
Advanced Micro Devices

Seamless Firmware Servicing

(SFS) Specification

Publication # 58604 Revision: 0.70

Issue Date: May 2024

Public

© 2024 Advanced Micro Devices, Inc. All rights reserved.

The information contained herein is for informational purposes only, and is subject to change without notice. While

every precaution has been taken in the preparation of this document, it may contain technical inaccuracies, omissions

and typographical errors, and AMD is under no obligation to update or otherwise correct this information. Advanced

Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the

contents of this document, and assumes no liability of any kind, including the implied warranties of noninfringement,

merchantability or fitness for particular purposes, with respect to the operation or use of AMD hardware, software

or other products described herein. No license, including implied or arising by estoppel, to any intellectual property

rights is granted by this document. Terms and limitations applicable to the purchase or use of AMD’s products are

as set forth in a signed agreement between the parties or in AMD's Standard Terms and Conditions of Sale.

Trademarks

AMD, the AMD Arrow logo, AMD EPYC, and combinations thereof are trademarks of Advanced Micro Devices,

Inc. Other product names used in this publication are for identification purposes only and may be trademarks of their

respective companies.

Public

58604 Rev. 0.70 May 2024 Seamless Firmware Servicing (SFS) Specification

Contents 3

Contents

Chapter 1 Introduction .. 6

1.1 Purpose and Audience ... 6

1.2 Glossary ... 6

Chapter 2 Background .. 7

2.1 Motivation for SFS .. 7

2.2 Scope of SFS Support .. 7

2.3 SFS Flow .. 8

2.4 Responsibilities .. 9

Chapter 3 SFS Operation .. 10

3.1 SFS Security / Threat Model ... 11

3.2 SFS Behavior ... 12

3.2.1 Application of SFS Packages ... 12

3.2.2 Versioning .. 14

3.2.3 Patchable Items .. 14

3.2.4 Security and Attestation Note .. 14

3.2.5 Resiliency ... 15

Chapter 4 Boot Time Application Overview ... 16

Chapter 5 Sending SFS Commands ... 17

5.1 Issuing SFS Commands ... 17

5.1.1 TEE Extended Command Buffer (TEE_EXT_CMD_BUFFER) 19

5.1.2 TEE Extended Command Structure (TEE_EXT_CMD) ... 20

5.1.3 TEE Extended Sub Command Header (TEE_EXT_SUB_COMMAND) 20

5.1.4 Sending a Customer the Co-Signed Update Package .. 22

5.1.5 Sending the SFS Command to the ASP ... 22

5.1.6 ASP Process of SFS ... 23

5.1.7 SFS Sub-Commands .. 23

5.2 SFS Package Release ... 26

5.2.1 Patch Naming ... 26

Chapter 6 Operational Considerations .. 27

Public

58604 Rev. 0.70 May 2024 Seamless Firmware Servicing (SFS) Specification

List of Figures 4

List of Figures

Figure 1. SFS Flow .. 8

Figure 2. SFS Update Flow ... 18

Figure 3. Patch Application Process ... 19

 List of Tables

Table 1. Patch Signing and General Layout .. 11

Table 2. SFS/Co-signing Flags .. 12

Table 3. RSA Token Format ... 14

Table 4. TEE Sub-Command Header .. 20

Table 5. TEE SFS Sub-Command ID Values ... 20

Table 6. SFS Status Values ... 21

Table 7. Optional SFS Co-signing Header .. 22

Table 8. ASP Register Definitions .. 23

Table 9. GET_SFS_VERSION_INFO Entry .. 24

Table 10. FW_VERSION_INFO Entry .. 24

Table 11. Firmware Enums for VERSION_TYPE ... 25

Public

58604 Rev. 0.70 May 2024 Seamless Firmware Servicing (SFS) Specification

Revision History 5

Revision History

Date Revision Description

May 2024 0.70 Initial public release

Public

58604 Rev. 0.70 May 2024 Seamless Firmware Servicing (SFS) Specification

 6

Introduction

Chapter 1 Introduction

1.1 Purpose and Audience

This document describes the architecture, assumptions, test methodology, and maintenance of the

Seamless Firmware Servicing (SFS) support process. This document facilitates customer

personnel involved in developing, testing, and deploying SFS support.

