

 Advanced Micro Devices

[Public]

SEV Secure Nested Paging

Firmware ABI Specification

 Publication # 56860 Revision: 1.55
 Issue Date: September 2023

AMD Confidential—Advance Information

56860 Rev. 1.55 September 2023 SEV Secure Nested Paging Firmware ABI

Specification

[Public]

Specification Agreement

This Specification Agreement (this “Agreement”) is a legal agreement between Advanced Micro Devices, Inc.

(“AMD”) and “You” as the recipient of the attached AMD Specification (the “Specification”). If you are accessing the

Specification as part of your performance of work for another party, you acknowledge that you have authority to bind

such party to the terms and conditions of this Agreement. If you accessed the Specification by any means or otherwise

use or provide Feedback (defined below) on the Specification, You agree to the terms and conditions set forth in this

Agreement. If You do not agree to the terms and conditions set forth in this Agreement, you are not licensed to use the

Specification; do not use, access or provide Feedback about the Specification.

In consideration of Your use or access of the Specification (in whole or in part), the receipt and sufficiency of which

are acknowledged, You agree as follows:

1. You may review the Specification only (a) as a reference to assist You in planning and designing Your product,

service or technology (“Product”) to interface with an AMD product in compliance with the requirements as set forth

in the Specification and (b) to provide Feedback about the information disclosed in the Specification to AMD.

2. Except as expressly set forth in Paragraph 1, all rights in and to the Specification are retained by AMD. This

Agreement does not give You any rights under any AMD patents, copyrights, trademarks or other intellectual property

rights. You may not (i) duplicate any part of the Specification; (ii) remove this Agreement or any notices from the

Specification, or (iii) give any part of the Specification, or assign or otherwise provide Your rights under this

Agreement, to anyone else.

3. The Specification may contain preliminary information, errors, or inaccuracies, or may not include certain necessary

information. Additionally, AMD reserves the right to discontinue or make changes to the Specification and its

products at any time without notice. The Specification is provided entirely “AS IS.” AMD MAKES NO WARRANTY

OF ANY KIND AND DISCLAIMS ALL EXPRESS, IMPLIED AND STATUTORY WARRANTIES, INCLUDING

BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR

PURPOSE, NONINFRINGEMENT, TITLE OR THOSE WARRANTIES ARISING AS A COURSE OF DEALING

OR CUSTOM OF TRADE. AMD SHALL NOT BE LIABLE FOR DIRECT, INDIRECT, CONSEQUENTIAL,

SPECIAL, INCIDENTAL, PUNITIVE OR EXEMPLARY DAMAGES OF ANY KIND (INCLUDING LOSS OF

BUSINESS, LOSS OF INFORMATION OR DATA, LOST PROFITS, LOSS OF CAPITAL, LOSS OF

GOODWILL) REGARDLESS OF THE FORM OF ACTION WHETHER IN CONTRACT, TORT (INCLUDING

NEGLIGENCE) AND STRICT PRODUCT LIABILITY OR OTHERWISE, EVEN IF ADVISED OF THE

POSSIBILITY OF SUCH DAMAGES.

4. Furthermore, AMD’s products are not designed, intended, authorized or warranted for use as components in systems

intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other

application in which the failure of AMD’s product could create a situation where personal injury, death, or severe

property or environmental damage may occur.

5. You have no obligation to give AMD any suggestions, comments or feedback (“Feedback”) relating to the

Specification. However, any Feedback You voluntarily provide may be used by AMD without restriction, fee or

obligation of confidentiality. Accordingly, if You do give AMD Feedback on any version of the Specification, You

agree AMD may freely use, reproduce, license, distribute, and otherwise commercialize Your Feedback in any

product, as well as has the right to sublicense third parties to do the same. Further, You will not give AMD any

Feedback that You may have reason to believe is (i) subject to any patent, copyright or other intellectual property

claim or right of any third party; or (ii) subject to license terms which seek to require any product or intellectual

property incorporating or derived from Feedback or any Product or other AMD intellectual property to be licensed to

or otherwise provided to any third party.

AMD Confidential—Advance Information

56860 Rev. 1.55 September 2023 SEV Secure Nested Paging Firmware ABI

Specification

[Public]

6. You shall adhere to all applicable U.S., European, and other export laws, including but not limited to the U.S.

Export Administration Regulations (“EAR”), (15 C.F.R. Sections 730 through 774), and E.U. Council Regulation (EC)

No 428/2009 of 5 May 2009. Further, pursuant to Section 740.6 of the EAR, You hereby certifies that, except pursuant

to a license granted by the United States Department of Commerce Bureau of Industry and Security or as otherwise

permitted pursuant to a License Exception under the U.S. Export Administration Regulations ("EAR"), You will not

(1) export, re-export or release to a national of a country in Country Groups D:1, E:1 or E:2 any restricted technology,

software, or source code You receive hereunder, or (2) export to Country Groups D:1, E:1 or E:2 the direct product of

such technology or software, if such foreign produced direct product is subject to national security controls as

identified on the Commerce Control List (currently found in Supplement 1 to Part 774 of EAR). For the most current

Country Group listings, or for additional information about the EAR or Your obligations under those regulations,

please refer to the U.S. Bureau of Industry and Security’s website at http://www.bis.doc.gov/.

7. If You are a part of the U.S. Government, then the Specification is provided with “RESTRICTED RIGHTS” as set

forth in subparagraphs (c) (1) and (2) of the Commercial Computer Software-Restricted Rights clause at FAR 52.227-

14 or subparagraph (c) (1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.277-7013,

as applicable.

8. This Agreement is governed by the laws of the State of California without regard to its choice of law principles.

Any dispute involving it must be brought in a court having jurisdiction of such dispute in Santa Clara County,

California, and You waive any defenses and rights allowing the dispute to be litigated elsewhere. If any part of this

agreement is unenforceable, it will be considered modified to the extent necessary to make it enforceable, and the

remainder shall continue in effect. The failure of AMD to enforce any rights granted hereunder or to take action

against You in the event of any breach hereunder shall not be deemed a waiver by AMD as to subsequent enforcement

of rights or subsequent actions in the event of future breaches. This Agreement is the entire agreement between You

and AMD concerning the Specification; it may be changed only by a written document signed by both You and an

authorized representative of AMD.

AMD Confidential—Advance Information

56860 Rev. 1.55 September 2023 SEV Secure Nested Paging Firmware ABI

Specification

[Public]

© 2020–2023 Advanced Micro Devices, Inc. All rights reserved.

The information contained herein is for informational purposes only, and is subject to change without notice. While

every precaution has been taken in the preparation of this document, it may contain technical inaccuracies, omissions

and typographical errors, and AMD is under no obligation to update or otherwise correct this information. Advanced

Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the

contents of this document, and assumes no liability of any kind, including the implied warranties of noninfringement,

merchantability or fitness for particular purposes, with respect to the operation or use of AMD hardware, software

or other products described herein. No license, including implied or arising by estoppel, to any intellectual property

rights is granted by this document. Terms and limitations applicable to the purchase or use of AMD’s products are

as set forth in a signed agreement between the parties or in AMD's Standard Terms and Conditions of Sale.

Trademarks

AMD, the AMD Arrow logo, AMD EPYC, and combinations thereof are trademarks of Advanced Micro Devices,

Inc. Other product names used in this publication are for identification purposes only and may be trademarks of their

respective companies.

Linux is a registered trademark of Linus Torvalds.

56860 Rev. 1.55 September 2023 SEV Secure Nested Paging Firmware ABI Specification

 Contents 5

[Public]

Contents

Chapter 1 Introduction .. 16

1.1 Purpose ... 16

1.2 Scope .. 16

1.3 Intended Audience ... 16

1.4 References .. 16

Chapter 2 Data Structures and Encodings .. 17

2.1 Metadata Entries (MDATA) .. 17

2.2 TCB_VERSION .. 18

2.3 VCEK ... 18

2.4 Invalid Physical Address (PADDR_INVALID) .. 18

Chapter 3 Platform Management ... 19

3.1 Feature Detection and Enablement .. 19

3.2 Platform State Machine ... 19

3.3 Firmware Updates .. 19

3.4 Reported TCB .. 21

3.5 Chip Key Masking ... 21

3.6 Versioned Loaded Endorsement Key .. 21

3.7 Feature Discovery .. 22

Chapter 4 Guest Management .. 24

4.1 Guest Context .. 24

4.2 Guest State Machine .. 26

4.3 Guest Policy ... 27

4.4 Guest Activation .. 28

4.5 Launching a Guest ... 28

4.6 Identity Block .. 29

4.7 Decommissioning a Guest ... 29

4.8 Guest Messages .. 30

4.9 Remote Attestation .. 30

4.10 Guest Keys ... 30

4.11 Migration ... 30

56860 Rev. 1.55 September 2023 SEV Secure Nested Paging Firmware ABI Specification

 Contents 6

[Public]

4.12 Guest-Assisted Migration .. 31

Chapter 5 Page Management ... 33

5.1 Page Security Attributes .. 33

5.2 Page States... 33

5.3 Page State Transitions ... 34

5.4 Metadata Entries .. 37

Chapter 6 Mailbox Protocol ... 38

6.1 Command Identifier .. 38

6.2 Status Codes .. 39

Chapter 7 Guest Messages .. 40

7.1 CPUID Reporting .. 40

7.2 Key Derivation .. 42

7.3 Attestation ... 44

7.4 VM Export .. 48

7.5 VM Import .. 51

7.6 VM Absorb .. 53

7.7 VM Absorb – No Migration Agent ... 54

7.8 VMRK Message .. 55

7.9 TSC Info .. 56

Chapter 8 Command Reference ... 58

8.1 DOWNLOAD_FIRMWARE .. 58

8.2 DOWNLOAD_FIRMWARE_EX .. 59

8.3 SNP_COMMIT ... 61

8.4 GET_ID ... 62

8.5 SNP_PLATFORM_STATUS ... 63

8.6 SNP_CONFIG ... 65

8.7 SNP_INIT ... 66

8.8 SNP_INIT_EX .. 67

8.9 SNP_GCTX_CREATE ... 71

8.10 SNP_ACTIVATE.. 72

8.11 SNP_ACTIVATE_EX .. 74

56860 Rev. 1.55 September 2023 SEV Secure Nested Paging Firmware ABI Specification

 Contents 7

[Public]

8.12 SNP_DECOMMISSION ... 76

8.13 SNP_DF_FLUSH .. 77

8.14 SNP_SHUTDOWN ... 78

8.15 SNP_SHUTDOWN_EX .. 79

8.16 SNP_LAUNCH_START ... 81

8.17 SNP_LAUNCH_UPDATE .. 84

8.18 SNP_LAUNCH_FINISH ... 92

8.19 SNP_GUEST_STATUS .. 95

8.20 SNP_PAGE_MOVE .. 97

8.21 SNP_PAGE_MD_INIT ... 99

8.22 SNP_PAGE_SWAP_OUT .. 101

8.23 SNP_PAGE_SWAP_IN .. 106

8.24 SNP_PAGE_RECLAIM .. 110

8.25 SNP_PAGE_UNSMASH .. 112

8.26 SNP_GUEST_REQUEST ... 113

8.27 SNP_DBG_DECRYPT ... 118

8.28 SNP_DBG_ENCRYPT ... 120

8.29 SNP_PAGE_SET_STATE .. 122

8.30 SNP_VLEK_LOAD .. 124

8.31 FEATURE_INFO .. 126

Chapter 9 APPENDIX: Common Algorithms .. 128

9.1 Aead_Wrap() ... 128

9.2 Aead_Unwrap() ... 129

Chapter 10 APPENDIX: Digital Signatures .. 130

56860 Rev. 1.55 September 2023 SEV Secure Nested Paging Firmware ABI Specification

 List of Tables 8

[Public]

List of Tables

Table 1. External References .. 16

Table 2. Layout of the MDATA Structure .. 17

Table 3. Structure of the TCB_VERSION .. 18

Table 4. Commands Available in Each State .. 19

Table 5. Contents of Each Subfunction of Fn8000_0024 ... 23

Table 6. Fields of the Guest Context (GCTX) .. 24

Table 7. Guest State Definition ... 26

Table 8. Guest State Transitions ... 27

Table 9. Guest Policy Structure ... 27

Table 10. Page State Definitions ... 33

Table 11. Contents of Metadata Entries for Swapped-Out Data Pages, VMSA Pages, and

Metadata Pages .. 37

Table 12. Command Identifiers ... 38

Table 13. Status Codes .. 39

Table 14. MSG_CPUID_REQ Structure .. 41

Table 15. CPUID_FUNCTION Structure ... 41

Table 16. MSG_CPUID_RSP Structure ... 42

Table 17. Data Mixed into the Derived Guest Key ... 42

Table 18. MSG_KEY_REQ Message Structure ... 43

Table 19. Structure of the GUEST_FIELD_SELECT Field ... 44

Table 20. MSG_KEY_RSP Message Structure .. 44

Table 21. MSG_REPORT_REQ Message Structure .. 45

Table 22. ATTESTATION_REPORT Structure .. 46

Table 23. Structure of the PLATFORM_INFO Field ... 48

Table 24. MSG_REPORT_RSP Message Structure ... 48

Table 25. MSG_EXPORT_REQ Message Structure .. 48

Table 26. MSG_EXPORT_RSP Message Structure ... 49

Table 27. GCTX Field Structure ... 50

Table 28. MSG_IMPORT_REQ Message Structure .. 51

Table 29. Guest Context Initialized by the MSG_IMPORT_REQ Guest Message 52

56860 Rev. 1.55 September 2023 SEV Secure Nested Paging Firmware ABI Specification

 List of Tables 9

[Public]

Table 30. MSG_IMPORT_RSP Message Structure .. 52

Table 31. MSG_ABSORB_REQ Message Structure .. 53

Table 32. MSG_ABSORB_RSP Message Structure ... 54

Table 33. MSG_ABSORB_NOMA_REQ Message Structure .. 54

Table 34. MSG_ABSORB_NOMA_RSP Message Structure ... 55

Table 35. Structure of the MSG_VMRK_REQ Guest Message .. 56

Table 36. MSG_VMRK_RSP Message Structure ... 56

Table 37. MSG_TSC_INFO_REQ Message Structure ... 56

Table 38. MSG_TSC_INFO_RSP Message Structure .. 57

Table 39. Layout of the CMDBUF_SNP_DOWNLOAD_FIRMWARE_EX Structure 59

Table 40. Status Codes for SNP_PLATFORM_STATUS .. 60

Table 41. Layout of the CMDBUF_SNP_COMMIT Structure ... 61

Table 42. Status Codes for SNP_PLATFORM_STATUS .. 61

Table 43. Layout of the CMDBUF_SNP_PLATFORM_STATUS Structure 63

Table 44. Layout of the STRUCT_PLATFORM_STATUS Structure ... 63

Table 45. Status Codes for SNP_PLATFORM_STATUS .. 64

Table 46. Layout of the CMDBUF_SNP_CONFIG_STATUS Structure 65

Table 47. Status Codes for SNP_CONFIG_STATUS ... 65

Table 48. Layout of the CMDBUF_SNP_INIT_EX Structure .. 68

Table 49. Status Codes for SNP_INIT ... 70

Table 50. Layout of the CMDBUF_SNP_GCTX_CREATE Structure ... 71

Table 51. Guest Context Initialized by the SNP_GCTX_CREATE Command 71

Table 52. Status Codes for SNP_GCTX_CREATE .. 72

Table 53. Layout of the CMDBUF_SNP_ACTIVATE Structure ... 72

Table 54. Status Codes for SNP_ACTIVATE ... 73

Table 55. Layout of the CMDBUF_SNP_ACTIVATE_EX Structure .. 74

Table 56. Status Codes for SNP_ACTIVATE_EX ... 75

Table 57. Layout of the CMDBUF_SNP_DECOMMISSION Structure .. 76

Table 58. Status Codes for SNP_DECOMMISSION .. 76

Table 59. Status Codes for SNP_DF_FLUSH ... 77

Table 60. Status Codes for SNP_SHUTDOWN .. 78

56860 Rev. 1.55 September 2023 SEV Secure Nested Paging Firmware ABI Specification

 List of Tables 10

[Public]

Table 61. Layout of the CMDBUF_SNP_SHUTDOWN_EX Structure .. 79

Table 62. Status Codes for SNP_SHUTDOWN_EX .. 80

Table 63. Layout of the CMDBUF_SNP_LAUNCH_START Structure 81

Table 64. Guest Context Field Initialization for the Launch Flow ... 82

Table 65. Status Codes for SNP_LAUNCH_START ... 83

Table 66. Layout of the CMDBUF_SNP_LAUNCH_UPDATE Structure 84

Table 67. Encodings for the PAGE_TYPE Field .. 84

Table 68. VMPL Permission Mask ... 85

Table 69. Layout of the PAGE_INFO Structure ... 86

Table 70. Secrets Page Format .. 89

Table 71. CPUID Page Format ... 91

Table 72. Status Codes for SNP_LAUNCH_UPDATE .. 91

Table 73. Layout of the CMDBUF_SNP_LAUNCH_FINISH Structure 92

Table 74. Structure of the ID Block .. 92

Table 75. Structure of the ID Authentication Information Structure .. 93

Table 76. Guest Context Fields Initialized During SNP_LAUNCH_FINISH 94

Table 77. Status Codes for SNP_LAUNCH_FINISH .. 94

Table 78. Layout of the CMDBUF_SNP_GUEST_STATUS Structure .. 95

Table 79. Layout of the STRUCT_SNP_GUEST_STATUS Structure .. 96

Table 80. Status Codes for SNP_GUEST_STATUS .. 96

Table 81. Layout of the CMDBUF_SNP_PAGE_MOVE Structure .. 97

Table 82. Status Codes for SNP_PAGE_MOVE .. 99

Table 83. Layout of the CMDBUF_SNP_PAGE_MD_INIT Structure ... 99

Table 84. Status Codes for SNP_PAGE_MD_INIT ... 100

Table 85. Layout of the CMDBUF_SNP_PAGE_SWAP_OUT Structure 101

Table 86. Metadata Entry (MDATA) for Data Pages ... 103

Table 87. Metadata Entry (MDATA) for Metadata Pages .. 104

Table 88. Metadata Entry (MDATA) for Data Pages ... 105

Table 89. Status Codes for SNP_PAGE_SWAP_OUT .. 105

Table 90. Layout of the CMDBUF_SNP_PAGE_SWAP_IN Structure 106

Table 91. Determining the Page Type Based on the Metadata Entry ... 107

56860 Rev. 1.55 September 2023 SEV Secure Nested Paging Firmware ABI Specification

 11

[Public]

Table 92. Status Codes for SNP_PAGE_SWAP_IN ... 109

Table 93. Layout of the CMDBUF_SNP_PAGE_PAGE_RECLAIM Structure 110

Table 94. State Transitions Triggered by the SNP_PAGE_RECLAIM Command 111

Table 95. Status Codes for SNP_PAGE_RO_RESTORE ... 111

Table 96. Layout of the CMDBUF_SNP_PAGE_UNSMASH Structure 112

Table 97. Status Codes for SNP_PAGE_UNSMASH ... 113

Table 98. Layout of the CMDBUF_SNP_GUEST_REQUEST Structure 113

Table 99. Message Header Format .. 113

Table 100. AEAD Algorithm Encodings ... 114

Table 101. Message Type Encodings .. 114

Table 102. Status Codes for SNP_GUEST_REQUEST .. 117

Table 103. Layout of the CMDBUF_SNP_DBG_DECRYPT Structure 118

Table 104. Status Codes for SNP_DBG_DECRYPT .. 119

Table 105. Layout of the CMDBUF_SNP_DBG_ENCRYPT Structure 120

Table 106. Status Codes for SNP_DBG_ENCRYPT .. 121

Table 107. Layout of the CMDBUF_SNP_PAGE_SET_STATE Structure 122

Table 108. Layout of the RANGE_LIST Structure ... 122

Table 109. Layout of the RANGE Structure ... 122

Table 110. Status Codes for SNP_PAGE_SET_STATE ... 123

Table 111. Layout of the CMDBUF_SNP_VLEK_LOAD Structure ... 124

Table 112. Layout of the WRAPPED_VLEK_HASHSTICK Structure (Version 0h) 124

Table 113. Status Codes for SNP_VLEK_LOAD ... 125

Table 114. Layout of the CMDBUF_SNP_FEATURE_INFO Structure 126

Table 115. Layout of the FEATURE_INFO Structure (Version 0h) ... 126

Table 116. Status Codes for SNP_FEATURE_INFO ... 127

Table 120: Encoding for Signing Algorithms .. 130

Table 121. ECC Curve Identifier Encodings ... 130

Table 122. Format for an ECDSA P-384 with SHA-384 Signature .. 130

Table 123. Format for an ECDSA P-384 Public Key .. 130

56860 Rev. 1.55 September 2023 SEV Secure Nested Paging Firmware ABI Specification

 List of Figures 12

[Public]

List of Figures

Figure 1. SNP Page State Machine ... 35

56860 Rev. 1.55 September 2023 SEV Secure Nested Paging Firmware ABI Specification

 Revision History 13

[Public]

Revision History

Date Revision Description

September

2023

1.55 Updates and Additions:

• Added feature capability reporting.

• Added ciphertext hiding feature.

• Added AES-256 XTS guest policy.

• Added CXL guest policy.

• Added RAPL disable guest policy.

• Added ECC guest policy.

• Added SNP disable on SNP shutdown feature.

November

2022

1.54 Updates and Additions:

• Added Section 3.6

• Added VLEK capability to MSG_KEY_REQ in Section 7.2

• Added VLEK capability to MSG_REPORT_REQ in Section 7.3

• Updated SNP_COMMIT to manage the VLEK in Section 8.3

• Updated SNP_PLATFORM_STATUS to output whether the VLEK

is loaded in Section 8.5

• Updated SNP_CONFIG to manage the VLEK in Section 8.6

• Added the SNP_VLEK_LOAD command in Section 8.30

August 2022 1.53 Updates and Additions:

• Sections 3.5, 7.2, 7.3, 8.5, 8.6, and 8.8 define MaskChipKey and its

effects on attestation and key derivation. Updated SNP_CONFIG,

SNP_PLATFORM_STATUS, SNP_INIT_EX commands.

• Sections 4.1, 7.4, 7.6, 7.7, 7.8, and 8.16.2: Bind MA via report ID

instead of MA context address

• Section 8.8.2: Add check for HWCR[SmmLock]

• Section 8.15.2: Transition IOMMU pages to Reclaim state instead

of Hypervisor state.

August 2022 1.52 Updates and Additions:

• Section 5.2: Added HV-fixed page state definition

• Section 6.1: Added SNP_PAGE_SET_STATE command ID

• Section 8.7: Deprecated SNP_INIT

• Section 8.8: SNP_INIT_EX addition of HV-fixed pages

• Section 8.29: Added SNP_PAGE_SET_STATE

January 2022 1.51 Updates and Additions:

• Updated Section 2.2 TCB_VERSION

• Updated Section 2.3 VCEK

• Added Section 3.3 Firmware Updates

• Added Section 3.4 Reported TCB

56860 Rev. 1.55 September 2023 SEV Secure Nested Paging Firmware ABI Specification

 Revision History 14

[Public]

Date Revision Description

• Updated Section 4.1 Guest Context

• Added Section 4.1.1 Live Update

• Updated Section 4.3 Guest Policy

• Updated Section 4.4 Guest Activation

• Updated Section 5.3.7 SEV Legacy Commands

• Updated Section 6.1 Command Identifier

• Updated Section 6.2 Status Codes

• Updated Section 7.2 Key Derivation

• Updated Section 7.3 Attestation

• Updated Section 7.4 VM Export

• Updated Section 7.5 VM Import

• Updated Section 7.6 VM Absorb

• Updated Section 7.7 VM Absorb – No Migration Agent

• Added Section 7.9 TSC Info

• Added Section 8.2 DOWNLOAD_FIRMWARE_EX

• Added Section 8.3 SNP_COMMIT

• Updated Section 8.5.2 Actions

• Updated Section 8.6 SNP_CONFIG

• Updated Section 8.8.2 Actions

• Updated Section 8.9.2 Actions

• Updated Section 8.10.2 Actions

• Updated Section 8.10.3 Status Codes

• Updated Section 8.11 SNP_ACTIVATE_EX

• Updated Section 8.12 SNP_DECOMMISSION

• Updated Section 8.14 SNP_SHUTDOWN

• Added Section 8.15 SNP_SHUTDOWN_EX

• Updated Section 8.16 SNP_LAUNCH_START

• Updated Section 8.17 SNP_LAUNCH_UPDATE

• Updated Section 8.18 SNP_LAUNCH_FINISH

• Updated Section 8.19 SNP_GUEST_STATUS

• Updated Section 8.20 SNP_PAGE_MOVE

• Updated Section 8.21 SNP_PAGE_MD_INIT

• Updated Section 8.22 SNP_PAGE_SWAP_OUT

• Updated Section 8.23 SNP_PAGE_SWAP_IN

• Updated Section 8.26 SNP_GUEST_REQUEST

• Updated Section 8.27 SNP_DBG_DECRYPT

• Updated Section 8.28 SNP_DBG_ENCRYPT

• Added Chapter 10 APPENDIX: Digital Signatures

56860 Rev. 1.55 September 2023 SEV Secure Nested Paging Firmware ABI Specification

 Revision History 15

[Public]

Date Revision Description

April 2021 0.9 Updates and Additions:

• Updated Section 5.3.7 SEV Legacy Commands

• Updated Section 6.1 Command Identifier

• Updated Section 7.1 CPUID Reporting

• Updated Section 7.3 Attestation

• Updated Section 7.4 VM Export

• Updated Section 7.5 VM Import

• Updated Section 7.6 VM Absorb

• Added Section 7.7 VM Absorb – No Migration Agent

• Updated Section 8.4 GET_ID

• Added Section 8.7 SNP_INIT

• Updated Section 8.8 SNP_INIT_EX

• Updated Section 8.10.2 Actions

• Updated Section 8.11.3 Status Codes

• Updated Section 8.14 SNP_SHUTDOWN

• Updated Section 8.16 SNP_LAUNCH_START

• Updated Section 8.17 SNP_LAUNCH_UPDATE

• Updated Section 8.18 SNP_LAUNCH_FINISH

• Updated Section 8.22 SNP_PAGE_SWAP_OUT

• Updated Section 8.26 SNP_GUEST_REQUEST

August 2020 0.8 Updates and Additions:

• Updated Section 3.2 Platform State Machine

• Updated Table 12. Command Identifiers

• Updated Section 7.3 Attestation

• Updated Table 22. ATTESTATION_REPORT Structure

• Updated Section 8.5.2 Actions for SNP_PLATFORM_STATUS

• Updated Table 44. Layout of the STRUCT_PLATFORM_STATUS

Structure

• Added Section 8.6 SNP_CONFIG

• Updated Section 8.8.2 Actions for SNP_INIT

• Updated Table 49. Status Codes for SNP_INIT

• Updated Section 8.13.2 Actions for SNP_DF_FLUSH

• Updated Table 59. Status Codes for SNP_DF_FLUSH

• Updated Section 8.14.2 Actions for SNP_SHUTDOWN

April 2020 0.7 Initial public release

 16

[Public]

Chapter 1 Introduction

1.1 Purpose

The purpose of this document is to provide details of Platform Security Processor (PSP) firmware

support for the Secure Nested Paging (SEV-SNP) enhancement to SEV. The PSP exposes a set of

functions to the hypervisor for guest lifecycle management of SNP-enabled guests.

1.2 Scope

This document describes the software interface for functions supported by the PSP for SNP VM

management. It does not describe the x86 CPU or System-on-Chip (SoC) hardware support for

SNP. While certain sections of this document may describe potential hypervisor usage of the

firmware ABI, this document is not intended to prescribe any specific use or hypervisor

architecture. Please refer to AMD 64 Architecture Programmer’s Manual (publication #40332) for

the x86 ISA mechanisms related to SEV-SNP and to the whitepaper AMD SEV-SNP:

Strengthening VM Isolation with Integrity Protection and More for a high-level description of

SEV-SNP and the features it provides.

