

SMC Calling Convention

Document number: ARM DEN 0028F

Release Quality: EAC0

Issue Number: 1.5

Confidentiality: Non-confidential

Date of Issue: April 2024

© Copyright Arm Limited 2013-2024. All rights reserved.

ARM DEN 0028 1.5 F Copyright © 2013 - 2024 Arm Limited or its affiliates. All rights reserved. Page ii
Non-Confidential

Contents

About this document vi

Release Information vi

Arm Non-Confidential Document License (“License”) vii

References ix

Terms and abbreviations x

Feedback xiii
Feedback on this book xiii

Inclusive terminology commitment xiii

1 Introduction 14

2 SMC and HVC calling conventions 14

2.1 Secure Monitor Calls 14

2.2 Hypervisor Calls 14

2.3 Fast Calls and Yielding Calls 15

2.4 32-bit and 64-bit conventions 15

2.5 Function Identifiers 15
2.5.1 Fast Calls 15
2.5.2 Yielding Calls 16
2.5.3 Conduits 16

2.6 SMC32/HVC32 argument passing 17

2.7 SMC64/HVC64 argument passing 17

2.8 SME, SVE, SIMD and floating-point registers 18

2.9 SMC and HVC immediate value 18

2.10 Client ID (optional) 19
2.10.1 SMC calls 19
2.10.2 HVC calls 19

2.11 Secure OS ID (optional) 19

2.12 Session ID (optional) 19

ARM DEN 0028 1.5 F Copyright © 2013 - 2024 Arm Limited or its affiliates. All rights reserved. Page iii
Non-Confidential

3 AArch64 SMC and HVC calling conventions 21

3.1 Register use in AArch64 SMC and HVC calls 21

4 AArch32 SMC and HVC calling convention 23

4.1 Register use in AArch32 SMC and HVC Calls 23

5 SMC and HVC results 24

5.1 Error codes 24

5.2 Unknown Function Identifier 24

5.3 Unique Identification format 24

5.4 Revision information format 25

6 Function Identifier Ranges 26

6.1 Allocation of values 27

6.2 General service queries 28

6.3 Implemented Standard Secure Service Calls 29

6.4 Implemented Standard Hypervisor Service Calls 30

7 Arm Architecture Calls 31

7.1 Return codes 31

7.2 SMCCC_VERSION 31
7.2.1 Usage 31
7.2.2 Discovery 31
7.2.3 Caller responsibilities 32
7.2.4 Implementation responsibilities 32

7.3 SMCCC_ARCH_FEATURES 32
7.3.1 Usage 32
7.3.2 Discovery 32
7.3.3 Parameters 32
7.3.4 Return 33
7.3.5 Caller responsibilities 33
7.3.6 Implementation responsibilities 33

7.4 SMCCC_ARCH_SOC_ID 33
7.4.1 Usage 34
7.4.2 Discovery 34

ARM DEN 0028 1.5 F Copyright © 2013 - 2024 Arm Limited or its affiliates. All rights reserved. Page iv
Non-Confidential

7.4.3 Parameters 34
7.4.4 Return 34
7.4.5 Caller responsibilities 34
7.4.6 Implementation responsibilities 34

7.5 SMCCC_ARCH_WORKAROUND_1 34
7.5.1 Usage 35
7.5.2 Discovery 35
7.5.3 Caller responsibilities 35
7.5.4 Implementation responsibilities 35

7.6 SMCCC_ARCH_WORKAROUND_2 36
7.6.1 Usage 36
7.6.2 Discovery 36
7.6.3 Caller responsibilities 37
7.6.4 Implementation responsibilities 37

7.7 SMCCC_ARCH_WORKAROUND_3 37
7.7.1 Usage 38
7.7.2 Discovery 38
7.7.3 Caller Responsibilities 38
7.7.4 Implementation responsibilities 39

7.8 SMCCC_ARCH_FEATURE_AVAILABILITY 39
7.8.1 Usage 41
7.8.2 Discovery 41
7.8.3 Caller responsibilities 42
7.8.4 Implementation responsibilities 42

8 Appendix A: Example implementation of Yielding Service calls 43

9 Appendix B: Discovery of Arm Architecture Service functions 44

Step 1: Determine if SMCCC_VERSION is implemented 44

Step 2: Determine if Arm Architecture Service function is implemented 44

10 Appendix C: SME, SVE, SIMD and FP live state preservation by the SMCCC implementation 46

10.1 SVE state 46

10.2 SME state 46
10.2.1 Streaming SVE processor state 46

10.3 Register list to be preserved 47

11 Appendix D: SMCCC deployment model 49

ARM DEN 0028 1.5 F Copyright © 2013 - 2024 Arm Limited or its affiliates. All rights reserved. Page v
Non-Confidential

11.1 SMCCC implementations and security states 49

12 Appendix E: Feature Discovery bitmask 49

13 Appendix F: Changelog 54

ARM DEN 0028 1.5 F Copyright © 2013 - 2024 Arm Limited or its affiliates. All rights reserved. Page vi
Non-Confidential

About this document

Release Information

The change history table lists the changes that have been made to this document.

Date Version Confidentiality Change

June 2013 A Non-Confidential First release

November 2016 B Non-Confidential HVC calling convention.

SMC calling convention clarifications and updates.

August 2020 C Non-Confidential Merge information contained in DEN 0070 (see [12.]).

Add guidelines for SVE register context management
and SoC ID Arm architecture call.

Allow R4—R7 (SMC32/HVC32) to be used as result
registers.

Allow X8—X17 to be used as parameter registers in
SMC64/HVC64.

Allow X4—X17 to be used as result registers in
SMC64/HVC64.

January 2021 D Non-confidential Add SVE absence of live state hint bit (FID[16]).

Minor text clarifications.

May 2022 E Non-confidential Add SME state management guidelines.

Update Standard Secure Service call list.

Add Standard Hypervisor Service call list.

Add SMCCC_ARCH_WORKAROUND_3 definition.
Add SMCCC deployment model description.

April 2024 1.5 F Non-Confidential Add Vendor Specific EL3 Monitor Service range.

Clarify that SMC/HVC callers from any Security state
are supported.
Clarify that the RMM restricts the services exposed to
Realms.
Rename “Secure Monitor” as “EL3 Monitor”.
Minor text clarifications.

Clarify that the term hypervisor refers to Non-secure
EL2 Software.

Add the SMCCC_ARCH_FEATURE_AVAILABILITY
interface.

ARM DEN 0028 1.5 F Copyright © 2013 - 2024 Arm Limited or its affiliates. All rights reserved. Page vii
Non-Confidential

SMC Calling Convention

Copyright ©2013-2024 Arm Limited or its affiliates. All rights reserved. The copyright statement reflects the fact
that some draft issues of this document have been released, to a limited circulation.

Arm Non-Confidential Document License (“License”)

This License is a legal agreement between you and Arm Limited (“Arm”) for the use of Arm’s intellectual property (including,
without limitation, any copyright) embodied in the document accompanying this License (“Document”). Arm licenses its
intellectual property in the Document to you on condition that you agree to the terms of this License. By using or copying the
Document you indicate that you agree to be bound by the terms of this License.

“Subsidiary” means any company the majority of whose voting shares is now or hereafter owner or controlled, directly or
indirectly, by you. A company shall be a Subsidiary only for the period during which such control exists.

This Document is NON-CONFIDENTIAL and any use by you and your Subsidiaries (“Licensee”) is subject to the terms of this
License between you and Arm.

Subject to the terms and conditions of this License, Arm hereby grants to Licensee under the intellectual property in the Document
owned or controlled by Arm, a non-exclusive, non-transferable, non-sub-licensable, royalty-free, worldwide License to:

(i) use and copy the Document for the purpose of designing and having designed products that comply with the Document;

(ii) manufacture and have manufactured products which have been created under the License granted in (i) above; and

(iii) sell, supply and distribute products which have been created under the License granted in (i) above.

Licensee hereby agrees that the Licenses granted above shall not extend to any portion or function of a product that is
not itself compliant with part of the Document.

Except as expressly licensed above, Licensee acquires no right, title or interest in any Arm technology or any intellectual property
embodied therein.

The content of this document is informational only. Any solutions presented herein are subject to changing conditions,
information, scope, and data. This document was produced using reasonable efforts based on information available as of the
date of issue of this document. The scope of information in this document may exceed that which Arm is required to provide,
and such additional information is merely intended to further assist the recipient and does not represent Arm’s view of the scope
of its obligations. You acknowledge and agree that you possess the necessary expertise in system security and functional safety
and that you shall be solely responsible for compliance with all legal, regulatory, safety and security related requirements
concerning your products, notwithstanding any information or support that may be provided by Arm herein. In addition, you are
responsible for any applications which are used in conjunction with any Arm technology described in this document, and to
minimize risks, adequate design and operating safeguards should be provided for by you.

Reference by Arm to any third party’s products or services within this document is not an express or implied approval or
endorsement of the use thereof.

THE DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS,
IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. Arm may make changes to the Document at any time and without notice. For the avoidance of doubt, Arm makes

ARM DEN 0028 1.5 F Copyright © 2013 - 2024 Arm Limited or its affiliates. All rights reserved. Page viii
Non-Confidential

no representation with respect to, and has undertaken no analysis to identify or understand the scope and content of, third party
patents, copyrights, trade secrets, or other rights.

NOTWITHSTANDING ANYTHING TO THE CONTRARY CONTAINED IN THIS LICENSE, TO THE FULLEST EXTENT
PERMITTED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, IN CONTRACT, TORT OR OTHERWISE,
IN CONNECTION WITH THE SUBJECT MATTER OF THIS LICENSE (INCLUDING WITHOUT LIMITATION) (I) LICENSEE’S
USE OF THE DOCUMENT; AND (II) THE IMPLEMENTATION OF THE DOCUMENT IN ANY PRODUCT CREATED BY
LICENSEE UNDER THIS LICENSE). THE EXISTENCE OF MORE THAN ONE CLAIM OR SUIT WILL NOT ENLARGE OR
EXTEND THE LIMIT. LICENSEE RELEASES ARM FROM ALL OBLIGATIONS, LIABILITY, CLAIMS OR DEMANDS IN
EXCESS OF THIS LIMITATION.

This License shall remain in force until terminated by Licensee or by Arm. Without prejudice to any of its other rights, if Licensee
is in breach of any of the terms and conditions of this License then Arm may terminate this License immediately upon giving
written notice to Licensee. Licensee may terminate this License at any time. Upon termination of this License by Licensee or by
Arm, Licensee shall stop using the Document and destroy all copies of the Document in its possession. Upon termination of this

License, all terms shall survive except for the License grants.

Any breach of this License by a Subsidiary shall entitle Arm to terminate this License as if you were the party in breach. Any
termination of this License shall be effective in respect of all Subsidiaries. Any rights granted to any Subsidiary hereunder shall
automatically terminate upon such Subsidiary ceasing to be a Subsidiary.

The Document consists solely of commercial items. Licensee shall be responsible for ensuring that any use, duplication or
disclosure of the Document complies fully with any relevant export laws and regulations to assure that the Document or any
portion thereof is not exported, directly or indirectly, in violation of such export laws.

 This License may be translated into other languages for convenience, and Licensee agrees that if there is any conflict between
the English version of this License and any translation, the terms of the English version of this License shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the
trademarks of their respective owners. No License, express, implied or otherwise, is granted to Licensee under this License, to
use the Arm trade marks in connection with the Document or any products based thereon. Visit Arm’s website at

https://www.arm.com/company/policies/trademarks for more information about Arm’s trademarks.

The validity, construction and performance of this License shall be governed by English Law.