1.2 Glossary

AGESA: AMD Generic Encapsulated Software Architecture

APCB: AGESA Platform Configuration Block

SFS: Seamless Firmware Servicing

PSP: Platform Security Processor

ASP: AMD Security Processor, the replacement for the earlier program’s PSP

SEV: Secure Encrypted Virtualization

SMM: System Management Module

SNP: Secure Nested Paging

SPDM: Security Protocol and Data Model

TEE: Trusted Execution Environment

Public

58604 Rev. 0.70 May 2024 Seamless Firmware Servicing (SFS) Specification

 7

Background

Chapter 2 Background

2.1 Motivation for SFS

AMD created SFS as a secure method to allow non-persistent updates to running firmware and

settings without requiring a BIOS reflash and/or system reset. This approach improves system

stability by allowing patches to address a few selected “high-benefit/low-risk-to-mitigate” issues

on running systems. SFS can improve overall system health without increasing maintenance

downtime.

In addition, SFS patching can mitigate some security issues which can reduce the frequency of

unplanned maintenance events.

SFS does not patch code that is normally part of customer BIOS and runs on x86, such as SMM,

AGESA, or UEFI; nor is it able to update run-once code, such as AGESA boot loader (ABL). The

intent of SFS is solely for the purposes stated above.

2.2 Scope of SFS Support

AMD AGESA releases typically contain dozens to hundreds of boot-time and runtime

improvements in addition to introducing additional capabilities.

AMD limits the scope of SFS to address priority runtime concerns that affect AMD-provided

binary firmware components included in an AGESA release.

SFS does not address anything that runs on the x86 processors. Examples that SFS runs on include

ASP firmware, modules, and register settings. Other microprocessors can receive updates.

SFS updates are non-persistent and do not last across reboots. The intent is that the SFS update

packages are interim steps between BIOS releases. SFS update packages can extend the time for a

customer to validate new BIOS releases in preparation for updating the (typically) flash storage

that contains the BIOS.

The design of the SFS update packages apply to a particular PI release with a specified base patch

and firmware level; this ensures the update package execution process meets the proper base

conditions.

SFS update packages include release notes to indicate what the update patches or resolves.

Public

58604 Rev. 0.70 May 2024 Seamless Firmware Servicing (SFS) Specification

 8

Background

2.3 SFS Flow

The process of creating an SFS update package follows the flow indicated below (Figure 1).

Figure 1. SFS Flow

Public

58604 Rev. 0.70 May 2024 Seamless Firmware Servicing (SFS) Specification

 9

Background

2.4 Responsibilities

Each customer applying patches is responsible for their decision to proceed with the patches. It is

incumbent upon the customer to test and validate any given patch within their own environment.

The customer is also responsible for an SFS Deployment Agent (SFSDA) that runs in their

environment to initiate and track SFS updates. The SFSDA would utilize the PSP/ASP driver to

communicate with AMD’s PSP/ASP to execute the patch process.

Public

58604 Rev. 0.70 May 2024 Seamless Firmware Servicing (SFS) Specification

 10

SFS Operation

Chapter 3 SFS Operation

SFS is an AMD firmware feature that facilitates its development and distribution of fixes for

selected high priority system issues. Datacenter operators can apply SFS patches without

rebooting their system.

AMD works to identify the fixes included in each patch then distributes these patches in a

‘Seamless Firmware Servicing Update Package(s).’

Successfully deploying an SFS update package on a system can cause three distinct types of

version numbers to change:

a) The SFS Patch Level (SFSPL) identifies the SFS update package currently applied to the

system. An unpatched system has a value of zero. To prevent rollback, only SFS packages

with a SFSPL greater than the system's current value can deploy (i.e., the SFSPL must

monotonically increase). The SFSPL is the overall runtime patch level. The list of firmware

versions combined with the SFSPL uniquely identifies the AMD firmware running on a

system.

b) Individual firmware components maintain their own firmware and Security Patch Level

(SPL) versions. A newer SFS package will always advance the version, but the functionality

introduced in one patch may be reverted in a later patch, if needed.

c) SFS may execute run-once code to modify registers and internal SRAM data that exist

outside of a versioned 'firmware component.’ To track these changes, SFS uses the concept

of the System Patch Level (SYSPL). The SYSPL is the version number for a virtual

firmware component that consists of all run-once code executed by SFS since the last reboot.

SYSPL increases monotonically. While the effects of run-once code may be reverted, the

history of it executing is indelible.

All that information is available to SFS for it to ensure that any to-be-applied-update applies only

to the correct level of existing SOC firmware and operational state. That data is also available to

the host OS via an SFS command to get the version levels of the firmware (and SPL, SYSPL, and

SFSPL).

