
Arm® Architecture Reference Manual Armv8, for A-
profile architecture

Known issues in Issue G.b

Non-Confidential
Copyright © 2020–2021 Arm Limited (or its affiliates).
All rights reserved.

Issue 01
102105_G.b_01_en

Arm® Architecture Reference Manual Armv8, for A-profile
architecture Known issues in Issue G.b

Document ID: 102105_G.b_01_en
Issue: 01

Arm® Architecture Reference Manual Armv8, for A-profile architecture
Known issues in Issue G.b

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

F.c-04 18 December
2020

Non-
Confidential

Known Issues in Arm® Architecture Reference Manual, Issue F.c, as of 18
December 2020

G.a-05 30 June 2021 Non-
Confidential

Known Issues in Arm® Architecture Reference Manual, Issue G.a, as of 18
June 2021

G.b-00 22 July 2021 Non-
Confidential

Known Issues in Arm® Architecture Reference Manual, Issue G.b, as of 9
July 2021

G.b-01 31 August 2021 Non-
Confidential

Known Issues in Arm® Architecture Reference Manual, Issue G.b, as of 20
August 2021

Proprietary Notice

This document is protected by copyright and other related rights and the practice or
implementation of the information contained in this document may be protected by one or more
patents or pending patent applications. No part of this document may be reproduced in any form
by any means without the express prior written permission of Arm. No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether
implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-
INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, third party patents,
copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 40

Arm® Architecture Reference Manual Armv8, for A-profile
architecture Known issues in Issue G.b

Document ID: 102105_G.b_01_en
Issue: 01

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that
any use, duplication or disclosure of this document complies fully with any relevant export laws
and regulations to assure that this document or any portion thereof is not exported, directly
or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s
customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click
through or signed written agreement covering this document with Arm, then the click through or
signed written agreement prevails over and supersedes the conflicting provisions of these terms.
This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands
and names mentioned in this document may be the trademarks of their respective owners. Please
follow Arm’s trademark usage guidelines at https://www.arm.com/company/policies/trademarks.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by Arm
and the party that Arm delivered this document to.

Product Status

The information in this document is Final, that is for a developed product.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 40

https://www.arm.com/company/policies/trademarks

Arm® Architecture Reference Manual Armv8, for A-profile
architecture Known issues in Issue G.b

Document ID: 102105_G.b_01_en
Issue: 01

Web address

developer.arm.com

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

We believe that this document contains no offensive language. To report offensive language in this
document, email terms@arm.com.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 40

https://developer.arm.com
mailto:terms@arm.com

Arm® Architecture Reference Manual Armv8, for A-profile
architecture Known issues in Issue G.b

Document ID: 102105_G.b_01_en
Issue: 01
Contents

Contents

1 Introduction... 7
1.1 Conventions..7
1.2 Additional reading... 8
1.3 Feedback... 8
1.4 Other information... 9

2 Known issues..10
2.1 D14596...10
2.2 D16720...10
2.3 D17015...10
2.4 D17119...11
2.5 D17591...11
2.6 D17736...12
2.7 R17743... 12
2.8 C17811... 13
2.9 R17872... 13
2.10 E17909...14
2.11 D17956.. 15
2.12 D18000.. 16
2.13 D18001.. 18
2.14 D18002.. 18
2.15 D18024.. 20
2.16 D18035.. 20
2.17 D18055.. 21
2.18 D18093.. 21
2.19 D18106.. 22
2.20 D18109.. 23
2.21 D18118.. 23
2.22 D18133.. 24
2.23 D18138.. 24
2.24 D18140.. 25
2.25 D18144.. 25

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 40

Arm® Architecture Reference Manual Armv8, for A-profile
architecture Known issues in Issue G.b

Document ID: 102105_G.b_01_en
Issue: 01
Contents

2.26 D18152.. 26
2.27 D18160.. 26
2.28 D18162.. 27
2.29 D18165.. 27
2.30 D18169.. 27
2.31 D18183.. 28
2.32 R18187...28
2.33 D18200.. 30
2.34 D18202.. 30
2.35 D18216.. 31
2.36 D18225.. 31
2.37 D18240.. 31
2.38 R18243...32
2.39 C18253...32
2.40 D18258.. 32
2.41 D18262.. 32
2.42 D18266.. 33
2.43 D18272.. 34
2.44 D18282.. 34
2.45 D18284.. 35
2.46 D18288.. 35
2.47 D18291.. 36
2.48 D18294.. 36
2.49 D18299.. 37
2.50 D18300.. 37
2.51 C18301...37
2.52 R18319...37
2.53 D18330.. 38
2.54 D18347.. 38
2.55 D18352.. 38
2.56 D18354.. 39
2.57 D18366.. 39
2.58 D18371.. 39

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 40

Arm® Architecture Reference Manual Armv8, for A-profile
architecture Known issues in Issue G.b

Document ID: 102105_G.b_01_en
Issue: 01

Introduction

1 Introduction

1.1 Conventions
The following subsections describe conventions used in Arm documents.

Glossary
The Arm Glossary is a list of terms used in Arm documentation, together with definitions for
those terms. The Arm Glossary does not contain terms that are industry standard unless the Arm
meaning differs from the generally accepted meaning.

See the Arm® Glossary for more information: developer.arm.com/glossary.

Typographic conventions
Arm documentation uses typographical conventions to convey specific meaning.

Convention Use

italic Introduces special terminology, denotes cross-references, and citations.

bold Highlights interface elements, such as menu names. Denotes signal names. Also used for terms in
descriptive lists, where appropriate.

monospace Denotes text that you can enter at the keyboard, such as commands, file and program names, and source
code.

monospace italic Denotes arguments to monospace text where the argument is to be replaced by a specific value.

monospace bold Denotes language keywords when used outside example code.

monospace underline Denotes a permitted abbreviation for a command or option. You can enter the underlined text instead of
the full command or option name.

<and> Encloses replaceable terms for assembler syntax where they appear in code or code fragments. For ex-
ample:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS Used in body text for a few terms that have specific technical meanings, that are defined in the
Arm Glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and
UNPREDICTABLE.

This represents a recommendation which, if not followed, might lead to system failure or damage.

This represents a requirement for the system that, if not followed, might result in system failure or
damage.

This represents a requirement for the system that, if not followed, will result in system failure or damage.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 40

https://developer.arm.com/glossary

Arm® Architecture Reference Manual Armv8, for A-profile
architecture Known issues in Issue G.b

Document ID: 102105_G.b_01_en
Issue: 01

Introduction

Convention Use
This represents an important piece of information that needs your attention.

This represents a useful tip that might make it easier, better or faster to perform a task.

This is a reminder of something important that relates to the information you are reading.

1.2 Additional reading
This document contains information that is specific to this product. See the following documents
for other relevant information:

Table 1-2: Arm publications

Document Name Document ID Licensee only

Arm® Architecture Reference Manual Armv8,
for A-profile architecture, Issue G.b

DDI 0487G.b No

1.3 Feedback
Arm welcomes feedback on this product and its documentation.

Feedback on this product
If you have any comments or suggestions about this product, contact your supplier and give:

• The product name.

• The product revision or version.

• An explanation with as much information as you can provide. Include symptoms and diagnostic
procedures if appropriate.

Feedback on content
If you have comments on content then send an e-mail to errata@arm.com. Give:

• The title Arm® Architecture Reference Manual Armv8, for A-profile architecture Known issues
in Issue G.b.

• The number 102105_G.b_01_en.

• If applicable, the page number(s) to which your comments refer.

• A concise explanation of your comments.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 40

mailto:errata@arm.com

Arm® Architecture Reference Manual Armv8, for A-profile
architecture Known issues in Issue G.b

Document ID: 102105_G.b_01_en
Issue: 01

Introduction

Arm also welcomes general suggestions for additions and improvements.

Arm tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot
guarantee the quality of the represented document when used with any other PDF
reader.

1.4 Other information
See the Arm website for other relevant information.

• Arm® Developer.

• Arm® Documentation.

• Technical Support

• Arm® Glossary.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 40

https://developer.arm.com/
https://developer.arm.com/documentation
http://www.arm.com/support/technical-support
https://developer.arm.com/support/arm-glossary

Arm® Architecture Reference Manual Armv8, for A-profile
architecture Known issues in Issue G.b

Document ID: 102105_G.b_01_en
Issue: 01

Known issues

2 Known issues
This document records known issues in the Arm Architecture Reference Manual, Armv8, for A-
profile architecture (DD10487), Issue G.b.

Key

• C = Clarification.

• D = Defect.

• R = Relaxation.

• E = Enhancement.