1.3 Intended Audience

The intended audience of this document is hypervisor developers, kernel developers, and security

architects. Hypervisor developers supporting SNP will need to use the firmware functions

described herein for VM lifecycle management. Additionally, kernel developers and security

architects will need to use the guest message functions to perform secure attestation, key

management, and migration.

1.4 References

Table 1. External References

Reference Document

APM AMD64 Architecture Programmer’s Manual, Volumes 1–5,
publication #40332

PPR Processor Programming Reference

SNP-WP AMD SEV-SNP: Strengthening VM Isolation with Integrity
Protection and More

SEV Secure Encrypted Virtualization API Specification, publication
#55766

KDS-VCEK Versioned Chip Endorsement Key (VCEK) Certificate and KDS
Interface Specification, publication #57230

 17

[Public]

Chapter 2 Data Structures and Encodings

This section describes data structures that are common to multiple commands.

2.1 Metadata Entries (MDATA)

Table 2 describes a metadata entry within a metadata page. Metadata entries describe security

attributes of pages that have been swapped out. When pages are swapped back in, the firmware

uses the metadata entries to ensure the SNP security properties are not violated.

Table 2. Layout of the MDATA Structure

Byte
Offset

Bits Name Description

00h 63:0 SOFTWARE_DATA Software-available data supplied by the hypervisor.

08h 63:0 IV Initialization vector used to encrypt the swapped-out page.

10h 127:0 AUTH_TAG Authentication tag of the swapped-out page.

20h 63:12 GPA Bits 63:12 of the gPA of the swapped-out page.

11:5 - Reserved.

4 PAGE_SIZE Indicates the size of the swapped-out page. If set to 0, the
page is 4 KB. If set to 1, the page is 2 MB.

3 METADATA Indicates that the swapped-out page is a metadata page.

2 VMSA Contains RMP.VMSA of the page at the time the page was
swapped out.

1 PAGE_VALIDATED Contains RMP.Validated of the page at the time the page
was swapped out.

0 VALID Indicates this metadata entry is valid.

28h 31:24 VMPL3 The permission mask RMP.VMPL3 of the page at the time
the page was swapped out.

23:16 VMPL2 The permission mask RMP.VMPL2 of the page at the time
the page was swapped out.

15:8 VMPL1 The permission mask RMP.VMPL1 of the page at the time
the page was swapped out.

7:0 VMPL0 The permission mask RMP.VMPL0 of the page at the time
the page was swapped out.

2Ch 31:0 - Reserved.

30h 63:0 - Reserved.

38h 63:0 - Reserved.

 18

[Public]

2.2 TCB_VERSION

The TCB_VERSION is a structure containing the security version numbers of each component in

the trusted computing base (TCB) of the SNP firmware. A TCB_VERSION is associated with

each image of firmware. The TCB_VERSION structure is described in Table 3.

Table 3. Structure of the TCB_VERSION

Bits Field Description

63:56 MICROCODE • Lowest current patch level of all cores

55:48 SNP • Version of the SNP firmware

• Security Version Number (SVN) of SNP firmware

47:16 - • Reserved

15:8 TEE • Current PSP OS version

• SVN of PSP operating system

7:0 BOOT_LOADER • Current bootloader version

• SVN of PSP bootloader

2.3 VCEK

The Versioned Chip Endorsement Key (VCEK) is an attestation signing key derived from chip-

unique secrets and a TCB_VERSION. The VCEK can be computed for any TCB_VERSION less

than or equal to the CurrentTcb (see Section 3.3 for details), allowing for migrations of secrets

from previous version to the current version.

2.4 Invalid Physical Address (PADDR_INVALID)

The value PADDR_INVALID represents an invalid value for sPA and gPA fields in this

specification. PADDR_INVALID is defined as two’s-complement –1 with a width of the field to

which it is assigned. Note that 0h is a valid sPA and gPA.

 19

[Public]

Chapter 3 Platform Management

Before SNP VMs can be launched, the platform must be properly configured and initialized.

Platform initialization is accomplished via the SNP_INIT command, which verifies that SNP has

been enabled across all CPUs and configured correctly. Further, the platform contains a state

machine that restricts which commands may be executed at certain times throughout execution.

3.1 Feature Detection and Enablement

On initialization, the SNP_INIT command will check that the SEV-SNP feature is available and

globally enabled. See [APM] Volume 2, Section 15.36, for information on feature detection and

enablement.

3.2 Platform State Machine

The SNP firmware may exist in two states: UNINIT and INIT. Certain commands may be

executed only in each of these states.

Table 4. Commands Available in Each State

State Encoding Description Allowed Platform Commands

UNINIT 0h The platform is uninitialized. This is
the reset state of the PSP firmware.

SNP_INIT
SNP_PLATFORM_STATUS
DOWNLOAD_FIRMWARE
GET_ID

INIT 1h The platform is initialized All SNP commands except
SNP_INIT,
DOWNLOAD_FIRMWARE

3.3 Firmware Updates

Each SNP firmware is associated with a firmware version that comprises a major version, minor

version, and build number. When loaded, the firmware tracks its firmware version with

CurrentVersion. SNP firmware images are also associated with a security version number (SVN).

Together with the SVNs of the other TCB components, loaded firmware tracks its current

TCB_VERSION in CurrentTcb.

The hypervisor may request to replace the current firmware image with a different firmware image

using the DOWNLOAD_FIRMWARE_EX command. This is usable when the SNP firmware is in

either the UNINIT or INIT states, but SEV-legacy firmware must be in the UNINIT state. When

the new firmware image is installed, the CurrentVersion and CurrentTcb are updated with the new

firmware image’s version and SVN.

 20

[Public]

The firmware supports provisional updates such that the hypervisor can roll back to previously

loaded firmware if it chooses. To accomplish this, the firmware tracks the committed firmware

version and TCB_VERSION in the CommittedVersion and CommittedTcb fields. When

CommittedVersion is equal to CurrentVersion, the currently loaded firmware is committed. When

CommittedVersion is less than CurrentVersion, the currently loaded firmware is provisional.

Provisional firmware execution is identical to committed firmware execution except that the

TCB_VERSION used to derive the VCEK for key derivation and attestation reports never exceeds

the CommittedTcb.

When executing provisionally installed firmware images, the hypervisor may choose to commit or

roll back. To commit, the hypervisor calls SNP_COMMIT, which updates CommittedVersion and

CommittedTcb to CurrentVersion and CurrentTcb, respectively. To roll back, the hypervisor

invokes DOWNLOAD_FIRMWARE_EX with the image of the previously committed firmware

version.

As an example, consider a platform that boots with version 1.51.1 stored in flash. The hypervisor

may provisionally install an image of version 1.51.21 with DOWNLOAD_FIRMWARE_EX. At

this point, CurrentVersion is 1.51.21 and CommittedVersion is 1.51.1. The hypervisor may either

invoke SNP_COMMIT to set CommittedVersion to 1.51.21, or the hypervisor may invoke

DOWNLOAD_FIRMWARE_EX with the firmware image of 1.51.1 to roll back. The firmware

will reject any firmware update other than to 1.51.1. After committing to 1.51.21, the hypervisor

may provisionally install newer versioned firmware.

Each firmware image is also associated with a minimum version from which it can live upgrade

called MinUpgradeFrom. DOWNLOAD_FIRMWARE_EX uses this number to determine if the

current firmware version is too far in the past from the provided firmware image to be capable of

changing with SNP guests running. In this scenario, the hypervisor must invoke

SNP_SHUTDOWN before executing DOWNLOAD_FIRMWARE_EX to return the firmware to

UNINIT. MinUpgradeFrom is set per image based on the specific nature of the upgrade and

technical limitations of upgrading from distant past versions.

Guest context pages are versioned with the last firmware version that touched them. If

CurrentVersion is different from the latest firmware version that touched the guest context page,

the firmware will upgrade or downgrade the context page. A command that triggers an upgrade of

the guest context page to a provisional version of the firmware may fail by returning

UPDATE_FAILED. A failed update does not alter the guest context page.

If a guest context page is updated to a provisional firmware version, then updating the context

page back to the committed version after a rollback will always succeed.

Hypervisors should ensure that all guest context pages have been successfully updated before

committing a firmware image. If one of the updates fails, the hypervisor should roll back to the

committed version and roll back any guest context pages that were updated to the provisional

version as well.

 21

[Public]

3.4 Reported TCB

The firmware maintains a TCB_VERSION called the ReportedTcb. ReportedTcb is used to derive

the VCEK that signs the attestation report.

ReportedTcb is initially set to the CurrentTcb. When SNP_CONFIG is invoked with a non-zero

REPORTED_TCB parameter, ReportedTcb is set to the provided value. ReportedTcb is reset to

CurrentTcb either on SNP_COMMIT or if SNP_CONIFG is provided a zero REPORTED_TCB.

ReportedTcb can be used by hypervisors to decouple installation of a new firmware image from

the use of its new VCEK. A hypervisor can install a new firmware image and then set

ReportedTcb via SNP_CONFIG so that all attestation reports are still signed with the VCEK. This

allows a hypervisor the opportunity to ensure that guest owners have retrieved the VCEK

certificates before using the new VCEK.

3.5 Chip Key Masking

In version 1.53, the firmware maintains a flag, MaskChipKey, that controls use of the VCEK in

guest attestation and guest key derivation. MaskChipKey initializes to 0 at SNP_INIT_EX and can

be set by the hypervisor using the SNP_CONFIG command.

When MaskChipKey is 1, the attestation report will not be signed and will contain zeroes instead

of a signature. Also, MaskChipKey prevents the guest from using the VCEK in guest key

derivations.

3.6 Versioned Loaded Endorsement Key

A Versioned Loaded Endorsement Key (VLEK) is a versioned Elliptic Curve Digital Signature

Algorithm (ECDSA) P-384 signing key certified by AMD and used by SNP firmware to sign

attestation reports as an alternative to the VCEK. While the VCEK is derived from a chip-unique

seed, the VLEK is derived from a seed maintained by the AMD Key Derivation Service (KDS).

Each Cloud Service Provider (CSP) that enrolls with AMD has dedicated VLEK seeds.

The CSP requests from the KDS the VLEK hashstick for a given TCB and machine identified by

CHIP_ID. The KDS calculates the hashstick based on the CSP’s VLEK seed and the request’s

TCB and then wraps the VLEK hashstick with a transport key derived from a chip-unique secret.

The CSP then provisions the platform with the wrapped VLEK hashstick using the

SNP_VLEK_LOAD command.

With the VLEK hashsticks loaded, the firmware can use the VLEK as a drop-in replacement for

the VCEK in all use cases. The hypervisor can restrict guests to use only the VLEK with the

VCEK_DIS flag in SNP_LAUNCH_FINISHSIH. Otherwise, guests can select whether to use the

VLEK or the VCEK in key derivation and attestation report signing.

 22

[Public]

The AMD KDS will provide an interface to retrieve the VLEK certificate for a CSP at a specified

TCB version. The VLEK certificates authenticate the VLEK as owned by AMD.

VLEK functionality is introduced in version 1.54.

3.7 Feature Discovery

The FEATURE_INFO command provides host and guests a programmatic means to learn about

the supported features of the currently loaded firmware. Host software invokes FEATURE_INFO

with an index, and the firmware returns four 8-byte values containing feature information

associated with that index. The format of each index is described later in this section.

FEATURE_INFO leverages the same mechanism as the CPUID instruction. Instead of using the

CPUID instruction to retrieve Fn8000_0024, software can use FEATURE_INFO. The input to

feature info includes ECX_IN which selects the CPUID subfunction. For instance,

Fn8000_0024_x02 is retrieved by invoking FEATURE_INFO with ECX_IN set to 2. Note that the

CPUID instruction will return all zeroes for Fn8000_0024.

The hypervisor can provide Fn8000_0024values to the guest via the CPUID page in

SNP_LAUNCH_UPDATE. As with all CPUID output recorded in that page, the hypervisor can

filter Fn8000_0024. The firmware will examine Fn8000_0024 and apply its CPUID policy.

The FEATURE_INFO command itself is present when bit 3 of offset 8h of the output buffer of

SNP_PLATFORM_STATUS is 1.

The contents of Fn8000_0024 are described in Table 5.

 23

[Public]

 Table 5. Contents of Each Subfunction of Fn8000_0024

Function Bits Field Description

Fn8000_0024_EAX_x00 31:0 MaxIndex The largest subfunction that
FEATURE_INFO supports.

Fn8000_0024_EBX_x00 31:2 - Reserved.

1 SevTio SEV TIO commands [SEV-TIO].

0 SevLegacy SEV legacy commands [SEV].

Fn8000_0024_ECX_x00 31:7 - Reserved.

6 EccMemReporting Error correcting memory attestation.

5 CxlAllowPolicy CXL guest policy requirement.

4 Aes256XtsPolicy AES 256 XTS guest policy requirement.

3 CiphertextHiding Cipher text hiding support.

2 RaplDis RAPL disable support. See SNP_INIT_EX.

1 X86SnpShutdown X86_SNP_SHUTDOWN parameter of
SNP_SHUTDOWN_EX.

0 Vlek VLEK support.

Fn8000_0024_EDX_x00 31:0 - Reserved.

Fn8000_0024_EAX_x01 31:9 - Reserved.

8 MsgTscInfoReq MSG_TSC_INFO_REQ guest message.

7 MsgAbsorbNomaReq MSG_ABSORB_NOMA_REQ guest
message.

6 MsgVmrkReq MSG_VMRK_REQ guest message.

5 MsgAbsorbReq MSG_ABSORB_REQ guest message.

4 MsgImprotReq MSG_IMPORT_REQ guest message.

3 MsgExportReq MSG_EXPORT_REQ guest message.

2 MsgReportReq MSG_REPORT_REQ guest message.

1 MsgKeyReq MSG_KEY_REQ guest message.

0 MsgCpuidReq MSG_CPUID_REQ guest message.

Fn8000_0024_EBX_x01 31:0 - Reserved.

Fn8000_0024_ECX_x01 31:0 - Reserved.

Fn8000_0024_EDX_x01 31:0 - Reserved.

 24

[Public]

Chapter 4 Guest Management

The lifecycles of SNP-enabled guests are managed through the guest management ABI functions.

SNP-enabled guests are identified via their guest context pages and may be launched, attested,

migrated, etc., via the appropriate ABI calls. An SNP-enabled guest is created by first allocating a

context page and then activating the guest on a specific ASID and adding an initial set of plaintext

pages into the guest address space. After the guest has begun execution, it may request attestation

reports and derived keys, and it may assist in scenarios such as live migration directly through a

trusted channel with the PSP firmware.

4.1 Guest Context

The guest context (represented as GCTX throughout this specification) contains all the

information, keys, and metadata associated with the guest that the firmware tracks to implement

the SEV and SNP features. The guest context is specified in Table 6.

Table 6. Fields of the Guest Context (GCTX)

Field Migrated? Description

ASID No The ASID that the guest’s keys are installed on, if at all.

State Yes The current state of the guest.

MsgCount0 Yes The number of guest messages that the firmware has sent to or
received from VMPL0.

MsgCount1 Yes The number of guest messages that the firmware has sent to or
received from VMPL1.

MsgCount2 Yes The number of guest messages that the firmware has sent to or
received from VMPL2.

MsgCount3 Yes The number of guest messages that the firmware has sent to or
received from VMPL3.

Policy Yes The guest’s security policy.

MaReportId No The attestation report ID of the migration agent of the guest, if the
guest is associated with a migration agent.

MaReportIdValid No Indicates if the MaReportId is valid.

LD Yes The launch digest context used to measure the guest during the launch
command flow.

OEK Yes The offline encryption key associated with this guest.

OekIvCount Yes The IV counter used for encryption with the OEK.

VEK No The VM encryption key used to encrypt the guest’s memory.

VMPCK0, VMPCK1,
VMPCK2, VMPCK3

Yes The VM communication keys.

 25

[Public]

Field Migrated? Description

VMRK Yes The VM root key provided by the MA at guest launch or guest import.

HostData Yes Host data provided by the hypervisor during guest launch. This firmware
includes this value in all attestation reports for this guest.

IDBlockEn Yes Indicates whether an ID block was associated with the guest.

IDBlock Yes The associated ID block, if any.

IDKeyDigest Yes The ID key digest, if any.

AuthorKeyEn Yes Indicates whether an Author key signed the ID key.

AuthorKeyDigest Yes The Author key digest, if any.

VcekDis Yes Indicates that the VCEK is disabled for this guest.

ReportID Yes Attestation report ID.

RootMDEntry Yes The root metadata entry.

IMD Yes The measurement of the Incoming Migration Image (IMI).

IMIEn No Indicates whether the current launch flow is an IMI migration or not.
Used only when the guest is in the GSTATE_LAUNCH state.

GOSVW Yes Guest OS visible workarounds. Provided in SNP_LAUNCH_START by the
hypervisor.

DesiredTscFreq Yes Desired TSC frequency of the guest in kHz.

PspTscOffset Yes Offset applied to guest TSC reads.

LaunchTcb Yes The CurrentTcb of the firmware at the time the guest was created,
imported, or absorbed.

LastAccessVersion No The CurrentVersion of the firmware that last updated or created this
guest context page.

The firmware stores the guest context in a page donated by the hypervisor. The hypervisor donates

the page through the SNP_GCTX_CREATE command and reclaims it with the

SNP_PAGE_RECLAIM command. Because the guest context page is in the Context state (see

Chapter 5 for details on the page state machine), the hypervisor cannot write to the page. The

firmware prevents the hypervisor from reading from the page by encrypting the guest context.

4.1.1 Live Update

The DOWNLOAD_FIRMWARE_EX command allows the hypervisor to replace the existing

firmware without affecting SNP guests. This command will update (that is, downgrade or

upgrade) the internal state of the SNP firmware immediately. In contrast, guest context pages will

be updated during the next command or guest message that takes the guest context page.

If the hypervisor issues a second DOWNLOAD_FIRMWARE_EX without triggering an update of

a guest’s context page, the guest context page may become irrecoverable and all commands and

guest messages taking the guest’s context page may fail except SNP_DECOMMISSION.

Hypervisors can use SNP_GUEST_STATUS on guest context pages to force an update.

 26

[Public]

If a guest context page fails to update, the command or guest message will return the status code

UPDATE_FAILED. On success, the CurrentVersion of the guest context page is updated to the

current version of the firmware.

See Section 3.3 for further information on live updates.

4.2 Guest State Machine

The commands that can be successfully issued for a guest are restricted according to an internal

guest state machine. The guest state machine ensures that commands are executed in the correct

order. The current guest state is stored in GCTX.State.

Table 7. Guest State Definition

State Encoding Description Allowed Guest Commands

GSTATE_INIT 0h The initial state of the
guest.

SNP_LAUNCH_START
SNP_GUEST_REQUEST (VM_IMPORT)
SNP_PAGE_RECLAIM
SNP_DECOMMISSION

GSTATE_LAUNCH 1h The guest is being
launched.

SNP_GCTX_CREATE
SNP_LAUNCH_UPDATE
SNP_LAUNCH_FINISH
SNP_ACTIVATE
SNP_DECOMMISSION
SNP_PAGE_RECLAIM
SNP_PAGE_MOVE
SNP_PAGE_SWAP_OUT
SNP_PAGE_SWAP_IN
SNP_PAGE_UNSMASH

GSTATE_RUNNING 2h The guest is currently
running.

SNP_ACTIVATE
SNP_DECOMMISSION
SNP_PAGE_RECLAIM
SNP_PAGE_MOVE
SNP_PAGE_SWAP_OUT
SNP_PAGE_SWAP_IN
SNP_PAGE_UNSMASH
SNP_GUEST_REQUEST

 27

[Public]

Table 8. Guest State Transitions

Command Start State End State

SNP_LAUNCH_START GSTATE_INIT GSTATE_LAUNCH

SNP_LAUNCH_FINISH GSTATE_LAUNCH GSTATE_RUNNING

VM_ABSORB GSTATE_LAUNCH GSTATE_RUNNING

VM_IMPORT GSTATE_INIT GSTATE_RUNNING

4.3 Guest Policy

The firmware associates each guest with a guest policy that the guest owner provides. The

firmware restricts what actions the hypervisor can take on this guest according to the guest policy.

The policy also indicates the minimum firmware version to for the guest.

The guest owner provides the guest policy to the firmware during launch. The firmware then binds

the policy to the guest. The policy cannot be changed throughout the lifetime of the guest. The

policy is also migrated with the guest and enforced by the destination platform firmware.

The guest policy is an 8-byte structure with the fields shown in Table 9.

Table 9. Guest Policy Structure

Bit(s) Name Description

63:25 - Reserved. MBZ.

24 CIPHERTEXT_HIDING 0: Ciphertext hiding may be enabled or disabled.

1: Ciphertext hiding must be enabled.

23 RAPL_DIS 0: Allow Running Average Power Limit (RAPL).

1: RAPL must be disabled.

22 MEM_AES_256_XTS 0: Allow either AES 128 XEX or AES 256 XTS for
memory encryption.

1: Require AES 256 XTS for memory encryption.

21 CXL_ALLOW 0: CXL cannot be populated with devices or
memory.

1: CXL can be populated with devices or memory.

20 SINGLE_SOCKET 0: Guest can be activated on multiple sockets.

1: Guest can be activated only on one socket.

19 DEBUG 0: Debugging is disallowed.

1: Debugging is allowed.

18 MIGRATE_MA 0: Association with a migration agent is
disallowed.

1: Association with a migration agent is allowed.

17 - Reserved. Must be one.

 28

[Public]

Bit(s) Name Description

16 SMT 0: SMT is disallowed.

1: SMT is allowed.

15:8 ABI_MAJOR The minimum ABI major version required for this
guest to run.

7:0 ABI_MINOR The minimum ABI minor version required for this
guest to run.

The policy bits for a given guest are referenced with the format POLICY.<FLAG_NAME>. For

instance, the flag indicating that SMT is allowed is referred to as POLICY.SMT.

4.4 Guest Activation

The processor associates each guest memory transaction with the Address Space Identifier (ASID)

specified in the guest’s VMCB. A guest’s ASID selects the key used by the memory controller to

encrypt that guest’s memory. The hypervisor must inform the firmware with which ASID it will

execute the guest using the VMRUN instruction. The firmware then installs the guest’s VEK in

the key slot associated with that ASID. To inform the firmware of the guest-ASID binding, the

hypervisor calls SNP_ACTIVATE.

All guest data in the caches and data fabric write buffers are unencrypted. Guests with different

ASIDs have logically separate caches. However, guests with the same ASID share cache lines. To

ensure that a previously decommissioned guest’s data are not accessible to a new guest,

SNP_ACTIVATE will require that the caches are invalidated and data fabric write buffers are

flushed. In this case, the hypervisor must first invoke WBINVD on all cores. Following the

WBINVD completion, the hypervisor must invoke the SNP_DF_FLUSH command. This ensures

that no plaintext data owned by another guest exist in the caches or in the write buffers before

activation.

The hypervisor can activate a guest on a subset of core complexes using SNP_ACTIVATE_EX. If

a guest is activated on a core complex, the hypervisor may execute the guest with that ASID on

only that core complex. Note that if POLICY.SINGLE_SOCKET is set for a guest executing on a

system with more than one socket populated, SNP_ACTIVATE will always fail since it activates

the guest on all sockets. Instead, the hypervisor can use SNP_ACTIVATE_EX to activate the

guest on the core complexes of a single socket.

Guest activation must always occur before any memory is assigned to the guest by the hypervisor

using the RMPUPDATE instruction.

4.5 Launching a Guest

The hypervisor starts an SNP guest by launching the guest. The hypervisor uses the commands

SNP_LAUNCH_START, SNP_LAUNCH_UPDATE, and SNP_LAUNCH_FINISH to launch the

guest.

 29

[Public]

SNP_LAUNCH_START begins the launch process. Through this command, the firmware

initializes a cryptographic digest context used to construct the measurement of the guest. If the

guest is expected to be migrated, SNP_LAUNCH_START also binds a Migration Agent (MA) to

the guest. (See 4.11 for further information about migration.)

SNP_LAUNCH_UPDATE inserts data into the guest’s memory. The firmware extends the

cryptographic digest context with the data to bind the measurement of the guest with all operations

that the hypervisor took on the guest’s memory contents.

SNP_LAUNCH_UPDATE can insert two special pages into the guest’s memory: the secrets page

and the CPUID page. The secrets page contains encryption keys used by the guest to interact with

the firmware. Because the secrets page is encrypted with the guest’s memory encryption key, the

hypervisor cannot read the keys. The CPUID page contains hypervisor-provided CPUID function

values that it passes to the guest. The firmware validates these values to ensure the hypervisor is

not providing out-of-range values.

SNP_LAUNCH_FINISH finalizes the cryptographic digest and stores it as the measurement of the

guest at launch. This measurement is a critical part of the guest’s attestation report produced by

the firmware. This command also takes identity keys to be associated with the guest used as part

of the attestation report. For further information about the identity block, see 4.6. For attestation,

see 4.9.

After SNP_LAUNCH_FINISH completes successfully, the hypervisor may invoke VMRUN on

the x86 CPU to execute the guest.

4.6 Identity Block

As part of the input to the SNP_LAUNCH_FINISH command, the hypervisor may provide an

optional data structure called the identity block. The identity block contains the expected launch

digest of the guest, information uniquely identifying the guest, the guest policy bitfield, and a

signature by the guest owner. The provided launch digest is checked against the computed launch

digest, and the provided policy is checked against the policy used to launch the guest. The

identifying information is stored in the guest context to be used during key derivation and

attestation. Finally, the firmware will check that the signature is valid.

The firmware stores the keys used to sign the identity block in the guest context. Attestation

reports for the guest contain the public keys to reflect the binding of the guest to the guest owner.

A guest owner that sees its public keys in the attestation report knows that the launch process used

an identity block provided by that guest owner to validate the guest.

4.7 Decommissioning a Guest

The hypervisor may decommission a guest by calling SNP_DECOMMISSION on the guest

context page. The firmware prevents the hypervisor from running a decommissioned guest by

marking the guest’s ASID as unusable. Further, the firmware transitions the guest context page to

a Firmware page, thus rendering the context page unusable.

 30

[Public]

4.8 Guest Messages

During the launch sequence, a special secrets page may be inserted that contains VM Platform

Communication Keys (VMPCKs) that may be used by the guest to send and receive secure

messages to the PSP. Guests encrypt messages as described in the SNP_GUEST_REQUEST

function before presenting the encrypted payload to the hypervisor. The hypervisor in turn calls

SNP_GUEST_REQUEST and returns the result (also encrypted with the VMPCK) to the guest.

Guest messages are used for getting attestation reports and derived keys, handling migration, and

other uses.

4.9 Remote Attestation

Guests may ask the PSP to generate an attestation report on their behalf via an

SNP_GUEST_REQUEST call. The guest may ask for an attestation report at any time, and

multiple reports can be generated. When the guest asks for a report, it supplies 512 bits of arbitrary

data to be included in the report. The resulting report will contain this data, identity information

about the guest (from the launch sequence), migration, and policy information. The report is

signed by VCEK, a chip-unique key specific to the current TCB version.

Guests may supply attestation reports to third parties to establish trust. The third party should

verify the authenticity of the report based on its signature. A successful signature verification

proves that the 512 bits of guest data supplied in the report came from the guest whose identity is

described. For instance, this may be used to securely associate a public key with a particular VM

instance.

4.10 Guest Keys

Guests may ask the PSP to derive keys for them based on various information via an

SNP_GUEST_REQUEST call. Keys are either rooted in a VM Root Key (VMRK) that is supplied

as part of the launch flow (and migrates with the guest) or in the VCEK, which is machine

specific. When asked for a key, the PSP uses a key derivation function (KDF) to generate the

requested key based on the root value and additional parameters. Certain pieces of guest

information are always mixed into the derived key while others may be optionally mixed when

requested by the guest. Keys may be used to seal information on the identity of the guest or for

other purposes.

4.11 Migration

Migration is supported in the SNP architecture through Migration Agents (MAs). A Migration

Agent is itself an SNP VM that is bound to the primary VM during the launch process. A VM may

be associated with only a single MA, but a single MA may manage multiple primary VMs. The

MA is responsible for supplying the VMRK during the launch process and for enforcing the guest

migration policy.