For security reasons, AMD cryptographically signs the entire SFS package. As an added feature,

customers can opt to co-sign the package. Co-signing enables customer approval of any SFS

packages deployed within their datacenters. This requires customers to send (during early boot) a

public key to the ASP to apply a patch.

Conceptually, an SFS update package delivers in the form shown below (Table 1). For additional

details, see Chapter 5.

Public

58604 Rev. 0.70 May 2024 Seamless Firmware Servicing (SFS) Specification

 11

SFS Operation

Optional SFS Co-Signing Header (Customer)

SFS Package Signing Header (AMD)

SFS Update Package Executable Binary

SFS Package Signature (AMD)

Optional SFS Package Signature (Customer)

Table 1. Patch Signing and General Layout

3.1 SFS Security / Threat Model

The AMD Security Processor (ASP) verifies AMD’s signatures on all AMD-owned boot firmware

that it retrieves from the ROM. The ASP acts as AMD’s root of trust for detection (see FIPS PUB

SP800-193, section 4.1) for all AMD signed firmware. SFS allows runtime updates to AMD

firmware, and SFS extends the ASP’s role as the root of trust for detection by requiring the ASP to

verify AMD’s signature before applying each SFS update package.

AMD’s policy has been that the system designer (OEM/ODM) owns the firmware root of trust for

update for all the firmware, not AMD (see FIPS PUB SP800-193 section 4.1 for the difference

between root of trust for detection vs update). Unless AMD-provided Platform Secured Boot

(PSB) solution is enabled, the system designer (OEM/ODM) is also responsible for root of trust

for detection of the system designer owned/signed/provided firmware.

When systems first begin executing OEM/ODM-provided x86 code (i.e., early BIOS code), that

code has full read/write access to the ROM’s firmware store. This early OEM/ODM trusted code

secures the system by enabling restrictions on ROM chip access. Enabling features such as AMD

ROM Armor ensures only the OEM/ODM-controlled SMM handler can write to the ROM chip.

Only after this lockdown does the OEM’s firmware allow untrusted third-party code to execute

(such as adapter card ROMs, disk-based boot loaders, and network PXE images). In later stages of

execution, OEM/ODM-provided logic then verifies updates before allowing the ROM to apply the

updates.

Since SFS offers a means to update running firmware, SFS provides the OEM/ODM the option to

co-sign update packages so the OEM/ODM can maintain their role as root of trust for update.

During the early boot phase, when the ROM is still in read/write mode, the OEM/ODM may

present their public signing key to SFS. Once presented, the ASP will require updates signed by

AMD and countersigned by the OEM/ODM’s signing key. Maintenance of customer co-signing

keys is the responsibility of the customer. AMD does not countersign the customer keys.

Note: If an attacker manages to subvert the early trusted code, such that they could replace the

co-signing key used, the attacker could easily use their escalated privileges to overwrite the

Public

58604 Rev. 0.70 May 2024 Seamless Firmware Servicing (SFS) Specification

 12

SFS Operation

baseline firmware components in the ROM, which negates any advantage to being able to co-sign

updates.

If AMD Platform Secure Boot (PSB) is enabled, the code that installs the SFS co-signature should

be part of the code protected by PSB.

3.2 SFS Behavior

Systems boot in an unpatched state, with a baseline firmware level (whatever signed AMD

firmware is running). At runtime, customers may choose to apply SFS patches.

3.2.1 Application of SFS Packages

Application of SFS packages must occur at run-time and needs to be reapplied after any system

reboot. SFS does not persist over reset. In multi-socket systems, the first sockets’ ASP receives the

patch communicated to it. Each patch determines if it is on a single or multi-socket system then

ensures the patch applies to the local socket correctly, and (as needed) to the additional sockets.

If there are multiple updates, application of the packages must occur sequentially and in numerical

order.

3.2.1.1 Enablement

BIOS developers enable SFS by compiling their BIOS with appropriate values for:

APCB_TOKEN_UID_PSP_SFS_ENABLE and

APCB_TOKEN_UID_PSP_SFS_COSIGN_REQUIRED.

Both options are off by default. Customers must opt-in and configure the BIOS to allow SFS and

if desired co-sign the update packages.

The security processor firmware consumes this information when authenticating whether to allow

application of the patch. The table below explains the combinations of these two flags.

SFS

enabled?

Co-signing

enabled?
Behavior

No N/A
SFS will not accept commands. BIOS will not accept a public

key.

