
ARM®v8-M Architecture
Reference Manual

Beta
Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved.
ARM DDI 0553A.b (ID072816)

ARMv8-M Architecture Reference Manual
Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved.

Release Information

The following releases of this document have been made.

The copyright statement reflects the fact that some draft issues of this document have been released, to a limited circulation.

Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained
in this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of ARM Limited (“ARM”). No license,
express or implied, by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR
PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, ARM makes no representation with respect to,
and has undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or
other rights.

This document may include technical inaccuracies or typographical errors.

This document may be translated into other languages for convenience, and you agree that if there is any conflict between the
English version of this document and any translation, the terms of the English version shall prevail.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure
of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof
is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to ARM’s customers
is not intended to create or refer to any partnership relationship with any other company. ARM may make changes to this document
at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any signed written agreement specifically
covering this document with ARM, then the signed written agreement prevails over and supersedes the conflicting provisions of
these terms.

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited or its affiliates in the EU and/or
elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective
owners. You must follow the ARM trademark usage guidelines http://www.arm.com/about/trademarks/guidelines/index.php.

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved.
ARM Limited. Company 02557590 registered in England.
110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20327

In this document, where the term ARM is used to refer to the company it means “ARM or any of its subsidiaries as appropriate”.

Change History

Date Issue Confidentiality Change

29 March 2016 A.a Confidential - Beta Beta release, limited circulation

28 July 2016 A.b Non-confidential - Beta Beta release
ii Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this document to.

Product Status

The information in this document is for a Beta product, that is a product under development.

Web Address

http://www.arm.com

Limitations of issue A.b

As indicated by its beta status, this document is a work-in-progress. Some areas might contain errors. In particular, the following
chapters are of beta quality and have had limited review:
• Chapter B6 Memory Model.
• Chapter B7 Synchronization and Semaphores.
• Chapter B9 The ARMv8-M Protected Memory System Architecture.
• Chapter B12 Debug.
• Chapter B13 Debug and trace components.

ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. iii
ID072816 Non-Confidential - Beta

iv Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

Contents
ARMv8-M Architecture Reference Manual

Preface
About this book .. xii
Using this book .. xiii
Conventions .. xv
Additional reading .. xvii
Feedback .. xviii

Part A ARMv8-M Architecture Introduction and Overview
Chapter A1 Introduction

A1.1 About the ARMv8 architecture, and architecture profiles A1-22
A1.2 The ARMv8-M architecture profile .. A1-23
A1.3 ARMv8-M variants ... A1-24

Part B ARMv8-M Architecture Rules
Chapter B1 Rules Overview

Chapter B2 Resets
B2.1 Resets, Cold reset and Warm reset .. B2-30

Chapter B3 Power Management
B3.1 Power management .. B3-32

Chapter B4 Programmers’ Model
B4.1 PE modes, Thread mode and Handler mode .. B4-37
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. v
ID072816 Non-Confidential - Beta

Contents
B4.2 Privileged and unprivileged execution ... B4-38
B4.3 Registers ... B4-39
B4.4 XPSR, APSR, IPSR, and EPSR ... B4-40
B4.5 Special-purpose register updates and the memory order model B4-42
B4.6 Security states, Secure state and Non-secure state ... B4-43
B4.7 Security states, register banking between them ... B4-44
B4.8 Stack pointer ... B4-45
B4.9 Exception numbers and exception priority numbers ... B4-46
B4.10 Exception enable, pending, and active bits ... B4-49
B4.11 Security states, exception banking .. B4-50
B4.12 Faults .. B4-52
B4.13 Exception states .. B4-55
B4.14 Priority model .. B4-56
B4.15 Secure address protection .. B4-59
B4.16 Security state transitions ... B4-60
B4.17 Function calls from Secure state to Non-secure state .. B4-61
B4.18 Function returns from Non-secure state .. B4-62
B4.19 Exception handling .. B4-63
B4.20 Exception entry, context stacking .. B4-64
B4.21 Exception entry, register clearing after context stacking B4-69
B4.22 Stack limit checks .. B4-70
B4.23 Exception return .. B4-73
B4.24 Integrity signature .. B4-76
B4.25 Exceptions during exception entry .. B4-77
B4.26 Exceptions during exception return ... B4-78
B4.27 Tail-chaining .. B4-79
B4.28 Exceptions, instruction resume or instruction restart .. B4-81
B4.29 Vector tables ... B4-83
B4.30 Hardware-controlled priority escalation to HardFault .. B4-84
B4.31 Special-purpose mask registers, PRIMASK, BASEPRI, FAULTMASK, for

software-controlled priority boosting ... B4-85
B4.32 Lockup ... B4-87
B4.33 Exception during a singleword load operation .. B4-92
B4.34 Special-purpose CONTROL register ... B4-93
B4.35 Saving context on process switch ... B4-94
B4.36 Context Synchronization Operation .. B4-95
B4.37 Coprocessor support ... B4-96

Chapter B5 Floating-point Support
B5.1 The optional Floating-point Extension, FPv5 .. B5-98
B5.2 About the Floating-point Status and Control Register (FPSCR) B5-99
B5.3 Registers for floating-point data processing, S0-S31 or D0-D15 B5-100
B5.4 Floating-point standards and terminology ... B5-101
B5.5 Floating-point data representable ... B5-102
B5.6 Floating-point encoding formats, half-precision, single-precision, and double-precision

B5-103
B5.7 The IEEE 754 floating-point exceptions .. B5-105
B5.8 The Flush-to-zero mode .. B5-106
B5.9 The Default NaN mode, and NaN handling ... B5-107
B5.10 The Default NaN ... B5-108
B5.11 Combinations of floating-point exceptions .. B5-109
B5.12 Priority of floating-point exceptions relative to other floating-point exceptions .. B5-110

Chapter B6 Memory Model
B6.1 Memory accesses ... B6-113
B6.2 Address space .. B6-114
B6.3 Endianness ... B6-115
B6.4 Alignment behavior ... B6-117
B6.5 Atomicity .. B6-118
vi Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

Contents
B6.6 Concurrent modification and execution of instructions B6-119
B6.7 Observability and completion of memory accesses .. B6-120
B6.8 Ordering requirements for memory accesses ... B6-122
B6.9 Ordering of implicit memory accesses .. B6-123
B6.10 Ordering of explicit memory accesses .. B6-124
B6.11 Memory barriers .. B6-125
B6.12 Shareability domains ... B6-128
B6.13 Shareability attributes .. B6-129
B6.14 Normal memory ... B6-130
B6.15 Device memory ... B6-131
B6.16 Device memory attributes ... B6-132
B6.17 Memory access restrictions ... B6-135
B6.18 Mismatched memory attributes ... B6-136
B6.19 Load-Exclusive and Store-Exclusive accesses to Normal memory B6-138
B6.20 Load-Acquire and Store-Release accesses to memory B6-139
B6.21 Caches .. B6-141
B6.22 Behavior of Preload Data (PLD) and Preload Instruction (PLI) instructions with caches

B6-144
B6.23 Branch predictors .. B6-145
B6.24 Cache maintenance operations .. B6-146
B6.25 Branch predictor maintenance operations .. B6-149

Chapter B7 Synchronization and Semaphores
B7.1 Exclusive access instructions .. B7-152
B7.2 Exclusive access instructions and Non-shareable memory locations B7-153
B7.3 Local monitors ... B7-154
B7.4 Exclusive access instructions and shareable memory locations B7-156
B7.5 The global monitor .. B7-157
B7.6 Load-Exclusive and Store-Exclusive instruction usage restrictions B7-160
B7.7 Use of WFE and SEV instructions by spinlocks .. B7-162

Chapter B8 The System Address Map
B8.1 System address map .. B8-164
B8.2 The System region of the system address map .. B8-165
B8.3 The System Control Space (SCS) .. B8-166

Chapter B9 The ARMv8-M Protected Memory System Architecture
B9.1 MPU definition ... B9-168
B9.2 MPU operation .. B9-170

Chapter B10 The System Timer, SysTick
B10.1 The system timer, SysTick .. B10-172

Chapter B11 Nested Vectored Interrupt Controller
B11.1 NVIC definition .. B11-174
B11.2 NVIC operation .. B11-175

Chapter B12 Debug
B12.1 About debug .. B12-178
B12.2 Accessing debug features ... B12-182
B12.3 Debug authentication interface ... B12-184
B12.4 Multiprocessor support .. B12-190
B12.5 CoreSight and identification registers ... B12-191
B12.6 Debug event behavior ... B12-192
B12.7 Exiting Debug state ... B12-200
B12.8 Debug System registers .. B12-201
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. vii
ID072816 Non-Confidential - Beta

Contents
Chapter B13 Debug and trace components
B13.1 Instrumentation Trace Macrocell ... B13-204
B13.2 Data Watchpoint and Trace unit .. B13-210
B13.3 Embedded Trace Macrocell .. B13-224
B13.4 Trace Port Interface Unit ... B13-225
B13.5 Flash Patch and Breakpoint unit ... B13-226

Part C ARMv8-M Instruction Set
Chapter C1 Instruction Set Overview

C1.1 Instruction set .. C1-234
C1.2 Instruction set, interworking support ... C1-235
C1.3 Instruction set, interstating support ... C1-236
C1.4 Format of instruction descriptions ... C1-237
C1.5 Standard assembler syntax fields ... C1-240
C1.6 Conditional execution .. C1-241
C1.7 Instruction set, encoding ... C1-246
C1.8 Modified immediate constants ... C1-249
C1.9 Pseudocode descriptions of operations on general-purpose registers and PC C1-250
C1.10 NOP-compatible hint instructions .. C1-251

Chapter C2 Instruction Specification
C2.1 Top level T32 instruction set encoding .. C2-254
C2.2 16-bit T32 instruction encoding ... C2-255
C2.3 32-bit T32 instruction encoding ... C2-266
C2.4 Alphabetical list of instructions .. C2-302

Part D ARMv8-M Registers
Chapter D1 Register Overview

D1.1 Understanding the register descriptions in the register specification D1-788

Chapter D2 Register Specification
D2.1 Register index ... D2-790
D2.2 Alphabetical list of registers .. D2-806

Part E ARMv8-M Pseudocode
Chapter E1 Pseudocode Overview

E1.1 About the pseudocode .. E1-1118
E1.2 Pseudocode operators and keywords ... E1-1119

Chapter E2 ARM Pseudocode Definition
E2.1 About the ARM pseudocode ... E2-1124
E2.2 Data types ... E2-1125
E2.3 Operators .. E2-1130
E2.4 Statements and control structures .. E2-1136
E2.5 Built-in functions .. E2-1142
E2.6 ARM pseudocode definition index ... E2-1145

Chapter E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List ... E3-1150
viii Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

Contents
Part F Debug Packet Protocols
Chapter F1 ITM and DWT Packet Protocol Specification

F1.1 About the ITM and DWT packets ... F1-1288
F1.2 Alphabetical list of DWT and ITM packets ... F1-1291
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ix
ID072816 Non-Confidential - Beta

Contents
x Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

Preface

This preface introduces the ARMv8-M Architecture Reference Manual. It contains the following sections:
• About this book on page xii.
• Using this book on page xiii.
• Conventions on page xv.
• Additional reading on page xvii.
• Feedback on page xviii.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. xi
ID072816 Non-Confidential - Beta

 Preface
 About this book
About this book
This manual documents the microcontroller profile of version 8 of the ARM® Architecture, the ARMv8-M
architecture profile. For short definitions of all the ARMv8 profiles see About the ARMv8 architecture, and
architecture profiles on page A1-22.

This manual has the following parts:

Part A Provides an introduction to the ARMv8-M architecture.

Part B Describes the architectural rules.

Part C Describes the T32 instruction set. This instruction set is backwards-compatible with earlier versions
of the ARM architecture. This information is of primary importance to authors and users of
compilers, assemblers, and other programs that generate ARM machine code.

Part D Describes the System registers.

Part E Describes the ARMv8-M pseudocode.

Part F Describes the packet protocols.
xii Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

 Preface
 Using this book
Using this book
The information in this manual is organized into parts, as described in this section.

Part A, ARMv8-M Architecture Introduction and Overview

Part A gives an overview of the ARMv8-M architecture profile, including its relationship to the other ARM PE
architectures. It introduces the terminology used to describe the architecture, and gives an overview of the optional
architectural extensions. It contains the following chapter:

Chapter A1 Introduction

Read this for an introduction to the ARMv8-M architecture.

Part B, ARMv8-M Architecture Rules

Part B describes the architecture rules. It contains the following chapters:

Chapter B1 Rules Overview

Read this for an introduction to the architecture rules.

Chapter B2 Resets

Read this for a description of the reset rules.

Chapter B3 Power Management

Read this for a description of the power management rules.

Chapter B4 Programmers’ Model

Read this for a description of the programmers model rules.

Chapter B5 Floating-point Support

Read this for a description of the floating-point support rules.

Chapter B6 Memory Model

Read this for a description of the memory model rules.

Chapter B7 Synchronization and Semaphores

Read this for a description of the rules on non-blocking synchronization of shared memory.

Chapter B8 The System Address Map

Read this for a description of the system address map rules.

Chapter B9 The ARMv8-M Protected Memory System Architecture

Read this for a description of the protected memory system architecture rules.

Chapter B10 The System Timer, SysTick

Read this for a description of the system timer rules.

Chapter B11 Nested Vectored Interrupt Controller

Read this for a description of the Nested Vectored Interrupt Controller (NVIC) rules.

Chapter B12 Debug

Read this for a description of the debug rules.

Chapter B13 Debug and trace components

Read this for a description of the debug and trace component rules.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. xiii
ID072816 Non-Confidential - Beta

 Preface
 Using this book
Part C, ARMv8-M Instructions

Part C describes the instructions. It contains the following chapters:

Chapter C1 Instruction Set Overview

Read this for an overview of the instruction set and the instruction set encoding.

Chapter C2 Instruction Specification

Read this for a description of each instruction, arranged by instruction mnemonic.

Part D, ARMv8-M Registers

Part D describes the registers. It contains the following chapters:

Chapter D1 Register Overview

Read this for an overview of the registers.

Chapter D2 Register Specification

Read this for a description of the registers.

Part E, ARMv8-M Pseudocode

Part E describes the pseudocode. It contains the following chapters:

Chapter E1 Pseudocode Overview

Read this for an overview of the pseudocode.

Chapter E2 ARM Pseudocode Definition

Read this for a definition of the pseudocode that ARM documentation uses.

Chapter E3 Pseudocode Specification

Read this for a description of the pseudocode.

Part F, Packet Protocols

Part F describes the packet protocols. It contains the following chapter:

Chapter F1 ITM and DWT Packet Protocol Specification

Read this for a description of the protocol for packets that are used to send the data generated by the
ITM and DWT to an external debugger.
xiv Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

 Preface
 Conventions
Conventions
The following sections describe conventions that this book can use:
• Typographic conventions.
• Signals.
• Numbers.
• Pseudocode descriptions.
• Assembler syntax descriptions on page xvi.

Typographic conventions

The typographical conventions are:

italic Introduces special terminology, and denotes citations.

bold Denotes signal names, and is used for terms in descriptive lists, where appropriate.

monospace Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other items appearing in
assembler syntax descriptions, pseudocode, and source code examples.

SMALL CAPITALS

Used for a few terms that have specific technical meanings, and are included in the Glossary.

Colored text Indicates a link. This can be:

• A URL, for example http://infocenter.arm.com.

• A cross-reference, that includes the page number of the referenced information if it is not on
the current page, for example, Standard assembler syntax fields on page C1-240.

• A link, to a chapter or appendix, or to a glossary entry, or to the section of the document that
defines the colored term, for example ADC (immediate).

Signals

In general this specification does not define processor signals, but it does include some signal examples and
recommendations.

The signal conventions are:

Signal level The level of an asserted signal depends on whether the signal is active-HIGH or
active-LOW. Asserted means:
• HIGH for active-HIGH signals.
• LOW for active-LOW signals.

Lowercase n At the start or end of a signal name denotes an active-LOW signal.

Numbers

Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbers by 0x. In
both cases, the prefix and the associated value are written in a monospace font, for example 0xFFFF0000. To improve
readability, long numbers can be written with an underscore separator between every four characters, for example
0xFFFF_0000_0000_0000. Ignore any underscores when interpreting the value of a number.

Pseudocode descriptions

This book uses a form of pseudocode to provide precise descriptions of the specified functionality. This pseudocode
is written in a monospace font, and is described in Chapter E3 Pseudocode Specification.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. xv
ID072816 Non-Confidential - Beta

 Preface
 Conventions
Assembler syntax descriptions

This book contains numerous syntax descriptions for assembler instructions and for components of assembler
instructions. These are shown in a monospace font, and use the conventions described in A list of the assembler
symbols for the instruction on page C1-238.
xvi Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

 Preface
 Additional reading
Additional reading
This section lists relevant publications from ARM and third parties.

See the Infocenter http://infocenter.arm.com, for access to ARM documentation.

ARM publications
• Procedure Call Standard for the ARM Architecture (ARM GENC 003534).
• Run-time ABI for the ARM Architecture (ARM IHI 0043).
• ARM® Debug Interface v5 Architecture Specification (ARM IHI 0031).
• ARM® CoreSight™ Architecture Specification (ARM IHI 0029).
• ARM® CoreSight™ SoC-400 Technical Reference Manual (ARM DDI 0480).
• ARM® Embedded Trace Macrocell Architecture Specification (ARM IHI 0014).
• ARM® Embedded Trace Macrocell Architecture Specification, ETMv4 (ARM IHI 0064).

For information about the ARMv6-M architecture profile, see the ARMv6-M Architecture Reference Manual
(ARM DDI 0419).

For information about the ARMv7-M architecture profile, see the ARMv7-M Architecture Reference Manual
(ARM DDI 0403).

For information about the ARMv8-A architecture profile, see the ARM® Architecture Reference Manual, ARMv8,
for ARMv8-A architecture profile (ARM DDI 0487).

Other publications

The following publications are referred to in this manual, or provide more information:

• ANSI/IEEE Std 754-1985 and ANSI/IEEE Std 754-2008, IEEE Standard for Binary Floating-Point
Arithmetic. Unless otherwise indicated, references to IEEE 754 refer to either issue of the standard.

Note
 This document does not adopt the terminology defined in the 2008 issue of the standard.

• JEP106, Standard Manufacturers Identification Code, JEDEC Solid State Technology Association.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. xvii
ID072816 Non-Confidential - Beta

 Preface
 Feedback
Feedback
ARM welcomes feedback on its documentation.

Feedback on this book

If you have comments on the content of this book, send an e-mail to errata@arm.com. Give:
• The title.
• The number, ARM DDI 0553A.b.
• The page numbers to which your comments apply.
• The rule identifiers to which your comments apply, if applicable.
• A concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.

Note
 ARM tests PDFs only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the appearance or behavior of
any document when viewed with any other PDF reader.
xviii Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

Part A
ARMv8-M Architecture Introduction and Overview

Chapter A1
Introduction

This chapter introduces the ARMv8 architecture, the architecture profiles it defines, and the ARMv8-M profile
defined by this manual. It contains the following sections:
• About the ARMv8 architecture, and architecture profiles on page A1-22.
• The ARMv8-M architecture profile on page A1-23.
• ARMv8-M variants on page A1-24.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. A1-21
ID072816 Non-Confidential - Beta

A1 Introduction
A1.1 About the ARMv8 architecture, and architecture profiles
A1.1 About the ARMv8 architecture, and architecture profiles
The ARM architecture described in this Architecture Reference Manual defines the behavior of an abstract machine,
referred to as a Processing Element (PE). Implementations compliant with the ARM architecture must conform to
the described behavior of the PE. This manual is not intended to describe how to build an implementation of the PE,
nor to limit the scope of such implementations beyond the defined behaviors.

Except where the architecture specifies differently, the programmer-visible behavior of an implementation that is
compliant with the ARM architecture must be the same as a simple sequential execution of the program on the
processing element. This programmer-visible behavior does not include the execution time of the program.

The ARM Architecture Reference Manual also describes rules for software to use the PE.

The ARM architecture includes definitions of:

• An associated debug architecture.

• Associated trace architectures, which define trace macrocells that implementers can implement with the
associated processor hardware. For more information, see the ARM® Embedded Trace Macrocell Architecture
Specification .

The ARM architecture is a Reduced Instruction Set Computer (RISC) architecture with the following RISC
architectural features:

• A large uniform register file.

• A load/store architecture, where data-processing operations only operate on register contents, not directly on
memory contents.

• Simple addressing modes, with all load/store addresses determined from register contents and instruction
fields only.

ARM defines three architecture profiles:

A Application profile:

• Supports a Virtual Memory System Architecture (VMSA) based on a Memory Management
Unit (MMU).

Note
 An ARMv8-A implementation can be called an AArchv8-A implementation.

• Supports the A64, A32, and T32 instruction sets.

R Real-time profile:

• Supports a Protected Memory System Architecture (PMSA) based on a Memory Protection
Unit (MPU).

• Supports the A32 and T32 instruction sets.

M Microcontroller profile, described in this manual:

• Implements a programmers' model designed for low-latency interrupt processing, with
hardware stacking of registers and support for writing interrupt handlers in high-level
languages.

• Optionally implements a variant of the R-profile PMSA.

• Supports a variant of the T32 instruction set.

Note
 This Architecture Reference Manual:
• Describes only the ARMv8-M profile.
• Does not describe details of other ARM architecture profiles or of earlier versions of the M profile

architecture.
A1-22 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

A1 Introduction
A1.2 The ARMv8-M architecture profile
A1.2 The ARMv8-M architecture profile
The ARM architecture has evolved through several major versions to a point where it supports implementations
across a wide spectrum of performance points, with over a billion parts per annum being produced. The latest
versions, ARMv7 and ARMv8, formally recognize this diversity by defining a set of architecture profiles that tailor
the architecture to different market requirements. A key factor is that the application level is consistent across all
profiles, and the bulk of the variation is at the system level.

The introduction of Thumb®-2 technology in ARMv6T2 provided a balance to the A32 and T32 instruction sets, and
the opportunity for the ARM architecture to be extended into new markets, in particular the microcontroller
marketplace. To take maximum advantage of this opportunity, ARM introduced the M architecture profile for
microcontroller implementations, complementing its strengths in the high-performance and real-time embedded
markets. ARMv8-M is a T32-only profile with a different system level programmers’ model from the A and R
architecture profiles.

ARMv8-M satisfies the following key implementation criteria:

• Enables implementations with industry leading power, performance, and area constraints:

— Provides opportunities for simple pipeline designs offering leading edge system performance levels in
a broad range of markets and applications.

• Highly deterministic operation:
— Single or low cycle count execution.
— Minimal interrupt latency, with short pipelines.
— Capable of cacheless operation.

• Excellent C/C++ target. This aligns with the ARM programming standards in this area:
— Exception handlers are standard C/C++ functions, entered using standard calling conventions.

• Designed for deeply embedded systems:
— Low pincount devices.
— Enables new entry level opportunities for the ARM architecture.

• Provides debug and software profiling support for event-driven systems.

ARMv8-M offers key improvements in a number of areas, including:
• The Security Extension.
• An improved Memory Protection Unit (MPU) model.
• Alignment with ARMv8-A and ARMv8-R memory types.
• Stack pointer limit checking.
• A refined debug system.
• Improved support for multi-processing.
• Better alignment with C11 and C11++ standards.

A1.2.1 The ARMv8-M instruction set

ARMv8-M only supports execution of T32 instructions. The Floating-point (FP) Extension adds floating-point
instructions to the T32 instruction set. For more information, see Chapter B5 Floating-point Support, Chapter C1
Instruction Set Overview, and Chapter C2 Instruction Specification.

The ARMv8-M core instruction set supports:
• The Security Extension.
• Execute-only code generation.
• Code optimization.
• Semaphores.
• C11 and C++11.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. A1-23
ID072816 Non-Confidential - Beta

A1 Introduction
A1.3 ARMv8-M variants
A1.3 ARMv8-M variants
RFHPH The ARMv8-M architecture has the following optional extensions:

• The Main Extension.
• The Security Extension.
• The Floating-point Extension.
• The Digital Signal Processing (DSP) Extension.
• The Debug Extension.

RFXRP A PE can only implement the Floating-point Extension if it also implements the Main Extension.

RMGVL A PE can only implement the DSP Extension if it also implements the Main Extension.

IWCCN The ARMv8-M Security Extension can also be referred to as ARM® TrustZone® for ARMv8-M.

ITLHM A PE with the Main Extension is also referred to as a Mainline implementation.

IGFDP A PE without the Main Extension is also referred to as a Baseline implementation. A Baseline implementation has
a subset of the instructions, registers, and features, of a Mainline implementation.

ILCJN ARMv6-M compatibility is provided by all ARMv8-M implementations.

ISQKT ARMv7-M compatibility requires the Main Extension.
A1-24 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

Part B
ARMv8-M Architecture Rules

Chapter B1
Rules Overview

Chapter B4 to Chapter B13 specify the v8-M Architecture rules. This manual uses a different style to previous ARM
Architecture Reference Manuals. The focus is on specifying the rules. There is little explanatory information or
educational text giving, for example, background knowledge.

The following figure shows an example of an architecture rule:

The identifier scheme is as follows:
RXXXX Architecture rule.
IXXXX Information only.

A rule identifier is random and has no significance apart from uniquely identifying a rule.

RLTJI The following data accesses are single-copy atomic:
All byte accesses.
All halfword accesses to halfword-aligned locations.
All word accesses to word-aligned locations.

Identifier Rule
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B1-27
ID072816 Non-Confidential - Beta

B1 Rules Overview

B1-28 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

Chapter B2
Resets

This chapter contains the following section:
• Resets, Cold reset and Warm reset on page B2-30.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B2-29
ID072816 Non-Confidential - Beta

B2 Resets
B2.1 Resets, Cold reset and Warm reset
B2.1 Resets, Cold reset and Warm reset
RBDPL There are two resets:

• Cold reset.
• Warm reset.

RFNNX On a Cold reset, registers that have a defined reset value contain that value.

RGTXW On a Warm reset, some debug register control fields that have a defined reset value remain unchanged, but otherwise
all registers that have a defined reset value contain that value.

RYMHN On a Warm reset, the PE performs the actions described by the TakeReset() pseudocode.

RWSZN AIRCR.SYSRESETREQ is required to cause a Warm reset.

RHFRS For AIRCR.SYSRESETREQ, the architecture does not guarantee that the reset takes place immediately.

RDJPD A Warm reset takes the PE out of Debug state.
B2-30 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

Chapter B3
Power Management

This chapter contains the following section:
• Power management on page B3-32.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B3-31
ID072816 Non-Confidential - Beta

B3 Power Management
B3.1 Power management
B3.1 Power management
IHCYL There are the following instructions that hint to the PE hardware that it can suspend execution and enter a low-power

state:
• Wait for Event (WFE).
• Wait For Interrupt (WFI).

B3.1.1 The Wait for Event (WFE) instruction

RDCMH When a WFE instruction is executed, if the state of the Event register is:
• Clear, the PE can suspend execution and enter a low-power state.
• Set, the instruction clears the register and completes immediately.

RBGZM If the PE enters a low-power state on a WFE instruction, it remains in that low-power state until it receives a WFE
wakeup event. When the PE recognizes a WFE wakeup event, the WFE instruction completes. The following are WFE
wakeup events:

• The execution of a SEV instruction by any PE.

• When SCR.SEVONPEND is 1, any exception entering the pending state.

• Any exception at a priority that would preempt the current execution priority, taking into account any active
exceptions and including the effects of any software-controlled priority booting by AIRCR.PRIS == 1 and
PRIMASK, FAULTMASK, or BASEPRI.

• If debug is enabled, a debug event.

RYRDC The ARMv8-M architecture does not define the exact nature of the low-power state entered on a WFE instruction,
except that it must not cause a loss of memory coherency.

ITZJZ ARM recommends that software always uses the WFE instruction in a loop.

See also:
• WaitForEvent on page E3-1278.
• SendEvent on page E3-1258.

B3.1.2 The Event register

IRPZM The Event register is a single-bit register for each PE in the system.

RBPBR The Event register for a PE is set by any of the following:
• Any WFE wakeup event.
• Exception entry.
• Exception return.

RYJPL If the state of the Event register is set when a WFE instruction is executed, the PE hardware must not suspend
execution.

IMMZW When the Event register is set, it is an indication that an event has occurred since the register was last cleared, that
might require some action by the PE.

RCXMT A reset clears the Event register.

ILNFV Software cannot read, and cannot write to, the Event register directly.

See also:
• SetEventRegister on page E3-1259.
• ClearEventRegister on page E3-1158.
• EventRegistered on page E3-1176.
B3-32 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B3 Power Management
B3.1 Power management
B3.1.3 The Wait for Interrupt (WFI) instruction

RHRMJ When a WFI instruction is executed, the PE can suspend execution and enter a low-power state. If it does, it remains
in that state until it receives a WFI wakeup event. When the PE recognizes a WFI wakeup event, the WFI instruction
completes. The following are WFI wakeup events:

• A reset.

• Any asynchronous exception at a priority that, ignoring the effect of PRIMASK (so that behavior is as if
PRIMASK is 0), would preempt any currently active exceptions.

• An IMPLEMENTATION DEFINED WFI wakeup event.

• If debug is enabled, a debug event.

ICGNL ARM recommends that software always uses the WFI instruction in a loop.

See also:

• WaitForInterrupt on page E3-1278.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B3-33
ID072816 Non-Confidential - Beta

B3 Power Management
B3.1 Power management
B3-34 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

Chapter B4
Programmers’ Model

This chapter specifies the ARMv8-M programmers’ model architecture rules. It contains the following sections:
• PE modes, Thread mode and Handler mode on page B4-37.
• Privileged and unprivileged execution on page B4-38.
• Registers on page B4-39.
• XPSR, APSR, IPSR, and EPSR on page B4-40.
• Special-purpose register updates and the memory order model on page B4-42.
• Security states, Secure state and Non-secure state on page B4-43.
• Security states, register banking between them on page B4-44.
• Stack pointer on page B4-45.
• Exception numbers and exception priority numbers on page B4-46.
• Exception enable, pending, and active bits on page B4-49.
• Security states, exception banking on page B4-50.
• Faults on page B4-52.
• Exception states on page B4-55.
• Priority model on page B4-56.
• Secure address protection on page B4-59.
• Security state transitions on page B4-60.
• Function calls from Secure state to Non-secure state on page B4-61.
• Function returns from Non-secure state on page B4-62.
• Exception handling on page B4-63.
• Exception entry, context stacking on page B4-64.
• Exception entry, register clearing after context stacking on page B4-69.
• Stack limit checks on page B4-70.
• Exception return on page B4-73.
• Integrity signature on page B4-76.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B4-35
ID072816 Non-Confidential - Beta

B4 Programmers’ Model

• Exceptions during exception entry on page B4-77.
• Exceptions during exception return on page B4-78.
• Tail-chaining on page B4-79.
• Exceptions, instruction resume or instruction restart on page B4-81.
• Vector tables on page B4-83.
• Hardware-controlled priority escalation to HardFault on page B4-84.
• Special-purpose mask registers, PRIMASK, BASEPRI, FAULTMASK, for software-controlled priority

boosting on page B4-85.
• Lockup on page B4-87.
• Exception during a singleword load operation on page B4-92.
• Special-purpose CONTROL register on page B4-93.
• Saving context on process switch on page B4-94.
• Context Synchronization Operation on page B4-95.
• Coprocessor support on page B4-96
B4-36 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B4 Programmers’ Model
B4.1 PE modes, Thread mode and Handler mode
B4.1 PE modes, Thread mode and Handler mode
RCNMS There are two PE modes:

• Thread mode.
• Handler mode.

IFDVT A common usage model for the PE modes is:
Thread mode

Applications
Handler mode

OS kernel and associated functions. Software that manages system resources.

RRPKP The PE handles all exceptions in Handler mode.

RCMQP Thread mode is selected on reset. The IPSR is set to zero on reset.

See also:
• Privileged and unprivileged execution on page B4-38.
• Interrupt Program Status Register (IPSR) on page B4-41.
• Security states, Secure state and Non-secure state on page B4-43.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B4-37
ID072816 Non-Confidential - Beta

B4 Programmers’ Model
B4.2 Privileged and unprivileged execution
B4.2 Privileged and unprivileged execution
RWVRK Thread mode

Execution can be privileged or unprivileged.
Handler mode

Execution is always privileged.

IWCFH CONTROL.nPRIV determines whether execution in Thread mode is unprivileged.

RSBQF In a PE without the Main Extension, it is IMPLEMENTATION DEFINED whether CONTROL.nPRIV can be set to 1.

RVCFR Privileged execution has access to all resources.

See also:
• PE modes, Thread mode and Handler mode on page B4-37.
B4-38 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B4 Programmers’ Model
B4.3 Registers
B4.3 Registers
RKGST There are the following registers in the base register set:

General-purpose registers, all 32-bit:
• R0-R12
• R13. This is the Stack Pointer (SP).
• R14. This is the Link Register (LR).

Program Counter, 32-bit:

• R15 is the Program Counter (PC).

Special-purpose registers

• Mask Registers:
— 1-bit exception mask register, PRIMASK.
— 8-bit base priority mask register, BASEPRI.
— 1-bit fault mask register, FAULTMASK.

• A 2-bit, 3-bit, or 4-bit CONTROL register.

• Two 32-bit Stack Pointer Limit registers, MSPLIM and PSPLIM.

• A combined 32-bit Program Status Register (XPSR), comprising:
— Application Program Status Register (APSR).
— Interrupt Program Status Register (IPSR).
— Execution Program Status Register (EPSR).

• A 32-bit Combined Exception Return Program Status Register, RETPSR.

Memory-mapped registers
All other registers.

IDHVL Extensions might add additional registers to the base register set.

RPLRT In a PE with the Main Extension, the LR is set to 0xFFFFFFFF on both of the ARMv8-M resets, Cold reset and Warm
reset. Otherwise, it becomes UNKNOWN on both of the ARMv8-M resets.

RTBGP The LR is updated automatically on exception entry.

RPLNS The PC is loaded with the reset handler start address on both of the ARMv8-M resets, Cold reset and Warm reset.

See also:
• Chapter B8 The System Address Map.
• Special-purpose mask registers, PRIMASK, BASEPRI, FAULTMASK, for software-controlled priority

boosting on page B4-85.
• Special-purpose CONTROL register on page B4-93.
• Stack limit checks on page B4-70.
• XPSR, APSR, IPSR, and EPSR on page B4-40.
• Special-purpose register updates and the memory order model on page B4-42.
• In Chapter B2 Resets:

— Resets, Cold reset and Warm reset on page B2-30.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B4-39
ID072816 Non-Confidential - Beta

B4 Programmers’ Model
B4.4 XPSR, APSR, IPSR, and EPSR
B4.4 XPSR, APSR, IPSR, and EPSR
RVWTF The APSR, IPSR, and EPSR combine to form one register, the XPSR:

All unused bits in any of the APSR, IPSR, or EPSR, or any unused bits in the combined XPSR, are reserved.

RXGTP The MRS and MSR instructions recognize the following mnemonics for accessing the APSR, IPSR, or EPSR, or a
combination of them:

See also:
• Registers on page B4-39.
• Application Program Status Register (APSR).
• Interrupt Program Status Register (IPSR) on page B4-41.
• Execution Program Status Register (EPSR) on page B4-41.

B4.4.1 Application Program Status Register (APSR)

RKCLM Software can use MRS and MSR instructions to access the APSR.

RRPNB Application-level software can access the APSR, regardless of whether the application-level software is privileged
or unprivileged.

See also:
• XPSR, APSR, IPSR, and EPSR.
• In Chapter D2 Register Specification:

— APSR, Application Program Status Register on page D2-812.

N Z

31 30 29 28 27 26 25 24 23 20 19 16 15 10 9 8 0

C V Q GE[3:0]†

0 or
 Exception Number0 or Exception Number

ICI/
IT†† T ICI/IT††

† Reserved if the DSP Extension is not implemented
†† Reserved if the Main Extension is not implemented

EPSR

IPSR

APSR

XPSR

Mnemonic Registers accessed

APSR APSR

IPSR IPSR

EPSR EPSR

IAPSR IPSR and APSR

EAPSR EPSR and APSR

IEPSR IPSR and EPSR

XPSR APSR, IPSR, and EPSR
B4-40 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B4 Programmers’ Model
B4.4 XPSR, APSR, IPSR, and EPSR
B4.4.2 Interrupt Program Status Register (IPSR)

RDTBJ When the PE is in Thread mode, the IPSR value is zero. When the PE is in Handler mode:
• In the case of a taken exception, the IPSR holds the exception number of the exception being handled.
• When there has been a function call from Secure state to Non-secure state, the IPSR has the value of 1.

The PE updates the IPSR on exception entry and return.

RXTCC Software can use MRS instructions to read the IPSR. The PE ignores writes to the IPSR by MSR instructions.

See also:
• XPSR, APSR, IPSR, and EPSR on page B4-40.
• Function calls from Secure state to Non-secure state on page B4-61.
• In Chapter D2 Register Specification:

— IPSR, Interrupt Program Status Register on page D2-987.

B4.4.3 Execution Program Status Register (EPSR)

RKSCH A reset sets EPSR.T to the value of bit[0] of the reset vector.

IGPJH Bit[0] of the reset vector must be 1 if the PE is to execute the code indicated by the reset vector.

RSQLX When EPSR.T is:
0 Any attempt to execute any instruction generates:

• An INVSTATE UsageFault, in a PE with the Main Extension.
• A HardFault, in a PE without the Main Extension.

1 The Instruction set state is T32 state and all instructions are decoded as T32 instructions.

IXBWX The intent is that the Instruction set state is always T32 state.

RLBJQ All EPSR fields read as zero using an MRS instruction. The PE ignores writes to the EPSR by an MSR instruction.

See also:
• XPSR, APSR, IPSR, and EPSR on page B4-40.
• In Chapter D2 Register Specification:

— EPSR, Execution Program Status Register on page D2-919.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B4-41
ID072816 Non-Confidential - Beta

B4 Programmers’ Model
B4.5 Special-purpose register updates and the memory order model
B4.5 Special-purpose register updates and the memory order model
RXHHC Except for writes to the CONTROL register, any change to a special-purpose register by a CPS or MSR instruction is

guaranteed:
• Not to affect that CPS or MSR instruction, or any instruction preceding it in program order.
• To be visible to all instructions that appear in program order after the CPS or MSR.

See also:
• Registers on page B4-39.
B4-42 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B4 Programmers’ Model
B4.6 Security states, Secure state and Non-secure state
B4.6 Security states, Secure state and Non-secure state
RHKKL A PE with the Security Extension has two Security states:

• Secure state.
• Non-secure state.

RHWFV A PE with the Security Extension resets into Secure state on both of the ARMv8-M resets, Cold reset and Warm
reset.

RPLGH A PE without the Security Extension behaves as though reset into Non-secure state.

See also:
• Security states, register banking between them on page B4-44.
• Security states, exception banking on page B4-50.
• Security state transitions on page B4-60.
• In Chapter B2 Resets:

— Resets, Cold reset and Warm reset on page B2-30.

Thread mode

Handler mode

Thread mode

Handler mode

Non-secure state Secure state
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B4-43
ID072816 Non-Confidential - Beta

B4 Programmers’ Model
B4.7 Security states, register banking between them
B4.7 Security states, register banking between them
IMGRQ In a PE with the Security Extension, some registers are banked between the Security states. When a register is

banked in this way, there is a physical instance of the register in Secure state and another physical instance of the
register in Non-secure state.

RBHDK In a PE with the Security Extension:

• The general-purpose registers that are banked are:

— R13. This is the Stack Pointer (SP).

• The special-purpose registers that are banked are:
— The Mask registers, PRIMASK, BASEPRI, and FAULTMASK.
— The CONTROL register.
— The main and process Stack Pointer Limit registers, MSPLIM and PSPLIM.

• The System Control Space (SCS) is banked.

IGBWT For MRS and MSR instructions, SYSm[7] in the instruction encoding specifies whether the Secure or the Non-secure
instance of a banked register is accessed:

IMKKR This specification uses the following naming convention to identify banked registers:

<register name>_S
The Secure instance of the register.

<register name>_NS
The Non-secure instance of the register.

<register name>
The instance associated with the current Security state.

See also:
• Registers on page B4-39.
• Security states, Secure state and Non-secure state on page B4-43.
• Stack pointer on page B4-45.
• In Chapter B8 The System Address Map:

— The System Control Space (SCS) on page B8-166.

Accesses from
SYSm[7]

0 1

Secure state Secure instance Non-secure instance

Non-secure state Non-secure instance RAZ/WI
B4-44 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B4 Programmers’ Model
B4.8 Stack pointer
B4.8 Stack pointer
RMPWV In a PE with the Security Extension, four stacks and four stack pointer registers are implemented:

Otherwise, two stacks and two stack pointer registers are implemented:

RTXRW In Handler mode, the PE uses the main stack.

IDMLS In Thread mode, CONTROL.SPSEL determines whether the PE uses the main or process stack.

RBLPL In a PE with the Security Extension, the Secure main stack, MSP_S, is selected and initialized on reset. Otherwise,
MSP is selected and initialized on reset.

RXPWM <stack_pointer_register_name>[1:0] is always treated as RES0, so that all stack pointers are always guaranteed to
be word-aligned.

RKQFB After the exception entry stacking operation, the stack pointer is doubleword-aligned.

IPWRQ ARM recommends that the Secure stacks be located in Secure memory.

See also:
• Security states, Secure state and Non-secure state on page B4-43.
• PE modes, Thread mode and Handler mode on page B4-37.
• Exception entry, context stacking on page B4-64.
• Vector tables on page B4-83.
• Registers on page B4-39.
• Stack limit checks on page B4-70.

Stack Stack pointer register

Secure Main MSP_S

Process PSP_S

Non-secure Main MSP_NS

Process PSP_NS

Stack Stack pointer register

Main MSP

Process PSP
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B4-45
ID072816 Non-Confidential - Beta

B4 Programmers’ Model
B4.9 Exception numbers and exception priority numbers
B4.9 Exception numbers and exception priority numbers
IDCJS Each exception has an associated exception number and an associated priority number.

RCMTC In a PE with the Main Extension, the exceptions, their associated numbers, and their associated priority numbers
are as follows:

Exception Exception number Priority number

Reset 1 -4a

a. Highest priority.

Secure HardFault when AIRCR.BFHFNMINS is 1b

b. When AIRCR.BFHFNMINS is 1, faults that target Secure state that are escalated to HardFault are still
Secure HardFaults. That is, the value of AIRCR.BFHFNMINS does not affect faults that target Secure
state that are escalated to HardFaults. This table row applies to such faults.

3 -3

NMI 2 -2

Secure HardFault when AIRCR.BFHFNMINS is 0 3 -1

Non-secure HardFault 3 -1

MemManage fault 4 Software configurable

BusFault 5 Software configurable

UsageFault 6 Software configurable

SecureFault 7c

c. In a PE without the Security Extension, exception number 7 is reserved.

Software configurable

Reserved 8-10 -

SVCall 11 Software configurable

DebugMonitor 12 Software configurable

Reserved 13 -

PendSV 14 Software configurable

SysTick 15 Software configurable

External interrupt 0 16 Software configurable

. . .

. . .

. . .

External interrupt N 16+N Software configurable
B4-46 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B4 Programmers’ Model
B4.9 Exception numbers and exception priority numbers
RMGNV In a PE without the Main Extension, the exceptions, their associated numbers, and their associated priority numbers
are as follows:

IFPJD The maximum supported number of external interrupts is 496, regardless of whether the Main Extension is
implemented.

IQWTM For exceptions with software configurable priority numbers, software configures the priority numbers by using
registers SHPR1 - SHPR3 in the System Control Block (SCB).

RNFSM Software configurable priority numbers start at 0.

RGGCP In a PE with the Main Extension, the number of software configurable priority numbers is an IMPLEMENTATION
DEFINED power of two in the range 8 - 256:

Exception Exception number Priority number

Reset 1 -4a

a. Highest priority.

Secure HardFault when AIRCR.BFHFNMINS is 1b

b. When AIRCR.BFHFNMINS is 1, faults that target Secure state that are escalated to HardFault are still
Secure HardFaults. That is, the value of AIRCR.BFHFNMINS does not affect faults that target Secure
state that are escalated to HardFaults. This table row applies to such faults.

3 -3

NMI 2 -2

Secure HardFault when AIRCR.BFHFNMINS is 0 3 -1

Non-secure HardFault 3 -1

Reserved 4-10 -

SVCall 11 Software configurable

Reserved 12-13 -

PendSV 14 Software configurable

SysTick 15 Software configurable

External interrupt 0 16 Software configurable

. . .

. . .

. . .

External interrupt N 16+N Software configurable

Number of priority
bits of SHPRn.PRI_n
implementeda

Number of software
configurable priority
numbers

Minimum
priority
number
(highest
priority)

Maximum priority
number
(lowest priority)

3 8 0 0b11100000 = 224

4 16 0 0b11110000 = 240

5 32 0 0b11111000 = 248
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B4-47
ID072816 Non-Confidential - Beta

B4 Programmers’ Model
B4.9 Exception numbers and exception priority numbers
RCMGH In a PE without the Main Extension, the number of software configurable priority numbers is 4:

See also:
• Security states, exception banking on page B4-50.
• Faults on page B4-52.
• Priority model on page B4-56.

6 64 0 0b11111100 = 252

7 128 0 0b11111110 = 254

8 256 0 0b11111111 = 255

a. All low-order bits of these fields that are not implemented as priority bits are RES0, as shown in the
maximum priority number column.

Number of priority
bits of SHPRn.PRI_n
implementeda

Number of software
configurable priority
numbers

Minimum
priority
number
(highest
priority)

Maximum priority
number
(lowest priority)

Number of priority bits of
SHPRn.PRI_n implementeda

a. SHPRn.PRI_n[5:0] are RES0, as shown in the maximum priority number column.

Number of software
configurable priority
numbers

Minimum
priority
number
(highest
priority)

Maximum
priority
number
(lowest
priority)

2 4 0 0b11000000 =
192
B4-48 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B4 Programmers’ Model
B4.10 Exception enable, pending, and active bits
B4.10 Exception enable, pending, and active bits
IQQDG The SHCSR, ICSR, DEMCR, NVIC_IABR<n>, NVIC_ISPR<n>, NVIC_ISER<n>, and STIR contain exception

enable, pending, and active fields.

IGHGW The following exceptions are always enabled and therefore do not have an exception enable bit:
• Hardfault.
• NMI.
• SVCall.
• PendSV.

ILHSX In a PE without the Security Extension:
• Privileged execution can pend interrupts by writing to the NVIC_ISPR<n>.
• When CCR.USERSETMPEND is 1, unprivileged execution can pend interrupts by writing to the STIR.

IQDKX In a PE with the Security Extension:

• Software can use the STIR to pend any Secure or Non-secure interrupt, as follows:

• Software can use STIR_NS to pend a Non-secure interrupt, as follows:

• Software can use NVIC_ISPR<n> to pend any Secure or Non-secure interrupt, as follows:

• Software can use NVIC_ISPRN_NS to pend a Non-secure interrupt, as follows:

Secure state Non-secure state

Privileged
execution

Can use STIR to pend any Secure or
Non-secure interrupt.

Can use STIR to pend a Non-secure
interrupt.

Unprivileged
execution

When CCR.USERSETMPEND_S is 1, can
use STIR to pend any Secure or Non-secure
interrupt.

When CCR.USERSETMPEND_NS is 1,
can use STIR to pend a Non-secure interrupt.

Secure state Non-secure
state

Privileged
execution

Can use STIR_NS to pend a Non-secure interrupt. RES0

Unprivileged
execution

When CCR.USERSETMPEND_NS is 1, can use STIR_NS to pend a
Non-secure interrupt.

Secure state Non-secure state

Privileged
execution

Can use NVIC_ISPR<n> to pend any Secure
or Non-secure interrupt.

Can use NVIC_ISPR<n> to pend a
Non-secure interrupt.

Unprivileged
execution

Fault Fault

Secure state Non-secure state

Privileged execution Can use NVIC_ISPRN_NS to pend a Non-secure interrupt. RES0

Unprivileged execution Fault Fault
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B4-49
ID072816 Non-Confidential - Beta

B4 Programmers’ Model
B4.11 Security states, exception banking
B4.11 Security states, exception banking
RPJHV In a PE with the Security Extension, some exceptions are banked. A banked exception has all of the following:

• Banked enabled, pending, and active bits.
• A banked SHPRn.PRI field.
• A banked exception vector.
• A banked handler.

RCWNH A banked exception targets the Security state it is taken from.

RNBMV Reset always targets Secure state.

IDDKC NMI can be configured to target either Security state, by using AIRCR.BFHFNMINS.

IHGFM BusFault can be configured to target either Security state, by using AIRCR.BFHFNMINS.

RMQWN SecureFault always targets Secure state.

IWSSL DebugMonitor targets Secure state if the status bit DEMCR.SDME is 1. Otherwise, it targets Non-secure state.

IDQLX Each external interrupt, 0-N, targets the Security state that its NVIC_ITNSn.<bit number> dictates.

RPBXI In this rule, <exception> is one of:
• NMI.

Exception Banked

Reset No

HardFault Yes

NMI No

MemManage faulta

a. Exception type is present
only if the Main
Extension is
implemented.

Yes

BusFaulta No

UsageFaulta Yes

SecureFaulta No

SVCall Yes

DebugMonitora No

PendSV Yes

SysTick Yes

External interrupt 0 No

. .

. .

. .

External interrupt N No
B4-50 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B4 Programmers’ Model
B4.11 Security states, exception banking
• BusFault.
• DebugMonitor.
• External interrupt N.

When <exception> targets Secure state, the Non-secure view of its SHPRn.PRI field, and enabled, pending, and
active bits, are RAZ/WI.

ILFHQ Secure software must ensure that when changing the target Security state of an exception, the exception is not
pending or active.

See also:
• Exception numbers and exception priority numbers on page B4-46.
• Vector tables on page B4-83.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B4-51
ID072816 Non-Confidential - Beta

B4 Programmers’ Model
B4.12 Faults
B4.12 Faults
INHTB There are the following Fault Status Registers:

• HardFault Status Register (HFSR). Present only if the Main Extension is implemented.

• MemManage Fault Status Register (MMFSR). Present only if the Main Extension is implemented.

• BusFault Status Register (BFSR). Present only if the Main Extension is implemented.

• UsageFault Status Register (UFSR). Present only if the Main Extension is implemented.

• SecureFault Status Register (SFSR). Present only if the Main Extension and Security Extension are
implemented.

• Debug Fault Status Register (DFSR). Present only if halting debug or the Main Extension is implemented.

• Auxiliary Fault Status Register (AFSR). The contents of this register are IMPLEMENTATION DEFINED.

In a PE with the Main Extension, the MMFSR, BFSR, and UFSR combine to form one register, called the
Configurable Fault Status Register (CFSR).

There are the following Fault Address Registers:

• MemManage Fault Address Register (MMFAR). Present only if the Main Extension is implemented.

• BusFault Address Register (BFAR). Present only if the Main Extension is implemented.

• SecureFault Address Register (SFAR). Present only if the Main Extension is implemented.

RXMRH MMFAR is updated only for a MemManage fault on a direct data access.

RDDJJ BFAR is updated only for a BusFault on a data access, precise.

ITSDC An imprecise exception is an exception that is generated as the result of a system error and that is reported at a time
that is asynchronous to the instruction that caused it.

RPDCH In a PE with the Main Extension, the faults are:

Exception
number Exception Fault Fault status bit

3 HardFault HardFault on a vector table entry read error HFSR.VECTTBL

HardFault on fault escalation HFSR.FORCED

HardFault on BKPT escalation HFSR.DEBUGEVT

4 MemManage
fault

MemManage fault on an instruction fetch MMFSR.IACCVIOL

MemManage fault on a direct data access MMFSR.DACCVIOL

MemManage fault on context unstacking by
hardware, because of an MPU access violation

MMFSR.MUNSTKERR

MemManage fault on context stacking by
hardware, because of an MPU access violation

MMFSR.MSTKERR

When lazy FP context preservation is active, a
MemManage fault on saving FP context to the
stack

MMFSR.MLSPERR
B4-52 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B4 Programmers’ Model
B4.12 Faults
RNXRX In a PE without the Main Extension, the faults remain the same as for a PE with the Main Extension, but the enable,
pending, and active bits for the following faults are RAZ/WI in the SHCSR:
• MemManage fault.
• BusFault.
• UsageFault.
• SecureFault.

In a PE without the Main Extension, the faults are:

5 BusFault BusFault on an instruction fetch, precise BFSR.IBUSERR

BusFault on a data access, precise BFSR.PRECISERR

BusFault on a data access, imprecise BFSR.IMPRECISERR

BusFault on context unstacking by hardware BFSR.UNSTKERR

BusFault on context stacking by hardware BFSR.STKERR

When lazy FP context preservation is active, a
BusFault on saving FP context to the stack

SFSR.LSPERR

6 UsageFault UsageFault, undefined instruction UFSR.UNDEFINSTR

UsageFault, invalid Instruction set state because
EPSR.T is 0

UFSR.INVSTATE

UsageFault, failed integrity check on exception
return

UFSR.INVPC

UsageFault, no coprocessor UFSR.NOCP

UsageFault, stack overflow UFSR.STKOF

UsageFault, unaligned access when
CCR.UNALIGN_TRP is 1

UFSR.UNALIGNED

UsageFault, divide by zero when
CCR.DIV_0_TRP is 1

UFSR.DIVBYZERO

7 SecureFault SecureFault, invalid Secure state entry point SFSR.INVEP

SecureFault, invalid integrity signature when
unstacking

SFSR.INVIS

SecureFault, invalid exception return SFSR.INVER

SecureFault, attribution unit violation SFSR.AUVIOL

SecureFault, invalid transition from Secure
state

SFSR.INVTRAN

SecureFault, lazy FP context preservation error SFSR.LSPERR

SecureFault, lazy FP context error SFSR.LSERR

Exception
number Exception Fault Fault status bit

Exception number Exception

3 HardFault
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B4-53
ID072816 Non-Confidential - Beta

B4 Programmers’ Model
B4.12 Faults
RFQJV Fault conditions that would generate a SecureFault in a PE with the Main Extension instead generate a Secure
Hardfault in a PE without the Main Extension.

ICCXG For the exact circumstances under which each of the ARM v8-M faults is generated, see the appropriate Fault Status
Register description.

See also:
• Exception numbers and exception priority numbers on page B4-46.
• Hardware-controlled priority escalation to HardFault on page B4-84.
B4-54 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B4 Programmers’ Model
B4.13 Exception states
B4.13 Exception states
ICTFJ An exception, other than reset, has the following possible states:

Active
An exception that either:
• Is being handled.
• Was being handled. The handler was preempted by a handler for a higher priority exception.

Pending
An exception that has been generated, but that is not active.

Inactive
The exception has not been generated.

Active and pending
One instance of the exception is active, and a second instance of the exception is pending.
Only asynchronous exceptions can be active and pending. Synchronous exceptions are either inactive,
pending, or active.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B4-55
ID072816 Non-Confidential - Beta

B4 Programmers’ Model
B4.14 Priority model
B4.14 Priority model
RCJDM Lower priority numbers take precedence.

RVMKV The current execution priority is:

1. If any exceptions are active, the current execution priority is the priority number of the active exception with
the lowest SHPRn.PRI group priority field value.

2. The current execution priority then includes any effects of any software-controlled priority boosting by
AIRCR.PRIS == 1 and PRIMASK, FAULTMASK, and BASEPRI.

When no exception is active and no priority boosting is active, the instruction stream that is executing has a priority
number of (maximum supported priority number+1).

IWXSK (maximum supported priority number+1) corresponds to the lowest priority.

RRKCQ Execution at a particular priority can only be preempted by an exception with a lower SHPRn.PRI_n group priority
field value.

IDPSP In a PE with the Main Extension, BASEPRI and each SHPRn.PRI_n and NVICn.PRI_Nn are 8-bit fields that
AIRCR.PRIGROUP splits into two fields, a group priority field and a subpriority field:

In a PE without the Main Extension, AIRCR.PRIGROUP is RES0, therefore each SHPRn.PRI_n and
NVICn.PRI_Nn is split into two as follows:

RCQRV If there are multiple pending exceptions, the pending exception with the lowest group priority field value takes
precedence.

If multiple pending exceptions have the same group priority field value, the pending exception with the lowest
subpriority field value takes precedence.

If multiple pending exceptions have the same group priority field value and the same subpriority field value, the
pending exception with the lowest exception number takes precedence.

BASEPRI, SHPRn.PRI_n [7:0], and NVICn.PRI_Nn[7:0]a

a. All low-order bits of these fields that are not implemented as priority bits are RES0.

AIRCR.PRIGROUP value Group priority field Subpriority field

0 [7:1] [0]

1 [7:2] [1:0]

2 [7:3] [2:0]

3 [7:4] [3:0]

4 [7:5] [4:0]

5 [7:6] [5:0]

6 [7] [6:0]

7 - [7:0]

SHPRn.PRI_n [7:0] and NVICn.PRI_Nn[7:0]a

a. SHPRn.PRI_n[5:0] are RES0.

AIRCR.PRIGROUP value Group priority field Subpriority field

RES0 [7:1] [0]
B4-56 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B4 Programmers’ Model
B4.14 Priority model
If a pending Secure exception and a pending Non-secure exception both have the same group priority field value,
the same subpriority field value, and the same exception number, the Secure exception takes precedence.

INCDS The following is an example of exceptions with different priorities:

Example B4-1

This example considers the following exceptions, that all have software configurable priority numbers:
• A has the highest priority.
• B has medium priority.
• C has lowest priority.

Example sequence of events:

1. No exception is active and no priority boosting is active.

2. B is generated. The PE takes exception B and starts executing the handler for it. Exception B is now active
and the current execution priority is that of B.

3. A is generated. A is higher priority, therefore A preempts B and the PE starts executing the handler for A.
Exception A is now active and the current execution priority is that of A. Exception B remains active.

4. C is generated. C has the lowest priority, therefore it is pending.

5. The PE reduces the priority of A to a priority that is lower than C. B is now the highest priority active
exception, therefore the execution priority moves to that of B. The PE continues executing the handler for A
at the priority of B. After completing A, the PE restarts the handler for B. After completing B, the PE takes
exception C and starts executing the handler for it. C is now active and the current execution priority is that
of C.

IXQPK In a PE with the Main Extension and the Security Extension, when AIRCR.PRIS is 1, each Non-secure
SHPRn_NS.PRI_n group priority field value has the following sequence applied to it:

It
1. is divided by two.
2. The constant 0x80 is then added to it.

This maps the Non-secure SHPRn_NS.PRI_n group priority field values to the bottom half of the priority range.
When this sequence is applied, any effects of AIRCR.PRIGROUP have already been taken into account, so the
subpriority field is dropped and the sequence is only applied to the group priority field.

The following diagram shows an example. In this example, all eight bits of SHPRn_NS.PRI_n are implemented as
priority bits and AIRCR.PRIGROUP_NS is set to 0.

Non-secure group
priority field

values

0x00

0xFE

0x00

0xFE

0x80
0x7E

Group priority
range

Increasing
priority
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B4-57
ID072816 Non-Confidential - Beta

B4 Programmers’ Model
B4.14 Priority model
In this example, the mapping is:

In this example, Secure exceptions in the range 0x00 - 0x7E have priority over all Non-secure exceptions.

See also:
• Exception numbers and exception priority numbers on page B4-46.
• Exception states on page B4-55.
• Special-purpose mask registers, PRIMASK, BASEPRI, FAULTMASK, for software-controlled priority

boosting on page B4-85.

Non-secure group priority field value Mapped to

0x00 0x80

0x02 0x81

0x04 0x82

0x06 0x83

. .

. .

. .
B4-58 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B4 Programmers’ Model
B4.15 Secure address protection
B4.15 Secure address protection
RCHJX NS-Req defines the Security state that the PE requests a memory access be performed in.

RMSNJ NS-Attr marks a memory access as Secure or Non-secure.

RVHRL For data accesses, NS-Req is equal to the current Security state.

RXSPQ For data accesses, NS-Attr is determined as follows:

RTDNR For instruction fetches, NS-Req and NS-Attr are equal to the Security attribute of the location being accessed.
NS-Attr also determines the Security state of the PE.

INGXH It is not possible to execute Secure code in Non-secure state, or Non-secure code in Secure state.

See also:
• Security state transitions on page B4-60.

NS-Req Security attribute of the location being accessed NS-Attr

Non-secure X Non-secure

Secure Non-secure Non-secure

Secure Secure
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B4-59
ID072816 Non-Confidential - Beta

B4 Programmers’ Model
B4.16 Security state transitions
B4.16 Security state transitions
RPQHT For a branch to an address in the other Security state, the following table shows when the PE changes Security state:

IKWMP SG instructions in Secure memory are valid entry points to Secure code. They prevent Non-secure code from being
able to jump to arbitrary addresses in Secure code.

IWJRL When an interstating branch is executed in Secure state, the lsb of the target address indicates the target Security
state:
1 The target Security state is Secure.
0 The target Security state is Non-secure.

Interstating branches are UNDEFINED in Non-secure state.

RXNVW If sequential instruction execution crosses from Non-secure memory to Secure memory, then if the Secure memory
entry point contains an SG instruction and the whole of the instruction at the Secure memory entry point is flagged
as Secure and Non-secure callable, it is CONSTRAINED UNPREDICTABLE whether:
• The PE changes to Secure state.
• A fault is generated:

— An INVEP SecureFault in a PE with the Main Extension.
— A Secure HardFault in a PE without the Main Extension.

RDWXH When an exception is taken to the other Security state, the PE automatically transitions to that other Security state.

Current
Security state

Security attribute of the branch
target address Security state change

Secure Non-secure Change to Non-secure state if the branch was an interstating branch
instruction, BXNS or BLXNS, with the lsb of its target address set to 0.
Otherwise:
• In a PE with the Main Extension, an INVTRAN SecureFault is

generated.
• In a PE without the Main Extension, a Secure HardFault is

generated.

Non-secure Secure and Non-secure callable Change to Secure state if both:
• The branch target address contains an SG instruction.
• The whole of the instruction at the branch target address is flagged

as Secure and Non-secure callable.
Otherwise:
• In a PE with the Main Extension, an INVEP SecureFault is

generated.
• In a PE without the Main Extension, a Secure HardFault is

generated.

Non-secure Secure and not Non-secure callable In a PE with the Main Extension, an INVEP SecureFault is generated.
In a PE without the Main Extension, a Secure Hardfault is generated.
B4-60 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B4 Programmers’ Model
B4.17 Function calls from Secure state to Non-secure state
B4.17 Function calls from Secure state to Non-secure state
RGVBB If an interstating branch generates a change from Secure state to Non-secure state, then before the Security state

change:

• The return address, which is the address of the instruction after the instruction that caused the function call,
the IPSR value, and CONTROL.SFPA are stored onto the current stack, as shown in the following figure.
ReturnAddress[0] is set to 1 to indicate a return to the T32 Instruction set state. The IPSR is stacked in the
partial RETPSR, and CONTROL.SFPA is stacked in bit [20] of the partial RETPSR.

