
White Paper | SPECULATION BEHAVIOR IN
AMD MICRO-ARCHITECTURES

 5.14.19

WHITE PAPER: SPECULATION BEHAVIOR IN AMD MICRO-ARCHITECTURES 2

INTRODUCTION
This document provides in depth descriptions of AMD CPU micro-architecture and how it handles speculative
execution in a variety of architectural scenarios. This document is referring to the latest Family 17h processors which
include AMD’s Ryzen™ and EPYC™ processors, unless otherwise specified. This document does necessarily describe
general micro-architectural principles that exist in all AMD microprocessors.

AMD’s processor architecture includes hardware protection checks that AMD believes help AMD processors not be
affected by many side-channel vulnerabilities. These checks happen in various speculation scenarios including during
TLB validation, architectural exception handling, loads and floating point operations.

TLB ARCHITECTURE
The x86 architecture uses virtual addressing and hierarchical page tables to map the virtual address to the physical
memory address used to reference caches and memory. This mapping allows privileged system software, whether
the operating system or a hypervisor, to isolate different software environments by only allowing certain areas of
the memory system to be accessed by each respective environment. This isolation is achieved by creating unique
page tables for each environment. These page tables are isolated by either marking the page tables as not-present
in the page table entry or using the protection attribute fields in the page table entry to restrict access.

For performance reasons, processors store a copy of these virtual to physical translations in a Translation Lookaside
Buffer (TLB). AMD processors store translations in the TLB with a valid bit and all the protection bits from the
page table which include user/supervisor, read/write bits along with other information. On each instruction that
uses virtual addresses to access memory, AMD processors access the TLB and use the valid bit and the protection
attributes to decide whether to access the caches. If the protection check fails, AMD processors operate as if the
memory address is invalid and no data is accessed from either the cache or memory. This occurs whether the
access is speculative or non-speculative. When the instruction becomes the oldest in the machine, a page fault
exception will occur. A validated address is required for AMD processors to access data from both the caches and
memory. The result is AMD processors are designed to not speculate into memory that is not valid in the current
virtual address memory range defined by the software defined page tables.

For AMD processors that support multiple hardware threads running on the same core (such as AMD processors
using simultaneous multithreading (SMT) or AMD Family 17h processors), the TLB entries are additionally tagged
with the thread ID of the thread that created that TLB entry. The TLB adds this thread bit into the validation
of the address such that TLB entries can only be used by the thread that created the TLB entry. A thread ID
mismatch on an access to the TLB is treated as a miss in the TLB such that no physical address is delivered to the
caches. The caches inside the processor all use physical addresses and therefore utilize the TLB thread tagging to
prevent access of data by an incorrect thread. Accesses from the load queue that may hit on the store queue also
require a TLB hit to validate both the load and the store address before the load can forward data to speculative
instructions. The load and store queues are also tagged per thread, which is designed to prevent any store-to-load
forwarding of data from the wrong thread.

WHITE PAPER: SPECULATION BEHAVIOR IN AMD MICRO-ARCHITECTURES 3

The above diagram shows how all major blocks are shared within the SMT architecture.

Most structures are competitively shared to improve performance which include the schedulers, register files and
caches. Some structures are competitively shared but tagged per thread including the Load Queue, TLBs, and the
Branch Predictor when Single Thread Indirect Branch Predictors (STIBP) is enabled. These tags help data created by
one thread from being consumed by another thread, even speculatively. Some structures are competitively shared,
but algorithms are used to maintain a good balance between the threads. Finally, certain structures are statically
partitioned whenever two threads are active, isolating each thread. This includes the micro-op queue, the retire
queue, and the store queue.

For AMD processors that support two cores in a compute unit (Family 15h), the shared structures are the same as
Family 17h except this family also statically partitioned the load queues, L1 data TLB, L1 data cache, integer physical
register files, integer schedulers, integer Address Generation Units (AGU), and integer Arithmetic Logic Units
(ALU).

Some AMD processors do not share resources inside the core but may share a last level cache (LLC).

