Public

AMD .\

Seamless Firmware Servicing
(SFS) Specification

Publication # 58604 Revision: 0.70
Issue Date: May 2024

Advanced Micro Devices &\

Public

© 2024 Advanced Micro Devices, Inc. All rights reserved.

The information contained herein is for informational purposes only, and is subject to change without notice. While
every precaution has been taken in the preparation of this document, it may contain technical inaccuracies, omissions
and typographical errors, and AMD is under no obligation to update or otherwise correct this information. Advanced
Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document, and assumes no liability of any kind, including the implied warranties of noninfringement,
merchantability or fitness for particular purposes, with respect to the operation or use of AMD hardware, software
or other products described herein. No license, including implied or arising by estoppel, to any intellectual property
rights is granted by this document. Terms and limitations applicable to the purchase or use of AMD’s products are
as set forth in a signed agreement between the parties or in AMD's Standard Terms and Conditions of Sale.

Trademarks

AMD, the AMD Arrow logo, AMD EPYC, and combinations thereof are trademarks of Advanced Micro Devices,
Inc. Other product names used in this publication are for identification purposes only and may be trademarks of their
respective companies.

Public

AMDZ
58604 Rev.0.70 May 2024 Seamless Firmware Servicing (SFS) Specification
Contents
Chapter 1 INTrOQUCTIONoiiiiiiiiee bbbt 6
1.1 PUrpoSE and AUGIENCEc..eoieiiieiieie ittt ste ettt st e ste e teebe e e sraeteeneesreenneens 6
O €] (01557 1 YRS 6
Chapter 2 BacCKgrOUNGooiiiiie ettt e e neenne e 7
2.1 MOTIVALION TOF SFS ...ttt re e e 7
2.2 SCOPE OF SFS SUPPOITveveeieeie ettt sttt et e be e e sreesreeneesreenneens 7
2.3 SFS FIOW.c.eiiiicee ettt re e et ae s 8
2.4 RESPONSIDIIITIES .. .ecvieieeie ettt et este e e sre e reenreaneenre e 9
Chapter 3 SFS OPEIALIONcueiiiiiieiee ettt bbb 10
3.1 SFS Security / Threat MOGEIcccveiuiiiiiiececc e 11
KT | Y] = =1 4 1V o] OSSPSR 12
3.2.1 Application 0f SFS PaCKagES.........cccveiiiieieiie it 12
3.2.2 VBISTONMING ...ttt bbbttt b bbbttt e bbbttt e et e e 14
3.2.3 PatChable TEEIMS ... 14
3.24 Security and AtteStation NOTEoiiiiiieieee e 14
3.25 RESHIENCY ... et 15
Chapter 4 Boot Time Application OVEINVIEWccoiveiiiiieiieeie e 16
Chapter 5 Sending SFS COMMANDScccoiiiiiiiiiieie e 17
5.1 ISSUING SFS COMMANGSvecviiiiieie ettt ettt e reesre e ra e e 17
511 TEE Extended Command Buffer (TEE_EXT_CMD_BUFFER).......c..ccccccvcvennne. 19
51.2 TEE Extended Command Structure (TEE_EXT _CMD)....cccccovevviiiecviiececceee 20
513 TEE Extended Sub Command Header (TEE_EXT_SUB_COMMAND)............... 20
514 Sending a Customer the Co-Signed Update Packageccccovevveveiieiieieciennnn, 22
515 Sending the SFS Command t0 the ASP ..., 22
5.1.6 ASP ProCess OF SFES ... 23
5.1.7 SFS SUD-COMMANUScuviiiiiieeii e e et e e e eeeeneennees 23
5.2 SFS PACKAgE REICASEc.veiiiiiiie ittt anre s 26
521 PAECN NAMING ...t 26
Chapter 6 Operational ConSIAEratiONScoviiiieeiieiii e 27

Contents 3

Public

AMDZ
58604 Rev.0.70 May 2024 Seamless Firmware Servicing (SFS) Specification
List of Figures
FIQUIE L. SFS FIOW ...t bbbt b bbb 8
Figure 2. SFS UPAAte FIOWooiiiie ettt te e ns 18
Figure 3. Patch APPlICAtION PrOCESSccviiiiiiiiiiicie et 19
List of Tables
Table 1. Patch Signing and General LaYOUL..........ccooiiiiiiiniiiiiecee e 11
Table 2. SFS/CO-SIGNING FIAGS......ccviiiiieiieie ettt sre e e sra e 12
Table 3. RSA TOKEN FOIMALoiieiiiie ittt st st ee e sreeseeneesneene s 14
Table 4. TEE Sub-Command HEAAETccueiiiiiiiiie e 20
Table 5. TEE SFS Sub-Command ID ValUESc.ccviieiiiriiie e 20
Table 6. SFS STAtUS VAIUESoveiiie ettt ettt bbb 21
Table 7. Optional SFS Co-SIgNING HEAAETcoiiiiiiiiiieccee e 22
Table 8. ASP Register DefiNItIONScceiieiiiie e sre e 23
Table 9. GET_SFS_VERSION_INFO ENYouvieeieeeeeeeeeeeeee e sne e 24
Table 10. FW_VERSION_INFO ENIY ...coiiiiiieeiese e 24
Table 11. Firmware Enums for VERSION _TYPEcccooi oo 25