2.1 D14596
In section I5.7.15 (CNTSR, Counter Status Register), the bit assignment is changed to the following:

• [31:18] RES0

• [17:8] FCACK

2.2 D16720
In section D5.7.2 (Enhanced support for nested virtualization), the following table entry is added to
Table D5-50 'Redirection of accesses to special-purpose registers at EL2':

Special register access instruction Named EL2 register Actual register accessed

op1 = 4, CRm=6, op2=0 TFSR_EL2 TFSR_EL1

2.3 D17015
Details of traps will be added through the use of new LDC and STC accessibility pseudocode in
sections G8.3.17 (DBGDTRRXint) and G8.3.18 (DBGDTRTXint). This accessibility pseudocode is
the same as for the equivalent MRC and MCR instructions, except that:

• The reported exception syndrome value, if applicable, is 0x06.

• For LDC instructions the accessibility pseudocode loads the value to be written to the System
register from 'MemA[address, 4]', where 'address' is the virtual address calculated by the LDC
instruction.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 40

Arm® Architecture Reference Manual Armv8, for A-profile
architecture Known issues in Issue G.b

Document ID: 102105_G.b_01_en
Issue: 01

Known issues

2.4 D17119
In sections F3.1.10 (Advanced SIMD shifts and immediate generation), sub-section 'Advanced
SIMD two registers and shift amount' and F4.1.22 (Advanced SIMD shifts and immediate
generation), sub-section 'Advanced SIMD two registers and shift amount', the following constraints
are added to VMOVL:

• 'L' must be '0'.

• 'imm3H' cannot be '000'.

2.5 D17591
In section G8.2.123 (RMR, Reset Management Register), the MCR accessibility code that currently
reads:

if PSTATE.EL IN {EL1, EL3} && IsHighestEL(PSTATE.EL) then
 RMR = R[t];
else
 UNDEFINED;

is modified to:

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if IsHighestEL(EL1) then
 RMR = R[t];
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if CP15SDISABLE == HIGH then
 UNDEFINED;
 elsif CP15SDISABLE2 == HIGH then
 UNDEFINED;
 else
 RMR = R[t];

In section G8.2.114 (MVBAR, Monitor Vector Base Address Register), the MCR accessibility code
that currently reads:

elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' && CP15SDISABLE == HIGH then
 UNDEFINED;
 elsif SCR.NS == '0' && CP15SDISABLE2 == HIGH then
 UNDEFINED;
 else
 MVBAR = R[t];

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 40

Arm® Architecture Reference Manual Armv8, for A-profile
architecture Known issues in Issue G.b

Document ID: 102105_G.b_01_en
Issue: 01

Known issues

is modified to:

elsif PSTATE.EL == EL3 then
 if CP15SDISABLE == HIGH then
 UNDEFINED;
 elsif CP15SDISABLE2 == HIGH then
 UNDEFINED;
 else
 MVBAR = R[t];

Similar changes are made in the following sections to exclude checks for the SCR.NS bit:

• G8.2.119 (NSACR, Non-Secure Access Control Register).

• G8.3.35 (SDER, Secure Debug Enable Register).

• G8.3.34 (SDCR, Secure Debug Control Register).

2.6 D17736
In section J1.3.1 (shared/debug), the description for ExternalNoninvasiveDebugEnabled() that
reads:

// ExternalNoninvasiveDebugEnabled()
// ===========================
// This function returns TRUE if the FEAT_Debugv8p4 is implemented, otherwise this
// function is IMPLEMENTATION DEFINED.
// In the recommended interface, ExternalNoninvasiveDebugEnabled returns the state
 of the (DBGEN
// OR NIDEN) signal.

is updated to read:

// ExternalNoninvasiveDebugEnabled()
// ===========================
// This function returns TRUE if the FEAT_Debugv8p4 is implemented.
// Otherwise, this function is IMPLEMENTATION DEFINED, and, in the
// recommended interface, ExternalNoninvasiveDebugEnabled returns
// the state of the (DBGEN OR NIDEN) signal.

2.7 R17743
In section D9.7.3 (Memory access types and coherency), the following text is removed:

The SPU acts as a separate observer in the system and is subject to the rules regarding
coherency.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 40

Arm® Architecture Reference Manual Armv8, for A-profile
architecture Known issues in Issue G.b

Document ID: 102105_G.b_01_en
Issue: 01

Known issues

2.8 C17811
In section I5.8.32 (ERR<n>STATUS, Error Record Primary Status Register, n = 0 - 65534), under the
heading 'Accessing the ERR<n>STATUS', the text that reads:

To ensure correct and portable operation, when software is clearing the valid fields in the register
to allow new errors to be recorded, Arm recommends that software:

• Read ERR<n>STATUS and determine which fields need to be cleared to zero.

• Write ones to all the W1C fields that are nonzero in the read value.

• Write zero to all the W1C fields that are zero in the read value.

• Write zero to all the RW fields.

is clarified to read:

To ensure correct and portable operation, when software is clearing the valid fields in the register
to allow new errors to be recorded, Arm recommends that software:

• Read ERR<n>STATUS and determine which fields need to be cleared to zero.

• In a single write to ERR<n>STATUS:

◦ Write ones to all the W1C fields that are nonzero in the read value.

◦ Write zero to all the W1C fields that are zero in the read value.

◦ Write zero to all the RW fields.

• Read back ERR<n>STATUS after the write to confirm no new fault has been recorded.

2.9 R17872
In section B2.3.3 (Ordering relations), the text in the definition of Atomic-ordered-before that
currently reads:

• RW1 is a memory write effect W1 generated by an atomic instruction or a successful Store-
Exclusive instruction and RW2 is a memory read effect R2 generated by an instruction with
Acquire or AcquirePC semantics such that R2 is a Local read successor of W1.

is relaxed to read:

• RW1 is a read memory effect R1 generated by an atomic instruction and RW2 is a read
memory effect R2 generated by an instruction with Acquire or AcquirePC semantics such
that R2 is a Local read successor of the write memory effect W3 generated by the same
generated by an atomic instruction or a successful Store-Exclusive instruction and RW2 is a
memory read effect R2 generated by the same atomic instruction as R1.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 40

Arm® Architecture Reference Manual Armv8, for A-profile
architecture Known issues in Issue G.b

Document ID: 102105_G.b_01_en
Issue: 01

Known issues

2.10 E17909
Arm® Architecture Reference Manual Armv8, for A-profile architecture, Issue G.b introduces
FEAT_WFxT2, which adds support for reporting the register number for trapped WFxT instructions
in ESR_ELx. E17909 removes FEAT_WFxT2, and adds the functionality that was introduced by
FEAT_WFxT2 to FEAT_WFxT.

In section A2.10.1 (Architectural features added by Armv8.7), the title that reads 'FEAT_WFxT and
FEAT_WFxT2, WFE and WFI instructions with timeout' is updated to read 'FEAT_WFxT, WFE and
WFI instructions with timeout', and the text under the title is updated to read:

FEAT_WFxT introduces WFET and WFIT. These instructions support the generation of a local
timeout event to act as a wake-up event for the PE when the virtual count in CNTVCT_EL0
equals or exceeds the value supplied by the instruction for the first time. The register number
that holds the timeout value for trapped WFET and WFIT instructions is reported in ESR_ELx.

These instructions are added to the A64 instruction set only.

FEAT_WFxT is mandatory in Armv8.7 implementations.

The ID_AA64ISAR2_EL1.WFxT field identifies the presence of FEAT_WFxT.

In section D13.2.64 (ID_AA64ISAR2_EL1), the 'WFxT, bits [3:0]' field is updated to read:

Indicates support for the WFET and WFIT instructions in AArch64 state. Defined values are:

0b0000 WFET and WFIT are not supported.

0b0010 WFET and WFIT are supported, and the register number is reported in the ESR_ELx on
exceptions.

All other values are reserved.

FEAT_WFxT implements the functionality identified by the value 0b0010.

From Armv8.7, the only permitted value is 0b0010.

Correspondingly, in sections D13.2.37 (ESR_EL1), D13.2.38 (ESR_EL2), and D13.2.39 (ESR_EL3), in
the ISS encoding an exception from a WF* instruction, the following fields are added:

RN, bits [9:5]

When FEAT_WFxT is implemented:

Register Number. Indicates the Register Number supplied for a WFET or WFIT instruction.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 40

Arm® Architecture Reference Manual Armv8, for A-profile
architecture Known issues in Issue G.b

Document ID: 102105_G.b_01_en
Issue: 01

Known issues

Otherwise:

Reserved, RES0.

RV, bit [2]

When FEAT_WFxT is implemented:

Register field Valid.