• If the PE is in Handler mode, IPSR has the value of 1.

• The FNC_RETURN value is saved in the LR.

IDKGV Behavior is UNPREDICTABLE when a function call stack frame is not doubleword-aligned.

ITSVP The PE hardware does not ensure doubleword-alignment of function call stack frames.

IKWZD ARM recommends that when Secure code calls a Non-secure function, any registers not being used to pass function
arguments are set to zero.

Partial RETPSR
ReturnAddress

0x08
0x04
0x00

SP
offset

Original SPa

New SP

a Or at offset 0x0C if at a word-aligned but not doubleword-aligned address.

Partial RETPSR
ReturnAddress

0x08
0x04
0x00

SP
offset

Original SPa

New SP

a Or at offset 0x0C if at a word-aligned but not doubleword-aligned address.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B4-61
ID072816 Non-Confidential - Beta

B4 Programmers’ Model
B4.18 Function returns from Non-secure state
B4.18 Function returns from Non-secure state
RHPFG A function return from Non-secure state begins when one of the following instructions loads a FNC_RETURN

value into the PC:
• A POP or LDM that includes loading the PC.
• An LDR with the PC as a destination.
• A BX with any register.

On detecting a FNC_RETURN value in the PC:

• The stack is unstacked.

• EPSR.IT is set to 0b00.

• The following integrity checks on function return are performed:
— A check that IPSR is zero or 1 before the value of it is restored.
— A check that if the return is to Thread mode, the stacked IPSR value is zero.
— A check that if the return is to Handler mode, the stacked IPSR value is nonzero.

RDWTF The FNC_RETURN value is:

Bits[31:1] This is what identifies the value as a FNC_RETURN value.

Bit[0], S The function call was from:
0 Secure state.
1 Non-secure state.

RUKFL Any failed integrity check on function return generates:

In a PE with the Main Extension:
An INVPC UsageFault that is synchronous to the instruction that loaded the FNC_RETURN value into
the PC.

Otherwise:
A Secure HardFault that is synchronous to the instruction that loaded the FNC_RETURN value into the
PC.

RLDVW When the stack is unstacked on detecting a FNC_RETURN value in the PC, if ReturnAddress[0] is 0, the PE
generates an INVSTATE UsageFault.

1 1 1 1 0 1 S

31 30 29 28 27 26 25 24 23 20 19 16 15 10 9 8 0

1 1 1

22 21 18 17 14 13 12 11 7 6 5 4 3 2 1
B4-62 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B4 Programmers’ Model
B4.19 Exception handling
B4.19 Exception handling
RYFHR An exception that does not cause lockup sets both:

• The pending bit of its handler, or the pending bit of the HardFault handler, to 1.
• The associated fault status information.

RULDB When a pending exception has a lower group priority field value than current execution, including taking into
account any priority adjustment by AIRCR.PRIS, the pending exception preempts current execution.

RWBND Preemption of current execution causes the following basic sequence:

1. R0-R3, R12, R14, RETPSR, and CONTROL.SFPA are stacked.

2. The return address is determined and stacked.

3. Optional stacking of FP context.

4. Optional stacking of additional state context and additional FP context.

5. LR is set to EXC_RETURN.

6. Optional clearing of registers.

7. The exception to be taken is chosen, and IPSR.Exception is set accordingly. The setting of IPSR.Exception
to a nonzero value causes the PE to change to Handler mode.

8. CONTROL.SPSEL is set to 0, to select the main stack.

9. The pending bit of the exception to be taken is set to 0. The active bit of the exception to be taken is set to 1.

10. EPSR.T is set to bit[0] of the exception vector for the exception to be taken.

11. The PC is set to the exception vector for the exception to be taken.

IPSGQ The HandleException, ExceptionEntry, PushStack, ExceptionTaken, and ActivateException pseudocode describes
the full exception handling sequence.

RNJVF During exception entry, if it is found that the exception and the exception vector are associated with different
Security states an INVEP or INVTRAN SecureFault is generated, unless the exception is associated with
Non-secure state and is targeting an SG instruction that is located in memory that is Secure and Non-secure callable.

RQLHB The return address is one of:

• On return from a synchronous exception, other than an SVCall exception, the address of the instruction that
caused the exception.

• On return from an asynchronous exception, the address of the next instruction in the program order.

• On return from an SVCall exception, the address of the next instruction in the program order.

RXKDD The least significant bit of the return address from an exception is (ReturnAddress[0]) is RES0.

See also:
• Priority model on page B4-56.
• Exception entry, context stacking on page B4-64.
• Exception entry, register clearing after context stacking on page B4-69.
• Vector tables on page B4-83.
• Stack limit checks on page B4-70.
• Exceptions during exception entry on page B4-77.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B4-63
ID072816 Non-Confidential - Beta

B4 Programmers’ Model
B4.20 Exception entry, context stacking
B4.20 Exception entry, context stacking
RPWWG In a PE without the Security Extension and without the Floating-point Extension (regardless of whether the Main

Extension is implemented), on taking an exception, the PE hardware saves state context onto the stack that the SP
register points to. The state context that is saved is eight 32-bit words:
• RETPSR.
• ReturnAddress.
• R14. This is the Link Register (LR).
• R12.
• R3-R0.

RPTRL In a PE without the Security Extension but with the Floating-point and Main Extensions, on taking an exception,
the PE hardware saves state context onto the stack that the SP register points to. If CONTROL.FPCA is 1 when the
exception is taken, then in addition to the state context being saved, there are the following possible modes for the
FP context:
• Stack the FP context.
• Reserve space on the stack for the FP context. This is called lazy FP context preservation.

RPLHM In a PE with the Security Extension but without the Floating-point Extension (regardless of whether the Main
Extension is implemented), on taking an exception, the PE hardware:

1. Saves state context onto the stack that the SP register points to.

Reserved
FPSCR

S15
S14
S13
S12
S11
S10
S9
S8
S7
S6
S5
S4
S3
S2
S1
S0

RETPSR
ReturnAddress

LR (R14)
R12
R3
R2
R1
R0

0x68

0x64

0x60

0x5C

0x58

0x54

0x50

0x4C

0x48

0x44

0x40

0x3C

0x38

0x34

0x30

0x2C

0x28

0x24

0x20

0x1C

0x18

0x14

0x10

0x0C

0x08

0x04

0x00

RETPSR
ReturnAddress

LR (R14)
R12
R3
R2
R1
R0

Stack the state and
FP contexts

SP
offset

Lazy FP context
preservation

State context

FP context
Reserved for
FP context

State context

Reserved
Original SP†

New SP New SP

Original SP†

† Or at offset 0x6C if at a word-aligned but not doubleword-aligned address.
B4-64 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B4 Programmers’ Model
B4.20 Exception entry, context stacking
2. If exception entry is to Non-secure state, regardless of whether a higher priority derived or late-arriving
exception targeting Secure state occurs, the PE hardware extends the stack frame and also saves additional
state context, as shown below:

RDHPD In a PE with the Security Extension, Floating-point Extension, and Main Extension, on taking an exception from:

Non-secure state
Behavior is the same as a PE without the Security Extension but with the Floating-point Extension.

Secure state when CONTROL.FPCA is 0
Behavior is the same as for a PE with the Security Extension but without the Floating-point Extension.

Secure state when CONTROL.FPCA is 1
The PE hardware:

1. Saves state context onto the stack that the SP register points to.

2. If FPCCR_S.TS is 0 when the exception is taken, the PE hardware either stacks the FP context
or reserves space on the stack for the FP context.
If FPPCR_S.TS is 1 when the exception is taken, the PE hardware either stacks both the FP
context and additional FP context, or reserves space on the stack for both the FP context and
additional FP context.

3. If exception entry is to Non-secure state, including when a higher priority derived or late-arriving
exception targeting Secure state occurs, the PE hardware extends the stack frame and also saves
the additional state context.

0x48
0x44
0x40
0x3C
0x38
0x34
0x30
0x2C
0x28
0x24
0x20
0x1C
0x18
0x14
0x10
0x0C
0x08
0x04
0x00

R11
R10
R9
R8
R7
R6
R5
R4

Reserved
Integrity signature

State context

Additional
state context

New SP

Original SP†

RETPSR
ReturnAddress

LR (R14)
R12
R3
R2
R1
R0

SP
offset

† Or at offset 0x4C if at a word-aligned but not
doubleword-aligned address.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B4-65
ID072816 Non-Confidential - Beta

B4 Programmers’ Model
B4.20 Exception entry, context stacking
The following figure shows PE stacking behavior when CONTROL.FPCA is 1, FPPCR_S.TS is 1 (and both the FP
context and additional FP context is stacked), and exception entry is to Non-secure state:

S31
S30
S29
S28
S27
S26
S25
S24
S23
S22
S21
S20
S19
S18
S17
S16

0xA4
0xA0
0x9C
0x98
0x94
0x90
0x8C
0x88
0x84
0x80
0x7C
0x78
0x74
0x70
0x6C
0x68

SP offset

Additional FP context

Original SP†

Reserved
FPSCR

S15
S14
S13
S12
S11
S10
S9
S8
S7
S6
S5
S4
S3
S2
S1
S0

0x64
0x60
0x5C
0x58
0x54
0x50
0x4C
0x48
0x44
0x40
0x3C
0x38
0x34
0x30
0x2C
0x28

0xCC
0xC8

FP context

RETPSR
ReturnAddress

LR (R14)
R12
R3
R2
R1
R0

State context

0xC4
0xC0
0xBC
0xB8
0xB4
0xB0
0xAC
0xA8

0x24
0x20
0x1C
0x18
0x14
0x10
0x0C
0x08
0x04
0x00

R11
R10
R9
R8
R7
R6
R5
R4

Reserved
Integrity signature

Additional state context

New SP
† Or at offset 0xD4 if at a word-aligned but not doubleword-aligned address.

0xCC
B4-66 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B4 Programmers’ Model
B4.20 Exception entry, context stacking
RBKVD On an exception, the RETPSR value that is stacked is all of the following:
• The APSR, IPSR, and EPSR.
• CONTROL.SFPA, in RETPSR[20].

In addition, on an exception, the PE uses RETPSR.SPREALIGN to indicate whether the PE realigned the stack to
make it doubleword-aligned:
1 The PE realigned the stack.
0 The PE did not realign the stack.

RQDKQ Full descending stacks are used.

RPWBW In a PE with the Floating-point Extension:

• Because setting FPCCR.ASPEN to 1 causes the PE to automatically set CONTROL.FPCA to 1 on the
execution of a floating-point instruction, setting FPCCR.ASPEN to 1 means that the PE hardware
automatically either:
— Stacks FP context on taking an exception.
— Uses lazy FP context preservation on taking an exception.

If CONTROL.FPCA is 1, it is FPCCR.LSPEN that determines which of the above the PE hardware performs:

0 The PE hardware automatically stacks FP context on taking an exception. In a PE that also includes the
Security Extension, if FPCCR_S.TS is 1, the hardware stacks the additional FP context as well as the
FP context.

1 The PE hardware uses lazy FP context preservation on taking an exception, and sets all of :

• The FPCAR, to point to the reserved S0 stack address.

• FPCCR.LSPACT to 1.

• FPCCR.{USER, THREAD, HFREADY, MMRDY, BFRDY, SFRDY, MONRDY, UFRDY}, to
record the permissions and fault possibilities to be applied to any subsequent FP context save.

In a PE that also includes the Security Extension, if FPCCR_S.TS is 1, the hardware reserves space on
the stack for both the FP context and the additional FP context. Otherwise, the hardware only reserves
space on the stack for the FP context.

RGHDJ Execution of a floating-point instruction while FPCCR.LSPACT == 1 indicates that lazy FP context preservation is
active.

RMBXL If software attempts to execute a floating-point instruction while lazy FP context preservation is active, the access
permissions that CPACR and NSACR define are checked against the context that activated lazy FP context
preservation, as stored in the FPCCR.

• If no permission violation is detected, the PE:
1. Saves FP context to the reserved area on the stack, as identified by the FPCAR.
2. Sets FPCCR.LSPACT to 0 to indicate that lazy FP context preservation is no longer active.
3. Processes the floating-point instruction.

• If a permission violation is detected, the PE generates a NOCP UsageFault and does not save FP context to
the reserved area on the stack.

This check is performed regardless of whether the Security Extension is implemented.

RLGNS In a PE with the Floating-point Extension, when the following conditions are met are on exception entry, the PE
generates a Secure NOCP UsageFault and does not allocate space on the stack for FP context:
• CONTROL.FPCA is 1.
• NSACR.CP10 is 0.
• The Background Security state is Non-secure state.

RKMBN In a PE with the Security Extension and Floating-point Extension, if lazy FP context preservation is activated when
FPCCR.LSPACT is already set to 1, the PE generates an LSERR SecureFault.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B4-67
ID072816 Non-Confidential - Beta

B4 Programmers’ Model
B4.20 Exception entry, context stacking
See also:
• Stack pointer on page B4-45.
• Exception entry, register clearing after context stacking on page B4-69.
• Integrity signature on page B4-76.
• PushStack on page E3-1246.
B4-68 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B4 Programmers’ Model
B4.21 Exception entry, register clearing after context stacking
B4.21 Exception entry, register clearing after context stacking
RDRRB In a PE without the Security Extension and without the Floating-point Extension, the PE hardware sets R0-R3, R12,

APSR, and EPSR to an UNKNOWN value after it has pushed state context to the stack.

RDJRX In a PE without the Security Extension but with the Floating-point Extension:

• The PE hardware sets R0-R3, R12, APSR, and EPSR to an UNKNOWN value after it has pushed state context
to the stack.

• The PE hardware sets S0-S15 and the FPSCR to an UNKNOWN value after it has pushed FP context to the
stack.

RSNDB In a PE with the Security Extension but without the Floating-point Extension, after the PE hardware has pushed state
context to the stack, it sets R0-R3, R12, APSR, and EPSR to:
• An UNKNOWN value if the exception is taken to Secure state.
• Zero if the exception is taken to Non-secure state.

If the PE did not also push additional state context to the stack, as indicated by EXC_RETURN.DCRS, the values
of R4-R11 remain unchanged.

If the PE also pushed additional state context to the stack, as indicated by EXC_RETURN.DCRS, then afterwards:

• If the Background Security state is Non-secure, R4-R11 remain unchanged.

• If the Background Security state is Secure, the PE sets R4-R11 to:
— An UNKNOWN value if the exception is taken to Secure state.
— Zero if the exception is taken to Non-secure state.

RJWBK In a PE with the Security Extension and Floating-point Extension, register clearing behavior after context stacking
is as follows:

State context and additional state context
Register clearing behavior is the same as for a PE with the Security Extension but without the
Floating-point Extension.

FP context and additional FP context

• If FPCCR_S.TS is 0 when the FP context is pushed to the stack, S0-S15 and the FPSCR are set
to an UNKNOWN value after stacking.

• If FPCCR_S.TS is 1 when the FP context and additional FP context are both pushed to the stack,
S0-S31 and the FPSCR are set to zero after stacking.

In both cases, CONTROL.FPCA is set to 0 to indicate that the Floating-point Extension is not active.

See also:
• Exception entry, context stacking on page B4-64.
• Tail-chaining on page B4-79.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B4-69
ID072816 Non-Confidential - Beta

B4 Programmers’ Model
B4.22 Stack limit checks
B4.22 Stack limit checks
IKDPG In a PE with the Main and Security Extensions, there are four stack limit registers:

In a PE with the Main Extension but without the Security Extension, there are two stack limit registers:

In a PE without the Main Extension but with the Security Extension, there are:
• No stack limit registers in Non-secure state.
• Two stack limit registers in Secure state.

In a PE without the Main Extension and without the Security Extension MSPLIM_S and PSPLIM_S are invisible.

These registers hold stack limit values.

A stack can descend to its stack limit value. Any attempt to descend the stack further than its stack limit value is a
violation of the stack limit.

xSPLIM_x[2:0] are treated as RES0, so that all stack pointer limits are always guaranteed to be doubleword-aligned.
Bits [31:3] of the xSPLIM_x registers are writeable.

RDKSR Stack limit checks are performed during the creation of a stack frame for all of the following:
• Exception entry.
• Tail-chaining from a Secure to a Non-secure exception.
• A function call from Secure code to Non-secure code.

RZLZG On a violation of a stack limit during either exception entry or tail-chaining:

• In a PE with the Main Extension, a synchronous STKOF UsageFault is generated. Otherwise, a HardFault is
generated.

• The stack pointer is set to the stack limit value.

• Push operations to addresses below the stack limit value are not performed.

• It is IMPLEMENTATION DEFINED whether push operations to addresses equal to or above the stack limit value
are performed.

RCCSC On a violation of a Secure stack limit during a function call:

• In a PE with the Main Extension, a synchronous STKOF UsageFault is generated. Otherwise, a HardFault is
generated.

Security state Stack Stack limit register

Secure Main MSPLIM_S

Process PSPLIM_S

Non-secure Main MSPLIM_NS

Process PSPLIM_NS

Stack Stack limit register

Main MSPLIM

Process PSPLIM

Security state Stack Stack limit register

Secure Main MSPLIM_S

Process PSPLIM_S
B4-70 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B4 Programmers’ Model
B4.22 Stack limit checks
• Push operations to addresses below the stack limit value are not performed.

• It is IMPLEMENTATION DEFINED whether push operations to addresses equal to or above the stack limit value
are performed.

RGGRH Unstacking operations are not subject to stack limit checking.

RYVWT Updates to the stack pointer by the following instructions are subjected to stack limit checking:
• ADD (SP plus immediate).
• ADD (SP plus register).
• SUB (SP minus immediate).
• SUB (SP minus register).
• BLX, BLXNS.
• LDC, LDC2 (immediate).
• LDMDB, LDMEA.
• LDR (immediate).
• LDR (literal).
• LDR (register).
• LDRB (immediate).
• LDRD (immediate).
• LDRH (immediate).
• LDRSB (immediate).
• LDRSH (immediate).
• MOV (register).
• POP.
• PUSH.
• VPOP.
• VPUSH.
• STC, STC2.
• STM, STMIA, STMEA.
• STR (immediate).
• STRB (immediate).
• STRD (immediate).
• STRH (immediate).
• VLDM.
• VSTM.

Updates to the stack pointer by the MSR instruction targeting SP_NS are subject to stack limit checking. Updates to
the stack pointer and stack pointer limit by any other MSR instruction are not subject to stack limit checking.

For all other instructions that can update the stack pointer and stack pointer limit, it is IMPLEMENTATION DEFINED
whether stack limit checking is performed.

IBJHX When an instruction updates the stack pointer, if it results in a violation of the stack limit, it is the modification of
the stack pointer that generates the exception, rather than an access that uses the out-of-range stack pointer.

RDBSG On a violation of a stack limit when an instruction updates the stack pointer:

• It is IMPLEMENTATION DEFINED whether accesses to addresses equal to or above the stack limit value are
performed.

• It is IMPLEMENTATION DEFINED whether the destination register or registers of load instructions are updated
as long as the base register, stack pointer and PC are not modified.

• Accesses below the stack limit are not performed.

IRRDX CCR.STKOFHFNMIGN controls whether stack limit violations are ignored while executing at a requested
execution priority that is negative.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B4-71
ID072816 Non-Confidential - Beta

B4 Programmers’ Model
B4.22 Stack limit checks
RXCQL It is UNKNOWN whether a stack limit check is performed on any use of the SP that was UNPREDICTABLE in
ARMv7-M and ARMv6-M.

See also:
• Stack pointer on page B4-45.
• Tail-chaining on page B4-79.
B4-72 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B4 Programmers’ Model
B4.23 Exception return
B4.23 Exception return
RKPSS The PE begins an exception return when both of the following are true:

• The PE is in Handler mode.

• One of the following instructions loads an EXC_RETURN value, 0xFFXXXXXX, into the PC:
— A POP or LDM that includes loading the PC.
— An LDR with the PC as a destination.
— A BX with any register.

When both of these are true, then on detecting an EXC_RETURN value in the PC, the PE unstacks the stack and
resumes execution of the code that was preempted by the exception handler.

If an EXC_RETURN value is loaded into the PC by an instruction other than those listed, or from the vector table,
the value is treated as an address.

If an EXC_RETURN value is loaded into the PC when the PE is in Thread mode, the value is treated as an address.

RBLMQ In an EXC_RETURN value:

Bits[31:24] These are 0xFF. This is what identifies the value as an EXC_RETURN value.

Bits[23:7] RES1.

Bit [6], S In a PE with the Security Extension, the exception was taken from:
0 Non-secure state. Restore registers from the Non-secure stack.
1 Secure state. Restore registers from the Secure stack.
In a PE without the Security Extension, RES0.

Bit [5], DCRS
In a PE with the Security Extension:
0 Stacking of the additional state context can be skipped.
1 Do not skip any stacking.
In a PE without the Security Extension, RES1.

Bit[4],FType
In a PE with the Main and Floating-point Extensions:

0 The PE allocated space on the stack for FP context.

1 The PE did not allocate space on the stack for FP context.
In a PE without the Main Extension, or with the Main Extension but without the Floating-point
Extension, RES1.

Bit[3], Mode
Return to:
0 Handler mode.
1 Thread mode.

Bit[2], SPSEL
Restore registers from the:
0 Main stack.
1 Process stack.

Bit[1] RES0.

Bit[0], ES
In a PE with the Security Extension, the exception was taken to:
0 Non-secure state.
1 Secure state.
In a PE without the Security Extension, RES0.

RTXDW Behavior is UNPREDICTABLE if EXC_RETURN.FType is 0 and the Floating-point Extension is not implemented.

RGBVH Behavior is UNPREDICTABLE if EXC_RETURN[23:7] are not all 1.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B4-73
ID072816 Non-Confidential - Beta

B4 Programmers’ Model
B4.23 Exception return
RXLCP Behavior is UNPREDICTABLE if any of the following are true and the Security Extension is not implemented:
• EXC_RETURN.S is 1.
• EXC_RETURN.DCRS is 0.
• EXC_RETURN.ES is 1.

RSKSD In a PE without the Main Extension, behavior is UNPREDICTABLE if EXC_RETURN[1] is 1.

RSMFL The following integrity checks on exception return are performed on every exception return:

1. In a PE with the Security Extension, the integrity check that is called the EXC_RETURN.ES validation check,
as follows:

• If the PE was in Non-secure state when EXC_RETURN was loaded into the PC and either
EXC_RETURN.DCRS is 0 or EXC_RETURN.ES is 1, an INVER SecureFault is generated and the
PE sets EXC_RETURN.ES to 0.

2. A check that the exception number being returned from, as held in the IPSR, is shown as active in the SHCSR
or NVIC_IABR<n>. If this check fails:

• In a PE with the Main Extension, an INVPC UsageFault is generated. If the PE includes the Security
Extension, the INVPC UsageFault targets the Security state that the exception return instruction was
executed in.

• In a PE without the Main Extension, a HardFault is generated. If the PE includes the Security
Extension, the HardFault targets the Security state that EXC_RETURN.S specifies.

3. In a PE with the Main Extension, an INVPC UsageFault is generated if EXC_RETURN[1] is 1. If the PE
includes the Security Extension, the INVPC UsageFault targets the Security state that the exception return
instruction was executed in.

4. A check that if the return is to Thread mode, the value restored to the IPSR from the RETPSR is zero, or that
if the return is to Handler mode, the value restored to the IPSR from the RETPSR is non zero. If this check
fails:

• In a PE with the Main Extension, an INVPC UsageFault is generated. If the PE includes the Security
Extension, the INVPC UsageFault targets the Background Security state.

• In a PE without the Main Extension, a HardFault is generated. If the PE includes the Security
Extension, the HardFault targets the Security state that EXC_RETURN.S specifies.

RJMJC In a PE with the Security Extension, after the EXC_RETURN.ES validation check has been performed on an
exception return:
• If EXC_RETURN.ES is 1, EXC_RETURN.SPSEL is written to CONTROL_S.SPSEL.
• If EXC_RETURN.ES is 0, EXC_RETURN.SPSEL is written to CONTROL_NS.SPSEL.

RRPGL In a PE with the Security Extension, on an exception return that successfully returns to the Background Security
state, with no tail-chaining or failed integrity checks, the Security state is set to EXC_RETURN.S.

ICTWL In a PE with the Security Extension, after a successful exception return to the Background Security state, the PE is
in the correct Security state before the next instruction from the background code is executed. This means that in
the case where the Background Security state is Secure state, there is no need for an SG instruction at the exception
return address.

IRQVB In a PE with the Floating-Point Extension, on exception entry:
1. EXC_RETURN.FType is saved as the inverse of CONTROL.FPCA.
2. CONTROL.FPCA is then cleared to 0 if it was 1, or remains unchanged if it was 0.

On exception return, the inverse of EXC_RETURN[4] is written to CONTROL.FPCA.

RCGML In a PE with the Floating-point Extension, when the following conditions are met on exception return, the PE
hardware sets S0-S15 and the FPSCR to zero:
• CONTROL.FPCA is 1.
• FPCCR.CLRONRET is 1.
• FPCCR.LSPACT is 0.

If all of these fields are 1 on exception return, the PE generates an LSERR SecureFault instead.
B4-74 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B4 Programmers’ Model
B4.23 Exception return
RXNNG In a PE with the Floating-point Extension, when the following conditions are met on exception return, the PE
generates an LSERR SecureFault:
• EXC_RETURN[4] is 0.
• The stack contains Secure FP context, that would be unstacked on the return. That is, FPCCR_S.LSPACT is

1.
• The return is to Non-secure state.

RHCXX In a PE with the Floating-point Extension, if the PE abandons unstacking of the floating-point registers to tail-chain
into another exception:

• If the Security Extension is implemented, the PE must clear to zero any floating-point registers that would
have been unstacked.

• If the Security Extension is not implemented, the floating-point registers that would have been unstacked
become UNKNOWN.

See also:
• Exception handling on page B4-63.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B4-75
ID072816 Non-Confidential - Beta

B4 Programmers’ Model
B4.24 Integrity signature
B4.24 Integrity signature
RPHBP In a PE with the Main Extension, the integrity signature value is:

In a PE with the Main Extension, when returning from a Non-secure exception to Secure state, if the unstacked
integrity signature does not match this value, including if SFTC does not match EXC_RETURN[4], a SecureFault
is generated.

RRJSP In a PE without the Main Extension, the integrity signature value is:

In a PE without the Main Extension, when returning from a Non-secure exception to Secure state, if the unstacked
integrity signature does not match this value, a Secure HardFault is generated.

IFFTS The integrity signature is an XN address. When performing a function return from Non-secure code, if the integrity
signature value is restored to the PC as the function return address, a MemManage fault is generated when the PE
attempts execution.

See also:
• Exception entry, context stacking on page B4-64.
• Exception return on page B4-73.

1 1 1 1 0 1 1 1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 1 0 1 1 0 1 SFTC

31 30 29 28 27 26 25 24 23 20 19 16 15 10 9 8 0

1 1 1

22 21 18 17 14 13 12 11 7 6 5 4 3 2 1

Stack Frame Type Check

1 1 1 1 0 1 1 1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 1 0 1 1 0 1 1

31 30 29 28 27 26 25 24 23 20 19 16 15 10 9 8 0

1 1 1

22 21 18 17 14 13 12 11 7 6 5 4 3 2 1
B4-76 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B4 Programmers’ Model
B4.25 Exceptions during exception entry
B4.25 Exceptions during exception entry
ILBGQ During exception entry exceptions can occur, for example asynchronous exceptions, or the exception entry

sequence itself might cause an exception, for example a MemManage fault on the push to the stack.

Any exception that occurs during exception entry is a late-arriving exception, and:
• The exception that caused the original entry sequence is the original exception.
• The priority of the code stream running at the time of the original exception is the preempted priority.

When the exception entry sequence itself causes an exception, the latter exception is a derived exception.

The following mechanism is called late-arrival preemption:

• The PE takes a late-arriving exception during an exception entry if the late-arriving exception is higher
priority, including taking into account any priority adjustment by AIRCR.PRIS. In this case:

— The late-arriving exception uses the exception entry sequence started by the original exception. The
original exception remains pending.

— The PE takes the original exception after returning from the late-arriving exception.

RMRTR For:
• Derived exceptions, late-arrival preemption is mandatory.
• Late-arriving asynchronous exceptions, it is IMPLEMENTATION DEFINED whether late-arrival preemption is

used. If the PE does not implement late-arrival preemption for late-arriving asynchronous exceptions,
late-arriving asynchronous exceptions become pending.

RGDNT If the group priority field value of a derived exception is higher than or equal to the preempted priority:
• If the derived exception is a DebugMonitor exception, it is ignored.
• Otherwise, the PE escalates the derived exception to Hardfault.

RGVHV If a higher priority late-arriving Secure exception occurs during entry to a Non-secure exception when the
Background Security state is Secure, it is IMPLEMENTATION DEFINED whether:
• The stacking of the additional state context is rolled back.
• The stacking of the additional state context is completed and EXC_RETURN.DCRS is set to 0.

INJCW The architecture does not specify the point during exception entry at which the PE recognizes the arrival of an
asynchronous exception.

See also:
• Exception numbers and exception priority numbers on page B4-46.
• Priority model on page B4-56.
• Exception states on page B4-55.
• Exception handling on page B4-63.
• Tail-chaining on page B4-79.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B4-77
ID072816 Non-Confidential - Beta

B4 Programmers’ Model
B4.26 Exceptions during exception return
B4.26 Exceptions during exception return
IKXPV During exception return exceptions can occur, for example asynchronous exceptions, or the exception return might

itself cause an exception.

Any exception that occurs during exception return is a late-arriving exception.

When the exception return sequence itself causes an exception, the latter exception is a derived exception.

RTRFM When a late-arriving exception during exception return is higher priority than the priority being returned to, the PE
takes the late-arriving exception by using tail-chaining.

IMBNG The architecture does not specify the point during exception return at which the PE recognizes the arrival of an
asynchronous exception. If a PE recognizes an asynchronous exception after an exception return has completed,
there is no opportunity to tail-chain the asynchronous exception.

RMJDN If the priority of a derived exception during exception return is equal to or lower than the priority being returned to:
• If the derived exception is a DebugMonitor exception, the PE ignores the derived exception.
• Otherwise, the PE escalates the derived exception to Hardfault and the escalated exception is tail-chained.

RDHFK If the priority of a derived exception during exception return, after priority escalation if appropriate, is higher
priority than the priority being returned to, the PE uses tail-chaining to take the derived exception.

See also:
• Exception numbers and exception priority numbers on page B4-46.
• Priority model on page B4-56.
• Exception return on page B4-73.
• Tail-chaining on page B4-79.
B4-78 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B4 Programmers’ Model
B4.27 Tail-chaining
B4.27 Tail-chaining
RHDGF Tail-chaining behavior is as follows:

• On detecting an EXC_RETURN value in the PC, if there is a pending exception that is higher priority than
the priority being returned to, the PE hardware:
1. Does not unstack the stack.
2. Takes the pending exception.

IFJWK Tail-chaining is an optimization. It removes unstacking and stacking operations. In the following example the 2nd
exception is a tail-chained exception:

IKKVL The Background Security state is the Security state when no exception is active.

IRWDT If tail-chaining prevents a derived exception on exception return, the derived exception might instead be generated
on the return from the last tail-chained exception.

RPXVB When the Background Security state is Secure state, if tail-chaining causes a change of Security state from Secure
to Non-secure, additional context is saved on taking the Non-secure exception:

No exception is active

1st exception 2nd exception

No exception is active

Stacking operation Unstacking operation

Nothing is unstacked

All in Non-secure state:

Secure state

1st exception 2nd exception

Secure state

State context pushed to stack. Unstacking operation

Nothing is unstacked.
Additional state context pushed to stack.

Secure state Non-secure state

In a PE without the FP Extension:
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B4-79
ID072816 Non-Confidential - Beta

B4 Programmers’ Model
B4.27 Tail-chaining
ITKLM When multiple exceptions are tail-chained, EXC_RETURN.DCRS is used to keep track of whether the additional
context is stacked. The following figure is an example:

ITMVF When multiple exceptions are tail-chained, a Secure tail-chained exception after a Non-secure exception cannot rely
on any registers containing the values they had when no exception was active.

RCVRD ARM recommends that Secure exception handlers clear the FP context registers to zero before they return.

ILNPQ If software has set FPCCR.CLRONRET to 1, hardware automatically clears the FP context registers to zero on
exception return.

RJMHS If the PE recognizes a new asynchronous exception while it is tail-chaining, and the new asynchronous exception
has a higher priority than the next tailed-chained exception, the PE can, instead, take the new asynchronous
exception, using late-arrival preemption.

This rule is true even if the next tail-chained exception is a derived exception on exception return. The PE can,
instead, take the new asynchronous exception. If it does, the derived exception becomes pending.

See also:
• Exception entry, context stacking on page B4-64.
• Exceptions during exception return on page B4-78.

Secure state

1st exception 2nd exception

Non-secure state

State context and additional state
context pushed to stacka.

Unstacking operation

Unstacking all additional context is
skipped.

PE sets EXC_RETURN.DCRS to 0.

Non-secure state Secure state

a In a PE with the FP Extension, FP context and additional FP context is also stacked if CONTROL.FPCA is 1.

3rd exception

Secure state

Stacking all additional context is skipped.
PE sets EXC_RETURN.DCRS to 1.
B4-80 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B4 Programmers’ Model
B4.28 Exceptions, instruction resume or instruction restart
B4.28 Exceptions, instruction resume or instruction restart
RPGRC The PE can take an exception during execution of a Load Multiple or Store Multiple instruction, effectively halting

the instruction, and resume execution of the instruction after returning from the exception. This is called instruction
resume. Instruction resume is supported only when the Main Extension is implemented.

RKRLL The PE can abandon execution of a Load Multiple or Store Multiple instruction to take an exception, and after
returning from the exception, restart the Load Multiple or Store Multiple instruction again from the start of the
instruction. This is called instruction restart. Instruction restart is supported regardless of whether the Main
Extension is implemented.

INDQT Instructions that the PE can halt to use instruction resume are called exception-continuable instructions.

RRJVL The exception-continuable instructions are LDM, LDMDB, STM, STMDB, POP, and PUSH. In a PE with the Floating-point
Extension, the floating-point exception-continuable instructions are VLDM, VSTM, VPOP, and VPUSH.

RQVFC When the PE is using instruction resume, EPSR.ICI is set to a non-zero value that is the continuation state of the
exception-continuable instruction:

• For LDM, LDMDB, STM, STMDB, POP, and PUSH instructions, ICI contains the number of the first register in the
register list that must be loaded or stored after instruction resume.

• For the floating-point instructions VLDM, VSTM, VPOP, and VPUSH, ICI contains the number of the lowest
numbered doubleword Floating-point Extension register that was not completely loaded or stored before the
PE took the exception.

The ICI values shown in the following table are valid EPSR.ICI values:

RXFGN Behavior is UNPREDICTABLE if EPSR.ICI contains a valid EPSR.ICI non-zero value and the register number that it
contains is either:
• Not in the register list of the exception-continuable Load Multiple or Store Multiple instruction.
• The first register in the register list of the exception-continuable Load Multiple or Store Multiple instruction.

RCGFL The PE generates an INVSTATE UsageFault if EPSR.ICI contains a valid EPSR.ICI non-zero value and the
instruction being executed is not a Load Multiple or Store Multiple instruction.

RJXKQ If the PE uses instruction resume during a Load Multiple instruction, then after the exception return, the values of
all registers in the register list are UNKNOWN, except for the following:
• Registers that are marked by EPSR.ICI as already loaded.
• The base register.
• The PC.

IJJQX If the PE is using instruction restart, ARM recommends that software does not use Load Multiple or Store Multiple
instructions with data in volatile memory.

RNKNQ When a Load Multiple instruction has the PC in its register list, if the PE uses instruction resume or instruction
restart during the instruction:

• If the PC is loaded before generation of the exception, the PE must restore the PC before taking the exception,
so that after the exception the PE returns to either:
— Continue execution of the Load Multiple instruction, if the PE used instruction resume.
— Restart the Load Multiple instruction, if the PE used instruction restart.

RLSCQ In a PE without the Main Extension, if the PE takes any exception during any Load Multiple or Store Multiple
instruction, including PUSH and POP, the PE uses instruction restart and the base register is restored to the original
value.

EPSR[26:25] EPSR[15:12] EPSR[11:10]

ICI[7:6] = 0b00 ICI[5:2] = reg_num ICI[1:0] = 0b00

ICI[7:6] = 0b00 ICI[5:2] = 0b0000 ICI[1:0] - 0b00
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B4-81
ID072816 Non-Confidential - Beta

B4 Programmers’ Model
B4.28 Exceptions, instruction resume or instruction restart
RRFGF In a PE with the Main Extension, if the PE takes an exception during any Load Multiple or Store Multiple
instruction, including PUSH and POP:

• If the instruction is not in an IT block and the exception is an asynchronous exception, the PE uses instruction
resume and EPSR.ICI holds the continuation state. The base register is restored to the original value except
in the following cases:

Interrupt of an instruction that is using SP as the base register
The SP that is presented to the exception entry sequence is lower than any element pushed by an
STM, or not yet popped by an LDM.
For Decrement Before (DB) variants of the instruction, the SP is set to the final value. This is the
lowest value in the list.
For Increment After (IA) variants of the instruction, the SP is restored to the initial value. This is
the lowest value in the list.

Interrupt of an instruction that is not using SP as the base register
The base register is set to the final value, whether the instruction is a Decrement Before (DB)
variant or an Increment After (IA) variant.

• For all other cases:

— The PE uses instruction restart and the base register is restored to the original value. If the instruction
is not in an IT block, EPSR.ICI is cleared to zero.

RSGWB When a Load Multiple instruction includes its base register in its register list, if the PE takes an exception during
the instruction:

• The base register is restored to the original value, and:

— If the instruction is in an IT block, the PE uses instruction restart.

— If the instruction is not in an IT block, and the PE takes the exception after it loads the base register,
EPSR.ICI can be set to an IMPLEMENTATION DEFINED value that will load at least the base register and
subsequent locations again after returning from the interrupt.

See also:
• Exception during a singleword load operation on page B4-92.
B4-82 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B4 Programmers’ Model
B4.29 Vector tables
B4.29 Vector tables
RNWFF In a PE with the Security Extension, two vector tables are implemented, the Secure Vector table and the Non-secure

Vector table, and it is IMPLEMENTATION DEFINED which of the following is true:

• The PE supports configurability of each vector table base, and two Vector Table Offset Registers, VTOR_S
and VTOR_NS, are provided for this purpose.

• The PE does not support configurability of either vector table base, and VTOR_S and VTOR_NS are
RAZ/WI.

If the PE supports configurability of each vector table base:

• Exceptions that target Secure state use VTOR_S to determine the base address of the Secure vector table.

• Exceptions that target Non-secure state use VTOR_NS to determine the base address of the Non-secure
vector table.

RGTJQ In a PE without the Security Extension, a single vector table is implemented, and it is IMPLEMENTATION DEFINED
which of the following is true:

• The PE supports configurability of the vector table base, and a single Vector Table Offset Register, VTOR,
is provided for this purpose.

• The PE does not support configurability of the vector table base, and VTOR is RAZ/WI.

IWFGX ARM recommends that VTOR_S points to memory that is Secure and not Non-secure callable.

RWPRT A vector table contains both:
• The initialization value for the main stack pointer on reset.
• The start address of each exception handler.

The exception number defines the order of entries.

RLFDL In a PE with a configurable vector table base, the vector table must be naturally aligned to a power of two, with an
alignment value that is:
• A minimum of 128 bytes.
• Greater than or equal to (Number of Exceptions supported x4).

RXPPT For all vector table entries other than the entry at offset 0, if bit[0] is not set to 1, the first instruction in the exception
will result in an INVSTATE UsageFault.

IBVSC For all vector table entries other than the entry at offset 0, bit[0] defines EPSR.T on exception entry. Setting bit[0]
to 1 indicates that the exception handler is in the T32 Instruction set state.

See also:
• Exception numbers and exception priority numbers on page B4-46.
• Execution Program Status Register (EPSR) on page B4-41.

Word offset in vector table Value held at offset

0 Initial value for the main stack pointer on reset

Exception number Start address for the handler for the exception with that number

Exception number Start address for the handler for the exception with that number

. .

. .

. .

Exception number Start address for the handler for the exception with that number
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B4-83
ID072816 Non-Confidential - Beta

B4 Programmers’ Model
B4.30 Hardware-controlled priority escalation to HardFault
B4.30 Hardware-controlled priority escalation to HardFault
RGNVS When current execution has a priority number ≥0:

• If a synchronous exception with an equal or lower priority is pending, the PE hardware escalates it to become
a HardFault. This rule applies to all synchronous exceptions and DebugMonitor exceptions caused by the
BKPT instruction. This rule does not apply to asynchronous exceptions and all other DebugMonitor
exceptions.

RPBJQ When current execution has a priority number >= 0, if a disabled software configurable priority exception occurs:
• If it is a synchronous exception, the PE hardware escalates the exception to become a HardFault.
• If it is an interrupt, the PE does not escalate the interrupt. The interrupt remains pending.

See also:

• Exception numbers and exception priority numbers on page B4-46.
B4-84 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B4 Programmers’ Model
B4.31 Special-purpose mask registers, PRIMASK, BASEPRI, FAULTMASK, for software-controlled priority boosting
B4.31 Special-purpose mask registers, PRIMASK, BASEPRI, FAULTMASK, for
software-controlled priority boosting
IBNJG In a PE with the Main Extension, software can use the PRIMASK, FAULTMASK, and BASEPRI registers as

follows. A PE without the Main Extension implements PRIMASK, but does not implement FAULTMASK and
BASEPRI.

PRIMASK
In a PE without the Security Extension:

• Setting this bit to 1 boosts the current execution priority to 0, masking all exceptions with a lower
priority.

In a PE with the Security Extension:

• Setting PRIMASK_S to 1 boosts the current execution priority to 0.

• If AIRCR.PRIS is:

0 Setting PRIMASK_NS to 1 boosts the current execution priority to 0.

1 Setting PRIMASK_NS to 1 boosts the current execution priority to 0x80.
In a PE with the Security Extension, when the current execution priority is boosted to a particular value,
all exceptions with a lower priority are masked.

FAULTMASK
In a PE without the Security Extension:

• Setting this bit to 1 boosts the current execution priority to -1, masking all exceptions with a lower
priority.

In a PE with the Security Extension, if AIRCR.BFHFNMINS is:

0 Setting FAULTMASK_S to 1 boosts the current execution priority to -1.
If AIRCR.PRIS is:

0 Setting FAULTMASK_NS to 1 boosts the current execution priority to 0.

1 Setting FAULTMASK_NS to 1 boosts the current execution priority to 0x80.

1 Setting FAULTMASK_S to 1 boosts the current execution priority to -3.
Setting FAULTMASK_NS to 1 boosts the current execution priority to -1.

In a PE with the Security Extension, when the current execution priority is boosted to a particular value,
all exceptions with a lower priority are masked.

BASEPRI
In a PE without the Security Extension:

• Software can set this field to a priority number between 1 and the maximum supported priority
number. This boosts the current execution priority to that number, masking all exceptions with a
lower priority.

In a PE with the Security Extension:

• Software can set BASEPRI_S to a priority number between 1 and the maximum supported
priority number.

• If AIRCR.PRIS is:

0 Software can set BASEPRI_NS to a priority number between 1 and the maximum
supported priority number.

1 Software can set BASEPRI_NS to a priority number between 1 and the maximum
supported priority number. The value in BASEPRI_NS is then mapped to the bottom
half of the priority range, so that the current execution priority is boosted to the
mapped-to value in the bottom half of the priority range.

In a PE with the Security Extension, when the current execution priority is boosted to a particular value,
all exceptions with a lower priority are masked.

RFHMC The PRIMASK, FAULTMASK, and BASEPRI priority boosting mechanisms only boost the group priority, not the
subpriority.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B4-85
ID072816 Non-Confidential - Beta

B4 Programmers’ Model
B4.31 Special-purpose mask registers, PRIMASK, BASEPRI, FAULTMASK, for software-controlled priority boosting
RKBNF Without the Security Extension:

• An exception return other than from an NMI sets FAULTMASK to 0.

With the Security Extension:

• An exception return other than from an NMI sets FAULTMASK to 0 if the raw execution priority is greater
than or equal to 0. EXC_RETURN.ES indicates which banked instance of FAULTMASK is set to 0.

IPLKD The raw execution priority is:

• The execution priority minus the effects of AIRCR.PRIS == 1, and minus any software-controlled
PRIMASK, FAULTMASK, or BASEPRI priority boosting.

IGBVL The requested execution priority is negative when any of the following are true:
• The banked FAULTMASK bit for the current Security state is 1, including when AIRCR.PRIS is also 1.
• HardFault for the current Security state is active.
• AIRCR.BFHFNMINS.

See also:
• Priority model on page B4-56.
• Exception numbers and exception priority numbers on page B4-46.
B4-86 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B4 Programmers’ Model
B4.32 Lockup
B4.32 Lockup
IRKJB Lockup is a PE state where the PE stops executing instructions in response to an error for which escalation to an

appropriate HardFault handler is not possible because of the current execution priority. An example is a synchronous
exception that would escalate to a Secure HardFault, but that cannot escalate to a Secure HardFault because Secure
HardFault is already active.

IFSFR ARM recommends that an implementation provides a LOCKUP signal that, when the PE is in lockup, signals to
the external system that the PE is in lockup.

RMBTM When the PE is in lockup:
• DHCSR.S_LOCKUP reads as 1.
• The PC reads as 0xEFFFFFFE. This is an XN address.
• The PE stops fetching and executing instructions.
• If the implementation provides an external LOCKUP signal, LOCKUP is asserted HIGH.

RJRJC Exit from lockup is by any of the following:
• A Cold reset.
• A Warm reset.
• Entry to Debug state.
• Preemption by a higher priority exception.

RHJNP Exit from lockup causes both DHCSR.S_LOCKUP and, if implemented, the external LOCKUP signal, to be
deasserted.

RSPPN On an exit from lockup by entry to Debug state, or by preemption by a higher priority exception, the return address
is 0xEFFFFFFE.

ICRHJ After exit from lockup by entry to Debug state, or by preemption by a higher priority exception, a subsequent return
from Debug state or that exception without modifying the return address attempts to execute from 0xEFFFFFFE.
Execution from this address is guaranteed to generate an IACCVIOL MemManage fault, causing the PE to reenter
lockup if the execution priority has not been modified. Modification of the return address would enable execution
to be resumed, however ARM recommends treating entry to lockup as fatal and requiring the PE to be reset.

See also:

• Instruction-related lockup behavior.
— Instruction execution.
— Floating-point lazy FP context preservation on page B4-88.

• Exception-related lockup behavior on page B4-88.
— Vector or stack pointer error on reset on page B4-88.
— Errors on preemption and stacking for exception entry on page B4-89.
— Vector read error on NMI or HardFault entry on page B4-89.
— Integrity checks on exception return on page B4-90.
— Errors when unstacking state on exception return on page B4-90.

B4.32.1 Instruction-related lockup behavior

Instruction execution

RVGMR A synchronous exception results in lockup when:

• The synchronous exception would escalate to a Secure HardFault and any of the following is true:
— Secure HardFault is already active.
— NMI is active and AIRCR.BFHFNMINS is 0.
— FAULTMASK_S.FM is 1.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B4-87
ID072816 Non-Confidential - Beta

B4 Programmers’ Model
B4.32 Lockup
• The synchronous exception would escalate to a Non-secure HardFault and any of the following is true:
— Non-secure HardFault or Secure HardFault is already active.
— NMI is active.
— FAULTMASK_NS.FM or FAULTMASK_S.FM is 1.

RVGNW Entry to lockup from an exception causes:
• Any Fault Status Registers associated with the exception to be updated.
• No update to the exception state, pending or active.
• The PC to be set to 0xEFFFFFFE.
• EPSR.IT to be become UNKNOWN.

In addition, HFSR.FORCED is not set to 1.

RDWKP Asynchronous BusFaults never cause lockup. The standard rules for asynchronous BusFaults are applied.

IXXKW When a BusFault does not cause lockup, the value read or written to the location that generated the BusFault is
UNKNOWN.

Floating-point lazy FP context preservation

RRNKB When FPCCR.LSPACT is 1, a NOCP UsageFault, SAU violation, MPU violation, or synchronous bus error during
lazy FP context preservation causes lockup if any of the following is true:

• FPCCR.HFRDY is 0.

• The exception would escalate to a Secure HardFault and any of the following is true:
— Secure HardFault is already active.
— NMI is active and AIRCR.BFHFNMINS is 0.
— FAULTMASK_S.FM is 1.
— Non-secure Hardfault is active and AIRCR.BFHFNMINS is 0.

• The exception would escalate to a Non-secure HardFault and any of the following is true:
— Non-secure HardFault or Secure HardFault is already active.
— NMI is active.
— FAULTMASK_NS.FM or FAULTMASK_S.FM is 1.

RMMBJ When FPCCR.LSPEN is 0, any faults caused by floating-point register reads or writes during exception entry or
exception return are handled as faults on stacking or unstacking respectively.

RXFQJ When FPCCR.LSPEN is 1 and a NOCP UsageFault, SAU violation, MPU violation, or synchronous bus error
during FP context stacking causes lockup, that entry to lockup causes:
• Any Fault Status Registers associated with the exception to be updated.
• No update to the exception state, pending or active.
• The PC to be set to 0xEFFFFFFE.
• EPSR.IT to be become UNKNOWN.

In addition, HFSR.FORCED is not set to 1.

B4.32.2 Exception-related lockup behavior

Vector or stack pointer error on reset

RBHVG On reset, if reading the vector table to obtain either the vector for the reset handler or the initialization value for the
main stack pointer causes a bus error, the PE enters lockup in HardFault with the following behavior:

• HFSR.VECTTBL is set to 1.

• In a PE with the Security Extension, Secure Hardfault is made active. That is, SHCSR_S.HARDFAULTACT
is set to 1.
B4-88 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B4 Programmers’ Model
B4.32 Lockup
• In a PE without the Security Extension, HardFault is made active. That is, SHCSR.HARDFAULTACT is set
to 1.

• An UNKNOWN value is loaded into the main stack pointer.

• The IPSR is set to 0.

• EPSR.T is UNKNOWN.

• EPSR.IT is set to zero.

• The PC is set to 0xEFFFFFFE.

• The LR is set to 0xFFFFFFFF.

IXPNL Because the PE always resets into Secure state and the highest privilege, SAU and MPU violations are not possible
on accesses to the reset vector.

Errors on preemption and stacking for exception entry

RVKTX An SAU violation, MPU violation, NOCP UsageFault, STKOF UsageFault, LSERR SecureFault, or synchronous
bus error during context stacking causes lockup when:

• The exception would escalate to a Secure HardFault and any of the following is true:
— Secure HardFault is already active.
— NMI is active and AIRCR.BFHFNMINS is 0.
— FAULTMASK_S.FM is 1.

• The exception would escalate to a Non-secure HardFault and any of the following is true:
— Non-secure HardFault or Secure HardFault is already active.
— NMI is active.
— FAULTMASK_NS.FM or FAULTMASK_S.FM is 1.

In these cases the point of PE lockup is when, after the exception to be taken has been chosen, the handler for that
exception is entered. These cases do not in themselves cause any additional exception to become pending.

RQSSB When an SAU violation, MPU violation, NOCP UsageFault, STKOF UsageFault, LSERR SecureFault, or
synchronous bus error occurs during context stacking, it is IMPLEMENTATION DEFINED whether the PE continues to
stack any of the remaining context.

RGJJG At the point of encountering an SAU violation, MPU violation, NOCP UsageFault, STKOF UsageFault, LSERR
SecureFault, or synchronous bus error during context stacking, the PE:
• Updates any Fault Status Registers associated with the error.
• Does not set HFSR.FORCED to 1.

At the point of lockup:

• All state, including the LR, IPSR, and active and pending bits, is modified as though the fault on context
stacking had never occurred, other than the following:
— EPSR.T becomes UNKNOWN.
— EPSR.IT is set to zero.
— The PC is set to 0xEFFFFFFE.

Vector read error on NMI or HardFault entry

RCTKP On entry to an NMI or HardFault, if reading the vector table to obtain the vector for the NMI or HardFault handler
causes a bus error, the PE enters lockup with the following behavior:
• HFSR.VECTTBL is set to 1.
• The IPSR is updated to hold the exception number of the exception taken.
• The active bit of the exception taken is set to 1.
• The pending bit of the exception taken is cleared to 0.
• EPSR.T is UNKNOWN.
• EPSR.IT is set to zero.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B4-89
ID072816 Non-Confidential - Beta

B4 Programmers’ Model
B4.32 Lockup
• The LR is set to the EXC_RETURN value that would have been used had the fault not occurred.
• The PC is set to 0xEFFFFFFE.

INMRW Because SAU violations on vector reads are required to be treated as late-arriving, they cannot cause lockup, instead
resulting in a higher priority exception being taken. Vector reads always use the default memory map and cannot
generate MPU violations.

Integrity checks on exception return

RTRFJ A fault generated by a failed integrity check on exception return is generated after either the active bit for the
returning exception, or the active bit for NMI or HardFault, has been cleared to 0, and if applicable, after
FAULTMASK has also been cleared to 0. A fault generated by a failed integrity check on exception return causes
lockup when:

• The exception would escalate to a Secure HardFault and any of the following is true:
— Secure HardFault is already active.
— NMI is active and AIRCR.BFHFNMINS is 0.
— FAULTMASK_S.FM is 1.
— Non-secure Hardfault is active and AIRCR.BFHFNMINS is 0.

• The exception would escalate to a Non-secure HardFault and any of the following is true:
— Non-secure HardFault or Secure HardFault is already active.
— NMI is active.
— FAULTMASK_NS.FM or FAULTMASK_S.FM is 1.

RWBVC The target Security state of an INVPC UsageFault generated because of a failed integrity check on exception return
is the Security state that the exception return instruction was executed in.

RDFKP When the PE enters lockup because of a fault generated by a failed integrity check, the PE:

• Updates any Fault Status Registers associated with the error.

• Sets IPSR to 0, if EXC_RETURN for the returning exception indicated a return to Thread mode.

• Sets IPSR to 3, if EXC_RETURN for the returning exception indicated a return to Handler mode.

• Sets the stack pointer used for unstacking to the value it would have had if the fault had not occurred.

— If the XPSR load faults, the SP is 64-bit aligned.

• Updates CONTROL.FPCA, based on EXC_RETURN.FType.

• Sets the PC to 0xEFFFFFFE.

In addition, the APSR, EPSR, FPSCR, R0-R12, LR, and S0-S31 are UNKNOWN.

Errors when unstacking state on exception return

RWKSJ Context unstacking is performed after any clearing of exception active bits or FAULTMASK, that is required by the
exception return, has been made visible. An SAU violation, MPU violation, or synchronous bus error during context
unstacking causes lockup when:

• The exception would escalate to a Secure HardFault and any of the following is true:
— Secure HardFault is already active.
— FAULTMASK_S.FM is 1.
— Non-secure Hardfault is active and AIRCR.BFHFNMINS is 0.

• The exception would escalate to a Non-secure HardFault and any of the following is true:
— Non-secure HardFault or Secure HardFault is already active.
— NMI is active.
— FAULTMASK_NS.FM or FAULTMASK_S.FM is 1.

RXFCQ When an SAU violation, MPU violation, or synchronous bus error during context unstacking causes lockup, the PE:

• Updates any Fault Status Registers associated with the error.
B4-90 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B4 Programmers’ Model
B4.32 Lockup
• Sets IPSR to 0, if EXC_RETURN for the returning exception indicated a return to Thread mode.

• Sets IPSR to 3, if EXC_RETURN for the returning exception indicated a return to Handler mode.

• Sets the stack pointer used for unstacking to the value it would have had if the fault had not occurred.

— If the XPSR load faults, the SP is 64-bit aligned.

• Updates CONTROL.FPCA, based on EXC_RETURN.FType.

• Sets the PC to 0xEFFFFFFE.

In addition, the APSR, EPSR, FPSCR, R0-R12, LR, and S0-S31 are UNKNOWN.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B4-91
ID072816 Non-Confidential - Beta

B4 Programmers’ Model
B4.33 Exception during a singleword load operation
B4.33 Exception during a singleword load operation
RKCMD To support instruction restart, Singleword load instructions must not update the destination register when the PE

takes an exception during execution.

See also:
• Exceptions, instruction resume or instruction restart on page B4-81.
B4-92 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B4 Programmers’ Model
B4.34 Special-purpose CONTROL register
B4.34 Special-purpose CONTROL register
RCSPP Software can use MRS and MSR instructions to access the CONTROL register.

RGKVQ Privileged execution can write to the CONTROL register. The PE ignores unprivileged writes to the CONTROL
register. All reads of the CONTROL register, regardless of privilege, are allowed.

IRJMP The architecture requires a Context Synchronization Operation (CSO) to guarantee visibility of a change to the
CONTROL register.

RHVGB The PE automatically updates CONTROL.SPSEL on exception entry and exception return.

INMBL CONTROL.SPSEL selects the stack pointer when the PE is in Thread mode.

See also:
• Context Synchronization Operation on page B4-95.
• In Chapter D2 Register Specification:

— CONTROL, Control Register on page D2-827. See this for the CONTROL register field descriptions.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B4-93
ID072816 Non-Confidential - Beta

B4 Programmers’ Model
B4.35 Saving context on process switch
B4.35 Saving context on process switch
IWNGQ When switching between different processes, software must save all context for the old process, including its

associated EXC_RETURN value, before switching to the new process, and restore that context before returning to
the old process.
B4-94 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B4 Programmers’ Model
B4.36 Context Synchronization Operation
B4.36 Context Synchronization Operation
IQVJV A context synchronization operation (CSO) is one of:

• Performing an ISB operation. An ISB operation is performed when an ISB instruction is executed and does
not fail its condition check.

• Taking an exception.

• Returning from an exception.

• Entering Debug state.

• Exiting Debug state.

Security state transitions are not context synchronization operations.

RQXWD The architecture requires a CSO to guarantee visibility of any change to a system control register.

RTVHX Between any change to a System control register and a subsequent CSO, it is UNPREDICTABLE whether an indirect
read of the register by the PE uses the old or new values.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B4-95
ID072816 Non-Confidential - Beta

B4 Programmers’ Model
B4.37 Coprocessor support
B4.37 Coprocessor support
IQRRH Coprocessor support is optional.

RXSQH The architecture supports 0 - 16 coprocessors, CP0 to CP15.

RHJDH CP0 to CP7 are IMPLEMENTATION DEFINED.

RQSRC ARM reserves CP8 to CP15.

RCRMD CP10 to CP11 are reserved to support the Floating-point extension.

RXXDG Instructions issued to unimplemented or disabled coprocessors will result in a NOCP UsageFault.

RRMLV If a coprocessor cannot complete an instruction an UNDEFINSTR UsageFault is generated.

See also:
• Floating Point Support on page B5-97
• CPACR, Coprocessor Access Control Register on page D2-829
• CPPWR, Coprocessor Power Control Register on page D2-831
B4-96 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

Chapter B5
Floating-point Support

This chapter describes floating-point support in ARMv8-M. It contains the following sections:
• The optional Floating-point Extension, FPv5 on page B5-98.
• About the Floating-point Status and Control Register (FPSCR) on page B5-99.
• Registers for floating-point data processing, S0-S31 or D0-D15 on page B5-100.
• Floating-point standards and terminology on page B5-101.
• Floating-point data representable on page B5-102.
• Floating-point encoding formats, half-precision, single-precision, and double-precision on page B5-103.
• The IEEE 754 floating-point exceptions on page B5-105.
• The Flush-to-zero mode on page B5-106.
• The Default NaN mode, and NaN handling on page B5-107.
• The Default NaN on page B5-108.
• Combinations of floating-point exceptions on page B5-109.
• Priority of floating-point exceptions relative to other floating-point exceptions on page B5-110.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B5-97
ID072816 Non-Confidential - Beta

B5 Floating-point Support
B5.1 The optional Floating-point Extension, FPv5
B5.1 The optional Floating-point Extension, FPv5
IVBNH The optional Floating-point Extension defines a Floating Point Unit (FPU). Coprocessors 10 and 11 support the

Extension.

IRXQX Floating-point is sometimes abbreviated to FP.

RGQBM The version of Floating-point Extension that is supported is FPv5.

IFGSG FPv5 provides all of the following:

• Single-precision arithmetic operations.

• Optional double-precision arithmetic operations.

• Conversions between integer, double-precision, single-precision, and half-precision formats.

• Registers for floating-point processing, S0-S31 or D0-D15.

• Data transfers, between ARM general-purpose registers and FPv5 Extension registers S0-S31 or D0-D15, of
single-precision and double-precision values.

• A Flush-to-zero mode that software can enable or disable.

• A Default NaN mode that software can enable or disable.

• An optional alternative half-precision interpretation of the IEEE 754 half-precision encoding format.

FPv5 adds the following system registers:

• The FPSCR, to the CP10 and CP11 system register space.

• The FPCAR, FPCCR, FPDSCR, MVFR0, MVFR1, and MVFR2, to the System Control Block (SCB).

IPVBQ When the Floating-point Extension is implemented, some software tools might require the following information:

IFTDS When the Floating-point Extension is implemented, software can interrogate MVFR0, MVFR1, and MVFR2 to
discover the floating-point features that are implemented.

IJDJQ To use the Floating-point Extension, software must enable access to CP10, by programming CPACR.CP10.

RPDMV The value of CPACR.CP11 is UNKNOWN if it is not programmed to the same value as CPACR.CP10.

See also:
• ARMv8-M variants on page A1-24.
• The System Control Space (SCS) on page B8-166.
• About the Floating-point Status and Control Register (FPSCR) on page B5-99.
• Registers for floating-point data processing, S0-S31 or D0-D15 on page B5-100.
• The Flush-to-zero mode on page B5-106.
• The Default NaN mode, and NaN handling on page B5-107.
• Floating-point encoding formats, half-precision, single-precision, and double-precision on page B5-103.

Extension Single-precision arithmetic operations only Single and double-precision arithmetic operations

FPv5 FPv5-SP-D16-M FPv5-D16-M
B5-98 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B5 Floating-point Support
B5.2 About the Floating-point Status and Control Register (FPSCR)
B5.2 About the Floating-point Status and Control Register (FPSCR)
RVPRV The register map of the CP10 and CP11 system register space shows the location of the FPSCR:

IGJWP Software can use VMRS and VMSR instructions to access the FPSCR. The FPSCR holds configurable control fields to
control the Floating-point Extension, and also status information fields.