List of Figures 4

Public

AMDZ1

58604 Rev.0.70 May 2024

Revision History

Seamless Firmware Servicing (SFS) Specification

Date

Revision

Description

May 2024

0.70

Initial public release

Revision History

Public

AMDZ1

58604 Rev.0.70 May 2024 Seamless Firmware Servicing (SFS) Specification

Chapter 1 Introduction

1.1 Purpose and Audience

This document describes the architecture, assumptions, test methodology, and maintenance of the
Seamless Firmware Servicing (SFS) support process. This document facilitates customer
personnel involved in developing, testing, and deploying SFS support.

1.2 Glossary

AGESA: AMD Generic Encapsulated Software Architecture

APCB: AGESA Platform Configuration Block

SFS: Seamless Firmware Servicing

PSP: Platform Security Processor

ASP: AMD Security Processor, the replacement for the earlier program’s PSP
SEV: Secure Encrypted Virtualization

SMM: System Management Module

SNP: Secure Nested Paging

SPDM: Security Protocol and Data Model

TEE: Trusted Execution Environment

Introduction

Public

AMDZ1

58604 Rev.0.70 May 2024 Seamless Firmware Servicing (SFS) Specification

Chapter 2 Background

2.1 Motivation for SFS

AMD created SFS as a secure method to allow non-persistent updates to running firmware and
settings without requiring a BIOS reflash and/or system reset. This approach improves system
stability by allowing patches to address a few selected “high-benefit/low-risk-to-mitigate™ issues
on running systems. SFS can improve overall system health without increasing maintenance
downtime.

In addition, SFS patching can mitigate some security issues which can reduce the frequency of
unplanned maintenance events.

SFS does not patch code that is normally part of customer BIOS and runs on x86, such as SMM,
AGESA, or UEFI; nor is it able to update run-once code, such as AGESA boot loader (ABL). The
intent of SFS is solely for the purposes stated above.

2.2 Scope of SFS Support

AMD AGESA releases typically contain dozens to hundreds of boot-time and runtime
improvements in addition to introducing additional capabilities.

AMD limits the scope of SFS to address priority runtime concerns that affect AMD-provided
binary firmware components included in an AGESA release.

SFS does not address anything that runs on the x86 processors. Examples that SFS runs on include
ASP firmware, modules, and register settings. Other microprocessors can receive updates.

SFS updates are non-persistent and do not last across reboots. The intent is that the SFS update
packages are interim steps between BIOS releases. SFS update packages can extend the time for a
customer to validate new BIOS releases in preparation for updating the (typically) flash storage
that contains the BIOS.

The design of the SFS update packages apply to a particular PI release with a specified base patch
and firmware level; this ensures the update package execution process meets the proper base
conditions.

SFS update packages include release notes to indicate what the update patches or resolves.

Background

Public

AMDZ1

58604 Rev.0.70 May 2024 Seamless Firmware Servicing (SFS) Specification

2.3 SFS Flow

The process of creating an SFS update package follows the flow indicated below (Figure 1).

Deployed Modes ‘ ‘ Customer ‘ AMD Engineering

Failure reported

I

1

I
.

Dehug isolated to
AMD component.
Provide debug and
current version data to ‘ﬁ‘MD'}

1
]
]
]
1
]
]
]
1
]
-

Debug root caused
to non-x86 F\W

< |

Fix identified as
SFE fixahle

<« |

Prepare AMD Signed
lpdate package

<« |

“alidate update package

< |

< Release Update Package

opt / [Customer Signing enabled]

Sign Update Package

“alidate Update Package

p— |

< Deploy SFS fix

Deployed Nodes ‘ l Customer ‘ | AMD Engineering

Figure 1. SFS Flow

Background

Public

AMDZ1

58604 Rev.0.70 May 2024 Seamless Firmware Servicing (SFS) Specification

2.4 Responsibilities

Each customer applying patches is responsible for their decision to proceed with the patches. It is
incumbent upon the customer to test and validate any given patch within their own environment.
The customer is also responsible for an SFS Deployment Agent (SFSDA) that runs in their
environment to initiate and track SFS updates. The SFSDA would utilize the PSP/ASP driver to
communicate with AMD’s PSP/ASP to execute the patch process.

Background

Public

AMDZ1

58604 Rev.0.70 May 2024 Seamless Firmware Servicing (SFS) Specification

Chapter 3 SFS Operation

SFS is an AMD firmware feature that facilitates its development and distribution of fixes for
selected high priority system issues. Datacenter operators can apply SFS patches without
rebooting their system.