 31

[Public]

The MA is considered part of the guest VM’s TCB. Consequently, when a guest generates an

attestation report, the report includes information about the MA associated with the guest (if one

exists). A third party verifying the attestation report of a guest should also verify the report of the

guest’s MA.

The hypervisor may migrate a guest with or without the assistance of the guest. Section 4.12

describes how a hypervisor migrates with the assistance of the guest. When the hypervisor wishes

to migrate without the assistance of the guest, it first swaps all guest memory and associated

metadata pages using the SNP_PAGE_SWAP_OUT command. (See Chapter 5 for additional

details.) Swapped pages are encrypted using the Offline Encryption Key (OEK). Because each

swapped page must be associated with a metadata entry, eventually there will be a single metadata

page remaining after all other pages are swapped. When the hypervisor swaps this page, it can

choose to store its metadata entry in the special RootMDEntry field in the guest context.

After all the guest memory is swapped, the hypervisor asks the MA to perform the VM_EXPORT

function via SNP_GUEST_REQUEST. This function sends the guest’s context page to be

migrated to the MA via an encrypted channel. At this point, the primary VM is no longer

runnable.

The MA sends the VM context to a trusted location, such as an MA on a new machine. The

mechanism that the MA uses to transfer this data and enforce security on it is outside the scope of

this document.

In a typical scenario, an MA will have started on the destination machine to receive the guest

context information. After the hypervisor creates a guest context (as described earlier), it may ask

the MA to perform the VM_IMPORT function (via SNP_GUEST_REQUEST), which installs the

provided guest context on the new machine. At this point, the hypervisor may proceed with

swapping in guest memory (via SNP_PAGE_SWAP_IN) and begin executing the guest.

The use of an MA is optional, and SNP guests may be started without an MA. Guests that are

started without an MA may not be exported and therefore cannot be migrated without shutting

themselves down.

4.12 Guest-Assisted Migration

If the guest has an Initial Migration Image (IMI), the guest may assist the hypervisor during the

migration process to increase migration throughput. An IMI is software measured during the guest

launch process that can reconstruct a guest on the receiving platform from pages it receives from

the sending guest.

On launch, a subset of pages may be marked as part of the IMI. The launch process measures the

IMI separately into the Initial Migration Digest (IMD) and is stored in the guest context. To start a

migration operation, the cloud provider performs a modified launch flow on the receiving

platform. This launch flow differs from normal launch in two important ways:

• Only the IMI pages are launched via SNP_LAUNCH_UPDATE

 32

[Public]

• SNP_LAUNCH_FINISH is replaced by the absorb guest message

The absorb guest message takes a guest context exported by the sending machine using the export

guest message. The absorb message differs from the import message mainly by overwriting the

IMI context with the incoming guest context. However, the absorb message requires that the

launch digest of the IMI matches the IMD of the migrated guest. This ensures that the receiving

IMI is exactly the IMI that was launched with the guest.

When the guest is exported on the sending platform for the purpose of guest-assisted migration,

the guest remains runnable. This allows the guest to send its own memory contents to the IMI.

 33

[Public]

Chapter 5 Page Management

5.1 Page Security Attributes

The Reverse Map Table (RMP) is a structure that resides in DRAM and maps system physical

addresses (sPAs) to guest physical addresses (gPAs). There is only one RMP for the entire system,

which is configured using x86 model specific registers (MSRs). See [APM] volume 2,

Section 15.36, for details.

Each RMP entry is indexed by the sPA the page. The RMP, combined with all guests’ nested page

tables, creates a global one-to-one mapping between sPAs and gPAs. That is, the RMP ensures

that a page cannot be mapped into multiple guests at once, and it cannot be mapped multiple times

into a single guest at once.

The RMP also contains various security attributes of each that are managed by the hypervisor

through hardware-mediated and firmware-mediated controls. The fields of an RMP entry are

described in [APM] volume 2, Section 15.36.3.

5.2 Page States

A page’s state is completely determined by the fields in the page’s RMP entry. Specifically, the

page state depends on the Assigned, Validated, ASID, Immutable, GPA, and VMSA RMP entry

fields. Table 10 enumerates and defines each of the page states. Note that (-) in a cell indicates that

the page state is not dependent on that field.

Table 10. Page State Definitions

Page State Assigned Validated ASID Immutable GPA VMSA

Hypervisor 0 0 0 0 - -

HV-fixed 0 0 0 1 - -

Reclaim 1 0 0 0 - -

Firmware 1 0 0 1 0 0

Context 1 0 0 1 0 1

Metadata 1 0 0 1 >0 -

Pre-Guest 1 0 >0 1 - -

Guest-Invalid 1 0 >0 0 - -

Pre-Swap 1 1 >0 1 - -

Guest-Valid 1 1 >0 0 - -

Default See discussion below.

A Hypervisor page is used by the hypervisor for its normal execution. SNP places no restrictions

on the use of Hypervisor pages for purposes outside of managing SNP guests. A Default page is a

 34

[Public]

page that does not have an RMP entry. Pages do not have an RMP entry if the sPA indexes to an

entry past the end of the RMP table—that is, past RMP_END. Default pages have the same access

permissions as a Hypervisor page but cannot be transitioned to any other page state.

A HV-fixed page is used by the hypervisor for its normal execution. It also may be used with other

SoC services, such as the non-SNP commands to the ASP. The RMPUPDATE instruction cannot

create HV-fixed pages. Instead, software should use SNP_PAGE_SET_STATE or SNP_INIT_EX

with a list of the ranges that should be transitioned to HV-fixed. Once in the HV-fixed state, a

page remains there until the RMP is reinitialized.

Pages in the Firmware state are owned by the firmware. Because the RMP.Immutable bit is set,

the hypervisor cannot write to Firmware pages nor alter the RMP entry with the RMPUPDATE

instruction. A Firmware page is used by the hypervisor to donate writeable memory to the

firmware to operate on. Such pages may be used to output data to the hypervisor or to transition

into a special page state, such as Metadata pages or Context pages.

When an immutable page is returned to the hypervisor by the firmware, the page is transitioned

into the Reclaim page state. The Reclaim page state can then be transitioned to other

nonimmutable pages by the hypervisor using RMPUPDATE.

A Context page is a firmware-owned page that contains all context information of a guest. The

format of the Context page is implementation specific. The content of a Context page is encrypted

and integrity protected so that the hypervisor cannot read or write to it.

A Metadata page is a firmware-owned page that contains the metadata of a swapped-out page.

Metadata pages have a well-defined format. The firmware converts a Firmware page into a

Metadata page by making the GPA field non-zero.

A Guest-Invalid page has been donated to the guest but not yet validated by the guest. If the

hypervisor wishes to have the firmware operate on them, the hypervisor transitions the page into a

Pre-Guest page.

Similarly, a Guest-Valid page has been donated to the guest, and the guest has validated the page.

If the hypervisor wishes to have the firmware operate on them, the hypervisor transitions the page

into a Pre-Swap page.

5.3 Page State Transitions

The only ways in which a page can transition between states are by invoking the RMPUPDATE

and PVALIDATE instructions or by issuing firmware commands described in this specification.

The hardware and firmware mediate all page state transitions to ensure that only secure state

transitions occur.

 35

[Public]

ReclaimHypervisor Firmware

Context MetadataPre-Guest

Guest-
Invalid

Pre-Swap

Guest-Valid

SNP_PAGE_MOVE
SNP_PAGE_RECLAIM

SNP_LAUNCH_UPDATE
SNP_PAGE_MOVE

SNP_PAGE_SWAP_IN

SNP_PAGE_SWAP_OUT

SNP_PAGE_RECLAIM
SNP_GCTX_CREATE

SNP_DECOMMISSION
SNP_PAGE_MOVE

SNP_PAGE_MD_INIT
SNP_PAGE_SWAP_IN

SNP_PAGE_MOVE
SNP_PAGE_SWAP_OUT

SNP_PAGE_RECLAIM

SNP_PAGE_RECLAIM

RMPUPDATE

PVALIDATE
Firmware Commands

Legend

Figure 1. SNP Page State Machine

Red edges in Figure 1 represent hypervisor actions. Blue edges represent guest actions. Green

edges represent firmware commands specified in this document. Note that the some transitive

RMPUPDATE edges are omitted for clarity.

Actions that trigger a page state transition are depicted in Figure 1. The following subsections

describe the transitions in further detail. Notably, the following subsections do not describe the

Default page state because Default pages cannot transition to other page states.

5.3.1 RMPUPDATE

The RMPUPDATE instruction may be used by the hypervisor to alter the RMP entries of pages.

This allows the hypervisor to directly alter the state of most pages.

Notably, RMPUPDATE can invalidate a page but cannot validate a page. This means that the

hypervisor cannot produce pages in the Pre-Swap or Guest-Valid states without assistance from a

guest or from the PSP firmware.

Also, RMPUPDATE cannot affect the page state of an immutable page. A hypervisor can produce

pages in the Pre-Guest or Pre-Swap states with RMPUPDATE. However, once in those states, the

hypervisor must rely on the PSP firmware to transition them.

5.3.2 PVALIDATE

The PVALIDATE instruction may be used by a guest to alter the Validated flag of a page. This

allows a guest to signal to the hardware and firmware that the page at a specified gPA is

validated—that is, the guest expects the hardware and firmware to protect the integrity of the page.

 36

[Public]

Because PVALIDATE can be executed only within the guest, PVALIDATE can operate only on

pages addressable within the guest’s physical address space. Further, Pre-Guest and Pre-Swap

pages have their RMP.Immutable flags equal to 1, which prevents the guest from transitioning

them.

5.3.3 Page Management Commands

The hypervisor can invoke the commands described in this specification to manage memory

without violating the security provided by SNP.

The hypervisor must perform these actions using RMPUPDATE. This restriction allows

RMPUPDATE to mediate all reassignments of pages so that the appropriate TLB and cache

operations happen.

5.3.4 Launch Commands

The SNP_GCTX_CREATE command transitions a page from the Firmware state to the Context

state. This is the only way a Context page can be created.

The launch commands, specifically SNP_LAUNCH_UPDATE, take unencrypted guest pages and

convert them into encrypted pages. In doing so, this command also transitions the launched pages

to Guest-Valid pages.

5.3.5 Guest Request Commands

Neither the SNP_GUEST_REQUEST command itself nor any of the guest messages alter the state

of the pages passed to it.

5.3.6 Platform Commands

SNP_INIT initializes the state of all pages within the system by initializing the RMP. Other

platform commands do not alter the state of any pages.

5.3.7 SEV Legacy Commands

The behavior of the SEV-legacy commands is altered when the SNP firmware is in the INIT state.

In this case, the SEV-legacy commands require any page that the SEV-legacy command writes to

be a Firmware or Default page.

When the RMP has been initialized, as reported by SNP_PLATFORM_STATUS, any invocation

of the SEV-legacy commands INIT and INIT_EX require that TMR_PADDR must be 2 MB

aligned instead of 1 MB, and TMR_LENGTH must be 2 MB instead of 1 MB.

When SNP is in the INIT state, the SEV-legacy command INIT will check that the buffer

addressed by the TMR_PADDR parameter resides entirely inside Firmware pages.

 37

[Public]

5.4 Metadata Entries

A metadata entry contains security attributes associated with a swapped-out page. A Metadata

page can describe three types of swapped-out pages: Data pages, Metadata pages, or VMSA

pages. Each page type determines how the metadata entry is constructed.

Table 11 describes the contents of a metadata entry. All references to RMP fields or addresses

refer to the attributes of the page at the time the hypervisor swapped it out.

Table 11. Contents of Metadata Entries for Swapped-Out Data Pages, VMSA Pages, and

Metadata Pages

Field Data Page VMSA Page Metadata Page

SOFTWARE_DATA Software-provided data Software-provided data Software-provided data

IV Initialization vector Initialization vector Initialization vector

AUTH_TAG Authentication tag Authentication tag Authentication tag

PAGE_SIZE RMP.Page_Size RMP.Page_Size RMP.Page_Size

VALID 1 1 1

METADATA 0 0 1

VMSA 0 1 0

GPA gPA of the page gPA of the page PADDR_INVALID

PAGE_VALIDATED RMP.Validated RMP.Validated 0

VMPL0 RMP.VMPL0 if VMPLs
are enabled. 0h
otherwise.

RMP.VMPL0 if VMPLs
are enabled. 0h
otherwise.

0h

VMPL1 RMP.VMPL1 if VMPLs
are enabled. 0h
otherwise.

RMP.VMPL1 if VMPLs
are enabled. 0h
otherwise.

0h

VMPL2 RMP.VMPL2 if VMPLs
are enabled. 0h
otherwise.

RMP.VMPL2 if VMPLs
are enabled. 0h
otherwise.

0h

VMPL3 RMP.VMPL3 if VMPLs
are enabled. 0h
otherwise.

RMP.VMPL3 if VMPLs
are enabled. 0h
otherwise.

0h

Reserved fields 0h 0h 0h

The hypervisor may request that the firmware place data into SOFTWARE_DATA for its own

purposes. The firmware never interprets this field. Because the hypervisor can read the metadata

entries in Metadata pages, the hypervisor can use SOFTWARE_DATA for its own bookkeeping

purposes.

An entry with VALID set to 0h is invalid and does not refer to any swapped-out page. When

VALID is 0, the firmware does not interpret any other fields of the entry.

 38

[Public]

Chapter 6 Mailbox Protocol

Software on the x86 CPUs communicates with the PSP through a set of MMIO registers, referred

to as mailbox registers. This ABI used the mailbox protocol defined in Chapter 4 of [SEV]. This

ABI adds new commands and status codes, which extend the SEV mailbox protocol. These

command and status codes are described in the following sections.

6.1 Command Identifier

This ABI adds many new commands to be handled by the mailbox protocol. Table 12 summarizes

the additional commands and their identifiers. See the command definitions for further details.

Table 12. Command Identifiers

Command ID Description

SNP_INIT 81h Initialize platform for SNP.

SNP_SHUTDOWN 82h Uninitialize platform for SNP.

SNP_PLATFORM_STATUS 83h Query platform information.

SNP_DF_FLUSH 84h Flush data fabric buffers.

SNP_INIT_EX 85h Initialize platform for SNP with extended parameters.

SNP_SHUTDOWN_EX 86h Shut down the platform with extended capabilities to shut
down SNP-enforcing controls such as IOMMU SNP
enforcement.

SNP_DECOMMISSION 90h Destroy a guest context.

SNP_ACTIVATE 91h Assign an ASID to a guest.

SNP_GUEST_STATUS 92h Query guest information.

SNP_GCTX_CREATE 93h Create a guest context.

SNP_GUEST_REQUEST 94h Process a guest request.

SNP_ACTIVATE_EX 95h Assign an ASID to a guest on select cores.

SNP_LAUNCH_START A0h Begin to launch a new guest.

SNP_LAUNCH_UPDATE A1h Add memory to a launching guest.

SNP_LAUNCH_FINISH A2h Complete launching a guest.

SNP_DBG_DECRYPT B0h Decrypt guest memory for debugging.

SNP_DBG_ENCRYPT B1h Encrypt guest memory for debugging.

SNP_PAGE_SWAP_OUT C0h Swap a page out of guest memory.

SNP_PAGE_SWAP_IN C1h Swap a page into guest memory.

SNP_PAGE_MOVE C2h Move a Memory page.

SNP_PAGE_MD_INIT C3h Initialize a Metadata page.

 39

[Public]

Command ID Description

SNP_PAGE_SET_STATE C6h Set the page state of a set of pages to HV-fixed.

SNP_PAGE_RECLAIM C7h Clear the immutable bit on a page.

SNP_PAGE_UNSMASH C8h Convert a sequence of 4 k pages into a 2 MB page.

SNP_CONFIG C9h Set systemwide configuration values.

DOWNLOAD_FIRMWARE_EX CAh Perform a live update of SNP firmware.

SNP_COMMIT CBh Commit the current firmware.

SNP_VLEK_LOAD CDh Load the VLEK into the firmware.

FEATURE_INFO CEh Feature support information.

6.2 Status Codes

This ABI introduces several new status codes to the mailbox protocol. Table 13 summarizes the

additional status codes added by this ABI.

Table 13. Status Codes

Status Code Description

INVALID_PAGE_SIZE 19h The RMP page size is incorrect.

INVALID_PAGE_STATE 1Ah The RMP page state is incorrect.

INVALID_MDATA_ENTRY 1Bh The metadata entry is invalid.

INVALID_PAGE_OWNER 1Ch The page ownership is incorrect.

AEAD_OFLOW 1Dh The AEAD algorithm would have overflowed.

RMP_INIT_REQUIRED 20h The RMP must be reinitialized.

BAD_SVN 21h SVN of provided image is lower than the committed SVN.

BAD_VERSION 22h Firmware version anti-rollback.

SHUTDOWN_REQUIRED 23h An invocation of SNP_SHUTDOWN is required to
complete this action.

UPDATE_FAILED 24h Update of the firmware internal state or a guest context
page has failed.

RESTORE_REQUIRED 25h Installation of the committed firmware image required.

RMP_INIT_FAILED 26h The RMP initialization failed.

INVALID_KEY 27h The key requested is invalid, not present, or not allowed.

 40

[Public]

Chapter 7 Guest Messages

Guest messages provide the guest a mechanism to communicate with the PSP without risk from a

malicious hypervisor who wishes to read, alter, drop, or replay the messages sent. A guest may

issue requests of firmware via the SNP_GUEST_REQUEST command. This command constructs

a trusted channel between the guest and the PSP firmware. The hypervisor cannot alter the

messages without detection nor read the plaintext of the messages.

The firmware constructs the channel using a Virtual Machine Platform Communication key

(VMPCK). Each guest has four VMPCKs, which the firmware generates and provides to the guest

in a special secrets page as part of the guest launch process (see SNP_LAUNCH_UPDATE in

Section 8.17 for details). Only the guest and the firmware possess the VMPCKs.

Each message contains a sequence number per VMPCK. The sequence number is incremented

with each message sent. Messages sent by the guest to the firmware and by the firmware to the

guest must be delivered in order. If not, the firmware will reject subsequent messages by the guest

when it detects that the sequence numbers are out of sync.

Each message is protected with an Authenticated Encryption with Associated Data algorithm

(AEAD), namely AES-256 GCM.

Details on how to send a message via the SNP_GUEST_REQUEST command can be found in

Section 8.26.

7.1 CPUID Reporting

Note: This guest message may be removed in future versions as it is redundant with the CPUID

page in SNP_LAUNCH_UPDATE. (See Section 8.17.)

The firmware provides a service to the guest to validate CPUID function values provided by the

hypervisor. This ensures that CPUID function values provided by the hypervisor are within range

of the hardware. To use this service, the guest constructs an MSG_CPUID_REQ message.

The guest constructs an MSG_CPUID_REQ message, which contains an array of CPUID function

structures, as defined in Table 14. The guest fills the structure with the information the guest

received from the CPUID instruction from the hypervisor.

The message contains enough space for COUNT_MAX function structures, but only COUNT

function structures are valid. COUNT_MAX is 64.

 41

[Public]

Table 14. MSG_CPUID_REQ Structure

Byte
Offset

Bits Name Description

00h 31:0 COUNT Number of CPUID functions to validate. Must be less
than COUNT_MAX.

04h 31:0 - Reserved. Must be zero.

08h 63:0 - Reserved. Must be zero.

10h CPUID_FUNCTION[] COUNT_MAX number of CPUID_FUNCTION records.
Only the first COUNT records are valid.

Table 15. CPUID_FUNCTION Structure

Byte
Offset

Bits Name Description

00h 31:0 EAX_IN EAX input parameter to CPUID.

04h 31:0 ECX_IN ECX input parameter to CPUID.

08h 63:0 XCR0_IN XCR0 at the time of CPUID execution.

10h 63:0 XSS_IN IA32_XSS MSR at the time of CPUID execution.

18h 31:0 EAX EAX output parameter of CPUID.

1Ch 31:0 EBX EBX output parameter of CPUID.

20h 31:0 ECX ECX output parameter of CPUID.

24h 31:0 EDX EDX output parameter of CPUID.

28h 63:0 - Reserved. Must be zero.

The firmware returns an MSG_CPUID_RSP message as defined in Table 16. The message

contains the same CPUID function structures that may be altered by the firmware. The firmware

will alter the function structure when the hypervisor has provided an insecure value.

If firmware encounters a CPUID function that is not in the standard range (Fn0000_0000 through

Fn0000_FFFF) or the extended range (Fn8000_0000 through Fn8000_FFFF), the firmware does

not perform any checks on the function output.

If firmware encounters a CPUID function that is in the standard or extended ranges, then the

firmware performs a check to ensure that the provided output would not lead to an insecure guest

state. If insecure function output is identified, the firmware sets the field in the response message

to an acceptable value. Note that some functions have multiple acceptable values, and the

firmware may choose any one of them. The firmware then returns INVALID_PARAM in the

STATUS field of the response message.

The policy used by the firmware to assess CPUID function output can be found in the [PPR].

 42

[Public]

Table 16. MSG_CPUID_RSP Structure

Byte
Offset

Bits Name Description

00h 31:0 STATUS The status of key derivation operation.

0h: Success.

16h: Invalid parameters.

04h 31:0 COUNT Number of CPUID functions that have been validated.

08h 63:0 - Reserved.

10h CPUID_FUNCTION[] COUNT_MAX number of CPUID_FUNCTION records. Only
the first COUNT records are valid.

7.2 Key Derivation

The guest can ask the firmware to provide a key derived from a root key. This key may be used by

the guest for any purpose it chooses, such as sealing keys or communicating with external entities.

The data that the firmware mixes into the derived key are described in Table 17. The firmware

unconditionally mixes some of the fields into the key while the guest may optionally select and

even supply other data to mix into the key.

Table 17. Data Mixed into the Derived Guest Key

Data Description Mix Type Provided in Message

VCEK/VLEK/
VMRK

VCEK, VLEK, or VMRK of the guest.
The guest selects which of the keys is
used.

Always No

VMPL The VMPL selected by the guest. Always Yes

Host Data The host data provided at launch. Always No

ID Key/
Author Key

The author key provided at launch. If
an author key was not provided, then
the firmware uses the ID key instead.

Always No

Guest Field
Selection

A bitmask describing which of the
fields in this table are mixed into the
key. This covers the guest-selectable
fields as well as other field selection
done by the firmware.

Always Yes

TCB Version The TCB version selected by the
guest.

Optional Yes

Guest SVN SVN of the guest. Optional Yes

Measurement The measurement of the guest at
launch.

Optional No

 43

[Public]

Data Description Mix Type Provided in Message

Family ID The family ID provided at launch. Optional No

Image ID The image ID provided at launch. Optional No

Guest Policy The guest policy provided at launch. Optional No

Table 18 describes the MSG_KEY_REQ message structure that the guest sends to the firmware to

request a derived key.

Table 18. MSG_KEY_REQ Message Structure

Byte
Offset

Bits Name Description

0h 31:3 - Reserved. Must be zero.

2:1 KEY_SEL Selects which key to use for derivation.

0: If VLEK is installed, derive with VLEK. Otherwise, derive
with VCEK.

1: Derive with VCEK.

2: Derive with VLEK.

3: Reserved.

Present when the Vlek feature bit is set.

0 ROOT_KEY_SELECT Selects the root key from which to derive the key. 0
indicates VCEK. 1 indicates VMRK.

4h 31:0 - Reserved. Must be zero.

8h 63:0 GUEST_FIELD_SELECT Bitmask indicating which data will be mixed into the
derived key. See Table 17 for the structure of this bitmask.

10h 31:0 VMPL The VMPL to mix into the derived key. Must be greater
than or equal to the current VMPL.

14h 31:0 GUEST_SVN The guest SVN to mix into the key. Must not exceed the
guest SVN provided at launch in the ID block.

18h 63:0 TCB_VERSION The TCB version to mix into the derived key. Must not
exceed CommittedTcb.

If ROOT_KEY_SELECT is 0 and MaskChipKey is 1, the firmware returns the INVALID_KEY

status code to the guest.

If ROOT_KEY_SELECT is 0, the key used is further selected by the KEY_SEL parameter. The

firmware returns INVALID_KEY to the guest if any of the following conditions occur:

• KEY_SEL is 0, VcekDis is 1, and the VLEK is not installed.

• KEY_SEL is 1, and VcekDis is 1.

• KEY_SEL is 2 and the VLEK is not installed.

 44

[Public]

The KEY_SEL parameter is introduced in version 1.54.

The MSG_KEY_REQ detailed in Table 18 describes the MSG_REQ message structure that the

guest sends to the firmware to request a derived key. GUEST_FIELD_SELECT indicates which

guest-selectable fields will be mixed into the key that is described in Table 19.

Table 19. Structure of the GUEST_FIELD_SELECT Field

Bits Field Description

63:6 - Reserved. Must be zero.

5 TCB_VERSION Indicates that the guest-provided TCB_VERSION will be mixed into the key.

4 GUEST_SVN Indicates that the guest-provided SVN will be mixed into the key.

3 MEASUREMENT Indicates the measurement of the guest during launch will be mixed into the
key.

2 FAMILY_ID Indicates the family ID of the guest will be mixed into the key.

1 IMAGE_ID Indicates that the image ID of the guest will be mixed into the key.

0 GUEST_POLICY Indicates that the guest policy will be mixed into the key.

The firmware returns the MSG_KEY_RSP message defined Table 20 to the guest.

Table 20. MSG_KEY_RSP Message Structure

Byte
Offset

Bits Name Description

00h 31:0 STATUS The status of key derivation operation.
0h: Success.
16h: Invalid parameters.

27h: Invalid key selection.

04h–1Fh - Reserved.

20h 255:0 DERIVED_KEY The requested derived key if STATUS is 0h.

7.3 Attestation

The guest can request that the firmware construct an attestation report. External entities can use an

attestation report to assure the identity and security configuration of the guest.

A guest requests an attestation report by constructing an MSG_REPORT_REQ as specified in

Table 21. The message contains data provided by the guest in REPORT_DATA to be included in

the report; the firmware does not interpret this data.

 45

[Public]

Table 21. MSG_REPORT_REQ Message Structure

Byte
Offset

Bits Name Description

00h 511:0 REPORT_DATA Guest-provided data to be included in the attestation report.

40h 31:0 VMPL The VMPL to put in the attestation report. Must be greater than
or equal to the current VMPL and, at most, three.

44h 31:2 - Reserved.

1:0 KEY_SEL Selects which key to use for derivation.

0: If VLEK is installed, sign with VLEK. Otherwise, sign with VCEK.

1: Sign with VCEK.

2: Sign with VLEK.

3: Reserved.

Present if Vlek feature bit is set.

48h–5Fh - Reserved. Must be zero.

The guest may generate attestation reports for VMPLs that are greater than or equal to the current

VMPL. The desired VMPL is provided by the guest in the request message.

Upon receiving a request for an attestation report, the firmware constructs the report according to

Table 22.

The firmware generates a report ID for each guest that persists with the guest instance throughout

its lifetime. In each attestation report, the report ID is placed in REPORT_ID. If the guest has an

associated migration agent, the REPORT_ID_MA is filled in with the report ID of the migration

agent.

If MaskChipKey is 0, the firmware signs the attestation report with either the VCEK or VLEK

based on the key selection made in KEY_SEL. The firmware will return INVALID_KEY to the

guest if any of the following conditions occur:

• KEY_SEL is 0, the VLEK is not loaded, and VcekDis is 1.

• KEY_SEL is 1 and the VcekDis is 1.

• KEY_SEL is 2 and the VLEK is not loaded.

The firmware uses the systemwide ReportedTcb value as the TCB version to derive the VCEK or

VLEK. This value is set by the hypervisor. The firmware guarantees that the ReportedTcb value is

never greater than the installed TCB version.

If MaskChipKey is 1, the firmware writes zeroes into the SIGNATURE field instead of signing

the report.

 46

[Public]

Table 22. ATTESTATION_REPORT Structure

Byte Offset Bits Name Description

00h 31:0 VERSION Version number of this attestation
report. Set to 2h for this
specification.

04h 31:0 GUEST_SVN The guest SVN.

08h 63:0 POLICY The guest policy. See Table 9 for a
description of the guest policy
structure.