RFXBJ Execution of floating-point instructions that generate floating-point exceptions update the appropriate status fields
of FPSCR.

See also:
• The optional Floating-point Extension, FPv5 on page B5-98.
• In Chapter D2 Register Specification:

— FPSCR, Floating-point Status and Control Register on page D2-931. See this for the FPSCR field
descriptions.

Location Register Information

0b0000 Reserved All accesses are UNPREDICTABLE

0b0001 FPSCR -

0b0010-0b1111 Reserved All accesses are UNPREDICTABLE
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B5-99
ID072816 Non-Confidential - Beta

B5 Floating-point Support
B5.3 Registers for floating-point data processing, S0-S31 or D0-D15
B5.3 Registers for floating-point data processing, S0-S31 or D0-D15
RTWCB Software can view the registers that FPv5 adds for floating-point processing as either:

• 32 single-precision registers, S0-S31.
• 16 double-precision registers, D0-D15.

These map as follows:

RXWJQ After a reset, the values of S0-S31 or D0-D15 are UNKNOWN.

See also:
• The optional Floating-point Extension, FPv5 on page B5-98.
• Exception handling on page B4-63.

D0-D15

S0
S1
S2
S3
S4
S5
S6
S7

S28
S29
S30
S31

S0-S31

D0

D1

D2

D3

D14

D15
B5-100 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B5 Floating-point Support
B5.4 Floating-point standards and terminology
B5.4 Floating-point standards and terminology
IXNMN There are two editions of the IEEE 754 standard:

• IEEE 754-1985.
• IEEE 754-2008.

In this specification, references to IEEE 754 that do not include the year apply to either edition.

IMQFS The floating-point terminology that this specification uses differs from that used in IEEE 754-2008 as follows:

IBGPN The following is called ARM standard floating-point operation:

• IEEE 754-2008 plus the following FPSCR configuration:
— Flush-to-zero mode enabled.
— Default NaN mode enabled.
— Round to Nearest mode selected.
— Alternative half-precision interpretation not selected.

See also:
• IEEE 754-2008, IEEE Standard for Floating-point Arithmetic, August 2008.
• The Flush-to-zero mode on page B5-106.
• The Default NaN mode, and NaN handling on page B5-107.
• Floating-point encoding formats, half-precision, single-precision, and double-precision on page B5-103.

This specification IEEE 754-2008

Normalized Normal

Denormal, or denormalized Subnormal

Round towards Minus Infinity (RM) roundTowardsNegative

Round towards Plus Infinity (RP) roundTowardsPositive

Round towards Zero (RZ) roundTowardZero

Round to Nearest (RN) roundTiesToEven

Round to Nearest with Ties to Away roundTiesToAway

Rounding mode Rounding-direction attribute
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B5-101
ID072816 Non-Confidential - Beta

B5 Floating-point Support
B5.5 Floating-point data representable
B5.5 Floating-point data representable
RFWXC FPv5 supports the following, as defined by IEEE 754:

• Normalized numbers.
• Denormalized numbers.
• Zeros, +0 and -0.
• Infinities, +∞ and -∞.
• NaNs, signaling NaN and quiet NaN.

See also:
• Floating-point standards and terminology on page B5-101.
• IEEE 754-2008, IEEE Standard for Floating-point Arithmetic, August 2008.
• Floating-point encoding formats, half-precision, single-precision, and double-precision on page B5-103.
B5-102 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B5 Floating-point Support
B5.6 Floating-point encoding formats, half-precision, single-precision, and double-precision
B5.6 Floating-point encoding formats, half-precision, single-precision, and
double-precision
RPHRC The half-precision, single-precision, and double-precision encoding formats defined by IEEE 754-2008 are used.

ILGTJ The half-precision encoding format defined by IEEE 754-2008 is:

ICWBP The single-precision encoding format defined by IEEE 754-2008 is:

IFVWV The double-precision encoding format defined by IEEE 754-2008 is:

RRWRW The interpretations of the IEEE 754-2008 half-precision, single-precision, and double-precision encoding formats
are as follows.

Half-precision
The interpretation depends on what software has set FPSCR.AHP to. It is either:
• The interpretation that IEEE 754-2008 defines.
• Alternative half-precision interpretation.

Single-precision
The interpretation is the interpretation that IEEE 754-2008 defines.

Double-precision
The interpretation is the interpretation that IEEE 754-2008 defines.

See the following table:

15 14 10 9 0

S E (biased
exponent) T (trailing significand field)

Sign bit

T (trailing significand field)S

31 30 23 22 0

E (biased exponent)

Sign bit

S

63 62 52 51 32 31 0

E
(biased exponent) T (trailing significand field)

Sign bit

E (biased exponent) T (trailing significand) S (Sign bit) MSB of Ta Value

Zero, for all formats. Non-zero - - A denormalized number

Zero 0 - Zero, +0

1 - Zero, -0

Zero < E < 0x1F, if half-precision format.
Zero < E < 0xFF, if single-precision format.
Zero < E < 0x7FF, if double-precision format.

- - - A normalized number
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B5-103
ID072816 Non-Confidential - Beta

B5 Floating-point Support
B5.6 Floating-point encoding formats, half-precision, single-precision, and double-precision
RDPHH The value of a normalized number is equal to:

Half-precision IEEE 754-2008 interpretation
(–1)S × 2(E–15) × (1.T)

Half-precision alternative half-precision interpretation
(–1)S × 216 × (1.T)

Single-precision
(–1)S × 2(E–127) × (1.T)

Double-precision
(–1)S × 2(E–1023) × (1.T)

IMHVP The value of a denormalized number is equal to:

Half-precision
(–1)S × 2-14 × (0.T)

Single-precision
(–1)S × 2-126 × (0.T)

Double-precision
(–1)S × 2–1022) × (0.T)

IGBBJ Denormalized numbers can be flushed to zero. FPv5 provides a Flush-to-zero mode that software can enable.

See also:
• IEEE 754-2008, IEEE Standard for Floating-point Arithmetic, August 2008.
• Floating-point data representable on page B5-102.

0x1F, if half-precision format, IEEE
interpretation.
0xFF, if single-precision format.
0x7FF, if double-precision format.

Non-zero - 0 A signaling NaN

- 1 A quiet Nan

Zero 0 - Infinity, +∞

1 - Infinity, -∞

0x1F, if half-precision, alternative
half-precision interpretation.

- - - A normalized number

a. MSB = most significant bit.

E (biased exponent) T (trailing significand) S (Sign bit) MSB of Ta Value
B5-104 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B5 Floating-point Support
B5.7 The IEEE 754 floating-point exceptions
B5.7 The IEEE 754 floating-point exceptions
RBCCL The IEEE 754 floating-point exceptions are:

Invalid Operation
This exception is as IEEE 754-2008 (7.2) describes.

Division by zero
This exception is as IEEE 754-2008 (7.3) describes, with the following assumption:

• For the reciprocal and reciprocal square root estimate functions the dividend is assumed to be
+1.0.

Overflow
This exception is as IEEE 754-2008 (7.4) describes.

Underflow
This exception is as IEEE 754-2008 (7.5) describes, with the additional clarification that:

• Assessing whether a result is tiny and non-zero is done before rounding.

Inexact
This exception is as IEEE 754-2008 (7.6) describes.

IJCWS The criteria for the Underflow exception to be generated are different in Flush-to-zero mode.

INFHK The corresponding status flags for the IEEE 754 floating-point exceptions are FPSCR.{IOC, DZC, OFC, UFC,
IXC}.

See also:
• The Flush-to-zero mode on page B5-106.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B5-105
ID072816 Non-Confidential - Beta

B5 Floating-point Support
B5.8 The Flush-to-zero mode
B5.8 The Flush-to-zero mode
IXGFP Software can enable Flush-to-zero mode by setting FPSCR.FZ to 1.

IWMKJ Using Flush-to-zero mode is a deviation from IEEE 754.

RJQHX Half-precision floating-point numbers are exempt from Flush-to-zero mode.

RVJSF When Flush-to-zero mode is enabled, all single-precision denormalized inputs and double-precision denormalized
inputs to floating-point operations are treated as though they are zero. They are said to be flushed to zero.

RKBJJ When an input to a floating-point operation is flushed to zero, the PE generates an Input Denormal exception.

RSBCK Input Denormal exceptions are only generated in Flush-to-zero mode.

RWJDM When Flush-to-zero mode is enabled, the sequence of events for an input to a floating-point operation is:

1. Flush to zero processing takes place. If appropriate, the input is flushed to zero and the PE generates an Input
Denormal exception.

2. Tests for the generation of any other floating-point exceptions are done after flush to zero processing.

RPHPT When Flush-to-zero mode is enabled, the result of a floating-point operation is treated as if it is zero if, before
rounding, it satisfies the condition:

0 < Abs(result) < MinNorm, where:
• MinNorm is 2-126 for single-precision.
• MinNorm is 2-1022 for double-precision.

The result is said to be flushed to zero.

RQPQF When the result of a floating-point operation is flushed to zero, the PE generates an Underflow exception.

RTPVD In Flush-to-zero mode, the PE generates Underflow exceptions only when a result is flushed to zero. The is different
criteria than when Flush-to-zero mode is disabled.

RRTPH When a floating-point number is flushed to zero, the sign is preserved. That is, the sign bit of the zero matches the
sign bit of the number being flushed to zero.

RRWRT The PE does not generate an Inexact exception when a floating-point number is flushed to zero.

ISQCJ The corresponding status flag for the Input Denormal exception is FPSCR.IDC.

See also:
• The IEEE 754 floating-point exceptions on page B5-105.
B5-106 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B5 Floating-point Support
B5.9 The Default NaN mode, and NaN handling
B5.9 The Default NaN mode, and NaN handling
IFGPN Software can enable Default NaN mode by setting FPSCR.DN to 1.

IDJVH Using Default NaN mode is a deviation from IEEE 754.

RQMQC When Default NaN mode is enabled, the Default NaN is the result of both:

• All floating-point operations that produce an untrapped Invalid Operation exception.

• All floating-point operations whose inputs include at least one quiet NaN but no signaling NaNs.

RNPRL IEEE 754 specifies that:

• An operation that produces an untrapped Invalid Operation exception returns a quiet NaN as its result.

When Default NaN mode is disabled, behavior complies with this and adds:

• If the Invalid Operation exception was generated because one of the inputs to the operation was a signaling
NaN, the quiet NaN result is equal to the first signaling NaN input with its most significant bit set to 1.

• The quiet NaN result is the Default NaN otherwise.

The first signaling NaN input means the first argument, in the left-to-right ordering of arguments, that is passed to
the pseudocode function describing the operation.

RVCSB IEEE 754 specifies that:

• An operation using a quiet NaN as an input, but no signaling NaNs as inputs, returns one of its quiet NaN
inputs as its result.

When Default NaN mode is disabled, behavior complies with this and adds:

• The quiet NaN result is the first quiet NaN input.

The first quiet NaN input means the first argument, in the left-to-right ordering of arguments, that is passed to the
pseudocode function describing the operation.

ILXLF Depending on the floating-point operation, the exact value of a quiet NaN result might differ in both sign and the
number of T bits from its source.

See also:
• The Default NaN on page B5-108.
• Floating-point encoding formats, half-precision, single-precision, and double-precision on page B5-103.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B5-107
ID072816 Non-Confidential - Beta

B5 Floating-point Support
B5.10 The Default NaN
B5.10 The Default NaN
RFQFG The Default NaN is:

See also:
• Floating-point encoding formats, half-precision, single-precision, and double-precision on page B5-103.
• The Default NaN mode, and NaN handling on page B5-107.

Field Half-precision, IEEE 754-2008 interpretation Single-precision Double-precision

S 0 0 0

E 0x1F 0xFF 0x7FF

T Bit[9] == 1, bits[8:0] == 0 bit[22] == 1, bits[21:0} == 0 bit[51] == 1, bits[50:0] == 0
B5-108 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B5 Floating-point Support
B5.11 Combinations of floating-point exceptions
B5.11 Combinations of floating-point exceptions
IBTTH In compliance with IEEE 754:

• An Inexact floating-point exception can occur with an Overflow floating-point exception.
• An Inexact floating-point exception can occur with an Underflow floating-point exception.

RLFVH An Input Denormal exception can occur with other floating-point exceptions.

See also:
• The IEEE 754 floating-point exceptions on page B5-105.
• The Flush-to-zero mode on page B5-106.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B5-109
ID072816 Non-Confidential - Beta

B5 Floating-point Support
B5.12 Priority of floating-point exceptions relative to other floating-point exceptions
B5.12 Priority of floating-point exceptions relative to other floating-point exceptions
RPLHJ Some floating-point instructions specify more than one floating-point operation. In these cases, an exception on one

operation is higher priority than an exception on another operation when generation of the second exception depends
on the result of the first operation. Otherwise, it is UNPREDICTABLE which exception is higher priority.

See also:
• The IEEE 754 floating-point exceptions on page B5-105.
B5-110 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

Chapter B6
Memory Model

This chapter specifies the ARMv8-M memory model architecture rules. It contains the following sections:
• Memory accesses on page B6-113.
• Address space on page B6-114.
• Endianness on page B6-115.
• Alignment behavior on page B6-117.
• Atomicity on page B6-118.
• Concurrent modification and execution of instructions on page B6-119.
• Observability and completion of memory accesses on page B6-120
• Ordering requirements for memory accesses on page B6-122
• Ordering of implicit memory accesses on page B6-123.
• Ordering of explicit memory accesses on page B6-124.
• Memory barriers on page B6-125.
• Shareability domains on page B6-128.
• Shareability attributes on page B6-129.
• Normal memory on page B6-130.
• Device memory on page B6-131.
• Device memory attributes on page B6-132.
• Memory access restrictions on page B6-135
• Mismatched memory attributes on page B6-136
• Load-Exclusive and Store-Exclusive accesses to Normal memory on page B6-138.
• Load-Acquire and Store-Release accesses to memory on page B6-139.
• Caches on page B6-141.
• Behavior of Preload Data (PLD) and Preload Instruction (PLI) instructions with caches on page B6-144.
• Branch predictors on page B6-145.
• Cache maintenance operations on page B6-146.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B6-111
ID072816 Non-Confidential - Beta

B6 Memory Model

• Branch predictor maintenance operations on page B6-149.
B6-112 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B6 Memory Model
B6.1 Memory accesses
B6.1 Memory accesses
ISHWD The following terms are used in describing memory accesses:

Explicit access
A read from memory, or a write to memory, generated by a load or store instruction that is executed by
the PE.

Implicit access
An access that is not explicit.

Direct access
A read or write of a System register that is performed by a System register access instruction.

Indirect access
A read or write of a System register that is not a direct access.
For example, an indirect write to a register might occur as the side-effect of executing an instruction that
does not perform a direct write to the register, or because of some operation that is performed by an
external agent.

IXRDS The memory accesses that are referred to in describing the memory model are instruction fetches from memory and
load or store data accesses.

RLKQN The instruction operation uses the MemA[] or MemU[] helper functions. If the Main Extension is not implemented
unaligned accesses using the MemU[] helper functions generate an alignment fault.

RBFNF A memory access is governed by whether the access is a read or write, its address alignment, data endianness, and
memory attributes.

See also:
• Ordering of implicit memory accesses on page B6-123.
• Ordering of explicit memory accesses on page B6-124.
• Normal memory on page B6-130.
• Device memory on page B6-131.
• Memory access restrictions on page B6-135
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B6-113
ID072816 Non-Confidential - Beta

B6 Memory Model
B6.2 Address space
B6.2 Address space
RFFMK The address space is a single, flat address space of 232 bytes.

RSNPV In the address space, byte addresses are unsigned numbers in the range 0-232-1.

RRGBT If an address calculation overflows or underflows the address space, it wraps around. Address calculations are
modulo 232.

IJTKM Normal sequential execution cannot overflow the top of the address space, because the top of memory always has
the Execute Never (XN) memory attribute.

RBPMP LDC, LDM, LDRD, POP, PUSH, STC, STRD, STM, VLDM, VPOP, VPUSH, VSTM, VLDR.64, and VSTR.64 instructions access a sequence
of words at increasing memory addresses, effectively incrementing the address by 4 for each load or store. If this
calculation overflows the top of the address space, the result is UNPREDICTABLE.

See also:
• In Chapter B8 The System Address Map:

— System address map on page B8-164.
B6-114 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B6 Memory Model
B6.3 Endianness
B6.3 Endianness
ICTVV In memory:

• The following figures show the relationship between:

— The word at address A.

— The halfwords at addresses A and A+2.

— The bytes at addresses A, A+1, A+2, and A+3.

RJJQL Instruction fetches are always little-endian, which means that the PE assumes a little-endian arrangement of
instructions in memory.

RMNSB All accesses to the Private Peripheral Bus (PPB) are always little-endian, which means that the PE assumes a
little-endian arrangement of the PPB registers.

RTFKG The endianness of data accesses is IMPLEMENTATION DEFINED, as indicated by AIRCR.ENDIANNESS.

RKPCF AIRCR.ENDIANNESS is either:
• Implemented with a static value.
• Configured by a hardware input on reset.

Data arranged in a big-endian format

Data arranged in a little-endian format

Byte at address A Byte at address A+1 Byte at address A+2 Byte at address A+3

Halfword at address A Halfword at address A+2

Word at address A

Byte at address AByte at address A+1Byte at address A+2Byte at address A+3

Halfword at address AHalfword at address A+2

Word at address A

Most significant byte Least significant byte

Most significant byte Least significant byte

Most significant bit
Least significant bit

Most significant bit
Least significant bit

31 24 23 16 15 8 7 0

31 24 23 16 15 8 7 0

Byte at address A+2Byte at address A+3Byte at address AByte at address A+1

T32 instruction, hw2T32 instruction, hw1

15 8 7 0 15 8 7 0
Instruction alignment and byte ordering
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B6-115
ID072816 Non-Confidential - Beta

B6 Memory Model
B6.3 Endianness
RQHWC For data accesses, the following table shows the data element size that endianness applies to, for endianness
conversion purposes.

RXNVS The following instructions change the endianness of data that is loaded or stored:

REV Reverse word (four bytes) register, for transforming 32-bit representations.

REVSH Reverse halfword and sign extend, for transforming signed 16-bit representations.

REV16 Reverse packed halfwords in a register for transforming unsigned 16-bit representations.

Instruction class Instructions Element size

Load or store byte LDR{S}B{T}, LDAB, LDAEXB, STLB, STLEXB, STRB{T}, TBB, LDREXB, STREXB Byte

Load or store halfword LDR{S}H{T}, LDAH, LDAEXH, STLH, STLEXH, and STRH{T}, TBH, LDREXH,
STREXH

Halfword

Load or store word LDR{T}, LDA, LDAEX, STL, STLEX, and STR{T}, LDREX, STREX, VLDR.F32,
VSTR.F32

Word

Load or store two words LDRD, STRD, VLDR.F64, VSTR.F64 Word

Load or store multiple words LDM{IA,DB}, STM{IA,DB}, PUSH, POP, LDC, STC, VLDM, VSTM, VPUSH, VPOP,
BLX, BLXNS, BX, BXNS, VLLDM, VLSTM.

Word
B6-116 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B6 Memory Model
B6.4 Alignment behavior
B6.4 Alignment behavior
RLKGV All instruction fetches must be halfword-aligned.

RGHRX The following are unaligned data accesses that always generate an alignment fault:
• Non halfword-aligned LDREXH, LDAEXH, STLEXH, and STREXH.
• Non word-aligned LDREX, LDAEX, STLEX, and STREX.
• Non word-aligned LDR (literal), LDRD, LDMIA, LDMDB, POP, LDC, VLDR, VLDM, and VPOP.
• Non word-aligned STMIA, STMDB, PUSH, STC, VSTR, VSTM, VPUSH, VLLDM, and VLSTM.

RMHCM If CCR.UNALIGN_TRP is set to 1, the following are unaligned data accesses that generate an alignment fault:
• Non halfword-aligned LDR{S}H{T}, LDAH, STLH, and STRH{T}.
• Non halfword-aligned TBH.
• Non word-aligned LDR{T}, LDA, STL, and STR{T}.

RTRNR Unaligned accesses are only supported if the Main Extension is implemented. If the Main Extension is not
implemented unaligned access generate an alignment fault.

RWCVX Accesses to Device memory are always aligned.

See also:
• Normal memory on page B6-130.
• Device memory on page B6-131.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B6-117
ID072816 Non-Confidential - Beta

B6 Memory Model
B6.5 Atomicity
B6.5 Atomicity
There are two types of atomicity:

• Single-copy atomicity.

• Multi-copy atomicity.

B6.5.1 Single-copy atomicity

INWVK Store operations are single-copy atomic if, when they overlap bytes in memory:

1. All of the writes from one of the stores are inserted into the coherence order of each overlapping byte.

2. All of the writes from another of the stores are inserted into the coherence order of each overlapping byte.

3. Step 2 repeats, for each single-copy store atomic operation that overlaps.

RBSHJ The following data accesses are single-copy atomic:
• All byte accesses.
• All halfword accesses to halfword-aligned locations.
• All word accesses to word-aligned locations.

RQNPX Instruction fetches are single-copy atomic at halfword granularity.

RMXWC For instructions that access a sequence of word-aligned words, each word access is single-copy atomic.

RLKPM For instructions that access a sequence of word-aligned words, the architecture does not require two or more
subsequent word accesses to be single-copy atomic.

B6.5.2 Multi-copy atomicity

IBCHK In a multiprocessing environment, writes to memory are multi-copy atomic if all of the following are true:

• All writes to the same location are observed in the same order by all observers, although some of the
observers might not observe all of the writes.

• A read of a location does not return the value of a write to that location until all observers have observed that
write.
B6-118 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B6 Memory Model
B6.6 Concurrent modification and execution of instructions
B6.6 Concurrent modification and execution of instructions
ITFGC The ARMv8 architecture limits the set of instructions that can be executed by one thread of execution as they are

being modified by another thread of execution without requiring explicit synchronization.

RKMZG The hw1 of a 32-bit BL immediate instruction can be concurrently modified to the most significant halfword of
another BL immediate instruction.

RPWJF The hw1 of a 32-bit BLX immediate instruction can be concurrently modified to the most significant halfword of
another BLX immediate instruction.

RHKGP The hw1 of a 32-bit BL immediate or BLX immediate instruction can be concurrently modified to a 16-bit B, BL, BLX,
BKPT, or SVC instruction. This modification also works in reverse.

RFGBT The hw2 of a 32-bit BL immediate instruction can be concurrently modified to the least significant halfword of
another BL instruction with a different immediate.

RYMPR The hw2 of a 32-bit BLX immediate instruction can be concurrently modified to the least significant halfword of
another BLX immediate instruction with a different immediate.

RNTVD The hw2 of a 32-bit B immediate instruction with a condition field can be concurrently modified to the least
significant halfword of another 32-bit B immediate instruction with a condition field with a different immediate.

RCMZX The hw2 of a 32-bit B immediate instruction without a condition field can be concurrently modified to the least
significant halfword of another 32-bit B immediate instruction without a condition field.

See also:
• Endianness on page B6-115.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B6-119
ID072816 Non-Confidential - Beta

B6 Memory Model
B6.7 Observability and completion of memory accesses
B6.7 Observability and completion of memory accesses
IJWBJ An observer is a master in the system that is capable of observing memory accesses.

RPNDH For a PE, the following mechanisms must be treated as independent observers:

• The mechanism that performs reads from or writes to memory.

• A mechanism that causes an instruction cache to be filled from memory or that fetches instructions to be
executed directly from memory. These accesses are treated as reads.

RDVFW The set of observers that can observe a memory access is defined by the system.

IVSCK In the context of observability, subsequent means whichever of the following descriptions are appropriate:

• After the point in time where the location is observed by the observer.

• After the point in time where the location is globally observed.

IJFNN A write to a location in memory is said to be observed by an observer when:

• A subsequent read of the location by the same observer returns the value that was written by the observed
write or written by a write to that location by any observer that is sequenced in the coherence order of the
location after the observed write.

• A subsequent write of the location by the same observer is sequenced in the coherence order of the location
after the observed write.

In addition, for Device-nGnRnE memory, a write to a memory-mapped location in a peripheral that exhibits
side-effects can only be said to be observed by an observer if it meets the general condition and:

• The write can begin to affect the state of the memory-mapped peripheral.

• The write can trigger all associated side-effects.

IMMQJ A write to a location in memory is said to be globally observed for a Shareability domain or set of observers when:

• A subsequent read of the location by any observer in that Shareability domain that is capable of observing
the write returns the value that is written by the globally observed write or by a write to that location by any
observer that is sequenced in the coherence order of the location after the globally observed write.

• A subsequent write to the location by any observer in that Shareability domain is sequenced in the coherence
order of the location after the globally observed write.

In addition, for Device-nGnRnE memory, a write to a memory-mapped location in a peripheral that exhibits
side-effects can only be said to be globally observed for a Shareability domain if it meets the general condition and:

• The write can begin to affect the state of the memory-mapped peripheral.

• The write can trigger all associated side-effects.

IXQHX A read of a location in memory is said to be observed by an observer when a subsequent write to the location by the
same observer has no effect on the value that is returned by the read.

For Device-nGnRnE memory, a read from a memory-mapped location in a peripheral that exhibits side-effects can
only be said to be observed by an observer if it meets the general condition and:

• The read can begin to affect the state of the memory-mapped peripheral.

• The read can trigger all associated side-effects.

IGCXK A read of a location in memory is said to be globally observed for a Shareability domain when a subsequent write
to the location by any observer in that Shareability domain that is capable of observing the write has no effect on
the value that is returned by the read.

For Device-nGnRnE memory, a read from a memory-mapped location in a peripheral that exhibits side-effects can
only be said to be globally observed for a Shareability domain if it meets the general condition and:

• The read can begin to affect the state of the memory-mapped peripheral.

• The read can trigger all associated side-effects.

RXCTL A read or write is complete for a Shareability domain when the following conditions are true:

• The read or write is globally observed for that Shareability domain.
B6-120 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B6 Memory Model
B6.7 Observability and completion of memory accesses
• All instruction fetches by observers within the Shareability domain have observed the read or write.

RWCMQ A cache or branch predictor maintenance instruction is complete for a Shareability domain when the effects of the
instruction are globally observed for that Shareability domain.

RSFLM The completion of a memory access in Device-nGnRnE or Device-nGnRE memory does not guarantee the visibility
of the side-effects of the access to all observers. The mechanism that ensures such visibility is IMPLEMENTATION
DEFINED.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B6-121
ID072816 Non-Confidential - Beta

B6 Memory Model
B6.8 Ordering requirements for memory accesses
B6.8 Ordering requirements for memory accesses
RRBDL ARMv8-M defines access restrictions in the permitted ordering of memory accesses. These restrictions depend on

the memory attributes of the accesses involved.

IMKMJ Speculative writes are all of:

• Writes generated by store instructions that appear in the Execution stream after a branch that is not
architecturally resolved.

• Writes generated by store instructions that appear in the Execution stream after an instruction where a
synchronous exception condition has not been architecturally resolved.

• Writes generated by conditional store instructions for which the conditions for the instruction have not been
architecturally resolved.

• Writes generated by store instructions for which the data being written comes from a register that has not been
architecturally committed.

ISFRC An instruction is architecturally executed only if it would be executed in a simple sequential execution of the
program. When such an instruction has been executed and retired it has been architecturally executed.

Any instruction that, in a simple sequential execution of a program, is treated as a NOP because it fails its condition
code check is architecturally executed. In a PE that performs speculative execution, an instruction is not
architecturally executed if the PE discards the results of a speculative execution.

RGJDH For all accesses to all memory types, the only stores by an observer that can be observed by another observer are
those stores that have been architecturally executed. Speculative writes by an observer cannot be observed by
another observer.

RRXPL Reads and writes can be observed in any order provided that, if an address dependency exists between two reads or
between a read and a write, then those memory accesses are observed in program order by all observers within the
common Shareability domain of the memory addresses being accessed.

IBHBH A single peripheral is a region of memory of an IMPLEMENTATION DEFINED size that is defined by the peripheral.

RVMHG For Device memory with the non-Reordering attribute, memory accesses arrive at a single peripheral in program
order.

RWGCF Memory accesses caused by instruction fetches are not required to be observed in program order, unless they are
separated by a context synchronization operation.

ICGFQ A register data dependency exists between a first data value and a second data value when either:

• The register that is used to hold the first data value is used in the calculation of the second data value, and the
calculation between the first data value and the second data value does not consist of either:

— A conditional branch whose condition is determined by the first data value.

— A conditional selection, move, or computation whose condition is determined by the first data value,
where the input data values for the selection, move, or computation do not have a data dependency on
the first data value.

• There is a register data dependency between the first data value and a third data value, and between the third
data value and the second data value.

RRJMK A register data dependency between the value that is returned by a load instruction and the address that is used by
a subsequent memory transaction creates order between that load instruction and the subsequent memory
transaction.
B6-122 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B6 Memory Model
B6.9 Ordering of implicit memory accesses
B6.9 Ordering of implicit memory accesses
RKPFC There are no ordering requirements for implicit accesses to any type of memory.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B6-123
ID072816 Non-Confidential - Beta

B6 Memory Model
B6.10 Ordering of explicit memory accesses
B6.10 Ordering of explicit memory accesses
IQVDF Other sections in this document also define requirements that apply to the ordering of direct memory accesses. See

the list of sections at the end of this section.

ITCTD Terms used:

Address dependency
An address dependency exists when the value returned by a read is used to compute the address of a
subsequent access. An address dependency exists even if the value returned by the first read does not
change the address of the second read or write.

Control dependency
A control dependency exists when the data value returned by a read access is used to determine the
condition flags, and the values of the flags are used to determine the address of a subsequent read access.
This address determination might be through conditional execution, or through the evaluation of a
branch.

Coherent
Data accesses from a set of observers to a byte in memory are coherent if accesses to that byte by the
members of the set are consistent with there being a single total order of all writes to that byte by all
members of the set.

RJSCJ For Non-shareable memory, hardware is not required to make direct data accesses by different observers coherent.
If a number of observers share the memory, software must use cache maintenance instructions if the presence of
caches might lead to coherency issues. This cache maintenance requirement is in addition to the barrier operations
that are required to ensure memory ordering.

RWFMV Accesses to a shareable memory location must be coherent within the Shareability domain of that location.

RBMNM For all of memory, for accesses from a single observer, the requirements of uniprocessor semantics must be
maintained, for example respecting dependencies between instructions in a single PE.

RQHCT For all memory, if there is an address dependency between two direct accesses, the two accesses are observed in
program order by any observer in the common Shareability domain of the two accesses.

RWTRP For all memory, if there is a control dependency between a direct read and a subsequent direct write, the two
accesses are observed in program order by any observer in the common Shareability domain of the two accesses.

RXGNP For all memory, if the value returned by a direct read is used to compute data that is written by a subsequent direct
write, the two accesses are observed in program order by any observer in the common Shareability domain of the
two accesses.

RMBNW It is impossible for an observer to observe a write from a store that both:
• Has not been executed.
• Will not be executed.

For example if the store exists in a simple sequential execution of the program, but the PE takes a branch before the
store.

See also:
• Memory accesses on page B6-113.
• Normal memory on page B6-130.
• Device memory on page B6-131.
• Device memory attributes on page B6-132.
• Shareability domains on page B6-128.
• Shareability attributes on page B6-129.
B6-124 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B6 Memory Model
B6.11 Memory barriers
B6.11 Memory barriers
RWRCT The ARM architecture supports out-of-order completion of instructions.

INSFS Memory barrier is the general term that is applied to an instruction, or sequence of instructions, that forces
synchronization events by a PE regarding retiring Load/Store instructions.

RGKDW ARMv8 supports the following memory barriers:

• Instruction Synchronization Barrier (ISB).

• Data Memory Barrier (DMB).

• Data Synchronization Barrier (DSB).

B6.11.1 Instruction Synchronization Barrier

RTRJR An ISB instruction flushes the pipeline in the PE, so that all instructions that come after the ISB instruction in
program order are fetched from the cache or memory only after the ISB instruction has completed.

See also:
• InstructionSynchronizationBarrier().
• Context Synchronization Operation on page B4-95.

B6.11.2 Data Memory Barrier

IKFWQ The PE that executes a DMB instruction is referred to as the executing PE.

RLQXF A DMB memory barrier affects reads and writes to the memory system that are generated by Load/Store instructions
and data or unified cache maintenance instructions that are executed by the PE. Instruction fetches are not explicit
accesses.

RMPSG The required Shareability is Full system and applies to all observers in the Shareability domain.

RHFTX A DMB that is intended to ensure the completion of cache maintenance instructions must have an access type of both
loads and stores.

RWMRT A DMB instruction creates two groups of memory accesses, Group A and Group B, and does not affect memory
accesses that are in not in Group A or Group B:

Group A Contains:

• All explicit memory accesses of the required access types from observers in the same
Shareability domain as PEe that are observed by PEe before the DMB instruction.

• All loads of required access types from an observer PEx in the same required Shareability domain
as PEe that have been observed by any given different observer, PEy, in the same required
Shareability domain as PEe before PEy has performed a memory access that is a member of
Group A.

Group B Contains:

• All explicit memory accesses of the required access types by PEe that occur in program order
after the DMB instruction.

• All explicit memory accesses of the required access types by any given observer PEx in the same
required Shareability domain as PEe that can only occur after a load by PEx has returned the
result of a store that is a member of Group B.

Any observer with the same required Shareability domain as PEe observes all members of Group A before it
observes any member of Group B to the extent that those group members are required to be observed, as determined
by the Shareability and Cacheability of the memory addresses accessed by the group members.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B6-125
ID072816 Non-Confidential - Beta

B6 Memory Model
B6.11 Memory barriers
If members of Group A and members of Group B access the same memory-mapped peripheral of arbitrary
system-defined size, then members of Group A that are accessing Device or Normal Non-cacheable memory arrive
at that peripheral before members of Group B that are accessing Device or Normal Non-cacheable memory. Where
the members of Group A and Group B that must be ordered are from the same PE, a DMB provides for this guarantee.

See also:
• DataMemoryBarrier().

B6.11.3 Data Synchronization Barrier

ICNFG The DSB is a memory barrier that synchronizes the execution stream with memory accesses.

RNKWJ The required Shareability is Full system and applies to all observers in the Shareability domain.

RXTKW The PE that executes a DSB instruction is referred to as the executing PE.

RVLBF A DSB instruction creates two groups of memory accesses, Group A and Group B, and does not affect memory
accesses that are in not in Group A or Group B:

Group A Contains:

• All explicit memory accesses of the required access types from observers in the same
Shareability domain as PEe that are observed by PEe before the DSB instruction.

• All loads of required access types from an observer PEx in the same required Shareability domain
as PEe that have been observed by any given different observer, PEy, in the same required
Shareability domain as PEe before PEy has performed a memory access that is a member of
Group A.

Group B Contains:

• All explicit memory accesses of the required access types by PEe that occur in program order
after the DSB instruction.

• All explicit memory accesses of the required access types by any given observer PEx in the same
required Shareability domain as PEe that can only occur after a load by PEx has returned the
result of a store that is a member of Group B.

Any observer with the same required Shareability domain as PEe observes all members of Group A before it
observes any member of Group B to the extent that those group members are required to be observed, as determined
by the Shareability and Cacheability of the memory addresses accessed by the group members.

If members of Group A and members of Group B access the same memory-mapped peripheral of arbitrary
system-defined size, then members of Group A that are accessing Device or Normal Non-cacheable memory arrive
at that peripheral before members of Group B that are accessing Device or Normal Non-cacheable memory. Where
the members of Group A and Group B that must be ordered are from the same PE, a DSB provides for this guarantee.

RKMGH A DSB completes when all of the following conditions apply:

• All explicit memory accesses that are observed by PEe before the DSB is executed and are of the required
access types, and are from observers in the same required Shareability domain as PEe, are complete for the
set of observers in the required Shareability domain.

• If the required access types of the DSB is reads and writes, then all cache and branch predictor maintenance
instructions and all TLB maintenance instructions that are issued by PEe before the DSB are complete for the
required Shareability domain.

RKMBX No instruction that appears in program order after the DSB instruction can execute until the DSB completes.

RGLJV A DSB memory barrier affects reads and writes to the memory system that are generated by Load/Store instructions
and data or unified cache maintenance instructions that are executed by the PE. Instruction fetches are not explicit
accesses.
B6-126 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B6 Memory Model
B6.11 Memory barriers
See also:
• DataSynchronizationBarrier().
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B6-127
ID072816 Non-Confidential - Beta

B6 Memory Model
B6.12 Shareability domains
B6.12 Shareability domains
RJMHL A shareability domain must have one of the following names:

• Inner shareability domain.

• Outer shareability domain.

RMCPS All observers in an Inner Shareability domain are data coherent for data accesses to memory that has the
inner-shareable shareability attribute.

RSVCR All observers in an Outer Shareability domain are data coherent for data accesses to memory that has the
outer-shareable shareability attribute.

IXQWM The following diagram shows the shareability domains:

RJMFS Each observer is a member of only a single Inner Shareability domain.

RBNWH Each observer is a member of only a single Outer Shareability domain.

RFVBG All members of the same Inner Shareability domain are always members of the same Outer Shareability domain.

IDHJF An Inner Shareability domain is a subset of an Outer Shareability domain, although it is not required to be a proper
subset.

See also:
• Observability and completion of memory accesses on page B6-120.
• Shareability attributes on page B6-129.

Observer 8 Observer 9

Observer 4Observer 0

Observer 1

Inner Shareable

Outer Shareable

Observer 2

Observer 3

Inner Shareable

Observer 7

Observer 5

Observer 6

Inner Shareable

Outer Shareable

System
B6-128 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B6 Memory Model
B6.13 Shareability attributes
B6.13 Shareability attributes
RCJRF Each Normal cacheable memory region must be assigned one of the following Shareability attributes:

• Non-shareable.

• Inner-shareable.

• Outer-shareable.

RPDVV For Non-shareable memory, hardware is not required to make data accesses by different observers coherent. If a
number of observers share the memory, software must use cache maintenance instructions if the presence of caches
might lead to coherency issues. This cache maintenance requirement is in addition to the barrier operations that are
required to ensure memory ordering.

RXTVD All data accesses to Non-cacheable normal memory locations are data coherent to all observers, Non-cacheable
normal memory locations are always treated as Outer Shareable.

See also:
• Memory accesses on page B6-113.
• Normal memory on page B6-130.
• Device memory on page B6-131.
• Shareability domains on page B6-128.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B6-129
ID072816 Non-Confidential - Beta

B6 Memory Model
B6.14 Normal memory
B6.14 Normal memory
INVRF Memory locations that are idempotent have the following properties:

• Read accesses can be repeated with no side-effects.

• Repeated read accesses return the last value that is written to the resource being read.

• Read accesses can fetch additional memory locations with no side-effects.

• Write accesses can be repeated with no side-effects, if the contents of the location that is accessed are
unchanged between the repeated writes or as the result of an exception.

• Unaligned accesses can be supported.

• Accesses can be merged before accessing the target memory system.

RRYTG Normal memory is a memory type that is assigned to regions of memory that are idempotent.

RCGJX Normal memory can be marked as Cacheable or Non-cacheable. Normal memory must be assigned Cacheability
attributes.

RLCPJ Normal Non-cacheable memory is always treated as shareable.

RPKXL Speculative data accesses to Normal memory are permitted

RGJGP Writes to Normal memory are not required to be multi-copy atomic.

RWLVR A write to Normal memory completes in finite time.

RWLCV A write to a Non-cacheable Normal memory location must reach the endpoint for that location in the memory
system in finite time.

RMJWF A completed write to Normal memory is globally observed for the Shareability domain in finite time without the
need for cache maintenance instructions or barriers.

RNHFQ For multi-register Load/Store instructions that access Normal memory, the architecture does not define the order in
which the registers are accessed.

RCFHV There is no requirement for the memory system beyond the PE to be able to identify the size of the elements
accessed.

See also:
• Memory accesses on page B6-113.
• Shareability domains on page B6-128.
• Load-Exclusive and Store-Exclusive accesses to Normal memory on page B6-138.
• MAIR_ATTR, Memory Attribute Indirection Register Attributes on page D2-1013
B6-130 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B6 Memory Model
B6.15 Device memory
B6.15 Device memory
RWJKQ Device memory is a memory type that is assigned to regions of memory where accesses can have side effects, for

example where the value returned for a read access can vary depending on the number of read accesses performed.

RWTZL Device memory is not cacheable.

RLDDN Device memory is always treated as shareable.

RPQXS Speculative data accesses to Device memory are not permitted. However, for instructions that access a sequence of
word-aligned words, the accesses might occur multiple times, for example if the PE takes an interrupt during
execution of the instruction and the instruction restarts after the interrupt.

RNLHC Hardware does not prevent speculative instruction fetches to Device memory unless the location is marked as
Execute-never for all Exception levels.

RCSKG Any unaligned access to Device memory generates an UNALIGNED UsageFault exception.

RYMTK Device memory must be assigned a combination of Device memory attributes.

RLBGB Writes to Device memory with the Gathering attribute are not required to be multi-copy atomic.

RWHJR For Device memory with the non-Gathering attribute, writes that are single-copy atomic are also multi-copy atomic.

RLFTG A write to Device memory completes in finite time.

RFSCD A write to a Device memory location must reach the endpoint for that location in the memory system in finite time.

RGTTQ A completed write to a Device memory location is globally observed for the Shareability domain in finite time
without the need for cache maintenance instructions or barriers.

RXMCH If the content of a Device memory location changes without a direct write, for example a change in a peripheral
location that holds status information, the change must be observed for the Shareability domain in finite time.

RKJHG For an instruction fetch from Device memory, if a branch causes the program counter to point to an area of memory
that is not marked as Execute-never for the current Exception level, the implementation can either:
• Treat the fetch as if it is to a location in Normal non-cacheable memory.
• Take a Permission fault.

RDFJX There is no requirement for the memory system beyond the PE to be able to identify the size of the elements that
are accessed, for instructions that load the following from Device memory:
• More than one general-purpose register.
• One or more registers from the floating-point register file.

RKVHT For an LDM, STM, LDRD, or STRD instruction with a register list that includes the PC, the architecture does not define
the order in which the registers are accessed.

RSFPK For a LDM, STM, VLDM, or VSTM instruction with a register list that does not include the PC, all registers are accessed in
the order that they appear in the register list, for Device memory with the non-Reordering attribute.

See also:
• Memory accesses on page B6-113.
• Shareability attributes on page B6-129.
• Device memory attributes on page B6-132.
• Shareability domains on page B6-128.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B6-131
ID072816 Non-Confidential - Beta

B6 Memory Model
B6.16 Device memory attributes
B6.16 Device memory attributes
RVNSJ Each Device memory region must be assigned a combination of Device memory attributes. The attributes are:

Gathering, G and nG
The Gathering and non-Gathering attributes.

Reordering, R and nR
The Reordering and non-Reordering attributes.

Early Write Acknowledgement, E and nE
The Early Write Acknowledgement and no Early Write Acknowledgement attributes.

RCFFC Each Device memory region must be assigned one of the combinations that the following table shows:

ISJBD Device-nGnRnE is the most constrained, so it is the strongest. Device-GRE is the least constrained, so it is the
weakest. Going down the table, the combinations are described as getting weaker.

RLJKD Weaker memory can be accessed according to the rules specified for stronger memory:

• Memory with the:

— G attribute can be accessed according to the rules specified for the nG attribute.

— nG attribute cannot be accessed according to the rules specified for the G attribute.

• Memory with the:

— R attribute can be accessed according to the rules specified for the nR attribute.

— nR attribute cannot be accessed according to the rules specified for the R attribute.

Because the nE attribute is a hint:

• An implementation is permitted to perform an access with the E attribute in a manner consistent with the
requirements specified by the nE attribute.

• An implementation is permitted to perform an access with the nE attribute in a manner consistent with the
relaxations allowed by the E attribute.

RFJXX For Device-GRE and Device-nGRE memory, the use of barriers is required to order accesses.

See also:
• Gathering and non-Gathering Device memory attributes.
• Reordering and non-Reordering Device memory attributes on page B6-133.
• Early Write Acknowledgement and no Early Write Acknowledgement Device memory attributes on

page B6-133.
• Device memory on page B6-131.

B6.16.1 Gathering and non-Gathering Device memory attributes

Name nG nR nE G R E

Device-nGnRnE Y Y Y - - -

Device-nGnRE Y Y - - - Y

Device-nGRE Y - - - Y Y

Device-GRE - - - Y Y Y
B6-132 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B6 Memory Model
B6.16 Device memory attributes
G attribute

RDBSX If multiple accesses of the same type, read or write, are to:
• The same location, with the G attribute, they can be merged into a single transaction.
• Different locations, all with the G attribute, they can be merged into a single transaction.

RKCMX Gathering of accesses that are separated by a memory barrier is not permitted.

RJSRD Gathering of accesses that are generated by a Load-Acquire/Store-Release is not permitted.

RMGKJ A read can come from intermediate buffering of a previous write, provided that:

• The accesses are not separated by a DMB or DSB barrier.

• The accesses are not separated by any other ordering construction that requires that the accesses are in order,
for example a combination of Load-Acquire and Store-Release.

• The accesses are not generated by a Store-Release instruction.

ISRDS The architecture only defines programmer visible behavior. Therefore, if a programmer cannot tell whether
gathering has occurred, gathering can be performed.

nG attribute

RGVTF Multiple accesses cannot be merged into a single transaction.

RBTWD A read cannot come from a cache or a buffer, but must come from the endpoint for that address in the memory
system.

B6.16.2 Reordering and non-Reordering Device memory attributes

R attribute

RRPTB This attribute imposes no restrictions or relaxations.

nR attribute

RDFXL If the access is to a:

• Peripheral, it must arrive at the peripheral in program order. If there is a mixture of accesses to Device nGnRE
and Device-nGnRnE in the same peripheral, these accesses must occur in program order.

• Non-peripheral, this attribute imposes no restrictions or relaxations.

IBDWB The IMPLEMENTATION DEFINED size of the single peripheral is the same as applies for the ordering guarantee that is
provided by the DMB instruction.

RNDHC The non-Reordering attribute does not require any additional ordering, other than the ordering that applies to
Normal memory, between:

• Accesses with the non-Reordering attribute and accesses with the Reordering attribute.

• Accesses with the non-Reordering attribute and accesses to Normal memory.

• Accesses with the non-Reordering attribute and accesses to different peripherals of IMPLEMENTATION
DEFINED size.

B6.16.3 Early Write Acknowledgement and no Early Write Acknowledgement Device memory
attributes
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B6-133
ID072816 Non-Confidential - Beta

B6 Memory Model
B6.16 Device memory attributes
E attribute

RPVSH This attribute imposes no restrictions or relaxations.

nE attribute

RFWFR Assigning the nE attribute recommends that only the endpoint of the write access returns a write acknowledgement
of the access, and that no earlier point in the memory system returns a write acknowledgement.

IFQWQ The E attribute is treated as a hint. ARM strongly recommends that this hint is not ignored by a PE, but is made
available for use by the system.
B6-134 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B6 Memory Model
B6.17 Memory access restrictions
B6.17 Memory access restrictions
RKSXT For accesses to any two bytes that are accessed by the same instruction, the two bytes must have the same memory

type and Shareability attributes.

IWRBT Except for possible differences in cache allocation hints, ARM deprecates having different Cacheability attributes
for accesses to any two bytes that are generated by the same instruction.

RBFKS If the accesses of an instruction that cause multiple accesses to any type of Device memory cross the boundaries of
memory regions then the behavior is CONSTRAINED UNPREDICTABLE.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B6-135
ID072816 Non-Confidential - Beta

B6 Memory Model
B6.18 Mismatched memory attributes
B6.18 Mismatched memory attributes
IWSDR In the ARMv8 architecture, mismatched memory attributes are controlled by privileged software.

RXHTK Physical memory locations are accessed with mismatched attributes if all accesses to the location do not use a
common definition of all the following memory attributes of that location:

• Memory type - Device or Normal.

• Shareability.

• Cacheability, for the same level of the inner or outer cache, but excluding any cache allocation hints.

RVKHJ When a memory location is accessed with mismatched attributes, the only software visible effects are one or more
of the following:

• Uniprocessor semantics for reads and writes to that memory location might be lost. This means:

— A read of the memory location by one agent might not return the value that was most recently written
to that memory location by the same agent.

— Multiple writes to the memory location by one agent with different memory attributes might not be
ordered in program order.

• There might be a loss of coherency when multiple agents attempt to access a memory location.

• There might be a loss of the properties that are derived from the memory type.

• If all Load-Exclusive or Store-Exclusive instructions that are executed across all threads to access a given
memory location do not use consistent memory attributes, the exclusive monitor state becomes UNKNOWN.

• Bytes that are written without the Write-Back cacheable attribute and that are within the same Write-Back
granule as bytes that are written with the Write-Back cacheable attribute might have their values reverted to
the old values as a result of cache Write-Back.

RNJLB The loss of the properties that are associated with mismatched memory type attributes refers only to the following
properties of Device memory that are additional to the properties of Normal memory:

• Prohibition of speculative read accesses.

• Prohibition on Gathering.

• Prohibition on Re-ordering.

RQCKK If the only memory type mismatch that is associated with a memory location across all users of the memory location
is between different types of Device memory, then all accesses might take the properties of the weakest Device
memory type.

RHCCD Any agent that reads that physical memory location using the same common definition of the Shareability and
Cacheability attributes is guaranteed to access it coherently, to the extent required by that common definition of the
memory attributes, only if all the following conditions are met:

• All aliases to the memory location with write permission both use a common definition of the Shareability
and Cacheability attributes for the memory location, and have the Inner Cacheability attribute the same as the
Outer Cacheability attribute.

• All aliases to a memory location use a definition of the Shareability attributes that encompasses all the agents
with permission to access the location.

RGBKH The possible software-visible effects that are caused by mismatched attributes for a memory location are defined
more precisely if all the mismatched attributes define the memory location as one of:

• Any Device memory type.

• Normal Inner Non-cacheable, Outer Non-cacheable memory.

In these cases, the only permitted software-visible effects of the mismatched attributes are one or more of the
following:

• Possible loss of properties that are derived from the memory type when multiple agents attempt to access the
memory location.
B6-136 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B6 Memory Model
B6.18 Mismatched memory attributes
• Possible reordering of memory transactions to the same memory location with different memory attributes,
potentially leading to a loss of coherency or uniprocessor semantics. Any possible loss of coherency or
uniprocessor semantics can be avoided by inserting DMB barrier instructions between accesses to the same
memory location that might use different attributes.

RXHJL Hardware is required to ensure coherency and ordering within the Shareability domain if all of the following apply:

• Before writing to a location not using the Write-Back attribute, a location in the caches that might have been
written with the Write-Back attribute by an agent has been invalidated or cleaned.

• After writing the location with the Write-Back attribute, the location has been cleaned from the caches to
make the write visible to external memory.

• Before reading the location with a cacheable attribute, the location has been invalidated from the caches, to
ensure that any value that is held in the caches reflects the last value made visible in external memory.

• A DMB barrier instruction has been executed, with a scope that applies to the common Shareability of the
accesses, between any accesses to the same memory location that use different attributes.

RVVBS If the mismatched attributes for a location mean that multiple cacheable accesses to the location might be made with
different Shareability attributes, then ordering and coherency are guaranteed only if:

• Each PE that accesses the location with a cacheable attribute performs a clean and invalidate of the location
before and after accessing that location.

• A DMB barrier with scope that covers the full Shareability of the accesses is placed between any accesses to
the same memory location that use different attributes.

RVCXW If multiple agents attempt to use Load-Exclusive or Store-Exclusive instructions to access a location, and the
accesses from the different agents have different memory attributes associated with the location, the exclusive
monitor state becomes UNKNOWN.

ITPWG ARM strongly recommends that software does not use mismatched attributes for aliases of the same location. An
implementation might not optimize the performance of a system that uses mismatched aliases.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B6-137
ID072816 Non-Confidential - Beta

B6 Memory Model
B6.19 Load-Exclusive and Store-Exclusive accesses to Normal memory
B6.19 Load-Exclusive and Store-Exclusive accesses to Normal memory
RKDWC For Normal memory that is:

• Non-shareable, it is IMPLEMENTATION DEFINED whether Load-Exclusive and Store-Exclusive instructions
take account of the possibility of accesses by more than one observer.

• Shareable, Load-Exclusive, and Store-Exclusive instructions take account of the possibility of accesses by
more than one observer.

See also:
• Normal memory on page B6-130.
• Memory accesses on page B6-113.
B6-138 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B6 Memory Model
B6.20 Load-Acquire and Store-Release accesses to memory
B6.20 Load-Acquire and Store-Release accesses to memory
IVVTX The following table summarizes the Load-Acquire/Store-release instructions.

RXBRM A Store-Release followed by a Load-Acquire is observed in program order by each observer within the Shareability
domain of the memory address being accessed by the Store-Release and the memory address being accessed by the
Load-Acquire.

RRRFK For a Load-Acquire, observers in the Shareability domain of the address that is accessed by the Load-Acquire
observe accesses in the following order:

1. The read caused by the Load-Acquire.

2. Reads and writes caused by loads and stores that appear in program order after the Load-Acquire for which
the Shareability of the address that is accessed by the load or store requires that the observer observes the
access.

There are no other ordering requirements on loads or stores that appear before the Load-Acquire.

RWLWT For a Store-Release, observers in the Shareability domain of the address that is accessed by the Store-Release
observe accesses in the following order:

1. All of the following for which the Shareability of the address that is accessed requires that the observer
observes the access:

• Reads and writes caused by loads and stores that appear in program order before the Store-Release.

• Writes that were observed by the PE executing the Store-Release before it executed the Store-Release.

2. The write caused by the Store-Release.

There are no other ordering requirements on loads or stores that appear in program order after the Store-Release.

RHCKC All Store-Release instructions must be multi-copy atomic when they are observed with Load-Acquire instructions.

RDGXR A Load-Acquire to an address in a memory-mapped peripheral of an arbitrary system-defined size that is defined
as any type of Device memory access ensures that all memory accesses using Device memory types to the same
memory-mapped peripheral that are architecturally required to be observed after the Load-Acquire will arrive at the
memory-mapped peripheral after the memory access of the Load-Acquire.

RCKRC A Store-Release to an address in a memory-mapped peripheral of an arbitrary system-defined size that is defined as
any type of Device memory access ensures that all memory accesses using Device memory types to the same
memory-mapped peripheral that are architecturally required to be observed before the Store-Release will arrive at
the memory-mapped peripheral before the memory access of the Store-Release.

RGJHK If a Load-Acquire to a memory address in a memory-mapped peripheral of an arbitrary system-defined size that is
defined as any type of Device memory access has observed the value that is stored to that address by a
Store-Release, then any memory access to the memory-mapped peripheral that is architecturally required to be
ordered before the memory access of the Store-Release will arrive at the memory-mapped peripheral before any
memory access to the same peripheral that is architecturally required to be ordered after the memory access of the
Load-Acquire.

RWRLC Load-Acquire and Store-Release access only a single data element.

RKCTN Load-Acquire and Store-Release accesses are single-copy atomic.

RBXRP If a Load-Acquire or Store-Release instruction accesses an address that is not aligned to the size of the data element
being accessed, the access generates an Alignment fault.

Data type Load-Acquire Store-Release Load-Acquire Exclusive Store-Release Exclusive

32-bit word LDA STL LDAEX STLEX

16-bit halfword LDAH STLH LDAEXH STLEXH

8-bit byte LDAB STLB LDAEXB STLEXB
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B6-139
ID072816 Non-Confidential - Beta

B6 Memory Model
B6.20 Load-Acquire and Store-Release accesses to memory
RNVRJ A Store-Release Exclusive instruction only has the release semantics if the store is successful.
B6-140 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B6 Memory Model
B6.21 Caches
B6.21 Caches
RJTXF ARMv8-M supports memory-mapped caches.

IQCQG The allocation of a memory address to a cache location is IMPLEMENTATION DEFINED.

RXXBW In situations in which a breakdown in coherency can occur, the way that software manages the data coherency of
caches is IMPLEMENTATION DEFINED.

See also:
• Cache identification.
• Cache enabling and disabling.
• General cache behavior on page B6-142.
• Cache behavior at reset on page B6-143.
• CLIDR.
• CTR.

B6.21.1 Cache identification

RWBGH ARMv8-M cache identification consists of the following set of registers that describes the implemented caches that
are under the control of the PE:

• A single Cache Type Register, CTR.

• A single Cache Level ID Register, CLIDR.

• A single Cache Size Selection Register, CSSELR.

• For each implemented cache, across all levels of caching, a Cache Size Identification Register, CCSIDR.

RXJTL The number of levels of cache is IMPLEMENTATION DEFINED and can be determined from the Cache Level ID
Register.

RHGQK The lower the cache level, the closer the cache is to the PE.

RQXRC Sets are numbered from 0.

RGXHS The set number is an IMPLEMENTATION DEFINED function of an address.

RGWWJ Ways are numbered from 0.

RTBCP The CTR defines the minimum length values.

B6.21.2 Cache enabling and disabling

RMGJW The Configuration and Control Register, CCR, is used to enable and disable caches across all levels of cache that
are visible to the PE. CCR.DC enables or disables all data and unified caches and CCR.IC enables or disables all
instruction caches.

ITNHX An implementation can use control bits in the Auxiliary Control Register, ACTLR, for finer-grained control of
cache enabling. For example, an implementation might define control bits to enable and disable the caches at a
particular level.

RHTLD It is IMPLEMENTATION DEFINED whether the CCR.DC and CCR.IC bits affect the memory attributes that are
generated by an enabled MPU.

RJDSJ When a cache is disabled, a memory location that is not held in the cache is never brought into the cache as the result
of a memory access.

RDSTQ If the MPU is disabled, MPU_CTRL.ENABLE == 0, the CCR.DC and CCR.IC bits determine the cache state for
cacheable regions of the default address map.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B6-141
ID072816 Non-Confidential - Beta

B6 Memory Model
B6.21 Caches
B6.21.3 General cache behavior

IJSPB When a memory location is marked with a Normal Cacheable memory attribute, determining whether a copy of the
memory location is held in a cache can depend on many aspects of the implementation, such as the following
factors:
• The size, line length, and associativity of the cache.
• The cache allocation algorithm.
• Activity by other elements of the system that can access the memory.
• Speculative instruction fetching algorithms.
• Speculative data fetching algorithms.
• Interrupt behaviors.

RJVJN The architecture cannot guarantee whether:
• A memory location that is present in the cache remains in the cache.
• A memory location that is not present in the cache is brought into the cache.

RPHWM If the cache is disabled, it is guaranteed that no new allocation of memory locations into the cache occurs.

RQRLS If the cache is enabled, it is guaranteed that no memory location that does not have a cacheable attribute is allocated
into the cache.

RXXVH If the cache is enabled, it is guaranteed that no memory location is allocated to the cache if the access permissions
for that location are such that the location cannot be accessed by reads and cannot be accessed by writes.

RSCKQ Any memory location is not guaranteed to remain incoherent with the rest of memory.

IHFCR The maximum size of the memory that can be overwritten is called the Cache Write-back Granule. In some
implementations, the CTR identifies the Cache Write-back Granule.

RLJQB The allocation of a memory location into a cache cannot cause the most recent value of that memory location to
become invisible to an observer, if it had previously been visible to that observer.

RSBGJ A cache entry covers at least 16 bytes and no more than 2KB of contiguous address space, aligned to its size.

RWDBP It is UNPREDICTABLE whether the location is returned from cache or from memory when:

• The location is not marked as cacheable but is contained in the cache. This situation can occur if a location
is marked as non-cacheable after it has been allocated into the cache.

• The location is marked as cacheable and might be contained in the cache, but the cache is disabled.

RXRWS The Cacheability attributes are:

• Write-Through Cacheable.

• Write-Back Cacheable.

RXQXW It is IMPLEMENTATION DEFINED whether Write-Through Cacheable and Write-Back Cacheable can have the
additional attribute Transient or Non-transient.

ILDXP The Transient attribute is a memory hint that indicates that the benefit of caching is for a short period. The
architecture does not define what is meant by a short period.

RKXJV The architecture provides Cacheability attributes that are defined independently for each of two conceptual levels
of cache, the Inner cache and the Outer cache.

INRVD The relationship between the conceptual levels of cache and the implemented physical levels of cache is
IMPLEMENTATION DEFINED.

RCFKN Cacheability attributes other than Non-cacheable can be complemented by the following cache allocation hints:

• Read-Allocate, Transient Read-Allocate, or no Read-Allocate.

• Write-Allocate, Transient Write Allocate, or no Write-Allocate.
B6-142 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B6 Memory Model
B6.21 Caches
IFRVF A Cacheable location with no Read-Allocate and no Write-Allocate hints is not the same as a Non-cacheable
location. A Non-cacheable location has coherency guarantees for all observers within the system that do not apply
to a location that is Cacheable, no Read-Allocate, no Write-Allocate. The architecture does not require an
implementation to make any use of cache allocation hints. This means an implementation might not make any
distinction between memory locations with attributes that differ only in their cache allocation hint.

RQLVB For the purposes of data coherency the architecture requires:

• A completed write to a memory location that is Non-cacheable or Write-Through Cacheable for a level of
cache made by an observer accessing the memory system inside the level of cache is visible to all observers
accessing the memory system outside the level of cache without the need of explicit cache maintenance.

• A completed write to a memory location that is Non-cacheable for a level of cache made by an observer
accessing the memory system outside the level of cache is visible to all observers accessing the memory
system inside the level of cache without the need of explicit cache maintenance.

B6.21.4 Cache behavior at reset

RKCFK All caches are disabled at reset.

IDSXS An implementation can require the use of a specific cache initialization routine to invalidate its storage array before
it is enabled.

RQXNG The exact form of any required cache initialization routine is IMPLEMENTATION DEFINED, and the routine must be
documented clearly as part of the documentation of the device.

RMDJX If a required initialization routine is not performed, the state of an enabled cache is UNPREDICTABLE.

RRQXN It is IMPLEMENTATION DEFINED whether an access can generate a cache hit when the cache is disabled.

RTVKQ If an implementation permits cache hits when the cache is disabled, the cache initialization routine must:
• Provide a mechanism to ensure the correct initialization of the caches.
• Be documented clearly as part of the documentation of the device.

RCJGV If an implementation permits cache hits when the cache is disabled and the cache contents are not invalidated at
reset, the initialization routine must avoid any possibility of running from an uninitialized cache.

IJSQQ An initialization routine can require a fixed instruction sequence to be placed in a restricted range of memory.

IJCTD ARM recommends that whenever an invalidation routine is required, it is based on the ARMv8-M cache
maintenance operations.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B6-143
ID072816 Non-Confidential - Beta

B6 Memory Model
B6.22 Behavior of Preload Data (PLD) and Preload Instruction (PLI) instructions with caches
B6.22 Behavior of Preload Data (PLD) and Preload Instruction (PLI) instructions with
caches
ICQLR The instructions are memory system hints and their effect is IMPLEMENTATION DEFINED.

