UPDATE_VMSA

Finalizes re-
encryption process.
Informs destination

of completion

SEND_FINISH

SEND_START authenticates
the PDH and certificate

chain.

Sends PDH
certificate and
session info to

firmware

Sends PDH
certificate and
session info to

firmware

RECEIVE_START

RECEIVE_UPDATE_DATA
RECEIVE_UPDATE_VMSA

Loads encrypted
guest pages into
destination guest

Finalizes receive
process

RECEIVE_FINISH

Migration
Completed

Update commands are called
as many times as needed.

Allocates an ASID
and activates guest

ACTIVATE

55766 Rev. 3.03 August 2017 Secure Encrypted Virtualization API

Version 0.14

 Appendix B AMD Certificate Authority Certificates 91

Appendix B AMD Certificate Authority

Certificates

AMD maintains a certificate authority to authenticate AMD hardware and software for a number

of applications. The root of trust of the certificate authority is the AMD Root Signing Key (ARK).

This key then signs the AMD SEV Signing Key (ASK), which is an intermediate certificate

authority specifically used for SEV related authentication.

B.1 Certificate Format

Table 80 specifies the format of the certificates for the ASK and ARK. This version of the API

supports version 01h of the certificate format. Table 81 enumerates the valid key usage values for

the KEY_USAGE field.

Table 80. AMD Signing Key Certificate Format

Byte Offset Bits Name Description

00h 31:0 VERSION Certificate format version.

04h 127:0 KEY_ID The unique ID for this key.

14h 127:0 CERTIFYING_ID The unique ID for the key that signed this certificate.

If this certificate is self-signed, then this field equals

the KEY_ID field.

24h 31:0 KEY_USAGE Usage of the key. See Table 81.

28h 127:0 - Reserved. Set to zero.

38h 31:0 PUBEXP_SIZE Size of the public exponent in bits. Must be 2048 or

4096.

3Ch 31:0 MODULUS_SIZE Size of the public modulus in bits. Must be 2048 or

4096.

40h 2047:0 or

4095:0

PUBEXP Public exponent of this key. The size of this field in

bits is equal to PUBEXP_SIZE.

- 2047:0 or

4095:0

MODULUS Public modulus of this key. The size of this field in

bits is equal to MODULUS_SIZE.

- 2047:0 or

4095:0

SIGNATURE Signature of this key. The size of this field in bits is

equal to MODULUS_SIZE in.

Table 81. Key Usage Encoding

Key Usage Description

00h AMD Root Signing Key.

13h AMD SEV Signing Key.

Secure Encrypted Virtualization API

Version 0.14

55766 Rev. 3.03 August 2017

92 AMD Certificate Authority Certificates Appendix B

B.2 Certificate Signature

The ARK and ASK certificates both carry RSASSA-PSS signatures using SHA-256 as the digest

algorithm.

B.3 Certificate Validation

The following procedure validates and AMD SEV Signing Key certificate:

1. Verify that the ASK VERSION field is a version supported by this API version.

2. Verify that the ASK KEY_USAGE field is equal to the ASK key usage encoding.

3. Verify that the ASK PUBEXP_SIZE field is equal to 4096 or 2048.

4. Verify that the ASK MOD_SIZE field is equal to 4096 or 2048.

5. Verify that the ARK VERSION field is a version supported by this API version.

6. Verify that the ARK KEY_USAGE field is equal to the ARK key usage encoding.

7. Verify that the ARK PUBEXP_SIZE field is equal to 4096 or 2048.

8. Verify that the ARK MOD_SIZE field is equal to 4096 or 2048.

9. Verify that the ARK KEY_ID field is equal to the ASK CERTIFYING_ID field.

10. Verify that the ASK SIGNATURE field is a valid signature by the ARK.

11. Verify that the ARK SIGNATURE field is a valid signature by the ARK.

If any of the above fail, the certificate is invalid.

55766 Rev. 3.03 August 2017 Secure Encrypted Virtualization API

Version 0.14

 Appendix C SEV Certificates 93

Appendix C SEV Certificates

The PEK, CEK, OCA, and PDH key pairs all have certificates used to authenticate the platform.

The certificates for the PEK, CEK, OCA, and PDH are distinct from the certificate used within the

AMD certificate authority described in Appendix B.

C.1 Certificate Format

An SEV certificate consists of a certificate version, public key, and zero, one, or two signatures.

Table 76 specifies the layout of a SEV certificate.

Table 82. SEV Certificate Format

Byte Offset Bits Name Description

000h 31:0 VERSION Certificate version, set to 01h.

004h 7:0 API_MAJOR If PEK, set to API minor version

Otherwise, zero.

005h 7:0 API_MINOR If PEK, set to API minor version

Otherwise, zero.

006h 7:0 - Reserved. Set to zero.