10h 127:0 FAMILY_ID The family ID provided at launch.

20h 127:0 IMAGE_ID The image ID provided at launch.

30h 31:0 VMPL The request VMPL for the attestation
report.

34h 31:0 SIGNATURE_ALGO The signature algorithm used to sign
this report. See Chapter 10 for
encodings.

38h 63:0 CURRENT_TCB CurrentTcb.

40h 63:0 PLATFORM_INFO Information about the platform. See
Table 23.

48h 31:5 - Reserved. Must be zero.

4:2 SIGNING_KEY Encodes the key used to sign this
report.

0: VCEK.

1: VLEK.

2–6: Reserved.

7: None.

1 MASK_CHIP_KEY The value of MaskChipKey.

0 AUTHOR_KEY_EN Indicates that the digest of the
author key is present in
AUTHOR_KEY_DIGEST. Set to the
value of GCTX.AuthorKeyEn.

4Ch 31:0 - Reserved. Must be zero.

50h 511:0 REPORT_DATA Guest-provided data.

90h 383:0 MEASUREMENT The measurement calculated at
launch.

C0h 255:0 HOST_DATA Data provided by the hypervisor at
launch.

E0h 383:0 ID_KEY_DIGEST SHA-384 digest of the ID public key
that signed the ID block provided in
SNP_LAUNCH_FINISH.

 47

[Public]

Byte Offset Bits Name Description

110h 383:0 AUTHOR_KEY_DIGEST SHA-384 digest of the Author public
key that certified the ID key, if
provided in SNP_LAUNCH_FINISH.
Zeroes if AUTHOR_KEY_EN is 1.

140h 255:0 REPORT_ID Report ID of this guest.

160h 255:0 REPORT_ID_MA Report ID of this guest’s migration
agent.

180h 63:0 REPORTED_TCB Reported TCB version used to derive
the VCEK that signed this report.

188h – 19Fh - Reserved.

1A0h–1DFh 511:0 CHIP_ID If MaskChipId is set to 0, Identifier
unique to the chip as output by
GET_ID. Otherwise, set to 0h.

1E0h 63:0 COMMITTED_TCB CommittedTcb.

1E8h 7:0 CURRENT_BUILD The build number of CurrentVersion.

1E9h 7:0 CURRENT_MINOR The minor number of
CurrentVersion.

1Eah 7:0 CURRENT_MAJOR The major number of
CurrentVersion.

1Ebh 7:0 - Reserved.

1Ech 7:0 COMMITTED_BUILD The build number of
CommittedVersion.

1Edh 7:0 COMMITTED_MINOR The minor version of
CommittedVersion.

1Eeh 7:0 COMMITTED_MAJOR The major version of
CommittedVersion.

1Efh 7:0 - Reserved.

1F0h 63:0 LAUNCH_TCB The CurrentTcb at the time the guest
was launched or imported.

1F8h–29Fh - Reserved.

2A0h–49Fh SIGNATURE Signature of bytes 0h to 29Fh
inclusive of this report. The format of
the signature is described in Chapter
10.

 48

[Public]

Table 23. Structure of the PLATFORM_INFO Field

Byte
Offset

Bits Name Description

0h 63:5 - Reserved.

4 CIPHERTEXT_HIDING_EN Indicates ciphertext hiding is enabled.

3 RAPL_DIS Indicates that the RAPL feature is disabled.

2 ECC_EN Indicates that the platform is using error correcting
codes for memory.

Present when EccMemReporting feature bit is set.

1 TSME_EN Indicates that TSME is enabled in the system.

0 SMT_EN Indicates that SMT is enabled in the system.

The firmware constructs an MSG_REPORT_RSP message containing the generated attestation

report as defined in Table 24.

Table 24. MSG_REPORT_RSP Message Structure

Byte
Offset

Bits Name Description

00h 31:0 STATUS The status of key derivation operation.
0h: Success.
16h: Invalid parameters.

27h: Invalid key selection.

04h 31:0 REPORT_SIZE Size in bytes of the report.

08h–1Fh - Reserved.

20h REPORT The attestation report generated by the firmware.

7.4 VM Export

When the hypervisor wishes to migrate a guest, it sends a request to that guest or its migration

agent. The guest (or its migration agent) then sends the PSP a request message to export the

guest’s data. The format of this request is defined in Table 25.

Table 25. MSG_EXPORT_REQ Message Structure

Byte
Offset

Bits Name Description

00h 63:12 GCTX_PADDR Bits 63:12 of the sPA of the guest context page for the target
guest to be exported.

11:0 - Reserved. Must be zero.

08h 31:1 - Reserved. Must be zero.

0 IMI_EN Indicates that an IMI is used to migrate the guest.

 49

[Public]

Byte
Offset

Bits Name Description

0Ch 31:0 - Reserved. Must be zero.

The firmware checks that GCTX_PADDR is a valid sPA. If not, the firmware returns a status of

INVALID_ADDRESS.

The firmware checks that GCTX_PADDR is a Context page. The firmware checks that either:

• The guest sending the message is the migration agent of the exported guest—that is, the

GCTX.MaReportId of the provided guest context page matches the ReportId of the

requesting guest’s context page, or

• The guest sending the message has no migration agent and is exporting itself—that is, the

GCTX_PADDR matches the sPA of the requesting guest’s context page, and

GCTX.MaReportIdValid of the requesting guest is 0.

In summary, the guest can export itself if it has no migration agent. Otherwise, only its migration

agent can export it. If either check fails, the firmware returns a status of INVALID_GUEST.

If the guest is exporting itself, the firmware checks that the guest message was encrypted with

VMPCK0. That is, only VMPL0 can self-export. If not, the firmware returns a status of

INVALID_GUEST.

The firmware checks that the guest to be exported is in the GSTATE_RUNNING state. If not, the

firmware returns INVALID_GUEST_STATE.

The firmware responds with an MSG_EXPORT_RSP message containing the guest context

defined in Table 26. The size of the payload is such that HDR_SIZE + MSG_SIZE is 4096. That

is, the message fills a 4 KB page.

Table 26. MSG_EXPORT_RSP Message Structure

Byte
Offset

Bits Name Description

00h 31:0 STATUS The status of the attestation request.
0h: Success.
16h: Invalid parameters.

04h 31:0 GCTX_SIZE Size in bytes of the guest context stored in GCTX.

08h 31:0 GCTX_VERSION Version of the GCTX field. Set to 3h for this ABI version.

0Ch–1Fh - Reserved.

20h–2Afh GCTX Guest context. See Table 27 for the format of this field.

If the exported guest supports the Secure TSC feature, the caller of this guest request should

update the guest context before migration as follows:

PspTscOffset = PspTscOffset + (RDTSC / GUEST_TSC_FREQ) * DesiredTscFreq

 50

[Public]

where the RDTSC instruction invocation and the GUEST_TSC_FREQ MSR read occur within the

guest that sent this message.

Table 27. GCTX Field Structure

Byte
Offset

Bits Name Description

000h 383:0 LD See 4.1 for description of this field.

030h 255:0 OEK

050h 255:0 VMPCK0

070h 255:0 VMPCK1

090h 255:0 VMPCK2

0B0h 255:0 VMPCK3

0D0h 255:0 VMRK

0F0h 255:0 HostData

110h 383:0 IDKeyDigest

140h 383:0 AuthorKeyDigest

170h 255:0 ReportID

190h 383:0 IMD

1C0h 63:0 MsgCount0

1C8h 63:0 MsgCount1

1D0h 63:0 MsgCount2

1D8h 63:0 MsgCount3

1E0h RootMDEntry See 5.1 for description of this field. If IMI_EN is set, then
this field is set to 0h.

220h 61:3 - Reserved. Must be zero.

2 VCEK_DIS See 4.1 for description of this field.

1 IDBlockEn See 4.1 for description of this field.

0 AuthorKeyEn See 4.1 for description of this field.

228h 63:0 Policy See 4.1 for description of this field.

230h 7:0 State See 4.1 for description of this field.

238h 63:0 OekIvCount See 4.1 for description of this field.

240h-29Fh IDBlock See 8.1 for the description of this field and Table 52 for the
format of the field.

2A0h 127:0 GOSVW See 4.1 for description of this field.

2B0h 31:0 DesiredTscFreq See 4.1 for description of this field.

2B4h 31:0 - Reserved.

2B8h 63:0 PspTscOffset See 4.1 for description of this field.

 51

[Public]

Byte
Offset

Bits Name Description

2C0h 63:0 LaunchTcb The CurrentTcb at the time the guest was launched.

2C8h–2FFh - Reserved. Must be zero.

If IMI_EN message parameter is 0, the firmware makes the exported guest unable to run on this

platform.

If IMI_EN message parameter is 1, the firmware allows the exported guest to continue running on

this platform. The IMI within the guest is expected to make itself not runnable after it has

completed migration.

If IMI_EN message parameter is 1, the firmware does not export the RootMDEntry. Instead, it

writes 0h to the RootMDEntry field.

Note that if the hypervisor relies on the VcekDis to migrate accurately, the hypervisor must trust

the migration agent to not alter the VcekDis flag in the guest context.

7.5 VM Import

When the hypervisor wishes to receive a migrated guest from another system, it first constructs a

guest context with SNP_GCTX_CREATE. The hypervisor then passes the new guest context sPA

to the migration agent. The migration agent then sends the PSP a request message to import the

guest’s data to the migration agent. The format of this request is defined in Table 28.

If the imported guest supports the Secure TSC feature, the guest calling this guest message should

update the guest context before import as follows:

PspTscOffset = PspTscOffset – (RDTSC / GUEST_TSC_FREQ) * DesiredTscFreq

where the RDTSC instruction invocation and the GUEST_TSC_FREQ MSR read occur within the

guest that sent this message.

A hypervisor should ensure that all pages of the guest have been swapped out before invoking this

command. The RootMDEntry in the guest context should contain the root metadata entry of the

guest that covers all pages of the guest.

Note that if the hypervisor relies on the VcekDis to migrate accurately, the hypervisor must trust

the migration agent to not alter the VcekDis flag in the guest context.

Table 28. MSG_IMPORT_REQ Message Structure

Byte Offset Bits Name Description

00h 63:12 GCTX_PADDR Bits 63:12 of the sPA of a page donated to the
firmware by the hypervisor to contain the guest
context.

 52

[Public]

Byte Offset Bits Name Description

11:0 - Reserved. Must be zero.

08h 31:0 GCTX_SIZE Size in bytes of the guest context stored in
GCTX.

0Ch 31:0 GCTX_VERSION Version of the GCTX field. Set to 3h for this ABI
version.

10h–1Fh - Reserved. Must be zero.

20h–2Afh INCOMING_GCTX Incoming guest context. See

Table 27 for the format of this field.

The firmware checks that GCTX_PADDR is a valid sPA. If not, the firmware returns the status

INVALID_ADDRESS. The firmware then checks that GCTX_PADDR is a Context page. If not,

the firmware returns the status INVALID_GUEST.

The firmware checks that the guest is in the GSTATE_INIT state. If not, the firmware returns

INVALID_GUEST_STATE.

The firmware checks that RootMDEntry of the incoming guest context has its VALID field set

to 1. If not, the firmware returns INVALID_MDATA_ENTRY.

The firmware copies the incoming guest context into the context page at GCTX_PADDR. The

firmware then sets the fields of the guest context page according to Table 29.

Table 29. Guest Context Initialized by the MSG_IMPORT_REQ Guest Message

Field Value

MA The GCTX_PADDR of the migration agent that sent this message.

ReportId Generated using a CSRNG.

IMIEn 0

The firmware transitions the guest to the GSTATE_RUNNING state.

The firmware responds with a message containing the status of the import. The response message

is defined in Table 30.

Table 30. MSG_IMPORT_RSP Message Structure

Byte
Offset

Bits Name Description

0h 31:0 STATUS Status of the import operation.

4h–Fh - Reserved.

 53

[Public]

7.6 VM Absorb

When an IMI is used to accelerate guest migration, a migration agent imports the new guest using

the MSG_ABSORB_REQ message. This message requests that, after the hypervisor has launched

the IMI, the firmware replace the guest’s context with the context migrated from another machine.

If the imported guest supports the Secure TSC feature, the guest calling this guest message should

update the guest context before the absorb operation as follows:

PspTscOffset = PspTscOffset – (RDTSC / GUEST_TSC_FREQ) * DesiredTscFreq

where the RDTSC instruction invocation and the GUEST_TSC_FREQ MSR read occur within the

guest that sent this message.

The migration agent sends the firmware an MSG_ABSORB_REQ message as described in Table

31.

Table 31. MSG_ABSORB_REQ Message Structure

Byte
Offset

Bits Name Description

00h 63:12 GCTX_PADDR Bits 63:12 of the sPA of a page donated to the firmware by
the hypervisor to contain the guest context.

11:0 - Reserved. Must be zero.

08h 31:0 IN_GCTX_SIZE Size in bytes of the guest context stored in GCTX.

0Ch 31:0 IN_GCTX_VERSION Version of the GCTX field. Set to 3h for this ABI version.

10h–1Fh - Reserved.

20h–28Fh IN_GCTX Incoming guest context. See Table 27 for the format of this
field.

The firmware checks that GCTX_PADDR is a valid sPA. If not, the firmware returns the status

INVALID_ADDRESS. The firmware then checks that GCTX_PADDR is a Context page. If not,

the firmware returns the status INVALID_GUEST.

The firmware checks that the guest is in the GSTATE_LAUNCH state. The firmware also checks

that GCTX.IMIEn is 1. If either check fails, the firmware returns the status

INVALID_GUEST_STATE.

The firmware checks that the IN_GCTX.IMD is equal to GCTX.LD. If not, the firmware returns

the status BAD_MEASUREMENT.

The firmware checks that it supports the IN_GCTX_VERSION and that the IN_GCTX_SIZE is

compatible with this version. If not, the firmware returns the status INVALID_PARAM.

The firmware checks that RootMDEntry of the incoming guest context has its VALID field set to

0. If not, the firmware returns INVALID_MDATA_ENTRY.

 54

[Public]

Because the guest that sent this message is the new migration agent of the incoming guest, the

firmware sets the GCTX.MaReportId of the incoming guest context to ReportId in

GCTX_PADDR, and it also sets MaReportIdValid to 1.

The firmware overwrites the guest context at GCT7X_PADDR with the guest context in the

IN_GCTX field except the ReportID field and VcekDis. The firmware preserves the ReportID and

VcekDis fields set during guest launch. The firmware then sets the state of the guest to the

GSTATE_RUNNING state.

The firmware responds with a message containing the status of the import. The response message

is defined in Table 32.

Table 32. MSG_ABSORB_RSP Message Structure

Byte
Offset

Bits Name Description

0h 31:0 STATUS Status of the absorb operation.

4h–Fh - Reserved. Must be zero.

7.7 VM Absorb – No Migration Agent

This message is similar in use to the MSG_ABSORB_REQ except that it allows a guest to import

its own guest context. This can be used with the MSG_EXPORT_REQ message to allow a guest

to manage its migration without a migration agent.

If the imported guest supports the Secure TSC feature, the guest calling this guest message should

update the guest context before import as follows:

PspTscOffset = PspTscOffset – (TSC / GUEST_TSC_FREQ) * DesiredTscFreq

where TSC is the timestamp counter read by the guest using RDTSC, GUEST_TSC_FREQ is the

MSR (C001_0134) to retrieve the guest-effective TSC frequency, and DesiredTscFreq is the value

stored in the guest’s context page.

Table 33. MSG_ABSORB_NOMA_REQ Message Structure

Byte
Offset

Bits Name Description

00h 63:0 - Reserved. Must be zero.

08h 31:0 IN_GCTX_SIZE Size in bytes of the guest context stored in GCTX.

0Ch 31:0 IN_GCTX_VERSION Version of the GCTX field. Set to 3h for this ABI version.

10h–1Fh - Reserved.

20h–28Fh IN_GCTX Incoming guest context. See Table 27 for the format of this
field.

 55

[Public]

The firmware checks that GCTX.MaReportIdValid is 0—that is, the guest sending this message

has no migration agent. If this check fails, the firmware returns the status INVALID_GUEST.

The firmware checks that the IN_GCTX.IMD is equal to both GCTX.LD and GCTX.IMD. If not,

the firmware returns the status BAD_MEASUREMENT.

The firmware checks that it supports the IN_GCTX_VERSION and that the IN_GCTX_SIZE is

compatible with this version. If not, the firmware returns the status INVALID_PARAM.

The firmware checks that RootMDEntry of the incoming guest context has its VALID field set to

0. If not, the firmware returns INVALID_MDATA_ENTRY.

The firmware overwrites the guest context at GCTX_PADDR with the guest context in the

IN_GCTX field excluding the following fields, which remain unaltered.

• HostData

• IDKeyDigest

• AuthorKeyDigest

• ReportId

• IDBlockEn

• AuthorKeyEn

• State

• IDBlock

• VcekDis

The firmware responds with a message containing the status of the import. The response message

is defined in Table 34.

Table 34. MSG_ABSORB_NOMA_RSP Message Structure

Byte
Offset

Bits Name Description

0h 31:0 STATUS Status of the absorb operation.

4h–Fh - Reserved. Must be zero.

7.8 VMRK Message

During launch, the migration agent of the guest sends the VMRK to use for the guest. It must be

encrypted with the migration agent’s VMPCK0. If not, the firmware returns INVALID_PARAM.

The structure of the VMRK message is defined in Table 35.

 56

[Public]

Table 35. Structure of the MSG_VMRK_REQ Guest Message

Byte
Offset

Bits Name Description

0h 63:12 GCTX_PADDR Bits 63:12 of the sPA of a page donated to the firmware by the
hypervisor to contain the guest context.

11:0 - Reserved. Must be zero.

4h–1Fh - Reserved. Must be zero.

20h 255:0 VMRK A VMRK generated by a migration agent.

The firmware checks that GCTX_PADDR is a valid sPA. If not, the firmware returns the status

INVALID_ADDRESS. The firmware then checks that GCTX_PADDR is a Context page. If not,

the firmware returns the status INVALID_GUEST.

The firmware checks that the guest is in the GSTATE_LAUNCH state. The firmware also checks

that GCTX.IMIEn is 0. If either check fails, the firmware returns the status

INVALID_GUEST_STATE.

The firmware checks that GCTX.MaReportIdValid of the guest is 1 and GCTX.MaReportId of the

guest matches the ReportId in GCTX_PADDR of the migration agent—that is, the guest sending

the MSG_VMRK_REQ message. If not, the firmware returns the status INVALID_GUEST.

The firmware installs the VMRK into the guest’s GCTX.VMRK.

The firmware responds with a message containing the status. The response message is defined in

Table 36.

Table 36. MSG_VMRK_RSP Message Structure

Byte
Offset

Bits Name Description

0h 31:0 STATUS Status of the VMRK operation.

4h–Fh - Reserved.

7.9 TSC Info

When a guest creates its own VMSA, it must query the PSP for information with the TSC_INFO

message to determine the correct values to write into GUEST_TSC_SCALE and

GUEST_TSC_OFFSET. The guest MSG_TSC_INFO_REQ request is described in Table 37.

Table 37. MSG_TSC_INFO_REQ Message Structure

Byte
Offset

Bits Name Description

0h–7Fh - Reserved. Must be zero.

The firmware responds with the MSG_TSC_INFO_RSP response as described in Table 38.

 57

[Public]

Table 38. MSG_TSC_INFO_RSP Message Structure

Byte
Offset

Bits Name Description

0h 31:0 STATUS Status of the TSC_INFO message

4h 31:0 - Reserved.

8h 63:0 GUEST_TSC_SCALE Calculated as GCTX.DesiredTscFreq / (mean native
frequency).

10h 63:0 GUEST_TSC_OFFSET GCTX.PspTscOffset.

18h 31:0 TSC_FACTOR Encoding of the percentage decrease from nominal TSC
frequency to mean TSC frequency due to clocking
parameters. Mean TSC frequency can be calculated by the
guest as:

GUEST_TSC_FREQ * (1 – (TSC_FACTOR * 0.00001))

For instance, a TSC_FACTOR value of 200 indicates a
reduction of 0.2% from nominal TSC frequency.

1Ch–7Fh - Reserved.

The guest should set the GUEST_TSC_SCALE and GUEST_TSC_OFFSET VMSA fields to the

values provided by the PSP.

 58

[Public]

Chapter 8 Command Reference

8.1 DOWNLOAD_FIRMWARE

This command allows the hypervisor to install SNP firmware newer than the currently active

firmware. This command is a legacy SEV command and documented in Section 5 of [SEV].

In addition to the checks performed in [SEV], the SNP platform state must be UNINIT. If not, the

firmware returns INVALID_PLATFORM_STATE.

 59

[Public]

8.2 DOWNLOAD_FIRMWARE_EX

This command replaces the current SEV-SNP firmware application with a new SEV-SNP

application. This command extends the functionality of DOWNLOAD_FIRMWARE with support

for provisional updates and for updates while SNP firmware is in the INIT state.

See Section 3.3 for further information on live updates.

Note that when SNP is in the UNINIT state and COMMIT is set to 1, this command behaves as if

DOWNLOAD_FIRMWARE was called instead.

8.2.1 Parameters

Table 39. Layout of the CMDBUF_SNP_DOWNLOAD_FIRMWARE_EX Structure

Byte
Offset

Bits In/Out Name Description

00h 31:0 In LENGTH Length of this command buffer in
bytes.

04h 31:0 - - Reserved. Must be zero.

08h 63:0 In FW_PADDR System physical address of the
region that contains an SEV-SNP
firmware image. This region must
be 32 B aligned.

10h 31:0 In FW_LEN Length of the SEV-SNP firmware in
bytes.

14h 31:1 - - Reserved. Must be zero.

0 In COMMIT Indicates that this command will
automatically commit the newly
installed image.

8.2.2 Actions

The SNP firmware may be in any state. SEV must be in the UNINIT state.

The firmware checks that the image is well formed and compatible with currently installed

firmware within the PSP. This check is implementation specific and includes internal consistency

checks and signature validation. If the provided image is not well formed, then the firmware

returns INVALID_PARAM.

If the FirmwareVersion of the current firmware is less than the FirmwareVersion of the provided

image, then this command is processing an upgrade. In this case, the provided image restricts the

minimum version from which it will upgrade with its MinUpgradeFrom attribute. The firmware

checks that MinUpgradeFrom of the provided image is less than or equal to the Firmware version

of the current firmware. If not, the firmware returns SHUTDOWN_REQUIRED.

 60

[Public]

If the FirmwareVersion of the current firmware is greater than the FirmwareVersion of the

provided image, then this command is processing a downgrade. In this case, the current firmware

restricts the minimum firmware version to which it allows a downgrade with its MinDowngradeTo

attribute. The firmware checks that MinDowngradeTo of the current firmware is less than or equal

to the FirmwareVersion of the provided image. If not, the firmware returns

SHUTDOWN_REQUIRED.

Further, on downgrade, the current firmware checks that the FirmwareVersion of the provided

image is equal to the CommittedVersion of the current firmware. If not, the firmware returns

BAD_VERSION.

The firmware then installs the provided image, replacing the current firmware. If the firmware is

in the INIT state, all SNP firmware state is retained. Guest context pages may be updated by the

hypervisor as described in Section 4.1.1.

The firmware returns RESTORE_REQUIRED when a provided image is installed but the new

firmware detects it cannot proceed safely. After returning this status, the firmware will only

successfully execute DOWNLOAD_FIRMWARE_EX. Hypervisors should resolve this condition

by rolling back to the committed version of the firmware. This is accomplished by invoking

DOWNLOAD_FIRMWARE_EX with the firmware image of the committed version.

The firmware sets its MinDowngradeTo and FirmwareVersion fields to the MinDowngradeTo and

FirmwareVersion of the provided image, respectively.

If COMMIT is 1 and the command successfully completes, the firmware implicitly commits the

SVN and FirmwareVersion of the provided image as if SNP_COMMIT was called.

8.2.3 Status Codes

Table 40. Status Codes for SNP_PLATFORM_STATUS

Status Condition

SUCCESS Successful completion.

RESTORE_REQUIRED New firmware image is installed but unusable.

INVALID_PARAM Provided image is not well formed.

SHUTDOWN_REQUIRED Provided image cannot be live updated.

BAD_VERSION Provided image is less than CommittedVersion.

 61

[Public]

8.3 SNP_COMMIT

This command commits the currently installed firmware. Once committed, the firmware cannot be

replaced with a previous firmware version or SVN.

See Section 3.3 for further information on live updates.

8.3.1 Parameters

Table 41. Layout of the CMDBUF_SNP_COMMIT Structure

Byte
Offset

Bits In/Out Name Description

00h 31:0 In LENGTH Length of this command buffer in
bytes.

8.3.2 Actions

The firmware sets the CommittedTcb to the CurrentTcb of the current firmware.

The firmware sets the CommittedVersion to the FirmwareVersion of the current firmware.

The firmware sets the ReportedTcb to the CurrentTcb.

The firmware deletes the VLEK hashstick if ReportedTcb changed.

8.3.3 Status Codes

Table 42. Status Codes for SNP_PLATFORM_STATUS

Status Condition

SUCCESS Successful completion.

 62

[Public]

8.4 GET_ID

This command returns a unique ID for the system that can be used to obtain a certificate for the

VCEK from AMD’s Key Distribution Server [KDS-VCEK], which expects the output of this

command to be provided in the HWID URL parameter. This command is a legacy SEV command

and documented in Section 5 of [SEV].

In addition to the checks in [SEV], the firmware also checks that, if the SNP firmware state is

INIT, the 16 B buffer pointed at by ID_PADDR resides entirely in Firmware or Default pages.

Otherwise, the firmware returns INVALID_PAGE_STATE.

 63

[Public]

8.5 SNP_PLATFORM_STATUS

This command returns information about the platform’s current status and capabilities.

8.5.1 Parameters

Table 43. Layout of the CMDBUF_SNP_PLATFORM_STATUS Structure

Byte
Offset

Bits In/Out Name Description

00h 63:0 In STATUS_PADDR sPA to write the platform status
structure. See Table 44.

8.5.2 Actions

The platform may be in any state when this command is called.

The firmware checks that STATUS_PADDR is a valid sPA. If not, the firmware returns

INVALID_ADDRESS.

If the SNP firmware state is INIT, the page must be either a Firmware or Default page. If not, the

firmware returns INVALID_PAGE_STATE.

If the platform state is UNINIT, the firmware does not check the state or size of the page.

The following data structure is written to memory at STATUS_PADDR.

Table 44. Layout of the STRUCT_PLATFORM_STATUS Structure

Byte
Offset

Bits Name Description

00h 7:0 API_MAJOR Major API version.

01h 7:0 API_MINOR Minor API version.

02h 7:0 STATE The current platform state, zero extended. See 3.2
for encodings.

03h 7:1 - Reserved.

0 IS_RMP_INIT Set to the value of IsRmpInitiailzied.

04h 31:0 BUILD Firmware build ID for this API version.

 64

[Public]

Byte
Offset

Bits Name Description

08h 31:7 - Reserved.

6 CIPHERTEXT_HIDING_EN Indicates ciphertext hiding is enabled.

Present if CipherTextHiding feature bit is set.

5 CIPHERTEXT_HIDING_CAP Indicates platform capable of ciphertext hiding.

Present if CipherTextHiding feature bit is set.

4 RAPL_DIS Indicates that the RAPL is disabled.

Present if RaplDis feature bit is set.

3 FEATURE_INFO Indicates that the SNP_FEATURE_INFO command is
available.

2 VLEK_EN Indicates whether a VLEK hashstick is loaded.

1 MASK_CHIP_KEY Set to the value of MaskChipKey.

0 MASK_CHIP_ID Set to the value of MaskChipId.

0Ch 31:0 GUEST_COUNT The number of guests currently managed by the
firmware.

10h 63:0 CURRENT_TCB The CurrentTcb of the firmware.

18h 63:0 REPORTED_TCB The reported TCB version in guest attestation
reports.

8.5.3 Status Codes

Table 45. Status Codes for SNP_PLATFORM_STATUS

Status Condition

SUCCESS Successful completion.

INVALID_ADDRESS The address is invalid for use by the firmware.