ITPPK The instructions do not generate exceptions but the memory system operations might generate an imprecise fault
(asynchronous exception) due to the memory access.

IHRLJ Examples of the asynchronous events that the instructions might trigger are:
• Asynchronous abort.
• Interrupt.

RQNGJ A PLD instruction is guaranteed not to cause any effect to the caches or memory other than the effects that, for
permission or other reasons, can be caused by the equivalent load from the same location with the same context and
at the same privilege level.

RSFNK A PLD instruction is guaranteed not to access Device-nGnRnE or Device-nGnRE memory.

RHNLN A PLI instruction is guaranteed not to cause any effect to the caches or memory other than the effects that, for
permission or other reasons, can be caused by the fetch resulting from changing the PC to the location specified by
the PLI instruction with the same context and at the same privilege level.

RMRFG A PLI instruction must not perform any access that might be performed by a speculative instruction fetch by the PE.
Therefore a PLI instruction cannot access memory that has the Device-nGnRnE or Device-nGnRE attribute.
B6-144 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B6 Memory Model
B6.23 Branch predictors
B6.23 Branch predictors
IGTPB Branch predictor hardware typically uses a form of cache to hold branch information.

RMTBD Branch predictors are not architecturally visible. The BPIALL operation is provided for timing and determinism.

See also:

• Branch predictor maintenance operations on page B6-149.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B6-145
ID072816 Non-Confidential - Beta

B6 Memory Model
B6.24 Cache maintenance operations
B6.24 Cache maintenance operations
IMRMG Cache maintenance operations act on particular memory locations.

RJJLL The Clean operation ensures that updates made by an observer that controls the cache are made visible to other
observers that can access memory at the point to which the operation is performed.

RVRBP The cleaning of a cache entry from a cache can overwrite memory that has been written by another observer only if
the entry contains a location that has been written to by an observer in the Shareability domain of that memory
location.

RSJFS The Invalidate operation ensures that updates made visible by observers that access memory at the point to which
the invalidate is defined are made visible to an observer that controls the cache. This might result in the loss of
updates to the locations affected by the invalidate operation that have been written by observers that access the
cache.

RTKBD If the address of an entry on which the invalidate operates does not have a Normal cacheable attribute, or if the cache
is disabled, then an invalidate operation also ensures that this address is not present in the cache.

RJTXK Entries for addresses with a Normal cacheable attribute can be allocated to an enabled cache at any time so the cache
invalidate operation cannot ensure that the address is not present in an enabled cache.

RSDVP A Clean and invalidate operation behaves as the execution of a clean operation followed immediately by an
invalidate operation. Both operations are performed to the same location.

RVKSN The Clean operation cleans from the level of cache that is specified through at least the next level of cache away
from the PE.

RGFXB The Invalidate operation invalidates only at the level specified.

RKVSM For set/way operations and for All (entire cache) operations, the cache maintenance operation is to the next level of
caching.

RJTWT For address operations, the cache maintenance operation is to the point of coherency (PoC) or to the point of
unification (PoU) depending on the settings in CLIDR.LoC and CLIDR.LOUU.

ITWLF The term Modified Virtual Address (MVA) is used throughout this manual in place of Virtual Address (VA) and
Physical Address (PA) for consistency with other ARM Architecture Reference Manuals. In all cases in this manual,
MVA, VA, and PA have the same value.

RXLHX Data cache operations can be used on unified caches as well.

RQKMF Instruction cache operations must be used only on instruction caches.

RRSVL Cache operations are memory mapped, 32-bit write-only operations that can be executed only by privileged
software.

ISBVC Cache maintenance operations can have side effects:

• Any location in the cache might be cleaned.

• Any unlocked location in the cache might be cleaned and invalidated.

RGCNB All cache and branch predictor maintenance operations that do not specify an address execute, relative to each other,
in program order.

RGXNL All cache maintenance operations that specify an address:

• Execute in program order relative to all cache operations that do not specify an address.

• Execute in program order relative to all cache maintenance operations that specify the same address.

• Can execute in any order relative to cache maintenance operations that specify a different address.

RSWBG ICIALLU, the value is ignored in the register specified by the STR instruction that performs the cache maintenance
operation.
B6-146 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B6 Memory Model
B6.24 Cache maintenance operations
RDWMR The ICIMVAU, DCIMVAC, DCCMVAU, DCCMVAC, and DCCIMVAC operations require the physical address in the memory map but
it does not have to be cache-line aligned.

RHCTC For DCISW, DCCSW, and DCCISW, the STR operation must identify the cache line that it applies to by specifying the
following:
• The cache set the line belongs to.
• The way number of the line in the set.
• The cache level.

The format of the register data for a set/way operation is:

Where:

A = Log2(ASSOCIATIVITY), rounded up to the next integer if necessary.

B = (L + S).

L = Log2(LINELEN).

S = Log2(NSETS), rounded up to the next integer if necessary. ASSOCIATIVITY, LINELEN (line length,
in bytes), and NSETS (number of sets) have their usual meanings and are the values for the cache level
being operated on.
The values of A and S are rounded up to the next integer.

Level ((Cache level to operate on)–1). For example, this field is 0 for operations on L1 cache, or 1 for
operations on L2 cache.

Set The number of the set to operate on.

Way The number of the way to operate on.

• If L == 4 then there is no SBZ field between the set and level fields in the register.

• If A == 0 there is no way field in the register, and register bits[31:B] are SBZ.

• If the level, set, or way field in the register is larger than the size implemented in the cache then the effect of
the operation is UNPREDICTABLE.

RRSBX A context synchronization operation is required after the completion of an instruction cache maintenance operation
to guarantee that the effects of the cache maintenance operation are visible to all instruction fetches after the context
synchronization operation.

IDHJQ ARM recommends that, wherever possible, all caches that require maintenance to ensure coherency are included in
the caches affected by the architecturally-defined cache maintenance operations.

IGTTS ARM recommends that, for data or unified cache maintenance, software uses the CTR.DMINLINE value to determine
the loop increment size for address-based operations.

IDPVJ ARM recommends that, for instruction cache maintenance, software uses the CTR.IMINLINE value to determine the
loop increment size for address-based operations.

RLRGS When the Security Extension is implemented, it is IMPLEMENTATION DEFINED whether the DCIMVAC and DCISW
operations, when performed from a Non-secure state, clean any data that may be Secure before invalidating it.

RVKDF When the Security Extension is implemented, the ICIALLU, ICIMVAU, DCCMVAU, DCCMVAC, DCCSW, DCCIMVAC, DCCISW, and
BPIALL operations are relaxed such that these operations on Secure data may be ignored if the operation was
performed from the Non-secure state.

IMLLC The following is the sequence of cache cleaning operations for a line of self-modifying code.
; Enter this code with <Rx> containing the new 32-bit instruction and <Ry>;
containing the address of the instruction.
; Use STRH in the first line instead of STR for a 16-bit instruction.
STR <Rx>, [<Ry>] ; Write instruction to memory
DSB ; Ensure write is visible

0Way

31 32–A
31–A

B
B–1

L
L–1

4 3 2 1 0

SBZ Set SBZ Level
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B6-147
ID072816 Non-Confidential - Beta

B6 Memory Model
B6.24 Cache maintenance operations
MOV <Rt>, 0xE000E000 ; Create pointer to base of System Control Space
STR <Ry>, [<Rt>,#0xF64] ; Clean data cache by address to point of unification
DSB ; Ensure visibility of the data cleaned from the cache
STR <Ry>, [<Rt>,#0xF58] ; Invalidate instruction cache by address to PoU
STR <Ry>, [<Rt>,#0xF78] ; Invalidate branch predictor
DSB ; Ensure completion of the invalidations
ISB ; Synchronize fetched instruction stream

See also:
• Cache Maintenance Operations on page D2-799.
• Cache Maintenance Operations (NS alias) on page D2-804.
B6-148 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B6 Memory Model
B6.25 Branch predictor maintenance operations
B6.25 Branch predictor maintenance operations
RHVXX Branch predictor maintenance is handled independently of cache maintenance operations.

RNSRK A context synchronization operation is required after a branch predictor maintenance operation to guarantee that the
effects of the branch predictor maintenance operation are visible to all instructions after the context synchronization
operation.

RPHNH The ARM architecture does not restrict the ordering of data or unified maintenance operations relative to an explicit
load or store.

IGWXS A DSB instruction can be used to restrict the ordering of data or unified maintenance operations relative to an explicit
load or store.

RHRXF For BPIALL, the value is ignored in the register specified by the STR instruction that performs the cache maintenance
operation.

See also:
• Cache Maintenance Operations on page D2-799.
• Cache Maintenance Operations (NS alias) on page D2-804.
• BPIALL, Branch Predictor Invalidate All on page D2-818.
• Memory barriers on page B6-125.
• DSB on page C2-361.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B6-149
ID072816 Non-Confidential - Beta

B6 Memory Model
B6.25 Branch predictor maintenance operations
B6-150 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

Chapter B7
Synchronization and Semaphores

This chapter specifies the architecture rules for exclusive access instructions and non-blocking synchronization of
shared memory. It contains the following sections:
• Exclusive access instructions on page B7-152.
• Exclusive access instructions and Non-shareable memory locations on page B7-153.
• Local monitors on page B7-154.
• Exclusive access instructions and shareable memory locations on page B7-156.
• The global monitor on page B7-157.
• Load-Exclusive and Store-Exclusive instruction usage restrictions on page B7-160.
• Use of WFE and SEV instructions by spinlocks on page B7-162.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B7-151
ID072816 Non-Confidential - Beta

B7 Synchronization and Semaphores
B7.1 Exclusive access instructions
B7.1 Exclusive access instructions
RLQDX ARMv8 provides non-blocking synchronization of shared memory, using synchronization primitives for accesses

to both Normal and Device memory.

IRHKT Use of the ARMv8 synchronization primitives scales for multiprocessing system designs.

RRGCP Synchronization primitives and associated instructions:

RMTTN When a Load-Exclusive instruction is executed, a marked block of size 2a bytes is created by ignoring the least
significant bits of the memory address. A marked address is any address within this marked block.

RJHMH The size of the marked memory block is called the Exclusives reservation granule. The Exclusives reservation
granule is IMPLEMENTATION DEFINED in the range 4 - 512 words.

IBKQS The Exclusives reservation granule is:
• 4 words in an implementation where a is 4.
• 512 words in an implementation where a is 11.

For example, in an implementation where a is 4, a successful LDREXB of address 0x341B4 defines a marked block
using bits[47:4] of the address. This means that the four words of memory from 0x341B0 to 0x341BF are marked for
exclusive access.

RFMXK In some implementations the CTR identifies the Exclusives reservation granule. Otherwise, software must assume
that the maximum Exclusives reservation granule, 512 words, is implemented.

RHLRV The model for the use of a Load-Exclusive/Store-Exclusive instruction pair accessing a non-aborting memory
address x is:

• The Load-Exclusive instruction reads a value from memory address x.

• The corresponding Store-Exclusive instruction succeeds in writing back to memory address x only if no other
observer, process, or thread has performed a more recent store to address x.

• The Store-Exclusive instruction returns a status bit that indicates whether the memory write succeeded.

• A Load-Exclusive instruction marks a small block of memory for exclusive access. The size of the marked
block is IMPLEMENTATION DEFINED,

Function A32/T32 Instruction

Load-Exclusive

Byte LDREXB, LDAEXB

Halfword LDREXH, LDAEXH

Word LDREX, LDAEX

Doubleword LDREXD. LDAEXD

Store-Exclusive

Byte STREXB, STLEXB

Halfword STREXH, STLEXH

Word STREX, STLEX

Clear-Exclusive CLREX
B7-152 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B7 Synchronization and Semaphores
B7.2 Exclusive access instructions and Non-shareable memory locations
B7.2 Exclusive access instructions and Non-shareable memory locations
RJGRF The model for the use of a Load-Exclusive/Store-Exclusive instruction pair accessing a memory locations for which

the Shareability attribute is Non-shareable, the exclusive access instructions rely on a local monitor that marks any
address from which the PE executes a Load-Exclusive instruction.

IQNFF Any non-aborted attempt by the same PE to use a Store-Exclusive instruction to modify any address is guaranteed
to clear the marking.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B7-153
ID072816 Non-Confidential - Beta

B7 Synchronization and Semaphores
B7.3 Local monitors

)*

*

on.
B7.3 Local monitors
RDTRN A Store-Exclusive instruction performs a conditional store to memory that depends on the state of the local monitor:

If the local monitor is in the Exclusive Access state

• If the address of the Store-Exclusive instruction is the same as the address that has been marked
in the monitor by an earlier Load-Exclusive instruction, then the store occurs. Otherwise, it is
IMPLEMENTATION DEFINED whether the store occurs.

• A status value is returned to a register:
— If the store took place the status value is 0.
— Otherwise, the status value is 1.

• The local monitor of the executing PE transitions to the Open Access state.

If the local monitor is in the Open Access state
• No store takes place.
• A status value of 1 is returned to a register.
• The local monitor remains in the Open Access state.

RNJWC When a PE writes using any instruction other than a Store-Exclusive instruction:

• If the write is to a physical address that is not marked as Exclusive Access by its local monitor and that local
monitor is in the Exclusive Access state it is IMPLEMENTATION DEFINED whether the write affects the state of
the local monitor.

• If the write is to a physical address that is marked as Exclusive Access by its local monitor it is
IMPLEMENTATION DEFINED whether the write affects the state of the local monitor.

RPFFT It is IMPLEMENTATION DEFINED whether a store to a marked physical address causes a mark in the local monitor to
be cleared if that store is by an observer other than the one that caused the physical address to be marked.

RKXNM State machine for the local monitor:

An implementation must ensure that:

• The local monitor cannot be seen to transition to the Exclusive Access state except as a result of the
architectural execution of one of the operations shown.

• Any transition of the local monitor to the Open Access state not caused by the architectural execution of an
operation shown must not indefinitely delay forward progress of execution.

RWTHJ The local monitor does not hold any physical address, but instead treats any access as matching the address of the
previous Load-Exclusive instruction.

RJWQS A local monitor implementation can be unaware of Load-Exclusive and Store-Exclusive instructions from other
PEs.

Open
Access

Exclusive
Access

LoadExcl(x) LoadExcl(x)

CLREX

StoreExcl(x)

Store(x)

CLREX

Store(!Marked_address

Store(Marked_address)

Operations marked * are possible alternative IMPLEMENTATION DEFINED options.

Store(Marked_address)*

StoreExcl(Marked_address)

StoreExcl(!Marked_address)

Store(!Marked_address)*

In the diagram: LoadExcl represents any Load-Exclusive instruction
StoreExcl represents any Store-Exclusive instruction
Store represents any other store instruction.

Any LoadExcl operation updates the marked address to the most significant bits of the address x used for the operati

Speculation or other cause
B7-154 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B7 Synchronization and Semaphores
B7.3 Local monitors
RXMML It is IMPLEMENTATION DEFINED whether the transition from Exclusive Access to Open Access state occurs when the
Store or StoreExcl is from another observer.

RMRSD The architecture permits a local monitor to transition to the Open Access state as a result of speculation, or from
some other cause.

IQFBJ An exception return clears the local monitor. As a result, performing a CLREX instruction as part of a context switch
is not required in most situations.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B7-155
ID072816 Non-Confidential - Beta

B7 Synchronization and Semaphores
B7.4 Exclusive access instructions and shareable memory locations
B7.4 Exclusive access instructions and shareable memory locations
RXMGV A shareable memory location is a memory location that has, or is treated as if it has, a Shareability attribute of Inner

Shareable or Outer Shareable.

RVFXN For shareable memory locations, exclusive access instructions rely on:

• A global monitor that marks a physical address as exclusive access for a particular PE.

• A local monitor for each PE in the system, that marks any address from which the PE executes a
Load-Exclusive.

The local monitor can ignore accesses from other PEs in the system.

RNPQB For shareable memory, the local monitor operates like that for Non-shareable memory but any Store-Exclusive is
subject to checking by the global monitor doing at least one of the following:
• Updating memory.
• Returning a status value of 0.

RWMSV The marking done by the global monitor is used later to determine whether a Store-Exclusive to that address that
has not been failed by the local monitor can occur.

RJPDG Any successful write to the marked block by any other observer in the Shareability domain of the memory location
is guaranteed to clear the marking.

See also:
• Local monitors on page B7-154.
B7-156 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B7 Synchronization and Semaphores
B7.5 The global monitor
B7.5 The global monitor
RFKFB For each PE in the system, the global monitor:

• Can hold at least one marked block.
• Maintains a state machine for each marked block it can hold.

RVDLP For each PE, the architecture only requires global monitor support for a single marked address. Any situation that
might benefit from the use of multiple marked addresses on a single PE is CONSTRAINED UNPREDICTABLE.

RNNDC The global monitor can either reside in a block that is part of the hardware on which the PE executes or exist as a
secondary monitor at the memory interfaces.

IXTLH The IMPLEMENTATION DEFINED aspects of the monitors mean that the global monitor and local monitor can be
combined into a single unit, provided that the unit performs the global monitor and local monitor functions defined
in this manual.

IKDWM For shareable memory locations, in some implementations and for some memory types, the properties of the global
monitor require functionality outside the PE. Some system implementations might not implement this functionality
for all locations of memory. In particular, this can apply to:
• Any type of memory in the system implementation that does not support hardware cache coherency.
• Non-cacheable memory, or memory treated as Non-cacheable, in an implementation that does support

hardware cache coherency.

In such a system, it is defined by the system:
• Whether the global monitor is implemented.
• If the global monitor is implemented, which address ranges or memory types it monitors.

IQJNL Implementations can choose which memory types are treated as Non-cacheable, the only memory types for which
it is architecturally guaranteed that a global exclusive monitor is implemented are:

• Inner Shareable, Inner Write-Back, Outer Write-Back Normal memory with Read allocation hint and Write
allocation hint and not transient.

• Outer Shareable, Inner Write-Back, Outer Write-Back Normal memory with Read allocation hint and Write
allocation hints and not transient.

RBTRF If the global monitor is not implemented for an address range or memory type, then performing a
Load-Exclusive/Store-Exclusive instruction to such a location has one or more of the following effects:
• The instruction generates an external abort.
• The instruction generates an IMPLEMENTATION DEFINED fault with IMPLEMENTATION DEFINED priority.
• The instruction is treated as a NOP.
• The Load-Exclusive instruction is treated as if it were accessing a Non-shareable location, but the state of the

local monitor becomes UNKNOWN.
• The Store-Exclusive instruction is treated as if it were accessing a Non-shareable location, but the state of the

local monitor becomes UNKNOWN.
• The value held in the result register of the Store-Exclusive instruction becomes UNKNOWN.

RFQRT For write transactions generated by non-PE observers that do not implement exclusive accesses or other atomic
access mechanisms, the effect that writes have on the global and local monitors used by an ARM PE is
IMPLEMENTATION DEFINED.

RMPRJ The writes might not clear the global monitors of other PEs for:
• Some address ranges.
• Some memory types.

RHKQT A Load-Exclusive instruction from shareable memory performs a load from memory, and causes the physical
address of the access to be marked as exclusive access for the requesting PE. This access can also cause the
exclusive access mark to be removed from any other physical address that has been marked by the requesting PE.

RRXVB The global monitor only supports a single outstanding exclusive access to shareable memory for each PE.

RMPKM A Load-Exclusive instruction by one PE has no effect on the global monitor state for any other PE.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B7-157
ID072816 Non-Confidential - Beta

B7 Synchronization and Semaphores
B7.5 The global monitor

on.

!n)‡

n)*

,n)*

,!n)
RMFGC A Store-Exclusive instruction performs a conditional store to memory:

• The store is guaranteed to succeed only if the physical address accessed is marked as exclusive access for the
requesting PE and both the local monitor and the global monitor state machines for the requesting PE are in
the Exclusive Access state. In this case:

— A status value of 0 is returned to a register to acknowledge the successful store.

— The final state of the global monitor state machine for the requesting PE is IMPLEMENTATION DEFINED.

— If the address accessed is marked for exclusive access in the global monitor state machine for any other
PE then that state machine transitions to Open Access state.

• If no address is marked as exclusive access for the requesting PE, the store does not succeed:
— A status value of 1 is returned to a register to indicate that the store failed.
— The global monitor is not affected and remains in Open Access state for the requesting PE.

• If a different physical address is marked as exclusive access for the requesting PE, it is IMPLEMENTATION
DEFINED whether the store succeeds or not:

— If the store succeeds a status value of 0 is returned to a register, otherwise a value of 1 is returned.

— If the global monitor state machine for the PE was in the Exclusive Access state before the
Store-Exclusive instruction it is IMPLEMENTATION DEFINED whether that state machine transitions to
the Open Access state.

RNNMG In a shared memory system, the global monitor implements a separate state machine for each PE in the system. The
state machine for accesses to shareable memory by PE(n) can respond to all the shareable memory accesses visible
to it.

RWKPJ In a shared memory system, the global monitor implements a separate state machine for each observer that can
generate a Load-Exclusive or a Store-Exclusive instruction in the system.

RNWWH Whenever the global monitor state for a PE changes from Exclusive access to Open access, an event is generated
and held in the Event register for that PE. This register is used by the Wait for Event mechanism.

RGDMD State machine for PE(n) in a global monitor.

RGXLF The architecture does not require a load instruction by another PE, that is not a Load-Exclusive instruction, to have
any effect on the global monitor.

RRGFK Whether a Store-Exclusive instruction successfully updates memory or not depends on whether the address
accessed matches the marked shareable memory address for the PE issuing the Store-Exclusive instruction, and
whether the local and global monitors are in the exclusive state.

Any LoadExcl operation updates the marked address to the most significant bits of the address x used for the operati

Open
Access

Exclusive
Access

LoadExcl(x,n) LoadExcl(x,n)

CLREX(n)

StoreExcl(x,n)

CLREX(n)*

StoreExcl(Marked_address,!n)‡
Store(Marked_address,!n)

StoreExcl(Marked_address,n)*

Store(!Marked_address,n)

Operations marked * are possible alternative IMPLEMENTATION DEFINED options.
In the diagram: LoadExcl represents any Load-Exclusive instruction

StoreExcl represents any Store-Exclusive instruction
Store represents any other store instruction.

LoadExcl(x,!n)

StoreExcl(x,!n)

Store(x,n)

StoreExcl(!Marked_address,n)*

Store(Marked_address,n)*

StoreExcl(Marked_address,

StoreExcl(Marked_address,

StoreExcl(!Marked_address

Store(Marked_address,n)*

CLREX(n)*

StoreExcl(!Marked_address

Store(!Marked_address,!n)

CLREX(!n)

‡StoreExcl(Marked_address,!n) clears the monitor only if the StoreExcl updates memory

Store(x,!n)

CLREX(!n)
B7-158 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B7 Synchronization and Semaphores
B7.5 The global monitor
RDLMP A Load-Exclusive instruction can only update the marked shareable memory address for the PE issuing the
Load-Exclusive instruction.

RQVWF When the global monitor is in the Exclusive Access state, it is IMPLEMENTATION DEFINED whether a CLREX
instruction causes the global monitor to transition from Exclusive Access to Open Access state.

RBSGB It is IMPLEMENTATION DEFINED:

• Whether a modification to a Non-shareable memory location can cause a global monitor to transition from
Exclusive Access to Open Access state.

• Whether a Load-Exclusive instruction to a Non-shareable memory location can cause a global monitor to
transition from Open Access to Exclusive Access state.

See also:
• DFSR, Debug Fault Status Register on page D2-864.
• HFSR, HardFault Status Register on page D2-958.
• Use of WFE and SEV instructions by spinlocks on page B7-162.
• Power management on page B3-32.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B7-159
ID072816 Non-Confidential - Beta

B7 Synchronization and Semaphores
B7.6 Load-Exclusive and Store-Exclusive instruction usage restrictions
B7.6 Load-Exclusive and Store-Exclusive instruction usage restrictions
The Load-Exclusive and Store-Exclusive instructions are intended to work together as a pair, for example a
LDREX/STREX pair or a LDREXB/STREXB pair. If the functions are used in different implementations, software must
follow these rules:

RBHPN The exclusives support a single outstanding exclusive access for each PE thread that is executed. The architecture
makes use of this by not requiring an address or size check as part of the IsExclusiveLocal() function.

RLHLG If two StoreExcl instructions are executed without an intervening LoadExcl instruction the second StoreExcl
instruction returns a status value of 1. This means that:
• ARM recommends that, in a given thread of execution, every StoreExcl instruction has a preceding LoadExcl

instruction associated with it.

It is not necessary for every LoadExcl instruction to have a subsequent StoreExcl instruction.

RJXXS An implementation of the Load-Exclusive and Store-Exclusive instructions can require that, in any thread of
execution, the transaction size of a StoreExcl instruction is the same as the transaction size of the preceding LoadExcl
instruction executed in that thread. If the transaction size of a StoreExcl instruction is different from the preceding
LoadExcl instruction in the same thread of execution, behavior can be CONSTRAINED UNPREDICTABLE with the
following behavior:

• The StoreExcl either passes or fails, and the status value returned by the StoreExcl is UNKNOWN.

Note
 This means the StoreExcl might pass for some instances of a LoadExcl/StoreExcl pair with mismatched

transaction sizes, and fail for other instances of a LoadExcl/StoreExcl pair with mismatched transaction sizes.

• The block of data of the size of the larger of the transaction sizes used by the LoadExcl/StoreExcl pair at the
address accessed by the LoadExcl/StoreExcl pair, is UNKNOWN.

This means software can rely on a LoadExcl/StoreExcl pair to eventually succeed only if the LoadExcl and the
StoreExcl have the same transaction size.

RJJDF Software must, in any single thread of execution, avoid having any explicit memory accesses, System register
updates, or cache maintenance instructions between the LoadExcl instruction and the associated StoreExcl
instruction.

IRFXR Implementations can benefit from keeping the LoadExcl and StoreExcl operations close together in a single thread
of execution. This minimizes the likelihood of the exclusive monitor state being cleared between the LoadExcl
instruction and the StoreExcl instruction. Therefore, for best performance, ARM strongly recommends a limit of
128 bytes between LoadExcl and StoreExcl instructions in a single thread of execution.

RPKQF The architecture sets an upper limit of 2048 bytes on the exclusive reservation granule that can be marked as
exclusive.

IPGGN For performance reasons, ARM recommends that objects that are accessed by exclusive accesses are separated by
the size of the exclusive reservations granule.

RXPDN After taking a Data Abort exception, the state of the exclusive monitors is UNKNOWN.

RFCRN For the memory location accessed by a LoadExcl/StoreExcl pair, if the memory attributes for a StoreExcl instruction
are different from the memory attributes for the preceding LoadExcl instruction in the same thread of execution,
behavior is CONSTRAINED UNPREDICTABLE.

RDMJW The effect of a data or unified cache invalidate, clean, or clean and invalidate instruction on a local or global
exclusive monitor that is in the Exclusive Access state is CONSTRAINED UNPREDICTABLE, and the instruction might
clear the monitor, or it might leave it in the Exclusive Access state. For address-based maintenance instructions, this
also applies to the monitors of other PEs in the same Shareability domain as the PE executing the cache maintenance
instruction, as determined by the Shareability domain of the address being maintained.
B7-160 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B7 Synchronization and Semaphores
B7.6 Load-Exclusive and Store-Exclusive instruction usage restrictions
Note
 ARM strongly recommends that implementations ensure that the use of such maintenance instructions by a PE in
the Non-secure state cannot cause a denial of service on a PE in the Secure state.

RRRTJ In the event of repeatedly-contending LoadExcl/StoreExcl instruction sequences from multiple PEs, an
implementation must ensure that forward progress is made by at least one PE.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B7-161
ID072816 Non-Confidential - Beta

B7 Synchronization and Semaphores
B7.7 Use of WFE and SEV instructions by spinlocks
B7.7 Use of WFE and SEV instructions by spinlocks
IRJXQ WFE and SEV can assist with reducing power consumption and bus contention caused by PEs repeatedly attempting

to obtain a spinlock. These instructions can be used at the application level but a complete understanding of what
they do depends on a system level understanding of exceptions.

See also:
• Power management on page B3-32.
B7-162 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

Chapter B8
The System Address Map

This chapter contains the following sections:
• System address map on page B8-164.
• The System region of the system address map on page B8-165.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B8-163
ID072816 Non-Confidential - Beta

B8 The System Address Map
B8.1 System address map
B8.1 System address map
RFQSD The address space is divided into the following regions:

RMBRB An access that crosses a boundary is UNPREDICTABLE. This rule also applies to the 0xFFFFFFFF - 0x00000000
boundary.

See also:
• The System region of the system address map on page B8-165.
• In Chapter B6 Memory Model:

— Address space on page B6-114.
— Memory accesses on page B6-113.
— General cache behavior on page B6-142.

Address Region Memory type XN? Cache Information

0x00000000-
0x1FFFFFFF

Code Normal - WTaRAb Typically ROM or flash memory.

0x20000000-
0x3FFFFFFF

SRAM Normal - WBWAc

RA
SRAM region typically used for on-chip
RAM.

0x40000000-
0x5FFFFFFF

Peripheral Device, nGnRE XNd - On-chip peripheral address space.

0x60000000-
0x7FFFFFFF

RAM Normal - WBWA
RA

Memory with write-back, write allocate
cache attribute for L2/L3 cache support.

0x80000000-
0x9FFFFFFF

RAM Normal - WTRA Memory with write-through cache
attribute.

0xA0000000-
0xBFFFFFFF

Device Device, nGnRE XN - Shared device space.

0xC0000000-
0xDFFFFFFF

Device Device, nGnRE XN - Non-shared device space.

0xE0000000-
0xE00FFFFF

System PPB Device, nGnRE XN - 1 MB region reserved as the PPB. This
supports key resources, including the
System Control Space, and debug
features.

0XE0100000-
0XFFFFFFFF

System Vendor_SYS Device, nGnRnE XN - Vendor System Region.

a. Write-through.
b. Read-allocate.
c. Write-back, write allocate.
d. Memory with the Execute Never (XN) memory attribute.
B8-164 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B8 The System Address Map
B8.2 The System region of the system address map
B8.2 The System region of the system address map
RJJGN In a PE with the Security Extension, the system region of the system address map is as follows:

In a PE without the Security Extension, the Non-secure SCS is RAZ/WI.

IFWLM ARM recommends that Vendor_SYS is divided as follows:
• 0xE0100000-0xEFFFFFFF is reserved.
• Vendor resources start at 0xF0000000.

RDQQS Unprivileged access to the PPB causes BusFault errors unless otherwise stated. Unprivileged accesses can be
enabled to the Software Trigger Interrupt Register in the System Control Space by programming a control bit in the
Configuration and Control Register.

See also:
• System address map on page B8-164.
• The System Control Space (SCS) on page B8-166.
• STIR, Software Triggered Interrupt Register on page D2-1073.
• CCR, Configuration and Control Register on page D2-819.
• Debug resources on page B12-178.

0x00000000

0xE0000000

0xE000E000

0xE000EFFF

0xE002E000

0xE002EFFF

0xE00FFFFF

0xE0100000

0xFFFFFFFF

Secure SCS††

Non-secure SCS††

IMPLEMENTATION DEFINED vendor system region, Vendor_SYS

PPB†††

System region of
the address map

0xE000ED00

0xE000ED8F
Secure SCB†

0xE002ED00

0xE002ED8F
Non-secure SCB†

† System Control Block (SCB).
†† System Control Space (SCS).
††† Private Peripheral Bus (PPB).
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B8-165
ID072816 Non-Confidential - Beta

B8 The System Address Map
B8.3 The System Control Space (SCS)
B8.3 The System Control Space (SCS)
RCQVK The System Control Space (SCS) provides registers for control, configuration, and status reporting.

RCFPK The Secure view of the NS alias is identical to the Non-secure view of normal addresses except for bits that can be
modified.

RGLNG Privileged accesses to unimplemented registers are RES0.

RNDML Unprivileged accesses to unimplemented registers will generate a BusFault unless otherwise stated.

See also:
• The System region of the system address map on page B8-165.
• In Chapter D2 Register Specification:

— System Control Block on page D2-796.
— System Control Block (NS alias) on page D2-801.
— Debug Control Block on page D2-798.
— Debug Control Block (NS alias) on page D2-803.
— STIR, Software Triggered Interrupt Register on page D2-1073.
— SYST_CSR, SysTick Control and Status Register on page D2-1076.
— Nested Vector Interrupt Controller on page B11-173.
— The Memory Protection Unit on page B8-163.
B8-166 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

Chapter B9
The ARMv8-M Protected Memory System
Architecture

This chapter specifies the architecture rules for the Protected Memory System Architecture (PMSAv-8), in particular
for the Memory Protection Unit (MPU). It contains the following sections:
• MPU definition on page B9-168.
• MPU operation on page B9-170.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B9-167
ID072816 Non-Confidential - Beta

B9 The ARMv8-M Protected Memory System Architecture
B9.1 MPU definition
B9.1 MPU definition
RHBNG Memory attributes are determined from the default system address map or by using an MPU.

RTBPJ PMSAv8-M only supports a unified memory model. All enabled regions support instruction and data accesses.

RJVJC When the MPU is disabled or not present, accesses use memory attributes from the default system address map.

IWTCL Because the MPU_TYPE register is banked, it is permitted for implementations to have different number of MPU
regions, including zero regions, in each Security state.

RQGVS All boundaries between address ranges with different security attributes must be aligned to 32-byte boundaries.

RRPKG The following units can provide security attribution information:

• A security attribution unit (SAU) inside the PE.

• An implementation defined attribution unit (IDAU) external to the PE. The presence of such a unit is
IMPLEMENTATION DEFINED,

RMGXN The attribution information from the SAU is used unless the IDAU specifies attributes with a higher security, in
which case the IDAU attributes override the SAU attributes. This rule does not apply to architecturally defined
ranges exempt from memory attribution.

RBLJT The behavior of the following address ranges is fixed, so they are exempt from memory attribution by both the SAU
and IDAU:

0xF0000000 - 0xFFFFFFFF
If the PE implements the Security Extension, this memory range is always marked as Secure and not
Non-secure callable for instruction fetches.
If the Security Extension is not present, this range is marked as Non-secure.

Ranges exempt from checking security violation The following address ranges are marked with the Security
state indicated by NS-Req, that is, the current state of the processor for non-debug accesses. This
property sets the NS-Attr to NS-Req:
0xE0000000 - 0xE0002FFF: ITM, DWT, FPB.
0xE000E000 - 0xE000EFFF: SCS range.
0xE002E000 - 0xE002EFFF: SCS NS alias range.
0xE0040000 - 0xE0041FFF: TPIU, ETM.
0xE00FF000 - 0xE00FFFFF: ROM table.
0xE0000000 - 0xEFFFFFFF for instruction fetch only.
Additional address ranges specified by the IDAU.
B9-168 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B9 The ARMv8-M Protected Memory System Architecture
B9.1 MPU definition

e
nage
RVPWL Security attribution and MPU check.

RNBFD When the SAU is enabled, an address is defined as matching a region in the SAU if the following is true:
SAU_REGIONn.BADDR <= Address <= SAU_REGIONn.LADDR.

RWGDK An address that matches multiple SAU regions is marked as Secure and not Not-secure callable regardless of the
attributes specified by the regions that matched the address.

RGVFQ When the SAU is not enabled:

• Addresses are not checked against the SAU regions.

• The attribution of the address space is determined by the SAU_CTRL.ALLNS field.

See also:
• System address map on page B8-164.
• MPU_CTRL, MPU Control Register on page D2-1018.
• SAU_CTRL, SAU Control Register on page D2-1051.

NS-Req == Non-secure
and secure address?

Instruction fetch?

NS-Req =
CurrentState

Secur
MemMa

fault

Non-secure
MemManage

fault

NS-Req =
Security of

address

YesNo

SecureFault

Yes

Do Access

No

NS-Req == Secure? YesNo

Non-secure
MPU access violation?

Yes
Secure

MPU access violation?
YesNo
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B9-169
ID072816 Non-Confidential - Beta

B9 The ARMv8-M Protected Memory System Architecture
B9.2 MPU operation
B9.2 MPU operation
RBXCN MPU support in ARMv8-M is optional.

RPBPJ When the MPU is enabled, the PE can be configured to use the default system map when it processes NMI and
HardFault exceptions.

RMCCL The default memory map can be configured to provide a background region for privileged accesses.

RDBBM The MPU divides the memory into regions.

RMNDS The number of supported regions is IMPLEMENTATION DEFINED.

RXGFK All regions are aligned to a multiple of 32 bytes.

RBPGB Privileged software can use the XN attribute in the MPU_RBAR to specify whether the PE can fetch and execute
instructions from each region.

RMNSK Accesses to the Private Peripheral Bus (PPB) always use memory attributes from the default system address map.

RRPWB Exception vector reads from the Vector Address Table always use the default system address map.

RCPMW The MPU is restricted in how it can change the default memory map attributes associated with System space, that
is, for addresses 0xE0000000 and higher, in the following ways:

• System space is always XN.

• The MPU can map system space regions that default to Device-nGnRE to Device-nGnRnE.

• The effect of remapping a System space region that defaults to Device memory as Normal memory is
UNPREDICTABLE.

RDCHP The following accesses generate a MemManage fault:

• An access to an address that matches in more than one region.

• An access that does not match all access conditions for that region.

• An access that matches a background region or default memory map if the MPU is enabled.

Except that privileged accesses are permitted:

• if MPU_CTRL PRIVDEFENA ==1, or

• if executing at a priority less than zero and HFNMIENA is set.

RGLNQ A memory access to an address that matches in more than one region, or does not match all access conditions of a
region address match, with the MPU enabled, or a background or default memory map match, generates a precise
fault.

RKMTF For data accesses, the MPU memory attribution and privilege checking uses the configuration registers that
correspond to the current executing Security state of the PE.

RRLBR For instruction fetches, the MPU memory attribution and privilege checking uses the configuration registers
associated with the address that is fetched.

RPLJG In a PE with the Security Extension, MPU_CTRL.HFNMIENA disables the MPU if the requested priority for the
security domain that the MPU is associated with is negative.

See also:

• System address map on page B8-164.
B9-170 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

Chapter B10
The System Timer, SysTick

This chapter contains the following section:

• The system timer, SysTick on page B10-172.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B10-171
ID072816 Non-Confidential - Beta

B10 The System Timer, SysTick
B10.1 The system timer, SysTick
B10.1 The system timer, SysTick
RBQRG In a PE without the Main and Security Extensions, either:

• No system timers are implemented.
• One system timer, SysTick, is implemented.

RPDDL In a PE without the Main Extension but with the Security Extension, one of the following is true:

• No system timers are implemented.

• One system timer, SysTick, is implemented. ICSR.STTNS determines which Security state owns the
SysTick.

• Two system timers are implemented:
— SysTick, Secure instance.
— SysTick, Non-secure instance.

RCNTG In a PE with the Main Extension but without the Security Extension, one system timer, SysTick, is implemented.

RXPCW In a PE with the Main and Security Extensions, two system timers are implemented:
• SysTick, Secure instance.
• SysTick, Non-secure instance.

IDXSQ There are the following SysTick registers:
• SysTick Control and Status Register (SYST_CSR).
• SysTick Reload Value Register (SYST_RVR).
• SysTick Current Value Register (SYST_CVR).
• SysTick Calibration Value Register (SYST_CALIB).

In a PE with the Security Extension and a SysTick instance dedicated to each Security state, these registers are
banked.

IVHDT Each implemented SysTick is a 24-bit decrementing, wrap-on-zero, clear-on-write counter:

• When enabled, the counter counts down from the value in SYST_CVR. When it reaches zero, SYST_CVR
is reloaded with the value held in SYST_RVR on the next clock edge.

• Reading SYST_CVR returns the value of the counter at the time of the read access.

• When the counter reaches zero, it sets SYST_CSR.COUNTFLAG to 1. Reading SYST_CSR.COUNTFLAG
clears it to 0.

• A write to SYST_CVR clears both SYST_CVR and SYST_CSR.COUNTFLAG to 0. SYST_CVR is then
reloaded with the value held in SYST_RVR on the next clock edge.

RTLGK Writing the value zero to SYST_RVR disables the SysTick on the next wrap-on-zero. The value zero is held by the
counter after the wrap. This is true even when SYST_CSR.ENABLE is 1.

RTTFT A write to SYST_CVR does not cause a SysTick exception.

IVDJQ Setting SYST_CSR.TICKINT to 1 causes the SysTick exception to become pending on the SysTick reaching zero.

IPPGV ARM recommends that before enabling a SysTick by SYST_CSR.ENABLE, software writes the required counter
value to the SYST_RVR, and then writes to the SYST_CVR to clear the SYST_CVR to zero.

IMMRQ Software can optionally use SYST_CALIB.TENMS to scale the counter to other clock rates within the dynamic
range of the counter.

RQSKV When the PE is halted in Debug state, any implemented SysTicks do not decrement.

IRWFQ Each implemented SysTick is clocked by a reference clock, either the PE clock or an external system clock. It is
IMPLEMENTATION DEFINED which clock is used as the external reference clock. ARM recommends that if an
external system clock is used, the relationship between the PE clock and the external clock is documented, so that
system timings can be calculated taking into account metastability, clock skew, jitter.
B10-172 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

Chapter B11
Nested Vectored Interrupt Controller

This chapter specifies the architecture rules for the Nested Vectored Interrupt Controller (NVIC). It contains the
following sections:
• NVIC definition on page B11-174.
• NVIC operation on page B11-175.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B11-173
ID072816 Non-Confidential - Beta

B11 Nested Vectored Interrupt Controller
B11.1 NVIC definition
B11.1 NVIC definition
RXJJQ An ARMv8-M PE includes an integral interrupt controller.

RFSGP The NVIC behavior aligns with the behavior that the ARM General Interrupt Controller (ARM GIC) specification
describes.

RWQHG The Interrupt Controller Type Register (ICTR) defines how many external interrupt lines are supported.

See also:

• ICTR, Interrupt Controller Type Register on page D2-966.
B11-174 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B11 Nested Vectored Interrupt Controller
B11.2 NVIC operation
B11.2 NVIC operation
RSNVK It is IMPLEMENTATION DEFINED which NVIC interrupts are implemented.

RSGCR When a particular NVIC interrupt line is not implemented, its associated registers are reserved.

RWTFS ARMv8-M supports level-sensitive and pulse-sensitive interrupts.

RHVQQ Pulse interrupt sources must be held long enough so that the PE clock can sample them reliably to ensure they are
latched and become pending.

RRLCX A subsequent pulse can add the pending state to an active interrupt, making the status of the interrupt active and
pending.

RRKFC Multiple pulses that occur during the active period only register as a single event for interrupt scheduling.

RPDPQ Pulses held for a clock period act like edge-sensitive interrupts.

RLWBW Edge-sensitive interrupts can become pending again while the interrupt is active.

RXVWM A pulse must be cleared before the assertion of AIRCR.VECTCLRACTIVE or the associated exception return.
Otherwise the interrupt signal behaves as a level-sensitive input and the pending bit is asserted again.

RQDDK Level-based interrupts first become pending then make the interrupt active. The Interrupt Service Routine (ISR)
then accesses the peripheral to cause it to deassert the interrupt.

RBNQQ If the interrupt is still asserted on return from the ISR, it becomes pending again.

RQKFW All NVIC interrupts have a programmable priority value and an associated exception number.

RXNQW NVIC interrupts can be enabled and disabled by writing to their corresponding Interrupt Set-Enable or Interrupt
Clear-Enable register bit field.

RCCVJ When an interrupt is disabled, interrupt assertion causes the interrupt to become pending but the interrupt cannot
become active.

RXCLJ If an interrupt is active when it is disabled, it remains in the active state until this is cleared by a reset or an exception
return.

IWGDJ An implementation can hard-wire interrupt enable bits to zero if the associated interrupt line does not exist.

IRSDJ An implementation can hard-wire interrupt enable bits to one if the associated interrupt line cannot be disabled

RNRJV It is IMPLEMENTATION DEFINED for each interrupt line supported whether an interrupt supports either or both setting
and clearing of the associated pending state under software control.

See also:
• Exception numbers and exception priority numbers on page B4-46.
• Exception states on page B4-55.
• Priority model on page B4-56.
• Nested Vectored Interrupt Controller on page D2-796.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B11-175
ID072816 Non-Confidential - Beta

B11 Nested Vectored Interrupt Controller
B11.2 NVIC operation
B11-176 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

Chapter B12
Debug

This chapter specifies the ARMv8-M debug rules. It contains the following sections:
• About debug on page B12-178.
• Accessing debug features on page B12-182.
• Debug authentication interface on page B12-184.
• Multiprocessor support on page B12-190.
• CoreSight and identification registers on page B12-191.
• Debug event behavior on page B12-192.
• Exiting Debug state on page B12-200.
• Debug System registers on page B12-201.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B12-177
ID072816 Non-Confidential - Beta

B12 Debug
B12.1 About debug
B12.1 About debug

B12.1.1 Debug feature overview

IKNWQ The debug architecture supports the following features:

• High-level trace using the ITM.

• Profiling various system events, including associated timing information.

• PC sampling and event counts associated with load and store operations, instruction folding, and
performance statistics that are based on cycles-per-instruction (CPI) counts.

• Instruction trace, using an Embedded Trace Macrocell (ETM).

• Warm reset functionality to reset the PE and support debug of reset events.

• A control register that a debugger can write to halt the PE.

• An external signal to asynchronously halt the PE, which might be connected to a Cross Trigger Interface
(CTI).

• Step functionality, with or without interrupt masking.

• Run functionality, with or without interrupt masking.

• For register access, reading and writing PE registers when software execution is halted.

• Access to exception-related information through the System Control Space (SCS) resources.

• The BKPT instruction to provide software breakpoints.

• Hardware breakpoints, and remapping of code memory locations.

• Hardware watchpoints.

• Access to all memory through the Debug Access Port (DAP).

• The ability to add other system debug features such as a bus monitor or cross-trigger facility.

• Application and data trace, typically through either a low pin-count Serial Wire Viewer (SWV) or a parallel
trace port.

B12.1.2 Debug mechanisms

RHWCH ARMv8-M supports a range of invasive and non-invasive debug mechanisms.

The invasive debug mechanisms are:

• The ability to halt the PE. This provides a run-stop debug model.

• Debugging code using the DebugMonitor exception. This provides less intrusive debug than halting the PE.

The non-invasive debug techniques are:

• Generating application trace by writing to the Instrumentation Trace Macrocell (ITM), causing a low level
of intrusion.

• Non-intrusive program trace and profiling.

ILBLF When the PE is halted, it is in Debug state.

ISXVR When the PE is not halted, it is in Non-debug state.

See also:
• Accessing debug features on page B12-182.

B12.1.3 Debug resources

RTZVG In the system address map, debug resources are in the Private Peripheral Bus (PPB) region.
B12-178 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B12 Debug
B12.1 About debug
RFBHD Except for the resources in the SCS, each debug component occupies a fixed 4KB address region.

RWXTK The debug resources in the SCS are:
• The Debug Control Block (DCB).
• Debug controls in the System Control Block (SCB).

RSWTB The ARMv8-M debug components are:

• The Instrumentation Trace Macrocell on page B13-204, only available if the Main Extension is
implemented.

• The Data Watchpoint and Trace unit on page B13-210.

• The Flash Patch and Breakpoint unit on page B13-226.

• The Embedded Trace Macrocell on page B13-224.

• The Trace Port Interface Unit on page B13-225.

• The ROM table.

RFHRN The following optional debug components are not part of the ARMv8-M architecture:

• The Cross-Trigger Interface (CTI).

• The CoreSight basic trace router (MTB).

RQCPL The addresses of the debug resources are:

RWXRJ The configuration of an implementation of an optional debug component is IMPLEMENTATION DEFINED.

RVMGD ROM table entries identify which debug components are implemented.

See also:
• Instrumentation Trace Macrocell on page B13-204.
• Data Watchpoint and Trace unit on page B13-210.
• Flash Patch and Breakpoint unit on page B13-226.
• Chapter B8 The System Address Map.
• Debug System registers on page B12-201.
• Trace Port Interface Unit on page B13-225.
• Embedded Trace Macrocell on page B13-224.

Address range Debug resource

0xE0000000-0xE0000FFF Instrumentation Trace Macrocell (ITM)

0xE0001000-0xE0001FFF Data Watchpoint and Trace (DWT) unit

0xE0002000-0xE0002FFF Flash Patch and Breakpoint (FPB) unit

0xE000ED00-0xE000EFFF SCS

0xE000ED00-0xE000ED8F System Control Block (SCB)

0xE000EDF0-0xE000EEFF Debug Control Block (DCB)

0xE0040000-0xE0040FFF Trace Port Interface Unit (TPIU), when not implemented
as a shared resource, otherwise reserved

0xE0041000-0xE0041FFF Embedded Trace Macrocell (ETM)

0xE0042000-0xE00FEFFF IMPLEMENTATION DEFINED

0xE00FF000-0xE00FFFFF ROM table
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B12-179
ID072816 Non-Confidential - Beta

B12 Debug
B12.1 About debug
• ROM table on page B12-182.
• Accessing debug features on page B12-182.

B12.1.4 Trace

RLJVL Trace can be generated by using the:
• Embedded Trace Macrocell (ETM).
• Instrumentation Trace Macrocell (ITM), only available if the Main Extension is implemented.
• Data Watchpoint and Trace (DWT) unit, only available if the Main Extension is implemented.

RNFVB A debug implementation that generates trace must include a trace sink, such as a TPIU, which exports the trace data
from the device.

A TPIU can be either the ARMv8-M TPIU implementation, or an external system resource.

See also:
• Chapter F1 ITM and DWT Packet Protocol Specification.
• The applicable ETM Architecture Specification.
B12-180 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B12 Debug
B12.1 About debug
B12.1.5 Levels of debug

ISFSG The recommended debug implementation levels are:

Level With Main Extension Without Main Extension

Minimum Support for the DebugMonitor exception, including:
• The BKPT instruction.
• DEMCR monitor debug features.
• Monitor entry from External debug requests.
• DFSR.
DHCSR, DCRSR, DCRDR, and the Halting debug
features in DFSR and DEMCR are RES0. ID_DFR0 is
RAZ.

No debug support.
DFSR, DHCSR, DCRSR, DCRDR, and DEMCR are
RES0. ID_DFR0 is RAZ.

Basic Adds support for Halting debug with:
• Debug Access Port.
• DHCSR, DCRSR, DCRDR, and the Halting

debug features in DEMCR are implemented.
• FPB with at least two breakpoints.

Remap is optional if the Security Extension is not
implemented.

• DWT with at least:
— One watchpoint, that supports instruction,

data address, and data value matching.
— DWT_PCSR.

• Optional support for a CTI in a multiprocessor
system.

This support is identified in ID_DFR0.

Adds support for Halting debug with:
• Debug Access Port.
• SHCSR, DFSR, DHCSR, DCRSR, DCRDR, and

DEMCR are implemented. Access from the PE is
IMPLEMENTATION DEFINED.

• FPB with at least two breakpoints.
Remap is not implemented.

• DWT with at least:
— One watchpoint, that supports instruction

and data address matching.
— DWT_PCSR.

• Optional support for a CTI in a multiprocessor
system.

This support is identified in ID_DFR0.

Comprehensive Adds basic trace support with:
• ITM.
• DWT with:

— Trace support.
— Profiling support.
— Cycle counter.

• TPIU.

Not applicable without the Main Extension.

Program trace Adds ETM. Adds ETM and TPIU.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B12-181
ID072816 Non-Confidential - Beta

B12 Debug
B12.2 Accessing debug features
B12.2 Accessing debug features
RWVSZ The mechanism by which an external debugger accesses the PE and system is IMPLEMENTATION DEFINED.

IQPHR A debugger can use a Debug Access Port (DAP) interface, such as that provided by the ARM® Debug Interface v5
Architecture Specification (ADIv5), to interrogate a system for memory access ports (MEM-APs). The BASE
register in a memory access port provides the address of the ROM table, or the first of a series of ROM tables in a
ROM table hierarchy. The memory access port can then be used to fetch the ROM table entries. ARM recommends
implementation of an ADIv5 DAP for compatibility with tools.

RWPGQ Writes from a DAP are complete when the DAP reports them as complete.

RWCQK For SCS registers, a write from a DAP is complete when the write has completed and the SCS register has been
updated.

RJRHS Software configures and controls the debug model through memory-mapped registers.

See also:
• ROM table.
• DAP access permissions on page B12-187.
• The ARM® Debug Interface v5 Architecture Specification.

B12.2.1 ROM table

IXFVN The ROM table is a table of entries providing a mechanism to identify the debug infrastructure that is supported by
the implementation.

IFWPG The ROM table indicates the implemented debug components, and the position of those components in the memory
map. See the ARM® Debug Interface v5 Architecture Specification for the format of a ROM table entry.

IPHJJ For an ARMv8-M ROM table, all address offsets are negative.

IRGVM The entry 0x00000000 is the end-of-table marker.

RBQSP Bit[0] of the ROM table entries indicates whether the corresponding unit is implemented and is accessible through
the PPB at the indicated address. If the corresponding unit is not implemented, this bit has a value of 0.

RNDQW If a unit is implemented, debug registers can provide additional information about the implemented features of that
unit.

RDPVG The format of the ROM table is:

Table B12-1 ARMv8-M DAP accessible ROM table

Offset Value Name Description

0x000 0xFFF0F003 ROMSCS Points to the SCS at 0xE000E000.

0x004 0xFFF02002 or
0xFFF02003

ROMDWT Points to the Data Watchpoint and Trace unit at 0xE0001000.

0x008 0xFFF03002 or
0xFFF03003

ROMFPB Points to the Flash Patch and Breakpoint unit at 0xE0002000.

0x00C 0xFFF01002 or
0xFFF01003

ROMITMa Points to the Instrumentation Trace unit at 0xE0000000.

0x010 0xFFF41002 or
0xFFF41003

ROMTPIUb Points to the Trace Port Interface Unit.

0x014 0xFFF42002 or
0xFFF42003

ROMETMb Points to the Embedded Trace Macrocell unit.
B12-182 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B12 Debug
B12.2 Accessing debug features
See also:

• CoreSight and identification registers on page B12-191.

0x018 0x00000000 End End-of-table marker. It is IMPLEMENTATION DEFINED whether the table is extended with
pointers to other system debug resources. The table entries always terminate with a null
entry.

0x020-
0xEFC

- Not Used Reserved for additional ROM table entries.

0xF00-

0xFC8

- Reserved Reserved, must not be used for ROM table entries.

0xFCC 0x00000001 MEMTYPE Bit[0] is set to 1 to indicate that resources other than those listed in the ROM table are
accessible in the same 32-bit address space, using the DAP. Bits[31:1] of the MEMTYPE
entry are RES0.

0xFD0 IMP DEF PID4 CIDx values are fully defined for the ROM table, and are CoreSight compliant.
PIDx values must be CoreSight compliant or RAZ.

0xFD4 0 PID5

0xFD8 0 PID6

0xFDC 0 PID7

0xFE0 IMP DEF PID0

0xFE4 IMP DEF PID1

0xFE8 IMP DEF PID2

0xFEC IMP DEF PID3

0xFF0 0x0000000D CID0

0xFF4 0x00000010 CID1

0xFF8 0x00000005 CID2

0xFFC 0x000000B1 CID3

a. Accesses cannot cause a non-existent memory exception.
b. It is IMPLEMENTATION DEFINED whether a shared resource is managed by the local PE or a different resource.

Table B12-1 ARMv8-M DAP accessible ROM table (continued)

Offset Value Name Description
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B12-183
ID072816 Non-Confidential - Beta

B12 Debug
B12.3 Debug authentication interface
B12.3 Debug authentication interface
RMCBM The physical details of the debug authentication interface are IMPLEMENTATION DEFINED.

IGWTN The following pseudocode functions provide an abstracted description of the authentication interface:
• ExternalInvasiveDebugEnabled().
• ExternalSecureInvasiveDebugEnabled().
• ExternalNoninvasiveDebugEnabled().
• ExternalSecureNoninvasiveDebugEnabled().

IRCXR This manual describes the authentication interface in terms of the CoreSight signals DBGEN, NIDEN, SPIDEN,
and SPNIDEN.

ISWWT For an implementation using the CoreSight signals:

• ExternalInvasiveDebugEnabled() returns TRUE if DBGEN is asserted.

• ExternalSecureInvasiveDebugEnabled() returns TRUE if both DBGEN and SPIDEN are asserted.

• ExternalNoninvasiveDebugEnabled() returns TRUE if either NIDEN or DBGEN is asserted.

• ExternalSecureNoninvasiveDebugEnabled() returns TRUE if both of the following conditions apply:

— Either NIDEN or DBGEN is asserted.

— Either SPNIDEN or SPIDEN is asserted.

RHVGN For any implementation of the authentication interface, if ExternalInvasiveDebugEnabled() is FALSE, then
ExternalSecureInvasiveDebugEnabled() must be FALSE.

RJWCS For any implementation of the authentication interface, if ExternalNoninvasiveDebugEnabled() is FALSE, then
ExternalSecureNoninvasiveDebugEnabled() must be FALSE.

RXCMD For any implementation of the authentication interface, if ExternalInvasiveDebugEnabled() is TRUE, then
ExternalNoninvasiveDebugEnabled() must be TRUE.

RLCHH For any implementation of the authentication interface, if ExternalSecureInvasiveDebugEnabled() is TRUE, then
ExternalSecureNoninvasiveDebugEnabled() must be TRUE.

IMSRG Secure self-hosted debug is controlled by the authentication interface. The pseudocode function
ExternalSecureSelfHostedDebugEnabled() provides an abstracted description of this authentication interface.

RGLWM Between a change to the debug authentication interface and a following CSO, it is UNPREDICTABLE whether the PE
uses the old or the new values.

See also:
• Halting debug authentication.
• DebugMonitor authentication on page B12-185.
• Non-invasive debug authentication on page B12-186.
• DAP access permissions on page B12-187.

B12.3.1 Halting debug authentication

RDMFG Halting debug authentication is controlled by the DBGEN signal, and, if the Security Extension is implemented,
the SPIDEN signal.
B12-184 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B12 Debug
B12.3 Debug authentication interface
RBCZM If the Security Extension is not implemented, there are two Halting debug authentication modes:

RLDTR If the Security Extension is implemented, there are three Halting debug authentication modes:

RKCZR If the Security Extension is implemented, DHCSR.S_SDE has a value of 0 if one or more of the following
conditions is true:

• The PE is halted and the PE entered Debug state from Non-secure state when SecureHaltingDebugAllowed()
was FALSE.

• The PE is not halted and SecureHaltingDebugAllowed() == FALSE.

• The PE is not halted and DBGEN is not asserted.

RFWJM If the Security Extension is implemented, DHCSR.S_SDE has a value of 1 if one or more of the following
conditions is true:

• The PE is halted and the PE entered Debug state from either:
— Secure state.
— Non-secure state when SecureHaltingDebugAllowed() was TRUE.

• The PE is not halted, DBGEN is asserted, and SecureHaltingDebugAllowed() == TRUE.

RBMRJ If the Security Extension is implemented and DAUTHCTRL.SPIDENSEL == 1, the PE behaves as if SPIDEN has
the value of DAUTHCTRL.INTSPIDEN.

RFXCB When DHCSR.C_DEBUGEN == 0 or the PE is in a state in which halting is prohibited, the PE must not enter Debug
state.

RRKBK When the PE is in a state in which halting is prohibited, if DHCSR.C_HALT == 1 and DHCSR.C_DEBUGEN ==
1, then DHCSR.C_HALT remains set unless it is cleared by a direct write to DHCSR. If the PE enters a state in
which halting is allowed while DHCSR.C_HALT is set to 1, then the PE enters Debug state.

See also:

• CanHaltOnEvent().

B12.3.2 DebugMonitor authentication

RMXTM DebugMonitor authentication is only available if the Main Extension is implemented.

RLQCN If the Security Extension is implemented, DebugMonitor authentication is controlled by the SPIDEN signal.

DBGEN DHCSR.S_HALT Halting debug authentication mode

LOW 0 Halting is prohibited

HIGH X Halting is allowed

LOW 1

DBGEN DHCSR.S_HALT DHCSR.S_SDE Halting debug authentication mode

LOW 0 X Halting is prohibited in all states

HIGH X 0 Halting is allowed in Non-secure state.
Halting is prohibited in Secure state.

LOW 1

HIGH X 1 Halting is allowed

LOW 1
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B12-185
ID072816 Non-Confidential - Beta

B12 Debug
B12.3 Debug authentication interface
RWCWZ If the Security Extension is not implemented, there is only one DebugMonitor authentication mode, DebugMonitor
allowed.

RRZXJ If the Security Extension is implemented, there are two DebugMonitor authentication modes, which are controlled
by DEMCR.SDME:

RYFPK If the Security Extension is implemented and DEMCR.SDME == 1, SHPR3.PRI_12 behaves as RES0 when
accessed from Non-secure state.

RJVSC A direct write to DEMCR can set DEMCR.MON_PEND to 1 at any time to make the DebugMonitor exception
pending or can set DEMCR.MON_PEND to 0 to remove a pending DebugMonitor exception.

RWGMB If the DebugMonitor group priority is greater than the current execution priority and DEMCR.MON_EN == 1, an
External debug request that does not generate an entry to Debug state sets DEMCR.MON_PEND to 1.

RXPBN When DEMCR.MON_PEND == 1, the PE takes the DebugMonitor exception according to the exception
prioritization rules, regardless of the value of DEMCR.SDME and DEMCR.MON_EN.

RHXLX When set to 1, DEMCR.MON_PEND remains set to 1 until either the DebugMonitor exception is taken or a write
sets the field to 0.

See also:

• CanPendMonitorOnEvent().

B12.3.3 Non-invasive debug authentication

RGWPX Non-invasive authentication is controlled by the NIDEN signal and, if the Security Extension is implemented, the
SPNIDEN signal.

RPHPR If the Security Extension is not implemented, there are two non-invasive debug authentication modes:

RKWBT If the Security Extension is implemented, there are three non-invasive debug authentication modes:

DEMCR.SDME Target state for DebugMonitor exception DebugMonitor authentication mode

0 Non-secure Non-secure DebugMonitor

1 Secure Secure DebugMonitor

HaltingDebugAllowed() NIDEN Non-invasive debug authentication mode

FALSE LOW Non-invasive debug prohibited

HIGH Non-invasive debug allowed

TRUE X

NoninvasiveDebugAllowed() DHCSR.S_SDE SPNIDEN Non-invasive debug authentication mode

FALSE X X Non-invasive debug prohibited in all states

TRUE 0 LOW Non-invasive debug of only Non-secure operations
allowed.
Non-invasive debug of Secure operations prohibited.

