
Arm® Architecture Reference Manual for A-
profile architecture

Known issues in Issue I.a

Non-Confidential
Copyright © 2020, 2022–2023 Arm Limited (or its
affiliates).
All rights reserved.

Issue 06
102105_I.a_06_en

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Arm® Architecture Reference Manual for A-profile architecture
Known issues in Issue I.a

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

F.c-
04

18 December
2020

Non-
Confidential

Known Issues in Arm® Architecture Reference Manual, Issue F.c,
as of 18 December 2020

G.b-
05

31 January
2022

Non-
Confidential

Known Issues in Arm® Architecture Reference Manual, Issue G.b,
as of 7 January 2022

H.a-
06

22 July 2022 Non-
Confidential

Known Issues in Arm® Architecture Reference Manual, Issue H.a,
as of 22 July 2022

I.a-
00

5 August
2022

Non-
Confidential

Known Issues in Arm® Architecture Reference Manual, Issue I.a,
as of 5 August 2022

I.a-
01

30
September
2022

Non-
Confidential

Known Issues in Arm® Architecture Reference Manual, Issue I.a,
as of 23 September 2022

I.a-
02

31 October
2022

Non-
Confidential

Known Issues in Arm® Architecture Reference Manual, Issue I.a,
as of 21 October 2022

I.a-
03

30 November
2022

Non-
Confidential

Known Issues in Arm® Architecture Reference Manual, Issue I.a,
as of 18 November 2022

I.a-
04

6 January
2023

Non-
Confidential

Known Issues in Arm® Architecture Reference Manual, Issue I.a,
as of 16 December 2022

I.a-
05

10 March
2023

Non-
Confidential

Known Issues in Arm® Architecture Reference Manual, Issue I.a,
as of 24 February 2023

I.a-
06

21 April 2023 Non-
Confidential

Known Issues in Arm® Architecture Reference Manual, Issue I.a,
as of 31 March 2023

Proprietary Notice

This document is protected by copyright and other related rights and the practice or
implementation of the information contained in this document may be protected by one or more
patents or pending patent applications. No part of this document may be reproduced in any form

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

by any means without the express prior written permission of Arm. No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether
implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-
INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, patents, copyrights,
trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that
any use, duplication or disclosure of this document complies fully with any relevant export laws
and regulations to assure that this document or any portion thereof is not exported, directly
or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s
customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and
names mentioned in this document may be the trademarks of their respective owners. Please
follow Arm’s trademark usage guidelines at https://www.arm.com/company/policies/trademarks.

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349|version 21.0)

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 141

https://www.arm.com/company/policies/trademarks

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by Arm
and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Feedback

Arm welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https://support.developer.arm.com

To provide feedback on the document, fill the following survey: https://developer.arm.com/
documentation-feedback-survey.

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

We believe that this document contains no offensive language. To report offensive language in this
document, email terms@arm.com.

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 141

https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey
mailto:terms@arm.com

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06
Contents

Contents

1. Introduction..11
1.1 Conventions... 11
1.2 Useful resources... 12
1.3 Other information...12

2. Known issues...13
2.1 C15788... 13
2.2 D16198...13
2.3 C16212... 14
2.4 D16424...14
2.5 D16504...15
2.6 D16648...16
2.7 D16716...16
2.8 D16729...17
2.9 D17015...17
2.10 D17082.. 17
2.11 D17119.. 18
2.12 C17311...18
2.13 R17462...19
2.14 D17556.. 19
2.15 R17661...20
2.16 E17792...20
2.17 C17811...22
2.18 E17996...23
2.19 D18330.. 24
2.20 D18465.. 24
2.21 R18485...24
2.22 D18520.. 25
2.23 D18736.. 25
2.24 R18746...27
2.25 D18800.. 27
2.26 D18823.. 28

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06
Contents

2.27 C18842...32
2.28 C18843...32
2.29 D18853.. 32
2.30 D18887.. 33
2.31 D18889.. 34
2.32 C19027...36
2.33 C19047...36
2.34 D19116.. 36
2.35 D19121.. 36
2.36 D19162.. 37
2.37 D19178.. 38
2.38 C19183...40
2.39 C19202...40
2.40 D19239.. 41
2.41 D19275.. 42
2.42 D19323.. 42
2.43 C19346...43
2.44 R19370...43
2.45 D19372.. 44
2.46 E19440...44
2.47 D19451.. 44
2.48 D19452.. 45
2.49 D19494.. 45
2.50 R19519...46
2.51 D19521.. 47
2.52 D19549.. 47
2.53 D19560.. 47
2.54 D19561.. 48
2.55 D19581.. 48
2.56 D19583.. 49
2.57 D19642.. 49
2.58 C19644...49
2.59 D19647.. 50
2.60 C19649...50
2.61 D19680.. 51
2.62 D19696.. 52

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06
Contents

2.63 E19713...53
2.64 D19741.. 53
2.65 D19753.. 54
2.66 C19772...54
2.67 C19793...55
2.68 D19800.. 58
2.69 D19804.. 58
2.70 R19810...58
2.71 D19817.. 58
2.72 D19829.. 59
2.73 E19831...59
2.74 D19833.. 59
2.75 C19835...60
2.76 D19887.. 60
2.77 E19892...61
2.78 D19917.. 62
2.79 D19918.. 62
2.80 D19924.. 63
2.81 D19928.. 64
2.82 D19936.. 64
2.83 C19956...65
2.84 D19961.. 65
2.85 C20009...65
2.86 D20011.. 66
2.87 C20016...67
2.88 R20031...67
2.89 D20053.. 68
2.90 E20075...68
2.91 D20128.. 69
2.92 D20315.. 70
2.93 C20158...70
2.94 D20159.. 71
2.95 D20163.. 71
2.96 R20165...72
2.97 D20171.. 73
2.98 D20192.. 73

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06
Contents

2.99 D20207.. 74
2.100 R20208.. 74
2.101 D20210..75
2.102 C20220.. 76
2.103 C20237.. 76
2.104 D20253..77
2.105 D20268..77
2.106 C20275.. 77
2.107 D20282..79
2.108 D20283..81
2.109 D20284..81
2.110 E20288.. 82
2.111 D20303..83
2.112 D20310..83
2.113 C20312.. 84
2.114 D20317..85
2.115 D20319..85
2.116 D20330..86
2.117 D20332..88
2.118 C20333.. 89
2.119 D20334..89
2.120 D20335..89
2.121 D20340..89
2.122 C20341.. 90
2.123 D20346..90
2.124 D20363..91
2.125 D20365..92
2.126 D20375..92
2.127 D20378..93
2.128 D20380..94
2.129 D20389..95
2.130 D20397..96
2.131 D20398..97
2.132 D20433..98
2.133 D20443..99
2.134 D20444..99

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06
Contents

2.135 C20503..100
2.136 D20506... 103
2.137 C20514..103
2.138 C20530..104
2.139 D20542... 104
2.140 D20578... 104
2.141 C20583..105
2.142 D20589... 107
2.143 R20604..109
2.144 R20607..110
2.145 C20625..110
2.146 D20635... 111
2.147 D20664... 111
2.148 D20675... 112
2.149 D20682... 112
2.150 D20684... 112
2.151 D20692... 113
2.152 R20697..115
2.153 C20702..116
2.154 D20711... 117
2.155 D20728... 117
2.156 D20731... 118
2.157 C20759..119
2.158 D20760... 119
2.159 D20764... 119
2.160 D20791... 120
2.161 R20805..121
2.162 D20829... 121
2.163 C1186: SME...122
2.164 C1342: SME...122
2.165 D1386: SME.. 123
2.166 D494: SVE2..124
2.167 D504: SVE2..124
2.168 C215: SVE.. 125
2.169 C225: SVE.. 127
2.170 C256: SVE.. 128

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06
Contents

2.171 C279: SVE.. 128
2.172 C301: SVE.. 129
2.173 D302: SVE..130
2.174 C313: SVE.. 130
2.175 C314: SVE.. 131
2.176 C318: SVE.. 133
2.177 C1206: Armv9 Debug... 133
2.178 D1383: Armv9 Debug...133
2.179 D1461: Armv9 Debug...134
2.180 D1466: Armv9 Debug...134
2.181 D1493: Armv9 Debug...134
2.182 D1023: RME.. 135
2.183 C1277: RME.. 139
2.184 C1283: RME.. 140
2.185 D1284: RME.. 140
2.186 R1345: RME...141

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Introduction

1. Introduction

1.1 Conventions
The following subsections describe conventions used in Arm documents.

Glossary
The Arm Glossary is a list of terms used in Arm documentation, together with definitions for
those terms. The Arm Glossary does not contain terms that are industry standard unless the Arm
meaning differs from the generally accepted meaning.

See the Arm Glossary for more information: developer.arm.com/glossary.

Typographic conventions
Arm documentation uses typographical conventions to convey specific meaning.

Convention Use

italic Citations.

bold Interface elements, such as menu names.

Terms in descriptive lists, where appropriate.

monospace Text that you can enter at the keyboard, such as commands, file and program names, and source code.

monospace underline A permitted abbreviation for a command or option. You can enter the underlined text instead of the full
command or option name.

<and> Encloses replaceable terms for assembler syntax where they appear in code or code fragments.

For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS Terms that have specific technical meanings as defined in the Arm® Glossary. For example,
IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and UNPREDICTABLE.

Recommendations. Not following these recommendations might lead to system failure or damage.

Requirements for the system. Not following these requirements might result in system failure or damage.

Requirements for the system. Not following these requirements will result in system failure or damage.

An important piece of information that needs your attention.

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 141

https://developer.arm.com/glossary

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Introduction

Convention Use
A useful tip that might make it easier, better or faster to perform a task.

A reminder of something important that relates to the information you are reading.

1.2 Useful resources
This document contains information that is specific to this product. See the following resources for
other useful information.

Access to Arm documents depends on their confidentiality:

• Non-Confidential documents are available at developer.arm.com/documentation. Each
document link in the following tables goes to the online version of the document.

• Confidential documents are available to licensees only through the product package.

Arm product resources Document ID Confidentiality

Arm® Architecture Reference Manual for A-profile architecture, Issue I.a DDI 0487I.a Non-Confidential

Arm tests its PDFs only in Adobe Acrobat and Acrobat Reader. Arm cannot
guarantee the quality of its documents when used with any other PDF reader.

Adobe PDF reader products can be downloaded at http://www.adobe.com

1.3 Other information
See the Arm website for other relevant information.

• Arm® Developer.

• Arm® Documentation.

• Technical Support.

• Arm® Glossary.

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 141

http://developer.arm.com/documentation
http://www.adobe.com
https://developer.arm.com/
https://developer.arm.com/documentation
http://www.arm.com/support/technical-support
https://developer.arm.com/glossary

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

2. Known issues
This document records known issues in the Arm Architecture Reference Manual for A-profile
architecture (DDI 0487), Issue I.a.

Key

• C = Clarification.

• D = Defect.

• R = Relaxation.

• E = Enhancement.

2.1 C15788
In section D8.13.5 (TLB maintenance instructions), in the subsection ‘TLB maintenance instructions
that apply to a range of addresses’, the following text is added:

It is possible for a TLB range maintenance instruction for a translation regime that supports
two VA ranges to be issued with an address in the TTBR1 half of the virtual address space,
and SCALE and NUM values such that the range exceeds the top of the address space. In
this scenario, the address is not considered to wrap on overflow and the PE is not required to
invalidate any entries inserted for the TTBR0 half of the VA space.

2.2 D16198
In section D17.2.118 (SCTLR_EL1, System Control Register (EL1)) field ‘A, bit [1]’, the value 0b0
description that reads:

Alignment fault checking disabled when executing at EL1 or EL0.

Instructions that load or store one or more registers, other than load/store exclusive and load-
acquire/store-release, do not check that the address being accessed is aligned to the size of the
data element(s) being accessed.

is corrected to read:

Alignment fault checking disabled when executing at EL1 or EL0. Alignment checks on some
instructions are not disabled by this control. For more information, see Alignment of data
accesses.

The following text in the field description is deleted:

Load/store exclusive and load-acquire/store-release instructions have an alignment check
regardless of the value of the A bit.

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

If FEAT_MOPS is implemented, SETG* instructions have an alignment check regardless of the
value of the A bit.

Equivalent changes are made in the following sections:

• D17.2.119 (SCTLR_EL2, System Control Register (EL2)).

• D17.2.120 (SCTLR_EL3, System Control Register (EL3)).

2.3 C16212
In section D17.2.156 (VSTTBR_EL2, Virtualization Secure Translation Table Base Register) and
D17.2.158 (VTTBR_EL2, Virtualization Translation Table Base Register), in the field ‘BADDR, bits
[47:1]’, the references to:

stage 1 translation table base

are corrected to read:

stage 2 translation table base

2.4 D16424
In section D7.3 (Mixed-endian support), the following footnote is added beneath Table D7-2
‘Endianness support’:

When HCR_EL2.{E2H,TGE} == {1, 1}, the control is from SCTLR_EL2.E0E.

This footnote is linked to from the ‘SCTLR_EL1.E0E’ entry in the ‘Explicit data accesses’ column of
the table.

Within the same section, the text that reads:

• All Exception levels support mixed-endianness:

◦ SCTLR_ELx.EE is RW and SCTLR_EL1.E0E is RW.

• Only EL0 supports mixed-endianness and EL1, EL2, and EL3 support only little-endianness:

◦ SCTLR_ELx.EE is RES0 and SCTLR_EL1.E0E is RW.

• Only EL0 supports mixed-endianness and EL1, EL2, and EL3 support only big-endianness:

◦ SCTLR_ELx.EE is RES1 and SCTLR_EL1.E0E is RW.

• All Exception levels support only little-endianness:

◦ SCTLR_ELx.EE is RES0 and SCTLR_EL1.E0E is RES0.

• All Exception levels support only big-endianness:

◦ SCTLR_ELx.EE is RES1 and SCTLR_EL1.E0E is RES1.

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

is changed to read:

• All Exception levels support mixed-endianness:

◦ SCTLR_ELx.EE, SCTLR_EL1.E0E, and SCTLR_EL2.E0E are RW.

• Only EL0 supports mixed-endianness and EL1, EL2, and EL3 support only little-endianness:

◦ SCTLR_ELx.EE is RES0, and SCTLR_EL1.E0E and SCTLR_EL2.E0E are RW.

• Only EL0 supports mixed-endianness and EL1, EL2, and EL3 support only big-endianness:

◦ SCTLR_ELx.EE is RES1, and SCTLR_EL1.E0E and SCTLR_EL2.E0E are RW.

• All Exception levels support only little-endianness:

◦ SCTLR_ELx.EE, SCTLR_EL1.E0E, and SCTLR_EL2.E0E are RES0.

• All Exception levels support only big-endianness:

◦ SCTLR_ELx.EE, SCTLR_EL1.E0E, and SCTLR_EL2.E0E are RES1.

A corresponding change is made in section B2.6.3 (Data endianness), where the text that reads:

SCTLR_EL1.E0E, configurable at EL1 or higher, determines the data endianness for execution at
EL0.

is changed to read:

SCTLR_EL1.E0E, configurable at EL1 or higher, determines the data endianness for execution at
EL0. When HCR_EL2.{E2H,TGE} == {1, 1}, the control is from SCTLR_EL2.E0E.

2.5 D16504
In section B2.3.11 (Memory Barriers), subsection ‘Load-Acquire, Load-AcquirePC, and Store-
Release’, the text that reads:

Load-Acquire, Load-AcquirePC and Store-Release, other than Load-Acquire Exclusive Pair and
Store-Release-Exclusive Pair, access only a single data element. This access is single-copy atomic.
The address of the data object must be aligned to the size of the data element being accessed,
otherwise the access generates an Alignment fault.

Load-Acquire Exclusive Pair and Store-Release Exclusive Pair access two data elements. The
address supplied to the instructions must be aligned to twice the size of the element being
loaded, otherwise the access generates an Alignment fault.

is corrected to read:

Load-Acquire, Load-AcquirePC and Store-Release, other than Load-Acquire Exclusive Pair and
Store-Release-Exclusive Pair, access only a single data element.

Load-Acquire Exclusive Pair and Store-Release Exclusive Pair access two data elements.

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

2.6 D16648
In section D17.2.48 (HCR_EL2, Hypervisor Configuration Register), in the 0b1 value description of
‘FWB, bit [46]’, the text that reads:

When this bit is 1, then:

• Bit[5] of stage 2 page or block descriptor is RES0.

• When bit[4] of stage 2 page or block descriptor is 1 and when:

◦ Bits[3:2] of stage 2 page or block descriptor are 0b11, the resultant memory type and
inner or outer cacheability attribute is the same as the stage 1 memory type and inner or
outer cacheability attribute.

◦ Bits[3:2] of stage 2 page or block descriptor are 0b10, the resultant memory type and
attribute is Normal Write-Back.

◦ Bits[3:2] of stage 2 page or block descriptor are 0b0x, the resultant memory type will be
Normal Non-cacheable except where the stage 1 memory type was Device-<attr> the
resultant memory type will be Device-<attr>.

is corrected to read:

When this bit is 1, then:

• If the stage 1 translation specifies a cacheable memory type, then the stage 1 cache
allocation hint is applied to the final cache allocation hint where the final memory type is
cacheable.

• If the stage 1 translation does not specify a cacheable memory type, then if the final memory
type is cacheable, it is treated as Read-Allocate, Write-Allocate.

The encoding of the stage 2 memory type and cacheability attributes in bits[5:2] of the stage 2
page or block descriptors are as described in ‘Stage 2 memory type and Cacheability attributes
when FEAT_S2FWB is enabled’.

2.7 D16716
In the Glossary definition of ‘Context synchronization event’, the list ‘The effects of a Context
synchronization event are:’ has the following bullet points added:

• The effect of the completion of any of the instructions added by FEAT_SPECRES is
synchronized to the current execution context.

• Restrictions on the effects of speculation (as described in B2.3.10 Restrictions on the effects
of speculation) are observed.

• Ensuring that the TSB CSYNC instruction is executed in the necessary order with respect to
other instructions.

• Profiling operations for all instructions that are executed in program order are synchronized
by execution of a PSB CSYNC instruction before the Context synchronization event.

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

2.8 D16729
In section D17.2.43 (FPEXC32_EL2, Floating-Point Exception Control register), in the field ‘EN, bit
[30]’, the text that reads:

• For Advanced SIMD instructions only:

◦ CPACR.ASEDIS.

◦ If executing in Non-secure state, HCPTR.TASE and NSACR.NSTRCDIS.

is replaced with:

• For Advanced SIMD instructions only:

◦ CPACR.ASEDIS.

◦ If executing in Non-secure state, HCPTR.TASE and NSACR.NSASEDIS.

Similar changes are made in the following sections:

• G8.2.32 (CPACR, Architectural Feature Access Control register), in the field ‘cp10, bits [21:20]’.

• G8.2.53 (FPEXC, Floating-Point Exception Control register), in the field ‘EN, bit [30]’.

2.9 D17015
Details of traps will be added through the use of new LDC and STC accessibility pseudocode
in sections G8.3.17 (DBGDTRRXint, Debug Data Transfer Register, Receive) and G8.3.19
(DBGDTRTXint, Debug Data Transfer Register, Transmit). This accessibility pseudocode is the same
as for the equivalent MRC and MCR instructions, except that:

• The reported exception syndrome value, if applicable, is 0x06.

• For LDC instructions the accessibility pseudocode loads the value to be written to the System
register from ‘MemA[address, 4]’, where ‘address’ is the virtual address calculated by the LDC
instruction.

2.10 D17082
In section D2.8 (Breakpoint Instruction exceptions) the text that reads:

The PE is using an AArch64 translation regime when it is executing either:

• In an Exception level that is using AArch64.

• At EL0 using AArch32 when EL1 is using AArch64.

is updated to read:

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

The PE is using an AArch64 translation regime when it is executing one of the following:

• In an Exception level that is using AArch64.

• At EL0 using AArch32 when EL1 is using AArch64.

• At EL0 using AArch32 when FEAT_VHE is implemented, EL2 is implemented and enabled in
the current Security state, and HCR_EL2.{E2H,TGE} == {1,1}.

A similar update is made to sections D2.9 (Breakpoint exceptions) and D2.10 (Watchpoint
exceptions).

2.11 D17119
In sections F3.1.10 (Advanced SIMD shifts and immediate generation), subsection ‘Advanced SIMD
two registers and shift amount’ and F4.1.22 (Advanced SIMD shifts and immediate generation),
subsection ‘Advanced SIMD two registers and shift amount’, the following constraints are added to
VMOVL:

• ‘L’ must be ‘0’.

• ‘imm3H’ cannot be ‘000’.

2.12 C17311
In section D8.10.3 (Additional behavior when HCR_EL2.NV is 1 and HCR_EL2.NV1 is 1), the text
in IJKLJK that reads:

For Block descriptors and Page descriptors in the EL1&0 translation regime, all of the following
apply:

• Block descriptor and Page descriptor bit[54] holds PXN, not UXN.

• Block descriptor and Page descriptor bit[53] is RES0.

• Block descriptor and Page descriptor bit[6], AP[1], is treated as 0 regardless of the actual
value.

is updated to read:

For Block descriptors and Page descriptors in the EL1&0 translation regime, all of the following
apply:

• Block descriptor and Page descriptor bit[54] holds PXN, not UXN.

• The Effective value of UXN is 0.

• Block descriptor and Page descriptor bit[53] is RES0.

• Block descriptor and Page descriptor bit[6], AP[1], is treated as 0 regardless of the actual
value.

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

An equivalent change is made in section D17.2.48 (HCR_EL2, Hypervisor Configuration Register),
in the definition of ‘NV1, bit [43]’.

2.13 R17462
In section I2.2.2 (Halt-on-debug), the statement that reads:

Arm recommends that a system counter implements a Halt-on-debug signal that can be
controlled by a debugger using the Embedded Cross-Trigger (ECT) using a system-level cross-
trigger interface that includes:

• A debug request output trigger event that asserts the Halt-on-debug signal.

• A restart request output trigger event that deasserts the Halt-on-debug signal.

For more information, see About the Embedded Cross-Trigger on page H5-10308.

is updated to read:

Where the system counter implements a Halt-on-debug signal and the system supports halting
the system counter, Arm recommends that the Halt-on-debug signal can be controlled by a
debugger using the Embedded Cross-Trigger (ECT) using a system-level cross-trigger interface
that includes:

• A debug request output trigger event that asserts the Halt-on-debug signal.

• A restart request output trigger event that deasserts the Halt-on-debug signal.

For more information, see About the Embedded Cross-Trigger on page H5-10308.

2.14 D17556
In section D7.4.8 (A64 Cache maintenance instructions), in the subsection ‘Effects of All and set/
way maintenance instructions’, the text that reads:

The IC IALLU and DC set/way instructions apply only to the caches of the PE that performs the
instruction.

is corrected to read:

The DC set/way instructions apply only to the caches of the PE that performs the instruction.
IC IALLU instructions apply only to the caches of the PE that performs the instruction, unless
HCR_EL2.FB=1, which causes the instructions to be broadcast within the Inner Shareable domain
when executed from EL1.

In the subsection ‘Effects of virtualization and Security state on the cache maintenance
instructions’, the text that reads:

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

TLB and instruction cache invalidate instructions executed at EL1 are broadcast across the Inner
Shareable domain when all of the following is true:

• When the value of HCR_EL2.FB is 1.

• EL3 is not implemented, or EL3 is implemented and either SCR_EL3.NS == 1 or
SCR_EL3.EEL2 == 1.

When EL1 is using AArch64, this applies to the IC IALLU instruction. This means the instruction
performs the invalidation that would be performed by the corresponding Inner Shareable
instruction IC IALLUIS.

is corrected to read:

TLB invalidate instructions and IC IALLU instructions executed at EL1 are broadcast across the
Inner Shareable domain when all of the following are true:

• EL2 is implemented and enabled in the current Security state.

• The value of HCR_EL2.FB is 1.

2.15 R17661
In section D9.2 (Allocation Tags), the following Notes are removed:

Note: The value 0b1111 may incur a higher performance overhead than other Allocation Tag
encodings.

Note: Arm recommends that software does not use instructions which write 0b1111 as an
Allocation Tag to memory.

2.16 E17792
In section J1.3.3 (shared/functions), the AccType enumeration is refactored, such that the
AccessDescriptor type is repurposed to hold information captured by the AccType enumeration
and replaces the occurrences of AccType throughout the pseudocode in chapter J1 (Armv8
Pseudocode).

The enumeration AccType that reads:

enumeration AccType {AccType_NORMAL, // Normal loads and stores
 AccType_STREAM, // Streaming loads and stores
 AccType_VEC, // Vector loads and stores
 AccType_VECSTREAM, // Streaming vector loads and stores
 AccType_SVE, // Scalable vector loads and stores
 AccType_SVESTREAM, // Scalable vector streaming loads and
 stores
 AccType_SME, // Scalable matrix loads and stores
 AccType_SMESTREAM, // Scalable matrix streaming loads and
 stores

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

 AccType_UNPRIVSTREAM, // Streaming unprivileged loads and
 stores
 AccType_A32LSMD, // Load and store multiple
 AccType_ATOMIC, // Atomic loads and stores
 AccType_ATOMICRW,
 AccType_ORDERED, // Load-Acquire and Store-Release
 AccType_ORDEREDRW,
 AccType_ORDEREDATOMIC, // Load-Acquire and Store-Release with
 atomic access
 AccType_ORDEREDATOMICRW,
 AccType_ATOMICLS64, // Atomic 64-byte loads and stores
 AccType_LIMITEDORDERED, // Load-LOAcquire and Store-LORelease
 AccType_UNPRIV, // Load and store unprivileged
 AccType_IFETCH, // Instruction fetch
 AccType_TTW, // Translation table walk
 AccType_NONFAULT, // Non-faulting loads
 AccType_CNOTFIRST, // Contiguous FF load, not first
 element
 AccType_NV2REGISTER, // MRS/MSR instruction used at EL1 and
 which is converted to a memory access that uses the EL2 translation regime
 AccType_TRBE, // TRBE memory access
 // Other operations
 AccType_DC, // Data cache maintenance
 AccType_IC, // Instruction cache maintenance
 AccType_DCZVA, // DC ZVA instructions
 AccType_ATPAN, // Address translation with PAN
 permission checks
 AccType_AT}; // Address translation

Is replaced with:

// AccessType
// ==========
enumeration AccessType {
 AccessType_IFETCH, // Instruction FETCH
 AccessType_GPR, // Software load/store to a General Purpose Register
 AccessType_ASIMD, // Software ASIMD extension load/store instructions
 AccessType_SVE, // Software SVE load/store instructions
 AccessType_SME, // Software SME load/store instructions
 AccessType_IC, // Sysop IC
 AccessType_DC, // Sysop DC (not DC {Z,G,GZ}VA)
 AccessType_DCZero, // Sysop DC {Z,G,GZ}VA
 AccessType_AT, // Sysop AT
 AccessType_NV2, // NV2 memory redirected access
 AccessType_TRBE, // Trace Buffer access
 AccessType_GPTW, // Granule Protection Table Walk
 AccessType_TTW // Translation Table Walk
};

The AccessDescriptor type that reads:

type AccessDescriptor is (
 boolean transactional,
 MPAMinfo mpam,
 AccType acctype)

Is updated to read:

// AccessDescriptor
// ================
// Memory access or translation invocation attributes that steer architectural
 behavior
type AccessDescriptor is (

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

 AccessType acctype,
 bits(2) el, // Acting EL for the access
 SecurityState ss, // Acting Security State for the access
 boolean acqsc, // Acquire with Sequential Consistency
 boolean acqpc, // FEAT_LRCPC: Acquire with Processor Consistency
 boolean relsc, // Release with Sequential Consistency
 boolean limitedordered, // FEAT_LOR: Acquire/Release with limited ordering
 boolean exclusive, // Access has Exclusive semantics
 boolean atomicop, // FEAT_LSE: Atomic read-modify-write access
 MemAtomicOp modop, // FEAT_LSE: The modification operation in the
 'atomicop' access
 boolean nontemporal, // Hints the access is non-temporal
 boolean read, // Read from memory or only require read permissions
 boolean write, // Write to memory or only require write permissions
 CacheOp cacheop, // DC/IC: Cache operation
 CacheOpScope opscope, // DC/IC: Scope of cache operation
 CacheType cachetype, // DC/IC: Type of target cache
 boolean pan, // FEAT_PAN: The access is subject to PSTATE.PAN
 boolean transactional, // FEAT_TME: Access is part of a transaction
 boolean nonfault, // SVE: Non-faulting load
 boolean firstfault, // SVE: First-fault load
 boolean first, // SVE: First-fault load for the first active element
 boolean contiguous, // SVE: Contiguous load/store not gather load/scatter
 store
 boolean streamingsve, // SME: Access made by PE while in streaming SVE mode
 boolean ls64, // FEAT_LS64: Accesses by accelerator support loads/
stores
 boolean mops, // FEAT_MOPS: Memory operation (CPY/SET) accesses
 boolean a32lsmd, // A32 Load/Store Multiple Data access
 boolean tagchecked, // FEAT_MTE2: Access is tag checked
 boolean tagaccess, // FEAT_MTE: Access targets the tag bits
 MPAMinfo mpam // FEAT_MPAM: MPAM information
)

2.17 C17811
In section I5.8.32 (ERR<n>STATUS, Error Record Primary Status Register, n = 0 - 65534), under the
heading ‘Accessing the ERR<n>STATUS’, the text that reads:

To ensure correct and portable operation, when software is clearing the valid fields in the register
to allow new errors to be recorded, Arm recommends that software:

• Read ERR<n>STATUS and determine which fields need to be cleared to zero.

• Write ones to all the W1C fields that are nonzero in the read value.

• Write zero to all the W1C fields that are zero in the read value.

• Write zero to all the RW fields.

is clarified to read:

To ensure correct and portable operation, when software is clearing the valid fields in the register
to allow new errors to be recorded, Arm recommends that software:

• Read ERR<n>STATUS and determine which fields need to be cleared to zero.

• In a single write to ERR<n>STATUS:

◦ Write ones to all the W1C fields that are nonzero in the read value.

◦ Write zero to all the W1C fields that are zero in the read value.

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

◦ Write zero to all the RW fields.

• Read back ERR<n>STATUS after the write to confirm no new fault has been recorded.

2.18 E17996
In section J1.2.3 (aarch32/functions) and J1.1.3 (aarch64/functions), the previous stub functions
AArch32.PhysicalSErrorSyndrome() and AArch64.PhysicalSErrorSyndrome() respectively are now
defined as:

// AArch32.PhysicalSErrorSyndrome()
// ======================
// Generate SError syndrome.
bits(16) AArch32.PhysicalSErrorSyndrome()
 bits(32) syndrome = Zeros(32);
 FaultRecord fault = GetSavedFault();
 boolean long_format = TTBCR.EAE == '1';
 syndrome = AArch32.CommonFaultStatus(fault, long_format);
 return syndrome<15:0>;
// AArch64.PhysicalSErrorSyndrome()
// ======================
// Generate SError syndrome.
bits(25) AArch64.PhysicalSErrorSyndrome(boolean implicit_esb)
 bits(25) syndrome = Zeros(25);
 FaultRecord fault = GetSavedFault();
 ErrorState errorstate = AArch64.PEErrorState(fault);
 if errorstate == ErrorState_Uncategorized then
 syndrome = Zeros(25);
 elsif errorstate == ErrorState_IMPDEF then
 syndrome<24> = '1'; // IDS
 syndrome<23:0> = bits(24) IMPLEMENTATION_DEFINED "IMPDEF ErrorState";
 else
 syndrome<24> = '0'; // IDS
 syndrome<13> = (if implicit_esb then '1' else '0'); // IESB
 syndrome<12:10> = AArch64.EncodeAsyncErrorSyndrome(errorstate); // AET
 syndrome<5:0> = '010001'; // DFSC
 return syndrome;

A new enumeration ErrorState is added in the same section, which is used instead of the errortype
member of FaultRecord and PhysMemRetStatus:

enumeration ErrorState {ErrorState_UC, // Uncontainable
 ErrorState_UEU, // Unrecoverable state
 ErrorState_UEO, // Restartable state
 ErrorState_UER, // Recoverable state
 ErrorState_CE, // Corrected
 ErrorState_Uncategorized,
 ErrorState_IMPDEF};

A new function AArch32.CommonFaultStatus() is added to section J1.2.2 (aarch32/exceptions):

// AArch32.CommonFaultStatus()
// ====================
// Return the common part of the fault status on reporting a Data
// or Prefetch Abort.
bits(32) AArch32.CommonFaultStatus(FaultRecord fault, boolean long_format)
 bits(32) target = Zeros(32);
 if HaveRASExt() && IsAsyncAbort(fault) then

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

 ErrorState errstate = AArch32.PEErrorState(fault);
 target<15:14> = AArch32.EncodeAsyncErrorSyndrome(errstate); // AET
 if IsExternalAbort(fault) then target<12> = fault.extflag; // ExT
 target<9> = if long_format then '1' else '0'; // LPAE
 if long_format then // Long-descriptor format
 target<5:0> = EncodeLDFSC(fault.statuscode, fault.level); // STATUS
 else // Short-descriptor format
 target<10,3:0> = EncodeSDFSC(fault.statuscode, fault.level); // FS
 return target;

A new function GetSavedFault() is added to section J1.3.3 (shared/functions):

// GetSavedFault()
// ==========
// Return the saved asynchronous fault.
FaultRecord GetSavedFault();

2.19 D18330
Arm® Architecture Reference Manual for A-profile architecture, Issue I.a is somewhat inconsistent in its
use of ‘prefetch’ and ‘preload’ to describe the bringing in of items into caches either by hardware
prediction or as a result of some prefetch or preload instructions.