INVALID_PARAM MBZ fields are not zero.

INVALID_PAGE_STATE The page at STATUS_PADDR is not in the correct RMP page state.

 65

[Public]

8.6 SNP_CONFIG

This command sets the systemwide configuration values for SNP.

8.6.1 Parameters

Table 46. Layout of the CMDBUF_SNP_CONFIG_STATUS Structure

Byte
Offset

Bits In/Out Name Description

00h 63:0 In REPORTED_TCB The TCB_VERSION to report in
guest attestation reports.

08h 31:2 - - Reserved. Must be zero.

1 In MASK_CHIP_KEY Indicates that the VCEK is not used
in attestation and guest key
derivation.

0 In MASK_CHIP_ID Indicates that the CHIP_ID field in
the attestation report will always
be zero.

0Ch–3Fh - - Reserved. Must be zero.

8.6.2 Actions

The firmware checks that the REPORTED_TCB parameter is less than or equal to CommittedTcb.

If not, the firmware returns INVALID_PARAM.

If REPORTED_TCB is 0, the firmware sets ReportedTcb to CommittedTcb. Otherwise, the

firmware sets ReportedTcb value to REPORTED_TCB. If the ReportedTcb changes, the firmware

deletes the VLEK hashstick.

The firmware sets the systemwide MaskChipId to MASK_CHIP_ID.

The firmware sets MaskChipKey to MASK_CHIP_KEY. This bit was introduced in version 1.53.

8.6.3 Status Codes

Table 47. Status Codes for SNP_CONFIG_STATUS

Status Condition

SUCCESS Successful completion.

INVALID_PARAM The desired reported TCB_VERSION is invalid.

INVALID_PLATFORM_STATE The platform is not in the INIT state.

 66

[Public]

8.7 SNP_INIT

This command validates the platform configuration of the SNP and initializes the firmware. This

command is a specialization of the SNP_INIT_EX command.

Deprecated in version 1.52: In version 1.52 and later, SNP_INIT_EX should be used instead of

SNP_INIT. It is important to ensure that UEFI reserved pages are marked HV-fixed to ensure the

stability of the system.

8.7.1 Parameters

None.

8.7.2 Actions

This command behaves as if SNP_INIT_EX was called with INIT_RMP set to 1 and all other

parameters set to zero.

8.7.3 Status Codes

See SNP_INIT_EX.

 67

[Public]

8.8 SNP_INIT_EX

This command validates the platform configuration of the SNP and initializes the firmware.

Hypervisors should not schedule any guests during the execution of this command.

During the execution of this command, the firmware configures and enables SNP security policy

enforcement in many system components. Some system components write to regions of memory

reserved by early x86 firmware (e.g., UEFI). Other system components write to regions provided

by the operation system, hypervisor, or x86 firmware. Such system components can write only to

HV-fixed or Default pages. An error will result when they attempt to write to other page states

after SNP_INIT enables their SNP enforcement.

Starting in version 1.52, this command takes a list of sPA ranges to convert into HV-fixed page

states during the RMP initialization. If INIT_RMP is 1, a hypervisor should provide all sPA

ranges that it will never assign to a guest until the next RMP reinitialization. For instance, the

memory that UEFI reserves should be included in the range list. This allows system components

that occasionally write to memory (e.g., logging to UEFI-reserved regions) to not fail due to RMP

initialization and SNP enablement.

Some processors support the Running Average Power Limit (RAPL) feature which provides

information about power utilization of software. RAPL can be disabled using the RAPL_DIS flag

in SNP_INIT_EX to disable RAPL while SNP firmware is in the INIT state. Guests may require

that RAPL is disabled by using the POLICY.RAPL_DIS guest policy flag. RAPL disable is

supported when RaplDis (bit 2) in Fn8000_0024_ECX_x00 is 1.Ciphertext hiding prevents host

accesses from reading the ciphertext of SNP guest private memory. Instead of reading ciphertext,

the host will see constant default values. Ciphertext hiding separates the ASID space into SNP

guest ASIDs and host ASIDs. All SNP active guests must have an ASID less than or equal to

MAX_SNP_ASID provided to the SNP_INIT_EX command. All SEV-legacy guests must be

greater than MAX_SNP_ASID. This feature is present when CipherTextHiding (bit 3) in

Fn8000_0024_ECX_x00.

A platform is capable of ciphertext hiding if DDR-BF mode is configured. If not, the

SNP_INIT_EX command will fail if ciphertext hiding is requested.

Hypervisors must not assign the VM_HSAVE pages as HV-fixed. Otherwise, VMRUN will fail.

 68

[Public]

8.8.1 Parameters

Table 48. Layout of the CMDBUF_SNP_INIT_EX Structure

Byte
Offset

Bits In/Out Name Description

00h 31:4 - - Reserved. Must be zero.

3 In CIPHERTEXT_HIDING_EN 0: Ciphertext hiding disabled.

1: Ciphertext hiding enabled.

Present when CipertextHiding
feature bit is set.

2 In RAPL_DIS 0: RAPL enabled.

1: RAPL disabled.

Present when RaplDis feature bit
is set.

1 In LIST_PADDR_EN 0: LIST_PADDR is not valid.

1: LIST_PADDR is valid.

0 In INIT_RMP Indicates that the RMP should be
initialized.

04h 31:0 - - Reserved. Must be zero.

08h 63:0 In LIST_PADDR sPA of the RANGE_LIST structure.
See Table 108 for
SNP_PAGE_SET_STATE.

10h 15:0 In MAX_SNP_ASID The maximum ASID useable for an
SNP guest. Valid only if
CIPHERTEXT_HIDING_EN is 1.

12h–39h - - Reserved. Must be zero.

8.8.2 Actions

Before invoking SNP_INIT_EX with INIT_RMP set to 1, software must ensure that no CPUs

contain dirty cache lines for the memory containing the RMP.

The firmware checks that the platform is in the UNINIT state. The firmware also checks that SEV-

legacy firmware is not already initialized. If either check fails, the firmware returns

INVALID_PLATFORM_STATE.

If INIT_RMP is 0, then the firmware determines if SNP can be initialized securely without

initializing the RMP table. The firmware requires initialization if the RMP is not yet initialized.

 69

[Public]

The firmware may also require initialization for other reasons, such as if the RMP was

incompatibly initialized by a previous version of the firmware. If the firmware determines the

RMP requires initialization, the firmware returns RMP_INIT_REQUIRED.

If INIT_RMP is 1, then the firmware ensures the following system requirements are met:

• SYSCFG[MemoryEncryptionModEn] must be set to 1 across all cores. (SEV must be

enabled.)

• SYSCFG[SecureNestedPagingEn] must be set to 1 across all cores.

• SYSCFG[VMPLEn] must be set to 1 across all cores.

• SYSCFG[MFDM] must be set to 1 across all cores.

• VM_HSAVE_PA (MSR C001_0117) must be set to 0h across all cores.

• HWCR[SmmLock] (MSR C001_0015) must be set to 1 across all cores.

The following MSRs must be set identically across all cores:

• All MTRRs

• IORR_BASE

• IORR_MASK

• TOM

• TOM2

If any of the above checks fails, the firmware returns INVALID_CONFIG.

If INIT_RMP is 1, then the firmware also ensures that the following requirements for the RMP

have been met:

• RMP_BASE and RMP_END must be set identically across all cores.

• RMP_BASE must be 1 MB aligned.

• RMP_END – RMP_BASE + 1 must be a multiple of 1 MB.

• RMP is large enough to protect itself.

If any of the above checks fails, the firmware returns INVALID_ADDRESS.

The firmware initializes the IOMMU to perform RMP enforcement. The firmware also transitions

the event log, PPR log, and completion wait buffers of the IOMMU to an RMP page state that is

read only to the hypervisor and cannot be assigned to guests.

If LIST_PADDR_EN is 1, then the firmware performs the following checks:

• If INIT_RMP is 0, the firmware returns INVALID_PARAM.

• If LIST_PADDR is an invalid sPA, the firmware returns INVALID_ADDRESS.

 70

[Public]

• If a range in RANGES contains an invalid address, the firmware returns

INVALID_ADDRESS. For this check, a range overlapping the RMP is not considered an

invalid address.

If INIT_RMP is 1, then the firmware alters the RMP such that pages of the RMP are in the

Firmware state and all other pages covered by the RMP are in the Hypervisor state. If

LIST_PADDR_EN is 1, then the firmware initializes the provided ranges in LIST_PADDR as

HV-fixed pages. The firmware also initializes any microarchitectural data structures within the

RMP. Immediately after completing RMP initialization, the firmware forces a TLB flush across all

cores on all sockets.

If RAPL_DIS is 1 but the power management controller does not support RAPL disable, the

firmware returns INVALID_CONFIG. Otherwise, if RAPL_DIS is 1, the firmware disables the

RAPL feature.

If CIPHERTEXT_HIDING_EN is 1, the firmware checks that the platform is capable of

ciphertext hiding. If not, the firmware returns INVALID_CONFIG. Otherwise, the firmware

enables Ciphertext hiding and sets the maximum SNP ASID to be MAX_SNP_ASID.

The firmware sets MaskChipKey to 0.

The firmware marks all encryption-capable ASIDs as unusable for encrypted virtualization.

The firmware sets the platform state to INIT.

8.8.3 Status Codes

Table 49. Status Codes for SNP_INIT

Status Condition

SUCCESS Successful completion.

INVALID_CONFIG The system is not in a valid configuration that can support SNP.

INVALID_PLATFORM_STATE The platform is not in the UNINIT state.

INVALID_ADDRESS RMP_BASE and RMP_END are not valid addresses.

RMP_INIT_REQUIRED Initialization of the RMP is required.

 71

[Public]

8.9 SNP_GCTX_CREATE

This command donates a page from the hypervisor to the firmware to be used to store the guest

context.

8.9.1 Parameters

Table 50. Layout of the CMDBUF_SNP_GCTX_CREATE Structure

Byte
Offset

Bits In/Out Name Description

00h 63:12 In GCTX_PADDR Bits 63:12 of the sPA of a page donated to the
firmware by the hypervisor to contain the guest
context.

11:0 - - Reserved. Must be zero.

8.9.2 Actions

The firmware checks that the platform is in the INIT state. If not, the firmware returns

INVALID_PLATFORM_STATE.

The firmware checks that GCTX_PADDR is a valid sPA. If not, the firmware returns

INVALID_ADDRESS.

The firmware checks that the donated context page is in the Firmware state. If not, the firmware

returns INVALID_PAGE_STATE. The firmware checks that the donated page is marked as a

4 KB page in the RMP. If not, the firmware returns INVALID_PAGE_SIZE.

The firmware transitions the page to the Context state and initializes the guest context according to

Table 51. All other fields within the guest context remain indeterminate until they are initialized

through the launch process or through the import process.

Table 51. Guest Context Initialized by the SNP_GCTX_CREATE Command

Field Value

ASID Set to 0h, indicating that no ASID has been associated with this guest.

State GSTATE_INIT.

VEK Generated using a CSRNG.

OekIvCount 0h.

LaunchTcb Set to CurrentTcb.

LastAccessVersion Set to CurrentVersion.

 72

[Public]

8.9.3 Status Codes

Table 52. Status Codes for SNP_GCTX_CREATE

Status Condition

SUCCESS Successful completion.

INVALID_PLATFORM_STATE The platform is not in the INIT state.

INVALID_ADDRESS The address is invalid for use by the firmware.

INVALID_PARAM MBZ fields are not zero.

INVALID_PAGE_STATE The page is not in the Firmware state.

INVALID_PAGE_SIZE The page is not a 4 KB page.

8.10 SNP_ACTIVATE

This command installs the guest’s VEK into the memory controller in the key slot associated with

a given ASID.

8.10.1 Parameters

Table 53. Layout of the CMDBUF_SNP_ACTIVATE Structure

Byte
Offset

Bits In/Out Name Description

00h 63:12 In GCTX_PADDR Bits 63:12 of the sPA of a page
donated to the firmware by the
hypervisor to contain the guest
context.

11:0 - - Reserved. Must be zero.

08h 31:0 In ASID ASID to bind to the guest.

8.10.2 Actions

The firmware checks that the platform is in the INIT state. If not, the firmware returns

INVALID_PLATFORM_STATE.

The firmware checks that GCTX_PADDR is a valid sPA. If not, the firmware returns

INVALID_ADDRESS. The firmware then checks that the page at GCTX_PADDR is in the

Context state. If not, the firmware returns INVALID_GUEST.

The firmware checks that the guest is in the GSTATE_LAUNCH state or in the

GSTATE_RUNNING state. If not, the firmware returns INVALID_GUEST_STATE.

 73

[Public]

The firmware checks that ASID is an encryption-capable ASID and must be within the range 1h to

(MIN_SEV_ASID-1), inclusive. The MIN_SEV_ASID value is discovered by CPUID

Fn8000_001F[EDX]. Further, if ciphertext hiding is enabled, the firmware checks that the ASID is

within the range 1h to MAX_SNP_ASID, inclusive. If not, the firmware returns INVALID_ASID.

If the ASID is already assigned to another guest, the firmware returns ASID_OWNED. If the

guest is already activated, the firmware returns ACTIVE.

The firmware checks that a DF_FLUSH is not required. If a DF_FLUSH is required, the firmware

returns DFFLUSH_REQUIRED. Note that all ASIDs are marked to require a DF_FLUSH at reset.

The firmware checks that no pages are assigned to the ASID in the RMP. If pages are assigned,

the firmware returns INVALID_CONFIG.

If POLICY.SINGLE_SOCKET is 1 and the system has more than one socket populated, the

firmware returns POLICY_FAILURE. The firmware installs the guest’s VEK into the memory

controllers in the key slot associated with the given ASID.

8.10.3 Status Codes

Table 54. Status Codes for SNP_ACTIVATE

Status Condition

SUCCESS Successful completion.

INVALID_CONFIG ASID has pages assigned to it already.

INVALID_PLATFORM_STATE The platform is not in the INIT state.

INVALID_GUEST_STATE The guest is not in the LAUNCH state.

INVALID_ADDRESS The address is invalid for use by the firmware.

INVALID_PARAM MBZ fields are not zero.

INVALID_GUEST The guest is invalid.

INVALID_ASID The provided ASID is not an encryption-capable ASID.

ASID_OWNED The ASID is already owned by another guest.

POLICY_FAILURE The guest policy prevents activation on multiple sockets.

UPDATE_FAILED Update of the firmware internal state or a guest context page has failed.

ACTIVE The guest is already activated.

DFFLUSH_REQUIRED DF_FLUSH was not invoked before this command.

 74

[Public]

8.11 SNP_ACTIVATE_EX

This command installs the guest’s VEK into the memory controller in the key slot associated with

a given ASID on select core complexes. Only hardware threads in the selected core complex may

execute the guest. When an ASID is later reused, WBINVD need be done only on core complexes

associated with the guest.

8.11.1 Parameters

Table 55. Layout of the CMDBUF_SNP_ACTIVATE_EX Structure

Byte
Offset

Bits In/Out Name Description

00h 31:0 In EX_LEN Length of command buffer. 20h for
this version.

04h 31:0 - - Reserved.

08h 63:12 In GCTX_PADDR Bits 63:12 of the sPA of a page
donated to the firmware by the
hypervisor to contain the guest
context.

11:0 - - Reserved. Must be zero.

10h 31:0 In ASID The ASID in which the guest should
be bound.

14h 31:0 In NUMIDs Number of APIC IDs in the
ID_PADDR list.

18h 63:0 In ID_PADDR Bits 63:0 of the sPA of a list of 32-
bit APIC IDs.

8.11.2 Actions

The firmware checks that the platform is in the INIT state. If not, the firmware returns

INVALID_PLATFORM_STATE.

The firmware checks that GCTX_PADDR is a valid sPA. If not, the firmware returns

INVALID_ADDRESS. The firmware then checks that the page at GCTX_PADDR is in the

Context state. If not, the firmware returns INVALID_GUEST.

The firmware checks that the guest is in the GSTATE_LAUNCH state or in the

GSTATE_RUNNING state. If not, the firmware returns INVALID_GUEST_STATE.

The firmware checks that ASID is an encryption-capable ASID. Further, if ciphertext hiding is

enabled, the firmware checks that the ASID is within the range 1h to MAX_SNP_ASID, inclusive.

If not, the firmware returns INVALID_ASID. If the ASID is already assigned to another guest, the

firmware returns ASID_OWNED. If the guest is already activated but on a different ASID, the

firmware returns ACTIVE.

 75

[Public]

The firmware checks that a DF_FLUSH is not required. If one is needed, the firmware returns

DFFLUSH_REQUIRED. Note that all ASIDs are marked to require a DF_FLUSH at reset.

If the guest is not yet activated, the firmware checks that no pages are assigned to the ASID in the

RMP. If pages are already assigned, the firmware returns INVALID_CONFIG.

If POLICY.SINGLE_SOCKET is 1, the firmware performs the following checks:

• If the guest is bound to a migration agent, the migration agent must already be activated. Also,

completing SNP_ACTIVATE_EX must not result in activating the guest on a different

socket than its migration agent.

• Completing SNP_ACTIVATE_EX will not result in activating the guest on multiple sockets.

If any of the checks fails, the firmware returns POLICY_FAILURE. Otherwise, the firmware

installs the guest’s VEK into the memory controllers for the given APIC IDs into the key slot

associated with the given ASID. This command can be called multiple times to expand the set of

CCXs on which the guest may execute.

8.11.3 Status Codes

Table 56. Status Codes for SNP_ACTIVATE_EX

Status Condition

INVALID_CONFIG ASID has pages assigned to it already.

INVALID_PLATFORM_STATE The platform is not in the INIT state.

INVALID_GUEST_STATE The guest is not in the LAUNCH state.

INVALID_ADDRESS The address is invalid for use by the firmware.

INVALID_PARAM MBZ fields are not zero.

INVALID_GUEST The guest is invalid.

INVALID_ASID The provided ASID is not an encryption-capable
ASID.

ASID_OWNED The ASID is already owned by another guest.

POLICY_FAILURE The guest policy prevents activation on multiple
sockets.

UPDATE_FAILED Update of the firmware internal state or a guest
context page has failed.

ACTIVE The guest is already activated.

DFFLUSH_REQUIRED DF_FLUSH was not invoked before this command.

SUCCESS Successful completion.

 76

[Public]

8.12 SNP_DECOMMISSION

This command destroys a guest context. After this command successfully completes, the guest

will not long be runnable.

8.12.1 Parameters

Table 57. Layout of the CMDBUF_SNP_DECOMMISSION Structure

Byte
Offset

Bits In/Out Name Description

00h 63:12 In GCTX_PADDR Bits 63:12 of the sPA of the guest’s
context page.

11:0 - - Reserved. Must be zero.

8.12.2 Actions

The firmware checks that the platform is in the INIT state. If not, the firmware returns

INVALID_PLATFORM_STATE.

The firmware checks that the GCTX_PADDR is a valid sPA. If not, the firmware returns

INVALID_ADDRESS.

The firmware checks that the page is a Context page. If not, the firmware returns

INVALID_GUEST.

The firmware marks the ASID of the guest as not runnable. Then the firmware records that each

CPU core on each of the CCXs that the guest was activated on requires a WBINVD followed by a

single DF_FLUSH command to ensure that all unencrypted data in the caches are invalidated

before reusing the ASID. The firmware then transitions the page into a Firmware page.

8.12.3 Status Codes

Table 58. Status Codes for SNP_DECOMMISSION

Status Condition

SUCCESS Successful completion.

INVALID_PLATFORM_STATE The platform is not in the INIT state.

INVALID_ADDRESS The address is not valid or is misaligned.

INVALID_PARAM MBZ fields are not zero.

INVALID_GUEST The guest is not valid.

UPDATE_FAILED Update of the firmware internal state or a guest context page has
failed.

 77

[Public]

8.13 SNP_DF_FLUSH

This command flushes SoC data buffers after CPU caches have been invalidated. After a VM is

decommissioned or exported, the hypervisor must execute a WBINVD on the cores that the

previous guest was active on before invoking the SNP_DF_FLUSH command. The combination

of WBINVD and SNP_DF_FLUSH ensures that all data associated with the previous guest are no

longer in any CPU caches.

8.13.1 Parameters

None.

8.13.2 Actions

For each core marked for cache invalidation, the firmware checks that the core has executed a

WBINVD instruction. If not, the firmware returns WBINVD_REQUIRED. The commands that

mark cores for cache invalidation include SNP_DECOMMISSION and the guest request

MSG_EXPORT_REQ.

The firmware flushes the write buffers of the data fabric and records that a flush has been

performed for all decommissioned ASIDs.

8.13.3 Status Codes

Table 59. Status Codes for SNP_DF_FLUSH

Status Condition

SUCCESS Successful completion.

INVALID_PLATFORM_STATE The firmware is not in the INIT state.

WBINVD_REQUIRED At least one core did not execute a WBINVD instruction before
calling this command.

 78

[Public]

8.14 SNP_SHUTDOWN

This command returns the firmware to an uninitialized state.

8.14.1 Parameters

None.

8.14.2 Actions

This command is equivalent to executing SNP_SHUTDOWN_EX with a command buffer

containing zeroes.

8.14.3 Status Codes

Table 60. Status Codes for SNP_SHUTDOWN

Status Condition

INVALID_PLATFORM_STATE SEV is not in the UNINIT state.

DFFLUSH_REQUIRED DF_FLUSH was not invoked before this command.

SUCCESS Successful completion.

 79

[Public]

8.15 SNP_SHUTDOWN_EX

This command returns the firmware to an uninitialized state and optionally disables the SNP

enforcement in the IOMMU and sets the associated pages to the Hypervisor state.

8.15.1 Parameters

Table 61. Layout of the CMDBUF_SNP_SHUTDOWN_EX Structure

Byte
Offset

Bits In/Out Name Description

0h 31:0 In LENGTH Length of this command buffer in bytes.

4h 31:2 - - Reserved. Must be zero.

1 In X86_SNP_SHUTDOWN Disables SNP on all cores by clearing the
SYSCFG[SNPen] bit.

Present when X86SnpShutdown feature
bit is 1.

0 In IOMMU_SNP_SHUTDOWN Disable enforcement of SNP in the
IOMMU.

8.15.2 Actions

If SEV firmware is not in the UNINIT state, the firmware returns

INVALID_PLATFORM_STATE.

If IOMMU_SNP_SHUTDOWN is set to 1, the firmware performs the following actions:

• Disables SNP enforcement by the IOMMU.

• Transitions all pages associated with the IOMMU to the Reclaim state. Firmware before

version 1.53 transitions to the Hypervisor state. Starting with version 1.53, the hypervisor

must execute RMPUPDATE to recover the page by transitioning it from Reclaim.

• Records that a full RMP reinitialization is required by the next SNP_INIT invocation.

If IOMMU_SNP_SHUTDOWN is 0, the firmware leaves the IOMMU and its pages unaltered.

If X86_SNP_SHUTDOWN is set to 1, the firmware clears the SYSCFG[SNPEn] bit in each core.

Software must set IOMMU_SNP_SHUTDOWN to 1 if X86_SNP_SHUTDOWN is 1.

The firmware reenables the RAPL feature if it was disabled in SNP_INIT_EX.

The firmware then checks whether the firmware is in the UNINIT state. If so, the firmware returns

SUCCESS without taking any further action.

 80

[Public]

If the SNP firmware is in the INIT state, the firmware checks every encryption-capable ASID to

verify that it is not in use by a guest and a DF_FLUSH is not required. If a DF_FLUSH is

required, the firmware returns DFFLUSH_REQUIRED.

The firmware clears the encryption keys from the memory controller and transitions the platform

to the UNINIT state and returns SUCCESS.

Note that, aside from the IOMMU pages referenced above, the firmware will not automatically

reclaim any pages marked as immutable in the RMP. The hypervisor should either reclaim the

pages using SNP_PAGE_RECLAIM or should call SNP_INIT afterward to reset the RMP.

8.15.3 Status Codes

Table 62. Status Codes for SNP_SHUTDOWN_EX

Status Condition

INVALID_PLATFORM_STATE SEV is not in the UNINIT state.

DFFLUSH_REQUIRED DF_FLUSH was not invoked before this command.

SUCCESS Successful completion.

 81

[Public]

8.16 SNP_LAUNCH_START

This command initializes the flow to launch a guest.

8.16.1 Parameters

Table 63. Layout of the CMDBUF_SNP_LAUNCH_START Structure

Byte
Offset

Bits In/Out Name Description

00h 63:12 In GCTX_PADDR Bits 63:12 of the sPA of the guest context
page.

11:0 - - Reserved. Must be zero.

08h 63:0 In POLICY Guest policy. See Table 8 for a description of
the guest policy structure.

10h 63:12 In MA_GCTX_PADDR Bits 63:12 of the sPA of the guest context of
the migration agent. Ignored if MA_EN is 0.

11:0 In - Reserved. Must be zero.

18h 31:2 - - Reserved. Must be zero.

1 In IMI_EN Indicates that this launch flow is launching an
IMI for the purpose of guest-assisted
migration.

0 In MA_EN 1 if this guest is associated with a migration
agent. Otherwise 0.

1Ch 31:0 In DESIRED_TSC_FREQ Hypervisor-desired mean TSC frequency in
kHz of the guest. This field has no effect if
guests do not enable Secure TSC in the
VMSA. The hypervisor should set this field to
0h if it does not support Secure TSC for this
guest.

20h 127:0 In GOSVW Hypervisor-provided value to indicate guest
OS-visible workarounds. The format is
hypervisor defined.

8.16.2 Actions

The firmware checks that the platform is in the INIT state. If not, the firmware returns

INVALID_PLATFORM_STATE.

The firmware checks that GCTX_PADDR is a valid sPA. If MA_EN is 1, the firmware checks

that MA_GCTX_PADDR is a valid sPA. If not, the firmware returns INVALID_ADDRESS. The

firmware then checks that GCTX_PADDR is a Context page. If MA_EN is 1, the firmware checks

that MA_GCTX_PADDR is a Context page. If not, the firmware returns INVALID_GUEST.

 82

[Public]

The firmware checks that the guest is in the GSTATE_INIT state. If not, the firmware returns

INVALID_GUEST_STATE.

The firmware verifies that the guest’s policy is satisfied by checking that the following conditions

are met:

• If MA_EN is 1, POLICY.MIGRATE_MA must be 1.

• If MA_EN is 1, then the migration agent must not be migratable—that is, the migration agent

itself must not be bound to another migration agent.

• If POLICY.SMT is 0, then SMT must be disabled.

• POLICY.ABI_MAJOR must equal the major version of this ABI.

• POLICY.ABI_MINOR must be less than or equal to the minor version of this ABI.

• If POLICY.SINGLE_SOCKET is 1 and MA_EN is 1, then the migration agent’s

POLICY.SINGLE_SOCKET must be 1.

• If POLICY.CXL_ALLOW is 0, then CXL channels must not have memory or devices

populated. This policy check is performed when CxlAllowPolicy feature bit is set.

• If POLICY.MEM_AES_256_XTS is 1, then the memory controller must be configured to use

AES-256 XTS. This policy check is performed when Aes256XtsPolicy feature bit is set.

• If POLICY.RAPL_DIS is 1, then the Running Average Power Limit (RAPL) feature must be

disabled. This policy check is performed when RaplDis feature bit is set.

• If POLICY.CIPHERTEXT_HIDING is 1, then ciphertext hiding must be enabled. This policy

check is performed when CiphertextHiding feature bit is set.

If any of the above conditions are not met, the firmware returns POLICY_FAILURE.

The firmware initializes the guest context with the values defined in Table 64.

Table 64. Guest Context Field Initialization for the Launch Flow

Field Value

MsgCount0
MsgCount1
MsgCount2
MsgCount3

0h

Policy Set to POLICY.

MaReportId Set to ReportId of MA if MA_EN is 1. Set to 0h otherwise.

MaReportIdValid Set to the value of MA_EN.

OEK Generated using a CSRNG.

 83

[Public]

Field Value

VMPCK0
VMPCK1
VMPCK2
VMPCK3

Generated using a CSRNG.

VMRK Generated using a CSRNG. May be replaced by a VMRK guest message
from the associated migration agent. See Section 7.7.