HIGH Non-invasive debug allowed

1 X
B12-186 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B12 Debug
B12.3 Debug authentication interface
INPSH If DAUTHCTRL.SPNIDENSEL == 1, the PE behaves as if SPNIDEN has the value of
DAUTHCTRL.INTSPNIDEN.

RLXRK The PE must not generate any trace or profiling data when non-invasive debug is prohibited in all states.

RVYGT If the Security Extension is implemented and non-invasive debug of Secure operations is prohibited, the PE must
not generate any trace or profiling data that contains secure information.

RTWDH If non-invasive debug is prohibited in the current Security state, an ETM must behave as if it is disabled.

See also:
• NoninvasiveDebugAllowed().
• SecureNoninvasiveDebugAllowed().
• DWT unit operation on page B13-211.

B12.3.4 DAP access permissions

All types of debug allowed

RVZKT When halting and non-invasive debug are both allowed, regardless of the value of DHCSR.S_SDE, the external
debugger can access the whole physical address space.

RFFPN If the Security Extension is implemented, the DAP must be capable of requesting Secure and Non-secure accesses.

RJHBC If the Security Extension is implemented, DHCSR.S_SDE == 1, and the DAP requests a Secure access, NS-Req is
set to Secure.

RLVBG If the Security Extension is implemented and either DHCSR.S_SDE == 0 or the DAP requests a Non-secure access,
NS-Req set to Non-secure.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B12-187
ID072816 Non-Confidential - Beta

B12 Debug
B12.3 Debug authentication interface
RWMRR DAP accesses are checked by the IDAU and the SAU, if applicable. That is, if NS-Req on a DAP access specifies
Non-secure access, and the IDAU or SAU prohibits Non-secure access to the address, an error response is returned
to the DAP.

RVTTN DAP accesses are not checked by the MPU.

RSSVN If the Security Extension is implemented, permitted DAP accesses to banked SCS registers in the range
0xE000E000-0xE000EFFF are affected by the values of DHCSR.S_SDE, DSCSR.SBRSELEN, and DSCSR.SBRSEL,
as well as by the current Security state of the PE. The following table shows the effect of these factors on the banked
register that is accessed.

RHXMG Permitted DAP accesses to the region 0xE002E000-0xE002EFFF are RAZ/WI if the access is privileged and return an
error if the access is unprivileged.

Secure address?

DHCSR.S_SDE == 1

NS-Req =
Non-secure

NS-Req =
Secure

YesNo

Return error to
DAP

Yes

Do Access

DAP requests Secure
access? Yes

No

No

DHCSR.S_SDE DSCSR.SBRSELEN DSCSR.SBRSEL Current Security
state of the PE

Banked register
accessed

0 X X X Non-secure

1 1 0 X Non-secure

1 X Secure

0 X Non-secure Non-secure

X Secure Secure
B12-188 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B12 Debug
B12.3 Debug authentication interface
Only some types of debug allowed

INLBP In this section All debug is prohibited means that both halting and non-invasive debug are prohibited in all Security
states. This does not mean that DebugMonitor is prohibited.

IQMVV In this section Only non-invasive debug is allowed means that halting is prohibited in all Security states and
non-invasive debug is allowed in at least Non-secure state.

ITKVL In this section No access means that the access is blocked. Blocked accesses return an error response to the DAP.
For a read, the DAP returns an UNKNOWN data value.

RDVSN The DAP access permissions are:

IPQSV The architecture does not describe how a DAP requests Secure or Non-secure memory accesses. In the
recommended ADIv5 Memory Access Port (MEM-AP), ARM recommends that:

• CSW[30], CSW.Prot[6], selects a Secure or Non-secure access:

0 Request a Secure access.

1 Request a Non-secure access.

• CSW[23], CSW.SPIDEN, is Read-As-One. This is because the DAP can always request a Secure access.

IDPHD In a CoreSight DAP, the SPIDEN input to the ARMv8-M MEM-AP is independent of the SPIDEN input of the PE,
and should be tied HIGH.

Address range Region or registers Debug authentication mode

All debug prohibited Only non-invasive
debug allowed

0x00000000-0xDFFFFFFF Rest of memory No access No access

0xE0000000-0xE00FFFFF PPB

0xE00xxFB0-0xE00xxFB7a CoreSight Software Lock
registers

No access RW

0xE00xxFD0-0xE00xxFFFb All ID registers RO RO

0xE0000000-0xE0000FCF ITM No access RW

0xE0001000-0xE0001FCF DWT No access RW

0xE0040000-0xE0040FFF TPIU RW RW

0xE0041000-0xE0041FFF ETM RW RW

0xE0042000-0xE00FEFFF IMPLEMENTATION DEFINED IMPLEMENTATION DEFINED IMPLEMENTATION DEFINED

0xE00FF000-0xE00FFFFF ROM table RO RO

All other PPB regions and registers No access No access

0xE0100000-0xFFFFFFFF Vendor_SYS No access RW

a. For each debug component implementing the CoreSight Software Lock registers. These registers are optional.
b. For each debug component implementing the CoreSight ID registers. These registers are optional.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B12-189
ID072816 Non-Confidential - Beta

B12 Debug
B12.4 Multiprocessor support
B12.4 Multiprocessor support
RQXLS Systems that support debug of more than one PE, either within a single device or as heterogeneous PEs in a more

complex system, require each PE to support all of the following to enable cross-triggering of debug events between
PEs:
• An external debug request.
• A cross-halt event.
• An external restart request.

Support for these features is OPTIONAL in other systems.

See also:
• External debug request.
• Cross-halt event.
• External restart request.

B12.4.1 External debug request

RXZCP When the PE is in Non-debug state, an external agent can signal an external debug request.

RGTGX An external debug request can cause a debug event, that causes either:
• Entry to Debug state.
• If the Main Extension is implemented, a DebugMonitor exception.

RFGCV The PE ignores external debug requests when it is in Debug state.

RBXRD If the Security Extension is implemented, then when DHCSR.C_DEBUGEN == 0 or the PE is in a state in which
halting is prohibited, an External debug request does not generate an entry to Debug state and is ignored if no
DebugMonitor exception is generated.

See also:
• Debug event behavior on page B12-192.
• DFSR.EXTERNAL.

B12.4.2 Cross-halt event

RDLCV When the PE enters Debug state, it signals to an external agent that it is entering Debug state.

B12.4.3 External restart request

RZKVW When the PE is in Debug state, an external agent can signal an external restart request that causes the PE to exit
Debug state.

RWJST An external restart request is not ordered with respect to accesses to memory-mapped registers. It is UNPREDICTABLE
whether an access to a memory-mapped register from a DAP completes before an external restart request.
Therefore, a debugger must ensure that any read or write of a memory-mapped register by the DAP completes
before issuing an external restart request.

RNJQN The PE ignores external restart requests when it is in Non-debug state.

See also:

• Exiting Debug state on page B12-200.
B12-190 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B12 Debug
B12.5 CoreSight and identification registers
B12.5 CoreSight and identification registers
ICMLH ARM recommends that CoreSight-compliant ID registers are implemented to allow identification and discovery of

the components to a debugger.

RCBCM The address spaces that are reserved in each of the debug components for IMPLEMENTATION DEFINED ID registers
and CoreSight compliance are:

RVWSX For the ROM table, the ID register space must be used for a set of CoreSight-compliant ID registers.

RHXDK For all components other than the ROM table, if the registers in the ID register space are not used for ID registers
they must be RAZ.

RVQPM If CoreSight-compliant ID registers are implemented, the Class field in Component ID Register 1 must be:

• 0x1 for the ROM table.

• 0x9 for other components.

IHQSR The Part number in the PIDR registers should be assigned a unique value for each implementation, as with all other
CoreSight components.

CoreSight permits that two or more functionally different components are permitted to share the same Part number,
so long as they have different values of the DEVTYPE or DEVARCH registers.

ICTBF The Part number in the PIDR registers do not need to be unique for different implementation options of the same
part.

Debug component Space reserved for ID registers Space reserved for CoreSight compliance

ITM 0xE0000FD0-0xE0000FFC 0xE0000FA0-0xE0000FCC

DWT 0xE0001FD0-0xE0001FFC 0xE0001FA0-0xE0001FCC

FPB 0xE0002FD0-0xE0002FFC 0xE0002FA0-0xE0002FCC

SCS 0xE000EFD0-0xE000EFFC 0xE000EFA0-0xE000EFCC

TPIU 0xE0040FD0-0xE0040FFC 0xE0040FA0-0xE0040FCC

ETM 0xE0041FD0-0xE0041FFC 0xE0041FA0-0xE0041FCC

ROM table 0xE00FFFD0-0xE00FFFFC 0xE00FFFA0-0xE00FFFCC
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B12-191
ID072816 Non-Confidential - Beta

B12 Debug
B12.6 Debug event behavior
B12.6 Debug event behavior

B12.6.1 About debug events

ICBWT An event that is triggered for debug reasons is known as a debug event.

RVHVP A debug event that is not ignored causes one of the following to occur:

• Entry to Debug state.

• If the Main Extension is implemented, a DebugMonitor exception.

• A HardFault exception.

• An unrecoverable error.

RMNKP The HardFault exceptions or unrecoverable errors that are caused by debug events are generated by:

• A BKPT instruction that is executed when the PE can neither halt nor generate a DebugMonitor exception.

• In some circumstances, the FPB.

RWCPW The debug events are:

RLDRZ The DFSR contains a status bit for each debug event. These bits are set to 1 when a debug event causes the PE to
halt or generate a DebugMonitor exception, and are then write-one-to-clear.

The following table shows which bit is set for each debug event.

RHNRV It is IMPLEMENTATION DEFINED whether the DFSR debug event bits are updated when an event is ignored.

INSMV Debug events are either synchronous or asynchronous.

Table B12-2 Debug events

Debug event Actions

Step request Halt or DebugMonitor

Halt request Halt

Breakpoint Halt, DebugMonitor, or HardFault

Watchpoint Halt or DebugMonitor

Vector catch Halt only

External Halt or DebugMonitor

Table B12-3 Debug events

Event cause DFSR bit

Step request HALTED

Halt request HALTED

Breakpoint BKPT

Watchpoint DWTTRAP

Vector catch VCATCH

External EXTERNAL
B12-192 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B12 Debug
B12.6 Debug event behavior
RVSVN The synchronous debug events are:
• Breakpoint debug events, caused by execution of a BKPT instruction or by a match in the FPB.
• Vector catch debug events, caused when one or more DEMCR.VC_* bits are set to 1, and the PE takes the

corresponding exception.
• Step debug events, caused by DHCSR.C_STEP or DEMCR.MON_STEP.

RPVGM A single instruction can generate several synchronous debug events.

RWJFB Synchronous debug events are associated with the instruction that generated them and are taken instead of executing
the instruction. The PE does not generate any other synchronous exception or debug event that might have occurred
as a result of executing the instruction.

RRNRD The Step debug event is taken on the instruction following the instruction being stepped. This means that
prioritization of the event applies relative to any other exception or debug event for the following instruction, not
for the instruction being stepped.

RJSPS If multiple synchronous debug events and exceptions are generated on the same instruction, they are prioritized as
follows:

1. Halt request (halting only), including where DHCSR.C_HALT is set by DHCSR.C_STEP of the previous
instruction.

2. Highest-priority pending exception that is eligible to be taken. If the Main Extension is implemented, this
might be a DebugMonitor exception, if DEMCR.MON_PEND == 1. This includes where
DEMCR.MON_PEND is set by DEMCR.MON_STEP of the previous instruction.

3. Vector catch.

4. Fault from an instruction fetch, including synchronous BusFault error.

5. Breakpoint that is signaled by an FPB unit.

6. BKPT instruction or other exception that results from decoding the instructions. This includes the cases where
exceptions from the instruction are UNDEFINED, an unimplemented or disabled coprocessor is targeted, or the
EPSR.T bit has a value of 1.

7. Other synchronous exception that is generated by executing the instruction, including an exception that is
generated by a memory access that is generated by the instruction.

RBQVF The highest-priority synchronous debug event is reported in the DFSR.

RFWQQ It is UNPREDICTABLE whether synchronous debug events that occur on the same instruction as a debug event with a
higher priority are reported in the DFSR.

RTKRS The asynchronous debug events are:
• Watchpoint debug events caused by a match in the DWT, including instruction address match watchpoints.
• Halt request debug events, where either

— A debugger write that has set DHCSR.C_HALT to 1 and C_DEBUGEN set to 1.
— A software write that sets DHCSR.C_HALT to 1 when C_DEBUGEN was set to 1.

• External debug request debug events caused by assertion of an IMPLEMENTATION DEFINED external debug
request.

RMRMC When DHCSR.C_DEBUGEN == 0 or the PE is in a state in which halting is prohibited, DHCSR.C_HALT and
DHCSR.C_STEP are ignored, and the PE behaves as if these bits are zero.

See also:
• Halting debug on page B12-194.
• DebugMonitor exception on page B12-195.
• Vector catch on page B12-198.
• BKPTInstrDebugEvent().
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B12-193
ID072816 Non-Confidential - Beta

B12 Debug
B12.6 Debug event behavior
Halting debug

RWLCF Setting the DHCSR.C_DEBUGEN bit to 1 enables Halting debug.

RRZTG A debug event sets DHCSR.C_HALT to 1 if all of the following conditions apply:

• DHCSR.C_DEBUGEN == 1.

• Unless otherwise stated, halting is allowed.

RTHLS If DHCSR.C_HALT has a value of 1 and halting is allowed, the PE halts and enters Debug state.

RFKWB A debug event that sets DHCSR.C_HALT to 1 pends entry to Debug state.

RFCCW If the Security Extension is implemented, a debug event might set DHCSR.C_HALT and remain pending through
execution in Secure state, which might not be a finite time. If halting is prohibited in Secure state and allowed in
Non-secure state, then on transition from Secure to Non-secure state by an exception entry, exception return,
Non-secure function call or function return, if DHCSR.C_HALT has a value of 1, the PE must halt and enter Debug
state before the first instruction executed in Non-secure state completes its execution.

RVDPD If DHCSR.C_HALT has a value of 1 or EDBGRQ is asserted before a Context Synchronization Operation (CSO),
and halting is allowed after the CSO, then the PE must halt and enter Debug state before the first instruction
following the CSO completes its execution.

RJXQF DFSR is updated at the same time as the PE sets DHCSR.C_HALT to 1.

RTXWB If an instruction that is being stepped or an instruction that generates a debug event reads DFSR or DHCSR, the
value that is read for the relevant DFSR bit or for DHCSR.C_HALT is UNKNOWN.

RFRJC For asynchronous debug events, if halting is allowed, the PE must enter Debug state in finite time.

RVJKX Entering Debug state has no architecturally defined effect on the Event Register and exclusive monitors.

IJNGH DHCSR.C_SNAPSTALL allows imprecise entry into the Debug state, for example by forcing any stalled load or
store instructions to be abandoned.

RFKXH Before leaving Debug state caused by an imprecise entry the PE must reset the system.

RDVLN To transfer a word to R0 - R12, to a special-purpose register, or to a Floating-point extension register, a debugger:

1. Writes the required word to DCRDR.

2. Writes to the DCRSR, with the REGSEL value indicating the required register, and the REGWnR bit set to
one to indicate a write access. This clears the DHCSR.S_REGRDY bit to zero.

3. If required, polls DHCSR until DHCSR.S_REGRDY reads-as-one. This shows that the PE has transferred
the DCRDR value to the selected register.

RBBBK To transfer a word from R0 - R12, special-purpose register, or Floating-point extension register, a debugger:

1. Writes to DCRSR, with the REGSEL value indicating the required register, and the REGWnR bit as zero to
indicate a read access.

2. Polls DHCSR until DHCSR.S_REGRDY reads-as-one. This shows that the PE has transferred the value of
the selected register to DCRDR.

3. Reads the required value from DCRDR.

RQDCP In Debug state, writing to DCRDR clears the DHCSR.S_REDGRDY bit to zero, and the PE then sets the bit to 1
when the transfer between the DCRDR and R0 to R12, special-purpose register, or Floating-point extension register
completes.

RJKBB When using this mechanism to write to R0 - R12, special-purpose registers, or Floating-point extension registers all
bits of the xPSR registers are fully accessible. The effect of writing an illegal value is UNPREDICTABLE.

IRXQB This mechanism differs from the behavior of MSR or MRS instruction accesses to the xPSR, where some bits are
ignored on writes.
B12-194 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B12 Debug
B12.6 Debug event behavior
RQLRN The debugger can write to the EPSR.IT bits. If the debugger does this, it must write a value consistent with the
instruction to be executed on exiting Debug state, otherwise instruction execution will be UNPREDICTABLE.

RRCXV The EPSR.IT bits must be zero on exit from Debug state if the instruction indicated by DebugReturnAddress is
outside an IT block.

IRRFN The debugger can always set FAULTMASK to one, but doing so might cause unexpected behavior on exit from
Debug state. An MSR instruction cannot set FAULTMASK to 1 when the execution priority is -1 or higher.

RXRRQ The debugger can write to the ESPR.ICI bits, and on exiting Debug state any interrupted LDM or STM instruction will
use these new values. Clearing the ICI bits to zero will cause the interrupted LDM or STM instruction to restart or
continue.

RRTST The Debugger can write to the DebugReturnAddress, and on exiting Debug state the PE starts executing from
executing from the updated address. The Debugger must ensure the EPSR.IT bits and the EPSR.ICI bits are
consistent with the new DebugReturnAddress.

RGGMJ DebugReturnAddress is the address of the first instruction to be executed on exit from Debug state. This address
indicates the point in the execution stream where the debug event was invoked. For a breakpoint this is the address
of the breakpointed instruction. For all other debug events DebugReturnAddress is the address of the first
instruction that both:

• In a simple sequential execution of the program, executes after the instruction that caused the debug event.

• Has not been executed, where the PE has executed all instructions that are earlier in a simple sequential
execution of the program than the instruction indicated by DebugReturnAddress.

RXCCB Bit[0] of a DebugReturnAddress value is RAZ/SBZ. When writing a DebugReturnAddress, writing bit [0] of the
address does not affect the EPSR.T bit.

See also:
• DHCSR, Debug Halting Control and Status Register on page D2-866
• Debug stepping on page B12-196

DebugMonitor exception

IDPCC The DebugMonitor exception is only available if the Main Extension is implemented.

RZBSJ The DebugMonitor exception is enabled when the DEMCR.MON_EN bit is set to 1.

RPPLF A debug event sets DEMCR.MON_PEND to 1 if all of the following conditions apply:

• The debug event supports generating DebugMonitor exceptions and does not generate an entry to Debug
state.

• DEMCR.MON_EN == 1.

• The DebugMonitor group priority is greater than the current execution priority.

RXLKQ If a Debug event does not generate an entry to Debug state, DEMCR.MON_EN is set to 1 and the DebugMonitor
group priority is less than or equal to the current execution priority:

• The PE escalates a breakpoint debug event that is generated by executing a BKPT instruction to a HardFault.

• There are UNPREDICTABLE circumstances in which the breakpoint generated by the FPB can be escalated to
a HardFault.

• The PE might set DEMCR.MON_PEND to 1 for a watchpoint debug event.

• The PE ignores the other debug events.

RCHXQ A debug event that sets DEMCR.MON_PEND to 1 pends a DebugMonitor exception.

RVSPX DEMCR.MON_PEND is cleared to 0 when the PE takes a DebugMonitor exception. This means that a value of 1
for DEMCR.MON_PEND might never be observed for a synchronous DebugMonitor exception.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B12-195
ID072816 Non-Confidential - Beta

B12 Debug
B12.6 Debug event behavior
RBRXT DFSR is updated at the same time as the PE sets DEMCR.MON_PEND to 1.

RBKHP If an instruction that is being stepped or that generates a debug event reads DFSR or DEMCR, the value that is read
for the relevant DFSR bit or for DEMCR.MON_PEND is UNKNOWN.

RVFLQ For asynchronous debug events, if taken as a DebugMonitor exception, and if the current priority is lower than the
DebugMonitor group priority, a DebugMonitor exception must be taken in finite time.

See also:
• DWT unit operation on page B13-211.
• FPB unit operation on page B13-226.

B12.6.2 Debug stepping

RHMCN The ARMv8-M architecture supports debug stepping in both Halting debug and monitor debug.

RTHTG It is IMPLEMENTATION DEFINED whether stepping a WFE or WFI instruction causes the WFE or WFI instruction to:
• Retire and take the debug event.
• Go into a sleep state and take the debug event only when another wake up event occurs.

RLLVC If a debug event wakes a WFE or WFI instruction, then on taking the debug event, the instruction has retired.

See also:
• Halting debug stepping.
• Debug monitor stepping on page B12-197.

Halting debug stepping

IQMXC A debugger can use Halting debug stepping to exit from Debug state, execute a single instruction, and then reenter
Debug state.

RSWKC Halting debug stepping is active when all of the following apply:

• DHCSR.C_DEBUGEN is set to 1, Halting debug is enabled, and halting is allowed.

• DHCSR.C_STEP is set to 1, halting stepping is enabled.

• The PE is in Non-debug state.

RZVKS When the PE exits Debug state and Halting debug stepping becomes active, the PE performs a Halting debug step
as follows:

1. Performs one of the following:

• Executes the next instruction without generating any exception.

• Takes any pending exception entry of sufficient priority.

• Executes the next instruction, generating a synchronous exception, that is taken. Only one exception
can be taken, that is, only a single PushStack() update can occur in a step sequence.

2. Sets DFSR.HALTED to 1. A read of the DFSR.HALTED bit performed by an instruction that is executed
by stepping returns an UNKNOWN value.

3. Sets DHCSR.C_HALT to 1. A read of DHCSR.C_HALT performed by an instruction that is executed by
stepping returns an UNKNOWN value.

4. Returns to Debug state, if halting is still allowed.

ILTRX The debugger can optionally set the DHCSR.C_MASKINTS bit to 1 to prevent PendSV, SysTick, and external
configurable interrupts from being taken. When DHCSR.C_MASKINTS is set to 1, if a permitted exception
becomes active, the PE steps into the exception handler and halts before executing the first instruction of the
associated exception handler.
B12-196 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B12 Debug
B12.6 Debug event behavior
RZDYR If DHCSR.C_DEBUGEN == 0 or HaltingDebugAllowed() == FALSE, DHCSR.C_MASKINTS and
DHCSR.C_SNAPSTALL are ignored and the PE behaves as if these bits are zero.

RFWSN If DHCSR.C_DEBUGEN == 1, DHCSR.S_SDE == 0, HaltingDebugAllowed() == TRUE, and the Security
Extension is implemented:

• DHCSR.C_MASKINTS is ignored for exceptions targeting Secure state.

• DHCSR.C_SNAPSTALL ignores writes from the debugger.

RMBCB DHCSR.{C_HALT, C_STEP, C_MASKINTS} can be written in a single write to DHCSR, as follows:

RCLWK When DHCSR.C_DEBUGEN is 1 and DHCSR.S_HALT is 0, meaning the PE is in Non-debug state with Halting
debug enabled, the effect of modifying DHCSR.C_STEP or DHCSR.C_MASKINTS is UNPREDICTABLE.

RPTHV When DHCSR.C_DEBUGEN is 0, the PE ignores the values of DHCSR.C_HALT, DHCSR.C_STEP and
DHCSR.C_MASKINTS, and these values are UNKNOWN on DHCSR reads.

Debug monitor stepping

IDXCT A debugger can use debug monitor stepping to return from the DebugMonitor exception handler, execute a single
instruction, and then reenter the DebugMonitor exception handler.

RMLRM Debug monitor stepping is active when all of the following apply:

• DHCSR.C_DEBUGEN is set to 0 or the PE is in a state in which halting is prohibited.

• DEMCR.MON_EN is set to 1, that is monitor debug is enabled.

• DEMCR.MON_STEP is set to 1, that is monitor stepping is enabled.

• DEMCR.SDME == 1 or the instruction was executed in Non-secure state or the exception was taken from
Non-secure state.

• Execution priority is below the priority of the DebugMonitor exception when the instruction was executed
or below the exception taken.

Table B12-4 Debug stepping control using the DHCSR

DHCSR writea

Effect
C_HALT C_STEP C_MASKINTS

0 0 0 Exit Debug state and start instruction execution.
Exceptions can become active b.

0 0 1 Exit Debug state and start instruction execution.
PendSV, SysTick and, external configurable interrupts are disabled,
otherwise exceptions can become activeb.

0 1 0 Exit Debug state, step an instruction and halt.
Exceptions can become activeb.

0 1 1 Exit Debug state, step an instruction and halt.
PendSV, SysTick and, external configurable interrupts are disabled,
otherwise exceptions can become activeb.

1 x x Remain in Debug state

a. Assumes DHCSR.C_DEBUGEN and DHCSR.S_HALT are both set to 1 when the write occurs, meaning the PE is halted.
b. That is, exceptions become active, based on their configuration, according to the exception priority rules.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B12-197
ID072816 Non-Confidential - Beta

B12 Debug
B12.6 Debug event behavior
RMHKQ When the PE returns from an exception and debug monitor stepping becomes active, the PE performs a debug
monitor step as follows:

1. Performs one of the following:
• Executes the next instruction without generating any exception.
• Takes any pending exception entry of sufficient priority.
• Executes the next instruction, generating a synchronous exception that is taken. Only one exception

can be taken, that is, only a single PushStack() can be stepped.

2. If the execution priority is still below the priority of the DebugMonitor exception, set the
DEMCR.MON_PEND and DFSR.HALTED bits to 1.

3. Takes any pending exception of sufficient priority.
If, after taking a pending exception of sufficient priority, any exceptions other than the DebugMonitor
exception are pending, the normal rules for exception prioritization apply. This means that another exception
with a higher priority than the DebugMonitor exception might preempt execution.

IGPSX In all other cases, the DebugMonitor exception preempting execution returns control to the DebugMonitor handler.
Unless that handler clears DEMCR.MON_STEP to 0, returning from the handler performs the next debug monitor
step.

IKPKX If, after the debug monitor stepping process, the taking of an exception means that the execution priority is no longer
below that of the DebugMonitor exception, the values of DEMCR.MON_STEP and DEMCR.MON_PEND mean
that debug monitor stepping process continues when execution priority falls back below the priority of the
DebugMonitor exception.

B12.6.3 Vector catch

ITVRX Vector catch is the mechanism for generating a debug event and entering Debug state on entry to a particular
exception handler or reset.

RJCXR Vector catching is only supported by Halting debug.

RGPLH The conditions for a vector catch, other than reset vector catch, are:

• DHCSR.C_DEBUGEN == 1 and halting is allowed.

• The associated vector catch enable bit, one of DEMCR[11:4] in the Main Extension or DEMCR[10] without
the Main Extension, is set to 1.

• An exception is taken to the relevant exception handler. The associated fault status register status bit is set to
1.

When these conditions are met, the PE sets DHCSR.C_HALT to 1 and enters Debug state before executing the first
instruction of the exception handler.

IQPWL Late arrival and derived exceptions might occur, postponing when the PE halts.

RLKNL If the Security Extension is implemented, then when DHCSR.C_DEBUGEN == 0 or the PE is in a state in which
halting is prohibited, all DEMCR.VC_* bits, other than DEMCR.VC_CORERESET, are ignored.

RWRMQ If debug is enabled, DHCSR.C_DEBUGEN == 1, and DEMCR.VC_CORERESET == 1 when the PE resets, the
PE pends a Vector Catch debug event, even if the Security Extension is implemented, debug is prohibited in Secure
state, and the PE has reset into Secure state. The PE does not halt until either it enters Non-secure state or debug is
allowed in Secure state.

See also:
• Exception numbers and exception priority numbers on page B4-46.
• Exceptions during exception entry on page B4-77.
• Exceptions during exception return on page B4-78.
• Resets, Cold reset and Warm reset on page B2-30.
B12-198 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B12 Debug
B12.6 Debug event behavior
B12.6.4 Breakpoint instructions

RCRJG If the Security Extension is implemented, then is when DHCSR.C_DEBUGEN == 0 or when the PE is in a state in
which halting is prohibited, the BKPT instruction does not generate an entry to Debug state. If no DebugMonitor
exception is generated, the BKPT instruction generates a HardFault exception or enters Lockup state.

RMFHN A BKPT instruction halts the PE if all of the following conditions apply:

• HaltingDebugAllowed() == TRUE.

• DHCSR.C_DEBUGEN == 1.

• The Security Extension is not implemented, the instruction is executed in Non-secure state, or
DHCSR.S_SDE == 1.

RFLKK A BKPT instruction generates a DebugMonitor exception if it does not halt the PE and all of the following conditions
apply:

• DEMCR.MON_EN == 1.

• The DebugMonitor group priority is greater than the current execution priority.

• The Security Extension is not implemented, the instruction is executed in Non-secure state, or
DEMCR.SDME == 1.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B12-199
ID072816 Non-Confidential - Beta

B12 Debug
B12.7 Exiting Debug state
B12.7 Exiting Debug state
RMQWL The PE exits Debug state:

• When the debugger writes 0 to DHCSR.C_HALT.

• On receipt of an external restart request.

RHNKB Exiting Debug state has no architecturally defined effect on the Event Register and exclusive monitors.

RWKSD If software clears DHCSR.C_HALT to 0 when the PE is in Debug state, a subsequent read of the DHCSR that
returns 1 for both DHCSR.C_HALT and DHCSR.S_HALT indicates that the PE has reentered Debug state because
it has detected a new debug event.
B12-200 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B12 Debug
B12.8 Debug System registers
B12.8 Debug System registers
RRHDW The debug provision in the System Control Block (SCB) comprises:

• Two handler-related flag bits, ICSR.ISRPREEMPT and ICSR.ISRPENDING.

• The DFSR.

RWBDH The ARMv8-M architecture defines extra debug registers in the Debug Control Block.

See also:
• Chapter D2 Register Specification.
• Debug Control Block on page D2-798
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B12-201
ID072816 Non-Confidential - Beta

B12 Debug
B12.8 Debug System registers
B12-202 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

Chapter B13
Debug and trace components

This chapter specifies the ARMv8-M debug and trace component rules. It contains the following sections:
• Instrumentation Trace Macrocell on page B13-204.
• Data Watchpoint and Trace unit on page B13-210
• Embedded Trace Macrocell on page B13-224.
• Trace Port Interface Unit on page B13-225.
• Flash Patch and Breakpoint unit on page B13-226.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B13-203
ID072816 Non-Confidential - Beta

B13 Debug and trace components
B13.1 Instrumentation Trace Macrocell
B13.1 Instrumentation Trace Macrocell
See also:

• Data Watchpoint and Trace unit on page B13-210.

B13.1.1 About the ITM

RGDNG The Instrumentation Trace Macrocell (ITM) provides a memory-mapped register interface that applications can use
to generate Instrumentation packets.

IBXWJ The ITM is only available if the Main Extension is implemented.

RLMXS The ITM generates Instrumentation packets, Synchronization packets, and the following protocol packets:
• Overflow packets.
• Local timestamp packets.
• Global timestamp packets.
• Extension packets.

RXQRX The ITM combines the following packets into a single trace stream:
• Instrumentation packets.
• Synchronization packets.
• Protocol packets.
• Hardware source packets that are generated by the DWT.

IFQLR The following figure shows how the ITM relates to other debug components.

RBWJJ When multiple sources are generating data at the same time, the ITM arbitrates using the following priorities:

Synchronization, when required
Priority level -1, highest.

Instrumentation Priority level 0.

Hardware source Priority level 1.

Local timestamps Priority level 2.

Global timestamp 1 Priority level 3.

Global timestamp 2 Priority level 4.

See also:
• Global timestamping on page B13-208.
• Data Watchpoint and Trace unit on page B13-210.
• Chapter F1 ITM and DWT Packet Protocol Specification.

ETM

DWT

Synchronization

ITM

Overflow
Global timestamps

TPIU ‡

Global
timestamp clock

Global timestamps
Synchronous parallel

Serial Wire

Trace
output

‡ Or alternative trace sink

Local timestamps
B13-204 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B13 Debug and trace components
B13.1 Instrumentation Trace Macrocell
B13.1.2 ITM operation

RNKSC The ITM consists of:
• Up to 256 stimulus port registers, ITM_STIM<n>.
• Up to eight enable registers, ITM_TER<n>.
• An access control register, ITM_TPR.
• A general control register, ITM_TCR.

RMFDV The number of ITM_STIM<n> registers is an IMPLEMENTATION DEFINED multiple of eight. Software can discover
the number of supported stimulus ports by writing all ones to the ITM_TPR, and then reading how many bits are
set to 1.

RCGVD If the ITM is disabled or not implemented, any Secure or Non- secure write to ITM_STIM<n> is ignored.

RXQDD Unprivileged code can always read the ITM_STIM<n> registers.

RCSFV The ITM_TPR defines whether each group of eight ITM_STIM<n> registers, and their corresponding
ITM_TER<n> bits, can be written by an unprivileged access.

RPTXV ITM_STIM<n> registers are 32-bit registers that support the following word-aligned accesses:
• Byte accesses, to access register bits[7:0].
• Halfword accesses, to access register bits[15:0].
• Word accesses, to access register bits[31:0].

RLNMW Non-word-aligned accesses are UNPREDICTABLE.

RNQVK ITM_TCR.ITMENA is a global enable bit for the ITM. A Cold reset clears this bit to 0, disabling the ITM.

RVRGP The ITM_TER<n> registers provide an enable bit for each stimulus port.

RNTCR When software writes to an enabled ITM_STIM<n> register, the ITM combines the identity of the port, the size of
the write access, and the data that is written, into an Instrumentation packet that it writes to a FIFO output buffer.
The ITM transmits packets from the output buffer to a trace sink.

RTCTH If DEMCR.TRCENA == 0 or NoninvasiveDebugAllowed() == FALSE, the ITM does not generate trace.

RGRNM The size of the stimulus port output buffer is IMPLEMENTATION DEFINED, but must have at least one entry. The
stimulus port output buffer is shared by all ITM_STIM<n> registers.

RSXNK When the stimulus port output buffer is full, if software writes to any ITM_STIM<n> register, the ITM discards the
write data, and generates an Overflow packet.

RSRPP Reading the ITM_STIM<n> register of any enabled stimulus port returns a value indicating the output buffer status
and that the port is enabled.

RXVVB Reading an ITM_STIM<n> register when the ITM is disabled, or when the individual stimulus port is disabled in
the corresponding ITM_TER<n> register, returns the value indicating that the output buffer is full and the port is
disabled.

RFXSL Hardware source packets that are generated by the DWT unit use a separate output buffer. The output buffer status
that is obtained by reading an ITM_STIM<n> register is not affected by trace that is generated by the DWT unit.

RGMXW Stalling is supported through an optional control, ITM_TCR.STALLENA. When implemented and set to 1, the ITM
can stall the PE to guarantee delivery of data trace packets.

RNFJN Stalling does not affect the DWT counters.

RTNDP The ITM might generate an Overflow packet while the PE is stalled, if the DWT generates:

• A Hardware source packet other than a Data trace packet.

• A Data trace PC value packet or Data trace match packet from a Cycle Counter comparator.

RCRKK The ITM must not stall the PE in Secure state if SecureHaltingDebugAllowed() == FALSE.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B13-205
ID072816 Non-Confidential - Beta

B13 Debug and trace components
B13.1 Instrumentation Trace Macrocell
RGRHW The ITM must not stall the PE if HaltingDebugAllowed() == FALSE.

RBGCP The ITM must not stall the PE in such a way as to deadlock the system.

RFRJG The ITM must not stall if the trace output is disabled.

RXRVL The ITM must not stall for writes to the ITM_STIM<n> registers.

RHDLH Instrumentation trace packets must appear in the trace output in the order in which writes arrive at the
ITM_STIM<n> registers.

RXNHX It is IMPLEMENTATION DEFINED whether an ITM requires flushing of trace data to guarantee that data is output.

RTSXR If periodic flushing is required, the ITM must flush trace data:

• When a Synchronization packet is generated.

• When trace is disabled, meaning that either DEMCR.TRCENA is cleared to 0 or one or more of
ITM_TCR.{TXENA, SYNCENA, TSENA, SYNCENA} is cleared to 0, and the buffered trace includes at
least one corresponding packet type.

• In response to other IMPLEMENTATION DEFINED flush requests from the system.

RMKFS If a system supports multiple trace streams, the debugger must write a unique nonzero trace ID value to the
ITM_TCR.TraceBusID field. The system uses this value to identify the ITM and DWT trace stream. To avoid trace
stream corruption, before modifying the ITM_TCR.TraceBusID a debugger must:

• Clear the ITM_ITMENA bit to zero, to disable the ITM.

• Poll the ITM_TCR.BUSY bit until it returns to zero, indicating that the ITM is inactive.

B13.1.3 ITM_STIM<n> register access permissions

RBJXF Unprivileged and privileged software can always read all ITM registers. If the ITM is not implemented, these
registers are RAZ/WI.

RHQVJ For privileged write accesses to all ITM registers, the ITM:
• Ignores the access if ITM_TCR.ITMENA is set to 0.
• Accepts the access if ITM_TCR.ITMENA is set to 1.

RLKPT For unprivileged write accesses:

• The ITM always ignores accesses to the ITM_TCR and ITM_TPR.

• For each stimulus port, the setting in the appropriate ITM_TPR determines whether the ITM accepts or
ignores an access to the corresponding ITM_TER<n> register field or ITM_STIM<n> register.

B13.1.4 Timestamp support

RRVLT Timestamps provide information on the timing of event generation regarding their visibility at a trace output port.

RTFDG An ARMv8-M PE can implement either or both of the following types of timestamp:
• Local timestamps.
• Global timestamps.

Local timestamping

RRMXM Local timestamps provide delta timestamp values, meaning each local timestamp indicates the elapsed time since
generating the previous local timestamp.

RWGBG The ITM generates the local timestamps from the timestamp counter in the ITM unit.

RXLBH The timestamp counter size is an IMPLEMENTATION DEFINED value that must be less than or equal to 28 bits.

RGPXT It is IMPLEMENTATION DEFINED whether the ITM supports synchronous clocking of the timestamp counter mode.
B13-206 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B13 Debug and trace components
B13.1 Instrumentation Trace Macrocell
RSRJH It is IMPLEMENTATION DEFINED whether the ITM and TPIU support asynchronous clocking of the timestamp
counter mode.

RGHPS ITM_TCR.TSENA enables Local timestamp packet generation.

RFSWG When local timestamping is enabled and the DWT or ITM transfers a Hardware source or Instrumentation trace
packet to the appropriate output FIFO, and the timestamp counter is non-zero, the ITM:
• Generates a Local timestamp packet.
• Resets the timestamp counter to zero.

RBRRL If the timestamp counter overflows, it continues counting from zero and the ITM generates an Overflow packet and
transmits an associated Local timestamp packet at the earliest opportunity. If higher priority trace packets delay
transmission of this Local timestamp packet, the timestamp packet has the appropriate non-zero local timestamp
value.

RXFRH The ITM can generate a Local timestamp packet relating to a single event packet, or to a stream of back-to-back
packets if multiple events generate a packet stream without any idle time.

RQJJB Local timestamp packets include status information that indicates any delay in one or both of:
• Transmission of the timestamp packet relative to the corresponding event packet.
• Transmission of the corresponding event packet relative to the event itself.

RNDCK If the ITM cannot generate a Local timestamp packet synchronously with the corresponding event packet, the
timestamp count continues to increment until the ITM can generate a Local timestamp packet.

RTBMX The ITM compresses the count value in the timestamp packet by removing leading zeroes, and transmits the
smallest packet that can hold the required count value.

See also:

• Local timestamp clocking options.

Local timestamp clocking options

RDSTG If the implementation supports both synchronous and asynchronous clocking of the local timestamp counter,
ITM_TCR.SWOENA selects the clocking mode.

RBDWS When software selects synchronous clocking, when local timestamping is enabled, the PE clock drives the
timestamp counter, and the counter increments on each PE clock cycle.

IJQJD When software selects synchronous clocking, whether local timestamps are generated in Debug state is
IMPLEMENTATION DEFINED. ARM recommends that entering Debug state must disable local timestamping,
regardless of the value of the ITM_TCR.TSENA bit.

RJDRD When software selects asynchronous clocking, and enables local timestamping, the TPIU output interface clock
drives the timestamp counter, through a configurable prescaler. The rate of asynchronous clocking depends upon
the output encoding scheme. This clock might be asynchronous to the PE clock.

RNGDW When asynchronous clocking is implemented, whether the incoming clock signal can be divided before driving the
local timestamping counter is IMPLEMENTATION DEFINED.

RRMTN If the implementation supports division of the incoming asynchronous clock signal, ITM_TCR.TSPrescale sets the
prescaler divide value.

RSKCP Software must only select asynchronous clocking when the TPIU is configured to use an output mode that supports
asynchronous clocking.

RJGCF When software selects asynchronous clocking and the TPIU asynchronous interface is idle, the ITM holds the
timestamp counter at zero. This means that the ITM does not generate a local timestamp on the first packet after an
idle on the asynchronous interface.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B13-207
ID072816 Non-Confidential - Beta

B13 Debug and trace components
B13.1 Instrumentation Trace Macrocell
See also:

• Trace Port Interface Unit on page B13-225.

Global timestamping

IDKSD Global timestamps provide absolute timestamp values, which are based on a system global timestamp clock. They
provide synchronization between different trace sources in the system.

RHBWD If an implementation includes global timestamping, the ITM generates Global timestamp (GTS) packets, which are
based on a global timestamp clock.

RKWQJ The size of the global timestamp is either 48 bits or 64 bits. The choice between these two options is
IMPLEMENTATION DEFINED.

RSRDF To transfer the global timestamp, two formats of Global timestamp packets are defined:

• The first packet format, Global timestamp 1 packet, holds the value of the least significant timestamp
bits[25:0], and wrap and clock change indicators.

• The second packet format, Global timestamp 2 packet, holds the value of the high-order timestamp bits:

— Bits[47:26], if a 48-bit global timestamp is supported.

— Bits[63:26], if a 64-bit global timestamp is supported.

RVGBT The global timestamp that is generated by the ITM must be a full global timestamp:

• When software first enables global timestamps, by changing the value of the ITM_TCR.GTSFREQ field
from zero to a nonzero value.

• When the system asserts the clock ratio change signal in the external ITM timestamp interface.

• In response to a Synchronization packet request, even if ITM_TCR.SYNECENA == 0 meaning it does not
generate a Synchronization packet.

• If, when it has to generate a global timestamp, it detects that the values of the high-order bits of the global
timestamp have changed.

RGGMK If the global timestamp generated by the ITM does not have to be a full global timestamp, the ITM generates only
a single Global timestamp 1 packet. The ITM might compress the packet by omitting significant bits, if they are
unchanged from the previous timestamp value. The compression scheme that is used is similar to the one used for
local timestamps.

RWDCX When the ITM must generate a full global timestamp:

1. The ITM first generates the Global timestamp 1 packet with timestamp bits[25:0], with the applicable bit of
the Wrap and ClockCh bits in that packet set to 1 to indicate that the high-order bits of the timestamp will
also be output. This is the packet that the ITM outputs immediately after a non-delayed trace packet.

2. Because of packet prioritization, the ITM might have to transmit other trace packets before it can output the
Global timestamp 2 packet that contains the high-order bits of the timestamp. It might also have to transmit
another Global timestamp packet. If so, it outputs the Global timestamp 1 packet with timestamp bits[25:0]
and the Wrap bit set to 1.

3. The ITM later generates the Global timestamp 2 packet with the high-order timestamp bits for the most
recently transmitted Global timestamp 1 packet.

See also:
• Synchronization support on page B13-209.
• Continuation bits on page B13-209.
• Chapter F1 ITM and DWT Packet Protocol Specification.
B13-208 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B13 Debug and trace components
B13.1 Instrumentation Trace Macrocell
B13.1.5 Synchronization support

ILRJT An external debugger uses Synchronization packets to recover bit-to-byte alignment information in a serial data
stream.

ILVGD Synchronization packets are independent of timestamp packets.

IJNJV ARM recommends that software disables Synchronization packets when using an asynchronous serial trace port, to
reduce the data stream bandwidth.

RFFQN If ITM_TCR.SYNCENA == 1, the ITM outputs a Synchronization packet:

• When it is first enabled.

• If DWT_CYCCNT is implemented and DWT_CTRL.SYNCTAP is nonzero, in response to a
Synchronization packet request from the DWT unit.

• If TPIU_PSCR is implemented, in response to a Synchronization packet request from the TPIU:

— If DWT_CYCCNT is not implemented, TPIU_PSCR must be implemented.

— If DWT_CYCCNT is implemented, it is IMPLEMENTATION DEFINED whether TPIU_PSCR is
implemented.

• In response to other IMPLEMENTATION DEFINED Synchronization packet requests from the system.

See also:

• DWT_CTRL.SYNCTAP.

B13.1.6 Continuation bits

IBFMX A Synchronization packet consists of a bit stream of at least 47 zero bits followed by a one bit. The final bit is the
byte alignment marker, and therefore bit [7] of the last byte of a Synchronization packet is always one.

RJNVH The longest Extension packet is always 5 bytes. In an Extension packet, bit [7] of each byte, including the header
byte, but not including the last byte of a 5-byte packet, is a continuation bit, C. Bit [7] of the last byte of a 5-byte
Extension packet is part of the extension field. Bit [7] of the last byte of a fewer-than-5-byte Extension packet is
always zero.

RXFTL For all other protocol packets, bit [7] of each byte, including the header byte, but not including the last byte of a
7-byte packet, is a continuation bit, C. Bit [7] of the last byte of a packet is always zero.

RBBSF Each packet type defines its maximum packet length. Except for Global timestamp 2 and Synchronization packets,
the longest defined packet is 5 bytes.

RDPJG The continuation bit, C, is defined as:

0 This is the last byte of the packet.

1 This is not the last byte of the packet.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B13-209
ID072816 Non-Confidential - Beta

B13 Debug and trace components
B13.2 Data Watchpoint and Trace unit
B13.2 Data Watchpoint and Trace unit
This section describes the Data Watchpoint and Trace (DWT) unit. It contains the following subsections:
• About the DWT.
• DWT unit operation on page B13-211.
• Constraints on programming DWT comparators on page B13-213.
• CMPMATCH[N] trigger events on page B13-216.
• Matching in detail on page B13-217.
• DWT match restrictions and relaxations on page B13-218.
• DWT trace restrictions and relaxations on page B13-220.
• DWT counter definitions on page B13-220.

B13.2.1 About the DWT

RQQLQ The Data Watchpoint and Trace (DWT) unit provides the following features:

• Comparators that support:

— Use as a single comparator for instruction address matching or data address matching.

— Use in linked pairs for instruction address range matching or data address range matching.

• Generation, on a comparator match, of:

— A debug event that causes the PE either to enter Debug state or, if the Main Extension is implemented,
to take a DebugMonitor exception.

— Signaling a match to an ETM, if implemented.

— Signaling a match to another external resource.

• External PC sampling using a PC sample register.

RKBMX If the Main Extension is implemented, the DWT provides the following features:

• An optional cycle counter.

• Comparators that support:

— Use as a single comparator for cycle counter matching, if the cycle counter is implemented.

— Use as a single comparator for data value matching.

— Use in linked pairs for data value matching at a specific data address.

RDVJV If the Main Extension and the ITM are implemented, the DWT provides the following trace generation features:

• Generating one or more trace packets on a comparator match.

• Generating periodic trace packets for software profiling.

• Exception trace.

• Performance profiling counters that generate trace.

RCPXJ If DWT_CTRL.NOTRCPKT is 1, there is no DWT trace or exception trace support.

RFKFP If DWT_CTRL.NOCYCCNT is 1, there is no cycle counter support.

RBKGF If DWT_CTRL.NOPRFCNT is 1, there is no profiling counter support.

RHFTT The DWT_CTRL.NUMCOMP field indicates the number of implemented DWT comparators, which must be in the
range 0-15.

RWQLX If the Main Extension is not implemented, Cycle counter, Data value, Linked data value, and Data address with
value comparators and all trace features are not supported.

RSSWT Data trace packets are only generated for comparators 0-3.

RCRHX When a DWT implementation includes one or more comparators, which comparator features are supported, and by
which comparators, is IMPLEMENTATION DEFINED.
B13-210 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B13 Debug and trace components
B13.2 Data Watchpoint and Trace unit
B13.2.2 DWT unit operation

IWTSS For each implemented comparator, a set of registers defines the comparator operation. For comparator n:

• DWT_COMP<n> holds a value for the comparison.

• DWT_FUNCTION<n> defines the operation of the comparator.

RSPJQ A Secure match is a match that is generated by:

• Vector fetches where NS-Req has a value of Secure for the operation.

• The hardware stacking or unstacking of registers, where NS-Req has a value of Secure for the operation, on
any of:

— Exception entry.

— Exception exit.

— Function call entry.

— Function return.

— Lazy state preservation.

• When the Main Extension is implemented, a cycle counter match in Secure state if DWT_CTRL.CYCDISS
== 1.

• An operation that is generated by an instruction that is executed in Secure state, including:

— An Instruction address match for an instruction that is executed in Secure state.

— A Data address or Data value match for a load or store that is generated by an instruction that is
executed in Secure state.

RMGGT For a comparator <n>, matching is prohibited if one or more of the following conditions apply:

• DEMCR.TRCENA == 0 or NoninvasiveDebugAllowed() == FALSE.

• DWT_FUNCTION.ACTION specifies a Debug event and all the following conditions apply:

— HaltingDebugAllowed() == FALSE or DHCSR.C_DEBUGEN == 0.

— If the Main Extension is implemented, DEMCR.MON_EN == 0.

RGFLN In addition, if the Security Extension is implemented, Secure matches are further prohibited if one of the following
conditions applies:

• DWT_FUNCTION.ACTION specifies a Debug event and any of the following conditions applies:

— HaltingDebugAllowed() == TRUE, DHCSR.C_DEBUGEN == 1, and DHCSR.S_SDE == 0.

— The Main Extension is implemented, DEMCR.MON_EN == 1, DEMCR.SDME ==0, and any of:
HaltingDebugAllowed() == FALSE, DHCSR.C_DEBUGEN == 0, DHCSR.S_SDE == 0.

• DWT_FUNCTION.ACTION specifies a trace or trigger event and SecureNoninvasiveDebugAllowed() ==
FALSE.

RHCFP For address and value comparisons, the control register values and the current execution priority and Security state
relate to the state of the PE when it generated the transaction that is being matched against.

RMVFK Between a change to the debug authentication interface, DHCSR or DEMCR, that disables debug and a following
CSO, it is UNPREDICTABLE whether the DWT uses the old values or the new values.

RVTNJ Where the DWT operation rules prohibit a match being generated, a match must not be generated, even if the
programmer’s model defines it as being UNPREDICTABLE whether a comparator generates a match as the result of
the way in which the DWT is programmed.

RPKRK If DEMCR.TRCENA == 0 or NoninvasiveDebugAllowed() == FALSE, DWT_CTRL.FOLDEVTENA,
DWT_CTRL.LSUEVTENA, DWT_CTRL.SLEEPEVTENA, DWT_CTRL.EXCEVTENA, and
DWT_CTRL.CPIEVTENA are ignored, and the PE behaves as if they have a value of 0.

RGDMN If DEMCR.TRCENA == 0 or NoninvasiveDebugAllowed() == FALSE, the DWT does not generate any trace packets.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B13-211
ID072816 Non-Confidential - Beta

B13 Debug and trace components
B13.2 Data Watchpoint and Trace unit
RFHWV If the Security Extension is implemented and SecureNoninvasiveDebugAllowed() == FALSE,
DWT_CTRL.FOLDEVTENA, DWT_CTRL.LSUEVTENA, DWT_CTRL.SLEEPEVTENA,
DWT_CTRL.EXCEVTENA, and DWT_CTRL.CPIEVTENA are ignored and the PE behaves as if they have a
value of zero in Secure state.

RWSRR If the Security Extension is implemented and SecureNoninvasiveDebugAllowed() == FALSE, exception trace packets
are not generated if the exception number in the packet represents a Secure exception:
• Exception entry packets are not generated for exceptions that are taken to Secure state.
• Exception exit packets are not generated for exits from Secure state.
• Exception return packets are not generated for returns to Secure state.

RXDVS The cycle counter, DWT_CYCCNT, and the POSTCNT counter are disabled when DEMCR.TRCENA == 0, but
are not otherwise affected by debug authentication.

RRTJR If the Security Extension is implemented, the cycle counter does not count in Secure state when
DWT_CTRL.CYCDISS is set to 1. This is independent of Secure debug authentication.

RBRSR When the DWT generates a match, DWT_FUNCTION.MATCHED is set to 1, unless the comparator is a Data
address limit or Instruction address limit comparator, in which case DWT_FUNCTION.MATCHED is UNKNOWN.

RNRGV When the DWT generates a match, then if DWT_FUNCTION.ACTION specifies a Debug event, then
DHCSR.C_HALT is set to 1 if all of the following conditions are true:

• HaltingDebugAllowed() == TRUE.

• DHCSR.C_DEBUGEN == 1.

• Either the match is not a Secure match or DHCSR.S_SDE == 1.

RPJGW When the DWT generates a match, then if DWT_FUNCTION.ACTION specifies a Debug event, and the Main
Extension is implemented, then DEMCR.MON_PEND is set to 1 if all of the following conditions apply:

• HaltingDebugAllowed() == FALSE, DHCSR.C_DEBUGEN == 0, or the match is a Secure match and
DHCSR.S_SDE == 0.

• DEMCR.MON_EN == 1.

• Either the DebugMonitor group priority is greater than the current execution priority and the watchpoint was
not generated by a lazy state preservation access, or FPCCR.MONRDY has a value of 1 and the watchpoint
was generated by lazy state preservation.

RFTBG When the DWT generates a match, then if the Main Extension is implemented, a Data trace match packet is
generated, if all of the following conditions apply:

• The Security Extension is implemented.

• SecureNoninvasiveDebugAllowed() == FALSE.

• DWT_FUNCTION.ACTION specifies generating a Data trace PC value packet.

• The PC value that would be included in the packet refers to an instruction that was executed in Secure state.

Otherwise, the type of trace packet that is specified by DWT_FUNCTION.ACTION is generated.

RFNDW An access that results in a MemManage fault or SecureFault exception because of the alignment, SAU, IDAU, or
MPU checks, is not observed by the DWT, and cannot generate a Watchpoint debug event.

Hardware stack accesses

RPGJB The DWT treats hardware accesses to the stack as data accesses:

• For registers pushed to the stack by hardware as part of an exception entry or lazy state preservation.

• For registers popped from the stack by hardware as part of an exception return.

• If the Security Extension is implemented:

— For registers pushed to the stack by hardware as part of a Non-secure function call.

— For registers popped from the stack by hardware as part of a Non-secure function.
B13-212 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B13 Debug and trace components
B13.2 Data Watchpoint and Trace unit
B13.2.3 Constraints on programming DWT comparators

RMSPS If a DWT comparator, <n>, or pair of comparators, <n> and <n+1>, is programmed with a reserved combination of
DWT_FUNCTION.MATCH and DWT_FUNCTION.ACTION,then it is UNPREDICTABLE whether any comparator:

• Behaves as if disabled.

• Generates a match, asserting CMPMATCH, and generate zero, one, or more of the following:

— A debug event.

— A Data trace match packet, Data trace PC value packet, Data trace data address packet, or Data trace
data value packet.

RGPLQ Combinations of DWT_FUNCTION.MATCH and DWT_FUNCTION.ACTION that are not specified as valid
combinations are reserved.

RCNHN The valid combinations of DWT_FUNCTION.MATCH and DWT_FUNCTION.ACTION for a single comparator,
and the events and Data trace packets that the comparator can generate from matching a single access, are identified
in the following table.

In the table:

- means that the packet or event is not generated.

Yes means that the packet or event is generated on a comparator match.

x means that the Action is ignored.

Comparator
type MATCH ACTION Debug

event

Data trace
match
packet

Data trace
PC value
packet

Data trace
data
address
packet

Data trace
data value
packet

Disabled 0b0000 0bxx - - - - -

Cycle countera 0b0001

0b00 - - - - -

0b01 Yes - - - -

0b10 - Yes - - -

0b11 - - Yes - -

Instruction
address 0b0010

0b00 - - - - -

0b01 Yes - - - -

0b10a - Yes - - -

Data address 0b01xx
(not
0b0111)

0b00 - - - - -

0b01 Yes - - - -

0b10a - Yes - - -

0b11a - - Yes - -

Data valuea
0b10xx
(not
0b1011)

0b00 - - - - -

0b01 Yes - - - -

0b10 - Yes - - -

Data address
with valuea

0b11xx
(not
0b1111)

0b10 - - - - Yes

0b11 - - Yes - Yes

a. Only if the Main Extension is implemented.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B13-213
ID072816 Non-Confidential - Beta

B13 Debug and trace components
B13.2 Data Watchpoint and Trace unit
Instruction address range

RDKHG To match an instruction that is in an instruction address range, the following conditions must be met:

• The first comparator, <n-1>, must be programmed for Instruction address.

• The second comparator, <n>, must be programmed for Instruction address limit.

RLNQD The valid combinations of DWT_FUNCTION.MATCH and DWT_FUNCTION.ACTION for an instruction
address range, and the events and data trace packets that matching a single access can generate, are specified in the
following table.

In the table:

- means that the packet or event is not generated.

First means that the packet or event is generated by the first comparator match.

Second means that the packet or event is generated by the second comparator match.

Data address range

RLDGR To match a data access in a data address range, the following conditions must be met:

• The first comparator, <n-1>, must be programmed for either Data address or Data address with value.

• The second comparator, <n>, must be programmed for Data address limit.

RPSBJ The valid combinations of DWT_FUNCTION.MATCH and DWT_FUNCTION.ACTION for a data address range,
and the events and data trace packets that matching a single access can generate, are specified in the following table.

In the table:

- means that the packet or event is not generated.

First means that the packet or event is generated by the first comparator match.

MATCH ACTION
Debug
event

Data trace
match
packet

Data trace
PC value
packet

Data trace
data
address
packet

Data trace
data value
packet<n-1> <n> <n-1> <n>

0b0010 0b0011

0b00 0b00 - - - - -

0b00 0b11a - - Second - -

0b01 0b00 First - - - -

0b10 0b00 - First - - -

a. Only if the Main Extension is implemented.
B13-214 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B13 Debug and trace components
B13.2 Data Watchpoint and Trace unit
Second means that the packet or event is generated by the second comparator match.

Data value at specific address

RKFHV Matching data values at specific data addresses is possible only if the Main Extension is implemented.

RNNXD To match a data value at a specific data address, the following conditions must be met:

• The first comparator, <n-1>, must be programmed for either Data address or Data address with value.

• The second comparator, <n>, must be programmed for Linked data value.

RJKGJ The first comparator matches any access that matches the address. The second matches only accesses that match the
address and the data value.

RNTSD The valid combinations of DWT_FUNCTION.MATCH and DWT_FUNCTION.ACTION for a linked data value,
and the events and data trace packets that matching a single access can generate, are specified in the following table.

In the table:

- means that the packet or event is not generated.

First means that the packet or event is generated by the first comparator match.

Second means that the packet or event is generated by the second comparator match.

MATCH ACTION Debu
g
event

Data trace
match
packet

Data trace PC
value packet

Data trace data
address packet

Data trace
data value
packet<n-1> <n> <n-1> <n>

0b01xx
(not
0b0111

)

0b011

1

0b00 0b00 - - - - -

0b00 0b11a - - - Second -

0b01 0b00 First - - - -

0b10a 0b00 - First - - -

0b11a 0b00 - - First - -

0b11a 0b11 - - First Second -

0b11xx
a (not
0b1111

)

0b011

1

0b10 0b00 - - - First

0b10 0b11 - - - Second First

0b11 0b00 - - First First

0b11 0b11 - - First Second First

a. Only if the Main Extension is implemented.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B13-215
ID072816 Non-Confidential - Beta

B13 Debug and trace components
B13.2 Data Watchpoint and Trace unit
Both means that a first packet is generated by a first comparator match, even if the Linked data value
comparator does not match, and a second packet is generated by the second comparator match, if both
comparators match.

B13.2.4 CMPMATCH[N] trigger events

IVNCC The CMPMATCH events signal watchpoint matches.

RPRJG The implementation of CMPMATCH[n] is IMPLEMENTATION DEFINED.

RFTWC If an ETM is implemented, CMPMATCH events are output to the ETM.

RTMZX If an ETM is not implemented, the effect of CMPMATCH[n] is IMPLEMENTATION DEFINED, including whether the
trigger event has any observable effect or whether observable effects are visible to other components in the system.

RXXKM For all enabled watchpoints, if DWT_FUNCTION<n> is not programmed as an Instruction address limit
comparator and is not programmed as a Data address limit comparator, CMPMATCH[n] is triggered on a
comparator match.

RGVHS For all enabled watchpoints, if DWT_FUNCTION<n> is programmed as an Instruction address limit or Data
address limit comparator, it is UNPREDICTABLE whether CMPMATCH[n] is triggered on a comparator match.

MATCH ACTION
Debug
event

Data trace
match
packet

Data trace
PC value
packet

Data trace
data
address
packet

Data trace
data value
packet<n-1> <n> <n-1> <n>

0b01xx
(not
0b0111)

0b1011

0b00 0b00 - - - - -

0b00 0b01 Second - - - -

0b00 0b10 - Second - - -

0b01 0b00 First - - - -

0b01 0b10 First Second - - -

0b10 0b00 - First - - -

0b10 0b01 Second First - - -

0b10 0b10 - Both - -

0b11 0b00 - - First - -

0b11 0b01 Second - First -

0b11 0b10 - Second First - -

0b11xx
(not
(0b1111)

0b1011

0b10 0b00 - - - - First

0b10 0b01 Second - - - First

0b10 0b10 - Second - - First

0b11 0b00 - - First - First

0b11 0b01 Second - First - First

0b11 0b10 - Second First - First
B13-216 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B13 Debug and trace components
B13.2 Data Watchpoint and Trace unit
B13.2.5 Matching in detail

Instruction address matching in detail

RGNVB The DWT checks all instructions that are executed by a simple sequential execution of the program and do not
generate any exception for an instruction address match, including conditional instructions that fail their condition
code check.

RNQGR An instruction might be checked by the DWT for an instruction address match if it either:

• Is executed by a simple sequential execution of the program and generates a synchronous exception.

• Would be executed by the sequential execution of the program but is abandoned because of an asynchronous
exception.

RKJJC Speculative instruction prefetches, other than those that would be executed by the sequential execution of the
program but that are abandoned because of asynchronous exceptions, must not generate matches.

RDSDT For all instruction address matches, if bit[0] of the comparator address has a value of 1, it is UNPREDICTABLE
whether a match is generated when the other address bits match.

RKLXM For single instruction address matches, an instruction matches if the address of the first byte of the instruction
matches the comparator address.