In future versions of Arm® Architecture Reference Manual for A-profile architecture, this will be
cleaned up. The term ‘prefetch’ will be used for this functionality, with ‘hardware prefetch’ used
where the prefetch is predicted by hardware, and ‘software prefetch’ used where the prefetch is
prompted by particular instructions (such as the AArch64 PRFM or AArch32 PLD instructions).

2.20 D18465
In section D17.2.119 (SCTLR_EL2, System Control Register (EL2)), for all of the bits that are
described as having a function when HCR_EL2.E2H==1 && HCR_EL2.TGE==1 and being RES0
otherwise, it is clarified that these bits:

• Are RES0 when HCR_EL2.E2H==0, so software should write the value 0.

• Are ignored by hardware when HCR_EL2.E2H==1 && HCR_EL2.TGE==0, but software doesn’t
have to set the value 0.

• Have their described effect when HCR_EL2.E2H==1 && HCR_EL2.TGE==1.

2.21 R18485
In section I5.8.8 (ERRDEVAFF, Device Affinity Register), the following text is added to the end of
the Purpose section:

Depending on the IMPLEMENTATION DEFINED nature of the system, it might be possible that
ERRDEVAFF is read before system firmware has configured the group of error records or the

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

PE or group of PEs that the group of error records has affinity with. When this is the case,
ERRDEVAFF reads as zero.

2.22 D18520
In section I5.8.31 (ERR<n>PFGF, Pseudo-fault Generation Feature Register, n = 0 - 65534), the
text in MV, bit [12] that reads:

0b0 When an injected error is recorded, the node might update ERR<n>MISC<m>. If any
syndrome is recorded by the node in ERR<n>MISC<m>, then ERR<n>STATUS.MV is set to 0b1.
ERR<n>PFGCTL.MV is RES0.

is updated to read:

0b0 ERR<n>PFGCTL.MV not supported. When an injected error is recorded, the node might
update ERR<n>MISC<m>. If any syndrome is recorded by the node in ERR<n>MISC<m>,
then ERR<n>STATUS.MV is set to 0b1. If the node always sets ERR<n>.STATUS.MV to 0b1
when recording an injected error, then ERR<n>PFGCTL.MV might be RAO/WI. Otherwise,
ERR<n>PFGCTL.MV is RES0.

Corresponding updates are made to section I5.8.30 (ERR<n>PFGCTL, Pseudo-fault Generation
Control Register, n = 0 - 65534), for bit [12] ‘when the node supports this control’. Similar
corrections are made for the ERR<n>PFGF.AV and ERR<n>PFGCTL.AV controls.

2.23 D18736
In section I5.8.5 (ERRCRIC0, Critical Error Interrupt Configuration Register 0), under the heading
‘Accessing the ERRCRICR0’, the following text is added:

If the implementation does not use the recommended layout for the ERRIRQCR<n> registers,
accesses to ERRCRICR0 are IMPLEMENTATION DEFINED.

ERRCRICR0 ignores writes if all of the following are true:

• The implementation uses the recommended layout for the ERRIRQCR<n> registers.

• ERRCRICR2.NSMSI configures the physical address space for message signaled interrupts as
Secure.

• Accessed as a Non-secure access.

The equivalent changes are made in the following sections:

• I5.8.6 (ERRCRICR1, Critical Error Interrupt Configuration Register 1).

• I5.8.7 (ERRCRICR2, Critical Error Interrupt Configuration Register 2).

• I5.8.11 (ERRERICR0, Error Recovery Interrupt Configuration Register 0).

• I5.8.12 (ERRERICR1, Error Recovery Interrupt Configuration Register 1).

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

• I5.8.13 (ERRERICR2, Error Recovery Interrupt Configuration Register 2).

• I5.8.14 (ERRFHICR0, Fault Handling Interrupt Configuration Register 0).

• I5.8.15 (ERRFHICR1, Faulting Handling Interrupt Configuration Register 1).

• I5.8.16 (ERRFHICR2, Faulting Handling Interrupt Configuration Register 2).

In section I5.8.7 (ERRCRICR2, Critical Error Interrupt Configuration Register 2), the text in the
description of NSMSI, bit [6], that reads:

When the component supports configuring the Security attribute for messaged signaled
interrupts and the component does not allow Non-secure writes to ERRCRICR2:

Security attribute. Defines the physical address space for message signaled interrupts.

0b0 Secure.

0b1 Non-secure.

The reset behavior of this field is:

• On a Error recovery reset,this field resets to an IMPLEMENTATION DEFINED VALUE.

When the component allows Non-secure writes to ERRCRICR2:

Reserved, RES0. Security attribute. Defines the physical address space for message signaled
interrupts. The Security attribute used for message signaled interrupts is Non-secure.

is changed to read:

When the component supports configuring the physical address space for message signaled
interrupts:

Non-secure message signaled interrupt. Defines the physical address space for message signaled
interrupts.

0b0 Secure physical address space.

0b1 Non-secure physical address space.

The reset behavior of this field is:

• On an Error recovery reset, this field resets to an IMPLEMENTATION DEFINED VALUE.

Accessing this field has the following behavior:

• If accessed as a Non-secure access, access to this field is RES1.

• Otherwise, access to this field is RW.

The equivalent changes are made in the following sections:

• I5.8.13 (ERRERICR2, Error Recovery Interrupt Configuration Register 2).

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 26 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

• I5.8.16 (ERRFHICR2, Faulting Handling Interrupt Configuration Register 2).

2.24 R18746
In section B2.7.2 (Device memory), in the subsection ‘Multi-register loads and stores that access
Device memory’, the following paragraph is added:

The architecture permits that the non-speculative execution of an instruction that loads or stores
more than one general-purpose or SIMD and floating-point register might result in repeated
accesses to the same address, even if the resulting accesses are to any type of Device memory.

The equivalent edit is made in section E2.8.2 (Device Memory), in the subsection ‘Multi-register
loads and stores that access Device memory’.

2.25 D18800
In section D17.5.17 (PMUSERENR_EL0, Performance Monitors User Enable Register), the EN, bit
[0] description is updated to read:

Enable. Enables EL0 read/write access to PMU registers.

0b0 EL0 accesses to the specified PMU System registers are trapped, unless enabled by
PMUSERENR_EL0.{ER,CR,SW}.

0b1 EL0 accesses to the specified PMU System registers are enabled, unless trapped by another
control.

In AArch64 state, the register accesses affected by this control are:

• MRS or MSR accesses to PMCCFILTR_EL0, PMCCNTR_EL0, PMCNTENCLR_EL0,
PMCNTENSET_EL0, PMCR_EL0, PMEVCNTR<n>_EL0, PMEVTYPER<n>_EL0,
PMOVSCLR_EL0, PMOVSSET_EL0, PMSELR_EL0, PMXEVCNTR_EL0, PMXEVTYPER_EL0.

• MRS reads of PMCEID0_EL0 and PMCEID1_EL0.

• MSR writes to PMSWINC_EL0.

In AArch32 state, the register accesses affected by this control are:

• MRC or MCR accesses to PMCCFILTR, PMCCNTR, PMCNTENCLR, PMCNTENSET,
PMCR, PMEVCNTR<n>, PMEVTYPER<n>, PMOVSR, PMOVSSET, PMSELR, PMXEVCNTR,
PMXEVTYPER.

• MRC reads of the following registers:

◦ PMCEID0 and PMCEID1.

◦ If FEAT_PMUv3p1 is implemented, PMCEID2 and PMCEID3.

• MCR writes to PMSWINC.

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 27 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

• MRRC or MCRR accesses to PMCCNTR.

When trapped, reads and writes generate an exception to EL1, or to EL2 when EL2 is
implemented and enabled for the current Security state and HCR_EL2.TGE is 1, and:

• AArch64 MRS and MSR accesses are reported using EC syndrome value 0x18.

• AArch32 MRC and MCR accesses are reported using EC syndrome value 0x03.

• AArch32 MRRC and MCRR accesses are reported using EC syndrome value 0x04.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Equivalent changes are made to the {ER, CR, SW} fields, and to the PMUSERENR.{ER, CR, SW, EN}
fields in section G8.4.18 (PMUSERENR, Performance Monitors User Enable Register).

2.26 D18823
In section J1.1.3 (aarch64/functions), the function CalculateBottomPACBit(), reading:

integer CalculateBottomPACBit(bit top_bit)
 integer tsz_field;
 boolean using64k;
 Constraint c;
 if PtrHasUpperAndLowerAddRanges() then
 assert S1TranslationRegime() IN {EL1, EL2};
 if S1TranslationRegime() == EL1 then
 // EL1 translation regime registers
 tsz_field = if top_bit == '1' then UInt(TCR_EL1.T1SZ) else
 UInt(TCR_EL1.T0SZ);
 using64k = if top_bit == '1' then TCR_EL1.TG1 == '11' else TCR_EL1.TG0
 == '01';
 else
 // EL2 translation regime registers
 assert HaveEL(EL2);
 tsz_field = if top_bit == '1' then UInt(TCR_EL2.T1SZ) else
 UInt(TCR_EL2.T0SZ);
 using64k = if top_bit == '1' then TCR_EL2.TG1 == '11' else TCR_EL2.TG0
 == '01';
 else
 tsz_field = if PSTATE.EL == EL2 then UInt(TCR_EL2.T0SZ) else
 UInt(TCR_EL3.T0SZ);
 using64k = if PSTATE.EL == EL2 then TCR_EL2.TG0 == '01' else TCR_EL3.TG0 ==
 '01';
 max_limit_tsz_field = (if !HaveSmallTranslationTableExt() then 39 else if
 using64k then 47 else 48);
 if tsz_field > max_limit_tsz_field then
 // TCR_ELx.TySZ is out of range
 c = ConstrainUnpredictable(Unpredictable_RESTnSZ);
 assert c IN {Constraint_FORCE, Constraint_NONE};
 if c == Constraint_FORCE then tsz_field = max_limit_tsz_field;
 tszmin = if using64k && AArch64.VAMax() == 52 then 12 else 16;
 if tsz_field < tszmin then
 c = ConstrainUnpredictable(Unpredictable_RESTnSZ);
 assert c IN {Constraint_FORCE, Constraint_NONE};
 if c == Constraint_FORCE then tsz_field = tszmin;
 return (64-tsz_field);

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 28 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

is updated to read:

integer CalculateBottomPACBit(bit top_bit)
 Regime regime;
 S1TTWParams walkparams;
 integer bottom_PAC_bit;
 // There is no distinction between AccType_NORMAL and AccType_IFETCH
 // when determining the translation regime
 regime = TranslationRegime(PSTATE.EL, AccType_NORMAL);
 walkparams = AArch64.GetS1TTWParams(regime, Replicate(top_bit, 64));
 bottom_PAC_bit = 64 - UInt(AArch64.PACEffetiveTxSZ(walkparams));
 return bottom_PAC_bit;

In section J1.1.3 (aarch64/functions), the function AArch64.PACEffectiveTxSZ() is added:

// AArch64.PACEffectiveTxSZ()
// =========================
// Compute the effective value for TxSZ used to determine the placement of the PAC
 field
bits(6) AArch64.PACEffetiveTxSZ(S1TTWParams walkparams)
 constant integer s1maxtxsz = AArch64.MaxTxSZ(walkparams.tgx);
 constant integer s1mintxsz = AArch64.S1MinTxSZ(walkparams.ds, walkparams.tgx);
 if AArch64.S1TxSZFaults(walkparams) then
 if ConstrainUnpredictable(Unpredictable_RESTnSZ) == Constraint_FORCE then
 if UInt(walkparams.txsz) < s1mintxsz then
 return s1mintxsz<5:0>;
 if UInt(walkparams.txsz) > s1maxtxsz then
 return s1maxtxsz<5:0>;
 elsif UInt(walkparams.txsz) < s1mintxsz then
 return s1mintxsz<5:0>;
 elsif UInt(walkparams.txsz) > s1maxtxsz then
 return s1maxtxsz<5:0>;
 return walkparams.txsz;

In section J1.1.5 (aarch64/translation), the code within the function AArch64.GetS1TTWParams(),
reading:

 maxtxsz = AArch64.MaxTxSZ(walkparams.tgx);
 mintxsz = AArch64.S1MinTxSZ(walkparams.ds, walkparams.tgx);
 if UInt(walkparams.txsz) > maxtxsz then
 if !(boolean IMPLEMENTATION_DEFINED "Fault on TxSZ value above maximum")
 then
 walkparams.txsz = maxtxsz<5:0>;
 elsif !Have52BitVAExt() && UInt(walkparams.txsz) < mintxsz then
 if !(boolean IMPLEMENTATION_DEFINED "Fault on TxSZ value below minimum")
 then
 walkparams.txsz = mintxsz<5:0>;

is removed.

In section J1.1.5 (aarch64/translation), the code within the function AArch64.GetS2TTWParams(),
reading:

 maxtxsz = AArch64.MaxTxSZ(walkparams.tgx);
 mintxsz = AArch64.S2MinTxSZ(walkparams.ds, walkparams.tgx, s1aarch64);
 if UInt(walkparams.txsz) > maxtxsz then
 if !(boolean IMPLEMENTATION_DEFINED "Fault on TxSZ value above maximum")
 then
 walkparams.txsz = maxtxsz<5:0>;
 elsif !Have52BitPAExt() && UInt(walkparams.txsz) < mintxsz then

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 29 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

 if !(boolean IMPLEMENTATION_DEFINED "Fault on TxSZ value below minimum")
 then
 walkparams.txsz = mintxsz<5:0>;

is removed.

In section J1.1.5 (aarch64/translation), the function AArch64.S1InvalidTxSZ(), reading:

boolean AArch64.S1InvalidTxSZ(S1TTWParams walkparams)
 mintxsz = AArch64.S1MinTxSZ(walkparams.ds, walkparams.tgx);
 maxtxsz = AArch64.MaxTxSZ(walkparams.tgx);
 return UInt(walkparams.txsz) < mintxsz || UInt(walkparams.txsz) > maxtxsz;

is updated to read:

boolean AArch64.S1TxSZFaults(S1TTWParams walkparams)
 mintxsz = AArch64.S1MinTxSZ(walkparams.ds, walkparams.tgx);
 maxtxsz = AArch64.MaxTxSZ(walkparams.tgx);
 if UInt(walkparams.txsz) < mintxsz then
 return (Have52BitVAExt() ||
 boolean IMPLEMENTATION_DEFINED "Fault on TxSZ value below minimum");
 if UInt(walkparams.txsz) > maxtxsz then
 return boolean IMPLEMENTATION_DEFINED "Fault on TxSZ value above maximum";
 return FALSE;

In section J1.1.5 (aarch64/translation), the function AArch64.S2InvalidTxSZ(), reading:

boolean AArch64.S2InvalidTxSZ(S2TTWParams walkparams, boolean s1aarch64)
 mintxsz = AArch64.S2MinTxSZ(walkparams.ds, walkparams.tgx, s1aarch64);
 maxtxsz = AArch64.MaxTxSZ(walkparams.tgx);
 return UInt(walkparams.txsz) < mintxsz || UInt(walkparams.txsz) > maxtxsz;

is updated to read:

boolean AArch64.S2TxSZFaults(S2TTWParams walkparams, boolean s1aarch64)
 mintxsz = AArch64.S2MinTxSZ(walkparams.ds, walkparams.tgx, s1aarch64);
 maxtxsz = AArch64.MaxTxSZ(walkparams.tgx);
 if UInt(walkparams.txsz) < mintxsz then
 return (Have52BitPAExt() ||
 boolean IMPLEMENTATION_DEFINED "Fault on TxSZ value below minimum");
 if UInt(walkparams.txsz) > maxtxsz then
 return boolean IMPLEMENTATION_DEFINED "Fault on TxSZ value above maximum";
 return FALSE;

In section J1.1.5 (aarch64/translation), the code within the function AArch64.S1Translate(), reading:

 if (AArch64.S1InvalidTxSZ(walkparams) ||
 (!ispriv && walkparams.e0pd == '1') ||
 (!ispriv && walkparams.nfd == '1' && IsDataAccess(acctype) &&
 TSTATE.depth > 0) ||
 (!ispriv && walkparams.nfd == '1' && acctype == AccType_NONFAULT) ||
 AArch64.VAIsOutOfRange(va, acctype, regime, walkparams)) then
 fault.statuscode = Fault_Translation;
 fault.level = 0;
 return (fault, AddressDescriptor UNKNOWN);

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 30 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

is updated to read:

 constant integer s1mintxsz = AArch64.S1MinTxSZ(walkparams.ds, walkparams.tgx);
 constant integer s1maxtxsz = AArch64.MaxTxSZ(walkparams.tgx);
 if AArch64.S1TxSZFaults(walkparams) then
 fault.statuscode = Fault_Translation;
 fault.level = 0;
 return (fault, AddressDescriptor UNKNOWN);
 elsif UInt(walkparams.txsz) < s1mintxsz then
 walkparams.txsz = s1mintxsz<5:0>;
 elsif UInt(walkparams.txsz) > s1maxtxsz then
 walkparams.txsz = s1maxtxsz<5:0>;
 if AArch64.VAIsOutOfRange(va, acctype, regime, walkparams) then
 fault.statuscode = Fault_Translation;
 fault.level = 0;
 return (fault, AddressDescriptor UNKNOWN);
 if !ispriv && walkparams.e0pd == '1' then
 fault.statuscode = Fault_Translation;
 fault.level = 0;
 return (fault, AddressDescriptor UNKNOWN);
 if !ispriv && walkparams.nfd == '1' && IsDataAccess(acctype) && TSTATE.depth > 0
 then
 fault.statuscode = Fault_Translation;
 fault.level = 0;
 return (fault, AddressDescriptor UNKNOWN);
 if !ispriv && walkparams.nfd == '1' && acctype == AccType_NONFAULT then
 fault.statuscode = Fault_Translation;
 fault.level = 0;
 return (fault, AddressDescriptor UNKNOWN);

In section J1.1.5 (aarch64/translation), the code within the function AArch64.S2Translate(), reading:

 if (AArch64.S2InvalidTxSZ(walkparams, s1aarch64) ||
 AArch64.S2InvalidSL(walkparams) ||
 AArch64.S2InconsistentSL(walkparams) ||
 AArch64.IPAIsOutOfRange(ipa.paddress.address, walkparams)) then
 fault.statuscode = Fault_Translation;
 fault.level = 0;
 return (fault, AddressDescriptor UNKNOWN);

is updated to read:

 constant integer s2mintxsz = AArch64.S2MinTxSZ(walkparams.ds, walkparams.tgx,
 s1aarch64);
 constant integer s2maxtxsz = AArch64.MaxTxSZ(walkparams.tgx);
 if AArch64.S2TxSZFaults(walkparams, s1aarch64) then
 fault.statuscode = Fault_Translation;
 fault.level = 0;
 return (fault, AddressDescriptor UNKNOWN);
 elsif UInt(walkparams.txsz) < s2mintxsz then
 walkparams.txsz = s2mintxsz<5:0>;
 elsif UInt(walkparams.txsz) > s2maxtxsz then
 walkparams.txsz = s2maxtxsz<5:0>;
 if AArch64.S2InvalidSL(walkparams) || AArch64.S2InconsistentSL(walkparams) then
 fault.statuscode = Fault_Translation;
 fault.level = 0;
 return (fault, AddressDescriptor UNKNOWN);
 if AArch64.IPAIsOutOfRange(ipa.paddress.address, walkparams) then
 fault.statuscode = Fault_Translation;
 fault.level = 0;
 return (fault, AddressDescriptor UNKNOWN);

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 31 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

2.27 C18842
In section I5.5.14 (AMDEVARCH, Activity Monitors Device Architecture Register), the text in the
ARCHID, bits [15:0] description that reads:

For AMU:

• Bits [15:12] are the architecture version, 0x0.

• Bits [11:0] are the architecture part number, 0xA66.

This corresponds to AMU architecture version AMUv1.

is changed to read:

For AMU:

• Bits [19:16] are the minor architecture version, 0x0.

• Bits [15:12] are the major architecture version, 0x0.

• Bits [11:0] are the architecture part number, 0xA66.

This corresponds to a generic AMU, version 1.0.

2.28 C18843
The current description of FEAT_LPA2 in Arm® Architecture Reference Manual for A-profile
architecture, Issue I.a lacks clarity between the ability to describe the size of the output address as
having 52 bits, and there being 52 bits of physical address. This will be rectified in a future release
of Arm® Architecture Reference Manual for A-profile architecture.

2.29 D18853
In section D17.2.107 (RGSR_EL1, Random Allocation Tag Seed Register), the field descriptions are
changed to read:

When GCR_EL1.RRND == 0:

Bits [63:24]

Reserved, RES0.

SEED, bits [23:8]

Seed register used for generating values returned by RandomAllocationTag(). The reset behavior
of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 32 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

Bits [7:4]

Reserved, RES0.

TAG, bits [3:0]

Tag generated by the most recent IRG instruction. The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When GCR_EL1.RRND == 1:

Bits [63:56]

Reserved, RES0.

SEED, bits [55:8]

IMPLEMENTATION DEFINED

Note: Software is recommended to avoid writing SEED[15:0] with a value of zero, unless this has
been generated by the PE in response to an earlier value with SEED being non-zero. The reset
behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [7:4]

Reserved, RES0.

TAG, bits [3:0]

Tag generated by the most recent IRG instruction. The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

2.30 D18887
In section G8.2.120 (PAR, Physical Address Register), the MCR accessibility pseudocode that reads:

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 PAR_NS = ZeroExtend(R[t]);
 else
 PAR = ZeroExtend(R[t]);
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 33 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

 PAR_NS = ZeroExtend(R[t]);
 else
 PAR = ZeroExtend(R[t]);
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 PAR_S = ZeroExtend(R[t]);
 else
 PAR_NS = ZeroExtend(R[t]);

is updated to read:

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 PAR_NS<31:0> = R[t];
 else
 PAR<31:0> = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 PAR_NS<31:0> = R[t];
 else
 PAR<31:0> = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 PAR_S<31:0> = R[t];
 else
 PAR_NS<31:0> = R[t];

An equivalent change is made in the MCR accessibility pseudocode of sections G8.4.2 (PMCCNTR,
Performance Monitors Cycle Count Register), G8.2.166 (TTBR0, Translation Table Base Register 0),
and G8.2.167 (TTBR1, Translation Table Base Register 1).

2.31 D18889
In section C5.2.18 (SPSR_EL1, Saved Program Status Register (EL1)), in the ‘TCO, bit [25]’ field, the
text that reads:

When FEAT_MTE is not implemented, it is CONSTRAINED UNPREDICTABLE whether this field is RES0
or behaves as if FEAT_MTE is implemented.

is corrected to read:

When FEAT_MTE2 is not implemented, it is CONSTRAINED UNPREDICTABLE whether this field is
RES0 or behaves as if FEAT_MTE2 is implemented.

The equivalent changes are made in the following sections:

• C5.2.19 (SPSR_EL2, Saved Program Status Register (EL2)).

• C5.2.20 (SPSR_EL3, Saved Program Status Register (EL3)).

• D13.3.14 (DSPSR_EL0, Debug Saved Program Status Register).

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 34 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

In section C5.2.26 (TCO, Tag Check Override), in the subsection ‘Purpose’, the text that reads:

When FEAT_MTE is implemented, this register allows tag checks to be disabled globally.

When FEAT_MTE is not implemented, it is CONSTRAINED UNPREDICTABLE whether this register is
RES0 or behaves as if FEAT_MTE is implemented.

is corrected to read:

Allows tag checks to be disabled globally.

When FEAT_MTE2 is not implemented, it is CONSTRAINED UNPREDICTABLE whether this register is
RES0 or behaves as if FEAT_MTE2 is implemented.

In section D1.4.1 (PSTATE fields that are meaningful in AArch64 state), rule RPCDTX, the text in the
‘Additional details’ column for the TCO table entry that reads:

If FEAT_MTE2 is not implemented, it is CONSTRAINED UNPREDICTABLE whether the PSTATE.TCO
bit is RES0 or behaves as if FEAT_MTE is implemented.

is corrected to read:

If FEAT_MTE2 is not implemented, it is CONSTRAINED UNPREDICTABLE whether the PSTATE.TCO
bit is RES0 or behaves as if FEAT_MTE2 is implemented.

In section H2.4.1 (PSTATE in Debug state), the text that reads:

When FEAT_MTE is implemented, if Memory-access mode is enabled and PSTATE.TCO is 0,
reads and writes to the external debug interface DTR registers are CONSTRAINED UNPREDICTABLE,
with the following permitted behaviors:

• The PE behaves as if PSTATE.TCO is 0. That is, the load or store operation performs the tag
check if required.

• The PE behaves as if PSTATE.TCO is 1. That is, the load or store operation does not perform
the tag check.

is corrected to read:

When FEAT_MTE2 is implemented, if Memory-access mode is enabled and PSTATE.TCO is 0,
reads and writes to the external debug interface DTR registers are CONSTRAINED UNPREDICTABLE,
with the following permitted behaviors:

• The PE behaves as if PSTATE.TCO is 0. That is, the load or store operation performs the tag
check if required.

• The PE behaves as if PSTATE.TCO is 1. That is, the load or store operation does not perform
the tag check.

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 35 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

2.32 C19027
In section D11.11.3 (Common event numbers), subsection ‘Common microarchitectural
events’, the following text is added to the descriptions of MEM_ACCESS_CHECKED (0x4024),
MEM_ACCESS_CHECKED_RD (0x4025), and MEM_ACCESS_CHECKED_WR (0x4026):

It is IMPLEMENTATION DEFINED whether the counter increments on a Tag Checked access made
when Tag Check Faults are configured to be ignored by SCTLR_ELx.TCF or SCTLR_ELx.TCF0.

2.33 C19047
In section D17.2.27 (CLIDR_EL1, Cache Level ID Register), the following Note is added to the
descriptions of LoUU, bits [29:27], and LoUIS, bits [23:21]:

Note: This field does not describe the requirements for instruction cache invalidation. See
CTR_EL0.DIC.

The equivalent changes are made in section G8.2.27 (CLIDR, Cache Level ID Register).

2.34 D19116
In section D17.11.21 (CNTPS_CTL_EL1, Counter-timer Physical Secure Timer Control register), the
following text is added under ‘Configurations’:

This register is present only when EL3 is implemented. Otherwise, direct accesses to
CNTPS_CTL_EL1 are UNDEFINED.

Equivalent changes are made in the following sections:

• D17.11.23 (CNTPS_CVAL_EL1, Counter-timer Physical Secure Timer CompareValue register).

• D17.11.24 (CNTPS_TVAL_EL1, Counter-timer Physical Secure Timer TimerValue register).

2.35 D19121
In section D17.2.118 (SCTLR_EL1, System Control Register (EL1)), in field ‘C, bit [2]’, the text that
reads:

When the value of the HCR_EL2.DC bit is 1, the PE ignores SCTLR.C. This means that Non-
secure EL0 and Non-secure EL1 data accesses to Normal memory are Cacheable.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no
effect on the PE.

is changed to read:

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 36 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

When the Effective value of the HCR_EL2.DC bit in the current Security state is 1, the PE ignores
SCTLR_EL1.C. This means that EL0 and EL1 data accesses to Normal memory are Cacheable.

When FEAT_VHE is implemented, and the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, this
bit has no effect on the PE.

Similarly in field ‘M, bit [0]’, the text that reads:

If the value of HCR_EL2.{DC, TGE} is not {0, 0} then in Non-secure state the PE behaves as if the
value of the SCTLR_EL1.M field is 0 for all purposes other than returning the value of a direct
read of the field.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no
effect on the PE.

is changed to read:

If the Effective value of HCR_EL2.{DC, TGE} in the current Security state is not {0, 0} then the PE
behaves as if the value of the SCTLR_EL1.M field is 0 for all purposes other than returning the
value of a direct read of the field.

When FEAT_VHE is implemented, and the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, this
bit has no effect on the PE.

The equivalent changes are made in section G8.2.126 (SCTLR, System Control Register).

2.36 D19162
In section B2.3.10 (Restrictions on the effects of speculation), in the subsection ‘Restrictions on the
effects of speculation from Armv8.5’, the text that reads:

Any System register read under speculation to a register that is not architecturally accessible from
the current Exception level cannot be used to form an address, to generate condition codes, or to
generate SVE predicate values to be used by other instructions in the speculative sequence.

is updated to read:

Any read under speculation from a register that is not architecturally accessible from the current
Exception level cannot be used to form an address, to generate condition codes, or to generate
SVE predicate values to be used by other instructions in the speculative sequence.

The equivalent change is made in section E2.3.9 (Restrictions on the effects of speculation), in the
subsection ‘Further restrictions on the effects of speculation from Armv8.5’.