Copyright © [2024] Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

Arm document reference: PRE-21585

version 5.0, March 2024

https://www.arm.com/company/policies/trademarks

ARM DEN 0028 1.5 F Copyright © 2013 - 2024 Arm Limited or its affiliates. All rights reserved. Page ix
Non-Confidential

References

This document refers to the following documents:

Ref Document Number Title

[1.] ARM DDI 0406 Arm® Architecture Reference Manual

Armv7-A and Armv7-R edition

[2.] ARM DDI 0487 Arm® Architecture Reference Manual, Armv8, for Armv8-A
architecture profile

[3.] ARM IHI 0042 Procedure Call Standard for the Arm 32-bit Architecture

[4.] ARM IHI 0055 Procedure Call Standard for the Arm 64-bit Architecture

[5.] ARM DEN 0022 Power State Coordination Interface

[6.] - RFC 4122 - A Universally Unique IDentifier (UUID) URN
Namespace
http://tools.ietf.org/html/rfc4122

[7.] - Arm Security Update
https://developer.arm.com/support/security-update

[8.] ARM_DEN 0054 Software Delegated Exception Interface (SDEI)

[9.] JEP106AZ Standard Manufacturer’s Identification Code

[10.] ARM DEN 0060 Arm Management Mode Interface Specification

[11.] ARM DDI 0584A Arm Architectural Reference Manual Supplement - The
Scalable Vector Extension (SVE), for Armv8-A

[12.] ARM DEN 0070 Firmware interfaces for mitigating cache speculation
vulnerabilities

[13.] - Cache Speculation Side-channels

https://developer.arm.com/support/arm-security-
updates/speculative-processor-vulnerability

[14.] ARM DEN 0091 SVE impact on Secure firmware

[15.] ARM DDI 0616 Arm® Architecture Reference Manual Supplement, The
Scalable Matrix Extension (SME), for Armv9-A

[16.] ARM DEN 0098 True Random Number Generator Firmware Interface

[17.] ARM DEN 0077 Firmware Framework for Armv8-A

[18.] ARM DEN 0057 Paravirtualized Time for Arm-based Systems

[19.] ARM DEN 0100 Errata Management Firmware Interface

[20.] - Trusted Firmware-A project
https://www.trustedfirmware.org/projects/tf-a/

http://tools.ietf.org/html/rfc4122
https://developer.arm.com/support/security-update
https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability
https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability
https://www.trustedfirmware.org/projects/tf-a/

ARM DEN 0028 1.5 F Copyright © 2013 - 2024 Arm Limited or its affiliates. All rights reserved. Page x
Non-Confidential

[21.] ARM DEN 0137 Realm Management Monitor specification

[22.] ARM DEN 0044 Arm® Base Boot Requirements

Terms and abbreviations

This document uses the following terms and abbreviations:

Term Meaning

AArch32 state The Arm 32-bit Execution state that uses 32-bit general purpose registers, and a
32-bit Program Counter (PC), Stack Pointer (SP), and Link Register (LR). AArch32
Execution state provides a choice of two instruction sets, A32 and T32, previously
called the Arm and Thumb instruction sets.

AArch64 state The Arm 64-bit Execution state that uses 64-bit general purpose registers, and a
64-bit program counter (PC), stack pointer (SP), and exception link registers (ELR).
AArch64 Execution state provides a single instruction set, A64.

ACPI The Advanced Configuration and Power Interface specification. This defines a
standard for device configuration and power management by an OS.

CPU A hardware implementation of the Arm Architecture.

EL1 Software The software running at EL1 in a particular Security state. If the Security state
implements EL2 [2.], then there may be multiple EL1 Software instances managed
by the EL2 Software in that Security state. Otherwise, the EL1 Software is managed
by the EL3 Monitor.

EL2 Software The software running at EL2 in a particular Security state. There is an EL2 Software
instance for every implemented Security state that has an EL2 Exception level. The
EL2 Software, in any Security state, is managed by the EL3 Monitor.

EL3 Monitor The EL3 Monitor is software that executes at the EL3 Exception level. The EL3
Monitor receives and handles Secure Monitor exceptions, and provides transitions
between distinct security states.

Execution context The PE that is state associated with a thread of execution, including register state,
exception level and security state. Usually an execution context is managed by
another execution context at a higher exception level or an exception level in the
Secure state. For example, firmware manages one or more system software
execution contexts. However, the managing and managed execution contexts may
reside at the same exception level and security state. For example, a runtime
environment manages one or more interpreted applications.

Firmware Software that provides platform specific services. Firmware typically operates at an
exception level higher than the operating system or Hypervisor which makes use of
the firmware services.

Function Identifier A 32-bit integer that identifies which function is being invoked by an SMC or HVC
call. Passed in R0 or W0 into every SMC or HVC call.

ARM DEN 0028 1.5 F Copyright © 2013 - 2024 Arm Limited or its affiliates. All rights reserved. Page xi
Non-Confidential

HVC Hypervisor Call, an Arm assembler instruction that causes an exception that is
taken synchronously into EL2.

Hypervisor The hypervisor runs at the EL2 Exception level, in the Non-secure Security state,
and supports the execution of multiple operating systems.

Non-secure state The Arm Execution state that restricts access to only the Non-secure system
resources, for example memory, peripherals, and System registers.

OEM Original Equipment Manufacturer. In this document, the final device
manufacturer.

OS Application operating system, for example Linux or Windows. This also includes a
virtualized OS running under a hypervisor.

PE Processing element. The abstract machine that is defined in the Arm architecture,
see [2.]

Rx Register; A32 native 32-bit register, A64 architectural register

Secure state The Arm Execution state that enables access to the Secure and Non-secure
systems resources, for example memory, peripherals, and System registers.

SiP Silicon Partner. In this document, the silicon manufacturer.

SMC Secure Monitor Call. An Arm assembler instruction that causes an exception that is
taken synchronously into EL3.

SMCCC SMC Calling Convention, this document.

SMCCC Implementation The firmware at a managing EL that handles the SMC or HVC calls, made from a
SMCCC Caller, in a manner that is compliant with this document. A SMCCC
implementation complies with a particular version of the SMCCC.

Managing EL The firmware in the more privileged EL that is immediate to the SMCCC Caller.

Note that in the case of a type 2 Hypervisor, both the Hypervisor and its guest may
be in the same EL. In that case, the term Managing EL, of these guests, refers to
the type 2 Hypervisor.

SMCCC Caller The entity that invokes a SMC or HVC call.

SMC32/HVC32 32-bit SMC and HVC calling convention

SMC64/HVC64 64-bit SMC and HVC calling convention

SoC System on Chip

Wx A64 32-bit register view

Xx A64 64-bit register view

Trusted OS The Secure operating system that is running in the Secure EL1 Exception level.
Trusted OS supports the execution of Trusted applications in Secure EL0.

ARM DEN 0028 1.5 F Copyright © 2013 - 2024 Arm Limited or its affiliates. All rights reserved. Page xii
Non-Confidential

Unknown Function
Identifier

A reserved return code defined by SMCCC that indicates that the function is not
implemented. The Unknown Function Identifier is declared as NOT_SUPPORTED in
the interface specification and takes the value -1.

ARM DEN 0028 1.5 F Copyright © 2013 - 2024 Arm Limited or its affiliates. All rights reserved. Page xiii
Non-Confidential

Feedback

Arm welcomes feedback on its documentation.

Feedback on this book

If you have any comments or suggestions for additions and improvements create a ticket at
https://support.developer.arm.com/. As part of the ticket include:

• The title (SMC Calling Convention)
• The number and issue (ARM DEN 0028 1.5 EAC0 F)
• The page numbers to which your comments apply
• The rule identifiers to which your comments apply, if applicable
• A concise explanation of your comments

Arm also welcomes general suggestions for additions and improvements.

Inclusive terminology commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used terms that can be
offensive. Arm strives to lead the industry and create change.

We believe that this document contains no offensive terms. If you find offensive terms in this document, please
contact terms@arm.com.

mailto:terms@arm.com

ARM DEN 0028 1.5 F Copyright © 2013 - 2024 Arm Limited or its affiliates. All rights reserved. Page 14
Non-Confidential

1 Introduction
This document defines a common calling mechanism to be used with the Secure Monitor Call (SMC) and Hypervisor
Call (HVC) instructions in both the Armv7, Armv8, and Armv9 architectures.

The SMC instruction is used to generate a synchronous exception that is handled by the EL3 Monitor, or trapped
and handled by EL2 Software. Arguments and return values are passed in registers. After being handled by the EL3
Monitor, calls that result from the instructions can be passed to a target software component that may reside in
a Security state [2.] distinct from the caller.

The HVC instruction is used to generate a synchronous exception that is handled by the EL2 Software.

Arguments and return values are passed in registers. EL2 Software can also trap SMC calls that are made by EL1
Software, which allows the calls to be emulated, passed through, or denied as appropriate.

Note: The HVC instruction is defined in [2.], it can be issued by a caller in any Security state and is handled by
the EL2 Software running in the same Security state as the caller.

Throughout this document the term hypervisor refers to the Non-Secure EL2 Software.

This specification aims to ease integration and reduce fragmentation between software layers running at different
Exception levels and Security states, for example operating systems, hypervisors, Trusted OSs, EL3 Monitors, and
system firmware in general.

The calling mechanism defined in this document applies to callers in all Arm A-profile Security states [2.] managed
by EL3 (i.e. Non-secure, Secure, Realm).

Note: This document is defined for the Armv8-A and Armv9-A Exception levels, EL0 to EL3 [2.].
The relationship between these Exception levels and the 32-bit Armv7 Exception levels is described in
[2.]

2 SMC and HVC calling conventions

2.1 Secure Monitor Calls

In the Arm architecture, control is synchronously transferred between a caller in one Security state [2.] and a
callee, in a potentially distinct Security state, through Secure Monitor Call (SMC) exceptions [1.][2.]. SMC
exceptions are generated by the SMC instruction [1.][2.], and are handled by the EL3 Monitor, or trapped and
handled by EL2 Software. The operation of the callee is determined by the parameters that are passed in
through registers.

2.2 Hypervisor Calls

Hypervisor Calls (HVCs) that are made by EL1 Software, in any Security state, result in a synchronous transfer of
control to EL2 Software, and are regarded as HVC exceptions. The operation of the callee is determined by the
parameters that are passed in through registers.

ARM DEN 0028 1.5 F Copyright © 2013 - 2024 Arm Limited or its affiliates. All rights reserved. Page 15
Non-Confidential

2.3 Fast Calls and Yielding Calls

Two types of calls are defined:

• Fast Calls execute atomic operations. The call appears to be atomic from the perspective of the calling
PE, and returns when the requested operation has completed

• Yielding Calls start operations that can be pre-empted by a Non-secure interrupt. The call can return
before the requested operation has completed. Appendix A: Example implementation of Yielding Service
calls provides an example of handling Yielding Calls.

2.4 32-bit and 64-bit conventions

For the SMC and HVC, two calling conventions instructions are defined:

• SMC32/HVC32: A 32-bit interface that can be used by either a 32-bit or a 64-bit client code, and passes
up to seven 32-bit arguments. Because only SMC32 and HVC32 calls are used for the identification of
Function Identifier ranges, the 32-bit calling convention is mandatory for all compliant systems, whether
they are 32-bit or 64-bit systems. For more information, see Section 6.2.

• SMC64/HVC64: A 64-bit interface that can be used only by 64-bit client code, and passes up to
seventeen 64-bit arguments. SMC64/HVC64 calls are expected to be the 64-bit equivalent to the 32-bit
call, where applicable.

2.5 Function Identifiers

The Function Identifier is passed on W0 on every SMC and HVC call. Its 32-bit integer value indicates which
function is being requested by the caller. It is always passed as the first argument to every SMC or HVC call in R0
or W0. The bit W0[31] determines if the call is Fast (W0[31]==1) or Yielding (W0[31]==0).

2.5.1 Fast Calls

In the Fast Call case (W0[31]==1), the bits W0[30:0] determine:

• The service to be invoked
• The function to be invoked
• The calling convention (32-bit or 64-bit) that is in use

Several bits within the 32-bit value have defined meanings valid for Fast Calls, as shown in Table 2-1.

Table 2-1 Bit usage within the SMC and HVC Function Identifier for Fast Call

Bit
Numbers

Bit Mask Description

31 0x80000000 Always set to 1 for Fast Calls.

30 0x40000000 If set to 0, the SMC32/HVC32 calling convention is used.

If set to 1, the SMC64/HVC64 calling convention is used.

29:24 0x3F000000 Service Call ranges. For more information, see Section 6.

Owning
Entity
Number

Bit Mask Description

ARM DEN 0028 1.5 F Copyright © 2013 - 2024 Arm Limited or its affiliates. All rights reserved. Page 16
Non-Confidential

0 0x00000000 Arm Architecture Calls

1 0x01000000 CPU Service Calls

2 0x02000000 SiP Service Calls

3 0x03000000 OEM Service Calls

4 0x04000000 Standard Secure
Service Calls

5 0x05000000 Standard Hypervisor
Service Calls

6 0x06000000 Vendor Specific
Hypervisor Service Calls

7 0x07000000 Vendor Specific EL3
Monitor Calls

8-47 0x08000000 – 0x2F000000 Reserved for future use

48-49 0x30000000 – 0x31000000 Trusted Application Calls

50-63 0x32000000 – 0x3F000000 Trusted OS Calls

23:17 0x00FE0000 Must be zero (MBZ), for all Fast Calls, when bit[31] == 1.

All other values are reserved for future use.

Note: Some Armv7 legacy Trusted OS Fast Call implementations have all bits
set to 1.