RRLKW For single address matches, if the instruction is a 4-byte T32 instruction, and the address of the first byte of the upper
halfword matches but the address of the first byte of the lower halfword does not match, it is UNPREDICTABLE
whether a match is generated.

RDNKD For instruction address range matches, an instruction matches if the address of the first byte of the instruction lies
between the lower comparator address, which is specified by comparator <n-1>, and the limit comparator address,
which is specified by comparator <n>. Both addresses are inclusive to the range.

RDSGT For instruction address range matches, if the instruction is a 4-byte T32 instruction, and the address of the first byte
of the upper halfword lies in the range but the address of the first byte of the lower halfword does not lie in the range,
it is UNPREDICTABLE whether a match is generated.

RMLMQ For instruction address range matches, if so configured, a Data trace PC value packet or Data trace match packet is
generated for the first instruction that is executed in the range.

IVHHW For instruction address range matches, if so configured, a branch or sequential execution that stays within the range
does not necessarily generate a new packet.

RHMNX For instruction address range matches, if so configured, CMPMATCH[n-1] is triggered for each instruction that is
executed inside the range, where n-1 is the lower of the two comparators that configure the range.

Data address matching in detail

RBPWC For all Data Address matches, all bits of the comparator address are considered.

RGSLX Speculative reads might generate data address matches.

RWWBH Speculative writes must not generate data address matches.

RVJFB Prefetches into a cache must not generate data address matches.

RCMRP For single data address matches, an access matches if any accessed byte lies between the comparator address and a
limit that is defined by DWT_FUNCTION.DATAVSIZE.

RKHRF For single data address matches, the comparator address must be naturally aligned to
DWT_FUNCTION.DATAVSIZE otherwise generation of watchpoint events is UNPREDICTABLE.

RKKRJ For data address range matches, an access matches if any accessed byte lies between the lower comparator address,
which is specified by comparator <n-1>, and the limit comparator address, which is specified by comparator <n>.
Both addresses are inclusive to the range.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B13-217
ID072816 Non-Confidential - Beta

B13 Debug and trace components
B13.2 Data Watchpoint and Trace unit
RCFMR For data address range matches, DWT_FUNCTION.DATAVSIZE must be set to 0b00 for both the lower comparator
address and the limit comparator address otherwise it is UNPREDICTABLE whether or not a match is generated.

Data value matching in detail

RBMSM Data value matching is only possible if the Main Extension is implemented.

RFVFQ Speculative reads might generate data value matches.

RVGJF Speculative writes must not generate data value matches.

RMLFK Prefetches into a cache must not generate data value matches.

RRMDB For data value matches, if the access size is smaller than DWT_FUNCTION.DATAVSIZE, there is no match.

RZDPM For unlinked data value matches, an access matches if all bytes of any naturally-aligned subset of the access of the
size that is specified by DWT_FUNCTION.DATAVSIZE match the data value in DWT_COMP<n>. The data value
in DWT_COMP<n> is in little-endian order with respect to memory.

IHMMS If the access is unaligned then this might generate a higher priority alignment fault, depending on the instruction
type, profile, and configuration. In these cases no match is generated.

RSQKS For unlinked data value matches, if an access is unaligned, it is IMPLEMENTATION DEFINED whether it either treated
as:

• A sequence of byte accesses.

• A sequence of naturally-aligned accesses covering the accessed bytes. For a read, this access might access
more bytes than the original access.

RQRPW For linked data value matching, if an access is larger than DWT_FUNCTION.DATAVSIZE, then only the
naturally-aligned subset of the access of size DWT_FUNCTION.DATAVSIZE at the matching address is compared
for a match.

RQVRK For linked data value matching, the data address comparator address must be naturally aligned to
DWT_FUNCTION.DATAVSIZE, and the DWT_FUNCTION.DATAVSIZE values for both comparators must be
the same.

RKRCV A Data value comparator that is linked to a Data address comparator does not change the behavior of the address
comparator.

See also:
• DWT_AddressCompare().
• DWT_ValidMatch().
• DWT_InstructionAddressMatch().
• DWT_DataAddressMatch().
• DWT_DataValueMatch().

B13.2.6 DWT match restrictions and relaxations

RKBHM It is IMPLEMENTATION DEFINED whether the DWT treats a fetch from the exception vector table as part of an
exception entry as a data access or ignores these accesses, for the purposes of DWT comparator matches.

RDTHW A fetch by the DWT from the exception vector table as part of an exception entry must never be treated as an
instruction fetch.

RFDKL If the Main Extension and the Flash Patch function of the FPB are implemented, and if an FPB comparator remaps
one word-aligned address onto another, then if an instruction fetch is remapped by the FPB comparator, the PE
might check for an instruction address match for any or none of the two addresses.
B13-218 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B13 Debug and trace components
B13.2 Data Watchpoint and Trace unit
RQDDR If the Main Extension and Flash Patch function of the FPB are implemented, and if an FPB comparator remaps one
word-aligned address onto another, then if a literal load is remapped by the FPB comparator, the PE might check
for a data address match for any or none of the two addresses.

RJQHW If a return is tail-chained, it is IMPLEMENTATION DEFINED whether hardware accesses the stack and therefore
IMPLEMENTATION DEFINED whether the DWT can generate events or trace.

RVJTK The DWT does not match accesses from the DAP.

RMNBX Any executed NOP or IT that matches an appropriately configured PC watchpoint must cause a match.

RSLPX For the main extension only, it is IMPLEMENTATION DEFINED whether a failed STREX instruction can generate a data
access match.

RNHLN If an instruction or operation makes multiple or unaligned data accesses, then, if so configured, it is UNPREDICTABLE
whether any nonmatching access generated by an instruction that generated a matching access is treated as a
matching access.

RCSSQ If an instruction or operation makes multiple or unaligned data accesses, then, if so configured, CMPMATCH is
triggered for each matching access.

RVFXT If the Main Extension is implemented and an instruction or operation makes multiple or unaligned data accesses,
then, if so configured, only a data value match of at least a part of the value that is guaranteed to be single-copy
atomic can generate a match.

RWJNR If an instruction or operation makes multiple or unaligned data accesses, then, if so configured, for a matching data
access that generates a debug event, if permitted, DHCSR.C_HALT or DEMCR.MON_PEND, as applicable, is set
to 1.

A pending DebugMonitor exception does not interrupt the multiple accesses, but another interrupt might, which
means that the debug event might be taken before the multiple operations complete.

RQCJL The DWT can match on the address of an access that generates a BusFault.

RQVHL In the Main Extension, it is IMPLEMENTATION DEFINED whether a stored value for an access that generates a
BusFault:

• Can generate a data value match.

• Can be traced.

RKLFC In the Main Extension, for a load access that returns a BusFault, any data that is returned by the memory system is
invalid, and the DWT must not:
• Generate a data value match.
• Generate a Data trace data value packet.

RTQCF A data access that generates any fault other than a BusFault does not generate a data address or data value match at
the DWT and is not traced.

RFRHP DWT matches are generated asynchronously.

RTHHR A DSB barrier guarantees that the effect of a DWT match is visible to a subsequent read of
DWT_FUNCTION.MATCHED, DHCSR, or DEMCR. In the absence of a DSB barrier, the effect is only guaranteed
to be visible in finite time.

RHPGH The effects of a DWT match never affect instructions appearing in program order before the operation that generates
the match.

See also:

• Tail-chaining on page B4-79
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B13-219
ID072816 Non-Confidential - Beta

B13 Debug and trace components
B13.2 Data Watchpoint and Trace unit
B13.2.7 DWT trace restrictions and relaxations

RHDKK Where a single instruction or operation, or multiple instructions, generate multiple accesses that each one or more
trace packets, then if the architecture guarantees the order in which a pair of these accesses is observed by the PE,
the first trace packets that are generated for each of those accesses must appear in the trace output in the same order.

RWSKK Where a single instruction or operation, or multiple instructions, generate multiple accesses that each generate one
or more trace packets, then if the architecture does not guarantee the order of the accesses, the order of trace packets
in the trace output is not defined.

RXCNB If a single instruction or operation makes multiple or unaligned data accesses, then, if so configured, only the first
access is guaranteed to generate a Data trace PC value packet, Data trace data address packet, or Data trace match
packet. If the architecture does not guarantee the order of the accesses, the first access might be any of the accesses.

RXVBT If a single instruction or operation makes multiple or unaligned data accesses, then, if so configured, a Data trace
data value packet is generated for each matching access.

RQSCF If a single instruction or operation makes multiple or unaligned data accesses, then, if so configured, it is
UNPREDICTABLE how many Data trace data value packets are generated for each unaligned matching access. An
implementation might over-read, meaning that more data outside the access might be traced.

RKXBL If a single instruction or operation makes multiple or unaligned data accesses, then, if so configured, for a matching
data access that generates a Data trace data value packet, at least that part of the value that is guaranteed to be
single-copy atomic is traced.

RQWQS Duplicate Data trace PC value packets, Data trace data address packets, and Data trace data value packets from a
single access are not generated for a single access.

RCPXW Where a comparator or linked pair of comparators generates multiple packet types for a single access, the packets
must appear in the trace output in the following order:

1. Data trace PC value packet.

2. Data trace match packet, generated by a Data address or Data address with value comparator match.

3. Data trace data address packet.

4. Data trace match packet, generated by a Data value comparator match.

5. Data trace data value packet.

RQXBC Where a comparator or linked pair of comparators generates multiple packet types for a single access, packets must
not be interleaved with packets that are generated by other accesses by the same comparator or linked pair of
comparators.

RRHNF Where a comparator or linked pair of comparators generates multiple packet types for a single access, if a
comparator other than this comparator or this linked pair of comparators generates a trace packet of the same type
for the same access, then only one of these packets is output. It is IMPLEMENTATION DEFINED which comparator is
chosen.

IMJXG ARM recommends that the packet from the lowest-numbered comparator is output.

RDKMV Where a comparator or linked pair of comparators generates multiple packet types for a single access, if any of the
packets cannot be output and an Overflow packet is generated, then the remaining packets for that access are not
generated.

RLNBW Where a comparator or linked pair of comparators generates multiple packet types for a single access, packets might
be interleaved with packets that are generated by comparators other than this comparator or this linked pair of
comparators.

B13.2.8 DWT counter definitions

IQRPG If the Main extension is implemented the following equation must hold:
ICNT = CNTCYCLES + CNTFOLD - (CNTLSU + CNTEXC + CNTSLEEP + CNTCPI)
B13-220 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B13 Debug and trace components
B13.2 Data Watchpoint and Trace unit
Where:

ICNT is the total number of instructions architecturally executed.

CNTCYCLES
is the number of cycles counted by DWT_CYCCNT.

CNTFOLD is the number of instructions counted by DWT_FOLDCNT.

CNTLSU is the number of cycles counted by DWT_LSUCNT.

CNTEXC is the number of cycles counted by DWT_EXCCNT.

CNTSLEEP is the number of cycles counted by DWT_SLEEPCNT.

CNTCPI is the number of cycles counted by DWT_CPICNT.

B13.2.9 CYCCNT cycle counter and related timers

RSVPW CYCCNT is an optional free-running 32-bit cycle counter. If the DWT unit implements CYCCNT then
DWT_CTRL.NOCYCCNT is RAZ.

RKRFP When implemented and enabled, CYCCNT increments on each cycle of the PE clock.

RNFJW When the counter overflows it transparently wraps to zero.

RGXJK DWT_CTRL.CYCCNTENA enables the CYCCNT counter.

RBKCG POSTCNT is a 4-bit countdown counter derived from CYCCNT, that acts as a timer for the periodic generation of
Periodic PC sample packets or Event counter packets, when these packets are enabled.

 Periodic PC sample packets are not the same as the Data trace PC value packets that are generated by the DWT
comparators.

RDKGR The DWT does not support the generation of Periodic PC sample packets or Event packets if it does not implement
the CYCCNT timer and DWT_CTRL.NOTRCPKT is RAO.

RRNTV The DWT_CTRL.CYCTAP bit selects the CYCCNT tap bit for POSTCNT. Table B13-1 shows the effect of this bit:

RSXKK A write to DWT_CTRL will initialise POSTCNT to the previous value of DWT_CTRL.POSTINIT if all of:

• DWT_CTRL.PCSAMEPLEENA was set to 0 prior to the write.

• DWT_CTRL.CYCEVTENA was set to 0 prior to the write.

• The write sets either DWT_CTRL.PCSAMPLEENA or DWT_CTRL.CYCEVTENA to 1.

It is UNPREDICTABLE whether any other write to DWT_CTRL that alters the value of either
DWT_CTRL.PCSAMPLEENA and DWT_CTRL.CYCEVTENA sets POSTCNT to DWT_CTRL.POSTINIT or
leaves POSTCNT unchanged.

RXFRM When either DWT_CTRL.CYCEVTENA or DWT_CTRL.PCSAMPLENA is set to 1, and the CYCCNT tap bit
transitions, either from 0 to 1 or from 1 to 0:

• If POSTCNT is nonzero, POSTCNT decrements by 1.

• If POSTCNT is zero, the DWT:

— Reloads POSTCNT from DWT_CTRL.POSTRESET.

— Generates a Periodic PC Sample packets if DWT_CTRL.PCSAMPLENA is set to 1.

— Generates an Event Counter packet with the Cyc bit set to 1 if DWT_CTRL.CYCEVTENA is set to 1.

Table B13-1 CYCCNT tap bit for POSTCNT timer

CYCTAP bit CYCCNT tap at POSTCNT clock rate

0 Bit[6] (PE clock)/64

1 Bit[10] (PE clock)/1024
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B13-221
ID072816 Non-Confidential - Beta

B13 Debug and trace components
B13.2 Data Watchpoint and Trace unit
IPNNS The enable bit for the POSTCNT counter underflow event is DWT_CTRL.CYCENTENA. There is no overflow
event for the CYCCNT counter. When CYCCNT overflows it wraps to zero transparently. Software cannot access
the POSTCNT value directly, or change this value.

IJRVV This means that, to initialize POSTCNT, software must:

1. Ensure that DWT_CTRL.CYCCNTENA and DWT_PCSAMPLEENA are set to 0. This can be achieved
with a single write to DWT_CTRL. This is also the reset value of these bits.

2. Write the required initial value of POSTCNT to the DWT_CTRL.POSTINIT field, leaving
DWT_CTRL.CYCCNTENA and DWT_CTRL.PCSAMPLEENA set to 0.

3. Set either DWT_CTRL.CYCEVTENA or DWT_CTRL.PCSAMPLEENA to 1 to enable the POSTCNT
counter.

Each of these must be separate writes to DWT_CTRL.

RKNHF Disabling CYCCNT stops POSTCNT.

RTMHN Writes to DWT_CTRL.POSTINIT are ignored if either DWT_CTRL.PCSAMPLEENA was set to 1 or
DWT_CTRL.CYCEVTENA was set to 1 prior to the write.

B13.2.10 Profiling counter support

IHXPV Profiling counter support is an optional debug feature.

RWHWR If Profiling counter support is implemented the DWT provides five 8-bit Event counters for software profiling:

• DWT_FOLDCNT.

• DWT_LSUCNT.

• DWT_EXCCNT.

• DWT_SLEEPCNT.

• DWT_CPICNT.

RBJFK The DWT_CPICNT is a general counter for instruction cycle count estimation.

RNSRV The DWT_CPICNT counter increments on each additional cycle to execute a multi-cycle instruction, including
each cycle of any instruction fetch stall, but does not increment for those instructions recorded by DWT_LSUNCT.

RPXVN The DWT_EXCCNT is the exception overhead counter. DWT_EXCCNT increments on each cycle associated with
entry stacking, return unstacking, preemption, and other exception-related processes.

RMVCD The DWT_SLEEPCNT is the sleep overhead counter. DWT_SLEEPCNT increments on each cycle associated with
power saving, whether initiated by a WFI or WFE instruction or sleep-on-exit functionality. It is IMPLEMENTATION
DEFINED whether the counter advances in SLEEPDEEP.

RQSSL The DWT_LSUCNT is the load-store counter. DWT_LSUCNT increments on each additional cycle required to
execute a multi-cycle load-store instruction. It does not count the first cycle required to execute any instruction.

RXBQD The DWT_FOLDCNT is the folded instruction counter. DWT_FOLDCNT increments on any instruction that
executes in zero cycles.

RGLMJ Counters do not increment when the PE is halted. In Debug state the overhead associated with STEP and RUN
commands from and to the halt condition is IMPLEMENTATION DEFINED.

RLMPK A counter overflows on every 256th cycle counted and then wraps to 0.If the appropriate counter overflow event is
enabled in DWT_CTRL the DWT outputs an Event counter packet with the appropriate counter flag set to 1.

RLHMB Setting one of the enable bits to one clears the corresponding counter to zero.

See also:

• Trace Port Interface Unit on page B13-225
B13-222 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B13 Debug and trace components
B13.2 Data Watchpoint and Trace unit
.

B13.2.11 Generating overflow packets from event counters

RKWDH If a counter value wraps round to zero and the previous Event Counter packet has been delayed and has not yet been
output, then it is IMPLEMENTATION DEFINED whether:

• The DWT attempts to generate a second Event counter packet.

• The DWT updates the delayed Event counter packet to include the new wrap event.

RHKTL If a counter value wraps round to zero and the previous Event counter packet has been delayed and has not yet been
output but has the bit for the counter value set, the DWT must attempt to generate a second Event counter packet.

RVPXK If the DWT unit attempts to generate a packet when its output buffer is full, an Overflow packet is output.

RSFFL The size of the DWT output buffer is IMPLEMENTATION DEFINED.

RDFWR Exception trace packets must appear in the same order as for a simple sequential execution of the exception
handling.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B13-223
ID072816 Non-Confidential - Beta

B13 Debug and trace components
B13.3 Embedded Trace Macrocell
B13.3 Embedded Trace Macrocell
ILCCX An Embedded Trace Macrocell (ETM) is an optional feature of an ARMv8-M implementation.

RNGTT An ETM implementation must comply with one of the following versions of the ETM architecture:

RLPJM If an ETM is implemented a trace sink must also be implemented. If the trace sink implemented is the TPIU it must
be CoreSight compliant, and must comply with the TPIU architecture for compatibility with ARM and other
CoreSight-compatible debug solutions.

RNLNS When an ARMv8-M implementation includes an ETM, the CMPMATCH[N] signals from the DWT unit are
available as control inputs to the ETM unit.

RNJDK If the Main Extension is not implemented, it is IMPLEMENTATION DEFINED whether the ETM is accessible only to
the debugger and is RES0 to software.

RWPBN If the ETM is implemented the debugger must program the TRC_TRACEIDR with a unique nonzero Trace ID for
the ETM trace stream.

See also:
• ARM® CoreSight™ Architecture Specification
• CMPMATCH[N] trigger events on page B13-216.

Data trace
Security Extension

Implemented Not implemented

Implemented ETMv3 not permitted ETMv3 not permitted

ETMv4, version 4.2 or later ETMv4, version 4.0 or later

Not implemented ETMv3, version 3.5 or later ETMv3, version 3.5 or later

ETMv4, version 4.2 or later ETMv4, version 4.0 or later
B13-224 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B13 Debug and trace components
B13.4 Trace Port Interface Unit
B13.4 Trace Port Interface Unit
IPWXP The Trace Port Interface Unit (TPIU) support for ARMv8-M provides an output path for trace data from the DWT,

ITM, and ETM. The TPIU is a trace sink.

RCRTQ It is IMPLEMENTATION DEFINED whether the TPIU supports a parallel trace port output.

RGTRP It is IMPLEMENTATION DEFINED whether the TPIU supports low-speed asynchronous serial port output using NRZ
encoding. This operates as a traditional UART.

RLKQT It is IMPLEMENTATION DEFINED whether the TPIU supports medium-speed asynchronous serial port output using
Manchester encoding.

ISDDK ARM recommends that the TPIU provides both parallel and asynchronous serial ports, for maximum flexibility with
external capture devices.

RHJXK Whether the trace port clock is synchronous to the PE clock is IMPLEMENTATION DEFINED.

RJBKJ Software must ensure that all trace is output and flushed to the trace sink before setting the DEMCR.TRCENA bit
to 0.

RSTLV The TPIU is not directly affected by DEMCR.TRCENA being set to 0 or NoninvasiveDebugAllowed() being FALSE.

RJLCQ The output formatting modes that are supported by the TPIU are IMPLEMENTATION DEFINED. They are:

• Bypass.

• Continuous.

RDMFP Bypass mode is only supported if a serial port output is supported.

RRRJP Continuous mode must be supported if the parallel trace port is implemented. Software must select Continuous
mode when the parallel trace port is used.

RFCFT Continuous mode must be supported if the ETM is implemented. Software must select Continuous mode when the
ETM is used.

See also:
• TPIU_FFCR, TPIU Formatter and Flush Control Register on page D2-1087.
• Instrumentation Trace Macrocell on page B13-204.
• Embedded Trace Macrocell on page B13-224.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B13-225
ID072816 Non-Confidential - Beta

B13 Debug and trace components
B13.5 Flash Patch and Breakpoint unit
B13.5 Flash Patch and Breakpoint unit

B13.5.1 About the FPB unit

RFTWL The Flash Patch and Breakpoint (FPB) unit supports setting breakpoints on instruction fetches.

RQLVF In the Main Extension, if the Security Extension is not implemented, it is IMPLEMENTATION DEFINED whether the
FPB unit supports:

• Remapping data accesses from specific locations from the Code region of system memory to addresses in the
SRAM region. This is referred to as literal remapping.

• Remapping instruction fetches from specific addresses from the Code region of system memory to addresses
in the SRAM region. This is referred to as instruction remapping.

RGDWW The number of implemented instruction address comparators is IMPLEMENTATION DEFINED. Software can discover
the number of implemented instruction address comparators from FP_CTRL.NUM_CODE.

RQKCT If literal remapping is supported, the number of implemented literal address comparators is IMPLEMENTATION
DEFINED. Software can discover the number of implemented literal address comparators from
FP_CTRL.NUM_LIT.

RHTWV If the Main Extension is not implemented or the Security Extension is implemented, the FPB unit does not support
remapping functions.

RLPRC If the FPB does not support remapping functions, the FP_REMAP.RMPSPT and FP_CTRL.NUM_LIT fields have
a value of 0.

See also:
• Chapter B8 The System Address Map.
• DWT trace restrictions and relaxations on page B13-220.
• Chapter D2 Register Specification.

B13.5.2 FPB unit operation

RRKFD The FPB contains the following register types:
• A general control register, FP_CTRL.
• A remap address register, FP_REMAP, if instruction or literal remapping is supported.
• Comparator registers.

RCTFH The FPB uses separate comparators for instruction address comparison and for literal address comparison.

RBKKW Each implemented instruction address comparator must support breakpoint generation.

RSLGM If instruction remapping is supported, each implemented instruction address comparator must support instruction
remapping.

RFNQF The FP_CTRL register provides a global enable bit for the FPB, and ID fields that indicate the numbers of
instruction address comparison and literal comparison registers implemented.

RQXRP If instruction or literal remapping is supported, FP_REMAP provides the base address for the remapped accesses.

RQCPN If remapping is supported, software can configure an instruction address comparator to remap the instruction, or to
generate a breakpoint.

RVDLL If literal remapping is supported, each implemented literal address comparator must support literal remapping.

RKMTK The literal address comparators only support remapping of data read accesses. Each comparator has its own enable
bit that enables operation of the comparator only when the global enable bit is also set to 1.
B13-226 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B13 Debug and trace components
B13.5 Flash Patch and Breakpoint unit
RCKBL When configured for breakpoint generation, instruction address comparators can be configured to match any
halfword-aligned addresses in the whole address map.

RHPTM When configured for instruction remapping, instruction address comparators can be configured to match any
word-aligned address in the Code memory region, by ignoring bits[1:0] of each instruction fetch.

RXPXS Instruction address comparators match only on instruction fetches.

ICNBW Bit[0] of each instruction fetch address is always zero.

RGKNQ Literal address comparators can be configured to match any word-aligned address in the Code memory region, by
ignoring bits[1:0] of each access.

RWRHG Literal address comparators match only on data reads and ignore data writes. Data writes always access the original
location.

RFVNG When configured for remapping, a match causes the instruction or data to be read from the remapped location.

RKWWG Comparator n remaps to address (FP_REMAP.REMAP:'00000' + 4n) when it is configured for remapping and a
match occurs.

RPTNZ If a remapped instruction reads the PC, then the value that is returned is calculated from the original instruction
address and not the remapped address.

RHTKB Literal address matching can remap word, halfword, or byte data accesses. A match fetches the appropriate-sized
data item from the remapped location.

RMHVF It is IMPLEMENTATION DEFINED how remapping affects unaligned literal accesses.

RTGVX When an MPU is enabled, it performs its checks on the original address, and applies the attributes for that address
to the remapped location. The MPU does not check the remapped address.

RMPWN The FPB can remap a Load exclusive accesses, but whether the remapped access is performed as an exclusive access
is UNPREDICTABLE.

RCJKK When an Instruction address matching comparator is configured for breakpoint generation, a match on the address
of a 32-bit instruction must be configured to match the first halfword or both halfwords of the instruction.

RWSXN If a Breakpoint debug event is generated by the FPB on the second halfword of a 32-bit T32 instruction, it is
UNPREDICTABLE whether the breakpoint generates a debug event.

RXKJW An FPB match specifying a Breakpoint debug event generates a Breakpoint debug event that halts the PE if all of
the following conditions are true:

• HaltingDebugAllowed() == TRUE.

• DHCSR.C_DEBUGEN == 1.

• DHCSR.S_HALT == 0.

• The Security Extension is not implemented, the matching instruction is executed in Non-secure state, or
DHCSR.S_SDE == 1.

RHXMP If the Main Extension is implemented, an FPB match specifying a Breakpoint debug event generates a
DebugMonitor exception if it does not halt the PE and all of the following conditions are true:

• DEMCR.MON_EN == 1.

• DHCSR.S_HALT == 1.

• The DebugMonitor group priority is greater than the current execution priority.

• The Security Extension is not implemented, the matching instruction is executed in Non-secure state, or
DEMCR.SDME == 1.

RBFPK An FPB match that specifies a Breakpoint debug event is ignored if it does not meet the conditions for generating
either:

• A Breakpoint debug event that halts the PE.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B13-227
ID072816 Non-Confidential - Beta

B13 Debug and trace components
B13.5 Flash Patch and Breakpoint unit
• A DebugMonitor exception.

RCLNV Between a change to the debug authentication interface, DHCSR or DEMCR, that disables debug, and a following
context synchronization operation (CSO), it is UNPREDICTABLE whether any breakpoints generated by the FPB:

• Generate a Breakpoint debug event based on the old values and either:

— If the Main Extension is implemented, generate a DebugMonitor exception.

— Halts the PE.

• Are escalated to HardFault.

• Are ignored.

RWSXM The FPB treats hardware accesses to the stack as data accesses for registers that are pushed to the stack by hardware
as part of an exception entry or lazy state preservation.

RXGJS The FPB treats hardware accesses to the stack as data accesses for registers popped from the stack by hardware as
part of an exception return.

RSMPC If the Security Extension is implemented, the FPB treats hardware accesses to the stack as data accesses for registers
that are pushed to the stack by hardware as part of a Non-secure function return.

RQKNS If the Security Extension is implemented, the FPB treats hardware accesses to the stack as data accesses for registers
popped from the stack by hardware as part of a Non-secure function call.

RTDHG It is IMPLEMENTATION DEFINED whether the FPB treats a fetch from the exception vector table as part of an
exception entry as a data access, or ignores these accesses, for the purposes of FPB address comparator matches.
The fetch must never be treated as an instruction fetch.

RQGKT The FPB does not match access from the DAP.

See also:
• Halting debug authentication on page B12-184.
• About debug events on page B12-192.
• BKPTInstrDebugEvent().
• FPB_BreakpointMatch().

Multiple FPB comparators

ILVNM In this section, A, B, and C are word-aligned addresses and comparators n and m are different FPB comparators.

RDCLG If instruction address comparator n remaps A to B, and instruction address comparator m specifies a breakpoint on
A, then, for an instruction that is executed from A, the PE generates a breakpoint.

RRHGJ If instruction address comparator n remaps A to B, and instruction address comparator m specifies a breakpoint on
A+2 , then, for an instruction that is executed from A+2, the PE generates a breakpoint.

RRKQJ If instruction address comparator n remaps A to B, and instruction address comparator m specifies a breakpoint on
A, then, for an instruction that is to be executed from A+2, the PE does one of the following:

• Executes the instruction from A+2.

• Executes the instruction from B+2.

RTSGV If instruction address comparator n remaps A to B, and instruction address comparator m specifies a breakpoint on
A+2, then, for an instruction to be executed from A, the PE does one of the following:

• Executes the instruction from A.

• Executes the instruction from B.

RRFHV If instruction address comparator n remaps A to B, and instruction address comparator m specifies a breakpoint on
either B, then, for an instruction that is to be executed from A, the PE does one of the following:

• Executes the instruction from A.
B13-228 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

B13 Debug and trace components
B13.5 Flash Patch and Breakpoint unit
• Executes the instruction from B.

• Generates a breakpoint.

RPDRR If instruction address comparator n remaps A to B, and instruction address comparator m specifies a breakpoint at
B+2, then, for an instruction that is to be executed from A+2, the PE does one of the following:

• Executes the instruction from A+2.

• Executes the instruction from B+2.

• Generates a breakpoint.

RLGSL If instruction address comparator n remaps A to B, and instruction address comparator m remaps A to C, then, for
an instruction that is executed from A or A+2, the PE does one of the following:

• Executes the instruction from A.

• Executes the instruction from A+2.

• Executes the instruction from B.

• Executes the instruction from B+2.

• Executes the instruction from C.

• Executes the instruction from C+2.

RCCFF If instruction address comparator n specifies a breakpoint on A or A+2, and instruction address comparator m also
has a breakpoint on A or A+2 then, for all combinations of A and A+2 in comparators n and m, for an instruction
that is executed from either A or A+2, the PE does one of the following:

• Executes the instruction from A.

• Executes the instruction from A+2.

• Generates a breakpoint.

IXNXD The following table shows multiple instruction address comparator cases on instruction fetches. In this table, an
outcome of A, B, or C means the instruction from A, B, or C, respectively, is executed.

RNHHW If literal address comparator n remaps A to B and literal address comparator m remaps A to C, then, for a literal
access from A, A+1, A+2, or A+3, the PE does one of the following:
• Uses data from A, A+1, A+2, or A+3, respectively.
• Uses data from B, B+1, B+2, or B+3, respectively.
• Uses data from C, C+1, C+2, or C+3, respectively.

Comparator n Comparator m Instruction executed from Permitted outcomes

Remap A to B Breakpoint at A A Breakpoint

Remap A to B Breakpoint at A A+2 A+2, B+2

Remap A to B Breakpoint at A+2 A A, B

Remap A to B Breakpoint at A+2 A+2 Breakpoint

Remap A to B Breakpoint at B A A, B, Breakpoint

Remap A to B Breakpoint at B A+2 A+2, B+2

Remap A to B Breakpoint at B+2 A A, B

Remap A to B Breakpoint at B+2 A+2 A+2, B+2, Breakpoint

Remap A to B Remap A to C A+x where x is either 0 or 2 A+x, B+x, C+x

Breakpoint at A or A+2 Breakpoint at A or A+2 A+x where x is either 0 or 2 A+x, Breakpoint
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B13-229
ID072816 Non-Confidential - Beta

B13 Debug and trace components
B13.5 Flash Patch and Breakpoint unit
The following table shows multiple comparator cases on literal fetches.

Cache maintenance

RGVTV Instruction and data caches are permitted to cache the results of the Flash Patch remap function. This means that
software must perform cache maintenance operations when enabling, disabling, or modifying a Flash Patch remap.

RBWSW Instruction caches are not permitted to cache breakpoints that are generated by a Flash Patch and Breakpoint unit.

Comparator n Comparator m Literal fetched from Permitted outcomes

Remap A to B Remap A to C A+x, where x is 0, 1, 2, or 3 A+x, B+x, C+x
B13-230 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

Part C
ARMv8-M Instruction Set

Chapter C1
Instruction Set Overview

This chapter describes the instruction descriptions contained in Chapter C2 Instruction Specification. It contains the
following sections:
• Instruction set on page C1-234.
• Instruction set, interworking support on page C1-235.
• Instruction set, interstating support on page C1-236.
• Format of instruction descriptions on page C1-237.
• Standard assembler syntax fields on page C1-240.
• Conditional execution on page C1-241.
• Instruction set, encoding on page C1-246.
• Modified immediate constants on page C1-249.
• Pseudocode descriptions of operations on general-purpose registers and PC on page C1-250.
• NOP-compatible hint instructions on page C1-251.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C1-233
ID072816 Non-Confidential - Beta

C1 Instruction Set Overview
C1.1 Instruction set
C1.1 Instruction set
There is one instruction set, called T32.

See also:
• Instruction set, encoding on page C1-246.
• Chapter C2 Instruction Specification. See this for descriptions of each T32 instruction.
C1-234 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C1 Instruction Set Overview
C1.2 Instruction set, interworking support
C1.2 Instruction set, interworking support
In the A profile version of the ARMv8 architecture, ARMv8-A, the AArch32 Execution state supports two
instruction sets, T32 and A32, and software can use interworking branches to select which of these to execute, as
follows:

• In ARMv8-A, some instructions are interworking branches, that write an address to the PC that both:
— Causes a branch to that address.
— Also selects the instruction set to execute after the branch.

It is bit[0] of the address that selects the instruction set to execute after the branch. If bit[0] is:
0 The instruction set to execute after the branch is A32.
1 The instruction set to execute after the branch is T32.

In ARMv8-M, the following instructions are interworking branches:
• BX and BLX.
• POP and all forms of LDM, when the register list includes the PC.
• LDR (immediate), LDR (literal), and LDR (register), with <Rt> equal to the PC.

In ARMv8-M, if bit [0] of an interworking address is:

0 EPSR.T is assigned the value 0b0, causing the PE to takes an INVSTATE UsageFault on the next
instruction it attempts to execute.

1 EPSR.T is assigned the value 0b1. The Instruction set state is T32 state and all instructions are
decoded as T32 instructions.

See also:
• Instruction set on page C1-234.
• BXWritePC on page E3-1153.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C1-235
ID072816 Non-Confidential - Beta

C1 Instruction Set Overview
C1.3 Instruction set, interstating support
C1.3 Instruction set, interstating support
There are the following interstating branches:
• BXNS and BLXNS.

When an interstating branch is executed in Secure state, the lsb of the target address indicates the target Security
state:
0 The target Security state is Non-secure state.
1 The target Security state is Secure state.

Interstating branches are UNDEFINED in Non-secure state.

See also:
• In Chapter B4 Programmers’ Model:

— Security state transitions on page B4-60.
C1-236 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C1 Instruction Set Overview
C1.4 Format of instruction descriptions
C1.4 Format of instruction descriptions
Each instruction description in Chapter C2 has the following content:
1. A title.
2. An introduction to the instruction.
3. The instruction encoding or encodings.
4. Any alias conditions, if applicable.
5. A list of the assembler symbols for the instruction.
6. Pseudocode describing how the instruction operates.
7. Notes, if applicable.

C1.4.1 The title

The title of an instruction description includes the base mnemonic for the instruction.

If different forms of an instruction use the same base mnemonic, each form has its own description. In this case, the
title is the mnemonic followed by a short description of the instruction form in parentheses. This is most often used
when an operand is an immediate value in one instruction form, but is a register in another form.

For example, in Chapter C2 there are the following titles for different forms of the ADD instruction:
• ADD (SP plus immediate) on page C2-306.
• ADD (SP plus register) on page C2-308.
• ADD (immediate) on page C2-311.
• ADD (immediate, to PC) on page C2-314.
• ADD (register) on page C2-316.

C1.4.2 An introduction to the instruction

This briefly describes the function of the instruction. The introduction is not a complete description of the
instruction, and it is not definitive. If there is any conflict between it and the more detailed information that follows
it, the more detailed information takes priority.

C1.4.3 The instruction encoding or encodings

This shows the instruction encoding diagram, or if the instruction has multiple encodings, shows all of the encoding
diagrams. Each diagram has a heading, as follows:
• The first diagram, showing the first encoding of the instruction, has the heading T1.
• The second diagram, showing the second encoding of the instruction, has the heading T2.
• The third diagram, showing the third encoding of the instruction, has the heading T3.
• ...

In a 16-bit encoding diagram:
• The bits are numbered from 15 to 0. This halfword can be described as hw1.
• For an address A, the diagram shows, from left to right, the bytes at addresses A+1 and A.

In a 32-bit encoding diagram:

• The bits are numbered from 15 to 0 for each halfword of the instruction, as a reminder that a 32-bit T32
instruction consists of two halfwords instead of a word. The left-hand halfword in the diagram is called hw1
and the right-hand halfword is called hw2.

• For an address A, the diagram shows, from left to right, the bytes at addresses A+1 and A for hw1, followed
by A+3 and A+2 for hw2.

Between each encoding diagram and its T<n> heading, there is an italicized statement that describes which
ARMv8-M variant the encoding is present in. For example, “ARMv8-M Main Extension only.”
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C1-237
ID072816 Non-Confidential - Beta

C1 Instruction Set Overview
C1.4 Format of instruction descriptions
Below each encoding diagram is the assembler syntax prototype for that encoding, written in typewriter font. In
some cases an encoding has multiple variants of assembler syntax prototype, when the prototype differs depending
on the value in one or more of the encoding fields. In these cases, the correct variant to use can be identified by
either:

• Its subheading.

• An annotation to the syntax.

For a particular encoding:

• There is usually more than one assembler syntax prototype variant that assembles to it.

• The exact set of prototype variants that assemble to it usually depends on the operands to the instruction, for
example the register numbers or immediate constants. As an example, for the AND (register) instruction, the
syntax AND R0, R0, R8 selects a 32-bit encoding, but AND R0, R0, R1 selects a 16-bit encoding.

Each encoding diagram, and its associated assembler syntax prototypes, is followed by encoding-specific
pseudocode that translates the fields of that encoding into inputs for the encoding-independent pseudocode that
describes the operation of the instruction. See Pseudocode describing how the instruction operates on page C1-239.

C1.4.4 Any alias conditions, if applicable

This is an optional part of an instruction description. If included, it describes the set of conditions for which an
alternative mnemonic and its associated assembler syntax prototypes are preferred for disassembly by a
disassembler. It includes a link to the alias instruction description that defines the alternative syntax. The alias
syntax and the original syntax can be used interchangeably in the assembler source code.

ARM recommends that if a disassembler outputs the alias syntax, it consistently outputs the alias syntax.

C1.4.5 A list of the assembler symbols for the instruction

The Assembler symbols subsection of an instruction description contains a list of the symbols that the assembler
syntax prototype or prototypes use, if any.

The following conventions are used:

< > Angle brackets. Any symbol enclosed by these is a name or a value that the user supplies. For each
symbol, there is a description of what the symbol represents. The description usually also specifies
which encoding field or fields encodes the symbol.

{ } Brace brackets. Any symbol enclosed by these is optional. For each optional symbol, there is a
description of what the symbol represents and how its presence or absence is encoded.

In some assembler syntax prototypes, some brace brackets are mandatory, for example if they
surround a register list. When the use of brace brackets is mandatory, they are separated from other
syntax items by one or more spaces.

Usually precedes a numeric constant. All uses of # are optional in assembler source code. ARM
recommends that disassemblers output the # where the assembler syntax prototype includes it.

+/- Indicates an optional + or - sign. If neither is coded, + is assumed.

Single spaces are used for clarity, to separate syntax items. Where a space is mandatory, the assembler syntax
prototype shows two or more consecutive spaces.

Any characters not shown in this conventions list must be coded exactly as shown in the assembler syntax prototype.
Apart from brace brackets, these characters are used as part of a meta-language to define the architectural assembler
syntax prototype for an instruction encoding, but have no architecturally defined significance in the input to an
assembler or in the output from a disassembler.

Some assembler syntax prototype fields are standardized across all or most instructions.
C1-238 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C1 Instruction Set Overview
C1.4 Format of instruction descriptions
See also:

• Standard assembler syntax fields on page C1-240.

C1.4.6 Pseudocode describing how the instruction operates

The Operation subsection of the instruction description contains this pseudocode.

It is encoding-independent pseudocode that provides a precise description of what the instruction does.

Note
 For a description of ARM pseudocode, see Chapter E3 Pseudocode Specification. This chapter also describes the
execution model for an instruction.

C1.4.7 Notes, if applicable

If applicable, other notes about the instruction appear under additional subheadings.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C1-239
ID072816 Non-Confidential - Beta

C1 Instruction Set Overview
C1.5 Standard assembler syntax fields
C1.5 Standard assembler syntax fields
The following assembler syntax prototype fields are standard across all or most instructions:

<c> Specifies the condition under which the instruction is executed. If <c> is omitted, it defaults to
always (AL). For details see Conditional instructions on page C1-244.

<q> Specifies one of the following optional assembler qualifiers on the instruction:

.N Meaning narrow. The assembler must select a 16-bit encoding for the instruction. If this
is not possible, an assembler error is produced.

.W Meaning wide. The assembler must select a 32-bit encoding for the instruction. If this
is not possible, an assembler error is produced.

If neither .W nor .N is specified, the assembler can select either a 16-bit or 32-bit encoding. If both
encoding lengths are available, it must select a 16-bit encoding. In the few cases where more than
one encoding of the same length is available for an instruction, the rules for selecting between them
are instruction-specific and are part of the instruction description.
C1-240 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C1 Instruction Set Overview
C1.6 Conditional execution
C1.6 Conditional execution
Conditionally executed means that the instruction only has its normal effect on the programmers’ model operation,
memory and coprocessors if the N, Z, C, and V flags in the APSR satisfy a condition specified in the instruction. If
the flags do not satisfy this condition, the instruction acts as a NOP, that is, execution advances to the next instruction
as normal, including any relevant checks for exceptions being taken, but has no other effect.

Most T32 instructions are unconditional. Conditional execution in T32 code can be achieved using any of the
following instructions:

• A 16-bit conditional branch instruction, with a branch range of –256 to +254 bytes. See B on page C2-332
for details. Before the additional instruction support in ARMv6T2, this was the only mechanism for
conditional execution in T32 code.

• A 32-bit conditional branch instruction, with a branch range of approximately ± 1MB. See B on page C2-332
for details.

• 16-bit Compare and Branch on Zero and Compare and Branch on Nonzero instructions, with a branch range
of +4 to +130 bytes. See CBNZ, CBZ on page C2-345 for details.

• A 16-bit If-Then instruction that makes up to four following instructions conditional. See IT on page C2-370
for details. The instructions that are made conditional by an IT instruction are called its IT block. Instructions
in an IT block must either all have the same condition, or some can have one condition, and others can have
the inverse condition.

Most T32 instructions in ARMv8-M can be executed conditionally, based on the values of the APSR condition flags.
Table C1-1 shows the available conditions.

In T32 instructions, the condition (if it is not AL) is normally encoded in a preceding IT instruction, see Conditional
instructions on page C1-244, ITSTATE on page C1-242, and IT on page C2-370 for details. Some conditional branch
instructions do not require a preceding IT instruction, and include a condition code in their encoding.

Table C1-1 Condition codes

cond Mnemonic
extension

Meaning, integer
arithmetic

Meaning, floating-point
arithmetica Condition flags

0000 EQ Equal Equal Z == 1

0001 NE Not equal Not equal, or unordered Z == 0

0010 CS b Carry set Greater than, equal, or unordered C == 1

0011 CC c Carry clear Less than C == 0

0100 MI Minus, negative Less than N == 1

0101 PL Plus, positive or zero Greater than, equal, or unordered N == 0

0110 VS Overflow Unordered V == 1

0111 VC No overflow Not unordered V == 0

1000 HI Unsigned higher Greater than, or unordered C == 1 and Z == 0

1001 LS Unsigned lower or same Less than or equal C == 0 or Z == 1

1010 GE Signed greater than or equal Greater than or equal N == V

1011 LT Signed less than Less than, or unordered N != V
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C1-241
ID072816 Non-Confidential - Beta

C1 Instruction Set Overview
C1.6 Conditional execution
C1.6.1 Pseudocode details of conditional execution

The CurrentCond() pseudocode function prototype returns a 4-bit condition specifier as follows:

• For the T1 and T3 encodings of the Branch instruction shown in B on page C2-332, it returns the 4-bit cond
field of the encoding.

• For all other T32 instructions:
— If ITSTATE.IT<3:0> != '0000' it returns ITSTATE.IT<7:4>
— If ITSTATE.IT<7:0> == '00000000' it returns '1110'
— Otherwise, execution of the instruction is UNPREDICTABLE.

For more information, see ITSTATE.

The ConditionPassed() function uses this condition specifier and the APSR condition flags to determine whether
the instruction must be executed.

C1.6.2 Conditional execution of undefined instructions

If an undefined instruction fails a condition check in ARMv8-M, the instruction behaves as a NOP and does not
cause an exception.

Note
 The Branch (B) instruction with a conditional field of '1110' is UNDEFINED and takes an exception unless qualified
by a condition check failure from an IT instruction.

C1.6.3 ITSTATE

The bit assignments of the ITSTATE register are:

This register holds the If-Then Execution state bits for the T32 IT instruction. See IT on page C2-370 for a
description of the IT instruction and the associated IT block.

ITSTATE divides into two subfields:

IT[7:5] Holds the base condition for the current IT block. The base condition is the top 3 bits of the
condition specified by the IT instruction.

This subfield is 0b000 when no IT block is active.

1100 GT Signed greater than Greater than Z == 0 and N == V

1101 LE Signed less than or equal Less than, equal, or unordered Z == 1 or N != V

1110 None (AL) d Always (unconditional) Always (unconditional) Any

a. Unordered means at least one NaN operand.
b. HS (unsigned higher or same) is a synonym for CS.
c. LO (unsigned lower) is a synonym for CC.
d. AL is an optional mnemonic extension for always, except in IT instructions. See IT on page C2-370 for details.

Table C1-1 Condition codes (continued)

cond Mnemonic
extension

Meaning, integer
arithmetic

Meaning, floating-point
arithmetica Condition flags

7 6 5 4 3 2 1 0

IT[7:0]
C1-242 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C1 Instruction Set Overview
C1.6 Conditional execution
IT[4:0] Encodes:

• The size of the IT block. This is the number of instructions that are to be conditionally
executed. The size of the block is implied by the position of the least significant 1 in this field,
as shown in Table C1-2.

• The value of the least significant bit of the condition code for each instruction in the block.

Note
 Changing the value of the least significant bit of a condition code from 0 to 1 has the effect

of inverting the condition code.

This subfield is 0b00000 when no IT block is active.

When an IT instruction is executed, these bits are set according to the condition in the instruction, and the Then and
Else (T and E) parameters in the instruction, see IT on page C2-370 for more information.

An instruction in an IT block is conditional, see Conditional instructions on page C1-244. The condition used is the
current value of IT[7:4]. When an instruction in an IT block completes its execution normally, ITSTATE is advanced
to the next line of Table C1-2.

Note
 Instructions that can complete their normal execution by branching are only permitted in an IT block as its last
instruction, and so always result in ITSTATE advancing to normal execution.

Pseudocode details of ITSTATE operation

ITSTATE advances after normal execution of an IT block instruction. This is described in ITAdvance().

InITBlock and LastInITBlock test whether the current instruction is in an IT block, and whether it is the last
instruction of an IT block.

C1.6.4 Unified Assembler Language

This document uses the ARM Unified Assembler Language (UAL). This assembly language syntax provides a
canonical form for all ARM and T32 instructions.

UAL describes the syntax for the mnemonic and the operands of each instruction. In addition, it assumes that
instructions and data items can be given labels. It does not specify the syntax to be used for labels, nor what
assembler directives and options are available. See your assembler documentation for these details.

Table C1-2 Effect of IT Execution state bits

IT bits a

a. Combinations of the IT bits not shown in this table are reserved.

[7:5] [4] [3] [2] [1] [0]

cond_base P1 P2 P3 P4 1 Entry point for 4-instruction IT block

cond_base P1 P2 P3 1 0 Entry point for 3-instruction IT block

cond_base P1 P2 1 0 0 Entry point for 2-instruction IT block

cond_base P1 1 0 0 0 Entry point for 1-instruction IT block

000 0 0 0 0 0 Normal execution, not in an IT block
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C1-243
ID072816 Non-Confidential - Beta

C1 Instruction Set Overview
C1.6 Conditional execution
UAL includes instruction selection rules that specify which instruction encoding is selected when more than one
can provide the required functionality. For example, both 16-bit and 32-bit encodings exist for an ADD R0,R1,R2
instruction. The most common instruction selection rule is that when both a 16-bit encoding and a 32-bit encoding
are available, the 16-bit encoding is selected, to optimize code density.

Syntax options exist to override the normal instruction selection rules and ensure that a particular encoding is
selected. These are useful when disassembling code, to ensure that subsequent assembly produces the original code,
and in some other situations.

Conditional instructions

For maximum portability of UAL assembly language between the A32 and T32 instruction sets, ARM recommends
that:

• IT instructions are written before conditional instructions in the correct way for the T32 instruction set.

• When assembling to the A32 instruction set, assemblers check that any IT instructions are correct, but do not
generate any code for them.

Although other T32 instructions are unconditional, all instructions that are made conditional by an IT instruction
must be written with a condition. These conditions must match the conditions imposed by the IT instruction. For
example, an ITTEE EQ instruction imposes the EQ condition on the first two following instructions, and the NE
condition on the next two. Those four instructions must be written with EQ, EQ, NE and NE conditions respectively.

Some instructions cannot be made conditional by an IT instruction. Some instructions can be conditional if they are
the last instruction in the IT block, but not otherwise.

The branch instruction encodings that include a condition field cannot be made conditional by an IT instruction. If
the assembler syntax indicates a conditional branch that correctly matches a preceding IT instruction, it is assembled
using a branch instruction encoding that does not include a condition field.

Use of labels in UAL instruction syntax

The UAL syntax for some instructions includes the label of an instruction or a literal data item that is at a fixed offset
from the instruction being specified. The assembler must:

1. Calculate the PC or Align(PC,4) value of the instruction. The PC value of an instruction is its address plus 4
for a T32 instruction. The Align(PC,4) value of an instruction is its PC value ANDed with 0xFFFFFFFC to force
it to be word-aligned.

2. Calculate the offset from the PC or Align(PC,4) value of the instruction to the address of the labelled
instruction or literal data item.

3. Assemble a PC-relative encoding of the instruction, that is, one that reads its PC or Align(PC,4) value and adds
the calculated offset to form the required address.

Note
 For instructions that encode a subtraction operation, if the instruction cannot encode the calculated offset, but

can encode minus the calculated offset, the instruction encoding specifies a subtraction of minus the
calculated offset.

The syntax of the following instructions includes a label:

• B and BL. The assembler syntax for these instructions always specifies the label of the instruction that they
branch to. Their encodings specify a sign-extended immediate offset that is added to the PC value of the
instruction to form the target address of the branch.

• CBNZ and CBZ. The assembler syntax for these instructions always specifies the label of the instruction that they
branch to. Their encodings specify a zero-extended immediate offset that is added to the PC value of the
instruction to form the target address of the branch. They do not support backward branches.
C1-244 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C1 Instruction Set Overview
C1.6 Conditional execution
• LDC, LDC2, LDR, LDRB, LDRD, LDRH, LDRSB, LDRSH, PLD, PLI, VLDR, and VSTR. The normal assembler syntax of these
load instructions can specify the label of a literal data item that is to be loaded. The encodings of these
instructions specify a zero-extended immediate offset that is either added to or subtracted from the
Align(PC,4) value of the instruction to form the address of the data item. A few such encodings perform a
fixed addition or a fixed subtraction and must only be used when that operation is required, but most contain
a bit that specifies whether the offset is to be added or subtracted.

When the assembler calculates an offset of 0 for the normal syntax of these instructions, it must assemble an
encoding that adds 0 to the Align(PC,4) value of the instruction. Encodings that subtract 0 from the
Align(PC,4) value cannot be specified by the normal syntax.

There is an alternative syntax for these instructions that specifies the addition or subtraction and the
immediate offset explicitly. In this syntax, the label is replaced by [PC, #+/-<imm>], where:

+/- Is + or omitted to specify that the immediate offset is to be added to the Align(PC,4) value, or - if
it is to be subtracted.

<imm> Is the immediate offset.

This alternative syntax makes it possible to assemble the encodings that subtract 0 from the Align(PC,4)
value, and to disassemble them to a syntax that can be re-assembled correctly.

• ADR. The normal assembler syntax for this instruction can specify the label of an instruction or literal data item
whose address is to be calculated. Its encoding specifies a zero-extended immediate offset that is either added
to or subtracted from the Align(PC,4) value of the instruction to form the address of the data item, and some
opcode bits that determine whether it is an addition or subtraction.

When the assembler calculates an offset of 0 for the normal syntax of this instruction, it must assemble the
encoding that adds 0 to the Align(PC,4) value of the instruction. The encoding that subtracts 0 from the
Align(PC,4) value cannot be specified by the normal syntax.

There is an alternative syntax for this instruction that specifies the addition or subtraction and the immediate
value explicitly, by writing them as additions ADD <Rd>,PC,#<imm> or subtractions SUB <Rd>,PC,#<imm>. This
alternative syntax makes it possible to assemble the encoding that subtracts 0 from the Align(PC,4) value, and
to disassemble it to a syntax that can be re-assembled correctly.

Note
 ARM recommends that where possible, you avoid using:

• The alternative syntax for the ADR, LDC, LDC2, LDR, LDRB, LDRD, LDRH, LDRSB, LDRSH, PLD, PLI, VLDR, and VSTR
instructions.

• The encodings of these instructions that subtract 0 from the Align(PC,4) value.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C1-245
ID072816 Non-Confidential - Beta

C1 Instruction Set Overview
C1.7 Instruction set, encoding
C1.7 Instruction set, encoding
The T32 instruction stream is a stream of halfword-aligned halfwords. Each instruction is either a single 16-bit
halfword in that stream, or a 32-bit instruction consisting of two consecutive halfwords in that stream.

If bits [15:11] of the halfword being decoded take any of the following values, the halfword is the first halfword of
a 32-bit instruction:
• 0b11101.
• 0b11110.
• 0b11111.

Otherwise, the halfword is a 16-bit instruction.

C1.7.1 UNDEFINED and UNPREDICTABLE instruction set space

An attempt to execute an unallocated instruction results in either:
• Unpredictable behavior. The instruction is described as UNPREDICTABLE.
• An Undefined Instruction exception. The instruction is described as UNDEFINED.

An instruction is UNDEFINED if it is declared as UNDEFINED in an instruction description, or in this chapter

An instruction is UNPREDICTABLE if:

• A bit marked (0) or (1) in the encoding diagram of an instruction is not 0 or 1, respectively, and the
pseudocode for that encoding does not indicate that a different special case applies

• It is declared as UNPREDICTABLE in an instruction description or in this chapter.

Unless otherwise specified:

• T32 instructions introduced in an architecture variant are either UNPREDICTABLE or UNDEFINED in earlier
architecture variants.

• A T32 instruction that is provided by one or more of the architecture extensions is either UNPREDICTABLE or
UNDEFINED in an implementation that does not include those extensions.

In both cases, the instruction is UNPREDICTABLE if it is a 32-bit instruction in an architecture variant before
ARMv6T2, and UNDEFINED otherwise.

C1.7.2 Use of 0b1111 as a register specifier

The use of 0b1111 as a register specifier is not normally permitted in T32 instructions. When a value of 0b1111 is
permitted, a variety of meanings is possible. For register reads, these meanings are:

• Read the PC value, that is, the address of the current instruction + 4. The base register of the table branch
instructions TBB and TBH can be the PC. This enables branch tables to be placed in memory immediately after
the instruction. (Some instructions read the PC value implicitly, without the use of a register specifier, for
example the conditional branch instruction B<cond>.)

Note
 Use of the PC as the base register in the STC instruction is deprecated in ARMv7.

• Read the word-aligned PC value, that is, the address of the current instruction + 4, with bits [1:0] forced to
zero. The base register of LDC, LDR, LDRB, LDRD (pre-indexed, no write-back), LDRH, LDRSB, and LDRSH instructions
can be the word-aligned PC. This enables PC-relative data addressing. In addition, some encodings of the ADD
and SUB instructions permit their source registers to be 0b1111 for the same purpose.

• Read zero. This is done in some cases when one instruction is a special case of another, more general
instruction, but with one operand zero. In these cases, the instructions are listed on separate pages, with a
special case in the pseudocode for the more general instruction cross-referencing the other page.
C1-246 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C1 Instruction Set Overview
C1.7 Instruction set, encoding
For register writes, these meanings are:

• The PC can be specified as the destination register of an LDR instruction. This is done by encoding Rt as
0b1111. The loaded value is treated as an address, and the effect of execution is a branch to that address. bit [0]
of the loaded value selects the Execution state after the branch and must have the value 1.

Some other instructions write the PC in similar ways, either:
— Implicitly, for example, B<cond>.
— By using a register mask rather than a register specifier, for example LDM.

The address to branch to can be:
— A loaded value, for example LDM.
— A register value, for example BX.
— The result of a calculation, for example TBB or TBH.

• Discard the result of a calculation. This is done in some cases when one instruction is a special case of
another, more general instruction, but with the result discarded. In these cases, the instructions are listed on
separate pages, with a special case in the pseudocode for the more general instruction cross-referencing the
other page.

• If the destination register specifier of an LDRB, LDRH, LDRSB, or LDRSH instruction is 0b1111, the instruction is a
memory hint instead of a load operation.

• If the destination register specifier of an MRC instruction is 0b1111, bits [31:28] of the value transferred from
the coprocessor are written to the N, Z, C, and V flags in the APSR, and bits [27:0] are discarded.

C1.7.3 Use of 0b1101 as a register specifier

R13 is defined in the T32 instruction set so that its use is primarily as a stack pointer, and R13 is normally identified
as SP in T32 instructions. In 32-bit T32 instructions, if you use SP as a general purpose register beyond the
architecturally defined constraints described in this section, the results are UNPREDICTABLE.

The following subsections describe the restrictions that apply to using SP:
• SP[1:0] definition.
• 32-bit T32 instruction support for SP.

See also 16-bit T32 instruction support for SP on page C1-248.

SP[1:0] definition

Bits [1:0] of SP must be treated as SBZP (Should Be Zero or Preserved). Writing a non-zero value to bits [1:0] results
in UNPREDICTABLE behavior. Reading bits[1:0] returns zero.

32-bit T32 instruction support for SP

32-bit T32 instruction support for SP is restricted to the following:

• SP as the source or destination register of a MOV instruction. Only register to register transfers without shifts
are supported, with no flag setting:
MOV SP,Rm
MOV Rn,SP

• Adjusting SP up or down by a multiple of its alignment:
ADD{W} SP,SP,#N ; For N a multiple of 4
SUB{W} SP,SP,#N ; For N a multiple of 4
ADD SP,SP,Rm,LSL #shft ; For shft=0,1,2,3
SUB SP,SP,Rm,LSL #shft ; For shft=0,1,2,3

• SP as a base register, Rn, of any load or store instruction. This supports SP-based addressing for load, store,
or memory hint instructions, with positive or negative offsets, with and without write-back.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C1-247
ID072816 Non-Confidential - Beta

C1 Instruction Set Overview
C1.7 Instruction set, encoding
• SP as the first operand, Rn, in any ADD{S}, CMN, CMP, or SUB{S} instruction. The add and subtract instructions
support SP-based address generation, with the address going into a general-purpose register. CMN and CMP are
useful for stack checking in some circumstances.

• SP as the transferred register, Rt, in any LDR or STR instruction.

• SP as the address in a POP or PUSH instruction.

16-bit T32 instruction support for SP

For 16-bit data processing instructions that affect high registers, SP can only be used as described in 32-bit T32
instruction support for SP on page C1-247. ARM deprecates any other use. This affects the high register forms of
CMP and ADD, where ARM deprecates the use of SP as Rm.
C1-248 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C1 Instruction Set Overview
C1.8 Modified immediate constants
C1.8 Modified immediate constants
The encoding of modified immediate constants in T32 instructions is:

Table C1-3 shows the range of modified immediate constants available in T32 data processing instructions, and how
they are encoded in the a, b, c, d, e, f, g, h, i, and imm3 fields in the instruction.

C1.8.1 Carry out

A logical operation with i:imm3:a of the form 00xxx does not affect the carry flag. Otherwise, a logical operation
that sets the flags sets the Carry flag to the value of bit [31] of the modified immediate constant.

C1.8.2 Operation of modified immediate constants

T32ExpandImm on page E3-1264 and T32ExpandImm_C on page E3-1264 show the operation of modified
immediate constants.

Table C1-3 Encoding of modified immediates in T32 data-processing instructions

i:imm3:a <const> a

a. This table shows the immediate constant value in binary
form, to relate abcdefgh to the encoding diagram. In
assembly syntax, the immediate value is specified in the
usual way (a decimal number by default).

0000x 00000000 00000000 00000000 abcdefgh

0001x 00000000 abcdefgh 00000000 abcdefgh b

b. UNPREDICTABLE if abcdefgh == 00000000.

0010x abcdefgh 00000000 abcdefgh 00000000 b

0011x abcdefgh abcdefgh abcdefgh abcdefgh b

01000 1bcdefgh 00000000 00000000 00000000

01001 01bcdefg h0000000 00000000 00000000

01010 001bcdef gh000000 00000000 00000000

01011 0001bcde fgh00000 00000000 00000000

.

.

.

.

.

.
8-bit values shifted to other positions

11101 00000000 00000000 000001bc defgh000

11110 00000000 00000000 0000001b cdefgh00

11111 00000000 00000000 00000001 bcdefgh0

i imm3 a b c d e f g h
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 015 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C1-249
ID072816 Non-Confidential - Beta

C1 Instruction Set Overview
C1.9 Pseudocode descriptions of operations on general-purpose registers and PC
C1.9 Pseudocode descriptions of operations on general-purpose registers and PC
In pseudocode, the uses of the R[] function are:
• Reading or writing R0-R12, SP, and LR, using n = 0-12, 13, and 14 respectively.
• Reading the PC, using n = 15.

_R on page E3-1279 shows the function prototypes.

Writing an address to the PC causes either a simple branch to that address or an interworking branch that also selects
the instruction set to execute after the branch. A simple branch is performed by BranchWritePC on page E3-1155.

An interworking branch is performed by BXWritePC on page E3-1153.

LoadWritePC on page E3-1224 and ALUWritePC on page E3-1150 are used for two cases where the behavior was
systematically modified between architecture versions.
C1-250 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C1 Instruction Set Overview
C1.10 NOP-compatible hint instructions
C1.10 NOP-compatible hint instructions
A hint instruction only provides an indication to the PE. It is not mandated that the PE perform an operation on a
hint instruction.

A NOP-compatible hint instruction either:
• Acts as a NOP (No Operation) instruction.
• Performs some IMPLEMENTATION DEFINED behavior.