LD 0h

IMD 0h

IDBlockEn 0

IDBlock 0h

IDKeyDigest 0h

AuthorKeyEn 0

AuthorKeyDigest 0h

ReportID Generated using a CSRNG.

IMIEn Set to IMI_EN.

GOSVW GOSVW field.

DesiredTscFreq Set to DESIRED_TSC_FREQ.

PspTscOffset 0h

The firmware sets the guest state to GSTATE_LAUNCH.

8.16.3 Status Codes

Table 65. Status Codes for SNP_LAUNCH_START

Status Condition

SUCCESS Successful completion.

INVALID_PLATFORM_STATE The platform is not in the INIT state.

INVALID_ADDRESS An address was not a valid sPA or properly aligned.

INVALID_PARAM MBZ fields are not zero.

INVALID_GUEST The guest is invalid.

INVALID_GUEST_STATE The guest was not in the GSTATE_INIT state.

POLICY_FAILURE The guest’s policy was violated.

UPDATE_FAILED Update of the firmware internal state or a guest context page has
failed.

 84

[Public]

8.17 SNP_LAUNCH_UPDATE

This command inserts pages into the guest physical address space.

8.17.1 Parameters

Table 66. Layout of the CMDBUF_SNP_LAUNCH_UPDATE Structure

Byte Offset Bits In/Out Name Description

00h 63:12 In GCTX_PADDR Bits 63:12 of the sPA of the guest context page.

11:0 - - Reserved. Must be zero.

08h 31:5 - - Reserved. Must be zero.

4 In IMI_PAGE Indicates that this page is part of the IMI of the
guest.

3:1 In PAGE_TYPE Encoded page type. See Table 67.

0 In PAGE_SIZE Indicates page size. 0 indicates a 4 KB page. 1
indicates a 2 MB page.

0Ch 31:0 - - Reserved. Must be zero.

10h 63:12 In PAGE_PADDR Bits 63:12 of the sPA of the destination page.
The page size is determined by PAGE_SIZE.

11:0 - - Reserved. Must be zero.

18h 63:32 - - Reserved. Must be zero.

31:24 In VMPL3_PERMS VMPL permission mask for VMPL3. See Table 68
for the definition of the mask.

23:16 In VMPL2_PERMS VMPL permission mask for VMPL2 See Table 68
for the definition of the mask.

15:8 In VMPL1_PERMS VMPL permission mask for VMPL1. See Table 68
for the definition of the mask.

7:0 - - Reserved. Must be zero.

Table 67. Encodings for the PAGE_TYPE Field

Value Name Description

00h - Reserved.

01h PAGE_TYPE_NORMAL A normal data page.

02h PAGE_TYPE_VMSA A VMSA page.

03h PAGE_TYPE_ZERO A page full of zeroes.

04h PAGE_TYPE_UNMEASURED A page that is encrypted but not measured.

05h PAGE_TYPE_SECRETS A page for the firmware to store secrets for the guest.

 85

[Public]

Value Name Description

06h PAGE_TYPE_CPUID A page for the hypervisor to provide CPUID function
values.

All other encodings Reserved.

Table 68. VMPL Permission Mask

Bit Field Description

7:4 - Reserved. Must be zero.

3 Execute-Supervisor Page is executable by the VMPL in CPL2, CPL1, and CPL0.

2 Execute-User Page is executable by the VMPL in CPL3.

1 Write Page is writeable by the VMPL.

0 Read Page is readable by the VMPL.

8.17.2 Actions

The firmware checks that the platform is in the INIT state. If not, the firmware returns

INVALID_PLATFORM_STATE.

The firmware checks that GCTX_PADDR and PAGE_PADDR are valid sPAs. If not, the

firmware returns INVALID_ADDRESS. The firmware checks that if PAGE_SIZE is 1, then

PAGE_PADDR is 2 MB aligned. If this check fails, the firmware returns INVALID_ADDRESS.

The firmware checks that GCTX_PADDR is a Context page. If not, the firmware returns

INVALID_GUEST.

The firmware checks that the guest is in the GSTATE_LAUNCH state. If not, the firmware

returns INVALID_GUEST_STATE.

The firmware also checks that the page at PAGE_PADDR is Pre-Guest page. If not, the firmware

returns INVALID_PAGE_STATE.

The firmware checks that the guest is activated—that is, it has an assigned ASID. If not, the

firmware returns INACTIVE.

The firmware checks that the ASID of the destination page indicated by the RMP matches the

ASID of the guest. If not, the firmware returns INVALID_PAGE_OWNER.

The firmware checks that the destination page size indicated by the RMP matches the page size

indicated by the PAGE_SIZE parameter. If not, the firmware returns INVALID_PAGE_SIZE.

The firmware checks that if GCTX.IMIEn is 1, then IMI_PAGE is also 1. If not, then the firmware

returns INVALID_PARAM.

 86

[Public]

The firmware checks that if VMPLs are not enabled, then VMPL1_PERMS, VMPL2_PERMS,

and VMPL3_PERMS must be zero. If not, the firmware returns INVALID_PARAM.

The firmware updates the GCTX.LD and possibly the GCTX.IMD with information describing

the contents and location of the pages inserted into the guest. Each update to the digest is of the

following form:

 DIGEST_NEW := SHA-384(PAGE_INFO)

where PAGE_INFO is the structure defined in Table 69.

Table 69. Layout of the PAGE_INFO Structure

Byte
Offset

Bits Field Description

0h 383:0 DIGEST_CUR The value of the current digest (either LD or IMD).

30h 383:0 CONTENTS The SHA-384 digest of the measured contents of the region, if
any. See the following subsections.

60h 15:0 LENGTH Length of this structure in bytes.

62h 7:0 PAGE_TYPE The zero-extended PAGE_TYPE field provided by the hypervisor.

63h 7:1 - 0h

0 IMI_PAGE Set to the IMI_PAGE flag provided by the hypervisor.

64h 31:24 VMPL3_PERMS The VMPL3_PERMS field provided by the hypervisor.

23:16 VMPL2_PERMS The VMPL2_PERMS field provided by the hypervisor.

15:8 VMPL1_PERMS The VMPL1_PERMS field provided by the hypervisor.

7:0 - 0h

68h 63:0 GPA The 64-bit gPA of the region.

The firmware unconditionally updates GCTX.LD. If IMI_PAGE is 1, the firmware updates the

GCTX.IMD.

The following subsections describe how the PAGE_TYPE, GPA, and CONTENTS fields are

determined.

Note that the guest physical address space is limited according to CPUID Fn80000008_EAX and

thus the GPAs used by the firmware in measurement calculation are equally limited. Hypervisors

should not attempt to map pages outside of this limit.

The following subsections describe the actions the firmware takes on the guest address space

depending on the page type, PAGE_TYPE. If the page size is 2 MB, then the firmware will update

the launch digest as if the data were provided in a contiguous sequence of 4 KB pages. The final

launch digest is therefore independent of how the hypervisor chooses to size the pages within the

nested page tables and in the RMP.

 87

[Public]

8.17.2.1 PAGE_TYPE_NORMAL

The firmware performs the actions in this subsection when PAGE_TYPE is

PAGE_TYPE_NORMAL.

For each 4 KB chunk within the page, the firmware constructs a PAGE_INFO structure with the

following data:

• PAGE_TYPE: PAGE_TYPE_NORMAL

• GPA: The gPA of the 4 KB chunk. The firmware calculates this by adding the offset of the

chunk to RMP.GPA of the page.

• CONTENTS: The SHA-384 digest of the contents of the 4 KB chunk.

The firmware updates GCTX.LD and GCTX.IMD as described above.

The firmware encrypts the page with the VEK in place. The firmware then sets the VMPL

permissions for the page and transitions the destination page to Guest-Valid.

8.17.2.2 PAGE_TYPE_VMSA

The firmware performs the actions in this subsection when PAGE_TYPE is

PAGE_TYPE_VMSA.

The firmware checks that the destination page is 4 KB. If not, the firmware returns

INVALID_PAGE_SIZE.

The firmware constructs a PAGE_INFO structure with the following data:

• PAGE_TYPE: PAGE_TYPE_VMSA

• GPA: The gPA of the 4 KB page. The firmware uses the RMP.GPA of the page.

• CONTENTS: The SHA-384 digest of the contents of the 4 KB page. The firmware ignores

the values of GUEST_TSC_SCALE and GUEST_TSC_OFFSET and measures the VMSA

as if those fields contained zero.

The firmware updates GCTX.LD and GCTX.IMD as described above.

If VmsaRegProt in the SEV_FEATURES field of VMSA is 1 and the current microcode level

supports VmsaRegProt, then the firmware generates an 8 B random tweak value and writes it to

offset 300h of the VMSA. The firmware then XORs the tweaked quadwords of the VMSA with

the tweak value. The quadwords of the VMSA that are tweaked are determined by the family,

model, stepping, and microcode patch of the processor. This information is shared with the guest

via the PAGE_TYPE_SECRETS page. If the current microcode level does not support

VmsaRegProt, the firmware returns NOT_SUPPORTED.

Note that the firmware measures the VMSA provided by the hypervisor prior to any tweak

operations.

 88

[Public]

If SecureTsc in the SEV_FEATURES field of VMSA is 1, the firmware sets the

GUEST_TSC_SCALE and GUEST_TSC_OFFSET fields in the VMSA as follows:

GUEST_TSC_SCALE := GCTX.DesiredTscFreq / (mean native frequency)

GUEST_TSC_OFFSET := 0

Note that these VMSA fields are changed after the measurement is calculated.

If SecureTsc in the SEV_FEATURES field of VMSA is 0, then the firmware does not alter

GUEST_TSC_SCALE or GUEST_TSC_OFFSET.

The firmware encrypts the page with the VEK in place and sets the RMP.VMSA of the page to 1.

Then it sets the VMPL permissions for the page and transitions the page to Guest-Valid.

8.17.2.3 PAGE_TYPE_ZERO

The firmware performs the actions in this subsection when PAGE_TYPE is PAGE_TYPE_ZERO.

For each 4 KB chunk within the page, the firmware constructs a PAGE_INFO structure with the

following data:

• PAGE_TYPE: PAGE_TYPE_ZERO

• GPA: The gPA of the 4 KB chunk. The firmware calculates this by adding the offset of the

chunk to RMP.GPA of the page.

• CONTENTS: 0h

The firmware updates GCTX.LD and GCTX.IMD as described above.

The firmware encrypts a page of zeroes with the VEK. The firmware sets the VMPL permissions

for the page and transitions the page to Guest-Valid.

8.17.2.4 PAGE_TYPE_UNMEASURED

The firmware performs the actions in this subsection when PAGE_TYPE is

PAGE_TYPE_UNMEASURED.

For each 4 KB chunk within the page, the firmware constructs a PAGE_INFO structure with the

following data:

• PAGE_TYPE: PAGE_TYPE_UNMEASURED

• GPA: The gPA of the 4 KB chunk. The firmware calculates this by adding the offset of the

chunk to RMP.GPA of the page.

• CONTENTS: 0h

The firmware updates GCTX.LD and GCTX.IMD as described above.

 89

[Public]

The firmware encrypts the page with the VEK in place and then sets the VMPL permissions for

the page and transitions the page to Guest-Valid.

8.17.2.5 PAGE_TYPE_SECRETS

The firmware performs the actions in this subsection when PAGE_TYPE is

PAGE_TYPE_SECRETS.

The firmware checks that the destination page is 4 KB. If not, the firmware returns

INVALID_PAGE_SIZE.

The firmware constructs a PAGE_INFO structure with the following data:

• PAGE_TYPE: PAGE_TYPE_SECRETS

• GPA: The gPA of the 4 KB page. The firmware uses the RMP.GPA of the page.

• CONTENTS: 0h

The firmware updates GCTX.LD and GCTX.IMD as described above.

The firmware constructs the 4 KB data structure described in Table 70. Reserved fields are set to

0h. The firmware then encrypts the data structure with the guest’s VEK and writes it into the page.

The firmware ensures that the data structure content remains confidential to the guest and the

firmware.

Table 70. Secrets Page Format

Byte
Offset

Bits Name Description

000h 31:0 VERSION Version of the secrets page format. The version
described in this specification is 3h.

004h 31:1 - Reserved.

0 IMI_EN Set to the value of GCTX.IMIEn.

008h 31:0 FMS Family, model, and stepping information as reported in
CPUID Fn0000_0001_EAX.

0Ch 31:0 - Reserved.

10h 127:0 GOSVW GOSVW guest context field as provided by the
hypervisor in SNP_LAUNCH_START.

020h 255:0 VMPCK0 Set to GCTX.VMPCK0.

040h 255:0 VMPCK1 Set to GCTX.VMPCK1.

060h 255:0 VMPCK2 Set to GCTX.VMPCK2.

080h 255:0 VMPCK3 Set to GCTX.VMPCK3.

0A0h–0FFh - Reserved for guest OS usage.

 90

[Public]

Byte
Offset

Bits Name Description

100h–13Fh VMSA_TWEAK_BITMAP Set to the bitmap of the VMSA tweak. The kth bit of the
bitmap indicates that the kth quadword of the VMSA is
tweaked.

140h–15Fh - Reserved for guest OS usage.

160h 31:0 TSC_FACTOR Encoding of the percentage decrease in mean TSC
frequency due to clocking parameters. Real TSC
frequency can be calculated by the guest as:

GUEST_TSC_FREQ * (1 – (TSC_FACTOR * 0.00001))

For instance, a TSC_FACTOR value of 200 indicates a
reduction of 0.2% of TSC frequency.

164h–FFFh - Reserved.

The firmware sets the VMPL permissions for the page and transitions the page to Guest-Valid.

8.17.2.6 PAGE_TYPE_CPUID

The firmware performs the actions in this subsection when PAGE_TYPE is

PAGE_TYPE_CPUID.

The firmware checks that the destination page is 4 KB. If not, the firmware returns

INVALID_PAGE_SIZE.

The hypervisor should fill the page with CPUID function structures as described in Table 71.

These structures inform the guest of the machine configuration exposed to the guest by the

hypervisor. However, a malicious hypervisor could provide a value that puts the guest in an

insecure state. Therefore, the firmware checks each CPUID function structure to determine if the

provided value is secure.

If firmware encounters a CPUID function that is not in the standard range (Fn0000_0000 through

Fn0000_FFFF) or the extended range (Fn8000_0000 through Fn8000_FFFF), the firmware does

not perform any checks on the function output.

If firmware encounters a CPUID function that is in the standard or extended ranges, then the

firmware performs a check to ensure that the provided output would not lead to an insecure guest

state. If insecure function output is identified, the firmware updates the field with an acceptable

value. Note that some functions have multiple acceptable values, and the firmware may choose

any one of them. The firmware then returns INVALID_PARAM. Note that in this failure case, the

page is not encrypted with the VEK, the page measurement is not updated, and the page state

remains unaltered.

The policy used by the firmware to assess CPUID function output can be found in [PPR].

 91

[Public]

The firmware constructs a PAGE_INFO structure with the following data:

• PAGE_TYPE: PAGE_TYPE_CPUID

• GPA: The gPA of the 4 KB page. The firmware uses the RMP.GPA of the page.

• CONTENTS: 0h

The firmware updates GCTX.LD and GCTX.IMD as described above.

The page has enough for COUNT_MAX function structures, but only COUNT function structures

are valid. COUNT_MAX is 64.

The firmware then encrypts the page with the VEK in place.

Table 71. CPUID Page Format

Byte
Offset

Bits Name Description

00h 31:0 COUNT Number of CPUID functions to validate. Must be less
than or equal to COUNT_MAX.

04h 31:0 - Reserved. Must be zero.

08h 63:0 - Reserved. Must be zero.

10h–C0Fh CPUID_FUNCTION[] COUNT_MAX number of CPUID_FUNCTION records.
(See 7.1 for the format of this record.) Only the first
COUNT records are valid.

The firmware sets the VMPL permissions for the page and transitions the page to Guest-Valid.

8.17.3 Status Codes

Table 72. Status Codes for SNP_LAUNCH_UPDATE

Status Condition

SUCCESS Successful completion.

INVALID_PLATFORM_STATE The platform is not in the INIT state.

INVALID_ADDRESS An address is invalid or incorrectly aligned.

INVALID_PARAM MBZ fields are not zero.

INVALID_GUEST The guest is invalid.

INVALID_GUEST_STATE The guest is not in the GSTATE_LAUNCH state.

INACTIVE The guest has not been activated.

INVALID_PAGE_STATE A page was not in the correct state.

INVALID_PAGE_OWNER The destination page was not owned by the guest.

 92

[Public]

Status Condition

INVALID_PAGE_SIZE The destination page was not the correct size.

INVALID_PARAM IMI_PAGE was incorrectly set.

UPDATE_FAILED Update of the firmware internal state or a guest
context page has failed.

8.18 SNP_LAUNCH_FINISH

This command completes the guest launch flow.

8.18.1 Parameters

Table 73. Layout of the CMDBUF_SNP_LAUNCH_FINISH Structure

Byte
Offset

Bits In/Out Name Description

00h 63:12 In GCTX_PADDR Bits 63:12 of the sPA of the guest context
page.

11:0 - - Reserved. Must be zero.

08h 63:0 In ID_BLOCK_PADDR sPA of the ID block.
Ignored if ID_BLOCK_EN is 0.

10h 63:0 In ID_AUTH_PADDR sPA of the authentication information of the
ID block.
Ignored if ID_BLOCK_EN is 0.

18h 63:3 - - Reserved. Must be zero.

2 In VCEK_DIS Indicates that the VCEK is disabled for this
guest.

1 In AUTH_KEY_EN Indicates that the author key is present in
the ID authentication information structure.
Ignored if ID_BLOCK_EN is 0.

0 In ID_BLOCK_EN Indicates that the ID block and the ID
authentication information structure are
present.

20h 255:0 In HOST_DATA Opaque host-supplied data to describe the
guest. The firmware does not interpret this
value.

Table 74. Structure of the ID Block

Byte
Offset

Bits Name Description

0h 383:0 LD The expected launch digest of the guest.

 93

[Public]

Byte
Offset

Bits Name Description

30h 127:0 FAMILY_ID Family ID of the guest, provided by the guest owner and
uninterpreted by the firmware.

40h 127:0 IMAGE_ID Image ID of the guest, provided by the guest owner and
uninterpreted by the firmware.

50h 31:0 VERSION Version of the ID block format. Must be 1h for this version of the
ABI.

54h 31:0 GUEST_SVN SVN of the guest.

58h 63:0 POLICY The policy of the guest.

Table 75. Structure of the ID Authentication Information Structure

Byte
Offset

Bits Name Description

0h 31:0 ID_KEY_ALGO The algorithm of the ID Key. See Chapter 10 for details.

4h 31:0 AUTH_KEY_ALGO The algorithm of the Author Key. See Chapter 10 for
details.

8h–3Fh - Reserved. Should be zero.

40h–23Fh ID_BLOCK_SIG The signature of all bytes of the ID block. See Chapter 10
for the format of the signature.

240h–643h ID_KEY The public component of the ID key. See Chapter 10 for
the format of the public key.

644h–67Fh - Reserved. Should be zero.

680h–87Fh ID_KEY_SIG The signature of the ID_KEY. See Chapter 10 for the
format of the signature.

880h–C83h AUTHOR_KEY The public component of the Author key. See Chapter 10
for the format of the public key.
Ignored if AUTHOR_KEY_EN is 0.

C84h–FFFh - Reserved. Should be zero.

8.18.2 Actions

The firmware checks that the platform is in the INIT state. If not, the firmware returns

INVALID_PLATFORM_STATE.

The firmware checks that GCTX_PADDR is a valid sPA. If not, the firmware returns

INVALID_ADDRESS. The firmware then checks that GCTX_PADDR is a Context page. If not,

the firmware returns INVALID_GUEST.

 94

[Public]

The firmware checks that the guest is in the GSTATE_LAUNCH state. The firmware also checks

that GCTX.IMIEn is 0. If either check fails, the firmware returns INVALID_GUEST_STATE.

The firmware checks that the guest is activated—that is, it has an assigned ASID. If not, the

firmware returns INACTIVE.

The firmware checks that, if ID_BLOCK_EN is 1, then ID_BLOCK_PADDR and

ID_AUTH_PADDR are valid sPAs. If not, the firmware returns INVALID_ADDRESS.

If ID_BLOCK_EN is 1, the firmware checks that the LD field of the ID block is equal to

GCTX.LD. If not, the firmware returns BAD_MEASUREMENT. The firmware then checks that

the POLICY field of the ID block is equal to GCTX.Policy. If not, the firmware returns

POLICY_FAILURE. The firmware then validates the signature of the ID block using the ID

public key. If AUTH_KEY_EN is also 1, the firmware validates the signature of the ID key using

the Author public key. If either signature fails to validate, the firmware returns

BAD_SIGNATURE.

The firmware then initializes the guest context fields according to Table 76.

Table 76. Guest Context Fields Initialized During SNP_LAUNCH_FINISH

Field Value

HostData HOST_DATA.

IDBlockEn ID_BLOCK_EN.

IDBlock If ID_BLOCK_EN is 1, then set to the ID block. 0 otherwise.

IDKeyDigest If ID_BLOCK_EN is 1, then set to the SHA-384 digest of the ID public key. 0
otherwise.

AuthorKeyEn AUTHOR_KEY_EN.

AuthorKeyDigest If AUTHOR_KEY_EN is 1, then set to the SHA-384 digest of the Author public
key. 0 otherwise.

VcekDis VCEK_DIS.

The firmware makes the guest runnable on the ASID on which it is activated. The firmware then

sets the guest state to GSTATE_RUNNING.

8.18.3 Status Codes

Table 77. Status Codes for SNP_LAUNCH_FINISH

Status Condition

SUCCESS Successful completion.

INVALID_PLATFORM_STATE The platform is not in the INIT state.

INVALID_GUEST_STATE The guest is not in the GSTATE_LAUNCH state or GCTX.IMIEn is
not 0.

INVALID_GUEST The guest is invalid.

 95

[Public]

Status Condition

INVALID_ADDRESS An address is invalid or incorrectly aligned.

INVALID_PARAM MBZ fields are not zero.

INVALID_PAGE_STATE A page was not in the correct state.

INACTIVE The guest has not been activated.

BAD_SIGNATURE Incorrect signature provided.

UPDATE_FAILED Update of the firmware internal state or a guest context page has
failed

8.19 SNP_GUEST_STATUS

This command is used to retrieve information about an SNP guest.

8.19.1 Parameters

Table 78. Layout of the CMDBUF_SNP_GUEST_STATUS Structure

Byte
Offset

Bits In/Out Name Description

00h 63:12 In GCTX_PADDR Bits 63:12 of the sPA of the guest
context page.

11:0 - - Reserved. Must be zero.

08h 63:0 In STATUS_PADDR Bits 63:0 of the sPA of the guest
status structure. See Table 79.

8.19.2 Actions

The firmware checks that the platform is in the INIT state. If not, the firmware returns

INVALID_PLATFORM_STATE.

The firmware checks that the GCTX_PADDR and STATUS_PADDR are valid sPAs. If either

check fails, the firmware returns INVALID_ADDRESS.

The firmware checks that the guest context page is a Context page. If not, the firmware returns

INVALID_GUEST. The firmware checks that the guest status page is a Firmware or Default page.

If not, the firmware returns INVALID_PAGE_STATE.

The firmware writes the following structure to the beginning of the guest status page.

 96

[Public]

Table 79. Layout of the STRUCT_SNP_GUEST_STATUS Structure

Byte
Offset

Bits Name Description

00h 63:0 POLICY Guest policy.

08h 31:0 ASID Current ASID. If none is assigned, set to 0h.

0Ch 7:0 STATE Current guest state.

0Dh 7:0 - Reserved.

0Eh 15:0 - Reserved.

10h 31:1 - Reserved.

- 0 VCEK_DIS Value of VcekDis for this guest. Indicates that the guest cannot use
the VCEK for attestation or key derivation.

14h 31:0 - Reserved.

18h 63:0 - Reserved.

8.19.3 Status Codes

Table 80. Status Codes for SNP_GUEST_STATUS

Status Condition

SUCCESS Successful completion.

INVALID_PLATFORM_STATE The platform is not in the INIT state.

INVALID_ADDRESS The address is invalid for use by the firmware.

INVALID_PARAM MBZ fields are not zero.

INVALID_GUEST The guest context page was invalid.

INVALID_PAGE_STATE The guest status page was not in the correct state.

INVALID_PAGE_SIZE The guest status page was not the correct size.

UPDATE_FAILED Update of the firmware internal state or a guest context page has failed.

 97

[Public]

8.20 SNP_PAGE_MOVE

This command moves the contents of SNP-protected pages within the system physical address

space without violating SNP security.

8.20.1 Parameters

Table 81. Layout of the CMDBUF_SNP_PAGE_MOVE Structure

Byte
Offset

Bits In/Out Name Description

00h 63:12 In GCTX_PADDR Bits 63:12 of the sPA of the guest
context page.

11:0 - - Reserved. Must be zero.

08h 31:1 - - Reserved. Must be zero.

0 In PAGE_SIZE Indicates page size. 0 indicates a
4 KB page. 1 indicates a 2 MB
page.

0Ch 31:0 - - Reserved. Must be zero.

10h 63:12 In SRC_PADDR Bits 63:12 of the sPA of the source
page. The page size is determined
by PAGE_SIZE.

11:0 - - Reserved. Must be zero.

18h 63:12 In DST_PADDR Bits 63:12 of the sPA of the
destination page. The page size is
determined by PAGE_SIZE.

11:0 - - Reserved. Must be zero.

8.20.2 Actions

The firmware checks that the platform is in the INIT state. If not, the firmware returns

INVALID_PLATFORM_STATE.

The firmware checks that GCTX_PADDR is a valid sPA. If not, the firmware returns

INVALID_ADDRESS. The firmware then checks that the page at GCTX_PADDR is in the

Context state. If not, the firmware returns INVALID_GUEST.

The firmware checks that the guest is in the GSTATE_LAUNCH or GSTATE_RUNNING states.

If not, the firmware returns INVALID_GUEST_STATE. The firmware then checks that the guest

is activated. If not, the firmware returns INACTIVE.

The firmware checks that SRC_PADDR and DST_PADDR are valid sPAs. If not, the firmware

returns INVALD_ADDRESS.

 98

[Public]

The firmware checks that the source and destination page sizes indicated by the RMP match the

page size indicated by the PAGE_SIZE parameter. If not, the firmware returns

INVALID_PAGE_SIZE.

This command operates either on guest pages or on Metadata pages. The following subsections

describe each case.

8.20.2.1 Guest Pages

The firmware performs the actions in this section when the source page is a Pre-Swap or Pre-

Guest page.

The firmware checks that the destination page is a Pre-Guest page. If the check fails, the firmware

returns INVALID_PAGE_STATE.

The firmware checks that the RMP.ASID of both the source and destination pages are equal to the

ASID of the guest. If not, the firmware returns INVALID_PAGE_OWNER.

The firmware uses the guest’s VEK to copy the plaintext of the source page into the plaintext of

the destination page.

The firmware sets the RMP.GPA and RMP.VMSA of the destination page to match the

RMP.GPA and RMP.VMSA of the source page. If VMPLs are enabled, the firmware also sets the

VMPL permissions bits of the destination page to match the VMPL permission bits of the source

page.

If the source page is a Pre-Guest page, the firmware transitions the destination page into a Guest-

Invalid page. If the source page is a Pre-Swap page, the firmware transitions the destination page

into a Guest-Valid page. Finally, the firmware transitions the source page into a Guest-Invalid

page.

8.20.2.2 Metadata Pages

The firmware performs the actions in this section when the source page is a Metadata page.

The firmware checks that the destination page is a Firmware page. If the check fails, the firmware

returns INVALID_PAGE_STATE.

The firmware checks that the RMP.GPA of the source page is equal to the sPA of the guest

context. If not, the firmware returns INVALID_PAGE_OWNER.

The firmware copies the contents of the source page into the destination page. The firmware then

sets the RMP.GPA of the destination to match the sPA of the guest context page and transitions

the destination page into a Metadata page.

Finally, the firmware transitions the source page into a Firmware page.