Yes No
SFS will accept update packages and requires no customer co-

signature (SFS will refuse a co-signed package)

Yes Yes SFS will accept update packages and require co-signing

Table 2. SFS/Co-signing Flags

Public

58604 Rev. 0.70 May 2024 Seamless Firmware Servicing (SFS) Specification

13

SFS Operation

In early boot, it is a requirement that the customer BIOS pass their signing key to the ASP, if

setup. If both keys are enabled, the SFS package authenticates first against the customer key, and

then against the AMD SFS key. This allows customers to create a BIOS with a co-signing key that

runs against (for example) a test set of systems and then another one with a different co-signing

key that runs on production systems only. This separation prevents SFS update packages, used for

the test phase, from deploying on production systems.

Prior to OS start, the customer BIOS provides a public signing key by sending a message (below)

to the BIOS-PSP interface. The firmware verifies that the signature of an SFS update package

matches the customer in control of the machine during early boot.

3.2.1.2 SET_CUST_SFS_SIGNATURE

Signing requires the customer provide their public key (aka RSA public key) used for SFS

package verification during early boot, specifically during, or immediately after, setting up SMM

(prior to BOOT_DONE). The customer cannot update the signature after this stage.

The x86 should pass in a pointer to an MBOX_BUFFER_HEADER, defined as:

typedef struct

{

 UINT32 TotalSize; ///< Total Size of MBOX_BUFFER (including this field)

 UINT32 Status; //< Status value

} MBOX_BUFFER_HEADER;

The ReqBuffer follows immediately in memory behind the MBOX_BUFFER_HEADER as

defined below:

typedef struct OEM_CO_SIGN_KEY

{

 UINT32 KeySize; //!< Indicator of 2K or 4K key in bits.

//!< Struture which holds OEM Co sign key and its data

 UINT8 OemCoSignKey[SIZE_4K_OEM_CO_SIGN_KEY];

} OEM_CO_SIGN_KEY;

3.2.1.3 RSA_TOKEN_FORMAT

Customers define the OemCoSignKey using the RSA_TOKEN_FORMAT.

To co-sign an update package received from AMD, the customer generates an RSA key pair

(either 2048-bit or 4096-bit) and signs the package with private key using RSA-PSS signature

scheme (RSASSA_PKCS1_PSS_MGF1_SHA256 for a 2048-bit key, or

RSASSA_PKCS1_PSS_MGF1_SHA384 for a 4096-bit key).

Public

58604 Rev. 0.70 May 2024 Seamless Firmware Servicing (SFS) Specification

14

SFS Operation

Byte Offset Content Description

00h Version_ID Version for the key format structure. Set the version as one.

04h This_KEY_ID Customer-created key ID

14h Reserved Must be zero

24h Reserved Must be zero

28h Reserved Must be zero

37h Reserved Must be zero

38h EXP_SIZE Public exponent size

3Ch MOD_SIZE Modulus size in bits

40h EXP N = 256 or 512 bytes depending on public exponent size

40h + N MOD N = 256 or 512 bytes depending on modulus size

Table 3. RSA Token Format

3.2.2 Versioning

Each executable patch checks the existing System Patch Level and/or specific firmware version(s)

then determines if it is applicable to that existing patch/firmware level and the other firmware

running in the system.

3.2.3 Patchable Items

An update package can patch a register or other value, replace a complete firmware image in a

microprocessor, or update portions (e.g., drivers) of a firmware package.

3.2.3.1 SEV/SNP Update Note

AMD SFS automatically commits any SEV update which prevents rollback to previous images.

Reverting an SFS updated SEV firmware image requires a system reboot.

Additionally, if SNP is enabled, all pages used for the update package must be HV-FIXED pages

using the RMPUPDATE command. The command is issued by the driver/software sending the

package to the SFS interface.

3.2.4 Security and Attestation Note

For attestation requirements, the OS or system/platform management software should request

attestation data/evidence via appropriate interfaces & protocols (viz., side-band interface/SPDM or

in-band/DPE. SFS provides required measurements to the appropriate attestation data managers

for reporting via the above mechanisms.

Public

58604 Rev. 0.70 May 2024 Seamless Firmware Servicing (SFS) Specification

15

SFS Operation

Some attestation schemes prevent the update of certain firmware components of AMD-provided

firmware. AMD will not attempt to modify that firmware.

3.2.5 Resiliency

Each update package is responsible for ensuring that the proper versions of the firmware updated

and/or influenced by a patch exist on the system prior to beginning the update process. This

ensures the firmware in the system does not get out-of-sync if there are any inter-firmware

dependencies.