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 37 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

2.37 D19178
In section J1.1.3 (aarch64/functions), the function AddressSupportsLS64(), that reads as:

boolean AddressSupportsLS64(bits(64) address)

Is updated to read as:

boolean AddressSupportsLS64(bits(52) paddress);

The following changes are also made in the same section:

In MemStore64B(), the code that reads:

MemStore64B(bits(64) address, bits(512) value, AccType acctype)
 boolean iswrite = TRUE;
 constant integer size = 64;
 aligned = AArch64.CheckAlignment(address, size, acctype, iswrite);
 if !AddressSupportsLS64(address) then
 c = ConstrainUnpredictable(Unpredictable_LS64UNSUPPORTED);
 assert c IN {Constraint_LIMITED_ATOMICITY, Constraint_FAULT};
 if c == Constraint_FAULT then
 ...
 else
 // Accesses are not single-copy atomic above the byte level.
 for i = 0 to 63
 AArch64.MemSingle[address+8*i, 1, acctype, aligned] = value<7+8*i :
 8*i>;
 else
 -= MemStore64BWithRet(address, value, acctype); // Return status is ignored
 by ST64B
return;

Is updated to read:

MemStore64B(bits(64) address, bits(512) value, AccType acctype)
 boolean iswrite = TRUE;
 constant integer size = 64;
 aligned = AArch64.CheckAlignment(address, size, acctype, iswrite);
 AddressDescriptor memaddrdesc = AArch64.TranslateAddress(address, acctype,
 iswrite,
 istagaccess, aligned,
 size);
 // Check for aborts or debug exceptions
 if IsFault(memaddrdesc) then
 AArch64.Abort(address, memaddrdesc.fault);
 // Effect on exclusives
 if memaddrdesc.memattrs.shareability != Shareability_NSH then
 ClearExclusiveByAddress(memaddrdesc.paddress, ProcessorID(), 64);
 // Memory array access
 accdesc = CreateAccessDescriptor(acctype);
 if !AddressSupportsLS64(memaddrdesc.paddress.address) then
 c = ConstrainUnpredictable(Unpredictable_LS64UNSUPPORTED);
 assert c IN {Constraint_LIMITED_ATOMICITY, Constraint_FAULT};
 if c == Constraint_FAULT then
 ...
 else
 // Accesses are not single-copy atomic above the byte level.
 accdesc.acctype = AccType_ATOMIC;
 for i = 0 to size-1

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 38 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

 memstatus = PhysMemWrite(memaddrdesc, 1, accdesc, value<8*i+7:8*i>);
 if IsFault(memstatus) then
 HandleExternalWriteAbort(memstatus, memaddrdesc, 1, accdesc);
 memaddrdesc.paddress.address = memaddrdesc.paddress.address+1;
 else
 memstatus = PhysMemWrite(memaddrdesc, size, accdesc, value);
 if IsFault(memstatus) then
 HandleExternalWriteAbort(memstatus, memaddrdesc, size, accdesc);
 return;

In MemLoad64B(), the code that reads:

bits(512) MemLoad64B(bits(64) address, AccType acctype)
 ...
 aligned = AArch64.CheckAlignment(address, size, acctype, iswrite);
 if !AddressSupportsLS64(address) then
 c = ConstrainUnpredictable(Unpredictable_LS64UNSUPPORTED);
 assert c IN {Constraint_LIMITED_ATOMICITY, Constraint_FAULT};
 if c == Constraint_FAULT then
 // Generate a stage 1 Data Abort reported using the DFSC code of 110101.
 boolean secondstage = FALSE;
 boolean s2fs1walk = FALSE;
 FaultRecord fault = AArch64.ExclusiveFault(acctype, iswrite,
 secondstage, s2fs1walk);
 AArch64.Abort(address, fault);
 else
 // Accesses are not single-copy atomic above the byte level
 for i = 0 to 63
 data<7+8*i : 8*i> = AArch64.MemSingle[address+8*i, 1, acctype,
 aligned];
 return data;
 AddressDescriptor memaddrdesc;
 memaddrdesc = AArch64.TranslateAddress(address, acctype, iswrite, istagaccess,
 aligned, size);
 // Check for aborts or debug exceptions
 if IsFault(memaddrdesc) then
 ...
 accdesc = CreateAccessDescriptor(acctype);
 PhysMemRetStatus memstatus;
 (memstatus, data) = PhysMemRead(memaddrdesc, size, accdesc);
 if IsFault(memstatus) then
 HandleExternalReadAbort(memstatus, memaddrdesc, size, accdesc);
 return data;

Is updated to read as:

bits(512) MemLoad64B(bits(64) address, AccType acctype)
 ...
 aligned = AArch64.CheckAlignment(address, size, acctype, iswrite);
 AddressDescriptor memaddrdesc;
 memaddrdesc = AArch64.TranslateAddress(address, acctype, iswrite, istagaccess,
 aligned, size);
 // Check for aborts or debug exceptions
 if IsFault(memaddrdesc) then
 ...
 accdesc = CreateAccessDescriptor(acctype);
 if !AddressSupportsLS64(memaddrdesc.paddress.address) then
 c = ConstrainUnpredictable(Unpredictable_LS64UNSUPPORTED);
 assert c IN {Constraint_LIMITED_ATOMICITY, Constraint_FAULT};
 if c == Constraint_FAULT then
 // Generate a stage 1 Data Abort reported using the DFSC code of 110101.
 boolean secondstage = FALSE;
 boolean s2fs1walk = FALSE;
 FaultRecord fault = AArch64.ExclusiveFault(acctype, iswrite,
 secondstage, s2fs1walk);
 AArch64.Abort(address, fault);

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 39 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

 else
 // Accesses are not single-copy atomic above the byte level.
 accdesc.acctype = AccType_ATOMIC;
 for i = 0 to size-1
 PhysMemRetStatus memstatus;
 (memstatus, data<8*i+7:8*i>) = PhysMemRead(memaddrdesc, 1, accdesc);
 if IsFault(memstatus) then
 HandleExternalReadAbort(memstatus, memaddrdesc, 1, accdesc);
 memaddrdesc.paddress.address = memaddrdesc.paddress.address + 1;
 else
 PhysMemRetStatus memstatus;
 (memstatus, data) = PhysMemRead(memaddrdesc, size, accdesc);
 if IsFault(memstatus) then
 HandleExternalReadAbort(memstatus, memaddrdesc, size, accdesc);
 return data;

2.38 C19183
In section H3.5.1 (Synchronization and External Debug Request debug events) the following text:

An External Debug Request debug event that is asserted before a Context synchronization
event is taken and the PE enters Debug state before the first instruction following the Context
synchronization event completes its execution, provided that halting is allowed after completion
of the Context synchronization event.

is replaced by:

For all Context synchronization events, if an External Debug Request debug event is asserted
before the Context synchronization event, and the External Debug Request debug event
remains asserted and halting is allowed after the Context synchronization event, then the debug
event is taken and the PE enters Debug state before the first instruction following the Context
synchronization event completes its execution.

2.39 C19202
In section A2.2.1 (Additional functionality added to Armv8.0 in later releases), in the definition
‘FEAT_CSV2, FEAT_CSV2_2, and FEAT_CSV2_3, Cache Speculation Variant 2’, the text that reads:

FEAT_CSV2 adds a mechanism to identify if hardware cannot disclose information about whether
branch targets trained in one hardware described context can control speculative execution in a
different hardware described context.

is updated to read:

FEAT_CSV2 adds a mechanism to identify if hardware cannot disclose information about whether
branch targets, including those used by return instructions, trained in one hardware described
context can control speculative execution in a different hardware described context.

In section B2.3.10 (Restrictions on the effects of speculation), in the subsection ‘Restrictions on the
effects of speculation from Armv8.5’, the text that reads:

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 40 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

If FEAT_CSV2 is implemented:

• Code running in one hardware-defined context (context1) cannot either exploitatively control,
or predictively leak to, the speculative execution of code in a different hardware-defined
context (context2), as a result of the behavior of any of the following resources:

◦ Branch target prediction based on the branch targets used in context1.

▪ This applies to both direct and indirect branches, but excludes the prediction of the
direction of a conditional branch.

is updated to read:

If FEAT_CSV2 is implemented:

• Code running in one hardware-defined context (context1) cannot either exploitatively control,
or predictively leak to, the speculative execution of code in a different hardware-defined
context (context2), as a result of the behavior of any of the following resources:

◦ Branch target prediction based on the branch targets used in context1.

▪ This applies to both direct and indirect branches, including those used by return
instructions, but excludes the prediction of the direction of a conditional branch.

2.40 D19239
In section D17.2.49 (HCRX_EL2, Extended Hypervisor Configuration Register), the text in the fields
MSCEN, MCE2, CMOW, and SMPME that reads:

On a Warm reset, this field resets to an architecturally UNKNOWN value.

is corrected to read:

On a Warm reset:

• When EL3 is not implemented and EL2 is implemented, this field resets to 0.

• Otherwise, this field resets to an architecturally UNKNOWN value.

In the same register, the text in the fields VFNMI, VINMI, TALLINT, FGTnXS, FnXS, EnASR, EnALS,
and EnAS0 that reads:

On a Warm reset, when EL3 is not implemented and EL2 is implemented, this field resets to 0.

is corrected to read:

On a Warm reset:

• When EL3 is not implemented and EL2 is implemented, this field resets to 0.

• Otherwise, this field resets to an architecturally UNKNOWN value.

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 41 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

2.41 D19275
In section D17.2.48 (HCR_EL2, Hypervisor Configuration Register), in the description of FWB, bit
[46], the following Note is removed:

When FEAT_MTE2 is implemented, if the stage 1 page or block descriptor specifies the Tagged
attribute, the final memory type is Tagged only if the final cacheable memory type is Inner and
Outer Write-back cacheable and the final allocation hints are Read-Allocate, Write-Allocate.

2.42 D19323
In section J1.1.2 (aarch64/exceptions), the function AArch64.TakeException() that reads:

AArch64.TakeException(bits(2) target_el, ExceptionRecord exception_in,
 bits(64) preferred_exception_return,
 integer vect_offset_in)
 assert HaveEL(target_el) && !ELUsingAArch32(target_el) && UInt(target_el) >=
 UInt(PSTATE.EL);
 ExceptionRecord exception = exception_in;
 ...

Is updated to read:

AArch64.TakeException(bits(2) target_el, ExceptionRecord exception_in,
 bits(64) preferred_exception_return,
 integer vect_offset_in)
 assert HaveEL(target_el) && !ELUsingAArch32(target_el) && UInt(target_el) >=
 UInt(PSTATE.EL);
 if Halted() then
 AArch64.TakeExceptionInDebugState(target_el, exception_in);
 return;
 ExceptionRecord exception = exception_in;
 ...

In section J1.2.2 (aarch32/exceptions), the function AArch32.EnterMonitorMode() that reads:

AArch32.EnterMonitorMode(bits(32) preferred_exception_return, integer lr_offset,
 integer vect_offset)
 SynchronizeContext();
 assert HaveEL(EL3) && ELUsingAArch32(EL3);
 from_secure = CurrentSecurityState() == SS_Secure;
 bits(32) spsr = GetPSRFromPSTATE(AArch32_NonDebugState, 32);
 ...

Is updated to read:

AArch32.EnterMonitorMode(bits(32) preferred_exception_return, integer lr_offset,
 integer vect_offset)
 SynchronizeContext();
 assert HaveEL(EL3) && ELUsingAArch32(EL3);
 from_secure = CurrentSecurityState() == SS_Secure;
 if Halted() then
 AArch32.EnterMonitorModeInDebugState();
 return;

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 42 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

 bits(32) s

In section J1.2.2 (aarch32/exceptions), similar changes are made such that function
calls to AArch32.EnterHypMode() and AArch32.EnterMode() are redirected to
AArch32.EnterHypModeInDebugState() and AArch32.EnterModeInDebugState() functions,
respectively.

In section J1.3.3 (shared/functions), a new function EffectiveEA() is added:

bit EffectiveEA()
 if Halted() && EDSCR.SDD == '0' then
 return '0';
 else
 return if HaveAArch64() then SCR_EL3.EA else SCR.EA;

2.43 C19346
In section A2.6.3 (Features added to the Armv8.3 extension in later releases), the description of
‘FEAT_CONSTPACFIELD, PAC algorithm enhancement’ that reads:

FEAT_CONSTPACFIELD introduces functionality that permits an implementation with pointer
authentication to use the value of bit[55] in the virtual address to determine the size of the PAC
field, even when the top byte is not being ignored.

is updated to read:

FEAT_CONSTPACFIELD introduces functionality that permits an implementation with pointer
authentication to use the value of bit[55] in the virtual address to determine the size of the PAC
field when adding a PAC to the virtual address, even when the top byte is not being ignored.

In section D8.8 (Pointer authentication), rule RNQZWG that reads:

If FEAT_CONSTPACFIELD is implemented, then an implementation is permitted to use the value
in Xn[55] to determine the size of the PAC field, even when address tagging is not used.

is updated to read:

If FEAT_CONSTPACFIELD is implemented, then an implementation is permitted to use the value
in Xn[55] to determine the size of the PAC field when adding a PAC to Xn, even when address
tagging is not used.

2.44 R19370
In sections B2.7.1 and E2.8.1 (Normal memory), after the text that reads:

Writes to a memory location with the Normal memory type that is either Non-cacheable or
Write-Through cacheable for both the Inner and Outer Cacheability must reach the endpoint for

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 43 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

that location in the memory system in finite time. Two writes to the same location, where at least
one is using the Normal memory type, might be merged before they reach the endpoint unless
there is an ordered-before relationship between the two writes.

The following text is added:

For the purposes of this requirement, the endpoint for a location in Conventional memory is the
PoC.

2.45 D19372
In section D17.2.107 (RGSR_EL1, Random Seed Allocation Tag Seed Register), the following text is
added under ‘Configurations’:

When GCR_EL1.RRND==0b0, direct and indirect reads and writes to the register appear to occur
in program order relative to other instructions, without the need for any explicit synchronization.

2.46 E19440
In section H9.2.42 (EDSCR, External Debug Status and Control Register), in the fields RXfull, TXfull,
RXO, TXU, TDA, SC2, HDE, and ERR, the following text is added:

When OSLSR_EL1.OSLK is 1, this bit can be indirectly read and written through the following
System registers:

• MDSCR_EL1.

• DBGDSCRext.

2.47 D19451
In section C6.2.378 (TLBI), in the ‘Assembler symbols’ subsection, the following statements are
added to the definition of ‘<tlbi_op>’:

When FEAT_RME is implemented, the following values are also valid:

PAALLOS when op1 = 110, CRn = 1000, CRm = 0001, op2 = 100

RPAOS when op1 = 110, CRn = 1000, CRm = 0100, op2 = 011

RPALOS when op1 = 110, CRn = 1000, CRm = 0100, op2 = 111

PAALL when op1 = 110, CRn = 1000, CRm = 0111, op2 = 100

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 44 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

2.48 D19452
Following the update communicated as D18736, in section I5.8.7 (ERRCRICR2, Critical Error
Interrupt Configuration Register 2), the text in the NSMSI, bit [6] field that reads:

If accessed as a Non-secure access, access to this field is RES1.

is updated to read:

Accessing this field has the following behavior:

• Access is RO if any of the following are true:

◦ an access is Non-secure

◦ an access is Realm

• Otherwise, access to this field is RW.

The equivalent changes are made in the following sections:

• I5.8.13 (ERRERICR2, Error Recovery Interrupt Configuration Register 2).

• I5.8.16 (ERRFHICR2, Faulting Handling Interrupt Configuration Register 2).

2.49 D19494
In section J1.3.3 (shared/functions/externalaborts) the function IsSErrorEdgeTriggered(), that reads
as:

boolean IsSErrorEdgeTriggered(bits(2) target_el, bits(25) syndrome)
 if HaveRASExt() then
 if HaveDoubleFaultExt() then
 return TRUE;
 if ELUsingAArch32(target_el) then
 if syndrome<11:10> != '00' then
 // AArch32 and not Uncontainable.
 return TRUE;
 else
 if syndrome<24> == '0' && syndrome<5:0> != '000000' then
 // AArch64 and neither IMPLEMENTATION DEFINED syndrome nor
 Uncategorized.
 return TRUE;
 return boolean IMPLEMENTATION_DEFINED "Edge-triggered SError";

Is updated to read:

 boolean IsSErrorEdgeTriggered()
 if HaveDoubleFaultExt() then
 return TRUE;
 else
 return boolean IMPLEMENTATION_DEFINED "Edge-triggered SError";

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 45 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

In section J1.1.2 (aarch64/exceptions/async), the function AArch64.TakePhysicalSErrorException(),
that reads as:

AArch64.TakePhysicalSErrorException(boolean implicit_esb)
 ...
 bits(25) syndrome = Zeros(25);
 syndrome = AArch64.PhysicalSErrorSyndrome(implicit_esb);
 if IsSErrorEdgeTriggered(target_el, exception.syndrome) then
 ClearPendingPhysicalSError();
 ...

Is updated to read:

AArch64.TakePhysicalSErrorException(boolean implicit_esb)
 ...
 bits(25) syndrome = AArch64.PhysicalSErrorSyndrome(implicit_esb);
 if IsSErrorEdgeTriggered() then
 ClearPendingPhysicalSError();
 ...

In section J1.2.2 (aarch32/exceptions/async), similar changes are made to the function
AArch32.TakePhysicalSErrorException().

2.50 R19519
In section B2.3.10 (Restrictions on the effects of speculation), in the subsection ‘Restrictions on the
effects of speculation from Armv8.5’, the sub-bullet point that reads:

• Data Value predictions based on data value from execution in context1.

is updated to include the following Note:

Note: PSTATE.{N,Z,C,V} values from context1 are not considered a data value for this purpose.

The equivalent change is made in section E2.3.9 (Restrictions on the effects of speculation), in the
subsection ‘Further restrictions on the effects of speculation from Armv8.5’.

In section C5.6.3 (DVP RCTX, Data Value Prediction Restriction by Context), the following Note is
added:

Note: The prediction of the PSTATE.{N,Z,C,V} values is not considered a data value for this
purpose.

The equivalent change is made in section G8.2.50 (DVPRCTX, Data Value Prediction Restriction by
Context).

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 46 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

2.51 D19521
In section C5.2.25 (SVCR, Streaming Vector Control Register), for the field ZA, bit [1], the text that
reads:

When a write to SVCR.ZA changes the value of PSTATE.ZA, the following applies:

When changed from 0 to 1, all implemented bits of the storage are set to zero. When changed
from 1 to 0, there is no observable change to the storage.

Changes to this field do not have an affect on the SVE vector and predicate registers and FPSR.

is corrected to read:

When a write to SVCR.ZA changes the value of PSTATE.ZA from 0 to 1, all implemented bits of
the storage are set to zero.

Changes to this field do not have an effect on the SVE vector and predicate registers and FPSR.

2.52 D19549
In section D11.11.3 (Common event numbers), in the subsection ‘Common microarchitectural
events’, for each TRCEXTOUT<n> event, where <n> is 0 to 3, the text that reads:

This event must be implemented if FEAT_ETE is implemented.

is updated to read:

This event must be implemented if FEAT_ETE is implemented and the ETE implements External
output <n>.

2.53 D19560
In section D17.2.26 (CCSIDR_EL1, Current Cache Size Register), the text in ‘LineSize, bits [2:0]’
when FEAT_CCIDX is implemented, that reads:

When FEAT_MTE is implemented and enabled, where a cache only holds Allocation tags, this
field is RES0.

is changed to read:

When FEAT_MTE is implemented, where a cache only holds Allocation tags, this field is RES0.

The following text is added to ‘LineSize, bits [2:0]’ when FEAT_CCIDX is not implemented:

When FEAT_MTE is implemented, where a cache only holds Allocation tags, this field is RES0.

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 47 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

2.54 D19561
In section D17.2.107 (RGSR_EL1, Random Allocation Tag Seed Register), the text that reads:

When GCR_EL1.RRND=0, direct and indirect reads and writes to the register appear to occur in
program order relative to other instructions, without the need for any explicit synchronization.

is changed to read:

Direct and indirect reads and writes to the register appear to occur in program order relative to
other instructions, without the need for any explicit synchronization.

2.55 D19581
In section J1.1.4 (aarch64/instrs), the code in the function AArch64.RestrictPrediction() that reads:

// If the instruction is executed at an EL lower than the specified
// level, it is treated as a NOP.
if UInt(target_el) > UInt(PSTATE.EL) then return;

Is updated to read:

// If the target EL is not implemented or the instruction is executed at an
// EL lower than the specified level, the instruction is treated as a NOP.
if !HaveEL(target_el) || UInt(target_el) > UInt(PSTATE.EL) then EndOfInstruction();

This affects the A64 System instructions in the following sections:

• C5.6.1 (CFP RCTX, Control Flow Prediction Restriction by Context).

• C5.6.2 (CPP RCTX, Cache Prefetch Prediction Restriction by Context).

• C5.6.3 (DVP RCTX, Data Value Prediction Restriction by Context).

An equivalent change is made in AArch32.RestrictPrediction() affecting the AArch32 System
Registers in the following sections:

• G8.2.26 (CFPRCTX, Control Flow Prediction Restriction by Context).

• G8.2.34 (CPPRCTX, Cache Prefetch Prediction Restriction by Context).

• G8.2.50 (DVPRCTX, Data Value Prediction Restriction by Context).

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 48 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

2.56 D19583
In section D1.3.8 (Configurable instruction controls), rule RJTXTF that reads:

It is UNPREDICTABLE / CONSTRAINED UNPREDICTABLE whether configurable instruction controls
generate an exception when the instruction is UNPREDICTABLE or CONSTRAINED UNPREDICTABLE in
the PE state in which the instruction is executed.

is updated to read:

It is CONSTRAINED UNPREDICTABLE whether configurable instruction controls generate an exception
when the instruction is UNPREDICTABLE or CONSTRAINED UNPREDICTABLE in the PE state in which
the instruction is executed, with all of the following constraints:

• If the instruction description explicitly states that the configurable instruction control
is applied with higher priority than the CONSTRAINED UNPREDICTABLE behavior, then the
configurable instruction control generates an exception.

• The CONSTRAINED UNPREDICTABLE behaviors cannot lead to any behavior that is prohibited by
the general definition of UNPREDICTABLE.

2.57 D19642
In section D11.11.3 (Common event numbers), subsection ‘Common microarchitectural events’, the
PMU events that read:

0x4025, MEM_ACCESS_RD_CHECKED, Checked data memory access, read

0x4026, MEM_ACCESS_WR_CHECKED, Checked data memory access, write

are corrected to read:

0x4025, MEM_ACCESS_CHECKED_RD, Checked data memory access, read

0x4026, MEM_ACCESS_CHECKED_WR, Checked data memory access, write

2.58 C19644
In section D11.11.3 (Common event numbers), subsection ‘Common microarchitectural
events’, the text in the descriptions of MEM_ACCESS_CHECKED_RD (0x4025) and
MEM_ACCESS_CHECKED_WR (0x4026) that reads:

Implementation of this optional event requires that FEAT_MTE is implemented.

is corrected to read:

Implementation of this optional event requires that FEAT_MTE2 is implemented.

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 49 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

This text is also added to the MEM_ACCESS_CHECKED (0x4024) event description.

2.59 D19647
In section D8.2.3 (Translation table base address register), the following text is added:

Direct writes to TTBR0_ELx and TTBR1_ELx occur in program order relative to one another,
without the need for explicit synchronization. For any one translation, all indirect reads of
TTBR0_ELx and TTBR1_ELx made as part of the translation observe only one point in that order
of direct writes. Consistent with the general requirements for direct writes to System registers,
direct writes to TTBRn_ELx are not required to be observed by indirect reads until completion of
a Context synchronization event.

A new subsection, ‘Example sequences for changing TTBRn_ELx for AArch64’, is added after this
text:

Example D8-1 Example software sequence for changing translation table base address and ASID
value when TCR_EL1.A1=1

Change TTBR0 to point to no valid entries
Change TTBR1 (includes changing the ASID)
Change TTBR0 to have valid entries in it
ISB

Example D8-2 Example software sequence for changing translation table base address and ASID
value when TCR_EL1.A1=0

Change TTBR1 to point only at global entries
Change TTBR0 (includes changing the ASID)
Change TTBR1 to point at new tables, containing non-global entries
ISB

2.60 C19649
In section B2.7.2 (Device Memory), in subsection ‘Reordering’, the bullet point in the note that
reads:

The non-Reordering property is only required by the architecture to apply the order of arrival
of accesses to a single memory-mapped peripheral of an IMPLEMENTATION DEFINED size, and is
not required to have an impact on the order of observation of memory accesses to SDRAM. For
this reason, there is no effect of the non-Reordering attribute on the ordering relations between
accesses to different locations described in Ordering relations on page B2-165 as part of the
formal definition of the memory model.

is updated to read:

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 50 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

The non-Reordering property is only required by the architecture to apply the order of arrival
of accesses to a single memory-mapped peripheral of an IMPLEMENTATION DEFINED size, and is
not required to have an impact on the order of observation of memory accesses to SDRAM. For
this reason, there is no effect of the non-Reordering attribute on the ordering relations between
accesses to different locations described in B2.3.3 Ordering relations on page B2-165 as part of
the formal definition of the memory model. It does have an effect on the Peripheral Coherence
Order described in section B2.3.7 (Completion and endpoint ordering).

2.61 D19680
In section C5.5.62 (TLBI VAE2, TLBI VAE2NXS, TLB Invalidate by VA, EL2), the accessibility
pseudocode that reads:

elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
 Shareability_NSH, TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID[],
 Shareability_NSH, TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif HCR_EL2.E2H == '1' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
 Shareability_NSH, TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID[],
 Shareability_NSH, TLBILevel_Any, TLBI_AllAttr, X[t, 64]);

is corrected to read:

elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
 Shareability_NSH, TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID_NONE,
 Shareability_NSH, TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 elsif HCR_EL2.E2H == '1' then
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,
 Shareability_NSH, TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
 else
 AArch64.TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID_NONE,
 Shareability_NSH, TLBILevel_Any, TLBI_AllAttr, X[t, 64]);

The same change, from VMID[] to VMID_NONE, is made in all the TLBI VAE2*, TLBI VAE3*, TLBI
VALE2*, and TLBI VALE3* System instructions.

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 51 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

2.62 D19696
In section B1.2.5 (Process state, PSTATE), in the subsection ‘Accessing PSTATE fields at EL0’, the
table B1-1 ‘Accessing PSTATE fields at EL0 using MRS and MSR (register)’ that reads:

Special-purpose Register PSTATE fields

NZCV N, Z, C, V

DAIF D, A, I, F

is corrected to read:

Special-purpose Register PSTATE fields

NZCV N, Z, C, V

DAIF D, A, I, F

SSBS SSBS

DIT DIT

TCO TCO

Within the same section, the text that reads:

Software can also use the MSR (immediate) instruction to directly write to PSTATE.{D, A, I, F}.
Table B1-2 shows the MSR (immediate) operands that can directly write to PSTATE.{D, A, I, F}
when the PE is at EL0 using AArch64 state.

Table B1-2 ‘Accessing PSTATE.{D, A, I, F} at EL0 using MSR (immediate)’

Operand PSTATE fields Notes

DAIFSet D, A, I, F Directly sets any of the PSTATE.{D,A, I, F} bits to 1

DAIFClr D, A, I, F Directly clears any of the PSTATE.{D, A, I, F} bits to 0

is corrected to read:

Software can also use the MSR (immediate) instruction to directly write to PSTATE.{D, A, I, F,
SSBS, DIT, TCO}. Table B1-2 shows the MSR (immediate) operands that can directly write to
PSTATE.{D, A, I, F, SSBS, DIT, TCO} when the PE is at EL0 using AArch64 state.

Table B1-2 ‘Accessing PSTATE.{D, A, I, F, SSBS, DIT, TCO} at EL0 using MSR (immediate)’

Operand PSTATE fields Notes

DAIFSet D, A, I, F Directly sets any of the PSTATE.{D,A, I, F} bits to 1

DAIFClr D, A, I, F Directly clears any of the PSTATE.{D, A, I, F} bits to 0

SBSS SBSS Directly sets the PSTATE.SSBS bit to CRm<0>

DIT DIT Directly sets the PSTATE.DIT bit to CRm<0>

TCO TCO Directly sets the PSTATE.TCO bit to CRm<0>

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 52 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

2.63 E19713
In section J1.3.3 (shared/functions), the contents of the HaveXXX() functions are updated to reflect
the official feature names. For example:

boolean Have16bitVMID()
 return (HasArchVersion(ARMv8p1) && HaveEL(EL2) &&
 boolean IMPLEMENTATION_DEFINED "Has 16-bit VMID");

Is updated to read:

boolean Have16bitVMID()
 return IsFeatureImplemented(FEAT_VMID16);

2.64 D19741
In the function AArch64.WatchpointByteMatch() in section J1.1.1 (aarch64/debug), the code that
reads:

if mask > bottom then
 ...
 if !IsOnes(DBGBVR_EL1[n]<63:top>) && !IsZero(DBGBVR_EL1[n]<63:top>) then
 if ConstrainUnpredictableBool(Unpredictable_DBGxVR_RESS) then

Is updated to read as:

if mask > bottom then
 ...
 if !IsOnes(DBGWVR_EL1[n]<63:top>) && !IsZero(DBGWVR_EL1[n]<63:top>) then
 if ConstrainUnpredictableBool(Unpredictable_DBGxVR_RESS) then

In the function AArch32.WatchpointByteMatch() in section J1.2.1 (aarch32/debug), the code that
reads:

if mask > bottom then
 // If the DBGxVR<n>_EL1.RESS field bits are not a sign extension of the MSB
 // of DBGBVR<n>_EL1.VA, it is UNPREDICTABLE whether they appear to be
 // included in the match.
 if !IsOnes(DBGBVR_EL1[n]<63:top>) && !IsZero(DBGBVR_EL1[n]<63:top>) then
 if ConstrainUnpredictableBool(Unpredictable_DBGxVR_RESS) then
 top = 63;
 WVR_match = (vaddress<top:mask> == DBGWVR[n]<top:mask>);

Is updated to read as:

if mask > bottom then
 WVR_match = (vaddress<top:mask> == DBGWVR[n]<top:mask>);

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 53 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

2.65 D19753
In section J1.3.1 (shared/debug), the function Halt(), that reads as:

Halt(bits(6) reason, boolean is_async)
 CTI_SignalEvent(CrossTriggerIn_CrossHalt); // Trigger other cores to halt
 ...

Is updated to read:

Halt(bits(6) reason, boolean is_async)
 if HaveTME() && TSTATE.depth > 0 then
 FailTransaction(TMFailure_DBG, FALSE);
 CTI_SignalEvent(CrossTriggerIn_CrossHalt); // Trigger other cores to halt
 ...

2.66 C19772
In section C5.5.10 (TLBI ASIDE1, TLBI ASIDE1NXS, TLB Invalidate by ASID, EL1), in the subsection
‘Executing TLBI ASIDE1, TLBI ASIDE1NXS instruction’, the EL1 accessibility pseudocode that reads:

elsif EL2Enabled() && HCR_EL2.FB == '1' then
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
 HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
 Shareability_ISH, TLBI_ExcludeXS, X[t, 64]);

is updated to read:

elsif EL2Enabled() && HCR_EL2.FB == '1' then
 if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) &&
 IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1' then
 AArch64.TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
 Shareability_ISH, TLBI_ExcludeXS, X[t, 64]);

The same edits are made in the following sections:

• C5.5.29 (TLBI RVAAE1, TLBI RVAAE1NXS).

• C5.5.32 (TLBI RVAALE1, TLBI RAAVLE1NXS).

• C5.5.35 (TLBI RVAE1, TLBI RVAE1NXS).

• C5.5.44 (TLBI RVALE1, TLBI RAVLE1NXS).

• C5.5.53 (TLBI VAAE1, TLBI VAAE1NXS).

• C5.5.56 (TLBI VAALE1, TLBI VAALE1NXS).

• C5.5.59 (TLBI VAE1, TLBI VAE1NXS).

• C5.5.68 (TLBI VALE1, TLBI VALE1NXS).

• C5.5.77 (TLBI VMALLE1, TLBI VMALLE1NXS).

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 54 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

• G8.2.136 (TLBIALL, TLB Invalidate All).

• G8.2.142 (TLBIASID, TLB Invalidate by ASID match).

• G8.2.148 (TLBIMVA, TLB Invalidate by VA).

• G8.2.149 (TLBIMVAA, TLB Invalidate by VA, All ASID).

• G8.2.151 (TLBIMVAAL, TLB Invalidate by VA, All ASID, Last level).

• G8.2.156 (TLBIMVAL, TLB Invalidate by VA, Last level).

2.67 C19793
In section C5.5.25 (TLBI RIPAS2LE1IS, TLBI RIPAS2LE1ISNXS, TLB Range Invalidate by
Intermediate Physical Address, Stage 2, Last level, EL1, Inner Shareable), in the subsection
‘Purpose’, the text that reads:

• The entry is a stage 2 only translation table entry, from the final level of the translation table
walk.

is updated to read:

• The entry is a stage 2 only translation table entry, from the leaf level of the translation table
walk, indicated by the TTL hint.

Equivalent changes are made in the following sections:

• C5.5.24 (TLBI RIPAS2LE1, TLBI RIPAS2LE1NXS, TLB Range Invalidate by Intermediate Physical
Address, Stage 2, Last level, EL1).

• C5.5.26 (TLBI RIPAS2LE1OS, TLBI RIPAS2LE1OSNXS, TLB Range Invalidate by Intermediate
Physical Address, Stage 2, Last level, EL1, Outer Shareable).

• C5.5.32 (TLBI RVAALE1, TLBI RVAALE1NXS, TLB Range Invalidate by VA, All ASID, Last level,
EL1).

• C5.5.33 (TLBI RVAALE1IS, TLBI RVAALE1ISNXS, TLB Range Invalidate by VA, All ASID, Last
Level, EL1, Inner Shareable).

• C5.5.34 (TLBI RVAALE1OS, TLBI RVAALE1OSNXS, TLB Range Invalidate by VA, All ASID, Last
Level, EL1, Outer Shareable).

In section C5.5.35 (TLBI RVAE1, TLBI RVAE1NXS, TLB Range Invalidate by VA, EL1), in the
subsection ‘Purpose’, the text that reads:

• The entry is a stage 1 translation table entry.

is updated to read:

• The entry is a stage 1 translation table entry, from any level of the translation table walk up to
the level indicated in the TTL hint.

Equivalent changes are made in the following sections:

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 55 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

• C5.5.36 (TLBI RVAE1IS, TLBI RVAE1ISNXS, TLB Range Invalidate by VA, EL1, Inner Shareable).

• C5.5.37 (TLBI RVAE1OS, TLBI RVAE1OSNXS, TLB Range Invalidate by VA, EL1, Outer
Shareable).

• C5.5.38 (TLBI RVAE2, TLBI RVAE2NXS, TLB Range Invalidate by VA, EL2).