AMD works to identify the fixes included in each patch then distributes these patches in a
‘Seamless Firmware Servicing Update Package(s).’

Successfully deploying an SFS update package on a system can cause three distinct types of
version numbers to change:

a) The SFS Patch Level (SFSPL) identifies the SFS update package currently applied to the
system. An unpatched system has a value of zero. To prevent rollback, only SFS packages
with a SFSPL greater than the system's current value can deploy (i.e., the SFSPL must
monotonically increase). The SFSPL is the overall runtime patch level. The list of firmware
versions combined with the SFSPL uniquely identifies the AMD firmware running on a
system.

b) Individual firmware components maintain their own firmware and Security Patch Level
(SPL) versions. A newer SFS package will always advance the version, but the functionality
introduced in one patch may be reverted in a later patch, if needed.

c¢) SFS may execute run-once code to modify registers and internal SRAM data that exist
outside of a versioned 'firmware component.” To track these changes, SFS uses the concept
of the System Patch Level (SYSPL). The SYSPL is the version number for a virtual
firmware component that consists of all run-once code executed by SFS since the last reboot.
SYSPL increases monotonically. While the effects of run-once code may be reverted, the
history of it executing is indelible.

All that information is available to SFS for it to ensure that any to-be-applied-update applies only
to the correct level of existing SOC firmware and operational state. That data is also available to
the host OS via an SFS command to get the version levels of the firmware (and SPL, SYSPL, and
SFSPL).

For security reasons, AMD cryptographically signs the entire SFS package. As an added feature,
customers can opt to co-sign the package. Co-signing enables customer approval of any SFS
packages deployed within their datacenters. This requires customers to send (during early boot) a
public key to the ASP to apply a patch.

Conceptually, an SFS update package delivers in the form shown below (Table 1). For additional
details, see Chapter 5.

10
SFS Operation

Public

AMDZ1

58604 Rev.0.70 May 2024 Seamless Firmware Servicing (SFS) Specification

Optional SFS Co-Signing Header (Customer)

SFS Package Signing Header (AMD)

SFS Update Package Executable Binary

SFS Package Signature (AMD)

Optional SFS Package Signature (Customer)

Table 1. Patch Signing and General Layout

3.1 SFS Security / Threat Model

The AMD Security Processor (ASP) verifies AMD’s signatures on all AMD-owned boot firmware
that it retrieves from the ROM. The ASP acts as AMD’s root of trust for detection (see FIPS PUB
SP800-193, section 4.1) for all AMD signed firmware. SFS allows runtime updates to AMD
firmware, and SFS extends the ASP’s role as the root of trust for detection by requiring the ASP to
verify AMD’s signature before applying each SFS update package.

AMD?’s policy has been that the system designer (OEM/ODM) owns the firmware root of trust for
update for all the firmware, not AMD (see FIPS PUB SP800-193 section 4.1 for the difference
between root of trust for detection vs update). Unless AMD-provided Platform Secured Boot
(PSB) solution is enabled, the system designer (OEM/ODM) is also responsible for root of trust
for detection of the system designer owned/signed/provided firmware.

When systems first begin executing OEM/ODM-provided x86 code (i.e., early BIOS code), that
code has full read/write access to the ROM’s firmware store. This early OEM/ODM trusted code
secures the system by enabling restrictions on ROM chip access. Enabling features such as AMD
ROM Armor ensures only the OEM/ODM-controlled SMM handler can write to the ROM chip.
Only after this lockdown does the OEM’s firmware allow untrusted third-party code to execute
(such as adapter card ROMs, disk-based boot loaders, and network PXE images). In later stages of
execution, OEM/ODM-provided logic then verifies updates before allowing the ROM to apply the
updates.

Since SFS offers a means to update running firmware, SFS provides the OEM/ODM the option to
co-sign update packages so the OEM/ODM can maintain their role as root of trust for update.
During the early boot phase, when the ROM is still in read/write mode, the OEM/ODM may
present their public signing key to SFS. Once presented, the ASP will require updates signed by
AMD and countersigned by the OEM/ODM ’s signing key. Maintenance of customer co-Signing
keys is the responsibility of the customer. AMD does not countersign the customer keys.

Note: If an attacker manages to subvert the early trusted code, such that they could replace the
co-signing key used, the attacker could easily use their escalated privileges to overwrite the

11
SFS Operation

Public

AMDZ1

58604 Rev.0.70 May 2024 Seamless Firmware Servicing (SFS) Specification

baseline firmware components in the ROM, which negates any advantage to being able to co-sign
updates.

If AMD Platform Secure Boot (PSB) is enabled, the code that installs the SFS co-signature should
be part of the code protected by PSB.

3.2 SFS Behavior

Systems boot in an unpatched state, with a baseline firmware level (whatever signed AMD
firmware is running). At runtime, customers may choose to apply SFS patches.