16 0x00010000 From SMCCCv1.3:

Hint bit denoting the absence of SVE specific live state.

If set to 1, the caller asserts that the registers P0-P15, FFR and the bits with
index greater than 127 in the Z0-Z31 registers do not contain any live state.

This bit is not part of the function identification. The SMCCC implementation
must disregard this bit and consider it to be 0 for the purpose of function
identification.

Before SMCCCv1.3:

Must be zero (MBZ)

15:0 0x0000FFFF Function number within the range call type that is defined by bits[29:24].

2.5.2 Yielding Calls

In the Yielding Call case (W0[31]==0), Trusted OS Yielding Calls are placed in the 0x02000000-0x1FFFFFFF range.
For more details on the Yielding Call Function ranges1, see Table 6-2.

2.5.3 Conduits

The mechanism or instruction that is used to perform a call is referred to as the conduit.

The conduit can be either an SMC or an HVC.

1 Arm recognizes that some TOS vendors use calls with FID in the 0x2000_0000—0x7FFF_FFFF range, calls in

this range should not be blocked by FW unless strictly needed

ARM DEN 0028 1.5 F Copyright © 2013 - 2024 Arm Limited or its affiliates. All rights reserved. Page 17
Non-Confidential

Table 2-2 describes which conduits are available, and how they depend on the Exception levels that are
implemented.

Table 2-2: Dependence of conduits on implemented Exception levels

EL3
Implemented

EL2
Implemented

Conduits Notes

Yes Yes SMC, HVC

Yes No SMC

No Yes HVC Only permitted on Armv8-A

No No N/A No conduit required

2.6 SMC32/HVC32 argument passing

When the SMC32/HVC32 convention is used, an SMC or HVC instruction takes a Function Identifier and up to
seven 32-bit register values as arguments, and returns the status and up to seven 32-bit register values.

When an SMC32/HVC32 call is made from AArch32:

• A Function Identifier is passed in register R0.
• Arguments are passed in registers R1-R7.
• Results are returned in R0-R7.
• The registers R4-R7 must be preserved unless they contain results, as specified in the function definition.
• Registers R8-R14 are saved by the function that is called, and must be preserved over the SMC or HVC

call.

When an SMC32/HVC32 call is made from AArch64:

• A Function Identifier is passed in register W0.
• Arguments are passed in registers W1-W7.
• Results are returned in W0-W7.
• Registers W4-W7 must be preserved unless they contain results, as specified in the function definition.
• Registers X8-X30 and stack pointers SP_EL0 and SP_ELx are saved by the function that is called, and must

be preserved over the SMC or HVC call.

Note: Unused result and scratch registers can leak information after an SMC or HVC call. An implementation
can mitigate this risk by either preserving the register state over the call, or returning a constant value,
such as zero, in each register.

Note: SMC32/HVC32 calls from AArch32 and AArch64 use the same physical registers for arguments and
results, since register names W0-W7 in AArch64 map to register names R0-R7 in AArch32.

2.7 SMC64/HVC64 argument passing

When the SMC64/HVC64 convention is used, the SMC or HVC instruction takes a Function Identifier, up to
seventeen 64-bit arguments in registers, and returns the status and up to seventeen 64-bit values in registers.

When an SMC64/HVC64 call is made from AArch64:

• A Function Identifier is passed in register W0.

ARM DEN 0028 1.5 F Copyright © 2013 - 2024 Arm Limited or its affiliates. All rights reserved. Page 18
Non-Confidential

• Arguments are passed in registers X1-X17.
• Results are returned in X0-X17.
• Registers X4-X17 must be preserved unless they contain results, as specified in the function definition.
• Registers X18-X30 and stack pointers SP_EL0 and SP_ELx are saved by the function that is called, and

must be preserved over the SMC or HVC call.

Note: The SMCCCv1.0 interface defines the return state of the X4—X17 registers to be unpredictable. If the
SMCCC version is 1.0, a caller must accommodate an unpredictable return on X4—X17.

This calling convention cannot be used by code executing in AArch32 state.

• Any SMC64/HVC64 call from AArch32 state receives the “Unknown Function Identifier” result, see
section 5.2.

Note: Unused result and scratch registers can leak information after an SMC or HVC call. An implementation
can mitigate against this risk by either preserving the register state over the call, or returning a constant
value, such as zero, in each register.

2.8 SME, SVE, SIMD and floating-point registers

SME, SVE, SIMD, and floating-point registers must not be used to pass arguments to or receive results from any
SMC or HVC call that complies with this specification.

If the calling context does not have live state in any SVE registers (P0-P15, FFR and the bits with index greater
than 127 in Z0-Z31), the caller can set the FID[16] bit, see Table 2-1.

The SMCCC implementation must ensure that the live state, belonging to the calling context, on all SME (ZA
array) [15.], SVE (Z0-Z31, P0-P15, FFR) [11.], Advanced SIMD and floating-point registers (V0-V31, FPCR, FPSR), is
preserved over all SMC and HVC calls.

The live state to be preserved, by the SMCCC implementation, depends on the architectural implemented
features (FEAT_SVE, FEAT_SVE2, FEAT_SME, FEAT_SME_FA64) and caller provided input (PSTATE.SM,
PSTATE.ZA, FID[16]). A detailed list of registers to be preserved is provided in Appendix C: SME, SVE, SIMD and FP
live state preservation.

If SME is implemented and the calling context does not have live state in any SME registers (ZA[0]-ZA[31]), the
caller should set PSTATE.ZA to 0 before invoking an SMC or HVC call.

Additionally, if FID[16] is 1, the SMCCC implementation must either preserve, or set to zero, the P0-P15 and FFR
registers, and the bits with index greater than 127 in the Z0-Z31 registers if these are architecturally accessible
from the context of the caller.

The SMCCC implementation is responsible for ensuring that information is not disclosed between execution
contexts through SME, SVE, SIMD, and floating-point registers.

Arm recommends that the SMCCC implementation adopts a design pattern, for SVE state preservation, from the
set of patterns that are described in [14.].

2.9 SMC and HVC immediate value

The SMC and HVC instructions encode an immediate value, as defined by the Arm architecture [1.][2.]. The size
of this immediate value, and mechanisms to access the value, differ between the Arm instruction sets. Also, it is
time-consuming for 32-bit EL3 Monitor code to access this immediate value.

ARM DEN 0028 1.5 F Copyright © 2013 - 2024 Arm Limited or its affiliates. All rights reserved. Page 19
Non-Confidential

Therefore:

• For all compliant calls, an SMC or HVC immediate value of zero must be used.
• Nonzero immediate values in SMC instructions are reserved.
• Nonzero immediate values in HVC instructions are designated for use by hypervisor vendors.

2.10 Client ID (optional)

Provisions have been made for Secure software to track and index client IDs.

2.10.1 SMC calls

If an implementation includes a hypervisor or similar supervisory software that executes at EL2, it might be
necessary to identify the client operating system from which the SMC call originated.

• A 16-bit client ID parameter is optionally defined for SMC calls.
• In AArch32, the client ID is passed in the R7 register. For more information, see Table 4-1.
• In AArch64, the client ID is passed in the W7 register. For more information, see Table 3-1.
• The client ID of 0x0000 is designated for SMC calls from the hypervisor itself.

The client ID is expected to be created within the hypervisor and used to register, reference, and de-register
client operating systems to a Trusted OS. It is not expected to correspond to the VMIDs used by the MMU.

If a client ID is implemented, all SMC calls that are generated by software executing at EL1 must be trapped by
the hypervisor. Identification information must be inserted into R7 or W7 register before forwarding any SMC
call on to the EL3 Monitor.

If no hypervisor is implemented, the Guest OS is not required to set the client ID value.

2.10.2 HVC calls

The Client ID is ignored by the HVC calling convention.

2.11 Secure OS ID (optional)

In the presence of multiple Secure operating systems at S-EL1, the caller must specify the Secure OS for which
the call is intended:

• An optional 16-bit Secure OS ID parameter can be defined for SMC calls.
• In AArch32, the Secure OS ID is passed in the R7 register. For more information, see Table 4-1.
• In AArch64 state, the Secure OS ID is passed in the W7 register. For more information, see Table 3-1.

2.12 Session ID (optional)

To support multiple sessions within a Trusted OS or hypervisor, it might be necessary to identify multiple
instances of the same SMC or HVC call:

• An optional 32-bit Session ID can be defined for SMC and HVC calls.
• In AArch32, the Session ID is passed in the R6 register, see Table 4-1.
• In AArch64, the Session ID is passed in the W6 register, see Table 3-1.

ARM DEN 0028 1.5 F Copyright © 2013 - 2024 Arm Limited or its affiliates. All rights reserved. Page 20
Non-Confidential

The Session ID is expected to be provided by the Trusted OS or hypervisor, and is used by its clients in
subsequent calls.

ARM DEN 0028 1.5 F Copyright © 2013 - 2024 Arm Limited or its affiliates. All rights reserved. Page 21
Non-Confidential

3 AArch64 SMC and HVC calling conventions
This specification defines common calling mechanisms for use with the SMC and HVC instructions from the
AArch64 state. These calling mechanisms are referred to as SMC32/HVC32 and SMC64/HVC64.

For Arm AArch64:

• All Trusted OS and EL3 Monitor implementations must conform to this specification.
• All hypervisors must implement the Standard Secure and Hypervisor Service calls.

3.1 Register use in AArch64 SMC and HVC calls

For the AArch64 calling conventions, usage of the architectural registers is defined in Table 3-1.

The working size of the register is identified by its name:

Xn All 64-bits are used.

Wn The least significant 32-bits are used, and the most significant 32-bits are zero. Implementations
must ignore the most significant bits.

Table 3-1 Register Usage in AArch64 SMC32, HVC32, SMC64, and HVC64 calls

Register Name Role during SMC or HVC call

SMC32/HVC32 SMC64/HVC64 Calling values Modified Return state

SP_ELx ELx stack pointer No

Register values are
preserved.

SP_EL0 EL0 stack pointer No

X30 The Link Register No

X29 The Frame Pointer No

X19…X28 Registers that are saved by the called
function

No

X18 The Platform Register No

X17 Parameter register

The second intra-procedure-call scratch
register

Dependent2

Registers values
are preserved or
contain call
results.

X16 Parameter register

The first intra-procedure-call scratch
register

Dependent2

X9…X15 Parameter registers

Temporary registers

Dependent2

X8 Parameter register

Indirect result location register

Dependent2

ARM DEN 0028 1.5 F Copyright © 2013 - 2024 Arm Limited or its affiliates. All rights reserved. Page 22
Non-Confidential

W7 X7

(or W7)

Parameter register

Optional Client ID in bits[15:0] (ignored
for HVC calls)

Optional Secure OS ID in bits[31:16]

Dependent2

W6 X6

(or W6)

Parameter register

Optional Session ID register

Dependent2

W4…W5 X4…X5 Parameter registers Dependent2

W1…W3 X1…X3 Parameter registers Yes SMC and HVC
result registers W0 W0 Function Identifier Yes

For more information, see [4.].

2 An SMC call or HVC call can return results in this register. Otherwise the call must preserve the value in the
register. Refer to the documentation for the defined behavior of each SMC or HVC call.

Note: on SMCCCv1.0 compliant implementations these are scratch registers.

ARM DEN 0028 1.5 F Copyright © 2013 - 2024 Arm Limited or its affiliates. All rights reserved. Page 23
Non-Confidential

4 AArch32 SMC and HVC calling convention
This specification defines a common calling mechanism for use with the SMC and HVC instructions from the
AArch32 state, which are referred to as SMC32/HVC32.

Note: Arm recognizes that some vendors already use a proprietary calling convention and are not able to meet
all the following requirements.

4.1 Register use in AArch32 SMC and HVC Calls

Table 4-1 Register usage in AArch32 SMC and HVC Calls

Register

SMC32/HVC32

Role during SMC or HVC call

Calling values Modified Return state

R15 The Program Counter Yes Next instruction

R14 The Link Register No

Unchanged

registers are saved or
restored.

R13 The stack pointer No

R12 The Intra-Procedure-call scratch register No

R11 Variable-register 8 No

R10 Variable-register 7 No

R9 Platform register No

R8 Variable-register 5 No

R7 Parameter register 7

Optional Client ID in bits[15:0]
(ignored for HVC calls)

Optional Secure OS ID in bits[31:16]

Dependent3

Register values are
preserved or contain call
results.

R6 Parameter register 6

Optional Session ID

Dependent3

R5 Parameter register 5 Dependent3

R4 Parameter register 4 Dependent3

R3 Parameter register 3 Yes

SMC and HVC results
registers

R2 Parameter register 2 Yes

R1 Parameter register 1 Yes

R0 Function Identifier Yes

For more information, see [3.].