• C5.5.39 (TLBI RVAE2IS, TLBI RVAE2ISNXS, TLB Range Invalidate by VA, EL2, Inner Shareable).

• C5.5.40 (TLBI RVAE2OS, TLBI RVAE2OSNXS, TLB Range Invalidate by VA, EL2, Outer
Shareable).

• C5.5.44 (TLBI RVALE1, TLBI RVALE1NXS, TLB Range Invalidate by VA, Last level, EL1).

• C5.5.45 (TLBI RVALE1IS, TLBI RVALE1ISNXS, TLB Range Invalidate by VA, Last level, EL1,
Inner Shareable).

• C5.5.46 (TLBI RVALE1OS, TLBI RVALE1OSNXS, TLB Range Invalidate by VA, Last level, EL1,
Outer Shareable).

• C5.5.47 (TLBI RVALE2, TLBI RVALE2NXS, TLB Range Invalidate by VA, Last level, EL2).

• C5.5.48 (TLBI RVALE2IS, TLBI RVALE2ISNXS, TLB Range Invalidate by VA, Last level, EL2,
Inner Shareable).

• C5.5.49 (TLBI RVALE2OS, TLBI RVALE2OSNXS, TLB Range Invalidate by VA, Last level, EL2,
Outer Shareable).

In section C5.5.21 (TLBI RIPAS2E1, TLBI RIPAS2E1NXS, TLB Range Invalidate by Intermediate
Physical Address, Stage 2, EL1), in the subsection ‘Purpose’, the text that reads:

• The entry is a stage 2 only translation table entry, from any level of the translation table walk.

is updated to read:

• The entry is a stage 2 only translation table entry, from any level of the translation table walk
up to the level indicated in the TTL hint.

Equivalent changes are made in the following sections:

• C5.5.22 (TLBI RIPAS2E1IS, TLBI RIPAS2E1ISNXS, TLB Range Invalidate by Intermediate
Physical Address, Stage 2, EL1, Inner Shareable).

• C5.5.23 (TLBI RIPAS2E1OS, TLBI RIPAS2E1OSNXS, TLB Range Invalidate by Intermediate
Physical Address, Stage 2, EL1, Outer Shareable).

• C5.5.29 (TLBI RVAAE1, TLBI RVAAE1NXS, TLB Range Invalidate by VA, All ASID, EL1).

• C5.5.30 (TLBI RVAAE1IS, TLBI RVAAE1ISNXS, TLB Range Invalidate by VA, All ASID, EL1, Inner
Shareable).

• C5.5.31 (TLBI RVAAE1OS, TLBI RVAAE1OSNXS, TLB Range Invalidate by VA, All ASID, EL1,
Outer Shareable).

• C5.5.41 (TLBI RVAE3, TLBI RVAE3NXS, TLB Range Invalidate by VA, EL3).

• C5.5.42 (TLBI RVAE3IS, TLBI RVAE3ISNXS, TLB Range Invalidate by VA, EL3, Inner Shareable).

• C5.5.43 (TLBI RVAE3OS, TLBI RVAE3OSNXS, TLB Range Invalidate by VA, EL3, Outer
Shareable).

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 56 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

• C5.5.50 (TLBI RVALE3, TLBI RVALE3NXS, TLB Range Invalidate by VA, Last level, EL3).

• C5.5.51 (TLBI RVALE3IS, TLBI RVALE3ISNXS, TLB Range Invalidate by VA, Last level, EL3,
Inner Shareable).

• C5.5.52 (TLBI RVALE3OS, TLBI RVALE3OSNXS, TLB Range Invalidate by VA, Last level, EL3,
Outer Shareable).

Also in section C5.5.25 (TLBI RIPAS2LE1IS, TLBI RIPAS2LE1ISNXS, TLB Range Invalidate by
Intermediate Physical Address, Stage 2, Last level, EL1, Inner Shareable), in the field ‘TTL, bits
[38:37]’, the text that reads:

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the
level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value is reserved
and hardware should treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.

0b11 All entries to invalidate are Level 3 translation table entries.

is updated to read:

TTL Level hint. The TTL hint is only guaranteed to invalidate:

• Non-leaf-level entries in the range up to but not including the level described by the TTL hint.

• Leaf-level entries in the range that match the level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 The TTL hint indicates level 1.

If FEAT_LPA2 is not implemented, when using a 16KB translation granule, this value is reserved
and hardware should treat this field as 0b00.

0b10 The TTL hint indicates level 2.

0b11 The TTL hint indicates level 3.

Equivalent changes are made in all of the sections listed above.

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 57 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

2.68 D19800
In section J1.1.3 (aarch64/function), the function IsHCRXEL2Enabled(), that reads as:

boolean IsHCRXEL2Enabled()
 assert(HaveFeatHCX());
 ...

Is updated to read:

boolean IsHCRXEL2Enabled()
 if !HaveFeatHCX() then return FALSE;
 ...

2.69 D19804
In section D9.4.1 (Virtual address translation), the following text is added:

If a tag write by an STG instruction that does not also write data is translated by a writeable-
clean descriptor, but the tag write effect is IGNORED due to a stage 1 descriptor not having
the Tagged memory attribute, or because Allocation tag access is disabled for the instruction
by SCR_EL3.ATA, HCR_EL2.ATA, SCTLR_ELx.ATA or SCTLR_ELx.ATA0, it is CONSTRAINED
UNPREDICTABLE whether hardware updates the dirty state of that descriptor.

2.70 R19810
In section B2.3.3 (Ordering relations), the definition of ‘Tag-ordered-before’ is updated to read:

If FEAT_MTE2 is implemented, a Memory Tag-Check-read R1 is Tag-ordered-before a Checked
Memory Write effect W2 generated by the same instruction if and only if all of the following
apply:

• There is an Intrinsic data dependency from R1 to a Conditional-Branching effect B3
generated by the same instruction as R1.

• There is an Intrinsic control dependency from the Conditional-Branching effect B3 to W2.

2.71 D19817
In section G8.3.33 (PMMIR, Performance Monitors Machine Identification Register) in the
BUS_SLOTS, bits [15:8] field, the text that reads:

Bus count. The largest value by which the BUS_ACCESS event might increment in a single
BUS_CYCLES cycle. When this field is nonzero, the largest value by which the BUS_ACCESS

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 58 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

event might increment in a single BUS_CYCLES cycle is BUS_SLOTS. This field has an
IMPLEMENTATION DEFINED value. Access to this field is RO.

is corrected to read:

Bus count. The largest value by which the BUS_ACCESS event might increment in a single
BUS_CYCLES cycle. When this field is nonzero, the largest value by which the BUS_ACCESS
event might increment in a single BUS_CYCLES cycle is BUS_SLOTS. If the information is not
available, this field will read as zero. This field has an IMPLEMENTATION DEFINED value. Access to
this field is RO.

The equivalent changes are made in section D17.5.12 (PMMIR_EL1, Performance Monitors
Machine Identification Register) and I5.3.30 (PMMIR, Performance Monitors Machine Identification
Register).

2.72 D19829
In section D17.2.63 (ID_AA64ISAR2_EL1, AArch64 Instruction Set Attribute Register 2), in the
‘RPRES, bits [7:4]’ field, the following text is removed:

From Armv8.7, if Advanced SIMD and floating-point is implemented, the only permitted value is
0b0001.

2.73 E19831
In section K7.2 (Gray-count scheme for timer distribution scheme), the following pseudocode for
Gray code encoding and decoding:

Gray[N] = Count[N]
Gray[i] = (XOR(Gray[N:i+1])) XOR Count[i] for N–1 >= i >= 0
Count[i] = XOR(Gray[N:i]) for N >= i >= 0

is updated to read:

Gray = Count EOR ('0':Count<N:1>)
Count<N> = Gray<N>
for i = N-1 downto 0
 Count<i> = Gray<i> EOR Count<i+1>

2.74 D19833
In section K7.2 (Gray-count scheme for timer distribution scheme) the following Note is removed:

This scheme has the advantage of being relatively simple to switch, in either direction, between
operating with low-frequency and low-precision, and operating with high-frequency and high-

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 59 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

precision. To achieve this, the ratio of the frequencies must be 2n, where n is an integer. A switch-
over can occur only on the 2 n+1 boundary to avoid losing the Gray-coding property on a switch-
over.

2.75 C19835
In section B2.3.12 (Limited ordering regions), after the following text:

A memory location lies within the LORegion identified by the LORegion Number if the PA lies
between the Start Address and the End Address, inclusive. The Start Address must be defined
to be aligned to 64KB and the End Address must be defined as the top byte of a 64KB block of
memory.

the following statement is added:

It is permitted for multiple LORegion descriptors with non-overlapping address ranges to be
configured with the same LORegion Number.

2.76 D19887
In section J1.1.3 (aarch64/functions), the write accessor Mem[] (assignment form) reading:

Mem[bits(64) address, integer size, AccType acctype, boolean ispair] = bits(size*8)
 value_in
 ...
 if !atomic && ispair && address == Align(address, halfsize) then
 single_is_aligned = TRUE;
 <highhalf, lowhalf> = value;
 AArch64.MemSingle[address, halfsize, acctype,
 single_is_aligned, ispair] = lowhalf;
 AArch64.MemSingle[address + halfsize, halfsize, acctype,
 single_is_aligned, ispair] = highhalf;
 elsif atomic && ispair then
 AArch64.MemSingle[address, size, acctype, aligned, ispair] = value;
 ...

Is updated to read:

Mem[bits(64) address, integer size, AccType acctype, boolean ispair] = bits(size*8)
 value_in
 ...
 if !atomic && ispair && address == Align(address, halfsize) then
 single_is_pair = FALSE;
 single_is_aligned = TRUE;
 <highhalf, lowhalf> = value;
 AArch64.MemSingle[address, halfsize, acctype,
 single_is_aligned, single_is_pair] = lowhalf;
 AArch64.MemSingle[address + halfsize, halfsize, acctype,
 single_is_aligned, single_is_pair] = highhalf;
 elsif atomic && ispair then
 AArch64.MemSingle[address, size, acctype, aligned, ispair] = value;
 ...

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 60 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

2.77 E19892
In section J1.1.5 (aarch64/translation), the function S1HasPermissionsFault() that reads:

boolean AArch64.S1HasPermissionsFault(
 Regime regime,
 SecurityState ss,
 TTWState walkstate,
 S1TTWParams walkparams,
 boolean ispriv,
 AccType acctype,
 boolean iswrite
)

Is replaced by S1CheckPermissions():

FaultRecord AArch64.S1CheckPermissions(
 Regime regime,
 SecurityState ss,
 TTWState walkstate,
 S1TTWParams walkparams,
 boolean ispriv,
 AccType acctype,
 boolean iswrite,
 FaultRecord fault_in
)

In section J1.1.5 (aarch64/translation), the function S2HasPermissionsFault() that reads:

boolean AArch64.S2HasPermissionsFault(
 boolean s2fs1walk,
 TTWState walkstate,
 SecurityState ss,
 S2TTWParams walkparams,
 boolean ispriv,
 AccType acctype,
 boolean iswrite
)

Is replaced by S2CheckPermissions():

FaultRecord AArch64.S2CheckPermissions(
 boolean s2fs1walk,
 TTWState walkstate,
 SecurityState ss,
 S2TTWParams walkparams,
 boolean ispriv,
 AccType acctype,
 boolean iswrite,
 FaultRecord fault
)

Appropriate changes are made in the pseudocode where these functions are called.

In section D8.15 (Pseudocode description of VMSAv8-64 address translation), the subsection ‘Fault
detection’ is updated to take these changes into account.

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 61 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

2.78 D19917
In section D17.2.36 (DCZID_EL0, Data Cache Zero ID register), in the definition of ‘BS, bits [3:0]’,
the following text is added:

If FEAT_MTE2 is implemented, the minimum size supported is 16 bytes (value == 2).

2.79 D19918
In section J1.1.3 (aarch64/functions), in the AArch64.CheckAlignment() function, the code that
reads:

 if SCTLR[].A == '1' then check = TRUE;
 elsif HaveLSE2Ext() then
 check = (UInt(address<3:0>) + alignment > 16) && ((ordered && SCTLR[].nAA ==
 '0') || atomic);
 else check = atomic || ordered;

Is updated to read:

 if SCTLR[].A == '1' then check = TRUE;
 elsif HaveLSE2Ext() then
 // For ordered pair operation check whether entire access is within 16-byte
 integer accsize = if ispair then alignment * 2 else alignment;
 check = (UInt(address<3:0>) + accsize > 16) && ((ordered && SCTLR[].nAA ==
 '0') || atomic);
 else check = atomic || ordered;

In section J1.1.3 (aarch64/functions), in the Mem[] non-assignment (read) accessor function, the
code that reads:

bits(size*8) Mem[...]
 ...
 if ispair then
 // check alignment on size of element accessed, not overall access size
 aligned = AArch64.CheckAlignment(address, halfsize, acctype, iswrite);
 else
 aligned = AArch64.CheckAlignment(address, size, acctype, iswrite);

Is updated to read:

bits(size*8) Mem[...]
 ...
 integer align_size = if ispair then halfsize else size;
 aligned = AArch64.CheckAlignment(address, align_size, acctype, iswrite, ispair);

Equivalent changes are made to the Mem[] assignment (write) accessor function.

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 62 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

2.80 D19924
In section D17.3.18 (MDCR_EL3, Monitor Debug Configuration Register (EL3)), in the ‘TDA, bit [9]’
field description, the text that reads:

• In AArch32 state, SDER is trapped to EL3 and reported using EC syndrome value 0x03.

• In AArch32 state, accesses using MCR or MRC to the following registers are reported using
EC syndrome value 0x05, accesses using MCRR or MRRC are reported using EC syndrome
value 0x0C:

◦ HDCR, DBGDRAR, DBGDSAR, DBGDIDR, DBGDCCINT, DBGWFAR, DBGVCR,
DBGBVR<n>, DBGBCR<n>, DBGBXVR<n>, DBGWCR<n>, DBGWVR<n>.

◦ DBGCLAIMSET, DBGCLAIMCLR, DBGAUTHSTATUS, DBGDEVID, DBGDEVID1,
DBGDEVID2, DBGOSECCR.

• In AArch32 state, STC accesses to DBGDTRRXint and LDC accesses to DBGDTRTXint are
reported using EC syndrome value 0x06.

• When not in Debug state, the following registers are also trapped to EL3:

◦ AArch64 accesses to DBGDTR_EL0, DBGDTRRX_EL0, and DBGDTRTX_EL0, reported
using EC syndrome value 0x18.

◦ AArch32 accesses using MCR or MRC to DBGDTRRXint and DBGDTRTXint, reported
using EC syndrome value 0x05.

is corrected to read:

In AArch32 state, the instructions affected by this control are:

• MRC and MCR accesses to DBGAUTHSTATUS, DBGBCR<n>, DBGBVR<n>, DBGBXVR<n>,
DBGCLAIMCLR, DBGCLAIMSET, DBGDCCINT, DBGDEVID, DBGDEVID1, DBGDEVID2,
DBGDIDR, DBGDRAR, DBGDSAR, DBGDSCRext, DBGDSCRint, DBGDTRRXext,
DBGDTRTXext, DBGOSECCR, DBGVCR, DBGWCR<n>, DBGWFAR, DBGWVR<n>, HDCR,
and SDER.

• MRRC accesses to DBGDRAR and DBGDSAR.

• STC accesses to DBGDTRRXint and LDC accesses to DBGDTRTXint.

• In Non-debug state, MRC accesses to DBGDTRRXint and MCR accesses to DBGDTRTXint.

Unless the instruction generates a higher priority exception, trapped instructions generate an
exception to EL3.

Trapped AArch64 instructions are reported using EC syndrome value 0x18.

Trapped AArch32 instructions are reported using EC syndrome value 0x03 for MRC and MCR
accesses with coproc == 0b1111, 0x05 for MCR and MCR accesses with coproc == 0b1110,
0x06 for LDC and STC accesses, and 0x0C for MRRC accesses.

The corrected text appears in the A-profile 2022-12 XML release.

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 63 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

2.81 D19928
In sections D17.2.118 (SCTLR_EL1, System Control Register (EL1)) and D17.2.119 (SCTLR_EL2,
System Control Register (EL2)), in the ‘EPAN, bit [57]’ field, the text that reads:

Any speculative data accesses that would generate a Permission fault if the accesses were not
speculative will not cause an allocation into a cache.

is corrected to read:

Any speculative data accesses that would generate a Permission fault as a result of
PSTATE.PAN=1 if the accesses were not speculative will not cause an allocation into a cache.

2.82 D19936
In section D17.5.9 (PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30),
the description of ‘T, bit [23]’ that reads:

When FEAT_TME is implemented:

Transactional state filtering bit. Controls counting in Transactional state.

0b0 This bit has no effect on filtering of events.

0b1 Do not count events in Transactional state.

is updated to read:

When FEAT_TME is implemented:

Transactional state filtering bit. Controls counting of Attributable events in Non-transactional
state.

0b0 This bit has no effect on filtering of events.

0b1 Do not count Attributable events in Non-transactional state.

For each Unattributable event, it is IMPLEMENTATION DEFINED whether the filtering applies.

Equivalent changes are made in the following sections:

• D17.5.1 (PMCCFILTR_EL0, Performance Monitors Cycle Count Filter Register).

• I5.3.24 (PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30).

The updated definition of ‘T, bit [23]’ is added to section I5.3.2 (PMCCFILTR_EL0, Performance
Monitors Cycle Counter Filter Register).

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 64 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

2.83 C19956
In section D11.11.3 (Common event numbers), in the description of PMU event ‘0x0012,
BR_PRED’, the following text is added:

If no program-flow prediction resources are implemented, this event is optional, but Arm
recommends that BR_PRED counts all branches.

It is IMPLEMENTATION DEFINED when the branch is counted. Arm recommends that it is counted
when the branch is resolved, that is, at the same point in the instruction pipeline as when the
BR_MIS_PRED event would be counted if the branch resolves as mispredicted. This means
that (BR_PRED - BR_MIS_PRED) is the number of correctly predicted branches and the ratio
(BR_MIS_PRED ÷ BR_PRED) can be calculated in a meaningful way.

PMCEID0_EL0[18] reads as 0b1 if this event is implemented and 0b0 otherwise.

2.84 D19961
In section C7.2.227 (SABDL, SABDL2), the text that reads:

This instruction subtracts the vector elements of the second source SIMD&FP register from the
corresponding vector elements of the first source SIMD&FP register, places the absolute value
of the results into a vector, and writes the vector to the lower or upper half of the destination
SIMD&FP register.

is corrected to read:

This instruction subtracts the vector elements in the lower or upper half of the second source
SIMD&FP register from the corresponding vector elements of the first source SIMD&FP register,
places the absolute value of the results into a vector, and writes the vector to the destination
SIMD&FP register.

2.85 C20009
In section D17.2.40 (FAR_EL1, Fault Address Register (EL1)), the Note that reads:

The address held in this field is an address accessed by the instruction fetch or data access
that caused the exception that actually gave rise to the instruction or data abort. It is the lower
address that gave rise to the fault. Where different faults from different addresses arise from the
same instruction, such as for an instruction that loads or stores an unaligned address that crosses
a page boundary, the architecture does not prioritize between those different faults.

is updated to read:

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 65 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

The address held in this field is an address accessed by the instruction fetch or data access
that caused the exception that actually gave rise to the Instruction or Data Abort. It is the
lower address that gave rise to the fault that is reported. Where different faults from different
addresses arise from the same instruction, such as for an instruction that loads or stores an
unaligned address that crosses a page boundary, the architecture does not prioritize which fault is
reported.

Equivalent changes are made in the following sections:

• D17.2.41 (FAR_EL2, Fault Address Register (EL2)).

• D17.2.42 (FAR_EL3, Fault Address Register (EL3)).

• D17.2.55 (HPFAR_EL2, Hypervisor IPA Fault Address Register).

2.86 D20011
In section D11.11.3 (Common event numbers), subsection ‘Common microarchitectural events’, in
the ‘0x0074, ASE_SPEC, Operation speculatively executed, Advanced SIMD’ definition, the bullet
points that read:

• Cryptographic operations other than PMULL, in AArch64 state.

• VMULL, in AArch32 state.

are changed to read:

• Cryptographic operations, other than PMULL, PMULL2 (1Q variant) in AArch64 state and
VMULL (P64 variant) in AArch32 state.

In the same event definition, the text that reads:

In AArch64 state, PMULL, and in AArch32 state, VMULL are counted as Advanced SIMD
operations.

is changed to read:

Advanced SIMD PMULL, PMULL2 (1Q variant) in AArch64 state and VMULL (P64 variant) in
AArch32 state are counted as Advanced SIMD operations.

In the same section, in the ‘0x0077, CRYPTO_SPEC, Operation speculatively executed,
Cryptographic instruction’ definition, the text that reads:

The counter counts each operation counted by INST_SPEC that is a cryptographic operation
other than PMULL or VMULL.

See The Cryptographic Extension on page C3-333.

is changed to read:

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 66 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

The counter counts each operation counted by INST_SPEC that is a cryptographic operation,
other than Advanced SIMD PMULL, PMULL2 (1Q variant) and SVE2 PMULLB, PMULLT (Q
variant) in AArch64 state, and Advanced SIMD VMULL (P64 variant) in AArch32 state.

See The Armv8 Cryptographic Extension on page A2-80 and SVE2 Crypto Extensions on page
C4-485.

2.87 C20016
In section C6.2.244 (PACGA), the instruction description that reads:

Pointer Authentication Code, using Generic key. This instruction computes the pointer
authentication code for an address in the first source register, using a modifier in the second
source register, and the Generic key. The computed pointer authentication code is returned in the
upper 32 bits of the destination register.

is clarified to read:

Pointer Authentication Code, using Generic key. This instruction computes the pointer
authentication code for a 64-bit value in the first source register, using a modifier in the second
source register, and the Generic key. The computed pointer authentication code is written to
the most significant 32 bits of the destination register, and the least significant 32 bits of the
destination register are set to zero.

2.88 R20031
In section B2.7.2 (Device memory), under the bullet list that reads:

All of these memory types have the following properties:

• Speculative data accesses are not permitted to any memory location with any Device memory
attribute. This means that each memory access to any Device memory type must be one
that would be generated by a simple sequential execution of the program. The following
exceptions to this apply:

the following sub-bullet is added:

• An LDRAA or LDRAB instruction that fails the pointer authentication check and loads from a
location in Device memory is permitted to cause one read access to that location if all of the
other requirements for accessing that Device location are met.

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 67 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

2.89 D20053
In section F2.11 (Advanced SIMD and floating-point load/store instructions), in Table F2-17 ‘SIMD
and floating-point register file load/store instructions’, the ‘Operation’ description for Vector Load
Multiple that reads:

Load 1-16 consecutive 32-bit registers, floating-point only.

is corrected to read:

Load 1-32 consecutive 32-bit registers, floating-point only.

In the same table, the ‘Operation’ description for Vector Store Multiple that reads:

Store 1-16 consecutive 32-bit registers, floating-point only.

is corrected to read:

Store 1-32 consecutive 32-bit registers, floating-point only.

2.90 E20075
In section A2.2.1 (Additional functionality added to Armv8.0 in later releases), the definition
‘FEAT_ETS, Enhanced Translation Synchronization’ is deleted, and replaced with a definition of
FEAT_ETS2.

In section D8.2.6 (Translation table walk properties), the rule RLTJGW is deleted, and is replaced with
the following rule:

If FEAT_ETS2 is implemented, E1 is an Explicit Memory Effect, E2 is an Implicit Read of a PTE
and all of the following apply, then E1 is Ordered-before E2:

• E1 is program-order-before a Fault Effect E3.

• E2 is Translation-intrinsically-before E3.

In the following sections:

• D17.2.65 (ID_AA64MMFR1_EL1, AArch64 Memory Model Feature Register 1), field ‘ETS, bits
[39:36]’.

• D17.2.86 (ID_MMFR5_EL1, AArch32 Memory Model Feature Register 5), field ‘ETS, bits [3:0]’.

• G8.2.97 (ID_MMFR5, Memory Model Feature Register 5), field ‘ETS, bits [3:0]’.

The field definition is updated to read:

Indicates support for Enhanced Translation Synchronization. Defined values are:

0b0000 FEAT_ETS2 is not implemented.

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 68 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

0b0001 FEAT_ETS2 is not implemented.

0b0010 FEAT_ETS2 is implemented.

All other values are reserved. FEAT_ETS2 implements the functionality identified by the value
0b0010. In Armv8.0, the permitted values are 0b0000, 0b0001, and 0b0010.

In section E2.4 (Ordering of translation table walks), the text that reads:

If FEAT_ETS is implemented, and a memory access RW1 is Ordered-before a second memory
access RW2, then RW1 is also Ordered-before any translation table walk generated by RW2 that
generates any of the following:

• A Translation fault.

• An Address size fault.

• An Access flag fault.

is updated to read:

If FEAT_ETS2 is implemented, E1 is an Explicit Memory Effect, E2 is an Implicit Read of a PTE
and all of the following apply, then E1 is Ordered-before E2:

• E1 is program-order-before a Fault Effect E3.

• E2 is Translation-intrinsically-before E3.

References to FEAT_ETS are replaced with FEAT_ETS2 throughout the document.

2.91 D20128
In section D13.6.3 (Additional information for each profiled memory access operation), the bullet
list that reads:

The sampled data physical address packet is not output if any of the following are true:

• The PE does not translate the address, for example because it does not perform the access or
the address translation generates a Translation fault.

• The sampled data virtual address packet is not output.

• Sampling of physical addresses is prohibited by System register controls.

is changed to read:

The sampled data physical address packet is not output if any of the following are true:

• The sampled operation operates on a virtual address and any of the following are true:

◦ The PE does not translate the address, for example because it does not perform the
access or the address translation generates a Translation fault.

◦ The sampled data virtual address packet is not output.

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 69 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

• Sampling of physical addresses is prohibited by System register controls.

If AArch64.ExclusiveMonitorPass() or AArch32.ExclusiveMonitorPass() returns FALSE for a Store-
Exclusive instruction, it is IMPLEMENTATION DEFINED whether or not the physical address packet is
output when permitted by the above rules.

2.92 D20315
In section I5.8.32 (ERR<n>STATUS, Error Record <n> Primary Status Register, n = 0 - 65534), in
the ‘SERR, bits [7:0]’ field, the value descriptions that read:

0x10 Internal data register. For example, parity on a SIMD&FP register. For a PE, all general-
purpose, stack pointer, SIMD&FP, and SVE registers are data registers.

0x11 Internal control register. For example, Parity on a System register. For a PE, all registers
other than general-purpose, stack pointer, SIMD&FP, and SVE registers are control registers.

are updated to read:

0x10 Internal data register. For example, parity on a SIMD&FP register. For a PE, all general-
purpose, stack pointer, SIMD&FP, SVE, and SME registers are data registers.

0x11 Internal control register. For example, Parity on a System register. For a PE, all registers
other than general-purpose, stack pointer, SIMD&FP, SVE, and SME registers are control
registers.

2.93 C20158
In section D11.11.3 (Common event numbers), in the subsection ‘Common microarchitectural
events’, the text in the description of ‘0x4024, MEM_ACCESS_CHECKED, Checked data memory
access’ that reads:

The counter counts each memory access counted by MEM_ACCESS that is checked by the
Memory Tagging Extension.

is updated to read:

The counter counts each memory access counted by MEM_ACCESS that accesses an Allocation
Tag due to a Tag Check operation.

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 70 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

2.94 D20159
In section D17.5.7 (PMCR_EL0, Performance Monitors Control Register), in the subsection
‘Configurations’, the text that reads:

AArch64 System register PMCR_EL0 bits [7:0] are architecturally mapped to External register
PMCR_EL0[7:0].

is updated to read:

AArch64 System register PMCR_EL0 bits [63:32,10:0] are architecturally mapped to External
register PMCR_EL0[63:32,10:0].

Equivalent changes are made in sections G8.4.9 (PMCR, Performance Monitors Control Register)
and I5.3.17 (PMCR_EL0, Performance Monitors Control Register).

2.95 D20163
In section J1.3.5 (shared/translation), the code in the function S2CombineS1MemAttrs() that reads:

MemoryAttributes S2CombineS1MemAttrs(MemoryAttributes s1_memattrs, MemoryAttributes
 s2_memattrs)
 MemoryAttributes memattrs;
 ...
 memattrs.xs = s2_memattrs.xs

is updated to read:

MemoryAttributes S2CombineS1MemAttrs(MemoryAttributes s1_memattrs, MemoryAttributes
 s2_memattrs)
 MemoryAttributes memattrs;
 ...
 if (memattrs.memtype == MemType_Normal &&
 memattrs.inner.attrs == MemAttr_WB &&
 memattrs.outer.attrs == MemAttr_WB) then
 memattrs.xs = '0';
 else
 memattrs.xs = s2_memattrs.xs AND s1_memattrs.xs;

In section J1.1.5 (aarch64/translation) the code in the function AArch64.S2ApplyFWBMemAttrs()
that reads:

MemoryAttributes AArch64.S2ApplyFWBMemAttrs(MemoryAttributes s1_memattrs,

 bits(4) s2_attr, bits(2) s2_sh)
 MemoryAttributes memattrs;
 if s2_attr<2> == '0' then // S2 Device, S1 any
 ...
 elsif s2_attr<1:0> == '11' then // S2 attr = S1 attr
 memattrs = s1_memattrs;
 elsif s2_attr<1:0> == '10' then // Force writeback
 ...
 else // Non-cacheable unless S1 is device

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 71 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

 ...
 if s1_memattrs.memtype == MemType_Device then
 memattrs = s1_memattrs;
 else
 ...
 ...
 memattrs.shareability = EffectiveShareability(memattrs);
 return memattrs;

is updated to read:

MemoryAttributes AArch64.S2ApplyFWBMemAttrs(MemoryAttributes s1_memattrs,

 bits(4) s2_attr, bits(2) s2_sh)
 s2_attr = descriptor<5:2>;
 s2_sh = if walkparams.ds == '1' then walkparams.sh else descriptor<9:8>;
 s2_fnxs = descriptor<11>;
 MemoryAttributes memattrs;
 if s2_attr<2> == '0' then // S2 Device, S1 any
 ...
 memattrs.xs = s1_memattrs.xs;
 elsif s2_attr<1:0> == '11' then // S2 attr = S1 attr
 memattrs = s1_memattrs;
 elsif s2_attr<1:0> == '10' then // Force writeback
 ...
 memattrs.xs = '0';
 else // Non-cacheable unless S1 is device
 ...
 if s1_memattrs.memtype == MemType_Device then
 memattrs = s1_memattrs;
 else
 ...
 memattrs.xs = s1_memattrs.xs;
 ...
 if s2_fnxs == '1' then
 memattrs.xs = '0';
 memattrs.shareability = EffectiveShareability(memattrs);
 return memattrs;

2.96 R20165
In section D11.7.2 (Accuracy of event filtering), subsection ‘Software increment events’, the text
that reads:

Software increment events must also be counted without the need for explicit synchronization.
For example, two software increments executed without an intervening Context synchronization
event must increment the event counter twice.

is updated to read:

If the PE performs two architecturally executed writes to the PMSWINC_EL0 or PMSWINC
register without an intervening Context synchronization event, then the counter is incremented
twice.

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 72 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

2.97 D20171
In section C6.2.43 (CASH, CASAH, CASALH, CASLH), the bullet that reads:

• CAS has neither acquire nor release semantics.

is corrected to read:

• CASH has neither acquire nor release semantics.

In section C6.2.44 (CASP, CASPA, CASPAL, CASPL), the bullet that reads:

• CAS has neither acquire nor release semantics.

is corrected to read:

• CASP has neither acquire nor release semantics.

2.98 D20192
In section C3.2.12 (Atomic instructions), subsection ‘Single-copy atomic 64-byte load/store’, the
text that reads:

When the instructions access a memory type that is not one of the following, a Data abort for
Unsupported Exclusive or Atomic access is generated for the stage of translation that provided
the memory type:

• Normal Inner Non-cacheable, Outer Non-cacheable.

• Device-GRE.

• Device-nGRE.

• Device-nGnRE.

• Device-nGnRnE.

is changed to read:

When the instructions access a memory type that is not one of the following, a Data abort for
Unsupported Exclusive or Atomic access is generated:

• Normal Inner Non-cacheable, Outer Non-cacheable.

• Device-GRE.

• Device-nGRE.

• Device-nGnRE.

• Device-nGnRnE.