If any portion of a package cannot fully apply its updates, then application of the package should

not occur. Otherwise, the only choice may be to force a reset, which is an undesirable outcome.

System testing by AMD and the customer’s site will verify that a reset is not necessary.

Public

58604 Rev. 0.70 May 2024 Seamless Firmware Servicing (SFS) Specification

16

Boot Time Application Overview

Chapter 4 Boot Time Application Overview

Update packages are non-persistent across system reboots (warm or cold), so it is important to

define a mechanism to apply patches. Customers have the option to apply update patches as part of

OS boot, immediately after system boot, or at any time during system operation.

For example, the Linux OS places firmware updates in a location known to the OS, then loads the

firmware from that location during system boot. SFS update patches have version numbers and a

boot service (or driver install) and can apply patches sequentially by placing the update package

files in a location known to the file system.

See section 5.2.1 for information on package naming.

Public

58604 Rev. 0.70 May 2024 Seamless Firmware Servicing (SFS) Specification

17

Sending SFS Commands

Chapter 5 Sending SFS Commands

5.1 Issuing SFS Commands

Issuing SFS commands requires the following:

1. Memory alignment

a. The page used for the TEE_EXT_CMD_BUFFER must be at the start of a 2MB

aligned page that is 2MB in size.

b. For the GET_FW_VERSIONS command, the output page must follow the

TEE_EXT_CMD_BUFFER address + 4k.

c. For the UPDATE_FW command, the update package must start at the address of

the TEE_EXT_CMD_BUFFER + 4k. If the customer has co-signed the update

package, the customer co-signing header must start at TEE_EXT_CMD_BUFFER

+ 4k.

2. Customer-provided SFS Deployment Agent

a. Requirements

i. The TEE_EXT_CMD_BUFFER must be 2MB aligned.

b. Process

i. Create a TEE_EXT_CMD_BUFFER (see Table 4) in DRAM.

ii. Appends an SFS co-signing header in DRAM (see below for definition) if

co-signing.

iii. Appends the entire AMD provided update package.

iv. Appends the co-signing signature (if used) at the end of the AMD provided

update package.

v. Communicates to the primary ASP firmware the request for SFS by putting

an SFS command in the TEE mailbox interface and passing the physical

address of the SFS TEE_EXT_CMD_BUFFER in memory into additional

mailboxes (see section 5.1.5).

The process of applying an SFS update package follows the flow indicated below (Figure 2).

Public

58604 Rev. 0.70 May 2024 Seamless Firmware Servicing (SFS) Specification

18

Sending SFS Commands

Figure 2. SFS Update Flow

For a detailed verbal description of applying an SFS update package, see below (Figure 3).

Public

58604 Rev. 0.70 May 2024 Seamless Firmware Servicing (SFS) Specification

19

Sending SFS Commands

OS Driver
w/access to

TEE intf.

HW Registers C2PMSG_17-19

x86

Attach TEE cmd to the SFS package, pass buffer to ASP FW

DrvIntf

• Process TEE Cmd Header
• Block non-ASP access to the SFS package memory region
• Validate signature of SFS package
• Validate customer signature (optional)
• Validate AMD signature
• Decrypt Update Package
• Load patch executables from SFS package
• Transfer control to package
• Unload Update Package when done

Execute Update Package

• Execute SFS Update Package
• Report done to DrvIntf

Execute Update Package

ASP

TEE EXT Cmd Buffer – 4kb in size

SFS Update Package Executable Binary

Sfs Pkg signature (AMD)

Optional Sfs Pkg signature (Cust)

Sfs Pkg signing header (AMD)

Optional Sfs Co-signing header (Cust)

For Update Firmware command:
Aligned at a 2MB address

TEE EXT Cmd Buffer – 4kb in size

GET_FW_VERSIONS Output Buffer

For Get Firmware Version command:
Aligned at a 2MB address

Figure 3. Patch Application Process

5.1.1 TEE Extended Command Buffer (TEE_EXT_CMD_BUFFER)

The structure consists of a TEE_EXT_CMD padded to a 4k size; represented by the following

example:

typedef struct TEE_EXT_CMD_BUFFER

{

 TEE_EXT_CMD Command;

 // For alignment and future expansion

 TEE_UINT8 Reserved[TEE_EXT_CMD_MAX_SIZE - sizeof(TEE_EXT_CMD)];

} TEE_EXT_CMD_BUFFER;