All architecturally-banked registered must be preserved over AArch32 calls.

3 An SMC call or HVC call can return results in this register. Otherwise the call must preserve the value in the
register. Refer to the documentation for the defined behavior of each SMC or HVC call.

ARM DEN 0028 1.5 F Copyright © 2013 - 2024 Arm Limited or its affiliates. All rights reserved. Page 24
Non-Confidential

5 SMC and HVC results

5.1 Error codes

Errors codes that are returned in R0, W0 and X0 are signed integers of the appropriate size:

• In AArch32:
o When using the SMC32/HVC32 calling convention, error codes, which are returned in R0, are 32-

bit signed integers.
• In AArch64:

o When using the SMC64/HVC64 calling convention, error codes, which are returned in X0, are 64-
bit signed integers.

o When using the SMC32/HVC32 calling convention, error codes, which are returned in W0, are
32-bit signed integers. X0[63:32] is UNDEFINED.

5.2 Unknown Function Identifier

The Unknown SMC Function Identifier is a sign-extended value of (-1) that is returned in the R0, W0 or X0
registers. An implementation must return this error code when it receives:

• An SMC or HVC call with an unknown Function Identifier
• An SMC or HVC call for a removed Function Identifier
• An SMC64/HVC64 call from AArch32 state

Note: The Unknown Function Identifier must not be used to discover the presence of an SMC or HVC function,
or that lack of a function. Function Identifiers must be determined from the UID and Revision
information. For the Arm Architecture Call range, Function Identifiers can be determined using
SMCCC_ARCH_FEATURES as described in Section 7.3 and Appendix B: Discovery of Arm Architecture
Service functions.

5.3 Unique Identification format

This value identifies the implementer of a subrange (see 6.2) of the API, and therefore what controls the actions
of SMCs in that subrange.

The Unique Identification UID is a UUID as defined by RFC 4122 [6.]. These UUIDs must be generated by any
method that is defined by RFC 4122 [6.], and are 16-byte strings.

UIDs are returned as a single 128-bit value using the SMC32 calling convention. This value is mapped to
argument registers as shown in Table 5-1.

Table 5-1: UUID register mapping

Register Value

AArch32 AArch64

R0 W0 Bytes 0…3 with byte 0 in the low-order bits

R1 W1 Bytes 4…7 with byte 4 in the low-order bits

R2 W2 Bytes 8…11 with byte 8 in the low-order bits

ARM DEN 0028 1.5 F Copyright © 2013 - 2024 Arm Limited or its affiliates. All rights reserved. Page 25
Non-Confidential

R3 W3 Bytes 12…15 with byte 12 in the low-order bits

UIDs with the least significant 32 bits set to 0xFFFFFFFF must not be used, because they are indistinguishable

from Unknown Function Identifiers.

There can be many implementers of standard APIs. The API compatibility is determined by revision numbers.

5.4 Revision information format

The revision information for a subrange (see 6.2) is defined by a 32-bit major version and a 32-bit minor version.

Different major version values indicate a possible incompatibility between SMC and HVC APIs for the affected
SMC and HVC range.

For two revisions, A and B, where the major version values are identical, and the minor version value of revision
B is greater than the minor version value of revision A, every SMC and HVC instruction in the affected range that
works in revision A must also work in revision B, with a compatible effect.

When returned by a call, the major version is returned in R0 or W0 and the minor version is returned in R1 or
W1. Such an SMC or HVC instruction must use the SMC32 or HVC32 calling conventions.

The rules for interface updates are:

• A Function Identifier, when issued, must never be reused.
• Subsequent SMC or HVC calls must take a new unused Function Identifier.
• Calls to Function Identifiers that have been removed must return the Unknown Function Identifier value.
• Incompatible argument changes cannot be made to an existing SMC or HVC call. A new call is required.
• Major revision numbers must be incremented when:

o Any SMC or HVC call is removed.
• Minor revision numbers must be incremented when:

o Any SMC or HVC call is added.
o Backwards compatible changes are made to existing function arguments.

ARM DEN 0028 1.5 F Copyright © 2013 - 2024 Arm Limited or its affiliates. All rights reserved. Page 26
Non-Confidential

6 Function Identifier Ranges
Arm defines the SMC and HVC Fast Call services that are listed in Table 6-1.

Table 6-1: SMC and HVC Services

Service Owning
Entity
Number

Comment

Arm Architecture Service 0 Provides interfaces to generic services for the Arm
Architecture.

CPU Service 1 Provides interfaces to CPU implementation-specific services
for this platform, for example access to errata workarounds.

SiP Service 2 Provides interfaces to SoC implementation-specific services on
this platform, for example Secure platform initialization,
configuration, and some power control services.

OEM Service 3 Provides interfaces to OEM-specific services on this platform.

Standard Secure Service 4 Standard Service Calls for the management of the overall
system. By standardizing such calls, the job of implementing
operating systems on Arm is made easier.

Section 6.3 lists Secure Services that are already defined.

Standard Hypervisor Service 5 Standardized Hypervisor Service Calls allow for common
hypervisor discovery mechanism from any Guest OS.

Vendor Specific Hypervisor Service 6 Proprietary Hypervisor Service Calls.

Vendor Specific EL3 Monitor
Service

7 Calls defined by the vendor of the EL3 Monitor.

It is the responsibility of the vendor of the EL3 Monitor to
maintain this space and ensure FID uniqueness within its
codebase.

In cases where the EL3 Monitor software is derived from a

common codebase, for example the TF-A project [20.], that

project may choose to standardize some services in this range.

It is strongly recommended that the services in this range are
only called from software that is tightly integrated with the
SMCCC implementation. General purpose EL1 or EL2 software
should not call services in this range.

Trusted Applications 48—49

Trusted OS 50—63

The existing Arm Architecture Services are listed in Section 7. An example of a set of services residing in the
Standard Secure Services range is PSCI, defined in [5.].

ARM DEN 0028 1.5 F Copyright © 2013 - 2024 Arm Limited or its affiliates. All rights reserved. Page 27
Non-Confidential

6.1 Allocation of values

Table 6-2 shows the recommended allocation of Function Identifier value ranges for different entities and
purposes. The owner of a range is the entity that is responsible for that function in a specific SoC. Any subranges,
in the 0x0000_0000 – 0xFFFF_FFFF range, that are not covered by the table are reserved.

Table 6-2: Allocated subranges of Function Identifier to different services

SMC Function Identifier Service type

0x00000000-0x0100FFFF Reserved for existing APIs

This region is already in use by the existing Armv7 devices.

0x02000000-0x1FFFFFFF Trusted OS Yielding Calls

0x20000000-0x7FFFFFFF Reserved for future expansion of Trusted OS Yielding Calls4

0x80000000-0x8000FFFF SMC32: Arm Architecture Calls

0x81000000-0x8100FFFF SMC32: CPU Service Calls

0x82000000-0x8200FFFF SMC32: SiP Service Calls

0x83000000-0x8300FFFF SMC32: OEM Service Calls

0x84000000-0x8400FFFF SMC32: Standard Service Calls

0x85000000-0x8500FFFF SMC32: Standard Hypervisor Service Calls

0x86000000-0x8600FFFF SMC32: Vendor Specific Hypervisor Service Calls

0x87000000-0x8700FFFF SMC32: Vendor Specific EL3 Monitor Service Calls

0x88000000-0xAF00FFFF Reserved for future expansion

0xB0000000-0xB100FFFF SMC32: Trusted Application Calls

0xB2000000-0xBF00FFFF SMC32: Trusted OS Calls

0xC0000000-0xC000FFFF SMC64: Arm Architecture Calls

0xC1000000-0xC100FFFF SMC64: CPU Service Calls

0xC2000000-0xC200FFFF SMC64: SiP Service Calls

0xC3000000-0xC300FFFF SMC64: OEM Service Calls

0xC4000000-0xC400FFFF SMC64: Standard Service Calls

0xC5000000-0xC500FFFF SMC64: Standard Hypervisor Service Calls

0xC6000000-0xC600FFFF SMC64: Vendor Specific Hypervisor Service Calls

0xC7000000-0xC700FFFF SMC64: Vendor Specific EL3 Monitor Service Calls

0xC8000000-0xEF00FFFF Reserved for future expansion

0xF0000000-0xF100FFFF SMC64: Trusted Application Calls

0xF2000000-0xFF00FFFF SMC64: Trusted OS Calls

4 Arm recognizes that some TOS vendors use calls with FID in the 0x2000_0000—0x7FFF_FFFF range, calls in

this range should not be blocked by FW unless strictly needed.

ARM DEN 0028 1.5 F Copyright © 2013 - 2024 Arm Limited or its affiliates. All rights reserved. Page 28
Non-Confidential

6.2 General service queries

The following general queries are optional:

• Call Count Query5– Returns a 32-bit count of the available service calls. The count includes both 32 and
64 calling convention service calls and both Fast Calls and Yielding Calls.

• Call UID Query – Returns a unique identifier of the service provider, as specified in section 5.3.
• Revision Query – Returns revision details of the service implementor, as specified in section 5.4.

All queries listed in Table 6-3 are SMC32 or HVC32 Fast Calls.

When implemented, the general service queries must use the reserved function IDs that are defined in Table 6-3.
The reserved function IDs must only be used for the calls that are listed in Table 6-3.

If the service or the query is not implemented, general service queries must return the Unknown Function
Identifier error.

Table 6-3 Function Identifier values of general queries

Service Call Count Call UID Revision

Arm Architecture Service 0x8000_FF005 0x8000_FF015 0x8000_FF035

CPU Service 0x8100_FF005 0x8100_FF01 0x8100_FF03

SiP Service 0x8200_FF005 0x8200_FF01 0x8200_FF03

OEM Service 0x8300_FF005 0x8300_FF01 0x8300_FF03

Standard Secure Service 0x8400_FF005 0x8400_FF01 0x8400_FF03

Standard Hypervisor Service 0x8500_FF005 0x8500_FF01 0x8500_FF03

Vendor Specific Hypervisor Service 0x8600_FF005 0x8600_FF01 0x8600_FF03

Vendor Specific EL3 Monitor Service - 0x8700_FF01 0x8700_FF03

Trusted Applications6 - - -

Trusted OS 0xBF00_FF005 0xBF00_FF01 0xBF00_FF03

In addition to the values in the table above, the other Function Identifiers in the 0xXXXX_FF00 –

0xXXXX_FFFF range, for example 0x8000_FF02 and 0x8000_FF04-0x8000_FFFF for Arm Architecture

Service, are reserved for future expansion. The Call Count Query of all services, the Call UID Query and the
Revision Query from the Arm Architecture Service, are deprecated from SMCCC v1.2 onward.

5 Query deprecated from SMCCC v1.2 onward
6 It is the responsibility of a Trusted OS to identify and describe the services that are provided by Trusted
applications.

ARM DEN 0028 1.5 F Copyright © 2013 - 2024 Arm Limited or its affiliates. All rights reserved. Page 29
Non-Confidential

6.3 Implemented Standard Secure Service Calls

Arm defines a set of Standard Secure Service Calls for the management of the overall system. Standard calls are
intended to provide system management services to operating systems.

The following Function Identifier values are reserved for the following Standard Secure Service Calls:

Table 6-4: Reserved Standard Secure Service Call range

Function Identifier Reserved for Notes

0x8400_0000 - 0x8400_001F PSCI 32-bit calls

32-bit Power Secure Control Interface. For details of functions
and arguments, see [5.].

0xC400_0000 - 0xC400_001F PSCI 64-bit calls 64-bit Power Secure Control Interface. For details of functions
and arguments, see [5.].

0x8400_0020 - 0x8400_003F SDEI 32-bit calls 32-bit Software Delegated Exception Interface. For details of
functions and arguments, see [8.].

0xC400_0020 - 0xC400_003F SDEI 64-bit calls 64-bit Software Delegated Exception Interface. For details of
functions and arguments, see [8.].

0x8400_0040 - 0x8400_004F MM 32-bit calls 32-bit Management Mode. For details of functions and
arguments, see [10.].

0xC400_0040 - 0xC400_004F MM 64-bit calls 64-bit Management Mode. For details of functions and
arguments, see [10.].

0x8400_0050 - 0x8400_005F TRNG 32-bit calls 32-bit TRNG FW Interface. For details of functions and
arguments, see [16.]

0xC400_0050 - 0xC400_005F TRNG 64-bit calls 64-bit TRNG FW Interface. For details of functions and
arguments, see [16.]

0x8400_0060 - 0x8400_00EF FF-A 32-bit calls 32-bit PSA Firmware Framework A. For details of functions and
arguments, see [17.]