If TI[1] == 1, then this field indicates whether RN holds a valid register number for the register
argument to the trapped WFET or WFIT instruction.

0b0 Register field invalid.

0b1 Register field valid.

If TI[1] == 0, then this field is RES0.

This field is set to 1 on a trap on WFET or WFIT.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

2.11 D17956
In section K11.3.3 (Ticket Locks), the text that currently reads:

Releasing the ticket lock simply involves incrementing the current ticket number, that is still
assumed to be in R3, and doing a Store-Release:

is corrected to read:

Releasing the ticket lock simply involves incrementing the current ticket number, which is
assumed in this example to be in R6, and doing a Store Release:

Within the same section, the AArch64 code that reads:

ADD W5, W5, #0x10000 ; increment the next number
STXR W6, W5, [X1] ; and update the value

is corrected to read:

ADD W3, W5, #0x10000 ; increment the next number

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 40

Arm® Architecture Reference Manual Armv8, for A-profile
architecture Known issues in Issue G.b

Document ID: 102105_G.b_01_en
Issue: 01

Known issues

STXR W6, W3, [X1] ; and update the value

Similarly, the AArch32 code within the same section that reads:

ADD R5, R5, #0x10000 ; increment the next number
STREX R6, R5, [R1] ; and update the value

is corrected to read:

ADD R3, R5, #0x10000 ; increment the next number
STREX R6, R3, [R1] ; and update the value

The AArch32 code within the same section that reads:

BEQ block_start

is enhanced to read:

MOV R6, R5
BEQ block_start

The equivalent changes for this enhancement are made in section K11.3.4 (Use of Wait For Event
(WFE) and Send Event (SEV) with locks), in the AArch32 code within the subsection 'Ticket lock'.

2.12 D18000
In section D7.10.3 (Common event numbers), subsection 'Common microarchitectural events', the
following events are redefined as counting the accesses made by the hardware prefetcher, rather
than the refills:

• 0x8145, L1I_CACHE_HWPRF.

• 0x814D, L2I_CACHE_HWPRF.

• 0x8154, L1D_CACHE_HWPRF.

• 0x8155, L2D_CACHE_HWPRF.

• 0x8156, L3D_CACHE_HWPRF.

For example, '0x8154, L1D_CACHE_HWPRF, Level 1 data cache hardware prefetch' is defined as:

The counter counts each access counted by L1D_CACHE that is not counted by
L1D_CACHE_RW or L1D_CACHE_PRFM.

Correspondingly, the events L<n>I_CACHE_REFILL_HWPRF and L<n>D_CACHE_REFILL_HWPRF
are defined. For example, L1D_CACHE_REFILL_HWPRF is defined as:

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 40

Arm® Architecture Reference Manual Armv8, for A-profile
architecture Known issues in Issue G.b

Document ID: 102105_G.b_01_en
Issue: 01

Known issues

The counter counts each hardware prefetch access counted by L1D_CACHE_HWPRF that
causes a refill of the Level 1 data or unified cache from outside the Level 1 data or unified cache
of this PE.

Equivalent event definitions are added for the other L<n>D_CACHE and L<n>I_CACHE cache
levels.

Within the same subsection, the definitions of the L<n>D_CACHE, L<n>I_CACHE,
L<n>D_CACHE_REFILL, and L<n>I_CACHE_REFILL events are redefined to include the hardware
prefetcher. For example, the text in '0x0004, L1D_CACHE, Level 1 data cache access' that reads:

When the L1D_CACHE_PRFM and L1D_CACHE_RW events are implemented, accesses to the
Level 1 data or unified cache due to a preload or prefetch instruction are counted. Otherwise, it is
IMPLEMENTATION DEFINED whether accesses to the Level 1 data or unified cache due to a preload
or prefetch instruction are counted.

is changed to read:

When the L1D_CACHE_RW event is implemented:

• If the L1D_CACHE_PRFM event is implemented, accesses to the Level 1 data or unified
cache due to a preload or prefetch instruction are counted. Otherwise, these are not counted.

• If the L1D_CACHE_HWPRF event is implemented, accesses to the Level 1 data or unified
cache due to a hardware prefetcher are counted. Otherwise, these are not counted.

When the L1D_CACHE_RW event is not implemented, it is IMPLEMENTATION DEFINED whether
accesses to the Level 1 data or unified cache due to a preload or prefetch instructions or due to a
hardware prefetcher are counted.

Equivalent changes are made to the other L<n>D_CACHE and L<n>I_CACHE cache access events.

Also within the same subsection, the following text in '0x8140, L1D_CACHE_RW, Level 1 data or
unified cache demand access':

The counter counts each access counted by L1D_CACHE that is not counted by
L1D_CACHE_PRFM.

is changed to read:

The counter counts each access counted by L1D_CACHE that is due to a demand read or
demand write access.

Equivalent changes are made to the other L<n>D_CACHE_RW and L<n>I_CACHE_RD demand
cache access events.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 40

Arm® Architecture Reference Manual Armv8, for A-profile
architecture Known issues in Issue G.b

Document ID: 102105_G.b_01_en
Issue: 01

Known issues

2.13 D18001
In section D2.10.6 (Watchpoint behavior on other instructions), the Note that reads:

Note: Despite its mnemonic, the DC ZVA, Data Cache Zero by VA instruction is not a data cache
maintenance instruction.

is clarified to read:

Note: Despite their mnemonics, the DC GVA, DC GZVA, and DC ZVA instructions are not data
cache maintenance instructions.

The equivalent Notes in sections D2.10.5 (Determining the memory location that caused a
Watchpoint exception) and D4.4.8 (A64 Cache maintenance instructions), subsection 'The data
cache maintenance instruction (DC)', are similarly clarified.

The following changes are made in section D4.4.8 (A64 Cache maintenance instructions),
subsection 'Ordering and completion of data and instruction cache instructions':

• The references to 'data cache instructions, other than DC ZVA' are clarified to 'data cache
instructions, other than DC ZVA, GC GVA, and DC GZVA'.

• In the list for all data cache maintenance instructions that do not specify an address, the
reference 'other than Data Cache Zero' is clarified to 'other than DC ZVA, GC GVA, and DC
GZVA'.

In section D5.4.2 (About PSTATE.PAN), the following item in the list of instructions that the PAN
bit does not affect:

Data Cache instructions other than DC ZVA.

is clarified to read:

Data cache instructions other than DC GVA, DC GZVA, and DC ZVA.

2.14 D18002
In section D7.10.3 (Common event numbers), subsection 'Common microarchitectural events',
in the definitions of the STALL_FRONTEND_L<n>I and STALL_FRONTEND_MEM events,
the text that reads 'demand miss' is clarified to read 'demand instruction miss'. Similarly, in the
STALL_BACKEND_L<n>D and STALL_BACKEND_MEM events, the text that reads 'demand miss'
is clarified to read 'demand data miss'. For example, in STALL_BACKEND_L2D the text that reads:

The counter counts each cycle counted by STALL_BACKEND_MEMBOUND when there is a
demand miss in the second level data or unified cache.

is clarified to read:

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 40

Arm® Architecture Reference Manual Armv8, for A-profile
architecture Known issues in Issue G.b

Document ID: 102105_G.b_01_en
Issue: 01

Known issues

The counter counts each cycle counted by STALL_BACKEND_MEMBOUND when there is a
demand data miss in the second level data or unified cache.

In section D8.3.1 (Architected event counters), the text in the definition of the '0x4005,
STALL_BACKEND_MEM, Memory stall cycles' AMU event, that reads:

The counter counts cycles in which the PE is unable to dispatch instructions from the frontend to
the backend of the PE due to a backend stall caused by a miss in the last level of cache within the
PE clock domain or, if Armv8.7 is implemented, non-cacheable access in progress.

If Armv8.7 is not implemented, it is IMPLEMENTATION DEFINED whether the counter counts
backend stall cycles when a non-cacheable access is in progress.

is changed to read:

The counter counts cycles in which the PE is unable to dispatch instructions from the frontend
to the backend of the PE due to a backend stall caused by a demand data miss in the last level of
data or unified cache within the PE clock domain or, if Armv8.7 is implemented, a non-cacheable
data access in progress.

If Armv8.7 is not implemented, it is IMPLEMENTATION DEFINED whether the counter counts
backend stall cycles when a non-cacheable data access is in progress.