 99

[Public]

8.20.3 Status Codes

Table 82. Status Codes for SNP_PAGE_MOVE

Status Condition

SUCCESS Successful completion.

INVALID_PLATFORM_STATE The platform is not in the INIT state.

INVALID_PARAM MBZ fields are not zero.

INVALID_ADDRESS An address is invalid for use by the firmware or is misaligned.

INVALID_GUEST The guest is invalid.

INVALID_GUEST_STATE The guest is not in the correct state.

INACTIVE The guest is not activated.

INVALID_PAGE_STATE A page was in the incorrect state.

INVALID_PAGE_OWNER A page was not owned by the guest.

INVALID_PAGE_SIZE A page was not the correct size.

UPDATE_FAILED Update of the firmware internal state or a guest context page has
failed.

8.21 SNP_PAGE_MD_INIT

This command constructs a new Metadata page that can be used to store metadata entries.

8.21.1 Parameters

Table 83. Layout of the CMDBUF_SNP_PAGE_MD_INIT Structure

Byte
Offset

Bits In/Out Name Description

00h 63:12 In GCTX_PADDR Bits 63:12 of the sPA of the guest
context page.

11:0 - - Reserved. Must be zero.

08h 63:12 In PAGE_PADDR Bits 63:12 of the sPA of the page
to turn into a metadata page.

11:0 - - Reserved. Must be zero.

8.21.2 Actions

The firmware checks that the platform is in the INIT state. If not, the firmware returns

INVALID_PLATFORM_STATE.

 100

[Public]

The firmware checks that GCTX_PADDR is a valid sPA. If not, the firmware returns

INVALID_ADDRESS. The firmware then checks that the page at GCTX_PADDR is in the

Context state. If not, the firmware returns INVALID_GUEST.

The firmware checks that the guest is in the GSTATE_LAUNCH or GSTATE_RUNNING states.

If not, the firmware returns INVALID_GUEST_STATE.

The firmware checks that PAGE_PADDR is a valid sPA. If not, the firmware returns

INVALID_ADDRESS. The firmware then checks that the page pointed at by PAGE_PADDR is a

Firmware page. If not, the firmware returns INVALID_PAGE_STATE.

The firmware zeroes the page and then transitions it into a Metadata page, setting its RMP.GPA to

GCTX_PADDR.

8.21.3 Status Codes

Table 84. Status Codes for SNP_PAGE_MD_INIT

Status Condition

SUCCESS Successful completion.

INVALID_PLATFORM_STATE The platform is not in the INIT state.

INVALID_PARAM MBZ fields are not zero.

INVALID_ADDRESS An address is invalid for use by the firmware or is misaligned.

INVALID_GUEST The guest is invalid.

INVALID_GUEST_STATE The guest is not in the correct state.

INVALID_PAGE_STATE A page was in the incorrect state.

UPDATE_FAILED Update of the firmware internal state or a guest context page has
failed.

 101

[Public]

8.22 SNP_PAGE_SWAP_OUT

This command swaps an SNP-protected page out so that the hypervisor can relieve memory

pressure or migrate the guest.

8.22.1 Parameters

Table 85. Layout of the CMDBUF_SNP_PAGE_SWAP_OUT Structure

Byte
Offset

Bits In/Out Name Description

00h 63:12 In GCTX_PADDR Bits 63:12 of the sPA of the Guest
Context page.

11:0 In - Reserved. Must be zero.

08h 63:12 In SRC_PADDR Bits 63:12 of the sPA of the source
page. The page size is determined
by PAGE_SIZE.

11:0 - - Reserved. Must be zero.

10h 63:12 In DST_PADDR Bits 63:12 of the sPA of the
destination page. The page size is
determined by PAGE_SIZE.

11:0 - - Reserved. Must be zero.

18h 63:0 In MDATA_PADDR Bits 63:0 of the sPA of a metadata
entry. See 2.1 for the format of a
metadata entry. Ignored if
ROOT_MDATA_EN is 1.

20h 63:0 In SOFTWARE_DATA Software available data supplied
by the hypervisor.

28h 63:5 - - Reserved. Must be zero.

4 In ROOT_MDATA_EN Indicates that the metadata entry
will be stored in the guest context
and not in MDATA_PADDR.

3 - - Reserved. Must be zero.

2:1 In PAGE_TYPE Indicates the page type of the
source page. 0h indicates a Data
page. 1h indicates a Metadata
page. 2h indicates a VMSA page.
Other encodings are reserved.

0 In PAGE_SIZE Indicates page size. 0 indicates a
4 KB page. 1 indicates a 2 MB page.

 102

[Public]

8.22.2 Actions

The firmware checks that the platform is in the INIT state. If not, the firmware returns

INVALID_PLATFORM_STATE.

The firmware checks that GCTX_PADDR is a valid sPA. If not, the firmware returns

INVALID_ADDRESS. The firmware then checks that the page at GCTX_PADDR is in the

Context state. If not, the firmware returns INVALID_GUEST.

The firmware checks that the guest is in the GSTATE_LAUNCH or GSTATE_RUNNING states.

If not, the firmware returns INVALID_GUEST_STATE. The firmware then checks that the guest

is activated. If not, the firmware returns INACTIVE.

The firmware checks that SRC_PADDR and DST_PADDR are valid sPAs. If

ROOT_MDATA_EN is 0, the firmware also checks that MDATA_PADDR is a valid sPA, is

aligned to the size of an MDATA structure (64 B), and does not overlap the source or destination

pages. If any of these checks fails, the firmware returns INVALD_ADDRESS.

The firmware checks that the source page size indicated by the RMP matches the page size

indicated by the PAGE_SIZE parameter. If the destination page is not a Default page, the

firmware checks that the destination page size also matches the PAGE_SIZE parameter. If either

check fails, the firmware returns INVALID_PAGE_SIZE.

If ROOT_MDATA_EN is 0, then the firmware checks that the page containing MDATA_PADDR

is a Metadata page. If not, the firmware returns INVALID_PAGE_STATE. Then the firmware

checks that the RMP.GPA of the page containing MDATA_ENTRY matches GCTX_PADDR. If

not, the firmware returns INVALID_PAGE_OWNER.

This command operates on data pages, metadata pages, or VMSA pages. The firmware performs

the actions in one of the following subsections depending on the value of PAGE_TYPE.

8.22.2.1 Data Pages

The actions in this section are performed only when PAGE_TYPE is 0h.

The firmware checks that the source page is a Pre-Swap or Pre-Guest page. The firmware then

checks that the destination page is a Firmware or Default page. If either check fails, the firmware

returns INVALID_PAGE_STATE.

The firmware checks that the RMP.ASID of the source page matches the ASID of the guest. If

not, the firmware returns INVALID_PAGE_OWNER.

The firmware uses the guest’s VEK to decrypt the contents of the source page, and it also uses the

guest’s OEK to wrap the contents with Aead_Wrap() (see 0) without AAD. The firmware checks

that incrementing the OekIvCount would not cause an overflow. If overflow would occur, the

firmware returns AEAD_OFLOW. Otherwise, the firmware increments the OekIvCount and uses

 103

[Public]

that new value as the IV. The firmware then writes the produced ciphertext into the destination

page.

The firmware then constructs a MDATA structure as described in Table 86. If

ROOT_MDATA_EN is 0, the firmware writes the MDATA entry at MDATA_PADDR. If

ROOT_MDATA_EN is 1, the firmware writes the MDATA entry into GCTX.RootMDEntry.

Table 86. Metadata Entry (MDATA) for Data Pages

MDATA Field Value

SOFTWARE_DATA SOFTWARE_DATA.

IV Constructed from OekIvCount.

AUTH_TAG Authentication tag generated by Aead_Wrap().

PAGE_SIZE RMP.Page_Size of the source page.

VALID 1

METADATA 0

VMSA 0

GPA gPA of the source page.

PAGE_VALIDATED RMP.Validated of the source page.

VMPL0 RMP.VMPL0 of the source page if VMPLs are enabled. 0h otherwise.

VMPL1 RMP.VMPL1 of the source page if VMPLs are enabled. 0h otherwise.

VMPL2 RMP.VMPL2 of the source page if VMPLs are enabled. 0h otherwise.

VMPL3 RMP.VMPL3 of the source page if VMPLs are enabled. 0h otherwise.

The firmware then transitions the source page into a Pre-Guest page state.

8.22.2.2 Metadata Page

The actions in this section are performed only when PAGE_TYPE is 1h.

The firmware checks that the source page is a Metadata page. The firmware then checks that the

destination page is a Firmware or Default page. If either check fails, the firmware returns

INVALID_PAGE_STATE.

The firmware checks that the RMP.GPA of the source page matches GCTX_PADDR. If not, the

firmware returns INVALID_PAGE_OWNER.

The firmware uses the guest’s OEK to wrap the contents of the source page with Aead_Wrap()

without AAD. The firmware checks that incrementing the OekIvCount would not cause an

overflow. If overflow would occur, the firmware returns AEAD_OFLOW. Otherwise, the

firmware increments the OekIvCount and uses that new value as the IV. The firmware then writes

the produced ciphertext into the destination page.

 104

[Public]

The firmware then constructs a MDATA structure as described in Table 87. If

ROOT_MDATA_EN is 0h, the firmware writes the MDATA entry at MDATA_PADDR. If

ROOT_MDATA_EN is 1h, the firmware writes the MDATA entry into GCTX.RootMDEntry.

Table 87. Metadata Entry (MDATA) for Metadata Pages

MDATA Field Value

SOFTWARE_DATA SOFTWARE_DATA.

IV Constructed from OekIvCount.

AUTH_TAG Authentication tag generated by Aead_Wrap().

PAGE_SIZE RMP.Page_Size of the source page.

VALID 1

METADATA 1

VMSA 0

GPA PADDR_INVALID.

PAGE_VALIDATED 0

VMPL0 0h

VMPL1 0h

VMPL2 0h

VMPL3 0h

The firmware then transitions the source page into a Firmware page state.

8.22.2.3 VMSA Pages

The actions in this section are performed only when PAGE_TYPE is 2h.

The firmware checks that the source page is a Pre-Swap or Pre-Guest page. The firmware then

checks that the destination page is a Firmware or Default page. If either check fails, the firmware

returns INVALID_PAGE_STATE.

The firmware checks that the RMP.ASID of the source page matches the ASID of the guest. If

not, the firmware returns INVALID_PAGE_OWNER.

The firmware uses the guest’s OEK to wrap the contents of the source page with Aead_Wrap()

without AAD. The firmware checks that incrementing the OekIvCount would not cause an

overflow. If overflow would occur, the firmware returns AEAD_OFLOW. Otherwise, the

firmware increments the OekIvCount and uses that new value as the IV. The firmware then writes

the produced ciphertext into the destination page.

The firmware then constructs a MDATA structure as described in Table 88. If

ROOT_MDATA_EN is 0, the firmware writes the MDATA entry at MDATA_PADDR. If

ROOT_MDATA_EN is 1, the firmware writes the MDATA entry into GCTX.RootMDEntry.

 105

[Public]

Table 88. Metadata Entry (MDATA) for Data Pages

MDATA Field Value

SOFTWARE_DATA SOFTWARE_DATA.

IV Constructed from OekIvCount.

AUTH_TAG Authentication tag generated by Aead_Wrap().

PAGE_SIZE RMP.Page_Size of the source page.

VALID 1

METADATA 0

VMSA 1

GPA gPA of the source page.

PAGE_VALIDATED RMP.Validated of the source page.

VMPL0 RMP.VMPL0 of the source page if VMPLs are enabled. 0h otherwise.

VMPL1 RMP.VMPL1 of the source page if VMPLs are enabled. 0h otherwise.

VMPL2 RMP.VMPL2 of the source page if VMPLs are enabled. 0h otherwise.

VMPL3 RMP.VMPL3 of the source page if VMPLs are enabled. 0h otherwise.

The firmware then transitions the source page into a Pre-Guest page state.

8.22.3 Status Codes

Table 89. Status Codes for SNP_PAGE_SWAP_OUT

Status Condition

SUCCESS Successful completion.

INVALID_PLATFORM_STATE The platform is not in the INIT state.

INVALID_PARAM MBZ fields are not zero.

INVALID_ADDRESS An address is invalid for use by the firmware or is misaligned.

INVALID_GUEST The guest is invalid.

INVALID_GUEST_STATE The guest is not in the correct state.

INACTIVE The guest is not activated.

INVALID_MDATA_ENTRY The metadata entry is not correct.

INVALID_PAGE_STATE A page was in the incorrect state.

INVALID_PAGE_OWNER A page was not owned by the guest.

INVALID_PAGE_SIZE A page was not the correct size.

AEAD_OFLOW An overflow in the IV counter was detected.

UPDATE_FAILED Update of the firmware internal state or a guest context page has
failed.

 106

[Public]

8.23 SNP_PAGE_SWAP_IN

This command swaps an SNP-protected page back in.

8.23.1 Parameters

Table 90. Layout of the CMDBUF_SNP_PAGE_SWAP_IN Structure

Byte
Offset

Bits In/Out Name Description

00h 63:12 In GCTX_PADDR Bits 63:12 of the sPA of the guest context page.

11:0 - - Reserved. Must be zero.

08h 63:12 In SRC_PADDR Bits 63:12 of the sPA of the source page. The
page size is determined by PAGE_SIZE.

11:0 - - Reserved. Must be zero.

10h 63:12 In DST_PADDR Bits 63:12 of the sPA of the destination page.
The page size is determined by PAGE_SIZE.

11:0 - - Reserved. Must be zero.

18h 63:0 In MDATA_PADDR Bits 63:0 of the sPA of a metadata entry. See
2.1 for the format of a metadata entry. Ignored
if ROOT_MDATA_EN is 1.

20h 63:0 - - Reserved. Must be zero.

28h 63:5 - - Reserved. Must be zero.

4 In ROOT_MDATA_EN Indicates that the metadata entry will be
retrieved in the guest context and not in
MDATA_PADDR.

3 In SWAP_IN_PLACE If set, then SRC_PADDR and DST_PADDR are
equal and the page will be swapped in place.

2:1 In PAGE_TYPE Indicates the page type of the source page. 0h
indicates a data page. 1h indicates a metadata
page. 2h indicates a VMSA page. Other
encodings are reserved.

0 In PAGE_SIZE Indicates page size. 0 indicates a 4 KB page. 1
indicates a 2 MB page.

8.23.2 Actions

The firmware checks that the platform is in the INIT state. If not, the firmware returns

INVALID_PLATFORM_STATE.

The firmware checks that GCTX_PADDR is a valid sPA. If not, the firmware returns

INVALID_ADDRESS. The firmware then checks that the page at GCTX_PADDR is in the

Context state. If not, the firmware returns INVALID_GUEST.

 107

[Public]

The firmware checks that the guest is in the GSTATE_LAUNCH or GSTATE_RUNNING states.

If not, the firmware returns INVALID_GUEST_STATE. The firmware then checks that the guest

is activated. If not, the firmware returns INACTIVE.

The firmware checks that SRC_PADDR and DST_PADDR are valid sPAs. If

ROOT_MDATA_EN is 0, the firmware also checks that MDATA_PADDR is a valid sPA, is

aligned to the size of an MDATA structure (64 B), and does not overlap the source and destination

pages. If any of these checks fails, the firmware returns INVALD_ADDRESS.

If ROOT_MDATA_EN is 0, then the firmware checks that the page containing MDATA_PADDR

is a Metadata page. If not, the firmware returns INVALID_PAGE_STATE. Then the firmware

checks that the RMP.GPA of the page containing MDATA_ENTRY matches GCTX_PADDR. If

not, the firmware returns INVALID_PAGE_OWNER.

The metadata entry used for this command is selected according to ROOT_MDATA_EN. If

ROOT_MDATA_EN is set, the firmware uses the metadata entry in GCTX.RootMDEntry. If

ROOT_MDATA_EN is clear, the firmware uses the metadata entry at MDATA_PADDR.

The firmware checks that the destination page size indicated by the RMP matches the page size

indicated by the PAGE_SIZE parameter. If the source page is not a Default page, the firmware

checks that the destination page size also matches the PAGE_SIZE parameter. The firmware then

checks that the PAGE_SIZE field of the metadata entry matches the PAGE_SIZE parameter. If

any of these checks fails, the firmware returns INVALID_PAGE_SIZE.

The metadata entry determines the page type according to Table 91.

Table 91. Determining the Page Type Based on the Metadata Entry

Page Type METADATA VMSA

PAGE_TYPE_DATA 0 0

PAGE_TYPE_MDATA 1 0

PAGE_TYPE_VMSA 0 1

The firmware checks that the page type indicated by the metadata entry matches PAGE_TYPE.

The firmware then checks that that the VALID bit in the metadata entry is set. If either check fails,

the firmware returns INVALID_MDATA_ENTRY.

This command operates on data pages, metadata pages, or VMSA pages. The firmware performs

the actions in one of the following subsections depending on the value of PAGE_TYPE.

8.23.2.1 Data Pages

The actions in this section are performed only when PAGE_TYPE is PAGE_TYPE_DATA.

If SWAP_IN_PLACE is 0, the firmware checks that the destination page is a Pre-Guest page. If

not, the firmware returns INVALID_PAGE_STATE.

 108

[Public]

If SWAP_IN_PLACE is 1, the firmware checks that the SRC_PADDR equals DST_PADDR. If

not, the firmware returns INVALID_ADDRESS. The firmware then checks that the page is in the

Pre-Guest state. If not, the firmware returns INVALID_PAGE_STATE.

The firmware checks that the RMP.ASID of the destination page matches the ASID of the guest.

If not, the firmware returns INVALID_PAGE_OWNER.

The firmware uses the IV field in the metadata entry and the guest’s OEK to unwrap the contents

of the source page with Aead_Unwrap() with no AAD. The firmware checks that the produced

authentication tag is equal to AUTH_TAG in the metadata entry. If not, the firmware returns

BAD_MEASUREMENT.

The firmware clears the VALID flag in the metadata entry.

The firmware writes the plaintext produced by Aead_Unwrap() into the destination page and

updates the RMP of the destination page as follows:

• Sets the RMP.GPA to GPA in the metadata entry

• Sets the RMP.VMSA to 0

• If VMPLs are enabled, sets the VMPL permission masks in the RMP entry to the VMPL

permission masks in the metadata entry

If PAGE_VALIDATED in the metadata entry is 1, the firmware transitions the destination page

into a Pre-Swap page.

8.23.2.2 Metadata Pages

The actions in this section are performed only when PAGE_TYPE is PAGE_TYPE_MDATA.

The firmware checks that SWAP_IN_PLACE is 0. If not, the firmware returns

INVALID_PARAM.

The firmware checks that the that the destination page is a Firmware page. If not, the firmware

returns INVALID_PAGE_STATE.

The firmware uses the IV field in the metadata entry and the guest’s OEK to unwrap the contents

of the source page with Aead_Unwrap() with no AAD. The firmware checks that the produced

authentication tag is equal to AUTH_TAG in the metadata entry. If not, the firmware returns

BAD_MEASUREMENT.

The firmware clears the VALID flag in the metadata entry.

The firmware writes the plaintext produced by Aead_Unwrap() into the destination page.

The firmware then transitions the destination page into a Metadata page by setting the RMP.GPA

of the destination page to the GCTX_PADDR of the guest.

 109

[Public]

8.23.2.3 VMSA Pages

The actions in this section are performed only when PAGE_TYPE is PAGE_TYPE_VMSA.

The firmware checks that SWAP_IN_PLACE is 0. If not, the firmware returns

INVALID_PARAM.

The firmware checks that PAGE_SIZE indicates a 4 KB page size. If not, the firmware returns

INVALID_PAGE_SIZE.

The firmware checks that the destination page is a Pre-Guest page. If not, the firmware returns

INVALID_PAGE_STATE.

The firmware checks that the RMP.ASID of the destination page matches the ASID of the guest.

If not, the firmware returns INVALID_PAGE_OWNER.

The firmware uses the IV field in the metadata entry and the guest’s OEK to unwrap the contents

of the source page with Aead_Unwrap() with no AAD. The firmware checks that the produced

authentication tag is equal to AUTH_TAG in the metadata entry. If not, the firmware returns

BAD_MEASUREMENT.

The firmware clears the VALID flag in the metadata entry.

The firmware writes the plaintext produced by Aead_Unwrap() into the destination page and

updates the RMP of the destination page as follows:

• Sets the RMP.GPA to GPA field in the metadata entry

• Sets the RMP.VMSA to 1

• If VMPLs are enabled, sets the VMPL permission masks in the RMP entry to the VMPL

permission masks in the metadata entry

If bit 9 of SEV_FEATURES of the VMSA is 1, the firmware sets the GUEST_TSC_SCALE and

GUEST_TSC_OFFSET fields of the VMSA as follows:

GUEST_TSC_SCALE := GCTX.DesiredTscFreq / (mean native frequency)

GUEST_TSC_OFFSET := GCTX.PspTscOffset

If PAGE_VALIDATED in the metadata entry is 1h, the firmware transitions the destination page

into a Pre-Swap page.

8.23.3 Status Codes

Table 92. Status Codes for SNP_PAGE_SWAP_IN

Status Condition

SUCCESS Successful completion.

INVALID_PLATFORM_STATE The platform is not in the INIT state.

 110

[Public]

Status Condition

INVALID_PARAM MBZ fields are not zero.

INVALID_ADDRESS An address is invalid for use by the firmware or is misaligned.

INVALID_GUEST The guest is invalid.

INVALID_GUEST_STATE The guest is not in the correct state.

INACTIVE The guest is not activated.

INVALID_MDATA_ENTRY The metadata entry is not correct.

BAD_MEASUREMENT The page does not match the metadata entry’s authentication tag.

INVALID_PAGE_STATE A page was in the incorrect state.

INVALID_PAGE_OWNER A page was not owned by the guest.

INVALID_PAGE_SIZE A page was not the correct size.

UPDATE_FAILED Update of the firmware internal state or a guest context page has failed.

8.24 SNP_PAGE_RECLAIM

This command reclaims Metadata, Firmware, Pre-Guest, and Pre-Swap pages.

8.24.1 Parameters

Table 93. Layout of the CMDBUF_SNP_PAGE_PAGE_RECLAIM Structure

Byte
Offset

Bits In/Out Name Description

00h 63:12 In PAGE_PADDR Bits 63:12 of the sPAs of the page.
The page size is determined by
PAGE_SIZE.

11:1 - - Reserved. Must be zero.

0 In PAGE_SIZE Indicates page size. 0 indicates a
4 KB page. 1 indicates a 2 MB
page.

8.24.2 Actions

The firmware checks that the platform is in the INIT state. If not, the firmware returns

INVALID_PLATFORM_STATE.

The firmware checks that PAGE_PADDR is a valid sPA. If not, the firmware returns

INVALID_ADDRESS.

 111

[Public]

The firmware checks that RMP.Immutable equals 1. If not, the firmware returns SUCCESS

without taking any further actions. The firmware then checks that the page is either a Metadata,

Firmware, Pre-Guest, or Pre-Swap page. If not, the firmware returns INVALID_PAGE_STATE.

The firmware checks that PAGE_SIZE equals the RMP.PageSize of the page. If not, the firmware

returns INVALID_PAGE_SIZE. If the page size is 2 MB, the firmware then checks that

PAGE_PADDR is 2 MB aligned. If not, the firmware returns INVALID_ADDRESS.

The firmware transitions the provided page according to Table 94.

Table 94. State Transitions Triggered by the SNP_PAGE_RECLAIM Command

Original State New State

Metadata Reclaim.

Firmware Reclaim.

Pre-Guest Guest-Invalid.

Pre-Swap Guest-Valid.

8.24.3 Status Codes

Table 95. Status Codes for SNP_PAGE_RO_RESTORE

Status Condition

SUCCESS Successful completion.

INVALID_ADDRESS The address is invalid for use by the firmware or is misaligned.

INVALID_PARAM MBZ fields are not zero.

INVALID_PAGE_STATE The page is not in the correct state.

INVALID_PAGE_SIZE The page is not the correct size.

 112

[Public]

8.25 SNP_PAGE_UNSMASH

This command combines 512 pages of 4 KB in size into a single 2 MB page in the RMP.

8.25.1 Parameters

Table 96. Layout of the CMDBUF_SNP_PAGE_UNSMASH Structure

Byte
Offset

Bits In/Out Name Description

00h 63:12 In PAGE_PADDR Bits 63:12 of the sPAs of the page.

11:0 - - Reserved. Must be zero.

8.25.2 Actions

The firmware checks that the platform is in the INIT state. If not, the firmware returns

INVALID_PLATFORM_STATE.

The firmware checks that PAGE_PADDR is a valid sPA. If not, the firmware returns

INVALID_ADDRESS.

The firmware checks that each 4 KB page in the 2 MB region starting at PAGE_PADDR meets

the following requirements.

• Each page has RMP.PageSize that indicates a 4 KB page.

• Each page has RMP.Immutable equal to 1.

• Each page has RMP.VMSA equal to 0.

• All pages are in the same state.

• If VMPLs are enabled, then all pages have identical VMPL permissions.

• All pages have RMP.ASID set identically and must not be zero.

If any of the above checks fails, the firmware returns INVALID_PAGE_STATE.

The firmware checks that the range of guest physical pages are 2 MB total in size, 2 MB aligned,

and consecutive. The firmware also checks that PAGE_PADDR is 2 MB aligned. If either check

fails, the firmware returns INVALID_PAGE_STATE.

The firmware then turns the 4 KB pages into one 2 MB page. The resulting page is in the same

state as its constituent pages.

 113

[Public]

8.25.3 Status Codes

Table 97. Status Codes for SNP_PAGE_UNSMASH

Status Condition

SUCCESS Successful completion.

INVALID_PLATFORM_STATE The platform is not in the INIT state.

INVALID_PARAM MBZ fields are not zero.

INVALID_ADDRESS An address is invalid for use by the firmware or is misaligned.

INVALID_PAGE_STATE A page was in the incorrect state.

8.26 SNP_GUEST_REQUEST

This command sends a guest message to the firmware and returns the firmware response. See

Chapter 7 for details.

8.26.1 Parameters

Table 98. Layout of the CMDBUF_SNP_GUEST_REQUEST Structure

Byte
Offset

Bits In/Out Name Description

00h 63:12 In GCTX_PADDR Bits 63:12 of the sPA of the guest
context page.

11:0 - - Reserved. Must be zero.

08h 63:0 In REQUEST_PADDR Bits 63:0 of the sPA of the request
message. See Chapter 7 for
details.

10h 63:0 In RESPONSE_PADDR Bits 63:0 of the sPA of the
response message See Chapter 7
for details.

Table 99. Message Header Format

Byte
Offset

Bits Name Description

00h 255:0 AUTHTAG Message authentication tag. If the authentication tag for the
designated algorithm is shorter than 32 B, the first bytes of
AUTHTAG are used and the remaining bytes must be zero.

The authentication tag authenticates the bytes from 20h to
the end of the encrypted payload.

 114

[Public]

Byte
Offset

Bits Name Description

20h 127:64 - Reserved. Must be zero.

63:0 MSG_SEQNO The sequence number for this message. Used to construct
the IV.

30h 7:0 ALGO The AEAD used to encrypt this message. See Table 100.

31h 7:0 HDR_VERSION The version of the message header. Set to 1h for this
specification.

32h 15:0 HDR_SIZE The size of the message header in bytes.

34h 7:0 MSG_TYPE The type of the payload. See Table 101.

35h 7:0 MSG_VERSION The version of the payload.

36h 15:0 MSG_SIZE The size of the payload in bytes.

38h 31:0 - Reserved. Must be zero.

3Ch 7:0 MSG_VMPCK The ID of the VMPCK used to protect this message.

3Dh 7:0 - Reserved. Must be zero.

3Eh 15:0 - Reserved. Must be zero.

40h-5Fh - Reserved. Must be zero.

60h PAYLOAD Encrypted payload.

Table 100. AEAD Algorithm Encodings

Value Algorithm

0 Invalid

1 AES-256-GCM

All other encodings reserved.