0xC400_0060 - 0xC400_00EF FF-A 64-bit calls 64-bit PSA Firmware Framework A. For details of functions and
arguments, see [17.]

0x8400_00F0 - 0x8400_010F Errata FW 32-bit
calls

32-bit Errata FW interface. For details of functions and
arguments, see [19.]

0xC400_00F0 - 0xC400_010F Errata FW 64-bit
calls

64-bit Errata FW interface. For details of functions and
arguments, see [19.]

0x8400_0150 - 0x8400_01CF CCA 32-bit calls 32-bit Arm CCA function ID range reservation.

0xC400_0150 - 0xC400_01CF CCA 64-bit calls 64-bit Arm CCA function ID range reservation.

Note: When a hypervisor traps SMC calls, it must be able to determine from the Standard Service identifiers which
SMC calls are for power control and similar operations, so that it can emulate these calls for its clients.
Sometimes the standards defining these service calls might allow use of HVC instead of SMC, either to
support platforms that do not implement EL3, or to allow more flexibility for the hypervisor implementation,
in which case the identifiers remain the same.

ARM DEN 0028 1.5 F Copyright © 2013 - 2024 Arm Limited or its affiliates. All rights reserved. Page 30
Non-Confidential

6.4 Implemented Standard Hypervisor Service Calls

Arm defines a set of Standard Hypervisor Service Calls for the management of the overall system. Standard calls
are intended to provide virtualization services to operating systems.

The following Function Identifier values are reserved for the following Standard Hypervisor Service Calls:

Table 6-5: Reserved Standard Hypervisor Service Call range

Function Identifier Reserved for Notes

0xC500_0020 - 0xC500_003F PV Time 64-bit calls 64-bit Paravirtualized Time for Arm-based
Systems. For details of functions and
arguments, see [18.].

ARM DEN 0028 1.5 F Copyright © 2013 - 2024 Arm Limited or its affiliates. All rights reserved. Page 31
Non-Confidential

7 Arm Architecture Calls

7.1 Return codes

Table 7-1 defines the possible values for the error codes that are used with the interface functions. The error
return type is signed integer. Zero and positive values denote success, and negative values indicate error.

Table 7-1 Return code and values

Name Description Value

SUCCESS The call completed successfully. 0

NOT_SUPPORTED The call is not supported by the
implementation.

-1

NOT_REQUIRED The call is deemed not required by
the implementation.

-2

INVALID_PARAMETER One of the call parameters has a
non-supported value.

-3

7.2 SMCCC_VERSION

Dependency MANDATORY from SMCCC v1.1

OPTIONAL for SMCCC v1.0

Description Retrieve the implemented version of the SMC Calling Convention

Parameters uint32 Function ID 0x8000 0000

Return int32 NOT_SUPPORTED Treat as v1.0

major:minor Bit[31] must be zero

Bits [30:16] Major version

Bits [15:0] Minor version

7.2.1 Usage

This call is used by system software to determine the version of SMCCC that is implemented. The version that is
implemented indicates the calling convention for AArch64 callers and the presence of the
SMCCC_ARCH_FEATURES function.

7.2.2 Discovery

This function was not defined in SMCCC version 1.0, and might not be safe on all platforms. Calling software can
detect the implementation of this function by one of the following methods:

• Built-in knowledge of the firmware implementation
• Discovery via PSCI_FEATURES with the psci_func_id parameter set to 0x8000 0000. For more

information, see [5.].
• Information from firmware tables like the Flattened Device Tree table or ACPI tables.

See Appendix B: Discovery of Arm Architecture Service functions for a description of the full discovery sequence.

ARM DEN 0028 1.5 F Copyright © 2013 - 2024 Arm Limited or its affiliates. All rights reserved. Page 32
Non-Confidential

If SMCCC_VERSION is implemented, calling SMCCC_ARCH_FEATURES with arch_func_id equal to 0x8000 0000
will return SUCCESS.

7.2.3 Caller responsibilities

Before calling this function, Arm recommends that the caller determines whether it is safe to do so on the
platform. This is because some firmware implementations do not implement this function safely. See Appendix
B: Discovery of Arm Architecture Service functions for the recommended discovery protocol.

The caller must interpret a NOT_SUPPORTED response as indicating the presence of firmware that implements
SMCCC v1.0.

7.2.4 Implementation responsibilities

For the values that must be returned by this call, see Table 13-1 in Appendix F: Changelog.

7.3 SMCCC_ARCH_FEATURES

Dependency MANDATORY from SMCCC v1.1

OPTIONAL for SMCCC v1.0

Description Determine the availability and capability of Arm Architecture Service functions

Parameters uint32 Function ID 0x8000 0001

uint32 arch_func_id Function ID of an Arm Architecture Service Function

Return int32 < 0 Function not implemented or arch_func_id not in
Arm Architecture Service range. The reason is
indicated by an error code specific to the function.

SUCCESS Function implemented.

> 0 Optional

Function implemented. Function capabilities are
indicated using feature flags specific to the function.

7.3.1 Usage

This call is used by system software to determine whether a specific Arm Architecture Service function is
implemented in the firmware. This function might also provide information about the capabilities of the
function.

7.3.2 Discovery

The implementation of this function can be detected by checking the SMCCC version. This function is mandatory
if SMCCC_VERSION indicates that version 1.1 or later is implemented.

See Appendix B: Discovery of Arm Architecture Service functions for the full discovery sequence.

If SMCCC_ARCH_FEATURES is implemented, calling SMCCC_ARCH_FEATURES with arch_func_id equal to
0x8000 0001 will return SUCCESS.

7.3.3 Parameters

The arch_func_id parameter is the Function ID in:

• the Arm Architecture Service range: 0x8000 0000-0x8000 FFFF and 0xC000 0000-0xC000 FFFF.

ARM DEN 0028 1.5 F Copyright © 2013 - 2024 Arm Limited or its affiliates. All rights reserved. Page 33
Non-Confidential

• the Standard Hypervisor Service range: 0x8500_0000-0x8500_FFFF and 0xC500_0000-0xC500_FFFF.

 Any arch_func_id values outside of these ranges are invalid.

7.3.4 Return

If the result is non-negative it indicates that the return function is implemented.

Some functions provide information about their capabilities in the result.

A description of how to interpret the result of calling SMCCC_ARCH_FEATURES is provided in the Discovery
section of the documentation for each function.

7.3.5 Caller responsibilities

The caller must only call SMCCC_ARCH_FEATURES on implementations that are compliant with SMCCC version
1.1 or later.

7.3.6 Implementation responsibilities

This function must return SUCCESS when arch_func_id is the SMCCC_VERSION or SMCCC_ARCH_FEATURES
function id.

7.4 SMCCC_ARCH_SOC_ID

Dependency OPTIONAL from SMCCC v1.0

Description Obtain a SiP defined SoC identification value

Parameters uint32 Function ID 0x8000 0002

uint32 SoC_ID_type 0: SoC version

1: SoC revision

2 – 0xFFFF FFFF: Reserved

Return int32 INVALID_PARAMETER

> 0 SoC_ID_type == 0

JEP-106 code for the SiP

Bit[31] must be zero

Bits [30:24] JEP-106 bank index for

the SiP (see [9.])7

Bits [23:16] JEP-106 identification
code with parity bit for the SiP (see
[9.])7

Bits [15:0] Implementation defined
SoC ID

SoC_ID_type == 1

7 As an example, the value of JEP-106 manufacturer code in Arm’s case is:

Bits[30:24] = 0x04 (the bank index is equal to the for continuation code bank number -1)
Bits [23:16] = 0x3B

ARM DEN 0028 1.5 F Copyright © 2013 - 2024 Arm Limited or its affiliates. All rights reserved. Page 34
Non-Confidential

Bit[31] must be zero

Bits [30:0] SoC revision

7.4.1 Usage

This call is used by system software to obtain the SiP defined SoC identification details.

7.4.2 Discovery

The implementation of this function can be detected by calling SMCCC_ARCH_FEATURES (see 7.3) with
arch_func_id equal to 0x8000 0002. The result of that call should be interpreted as follows:

NOT_SUPPORTED Function is not implemented

0 Function is implemented

7.4.3 Parameters

The SoC_ID_type parameter value identifies the type of SoC identification that the function returns. The valid
values for the SoC_ID_type parameter are:

• 0: SoC version: Function returns the SiP defined SoC version.
• 1: SoC revision: Function returns the SiP defined SoC revision.

Any other SoC_ID_type parameter value is invalid.

7.4.4 Return

If the call returns NOT_SUPPORTED the function is not present in the SMCCC implementation. If the call returns
INVALID_PARAMETER, the SoC_ID_type parameter is outside of the {0,1} set.

On success the return value is a positive quantity which represents:

• SoC version, if SoC_ID_type == 0
• SoC revision, if SoC_ID_type == 1

7.4.5 Caller responsibilities

The caller must not call this function unless it has determined that it is implemented in the firmware, see Section
7.4.2.

7.4.6 Implementation responsibilities

 If implemented, the firmware must provide discovery of this function as defined in the Section 7.4.2.

7.5 SMCCC_ARCH_WORKAROUND_1

Dependency OPTIONAL from SMCCC v1.1

NOT SUPPORTED in SMCCC v1.0

Description Execute the mitigation for CVE-2017-5715 on the calling PE

Parameters uint32 Function ID 0x8000 8000

Return void This function has no return value.

ARM DEN 0028 1.5 F Copyright © 2013 - 2024 Arm Limited or its affiliates. All rights reserved. Page 35
Non-Confidential

7.5.1 Usage

This call is used by system software to execute a firmware workaround that is required to mitigate CVE-2017-
5715.

7.5.2 Discovery

The implementation of this function can be detected by calling SMCCC_ARCH_FEATURES, as described in Section
7.3, with arch_func_id equal to 0x8000 8000. The result of that call should be interpreted as:

NOT_SUPPORTED The discovery call will return NOT_SUPPORTED on every PE in the system.

SMCCC_ARCH_WORKAROUND_1 must not be invoked on any PE in the system.

Either:

None of the PEs in the system require firmware mitigation for CVE-2017-5715.

The system contains at least 1 PE affected by CVE-2017-5715 that has no firmware
mitigation available.

The firmware does not provide any information about whether firmware mitigation is
required.

0 SMCCC_ARCH_WORKAROUND_1 can be invoked safely on all PEs in the system.

The PE on which SMCCC_ARCH_FEATURES is called requires firmware mitigation for CVE-
2017-5715.

1 SMCCC_ARCH_WORKAROUND_1 can be invoked safely on all PEs in the system.

The PE on which SMCCC_ARCH_FEATURES is called does not require firmware mitigation
for CVE-2017-5715. This result does not imply that the calling PE is unaffected by CVE-
2017-5715.

7.5.3 Caller responsibilities

The caller must not call this function unless it has determined that it is implemented in the firmware, see Section
7.5.2.

Arm recommends that the caller only call this function on PEs that are affected by CVE-2017-5715 when a
firmware-based mitigation is required and a local workaround is infeasible. Calling this on other PEs is wasted
execution.

For more information, see [7.] and [13.].

7.5.4 Implementation responsibilities

This function must not be provided in firmware implementations that are not compliant with SMCCC version 1.1
or later.

If implemented, the firmware must provide discovery of this function as defined in the Section 7.5.2.

Arm recommends that firmware does not provide an implementation of this function on systems that return a
negative error code in the discovery call above.

If implemented, the firmware must fully implement this function for all PEs in the system that require firmware
mitigation for CVE-2017-5715.

In heterogeneous systems with some PEs that require mitigation and others that do not, the firmware must
provide a safe implementation of this function on all PEs. This allows callers to call the function on all PEs in a
system where the firmware implements the workaround, without risking functional stability. In such systems, on

ARM DEN 0028 1.5 F Copyright © 2013 - 2024 Arm Limited or its affiliates. All rights reserved. Page 36
Non-Confidential

PEs that do not require firmware mitigation, the firmware must provide an implementation that has no effect.
For more information, see [7.] and [13.].

7.6 SMCCC_ARCH_WORKAROUND_2

Dependency OPTIONAL from SMCCC v1.1

NOT SUPPORTED in SMCCC v1.0

Description Enable or disable the mitigation for CVE-2018-3639 on the calling PE

Parameters uint32 Function ID 0x8000 7FFF

uint32 enable A non-zero value indicates that the mitigation for CVE-2018-3639
must be enabled. A value of zero indicates that it must be disabled.

Return Void This function has no return value.