007h 7:0 - Reserved. Set to zero.

008h 31:0 PUBKEY_USAGE Public key usage

00Ch 31:0 PUBKEY_ALGO Public key algorithm

010h – 413h - PUBKEY Public key

414h 31:0 SIG1_USAGE Key usage of SIG1 signing key

418h 31:0 SIG1_ALGO First signature algorithm

41Ch – 61Bh - SIG1 First signature

61Ch 31:0 SIG2_USAGE Key usage of SIG2 signing key

620h 31:0 SIG2_ALGO Second signature algorithm

624h – 823h - SIG2 Second signature

Table 83. USAGE Enumeration (All other encodings are reserved)

Value Enumeration

0000h ARK

0013h ASK

1000h Invalid

1001h OCA

1002h PEK

1003h PDH

1004h CEK

Secure Encrypted Virtualization API

Version 0.14

55766 Rev. 3.03 August 2017

94 SEV Certificates Appendix C

Table 84. ALGO Enumeration (All other encodings are reserved)

Value Enumeration

0h Invalid

1h RSA

2h ECDSA

3h ECDH

The PUBKEY field contains the public key represented by this certificate. The format of the

PUBKEY field is determined by the PUBKEY_ALGO field. The PUBKEY_ALGO field must be

one of the valid algorithms enumerated in Table 83 on page 93. See Section C.2 for the format of

the public key for each algorithm.

The PUBKEY_USAGE field specifies the SEV specific usage for the public key represented by

this certificate. Table 83 on page 93 enumerates the possible usage identifiers.

The certificate may have zero, one, or two signatures. SIG1_USAGE and SIG2_USAGE describe

the key usage for the certifying key that signed the certificate. If SIG1_USAGE is 1000h, SIG1 is

not present and the SIG1_ALGO and SIG1 fields are ignored. If SIG2_USAGE is 1000h, SIG2 is

not present and the SIG2_ALGO and SIG2 fields are ignored.

The SIG1 and SIG2 fields are formatted according to the SIG1_ALGO and SIG2_ALGO fields,

respectively. SIG1_ALGO and SIG2_ALGO must each specify a signing key algorithm from

Table 84. See Section C.4, on page 96, for the format of each signature algorithm.

C.2 Elliptic Curve Enumeration

Table 85. CURVE Enumeration (All other encodings are reserved)

Value Enumeration

0h Invalid

1h P256

2h P384

The above table describes elliptic curves used by the SEV firmware. Note that the NIST P-256

curve is not currently supported but reserved for future usage.

55766 Rev. 3.03 August 2017 Secure Encrypted Virtualization API

Version 0.14

 Appendix C SEV Certificates 95

C.3 Public Key Formats

The following subsections describe the public key formats for the SEV certificates.

C.3.1 RSA Public Key

The ALGO.RSA public key format is specified in Table 86. This format supports RSA keys up to

4096 bits in size.

Table 86. RSA Public Key

Byte Offset Bits Name Description

000h 31:0 MODULUS_SIZE Size of modulus in bits.

004h 4095:0 PUBEXP Public exponent.

204h 4095:0 MODULUS Modulus.

C.3.2 ECDSA Public Key

The ALGO.ECDSA public key format is specified in Table 87. The CURVE field specifies which

elliptic curve that the public key is defined on. The supported curves are defined in Section C.2 on

page 94.

Table 87. ECDSA Public Key

Byte Offset Bits Name Description

000h 31:0 CURVE Curve ID.

004h 575:0 QX x component of the public point Q.

04Ch 575:0 QY y component of the public point Q.

094h – 403h - - Reserved. Must be zero.

C.3.3 ECDH Public Key

The ALGO.ECDH public key format is specified in Table 82. The CURVE field specifies which

elliptic curve that the public key is defined on. The supported curves are defined in Section C.2 on

page 89.

Table 88. ECDH Public Key

Byte Offset Bits Name Description

000h 31:0 CURVE Curve ID.

004h 575:0 QX x component of the public point Q.

04Ch 575:0 QY y component of the public point Q.

094h – 403h - - Reserved. Must be zero.

Secure Encrypted Virtualization API

Version 0.14

55766 Rev. 3.03 August 2017

96 SEV Certificates Appendix C

C.4 Signature Formats

The following subsections describe the signature formats for the SEV certificates.

C.4.1 RSA Signature

The ALGO.RSA signature format is specified in Table 89. This format supports signatures by

RSA keys up to 4096 bits in size.

Table 89. RSA Signature

Byte Offset Bits Name Description

000h – 1FFh 4095:0 S Signature.

C.4.2 ECDSA Signature

The ALGO.ECDSA signature format is specified in Table 84.

Table 90. ECDSA Signature

Byte Offset Bits Name Description

000h – 047h 575:0 R R component of the signature.