SMT OVERVIEW
• All structures available

in 1T mode

• Front End Queues are round robin
with priority overrides

• Increased throughput from SMT

Competitively shared structures

Statically Partitioned

Competitively shared with Algorithmic Priority

Competitively shared and SMT Tagged

WHITE PAPER: SPECULATION BEHAVIOR IN AMD MICRO-ARCHITECTURES 4

70

ARCHITECTURAL EXCEPTION HANDLING
When exceptions happen within the processor this provides a window for speculation. The most common
exception in the processor is a page fault due to a memory reference that is either to an unmapped page or a page
that is being protected from access. AMD processors do not speculate on data from accesses that will result in
page faults. Therefore, AMD processors are designed not to forward data to other speculative operations when
the data is not allowed to be accessed by the current processor context.

In addition to page faults, there are many other types of exceptions in the processor. The processor supports
another mode of memory protection through the segmentation architecture. Segmentation uses segment
registers with access rights and address limits that can lead to Segment not present faults (#NP), Stack faults
(#SS), General Protection faults (#GP) faults, and Invalid-TSS faults (#TS). All these segmentations faults may
provide data to younger instructions which allows speculative execution and so segmentation is not recommended
to be used to prevent speculative execution. Segmentation with limits and access rights is only available in 32-bit
mode and does not exist architecturally in 64 bit mode in the x86 architecture. Modern operating systems do not
utilize the segmentation mechanism to restrict data access. Similarly, the BOUND instruction and the BOUND
exception (#BR) it generates are only available in 32 bit mode in the x86 architecture. The BOUND instruction in
the case that it generates an exception does not prevent younger instructions from speculatively using the data
pointer that was checked.

Some faults are detected as the processor is decoding the instruction. These include instruction breakpoints
(#DB), invalid opcode (#UD), instruction page fault (#PF) and device not available (#NM). These fault types do
not allow dispatch of the current instruction on which the fault is detected or any younger instruction. Some
instructions are only allowed in certain modes such as privileged instructions that can only be executed when the
CPL is zero. When the instruction is not allowed in the current mode a general protection violation occurs (#GP)
and the processor restricts speculative use of the data associated with the faulting instruction.

Some faults are unique to specific instructions. The divide by zero (#DE) fault is signaled on the integer divide
instructions. No data is forwarded to younger, dependent operations for speculative execution on this fault. The
overflow fault (#OF) is related to the INTO instruction. It does not prevent younger instructions from performing
speculative operation on the OF flag. The int3 breakpoint (#BP) is generated from the int3 instruction. This
instruction does not allow speculative dispatch or execution of the instructions immediately after it in its
sequential path.

The alignment check fault (#AC) is detected if alignment checking is enabled and the address is misaligned. This
fault does not prevent the data referenced from being delivered to younger instructions for speculative execution.

The Single Instruction, Multiple Data (SIMD) floating point exception (#XF) can be signaled for a multitude of
reasons but none of them prevent the data referenced from being delivered to younger instructions for speculative
execution.

The x87 floating point fault (#MF) mechanism is handled as a trap. The instruction that signals the fault (#MF)
still retires and subsequent integer instructions continue to execute and retire. When the processor reaches
the next floating point instruction that is error sensitive, it prevents speculative dispatch and execution of that
floating point instruction and the instructions after it and enters the (#MF) fault handler.

There are several flavors of debug traps (#DB) in the x86 architecture. These include address match breakpoints
on data addresses, single stepping with the trap flag, and single stepping taken branches with the trap flag. These
traps do not prevent speculative execution from occurring and the data address breakpoint does not prevent the
data referenced from being delivered to younger instructions for speculative execution.

WHITE PAPER: SPECULATION BEHAVIOR IN AMD MICRO-ARCHITECTURES 5

Here is a summarizing table:

VECTOR FAULT/TRAP TYPE
DESIGNED TO STOP

SPECULATIVE EXECUTION
SPECULATIVELY FORWARDS DATA TO YOUNGER

DEPENDENT INSTRUCTIONS

0 Divide by Zero(#DE) NO NO

1 Debug Trap(#DB) NO YES

1 Debug Instruction(#DB) YES N/A

3 INT3 Breakpoint(#BP) YES N/A

4 Overflow (#OF) NO YES

5 Bound(#BR) NO YES

6 Invalid Opcode(#UD) YES N/A

7 Device Not Available(#NM) YES N/A

8 Double Fault(#DF) NO YES

10 Invalid TSS(#TS) NO YES

11 Segment not Present(#NP) NO YES

12 Stack Fault(#SS) NO YES

13 General Protection Data Access(#GP) NO YES

13 General Protection Instruction Mode(#GP) NO NO

14 Page Fault(#PF) NO NO

16 X87 Floating-Point Pending(#MF) YES N/A

17 Alignment Check(#AC) NO YES

LOAD SPECULATION
As defined in the Architectural Programmer’s Manual, Volume 21, Section 7.4, all loads to cacheable memory that
have a valid translation from the TLB may speculatively bring lines into all caches in the memory hierarchy. AMD
processors employ multiple hardware memory “prefetchers” that try to predict what memory will be needed by
future instructions and brings those cache lines in to the processor’s cache hierarchy. The “prefetchers” will only
make accesses to memory for physical addresses that have already been validated by the TLB for this software
thread and that have a cacheable memory type.

Another mechanism some AMD processors use to improve performance of a load operation allows loads to bypass
older stores that do not yet have an address calculated. The load is allowed to access the cache and provide that
data to younger instructions for speculative execution. In this case, the valid load address passes through the TLB
and is determined to be valid for this context and to cacheable memory. When the store address is generated it
is checked against the load address of the instructions that already sent data speculatively. If they match, the
processor schedules the load again and provides the correct data to all the dependent instructions. This behavior
can be disabled architecturally on processors that support the speculative store bypass disable feature. For more
information on this feature, refer to the AMD document, AMD64 Speculative Store Bypass Disable.2

FLOATING POINT SPECULATION
To improve performance of some floating point routines, AMD processors may predict the value of the x87 floating
point control word (FCW) fields precision control (PC) and rounding control (RC) when a FLDCW instruction is
executed. A similar prediction is made for the SSE and AVX register MXCSR with the rounding control (RC),
flush to zero (FTX) and denormals as zero (DAZ) mode bits on a LDMXCSR instruction. In both cases, younger
instructions may speculatively calculate results with the wrong rounding or precision control. When the real value
of the FCW or MXCSR is known and does not match the predicted value, the processor will cause an internal
exception to flush the younger instructions and re-issue them with the correct mode. Software that is sensitive to
this type of speculation can place an LFENCE after the FLDCW or LDMXCSR instruction to restrict speculation.

CONCLUSION
In conclusion, AMD microprocessors have many micro-architectural mechanisms that allow for speculative
execution. For software that cannot use the natural isolation that the TLB provides to prevent speculative
execution into memory, AMD provides other software techniques to prevent speculative execution. These are
described in the Software techniques for Managing Speculation on AMD processors.3

AMD believes that our hardware paging architecture and protection checks help AMD processors not be affected
by many side-channel vulnerabilities, regardless of whether Simultaneous Multi-Threading (SMT) is enabled
or disabled.

ABOUT AMD
For 50 years AMD (NASDAQ: AMD) has driven innovation in high-performance computing, graphics and
visualization technologies—the building blocks for gaming, immersive platforms and the datacenter. Hundreds of
millions of consumers, leading Fortune 500 businesses and cutting-edge scientific research facilities around the
world rely on AMD technology daily to improve how they live, work and play. AMD employees around the world are
focused on building great products that push the boundaries of what is possible.

The information contained herein is for informational purposes only, and is subject to change without notice. While every precaution has been taken in the preparation of this document, it may contain technical
inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise correct this information. Advanced Micro Devices, Inc. makes no representations or warranties with respect
to the accuracy or completeness of the contents of this document, and assumes no liability of any kind, including the implied warranties of non-infringement, merchantability or fitness for particular purposes, with
respect to the operation or use of AMD hardware, software or other products described herein. No license, including implied or arising by estoppel, to any intellectual property rights is granted by this document. Terms
and limitations applicable to the purchase or use of AMD’s products are as set forth in a signed agreement between the parties or in AMD's Standard Terms and Conditions of Sale.

© 2019 Advanced Micro Devices, Inc. AMD, the AMD Arrow logo, Ryzen, EPYC, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this publication are for
identification purposes only and may be trademarks of their respective companies. PID# 1924930-A

AMD.com
1. https://www.amd.com/system/files/TechDocs/24593.pdf
2. https://developer.amd.com/wp-content/resources/124441_AMD64_SpeculativeStoreBypassDisable_Whitepaper_final.pdf
3. https://developer.amd.com/wp-content/resources/90343-B_SoftwareTechniquesforManagingSpeculation_WP_7-18Update_FNL.pdf

http://amd.com