7.6.1 Usage

This call is used by system software to enable or disable a firmware workaround that is required to mitigate CVE-
2018-3639. The call only affects the mitigation state (enabled or disabled) for the calling execution context. The
workaround is enabled by default for all execution contexts that are managed by the firmware. Once the
workaround is disabled, it remains disabled until explicitly re-enabled by a subsequent call to this function.

7.6.2 Discovery

The implementation of this function can be detected by calling SMCCC_ARCH_FEATURES, as described in Section
7.3, with arch_func_id equal to 0x8000 7FFF. The result of that call should be interpreted as:

NOT_SUPPORTED The discovery call will return NOT_SUPPORTED on every PE in the system.

SMCCC_ARCH_WORKAROUND_2 must not be invoked on any PE in the system.

Either:

The system contains at least one PE affected by CVE-2018-3639 that has no firmware
mitigation available, or

The firmware does not provide any information about whether firmware mitigation is
required or enabled.

NOT_REQUIRED The discovery call will return NOT_REQUIRED on every PE in the system.

SMCCC_ARCH_WORKAROUND_2 must not be invoked on any PE in the system.

For all PEs in the system, firmware mitigation for CVE-2018-3639 is either permanently
enabled or not required.

0 SMCCC_ARCH_WORKAROUND_2 can be invoked safely on all PEs in the system.

The PE on which SMCCC_ARCH_FEATURES is called requires dynamic firmware mitigation
for CVE-2018-3639 using SMCCC_ARCH_WORKAROUND_2.

1 SMCCC_ARCH_WORKAROUND_2 can be invoked safely on all PEs in the system.

The PE on which SMCCC_ARCH_FEATURES is called does not require dynamic firmware
mitigation for CVE-2018-3639 using SMCCC_ARCH_WORKAROUND_2.

This result does not imply that the calling PE is unaffected by CVE-2018-3639.

ARM DEN 0028 1.5 F Copyright © 2013 - 2024 Arm Limited or its affiliates. All rights reserved. Page 37
Non-Confidential

7.6.3 Caller responsibilities

The caller must not call this function unless it has determined that this function is implemented in the firmware,
see 7.6.2.

Arm recommends that the caller only call this on PEs that are affected by CVE-2018-3639 when a dynamic
firmware-based mitigation is required, and a local workaround is infeasible. Calling this on other PEs is wasted
execution.

Arm recommends that Secure world software does not use this call so that it always remains protected.

For more information, see the [7.] and [13.].

7.6.4 Implementation responsibilities

This function must not be provided in firmware implementations that are not compliant with SMCCC version 1.1
or later.

If implemented, the firmware must provide discovery of this function as defined in the Discovery section above.

Arm recommends that firmware does not provide an implementation of this function on systems that return a
negative error code in the discovery call above.

If implemented, the firmware must fully implement this function for all PEs in the system that require dynamic
firmware mitigation for CVE-2018-3639.

In heterogeneous systems with some PEs that require dynamic firmware mitigation and others that do not, the
firmware must provide a safe implementation of this function on all PEs. This permits callers to call the function
on all PEs in a system where the firmware implements the workaround, without risking functional stability. In
such systems, on PEs that do not require dynamic firmware mitigation, the firmware must provide an
implementation that has no effect.

If implemented, the firmware must separately maintain the logical mitigation state (enabled or disabled) for
each execution context that it manages. The default mitigation state (enabled) must be applied:

• To the primary PE following cold boot
• To a PE when it starts up following a CPU_ON call, as defined by the PSCI specification [5.]
• To a PE when it wakes up from a powerdown state (for example, following a CPU_SUSPEND call), as

defined by the PSCI specification [5.]

If implemented, Arm recommends that the firmware enables mitigation during its own execution.

If the firmware implements this function and the Software Delegated Exception Interface (SDEI) specification
[8.], then the firmware must apply the default mitigation state (enabled) to the execution context of each SDEI
client handler following each triggered event, irrespective of the mitigation state of the interrupted or client
execution contexts. The firmware must restore the mitigation state of the interrupted or client execution
context following a call to SDEI_EVENT_COMPLETE or SDEI_EVENT_COMPLETE_AND_RESUME respectively.

For more information, see [7.] and [13.].

7.7 SMCCC_ARCH_WORKAROUND_3

Dependency OPTIONAL from SMCCC v1.1

ARM DEN 0028 1.5 F Copyright © 2013 - 2024 Arm Limited or its affiliates. All rights reserved. Page 38
Non-Confidential

NOT SUPPORTED in SMCCC v1.0

Description Execute the mitigation for CVE-2017-5715 and CVE-2022-23960 on the calling PE

Parameters uint32 Function ID 0x8000 3FFF

Return void This function has no return value.

7.7.1 Usage

This call is used by system software to execute a firmware workaround that is required to mitigate CVE-2017-
5715 and CVE-2022-23960.

7.7.2 Discovery

The implementation of this function can be detected by calling SMCCC_ARCH_FEATURES, as described in Section
7.3, with arch_func_id equal to 0x8000 3FFF. The result of that call should be interpreted as:

NOT_SUPPORTED The discovery call will return NOT_SUPPORTED on every PE in the system.

SMCCC_ARCH_WORKAROUND_3 must not be invoked on any PE in the system.

Either:

None of the PEs in the system require firmware mitigation for CVE-2017-5715 or CVE-
2022-23960.

The system contains at least 1 PE affected by CVE-2017-5715 or CVE-2022-23960 that has
no firmware mitigation available.

The firmware does not provide any information about whether firmware mitigation is
required.

0 SMCCC_ARCH_WORKAROUND_3 can be invoked safely on all PEs in the system.

The PE on which SMCCC_ARCH_FEATURES is called requires firmware mitigation for CVE-
2017-5715 or CVE-2022-23960.

1 SMCCC_ARCH_WORKAROUND_3 can be invoked safely on all PEs in the system.

The PE on which SMCCC_ARCH_FEATURES is called does not require firmware mitigation
for CVE-2017-5715 or CVE-2022-23960. This result does not imply that the PE is
unaffected by CVE-2017-5715 or CVE-2022-23960.

7.7.3 Caller Responsibilities

The caller must not call this function unless it has determined that it is implemented in the firmware, see Section
7.7.2.

Arm recommends that the caller only call this function on PEs that are affected by CVE-2017-5715 or CVE-2022-
23960 when a firmware-based mitigation is required and a local workaround is infeasible. Calling this on other
PEs is wasted execution. For more information, see [7.] and [13.].

Note: CVE-2022-23960 extends CVE-2017-5715 -- it is natural for a workaround that mitigates CVE-2022-23960
to also mitigate CVE-2017-5715. Any SMCCC_ARCH_WORKAROUND_3 implementation mitigates both.

ARM DEN 0028 1.5 F Copyright © 2013 - 2024 Arm Limited or its affiliates. All rights reserved. Page 39
Non-Confidential

7.7.4 Implementation responsibilities

This function must not be provided in firmware implementations that are not compliant with SMCCC version 1.1
or later.

If implemented, the firmware must provide discovery of this function as defined in the Section 7.5.2.

Arm recommends that firmware does not provide an implementation of this function on systems that return a
negative error code in the discovery call above.

If implemented, the firmware must fully implement this function for all PEs in the system that require firmware
mitigation for CVE-2017-5715 or CVE-2022-23960. If the PE is affected by both CVE-2017-5715 and CVE-2022-
23960, the SMCCC_ARCH_WORKAROUND_3 implementation must mitigate both.

In heterogeneous systems with some PEs that require mitigation and others that do not, the firmware must
provide a safe implementation of this function on all PEs. This allows callers to call the function on all PEs in a
system where the firmware implements the workaround, without risking functional stability. In such systems, on
PEs that do not require firmware mitigation, the firmware must provide an implementation that has no effect.
For more information, see [7.] and [13.].
Note: If SMCCC_ARCH_WORKAROUND_3 is implemented then SMCCC_ARCH_WORKAROUND_1 is
superfluous. The SMCCC_ARCH_WORKAROUND_1 should nevertheless be reported as implemented. This is to
support legacy clients that are unaware of SMCCC_ARCH_WORKAROUND_3.

7.8 SMCCC_ARCH_FEATURE_AVAILABILITY

The PEs implement a set of architectural features defined by the Arm Architecture [2.].
Some architectural features define controls to enable aspects of that feature during system operation (via fields
in System Registers).
Firmware must have awareness of all architectural features present in the SoC it manages.
In the ideal case, firmware enables all features and handles all feature related events.

On platforms that deviate from the ideal case, software running at lower ELs must identify features
implemented by the PE, but which firmware has not enabled.

This interface allows firmware to declare the features that it makes available for callers to use. The interface
reports the features that firmware is aware of and has catered for suitable usage by callers. Callers to this
function can use this information to avoid using a feature which may lead to an unhandled trap at EL3.

Note: The existence of any feature, not requiring EL3 firmware support, is fully described by the corresponding
field in the ID register.

Note: Some features (e.g. FEAT_FGT and FEAT_FGT2), when present in the PE, must be enabled and fully
supported for correct and safe system operation. The exhaustive list of architectural features that
firmware must enable and support is out of scope of this document. Further information can be found in
the Base Boot Requirements specification [22.].

ARM DEN 0028 1.5 F Copyright © 2013 - 2024 Arm Limited or its affiliates. All rights reserved. Page 40
Non-Confidential

Dependency OPTIONAL from SMCCC v1.1

NOT SUPPORTED in SMCCC v1.0

Description Discover architectural features enabled by EL3 firmware for use by callers.

Parameters Uint32 Function ID 0x8000 0003

Uint64
bitmask_Selector

The identifier of the feat_bitmask to be returned.

See Table 7-2 for a list of bitmask_selectors and the mapping of
features to each bit in the feat_bitmask.

When there is a related system register, the value of the bitmask
selector is the opcode of that system register, as defined by:

opcode = (op0 <<18) | (op1 << 16) | (CRn << 12) | (CRm << 8) | (op2
<< 5).

Return int32 Status The status of the call:

• SUCCESS

• INVALID PARAMETER: the bitmask_selector is unknown.

All other values are reserved.

uint64 feat_bitmask A bitmask describing the features enabled by EL3 firmware.
Each feature maps to a {feat_bitmask_selector, bit offset}

The feature_bitmask_selector determines the meaning of each bit,
see Table 7-2 for a list of bitmask_selectors and the meaning of each
bit in the feat_bitmask.

Table 7-2: Bitmask_selector and feature bit offset assignment

Bitmask_selector Feature offsets in feat_bitmask

0x1e_1100
(SCR_EL3 opcode)

The register support obtained for this bitmask_selector is directly related to the trap
controls existing in SCR_EL3.

If feat_bitmask[x]==1 this means that the system registers enumerated in SCR_EL3[x] can
be accessed, from EL2 and EL1, and will not lead to an unhandled exception at EL3.

If feat_bitmask[x]==0, the EL3 firmware may be unaware of the system registers
enumerated by SCR_EL3[x]. Interactions with these system registers may have unintended
consequences.

The list of feat_bitmask values is present in Appendix E (see Table 12-1).

0x1e_1140
(CPTR_EL3 opcode)

The register support obtained for this bitmask_selector is directly related to the trap
controls existing in CPTR_EL3.

If feat_bitmask[x]==1 this means that the system registers enumerated in CPTR_EL3[x] can
be accessed, from EL2 and EL1, and will not lead to an unhandled exception at EL3.

ARM DEN 0028 1.5 F Copyright © 2013 - 2024 Arm Limited or its affiliates. All rights reserved. Page 41
Non-Confidential

If feat_bitmask[x]==0, the EL3 firmware may be unaware of the system registers
enumerated by CPTR_EL3 [x]. Interactions with these system registers may have
unintended consequences.

The list of feat_bitmask values is present in Appendix E (see Table 12-1).

0x1e_1320
(MDCR_EL3
opcode)

The register support obtained for this bitmask_selector is directly related to the trap
controls existing in MDCR_EL3.

If feat_bitmask[x]==1 this means that the system registers enumerated in MDCR_EL3[x] are
can be accessed, from EL2 and EL1, and will not lead to an unhandled exception at EL3.

If feat_bitmask[x]==0, the EL3 firmware may be unaware of the system registers
enumerated by MDCR_EL3 [x]. Interactions with these system registers may have
unintended consequences.

The list of feat_bitmask values is present in Appendix E (see Table 12-1).

0x1e_a500
(MPAM3_EL3
opcode)

The register support obtained for this bitmask_selector is directly related to the trap
controls existing in MPAM3_EL3.

If feat_bitmask[x]==1 this means that the MPAM system registers associated to
MPAM3_EL3[x] can be accessed, from EL2 and EL1, and will not lead to an unhandled
exception at EL3.