Public

58604 Rev. 0.70 May 2024 Seamless Firmware Servicing (SFS) Specification

20

Sending SFS Commands

5.1.2 TEE Extended Command Structure (TEE_EXT_CMD)

This structure is as follows. For SFS, use the following structure for the

TEE_EXT_SUB_COMMAND.

typedef struct TEE_EXT_CMD

{

 TEE_EXT_CMD_HEADER Header;

 TEE_EXT_SUB_COMMAND ExtSubCmd;

} TEE_EXT_CMD;

5.1.3 TEE Extended Sub Command Header (TEE_EXT_SUB_COMMAND)

Byte Offset Bits Dir Name Description

00h 31:0 In TotalSize
Total Size of EXT_CMD_BUFFER (including

this header) in bytes

04h 31:0 In SubCmdId
See TEE SFS Sub-Command ID values below

(Table 5)

08h 31:0 Out Status Command Execution Status

0ch 31:0 Out EXT_STATUS
Extended Status (Please report these values to

AMD if Status != SFS_SUCCESS)

10h-19ch 31:0 - Reserved

Table 4. TEE Sub-Command Header

TEE also supports additional SFS-specific commands.

Command ID Value Command ID Name Description

1h TEE_SUB_CMD_SFS_GET_FW_VERSIONS

2h TEE_SUB_CMD_SFS_UPDATE

Table 5. TEE SFS Sub-Command ID Values

SFS reports the following statuses using a full 32-bit word value.

Status

Code
Name Description

00h SFS_SUCCESS Success – patch applied

01h Reserved

Public

58604 Rev. 0.70 May 2024 Seamless Firmware Servicing (SFS) Specification

21

Sending SFS Commands

Status

Code
Name Description

02h SFS_INVALID_TOTAL_SIZE Invalid TotalSize

03h Reserved

04h SFS_INVALID_PKG_SIZE Invalid Image size

05h SFS_DISABLED Patching not allowed

06h SFS_INVALID_CUSTOMER_SIGNATURE Invalid Customer Signature

07h SFS_INVALID_AMD_SIGNATURE Invalid AMD signature

08h SFS_INTERNAL_ERROR
Please report the extended status to

AMD.

09h
SFS_CUSTOMER_SIGNING_

NOT_ALLOWED
Customer signed but not allowed

0ah SFS_INVALID_BASE_PATCH_LEVEL
Invalid base patch level – Base FW

Version mismatch

0bh SFS_INVALID_CURRENT_PATCH_LEVEL
Invalid current SFS patch level –

current patch level mismatch

0ch SFS_INVALID_NEW_PATCH_LEVEL
Invalid new SFS patch level – less than

current patch level

0dh SFS_INVALID_SUBCOMMAND Invalid SFS subcommand

0eh SFS_PROTECTION_FAIL
Payload cannot be protected - possibly

not aligned on 2MB boundary.

0fh SFS_BUSY
Busy – SFS cannot update with this

package

10h SFS_FW_VERSION_MISMATCH
The uploaded FW is less than the

existing FW.

11h SFS_SYSTEM_VERSION_MISMATCH
The current SYS patch level and new

SYS patch level are not one apart.

12h SFS_SEV_STILL_INITIALIZED
SEV clients and SEV SHUTDOWN

need to have happened to update SEV.

Table 6. SFS Status Values

Public

58604 Rev. 0.70 May 2024 Seamless Firmware Servicing (SFS) Specification

22

Sending SFS Commands

5.1.4 Sending a Customer the Co-Signed Update Package

This consists of the optional customer co-signature header, followed by the mandatory AMD

signature, and the SFS update package itself. The required signatures follow - AMD (and

optionally the co-signature).

Byte Offset Name Description

00h Reserved1 Must be zero.

10h Cookie Required. Must be set to 5453_5543h

14h SizeFWSigned
Size of the package in bytes. This would be the entire

AMD update package.

18h to FCh Reserved2 Must be zero.

Table 7. Optional SFS Co-signing Header

5.1.5 Sending the SFS Command to the ASP

Simplified algorithm for sending this command (Table 8). Access to the ASP TEE registers is via

the ASP PCI driver.

1. Software needs to interrogate Bit 3 (SFS_ENABLED) of the ASP Feature Register

(MP0_C2PMSG63) to determine if SFS is enabled at all.

2. Client polls on Ready flag of Command/Status Register until set to 1.

3. Write the physical address of the SFS Command Header into the CmdRspBufAddr_Lo and

CmdRspBufAddr_Hi registers.