048h – 08Fh 575:0 S S component of the signature.

090h – 1FFh - - Reserved. Must be zero.

C.5 Certificate Validation

The following procedure validates an SEV certificate chain:

1. PDH certificate

a. Verify that the API_MAJOR field is equal to this API major version

b. Verify that the API_MINOR field is greater than or equal to this API major version

c. Verify that the VERSION field is supported by this API version

d. Verify that the PUBKEY_USAGE field is equal to the PDH key usage encoding

e. Verify that SIG1_USAGE field is equal to the PEK key usage encoding

f. Verify that SIG1_ALGO field is equal to the PUBKEY_ALGO field of the PEK certificate

g. Verify that the SIG1 field is a valid signature by the PEK certificate’s public key

2. PEK certificate

a. Verify that the API_MAJOR field is equal to this API major version

55766 Rev. 3.03 August 2017 Secure Encrypted Virtualization API

Version 0.14

 Appendix C SEV Certificates 97

b. Verify that the API_MINOR field is greater than or equal to this API major version

c. Verify that the VERSION field is supported by this API version

d. Verify that the PUBKEY_USAGE field is equal to the PEK key usage encoding

e. Verify that SIG1_USAGE field is equal to the CEK key usage encoding

f. Verify that SIG1_ALGO field is equal to the PUBKEY_ALGO field of the CEK certificate

g. Verify that the SIG1 field is a valid signature by the CEK certificate’s public key

h. Verify that SIG2_USAGE field is equal to the OCA key usage encoding

i. Verify that SIG2_ALGO field is equal to the PUBKEY_ALGO field of the OCA

certificate

j. Verify that the SIG2 field is a valid signature by the OCA certificate’s public key

3. OCA certificate

a. Verify that the API_MAJOR field is equal to this API major version

b. Verify that the API_MINOR field is greater than or equal to this API major version

c. Verify that the VERSION field is supported by this API version

d. Verify that the PUBKEY_USAGE field is equal to the OCA key usage encoding

e. Verify that SIG1_USAGE field is equal to the PEK key usage encoding

f. Verify that SIG1_ALGO field is equal to the PUBKEY_ALGO field

g. Verify that the SIG1 field is a valid self signature

4. CEK certificate

a. Verify that the API_MAJOR field is equal to this API major version

b. Verify that the API_MINOR field is greater than or equal to this API major version

c. Verify that the VERSION field is supported by this API version

d. Verify that the PUBKEY_USAGE field is equal to the CEK key usage encoding

e. Verify that SIG1_USAGE field is equal to the CEK key usage encoding

f. Verify that SIG1_ALGO field is equal to the PUBKEY_ALGO field of the ASK certificate

g. Verify that the SIG1 field is a valid signature by the ASK certificate’s public key

5. ASK certificate – see Section B

6. ARK certificate – see Section B

If any of the above fail, the certificate is invalid

	Secure Encrypted Virtualization API Version 0.14
	Contents
	List of Tables
	Revision History
	References
	Chapter 1 Overview
	1.1 Operational Model
	1.2 Platform Management
	1.2.1 Platform Lifecycle
	1.2.2 Identity
	1.2.3 Device Authenticity
	1.2.4 Ownership
	1.2.5 Encrypted State

	1.3 Guest Lifecycle
	1.3.1 Launch
	1.3.2 Activate and Deactivate
	1.3.3 Snapshot and Migrate
	1.3.4 Decommission
	1.3.5 Debugging

	Chapter 2 Key Management
	2.1 Keys
	2.1.1 Platform Diffie-Hellman Key
	2.1.2 Platform Endorsement Key
	2.1.3 Chip Endorsement Key
	2.1.4 AMD Signing Key
	2.1.5 Owner Certificate Authority Signing Key
	2.1.6 AMD Root Key
	2.1.7 Transport Integrity Key
	2.1.8 Transport Encryption Key
	2.1.9 Key Encryption Key
	2.1.10 Key Integrity Key
	2.1.11 VM Encryption Key

	2.2 Usage
	2.2.1 Key Derivation Function
	2.2.2 Master Secret Derivation
	2.2.3 Transport Key Establishment
	2.2.4 Data Protection

	Chapter 3 Guest Policy
	Chapter 4 Mailbox Register Protocol
	4.1 Mailboxes
	4.2 Command Buffer
	4.3 Command Identifiers
	4.4 Status Codes
	4.5 Endianness
	4.6 Synchrony
	4.7 Address Validation

	Chapter 5 Platform Management API
	5.1 Overview
	5.1.1 Platform Context
	5.1.2 Platform State Machine
	5.1.3 Authenticity
	5.1.4 Ownership
	5.1.5 Non-volatile Storage
	5.1.6 Power State Transitions
	5.1.7 SEV-ES Trusted Memory Region