If feat_bitmask[x]==0, the EL3 firmware may be unaware of the system registers
enumerated by MPAM_EL3 [x]. Interactions with these system registers may have
unintended consequences.

The list of feat_bitmask values is present in Appendix E (see Table 12-1).

All other values are
reserved

--

7.8.1 Usage

SMCCC_ARCH_FEATURE_AVAILABILITY returns a bitmask of features enabled by EL3 firmware for use by callers.

The return of SMCCC_ARCH_FEATURE_AVAILABILITY applies to the PE on which the call was made.

7.8.2 Discovery

The implementation of this function can be detected by calling SMCCC_ARCH_FEATURES, as described in Section
7.3, with arch_func_id equal to 0x8000 0003. The result of that call should be interpreted as:

NOT_SUPPORTED The discovery call will return NOT_SUPPORTED on every PE in the system.

SMCCC_ARCH_FEATURE_AVAILABILITY must not be invoked on any PE in the system.

0 SMCCC_ARCH_FEATURE_AVAILABILITY is present and can be safely invoked on any PE in
the system.

ARM DEN 0028 1.5 F Copyright © 2013 - 2024 Arm Limited or its affiliates. All rights reserved. Page 42
Non-Confidential

7.8.3 Caller responsibilities

The caller must determine the function is present before calling it (see 7.8.2).
The return applies to the calling PE, the caller must invoke SMCCC_ARCH_FEATURE_AVAILABILITY on each PE.

If the call returns an INVALID_PARAMETER status, the caller should assume that any architectural features for
that bitmask_selector are not enabled by firmware.

7.8.4 Implementation responsibilities

This function can only be provided by SMCCC implementations that are compliant with SMCCC version 1.1 or
later.

If implemented, the firmware must provide discovery of this function as defined in the Discovery section above.

When present, the function must be implemented for all PEs.

Firmware should enable and fully support any architectural features that it is aware of, for callers.
For every feature that firmware reports feat_bitmask[x] == 1, firmware must implement a behaviour that
complies with the bit description from Table 7-2.
The value of feat_bitmask[x] must be constant from system initialization until reset/power off.
s

ARM DEN 0028 1.5 F Copyright © 2013 - 2024 Arm Limited or its affiliates. All rights reserved. Page 43
Non-Confidential

8 Appendix A: Example implementation of Yielding Service
calls
Many aspects of Yielding Calls are specific to the internal implementation of Secure services, for example:

• Might a Yielding Call be resumed at another PE?
• Might there be more outstanding Yielding Calls per PE?

One approach for implementing Yielding Calls is for the Secure service to return a specific error code when that
call is pre-empted by an interrupt, as shown in the following example. The caller can then resume the operation
after the interrupt is serviced.

To allow Secure services to match the original Yielding Call after it resumes, the service might return opaque
handlers that can be passed back in resume_call():

(X0, X1, X2) = any_yielding_call(…);
while (X0 == SMCCC_PREEMPTED)
{
 (X0, X1, X2) = resume_call(X1, X2);
}

ARM DEN 0028 1.5 F Copyright © 2013 - 2024 Arm Limited or its affiliates. All rights reserved. Page 44
Non-Confidential

9 Appendix B: Discovery of Arm Architecture Service
functions
System software needs to run safely on any existing platform, but should make use of the mitigation
functionality whenever it is available. The following approach to discovery should maximize the ability to detect
this functionality without causing unsafe behavior on existing platforms.

Step 1: Determine if SMCCC_VERSION is implemented

The following pseudocode summarizes the proposed discovery flow using PSCI 1.0:

if (FirmwareTablesLookup(PSCI) == SUCCESS)
{
 if (invoke_psci_version() >= 0x10000)
 {
 if (invoke_psci_features(SMCCC_VERSION) == SUCCESS)
 return SUCCESS;
 }
}
return NOT_SUPPORTED

The steps are:

1. Use firmware data, device tree PSCI node, or ACPI FADT PSCI flag, to determine whether a PSCI
implementation is present.

2. Use PSCI_VERSION to learn whether PSCI_FEATURES is provided. PSCI_FEATURES is mandatory from
version 1.0 of PSCI.

3. Use PSCI_FEATURES with the SMCCC_VERSION Function Identifier as a parameter to determine that
SMCCC_VERSION is implemented.

In future, the ACPI and device tree might also be extended to indicate the compliance to the SMCCC directly.

Step 2: Determine if Arm Architecture Service function is implemented

The following pseudocode summarizes the proposed discovery flow of an Arm Architecture Service function,
using SMCCC_ARCH_WORKAROUND_1 as an example:

if (invoke_smccc_version() >= 0x10001)
{
 if (invoke_smccc_arch_features(SMCCC_ARCH_WORKAROUND_1) >= 0)
 return SUCCESS;
}
return NOT_SUPPORTED

The steps are:

1. Use SMCCC_VERSION to learn whether the calling convention complies to version 1.1 or above.

ARM DEN 0028 1.5 F Copyright © 2013 - 2024 Arm Limited or its affiliates. All rights reserved. Page 45
Non-Confidential

2. Use SMCCC_ARCH_FEATURES to query whether the Arm Architecture Service function is implemented on
this system.

If the software is running on a heterogenous system, for example big.LITTLE, it can optimize use of an Arm
Architecture Service function by invoking SMCCC_ARCH_FEATURES on each PE and eliminating the calls to the
function on PEs that indicate the function call is not required, for example on PEs that return one (1) in the case
of SMCCC_ARCH_WORKAROUND_1.

ARM DEN 0028 1.5 F Copyright © 2013 - 2024 Arm Limited or its affiliates. All rights reserved. Page 46
Non-Confidential

10 Appendix C: SME, SVE, SIMD and FP live state
preservation by the SMCCC implementation

10.1 SVE state

SVE is implemented if ID_AA64PFR0_EL1.SVE==1 [11.].

SVE introduces the following registers:

• Z0-Z31, P0-P15, FFR

10.2 SME state

SME is implemented if ID_AA64PFR1_EL1.SME==1 [15.].

SME introduces the following registers:

• ZA array

If SME is implemented, the processor state (PSTATE) is augmented with the ZA and SM bits. The ZA array
is only architecturally visible when PSTATE.ZA==1.

Note: The PE sets the values in the ZA array to zero on a PSTATE.ZA transition from 0 to 1 [.15].

10.2.1 Streaming SVE processor state

SME introduces the streaming SVE processor state, which is enabled when PSTATE.SM==1. The
streaming SVE mode is required on any SME implementation even if SVE is not implemented [15.].

When the processor is in streaming SVE mode the Z0-Z31 and P0-P15 registers are architecturally visible.

When implementing SME, a processor can implement a full A64 mode. The presence of full A64 mode is
indicated by ID_AA64SMFR0_EL1.FA64==1. The full A64 mode is enabled if SCMR_ELx.FA64==1 for the
current and higher Els. The IsFullA64Enabled() pseudocode, listed in [15.], is used to determine if the full
A64 mode is enabled. When enabled, the full A64 mode makes the FFR SVE register architecturally
visible in streaming SVE mode, if SVE is implemented [15.].

Note: If the full A64 mode is not implemented, the FFR register is not architecturally accessible when
PSTATE.SM==1.

Note: If PSTATE.SM==1 then the length of the SVE Z0-Z31, P0-P15 registers is specified by SMCR_ELx.LEN [15.].

Note: Any PSTATE.SM transition resets all the Z0-Z31, P0-P15, FFR and FPSR registers to an architecturally
defined constant, see [.15] for more information.

ARM DEN 0028 1.5 F Copyright © 2013 - 2024 Arm Limited or its affiliates. All rights reserved. Page 47
Non-Confidential

10.3 Register list to be preserved

The procedures to create the set of registers to preserve are listed in the pseudocode below. A single
pseudocode listing is applicable to a platform. The applicability of a pseudocode listing to a platform depends on
whether that platform implements SVE and/or SME.

The Preserve function, used below, takes a variable length list of registers. The registers passed as arguments to
the function Preserve are appended to the set of registers to be preserved across the next SMC/HVC call.

• If neither SVE nor SME are implemented

Preserve(V0-V31, FPSR, FPCR)

• If SVE is implemented and SME is not implemented

Preserve(FPSR, FPCR)

If FID[16]==1
 Preserve(V0-V31)

Else
 Preserve(Z0-Z31, P0-P15, FFR)

• If SVE is not implemented and SME is implemented

Preserve(FPSR, FPCR)

If FID[16]==1 or PSTATE.SM==0
 Preserve(V0-V31)

Else
 Preserve(Z0-Z31, P0-P15)

If PSTATE.ZA==1
 Preserve(ZA array)

• If both SVE and SME are implemented

Preserve (FPSR, FPCR)

If FID[16]==1
 Preserve(V0-V31)

Else
 Preserve(Z0-Z31, P0-P15)

If FID[16]==0 AND (IsFullA64Enabled() OR PSTATE.SM==0)
 Preserve(FFR)

ARM DEN 0028 1.5 F Copyright © 2013 - 2024 Arm Limited or its affiliates. All rights reserved. Page 48
Non-Confidential

If PSTATE.ZA==1
 Preserve(ZA array)

Note: The V0-V31 registers are contained in the Z0-Z31 registers. The registers V0-V31 are implicitly preserved
when the Z0-Z31 registers are preserved.

ARM DEN 0028 1.5 F Copyright © 2013 - 2024 Arm Limited or its affiliates. All rights reserved. Page 49
Non-Confidential

11 Appendix D: SMCCC deployment model

A platform can contain multiple distinct SMCCC implementations.

In the general case, a SMCCC Caller interacts only with the SMCCC implementation provided by its managing EL,
see Figure 1. The managing EL informs each SMCCC Caller of the conduit that it must use, via an IMPDEF
discovery method. Examples of conduit discovery methods are the ACPI FADT or suitable FDT binding.

Arm recommends that firmware at EL2 always traps SMC calls.

A hypervisor may allow some callers to use both the SMC and HVC conduits. The meaning attributed to each
conduit is defined by that hypervisor.

11.1 SMCCC implementations and security states

The software/firmware executing in any suitable EL (EL3 or EL2 in any Security state), can expose SMCCC
implementations to a caller at a lower EL.
The SMCCC FID space partitioning (Table 2-1, Table 6-2) applies to all Security states managed by EL3.
EL2 Software may restrict the services/functions available to the callers under its management. For example, the
RMM specification restricts the SMC services available to Realm EL1 Software, see [21.] for the list of allowed
services.

12 Appendix E: Feature Discovery bitmask

 ana in ce i n e e i res ec an a er

 a er

 a er

im emen a i n

im emen a i n

im emen a i n

Figure 1: SMCCC Caller relationship to its managing EL.

ARM DEN 0028 1.5 F Copyright © 2013 - 2024 Arm Limited or its affiliates. All rights reserved. Page 50
Non-Confidential

The SMCCC_ARCH_FEATURE_AVAILABILITY (Section 7.8) allows a caller to determine the system registers that
can be safely accessed.
The system register that can be safely accessed are described in bitfields, returned by
SMCCC_ARCH_FEATURE_AVAILABILITY.
The complete definition of the bitfields covering the relevant system registers defined in the Arm ARM [2.], issue
J.a, are listed below. Additional features corresponding to more recent architecture versions may be discovered
using this version of the SMCCC.

Table 12-1 Detailed Feature Discovery Arguments

Bitmask_selector Feature offsets in feat_bitmask

0x1e_1100
(SCR_EL3 opcode)

feat_bitmask [61] == 1: Accesses to registers listed in SCR_EL3.HACDBSE are emulated by
firmware or access directly the physical register.

feat_bitmask [60] == 1: Accesses to registers listed in SCR_EL3.HDBSSE are emulated by
firmware or access directly the physical register.

feat_bitmask [59] == 1: FEAT_FGT2 is enabled, any EL2 access to any of the EL2 system
registers, enumerated in the SCR_EL3.FGTEn2 definition, are emulated by firmware or
access directly the physical register.

feat_bitmask [53] == 1: Accesses to registers listed in SCR_EL3.PFAREn are emulated by
firmware or access directly the physical register.

feat_bitmask [52] == 1: Accesses to registers listed in SCR_EL3.TWERR are emulated by
firmware or access directly the physical register.

feat_bitmask [50] == 1: Accesses to the FPMR register are emulated by firmware or access
directly the physical register.

feat_bitmask [47] == 1: Accesses to registers listed in SCR_EL3.D128 are emulated by
firmware or access directly the physical register.

feat_bitmask [46] == 1: Accesses to registers listed in SCR_EL3.AIEn are emulated by
firmware or access directly the physical register.

feat_bitmask [45] == 1: Accesses to registers listed in SCR_EL3.PIEn are emulated by
firmware or access directly the physical register.

feat_bitmask [44] == 1: Accesses to registers listed in SCR_EL3.SCTLR2En are emulated by
firmware or access directly the physical register.

feat_bitmask [43] == 1: Accesses to registers listed in SCR_EL3.TCR2En are emulated by
firmware or access directly the physical register.

feat_bitmask [42] == 1: Accesses to registers listed in SCR_EL3.RCWMASKEn are emulated
by firmware or access directly the physical register.