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 73 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

It is IMPLEMENTATION DEFINED whether this check is performed at each enabled stage of
translation, or whether the check is performed after all enabled stages of translation. If the check
is performed at each enabled stage of translation, then the value of the HCR_EL2.DC bit does
not cause accesses generated by these instructions to generate a stage 1 Data abort.

2.99 D20207
In sections C7.2.9 (AESIMC), C7.2.10 (AESMC), F6.1.3 (AESIMC), and F6.1.4 (AESMC), the
instructions’ dependency on FEAT_AES is added.

2.100 R20208
In section D11.11.3 (Common event numbers), in the subsection ‘Common microarchitectural
events’, the text in the description of ‘0x0024, STALL_BACKEND, No operation sent for execution
due to the backend’ that reads:

The counter counts each cycle counted by CPU_CYCLES where no Attributable instruction or
operation was sent for execution and either:

• The backend is unable to accept any of the instruction operations available for the PE.

• The backend is unable to accept any operations for the PE.

Note: In a single cycle, both the STALL_BACKEND and STALL_FRONTEND events might be
counted, if both the backend is unable to accept any operations and there are no operations
available to issue from the frontend.

is updated to read:

The counter counts each cycle counted by CPU_CYCLES where Attributable instructions or
operations are available to dispatch for the PE from the frontend, but no Attributable instruction
or operation is sent for execution because the backend is unable to accept any of the instructions
or operations available for the PE.

It is IMPLEMENTATION DEFINED whether the counter also counts each cycle counted by
CPU_CYCLES where no Attributable instructions or operations are available to dispatch for the
PE from the frontend and the backend is unable to accept any instructions or operations for the
PE.

Note: This means that it is IMPLEMENTATION DEFINED whether both the STALL_BACKEND and
STALL_FRONTEND events can be counted in the same cycle.

Equivalent changes are made to the following event descriptions:

• 0x003D, STALL_SLOT_BACKEND, No operation sent for execution on a Slot due to the
backend.

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 74 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

• 0x003E, STALL_SLOT_FRONTEND, No operation sent for execution on a Slot due to the
frontend.

An equivalent change is made to the Note in the description of ‘0x0023, STALL_FRONTEND,
No operation sent for execution due to the frontend’ as described above for the 0x0024,
STALL_BACKEND event description.

2.101 D20210
In section J1.1.3 (aarch64/functions), the function AArch64.PhysicalSErrorSyndrome() that reads as:

bits(25) AArch64.PhysicalSErrorSyndrome(boolean implicit_esb)
 bits(25) syndrome = Zeros(25);
...
 if errorstate == ErrorState_Uncategorized then
 ...
 elsif errorstate == ErrorState_IMPDEF then
 ...
 else
 syndrome<24> = '0'; // IDS
 syndrome<13> = (if implicit_esb then '1' else '0'); // IESB
 syndrome<12:10> = AArch64.EncodeAsyncErrorSyndrome(errorstate); // AET
 syndrome<5:0> = '010001';

is updated to:

bits(25) AArch64.PhysicalSErrorSyndrome(boolean implicit_esb)
...
 if errorstate == ErrorState_Uncategorized then
 ...
 elsif errorstate == ErrorState_IMPDEF then
 ...
 else
 syndrome<24> = '0'; // IDS
 syndrome<13> = (if implicit_esb then '1' else '0'); // IESB
 syndrome<12:10> = AArch64.EncodeAsyncErrorSyndrome(errorstate); // AET
 syndrome<9> = fault.extflag; // EA
 syndrome<5:0> = '010001'; // DFSC

Similarly in section J1.2.3 (aarch32/functions), the function AArch32.PhysicalSErrorSyndrome() that
reads as:

bits(16) AArch32.PhysicalSErrorSyndrome()
 bits(32) syndrome = Zeros(32);
 FaultRecord fault = GetPendingPhysicalSError();
 boolean long_format = TTBCR.EAE == '1';
 syndrome = AArch32.CommonFaultStatus(fault, long_format);
 return syndrome<15:0>;

is updated to:

bits(16) AArch32.PhysicalSErrorSyndrome()
 bits(32) syndrome = Zeros(32);
 FaultRecord fault = GetPendingPhysicalSError();
 if PSTATE.EL == EL2 then

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 75 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

 ErrorState errstate = AArch32.PEErrorState(fault);
 syndrome<11:10> = AArch32.EncodeAsyncErrorSyndrome(errstate); // AET
 syndrome<9> = fault.extflag; // EA
 syndrome<5:0> = '010001'; // DFSC
 else
 boolean long_format = TTBCR.EAE == '1';
 syndrome = AArch32.CommonFaultStatus(fault, long_format);
 return syndrome<15:0>;

2.102 C20220
In section D1.3.6 (Asynchronous exception types), the rule RPFDGT is added:

If an interrupt was pending and its Superpriority attribute changes, it is CONSTRAINED
UNPREDICTABLE whether the interrupt uses the previous or current value of the Superpriority
attribute when evaluating masking conditions. If the interrupt is taken using the previous value
of the Superpriority attribute, it is taken before the first Context synchronization event after the
Superpriority attribute changed.

2.103 C20237
In section H9.2.11 (EDACR, External Debug Auxiliary Control Register), the ‘Configuration’ text that
reads:

If FEAT_DoPD is implemented, this register is implemented in the Core power domain.

If FEAT_DoPD is not implemented, the power domain that this register is implemented in is
IMPLEMENTATION DEFINED.

If the EDACR contains any control bits that must be preserved over power down, then
these bits must be accessible by the external debug interface when the OS Lock is locked,
OSLSR_EL1.OSLK == 1, and when the Core is powered off.

is updated to read:

If FEAT_DoPD is implemented:

• This register is implemented in the Core power domain.

• Any mechanism to preserve control bits in EDACR over power down is optional and
IMPLEMENTATION DEFINED.

If FEAT_DoPD is not implemented:

• The power domain that this register is implemented in is IMPLEMENTATION DEFINED.

• If the EDACR contains any control bits that must be preserved over power down, then
these bits must be accessible by the external debug interface when the OS Lock is locked,
OSLSR_EL1.OSLK == 1, and, when the Core is powered off.

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 76 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

2.104 D20253
In section D4.6.13 (External inputs), the following rule RKRSMY is added:

The following PMU events are always exported to the trace unit, unless SelfHostedTraceEnabled()
== TRUE and TRFCR_EL2.E2TRE is 0b0:

• PMU_HOVFS.

2.105 D20268
In section J1.1.4 (aarch64/instrs), the function AArch64.RestrictPrediction() that reads:

if EL2Enabled() && !IsInHost() then
 if PSTATE.EL IN {EL0, EL1} then
 c.is_vmid_valid = TRUE;
 c.all_vmid = FALSE;
 c.vmid = VMID[];
 elsif target_el IN {EL0, EL1} then
 c.is_vmid_valid = TRUE;
 c.all_vmid = val<48> == '1';
 c.vmid = val<47:32>; // Only valid if val<48> == '0';
 else
 c.is_vmid_valid = FALSE;

Is updated to read:

if EL2Enabled() then
 if (PSTATE.EL == EL0 && !IsInHost()) || PSTATE.EL == EL1 then
 c.is_vmid_valid = TRUE;
 c.all_vmid = FALSE;
 c.vmid = VMID[];
 elsif (target_el == EL0 && !ELIsInHost(target_el)) || target_el == EL1 then
 c.is_vmid_valid = TRUE;
 c.all_vmid = val<48> == '1';
 c.vmid = val<47:32>; // Only valid if val<48> == '0'
 else
 c.is_vmid_valid = FALSE;

2.106 C20275
In section D11.11.3 (Common event numbers), in the subsection ‘Common architectural events’,
the event descriptions that read:

0x000B, CID_WRITE_RETIRED, Instruction architecturally executed, Condition code check pass,
write to CONTEXTIDR

The counter counts each MSR write to CONTEXTIDR_EL1 and each MCR write to
CONTEXTIDR.

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 77 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

If the PE performs two architecturally-executed writes to CONTEXTIDR without an intervening
Context synchronization event, it is CONSTRAINED UNPREDICTABLE whether the first write is
counted.

When FEAT_VHE is implemented, the counter:

• Counts each architecturally-executed instruction accessing the named register
CONTEXTIDR_EL1, including when executing at EL2 when HCR_EL2.E2H is 0b1.

• Does not count instructions accessing the named register CONTEXTIDR_EL12.

Note: The event is defined by the name used to access the register. The counter does not count
writes to the named register CONTEXTIDR_EL2.

0x001C, TTBR_WRITE_RETIRED, Instruction architecturally executed, Condition code check
pass, write to TTBR

The counter counts MSR writes to TTBR0_EL1 and TTBR1_EL1 in AArch64 state and MCR
and MCRR writes to TTBR0 and TTBR1 in AArch32 state. When EL3 is implemented and using
AArch32, this includes counting writes to both banked copies of TTBR0 and TTBR1.

If the PE executes two writes to the same TTBR, without an intervening Context synchronization
event, it is CONSTRAINED UNPREDICTABLE whether the first write to the TTBR, is counted.

If EL3 is implemented and using AArch64, the counter does not count writes to TTBR0_EL3.

If EL2 is implemented and using AArch64, the counter does not count writes to TTBR0_EL2 and
VTTBR_EL2.

If EL2 is implemented and using AArch32, the counter does not count writes to HTTBR and
VTTBR.

When FEAT_VHE is implemented, the counter:

• Counts each architecturally-executed instruction accessing the named registers TTBR0_EL1
and TTBR1_EL1, including when executing at EL2 when HCR_EL2.E2H is 0b1.

• Does not count instructions accessing the named registers TTBR0_EL12 and TTBR1_EL12.

are updated to read:

0x000B, CID_WRITE_RETIRED, Instruction architecturally executed, Condition code check pass,
write to CONTEXTIDR

The counter counts each MSR write to CONTEXTIDR_EL1 and each MCR write to
CONTEXTIDR.

If the PE performs two architecturally executed writes to CONTEXTIDR without an intervening
Context synchronization event, it is CONSTRAINED UNPREDICTABLE whether the first write is
counted.

Note: The counter counts only writes to these named registers. For example:

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 78 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

• When FEAT_VHE or FEAT_Debugv8p2 is implemented, the counter does not count writes to
the named register CONTEXTIDR_EL2.

• When FEAT_VHE is implemented, the counter:

◦ Counts each architecturally executed instruction accessing the named register
CONTEXTIDR_EL1, including when executing at EL2 when HCR_EL2.E2H is 0b1.

◦ Does not count instructions accessing the named register CONTEXTIDR_EL12.

• When FEAT_NV2 is implemented, the counter counts each write to the named register
CONTEXTIDR_EL1, including when executing at EL1 when HCR_EL2 {NV2,NV1,NV} is
{0b1,0b1,0b1}.

0x001C, TTBR_WRITE_RETIRED, Instruction architecturally executed, Condition code check
pass, write to TTBR

The counter counts MSR writes to TTBR0_EL1 and TTBR1_EL1 in AArch64 state and MCR
and MCRR writes to TTBR0 and TTBR1 in AArch32 state. When EL3 is implemented and using
AArch32, this includes counting writes to both banked copies of TTBR0 and TTBR1.

If the PE executes two writes to the same TTBR, without an intervening Context synchronization
event, it is CONSTRAINED UNPREDICTABLE whether the first write to the TTBR, is counted.

Note: The counter counts only writes to these named registers. For example:

• If EL3 is implemented and using AArch64, the counter does not count writes to TTBR0_EL3.

• If EL2 is implemented and using AArch64, the counter does not count writes to TTBR0_EL2
and VTTBR_EL2.

• If EL2 is implemented and using AArch32, the counter does not count writes to HTTBR and
VTTBR.

• When FEAT_VHE is implemented, the counter:

◦ Counts each write to the named registers TTBR0_EL1 and TTBR1_EL1, including when
executing at EL2 when HCR_EL2.E2H is 0b1.

◦ Does not count instructions accessing the named registers TTBR0_EL12 and
TTBR1_EL12.

• When FEAT_NV2 is implemented, the counter counts each write to the named registers
TTBR0_EL1 and TTBR1_EL1, including when executing at EL1 when HCR_EL2.
{NV2,NV1,NV} is {0b1,0b1,0b1}.

2.107 D20282
In section D11.5.3 (Prohibiting event and cycle counting), the bullet item that reads:

The cycle counter, PMCCNTR, counts unless any of the following are true:

• Event counting by event counters in the range [0..(HDCR.HPMN-1)] is prohibited or frozen,
and PMCR.DP is set to 1.

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 79 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

is updated to read:

The cycle counter, PMCCNTR, counts unless any of the following are true:

• Event counting by event counters in the range [0..(HDCR.HPMN-1)] is prohibited or frozen by
PMCR.FZO, and PMCR.DP is set to 1.

In section D17.5.7 (PMCR_EL0, Performance Monitors Control Register), the description of ‘FZO,
bit [9]’ that reads:

0b0 Do not freeze on overflow.

0b1 Event counter PMEVCNTR<n>_EL0 does not count when PMOVSCLR_EL0[(PMN-1):0] is
nonzero and n is in the range of affected event counters.

If PMN is not 0, this field affects the operation of event counters in the range [0 .. (PMN-1)].

This field does not affect the operation of other event counters and PMCCNTR_EL0.

is updated to read:

0b0 Do not freeze on overflow.

0b1 Affected counters do not count when PMOVSCLR_EL0[(PMN-1):0] is nonzero. If
PMCR_EL0.DP is 0b1, then PMCCNTR_EL0 is also disabled. Otherwise, PMCCNTR_EL0 is not
affected by this mechanism.

The counters affected by this bit are:

• If PMN is not 0, event counters PMEVCNTR<n> for values of n in the range [0 .. (PMN-1)].

• If PMCR_EL0.DP is 0b1, the cycle counter, PMCCNTR_EL0.

Other event counters are not affected by this bit.

In section D17.2.60 (ID_AA64DFR1_EL1, AArch64 Debug Feature Register 1), the field ‘DPFZS’ is
added at bits [55:52], as follows:

Behavior of the cycle counter when event counting is frozen by a Statistical Profiling management
event. Defined values are:

0b0000 The cycle counter PMCCNTR_EL0 is never affected by PMCR_EL0.FZS.

0b0001 The cycle counter PMCCNTR_EL0 does not count when PMCR_EL0.DP is 0b1 and
counting by event counters accessible to EL1 is frozen by the PMCR_EL0.FZS mechanism.

If FEAT_PMUv3p7 is not implemented or FEAT_SPEv1p2 is not implemented, the only permitted
value is 0b0000.

In section J1.1.1 (aarch64/debug), the function AArch64.CountPMUEvents() is updated to support
PMCR.FZS.

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 80 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

2.108 D20283
In section G8.2.65 (HCR2, Hyp Configuration Register 2), in field TOCU, bit [20], the text that
reads:

Trap cache maintenance instructions that operate to the Point of Unification. Traps execution of
those cache maintenance instructions at EL1 or EL0 using AArch64, and at EL1 using AArch32,
to EL2.

This applies to the following instructions:

• When Non-secure EL0 is using AArch64, IC IVAU, DC CVAU. However, if the value of
SCTLR_EL1.UCI is 0 these instructions are UNDEFINED at EL0 and any resulting exception is
higher priority than this trap to EL2.

• When EL1 is using AArch64, IC IVAU, IC IALLU, DC CVAU.

• When Non-secure EL1 is using AArch32, ICIMVAU, ICIALLU, DCCMVAU.

— Note — An exception generated because an instruction is UNDEFINED at EL0 is higher priority
than this trap to EL2. In addition:

• IC IALLUIS and IC IALLU are always UNDEFINED at EL0 using AArch64.

• ICIMVAU, ICIALLU, ICIALLUIS, and DCCMVAU are always UNDEFINED at EL0 using AArch32.

is changed to read:

Trap cache maintenance instructions that operate to the Point of Unification. Traps execution of
ICIMVAU, ICIALLU, DCCMVAU at EL1 using AArch32, to EL2.

2.109 D20284
In section D17.8.7 (BRBSRC<n>_EL1, Branch Record Buffer Source Address Register <n>, n = 0 -
31), the text that reads:

When an indirect write occurs with a value with ADDRESS bits [63:P] being other than all zeroes
or all ones, an UNKNOWN value which is not all zeroes or all ones is written to bits [63:P]. P is
defined as the virtual address size supported by the PE, as returned by VAMax(). The value in bits
[P-1:0] are the value written.

is updated to read:

When an indirect write occurs with a value with ADDRESS bits [63:P] being other than all zeroes
or all ones, an UNKNOWN value which is not all zeroes or all ones is written to bits [63:P]. P is
defined as:

• 52 when FEAT_LVA is implemented.

• 48, otherwise.

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 81 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

The value in bits [P-1:0] is the value written.

Equivalent changes are made in the following sections:

• D17.8.8 (BRBSRCINJ_EL1, Branch Record Buffer Source Address Injection Register).

• D17.8.9 (BRBTGT<n>_EL1, Branch Record Buffer Target Address Register <n>, n = 0 - 31).

• D17.8.10 (BRBTGTINJ_EL1, Branch Record Buffer Target Address Injection Register).

In section D17.4.9 (TRCACVR<n>, Address Comparator Value Register <n>, n = 0 - 15), the text in
the ‘ADDRESS, bits [63:0]’ description that reads:

The result of writing a value other than all zeros or all ones to ADDRESS at bits[63:P] is an
UNKNOWN value, where P is defined as the maximum virtual address size supported by the PE.

is updated to read:

The result of writing a value other than all zeros or all ones to ADDRESS at bits[63:P] is an
UNKNOWN value, where P is defined as:

• 52 when FEAT_LVA is implemented.

• 48, otherwise.

The same change is made in section H9.3.2 (TRCACVR<n>, Address Comparator Value Register
<n>, n = 0 - 15).

In section D4.5.9 (Element Generation), subsection ‘Exception element’, ICMRCN that reads:

An invalid address is one where bits [63:P] are not all zeros or all ones, where P is defined as the
maximum virtual address size supported by the PE.

is updated to read:

An invalid address is one where bits [63:P] are not all zeroes or all ones, where P is defined as:

• 52 when FEAT_LVA is implemented.

• 48, otherwise.

The same change is made to the statement IKZXQW within subsection ‘Target Address element’ of
the same section.

2.110 E20288
In section D17.2.49 (HCRX_EL2, Extended Hypervisor Configuration Register), the ‘TALLINT, bit
[6]’ field description is updated from:

Traps MSR writes of ALLINT at EL1 using AArch64 to EL2, when EL2 is implemented and
enabled in the current Security state, reported using EC syndrome value 0x18.

to:
Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 82 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

Traps the following writes at EL1 using AArch64 to EL2, when EL2 is implemented and enabled:

• MSR (register) writes of ALLINT.

• MSR (immediate) writes of ALLINT with a value of 1.

2.111 D20303
In section D1.3.1 (Exception entry terminology), in the subsection ‘Definition of a precise exception
and imprecise exception’, the bullet within rule RTNVSL that reads:

• For a synchronous exception that is taken from AArch64 state during an instruction that
performs more than one single-copy atomic memory access, the values in registers or
memory affected by the instructions can be UNKNOWN, if all of the following apply:

is updated to read:

• For a precise exception that is taken from AArch64 state during an instruction that performs
more than one single-copy atomic memory access, the values in registers or memory affected
by the instructions can be UNKNOWN, if all of the following apply:

In section D1.3.6 (Asynchronous exception types), in the subsection ‘Taking an interrupt during a
multi-access load or store’, rule RZBFSL that reads:

If in AArch64 state, interrupts can be taken during a sequence of memory accesses caused by a
single load or store instruction. This is true regardless of the memory type being accessed.

is updated to read:

In AArch64 state, interrupts can be taken during a sequence of memory accesses caused by a
single load or store instruction. This is true regardless of the memory type being accessed.

In this situation, the behavior is consistent with the requirements described in RTNVSL in Definition
of a precise exception and imprecise exception on page D1-4630.

2.112 D20310
In section D1.6.2 (Wait for Interrupt mechanism), the following rule RZWCCZ is deleted:

If a WFI or WFIT instruction put a PE into low-power state, the PE remains in that low power
state until it receives a WFE wake-up event.

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 83 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

2.113 C20312
In section D8.11.1 (MMU fault types), in the subsection ‘TLB conflict abort’, the rules that read:

R FVQCK

If an address matches multiple entries in a TLB and does not generate a TLB conflict abort, then
all of the following apply:

• The resulting behavior is CONSTRAINED UNPREDICTABLE.

• The CONSTRAINED UNPREDICTABLE behavior cannot permit access to memory regions with
permissions or attributes that would not be possible in the current Security state at the
current Exception level.

I HLHBH

For more information, see CONSTRAINED UNPREDICTABLE behaviors due to caching of control or
data values on page K1-11575.

are moved to section D8.13.1 (Using break-before-make when updating translation table entries),
and updated to read:

R FVQCK

If translation table entries are changed without appropriate TLB maintenance operations,
including in the case where use of the break-before-make sequence is required but software does
not follow the break-before-make sequence, it is possible that TLBs concurrently hold multiple
different copies of those translation table entries.

In this situation, the following behaviors are permitted for a speculative or architectural access to
the address resolved by those TLB entries:

• Use of the address matches multiple entries in a TLB, and a TLB conflict abort is detected.
In this case, no access is made to memory based on those TLB entries. If the access is
architectural, then the TLB conflict abort is reported as an exception.

• The resulting behavior is CONSTRAINED UNPREDICTABLE, and gives a behavior consistent with
translation using one of the matching entries, or an amalgamation of more than one of the
matching entries, but cannot permit access to memory regions with permissions or attributes
that would not be possible to be assigned by valid translation table entries in the translation
regime and stage of translation being used for access. This includes, for example:

◦ Insufficient TLB maintenance for stage 1 translations by EL1 must not permit it to bypass
the configuration of stage 2 translation.

◦ Insufficient TLB maintenance by Non-secure state must not permit it to access any
memory in Secure PA space.

I HLHBH

For more information, see CONSTRAINED UNPREDICTABLE behaviors due to caching of control or
data values on page K1-11575.

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 84 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

2.114 D20317
In section D15.3 (Branch record buffer operation), the text in rule RQKQZL that reads:

If any of the following are true, the physical offset is zero, otherwise the physical offset is the
value of CNTPOFF_EL2:

• EL3 is implemented and SCR_EL3.ECVEn is 0.

• EL2 is implemented and CNTHCTL_EL2.ECV is 0.

is updated to read:

If any of the following are true, the physical offset is zero, otherwise the physical offset is the
value of CNTPOFF_EL2:

• FEAT_ECV is not implemented.

• EL2 is not implemented.

• EL3 is implemented and SCR_EL3.ECVEn is 0.

• CNTHCTL_EL2.ECV is 0.

Additionally, the following text is added after Table D15-11 ‘Captured timestamp’:

If EL2 is not implemented, then the Effective value of BRBCR_EL2.TS is 0b00.

2.115 D20319
In section J1.1.5 (aarch64/translation), the function AArch64.TLBContextEL20 that reads:

TLBContext AArch64.TLBContextEL20(SecurityState ss, bits(64) va, TGx tg)
 ...
 tlbcontext.asid = if TCR_EL2.A1 == '0' then TTBR0_EL2.ASID else
 TTBR1_EL2.ASID;
 tlbcontext.tg = tg;
 ...

Is updated to read:

TLBContext AArch64.TLBContextEL20(SecurityState ss, bits(64) va, TGx tg)
 ...
 tlbcontext.asid = if TCR_EL2.A1 == '0' then TTBR0_EL2.ASID else
 TTBR1_EL2.ASID;
 if TCR_EL2.AS == '0' then
 tlbcontext.asid<15:8> = Zeros(8);
 tlbcontext.tg = tg;
 ...

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 85 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

In section J1.1.5 (aarch64/translation), the function AArch64.TLBContextEL10 that reads:

TLBContext AArch64.TLBContextEL10(SecurityState ss, bits(64) va, TGx tg)
 ...
 tlbcontext.asid = if TCR_EL1.A1 == '0' then TTBR0_EL1.ASID else
 TTBR1_EL1.ASID;
 tlbcontext.tg = tg;
 ...

Is updated to read:

TLBContext AArch64.TLBContextEL10(SecurityState ss, bits(64) va, TGx tg)
 ...
 tlbcontext.asid = if TCR_EL1.A1 == '0' then TTBR0_EL1.ASID else
 TTBR1_EL1.ASID;
 if TCR_EL1.AS == '0' then
 tlbcontext.asid<15:8> = Zeros(8);
 tlbcontext.tg = tg;
 ...

2.116 D20330
In section D8.8.3 (PAC instructions), rule IKBKGF that reads:

An instruction that extracts the PAC from the upper register bits and checks that the value is
correct does all of the following:

• The check is based on the value of the register and one other 64-bit value.

• When the value is correct, the PAC is replaced with the extension bits.

• When the value is incorrect, all of the following occur:

◦ The PAC is replaced with the extension bits.

◦ Two extension bits are set to a unique, fixed value.

◦ When the register is used as an indirect branch target, a Translation fault is generated
because the VA is not mapped.

is updated to read:

An instruction that extracts the PAC from the upper register bits and checks that the value is
correct does all of the following:

• The check is based on the value of the register and one other 64-bit value.

• When the value is correct, the PAC is replaced with the extension bits.

• When the value is incorrect, all of the following occur:

◦ The PAC is replaced with the extension bits.

◦ Two extension bits are set to a unique, fixed value, such that the 64-bit value represents a
non-canonical VA. This is referred to as making the VA non-canonical.

In section D8.8.4 (Faulting on pointer authentication), the following rules are deleted:

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 86 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

RCQRDJ All statements in this section require implementation of FEAT_FPAC.

IJPFQK If an instruction is a combined instruction that includes pointer authentication, then when
the PAC is incorrect, one of the following IMPLEMENTATION DEFINED behaviors occur:

• A Translation fault is generated due to the authentication failure.

• The address is modified in a way that generates a Translation fault when the address is
accessed.

ITVCPL When an authentication failure occurs at EL0, the exception is taken at one of the
following:

• If HCR_EL2.TGE is 0, the exception is taken at EL1.

• If HCR_EL2.TGE is 1, the exception is taken at EL2.

IMKMGV If the current Exception level is not EL0, then when an authentication failure occurs, the
exception is taken at the current Exception level.

IFBGSH When an exception is generated due to an authentication failure, the ESR_ELx.EC code is
set to 0x1C.

Within the same section, the rules IXBGSY and RMLWGL are updated to read:

IXBGSY A PAC authentication failure for a given VA can cause a fault to be generated in the
following three manners, according to the type of the instruction and whether FEAT_FPAC and
FEAT_FPACCOMBINE are implemented:

• The PAC instruction makes the VA non-canonical, such that a subsequent use of the VA
generates a fault. In this case, the PAC instruction does not directly generate the fault.

• The PAC instruction makes the VA non-canonical and uses that VA such that a fault is
generated by that instruction.

• The PAC instruction directly generates a Pointer Authentication instruction authentication
failure exception, with EC code 0b011100.

RMLWGL If an instruction is a combined instruction that includes pointer authentication, then when
the PAC is incorrect in a given VA, one of the following behaviors occurs:

• For a combined authenticate and load instruction, then:

◦ If FEAT_FPACCOMBINE is not implemented, the VA is made non-canonical and then
used as the address for the load.

◦ If FEAT_FPACCOMBINE is implemented, then the instruction generates a Pointer
Authentication instruction authentication failure exception, with EC code 0b011100.

• For a combined authenticate and branch instruction, then:

◦ If FEAT_FPACCOMBINE is not implemented, the VA is made non-canonical and the PC is
updated to this non-canonical value.

◦ If FEAT_FPACCOMBINE is implemented, then the instruction generates a Pointer
Authentication instruction authentication failure exception, with EC code 0b011100.

And the following rule is added to the section:

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 87 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

For a PAC authentication instruction, AUT*, then when the PAC is incorrect for a given VA, one
of the following behaviors occurs:

• If FEAT_FPAC is not implemented, the VA is made non-canonical.

• If FEAT_FPAC is implemented, then the instruction generates a Pointer Authentication
instruction authentication failure exception, with EC code 0b011100.

2.117 D20332
In the following sections:

• C6.2.20 (AUTDA, AUTDZA).

• C6.2.21 (AUTDB, AUTDZB).

• C6.2.22 (AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIZA).

• C6.2.23 (AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB).

The text that reads:

If the authentication fails, the upper bits are corrupted and any subsequent use of the address
results in a Translation fault.

is updated to read:

For information on behavior if the authentication fails, see Faulting on pointer authentication on
page D8-5159.

In the following sections:

• C6.2.36 (BLRAA, BLRAAZ, BLRAB, BLRABZ).

• C6.2.38 (BRAA, BRAAZ, BRAB, BRABZ).

• C6.2.122 (ERETAA, ERETAB).

• C6.2.169 (LDRAA, LDRAB).

• C6.2.255 (RETAA, RETAB).

The text that reads:

If the authentication fails, a Translation fault is generated.

is updated to read:

For information on behavior if the authentication fails, see Faulting on pointer authentication on
page D8-5159.

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 88 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

2.118 C20333
In section D8.11.1 (MMU fault types), in the subsection ‘Translation fault’, the rule RMLNTS is
updated to read:

When a translation table entry generates a Translation fault, that translation table entry is not
cached in a TLB.

2.119 D20334
In section D8.11.1 (MMU fault types), in the subsection ‘Translation fault’, the following bullet point
in rule RVZZSZ is deleted:

• When FEAT_SVE is implemented, the corresponding TCR_ELx.NFDy field prevents non-
faulting unprivileged accesses to an address translated by TTBRy_ELx.

2.120 D20335
In section B2.7.1 (Normal memory), the following bullet point is added under the list that begins
‘The Normal memory type has the following properties:’:

• Where a load or store instruction performs a sequence of memory accesses, as opposed
to one single-copy atomic access as defined in the rules for single-copy atomicity, these
accesses might occur multiple times as a result of executing the load or store instruction.

The following Note is also added to the same section:

Note:

• Write speculation that is visible to other observers is prohibited for all memory types.

In section B2.3.10 (Restrictions on the effects of speculation), the following bullet point is added
under the list that begins ‘The Arm architecture places certain restrictions on the effects of
speculation. These are:’:

• Write speculation that is visible to other observers is prohibited for all memory types.

2.121 D20340
In section D11.11.3 (Common event numbers), in the subsection ‘Common microarchitectural
events’, the event definition ‘0x8174, CAS_SPEC, Atomic memory Operation speculatively
executed, Compare and Swap’ that reads:

The counter counts each load atomic operation counted by LSE_LD_SPEC that is a Compare and
Swap operation.

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 89 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

is updated to read:

The counter counts each Compare and Swap operation.

2.122 C20341
In section D11.11.3 (Common events numbers), in the subsection ‘Common microarchitectural
events’, the definition of ‘0x8194, DSNP_HIT_RD, Snoop hit, demand data read’ that reads:

The counter counts each snoop generated in response to a demand Memory-read operation
counted by DSNP_HIT_RW that hits in a cache outside of the cache hierarchy of this PE.

is updated to read:

The counter counts each snoop generated by the PE in response to a demand Memory-read
operation counted by DSNP_HIT_RW that hits in and returns data from a cache outside of the
cache hierarchy of this PE.

Note: The event is counted by the PE generating the snoop, not the PE being snooped.

Equivalent changes are made to the ISNP_* and DSNP_* event descriptions throughout this
section, although the Note is only added in the description of ‘0x8190, ISNP_HIT_RD, Snoop hit,
demand instruction fetch’.

2.123 D20346
In section D7.4.13 (Execution, data prediction and prefetching restriction System instructions), the
text that reads:

If the System instruction is specified to apply to Exception levels that are not implemented, or
which are higher than the Exception level that the System instruction is executed at, then the
System instruction is treated as a NOP.

is updated to read:

If the System instruction is specified to apply to a combination of Security state and Exception
level that is not implemented, or an Exception level which is higher than the Exception level that
the System instruction is executed at, then the System instruction is treated as a NOP.

Equivalent changes are made in the following sections:

• C5.6.1 (CFP RCTX, Control Flow Prediction Restriction by Context), in the description of ‘EL,
bits [25:24]’.

• C5.6.2 (CPP RCTX, Cache Prefetch Prediction Restriction by Context), in the description of ‘EL,
bits [25:24]’.

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 90 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

• C5.6.3 (DVP RCTX, Data Value Prediction Restriction by Context), in the description of ‘EL, bits
[25:24]’.

• G4.4.8 (Execution and data prediction restriction System instructions).