3.2.1 Application of SFS Packages

Application of SFS packages must occur at run-time and needs to be reapplied after any system
reboot. SFS does not persist over reset. In multi-socket systems, the first sockets” ASP receives the
patch communicated to it. Each patch determines if it is on a single or multi-socket system then
ensures the patch applies to the local socket correctly, and (as needed) to the additional sockets.

If there are multiple updates, application of the packages must occur sequentially and in numerical
order.

3.2.1.1 Enablement

BIOS developers enable SFS by compiling their BIOS with appropriate values for:
APCB_TOKEN UID PSP SFS ENABLE and
APCB_TOKEN UID PSP SFS COSIGN REQUIRED.

Both options are off by default. Customers must opt-in and configure the BIOS to allow SFS and
if desired co-sign the update packages.

The security processor firmware consumes this information when authenticating whether to allow
application of the patch. The table below explains the combinations of these two flags.

SFS Co-signing

enabled? | enabled? Behavior

SFS will not accept commands. BIOS will not accept a public

No N/A

key.

SFS will accept update packages and requires no customer co-
Yes No -) .

signature (SFS will refuse a co-signed package)
Yes Yes SFS will accept update packages and require co-signing

Table 2. SFS/Co-signing Flags

12
SFS Operation

Public

AMDZ1

58604 Rev.0.70 May 2024 Seamless Firmware Servicing (SFS) Specification

In early boot, it is a requirement that the customer BIOS pass their signing key to the ASP, if
setup. If both keys are enabled, the SFS package authenticates first against the customer key, and
then against the AMD SFS key. This allows customers to create a BIOS with a co-signing key that
runs against (for example) a test set of systems and then another one with a different co-signing
key that runs on production systems only. This separation prevents SFS update packages, used for
the test phase, from deploying on production systems.

Prior to OS start, the customer BIOS provides a public signing key by sending a message (below)
to the BIOS-PSP interface. The firmware verifies that the signature of an SFS update package
matches the customer in control of the machine during early boot.

3.2.1.2 SET_CUST_SFS_SIGNATURE

Signing requires the customer provide their public key (aka RSA public key) used for SFS
package verification during early boot, specifically during, or immediately after, setting up SMM
(prior to BOOT_DONE). The customer cannot update the signature after this stage.

The x86 should pass in a pointer to an MBOX BUFFER_HEADER, defined as:

typedef struct

{
UINT32 TotalSize; ///< Total Size of MBOX BUFFER (including this field)
UINT32 Status; //< Status value

} MBOX BUFFER HEADER;

The ReqBuffer follows immediately in memory behind the MBOX_BUFFER_HEADER as
defined below:

typedef struct OEM CO SIGN KEY

{
UINT32 KeySize; //!< Indicator of 2K or 4K key in bits.

//!'< Struture which holds OEM Co sign key and its data
UINT8 OemCoSignKey[SIZE 4K OEM CO SIGN KEY];
} OEM CO_SIGN KEY;

3.2.13 RSA_TOKEN_FORMAT
Customers define the OemCoSignKey using the RSA_ TOKEN FORMAT.

To co-sign an update package received from AMD, the customer generates an RSA key pair
(either 2048-bit or 4096-bit) and signs the package with private key using RSA-PSS signature
scheme (RSASSA PKCS1 PSS MGF1 SHA256 for a 2048-bit key, or

RSASSA PKCS1 PSS MGF1 SHA384 for a 4096-bit key).

13
SFS Operation

Public

AMDZ
58604 Rev.0.70 May 2024 Seamless Firmware Servicing (SFS) Specification
Byte Offset | Content Description
00h Version_ID Version for the key format structure. Set the version as one.
04h This_KEY _ID | Customer-created key ID
14h Reserved Must be zero
24h Reserved Must be zero
28h Reserved Must be zero
37h Reserved Must be zero
38h EXP_SIZE Public exponent size
3Ch MOD_SIZE Modulus size in bits
40h EXP N =256 or 512 bytes depending on public exponent size
40h + N MOD N = 256 or 512 bytes depending on modulus size

Table 3. RSA Token Format

3.2.2 Versioning

Each executable patch checks the existing System Patch Level and/or specific firmware version(s)
then determines if it is applicable to that existing patch/firmware level and the other firmware
running in the system.

3.2.3 Patchable Items

An update package can patch a register or other value, replace a complete firmware image in a
microprocessor, or update portions (e.g., drivers) of a firmware package.

3.2.3.1 SEV/SNP Update Note

AMD SFS automatically commits any SEV update which prevents rollback to previous images.
Reverting an SFS updated SEV firmware image requires a system reboot.

Additionally, if SNP is enabled, all pages used for the update package must be HV-FIXED pages
using the RMPUPDATE command. The command is issued by the driver/software sending the
package to the SFS interface.