In section D7.10.3 (Common event numbers), subsection 'Common microarchitectural events',
the STALL_FRONTEND_L<n>I and STALL_BACKEND_L<n>D events are modified such that they
are only counted if the corresponding STALL_FRONTEND_L<n+1>I or STALL_BACKEND_L<n
+1>D event is not counted. Similarly, these event definitions and the MEM event definitions are
also updated, such that: if an LnI or LnD event is an alias for MEM, then the LnI or LnD event is
not implemented, and the counter does not count. For example, '0x8165, STALL_BACKEND_L1D,
Backend stall cycles, level 1 data cache' is updated to read:

The counter counts each cycle counted by STALL_BACKEND_MEMBOUND when there is a
demand data miss in the first level of data or unified cache.

This counter does not count the cycle if any of the following are true:

• The STALL_BACKEND_L2D event is implemented and there is a demand data miss in the
second level of data or unified cache, meaning the STALL_BACKEND_L2D event counts the
cycle.

• There is a demand data miss in the last level of data or unified cache within the PE clock
domain, meaning the STALL_BACKEND_MEM event counts the cycle.

This event is only implemented if the first level of data or unified cache is implemented within the
PE clock domain and is not the last level of data or unified cache within the PE clock domain.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 40

Arm® Architecture Reference Manual Armv8, for A-profile
architecture Known issues in Issue G.b

Document ID: 102105_G.b_01_en
Issue: 01

Known issues

2.15 D18024
In section J1.3.3 (shared/functions), in the routine ELStateUsingAArch32K() the code which reads:

 if !HaveAArch32EL(el) then
 return (TRUE, FALSE); // Exception level is using AArch64
 elsif secure && el == EL2 then
 return (TRUE, FALSE); // Secure EL2 is using AArch64
 elsif HighestELUsingAArch32() then
 return (TRUE, TRUE); // Highest Exception level, and therefore all levels
are using AArch32
 elsif el == HighestEL() then
 return (TRUE, FALSE); // This is highest Exception level, so is using
AArch64

is updated to read:

 if !HaveAArch32EL(el) then
 return (TRUE, FALSE); // Exception level is using AArch64
 elsif secure && el == EL2 then
 return (TRUE, FALSE); // Secure EL2 is using AArch64
 elsif HighestELUsingAArch32() then
 return (TRUE, TRUE); // Highest Exception level, and therefore all levels
are using AArch32

2.16 D18035
In section D13.4.9 (PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30),
the text in the evtCount field that reads:

If evtCount is programmed to an event that is reserved or not supported by the PE, the behavior
depends on the value written:

• For the range 0x0000 to 0x003F, no events are counted, and the value returned by a direct
or external read of the evtCount field is the value written to the field.

• If 16-bit evtCount is implemented, for the range 0x4000 to 0x403F, no events are counted,
and the value returned by a direct or external read of the evtCount field is the value written
to the field.

• For IMPLEMENTATION DEFINED events, it is UNPREDICTABLE what event, if any, is counted, and
the value returned by a direct or external read of the evtCount field is UNKNOWN.

is corrected to read:

If PMEVTYPER<n>_EL0.evtCount is programmed to an event that is reserved or not supported
by the PE, the behavior depends on the value written:

• For the range 0x0000 to 0x003F, no events are counted and the value returned by a direct
or external read of the PMEVTYPER<n>_EL0.evtCount field is the value written to the field.

• If FEAT_PMUv3p1 is implemented, for the range 0x4000 to 0x403F, no events are counted
and the value returned by a direct or external read of the PMEVTYPER<n>_EL0.evtCount
field is the value written to the field.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 40

Arm® Architecture Reference Manual Armv8, for A-profile
architecture Known issues in Issue G.b

Document ID: 102105_G.b_01_en
Issue: 01

Known issues

• For other values, it is UNPREDICTABLE what event, if any, is counted, and the value returned by
a direct or external read of the PMEVTYPER<n>_EL0.evtCount field is UNKNOWN.

Additionally, the text in the same field that reads:

Arm recommends that the behavior across a family of implementations is defined such that if a
given implementation does not include an event from a set of common IMPLEMENTATION DEFINED
events, then no event is counted and the value read back on evtCount is the value written.

is replaced by the following text:

Arm recommends that for all values that represent reserved or unsupported events,
no events are counted and the value returned by a direct or external read of the
PMEVTYPER<n>_EL0.evtCount field is the value written to the field.

The equivalent changes are made in sections G8.4.11 (PMEVTYPER<n>, Performance Monitors
Event Type Registers, n = 0 - 30), and I5.3.24 (PMEVTYPER<n>_EL0, Performance Monitors Event
Type Registers, n = 0 - 30).

2.17 D18055
In section D1.12.4 (Synchronous exception prioritization for exceptions taken to AArch64 state),
the following bullet point is added to the list of priority 13 cases:

• When FEAT_FGT and FEAT_PMUv3 are implemented, executing an MRS or MSR instruction
in AArch64 state, or an MRC or MCR instruction in AArch32 state, that accesses a register
associated with an unimplemented event counter.

A similar change is made in the equivalent section in AArch32, G1.12.2 (Exception prioritization for
exceptions taken to AArch32 state), subsection 'Synchronous exception prioritization for exceptions
taken to AArch32 state'.

2.18 D18093
In section J1.1.5 (aarch64/translation), in the pseudocode function
AArch64.S1ApplyOutputPerms(), the lines that read:

if regime == Regime_EL10 && EL2Enabled() && walkparams.nv1 == '1' then
 permissions.ap<2:1> = descriptor<7>:'0';
 permissions.pxn = descriptor<54>;

 return permissions;

if HasUnprivileged(regime) then

are corrected to read:

if regime == Regime_EL10 && EL2Enabled() && walkparams.nv1 == '1' then

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 40

Arm® Architecture Reference Manual Armv8, for A-profile
architecture Known issues in Issue G.b

Document ID: 102105_G.b_01_en
Issue: 01

Known issues

 permissions.ap<2:1> = descriptor<7>:'0';
 permissions.pxn = descriptor<54>;

elsif HasUnprivileged(regime) then

2.19 D18106
In section H7.1.3 (Permitted behavior that might make the PC Sample-based profiling registers
UNKNOWN), the text that reads:

If no instruction has been retired since the PE left Debug state, Reset state, or a state where PC
Sample-based profiling is prohibited, the sampled value is UNKNOWN. If an instruction has been
retired but this is the first time the PMPCSR or EDPCSR is read since the PE left Reset state, the
sampled value is permitted but not required to return the value 0xFFFFFFF.

is relaxed to read:

If no branch instruction has been retired since the PE left Debug state, reset state, or a state
where PC Sample-based profiling is prohibited, the sampled value is UNKNOWN. If a branch
instruction has been retired but this is the first time the PMPCSR or EDPCSR is read since the PE
left reset state, the sampled value is permitted but not required to return the value 0xFFFFFFF.

Similarly, in section H9.2.32 (EDPCSR, External Debug Program Counter Sample Register), the text
in the Bits [31:0] description that reads:

If an instruction has retired since the PE left Reset state, then the first read of EDPSCR[31:0] is
permitted but not required to return 0xFFFFFFFF. EDPCSRlo reads as an UNKNOWN value when
any of the following are true:

• The PE is in Reset state.

• No instruction has retired since the PE left Reset state, Debug state, or a state where PC
Sample-based Profiling is prohibited.

• No instruction has retired since the last read of EDPCSR[31:0].

is relaxed to read:

If a branch instruction has retired since the PE left reset state, then the first read of
EDPSCR[31:0] is permitted but not required to return 0xFFFFFFFF. EDPCSRlo reads as an
UNKNOWN value when any of the following are true:

• The PE is in reset state.

• No branch instruction has retired since the PE left reset state, Debug state, or a state where
PC Sample-based Profiling is prohibited.

• No branch instruction has retired since the last read of EDPCSR[31:0].

The equivalent changes are made in section I5.3.33 (PMPCSR, Program Counter Sample Register).

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 40

Arm® Architecture Reference Manual Armv8, for A-profile
architecture Known issues in Issue G.b

Document ID: 102105_G.b_01_en
Issue: 01

Known issues

2.20 D18109
In section D9.6.4 (Additional information for each profiled conditional instruction), the text that
reads:

For an Architecturally executed sampled conditional select, conditional move, or conditional
increment operation finishes execution, the profiling operation records:

• That the sampled operation was conditional.

• Whether the condition passed or failed.

is changed to read:

For an Architecturally executed sampled conditional select or conditional compare operation that
finishes execution, the profiling operation records:

• That the sampled operation was conditional.

• Whether the condition passed or failed. Conditional select operations include conditional
select, conditional select increment, conditional select negate, and conditional select invert
operations, including general-purpose, FP&SIMD, and SVE operations, as well as aliases such
as conditional set and conditional increment. It does not include SVE operations where the
conditionality of the operation is controlled by a predicate.