• G8.2.26 (CFPRCTX, Control Flow Prediction Restriction by Context), in the description of ‘EL,
bits [25:24]’.

• G8.2.34 (CPPRCTX, Cache Prefetch Prediction Restriction by Context), in the description of ‘EL,
bits [25:24]’.

• G8.2.50 (DVPRCTX, Data Value Prediction Restriction by Context), in the description of ‘EL,
bits [25:24]’.

• J1.1.4 (aarch64/instrs), in the function ‘RestrictPrediction()’.

2.124 D20363
In section D17.2.111 (RNDR, Random Number), the MRS accessibility pseudocode that reads:

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_RNG_TRAP) && SCR_EL3.TRNDR == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !IsFeatureImplemented(FEAT_RNG) then
 UNDEFINED;
 else
 X[t, 64] = RNDR;
elsif PSTATE.EL == EL1 then
 if IsFeatureImplemented(FEAT_RNG_TRAP) && SCR_EL3.TRNDR == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !IsFeatureImplemented(FEAT_RNG) then
 UNDEFINED;
 else
 X[t, 64] = RNDR;
elsif PSTATE.EL == EL2 then
 if IsFeatureImplemented(FEAT_RNG_TRAP) && SCR_EL3.TRNDR == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !IsFeatureImplemented(FEAT_RNG) then
 UNDEFINED;
 else
 X[t, 64] = RNDR;

is corrected to:

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_RNG_TRAP) && SCR_EL3.TRNDR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !IsFeatureImplemented(FEAT_RNG) then
 UNDEFINED;
 else
 X[t, 64] = RNDR;
elsif PSTATE.EL == EL1 then
 if IsFeatureImplemented(FEAT_RNG_TRAP) && SCR_EL3.TRNDR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 91 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

 elsif !IsFeatureImplemented(FEAT_RNG) then
 UNDEFINED;
 else
 X[t, 64] = RNDR;
elsif PSTATE.EL == EL2 then
 if IsFeatureImplemented(FEAT_RNG_TRAP) && SCR_EL3.TRNDR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif !IsFeatureImplemented(FEAT_RNG) then
 UNDEFINED;
 else
 X[t, 64] = RNDR;

A similar change is also made to the MSR access pseudocode and the accessors for section
D17.2.112 (RNDRRS, Reseeded Random Number).

2.125 D20365
In section D15.1.4 (BRBE Prohibited regions), rule RJWWFY which reads:

When FEAT_BRBEv1p1 and EL3 are implemented:

When MDCR_EL3.{E3BREC, E3BREW} is {0b01, 0b01} or MDCR_EL3.{E3BREC, E3BREW}
is {0b10, 0b10}, self-hosted EL3 branch recording is enabled. When MDCR_EL3.{E3BREC,
E3BREW} is {0b00, 0b00} or MDCR_EL3.{E3BREC, E3BREW} is {0b11,0b11}, self-hosted EL3
branch recording is disabled.

is corrected to read:

When FEAT_BRBEv1p1 and EL3 are implemented:

When MDCR_EL3.{E3BREC, E3BREW} is {0b0, 0b1} or MDCR_EL3.{E3BREC, E3BREW} is {0b1,
0b0}, self-hosted EL3 branch recording is enabled. When MDCR_EL3.{E3BREC, E3BREW} is
{0b0, 0b0} or MDCR_EL3.{E3BREC, E3BREW} is {0b1,0b1}, self-hosted EL3 branch recording is
disabled.

2.126 D20375
In section J1.3.1 (shared/debug), the functions Halt() and UpdateEDSCRFields() do not correctly
update the EDSCR.SDD bit.

The code in Halt() that reads:

Halt(bits(6) reason, boolean is_async)
 ...
 EDSCR.ITO = '0';
 if HaveRME() then
 EDSCR.SDD = if ExternalRootInvasiveDebugEnabled() then '0' else '1';
 elsif CurrentSecurityState() == SS_Secure then

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 92 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

...

is updated to read:

Halt(bits(6) reason, boolean is_async)
 ...
 EDSCR.ITO = '0';
 if HaveRME() then
 if PSTATE.EL == EL3 then
 EDSCR.SDD = '0';
 else
 EDSCR.SDD = if ExternalRootInvasiveDebugEnabled() then '0' else '1';
 elsif CurrentSecurityState() == SS_Secure then
...

The code in UpdateEDSCRFields()that reads:

UpdateEDSCRFields()
 EDSCR.EL = '00';
 if HaveRME() then
 EDSCR.<NSE,NS> = bits(2) UNKNOWN;
 else
 EDSCR.NS = bit UNKNOWN;
 EDSCR.RW ='1111';

is updated to read:

UpdateEDSCRFields()
 EDSCR.EL = '00';
 if HaveRME() then
 // SDD bit.
 EDSCR.SDD = if ExternalRootInvasiveDebugEnabled() then '0' else '1';
 EDSCR.<NSE,NS> = bits(2) UNKNOWN;
 else
 // SDD bit.
 EDSCR.SDD = if ExternalSecureInvasiveDebugEnabled() then '0' else '1';
 EDSCR.NS = bit UNKNOWN;
 EDSCR.RW = '1111';
...

2.127 D20378
In section E1.3.5 (Flushing denormalized numbers to zero), the text that reads:

• If FPSCR.FZnstructions that convert from single-precision floating-point values to BF16
format flush denormalized outputs to zero.

is corrected to read:

• If FPSCR.FZ is 1, instructions that convert from single-precision floating-point values to BF16
format flush denormalized outputs to zero.

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 93 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

2.128 D20380
In J1.3.5 (shared/translation) the function EncodePARAttrs() does not account for encodings in
which the xs attribute is 0.

That code that reads:

 if memattrs.memtype == MemType_Device then
 ...
 if memattrs.device == DeviceType_nGnRnE then
 ...
 else // DeviceType_GRE
 ...
 else
 if memattrs.outer.attrs == MemAttr_WT then
 ...

Is updated to read:

 if memattrs.memtype == MemType_Device then
 ...
 if memattrs.device == DeviceType_nGnRnE then
 ...
 else // DeviceType_GRE
 ...
 result<0> = NOT memattrs.xs;
 else
 if memattrs.xs == '0' then
 if (memattrs.outer.attrs == MemAttr_WT && memattrs.inner.attrs ==
 MemAttr_WT &&
 !memattrs.outer.transient && memattrs.outer.hints == MemHint_RA)
 then
 return '10100000';
 elsif memattrs.outer.attrs == MemAttr_NC && memattrs.inner.attrs ==
 MemAttr_NC then
 return '01000000';
 if memattrs.outer.attrs == MemAttr_WT then
 ...

In the same section, the function S2CombineS1MemAttrs() incorrectly combines the stage 1 and
stage 2 xs attributes when stage 2 is in AArch32 Execution state.

The code that reads:

MemoryAttributes S2CombineS1MemAttrs(MemoryAttributes s1_memattrs,
 MemoryAttributes s2_memattrs)
 ...
 if (memattrs.memtype == MemType_Normal &&
 memattrs.inner.attrs == MemAttr_WB &&
 memattrs.outer.attrs == MemAttr_WB) then
 memattrs.xs = '0';
 else
 memattrs.xs = s2_memattrs.xs AND s1_memattrs.xs;

Is updated to read:

MemoryAttributes S2CombineS1MemAttrs(MemoryAttributes s1_memattrs, MemoryAttributes
 s2_memattrs,

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 94 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

 boolean s2aarch64)
 ...
 if (memattrs.memtype == MemType_Normal &&
 memattrs.inner.attrs == MemAttr_WB &&
 memattrs.outer.attrs == MemAttr_WB) then
 memattrs.xs = '0';
 elsif s2aarch64 then
 memattrs.xs = s2_memattrs.xs AND s1_memattrs.xs;
 else
 memattrs.xs = s1_memattrs.xs;

In J1.2.4 (aarch32/translation) the function AArch32.S1DisabledOutput() does not initialize the
value of xs.

The code that reads:

AArch32.S1DisabledOutput(...)
 ...
 if default_cacheable == '1' then
 ...
 elsif accdesc.acctype == AccessType_IFETCH then
 ...
 else
 ...
 ...

Is updated to read:

AArch32.S1DisabledOutput(...)
 ...
 if default_cacheable == '1' then
 ...
 memattrs.xs = '0';
 elsif accdesc.acctype == AccessType_IFETCH then
 ...
 memattrs.xs = '1';
 else
 ...
 memattrs.xs = '1';
 ...

2.129 D20389
In section D8.4.6 (Hardware management of the dirty state), in the subsection ‘Implications of
enabling the dirty state management mechanism’, the rule INSYYW that reads:

For stage 1 translations, if the corresponding SCTLR_ELx.WXN is 1, then all of the following
apply:

• For a translation regime that supports a single privilege level, translations using a writeable-
clean descriptor are treated as execute-never.

• For a translation regime that supports two privilege levels, translations using a privileged
writable-clean descriptor are treated as privileged execute-never.

• For a translation regime that supports two privilege levels, translations using a writeable-clean
descriptor are treated as unprivileged execute never.

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 95 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

is updated to read:

For stage 1 translations, if the corresponding SCTLR_ELx.WXN is 1, then all of the following
apply:

• For a translation regime that supports a single privilege level, translations using a writeable-
clean descriptor are treated as execute-never.

• For a translation regime that supports two privilege levels, translations using a privileged
writable-clean descriptor are treated as privileged execute-never.

• For a translation regime that supports two privilege levels, translations using an unprivileged
writeable-clean descriptor are treated as unprivileged execute-never.

2.130 D20397
In section B2.9.5 (Load-Exclusive and Store-Exclusive instruction usage restrictions), the text that
reads:

LoadExcl/StoreExcl loops are guaranteed to make forward progress only if, for any LoadExcl/
StoreExcl loop within a single thread of execution, the software meets all of the following
conditions:

1 Between the Load-Exclusive and the Store-Exclusive, there are no explicit memory effects,
preloads, direct or indirect System register writes, address translation instructions, cache or TLB
maintenance instructions, exception generating instructions, exception returns, ISB barriers, or
indirect branches.

2 Between the Store-Exclusive returning a failing result and the retry of the corresponding Load-
Exclusive:

• There are no stores or PRFM instructions to any address within the Exclusives reservation
granule accessed by the Store-Exclusive.

• There are no loads or preloads to any address within the Exclusives reservation granule
accessed by the Store-Exclusive that use a different VA alias to that address.

• There are no direct or indirect System register writes, address translation instructions, cache
or TLB maintenance instructions, exception generating instructions, exception returns, or
indirect branches.

• All loads and stores are to a block of contiguous virtual memory of not more than 512 bytes
in size.

is updated to read:

LoadExcl/StoreExcl loops are guaranteed to make forward progress only if, for any LoadExcl/
StoreExcl loop within a single thread of execution, the software meets all of the following
conditions:

1 Between the Load-Exclusive and the Store-Exclusive, there are no explicit memory effects,
preloads, direct or indirect System register writes, address translation instructions, cache or TLB

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 96 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

maintenance instructions, exception generating instructions, exception returns, ISB barriers,
indirect branches, or Branch with Link instructions.

2 Between the Store-Exclusive returning a failing result and the retry of the corresponding Load-
Exclusive:

• There are no stores or PRFM instructions to any address within the Exclusives reservation
granule accessed by the Store-Exclusive.

• There are no loads or preloads to any address within the Exclusives reservation granule
accessed by the Store-Exclusive that use a different VA alias to that address.

• There are no direct or indirect System register writes, address translation instructions, cache
or TLB maintenance instructions, exception generating instructions, exception returns,
indirect branches, or Branch with Link instructions.

• All loads and stores are to a block of contiguous virtual memory of not more than 512 bytes
in size.

Equivalent changes are made in section E2.10.5 (Load-Exclusive and Store-Exclusive instruction
usage restrictions).

2.131 D20398
In section D17.2.144 (TTBR0_EL1, Translation Table Base Register 0 (EL1)), in the ‘BADDR[47:1],
bits [47:1]’ field, the text that reads:

Address bit x is the minimum address bit required to align the translation table to the size of the
table. The smallest permitted value of x is 6. The AArch64 Virtual Memory System Architecture
chapter describes how x is calculated based on the value of TCR_EL1.T0SZ, the translation stage,
and the translation granule size.

Note: A translation table is required to be aligned to the size of the table. If a table contains fewer
than eight entries, it must be aligned on a 64 byte address boundary.

is updated to read:

Address bit x is the minimum address bit required to align the translation table to the size of the
table. The AArch64 Virtual Memory System Architecture chapter describes how x is calculated
based on the value of TCR_EL1.T0SZ, the translation stage, and the translation granule size.

Note: If an OA size of more than 48 bits is in use, and the translation table has fewer than eight
entries, the table must be aligned to 64 bytes. Otherwise the translation table must be aligned to
the size of the table.

Within the same field description, the text that reads:

If FEAT_LPA is implemented and the value of TCR_EL1.IPS is 0b110, then:

• Bits A[51:48] of the stage 1 translation table base address bits are in register bits[5:2].

• Register bit[1] is RES0.
Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 97 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

• When x>6, register bits[(x-1):6] are RES0.

is updated to read:

If FEAT_LPA is implemented and the value of TCR_EL1.IPS is 0b110, then:

Bits A[51:48] of the stage 1 translation table base address bits are in register bits[5:2]. Register
bit[1] is RES0. The smallest value of x is 6. When x>6, register bits[(x-1):6] are RES0.

Similar changes are made in the following sections:

• D17.2.145 (TTBR0_EL2, Translation Table Base Register 0 (EL2)).

• D17.2.146 (TTBR0_EL3, Translation Table Base Register 0 (EL3)).

• D17.2.147 (TTBR1_EL1, Translation Table Base Register 1 (EL1)).

• D17.2.148 (TTBR1_EL2, Translation Table Base Register 1 (EL2)).

In section D8.2.5 (Translation table and translation table lookup properties), rule RKBLCR that reads:

A translation table is required to be aligned to one of the following:

• If the translation table has eight or more entries, then it is aligned to the translation table size.

• If the translation table has fewer than eight entries, then it is aligned to 64 bytes.

is updated to read:

A translation table is required to be aligned to one of the following:

• If the translation table has fewer than eight entries, and an OA size of greater than 48 bits is
in use, then the table is aligned to 64 bytes.

• Otherwise, the translation table is aligned to the size of that translation table.

2.132 D20433
In section D1.3.5 (Synchronous exception types), in the subsection ‘Prioritization of Synchronous
exceptions taken to AArch64 state’, the table rows in IZFGJP that read:

7 Instruction Abort exceptions, including exceptions generated by a Translation Table Walk not
prioritized as 29. See MMU fault prioritization from a single address translation stage on page
D8-5182.

31 Any Data Abort Exception not defined by Priority 33. It is IMPLEMENTATION DEFINED whether
a Data Abort Exceptions generated by synchronous External Aborts are prioritized here or
as Priority 33. See MMU fault prioritization from a single address translation stage on page
D8-5182.

33 Any of the following Data Abort Exceptions:

• An External abort that was not generated by a translation table walk and therefore not
prioritized as 7.

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 98 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

• An External abort that was not generated by a translation table entry update.

• If FEAT_MTE2 is implemented, any Tag Check Fault.

It is IMPLEMENTATION DEFINED whether synchronous External Aborts are prioritized here or as
Priority 31. See External aborts on page D7-5064 and PE handling of Tag Check Fault on page
D9-5219.

are updated to read:

7 Instruction Abort exceptions, including exceptions generated by an MMU fault for the
translation of an instruction fetch. See MMU fault prioritization from a single address translation
stage on page D8-5182.

31 Any Data Abort Exception not defined by Priority 33. It is IMPLEMENTATION DEFINED whether
Data Abort Exceptions generated by synchronous External Aborts on explicit accesses are
prioritized here or as Priority 33. See MMU fault prioritization from a single address translation
stage on page D8-5182.

33 Data Abort Exceptions generated for any of the following reasons:

• An External abort that was not generated on a translation table walk and not generated on a
translation table entry update.

• If FEAT_MTE2 is implemented, any Tag Check Fault.

It is IMPLEMENTATION DEFINED whether synchronous External Aborts are prioritized here or as
Priority 31. See External aborts on page D7-5064 and PE handling of Tag Check Fault on page
D9-5219.

2.133 D20443
In section D7.2.1 (Virtual address space overflow), the following Note is added:

Note

The behaviors described in this section only apply for the upper bound of the upper VA range, in
translation regimes that have two VA ranges. They do not apply for address calculations relating
to the top of the lower VA range.

2.134 D20444
In section C5.3.23 (DC GZVA, Data Cache set Allocation Tags and Zero by VA), subsection
‘Executing DC GZVA’ the text that reads:

If the memory region being zeroed is any type of Device memory, this instruction can give an
alignment fault which is prioritized in the same way as other alignment faults that are determined
by the memory type.

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 99 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

is changed to read:

If the memory region being zeroed is any type of Device memory, this instruction generates an
alignment fault which is prioritized in the same way as other alignment faults that are determined
by the memory type.

Similar changes are made in the following section:

• C5.3.30 (DC ZVA, Data Cache Zero by VA).

2.135 C20503
In section D9.4 (Tagged and Untagged Addresses), the text that reads:

D9.4 Tagged and Untagged Addresses

Virtual addresses can either be Tagged or Untagged.

An access to memory at:

• An Untagged virtual address generates a Tag Unchecked access.

• A Tagged virtual address permits the generation of a Tag Checked or Tag Unchecked access.

A read of an Allocation Tag from an Untagged virtual address returns the value 0b0000.

A write of an Allocation Tag to an Untagged address is IGNORED.

Accesses of Allocation Tags at Tagged virtual addresses are permitted.

All virtual addresses in AArch32 state are Untagged.

D9.4.1 Virtual address translation

If stage 1 translation at the current Exception level is enabled, stage 1 translations are Tagged or
Untagged depending on the Memory Attributes for the memory location being accessed.

If stage 1 translation is disabled for the EL1&0 translation regime:

• If the value of HCR_EL2.DC is 1, stage 1 translations are Tagged or Untagged depending on
the value of HCR_EL2.DCT.

• If the value of HCR_EL2.DC is 0, stage 1 translations are treated as Untagged. For all other
translation regimes, if stage 1 translation is disabled, stage 1 translations are treated as
Untagged.

Memory locations are treated as Tagged where all of the following is true:

• The combined effects of stage 1 and stage 2 translations define the memory attributes as:

◦ Normal memory.

◦ Inner, and Outer Write-Back Non-Transient Read-Allocate Write-Allocate.

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 100 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

• The stage 1 translation is treated as Tagged.

Otherwise memory locations are Untagged.

If a memory location is marked as Untagged, a data cache invalidation operation that would
invalidate Allocation Tags at that location cleans and invalidates the Allocation Tags.

Note: If a memory location is marked as both Tagged and Non-shared, it is IMPLEMENTATION
DEFINED whether the memory location is treated as Tagged or Untagged.

When the EL1&0 stage 1 translation regime is disabled and HCR_EL2.DC is 1, in the current
Security state, the execution of any of the AT S1E0, AT S1E1, AT S12E0, AT S12E1 address
translation instructions will reflect the effect of HCR_EL2.DCT in PAR_EL1.ATTR.

If SCTLR_ELx.C is 0 for a stage 1 translation regime, it is CONSTRAINED UNPREDICTABLE between:

• The stage 1 translation is treated as Untagged.

• SCTLR_ELx.C has no effect on whether the stage 1 translation is treated as Tagged or
Untagged.

Note: To ensure consistent behavior, software can set SCTLR_ELx.ATA to 0 when SCTLR_ELx.C is
0.

For more information on Virtual address translation, see Address translation on page D8-5080.

is updated to read:

D9.4 Tagged and Untagged memory locations

A memory location is either Tagged or Untagged.

A read from an Allocation tag at an Untagged memory location returns the value 0b0000.

A write to an Allocation tag at an Untagged memory location does not modify the Allocation tag.

There are no instructions to access Allocation Tags in AArch32.

A memory location is Tagged if all the following apply, otherwise it is Untagged:

• For an EL1&0 translation regime the combined effect of stage 1 and stage 2 translations, and
for other translation regimes stage 1 translation, defines the memory attributes as:

◦ Tagged.

◦ Normal.

◦ Write-back cacheable Non-Transient, Read-Allocate, Write-allocate.

• Allocation tag access is enabled.

For more information on Virtual address translation, see Address translation on page D8-5080.

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 101 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

For more information on when Allocation tag access is enabled see Enabling the Memory Tagging
Extension.

If a memory location is both Tagged and Non-shareable it is IMPLEMENTATION DEFINED whether
the memory location is treated as Tagged or Untagged.

For the EL1&0 translation regime, if stage 1 translation is disabled and HCR_EL2.DC is 1, in the
current Security state, execution of any of the AT S1E0, AT S1E1, AT S12E0, AT S12E1 address
translation instructions will reflect the effect of HCR_EL2.DCT in PAR_EL1.ATTR.

If SCTLR_ELx.C is 0 for a translation regime, it is CONSTRAINED UNPREDICTABLE whether a Tagged
memory location is treated as Tagged or Untagged.

Note: To ensure consistent behavior, software can set SCTLR_ELx.ATA to 0 when SCTLR_ELx.C is
0.

In section D9.8.1 (Tag Unchecked accesses), the following text is added:

An access to an Untagged memory location generates a Tag Unchecked access.

In section D9.5 (PE access to Allocation Tags), the text that reads:

A read of an Allocation Tag that returns zero due to access to Allocation tags being disabled by
HCR_EL2.ATA, SCR_EL3.ATA or SCTLR_ELx.{ATA, ATA0}, or due to the memory type not having
the Tagged attribute, is permitted to generate an External abort if a read of data from the same
address would generate an External abort.

is updated to read:

A read of an Allocation Tag from an Untagged memory location is permitted to generate an
External abort if a read of data from the same memory location would generate an External abort.

In section D17.2.48 (HCR_EL2, Hypervisor Configuration Register), the text in the DCT field
description that reads:

When HCR_EL2.DC is in effect, controls whether stage 1 translations are treated as Tagged or
Untagged.

0b0 Stage 1 translations are treated as Untagged. 0b1 Stage 1 translations are treated as Tagged.

is updated to read:

When HCR_EL2.DC is in effect, controls whether Stage 1 translations have the Tagged attribute.

0b0 Stage 1 translations do not have the Tagged attribute. 0b1 Stage 1 translations have the
Tagged attribute.

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 102 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

2.136 D20506
In section D8.8.3 (PAC instructions), rule R ZYPJV that reads:

For the PACGA instruction, if the PAC is generated using an IMPLEMENTATION DEFINED algorithm,
then all of the following are required:

• The IMPLEMENTATION DEFINED algorithm uses the same arguments as the ComputePAC()
pseudocode function.

• For a set of arguments passed to the IMPLEMENTATION DEFINED algorithm, the same result is
produced by all PEs that an execution thread could migrate between.

For more information, see aarch64/functions/pac/computepac/ComputePAC on page J1-11106.

is updated to read:

R ZYPJV

If the PAC is generated using an IMPLEMENTATION DEFINED algorithm, then the IMPLEMENTATION
DEFINED algorithm uses the same arguments as the ComputePAC() pseudocode function.

and the following rule is added below:

R X0001

For a set of arguments passed to the ComputePAC() pseudocode function, the same result is
produced by all PEs that an execution thread could migrate between.

For more information, see aarch64/functions/pac/computepac/ComputePAC on page J1-11106.

2.137 C20514
In section D8.4.1 (Effect of PSTATE on access permission), in the subsection ‘PSTATE.BTYPE’, the
text that reads:

I CKJFH

The BTI instruction is a NOP in a non-guarded page.

is updated to read:

I CKJFH

In a non-guarded page, the BTI instruction executes as a NOP.

I X0001

The effect of a NOP on PSTATE.BTYPE is described in R YWFHD.

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 103 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

2.138 C20530
In section D1.6.1 (Wait for Event), rule R TJTFC that reads:

Except for all or the following, the architecture does not define the exact nature of the low-power
state:

• When a WFE or WFET instruction is executed, the architecture requires that memory
coherency is not lost.

• If the system is configured such that the WFE or WFET instruction can be completed, then
the architecture requires that the architectural state is not lost.

is updated to read:

The architecture does not define the exact nature of the low-power state entered by WFE
or WFET, except that when a WFE or WFET instruction is executed, memory coherency and
architectural state are not lost.

2.139 D20542
In section D8.8.3 (PAC instructions), the statement IRHMHV that reads:

If PAC generation and validation is disabled, all of the following are examples of the behavior of
instructions that combine pointer authentication with another operation:

• A RETAA instruction operates as a RET instruction.

• A LDRAA Xt, [Xn, #<simm10>]! instruction operates as a LDR Xt, [Xn, #<simm10>:000]!
instruction.

is changed to read:

All of the following are examples of the resulting behavior of instructions that combine pointer
authentication with another operation, if PAC generation and validation is disabled:

• A RETAA instruction operates as a RET instruction.

• A LDRAA Xt, [Xn, #<simm10>]! instruction operates as a LDR Xt, [Xn, #<simm10>]!
instruction.

2.140 D20578
In section D17.2.37 (ESR_EL1, Exception Syndrome Register (EL1)), subsection ‘ISS encoding for
an exception from a Data Abort’, in the field description for ‘Bits [12:11]’ the condition for the LST
field which reads:

When (DFSC == 0b00xxxx || DFSC == 0b101011) && DFSC != 0b0000xx:

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 104 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

is updated to read:

When (DFSC == 0b00xxxx || DFSC == 0b10101x) && DFSC != 0b0000xx:

The same change is made in sections D17.2.38 (ESR_EL2, Exception Syndrome Register (EL2)) and
D17.2.39 (ESR_EL3, Exception Syndrome Register (EL3)).

2.141 C20583
In section D9.3 (Tag checking), the text that reads:

A memory access that is a read or write can be either Tag Checked or Tag Unchecked. An access
to the data PA space can be either Tag Checked or Tag Unchecked. An access to the tag PA space
is always Tag Unchecked. A data access which is performed as part of a prefetch operation is Tag
Unchecked. When the value of PSTATE.TCO is 1, all loads and stores are Tag Unchecked. A Tag
Checked memory access includes a Physical Address Tag.

is changed to read:

A memory access that is a read or write can be either Tag Checked or Tag Unchecked. Bits
[59:56] of a 64-bit VA used for a memory access define a Logical Address Tag. A Tag Checked
memory access includes a Physical Address Tag generated from the Logical Address Tag for the
memory access.

Also in section D9.8 (PE generation of Tag Checked and Tag Unchecked accesses), and section
D9.8.1 (Tag Unchecked accesses), the text that reads:

D9.8 PE generation of Tag Checked and Tag Unchecked accesses

A Logical Address Tag is formed by bits [59:56] of the 64-bit address that is used for a load or
store instruction. The PE generates a Physical Address Tag from the Logical Address Tag for each
Tag Checked access to memory. Unless an access is explicitly defined as a Tag Unchecked access,
it is a Tag Checked access. Instructions in Debug state follow the same rules for generation of Tag
Checked and Tag Unchecked accesses as in Non-Debug state. See Chapter H2 Debug State for
more information.

D9.8.1 Tag Unchecked accesses

The following operations generate a Tag Unchecked access:

• An instruction fetch.

• A load instruction that loads an Allocation Tag.

• A store instruction that stores an Allocation Tag.

When PSTATE.TCO is 1, all loads and stores generate Tag Unchecked accesses.

A cache maintenance by virtual address operation other than DC ZVA, Data Cache Zero by VA,
generates a Tag Unchecked access.

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 105 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

An access due to a translation table walk generates a Tag Unchecked access.

If FEAT_NV2 is implemented, loads and stores relative to VNCR_EL2 generate a Tag Unchecked
access.

If the Statistical Profiling Extension is implemented, all accesses to the Profiling Buffer are Tag
Unchecked accesses. See Chapter D13 The Statistical Profiling Extension for more information.

An access which would be translated using TTBR0_ELx is Tag Unchecked, irrespective of whether
the stage 1 address translation for the ELx translation regime is enabled or not, where either of
the following conditions apply:

• TCR_ELx.TBI is 0.

• TCR_ELx.TBI0 is 0.

If TCR_ELx.TBI1 has the value of zero, an access which would be translated using TTBR1_ELx is
Tag Unchecked, irrespective of whether the stage 1 address translation for the ELx translation
regime is enabled or not.

An access will be Tag Unchecked, irrespective of whether the stage 1 address translation for the
ELx translation regime is enabled or not, where all of the following conditions apply:

• The access would be translated using TTBR0_ELx.

• The Logical Address Tag is 0b0000.

• TCR_ELx.TCMA is 1, or TCR_ELx.TCMA0 is 1.

An access will be Tag Unchecked, irrespective of whether the stage 1 address translation for the
ELx translation regime is enabled or not, when all of the following conditions apply:

• The access would be translated using TTBR1_ELx.

• The Logical Address Tag is 0b1111.

• TCR_ELx.TCMA1 is 1.

A Tag Unchecked access will be generated for a load or store that uses either of the following:

• A base register only, with the SP as the base register.

• A base register plus immediate offset addressing form, with the SP as the base register.

Literal (PC-relative) loads generate a Tag Unchecked access.

is changed to read:

D9.8 PE generation of Tag Checked and Tag Unchecked accesses

A memory access is Tag Checked unless it is Tag Unchecked due to any of the following:

• The access an instruction fetch.

• The access is to an Untagged memory location.

• The access is by an instruction that directly loads or stores an Allocation Tag.

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 106 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

• The access is a read of an Allocation Tag due to a Tag check operation.

• PSTATE.TCO is 1.

• The access is due to a cache maintenance operation by virtual address operation other than
DC ZVA, Data Cache Zero by VA.

• The access is due to a translation table walk.

• If FEAT_NV2 is implemented, the access is a load or store relative to VNCR_EL2.

• If the Statistical Profiling Extension is implemented, the access is to the Profiling Buffer. See
Chapter D13 The Statistical Profiling Extension for more information.

• Address Tagging is disabled for the memory location.

• Irrespective of whether the stage 1 address translation for the ELx translation regime is
enabled or not, where all of the following conditions apply:

◦ The Logical Address Tag is 0b0000.

◦ If the stage 1 translation supports a single VA range, TCR_ELx.TCMA is 1.

◦ If the stage 1 translation supports two VA ranges, TCR_ELx.TCMA0 is 1 and the access is
to the lower address range.

• Irrespective of whether the stage 1 address translation for the ELx translation regime is
enabled or not, where all of the following conditions apply:

◦ The Logical Address Tag is 0b1111.

◦ The stage 1 translation supports two VA ranges.

◦ TCR_ELx.TCMA1 is 1 and the access is to the upper address range.

• The access is by an instruction that uses any of the following addressing modes:

◦ A base register only, with the SP as the base register.

◦ A base register plus immediate offset addressing form, with the SP as the base register.

◦ Literal (PC-relative).

Memory accesses in Debug state follow the same rules for generation of Tag Checked and Tag
Unchecked memory accesses as in Non-Debug state. See Chapter H2 Debug State for more
information.

2.142 D20589
In section D1.3.2 (Exception entry), subsection ‘SVE MOVPRFX exception entry behavior’, the rule
that reads:

RRWVTR When a MOVPRFX instruction pairs legally with another instruction and the execution of
the pair generates a synchronous exception, the return address that is stored in ELR_ELx is one of
the following:

• When the MOVPRFX instruction did not cause a change to the architectural state, the
address of the MOVPRFX instruction is stored.

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 107 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

• When the MOVPRFX instruction caused a change to the architectural state, the address of
the prefixed instruction is stored.

is changed to read:

RRWVTR When a MOVPRFX instruction pairs legally with another instruction and the execution of
the pair generates a synchronous exception:

• If the generated exception is a Breakpoint Instruction exception from a prefixed BRK
instruction then MOVPRFX is required to update the architectural state and ELR_ELx is
required to store the address of BRK instruction.

• Otherwise, the return address that is stored in ELR_ELx is one of the following:

◦ When the MOVPRFX instruction did not cause a change to the architectural state, the
address of the MOVPRFX instruction is stored.

◦ When the MOVPRFX instruction caused a change to the architectural state, the address
of the prefixed instruction is stored.

Similarly, the rule that reads:

RXRWVD When a MOVPRFX instruction pairs legally with another instruction and the execution of
the pair causes entry to Debug state, the return address that is stored in DLR_EL0 is one of the
following:

• When the MOVPRFX instruction did not cause a change to the architectural state, the
address of the MOVPRFX instruction is stored.