4. Write the TEE_IF_EXT_CMD_ID into the Command/Status Register[Command ID] field

and write zero to all other fields and update the Command/Status Register.

5. Loop on Ready flag of Command/Status Register while 0 (command in progress).

6. At this point, the Status field of the Reload Firmware Header is valid and combined with

the Status in the Command/Status Register, reflects the Reload operations’ status.

Register Name Bits Name Description

Command/Status

Register
31 Ready

Set by the target to indicate the mailbox

interface state

0 – Not ready to handle commands (or

handling previous command)

1 – Ready to handle next command

Public

58604 Rev. 0.70 May 2024 Seamless Firmware Servicing (SFS) Specification

 23

Sending SFS Commands

Register Name Bits Name Description

30:20 - reserved

19:16 Command ID 0x0E – TEE Extended Command

15:0 Status
Set by the ASP to indicate the execution

status of the last command

CmdRspBufAddr_Lo 31:0 Addr_Lo

Lower 32-bits of physical address of

Command/Response Buffer (TEE EXT CMD

Header)

CmdRspBufAddr_Hi 31:0 Addr_Hi

Upper 32-bits of physical address of

Command/Response Buffer (TEE EXT CMD

Header)

Table 8. ASP Register Definitions

Relative to the base address assigned by BIOS to the PSP device’s memory mapped I/O space,

Command/Status is register 17 (offset 68), CmdRspBufAddr_Lo is register 18 (offset 72), and

CmdRspBufAddr_Hi is register 19 (offset 76).

5.1.6 ASP Process of SFS

1. ASP checks that the DRAM address can be protected from x86 access.

2. ASP verifies the customer signature (if enabled and provided to ASP).

3. ASP verifies the AMD signature.

4. ASP loads and runs the executable patch.

5. ASP updates the current patch level information.

6. ASP returns the status to the software agent.

5.1.7 SFS Sub-Commands

SFS supports the following sub-commands.

5.1.7.1 TEE_SUB_CMD_SFS_GET_FW_VERSIONS

The ASP interface can provide the current level of base firmware for the ASP (and other

microprocessors) as well as the current patch level(s).

This command consists of two pages sent to the ASP interface. The first page is the

TEE_EXT_CMD_BUFFER which must be exactly one page (4096 bytes). The output data from

the command (also 4096 bytes) uses the second page.

Public

58604 Rev. 0.70 May 2024 Seamless Firmware Servicing (SFS) Specification

24

Sending SFS Commands

To check the firmware versions, the GET_SFS_VERSION_INFO command passes into the SFS

handler in the ASP as a subcommand in the SFS Command Header. The address values passed in

would point to a contiguous two-page area. The output buffer needs to initialize to C7h in every

byte. For SNP systems, the page needs to be an HV-FIXED page. On successful command

completion, that buffer contains the data as specified below (All reserved fields are zero).

Items not supported have a 0000_0000h value in the item’s field.

Note: Table 9 is subject to change.

Offset Bits Name Description

00h 31:0 SFS_API_VERSION The version of the API that this command supports

04h 31:0 CURRENT_PATCH_LVL The current SFS patch level as an integer (SFSPL)

08h 31:0 SYS_PATCH_LVL The current System Patch Level as an integer (SYSPL)

0Ch 31:0 NUM_SUPPORTED_FWS
Number of FW Versions captured out of MAX (MAX =

300)

10h-

E20h
31:0 FW_VERSION_INFO See below

E24h-

FFFh
31:0 Reserved

Table 9. GET_SFS_VERSION_INFO Entry

Each FW_VERSION_INFO entry is a triplet consisting of:

Offset Bits Name Description

00h 31:0 VERSION_TYPE The Enum of the version type (see Table 11)

04h 31:0 VERSION The version of the indicated VERSION_TYPE

08h 31:0 SEC_PATCH_LVL The current Security Patch Level (SPL) as an integer

Table 10. FW_VERSION_INFO Entry

Firmware Enums for VERSION_TYPE:

Note: Not all these items are currently SFS updatable.