ARM DEN 0028 1.5 F Copyright © 2013 - 2024 Arm Limited or its affiliates. All rights reserved. Page 51
Non-Confidential

feat_bitmask [41] == 1: Accesses to register TPIDR2_EL0 are emulated by firmware or
access directly the physical register.

feat_bitmask [40] == 1: Accesses to registers listed in SCR_EL3.TRNDR are emulated by
firmware or access directly the physical register.

feat_bitmask [39] == 1: Accesses to registers listed in SCR_EL3.GCSEn are emulated by
firmware or access directly the physical register.

feat_bitmask [38] == 1: Accesses to register HCRX_EL2 are emulated by firmware or access
directly the physical register.

feat_bitmask [37] == 1: Accesses to register ACCDATA_EL1 are emulated by firmware or
access directly the physical register.

feat_bitmask [36] == 1: Accesses to registers listed in SCR_EL3.AMVOFFEN are emulated by
firmware or access directly the physical register.

feat_bitmask [28] == 1: Accesses to register CNTPOFF_EL2 are emulated by firmware or
access directly the physical register.

feat_bitmask [27] == 1: FEAT_FGT is enabled, any EL2 access to the EL2 system registers,
enumerated in the SCR_EL3.FGTEn definition, are emulated by firmware or access directly
the physical register.

feat_bitmask [26] == 1: Accesses to registers listed in SCR_EL3.ATA are emulated by
firmware or access directly the physical register.

feat_bitmask [25] == 1: Accesses to registers listed in SCR_EL3.EnSCXT are emulated by
firmware or access directly the physical register.

feat_bitmask [21] == 1: Accesses to registers listed in SCR_EL3.FIEN are emulated by
firmware or access directly the physical register.

feat_bitmask [16] == 1: Accesses to registers listed in SCR_EL3.APK are emulated by
firmware or access directly the physical register.

feat_bitmask [15] == 1: Accesses to registers listed in SCR_EL3.TERR are emulated by
firmware or access directly the physical register.

feat_bitmask [14] == 1: Accesses to registers listed in SCR_EL3.TLOR are emulated by
firmware or access directly the physical register.

All other bits in feat_bitmask are reserved and must be 0.

0x1e_1140
(CPTR_EL3 opcode)

feat_bitmask [31] == 1: Accesses to registers listed in CPTR_EL3.TCPAC are emulated by
firmware or access directly the physical register.

feat_bitmask [30] == 1: Accesses to registers listed in CPTR_EL3.TAM are emulated by
firmware or access directly the physical register.

ARM DEN 0028 1.5 F Copyright © 2013 - 2024 Arm Limited or its affiliates. All rights reserved. Page 52
Non-Confidential

feat_bitmask [20] == 1: Accesses to registers listed in CPTR_EL3.TTA are emulated by
firmware or access directly the physical register.

feat_bitmask [12] == 1: Accesses to registers listed in CPTR_EL3.ESM are emulated by
firmware or access directly the physical register.

feat_bitmask [10] == 1: Accesses to registers listed in CPTR_EL3.TFP are emulated by
firmware or access directly the physical register.

feat_bitmask [8] == 1: Accesses to registers listed in CPTR_EL3.EZ are emulated by
firmware or access directly the physical register.

All other bits in feat_bitmask are reserved and must be 0.

0x1e_1320
(MDCR_EL3
opcode)

feat_bitmask [50] == 1: Accesses to register MDSTEPOP_EL1 are emulated by firmware or
access directly the physical register.

feat_bitmask [47] == 1: Accesses to registers listed in MDCR_EL3.EnITE are emulated by
firmware or access directly the physical register.

feat_bitmask [44] == 1: Accesses to registers listed in MDCR_EL3.EnPMSS are emulated by
firmware or access directly the physical register.

feat_bitmask [42] == 1: Accesses to register PMSDFR_EL1 are emulated by firmware or
access directly the physical register.

feat_bitmask [39] == 1: Accesses to register TRBMPAM_EL1 are emulated by firmware or
access directly the physical register.

feat_bitmask [36] == 1: Accesses to register PMSNEVFR_EL1 are emulated by firmware or
access directly the physical register.

feat_bitmask [32] == 1: Accesses to registers listed in MDCR_EL3.SBRBE are emulated by
firmware or access directly the physical register.

feat_bitmask [27] == 1: Accesses to registers listed in MDCR_EL3.TDCC are emulated by
firmware or access directly the physical register.

feat_bitmask [24] == 1: Accesses to registers listed in MDCR_EL3.NSTB are emulated by
firmware or access directly the physical register.

feat_bitmask [19] == 1: Accesses to registers listed in MDCR_EL3.TTRF are emulated by
firmware or access directly the physical register.

feat_bitmask [12] == 1: Accesses to registers listed in MDCR_EL3.NSPB are emulated by
firmware or access directly the physical register.

feat_bitmask [10] == 1: Accesses to registers listed in MDCR_EL3.TDOSA are emulated by
firmware or access directly the physical register.

ARM DEN 0028 1.5 F Copyright © 2013 - 2024 Arm Limited or its affiliates. All rights reserved. Page 53
Non-Confidential

feat_bitmask [9] == 1: Accesses to registers listed in MDCR_EL3.TDA are emulated by
firmware or access directly the physical register.

feat_bitmask [7] == 1: Accesses to registers listed in MDCR_EL3.EnPM2 are emulated by
firmware or access directly the physical register.

feat_bitmask [6] == 1: Accesses to registers listed in MDCR_EL3.TPM are emulated by
firmware or access directly the physical register.

All other bits in feat_bitmask are reserved and must be 0.

0x1e_a500
(MPAM3_EL3
opcode)

feat_bitmask [62] == 1: Accesses to the following registers:
- MPAM0_EL1
- MPAM1_EL1
- MPAM2_EL1
- MPAM3_EL1
- MPAM1_EL12
- MPAMCR_EL2
- MPAMVPMV_EL2
- MPAMVMP0_EL2
- MPAMVMP1_EL2
- MPAMVMP2_EL2
- MPAMVMP3_EL2
- MPAMVMP4_EL2
- MPAMVMP5_EL2
- MPAMVMP6_EL2
- MPAMVMP7_EL2
- MPAMIDR_EL1
- MPAMSM_EL1

are emulated by firmware or access directly the physical register.

All other bits in feat_bitmask are reserved and must be 0.

All other values are
reserved

--

ARM DEN 0028 1.5 F Copyright © 2013 - 2024 Arm Limited or its affiliates. All rights reserved. Page 54
Non-Confidential

13 Appendix F: Changelog
Table 13-1 relates the SMCCC version to the return of the SMCCC_VERSION Arm Architecture Call and to the
changes introduced on each SMCCC version release.

For further details on the SMCCC_VERSION Arm Architecture Call return values, see Section 7.2.

Table 13-1 SMCCC Changelog

SMCCC
version

SMCCC_VERSION call
return

Changes

1.0 -1 or 0x10000 Introduces:

General Service Queries (Section 6.2)

1.1 0x10001 Result register set:

Mandates preservation of registers X4—X17 across a SMC or HVC call.

Introduces:

SMCCC_VERSION (Section 7.2)

SMCCC_ARCH_FEATURES (Section 7.3)

SMCCC_ARCH_WORKAROUND_1 (Section 7.5)

SMCCC_ARCH_WORKAROUND_2 (Section 7.6)

1.2 0x10002 Argument/Result register set:

Permits calls to use R4—R7 as return register (Section 4.1).

Permits calls to use X4—X17 as return registers (Section 3.1).

Permits calls to use X8—X17 as argument registers (Section 3.1).

Introduces:

SMCCC_ARCH_SOC_ID (Section 7.4)

Requirement for the SMCCC implementation to preserve SVE live
state across an SMC/HVC.

Deprecates:

UID, Revision Queries on Arm Architecture Service (Section 6.2)

Count Query on all services (Section 6.2)

1.3 0x10003 Introduces:

SVE absence of live state hint bit (Section 2.5)

1.4 0x10004 Introduces:

Requirement for the SMCCC implementation to preserve SME live
state across an SMC/HVC.

SMCCC_ARCH_WORKAROUND_3 (Section 7.7)

1.5 0x10005 Introduces:

Vendor Specific EL3 Monitor Service range.

SMCCC_ARCH_FEATURE_AVAILABILITY (Section 7.8).

ARM DEN 0028 1.5 F Copyright © 2013 - 2024 Arm Limited or its affiliates. All rights reserved. Page 55
Non-Confidential

	About this document
	Release Information

	Arm Non-Confidential Document License (“License”)
	References
	Terms and abbreviations
	Feedback
	Feedback on this book

	Inclusive terminology commitment

	1 Introduction
	2 SMC and HVC calling conventions
	2.1 Secure Monitor Calls
	2.2 Hypervisor Calls
	2.3 Fast Calls and Yielding Calls
	2.4 32-bit and 64-bit conventions
	2.5 Function Identifiers
	2.5.1 Fast Calls
	2.5.2 Yielding Calls
	2.5.3 Conduits

	2.6 SMC32/HVC32 argument passing
	2.7 SMC64/HVC64 argument passing
	2.8 SME, SVE, SIMD and floating-point registers
	2.9 SMC and HVC immediate value
	2.10 Client ID (optional)
	2.10.1 SMC calls
	2.10.2 HVC calls

	2.11 Secure OS ID (optional)
	2.12 Session ID (optional)

	3 AArch64 SMC and HVC calling conventions
	3.1 Register use in AArch64 SMC and HVC calls

	4 AArch32 SMC and HVC calling convention
	4.1 Register use in AArch32 SMC and HVC Calls

	5 SMC and HVC results
	5.1 Error codes
	5.2 Unknown Function Identifier
	5.3 Unique Identification format
	5.4 Revision information format

	6 Function Identifier Ranges
	6.1 Allocation of values
	6.2 General service queries
	6.3 Implemented Standard Secure Service Calls
	6.4 Implemented Standard Hypervisor Service Calls

	7 Arm Architecture Calls
	7.1 Return codes
	7.2 SMCCC_VERSION
	7.2.1 Usage
	7.2.2 Discovery
	7.2.3 Caller responsibilities
	7.2.4 Implementation responsibilities

	7.3 SMCCC_ARCH_FEATURES
	7.3.1 Usage
	7.3.2 Discovery
	7.3.3 Parameters
	7.3.4 Return
	7.3.5 Caller responsibilities
	7.3.6 Implementation responsibilities

	7.4 SMCCC_ARCH_SOC_ID
	7.4.1 Usage
	7.4.2 Discovery
	7.4.3 Parameters
	7.4.4 Return
	7.4.5 Caller responsibilities
	7.4.6 Implementation responsibilities

	7.5 SMCCC_ARCH_WORKAROUND_1
	7.5.1 Usage
	7.5.2 Discovery
	7.5.3 Caller responsibilities
	7.5.4 Implementation responsibilities

	7.6 SMCCC_ARCH_WORKAROUND_2
	7.6.1 Usage
	7.6.2 Discovery
	7.6.3 Caller responsibilities
	7.6.4 Implementation responsibilities

	7.7 SMCCC_ARCH_WORKAROUND_3
	7.7.1 Usage
	7.7.2 Discovery
	7.7.3 Caller Responsibilities
	7.7.4 Implementation responsibilities

	7.8 SMCCC_ARCH_FEATURE_AVAILABILITY
	7.8.1 Usage
	7.8.2 Discovery
	7.8.3 Caller responsibilities
	7.8.4 Implementation responsibilities

	8 Appendix A: Example implementation of Yielding Service calls
	9 Appendix B: Discovery of Arm Architecture Service functions
	Step 1: Determine if SMCCC_VERSION is implemented
	Step 2: Determine if Arm Architecture Service function is implemented

	10 Appendix C: SME, SVE, SIMD and FP live state preservation by the SMCCC implementation
	10.1 SVE state
	10.2 SME state
	10.2.1 Streaming SVE processor state

	10.3 Register list to be preserved

	11 Appendix D: SMCCC deployment model
	11.1 SMCCC implementations and security states

	12 Appendix E: Feature Discovery bitmask
	13 Appendix F: Changelog