3.2.4 Security and Attestation Note

For attestation requirements, the OS or system/platform management software should request
attestation data/evidence via appropriate interfaces & protocols (viz., side-band interface/SPDM or
in-band/DPE. SFS provides required measurements to the appropriate attestation data managers
for reporting via the above mechanisms.

14
SFS Operation

Public

AMDZ1

58604 Rev.0.70 May 2024 Seamless Firmware Servicing (SFS) Specification

Some attestation schemes prevent the update of certain firmware components of AMD-provided
firmware. AMD will not attempt to modify that firmware.

3.2.5 Resiliency

Each update package is responsible for ensuring that the proper versions of the firmware updated
and/or influenced by a patch exist on the system prior to beginning the update process. This
ensures the firmware in the system does not get out-of-sync if there are any inter-firmware
dependencies.

If any portion of a package cannot fully apply its updates, then application of the package should
not occur. Otherwise, the only choice may be to force a reset, which is an undesirable outcome.
System testing by AMD and the customer’s site will verify that a reset is not necessary.

15
SFS Operation

Public

AMDZ1

58604 Rev.0.70 May 2024 Seamless Firmware Servicing (SFS) Specification

Chapter 4 Boot Time Application Overview

Update packages are non-persistent across system reboots (warm or cold), so it is important to
define a mechanism to apply patches. Customers have the option to apply update patches as part of
OS boot, immediately after system boot, or at any time during system operation.

For example, the Linux OS places firmware updates in a location known to the OS, then loads the
firmware from that location during system boot. SFS update patches have version numbers and a
boot service (or driver install) and can apply patches sequentially by placing the update package
files in a location known to the file system.

See section 5.2.1 for information on package naming.

16

Boot Time Application Overview

Public

AMDZ1

58604 Rev.0.70 May 2024 Seamless Firmware Servicing (SFS) Specification

Chapter 5 Sending SFS Commands

5.1 Issuing SFS Commands

Issuing SFS commands requires the following:

1. Memory alignment

a. The page used for the TEE_EXT_CMD_BUFFER must be at the start of a 2MB
aligned page that is 2MB in size.

b. Forthe GET_FW_VERSIONS command, the output page must follow the
TEE_EXT_CMD_BUFFER address + 4k.

c. For the UPDATE_FW command, the update package must start at the address of
the TEE_EXT_CMD_BUFFER + 4k. If the customer has co-signed the update
package, the customer co-signing header must start at TEE_EXT_CMD_BUFFER
+ 4k.

2. Customer-provided SFS Deployment Agent
a. Requirements
i. The TEE_EXT_CMD_BUFFER must be 2MB aligned.
b. Process
i. Createa TEE EXT_CMD_BUFFER (see Table 4) in DRAM.

ii. Appends an SFS co-signing header in DRAM (see below for definition) if
co-signing.

iii. Appends the entire AMD provided update package.

iv. Appends the co-signing signature (if used) at the end of the AMD provided
update package.

v. Communicates to the primary ASP firmware the request for SFS by putting
an SFS command in the TEE mailbox interface and passing the physical
address of the SFS TEE_EXT_CMD_BUFFER in memory into additional
mailboxes (see section 5.1.5).

The process of applying an SFS update package follows the flow indicated below (Figure 2).

17
Sending SFS Commands

Public

AMDZ1

58604 Rev.0.70 May 2024

|AMD

| Customer Deployment Agent

Delver Updata Package

| AMD |

par [Cugthmer Signing enabled?]
Co-Sign Package

I

Prepare SFS Header

il

&

pend Update Package

i

Send Prepared Update Package to Driver

Seamless Firmware Servicing (SFS) Specification

ASPISFS Driver

Return status

Send Update Package to ASP

ASP TEE Interface

Align package per rules

Lock Update Package in memaory

par J [5F5 mot enabled?]

_, return emor stalus

Unlock Update Package

Retum status

par [Customer 3igning enabled?)
\erify co-signature

P

Execule SFS Update Package

Unlock Update Package

-«

Customer Deployment Agent

ASPISFS Driver |

Figure 2. SFS Update Flow

| ASP TEE Interfacs |

For a detailed verbal description of applying an SFS update package, see below (Figure 3).

Sending SFS Commands

18

Public

AMDZ
58604 Rev.0.70 May 2024 Seamless Firmware Servicing (SFS) Specification
OS Driver
x86 w/access to
TEE intf.
Attach TEE cmd to the SFS package, pass buffer to ASP FW
rrrrrrr { HW Registers C2PMSG_17-19
ASP
Drvintf
e Process TEE Cmd Header .
e Block non-ASP access to the SFS package memory region For Update Firmware command:
. Validate signature of SFS package Align ed at a 2MB address
. Validate customer signature (optional)
e Validate AMD signature L’ —
. Decrypt Update Package TEE EXT Cmd Buffer—4kb in size
. Load patch executables from SFS package Optional Sfs Co-signing header (Cust)
° Lralnsfjrucodntrolpto I;()ackagc; § Sfs Pkg signing header (AMD)
t
¢ nioad Upcate Fackage when done SFS Update Package Executable Binary