Table 101. Message Type Encodings

Value Message Type Message Version

0 Invalid -

1 MSG_CPUID_REQ 1

2 MSG_CPUID_RSP 1

3 MSG_KEY_REQ 1

4 MSG_KEY_RSP 1

5 MSG_REPORT_REQ 1

6 MSG_REPORT_RSP 1

 115

[Public]

Value Message Type Message Version

7 MSG_EXPORT_REQ 1

8 MSG_EXPORT_RSP 1

9 MSG_IMPORT_REQ 1

10 MSG_IMPORT_RSP 1

11 MSG_ABSORB_REQ 1

12 MSG_ABSORB_RSP 1

13 MSG_VMRK_REQ 1

14 MSG_VMRK_RSP 1

15 MSG_ABSORB_NOMA_REQ 1

16 MSG_ABSORB_NOMA_RESP 1

17 MSG_TSC_INFO_REQ 1

18 MSG_TSC_INFO_RSP 1

All other encodings reserved. -

8.26.2 Actions

The firmware checks that the platform is in the INIT state. If not, the firmware returns

INVALID_PLATFORM_STATE.

The firmware checks that GCTX_PADDR is a valid sPA. If not, the firmware returns

INVALID_ADDRESS. The firmware then checks that the page at GCTX_PADDR is in the

Context state. If not, the firmware returns INVALID_GUEST.

The firmware checks that the guest is in the GSTATE_RUNNING states. If not, the firmware

returns INVALID_GUEST_STATE.

The firmware checks that REQUEST_PADDR and RESPONSE_PADDR are valid sPAs. The

firmware checks that the response message will not cross a 4kB system physical page boundary

when written. If either of these checks fails, the firmware returns INVALD_ADDRESS.

The firmware checks that the request and response page sizes indicated by the RMP are 4 KB. If

not, the firmware returns INVALID_PAGE_SIZE.

The firmware checks that the response page is a Firmware page. If not, the firmware returns

INVALID_PAGE_STATE.

The firmware constructs the incoming 96-bit IV. The firmware sets bits IV[63:0] to the

MSG_SEQNO and bits IV[95:64] to 0h.

 116

[Public]

The firmware unwraps the message by setting the parameters of Aead_Unwrap() to the following:

• C: PAYLOAD

• A: Bytes 30h to 5Fh of the request message

• IV: Constructed IV

• K: The guest’s VMPCK identified by MSG_VMPCK

• T: AUTHTAG

The firmware checks that the Aead_Unwrap() did not indicate inauthenticity. If the

Aead_Unwrap() function did report inauthenticity, the firmware returns BAD_MEASUREMENT.

The firmware checks that the guest’s message count of the VMPCK used to unwrap this message

will not overflow by processing this message. If this check fails, the firmware returns

AEAD_OFLOW.

The firmware checks that MSG_SEQNO is one greater than the guest’s message count for the

VMPCK used to unwrap this message. If not, the firmware returns AEAD_OFLOW.

The firmware checks that HDR_VERSION is supported by this ABI version and that the

HDR_SIZE matches the expected size for the given header version. When HDR_VERSION is 1h,

then HDR_SIZE must be 60h. The firmware also checks that MSG_VERSION is supported by

this ABI. If any of these checks fails, the firmware returns INVALID_PARAM.

The firmware checks that MSG_TYPE is a valid message type. The firmware then checks that

MSG_SIZE is large enough to hold the indicated message type at the indicated message version. If

not, the firmware returns INVALID_PARAM.

The firmware creates a message in response to the guest’s message. The firmware sets

MSG_SEQNO of the response message to one greater than the MSG_SEQNO of the request

message. The firmware then constructs a new IV and wraps the message by setting the parameters

of Aead_Wrap() to the following:

• P: PAYLOAD plaintext

• A: Bytes 30h to 5Fh of the request message

• IV: Bits 95:0 of the IV

• K: The guest’s VMPCK identified by VMPCK_ID

The firmware constructs the IV by setting IV[63:0] to MSG_SEQNO and setting IV[95:64] to 0h.

The firmware writes the resulting authentication tag into AUTHTAG and writes the ciphertext into

PAYLOAD.

The firmware then increments the guest’s message count for the VMPCK count by two to account

for both the request message and the firmware’s response message.

 117

[Public]

8.26.3 Status Codes

Table 102. Status Codes for SNP_GUEST_REQUEST

Status Condition

SUCCESS Successful completion.

INVALID_PLATFORM_STATE The platform is not in the INIT state.

INVALID_PARAM MBZ fields are not zero.

INVALID_ADDRESS An address is invalid for use by the firmware or is misaligned.

INVALID_GUEST The guest is invalid.

INVALID_GUEST_STATE The guest is not in the correct state.

INACTIVE The guest is not activated.

INVALID_PAGE_STATE A page was in the incorrect state.

INVALID_PAGE_SIZE A page was not the correct size.

AEAD_OFLOW The message sequence number was incorrect or the guest’s message
count would overflow.

BAD_MEASUREMENT The message failed to authenticate.

UPDATE_FAILED Update of the firmware internal state or a guest context page has
failed.

 118

[Public]

8.27 SNP_DBG_DECRYPT

This command enables developers to read encrypted memory in debug-enabled VMs.

8.27.1 Parameters

Table 103. Layout of the CMDBUF_SNP_DBG_DECRYPT Structure

Byte
Offset

Bits In/Out Name Description

00h 63:12 In GCTX_PADDR Bits 63:12 of the sPA of the guest
context page.

11:0 - - Reserved. Must be zero.

08h 63:12 In SRC_PADDR Bits 63:12 of the sPA of the source
4 KB region to decrypt.

11:0 - - Reserved. Must be zero.

10h 63:12 In DST_PADDR Bits 63:12 of the sPA of the
destination page to store the
decrypted data.

11:0 - - Reserved. Must be zero.

8.27.2 Actions

The firmware checks that the platform is in the INIT state. If not, the firmware returns

INVALID_PLATFORM_STATE.

The firmware checks that GCTX_PADDR is a valid sPA. If not, the firmware returns

INVALID_ADDRESS. The firmware checks that GCTX_PADDR is a Context page. If not, the

firmware returns INVALID_GUEST.

The firmware checks that the guest is in the GSTATE_LAUNCH or GSTATE_RUNNING guest

state. If not, the firmware returns INVALID_GUEST_STATE. The firmware then checks that the

guest is activated. If not, the firmware returns INACTIVE.

The firmware checks that the guest’s policy allows debugging. If not, the firmware returns

POLICY_FAILURE.

The firmware checks that SRC_PADDR and DST_PADDR are valid sPAs. If not, the firmware

returns INVALID_ADDRESS.

The firmware checks that the page containing the 4 KB region to decrypt is a Pre-Guest, Pre-

Swap, Guest-Invalid, or Guest-Valid page. The firmware also checks that the destination page is a

Firmware page. If either check fails, the firmware returns INVALID_PAGE_STATE.

 119

[Public]

The firmware checks that the source page containing the 4 KB region is owned by the indicated

guest. If not, the firmware returns INVALID_PAGE_OWNER.

Note that this command always operates on 4 KB regions despite the page size indicated by the

RMP entries. If the underlying page is a 2 MB page, the firmware uses the RMP entry for the

2 MB page for the RMP checks.

The firmware decrypts the contents of the 4 KB region at SRC_PADDR with the guest’s VEK and

writes the plaintext to DST_PADDR.

8.27.3 Status Codes

Table 104. Status Codes for SNP_DBG_DECRYPT

Status Condition

SUCCESS Successful completion.

INVALID_PLATFORM_STATE The platform is not in the INIT state.

INVALID_GUEST The guest is not valid.

INACTIVE The guest is not active.

INVALID_GUEST_STATE The guest is not in the RUNNING or LAUNCH states.

POLICY_FAILURE The guest policy disallows debugging.

INVALID_ADDRESS An address is invalid or misaligned.

INVALID_PARAM MBZ fields are not zero.

INVALID_PAGE_STATE A page is not in the correct state.

INVALID_PAGE_OWNER A page is not owned by the guest.

UPDATE_FAILED Update of the firmware internal state or a guest context page has
failed.

 120

[Public]

8.28 SNP_DBG_ENCRYPT

This command enables developers to write to encrypted memory in debug-enabled VMs

8.28.1 Parameters

Table 105. Layout of the CMDBUF_SNP_DBG_ENCRYPT Structure

Byte
Offset

Bits In/Out Name Description

00h 63:12 In GCTX_PADDR Bits 63:12 of the sPA of the guest context page.

11:0 - - Reserved. Must be zero.

08h 63:12 In SRC_PADDR Bits 63:12 of the sPA of the 4 KB region to be
encrypted.

11:0 - - Reserved. Must be zero.

10h 63:12 In DST_PADDR Bits 63:12 of the sPA of the 4 KB region page to
store the encrypted data.

11:0 - - Reserved. Must be zero.

8.28.2 Actions

The firmware checks that the platform is in the INIT state. If not, the firmware returns

INVALID_PLATFORM_STATE.

The firmware checks that GCTX_PADDR is a valid sPA. If not, the firmware returns

INVALID_ADDRESS. The firmware checks that GCTX_PADDR is a Context page. If not, the

firmware returns INVALID_GUEST. The firmware then checks that the guest is activated. If not,

the firmware returns INACTIVE.

The firmware checks that the guest is in the GSTATE_LAUNCH or GSTATE_RUNNING guest

state. If not, the firmware returns INVALID_GUEST_STATE.

The firmware checks that the guest’s policy allows debugging. If not, the firmware returns

POLICY_FAILURE.

The firmware checks that SRC_PADDR and DST_PADDR are valid sPAs. If not, the firmware

returns INVALID_ADDRESS.

The firmware checks that the destination 4 KB region is a Pre-Swap or a Pre-Guest page. If not,

the firmware returns INVALID_PAGE_STATE.

The firmware checks that the destination page containing the 4 KB region is owned by the

indicated guest. If not, the firmware returns INVALID_PAGE_OWNER.

 121

[Public]

Note that this command always operates on 4 KB regions despite the page size indicated by the

RMP entries. If the underlying page is a 2 MB page, the firmware uses the RMP entry for the

2 MB page for the RMP checks.

The firmware encrypts the contents of the source 4 KB region at SRC_PADDR with the guest’s

VEK and writes the ciphertext to DST_PADDR.

8.28.3 Status Codes

Table 106. Status Codes for SNP_DBG_ENCRYPT

Status Condition

SUCCESS Successful completion.

INVALID_PLATFORM_STATE The platform is not in the INIT state.

INVALID_GUEST The guest is invalid.

INACTIVATE The guest is not activated.

INVALID_GUEST_STATE The guest is not in the RUNNING or LAUNCH states.

POLICY_FAILURE The guest policy disallows debugging.

INVALID_ADDRESS An address is invalid or misaligned.

INVALID_PARAM MBZ fields are not zero.

INVALID_PAGE_STATE A page is not in the correct state.

INVALID_PAGE_OWNER A page is not owned by the guest.

UPDATE_FAILED Update of the firmware internal state or a guest context page has
failed.

 122

[Public]

8.29 SNP_PAGE_SET_STATE

This command transitions Firmware pages to the HV-fixed page state. This operation cannot be

undone until there is an RMP reinitialization or a system reset.

This command is available starting in version 1.52.

8.29.1 Parameters

Table 107. Layout of the CMDBUF_SNP_PAGE_SET_STATE Structure

Byte
Offset

Bits In/Out Name Description

0h 31:0 In LENGTH Length of this command buffer in bytes.

4h 31:0 - - Reserved.

8h 63:0 In LIST_PADDR sPA of the RANGE_LIST structure. See Table 108.

Table 108. Layout of the RANGE_LIST Structure

Byte
Offset

Bits Name Description

0h 31:0 N Number of elements in the RANGE_ARRAY.

4h 31:0 - Reserved. Should be zero.

8h – (8h + N*16) RANGES Array of N elements of type RANGE. See
Table 109.

Table 109. Layout of the RANGE Structure

Byte
Offset

Bits Name Description

0h 63:12 BASE Specifies the sPA of the first byte of the
range. The address is formed by setting bits
[63:12] to BASE and bits [11:0] to 0h.

11:0 - Reserved. Must be zero.

8h 31:0 PAGE_COUNT Number of 4kB pages in this range.

Ch 31:0 - Reserved. Must be zero.

8.29.2 Actions

The firmware checks that the platform is in the INIT state. If not, the firmware returns

INVALID_PLATFORM_STATE.

 123

[Public]

If LIST_PADDR is an invalid sPA, the firmware returns INVALID_ADDRESS. If a range in

RANGES contains an invalid address, the firmware returns INVALID_ADDRESS.

The firmware checks that the pages containing the ranges enumerated in the RANGES structure

are either in the C Default or Firmware page state with RMP.Page_Size set to 0. If not, the

firmware returns INVALID_PAGE_STATE. If the PAGE_COUNT field of a range is zero, the

firmware ignores the range as if it were not provided.

The firmware ignores pages that are in the Default page state. For pages in the Firmware state, the

firmware transitions the page to the HV-fixed page state.

If the firmware detects an error while processing the ranges, it will revert any changes made to the

RMP before returning an error status code.

8.29.3 Status Codes

Table 110. Status Codes for SNP_PAGE_SET_STATE

Status Condition

SUCCESS Successful completion.

INVALID_PLATFORM_STATE The platform is not in the INIT state.

INVALID_ADDRESS An address is invalid or misaligned.

INVALID_PAGE_STATE A page is not in the correct state.

 124

[Public]

8.30 SNP_VLEK_LOAD

This command loads a VLEK to supplant the VCEK in scenarios where the hypervisor wishes to

use a signing key that is not chip unique.

The hypervisor retrieves the wrapped VLEK hashsticks from the AMD KDS service by providing

the CHIP_ID and TCB version similarly to the retrieval of the VCEK. The KDS then will provide

a wrapped VLEK. The hypervisor then invokes this command to load the retrieved VLEK.

The version of the VLEK indicated in the TCB_VERSION of the WRAPPED_VLEK structure

must be equal to the ReportedTcb at the time of load. If any firmware command causes the

ReportedTcb to change, the previously loaded VLEK is deleted and a VLEK associated with the

new ReportedTcb must be reloaded.

On SNP_SHUTDOWN, the VLEK is deleted.

This command is available in version 1.54. For firmware versions 1.55 and beyond, this command

is present when the Vlek feature bit is set.

8.30.1 Parameters

Table 111. Layout of the CMDBUF_SNP_VLEK_LOAD Structure

Byte
Offset

Bits In/Out Name Description

0h 31:0 In LENGTH Length of this command buffer in bytes.

4h 7:0 In VLEK_WRAPPED_VERSION Version of the wrapped VLEK hashstick
structure. Must be 0h.

5h–7h In - Reserved.

8h 63:0 In VLEK_WRAPPED_PADDR sPA of a wrapped VLEK hashstick. The
wrapped VLEK hashstick format is specified
in Table 112.

Table 112. Layout of the WRAPPED_VLEK_HASHSTICK Structure (Version 0h)

Byte
Offset

Bits Name Description

0h 95:0 IV IV used to wrap chip-unique key.

Ch—Fh - Reserved. Must be zero.

10h–18Fh VLEK_WRAPPED VLEK hashstick wrapped with a chip-unique key
using AES-256-GCM.

190h 63:0 TCB_VERSION The TCB version associated with this VLEK
hashstick.

 125

[Public]

Byte
Offset

Bits Name Description

198h–19Fh - Reserved. Must be zero.

1A0h 127:0 VLEK_AUTH_TAG AES-256-GCM authentication tag of the wrapped
VLEK hashstick and TCB_VERSION.

8.30.2 Actions

The firmware reads the wrapped VLEK hashstick structure pointed at by

VLEK_WRAPPED_PADDR. If TCB_VERSION of the VLEK structure is not equal to the

ReportedTcb, the command fails with BAD_SVN.

The firmware uses AES-256-GCM to unwrap the VLEK and to authenticate the provided VLEK

hashstick structure. The VLEK_WRAPPED field is encrypted, and bytes 190h–19Fh are

additionally authenticated data. If the authentication fails, the firmware returns

BAD_MEASUREMENT.

The firmware saves the unwrapped VLEK hashstick to internal memory.

On failure, this command does not delete the existing VLEK, if present.

8.30.3 Status Codes

Table 113. Status Codes for SNP_VLEK_LOAD

Status Condition

SUCCESS Successful completion.

BAD_SVN ReportedTcb is not equal to TCB_VERSION.

BAD_MEASUREMENT Failed to authenticate wrapped VLEK hashstick.

 126

[Public]

8.31 FEATURE_INFO

This command returns the contents of CPUID Fn8000_0024 in order to return information about

the features present in the SEV firmware currently loaded. The caller provides the value of the

ECX input index and returns the CPUID subfunction of that index. The CPUID instruction treats

all subfunctions of Fn8000_0024 as reserved.

The output of this command may be provided to the guest via the CPUID page in

SNP_LAUNCH_UPDATE as well as through the CPUID reporting guest message

MSG_CPUID_REQ.

This command is available if bit 3 of offset 8h of the output buffer of

SNP_PLATFORM_STATUS is 1.

8.31.1 Parameters

Table 114. Layout of the CMDBUF_SNP_FEATURE_INFO Structure

Byte
Offset

Bits In/Out Name Description

0h 31:0 In LENGTH Length of this command buffer in bytes.

4h 31:0 In ECX_IN Subfunction index of CPUID Fn8000_0024.

8h 63:0 In FEATURE_INFO_PADDR System physical address of the
FEATURE_INFO structure to which to write
the output.

Table 115. Layout of the FEATURE_INFO Structure (Version 0h)

Byte
Offset

Bits Name Description

0h 31:0 EAX See Section 3.7.

4h 31:0 EBX

8h 31:0 ECX

Ch 31:0 EDX

8.31.2 Actions

The firmware checks the FEATURE_INFO_PADDR is a valid address, is 4-byte aligned, and

does not cross a page boundary. If any of these checks fail, the firmware returns

INVALID_PARAM.

The firmware checks that FEATURE_INFO_PADDR points to a Firmware page or Default page.

If not, the firmware returns INVALID_PAGE_STATE.

 127

[Public]

The firmware writes feature information into the FEATURE_INFO structure at

FEATURE_INFO_PADDR. The information written into FEATURE_INFO is determined by the

ECX_IN. Section 3.7 specifies the returned information for each ECX_IN.

Fn8000_0024_x00 is always valid when this command is present. To determine if other indices

are valid, the MaxIndex (Fn8000_0024_EAX_x00[31:0]) indicates the maximum valid sub-

function index. If ECX_IN is greater than MaxIndex, then this command will return

INVALID_PARAM and will not write to the FEATURE_INFO structure.

8.31.3 Status Codes

Table 116. Status Codes for SNP_FEATURE_INFO

Status Condition

SUCCESS Successful completion.

INVALID_PARAM Incorrect parameter or out of range ECX_IN value.

INVALID_PAGE_STATE Incorrect page state.

 128

[Public]

Chapter 9 APPENDIX: Common Algorithms

9.1 Aead_Wrap()

Inputs:

• P: Zero or more bytes to be encrypted and authenticated

• A: Zero or more bytes to be authenticated

• IV: Initialization vector (at most 96 bits)

• K: Key used to encrypt and authenticate the plaintext and AAD (256 bits)

Outputs:

• C: The encrypted plaintext

• T: Authentication tag (128 bits)

Algorithm:

• If len(IV) < 96, then let IV’ = 096-len(IV) || IV. Otherwise, IV’ = IV

• Let (C,T) = GCM-AEK(IV’, P, A)

• Return (C, T)

 129

[Public]

9.2 Aead_Unwrap()

Inputs:

• C: Zero or more bytes to be decrypted and authenticated

• A: Zero or more bytes to be authenticated

• IV: Initialization vector (at most 96 bits)

• K: Key used to encrypt and authenticate the plaintext and AAD (256 bits)

• T: Authentication tag (128 bits)

Outputs:

• P: The decrypted plaintext or indication of inauthenticity

Algorithm:

• If len(IV) < 96, then let IV’ = 096-len(IV) || IV. Otherwise, IV’ = IV

• Let P = GCM-ADK(IV’, C, A, T)

• Return P

 130

[Public]

Chapter 10 APPENDIX: Digital Signatures

The SNP firmware uses digital signatures to sign objects such as the attestation report and to

validate signatures such as the ID block. The supported algorithms and their encodings are

described in Table 117,Table 118, Table 119, and Table 120.

Table 117: Encoding for Signing Algorithms

Signing Algorithm Encoding

ECDSA P-384 with SHA-384 1h

All other encodings are reserved.

Elliptic curves are defined in Table 118.

Table 118. ECC Curve Identifier Encodings

ECC Curve Encoding

P-384 2h

All other encodings reserved.

The ECDSA P-384 with SHA-384 signature format is defined in Table 119.

Table 119. Format for an ECDSA P-384 with SHA-384 Signature

Byte Offset Bits Name Description

000h 575:0 R R component of this signature. Value is zero-extended little-
endian encoded.

048h 575:0 S S component of this signature. Value is zero-extended little-
endian encoded.

090h–1FFh - Reserved.

The ECDSA P-384 public key format is defined Table 120.

Table 120. Format for an ECDSA P-384 Public Key

Byte
Offset

Bits Name Description

000h 31:0 CURVE Curve ID. 2h indicates P-384. All other encodings are reserved.

004h 575:0 QX X component of this signature. Value is zero-extended little-endian
encoded.

04Ch 575:0 QY Y component of this signature. Value is zero-extended little-endian
encoded.

094h–403h - Reserved. Must be zero.

 131

[Public]

	Chapter 1 Introduction
	1.1 Purpose
	1.2 Scope
	1.3 Intended Audience
	1.4 References

	Chapter 2 Data Structures and Encodings
	2.1 Metadata Entries (MDATA)
	2.2 TCB_VERSION
	2.3 VCEK
	2.4 Invalid Physical Address (PADDR_INVALID)

	Chapter 3 Platform Management
	3.1 Feature Detection and Enablement
	3.2 Platform State Machine
	3.3 Firmware Updates
	3.4 Reported TCB
	3.5 Chip Key Masking
	3.6 Versioned Loaded Endorsement Key
	3.7 Feature Discovery

	Chapter 4 Guest Management
	4.1 Guest Context
	4.1.1 Live Update

	4.2 Guest State Machine
	4.3 Guest Policy
	4.4 Guest Activation
	4.5 Launching a Guest
	4.6 Identity Block
	4.7 Decommissioning a Guest
	4.8 Guest Messages
	4.9 Remote Attestation
	4.10 Guest Keys
	4.11 Migration
	4.12 Guest-Assisted Migration

	Chapter 5 Page Management
	5.1 Page Security Attributes
	5.2 Page States
	5.3 Page State Transitions
	5.3.1 RMPUPDATE
	5.3.2 PVALIDATE
	5.3.3 Page Management Commands
	5.3.4 Launch Commands
	5.3.5 Guest Request Commands
	5.3.6 Platform Commands
	5.3.7 SEV Legacy Commands

	5.4 Metadata Entries

	Chapter 6 Mailbox Protocol
	6.1 Command Identifier
	6.2 Status Codes

	Chapter 7 Guest Messages
	7.1 CPUID Reporting
	7.2 Key Derivation
	7.3 Attestation
	7.4 VM Export
	7.5 VM Import
	7.6 VM Absorb
	7.7 VM Absorb – No Migration Agent
	7.8 VMRK Message
	7.9 TSC Info

	Chapter 8 Command Reference
	8.1 DOWNLOAD_FIRMWARE
	8.2 DOWNLOAD_FIRMWARE_EX
	8.2.1 Parameters
	8.2.2 Actions
	8.2.3 Status Codes

	8.3 SNP_COMMIT
	8.3.1 Parameters
	8.3.2 Actions
	8.3.3 Status Codes

	8.4 GET_ID
	8.5 SNP_PLATFORM_STATUS
	8.5.1 Parameters
	8.5.2 Actions
	8.5.3 Status Codes

	8.6 SNP_CONFIG
	8.6.1 Parameters
	8.6.2 Actions
	8.6.3 Status Codes

	8.7 SNP_INIT
	8.7.1 Parameters
	8.7.2 Actions
	8.7.3 Status Codes

	8.8 SNP_INIT_EX
	8.8.1 Parameters
	8.8.2 Actions
	8.8.3 Status Codes

	8.9 SNP_GCTX_CREATE
	8.9.1 Parameters
	8.9.2 Actions
	8.9.3 Status Codes

	1.1
	8.10 SNP_ACTIVATE
	8.10.1 Parameters
	8.10.2 Actions
	8.10.3 Status Codes

	8.11 SNP_ACTIVATE_EX
	8.11.1 Parameters
	8.11.2 Actions
	8.11.3 Status Codes

	8.12 SNP_DECOMMISSION
	8.12.1 Parameters
	8.12.2 Actions
	8.12.3 Status Codes

	8.13 SNP_DF_FLUSH
	8.13.1 Parameters
	8.13.2 Actions
	8.13.3 Status Codes

	8.14 SNP_SHUTDOWN
	8.14.1 Parameters
	8.14.2 Actions
	8.14.3 Status Codes

	8.15 SNP_SHUTDOWN_EX
	8.15.1 Parameters
	8.15.2 Actions
	8.15.3 Status Codes

	8.16 SNP_LAUNCH_START
	8.16.1 Parameters
	8.16.2 Actions
	8.16.3 Status Codes

	8.17 SNP_LAUNCH_UPDATE
	8.17.1 Parameters
	8.17.2 Actions
	8.17.2.1 PAGE_TYPE_NORMAL
	8.17.2.2 PAGE_TYPE_VMSA
	8.17.2.3 PAGE_TYPE_ZERO
	8.17.2.4 PAGE_TYPE_UNMEASURED
	8.17.2.5 PAGE_TYPE_SECRETS
	8.17.2.6 PAGE_TYPE_CPUID

	8.17.3 Status Codes

	1.1
	8.18 SNP_LAUNCH_FINISH
	8.18.1 Parameters
	8.18.2 Actions
	8.18.3 Status Codes

	1.1
	8.19 SNP_GUEST_STATUS
	8.19.1 Parameters
	8.19.2 Actions
	8.19.3 Status Codes

	8.20 SNP_PAGE_MOVE
	8.20.1 Parameters
	8.20.2 Actions
	8.20.2.1 Guest Pages
	8.20.2.2 Metadata Pages

	8.20.3 Status Codes

	1.1
	8.21 SNP_PAGE_MD_INIT
	8.21.1 Parameters
	8.21.2 Actions
	8.21.3 Status Codes

	8.22 SNP_PAGE_SWAP_OUT
	8.22.1 Parameters
	8.22.2 Actions
	8.22.2.1 Data Pages
	8.22.2.2 Metadata Page
	8.22.2.3 VMSA Pages

	8.22.3 Status Codes

	8.23 SNP_PAGE_SWAP_IN
	8.23.1 Parameters
	8.23.2 Actions
	8.23.2.1 Data Pages
	8.23.2.2 Metadata Pages
	8.23.2.3 VMSA Pages

	8.23.3 Status Codes

	1.1
	8.24 SNP_PAGE_RECLAIM
	8.24.1 Parameters
	8.24.2 Actions
	8.24.3 Status Codes

	8.25 SNP_PAGE_UNSMASH
	8.25.1 Parameters
	8.25.2 Actions
	8.25.3 Status Codes

	1.1
	8.26 SNP_GUEST_REQUEST
	8.26.1 Parameters
	8.26.2 Actions
	8.26.3 Status Codes

	8.27 SNP_DBG_DECRYPT
	8.27.1 Parameters
	8.27.2 Actions
	8.27.3 Status Codes

	8.28 SNP_DBG_ENCRYPT
	8.28.1 Parameters
	8.28.2 Actions
	8.28.3 Status Codes

	8.29 SNP_PAGE_SET_STATE
	8.29.1 Parameters
	8.29.2 Actions
	8.29.3 Status Codes

	8.30 SNP_VLEK_LOAD
	8.30.1 Parameters
	8.30.2 Actions
	8.30.3 Status Codes

	8.31 FEATURE_INFO
	8.31.1 Parameters
	8.31.2 Actions
	8.31.3 Status Codes

	Chapter 9 APPENDIX: Common Algorithms
	9.1 Aead_Wrap()
	9.2 Aead_Unwrap()

	Chapter 10 APPENDIX: Digital Signatures