A PE without the Main Extension only supports the 16-bit encodings of the ARMv8-M NOP-compatible hint
instructions. A PE with the Main Extension supports both the 16-bit and the 32-bit encodings of the ARMv8-M
NOP-compatible hint instructions.
• For information on the 16-bit encodings see Hints on page C2-263.
• For information on the 32-bit encodings see Hints on page C2-278.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C1-251
ID072816 Non-Confidential - Beta

C1 Instruction Set Overview
C1.10 NOP-compatible hint instructions
C1-252 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

Chapter C2
Instruction Specification

This chapter specifies the ARMv8-M instruction set. It contains the following sections:
• Top level T32 instruction set encoding on page C2-254.
• 16-bit T32 instruction encoding on page C2-255.
• 32-bit T32 instruction encoding on page C2-266.
• Alphabetical list of instructions on page C2-302.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-253
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.1 Top level T32 instruction set encoding
C2.1 Top level T32 instruction set encoding
The T32 instruction stream is a sequence of halfword-aligned halfwords. Each T32 instruction is either a single
16-bit halfword in that stream, or a 32-bit instruction consisting of two consecutive halfwords in that stream.

If the value of bits[15:11] of the halfword being decoded is one of the following, the halfword is the first halfword
of a 32-bit instruction:
• 0b11101.
• 0b11110.
• 0b11111.

Otherwise, the halfword is a 16-bit instruction.

Table C2-1 Main encoding table for the T32 instruction set

Decode fields
Decode group or instruction page

op0 op1

!= 111 - 16-bit T32 instruction encoding on page C2-255

111 00 B - T2 variant

111 != 00 32-bit T32 instruction encoding on page C2-266

op0 op1
15 13 12 11 10 00 15
C2-254 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.2 16-bit T32 instruction encoding
C2.2 16-bit T32 instruction encoding
This section describes the encoding of the 16-bit T32 instruction encoding group. This section is decoded from Top
level T32 instruction set encoding on page C2-254.

Note
 In the decode tables in this section, an entry of - for a field value means the value of the field does not affect the
decoding.

C2.2.1 Shift (immediate), add, subtract, move, and compare

This section describes the encoding of the Shift (immediate), add, subtract, move, and compare group. This section
is decoded from 16-bit T32 instruction encoding.

Table C2-2 Encoding table for the 16-bit group

Decode fields
Decode group or instruction page

op0

00xxxx Shift (immediate), add, subtract, move, and compare

010000 Data-processing (two low registers) on page C2-257

010001 Special data instructions and branch and exchange on page C2-258

01001x LDR (literal) - T1 variant

0101xx Load/store (register offset) on page C2-259

011xxx Load/store word/byte (immediate offset) on page C2-259

1000xx Load/store halfword (immediate offset) on page C2-260

1001xx Load/store (SP-relative) on page C2-260

1010xx Add PC/SP (immediate) on page C2-261

1011xx Miscellaneous 16-bit instructions on page C2-261

1100xx Load/store multiple on page C2-264

1101xx Conditional branch, and Supervisor Call on page C2-264

op0
15 10 9 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-255
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.2 16-bit T32 instruction encoding
Add, subtract (three low registers)

This section describes the encoding of the Add, subtract (three low registers) instruction class. This section is
decoded from Shift (immediate), add, subtract, move, and compare on page C2-255.

Add, subtract (two low registers and immediate)

This section describes the encoding of the Add, subtract (two low registers and immediate) instruction class. This
section is decoded from Shift (immediate), add, subtract, move, and compare on page C2-255.

Table C2-3 Encoding table for the Shift (immediate), add, subtract, move, and compare group

Decode fields
Decode group or instruction page

op0 op1 op2

0 11 0 Add, subtract (three low registers)

0 11 1 Add, subtract (two low registers and immediate)

0 != 11 - MOV (register) - T2 variant on page C2-453

1 - - Add, subtract, compare, move (one low register and immediate) on page C2-257

Decode fields
Instruction page

S

0 ADD (register)

1 SUB (register)

Decode fields
Instruction page

S

0 ADD (immediate)

1 SUB (immediate)

00 op1
15 13 12 11 10 9 0

op0
op2

0 0 0 1 1 0 S Rm Rn Rd
15 14 13 12 11 10 9 8 6 5 3 2 0

0 0 0 1 1 1 S imm3 Rn Rd
15 14 13 12 11 10 9 8 6 5 3 2 0
C2-256 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.2 16-bit T32 instruction encoding
Add, subtract, compare, move (one low register and immediate)

This section describes the encoding of the Add, subtract, compare, move (one low register and immediate)
instruction class. This section is decoded from Shift (immediate), add, subtract, move, and compare on
page C2-255.

C2.2.2 Data-processing (two low registers)

This section describes the encoding of the Data-processing (two low registers) instruction class. This section is
decoded from 16-bit T32 instruction encoding on page C2-255.

Decode fields
Instruction page

op

00 MOV (immediate)

01 CMP (immediate)

10 ADD (immediate)

11 SUB (immediate)

0 0 1 op Rd imm8
15 14 13 12 11 10 8 7 0

Decode fields
Instruction page

op

0000 AND (register)

0001 EOR (register)

0010 MOV, MOVS (register-shifted register) - Logical shift left variant on page C2-457

0011 MOV, MOVS (register-shifted register) - Logical shift right variant on page C2-457

0100 MOV, MOVS (register-shifted register) - Arithmetic shift right variant on page C2-457

0101 ADC (register)

0110 SBC (register)

0111 MOV, MOVS (register-shifted register) - Rotate right variant on page C2-457

1000 TST (register)

1001 RSB (immediate)

1010 CMP (register)

1011 CMN (register)

0 1 0 0 0 0 op Rs Rd
15 14 13 12 11 10 9 6 5 3 2 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-257
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.2 16-bit T32 instruction encoding
C2.2.3 Special data instructions and branch and exchange

This section describes the encoding of the Special data instructions and branch and exchange group. This section is
decoded from 16-bit T32 instruction encoding on page C2-255.

Branch and exchange

This section describes the encoding of the Branch and exchange instruction class. This section is decoded from
Special data instructions and branch and exchange.

Add, subtract, compare, move (two high registers)

This section describes the encoding of the Add, subtract, compare, move (two high registers) instruction class. This
section is decoded from Special data instructions and branch and exchange.

1100 ORR (register)

1101 MUL

1110 BIC (register)

1111 MVN (register)

Decode fields
Instruction page

op

Table C2-4 Encoding table for the Special data instructions and branch and exchange group

Decode fields
Decode group or instruction page

op0

11 Branch and exchange

!= 11 Add, subtract, compare, move (two high registers)

Decode fields
Instruction page

L

0 BX, BXNS

1 BLX, BLXNS

010001 op0
15 9 8 7 0

0 1 0 0 0 1 1 1 L Rm NS(0) (0)
15 14 13 12 11 10 9 8 7 6 3 2 1 0
C2-258 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.2 16-bit T32 instruction encoding
C2.2.4 Load/store (register offset)

This section describes the encoding of the Load/store (register offset) instruction class. This section is decoded from
16-bit T32 instruction encoding on page C2-255.

C2.2.5 Load/store word/byte (immediate offset)

This section describes the encoding of the Load/store word/byte (immediate offset) instruction class. This section
is decoded from 16-bit T32 instruction encoding on page C2-255.

Decode fields
Instruction page

op D:Rd Rs

00 != 1101 != 1101 ADD (register)

00 - 1101 ADD (SP plus register) - T1 variant on page C2-308

00 1101 != 1101 ADD (SP plus register) - T2 variant on page C2-308

01 - - CMP (register)

10 - - MOV (register)

0 1 0 0 0 1 !=11 D Rs Rd
15 14 13 12 11 10 9 8 7 6 3 2 0

op

Decode fields
Instruction page

L B H

0 0 0 STR (register)

0 0 1 STRH (register)

0 1 0 STRB (register)

0 1 1 LDRSB (register)

1 0 0 LDR (register)

1 0 1 LDRH (register)

1 1 0 LDRB (register)

1 1 1 LDRSH (register)

0 1 0 1 L B H Rm Rn Rt
15 14 13 12 11 10 9 8 6 5 3 2 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-259
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.2 16-bit T32 instruction encoding
C2.2.6 Load/store halfword (immediate offset)

This section describes the encoding of the Load/store halfword (immediate offset) instruction class. This section is
decoded from 16-bit T32 instruction encoding on page C2-255.

C2.2.7 Load/store (SP-relative)

This section describes the encoding of the Load/store (SP-relative) instruction class. This section is decoded from
16-bit T32 instruction encoding on page C2-255.

Decode fields
Instruction page

B L

0 0 STR (immediate)

0 1 LDR (immediate)

1 0 STRB (immediate)

1 1 LDRB (immediate)

0 1 1 B L imm5 Rn Rt
15 14 13 12 11 10 6 5 3 2 0

Decode fields
Instruction page

L

0 STRH (immediate)

1 LDRH (immediate)

1 0 0 0 L imm5 Rn Rt
15 14 13 12 11 10 6 5 3 2 0

Decode fields
Instruction page

L

0 STR (immediate)

1 LDR (immediate)

1 0 0 1 L Rt imm8
15 14 13 12 11 10 8 7 0
C2-260 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.2 16-bit T32 instruction encoding
C2.2.8 Add PC/SP (immediate)

This section describes the encoding of the Add PC/SP (immediate) instruction class. This section is decoded from
16-bit T32 instruction encoding on page C2-255.

C2.2.9 Miscellaneous 16-bit instructions

This section describes the encoding of the Miscellaneous 16-bit instructions group. This section is decoded from
16-bit T32 instruction encoding on page C2-255.

Decode fields
Instruction page

SP

0 ADR

1 ADD (SP plus immediate)

1 0 1 0 SP Rd imm8
15 14 13 12 11 10 8 7 0

Table C2-5 Encoding table for the Miscellaneous 16-bit instructions group

Decode fields
Decode group or instruction page

op0 op1 op2 op3

0000 - - - Adjust SP (immediate) on page C2-262

0010 - - - Extend on page C2-262

0110 00 - - Unallocated.

0110 01 0 - Unallocated.

0110 01 1 - CPS

0110 1x - - Unallocated.

0111 - - - Unallocated.

1000 - - - Unallocated.

1010 10 - - Unallocated.

1010 != 10 - - Reverse bytes on page C2-262

1110 - - - BKPT

1111 - - 0000 Hints on page C2-263

1011 op0 op1 op3
15 11 8 7 6 5 4 3 0

op2
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-261
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.2 16-bit T32 instruction encoding
Adjust SP (immediate)

This section describes the encoding of the Adjust SP (immediate) instruction class. This section is decoded from
Miscellaneous 16-bit instructions on page C2-261.

Extend

This section describes the encoding of the Extend instruction class. This section is decoded from Miscellaneous
16-bit instructions on page C2-261.

Reverse bytes

This section describes the encoding of the Reverse bytes instruction class. This section is decoded from
Miscellaneous 16-bit instructions on page C2-261.

1111 - - != 0000 IT

x0x1 - - - CBNZ, CBZ

x10x - - - Push and Pop on page C2-263

Decode fields
Instruction page

S

0 ADD (SP plus immediate)

1 SUB (SP minus immediate)

Decode fields
Instruction page

U B

0 0 SXTH

0 1 SXTB

1 0 UXTH

1 1 UXTB

Table C2-5 Encoding table for the Miscellaneous 16-bit instructions group (continued)

Decode fields
Decode group or instruction page

op0 op1 op2 op3

1 0 1 1 0 0 0 0 S imm7
15 14 13 12 11 10 9 8 7 6 0

1 0 1 1 0 0 1 0 U B Rm Rd
15 14 13 12 11 10 9 8 7 6 5 3 2 0
C2-262 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.2 16-bit T32 instruction encoding
Hints

This section describes the encoding of the Hints instruction class. This section is decoded from Miscellaneous 16-bit
instructions on page C2-261.

Push and Pop

This section describes the encoding of the Push and Pop instruction class. This section is decoded from
Miscellaneous 16-bit instructions on page C2-261.

Decode fields
Instruction page

op

00 REV

01 REV16

11 REVSH

Decode fields
Instruction page

hint

0000 NOP

0001 YIELD

0010 WFE

0011 WFI

0100 SEV

0101 Reserved hint, behaves as NOP.

011x Reserved hint, behaves as NOP.

1xxx Reserved hint, behaves as NOP.

1 0 1 1 1 0 1 0 !=10 Rm Rd
15 14 13 12 11 10 9 8 7 6 5 3 2 0

op

1 0 1 1 1 1 1 1 hint 0 0 0 0
15 14 13 12 11 10 9 8 7 4 3 2 1 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-263
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.2 16-bit T32 instruction encoding
C2.2.10 Load/store multiple

This section describes the encoding of the Load/store multiple instruction class. This section is decoded from 16-bit
T32 instruction encoding on page C2-255.

C2.2.11 Conditional branch, and Supervisor Call

This section describes the encoding of the Conditional branch, and Supervisor Call group. This section is decoded
from 16-bit T32 instruction encoding on page C2-255.

Exception generation

This section describes the encoding of the Exception generation instruction class. This section is decoded from
Conditional branch, and Supervisor Call.

Decode fields
Instruction page

L

0 STMDB, STMFD

1 LDM, LDMIA, LDMFD

1 0 1 1 L 1 0 P register_list
15 14 13 12 11 10 9 8 7 0

Decode fields
Instruction page

L

0 STM, STMIA, STMEA

1 LDM, LDMIA, LDMFD

1 1 0 0 L Rn register_list
15 14 13 12 11 10 8 7 0

Table C2-6 Encoding table for the Conditional branch, and Supervisor Call group

Decode fields
Decode group or instruction page

op0

111x Exception generation

!= 111x B - T1 variant on page C2-332

1101 op0
15 11 8 7 0
C2-264 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.2 16-bit T32 instruction encoding
Decode fields
Instruction page

S

0 UDF

1 SVC

1 1 0 1 1 1 1 S imm8
15 14 13 12 11 10 9 8 7 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-265
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding
C2.3 32-bit T32 instruction encoding
This section describes the encoding of the 32-bit T32 instruction encoding group. This section is decoded from Top
level T32 instruction set encoding on page C2-254.

Note
 In the decode tables in this section, an entry of - for a field value means the value of the field does not affect the
decoding.

C2.3.1 Load/store (multiple, dual, exclusive, acquire-release), table branch

This section describes the encoding of the Load/store (multiple, dual, exclusive, acquire-release), table branch
group. This section is decoded from 32-bit T32 instruction encoding.

Table C2-7 Encoding table for the 32-bit group

Decode fields
Decode group or instruction page

op0 op1 op3

x11x - - Coprocessor and floating-point instructions on page C2-292

0100 - - Load/store (multiple, dual, exclusive, acquire-release), table branch

0101 - - Data-processing (shifted register) on page C2-272

10xx - 1 Branches and miscellaneous control on page C2-277

10x0 - 0 Data-processing (modified immediate) on page C2-274

10x1 - 0 Data-processing (plain binary immediate) on page C2-275

1100 1xxx0 - Unallocated.

1100 != 1xxx0 - Load/store single on page C2-279

1101 0xxxx - Data-processing (register) on page C2-285

1101 10xxx - Multiply, multiply accumulate, and absolute difference on page C2-289

1101 11xxx - Long multiply and divide on page C2-291

111 op0 op1
15 12 9 8 4 3 0 15 14 0

op3
C2-266 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding
Load/store multiple

This section describes the encoding of the Load/store multiple instruction class. This section is decoded from
Load/store (multiple, dual, exclusive, acquire-release), table branch on page C2-266.

Load/store exclusive, load-acquire/store-release, table branch

This section describes the encoding of the Load/store exclusive, load-acquire/store-release, table branch group. This
section is decoded from Load/store (multiple, dual, exclusive, acquire-release), table branch on page C2-266.

Table C2-8 Encoding table for the Load/store (multiple, dual, exclusive, acquire-release), table
branch group

Decode fields
Decode group or instruction page

op0 op1

- 0x Load/store multiple

0 10 Load/store exclusive, load-acquire/store-release, table branch

0 11 Load/store dual (post-indexed) on page C2-270

1 10 Load/store dual (literal and immediate) on page C2-270

1 11 Load/store dual (pre-indexed), secure gateway on page C2-271

Decode fields
Instruction page

opc L

00 - Unallocated.

01 0 STM, STMIA, STMEA

01 1 LDM, LDMIA, LDMFD

10 0 STMDB, STMFD

10 1 LDMDB, LDMEA

11 - Unallocated.

1110100 op1
15 8 7 6 5 4 00 15

op0

1 1 1 0 1 0 0 opc 0 W L Rn P M (0) register_list
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-267
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding
Load/store exclusive

This section describes the encoding of the Load/store exclusive instruction class. This section is decoded from
Load/store exclusive, load-acquire/store-release, table branch on page C2-267.

Load/store exclusive byte/half/dual

This section describes the encoding of the Load/store exclusive byte/half/dual instruction class. This section is
decoded from Load/store exclusive, load-acquire/store-release, table branch on page C2-267.

Table C2-9 Encoding table for the Load/store exclusive, load-acquire/store-release, table branch
group

Decode fields
Decode group or instruction page

op0 op1 op2

0 0xxxx1111 - TT, TTT, TTA, TTAT

0 != 0xxxx1111 - Load/store exclusive

1 0xxxxxxxx 000 Unallocated.

1 1xxxxxxxx 000 TBB, TBH

1 - 01x Load/store exclusive byte/half/dual

1 - 1xx Load-acquire / Store-release on page C2-269

Decode fields
Instruction page

L Rt

0 != 01111 STREX

1 1xxxx LDREX

11101000 10 op1 op2
15 7 6 4 12 11 8 7 5 4 00 15

op0

1 1 1 0 1 0 0 0 0 1 0 L Rn Rt Rd imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 0
C2-268 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding
Load-acquire / Store-release

This section describes the encoding of the Load-acquire / Store-release instruction class. This section is decoded
from Load/store exclusive, load-acquire/store-release, table branch on page C2-267.

Decode fields
Instruction page

L sz

0 00 STREXB

0 01 STREXH

0 10 Unallocated.

0 11 Unallocated.

1 00 LDREXB

1 01 LDREXH

1 10 Unallocated.

1 11 Unallocated.

Decode fields
Instruction page

op L sz

0 0 00 STLB

0 0 01 STLH

0 0 10 STL

0 0 11 Unallocated.

0 1 00 LDAB

0 1 01 LDAH

0 1 10 LDA

0 1 11 Unallocated.

1 0 00 STLEXB

1 0 01 STLEXH

1 0 10 STLEX

1 0 11 Unallocated.

1 1 1 0 1 0 0 0 1 1 0 L Rn Rt Rt2 0 1 sz Rd
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0

1 1 1 0 1 0 0 0 1 1 0 L Rn Rt Rt2 1 op sz Rd
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-269
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding
Load/store dual (post-indexed)

This section describes the encoding of the Load/store dual (post-indexed) group. This section is decoded from
Load/store (multiple, dual, exclusive, acquire-release), table branch on page C2-266.

Load/store dual (immediate, post-indexed)

This section describes the encoding of the Load/store dual (immediate, post-indexed) instruction class. This section
is decoded from Load/store dual (post-indexed).

Load/store dual (literal and immediate)

This section describes the encoding of the Load/store dual (literal and immediate) group. This section is decoded
from Load/store (multiple, dual, exclusive, acquire-release), table branch on page C2-266.

1 1 00 LDAEXB

1 1 01 LDAEXH

1 1 10 LDAEX

1 1 11 Unallocated.

Table C2-10 Encoding table for the Load/store dual (post-indexed) group

Decode fields
Decode group or instruction page

op0

1111 UNPREDICTABLE

!= 1111 Load/store dual (immediate, post-indexed)

Decode fields
Instruction page

L

0 STRD (immediate)

1 LDRD (immediate)

Decode fields
Instruction page

op L sz

11101000 11 op0
15 7 6 4 3 0 15 0

1 1 1 0 1 0 0 0 U 1 1 L !=1111 Rt Rt2 imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 0

Rn
C2-270 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding
Load/store dual (immediate)

This section describes the encoding of the Load/store dual (immediate) instruction class. This section is decoded
from Load/store dual (literal and immediate) on page C2-270.

Load/store dual (pre-indexed), secure gateway

This section describes the encoding of the Load/store dual (pre-indexed), secure gateway group. This section is
decoded from Load/store (multiple, dual, exclusive, acquire-release), table branch on page C2-266.

Table C2-11 Encoding table for the Load/store dual (literal and immediate) group

Decode fields
Decode group or instruction page

op0

1111 LDRD (literal)

!= 1111 Load/store dual (immediate)

Decode fields
Instruction page

L

0 STRD (immediate)

1 LDRD (immediate)

Table C2-12 Encoding table for the Load/store dual (pre-indexed), secure gateway group

Decode fields
Decode group or instruction page

op0 op1 op2 op3

0 0 1111 - UNPREDICTABLE

0 1 1111 1110100101111111 SG

0 1 1111 != 1110100101111111 UNPREDICTABLE

11101001 10 op0
15 7 6 4 3 0 15 0

1 1 1 0 1 0 0 1 U 1 0 L !=1111 Rt Rt2 imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 0

Rn

11101001 11 op2 op3
15 7 6 4 3 0 15 0

op0
op1
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-271
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding

De

op

000

000

000

000

000

000

001

001
Load/store dual (immediate, pre-indexed)

This section describes the encoding of the Load/store dual (immediate, pre-indexed) instruction class. This section
is decoded from Load/store dual (pre-indexed), secure gateway on page C2-271.

C2.3.2 Data-processing (shifted register)

This section describes the encoding of the Data-processing (shifted register) instruction class. This section is
decoded from 32-bit T32 instruction encoding on page C2-266.

1 0 1111 - UNPREDICTABLE

1 1 1111 - UNPREDICTABLE

- - != 1111 - Load/store dual (immediate, pre-indexed)

Decode fields
Instruction page

L

0 STRD (immediate)

1 LDRD (immediate)

Table C2-12 Encoding table for the Load/store dual (pre-indexed), secure gateway group

Decode fields
Decode group or instruction page

op0 op1 op2 op3

1 1 1 0 1 0 0 1 U 1 1 L !=1111 Rt Rt2 imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 0

Rn

1 1 1 0 1 0 1 op1 S Rn (0) imm3 Rd imm2 type Rm
15 14 13 12 11 10 9 8 5 4 3 0 15 14 12 11 8 7 6 5 4 3 0

code fields
Instruction page

1 S Rn Rd imm3:imm2:type

0 0 - - - AND (register) - AND, rotate right with extend variant on page C2-322

0 1 - != 1111 != 0000011 AND (register) - ANDS, shift or rotate by value variant on page C2-322

0 1 - != 1111 0000011 AND (register) - ANDS, rotate right with extend variant on page C2-322

0 1 - 1111 != 0000011 TST (register) - Shift or rotate by value variant on page C2-635

0 1 - 1111 0000011 TST (register) - Rotate right with extend variant on page C2-635

1 - - - - BIC (register)

0 0 != 1111 - - ORR (register) - ORR, rotate right with extend variant on page C2-483

0 0 1111 - - MOV (register) - MOV, rotate right with extend variant on page C2-454
C2-272 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding

001

001

001

001

001

001

010

010

010

010

010

010

011

011

011

011

011

100

100

100

100

100

100

101

101

110

110

110

110

110

De

op
0 1 != 1111 - - ORR (register) - ORRS, rotate right with extend variant on page C2-483

0 1 1111 - - MOV (register) - MOVS, rotate right with extend variant on page C2-454

1 0 != 1111 - - ORN (register) - ORN, rotate right with extend variant on page C2-480

1 0 1111 - - MVN (register) - MVN, rotate right with extend variant on page C2-476

1 1 != 1111 - - ORN (register) - ORNS, rotate right with extend variant on page C2-480

1 1 1111 - - MVN (register) - MVNS, rotate right with extend variant on page C2-476

0 0 - - - EOR (register) - EOR, rotate right with extend variant on page C2-363

0 1 - != 1111 != 0000011 EOR (register) - EORS, shift or rotate by value variant on page C2-363

0 1 - != 1111 0000011 EOR (register) - EORS, rotate right with extend variant on page C2-363

0 1 - 1111 != 0000011 TEQ (register) - Shift or rotate by value variant on page C2-632

0 1 - 1111 0000011 TEQ (register) - Rotate right with extend variant on page C2-632

1 - - - - Unallocated.

0 0 - - xxxxx00 PKHBT, PKHTB - PKHBT variant on page C2-485

0 0 - - xxxxx01 Unallocated.

0 0 - - xxxxx10 PKHBT, PKHTB - PKHTB variant on page C2-485

0 0 - - xxxxx11 Unallocated.

1 - - - - Unallocated.

0 0 != 1101 - - ADD (register) - ADD, rotate right with extend variant on page C2-316

0 0 1101 - - ADD (SP plus register) - ADD, rotate right with extend variant on page C2-308

0 1 != 1101 != 1111 - ADD (register) - ADDS, rotate right with extend variant on page C2-317

0 1 1101 != 1111 - ADD (SP plus register) - ADDS, rotate right with extend variant on page C2-309

0 1 - 1111 - CMN (register)

1 - - - - Unallocated.

0 - - - - ADC (register)

1 - - - - SBC (register)

0 - - - - Unallocated.

1 0 != 1101 - - SUB (register) - SUB, rotate right with extend variant on page C2-618

1 0 1101 - - SUB (SP minus register) - SUB, rotate right with extend variant on page C2-612

1 1 != 1101 != 1111 - SUB (register) - SUBS, rotate right with extend variant on page C2-618

1 1 1101 != 1111 - SUB (SP minus register) - SUBS, rotate right with extend variant on page C2-612

code fields
Instruction page

1 S Rn Rd imm3:imm2:type
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-273
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding

110

111

111

De

op
C2.3.3 Data-processing (modified immediate)

This section describes the encoding of the Data-processing (modified immediate) instruction class. This section is
decoded from 32-bit T32 instruction encoding on page C2-266.

1 1 - 1111 - CMP (register)

0 - - - - RSB (register)

1 - - - - Unallocated.

code fields
Instruction page

1 S Rn Rd imm3:imm2:type

Decode fields
Instruction page

op1 S Rn Rd

0000 0 - - AND (immediate) - AND variant on page C2-321

0000 1 - != 1111 AND (immediate) - ANDS variant on page C2-321

0000 1 - 1111 TST (immediate)

0001 - - - BIC (immediate)

0010 0 != 1111 - ORR (immediate) - ORR variant on page C2-482

0010 0 1111 - MOV (immediate) - MOV variant on page C2-451

0010 1 != 1111 - ORR (immediate) - ORRS variant on page C2-482

0010 1 1111 - MOV (immediate) - MOVS variant on page C2-451

0011 0 != 1111 - ORN (immediate) - Not flag setting variant on page C2-479

0011 0 1111 - MVN (immediate) - MVN variant on page C2-475

0011 1 != 1111 - ORN (immediate) - Flag setting variant on page C2-479

0011 1 1111 - MVN (immediate) - MVNS variant on page C2-475

0100 0 - - EOR (immediate) - EOR variant on page C2-362

0100 1 - != 1111 EOR (immediate) - EORS variant on page C2-362

0100 1 - 1111 TEQ (immediate)

0101 - - - Unallocated.

011x - - - Unallocated.

1000 0 != 1101 - ADD (immediate) - ADD variant on page C2-311

1000 0 1101 - ADD (SP plus immediate) - ADD variant on page C2-306

1000 1 != 1101 != 1111 ADD (immediate) - ADDS variant on page C2-312

1 1 1 1 0 i 0 op1 S Rn 0 imm3 Rd imm8
15 14 13 12 11 10 9 8 5 4 3 0 15 14 12 11 8 7 0
C2-274 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding
C2.3.4 Data-processing (plain binary immediate)

This section describes the encoding of the Data-processing (plain binary immediate) group. This section is decoded
from 32-bit T32 instruction encoding on page C2-266.

Data-processing (simple immediate)

This section describes the encoding of the Data-processing (simple immediate) instruction class. This section is
decoded from Data-processing (plain binary immediate).

1000 1 1101 != 1111 ADD (SP plus immediate) - ADDS variant on page C2-306

1000 1 - 1111 CMN (immediate)

1001 - - - Unallocated.

1010 - - - ADC (immediate)

1011 - - - SBC (immediate)

1100 - - - Unallocated.

1101 0 != 1101 - SUB (immediate) - SUB variant on page C2-614

1101 0 1101 - SUB (SP minus immediate) - SUB variant on page C2-610

1101 1 != 1101 != 1111 SUB (immediate) - SUBS variant on page C2-615

1101 1 1101 != 1111 SUB (SP minus immediate) - SUBS variant on page C2-610

1101 1 - 1111 CMP (immediate)

1110 - - - RSB (immediate)

1111 - - - Unallocated.

Decode fields
Instruction page

op1 S Rn Rd

Table C2-13 Encoding table for the Data-processing (plain binary immediate) group

Decode fields
Decode group or instruction page

op0 op1

0 0x Data-processing (simple immediate)

0 10 Move Wide (16-bit immediate) on page C2-276

0 11 Unallocated.

1 - Saturate, Bitfield on page C2-276

11110 1 op1 0 0
15 10 9 8 7 6 5 4 3 0 15 14 0

op0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-275
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding
Move Wide (16-bit immediate)

This section describes the encoding of the Move Wide (16-bit immediate) instruction class. This section is decoded
from Data-processing (plain binary immediate) on page C2-275.

Saturate, Bitfield

This section describes the encoding of the Saturate, Bitfield instruction class. This section is decoded from
Data-processing (plain binary immediate) on page C2-275.

Decode fields
Instruction page

o1 o2 Rn

0 0 != 11x1 ADD (immediate)

0 0 1101 ADD (SP plus immediate)

0 0 1111 ADR - T3 variant on page C2-319

0 1 - Unallocated.

1 0 - Unallocated.

1 1 != 11x1 SUB (immediate)

1 1 1101 SUB (SP minus immediate)

1 1 1111 ADR - T2 variant on page C2-319

Decode fields
Instruction page

o1

0 MOV (immediate)

1 MOVT

1 1 1 1 0 i 1 0 o1 0 o2 0 Rn 0 imm3 Rd imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 0

1 1 1 1 0 i 1 0 o1 1 0 0 imm4 0 imm3 Rd imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 0
C2-276 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding
C2.3.5 Branches and miscellaneous control

This section describes the encoding of the Branches and miscellaneous control group. This section is decoded from
32-bit T32 instruction encoding on page C2-266.

Decode fields
Instruction page

op1 Rn imm3:imm2

000 - - SSAT - Logical shift left variant on page C2-568

001 - != 00000 SSAT - Arithmetic shift right variant on page C2-568

001 - 00000 SSAT16

010 - - SBFX

011 != 1111 - BFI

011 1111 - BFC

100 - - USAT - Logical shift left variant on page C2-663

101 - != 00000 USAT - Arithmetic shift right variant on page C2-663

101 - 00000 USAT16

110 - - UBFX

111 - - Unallocated.

1 1 1 1 0 (0) 1 1 op1 0 Rn 0 imm3 Rd imm2 (0) widthm1
15 14 13 12 11 10 9 8 7 5 4 3 0 15 14 12 11 8 7 6 5 4 0

Table C2-14 Encoding table for the Branches and miscellaneous control group

Decode fields
Decode group or instruction page

op0 op1 op2 op3 op4 op5

0 1110 0x 0 0 - MSR (register)

0 1110 10 0 0 000 Hints on page C2-278

0 1110 10 0 0 != 000 Unallocated.

0 1110 11 0 0 - Miscellaneous system on page C2-279

0 1111 0x 0 0 - Unallocated.

0 1111 1x 0 0 - MRS

11110 op1 op2 1 op5
15 10 9 6 5 4 3 0 15 14 13 12 11 10 8 7 0

op0 op4
op3
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-277
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding
Hints

This section describes the encoding of the Hints instruction class. This section is decoded from Branches and
miscellaneous control on page C2-277.

1 1110 - 0 0 - Unallocated.

1 1111 0x 0 0 - Unallocated.

1 1111 1x 0 0 - Exception generation on page C2-279

- != 111x - 0 0 - B - T3 variant on page C2-332

- - - 0 1 - B - T4 variant on page C2-333

- - - 1 0 - Unallocated.

- - - 1 1 - BL

Decode fields
Instruction page

hint option

0000 0000 NOP

0000 0001 YIELD

0000 0010 WFE

0000 0011 WFI

0000 0100 SEV

0000 0101 Reserved hint, behaves as NOP.

0000 011x Reserved hint, behaves as NOP.

0000 1xxx Reserved hint, behaves as NOP.

0001 - Reserved hint, behaves as NOP.

001x - Reserved hint, behaves as NOP.

01xx - Reserved hint, behaves as NOP.

10xx - Reserved hint, behaves as NOP.

110x - Reserved hint, behaves as NOP.

1110 - Reserved hint, behaves as NOP.

1111 - DBG

Table C2-14 Encoding table for the Branches and miscellaneous control group (continued)

Decode fields
Decode group or instruction page

op0 op1 op2 op3 op4 op5

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 hint option
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 4 3 0
C2-278 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding
Miscellaneous system

This section describes the encoding of the Miscellaneous system instruction class. This section is decoded from
Branches and miscellaneous control on page C2-277.

Exception generation

This section describes the encoding of the Exception generation instruction class. This section is decoded from
Branches and miscellaneous control on page C2-277.

C2.3.6 Load/store single

This section describes the encoding of the Load/store single group. This section is decoded from 32-bit T32
instruction encoding on page C2-266.

Decode fields
Instruction page

opc

000x Unallocated.

0010 CLREX

0011 Unallocated.

0100 DSB

0101 DMB

0110 ISB

0111 Unallocated.

1xxx Unallocated.

Decode fields
Instruction page

o1 o2

0 0 Unallocated.

0 1 Unallocated.

1 0 Unallocated.

1 1 UDF

1 1 1 1 0 0 1 1 1 0 1 1 (1) (1) (1) (1) 1 0 (0) 0 (1) (1) (1) (1) opc option
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 4 3 0

1 1 1 1 0 1 1 1 1 1 1 o1 imm4 1 0 o2 0 imm12
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-279
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding
Load/store (register offset)

This section describes the encoding of the Load/store (register offset) instruction class. This section is decoded from
Load/store single on page C2-279.

Table C2-15 Encoding table for the Load/store single group

Decode fields
Decode group or instruction page

op0 op1

!= 1111 000000 Load/store (register offset)

!= 1111 10x0xx Unallocated.

!= 1111 10x1xx Load/store (immediate, post-indexed) on page C2-281

!= 1111 1100xx Load/store (negative immediate) on page C2-281

!= 1111 1110xx Load/store (unprivileged) on page C2-282

!= 1111 11x1xx Load/store (immediate, pre-indexed) on page C2-283

!= 1111 - Load/store (positive immediate) on page C2-283

1111 - Load literal on page C2-284

Decode fields
Instruction page

S size L Rt

0 00 0 - STRB (register)

0 00 1 != 1111 LDRB (register)

0 00 1 1111 PLD (register)

0 01 0 - STRH (register)

0 01 1 != 1111 LDRH (register)

0 01 1 1111 Reserved hint, behaves as NOP.

0 10 0 - STR (register)

0 10 1 - LDR (register)

0 11 - - Unallocated.

1 00 1 != 1111 LDRSB (register)

1 00 1 1111 PLI (register)

1111100 !=1xxx0 op0 op1
15 8 3 0 15 12 11 6 5 0

1 1 1 1 1 0 0 S 0 size L !=1111 Rt 0 0 0 0 0 0 imm2 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

Rn
C2-280 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding
Load/store (immediate, post-indexed)

This section describes the encoding of the Load/store (immediate, post-indexed) instruction class. This section is
decoded from Load/store single on page C2-279.

Load/store (negative immediate)

This section describes the encoding of the Load/store (negative immediate) instruction class. This section is decoded
from Load/store single on page C2-279.

1 01 1 != 1111 LDRSH (register)

1 01 1 1111 Reserved hint, behaves as NOP.

1 1x 1 - Unallocated.

Decode fields
Instruction page

S size L

0 00 0 STRB (immediate)

0 00 1 LDRB (immediate)

0 01 0 STRH (immediate)

0 01 1 LDRH (immediate)

0 10 0 STR (immediate)

0 10 1 LDR (immediate)

0 11 - Unallocated.

1 00 1 LDRSB (immediate)

1 01 1 LDRSH (immediate)

1 1x 1 Unallocated.

Decode fields
Instruction page

S size L Rt

1 1 1 1 1 0 0 S 0 size L !=1111 Rt 1 0 U 1 imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-281
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding
Load/store (unprivileged)

This section describes the encoding of the Load/store (unprivileged) instruction class. This section is decoded from
Load/store single on page C2-279.

Decode fields
Instruction page

S size L Rt

0 00 0 - STRB (immediate)

0 00 1 != 1111 LDRB (immediate)

0 00 1 1111 PLD (immediate)

0 01 0 - STRH (immediate)

0 01 1 != 1111 LDRH (immediate)

0 01 1 1111 Reserved hint, behaves as NOP.

0 10 0 - STR (immediate)

0 10 1 - LDR (immediate)

0 11 - - Unallocated.

1 00 1 - LDRSB (immediate)

1 00 1 1111 PLI (immediate, literal)

1 01 1 != 1111 LDRSH (immediate)

1 01 1 1111 Reserved hint, behaves as NOP.

1 1x 1 - Unallocated.

Decode fields
Instruction page

S size L

0 00 0 STRBT

0 00 1 LDRBT

0 01 0 STRHT

0 01 1 LDRHT

0 10 0 STRT

1 1 1 1 1 0 0 S 0 size L !=1111 Rt 1 1 0 0 imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn

1 1 1 1 1 0 0 S 0 size L !=1111 Rt 1 1 1 0 imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn
C2-282 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding
Load/store (immediate, pre-indexed)

This section describes the encoding of the Load/store (immediate, pre-indexed) instruction class. This section is
decoded from Load/store single on page C2-279.

Load/store (positive immediate)

This section describes the encoding of the Load/store (positive immediate) instruction class. This section is decoded
from Load/store single on page C2-279.

0 10 1 LDRT

0 11 - Unallocated.

1 00 1 LDRSBT

1 01 1 LDRSHT

1 1x 1 Unallocated.

Decode fields
Instruction page

S size L

0 00 0 STRB (immediate)

0 00 1 LDRB (immediate)

0 01 0 STRH (immediate)

0 01 1 LDRH (immediate)

0 10 0 STR (immediate)

0 10 1 LDR (immediate)

0 11 - Unallocated.

1 00 1 LDRSB (immediate)

1 01 1 LDRSH (immediate)

1 1x 1 Unallocated.

Decode fields
Instruction page

S size L

1 1 1 1 1 0 0 S 0 size L !=1111 Rt 1 1 U 1 imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-283
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding
Load literal

This section describes the encoding of the Load literal instruction class. This section is decoded from Load/store
single on page C2-279.

Decode fields
Instruction page

S size L Rt

0 00 0 - STRB (immediate)

0 00 1 != 1111 LDRB (immediate)

0 00 1 1111 PLD (immediate)

0 01 0 - STRH (immediate)

0 01 1 != 1111 LDRH (immediate)

0 01 1 1111 Reserved hint, behaves as NOP.

0 10 0 - STR (immediate)

0 10 1 - LDR (immediate)

1 00 1 != 1111 LDRSB (immediate)

1 00 1 1111 PLI (immediate, literal)

1 01 1 != 1111 LDRSH (immediate)

1 01 1 1111 Reserved hint, behaves as NOP.

Decode fields
Instruction page

S size L Rt

0 00 1 != 1111 LDRB (literal)

0 00 1 1111 PLD (literal)

0 01 1 != 1111 LDRH (literal)

0 10 1 - LDR (literal)

0 11 - - Unallocated.

1 00 1 != 1111 LDRSB (literal)

1 00 1 1111 PLI (immediate, literal)

1 1 1 1 1 0 0 S 1 size L !=1111 Rt imm12
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 0

Rn

1 1 1 1 1 0 0 S U size L 1 1 1 1 Rt imm12
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 0
C2-284 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding
C2.3.7 Data-processing (register)

This section describes the encoding of the Data-processing (register) group. This section is decoded from 32-bit T32
instruction encoding on page C2-266.

Register extends

This section describes the encoding of the Register extends instruction class. This section is decoded from
Data-processing (register).

1 01 1 != 1111 LDRSH (literal)

1 01 1 1111 Reserved hint, behaves as NOP.

1 1x 1 - Unallocated.

Decode fields
Instruction page

S size L Rt

Table C2-16 Encoding table for the Data-processing (register) group

Decode fields
Decode group or instruction page

op0 op1

0 0000 MOV, MOVS (register-shifted register) - Flag setting variant on page C2-457

0 0001 Unallocated.

0 001x Unallocated.

0 01xx Unallocated.

0 1xxx Register extends

1 0xxx Parallel add-subtract on page C2-286

1 10xx Data-processing (two source registers) on page C2-288

1 11xx Unallocated.

11111010 1111 op1
15 7 6 0 15 11 8 7 4 3 0

op0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-285
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding
Parallel add-subtract

This section describes the encoding of the Parallel add-subtract instruction class. This section is decoded from
Data-processing (register) on page C2-285.

Decode fields
Instruction page

op1 U Rn

00 0 != 1111 SXTAH

00 0 1111 SXTH

00 1 != 1111 UXTAH

00 1 1111 UXTH

01 0 != 1111 SXTAB16

01 0 1111 SXTB16

01 1 != 1111 UXTAB16

01 1 1111 UXTB16

10 0 != 1111 SXTAB

10 0 1111 SXTB

10 1 != 1111 UXTAB

10 1 1111 UXTB

11 - - Unallocated.

Decode fields
Instruction page

op1 U H S

000 0 0 0 SADD8

000 0 0 1 QADD8

000 0 1 0 SHADD8

000 0 1 1 Unallocated.

000 1 0 0 UADD8

000 1 0 1 UQADD8

1 1 1 1 1 0 1 0 0 op1 U Rn 1 1 1 1 Rd 1 (0) rotate Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0

1 1 1 1 1 0 1 0 1 op1 Rn 1 1 1 1 Rd 0 U H S Rm
15 14 13 12 11 10 9 8 7 6 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
C2-286 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding
000 1 1 0 UHADD8

000 1 1 1 Unallocated.

001 0 0 0 SADD16

001 0 0 1 QADD16

001 0 1 0 SHADD16

001 0 1 1 Unallocated.

001 1 0 0 UADD16

001 1 0 1 UQADD16

001 1 1 0 UHADD16

001 1 1 1 Unallocated.

010 0 0 0 SASX

010 0 0 1 QASX

010 0 1 0 SHASX

010 0 1 1 Unallocated.

010 1 0 0 UASX

010 1 0 1 UQASX

010 1 1 0 UHASX

010 1 1 1 Unallocated.

100 0 0 0 SSUB8

100 0 0 1 QSUB8

100 0 1 0 SHSUB8

100 0 1 1 Unallocated.

100 1 0 0 USUB8

100 1 0 1 UQSUB8

100 1 1 0 UHSUB8

100 1 1 1 Unallocated.

101 0 0 0 SSUB16

101 0 0 1 QSUB16

101 0 1 0 SHSUB16

101 0 1 1 Unallocated.

101 1 0 0 USUB16

101 1 0 1 UQSUB16

Decode fields
Instruction page

op1 U H S
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-287
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding
Data-processing (two source registers)

This section describes the encoding of the Data-processing (two source registers) instruction class. This section is
decoded from Data-processing (register) on page C2-285.

101 1 1 0 UHSUB16

101 1 1 1 Unallocated.

110 0 0 0 SSAX

110 0 0 1 QSAX

110 0 1 0 SHSAX

110 0 1 1 Unallocated.

110 1 0 0 USAX

110 1 0 1 UQSAX

110 1 1 0 UHSAX

110 1 1 1 Unallocated.

111 - - - Unallocated.

Decode fields
Instruction page

op1 op2

000 00 QADD

000 01 QDADD

000 10 QSUB

000 11 QDSUB

001 00 REV

001 01 REV16

001 10 RBIT

001 11 REVSH

010 00 SEL

010 01 Unallocated.

010 1x Unallocated.

011 00 CLZ

Decode fields
Instruction page

op1 U H S

1 1 1 1 1 0 1 0 1 op1 Rn 1 1 1 1 Rd 1 0 op2 Rm
15 14 13 12 11 10 9 8 7 6 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
C2-288 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding
C2.3.8 Multiply, multiply accumulate, and absolute difference

This section describes the encoding of the Multiply, multiply accumulate, and absolute difference group. This
section is decoded from 32-bit T32 instruction encoding on page C2-266.

Multiply and absolute difference

This section describes the encoding of the Multiply and absolute difference instruction class. This section is decoded
from Multiply, multiply accumulate, and absolute difference.

011 01 Unallocated.

011 1x Unallocated.

1xx - Unallocated.

Decode fields
Instruction page

op1 op2

Table C2-17 Encoding table for the Multiply, multiply accumulate, and absolute difference group

Decode fields
Decode group or instruction page

op0

00 Multiply and absolute difference

01 Unallocated.

1x Unallocated.

Decode fields
Instruction page

op1 op2 Ra

000 00 != 1111 MLA

000 00 1111 MUL

000 01 - MLS

000 1x - Unallocated.

001 00 != 1111 SMLABB, SMLABT, SMLATB, SMLATT - SMLABB variant on page C2-544

001 00 1111 SMULBB, SMULBT, SMULTB, SMULTT - SMULBB variant on page C2-563

001 01 != 1111 SMLABB, SMLABT, SMLATB, SMLATT - SMLABT variant on page C2-544

111110110 op0
15 6 8 7 6 5 00 15

1 1 1 1 1 0 1 1 0 op1 Rn Ra Rd 0 0 op2 Rm
15 14 13 12 11 10 9 8 7 6 4 3 0 15 12 11 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-289
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding
001 01 1111 SMULBB, SMULBT, SMULTB, SMULTT - SMULBT variant on page C2-563

001 10 != 1111 SMLABB, SMLABT, SMLATB, SMLATT - SMLATB variant on page C2-544

001 10 1111 SMULBB, SMULBT, SMULTB, SMULTT - SMULTB variant on page C2-563

001 11 != 1111 SMLABB, SMLABT, SMLATB, SMLATT - SMLATT variant on page C2-544

001 11 1111 SMULBB, SMULBT, SMULTB, SMULTT - SMULTT variant on page C2-563

010 00 != 1111 SMLAD, SMLADX - SMLAD variant on page C2-546

010 00 1111 SMUAD, SMUADX - SMUAD variant on page C2-562

010 01 != 1111 SMLAD, SMLADX - SMLADX variant on page C2-546

010 01 1111 SMUAD, SMUADX - SMUADX variant on page C2-562

010 1x - Unallocated.

011 00 != 1111 SMLAWB, SMLAWT - SMLAWB variant on page C2-553

011 00 1111 SMULWB, SMULWT - SMULWB variant on page C2-566

011 01 != 1111 SMLAWB, SMLAWT - SMLAWT variant on page C2-553

011 01 1111 SMULWB, SMULWT - SMULWT variant on page C2-566

011 1x - Unallocated.

100 00 != 1111 SMLSD, SMLSDX - SMLSD variant on page C2-555

100 00 1111 SMUSD, SMUSDX - SMUSD variant on page C2-567

100 01 != 1111 SMLSD, SMLSDX - SMLSDX variant on page C2-555

100 01 1111 SMUSD, SMUSDX - SMUSDX variant on page C2-567

100 1x - Unallocated.

101 00 != 1111 SMMLA, SMMLAR - SMMLA variant on page C2-559

101 00 1111 SMMUL, SMMULR - SMMUL variant on page C2-561

101 01 != 1111 SMMLA, SMMLAR - SMMLAR variant on page C2-559

101 01 1111 SMMUL, SMMULR - SMMULR variant on page C2-561

101 1x - Unallocated.

110 00 - SMMLS, SMMLSR - SMMLS variant on page C2-560

110 01 - SMMLS, SMMLSR - SMMLSR variant on page C2-560

110 1x - Unallocated.

111 00 != 1111 USADA8

111 00 1111 USAD8

111 01 - Unallocated.

111 1x - Unallocated.

Decode fields
Instruction page

op1 op2 Ra
C2-290 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding
C2.3.9 Long multiply and divide

This section describes the encoding of the Long multiply and divide instruction class. This section is decoded from
32-bit T32 instruction encoding on page C2-266.

Decode fields
Instruction page

op1 op2

000 != 0000 Unallocated.

000 0000 SMULL

001 != 1111 Unallocated.

001 1111 SDIV

010 != 0000 Unallocated.

010 0000 UMULL

011 != 1111 Unallocated.

011 1111 UDIV

100 0000 SMLAL

100 0001 Unallocated.

100 001x Unallocated.

100 01xx Unallocated.

100 1000 SMLALBB, SMLALBT, SMLALTB, SMLALTT - SMLALBB variant on page C2-549

100 1001 SMLALBB, SMLALBT, SMLALTB, SMLALTT - SMLALBT variant on page C2-549

100 1010 SMLALBB, SMLALBT, SMLALTB, SMLALTT - SMLALTB variant on page C2-549

100 1011 SMLALBB, SMLALBT, SMLALTB, SMLALTT - SMLALTT variant on page C2-549

100 1100 SMLALD, SMLALDX - SMLALD variant on page C2-551

100 1101 SMLALD, SMLALDX - SMLALDX variant on page C2-551

100 111x Unallocated.

101 0xxx Unallocated.

101 10xx Unallocated.

101 1100 SMLSLD, SMLSLDX - SMLSLD variant on page C2-557

101 1101 SMLSLD, SMLSLDX - SMLSLDX variant on page C2-557

101 111x Unallocated.

110 0000 UMLAL

110 0001 Unallocated.

1 1 1 1 1 0 1 1 1 op1 Rn RdLo RdHi op2 Rm
15 14 13 12 11 10 9 8 7 6 4 3 0 15 12 11 8 7 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-291
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding
C2.3.10 Coprocessor and floating-point instructions

This section describes the encoding of the Coprocessor and floating-point instructions group. This section is
decoded from 32-bit T32 instruction encoding on page C2-266.

Floating-point load/store and 64-bit register moves

This section describes the encoding of the Floating-point load/store and 64-bit register moves group. This section
is decoded from Coprocessor and floating-point instructions.

110 001x Unallocated.

110 010x Unallocated.

110 0110 UMAAL

110 0111 Unallocated.

110 1xxx Unallocated.

111 - Unallocated.

Decode fields
Instruction page

op1 op2

Table C2-18 Encoding table for the Coprocessor and floating-point instructions group

Decode fields
Decode group or instruction page

op0 op1 op2

0x 101 - Floating-point load/store and 64-bit register moves

10 101 0 Floating-point data-processing on page C2-294

10 101 1 Floating-point 32-bit register moves on page C2-298

11 - - Unallocated.

!= 11 != 101 - Coprocessor on page C2-299

111 11 op0 op1
15 12 11 9 8 7 12 11 9 8 5 4 3 00 15

op2
C2-292 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding
Floating-point 64-bit move

This section describes the encoding of the Floating-point 64-bit move instruction class. This section is decoded from
Floating-point load/store and 64-bit register moves on page C2-292.

Floating-point load/store

This section describes the encoding of the Floating-point load/store instruction class. This section is decoded from
Floating-point load/store and 64-bit register moves on page C2-292.

Table C2-19 Encoding table for the Floating-point load/store and 64-bit register moves group

Decode fields
Decode group or instruction page

op0

0000 Unallocated.

0010 Floating-point 64-bit move

!= 00x0 Floating-point load/store

Decode fields
Instruction page

op o1 opc2 o3

- - != 00 - Unallocated.

- - - 0 Unallocated.

0 0 00 1 VMOV (between two general-purpose registers and two single-precision registers)

0 1 00 1 VMOV (between two general-purpose registers and a doubleword register)

1 0 00 1 VMOV (between two general-purpose registers and two single-precision registers)

1 1 00 1 VMOV (between two general-purpose registers and a doubleword register)

1110110 op0 101
15 8 5 4 12 11 8 00 15

1 1 1 0 1 1 0 0 0 1 0 op Rt2 Rt 1 0 1 o1 opc2 M o3 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-293
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding
Floating-point data-processing

This section describes the encoding of the Floating-point data-processing group. This section is decoded from
Coprocessor and floating-point instructions on page C2-292.

Decode fields
Instruction page

P U L sz imm8 W

0 0 0 0 - 1 VLSTM

0 0 1 0 - 1 VLLDM

0 0 - 1 - 1 Unallocated.

0 1 0 0 - - VSTM

0 1 0 1 xxxxxxx0 - VSTM

0 1 0 1 xxxxxxx1 - FSTMDBX, FSTMIAX - Increment After variant on page C2-367

0 1 1 0 - - VLDM

0 1 1 1 xxxxxxx0 - VLDM

0 1 1 1 xxxxxxx1 - FLDMDBX, FLDMIAX - Increment After variant on page C2-365

1 - 0 - - 0 VSTR

1 0 0 0 - 1 VSTM

1 0 0 1 xxxxxxx0 1 VSTM

1 0 0 1 xxxxxxx1 1 FSTMDBX, FSTMIAX - Decrement Before variant on page C2-367

1 0 1 0 - 1 VLDM

1 0 1 1 xxxxxxx0 1 VLDM

1 0 1 1 xxxxxxx1 1 FLDMDBX, FLDMIAX - Decrement Before variant on page C2-365

1 - 1 - - 0 VLDR

1 1 - - - 1 Unallocated.

1 1 1 0 1 1 0 P U D W L Rn Vd 1 0 1 sz imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0
C2-294 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding
Floating-point data-processing (two registers)

This section describes the encoding of the Floating-point data-processing (two registers) instruction class. This
section is decoded from Floating-point data-processing on page C2-294.

Table C2-20 Encoding table for the Floating-point data-processing group

Decode fields
Decode group or instruction page

op0 op1 op2 op3

0 1x11 - 1 Floating-point data-processing (two registers)

0 1x11 - 0 VMOV (immediate)

0 != 1x11 - - Floating-point data-processing (three registers) on page C2-296

1 0xxx - 0 VSEL

1 0xxx - 1 Unallocated.

1 1x00 - - Floating-point minNum / maxNum on page C2-297

1 1x01 - - Unallocated.

1 1x10 - - Unallocated.

1 1x11 0 - Unallocated.

1 1x11 1 0 Unallocated.

1 1x11 1 1 Floating-point directed convert to integer on page C2-297

Decode fields
Instruction page

o1 opc2 o3

0 000 0 VMOV (register)

0 000 1 VABS

0 001 0 VNEG

0 001 1 VSQRT

0 010 0 VCVTB

0 010 1 VCVTT

0 011 0 VCVTB

111 1110 op1 101 0
15 12 11 7 4 3 2 12 11 8 7 6 5 4 3 00 15

op0
op2

op3

1 1 1 0 1 1 1 0 1 D 1 1 o1 opc2 Vd 1 0 1 sz o3 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-295
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding
Floating-point data-processing (three registers)

This section describes the encoding of the Floating-point data-processing (three registers) instruction class. This
section is decoded from Floating-point data-processing on page C2-294.

0 011 1 VCVTT

0 100 0 VCMP - Double-precision scalar variant on page C2-680

0 100 1 VCMPE - Double-precision scalar variant on page C2-682

0 101 0 VCMP - Double-precision scalar variant on page C2-680

0 101 1 VCMPE - Double-precision scalar variant on page C2-682

0 110 0 VRINTR

0 110 1 VRINTZ

0 111 0 VRINTX

0 111 1 VCVT (between double-precision and single-precision)

1 000 - VCVT (integer to floating-point)

1 001 - Unallocated.

1 01x - VCVT (between floating-point and fixed-point)

1 100 0 VCVTR

1 100 1 VCVT (floating-point to integer)

1 101 0 VCVTR

1 101 1 VCVT (floating-point to integer)

1 11x - VCVT (between floating-point and fixed-point)

Decode fields
Instruction page

o0 o1 o2

0 00 0 VMLA

0 00 1 VMLS

0 01 0 VNMLS

0 01 1 VNMLA

0 10 0 VMUL

0 10 1 VNMUL

Decode fields
Instruction page

o1 opc2 o3

1 1 1 0 1 1 1 0 o0 D o1 Vn Vd 1 0 1 sz N o2 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
C2-296 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding
Floating-point minNum / maxNum

This section describes the encoding of the Floating-point minNum / maxNum instruction class. This section is
decoded from Floating-point data-processing on page C2-294.

Floating-point directed convert to integer

This section describes the encoding of the Floating-point directed convert to integer instruction class. This section
is decoded from Floating-point data-processing on page C2-294.

0 11 0 VADD

0 11 1 VSUB

1 00 0 VDIV

1 01 0 VFNMS

1 01 1 VFNMA

1 10 0 VFMA

1 10 1 VFMS

Decode fields
Instruction page

op

0 VMAXNM

1 VMINNM

Decode fields
Instruction page

op rm

0 00 VRINTA

0 01 VRINTN

0 10 VRINTP

0 11 VRINTM

1 00 VCVTA

Decode fields
Instruction page

o0 o1 o2

1 1 1 1 1 1 1 0 1 D 0 0 Vn Vd 1 0 1 sz N op M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 1 1 1 0 1 D 1 1 1 op rm Vd 1 0 1 sz nU 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-297
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding
Floating-point 32-bit register moves

This section describes the encoding of the Floating-point 32-bit register moves group. This section is decoded from
Coprocessor and floating-point instructions on page C2-292.

Floating-point 32-bit move doubleword

This section describes the encoding of the Floating-point 32-bit move doubleword instruction class. This section is
decoded from Floating-point 32-bit register moves.

Floating-point 32-bit move

This section describes the encoding of the Floating-point 32-bit move instruction class. This section is decoded from
Floating-point 32-bit register moves.

1 01 VCVTN

1 10 VCVTP

1 11 VCVTM

Table C2-21 Encoding table for the Floating-point 32-bit register moves group

Decode fields
Decode group or instruction page

op0 op1 op2

00 1 00 Floating-point 32-bit move doubleword

00 1 != 00 Unallocated.

!= 00 1 - Unallocated.

- 0 - Floating-point 32-bit move

Decode fields
Instruction page

L

0 VMOV (single general-purpose register to half of doubleword register)

1 VMOV (half of doubleword register to single general-purpose register)

Decode fields
Instruction page

op rm

11101110 op0 101 op2 1
15 7 6 5 12 11 8 7 6 5 4 3 00 15

op1

1 1 1 0 1 1 1 0 0 0 H L Vn Rt 1 0 1 1 N 0 0 1 (0) (0) (0) (0)
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 2 1 0
C2-298 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding
Coprocessor

This section describes the encoding of the Coprocessor group. This section is decoded from Coprocessor and
floating-point instructions on page C2-292.

Coprocessor 64-bit move

This section describes the encoding of the Coprocessor 64-bit move instruction class. This section is decoded from
Coprocessor.

Decode fields
Instruction page

opc1 L

000 - VMOV (between general-purpose register and single-precision register)

001 - Unallocated.

01x - Unallocated.

10x - Unallocated.

110 - Unallocated.

111 0 VMSR

111 1 VMRS

Table C2-22 Encoding table for the Coprocessor group

Decode fields
Decode group or instruction page

op0 op1 op2

0 00x0 - Coprocessor 64-bit move

0 != 00x0 - Coprocessor load/store registers on page C2-300

1 0xxx 0 CDP, CDP2

1 0xxx 1 Coprocessor 32-bit move on page C2-301

1 1 1 0 1 1 1 0 opc1 L Vn Rt 1 0 1 0 N (0) (0) 1 (0) (0) (0) (0)
15 14 13 12 11 10 9 8 7 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 2 1 0

111 11 op1 !=101x
15 12 11 9 8 5 4 12 11 7 5 4 3 00 15

op0 op2
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-299
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding
Coprocessor load/store registers

This section describes the encoding of the Coprocessor load/store registers instruction class. This section is decoded
from Coprocessor on page C2-299.

Decode fields
Instruction page

o0 D L

0 0 - Unallocated.

0 1 0 MCRR, MCRR2 - T1 variant on page C2-447

0 1 1 MRRC, MRRC2 - T1 variant on page C2-463

1 0 - Unallocated.

1 1 0 MCRR, MCRR2 - T2 variant on page C2-447

1 1 1 MRRC, MRRC2 - T2 variant on page C2-463

Decode fields
Instruction page

o0 P:U:W L Rn

0 != 000 1 1111 LDC, LDC2 (literal) - T1 variant on page C2-381

0 0x1 0 - STC, STC2

0 0x1 1 != 1111 LDC, LDC2 (immediate)

0 010 0 - STC, STC2

0 010 1 != 1111 LDC, LDC2 (immediate)

0 1x0 0 - STC, STC2

0 1x0 1 != 1111 LDC, LDC2 (immediate)

0 1x1 0 - STC, STC2

0 1x1 1 != 1111 LDC, LDC2 (immediate)

1 != 000 1 1111 LDC, LDC2 (literal) - T2 variant on page C2-381

1 0x1 0 - STC, STC2

1 0x1 1 != 1111 LDC, LDC2 (immediate)

1 010 0 - STC, STC2

1 010 1 != 1111 LDC, LDC2 (immediate)

1 1 1 o0 1 1 0 0 0 D 0 L Rt2 Rt coproc opc1 CRm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 4 3 0

1 1 1 o0 1 1 0 P U D W L Rn CRd coproc imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 0
C2-300 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding
Coprocessor 32-bit move

This section describes the encoding of the Coprocessor 32-bit move instruction class. This section is decoded from
Coprocessor on page C2-299.

1 1x0 0 - STC, STC2

1 1x0 1 != 1111 LDC, LDC2 (immediate)

1 1x1 0 - STC, STC2

1 1x1 1 != 1111 LDC, LDC2 (immediate)

Decode fields
Instruction page

o0 L

0 0 MCR, MCR2 - T1 variant on page C2-445

0 1 MRC, MRC2 - T1 variant on page C2-461

1 0 MCR, MCR2 - T2 variant on page C2-445

1 1 MRC, MRC2 - T2 variant on page C2-461

Decode fields
Instruction page

o0 P:U:W L Rn

1 1 1 o0 1 1 1 0 opc1 L CRn Rt coproc opc2 1 CRm
15 14 13 12 11 10 9 8 7 5 4 3 0 15 12 11 8 7 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-301
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4 Alphabetical list of instructions
Every ARMv8-M instruction is listed in this section. See Chapter C1 Instruction Set Overview for the format of the
instruction descriptions.
C2-302 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.1 ADC (immediate)

Add with Carry (immediate) adds an immediate value and the carry flag value to a register value, and writes the
result to the destination register. It can optionally update the condition flags based on the result.