Public

58604 Rev. 0.70 May 2024 Seamless Firmware Servicing (SFS) Specification

 25

Sending SFS Commands

FW_NAME
Enum

Value
Description

DRV_SYS_VERSION 001h ASP System Driver Version

DRV_SOC_VERSION 002h ASP SOC Driver Version

DRV_HAD_VERSION 003h ASP High Availability Driver (Debug) Version

DRV_BOOT_VERSION 004h ASP Boot Driver Version

DRV_INTF_VERSION 005h ASP Interface Driver Version

DRV_RAS_VERSION 006h ASP RAS Driver Version

DRV_SEV_VERSION 007h ASP SEV Driver Version

DRV_SPDM_VERSION 008h ASP SPDM Driver Version

DRV_IPKEYMGR_VERSION 009h ASP IP Key Manager Version

DRV_SFS_VERSION 00Ah SFS Driver Version

AGESA_BL_VERSION 100h AGESA Boot Loader Version

ASP_VERSION 101h ASP Secure OS Version

PMFW_VERSION 102h Power Management Firmware Version

TMPM_VERSION 103h Tiered Memory Page Migration Firmware Version

RESERVED 104h Reserved

MP5_VERSION 105h MP5 Firmware Version

MPIO_VERSION 106h MPIO Firmware Version

Table 11. Firmware Enums for VERSION_TYPE

5.1.7.2 TEE_SUB_CMD_SFS_UPDATE

This sub-command tells the ASP to load, verify, and execute the SFS package. The package does

not apply any updates until all parts of the update package complete validation as appropriate.

This command consists of a buffer the size of the TEE_EXT_CMD_BUFFER (1 page) followed

by the SFS Update Package sent to the ASP interface.

Public

58604 Rev. 0.70 May 2024 Seamless Firmware Servicing (SFS) Specification

 26

Sending SFS Commands

5.2 SFS Package Release

5.2.1 Patch Naming

SFS packages are binary objects that a customer maintains and aligns to AGESA releases.

Package names follow this example:

fam_<family>-<AGESA-Release>-SFS-<n>.pkg (e.g., fam_19h-1006-SFS-1.pkg)

where:

• <AGESA-Release> is AMD’s PI release number (e.g., 1002 or 1006).

• <n> is a monotonically increasing counting number (i.e., integer) starting at 1.

Public

58604 Rev. 0.70 May 2024 Seamless Firmware Servicing (SFS) Specification

27

Operational Considerations

Chapter 6 Operational Considerations

Update packages have a specific set of firmware and system patch level versions to which they

apply; therefore, any update package released must match the specific combination of firmware

running on a given system to apply the package.

The update process runs in parallel with x86 and DMA traffic. The goal of package design is that

updates have a minimal impact on system performance, at most requiring a brief quiescence of

certain activities. Optimally, updates require no quiescing from the OS perspective; therefore, any

updates, module, and micro-processor firmware replacements will look at worst like a small

slowdown in response – well within the latency windows of the AMD data fabric and customer

expectations.

There are very few SFS operations that would require quiescing OS operations or portions thereof.

One example of a more impactful update (but still not requiring a system restart) is that SEV or

SEV/ES virtual machines need to stop and then restart for an SEV firmware update. SEV/SNP

virtual machines are capable of continuing operation across an SFS update to the SEV firmware.

Public

	Chapter 1 Introduction
	1.1 Purpose and Audience
	1.2 Glossary

	Chapter 2 Background
	2.1 Motivation for SFS
	2.2 Scope of SFS Support
	2.3 SFS Flow
	2.4 Responsibilities

	Chapter 3 SFS Operation
	3.1 SFS Security / Threat Model
	3.2 SFS Behavior
	3.2.1 Application of SFS Packages
	3.2.1.1 Enablement
	3.2.1.2 SET_CUST_SFS_SIGNATURE
	3.2.1.3 RSA_TOKEN_FORMAT

	3.2.2 Versioning
	3.2.3 Patchable Items
	3.2.3.1 SEV/SNP Update Note

	3.2.4 Security and Attestation Note
	3.2.5 Resiliency

	Chapter 4 Boot Time Application Overview
	Chapter 5 Sending SFS Commands
	5.1 Issuing SFS Commands
	5.1.1 TEE Extended Command Buffer (TEE_EXT_CMD_BUFFER)
	5.1.2 TEE Extended Command Structure (TEE_EXT_CMD)
	5.1.3 TEE Extended Sub Command Header (TEE_EXT_SUB_COMMAND)
	5.1.4 Sending a Customer the Co-Signed Update Package
	5.1.5 Sending the SFS Command to the ASP
	5.1.6 ASP Process of SFS
	5.1.7 SFS Sub-Commands
	5.1.7.1 TEE_SUB_CMD_SFS_GET_FW_VERSIONS
	5.1.7.2 TEE_SUB_CMD_SFS_UPDATE

	5.2 SFS Package Release
	5.2.1 Patch Naming

	Chapter 6 Operational Considerations