In section D10.2.6 (Events packet), subsection 'Events packet payload', in the E[6] field, the
following Note is deleted:

This Event includes branches, selects, CCMP (register), and CCMP (immediate).

In section D10.2.7 (Operation Type packet), subsection 'Operation Type packet payload (Other), in
the COND field, the text that reads:

1 Conditional operation or select.

is corrected to read:

1 Conditional select or conditional compare operation.

2.21 D18118
In section J1.2.2 (aarch32/exceptions), in the function AArch32.CheckForWFxTrap(), the code that
reads:

boolean is_wfe = wfxtype IN {WFxType_WFE, WFxType_WFET};

is updated to read:

boolean is_wfe = wfxtype == WFxType_WFE;

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 40

Arm® Architecture Reference Manual Armv8, for A-profile
architecture Known issues in Issue G.b

Document ID: 102105_G.b_01_en
Issue: 01

Known issues

2.22 D18133
In section D13.8.15 (CNTKCTL_EL1, Counter-timer Kernel Control register) in the definition of
EVNTEN, bit [2], the text that reads:

When FEAT_VHE is not implemented, or when HCR_EL2.{E2H, TGE} is not {1, 1}, enables the
generation of an event stream from the counter register CNTVCT_EL0.

is clarified to read:

When FEAT_VHE is not implemented, or when HCR_EL2.{E2H, TGE} is not {1, 1}, enables the
generation of an event stream from the counter register CNTVCT_EL0 as seen from EL1.

All other references to CNTVCT_EL0 as part of the event stream in this section are clarified in a
similar way.

Similarly, in section D13.8.2 (CNTHCTL_EL2, Counter-timer Hypervisor Control register) for the
EVNTEN, bit [2] the text that reads:

Enables the generation of an event stream from the counter register CNTPCT_EL0.

is clarified to read:

Enables the generation of an event stream from the counter register CNTPCT_EL0 as seen from
EL2.

All other references to CNTPCT_EL0 as part of the event stream in this section are clarified in a
similar way.

2.23 D18138
In section C7.2.146 (FRECPX), the text that reads:

This instruction finds an approximate reciprocal exponent for each vector element in the
source SIMD&FP register, places the result in a vector, and writes the vector to the destination
SIMD&FP register.

is replaced by the following text:

This instruction finds an approximate reciprocal exponent for the source SIMD&FP register and
writes the result to the destination SIMD&FP register.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 40

Arm® Architecture Reference Manual Armv8, for A-profile
architecture Known issues in Issue G.b

Document ID: 102105_G.b_01_en
Issue: 01

Known issues

2.24 D18140
In sections B2.3.8 (Ordering of instruction fetches) and E2.3.8 (Ordering of instruction fetches), the
text that reads:

For two memory locations A and B, if A has been written to and been made coherent with the
instruction fetches of the shareability domain, before an update to B by an observer in the same
shareability domain, then the instruction stream of each observer in the shareability domain will
not see the updated value of B without also seeing the updated value of A.

is corrected to read:

For two memory locations A and B:

If A has been written to with an updated value and been made coherent with the instruction
fetches of the shareability domain, before B has been written to with an updated value by an
observer in the same shareability domain, then where, for an observer in the shareability domain,
an instruction read from B appears in program order before an instruction fetched from A, if
the instruction read from B contains the updated value of B then the instruction read from A
appearing later in program order will contain the updated value of A.

2.25 D18144
In sections J1.1.2 (aarch64/exceptions), AArch64.AArch32SystemAccessTrapSyndrome() which
currently reads:

 bits(20) iss = Zeros();

 if exception.exceptype IN {Exception_FPIDTrap, Exception_CP14RTTrap, Excep\
tion_CP15RTTrap} then
 // Trapped MRC/MCR, VMRS on FPSID
 if exception.exceptype != Exception_FPIDTrap then // When trap is not for
 VMRS
 ...
 if instr<19:16> == '1111' then // Rn==15, LDC(Literal addressing)/STC
 iss<9:5> = bits(5) UNKNOWN;
 iss<3> = '1';
 elsif exception.exceptype == Exception_Uncategorized then
 // Trapped for unknown reason
 iss<9:5> = LookUpRIndex(UInt(instr<19:16>), PSTATE.M)<4:0>; // Rn
 iss<3> = '0';

 iss<0> = instr<20>; // Direction
 ...

is updated to read:

 bits(20) iss = Zeros();

 if exception.exceptype == Exception_Uncategorized then
 return exception;
 elsif exception.exceptype IN {Exception_FPIDTrap, Exception_CP14RTTrap, Excep\
tion_CP15RTTrap} then

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25 of 40

Arm® Architecture Reference Manual Armv8, for A-profile
architecture Known issues in Issue G.b

Document ID: 102105_G.b_01_en
Issue: 01

Known issues

 // Trapped MRC/MCR, VMRS on FPSID
 if exception.exceptype != Exception_FPIDTrap then // When trap is not for
 VMRS
 ...
 if instr<19:16> == '1111' then // Rn==15, LDC(Literal addressing)/STC
 iss<9:5> = bits(5) UNKNOWN;
 iss<3> = '1';
 iss<0> = instr<20>; // Direction
 ...

In section J1.2.2 (aarch32/exceptions), equivalent changes are made to
AArch32.SystemAccessTrapSyndrome().

2.26 D18152
In section D7.5.2 (Freezing event counters), in the bullet list that is introduced by the paragraph
'When FEAT_PMUv3p7 is implemented, the PMU can be configured to freeze event counters…',
the bullet point that reads:

• If EL2 is implemented, MDCR_EL2.HPMN is less than PMCR_EL0.N
and n is in the range [MDCR_EL2.HPMN .. (PMCR_EL0.N-1)], when
PMOVSCLR_EL0[(PMCR_EL0.N-1):MDCR_EL2.HPMN] is non-zero, indicating an unsigned
overflow in one of the event counters in the range, event counter n does not count when
PMCR_EL0.FZO is 1.

is corrected to read:

• If EL2 is implemented, MDCR_EL2.HPMN is less than PMCR_EL0.N
and n is in the range [MDCR_EL2.HPMN .. (PMCR_EL0.N-1)], when
PMOVSCLR_EL0[(PMCR_EL0.N-1):MDCR_EL2.HPMN] is non-zero, indicating an unsigned
overflow in one of the event counters in the range, event counter n does not count when
MDCR_EL2.HPMFZO is 1.

2.27 D18160
In section J1.1.1 (aarch64/debug), the code in AArch64.CountEvents() that reads:

// PMCR_EL0.DP disables the cycle counter when event counting is prohibited
if enabled && prohibited && n == 31 then
 enabled = PMCR_EL0.DP == '0';

is corrected to read:

// PMCR_EL0.DP disables the cycle counter when event counting is prohibited
if prohibited && n == 31 then
 enabled = enabled && PMCR_EL0.DP == '0';
 prohibited = FALSE; // Otherwise whether event counting is prohibited does
 not affect the cycle counter

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 26 of 40

Arm® Architecture Reference Manual Armv8, for A-profile
architecture Known issues in Issue G.b

Document ID: 102105_G.b_01_en
Issue: 01

Known issues

A similar correction is made in section J1.2.1 (aarch32/debug) to AArch32.CountEvents().

2.28 D18162
In section D10.2.6 (Events packet), subsection 'Events packet payload', the text in 'E[17], byte 2 bit
[17], when SZ == 0b10, or SZ == 0b11' that reads:

If PMUv3 and The Scalable Vector Extension (SVE) are implemented this Event is required to be
implemented consistently with SVE_PRED_EMPTY_SPEC and SVE_PRED_PARTIAL_SPEC in the
Arm Architecture Reference Manual Supplement, the Scalable Vector Extension, for v8-A.

is corrected to read:

If PMUv3 and The Scalable Vector Extension (SVE) are implemented, this Event is required to be
implemented consistently with <xref: SVE_PRED_NOT_FULL_SPEC>.

Similarly, the text in 'E[18], byte 2 bit [18], when SZ == 0b10, or SZ == 0b11' that reads:

If PMUv3 and The Scalable Vector Extension (SVE) are implemented this Event is required to
be implemented consistently with SVE_PRED_EMPTY_SPEC in the Arm Architecture Reference
Manual Supplement, the Scalable Vector Extension, for v8-A.

is clarified to read:

If PMUv3 and The Scalable Vector Extension (SVE) are implemented, this Event is required to be
implemented consistently with <xref: SVE_PRED_EMPTY_SPEC>.