	5.2 INIT
	5.2.1 Actions
	5.2.2 Parameters
	5.2.3 Status Codes

	5.3 SHUTDOWN
	5.3.1 Actions
	5.3.2 Parameters
	5.3.3 Status Codes

	5.4 PLATFORM_RESET
	5.4.1 Actions
	5.4.2 Parameters
	5.4.3 Status Codes

	5.5 PLATFORM_STATUS
	5.5.1 Actions
	5.5.2 Parameters
	5.5.3 Status Codes

	5.6 PEK_GEN
	5.6.1 Actions
	5.6.2 Parameters
	5.6.3 Status Codes

	5.7 PEK_CSR
	5.7.1 Actions
	5.7.2 Parameters
	5.7.3 Status Codes

	5.8 PEK_CERT_IMPORT
	5.8.1 Actions
	5.8.2 Parameters
	5.8.3 Status Codes

	5.9 PDH_GEN
	5.9.1 Actions
	5.9.2 Parameters
	5.9.3 Status Codes

	5.10 PDH_CERT_EXPORT
	5.10.1 Actions
	5.10.2 Parameters
	5.10.3 Status Codes

	Chapter 6 Guest Management API
	6.1 Overview
	6.1.1 Guest Context
	6.1.2 Activation and Deactivation

	6.2 LAUNCH_START
	6.2.1 Actions
	6.2.2 Parameters
	6.2.3 Status Codes

	6.3 LAUNCH_UPDATE_DATA
	6.3.1 Actions
	6.3.2 Parameters
	6.3.3 Status Codes

	6.4 LAUNCH_UPDATE_VMSA
	6.4.1 Actions
	6.4.2 Parameters
	6.4.3 Status Codes

	6.5 LAUNCH_MEASURE
	6.5.1 Actions
	6.5.2 Parameters
	6.5.3 Status Codes

	6.6 LAUNCH_SECRET
	6.6.1 Actions
	6.6.2 Parameters
	6.6.3 Status Codes

	6.7 LAUNCH_FINISH
	6.7.1 Actions
	6.7.2 Parameters
	6.7.3 Status Codes

	6.8 SEND_START
	6.8.1 Actions
	6.8.2 Parameters
	6.8.3 Status Codes

	6.9 SEND_UPDATE_DATA
	6.9.1 Actions
	6.9.2 Parameters
	6.9.3 Status Codes

	6.10 SEND_UPDATE_VMSA
	6.10.1 Actions
	6.10.2 Parameters
	6.10.3 Status Codes

	6.11 SEND_FINISH
	6.11.1 Actions
	6.11.2 Parameters
	6.11.3 Status Codes

	6.12 RECEIVE_START
	6.12.1 Actions
	6.12.2 Parameters
	6.12.3 Status Codes

	6.13 RECEIVE_UPDATE_DATA
	6.13.1 Actions
	6.13.2 Parameters
	6.13.3 Status Codes

	6.14 RECEIVE_UPDATE_VMSA
	6.14.1 Actions
	6.14.2 Parameters
	6.14.3 Status Codes

	6.15 RECEIVE_FINISH
	6.15.1 Actions
	6.15.2 Parameters
	6.15.3 Status Codes

	6.16 GUEST_STATUS
	6.16.1 Actions
	6.16.2 Parameters
	6.16.3 Status Codes

	6.17 ACTIVATE
	6.17.1 Actions
	6.17.2 Parameters
	6.17.3 Status Codes

	6.18 DEACTIVATE
	6.18.1 Actions
	6.18.2 Parameters
	6.18.3 Status Codes

	6.19 DF_FLUSH
	6.19.1 Actions
	6.19.2 Parameters
	6.19.3 Status Codes

	6.20 DECOMMISSION
	6.20.1 Actions
	6.20.2 Parameters
	6.20.3 Status Codes

	Chapter 7 Debugging API
	7.1 DBG_DECRYPT
	7.1.1 Actions
	7.1.2 Parameters
	7.1.3 Status Codes

	7.2 DBG_ENCRYPT
	7.2.1 Actions
	7.2.2 Parameters
	7.2.3 Status Codes

	Appendix A Usage Flows
	Appendix B AMD Certificate Authority Certificates
	B.1 Certificate Format
	B.2 Certificate Signature
	B.3 Certificate Validation

	Appendix C SEV Certificates
	C.1 Certificate Format
	C.2 Elliptic Curve Enumeration
	C.3 Public Key Formats
	C.3.1 RSA Public Key
	C.3.2 ECDSA Public Key
	C.3.3 ECDH Public Key

	C.4 Signature Formats
	C.4.1 RSA Signature
	C.4.2 ECDSA Signature

	C.5 Certificate Validation