Sfs Pkg signature (AMD)
Optional Sfs Pkg signature (Cust)

A
|

Execute Update Package

For Get Firmware Version command:
v Aligned at a 2MB address

L» TEE EXT Cmd Buffer—4kb in size
GET_FW_VERSIONS Output Buffer

Execute Update Package

o Execute SFS Update Package
. Report done to DrvIntf

Figure 3. Patch Application Process

5.1.1 TEE Extended Command Buffer (TEE_EXT_CMD_BUFFER)

The structure consists of a TEE ExT cMD padded to a 4k size; represented by the following
example:

typedef struct TEE EXT CMD BUFFER
{

TEE EXT CMD Command;

// For alignment and future expansion

TEE UINT8 Reserved[TEE EXT CMD MAX SIZE - sizeof (TEE EXT CMD)];
} TEE EXT CMD BUFFER;

19
Sending SFS Commands

Public

AMDZ1

58604 Rev.0.70 May 2024

5.1.2 TEE Extended Command Structure (TEE_EXT_CMD)

This structure is as follows. For SFS, use the following structure for the
TEE EXT SUB COMMAND.

typedef struct TEE EXT CMD

{

TEE EXT CMD HEADER Header;
TEE EXT SUB_COMMAND ExtSubCmd;

} TEE_EXT_ CMD;

Seamless Firmware Servicing (SFS) Specification

5.1.3 TEE Extended Sub Command Header (TEE_EXT_SUB_COMMAND)

AMD if Status != SFS_SUCCESS)

Byte Offset | Bits | Dir Name Description

00h 31:0 | In TotalSize Tc_>ta| Size of EXT_CMD_BUFFER (including
this header) in bytes

04h 310 |In SubCmdld See TEE SFS Sub-Command ID values below
(Table 5)

08h 31:0 | Out Status Command Execution Status

0ch 310 | out EXT STATUS Extended Status (Please report these values to

10h-19ch 31:0

- Reserved

Table 4. TEE Sub-Command Header

TEE also supports additional SFS-specific commands.

Command ID Value

Command ID Name

Description

1h

TEE_SUB_CMD_SFS_GET_FW_VERSIONS

2h

TEE_SUB_CMD_SFS_UPDATE

Table 5. TEE SFS Sub-Command ID Values

SFS reports the following statuses using a full 32-bit word value.

Status

St Name

Description

00h SFS_SUCCESS

Success — patch applied

01h Reserved

Sending SFS Commands

20

Public

AMDZ1

58604 Rev.0.70 May 2024

Seamless Firmware Servicing (SFS) Specification

Status

Code Name Description

02h SFS_INVALID_TOTAL_SIZE Invalid TotalSize

03h Reserved

04h SFS_INVALID _PKG_SIZE Invalid Image size

05h SFS_DISABLED Patching not allowed

06h SFS_INVALID_CUSTOMER_SIGNATURE | Invalid Customer Signature

07h SFS_INVALID_AMD_SIGNATURE Invalid AMD signature

08h SES INTERNAL ERROR Please report the extended status to
- - AMD.

SFS_CUSTOMER_SIGNING _ .

09h NOT_ALLOWED Customer signed but not allowed

0ah | SFS_INVALID _BASE_PATCH_LEVEL Invalid base patch level — Base FW
- - - - Version mismatch

Obh | SFS_INVALID_CURRENT PATCH_LEVEL | Nvalid current SFS patch level —
- - - - current patch level mismatch

och SES INVALID NEW PATCH LEVEL Invalid new SFS patch level — less than
- - - - current patch level

0dh SFS_INVALID_SUBCOMMAND Invalid SFS subcommand

0eh SES PROTECTION FAIL Paylofad cannot be protected - possibly
- - not aligned on 2MB boundary.

ofh SES BUSY Busy — SFS cannot update with this
- package

10h | SFS_FW_VERSION_MISMATCH The uploaded FW is less than the
- - - existing FW.

11h SES SYSTEM VERSION MISMATCH The current SYS patch level and new
- - - SYS patch level are not one apart.

12h | SFS_SEV_STILL_INITIALIZED SEV clients and SEV SHUTDOWN

need to have happened to update SEV.

Table 6. SFS Status Values

21

Sending SFS Commands

Public

AMDZ1

58604 Rev.0.70 May 2024 Seamless Firmware Servicing (SFS) Specification

5.1.4 Sending a Customer the Co-Signed Update Package

This consists of the optional customer co-signature header, followed by the mandatory AMD
signature, and the SFS update package itself. The required signatures follow - AMD (and
optionally the co-signature).

Byte Offset Name Description
00h Reservedl Must be zero.
10h Cookie Required. Must be set to 5453 5543h
. . Size of the package in bytes. This would be the entire
14h SizeFWSigned AMD update package.
18h to FCh Reserved2 Must be zero.