• When the MOVPRFX instruction caused a change to the architectural state, the address of
the prefixed instruction is stored.

is changed to read:

RXRWVD When a MOVPRFX instruction pairs legally with another instruction and the execution of
the pair causes synchronous entry to Debug state:

• If the Debug state entry is due to a Halt Instruction debug event from a prefixed HLT
instruction then MOVPRFX is required to update the architectural state and DLR_EL0 is
required to store the address of the HLT instruction.

• Otherwise, the return address that is stored in DLR_EL0 is one of the following:

◦ When the MOVPRFX instruction did not cause a change to the architectural state, the
address of the MOVPRFX instruction is stored.

◦ When the MOVPRFX instruction caused a change to the architectural state, the address
of the prefixed instruction is stored.

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 108 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

2.143 R20604
In section D11.11.3 (Common event numbers), in the subsection ‘Common microarchitectural
events’, the statement in event ‘0x8140, L1D_CACHE_RW, Level 1 data cache demand access’
that reads:

This event must be implemented if any of the following are true:

• Event L1D_CACHE_PRFM is implemented.

• Event L1D_CACHE_HWPRF is implemented.

is updated to read:

When any of the following are true, Arm recommends this event is implemented:

• Event L1D_CACHE_PRFM is implemented.

• Event L1D_CACHE_HWPRF is implemented.

A similar change is also made to the following events:

• L1D_TLB_RW.

• L1I_TLB_RD.

• L1D_TLB_PRFM.

• L1I_TLB_PRFM.

• L1D_CACHE_RW.

• L1I_CACHE_RD.

• L1D_CACHE_PRFM.

• L1I_CACHE_PRFM.

• L2D_CACHE_RW.

• L2I_CACHE_RD.

• L2D_CACHE_PRFM.

• L2I_CACHE_PRFM.

• L3D_CACHE_RW.

• L3D_CACHE_PRFM.

• LL_CACHE_RW.

• LL_CACHE_PRFM.

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 109 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

2.144 R20607
In section D17.2.69 (ID_AA64SMFR0_EL1, SME Feature ID register 0), the accessibility
pseudocode at EL1 that reads:

elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 X[t, 64] = ID_AA64SMFR0_EL1;

is updated to read:

elsif PSTATE.EL == EL1 then
 if EL2Enabled() && (IsFeatureImplemented(FEAT_FGT) || !IsZero(ID_AA64SMFR0_EL1)
 || boolean IMPLEMENTATION_DEFINED "ID_AA64SMFR0_EL1 trapped by HCR_EL2.TID3") &&
 HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 X[t, 64] = ID_AA64SMFR0_EL1;

2.145 C20625
In section D17.7.3 (PMBPTR_EL1, Profiling Buffer Write Pointer Register), the text that reads:

The architecture places restrictions on the values software can write to the pointer. For more
information see Restrictions on the current write pointer on page D13-5450.

Note: As a result, an implementation might treat some of bits[M:0], where M is defined by
PMBIDR_EL1.Align, as RES0.

is updated to read:

If PMBIDR_EL1.Align is not zero, then it is IMPLEMENTATION DEFINED whether bits [M-1:0] are
RES0 or read/write, where M is an integer between 1 and PMBIDR_EL1.Align inclusive.

The architecture places restrictions on the values software can write to the pointer when the SPU
is not in Discard mode. For more information see Restrictions on the current write pointer on
page D13-5450.

A similar correction is made in section D17.4.5 (TRBPTR_EL1, Trace Buffer Write Pointer Register),
where the text that reads:

The architecture places restrictions on the values that software can write to the pointer.

Note: As a result of the restrictions an implementation might treat some of PTR[M:0] as RES0,
where M is defined by TRBIDR_EL1.Align.

is updated to read:

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 110 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

If TRBIDR_EL1.Align is not zero, then it is IMPLEMENTATION DEFINED whether bits [M-1:0] are RES0
or read/write, where M is an integer between 1 and TRBIDR_EL1.Align inclusive.

The architecture places restrictions on the values that software can write to the pointer. For more
information see Restrictions on programming the Trace Buffer Unit on page D6-5005.

In section D13.7 (The Profiling Buffer) the text that reads:

The profile data is collected in a memory Profiling Buffer.

is updated to read:

When the SPU is not in Discard mode, profile data is collected in a memory Profiling Buffer.

2.146 D20635
In section A2.6.3 (Features added to the Armv8.3 extension in later releases), subsection
‘FEAT_SPEv1p1, Armv8.3 Statistical Profiling Extensions’, the text that reads:

This feature is OPTIONAL in Armv8.3 implementations. An Armv8.5 implementation that
includes the Statistical Profiling Extension must include FEAT_SPEv1p1.

is updated to read:

This feature is OPTIONAL in Armv8.3 implementations. An Armv8.5 implementation that
includes the Statistical Profiling Extension must include FEAT_SPEv1p1. An implementation that
includes FEAT_SVE and the Statistical Profiling Extension is strongly recommended to implement
FEAT_SPEv1p1 whenever possible.

2.147 D20664
In section D17.2.38 (ESR_EL2, Exception Syndrome Register (EL2)), in the EC field value
0b011010, value name ‘ISS encoding for an exception from an ERET, ERETAA, or ERETAB
instruction’, the condition in the EC table that reads:

When FEAT_PAuth is implemented and FEAT_NV is implemented:

is updated to read:

When FEAT_FGT is implemented or FEAT_NV is implemented:

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 111 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

2.148 D20675
In section D17.2.53 (HFGRTR_EL2, Hypervisor Fine-Grained Read Trap Register), the text in the
description of ERXPFGF_EL1, bit [46], that reads:

When FEAT_RAS is implemented:

is corrected to read:

When FEAT_RASv1p1 is implemented:

2.149 D20682
In section H2.4.2 (Executing instructions in Debug state), in the subsection ‘Instructions that
explicitly write to the PC (branches)’, the following bullet point is added:

• When FEAT_PAuth is implemented, RETAA, RETAB, BRAA, BRAB, BLRAA, BLRAB, BLRAAZ,
BLRABZ.

Also, in the subsection ‘Exception return and related instructions’, the text that reads:

This instruction is:

• ERET.

is updated to read:

These instructions are:

• ERET.

• When FEAT_PAuth is implemented, ERETAA, ERETAB.

2.150 D20684
In section D17.2.48 (HCR_EL2, Hypervisor Configuration Register) field ‘EnSCXT, bit [53]’, the text
that reads:

0b0 When HCR_EL2.E2H is 0 or HCR_EL2.TGE is 0, and EL2 is enabled in the current Security
state, EL1 and EL0 access to SCXTNUM_EL0 and EL1 access to SCXTNUM_EL1 is disabled by
this mechanism, causing an exception to EL2, and the values of these registers to be treated as 0.

When HCR_EL2.{E2H, TGE} is {1, 1} and EL2 is enabled in the current Security state, EL0 access
to SCXTNUM_EL0 is disabled by this mechanism, causing an exception to EL2, and the value of
this register to be treated as 0.

0b1 This control does not cause accesses to SCXTNUM_EL0 or SCXTNUM_EL1 to be trapped.

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 112 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1,1}, this bit has no
effect on execution at EL0.

is replaced by the following text:

0b0 When EL2 is enabled in the current Security state, EL1 accesses to SCXTNUM_EL0 and
SCXTNUM_EL1 are disabled, causing an exception to EL2, and the value of the registers to be
treated as 0.

When HCR_EL2.E2H is 0 or HCR_EL2.TGE is 0, and EL2 is enabled in the current Security state,
EL0 access to SCXTNUM_EL0 is disabled, causing an exception to EL2, and the value of the
register to be treated as 0.

0b1 This control does not cause accesses to SCXTNUM_EL0 or SCXTNUM_EL1 to be trapped.

Note: When FEAT_VHE is implemented, the value of HCR_EL2.{E2H, TGE} is {1,1}, and the value
of this field is 0b0, accesses at EL0 are not trapped by this control.

2.151 D20692
In D17.2.48 (General system control registers), ‘HCR_EL2, Hypervisor Configuration Register’, the
following text:

Trap ID group 3. Traps EL1 reads of group 3 ID registers to EL2, when EL2 is enabled in the
current Security state, as follows:

In AArch64 state:

• Reads of the following registers are trapped to EL2, reported using EC syndrome value 0x18:

• ID_PFR0_EL1, ID_PFR1_EL1, ID_PFR2_EL1, ID_DFR0_EL1, ID_AFR0_EL1, ID_MMFR0_EL1,
ID_MMFR1_EL1, ID_MMFR2_EL1, ID_MMFR3_EL1, ID_ISAR0_EL1, ID_ISAR1_EL1,
ID_ISAR2_EL1, ID_ISAR3_EL1, ID_ISAR4_EL1, ID_ISAR5_EL1, MVFR0_EL1, MVFR1_EL1,
MVFR2_EL1.

• ID_AA64PFR0_EL1, ID_AA64PFR1_EL1, ID_AA64DFR0_EL1, ID_AA64DFR1_EL1,
ID_AA64ISAR0_EL1, ID_AA64ISAR1_EL1, ID_AA64MMFR0_EL1, ID_AA64MMFR1_EL1,
ID_AA64AFR0_EL1,ID_AA64AFR1_EL1.

• If FEAT_FGT is implemented:

◦ ID_MMFR4_EL1 and ID_MMFR5_EL1 are trapped to EL2.

◦ ID_AA64MMFR2_EL1 and ID_ISAR6_EL1 are trapped to EL2.

◦ ID_DFR1_EL1 is trapped to EL2.

◦ ID_AA64ZFR0_EL1 is trapped to EL2.

◦ ID_AA64SMFR0_EL1 is trapped to EL2.

◦ ID_AA64ISAR2_EL1 is trapped to EL2.

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 113 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

◦ This field traps all MRS accesses to registers in the following range that are not already
mentioned in this field description: Op0 == 3, op1 == 0, CRn == c0, CRm == {c1-c7}, op2
== {0-7}.

• If FEAT_FGT is not implemented:

◦ ID_MMFR4_EL1 and ID_MMFR5_EL1 are trapped to EL2, unless implemented as
RAZ, when it is IMPLEMENTATION DEFINED whether accesses to ID_MMFR4_EL1 or
ID_MMFR5_EL1 are trapped to EL2.

◦ ID_AA64MMFR2_EL1 and ID_ISAR6_EL1 are trapped to EL2, unless implemented as
RAZ, when it is IMPLEMENTATION DEFINED whether accesses to ID_AA64MMFR2_EL1 or
ID_ISAR6_EL1 are trapped to EL2.

◦ ID_DFR1_EL1 is trapped to EL2, unless implemented as RAZ, when it is IMPLEMENTATION
DEFINED whether accesses to ID_DFR1_EL1 are trapped to EL2.

◦ ID_AA64ZFR0_EL1 is trapped to EL2, unless implemented as RAZ then it is
IMPLEMENTATION DEFINED whether accesses to ID_AA64ZFR0_EL1 are trapped to EL2.

◦ ID_AA64SMFR0_EL1 is trapped to EL2, unless implemented as RAZ then it is
IMPLEMENTATION DEFINED whether accesses to ID_AA64SMFR0_EL1 are trapped to EL2.

◦ ID_AA64ISAR2_EL1 is trapped to EL2, unless implemented as RAZ then it is
IMPLEMENTATION DEFINED whether accesses to ID_AA64ISAR2_EL1 are trapped to EL2.

◦ Otherwise, it is IMPLEMENTATION DEFINED whether this bit traps MRS accesses to registers
in the following range that are not already mentioned in this field description: Op0 == 3,
op1 == 0, CRn == c0, CRm == {c1-c7}, op2 == {0-7}.

is corrected to read:

Trap ID group 3. Traps EL1 reads of group 3 ID registers to EL2, when EL2 is enabled in the
current Security state, as follows:

In AArch64 state:

Reads of the following registers are trapped to EL2:

• ID_PFR0_EL1, ID_PFR1_EL1, ID_DFR0_EL1, ID_AFR0_EL1, ID_MMFR0_EL1,
ID_MMFR1_EL1, ID_MMFR2_EL1, ID_MMFR3_EL1, ID_ISAR0_EL1, ID_ISAR1_EL1,
ID_ISAR2_EL1, ID_ISAR3_EL1, ID_ISAR4_EL1, ID_ISAR5_EL1, MVFR0_EL1, MVFR1_EL1,
MVFR2_EL1.

• ID_AA64PFR0_EL1, ID_AA64PFR1_EL1, ID_AA64DFR0_EL1, ID_AA64DFR1_EL1,
ID_AA64ISAR0_EL1, ID_AA64ISAR1_EL1, ID_AA64MMFR0_EL1, ID_AA64MMFR1_EL1,
ID_AA64AFR0_EL1, ID_AA64AFR1_EL1.

If FEAT_FGT is implemented, reads of the following registers are trapped to EL2. If FEAT_FGT
is not implemented, reads of the following registers are trapped to EL2, unless the registers are
implemented as RAZ, when it it IMPLEMENTATION DEFINED whether reads are trapped to EL2.

• ID_PFR2_EL1, ID_MMFR4_EL1 and ID_MMFR5_EL1.

• ID_AA64MMFR3_EL1.

• ID_AA64MMFR4_EL1.

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 114 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

• ID_AA64PFR2_EL1.

• ID_AA64MMFR2_EL1 and ID_ISAR6_EL1.

• ID_DFR1_EL1.

• ID_AA64ZFR0_EL1.

• ID_AA64SMFR0_EL1.

• ID_AA64ISAR2_EL1.

If FEAT_FGT is implemented, reads of registers in the following range that are not already
mentioned in this field description: op0 == 3, op1 == 0, CRn == 0, CRm == {2-7}, op2 == {0-7}
are trapped to EL2. If FEAT_FGT is not implemented, it is IMPLEMENTATION DEFINED whether
reads of these registers in the range are trapped to EL2. Trapped registers are reported using EC
syndrome value 0x18.

In D17.2.89 (General system control registers), ‘ID_PFR2_EL1, AArch32 Processor Feature Register
2’, the following pseudocode:

elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 X[t, 64] = ID_PFR2_EL1;

is replaced with:

elsif PSTATE.EL == EL1 then
 if EL2Enabled() && (IsFeatureImplemented(FEAT_FGT) || !IsZero(ID_PFR2_EL1)
 || boolean IMPLEMENTATION_DEFINED "ID_PFR2_EL1 trapped by HCR_EL2.TID3") &&
 HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 X[t, 64] = ID_PFR2_EL1;

2.152 R20697
In section D17.2.40 (FAR_EL1, Fault Address Register (EL1)), the following text is added:

If a memory fault that sets FAR_EL1 is generated from a STZGM instruction, the address held in
FAR_EL1 is IMPLEMENTATION DEFINED as one of the following:

• The lowest address that gave rise to the fault.

• The address specified in the register argument.

The same change is made in the following sections:

• D17.2.41 (FAR_EL2, Fault Address Register (EL2)).

• D17.2.42 (FAR_EL3, Fault Address Register (EL3)).

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 115 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

In section D2.10.5 (Watchpoint exceptions), subsection ‘Address recorded for Watchpoint
exceptions generated by other instructions’, the following text:

For Watchpoint exceptions generated by a DC ZVA, DC GVA, or DC GZVA instruction, the
address recorded is an address accessed by the instruction that triggered the watchpoint.

is changed to read:

For Watchpoint exceptions generated by a DC ZVA, DC GVA, DC GZVA, or STZGM instruction,
the address recorded is an address accessed by the instruction that triggered the watchpoint.

2.153 C20702
In section H9.2.24 (EDDFR, External Debug Feature Register), subsection ‘Accessing the EDDFR’,
the text and tables that read:

EDDFR[31:0] can be accessed through the external debug interface:

Component Offset Instance Range

Debug 0xD28 EDDFR 31:0

This interface is accessible as follows:

• When IsCorePowered() and !DoubleLockStatus() accesses to EDDFR[31:0] are RO.

• Otherwise accesses to EDDFR[31:0] are IMPDEF.

EDDFR[63:32] can be accessed through the external debug interface:

Component Offset Instance Range

Debug 0xD2C EDDFR 63:32

This interface is accessible as follows:

• When IsCorePowered() and !DoubleLockStatus() accesses to EDDFR[63:32] are RO.

• Otherwise accesses to EDDFR[63:32] are IMPDEF.

are corrected to read:

EDDFR can be accessed through the external debug interface:

Component Offset Instance Range

Debug 0xD28 EDDFR

This interface is accessible as follows:

• When IsCorePowered() and !DoubleLockStatus() accesses to EDDFR are RO.

• Otherwise accesses to EDDFR are IMPDEF.

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 116 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

Equivalent changes are made in the following sections:

• H9.2.35 (EDPFR, External Debug Processor Feature Register).

• H9.2.46 (EDWAR, External Debug Watchpoint Address Register).

2.154 D20711
In section D9.5 (PE access to Allocation Tags), the text which reads:

Instructions that store Allocation Tags to memory locations marked as Device memory result in a
CONSTRAINED UNPREDICTABLE choice between:

• Storing the data, if any, to the specified locations.

• Generating an Alignment Fault, which is prioritized in the same way as other alignment faults
that are determined by the memory type.

is changed to read:

An STZGM instruction to any type of Device memory is Constrained UNPREDICTABLE between:

• Zeroing the data at the specified locations and leaving any Allocation Tags unchanged.

• Generating an Alignment Fault determined by the memory type.

2.155 D20728
In section D17.2.37 (ESR_EL1, Exception Syndrome Register (EL1)) subsections ‘ISS encoding for
an exception from a Data Abort’ and ‘ISS encoding for an exception from a Watchpoint exception’
the VNCR field is deleted.

In section D17.2.38 (ESR_EL2, Exception Syndrome Register (EL2)) subsection ‘ISS encoding for an
exception from a Data Abort’ the VNCR values that read:

VNCR Meaning

0b0 The watchpoint was not generated by the use of VNCR_EL2 by EL1 code.

0b1 The watchpoint- was generated by the use of VNCR_EL2 by EL1 code .

are updated to read:

VNCR Meaning

0b0 The fault was not generated by the use of VNCR_EL2 by EL1 code.

0b1 The fault was generated by the use of VNCR_EL2 by EL1 code.

The same correction is made in section D17.2.39 (ESR_EL3, Exception Syndrome Register (EL3))
in subsections ‘ISS encoding for a Granule Protection Check exception’ and ‘ISS encoding for an
exception from a Data Abort’.

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 117 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

2.156 D20731
In section D14.2.7 (Operation Type packet), subsection ‘Operation Type packet payload (Other)’,
the ‘SUBCLASS, byte<0>’ field description that reads:

Second-level instruction class. Defines the type of instruction. The defined values of this field are:

0b0000000x Other operation.

0b0xxx1xx0 SVE operation. If FEAT_SVE is implemented, and if FEAT_SPE is implemented, bits
[6:4:2:1] are further defined as the EVL, PRED, and FP fields. Otherwise this value is reserved.

is corrected to read:

Second-level instruction class. Defines the type of instruction. The defined values of this field are:

0b0000000x Other operation.

0b0xxx1xx0 SVE operation. If FEAT_SVE is implemented, and if FEAT_SPE is implemented, bits
[6:4,2,1] are further defined as the EVL, PRED, and FP fields. Otherwise this value is reserved.

Within the same section, the field description ‘FP, byte 0 bits [6:4], when SVE operation’ that reads:

Floating-point operation. The defined values of this bit are:

0 Integer

1 Floating-point

is renamed to ‘FP, byte 0 bit [1], when SVE operation’, and updated to read:

Floating-point operation. The defined values of this bit are:

0 Not floating-point

1 Floating-point

Where a floating-point instruction is any instruction which is counted by the FP_SVE_SPEC
event.

Additionally, in section D13.6.5 (Additional information for each profiled Scalable Vector Extension
operation), the text that reads:

For a Sampled SVE operation, the Operation Type packet.EVL field records an upper bound on
the Effective vector length. The value recorded in the Operation Type packet.EVL field is the
Effective vector length rounded up to a power-of-two value.

is updated to read:

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 118 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

For a Sampled SVE operation:

• Operation Type packet.EVL field records an upper bound on the Effective vector length. The
value recorded in the Operation Type packet.EVL field is the Effective vector length rounded
up to a power of-two value.

• Operation Type packet.FP is set to 1 if the instruction would be counted by the
FP_SVE_SPEC event.

2.157 C20759
In section D16.3.1 (Instructions for accessing non-debug System registers), the following
clarification is added in the bullet list of the Note:

• All unused encodings in the range Op0 == 3, op1 == 0, CRn == 0, CRm == {2-7}, op2
== {0-7} are defined to be accessible as Reserved, RAZ to ensure correct behavior if the
encodings are used for ID registers in future.

2.158 D20760
In the following sections:

• D17.2.85 (ID_MMFR4_EL1, AArch32 Memory Model Feature Register 4).

• D17.2.86 (ID_MMFR5_EL1, AArch32 Memory Model Feature Register 5).

• D17.2.89 (ID_PFR2_EL1, AArch32 Processor Feature Register 2).

The following Note is added to the configuration field:

Prior to the introduction of the features described by this register, this register was unnamed and
reserved, RES0 from EL1, EL2, and EL3.

2.159 D20764
In section D8.10.6 (Nested virtualization), subsection ‘Enhanced support for nested virtualization’,
table D8-63 ‘Memory address offset associated with transformed register access’, the following
rows are added:

Register access if HCR_EL2.NV1 is 0 Register access if HCR_EL2.NV1 is 1 Memory offset

SMCR_EL12 SMCR_EL1 0x1F0

SMPRIMAP_EL2 SMPRIMAP_EL2 0x1F8

MSNEVFR_EL1 PMSNEVFR_EL1 0x850

BRBCR_EL12 BRBCR_EL1 0x8E0

MPAM1_EL1 MPAM1_EL12 0x900

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 119 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

Register access if HCR_EL2.NV1 is 0 Register access if HCR_EL2.NV1 is 1 Memory offset
MPAMHCR_EL2 MPAMHCR_EL2 0x930

MPAMVPMV_EL2 MPAMVPMV_EL2 0x938

MPAMVPM0_EL2 MPAMVPM0_EL2 0x940

MPAMVPM1_EL2 MPAMVPM1_EL2 0x948

MPAMVPM2_EL2 MPAMVPM2_EL2 0x950

MPAMVPM3_EL2 MPAMVPM3_EL2 0x958

MPAMVPM4_EL2 MPAMVPM4_EL2 0x960

MPAMVPM5_EL2 MPAMVPM5_EL2 0x968

MPAMVPM6_EL2 MPAMVPM6_EL2 0x970

MPAMVPM7_EL2 MPAMVPM7_EL2 0x978

2.160 D20791
In section C5.2.4 (DIT, Data Independent Timing), the list of instructions that reads:

The data processing instructions affected by this bit are:

• All cryptographic instructions. These instructions are:

◦ AESD, AESE, …

• A subset of those instructions which use the general-purpose register file. These instructions
are:

◦ ADC, ADCS, …

• A subset of those instructions which use the SIMD&FP register file. These instructions are:

◦ ABS, ADD, …

is updated to read:

The Operational Information section of a data processing instruction description indicates
whether or not that instruction is affected by this bit.

Similar changes are made in section G8.2.33 (CPSR, Current Program Status Register), in the
description of DIT, bit [21], where the lists of individual instructions mnemonics are removed.

The text in section B1.3.6 (About PSTATE.DIT) that reads:

• The instructions listed in DIT are required to have;

is updated to read:

• The instructions affected by DIT are required to have:

The bullet point in the Note that follows, that reads:

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 120 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

• The Operational information section of an SVE or an SVE2 instruction description indicates
whether or not that instruction honors the PSTATE.DIT control. If the Operational
information section of an SVE instruction description does not mention PSTATE.DIT or if the
section does not exist, then the instruction timing is not affected by PSTATE.DIT.

is moved to the top of the bullet list, and updated to read:

• The Operational information section of an instruction description indicates whether or not
that instruction honors the PSTATE.DIT control. If the Operational information section of an
instruction description does not mention PSTATE.DIT or if the section does not exist, then
the instruction timing is not affected by PSTATE.DIT.

Similar changes are also made in section E1.2.5 (About the DIT bit).

2.161 R20805
In sections D17.8.5 ’BRBINF<n>_EL1, Branch Record Buffer Information Register <n>, n = 0 - 31’
and D17.8.6 ‘BRBINFINJ_EL1, Branch Record Buffer Information Injection Register’, the following
value is added to ‘TYPE, bits [13:8]’:

0b110000 IMPLEMENTATION DEFINED exception to EL3.

2.162 D20829
In J1.1.1 (aarch64/debug) the functions BRBCycleCountingEnabled() and
BRBCycleCountingEnabled() are updated to check if EL2 is present.

The code that reads:

boolean BRBCycleCountingEnabled()
 if EL2Enabled() && BRBCR_EL2.CC == '0' then return FALSE;
 ...

Is updated to read:

boolean BRBCycleCountingEnabled()
 if HaveEL(EL2) && BRBCR_EL2.CC == '0' then return FALSE;
 ...

The code that reads as:

boolean BRBEMispredictAllowed()
 if EL2Enabled() && BRBCR_EL2.MPRED == '0' then return FALSE;
 ...

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 121 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

Is updated to read:

boolean BRBEMispredictAllowed()
 if HaveEL(EL2) && BRBCR_EL2.MPRED == '0' then return FALSE;
 ...

2.163 C1186: SME
In section D17.2.70 (ID_AA64ZFR0_EL1, SVE Feature ID register 0), the following text:

Irrespective of the value of this field, when the PE is in Streaming SVE mode and it is not known
whether FEAT_SME_FA64 is implemented and enabled at the current Exception level, software
should not attempt to execute the instructions described by non-zero values of this field.

is added to the descriptions of the following fields:

• F64MM, bits [59:56].

• F32MM, bits [55:52].

• SM4, bits [43:40].

• SHA3, bits [35:32].

• BitPerm, bits [19:16].

• AES, bits [7:4].

The following text is added to the description of I8MM, bits [47:44]:

Irrespective of the value of this field, when the PE is in Streaming SVE mode and it is not known
whether FEAT_SME_FA64 is implemented and enabled at the current Exception level, software
should not attempt to execute the SVE instructions SMMLA, UMMLA, and USMMLA.

The following text is added to the description of BF16, bits [23:20]:

Irrespective of the value of this field, when the PE is in Streaming SVE mode and it is not known
whether FEAT_SME_FA64 is implemented and enabled at the current Exception level, software
should not attempt to execute the SVE instruction BFMMLA.

2.164 C1342: SME
In section D17.1.3 (Principles of the ID scheme for fields in ID registers), the following subsection is
added:

Alternative ID scheme used for ID_AA64SMFR0_EL1

Apart from the ID_AA64SMFR0_EL1.SMEver field, which is a 4-bit unsigned integer conforming
to the standard scheme, software must treat the other fields in this register as follows:

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 122 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

• A 4-bit field indicates whether a group of related SME instructions is implemented, with
permitted values defined in the field description. Bits within such a field which only permit
the value 0 might be used to identify new instructions in a future version of SME, without
changing the meaning of those bits that permit the value 1.

• A 1-bit field value where the bit is 0b0 indicates that the SME feature or instructions
described by this field are not implemented.

• A 1-bit field value where the bit is 0b1 indicates that the SME feature or instructions
described by this field are implemented.

2.165 D1386: SME
In the following sections:

• C7.2.15 BFDOT (by element).

• C7.2.16 BFDOT (vector).

• C7.2.19 BFMMLA.

• C8.2.35 BFDOT (indexed).

• C8.2.36 BFDOT (vectors).

• C8.2.41 BFMMLA.

The text that reads:

If FEAT_EBF16 is implemented and FPCR.EBF is 1, then this instruction:

• Performs a fused sum-of-products of each pair of adjacent BFloat16 elements in the
first source vector with the specified pair of elements in the second source vector. The
intermediate single-precision products are not rounded before they are summed, but the
intermediate sum is rounded before accumulation into the single-precision destination
element that overlaps with the corresponding pair of BFloat16 elements in the first source
vector.

• Generates only the default NaN, as if FPCR.DN is 1.

• Follows all other floating-point behaviors that apply to single-precision arithmetic, as
controlled by the effective value of the FPCR in the current execution mode, and captured in
the FPSR.

is corrected to read:

If FEAT_EBF16 is implemented and FPCR.EBF is 1, then this instruction:

• Performs a fused sum-of-products of each pair of adjacent BFloat16 elements in the
first source vector with the specified pair of elements in the second source vector. The
intermediate single-precision products are not rounded before they are summed, but the
intermediate sum is rounded before accumulation into the single-precision destination
element that overlaps with the corresponding pair of BFloat16 elements in the first source
vector.

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 123 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

• Generates only the default NaN, as if FPCR.DN is 1.

• Does not modify the cumulative FPSR exception bits (IDC, IXC, UFC, OFC, DZC, and IOC).

• Disables trapped floating-point exceptions, as if the FPCR trap enable bits (IDE, IXE, UFE,
OFE, DZE, and IOE) are all zero.

• Follows all other floating-point behaviors that apply to single-precision arithmetic, as
governed by FPCR.RMode, FPCR.FZ, FPCR.AH, and FPCR.FIZ controls in the current
execution mode.

2.166 D494: SVE2
In section C8.2 (Alphabetical list of SVE instructions), the following text is added to the ‘Operation
Information’ subsection of all predicated SVE load/store (vector) instructions, except for the first-
fault (FF) and non-fault (NF) loads:

If FEAT_SVE2 is implemented or FEAT_SME is implemented, then when PSTATE.DIT is 1, the
timing of this instruction is insensitive to the value of the data being loaded or stored when its
governing predicate register contains the same value for each execution.

The following text is added to the ‘Operational Information’ subsection of all unpredicated SVE
load/store (vector and predicate) instructions:

If FEAT_SVE2 is implemented or FEAT_SME is implemented, then when PSTATE.DIT is 1, the
timing of this instruction is insensitive to the value of the data being loaded or stored.

In section C8.2.82 (CNT), the following text is added to the ‘Operational Information’ subsection:

If FEAT_SVE2 is implemented or FEAT_SME is implemented, then when PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its operand registers when its governing
predicate register contains the same value for each execution.

◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

◦ The values of the data supplied in any of its operand registers when its governing
predicate register contains the same value for each execution.

◦ The values of the NZCV flags.

2.167 D504: SVE2
In section C8.2 (Alphabetical list of SVE instructions), in the descriptions of the ‘shift by immediate’
instructions, the description of the <const> assembler symbol that reads:

Is the immediate shift amount, in the range …, encoded in “tsz:imm3”.

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 124 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

is corrected to read:

Is the immediate shift amount, in the range …, encoded in “tszh:tszl:imm3”.

2.168 C215: SVE
In section A1.4 (Supported data types), the text that reads:

• An SVE scalable vector register has an IMPLEMENTATION DEFINED width that is a multiple of
128 bits, up to a maximum of 2048 bits.

is changed to read:

• An SVE scalable vector register has an IMPLEMENTATION DEFINED width that is a power of two,
from a minimum of 128 bits up to a maximum of 2048 bits.

Within the same section, the text that reads:

• An SVE predicate vector register has an IMPLEMENTATION DEFINED width that is a multiple of
16 bits, up to a maximum of 256 bits.

is changed to read:

• An SVE predicate vector register has an IMPLEMENTATION DEFINED width that is a power of
two, from a minimum of 16 bits up to a maximum of 256 bits.

In section A1.4.2 (SVE vector format), in the subsection ‘SVE configurable vector length’, the rules
RRYQYY and I CPZLW are deleted.

In section B1.2.2 (SVE vector registers), the rule RKCWQB is deleted.

In section B1.2.3 (SVE predicate registers), the rule RNKRJV that reads:

The size of an SVE predicate register is an IMPLEMENTATION DEFINED multiple of 16 bits.

is changed to read:

The size of an SVE predicate register is an IMPLEMENTATION DEFINED power of two.

Within the same section, rules RMFPXG and RBBTXX are deleted.

In section D13.6.5 (Additional information for each profiled Scalable Vector Extension operation), in
the definition of ‘Effective vector length’, the Note that reads:

The Accessible vector length is always quantized into multiples of 128 bits. However, the
Sampled operation vector can be any size down to the element size of the operation.

is changed to read:

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 125 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

The Accessible vector length is always quantized into a power of two. However, the Sampled
operation vector can be any size down to the element size of the operation.