2.29 D18165
In section D5.9.1 (Use of ASIDs and VMIDs to reduce TLB maintenance requirements), subsection
'VMID size', the line that reads:

When the value of VTCR_EL2.VS is 0, VMID[63:56]:

is corrected to read:

When the value of VTCR_EL2.VS is 0, VTTBR_EL2[63:56]:

2.30 D18169
In section J1.3.3 (shared/functions), in the function GenMPAMcurEL(), the following line of code:

if HaveEMPAMExt() && pspace == PIdSpace_Secure then

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 27 of 40

Arm® Architecture Reference Manual Armv8, for A-profile
architecture Known issues in Issue G.b

Document ID: 102105_G.b_01_en
Issue: 01

Known issues

is changed to:

if HaveEMPAMExt() && security == SS_Secure then

Within the same section, in the function PARTIDspaceFromSS(), the following code is removed:

if HaveEMPAMExt() && MPAM3_EL3.FORCE_NS == '1' then
 return PIdSpace_NonSecure;
else
 return PIdSpace_Secure;

and is replaced with:

return PIdSpace_Secure

2.31 D18183
In section C6.2.79 (DGH), the description that reads:

DGH is a hint instruction. A DGH instruction is not expected to be performance optimal to merge
memory accesses with Normal Non-cacheable or Device-GRE attributes appearing in program
order before the hint instruction with any memory accesses appearing after the hint instruction
into a single memory transaction on an interconnect.

is updated to read:

Data Gathering Hint is a hint instruction that indicates that it is not expected to be performance
optimal to merge memory accesses with Normal Non-cacheable or Device-GRE attributes
appearing in program order before the hint instruction with any memory accesses appearing after
the hint instruction into a single memory transaction on an interconnect.

2.32 R18187
In section I5.3.14 (PMCID2SR, CONTEXTIDR_EL2 Sample Register), in the description of
CONTEXTIDR_EL2, bits [31:0], the text that reads:

When the most recent PMPCSR sample was generated:

• If EL2 is using AArch64, then this field is set to the Context ID sampled from
CONTEXTIDR_EL2.

• If EL2 is using AArch32, then this field is set to an UNKNOWN value.

is changed to read:

When the most recent PMPCSR sample is generated:

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 28 of 40

Arm® Architecture Reference Manual Armv8, for A-profile
architecture Known issues in Issue G.b

Document ID: 102105_G.b_01_en
Issue: 01

Known issues

• If the PE is not executing at EL3, EL2 is using AArch64, and EL2 is enabled in the current
Security state, then this field is set to the Context ID sampled from CONTEXTIDR_EL2.

• Otherwise, this field is set to an UNKNOWN value.

Similarly, the text in section H9.2.43 (EDVIDSR, External Debug Virtual Context Sample Register),
in the description of CONTEXTIDR_EL2, bits [31:0], that reads:

When the most recent EDPCSR sample was generated:

• If EL2 was using AArch64 and the PE was executing in Non-secure state, then this field is set
to the Context ID sampled from CONTEXTIDR_EL2.

• If EL2 was using AArch32 or the PE was executing in Secure state, then this field is set to an
UNKNOWN value.

is changed to:

When the most recent EDPCSR sample is generated:

• If the PE is not executing at EL3, EL2 is using AArch64, and EL2 is enabled in the current
Security state, then this field is set to the Context ID sampled from CONTEXTIDR_EL2.

• Otherwise, this field is set to an UNKNOWN value.

In section J1.3.1 (shared/debug), within the pseudocode function CreatePCSample(), the code that
reads:

pc_sample.has_el2 = EL2Enabled();
if EL2Enabled() then
 ...

is changed to read:

pc_sample.has_el2 = PSTATE.EL != EL3 && EL2Enabled();
if pc_sample.has_el2 then
 ...

Also in section J1.3.1 (shared/debug), within the pseudocode function EDPCSRlo[], the code that
reads:

if (HaveVirtHostExt() || HaveV82Debug()) && EDSCR.SC2 == '1' then
 EDVIDSR = (if HaveEL(EL2) && pc_sample.ns == '1' then pc_sample.contextidr_el2
 else bits(32) UNKNOWN);
else
 if HaveEL(EL2) && pc_sample.ns == '1' && pc_sample.el IN {EL1,EL0} then
 EDVIDSR.VMID = pc_sample.vmid;
 else
 EDVIDSR.VMID = Zeros();

is simplified to read:

if (HaveVirtHostExt() || HaveV82Debug()) && EDSCR.SC2 == '1' then
 EDVIDSR = (if pc_sample.has_el2 then pc_sample.contextidr_el2 else bits(32) UN\
KNOWN);

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 29 of 40

Arm® Architecture Reference Manual Armv8, for A-profile
architecture Known issues in Issue G.b

Document ID: 102105_G.b_01_en
Issue: 01

Known issues

else
 EDVIDSR.VMID = (if pc_sample.has_el2 && pc_sample.el IN {EL1,EL0} then pc_sam\
ple.vmid else Zeros());

2.33 D18200
In section D7.10.1 (Definitions), subsection 'Definition of terms', a new definition 'Event in progress'
is added:

Some events count when another event or condition is in progress. This might mean that the
event counts the occupancy of a queue or other microarchitectural structure tracking the event.
It is usually IMPLEMENTATION_DEFINED when an event is in progress.

For example, the MEM_ACCESS_RD_PERCYC event counts when the MEM_ACCESS_RD
event is in progress, meaning on each Processor cycle, the counter increments by the number of
Memory-read operations that are in progress.

These events can be used to calculate the average number of events in progress. In the case of
MEM_ACCESS_RD_PERCYC event, this is also the average read latency. However, the user has
to be aware that the definition of in progress might not include all parts of the operation.

Example: In an example implementation a Memory-read_operation generated by a load
instruction which occupies 3 pipeline stages in the PE before generating a MEM_ACCESS_RD
event when the PE starts to access memory. The event is then considered to be in progress until
the data is returned to the PE. In the case of a Normal Cacheable access, the PE first looks in
the Level 1 data cache, and if the address is cached, returns data in 2 cycles. Once the data is
returned, it is another cycle before the result can be forwarded to any other instruction.

In this example, if all loads hit in the Level 1 cache, the average read latency calculated using the
MEM_ACCESS_RD_PERCYC and MEM_ACCESS_RD events might be 2 cycles. Although this
value is correct for the implementation-specific definition of this event, it has to be adjusted by a
constant 4 additional cycles to match the more commonly understood definition of Level 1 cache
access latency, which for this example would be quoted as 6 cycles.

A cross-reference to this definition is added to each of the MEM_ACCESS_RD_PERCYC,
INST_FETCH_PERCYC, BUS_REQ_RD_PERCYC, DTLB_WALK_PERCYC, and ITLB_WALK_PERCYC
events, in section D7.10.3 (Common event numbers).

2.34 D18202
In section D10.2.7 (Operation Type packet), subsection 'Operation Type packet payload (load/
store)', the PRED field definition is updated to include the following text:

Predicated SVE operation. The operation is one of the following:

• If FEAT_SPEv1p2 is implemented, a predicated load operation that writes to one or more
vector destination registers under a Governing predicate using zeroing predication.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 30 of 40

Arm® Architecture Reference Manual Armv8, for A-profile
architecture Known issues in Issue G.b

Document ID: 102105_G.b_01_en
Issue: 01

Known issues

• A predicated store of one or more vector registers. If FEAT_SPEv1p2 is not implemented, it is
IMPLEMENTATION DEFINED whether this field is 0b0 or 0b1 for a predicated load operation that
writes to one or more vector destination registers under a Governing predicate using zeroing
predication.

2.35 D18216
In section C7.2.53 (FCADD), the line:

bits(datasize) operand3 = V[d];

in the operational pseudocode is removed.

2.36 D18225
In section D7.10.3 (Common event numbers), subsection 'Common microarchitectural events', the
definition of '0x8140, L1D_CACHE_RW, Level 1 data or unified cache demand access' that reads:

The counter counts each access counted by L1D_CACHE that is due to a demand read or
demand write access.

is updated to read:

The counter counts each access counted by L1D_CACHE that is due to a demand read or
demand write access. This includes accesses made for translation table walks made by demand
accesses.

Similarly, each L<n>D_CACHE_RW, L<n>I_CACHE_RD, CACHE_PRFM, and CACHE_HWPRF
event definition is updated to mention translation table walks.

2.37 D18240
In section G8.2.75 (HTCR, Hyp Translation Control Register), the description in HWU62, bit [28]
that currently reads:

Otherwise:

Reserved, RES0.

is corrected to read:

Otherwise:

Reserved, RAZ/WI.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 31 of 40

Arm® Architecture Reference Manual Armv8, for A-profile
architecture Known issues in Issue G.b

Document ID: 102105_G.b_01_en
Issue: 01

Known issues

Equivalent changes are made in HWU61, bit [27], HWU60, bit [26], and HWU59, bit [25].