Table 7. Optional SFS Co-signing Header

5.1.5 Sending the SFS Command to the ASP

Simplified algorithm for sending this command (Table 8). Access to the ASP TEE registers is via
the ASP PCI driver.

1. Software needs to interrogate Bit 3 (SFS_ENABLED) of the ASP Feature Register
(MP0O_C2PMSG63) to determine if SFS is enabled at all.
2. Client polls on Ready flag of Command/Status Register until set to 1.

3. Write the physical address of the SFS Command Header into the CmdRspBufAddr_Lo and
CmdRspBufAddr_Hi registers.

4. Write the TEE_IF_EXT_CMD_ID into the Command/Status RegisterfCommand ID] field
and write zero to all other fields and update the Command/Status Register.

5. Loop on Ready flag of Command/Status Register while 0 (command in progress).

6. At this point, the Status field of the Reload Firmware Header is valid and combined with
the Status in the Command/Status Register, reflects the Reload operations’ status.

Register Name Bits Name Description

Set by the target to indicate the mailbox
interface state

31 Ready 0 — Not ready to handle commands (or
handling previous command)

1 — Ready to handle next command

Command/Status
Register

22
Sending SFS Commands

Public

AMDZ\
58604 Rev.0.70 May 2024 Seamless Firmware Servicing (SFS) Specification
Register Name Bits Name Description
30:20 | - reserved

19:16 | Command ID | 0xOE — TEE Extended Command

Set by the ASP to indicate the execution

150 Status status of the last command
Lower 32-bits of physical address of
CmdRspBufAddr_Lo | 31:0 Addr_Lo Command/Response Buffer (TEE EXT CMD
Header)
Upper 32-bits of physical address of
CmdRspBufAddr_Hi | 31:0 Addr_Hi Command/Response Buffer (TEE EXT CMD

Header)

Table 8. ASP Register Definitions

Relative to the base address assigned by BIOS to the PSP device’s memory mapped I/O space,
Command/Status is register 17 (offset 68), CmdRspBufAddr_Lo is register 18 (offset 72), and
CmdRspBufAddr_Hi is register 19 (offset 76).

5.1.6 ASP Process of SFS

ASP checks that the DRAM address can be protected from x86 access.
ASP verifies the customer signature (if enabled and provided to ASP).
ASP verifies the AMD signature.

ASP loads and runs the executable patch.

ASP updates the current patch level information.

ASP returns the status to the software agent.

o a ks w b F

5.1.7 SFS Sub-Commands
SFS supports the following sub-commands.
5.1.7.1 TEE_SUB_CMD_SFS GET_FW_VERSIONS

The ASP interface can provide the current level of base firmware for the ASP (and other
microprocessors) as well as the current patch level(s).

This command consists of two pages sent to the ASP interface. The first page is the
TEE_EXT_CMD_BUFFER which must be exactly one page (4096 bytes). The output data from
the command (also 4096 bytes) uses the second page.

23
Sending SFS Commands

Public

AMDZ1

58604 Rev.0.70 May 2024

Seamless Firmware Servicing (SFS) Specification

To check the firmware versions, the GET_SFS_VERSION_INFO command passes into the SFS
handler in the ASP as a subcommand in the SFS Command Header. The address values passed in
would point to a contiguous two-page area. The output buffer needs to initialize to C7h in every
byte. For SNP systems, the page needs to be an HV-FIXED page. On successful command
completion, that buffer contains the data as specified below (All reserved fields are zero).

Items not supported have a 0000_0000h value in the item’s field.

Note: Table 9 is subject to change.

Offset | Bits | Name Description
00h |31:0 | SFS API VERSION The version of the API that this command supports
04h | 31:0 |CURRENT PATCH LVL | The current SFS patch level as an integer (SFSPL)
08h |31:0 |SYS_PATCH LVL The current System Patch Level as an integer (SYSPL)
0Ch |31:0 |NUM SUPPORTED FWS 3l}l(;Jor?ber of FW Versions captured out of MAX (MAX =
10h- 31:0 | FW VERSION INFO See below
E20h ' - -
E24h- .
FEER 31:0 | Reserved

Table 9. GET_SFS_VERSION_INFO Entry

Each FW_VERSION_INFO entry is a triplet consisting of:

Offset | Bits | Name Description
00h |31:0 | VERSION TYPE The Enum of the version type (see Table 11)
04h |31:0 | VERSION The version of the indicated VERSION_TYPE
08h |31:0 | SEC PATCH LVL The current Security Patch Level (SPL) as an integer

Table 10. FW_VERSION_INFO Entry

Firmware Enums for VERSION_TYPE:

Note: Not all these items are currently SFS updatable.