Similarly, in section D14.2.7 (Operation Type packet), subsection ‘Operation Type packet payload
(Other)’, the text in the description of ‘EVL, byte 0 bits [6:4], when SVE operation’ that reads:

The accessible vector length is always quantized into multiples of 128 bits. However, the
effective vector length can be any size down to the element size of the operation.

is changed to read:

The Accessible vector length is always quantized into a power of two. However, the Effective
vector length can be any size down to the element size of the operation.

Within the same section, the text that reads:

If the effective vector length is not a power of two, or is less than 32 bits, the value is rounded up
before it is encoded in this field.

is changed to read:

If the Effective vector length is less than 32 bits, the value is rounded up before it is encoded in
this field.

The same changes are made in the subsection ‘Operation Type packet payload (load/store)’, in the
description of ‘EVL, byte 0 bits [6:4], when SVE load/store’.

In section D17.2.159 (ZCR_EL1, SVE Control Register (EL1)), in the LEN, bits [3:0] field, the text
that reads:

The Non-streaming SVE vector length can be any multiple of 128 bits, from 128 bits to 2048 bits
inclusive.

is changed to read:

The Non-streaming SVE vector length can be any power of two from 128 bits to 2048 bits
inclusive.

The same change is made in the following sections:

• D17.2.160 (ZCR_EL2, SVE Control Register (EL2)).

• D17.2.161 (ZCR_EL3, SVE Control Register (EL3)).

In section J1.1.3 (aarch64/functions), the code within the function ImplementedSVEVectorLength()
that reads:

// Reduce SVE vector length to a supported value (e.g. power of two)
integer ImplementedSVEVectorLength(integer nbits_in)
 integer nbits = Min(nbits_in, MaxImplementedVL());
 assert 128 <= nbits && nbits <= 2048 && Align(nbits, 128) == nbits;
 while nbits > 128 do
 if IsPow2(nbits) || SupportedNonPowerTwoVL(nbits) then return nbits;

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 126 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

 nbits = nbits - 128;
 return nbits;

is changed to read:

// Reduce SVE vector length to a supported value (power of two)
integer ImplementedSVEVectorLength(integer nbits_in)
 integer maxbits = MaxImplementedVL();
 assert 128 <= maxbits && maxbits <= 2048 && IsPow2(maxbits);
 integer nbits = Min(nbits_in, maxbits);
 assert 128 <= nbits && nbits <= 2048 && Align(nbits, 128) == nbits;
 while nbits > 128 do
 if IsPow2(nbits) then return nbits;
 nbits = nbits - 128;
 return nbits;

Within the same section, the function SupportedNonPowerTwoVL() is removed.

In the Glossary, the definition of ‘Predicate register’ that reads:

An SVE predicate register, P0-P15, having a length that is a multiple of 16 bits, in the range 16 to
256, inclusive.

is changed to read:

An SVE predicate register, P0-P15, having a length that is a power of two, in the range 16 bits to
256 bits, inclusive.

Also in the Glossary, the definition of ‘Scalable vector register’ that reads:

An SVE vector register, Z0-Z31, having a length that is a multiple of 128 bits, in the range 128
bits to 2048 bits, inclusive.

is changed to read:

An SVE vector register, Z0-Z31, having a length that is a power of two, in the range 128 bits to
2048 bits, inclusive.

2.169 C225: SVE
In section D7.2.1 (Virtual address space overflow), the following text is added:

The UNKNOWN virtual address behavior also applies to the set of bytes addressed by SVE and
SME predicated, contiguous loads and stores that cross the 0xFFFF_FFFF_FFFF_FFFF
boundary, even if all of the virtual addresses below the boundary correspond to Inactive
elements. Conversely, for SVE gather loads and scatter stores, the UNKNOWN address behavior
applies only to accesses corresponding to an individual Active element that crosses the boundary.

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 127 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

2.170 C256: SVE
In section H2.4.2 (Executing instructions in Debug state), in the subsection ‘A64 instructions that
are unchanged in Debug state’, the list that reads:

SVE instructions

When FEAT_SVE is implemented, these instructions are:

• CPY.

• DUP (scalar).

• EXT.

• INSR (scalar).

• PTRUE with ALL constraint and byte element size.

• RDFFR (unpredicated).

• RDVL.

• WRFFR.

is changed to read:

SVE instructions

When FEAT_SVE is implemented, these instructions are:

• CPY.

• DUP (scalar).

• EXT, destructive variant.

• INSR (scalar).

• PTRUE with ALL constraint and byte element size.

• RDFFR (unpredicated).

• RDVL.

• WRFFR.

2.171 C279: SVE
In section B1.2.4 (FFR, First Fault Register), rule RWZJVT that reads:

Bits in the FFR are indirectly set to 0 as a result of a suppressed access or fault generated in
response to an Active element of an SVE First-fault or Non-fault vector load.

is clarified to read:

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 128 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

Bits in the FFR are indirectly set to 0 as a result of a suppressed access or suppressed fault
corresponding to an Active element of an SVE First-fault or Non-fault vector load.

2.172 C301: SVE
In section D17.2.131 (TCR_EL1, Translation Control Register (EL1)), in the NFD0, bit [53] field, the
text that reads:

Non-fault translation table walk disable for stage 1 translations using TTBR0_EL1.

This bit controls whether to perform a stage 1 translation table walk in response to a non-fault
unprivileged access for a virtual address that is translated using TTBR0_EL1.

is changed to read:

Non-fault translation timing disable for stage 1 translations using TTBR0_EL1.

This bit controls how a TLB miss is reported in response to a non-fault unprivileged access for a
virtual address that is translated using TTBR0_EL1.

The following text is deleted:

For more information, see ‘The Scalable Vector Extension (SVE)’.

The value descriptions that read:

0b0 Does not disable stage 1 translation table walks using TTBR0_EL1.

0b1 A TLB miss on a virtual address that is translated using TTBR0_EL1 due to the specified
access types causes the access to fail without taking an exception. No stage 1 translation table
walk is performed.

are changed to read:

0b0 Does not affect the handling of a TLB miss on accesses translated using TTBR0_EL1.

0b1 A TLB miss on a virtual address that is translated using TTBR0_EL1 due to the specified
access types causes the access to fail without taking an exception. The failure should take the
same amount of time to be handled as a Permission fault on a TLB entry that is present in the
TLB, to mitigate attacks that use fault timing.

The equivalent changes are made to the NFD1, bit [54] field, and to the NFD0, bit [53] and NFD1,
bit [54] fields in section D17.2.132 (TCR_EL2, Translation Control Register (EL2)).

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 129 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

2.173 D302: SVE
In section C1.2.6 (Register names), in the subsection ‘SIMD vector register list’, the text that reads:

Where an instruction operates on multiple SIMD and floating-point registers, for example vector
load/store structure and table lookup operations, the registers are specified as a list enclosed
by curly braces. This list consists of either a sequence of registers separated by commas, or
a register range separated by a hyphen. The registers must be numbered in increasing order,
modulo 32, in increments of one. The hyphenated form is preferred for disassembly if there are
more than two registers in the list and the register number are increasing.

is updated to read:

Where an instruction operates on multiple SIMD&FP or SVE vector registers, for example vector
load/store structure and table lookup operations, the registers are specified as a list enclosed
by curly braces. This list consists of either a sequence of registers separated by commas, or
a register range separated by a hyphen. The registers must be numbered in increasing order,
modulo 32, in increments of one. The hyphenated form is preferred for disassembly if there are
more than two registers in the list and the register numbers are increasing.

Similar updates are made throughout section C1.2 (Structure of the A64 assembler language) to
account for the SVE assembler syntax.

2.174 C313: SVE
In section A1.5.4 (Flushing denormalized numbers to zero), in the subsection ‘Flushing
denormalized outputs to zero’, the text that reads:

If FPCR.FZ16 == 1, for floating-point instructions other than FABS, FNEG, FMAX\, and FMIN\, if
the instruction processes half-precision numbers, flushing denormalized output numbers to zero
can be controlled as follows:

is clarified to read:

If FPCR.FZ16 == 1, for floating-point instructions other than FABS, FNEG, FMAX, FMAXP,
FMAXV, FMIN, FMINP, and FMINV, if the instruction processes half-precision numbers, flushing
denormalized output numbers to zero can be controlled as follows:

In the same section, the bullet that reads:

• For FABS, FNEG, FMAX\, and FMIN\, denormalized output operands are not flushed to zero.

is clarified to read:

For FABS, FNEG, FMAX, FMAXP, FMAXV, FMIN, FMINP, and FMINV, denormalized output
operands are not flushed to zero.

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 130 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

2.175 C314: SVE
In sections C8.2.143 (FMAX (vectors)) and C8.2.151 (FMIN (vectors)), the following text is
removed:

If either element value is NaN then the result is NaN.

In the following sections:

• C7.2.101 (FMAX (vector)).

• C7.2.102 (FMAX (scalar)).

• C7.2.108 (FMAXP (scalar)).

• C7.2.109 (FMAXP (vector)).

• C7.2.110 (FMAXV).

• C7.2.111 (FMIN (vector)).

• C7.2.112 (FMIN (scalar)).

• C7.2.118 (FMINP (scalar)).

• C7.2.119 (FMINP (vector)).

• C7.2.120 (FMINV).

The following text is added:

When FPCR.AH == 0, the behavior is as follows:

• Negative zero compares less than positive zero.

• When FPCR.DN is 0, if either input is a NaN, the result is a Quiet NaN.

• When FPCR.DN is 1, if either input is a NaN, the result is Default NaN.

When FPCR.AH == 1, the behavior is as follows:

• If both inputs are zeros, regardless of the sign of either zero, the result is the second input.

• If either input is a NaN, regardless of the value of FPCR.DN, the result is the second input.

In sections C8.2.142 (FMAX (immediate)) and C8.2.150 (FMIN (immediate)), the text that reads:

If the element value is NaN then the result is NaN.

is updated to read:

When FPCR.AH == 0, the behavior is as follows:

• Negative zero compares less than positive zero.

• When FPCR.DN is 0, if the input is a NaN, the result is a Quiet NaN.

• When FPCR.DN is 1, if the input is a NaN, the result is Default NaN.

When FPCR.AH == 1, the behavior is as follows:
Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 131 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

• If both the input and the immediate are zeros, regardless of the sign of input zero, the result is
the immediate.

• If the input is a NaN, regardless of the value of FPCR.DN, the result is the immediate.

In the following sections:

• C7.2.103 (FMAXNM (vector)).

• C7.2.104 (FMAXNM (scalar)).

• C7.2.106 (FMAXNMP (vector)).

• C7.2.107 (FMAXNMV).

• C7.2.113 (FMINNM (vector)).

• C7.2.114 (FMINNM (scalar)).

• C7.2.116 (FMINNMP (vector)).

• C7.2.117 (FMINNMV).

The text that reads:

NaNs are handled according to the IEEE 754-2008 standard. If one vector element is numeric
and the other is a quiet NaN, the result that is placed in the vector is the numerical value,
otherwise the result is identical to …

is updated to read:

Regardless of the value of FPCR.AH, the behavior is as follows:

• Negative zero compares less than positive zero.

• If one input is numeric and the other is a NaN, the result is the numeric value.

• When FPCR.DN == 0, if either input is a signaling NaN or if both inputs are NaNs, the result
is a Quiet NaN.

• When FPCR.DN == 1, if either input is a signaling NaN or if both inputs are NaNs, the result
is Default NaN.

This updated text also replaces the following text in sections C8.2.145 (FMAXNM (vectors)),
C8.2.146 (FMAXNMP), C8.2.153 (FMINNM (vectors)), and C8.2.154 (FMINNMP):

If one element value is numeric and the other is a quiet NaN, then the result is the numeric value.

In sections C8.2.144 (FMAXNM (immediate)) and C8.2.152 (FMINNM (immediate)), the text that
reads:

If the element value is a quiet NaN, then the result is the immediate.

is updated to read:

Regardless of the value of FPCR.AH, the behavior is as follows:

• Negative zero compares less than positive zero.

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 132 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

• If the input is a Quiet NaN, the result is the immediate value.

• When FPCR.DN == 0, if the input is a signaling NaN, the result is a Quiet NaN.

• When FPCR.DN == 1, if the input is a signaling NaN, the result is Default NaN.

2.176 C318: SVE
In section D17.2.131 (TCR_EL1, Translation Control Register (EL1)), in the ‘NFD0, bit [53]’ field, the
0b1 value description that reads:

0b1 A TLB miss on a virtual address that is translated using TTBR0_EL1 due to the specified
access types causes the access to fail without taking an exception. The failure should take the
same amount of time to be handled as a Permission fault on a TLB entry that is present in the
TLB, to mitigate attacks that use fault timing.

is updated to read:

0b1 A TLB miss on a virtual address that is translated using TTBR0_EL1 due to the specified
access types causes the access to fail without taking an exception. The amount of time that the
failure takes to be handled should not predictively leak whether it was caused by a TLB miss or a
Permission fault, to mitigate attacks that use fault timing.

Equivalent changes are made to the ‘NFD1, bit [54]’ field description, and to the ‘NFD0, bit [53]’
and ‘NFD1, bit [54]’ field descriptions in section D17.2.132 (TCR_EL2, Translation Control Register
(EL2)).

2.177 C1206: Armv9 Debug
In section D4.4.5 (Exceptions to Exception element encoding), Table D4-19 ‘Exception mapping for
exceptions taken to AArch64 state’ within the rule RGZQKS is updated to indicate that:

• Exceptions taken due to HFGITR_EL2.SVC_EL0 and HFGITR_EL2.SVC_EL1 are traced or
recorded using the ‘Trap’ exception type.

• Exceptions taken due to HCR_EL2.TSC are traced or recorded using the ‘Trap’ exception type.

A similar update is made to section D15.2.1 (Filtering on type), Table D15-2 ‘Exception mapping for
exceptions taken to AArch64 state’ to rule RLYGJZ.

2.178 D1383: Armv9 Debug
In section D4.5.9 (Element Generation), in the subsections ‘Exception element’ and ‘Target Address
element’, statements are added to recommend that when a branch occurs to an invalid address and

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 133 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

the resultant exception is taken from that address, the addresses reported by the Target Address
element and the Exception element are the same value.

2.179 D1461: Armv9 Debug
In section D4.6.12 (External Outputs), the statement IBZHDF that reads:

The ETE architecture supports between one and four External Outputs. The number of outputs
that a trace unit has is IMPLEMENTATION DEFINED, but at least one output is always implemented.

is updated to read:

The ETE architecture supports between zero and four External Outputs. The number of outputs
that a trace unit has is IMPLEMENTATION DEFINED, and Arm recommends that at least one output is
implemented.

2.180 D1466: Armv9 Debug
In section D11.11.3 (Common event numbers), in the subsection ‘Common microarchitectural
events’, the description for each CTI_TRIGOUT<n> event, where <n> is in the range 4 to 7, that
reads:

This event must be implemented if FEAT_ETE is implemented.

is updated to read:

This event must be implemented if FEAT_ETE is implemented and TRCIDR5.NUMEXTINSEL > (n
- 4).

2.181 D1493: Armv9 Debug
In section D4.5.3 (Trace unit behavior while the PE is in Debug state), rule RDPKSC that reads:

While the PE is in Debug state, the trace unit does not trace instructions that are executed.

is updated to read:

While the PE is in Debug state, the trace unit:

• Does not trace instructions that are executed.

• Does not trace the effects of instructions that are executed.

• Does not trace Exceptional occurrences.

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 134 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

Additionally, in section D4.5.8 (Filtering trace generation), in the subsection ‘Rules for tracing
Exceptional occurrences’, rule RDPMBQ that reads:

When an Exceptional occurrence occurs and TRCRSR.TA is 0b1, the Exceptional occurrence is
traced.

is updated to read:

When an Exceptional occurrence occurs and the PE is not in Debug state and TRCRSR.TA is 0b1,
the Exceptional occurrence is traced.

2.182 D1023: RME
A new function HaveSecureState() is added in section J1.3.3 (shared/functions):

boolean HaveSecureState()
 if !HaveEL(EL3) then
 return SecureOnlyImplementation();
 if HaveRME() && !HaveSecureEL2Ext() then
 return FALSE;
 return TRUE;

New functions EffectiveSCR_EL3_NS() and EffectiveSCR_EL3_NSE() are added in section J1.3.3
(shared/functions):

bit EffectiveSCR_EL3_NS()
 if !HaveSecureState() then
 return '1';
 elsif !HaveEL(EL3) then
 return '0';
 else
 return SCR_EL3.NS;
bit EffectiveSCR_EL3_NSE()
 return if !HaveRME() then '0' else SCR_EL3.NSE;

The function CheckValidStateMatch() in section J1.3.1 (shared/debug) is changed from:

(Constraint, bits(2), bit, bit, bits(2)) CheckValidStateMatch(bits(2) ssc_in, bit
 ssce_in,
 bit hmc_in, bits(2)
 pxc_in,
 boolean isbreakpnt)
....
 // Values that are not allocated in any architecture version
 case hmc:ssce:ssc:pxc of
 when '0 0 11 10' reserved = TRUE;
 when '1 0 00 x0' reserved = TRUE;

to:

(Constraint, bits(2), bit, bit, bits(2)) CheckValidStateMatch(bits(2) ssc_in, bit
 ssce_in,

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 135 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

 bit hmc_in, bits(2)
 pxc_in,
 boolean isbreakpnt)
....
 // Values that are not allocated in any architecture version
 case hmc:ssce:ssc:pxc of
 when '0 0 11 10' reserved = TRUE;
 when '0 0 1x xx' reserved = !HaveSecureState();
 when '1 0 00 x0' reserved = TRUE;

The corresponding code change for the SCR_EL3.SIF Effective value is made as part of
section J1.2.4 (aarch32/translation) for AArch32.S1TTWParamsEL10(), and section J1.1.5
(aarch64/translation) for AArch64.S1TTWParamsEL3(), AArch64.S1TTWParamsEL2(),
AArch64.S1TTWParamsEL20(), and AArch64.S1TTWParamsEL10().

In section J1.1.1 (aarch64/debug), the function ProfilingBufferOwner() is changed from:

(SecurityState, bits(2)) ProfilingBufferOwner()
 SecurityState owning_ss;
 if HaveEL(EL3) then
 bits(3) state_bits;
 if HaveRME() then
 state_bits = MDCR_EL3.<NSPBE,NSPB>;
 if state_bits IN {'10x'} then
....

to:

(SecurityState, bits(2)) ProfilingBufferOwner()
 SecurityState owning_ss;
 if HaveEL(EL3) then
 bits(3) state_bits;
 if HaveRME() then
 state_bits = MDCR_EL3.<NSPBE,NSPB>;
 if (state_bits IN {'10x'} ||
 (!HaveSecureEL2Ext() && state_bits IN {'00x'})) then
....

To account for the Effective value of the SCR_EL3.NS field, the function SecurityStateAtEL() in
section J1.3.3 (shared/functions) is changed from:

SecurityState SecurityStateAtEL(bits(2) EL)
 if HaveRME() then
 if EL == EL3 then return SS_Root;
 case SCR_EL3.<NSE, NS> of
 when '00' return SS_Secure;
....

to:

SecurityState SecurityStateAtEL(bits(2) EL)
 if HaveRME() then
 if EL == EL3 then return SS_Root;
 effective_nse_ns = SCR_EL3.NSE : EffectiveSCR_EL3_NS();
 case effective_nse_ns of
 when '00' if HaveSecureEL2Ext() then return SS_Secure; else
 Unreachable();

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 136 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

....

Similar Effective value checks of SCR_EL3.NS (RES1 in case Secure state is not
implemented) and SCR_EL3.NSE are added in functions ELFromM32(), ELFromSPSR(),
AArch64.AT(), ProfilingBufferEnabled() using the new functions EffectiveSCR_EL3_NS() and
EffectiveSCR_EL3_NSE().

In section J1.3.1 (shared/debug), the function ExternalRootInvasiveDebugEnabled() is changed
from:

boolean ExternalRootInvasiveDebugEnabled()
 if !HaveRME() then return FALSE;
 return (ExternalInvasiveDebugEnabled() &&
 ExternalSecureInvasiveDebugEnabled() &&
....

to:

boolean ExternalRootInvasiveDebugEnabled()
 if !HaveRME() then return FALSE;
 return (ExternalInvasiveDebugEnabled() &&
 (!HaveSecureEL2Ext() || ExternalSecureInvasiveDebugEnabled()) &&
....

The function SelfHostedTraceEnabled() in section J1.3.4 (shared/trace) is refactored to account for
the Effective value of MDCR_EL3.STE.

The function TraceBufferOwner() in section J1.3.4 (shared/trace) is changed to take the Effective
value of MDCR_EL3.<NSTBE,NSTB>. The function is changed from:

(SecurityState, bits(2)) TraceBufferOwner()
 assert HaveTraceBufferExtension() && SelfHostedTraceEnabled();
 SecurityState owning_ss;
 if HaveEL(EL3) then
 bits(3) state_bits;
 if HaveRME() then
 state_bits = MDCR_EL3.<NSTBE,NSTB>;
 if state_bits IN {'10x'} then
....

to:

(SecurityState, bits(2)) TraceBufferOwner()
 assert HaveTraceBufferExtension() && SelfHostedTraceEnabled();
 SecurityState owning_ss;
 if HaveEL(EL3) then
 bits(3) state_bits;
 if HaveRME() then
 state_bits = MDCR_EL3.<NSTBE,NSTB>;
 if (state_bits IN {'10x'} ||
 (!HaveSecureEL2Ext() && state_bits IN {'00x'})) then
....

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 137 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

The function GPIValid() in section J1.3.5 (shared/translation) is updated to account for the
definition of GPI encoding 0b1000. The function is changed from:

boolean GPIValid(bits(4) gpi)
 return gpi IN {GPT_NoAccess,
 GPT_Secure,
 GPT_NonSecure,
....

to:

boolean GPIValid(bits(4) gpi)
 if gpi == GPT_Secure then
 return HaveSecureEL2Ext();
 return gpi IN {GPT_NoAccess,
 GPT_NonSecure,
....

Similarly the function GPICheck() in section J1.3.5 (shared/translation) is changed from:

boolean GPICheck(PASpace paspace, bits(4) gpi)
 case gpi of
 when GPT_NoAccess return FALSE;
 when GPT_Secure return paspace == PAS_Secure;
....

to:

boolean GPIValid(bits(4) gpi)
 boolean GPICheck(PASpace paspace, bits(4) gpi)
 case gpi of
 when GPT_NoAccess return FALSE;
 when GPT_Secure assert HaveSecureEL2Ext();return paspace == PAS_Secure;
....

The function AArch64.S1NextWalkStateLeaf() in section J1.1.5 (aarch64/translation) is changed
from:

TTWState AArch64.S1NextWalkStateLeaf(TTWState currentstate,THEARG(boolean s2fs1mro)
 Regime regime,
 SecurityState ss, S1TTWParams walkparams,
 bits(N) descriptor)
....
 case <nse,ns> of
 when '00' baseaddress.paspace = PAS_Secure;
 when '01' baseaddress.paspace = PAS_NonSecure;
 when '10' baseaddress.paspace = PAS_Root;
 when '11' baseaddress.paspace = PAS_Realm;
....

to:

TTWState AArch64.S1NextWalkStateLeaf(TTWState currentstate,THEARG(boolean s2fs1mro)
 Regime regime,
 SecurityState ss, S1TTWParams walkparams,
 bits(N) descriptor)

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 138 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

....
 case <nse,ns> of
 when '00'
 baseaddress.paspace = if HaveSecureEL2Ext() then PAS_Secure else
 PAS_NonSecure;
 when '01'
 baseaddress.paspace = PAS_NonSecure;
 when '10'
 baseaddress.paspace = PAS_Root;
 when '11'
 baseaddress.paspace = PAS_Realm;

2.183 C1277: RME
In section D17.2.133 (TCR_EL3, Translation Control Register (EL3)), in the ‘DS’ field description, the
following text:

Otherwise:

Reserved, RES0.

Is clarified to read:

Otherwise:

Reserved, RES0, and the Effective value of this bit is 0b0.

The equivalent change is made in sections D17.2.132 (TCR_EL2, Translation Control Register
(EL2)), and D17.2.131 (TCR_EL1, Translation Control Register (EL1)).

In section D17.2.117 (SCR_EL3, Secure Configuration Register), in the ‘NSE’ field description, the
following text:

Otherwise:

Reserved, RES0.

Is clarified to read:

Otherwise:

Reserved, RES0, and the Effective value of this bit is 0b0.

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 139 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

2.184 C1283: RME
In section C5.4.1 (AT S12E0R, Address Translate Stages 1 and 2 EL0 Read), in the ‘Purpose’
section, the following text:

When EL2 is implemented and enabled in the Security state described by the current value of
SCR_EL3.NS.

Is clarified to read:

When EL2 is implemented and enabled in the Security state described by the current Effective
value of SCR_EL3.{NSE, NS}.

The equivalent change is also made in the following sections:

• C5.4.2 (AT S12E0W).

• C5.4.3 (AT S12E1R).

• C5.4.4 (AT S12E1W).

• C5.4.5 (AT S1E0R).

• C5.4.6 (AT S1E0W).

• C5.4.7 (AT S1E1R).

• C5.4.8 (AT S1E1RP).

• C5.4.9 (AT S1E1W).

• C5.4.10 (AT S1E1WP).

2.185 D1284: RME
In section D17.2.38 (ESR_EL2, Exception Syndrome Register (EL2)), the following are removed:

• In the ‘EC’ field description, EC value 0b011110 and its associated text is removed.

• In the ‘ISS’ field description, the ‘ISS encoding for an exception from a Granule Protection
Check’ subsection is removed.

The equivalent changes are also made in section D17.2.37 (ESR_EL1, Exception Syndrome Register
(EL1)).

In section D17.2.39 (ESR_EL3, Exception Syndrome Register (EL3)), in the ‘EC’ field description, the
following text for EC value 0b011110:

Exception from a Granule Protection Check. See ISS encoding for an exception from a Granule
Protection Check.

is corrected to read:

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 140 of 141

Arm® Architecture Reference Manual for A-profile
architecture Known issues in Issue I.a

Document ID: 102105_I.a_06_en
Issue: 06

Known issues

Granule Protection Check exception. See ISS encoding for a Granule Protection Check exception.

Correspondingly, in the ‘ISS’ field description, the subsection titled ‘ISS encoding for an exception
from a Granule Protection Check’ is corrected to ‘ISS encoding for a Granule Protection Check
exception’.

2.186 R1345: RME
In section D4.2.1 (Accessing ETE registers), rule KQMKX that reads:

Accesses from the external debugger interface to unimplemented or Reserved registers behave
as follows:

• For accesses in the range of offsets 0xF00 to 0xFFC, the access behaves as RES0H.

• For accesses in the range of offsets 0x000 to 0xEFC when the OS Lock is locked, the access
behaves as RES0H or returns an error.

• For accesses in the range of offsets 0x000 to 0xEFC when the OS Lock is unlocked and
MDCR_EL3.ETAD is 0, the access behaves as RES0H.

• For Secure accesses in the range of offsets 0x000 to 0xEFC when the OS Lock is unlocked
and MDCR_EL3.ETAD is 1, the access behaves as RES0H.

• For Non-secure accesses in the range of offsets 0x000 to 0xEFC when the OS Lock is
unlocked and MDCR_EL3.ETAD is 1, the access behaves as RES0H or returns an error.

is updated to read:

Accesses from the external debugger interface to unimplemented or Reserved trace unit registers
behave as follows:

• When the trace unit Core power domain is off, the access returns an error.

• Otherwise:

◦ For accesses in the range of offsets 0xF00 to 0xFFC, the access behaves as RES0H.

◦ For accesses in the range of offsets 0x000 to 0xEFC:

▪ When the OS Lock is locked, the response is a CONSTRAINED UNPREDICTABLE choice of
an error response or behaving as RES0H.

▪ When the OS Lock is unlocked and AllowExternalTraceAccess() returns FALSE, the
response is a CONSTRAINED UNPREDICTABLE choice of an error response or behaving as
RES0H.

▪ Otherwise, the access behaves as RES0H.

Copyright © 2020, 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 141 of 141

	Arm® Architecture Reference Manual for A-profile architecture Known issues in Issue I.a
	Contents
	1. Introduction
	1.1 Conventions
	1.2 Useful resources
	1.3 Other information

	2. Known issues
	2.1 C15788
	2.2 D16198
	2.3 C16212
	2.4 D16424
	2.5 D16504
	2.6 D16648
	2.7 D16716
	2.8 D16729
	2.9 D17015
	2.10 D17082
	2.11 D17119
	2.12 C17311
	2.13 R17462
	2.14 D17556
	2.15 R17661
	2.16 E17792
	2.17 C17811
	2.18 E17996
	2.19 D18330
	2.20 D18465
	2.21 R18485
	2.22 D18520
	2.23 D18736
	2.24 R18746
	2.25 D18800
	2.26 D18823
	2.27 C18842
	2.28 C18843
	2.29 D18853
	2.30 D18887
	2.31 D18889
	2.32 C19027
	2.33 C19047
	2.34 D19116
	2.35 D19121
	2.36 D19162
	2.37 D19178
	2.38 C19183
	2.39 C19202
	2.40 D19239
	2.41 D19275
	2.42 D19323
	2.43 C19346
	2.44 R19370
	2.45 D19372
	2.46 E19440
	2.47 D19451
	2.48 D19452
	2.49 D19494
	2.50 R19519
	2.51 D19521
	2.52 D19549
	2.53 D19560
	2.54 D19561
	2.55 D19581
	2.56 D19583
	2.57 D19642
	2.58 C19644
	2.59 D19647
	2.60 C19649
	2.61 D19680
	2.62 D19696
	2.63 E19713
	2.64 D19741
	2.65 D19753
	2.66 C19772
	2.67 C19793
	2.68 D19800
	2.69 D19804
	2.70 R19810
	2.71 D19817
	2.72 D19829
	2.73 E19831
	2.74 D19833
	2.75 C19835
	2.76 D19887
	2.77 E19892
	2.78 D19917
	2.79 D19918
	2.80 D19924
	2.81 D19928
	2.82 D19936
	2.83 C19956
	2.84 D19961
	2.85 C20009
	2.86 D20011
	2.87 C20016
	2.88 R20031
	2.89 D20053
	2.90 E20075
	2.91 D20128
	2.92 D20315
	2.93 C20158
	2.94 D20159
	2.95 D20163
	2.96 R20165
	2.97 D20171
	2.98 D20192
	2.99 D20207
	2.100 R20208
	2.101 D20210
	2.102 C20220
	2.103 C20237
	2.104 D20253
	2.105 D20268
	2.106 C20275
	2.107 D20282
	2.108 D20283
	2.109 D20284
	2.110 E20288
	2.111 D20303
	2.112 D20310
	2.113 C20312
	2.114 D20317
	2.115 D20319
	2.116 D20330
	2.117 D20332
	2.118 C20333
	2.119 D20334
	2.120 D20335
	2.121 D20340
	2.122 C20341
	2.123 D20346
	2.124 D20363
	2.125 D20365
	2.126 D20375
	2.127 D20378
	2.128 D20380
	2.129 D20389
	2.130 D20397
	2.131 D20398
	2.132 D20433
	2.133 D20443
	2.134 D20444
	2.135 C20503
	2.136 D20506
	2.137 C20514
	2.138 C20530
	2.139 D20542
	2.140 D20578
	2.141 C20583
	2.142 D20589
	2.143 R20604
	2.144 R20607
	2.145 C20625
	2.146 D20635
	2.147 D20664
	2.148 D20675
	2.149 D20682
	2.150 D20684
	2.151 D20692
	2.152 R20697
	2.153 C20702
	2.154 D20711
	2.155 D20728
	2.156 D20731
	2.157 C20759
	2.158 D20760
	2.159 D20764
	2.160 D20791
	2.161 R20805
	2.162 D20829
	2.163 C1186: SME
	2.164 C1342: SME
	2.165 D1386: SME
	2.166 D494: SVE2
	2.167 D504: SVE2
	2.168 C215: SVE
	2.169 C225: SVE
	2.170 C256: SVE
	2.171 C279: SVE
	2.172 C301: SVE
	2.173 D302: SVE
	2.174 C313: SVE
	2.175 C314: SVE
	2.176 C318: SVE
	2.177 C1206: Armv9 Debug
	2.178 D1383: Armv9 Debug
	2.179 D1461: Armv9 Debug
	2.180 D1466: Armv9 Debug
	2.181 D1493: Armv9 Debug
	2.182 D1023: RME
	2.183 C1277: RME
	2.184 C1283: RME
	2.185 D1284: RME
	2.186 R1345: RME