2.38 R18243
In section D13.2.48 (HCR_EL2, Hypervisor Configuration Register), the following text is added to
the description of DCT, bit [57]:

This bit is permitted to be cached in a TLB.

2.39 C18253
In section I3.1.4 (Access permissions for external views of the Performance Monitors), in Table I3-1
'Access permissions for the Performance Monitors registers', the following changes are made:

• The entries that read 'Access is IMPLEMENTATION DEFINED' are changed to read 'IMPLEMENTATION
DEFINED registers', with a link to a new footnote.

• The new footnote that is added to the table reads: 'See IMPLEMENTATION DEFINED registers on
page H8-7470.'.

2.40 D18258
In section D13.2.117 (SCTLR_EL2, System Control Register (SCTLR_EL2)), the text in the
description of EPAN, bit [57] that reads:

When FEAT_PAN3 is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

is corrected to read:

When FEAT_PAN3 is implemented, HCR_EL2.E2H == 1:

2.41 D18262
In section D1.16.1 (Wait for Event mechanism and Send event), the text that reads:

The architecture does not define the exact nature of the low-power state, except that the
execution of a WFE or a WFET instruction, must not cause a loss of memory coherency.

is clarified to read:

The architecture does not define the exact nature of the low-power state, except that the
execution of a WFE or a WFET instruction, must not cause a loss of memory coherency or
architectural state.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 32 of 40

Arm® Architecture Reference Manual Armv8, for A-profile
architecture Known issues in Issue G.b

Document ID: 102105_G.b_01_en
Issue: 01

Known issues

In section D1.16.2 (Wait For Interrupt) the text that reads:

The architecture does not define the exact nature of the low-power state, except that the
execution of a WFI or WFIT instruction must not cause a loss of memory coherency.

is clarified to read:

The architecture does not define the exact nature of the low-power state, except that:

• The execution of a WFI or WFIT instruction must not cause a loss of memory coherency.

• If the system is configured such that the WFI or WFIT instruction can be completed, then the
WFI or WFIT instruction must not cause a loss of architectural state.

Note: In some implementations, based on the configuration of system specific registers, WFI can
be used as part of a powerdown sequence where no interrupts will cause WFI wakeup events,
and restoration of power involves resetting of the PE. In those cases, the WFI is permitted
to cause a loss of architectural state, as it is assumed that this state will have been saved by
software as part of the powerdown sequence before the WFI.

The equivalent changes are made to sections G1.18.1 (Wait for Event and Send Event) and
G1.18.2 (Wait for Interrupt).

2.42 D18266
In section H2.4.7 (Exceptions in Debug state), the bullet point that reads:

• Any attempt to execute an instruction bit pattern that is an allocated instruction at the
current Exception level, but is listed in Executing instructions in Debug state on page
H2-7349 as undefined in Debug state, generates an exception that is taken to the current
Exception level, or to EL1 if executing at EL0.

is changed to read:

• Any attempt to execute an instruction bit pattern that is an allocated instruction at the
current Exception level, but is listed in Executing instructions in Debug state on page
H2-7349 as UNDEFINED in Debug state, generates an exception.

and the indented bullet point that reads:

• When the value of EDSCR.SDD is 1, are treated as UNDEFINED and generate an exception
that is taken to the current Exception level, or to EL1 if the instruction is executed at EL0. If
the exception is taken to an Exception level that is using AArch32 it is taken as an Undefined
Instruction exception.

is changed to read:

• When the value of EDSCR.SDD is 1, are treated as UNDEFINED and generate an exception.

Additionally, the sentence that reads:

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 33 of 40

Arm® Architecture Reference Manual Armv8, for A-profile
architecture Known issues in Issue G.b

Document ID: 102105_G.b_01_en
Issue: 01

Known issues

Otherwise configurable traps, enables, and disables for instructions are unaffected by Debug
state, and executing an affected instruction generates the appropriate exception.

is deleted, and the sentence that reads:

Otherwise, synchronous exceptions, including Data Aborts, are generated as they would be in
Non-debug state and taken to the appropriate Exception level in Debug state.

is changed to read:

Otherwise, synchronous exceptions are generated as they would be in Non-debug state and
taken to the appropriate Exception level in Debug state.

2.43 D18272
In section B2.3.10 (Memory barriers), in the subsection 'Data Synchronization Barrier (DSB)', the
text that currently reads:

In addition, no instruction that appears in program order after the DSB instruction can alter any
state of the system or perform any part of its functionality until the DSB completes other than:

• Being fetched from memory and decoded.

• Reading the general-purpose, SIMD and floating-point, Special-purpose, or System registers
that are directly or indirectly read without causing side-effects.

is relaxed to read:

In addition, no instruction that appears in program order after the DSB instruction can alter any
state of the system or perform any part of its functionality until the DSB completes other than:

• Being fetched from memory and decoded.

• Reading the general-purpose, SIMD and floating-point, Special-purpose, or System registers
that are directly or indirectly read without causing side-effects.

• If FEAT_ETS is not implemented, having any virtual addresses of loads and stores translated.

The equivalent changes are made in section E2.3.10 (Memory barriers), in the subsection 'Data
Synchronization Barrier (DSB)'.

2.44 D18282
In section F6.1.124 VMLAL (integer), the operand "<type><size>" is removed, and is replaced with
the operand "<dt>", which reads:

Is the data type for the elements of the operands, encoded in "U:size":

• S8 when U = 0, size = 00

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 34 of 40

Arm® Architecture Reference Manual Armv8, for A-profile
architecture Known issues in Issue G.b

Document ID: 102105_G.b_01_en
Issue: 01

Known issues

• S16 when U = 0, size = 01

• S32 when U = 0, size = 10

• U8 when U = 1, size = 00

• U16 when U = 1, size = 01

• U32 when U = 1, size = 10

The same change is made in section F6.1.129 VMLSL (integer).

Similarly, in section F6.1.122 VMLA (integer), the operand "<type><size>" is removed, and is
replaced with the operand "<dt>", which reads:

Is the data type for the elements of the operands, encoded in "size":

• I8 when size = 00

• I16 when size = 01

• I32 when size = 10

The same change is made in section F6.1.127 VMLS (integer).

2.45 D18284
In section D2.12.9 (Exception syndrome information and preferred return address), subsection
'Exception syndrome information', the text that reads:

When an instruction has been stepped, if the stepped instruction was a conditional Load-
Exclusive instruction that failed its Condition code test, then ESR_ELx.EX is set to a CONSTRAINED
UNPREDICTABLE choice of 0 or 1.

is corrected to read:

When an instruction has been stepped, if the stepped instruction was a conditional Load-
Exclusive instruction that failed its Condition code test, then ESR_ELx.ISV is set to 1 and
ESR_ELx.EX is set to a CONSTRAINED UNPREDICTABLE choice of 0 or 1.

2.46 D18288
In section J1.3.3 (shared/functions), in the function Hint_WFE(), the lines that read:

if IsEventRegisterSet() then
 ClearEventRegister();
else

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 35 of 40

Arm® Architecture Reference Manual Armv8, for A-profile
architecture Known issues in Issue G.b

Document ID: 102105_G.b_01_en
Issue: 01

Known issues

are changed to read:

if IsEventRegisterSet() then
 ClearEventRegister();
else
 if localtimeout < 0 || !LocalTimeoutEvent(localtimeout)

and all the remaining pseudo-code in the function is indented by a further 4 spaces.

Similarly, in the function Hint_WFI(), the line that reads:

if !InterruptPending() then

is changed to read:

if !InterruptPending() || (localtimeout >=0 && LocalTimeoutEvent(localtimeout))
 then

2.47 D18291
In sections C6.2.125 (LDGM), C6.2.261 (STGM), and C6.2.311 (STZGM), the following text is
removed:

If ID_AA64PFR1_EL1 != 0b0010, this instruction is UNDEFINED.

2.48 D18294
In section D7.10.3 (Common event numbers), subsection 'Common microarchitectural events', in
the description of event '0x8130, L1D_TLB_RW, Level 1 data or unified TLB demand access', the
text that reads:

The counter counts each access counted by L1D_TLB that is not counted by L1D_TLB_PRFM.

is corrected to read:

The counter counts each access counted by L1D_TLB that is due to a demand Memory-read
operation or demand Memory-write operation.