24

Sending SFS Commands

Public

AMDZ1

58604 Rev.0.70 May 2024

Seamless Firmware Servicing (SFS) Specification

Enum

FW_NAME Value Description

DRV_SYS VERSION 001h ASP System Driver Version

DRV SOC VERSION 002h ASP SOC Driver Version

DRV _HAD VERSION 003h ASP High Availability Driver (Debug) Version
DRV_BOOT_VERSION 004h ASP Boot Driver Version

DRV _INTF VERSION 005h ASP Interface Driver Version

DRV_RAS VERSION 006h ASP RAS Driver Version

DRV _SEV VERSION 007h ASP SEV Driver Version

DRV_SPDM VERSION 008h ASP SPDM Driver Version

DRV_IPKEYMGR VERSION | 009h ASP IP Key Manager Version
DRV_SFS_VERSION 00Ah SFS Driver Version

AGESA BL VERSION 100h AGESA Boot Loader Version

ASP VERSION 101h ASP Secure OS Version

PMFW_VERSION 102h Power Management Firmware Version

TMPM VERSION 103h Tiered Memory Page Migration Firmware Version
RESERVED 104h Reserved

MP5 VERSION 105h MPS5 Firmware Version

MPIO VERSION 106h MPIO Firmware Version

Table 11. Firmware Enums for VERSION_TYPE

5172 TEE_SUB_CMD_SFS UPDATE

This sub-command tells the ASP to load, verify, and execute the SFS package. The package does
not apply any updates until all parts of the update package complete validation as appropriate.

This command consists of a buffer the size of the TEE_EXT_CMD_BUFFER (1 page) followed
by the SFS Update Package sent to the ASP interface.

25

Sending SFS Commands

Public

AMDZ1

58604 Rev.0.70 May 2024 Seamless Firmware Servicing (SFS) Specification

5.2 SFS Package Release
5.2.1 Patch Naming

SFS packages are binary objects that a customer maintains and aligns to AGESA releases.
Package names follow this example:

fam <family>-<AGESA-Release>-SFS-<n>.pkg (.0., fam 19h-1006-SFS-1.pkg)
where:

e <AGESA-Release> is AMD’s Pl release number (e.g., 1002 or 1006).
e <n> is a monotonically increasing counting number (i.e., integer) starting at 1.

26
Sending SFS Commands

Public

AMDZ1

58604 Rev.0.70 May 2024 Seamless Firmware Servicing (SFS) Specification

Chapter 6 Operational Considerations

Update packages have a specific set of firmware and system patch level versions to which they
apply; therefore, any update package released must match the specific combination of firmware
running on a given system to apply the package.

The update process runs in parallel with x86 and DMA traffic. The goal of package design is that
updates have a minimal impact on system performance, at most requiring a brief quiescence of
certain activities. Optimally, updates require no quiescing from the OS perspective; therefore, any
updates, module, and micro-processor firmware replacements will look at worst like a small
slowdown in response — well within the latency windows of the AMD data fabric and customer
expectations.

There are very few SFS operations that would require quiescing OS operations or portions thereof.
One example of a more impactful update (but still not requiring a system restart) is that SEV or
SEV/ES virtual machines need to stop and then restart for an SEV firmware update. SEV/SNP
virtual machines are capable of continuing operation across an SFS update to the SEV firmware.

27

Operational Considerations

	Chapter 1 Introduction
	1.1 Purpose and Audience
	1.2 Glossary

	Chapter 2 Background
	2.1 Motivation for SFS
	2.2 Scope of SFS Support
	2.3 SFS Flow
	2.4 Responsibilities

	Chapter 3 SFS Operation
	3.1 SFS Security / Threat Model
	3.2 SFS Behavior
	3.2.1 Application of SFS Packages
	3.2.1.1 Enablement
	3.2.1.2 SET_CUST_SFS_SIGNATURE
	3.2.1.3 RSA_TOKEN_FORMAT

	3.2.2 Versioning
	3.2.3 Patchable Items
	3.2.3.1 SEV/SNP Update Note

	3.2.4 Security and Attestation Note
	3.2.5 Resiliency

	Chapter 4 Boot Time Application Overview
	Chapter 5 Sending SFS Commands
	5.1 Issuing SFS Commands
	5.1.1 TEE Extended Command Buffer (TEE_EXT_CMD_BUFFER)
	5.1.2 TEE Extended Command Structure (TEE_EXT_CMD)
	5.1.3 TEE Extended Sub Command Header (TEE_EXT_SUB_COMMAND)
	5.1.4 Sending a Customer the Co-Signed Update Package
	5.1.5 Sending the SFS Command to the ASP
	5.1.6 ASP Process of SFS
	5.1.7 SFS Sub-Commands
	5.1.7.1 TEE_SUB_CMD_SFS_GET_FW_VERSIONS
	5.1.7.2 TEE_SUB_CMD_SFS_UPDATE

	5.2 SFS Package Release
	5.2.1 Patch Naming

	Chapter 6 Operational Considerations