Equivalent changes are made to the description of event '0x8131, L1I_TLB_RD, Level 1 instruction
TLB demand access'.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 36 of 40

Arm® Architecture Reference Manual Armv8, for A-profile
architecture Known issues in Issue G.b

Document ID: 102105_G.b_01_en
Issue: 01

Known issues

2.49 D18299
In section D5.7.2 (Enhanced support for nested virtualization), subsection 'Loads and stores
generated by transforming register accesses', the bullet point that reads:

• The addressees the memory access is translated by the EL2 translation regime.

is corrected to read:

• The addressees the memory access is translated by the EL2 or EL2&0 translation regime.

2.50 D18300
In section D5.5.1 (The stage 1 memory region attributes), subsection 'Stage 1 definition of the XS
attribute', the reference to a MAIR_ELx.Attrn encoding of 0b1010000 in the following bullet point
is corrected to 0b10100000:

• Inner Write-through Cacheable and Outer Write-through Cacheable memory types that use
the MAIR_ELx.Attrn encoding 0b1010000.

2.51 C18301
In section D5.2.5 (Translation tables and the translation process), subsection 'Ordering of memory
accesses from translation table walks', the text that reads:

The explicit memory write effect to the translation tables is guaranteed to be observable, to the
extent required by the shareability attributes, only after the execution of a DSB instruction.

is modified to read:

The explicit memory write effect to the translation tables is guaranteed to be observable, to the
extent required by the shareability attributes, after the execution of a DSB instruction.

2.52 R18319
In section D13.3.20 (MDSCR_EL1, Monitor Debug System Control Register), the following
relaxation is added to the RXO field:

When OSLSR_EL1.OSLK == 1, this bit holds the value of EDSCR.RXO. Reads and writes of this
bit are indirect accesses to EDSCR.RXO. A write to MDSCR_EL1 when OSLSR_EL1.OSLK == 1
with RXO=1 and ERR=0 sets EDSCR.{RXO,ERR} to UNKNOWN values.

A similar relaxation is added to the TXU field.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 37 of 40

Arm® Architecture Reference Manual Armv8, for A-profile
architecture Known issues in Issue G.b

Document ID: 102105_G.b_01_en
Issue: 01

Known issues

2.53 D18330
The Arm ARM is somewhat inconsistent in its use of "prefetch" and "preload" to describe the
bringing in of items into caches either by hardware prediction or as a result of some prefetch
or preload instructions. In future versions of the Arm ARM, this will be cleaned up. The term
"prefetch" will be used for this functionality, with "hardware prefetch" used where the prefetch is
predicted by hardware, and "software prefetch" used where the prefetch is prompted by particular
instructions (such as the AArch64 PRFM or AArch32 PLD instructions).

2.54 D18347
In section D13.2.68 (ID_AA64PFR1_EL1, AArch64 Processor Feature Register 1), in the SSBS field,
the text that reads:

FEAT_SSBS implements the functionality identified by the value 0b0010.

is replaced with:

FEAT_SSBS2 implements the functionality identified by the value 0b0010.

2.55 D18352
In section D13.2.66 (ID_AA64MMFR2_EL1, AArch64 Memory Model Feature Register 2), the text
in the accessibility pseudocode that currently reads:

if EL2Enabled() && (!IsZero(ID_AA64MMFR2_EL1) || boolean IMPLEMENTATION_DEFINED
 "ID_AA64MMFR2 trapped by HCR_EL2.TID3") && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);

is corrected to:

if EL2Enabled() && (!IsZero(ID_AA64MMFR2_EL1) || boolean IMPLEMENTATION_DEFINED
 "ID_AA64MMFR2_EL1 trapped by HCR_EL2.TID3") && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);

A similar change is made in section D13.2.71 (ID_DFR1_EL1, Debug Feature Register 1).

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 38 of 40

Arm® Architecture Reference Manual Armv8, for A-profile
architecture Known issues in Issue G.b

Document ID: 102105_G.b_01_en
Issue: 01

Known issues

2.56 D18354
In section C5.6.2 (CPP RCTX, Cache Prefetch Prediction Restriction by Context), the line that
currently reads:

Cache prefetch predictions determined by the actions of code in the target execution context
or contexts appearing in program order before the instruction cannot exploitatively control
speculative execution occurring after the instruction is complete and synchronized.

is clarified to read:

Cache prefetch predictions determined by the actions of code in the target execution context
or contexts appearing in program order before the instruction cannot influence speculative
execution occurring after the instruction is complete and synchronized.

Equivalent clarifications are made in sections C6.2.65 (CPP) and G8.2.34 (CPPRCTX, Cache
Prefetch Prediction Restriction by Context).

2.57 D18366
In section D13.2.103 (PAR_EL1, Physical Address Register), in the description of the ATTR field, the
text that reads:

The value returned in this field can be the resulting attribute, as determined by any permitted
implementation choices and any applicable configuration bits, instead of the value that appears in
the translation table descriptor.

is clarified to read:

The value returned in this field can be the resulting attribute that is actually implemented by the
implementation, as determined by any permitted implementation choices and any applicable
configuration bits, instead of the value that appears in the translation table descriptor.

2.58 D18371
In section D11.2.4 (Timers), in the subsection 'Operation of the CompareValue views of the timers',
the text that reads:

Counter The physical counter value, that can be read from the CNTPCT_EL0 register.

is clarified to read:

Counter The physical counter value, that can be read from the CNTPCT_EL0 register when read
from EL2 or EL3.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 39 of 40

Arm® Architecture Reference Manual Armv8, for A-profile
architecture Known issues in Issue G.b

Document ID: 102105_G.b_01_en
Issue: 01

Known issues

Within the same section, in the subsection 'Operation of the TimerValue views of the timers', the
text that reads:

This view of a timer depends on the following behavior of accesses to TimerValue registers:

Reads TimerValue = (CompareValue – (Counter - Offset))[31:0] Writes CompareValue = ((Counter
- Offset)[63:0] + SignExtend(TimerValue))[63:0]

is modified to read:

This view of a timer depends on the following behavior of accesses to TimerValue registers:

Reads TimerValue = (CompareValue – (Counter - ModOffset))[31:0] Writes CompareValue =
((Counter - ModOffset)[63:0] + SignExtend(TimerValue))[63:0]

Where ModOffset is:

• Offset for all timer registers other than the EL1 physical timer accessed through
CNTP_CTL_EL0.

• Offset for the EL1 physical timer accessed through CNTP_CTL_EL0 if
ID_AA64MMFR0_EL1.ECV is less than 0b10 or CNTHCTL_EL2.ECV is 0b0.

• Offset for the EL1 physical timer accessed through CNTP_CTL_EL0 if
ID_AA64MMFR0_EL1.ECV is 0b10 and CNTHCTL_EL2.ECV is 0b1 and the access is from
EL0 or EL1.

• 0 for the EL1 physical timer accessed through CNTP_CTL_EL0 if ID_AA64MMFR0_EL1.ECV
is 0b10 and CNTHCTL_EL2.ECV is 0b1 and the access is from EL2 or EL3.

Similarly, in section D13.8.18 (CNTP_TVAL_EL0, Counter-timer Physical Timer TimerValue register),
the following Note is added to the TimerValue, bits [31:0] description:

Note: the value of CNTPCT_EL0 used in these calculations is the value seen at the Exception
Level that the CNTPCT_EL0 register is being read/written from.

Copyright © 2020–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 40 of 40

	Arm® Architecture Reference Manual Armv8, for A-profile architecture Known issues in Issue G.b
	Contents
	1 Introduction
	1.1 Conventions
	1.2 Additional reading
	1.3 Feedback
	1.4 Other information

	2 Known issues
	2.1 D14596
	2.2 D16720
	2.3 D17015
	2.4 D17119
	2.5 D17591
	2.6 D17736
	2.7 R17743
	2.8 C17811
	2.9 R17872
	2.10 E17909
	2.11 D17956
	2.12 D18000
	2.13 D18001
	2.14 D18002
	2.15 D18024
	2.16 D18035
	2.17 D18055
	2.18 D18093
	2.19 D18106
	2.20 D18109
	2.21 D18118
	2.22 D18133
	2.23 D18138
	2.24 D18140
	2.25 D18144
	2.26 D18152
	2.27 D18160
	2.28 D18162
	2.29 D18165
	2.30 D18169
	2.31 D18183
	2.32 R18187
	2.33 D18200
	2.34 D18202
	2.35 D18216
	2.36 D18225
	2.37 D18240
	2.38 R18243
	2.39 C18253
	2.40 D18258
	2.41 D18262
	2.42 D18266
	2.43 D18272
	2.44 D18282
	2.45 D18284
	2.46 D18288
	2.47 D18291
	2.48 D18294
	2.49 D18299
	2.50 D18300
	2.51 C18301
	2.52 R18319
	2.53 D18330
	2.54 D18347
	2.55 D18352
	2.56 D18354
	2.57 D18366
	2.58 D18371