T1

ARMv8-M Main Extension only

ADC variant

Applies when S == 0.

ADC{<c>}{<q>} {<Rd>,} <Rn>, #<const>

ADCS variant

Applies when S == 1.

ADCS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for all variants of this encoding

if !HaveMainExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); setflags = (S == '1'); imm32 = T32ExpandImm(i:imm3:imm8);
if d IN {13,15} || n IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the
same as <Rn>.

<Rn> Is the general-purpose source register, encoded in the "Rn" field.

<const> An immediate value. See Modified immediate constants on page C1-249 for the range of values.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 (result, carry, overflow) = AddWithCarry(R[n], imm32, APSR.C);
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 APSR.V = overflow;

Exceptions

None.

1 1 1 1 0 i 0 1 0 1 0 S Rn 0 imm3 Rd imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-303
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.2 ADC (register)

Add with Carry (register) adds a register value, the carry flag value, and an optionally-shifted register value, and
writes the result to the destination register. It can optionally update the condition flags based on the result.

T1

ARMv8-M

T1 variant

ADC<c>{<q>} {<Rdn>,} <Rdn>, <Rm> // Inside IT block
ADCS{<q>} {<Rdn>,} <Rdn>, <Rm> // Outside IT block

Decode for this encoding

d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();
(shift_t, shift_n) = (SRType_LSL, 0);

T2

ARMv8-M Main Extension only

ADC, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && type == 11.

ADC{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ADC, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && type == 11).

ADC<c>.W {<Rd>,} <Rn>, <Rm> // Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1
ADC{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

ADCS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && imm2 == 00 && type == 11.

ADCS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ADCS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && type == 11).

ADCS.W {<Rd>,} <Rn>, <Rm> // Outside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1
ADCS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

0 1 0 0 0 0 0 1 0 1 Rm Rdn
15 14 13 12 11 10 9 8 7 6 5 3 2 0

1 1 1 0 1 0 1 1 0 1 0 S Rn (0) imm3 Rd imm2 type Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 6 5 4 3 0
C2-304 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Decode for all variants of this encoding

if !HaveMainExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rdn> Is the first general-purpose source register and the destination register, encoded in the "Rdn" field.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the
same as <Rn>.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in the "type" field. It can have
the following values:

LSL when type = 00

LSR when type = 01

ASR when type = 10

ROR when type = 11

<amount> Is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift> =
LSR or ASR) encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 shifted = Shift(R[m], shift_t, shift_n, APSR.C);
 (result, carry, overflow) = AddWithCarry(R[n], shifted, APSR.C);
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 APSR.V = overflow;

Exceptions

None.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-305
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.3 ADD (SP plus immediate)

ADD (SP plus immediate) adds an immediate value to the SP value, and writes the result to the destination register.

T1

ARMv8-M

T1 variant

ADD{<c>}{<q>} <Rd>, SP, #<imm8>

Decode for this encoding

d = UInt(Rd); setflags = FALSE; imm32 = ZeroExtend(imm8:'00', 32);

T2

ARMv8-M

T2 variant

ADD{<c>}{<q>} {SP,} SP, #<imm7>

Decode for this encoding

d = 13; setflags = FALSE; imm32 = ZeroExtend(imm7:'00', 32);

T3

ARMv8-M Main Extension only

ADD variant

Applies when S == 0.

ADD{<c>}.W {<Rd>,} SP, #<const> // <Rd>, <const> can be represented in T1 or T2
ADD{<c>}{<q>} {<Rd>,} SP, #<const>

ADDS variant

Applies when S == 1 && Rd != 1111.

ADDS{<c>}{<q>} {<Rd>,} SP, #<const>

1 0 1 0 1 Rd imm8
15 14 13 12 11 10 8 7 0

1 0 1 1 0 0 0 0 0 imm7
15 14 13 12 11 10 9 8 7 6 0

1 1 1 1 0 i 0 1 0 0 0 S 1 1 0 1 0 imm3 Rd imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 0
C2-306 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Decode for all variants of this encoding

if Rd == '1111' && S == '1' then SEE "CMN (immediate)";
if !HaveMainExt() then UNDEFINED;
d = UInt(Rd); setflags = (S == '1'); imm32 = T32ExpandImm(i:imm3:imm8);
if d == 15 && S == '0' then UNPREDICTABLE;

T4

ARMv8-M Main Extension only

T4 variant

ADD{<c>}{<q>} {<Rd>,} SP, #<imm12> // <imm12> cannot be represented in T1, T2, or T3
ADDW{<c>}{<q>} {<Rd>,} SP, #<imm12> // <imm12> can be represented in T1, T2, or T3

Decode for this encoding

if !HaveMainExt() then UNDEFINED;
d = UInt(Rd); setflags = FALSE; imm32 = ZeroExtend(i:imm3:imm8, 32);
if d == 15 then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<imm7> Is an unsigned immediate, a multiple of 4 in the range 0 to 508, encoded in the "imm7" field as
<imm7>/4.

<Rd> For encoding T1: is the general-purpose destination register, encoded in the "Rd" field.

For encoding T3 and T4: is the general-purpose destination register, encoded in the "Rd" field. If
omitted, this register is the SP.

<imm8> Is an unsigned immediate, a multiple of 4, in the range 0 to 1020, encoded in the "imm8" field as
<imm8>/4.

<imm12> Is a 12-bit unsigned immediate, in the range 0 to 4095, encoded in the "i:imm3:imm8" field.

<const> An immediate value. See Modified immediate constants on page C1-249 for the range of values.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 (result, carry, overflow) = AddWithCarry(SP, imm32, '0');
 RSPCheck[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 APSR.V = overflow;

Exceptions

UsageFault.

1 1 1 1 0 i 1 0 0 0 0 0 1 1 0 1 0 imm3 Rd imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-307
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.4 ADD (SP plus register)

ADD (SP plus register) adds an optionally-shifted register value to the SP value, and writes the result to the
destination register.

T1

ARMv8-M

T1 variant

ADD{<c>}{<q>} {<Rdm>,} SP, <Rdm>

Decode for this encoding

d = UInt(DM:Rdm); m = UInt(DM:Rdm); setflags = FALSE;
if d == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;
(shift_t, shift_n) = (SRType_LSL, 0);

T2

ARMv8-M

T2 variant

ADD{<c>}{<q>} {SP,} SP, <Rm>

Decode for this encoding

if Rm == '1101' then SEE "encoding T1";
d = 13; m = UInt(Rm); setflags = FALSE;
(shift_t, shift_n) = (SRType_LSL, 0);

T3

ARMv8-M Main Extension only

ADD, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && type == 11.

ADD{<c>}{<q>} {<Rd>,} SP, <Rm>, RRX

ADD, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && type == 11).

0 1 0 0 0 1 0 0 1 1 0 1 Rdm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

DM

0 1 0 0 0 1 0 0 1 !=1101 1 0 1
15 14 13 12 11 10 9 8 7 6 3 2 1 0

Rm

1 1 1 0 1 0 1 1 0 0 0 S 1 1 0 1 (0) imm3 Rd imm2 type Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 6 5 4 3 0
C2-308 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
ADD{<c>}.W {<Rd>,} SP, <Rm> // <Rd>, <Rm> can be represented in T1 or T2
ADD{<c>}{<q>} {<Rd>,} SP, <Rm> {, <shift> #<amount>}

ADDS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && Rd != 1111 && imm2 == 00 && type == 11.

ADDS{<c>}{<q>} {<Rd>,} SP, <Rm>, RRX

ADDS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && type == 11) && Rd != 1111.

ADDS{<c>}{<q>} {<Rd>,} SP, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

if Rd == '1111' && S == '1' then SEE "CMN (register)";
if !HaveMainExt() then UNDEFINED;
d = UInt(Rd); m = UInt(Rm); setflags = (S == '1');
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
if d == 13 && (shift_t != SRType_LSL || shift_n > 3) then UNPREDICTABLE;
if (d == 15 && S == '0') || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rdm> Is the general-purpose destination and second source register, encoded in the "Rdm" field. If
omitted, this register is the SP. ARM deprecates using the PC as the destination register, but if the
PC is used, the instruction is a simple branch to the address calculated by the operation.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the
SP.

<Rm> For encoding T2: is the second general-purpose source register, encoded in the "Rm" field. The PC
can be used, but this is deprecated.

For encoding T3: is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in the "type" field. It can have
the following values:

LSL when type = 00

LSR when type = 01

ASR when type = 10

ROR when type = 11

<amount> Is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift> =
LSR or ASR) encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 shifted = Shift(R[m], shift_t, shift_n, APSR.C);
 (result, carry, overflow) = AddWithCarry(SP, shifted, '0');
 if d == 15 then
 ALUWritePC(result); // setflags is always FALSE here
 else
 RSPCheck[d] = result;
 if setflags then
 APSR.N = result<31>;
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-309
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 APSR.V = overflow;

Exceptions

UsageFault.
C2-310 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.5 ADD (immediate)

Add (immediate) adds an immediate value to a register value, and writes the result to the destination register. It can
optionally update the condition flags based on the result.

T1

ARMv8-M

T1 variant

ADD<c>{<q>} <Rd>, <Rn>, #<imm3> // Inside IT block
ADDS{<q>} <Rd>, <Rn>, #<imm3> // Outside IT block

Decode for this encoding

d = UInt(Rd); n = UInt(Rn); setflags = !InITBlock(); imm32 = ZeroExtend(imm3, 32);

T2

ARMv8-M

T2 variant

ADD<c>{<q>} <Rdn>, #<imm8> // Inside IT block, and <Rdn>, <imm8> can be represented in T1
ADD<c>{<q>} {<Rdn>,} <Rdn>, #<imm8> // Inside IT block, and <Rdn>, <imm8> cannot be represented in T1
ADDS{<q>} <Rdn>, #<imm8> // Outside IT block, and <Rdn>, <imm8> can be represented in T1
ADDS{<q>} {<Rdn>,} <Rdn>, #<imm8> // Outside IT block, and <Rdn>, <imm8> cannot be represented in T1

Decode for this encoding

d = UInt(Rdn); n = UInt(Rdn); setflags = !InITBlock(); imm32 = ZeroExtend(imm8, 32);

T3

ARMv8-M Main Extension only

ADD variant

Applies when S == 0.

ADD<c>.W {<Rd>,} <Rn>, #<const> // Inside IT block, and <Rd>, <Rn>, <const> can be represented in T1 or
T2
ADD{<c>}{<q>} {<Rd>,} <Rn>, #<const>

0 0 0 1 1 1 0 imm3 Rn Rd
15 14 13 12 11 10 9 8 6 5 3 2 0

0 0 1 1 0 Rdn imm8
15 14 13 12 11 10 8 7 0

1 1 1 1 0 i 0 1 0 0 0 S !=1101 0 imm3 Rd imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 0

Rn
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-311
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
ADDS variant

Applies when S == 1 && Rd != 1111.

ADDS.W {<Rd>,} <Rn>, #<const> // Outside IT block, and <Rd>, <Rn>, <const> can be represented in T1 or T2
ADDS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for all variants of this encoding

if Rd == '1111' && S == '1' then SEE "CMN (immediate)";
if Rn == '1101' then SEE "ADD (SP plus immediate)";
if !HaveMainExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); setflags = (S == '1'); imm32 = T32ExpandImm(i:imm3:imm8);
if d == 13 || (d == 15 && S == '0') || n == 15 then UNPREDICTABLE;

T4

ARMv8-M Main Extension only

T4 variant

ADD{<c>}{<q>} {<Rd>,} <Rn>, #<imm12> // <imm12> cannot be represented in T1, T2, or T3
ADDW{<c>}{<q>} {<Rd>,} <Rn>, #<imm12> // <imm12> can be represented in T1, T2, or T3

Decode for this encoding

if Rn == '1111' then SEE ADR;
if Rn == '1101' then SEE "ADD (SP plus immediate)";
if !HaveMainExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); setflags = FALSE; imm32 = ZeroExtend(i:imm3:imm8, 32);
if d IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rdn> Is the general-purpose source and destination register, encoded in the "Rdn" field.

<imm8> Is a 8-bit unsigned immediate, in the range 0 to 255, encoded in the "imm8" field.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the
same as <Rn>.

<Rn> For encoding T1: is the general-purpose source register, encoded in the "Rn" field.

For encoding T3: is the general-purpose source register, encoded in the "Rn" field. If the SP is used,
see ADD (SP plus immediate).

For encoding T4: is the general-purpose source register, encoded in the "Rn" field. If the SP is used,
see ADD (SP plus immediate). If the PC is used, see ADR.

<imm3> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "imm3" field.

<imm12> Is a 12-bit unsigned immediate, in the range 0 to 4095, encoded in the "i:imm3:imm8" field.

<const> An immediate value. See Modified immediate constants on page C1-249 for the range of values.

1 1 1 1 0 i 1 0 0 0 0 0 !=11x1 0 imm3 Rd imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 0

Rn
C2-312 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 (result, carry, overflow) = AddWithCarry(R[n], imm32, '0');
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 APSR.V = overflow;

Exceptions

None.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-313
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.6 ADD (immediate, to PC)

Add to PC adds an immediate value to the Align(PC, 4) value to form a PC-relative address, and writes the result
to the destination register. ARM recommends that, where possible, software avoids using this alias.

This instruction is a pseudo-instruction of the ADR instruction. This means that:

• The encodings in this description are named to match the encodings of ADR.

• The assembler syntax is used only for assembly, and is not used on disassembly.

• The description of ADR gives the operational pseudocode for this instruction.

T1

ARMv8-M

T1 variant

ADD{<c>}{<q>} <Rd>, PC, #<imm8>

is equivalent to

ADR{<c>}{<q>} <Rd>, <label>

and is never the preferred disassembly.

T3

ARMv8-M Main Extension only

T3 variant

ADDW{<c>}{<q>} <Rd>, PC, #<imm12> // <Rd>, <imm12> can be represented in T1

is equivalent to

ADR{<c>}{<q>} <Rd>, <label>

and is never the preferred disassembly.

ADD{<c>}{<q>} <Rd>, PC, #<imm12>

is equivalent to

ADR{<c>}{<q>} <Rd>, <label>

and is never the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

1 0 1 0 0 Rd imm8
15 14 13 12 11 10 8 7 0

1 1 1 1 0 i 1 0 0 0 0 0 1 1 1 1 0 imm3 Rd imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 0
C2-314 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<label> For encoding T1: the label of an instruction or literal data item whose address is to be loaded into
<Rd>. The assembler calculates the required value of the offset from the Align(PC, 4) value of the
ADR instruction to this label. Permitted values of the size of the offset are multiples of 4 in the range
0 to 1020.

For encoding T2 and T3: the label of an instruction or literal data item whose address is to be loaded
into <Rd>. The assembler calculates the required value of the offset from the Align(PC, 4) value of
the ADR instruction to this label. If the offset is zero or positive, encoding T3 is used, with imm32 equal
to the offset. If the offset is negative, encoding T2 is used, with imm32 equal to the size of the offset.
That is, the use of encoding T2 indicates that the required offset is minus the value of imm32.
Permitted values of the size of the offset are 0-4095.

<imm8> Is an unsigned immediate, a multiple of 4, in the range 0 to 1020, encoded in the "imm8" field as
<imm8>/4.

<imm12> Is a 12-bit unsigned immediate, in the range 0 to 4095, encoded in the "i:imm3:imm8" field.

Operation for all encodings

The description of ADR gives the operational pseudocode for this instruction.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-315
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.7 ADD (register)

ADD (register) adds a register value and an optionally-shifted register value, and writes the result to the destination
register. It can optionally update the condition flags based on the result.

T1

ARMv8-M

T1 variant

ADD<c>{<q>} <Rd>, <Rn>, <Rm> // Inside IT block
ADDS{<q>} {<Rd>,} <Rn>, <Rm> // Outside IT block

Decode for this encoding

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = !InITBlock();
(shift_t, shift_n) = (SRType_LSL, 0);

T2

ARMv8-M

T2 variant

Applies when !(DN == 1 && Rdn == 101).

ADD<c>{<q>} <Rdn>, <Rm> // Preferred syntax, Inside IT block
ADD{<c>}{<q>} {<Rdn>,} <Rdn>, <Rm>

Decode for this encoding

if (DN:Rdn) == '1101' || Rm == '1101' then SEE "ADD (SP plus register)";
d = UInt(DN:Rdn); n = d; m = UInt(Rm); setflags = FALSE; (shift_t, shift_n) = (SRType_LSL, 0);
if n == 15 && m == 15 then UNPREDICTABLE;
if d == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

T3

ARMv8-M Main Extension only

ADD, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && type == 11.

ADD{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

0 0 0 1 1 0 0 Rm Rn Rd
15 14 13 12 11 10 9 8 6 5 3 2 0

0 1 0 0 0 1 0 0 !=1101 Rdn
15 14 13 12 11 10 9 8 7 6 3 2 0

Rm
DN

1 1 1 0 1 0 1 1 0 0 0 S !=1101 (0) imm3 Rd imm2 type Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 6 5 4 3 0

Rn
C2-316 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
ADD, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && type == 11).

ADD<c>.W {<Rd>,} <Rn>, <Rm> // Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1 or T2
ADD{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

ADDS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && Rd != 1111 && imm2 == 00 && type == 11.

ADDS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ADDS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && type == 11) && Rd != 1111.

ADDS.W {<Rd>,} <Rn>, <Rm> // Outside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1 or T2
ADDS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

if Rd == '1111' && S == '1' then SEE "CMN (register)";
if Rn == '1101' then SEE "ADD (SP plus register)";
if !HaveMainExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
if d == 13 || (d == 15 && S == '0') || n == 15 || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rdn> Is the general-purpose source and destination register, encoded in the "DN:Rdn" field. If the PC is
used, the instruction is a branch to the address calculated by the operation. This is a simple branch,
see Pseudocode descriptions of operations on general-purpose registers and PC on page C1-250.
The assembler language allows <Rdn> to be specified once or twice in the assembler syntax. When
used inside an IT block, and <Rdn> and <Rm> are in the range R0 to R7, <Rdn> must be specified once
so that encoding T2 is preferred to encoding T1. In all other cases there is no difference in behavior
when <Rdn> is specified once or twice.

<Rd> For encoding T1: is the general-purpose destination register, encoded in the "Rd" field. When used
inside an IT block, <Rd> must be specified. When used outside an IT block, <Rd> is optional, and:

• If omitted, this register is the same as <Rn>.

• If present, encoding T1 is preferred to encoding T2.

For encoding T3: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the same as <Rn>.

<Rn> For encoding T1: is the first general-purpose source register, encoded in the "Rn" field.

For encoding T3: is the first general-purpose source register, encoded in the "Rn" field. If the SP is
used, see ADD (SP plus register).

<Rm> For encoding T1 and T3: is the second general-purpose source register, encoded in the "Rm" field.

For encoding T2: is the second general-purpose source register, encoded in the "Rm" field. The PC
can be used.

<shift> Is the type of shift to be applied to the second source register, encoded in the "type" field. It can have
the following values:

LSL when type = 00
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-317
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
LSR when type = 01

ASR when type = 10

ROR when type = 11

<amount> Is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift> =
LSR or ASR) encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 shifted = Shift(R[m], shift_t, shift_n, APSR.C);
 (result, carry, overflow) = AddWithCarry(R[n], shifted, '0');
 if d == 15 then
 ALUWritePC(result); // setflags is always FALSE here
 else
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 APSR.V = overflow;

Exceptions

None.
C2-318 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.8 ADR

Address to Register adds an immediate value to the PC value, and writes the result to the destination register.

This instruction is used by the pseudo-instructions ADD (immediate, to PC) and SUB (immediate, from PC). The
pseudo-instruction is never the preferred disassembly.

T1

ARMv8-M

T1 variant

ADR{<c>}{<q>} <Rd>, <label>

Decode for this encoding

d = UInt(Rd); imm32 = ZeroExtend(imm8:'00', 32); add = TRUE;

T2

ARMv8-M Main Extension only

T2 variant

ADR{<c>}{<q>} <Rd>, <label>

Decode for this encoding

if !HaveMainExt() then UNDEFINED;
d = UInt(Rd); imm32 = ZeroExtend(i:imm3:imm8, 32); add = FALSE;
if d IN {13,15} then UNPREDICTABLE;

T3

ARMv8-M Main Extension only

T3 variant

ADR{<c>}.W <Rd>, <label> // <Rd>, <label> can be presented in T1
ADR{<c>}{<q>} <Rd>, <label>

Decode for this encoding

if !HaveMainExt() then UNDEFINED;
d = UInt(Rd); imm32 = ZeroExtend(i:imm3:imm8, 32); add = TRUE;
if d IN {13,15} then UNPREDICTABLE;

1 0 1 0 0 Rd imm8
15 14 13 12 11 10 8 7 0

1 1 1 1 0 i 1 0 1 0 1 0 1 1 1 1 0 imm3 Rd imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 0

1 1 1 1 0 i 1 0 0 0 0 0 1 1 1 1 0 imm3 Rd imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-319
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Alias conditions

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<label> For encoding T1: the label of an instruction or literal data item whose address is to be loaded into
<Rd>. The assembler calculates the required value of the offset from the Align(PC, 4) value of the
ADR instruction to this label. Permitted values of the size of the offset are multiples of 4 in the range
0 to 1020.

For encoding T2 and T3: the label of an instruction or literal data item whose address is to be loaded
into <Rd>. The assembler calculates the required value of the offset from the Align(PC, 4) value of
the ADR instruction to this label. If the offset is zero or positive, encoding T3 is used, with imm32 equal
to the offset. If the offset is negative, encoding T2 is used, with imm32 equal to the size of the offset.
That is, the use of encoding T2 indicates that the required offset is minus the value of imm32.
Permitted values of the size of the offset are 0-4095.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 result = if add then (Align(PC,4) + imm32) else (Align(PC,4) - imm32);
 R[d] = result;

Exceptions

None.

Alias or pseudo-instruction is preferred when

ADD (immediate, to PC) Never

SUB (immediate, from PC) i:imm3:imm8 == '000000000000'
C2-320 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.9 AND (immediate)

AND (immediate) performs a bitwise AND of a register value and an immediate value, and writes the result to the
destination register.

T1

ARMv8-M Main Extension only

AND variant

Applies when S == 0.

AND{<c>}{<q>} {<Rd>,} <Rn>, #<const>

ANDS variant

Applies when S == 1 && Rd != 1111.

ANDS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for all variants of this encoding

if Rd == '1111' && S == '1' then SEE "TST (immediate)";
if !HaveMainExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); setflags = (S == '1');
(imm32, carry) = T32ExpandImm_C(i:imm3:imm8, APSR.C);
if d == 13 || (d == 15 && S == '0') || n IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the
same as <Rn>.

<Rn> Is the general-purpose source register, encoded in the "Rn" field.

<const> An immediate value. See Modified immediate constants on page C1-249 for the range of values.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 result = R[n] AND imm32;
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.

1 1 1 1 0 i 0 0 0 0 0 S Rn 0 imm3 Rd imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-321
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.10 AND (register)

AND (register) performs a bitwise AND of a register value and an optionally-shifted register value, and writes the
result to the destination register. It can optionally update the condition flags based on the result.

T1

ARMv8-M

T1 variant

AND<c>{<q>} {<Rdn>,} <Rdn>, <Rm> // Inside IT block
ANDS{<q>} {<Rdn>,} <Rdn>, <Rm> // Outside IT block

Decode for this encoding

d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();
(shift_t, shift_n) = (SRType_LSL, 0);

T2

ARMv8-M Main Extension only

AND, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && type == 11.

AND{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

AND, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && type == 11).

AND<c>.W {<Rd>,} <Rn>, <Rm> // Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1
AND{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

ANDS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && Rd != 1111 && imm2 == 00 && type == 11.

ANDS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ANDS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && type == 11) && Rd != 1111.

ANDS.W {<Rd>,} <Rn>, <Rm> // Outside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1
ANDS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

0 1 0 0 0 0 0 0 0 0 Rm Rdn
15 14 13 12 11 10 9 8 7 6 5 3 2 0

1 1 1 0 1 0 1 0 0 0 0 S Rn (0) imm3 Rd imm2 type Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 6 5 4 3 0
C2-322 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Decode for all variants of this encoding

if Rd == '1111' && S == '1' then SEE "TST (register)";
if !HaveMainExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
if d == 13 || (d == 15 && S == '0') || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rdn> Is the first general-purpose source register and the destination register, encoded in the "Rdn" field.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the
same as <Rn>.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in the "type" field. It can have
the following values:

LSL when type = 00

LSR when type = 01

ASR when type = 10

ROR when type = 11

<amount> Is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift> =
LSR or ASR) encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
 result = R[n] AND shifted;
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-323
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.11 ASR (immediate)

Arithmetic Shift Right (immediate) shifts a register value right by an immediate number of bits, shifting in copies
of its sign bit, and writes the result to the destination register.

This instruction is an alias of the MOV (register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV (register).

• The description of MOV (register) gives the operational pseudocode for this instruction.

T2

ARMv8-M Main Extension only

T2 variant

ASR<c>{<q>} {<Rd>,} <Rm>, #<imm> // Inside IT block

is equivalent to

MOV<c>{<q>} <Rd>, <Rm>, ASR #<imm>

and is the preferred disassembly when InITBlock().

T3

ARMv8-M Main Extension only

MOV, shift or rotate by value variant

ASR<c>.W {<Rd>,} <Rm>, #<imm> // Inside IT block, and <Rd>, <Rm>, <imm> can be represented in T2

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, ASR #<imm>

and is always the preferred disassembly.

ASR{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, ASR #<imm>

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

0 0 0 1 0 imm5 Rm Rd
15 14 13 12 11 10 6 5 3 2 0

1 1 1 0 1 0 1 0 0 1 0 0 1 1 1 1 (0) imm3 Rd imm2 1 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 6 5 4 3 0

S

C2-324 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
<Rm> Is the general-purpose source register, encoded in the "Rm" field.

<imm> For encoding T2: is the shift amount, in the range 1 to 32, encoded in the "imm5" field as <imm>
modulo 32.

For encoding T3: is the shift amount, in the range 1 to 32, encoded in the "imm3:imm2" field as
<imm> modulo 32.

Operation for all encodings

The description of MOV (register) gives the operational pseudocode for this instruction.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-325
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.12 ASR (register)

Arithmetic Shift Right (register) shifts a register value right by a variable number of bits, shifting in copies of its
sign bit, and writes the result to the destination registers. The variable number of bits is read from the bottom byte
of a register.

This instruction is an alias of the MOV, MOVS (register-shifted register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted
register).

• The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this
instruction.

T1

ARMv8-M Main Extension only

Arithmetic shift right variant

ASR<c>{<q>} {<Rdm>,} <Rdm>, <Rs> // Inside IT block

is equivalent to

MOV<c>{<q>} <Rdm>, <Rdm>, ASR <Rs>

and is the preferred disassembly when InITBlock().

T2

ARMv8-M Main Extension only

Not flag setting variant

ASR<c>.W {<Rd>,} <Rm>, <Rs> // Inside IT block, and <Rd>, <Rm>, <type>, <Rs> can be represented in T1

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, ASR <Rs>

and is always the preferred disassembly.

ASR{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, ASR <Rs>

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

0 1 0 0 0 0 0 1 0 0 Rs Rdm
15 14 13 12 11 10 9 6 5 3 2 0

op

1 1 1 1 1 0 1 0 0 1 0 0 Rm 1 1 1 1 Rd 0 0 0 0 Rs
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0

type S
C2-326 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
<q> See Standard assembler syntax fields on page C1-240.

<Rdm> Is the first general-purpose source register and the destination register, encoded in the "Rdm" field.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the first general-purpose source register, encoded in the "Rm" field.

<Rs> Is the second general-purpose source register holding a shift amount in its bottom 8 bits, encoded in
the "Rs" field.

Operation for all encodings

The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-327
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.13 ASRS (immediate)

Arithmetic Shift Right, Setting flags (immediate) shifts a register value right by an immediate number of bits,
shifting in copies of its sign bit, writes the result to the destination register, and updates the condition flags based on
the result.

This instruction is an alias of the MOV (register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV (register).

• The description of MOV (register) gives the operational pseudocode for this instruction.

T2

ARMv8-M

T2 variant

ASRS{<q>} {<Rd>,} <Rm>, #<imm> // Outside IT block

is equivalent to

MOVS{<q>} <Rd>, <Rm>, ASR #<imm>

and is the preferred disassembly when !InITBlock().

T3

ARMv8-M Main Extension only

MOVS, shift or rotate by value variant

ASRS.W {<Rd>,} <Rm>, #<imm> // Outside IT block, and <Rd>, <Rm>, <imm> can be represented in T2

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, ASR #<imm>

and is always the preferred disassembly.

ASRS{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, ASR #<imm>

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

0 0 0 1 0 imm5 Rm Rd
15 14 13 12 11 10 6 5 3 2 0

1 1 1 0 1 0 1 0 0 1 0 1 1 1 1 1 (0) imm3 Rd imm2 1 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 6 5 4 3 0

S

C2-328 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
<Rm> Is the general-purpose source register, encoded in the "Rm" field.

<imm> For encoding T2: is the shift amount, in the range 1 to 32, encoded in the "imm5" field as <imm>
modulo 32.

For encoding T3: is the shift amount, in the range 1 to 32, encoded in the "imm3:imm2" field as
<imm> modulo 32.

Operation for all encodings

The description of MOV (register) gives the operational pseudocode for this instruction.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-329
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.14 ASRS (register)

Arithmetic Shift Right, Setting flags (register) shifts a register value right by a variable number of bits, shifting in
copies of its sign bit, writes the result to the destination register, and updates the condition flags based on the result.
The variable number of bits is read from the bottom byte of a register.

This instruction is an alias of the MOV, MOVS (register-shifted register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted
register).

• The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this
instruction.

T1

ARMv8-M

Arithmetic shift right variant

ASRS{<q>} {<Rdm>,} <Rdm>, <Rs> // Outside IT block

is equivalent to

MOVS{<q>} <Rdm>, <Rdm>, ASR <Rs>

and is the preferred disassembly when !InITBlock().

T2

ARMv8-M Main Extension only

Flag setting variant

ASRS.W {<Rd>,} <Rm>, <Rs> // Outside IT block, and <Rd>, <Rm>, <type>, <Rs> can be represented in T1

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, ASR <Rs>

and is always the preferred disassembly.

ASRS{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, ASR <Rs>

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

0 1 0 0 0 0 0 1 0 0 Rs Rdm
15 14 13 12 11 10 9 6 5 3 2 0

op

1 1 1 1 1 0 1 0 0 1 0 1 Rm 1 1 1 1 Rd 0 0 0 0 Rs
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0

type S
C2-330 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
<q> See Standard assembler syntax fields on page C1-240.

<Rdm> Is the first general-purpose source register and the destination register, encoded in the "Rdm" field.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the first general-purpose source register, encoded in the "Rm" field.

<Rs> Is the second general-purpose source register holding a shift amount in its bottom 8 bits, encoded in
the "Rs" field.

Operation for all encodings

The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-331
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.15 B

Branch causes a branch to a target address.

T1

ARMv8-M

T1 variant

B<c>{<q>} <label> // Not permitted in IT block

Decode for this encoding

if cond == '1110' then SEE UDF;
if cond == '1111' then SEE SVC;
imm32 = SignExtend(imm8:'0', 32);
if InITBlock() then UNPREDICTABLE;

T2

ARMv8-M

T2 variant

B{<c>}{<q>} <label> // Outside or last in IT block

Decode for this encoding

imm32 = SignExtend(imm11:'0', 32);
if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

T3

ARMv8-M Main Extension only

T3 variant

B<c>.W <label> // Not permitted in IT block, and <label> can be represented in T1
B<c>{<q>} <label> // Not permitted in IT block

Decode for this encoding

if cond<3:1> == '111' then SEE "Related encodings";
if !HaveMainExt() then UNDEFINED;
imm32 = SignExtend(S:J2:J1:imm6:imm11:'0', 32);
if InITBlock() then UNPREDICTABLE;

1 1 0 1 !=111x imm8
15 14 13 12 11 8 7 0

cond

1 1 1 0 0 imm11
15 14 13 12 11 10 0

1 1 1 1 0 S !=111x imm6 1 0 J1 0 J2 imm11
15 14 13 12 11 10 9 6 5 0 15 14 13 12 11 10 0

cond
C2-332 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
T4

ARMv8-M

T4 variant

B{<c>}.W <label> // <label> can be represented in T2
B{<c>}{<q>} <label>

Decode for this encoding

I1 = NOT(J1 EOR S); I2 = NOT(J2 EOR S); imm32 = SignExtend(S:I1:I2:imm10:imm11:'0', 32);
if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Notes for all encodings

Related encodings: Branches and miscellaneous control on page C2-277.

Assembler symbols

<c> For encoding T1: see Standard assembler syntax fields on page C1-240. Must not be AL or omitted.

For encoding T2 and T4: see Standard assembler syntax fields on page C1-240.

For encoding T3: see Standard assembler syntax fields on page C1-240. <c> must not be AL or
omitted.

<q> See Standard assembler syntax fields on page C1-240.

<label> For encoding T1: the label of the instruction that is to be branched to. The assembler calculates the
required value of the offset from the PC value of the B instruction to this label, then selects an
encoding that sets imm32 to that offset. Permitted offsets are even numbers in the range –256 to 254.

For encoding T2: the label of the instruction that is to be branched to. The assembler calculates the
required value of the offset from the PC value of the B instruction to this label, then selects an
encoding that sets imm32 to that offset. Permitted offsets are even numbers in the range –2048 to
2046.

For encoding T3: the label of the instruction that is to be branched to. The assembler calculates the
required value of the offset from the PC value of the B instruction to this label, then selects an
encoding that sets imm32 to that offset. Permitted offsets are even numbers in the range –1048576 to
1048574.

For encoding T4: the label of the instruction that is to be branched to. The assembler calculates the
required value of the offset from the PC value of the B instruction to this label, then selects an
encoding that sets imm32 to that offset. Permitted offsets are even numbers in the range –16777216
to 16777214.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 BranchWritePC(PC + imm32);

Exceptions

None.

1 1 1 1 0 S imm10 1 0 J1 1 J2 imm11
15 14 13 12 11 10 9 0 15 14 13 12 11 10 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-333
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.16 BFC

Bit Field Clear clears any number of adjacent bits at any position in a register, without affecting the other bits in the
register.

T1

ARMv8-M Main Extension only

T1 variant

BFC{<c>}{<q>} <Rd>, #<lsb>, #<width>

Decode for this encoding

if !HaveMainExt() then UNDEFINED;
d = UInt(Rd); msbit = UInt(msb); lsbit = UInt(imm3:imm2);
if msbit < lsbit then UNPREDICTABLE;
if d IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<lsb> Is the least significant bit that is to be cleared, in the range 0 to 31, encoded in the "imm3:imm2"
field.

<width> Is the number of bits to be cleared, in the range 1 to 32-<lsb>, encoded in the "msb" field as
<lsb>+<width>-1.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 if msbit >= lsbit then
 R[d]<msbit:lsbit> = Replicate('0', msbit-lsbit+1);
 // Other bits of R[d] are unchanged
 else
 R[d] = bits(32) UNKNOWN;

Exceptions

None.

1 1 1 1 0 (0) 1 1 0 1 1 0 1 1 1 1 0 imm3 Rd imm2 (0) msb
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 6 5 4 0
C2-334 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.17 BFI

Bit Field Insert copies any number of low order bits from a register into the same number of adjacent bits at any
position in the destination register.

T1

ARMv8-M Main Extension only

T1 variant

BFI{<c>}{<q>} <Rd>, <Rn>, #<lsb>, #<width>

Decode for this encoding

if Rn == '1111' then SEE BFC;
if !HaveMainExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); msbit = UInt(msb); lsbit = UInt(imm3:imm2);
if msbit < lsbit then UNPREDICTABLE;
if d IN {13,15} || n == 13 then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the general-purpose source register, encoded in the "Rn" field.

<lsb> Is the least significant destination bit, in the range 0 to 31, encoded in the "imm3:imm2" field.

<width> Is the number of bits to be copied, in the range 1 to 32-<lsb>, encoded in the "msb" field as
<lsb>+<width>-1.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 if msbit >= lsbit then
 R[d]<msbit:lsbit> = R[n]<(msbit-lsbit):0>;
 // Other bits of R[d] are unchanged
 else
 R[d] = bits(32) UNKNOWN;

Exceptions

None.

1 1 1 1 0 (0) 1 1 0 1 1 0 !=1111 0 imm3 Rd imm2 (0) msb
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 6 5 4 0

Rn
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-335
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.18 BIC (immediate)

Bit Clear (immediate) performs a bitwise AND of a register value and the complement of an immediate value, and
writes the result to the destination register. It can optionally update the condition flags based on the result.

T1

ARMv8-M Main Extension only

BIC variant

Applies when S == 0.

BIC{<c>}{<q>} {<Rd>,} <Rn>, #<const>

BICS variant

Applies when S == 1.

BICS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for all variants of this encoding

if !HaveMainExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); setflags = (S == '1');
(imm32, carry) = T32ExpandImm_C(i:imm3:imm8, APSR.C);
if d IN {13,15} || n IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the
same as <Rn>.

<Rn> Is the general-purpose source register, encoded in the "Rn" field.

<const> An immediate value. See Modified immediate constants on page C1-249 for the range of values.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 result = R[n] AND NOT(imm32);
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.

1 1 1 1 0 i 0 0 0 0 1 S Rn 0 imm3 Rd imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 0
C2-336 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.19 BIC (register)

Bit Clear (register) performs a bitwise AND of a register value and the complement of an optionally-shifted register
value, and writes the result to the destination register. It can optionally update the condition flags based on the result.

T1

ARMv8-M

T1 variant

BIC<c>{<q>} {<Rdn>,} <Rdn>, <Rm> // Inside IT block
BICS{<q>} {<Rdn>,} <Rdn>, <Rm> // Outside IT block

Decode for this encoding

d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();
(shift_t, shift_n) = (SRType_LSL, 0);

T2

ARMv8-M Main Extension only

BIC, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && type == 11.

BIC{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

BIC, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && type == 11).

BIC<c>.W {<Rd>,} <Rn>, <Rm> // Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1
BIC{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

BICS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && imm2 == 00 && type == 11.

BICS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

BICS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && type == 11).

BICS.W {<Rd>,} <Rn>, <Rm> // Outside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1
BICS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

0 1 0 0 0 0 1 1 1 0 Rm Rdn
15 14 13 12 11 10 9 8 7 6 5 3 2 0

1 1 1 0 1 0 1 0 0 0 1 S Rn (0) imm3 Rd imm2 type Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-337
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Decode for all variants of this encoding

if !HaveMainExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rdn> Is the first general-purpose source register and the destination register, encoded in the "Rdn" field.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the
same as <Rn>.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in the "type" field. It can have
the following values:

LSL when type = 00

LSR when type = 01

ASR when type = 10

ROR when type = 11

<amount> Is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift> =
LSR or ASR) encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
 result = R[n] AND NOT(shifted);
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.
C2-338 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.20 BKPT

Breakpoint causes a DebugMonitor exception or a debug halt to occur depending on the configuration of the debug
support.

Note
 BKPT is an unconditional instruction and executes as such both inside and outside an IT instruction block.

T1

ARMv8-M

T1 variant

BKPT{<q>} {#}<imm>

Decode for this encoding

imm32 = ZeroExtend(imm8, 32);
// imm32 is for assembly/disassembly only and is ignored by hardware.

Assembler symbols

<q> See Standard assembler syntax fields on page C1-240. A BKPT instruction must be unconditional.

<imm> Is an 8-bit unsigned immediate, in the range 0 to 255, encoded in the "imm8" field. The PE ignores
this value, but a debugger might use it to store additional information about the breakpoint.

Operation

EncodingSpecificOperations();
BKPTInstrDebugEvent();

Exceptions

DebugMonitor.

1 0 1 1 1 1 1 0 imm8
15 14 13 12 11 10 9 8 7 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-339
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.21 BL

Branch with Link (immediate) calls a subroutine at a PC-relative address.

T1

ARMv8-M

T1 variant

BL{<c>}{<q>} <label>

Decode for this encoding

I1 = NOT(J1 EOR S); I2 = NOT(J2 EOR S); imm32 = SignExtend(S:I1:I2:imm10:imm11:'0', 32);
if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<label> The label of the instruction that is to be branched to. The assembler calculates the required value of
the offset from the PC value of the BL instruction to this label, then selects an encoding with imm32
set to that offset. Permitted offsets are even numbers in the range –16777216 to 16777214.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 next_instr_addr = PC;
 LR = next_instr_addr<31:1> : '1';
 BranchWritePC(PC + imm32);

Exceptions

None.

1 1 1 1 0 S imm10 1 1 J1 1 J2 imm11
15 14 13 12 11 10 9 0 15 14 13 12 11 10 0
C2-340 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.22 BLX, BLXNS

Branch with Link and Exchange calls a subroutine at an address, with the address and instruction set specified by a
register. Bit[0] complies with the ARM architecture interworking rules for switching between the A32 and T32
instruction sets. However, ARMv8-M only supports the T32 instruction set, so bit[0] must be 1. If bit[0] is 0 the PE
takes an INVSTATE UsageFault exception on the instruction at the target address.

Branch with Link and Exchange Non-secure calls a subroutine at an address specified by a register, and if bit[0] of
the target address is 0 then the instruction causes a transition from Secure to Non-secure state. This variant of the
instruction must only be used when the additional steps required to make such a transition safe have been taken.

BLXNS is UNDEFINED if executed in Non-secure state, and is only implemented if the Security Extensions have
been implemented.

See GVBB for further details of register and stack changes as a result of BLXNS causing a transition from Secure
to Non-secure state.

T1

ARMv8-M

BLX variant

Applies when NS == 0.

BLX{<c>}{<q>} <Rm>

BLXNS variant

Applies when NS == 1.

BLXNS{<c>}{<q>} <Rm>

Decode for all variants of this encoding

m = UInt(Rm); allowNonSecure = NS == '1';
if !IsSecure() && allowNonSecure then UNDEFINED;
if m == 15 then UNPREDICTABLE;
if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rm> Is the general-purpose register holding the address to be branched to, encoded in the "Rm" field. The
SP can be used, but this is deprecated.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();

 target = R[m];
 nextInstrAddr = PC - 2;
 nextInstrAddr = nextInstrAddr<31:1> : '1';

 if allowNonSecure && (target<0> == '0') then

0 1 0 0 0 1 1 1 1 Rm NS(0) (0)
15 14 13 12 11 10 9 8 7 6 3 2 1 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-341
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
 if !IsAligned(SP, 8) then UNPREDICTABLE;
 address = SP - 8;
 RETPSR_Type savedPSR = Zeros();
 savedPSR.Exception = IPSR.Exception;
 savedPSR.SFPA = CONTROL_S.SFPA;
 // Only the stack locations, not the store order, are architected
 spName = LookUpSP();
 mode = CurrentMode();
 exc = Stack(address, 0, spName, mode, nextInstrAddr);
 if exc.fault == NoFault then exc = Stack(address, 4, spName, mode, savedPSR);
 HandleException(exc);
 // Stack pointer update will raise a fault if limit violated
 SP = address;
 LR = 0xFEFFFFFF<31:0>;
 // If in handler mode, IPSR must be non-zero. To prevent revealing which
 // Secure handler is calling Non-secure code, IPSR is set to an invalid but
 // non-zero value (that is, the reset exception number).
 if mode == Mode_Handler then
 IPSR = 0x1<31:0>;
 else
 LR = nextInstrAddr;

 BLXWritePC(target, allowNonSecure);

Exceptions

BusFault, UsageFault, MemManage, and SecureFault.
C2-342 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.23 BX, BXNS

Branch and Exchange causes a branch to an address, with the address and instruction set specified by a register.
Bit[0] complies with the ARM architecture interworking rules for switching between the A32 and T32 instruction
sets. However, ARMv8-M only supports the T32 instruction set, so bit[0] must be 1. If bit[0] is 0 the PE takes an
INVSTATE UsageFault exception on the instruction at the target address.

Branch and Exchange Non-secure causes a branch to an address specified by a register. If bit[0] of the target address
is 0, and the target address is not FNC_RETURN or EXC_RETURN, then the instruction causes a transition from
Secure to Non-secure state. This variant of the instruction must only be used when the additional steps required to
make such a transition safe have been taken.

BX can also be used for an exception return.

BXNS is UNDEFINED if executed in Non-secure state, and is only implemented if the Security Extensions have
been implemented.

T1

ARMv8-M

BX variant

Applies when NS == 0.

BX{<c>}{<q>} <Rm>

BXNS variant

Applies when NS == 1.

BXNS{<c>}{<q>} <Rm>

Decode for all variants of this encoding

m = UInt(Rm); allowNonSecure = NS == '1';
if !IsSecure() && allowNonSecure then UNDEFINED;
if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rm> Is the general-purpose register holding the address to be branched to, encoded in the "Rm" field. The
SP can be used, but this is deprecated. The PC can be used, but:

• BX PC causes a UsageFault on the following instruction, because bit<0> of the PC is 0.

• BXNS PC in Non-secure state is UNDEFINED.

• BXNS PC in Secure state causes a transition to Non-secure state, but if the next instruction
is in Secure memory then fetching it causes a SecureFault.

0 1 0 0 0 1 1 1 0 Rm NS(0) (0)
15 14 13 12 11 10 9 8 7 6 3 2 1 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-343
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 exc = BXWritePC(R[m], allowNonSecure);
 HandleException(exc);

Exceptions

UsageFault, BusFault, MemManage, and SecureFault.
C2-344 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.24 CBNZ, CBZ

Compare and Branch on Nonzero and Compare and Branch on Zero compare the value in a register with zero, and
conditionally branch forward a constant value. They do not affect the condition flags.

T1

ARMv8-M

CBNZ variant

Applies when op == 1.

CBNZ{<q>} <Rn>, <label>

CBZ variant

Applies when op == 0.

CBZ{<q>} <Rn>, <label>

Decode for all variants of this encoding

n = UInt(Rn); imm32 = ZeroExtend(i:imm5:'0', 32); nonzero = (op == '1');
if InITBlock() then UNPREDICTABLE;

Assembler symbols

<q> See Standard assembler syntax fields on page C1-240.

<Rn> Is the general-purpose register to be tested, encoded in the "Rn" field.

<label> Is the program label to be conditionally branched to. Its offset from the PC, a multiple of 2 in the
range 0 to 126, is encoded as "i:imm5" times 4.

Operation

EncodingSpecificOperations();
if nonzero != IsZero(R[n]) then
 BranchWritePC(PC + imm32);

Exceptions

None.

1 0 1 1 op 0 i 1 imm5 Rn
15 14 13 12 11 10 9 8 7 3 2 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-345
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.25 CDP, CDP2

Coprocessor Data Processing tells a coprocessor to perform an operation.

If no coprocessor can execute the instruction, a UsageFault exception is generated.

T1

ARMv8-M Main Extension only

T1 variant

CDP{<c>}{<q>} <coproc>, {#}<opc1>, <CRd>, <CRn>, <CRm> {, {#}<opc2>}

Decode for this encoding

if coproc IN '101x' then SEE "Floating-point";
if !HaveMainExt() then UNDEFINED;
cp = UInt(coproc);

T2

ARMv8-M Main Extension only

T2 variant

CDP2{<c>}{<q>} <coproc>, {#}<opc1>, <CRd>, <CRn>, <CRm> {, {#}<opc2>}

Decode for this encoding

if coproc IN '101x' then SEE "Floating-point";
if !HaveMainExt() then UNDEFINED;
cp = UInt(coproc);

Notes for all encodings

Floating-point: Floating-point data-processing on page C2-294.

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<coproc> Is the name of the coprocessor, encoded in the "coproc" field. The valid coprocessor names are p0
to p7, p10, and p11.

<opc1> Is a coprocessor-specific opcode, in the range 0 to 15, encoded in the "opc1" field.

<CRd> Is the destination coprocessor register, encoded in the "CRd" field.

<CRn> Is the coprocessor register that contains the first operand, encoded in the "CRn" field.

1 1 1 0 1 1 1 0 opc1 CRn CRd !=101x opc2 0 CRm
15 14 13 12 11 10 9 8 7 4 3 0 15 12 11 8 7 5 4 3 0

coproc

1 1 1 1 1 1 1 0 opc1 CRn CRd !=101x opc2 0 CRm
15 14 13 12 11 10 9 8 7 4 3 0 15 12 11 8 7 5 4 3 0

coproc
C2-346 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
<CRm> Is the coprocessor register that contains the second operand, encoded in the "CRm" field.

<opc2> Is a coprocessor-specific opcode in the range 0 to 7, defaulting to 0 and encoded in the "opc2" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 ExecuteCPCheck(cp);
 if !Coproc_Accepted(cp, ThisInstr()) then
 GenerateCoprocessorException();
 else
 Coproc_InternalOperation(cp, ThisInstr());

Exceptions

UsageFault.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-347
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.26 CLREX

Clear Exclusive clears the local record of the executing PE that an address has had a request for an exclusive access.

T1

ARMv8-M

T1 variant

CLREX{<c>}{<q>}

Decode for this encoding

// No additional decoding required

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 ClearExclusiveLocal(ProcessorID());

Exceptions

None.

1 1 1 1 0 0 1 1 1 0 1 1 (1) (1) (1) (1) 1 0 (0) 0 (1) (1) (1) (1) 0 0 1 0 (1) (1) (1) (1)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
C2-348 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.27 CLZ

Count Leading Zeros returns the number of binary zero bits before the first binary one bit in a value.

T1

ARMv8-M Main Extension only

T1 variant

CLZ{<c>}{<q>} <Rd>, <Rm>

Decode for this encoding

if !HaveMainExt() then UNDEFINED;
if !Consistent(Rm) then UNPREDICTABLE;
d = UInt(Rd); m = UInt(Rm);
if d IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the general-purpose source register, encoded in the "Rm" field. Its number must be encoded twice.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 result = CountLeadingZeroBits(R[m]);
 R[d] = result<31:0>;

Exceptions

None.

1 1 1 1 1 0 1 0 1 0 1 1 Rm 1 1 1 1 Rd 1 0 0 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-349
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.28 CMN (immediate)

Compare Negative (immediate) adds a register value and an immediate value. It updates the condition flags based
on the result, and discards the result.

T1

ARMv8-M Main Extension only

T1 variant

CMN{<c>}{<q>} <Rn>, #<const>

Decode for this encoding

if !HaveMainExt() then UNDEFINED;
n = UInt(Rn); imm32 = T32ExpandImm(i:imm3:imm8);
if n == 15 then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rn> Is the general-purpose source register, encoded in the "Rn" field.

<const> An immediate value. See Modified immediate constants on page C1-249 for the range of values.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 (result, carry, overflow) = AddWithCarry(R[n], imm32, '0');
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 APSR.V = overflow;

Exceptions

None.

1 1 1 1 0 i 0 1 0 0 0 1 Rn 0 imm3 1 1 1 1 imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 10 9 8 7 0
C2-350 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.29 CMN (register)

Compare Negative (register) adds a register value and an optionally-shifted register value. It updates the condition
flags based on the result, and discards the result.

T1

ARMv8-M

T1 variant

CMN{<c>}{<q>} <Rn>, <Rm>

Decode for this encoding

n = UInt(Rn); m = UInt(Rm);
(shift_t, shift_n) = (SRType_LSL, 0);

T2

ARMv8-M Main Extension only

Rotate right with extend variant

Applies when imm3 == 000 && imm2 == 00 && type == 11.

CMN{<c>}{<q>} <Rn>, <Rm>, RRX

Shift or rotate by value variant

Applies when !(imm3 == 000 && imm2 == 00 && type == 11).

CMN{<c>}.W <Rn>, <Rm> // <Rn>, <Rm> can be represented in T1
CMN{<c>}{<q>} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

if !HaveMainExt() then UNDEFINED;
n = UInt(Rn); m = UInt(Rm);
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
if n == 15 || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

0 1 0 0 0 0 1 0 1 1 Rm Rn
15 14 13 12 11 10 9 8 7 6 5 3 2 0

1 1 1 0 1 0 1 1 0 0 0 1 Rn (0) imm3 1 1 1 1 imm2 type Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-351
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
<shift> Is the type of shift to be applied to the second source register, encoded in the "type" field. It can have
the following values:

LSL when type = 00

LSR when type = 01

ASR when type = 10

ROR when type = 11

<amount> Is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift> =
LSR or ASR) encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 shifted = Shift(R[m], shift_t, shift_n, APSR.C);
 (result, carry, overflow) = AddWithCarry(R[n], shifted, '0');
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 APSR.V = overflow;

Exceptions

None.
C2-352 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.30 CMP (immediate)

Compare (immediate) subtracts an immediate value from a register value. It updates the condition flags based on
the result, and discards the result.

T1

ARMv8-M

T1 variant

CMP{<c>}{<q>} <Rn>, #<imm8>

Decode for this encoding

n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);

T2

ARMv8-M Main Extension only

T2 variant

CMP{<c>}.W <Rn>, #<const> // <Rn>, <const> can be represented in T1
CMP{<c>}{<q>} <Rn>, #<const>

Decode for this encoding

if !HaveMainExt() then UNDEFINED;
n = UInt(Rn); imm32 = T32ExpandImm(i:imm3:imm8);
if n == 15 then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rn> For encoding T1: is a general-purpose source register, encoded in the "Rn" field.

For encoding T2: is the general-purpose source register, encoded in the "Rn" field.

<imm8> Is a 8-bit unsigned immediate, in the range 0 to 255, encoded in the "imm8" field.

<const> An immediate value. See Modified immediate constants on page C1-249 for the range of values.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 (result, carry, overflow) = AddWithCarry(R[n], NOT(imm32), '1');
 APSR.N = result<31>;

0 0 1 0 1 Rn imm8
15 14 13 12 11 10 8 7 0

1 1 1 1 0 i 0 1 1 0 1 1 Rn 0 imm3 1 1 1 1 imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 10 9 8 7 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-353
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 APSR.V = overflow;

Exceptions

None.
C2-354 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.31 CMP (register)

Compare (register) subtracts an optionally-shifted register value from a register value. It updates the condition flags
based on the result, and discards the result.

T1

ARMv8-M

T1 variant

CMP{<c>}{<q>} <Rn>, <Rm> // <Rn> and <Rm> both from R0-R7

Decode for this encoding

n = UInt(Rn); m = UInt(Rm);
(shift_t, shift_n) = (SRType_LSL, 0);

T2

ARMv8-M

T2 variant

CMP{<c>}{<q>} <Rn>, <Rm> // <Rn> and <Rm> not both from R0-R7

Decode for this encoding

n = UInt(N:Rn); m = UInt(Rm);
(shift_t, shift_n) = (SRType_LSL, 0);
if n < 8 && m < 8 then UNPREDICTABLE;
if n == 15 || m == 15 then UNPREDICTABLE;

T3

ARMv8-M Main Extension only

Rotate right with extend variant

Applies when imm3 == 000 && imm2 == 00 && type == 11.

CMP{<c>}{<q>} <Rn>, <Rm>, RRX

Shift or rotate by value variant

Applies when !(imm3 == 000 && imm2 == 00 && type == 11).

0 1 0 0 0 0 1 0 1 0 Rm Rn
15 14 13 12 11 10 9 8 7 6 5 3 2 0

0 1 0 0 0 1 0 1 N Rm Rn
15 14 13 12 11 10 9 8 7 6 3 2 0

1 1 1 0 1 0 1 1 1 0 1 1 Rn (0) imm3 1 1 1 1 imm2 type Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-355
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
CMP{<c>}.W <Rn>, <Rm> // <Rn>, <Rm> can be represented in T1 or T2
CMP{<c>}{<q>} <Rn>, <Rm>, <shift> #<amount>

Decode for all variants of this encoding

if !HaveMainExt() then UNDEFINED;
n = UInt(Rn); m = UInt(Rm);
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
if n == 15 || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rn> For encoding T1 and T3: is the first general-purpose source register, encoded in the "Rn" field.

For encoding T2: is the first general-purpose source register, encoded in the "N:Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in the "type" field. It can have
the following values:

LSL when type = 00

LSR when type = 01

ASR when type = 10

ROR when type = 11

<amount> Is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift> =
LSR or ASR) encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 shifted = Shift(R[m], shift_t, shift_n, APSR.C);
 (result, carry, overflow) = AddWithCarry(R[n], NOT(shifted), '1');
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 APSR.V = overflow;

Exceptions

None.
C2-356 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.32 CPS

Change PE State. The instruction modifies the PRIMASK and FAULTMASK special-purpose register values.

T1

ARMv8-M

CPSID variant

Applies when im == 1.

CPSID{<q>} <iflags>

CPSIE variant

Applies when im == 0.

CPSIE{<q>} <iflags>

Decode for all variants of this encoding

enable = (im == '0'); disable = (im == '1');
if InITBlock() then UNPREDICTABLE;
if (I == '0' && F =='0') then UNPREDICTABLE;
affectPRI = (I == '1'); affectFAULT = (F == '1');
if !HaveMainExt() then
 if (I == '0') then UNPREDICTABLE;
 if (F == '1') then UNPREDICTABLE;

Assembler symbols

<q> See Standard assembler syntax fields on page C1-240.

<iflags> Is a sequence of one or more of the following, specifying which interrupt mask bits are affected:

i PRIMASK. When set to 1, raises the execution priority to 0. This is a 1-bit register, that
can be updated only by privileged software.

f FAULTMASK. When set to 1, raises the execution priority to -1, the same priority as
HardFault. This is a 1-bit register, that can be updated only by privileged software. The
register clears to 0 on return from any exception other than NMI.

Operation

EncodingSpecificOperations();
if CurrentModeIsPrivileged() then
 if enable then
 if affectPRI then
 PRIMASK.PM = '0';
 if affectFAULT then
 FAULTMASK.FM = '0';
 if disable then
 if affectPRI then
 PRIMASK.PM = '1';
 if affectFAULT && ExecutionPriority() > -1 then
 FAULTMASK.FM = '1';

1 0 1 1 0 1 1 0 0 1 1 im (0) (0) I F
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-357
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Exceptions

None.
C2-358 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.33 DBG

Debug Hint provides a hint to debug trace support and related debug systems. See debug architecture documentation
for what use (if any) is made of this instruction.

DBG is a NOP-compatible hint. For more information about NOP-compatible hints, see NOP-compatible hint
instructions on page C1-251.

T1

ARMv8-M Main Extension only

T1 variant

DBG{<c>}{<q>} #<option>

Decode for this encoding

if !HaveMainExt() then UNDEFINED;
// Any decoding of 'option' is specified by the debug system

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<option> Is a 4-bit unsigned immediate, in the range 0 to 15, encoded in the "option" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 Hint_Debug(option);

Exceptions

None.

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 1 1 1 1 option
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-359
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.34 DMB

Data Memory Barrier acts as a memory barrier. It ensures that all explicit memory accesses that appear in program
order before the DMB instruction are observed before any explicit memory accesses that appear in program order after
the DMB instruction. It does not affect the ordering of any other instructions executing on the PE.

T1

ARMv8-M

T1 variant

DMB{<c>}{<q>} {<option>}

Decode for this encoding

// No additional decoding required

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<option> Specifies an optional limitation on the barrier operation. Values are:

SY Full system barrier operation, encoded as option = 0b1111. Can be omitted.

 All other encodings of option are reserved. The corresponding instructions execute as full system
barrier operations, but must not be relied upon by software.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 DataMemoryBarrier(option);

Exceptions

None.

1 1 1 1 0 0 1 1 1 0 1 1 (1) (1) (1) (1) 1 0 (0) 0 (1) (1) (1) (1) 0 1 0 1 option
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 0
C2-360 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.35 DSB

Data Synchronization Barrier acts as a special kind of memory barrier. No instruction in program order after this
instruction can execute until this instruction completes. This instruction completes only when both:

• Any explicit memory access made before this instruction is complete.

• The side-effects of any SCS access that performs a context-altering operation are visible.

T1

ARMv8-M

T1 variant

DSB{<c>}{<q>} {<option>}

Decode for this encoding

// No additional decoding required

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<option> Specifies an optional limitation on the barrier operation. Values are:

SY Full system barrier operation, encoded as option = 0b1111. Can be omitted.

 All other encodings of option are reserved. The corresponding instructions execute as full system
barrier operations, but must not be relied upon by software.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 DataSynchronizationBarrier(option);

Exceptions

None.

1 1 1 1 0 0 1 1 1 0 1 1 (1) (1) (1) (1) 1 0 (0) 0 (1) (1) (1) (1) 0 1 0 0 option
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-361
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.36 EOR (immediate)

Exclusive OR (immediate) performs a bitwise Exclusive OR of a register value and an immediate value, and writes
the result to the destination register. It can optionally update the condition flags based on the result.

T1

ARMv8-M Main Extension only

EOR variant

Applies when S == 0.

EOR{<c>}{<q>} {<Rd>,} <Rn>, #<const>

EORS variant

Applies when S == 1 && Rd != 1111.

EORS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for all variants of this encoding

if Rd == '1111' && S == '1' then SEE "TEQ (immediate)";
if !HaveMainExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); setflags = (S == '1');
(imm32, carry) = T32ExpandImm_C(i:imm3:imm8, APSR.C);
if d == 13 || (d == 15 && S == '0') || n IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the
same as <Rn>.

<Rn> Is the general-purpose source register, encoded in the "Rn" field.

<const> An immediate value. See Modified immediate constants on page C1-249 for the range of values.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 result = R[n] EOR imm32;
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.

1 1 1 1 0 i 0 0 1 0 0 S Rn 0 imm3 Rd imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 0
C2-362 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.37 EOR (register)

Exclusive OR (register) performs a bitwise Exclusive OR of a register value and an optionally-shifted register value,
and writes the result to the destination register. It can optionally update the condition flags based on the result.

T1

ARMv8-M

T1 variant

EOR<c>{<q>} {<Rdn>,} <Rdn>, <Rm> // Inside IT block
EORS{<q>} {<Rdn>,} <Rdn>, <Rm> // Outside IT block

Decode for this encoding

d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();
(shift_t, shift_n) = (SRType_LSL, 0);

T2

ARMv8-M Main Extension only

EOR, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && type == 11.

EOR{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

EOR, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && type == 11).

EOR<c>.W {<Rd>,} <Rn>, <Rm> // Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1
EOR{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

EORS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && Rd != 1111 && imm2 == 00 && type == 11.

EORS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

EORS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && type == 11) && Rd != 1111.

EORS.W {<Rd>,} <Rn>, <Rm> // Outside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1
EORS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

0 1 0 0 0 0 0 0 0 1 Rm Rdn
15 14 13 12 11 10 9 8 7 6 5 3 2 0

1 1 1 0 1 0 1 0 1 0 0 S Rn (0) imm3 Rd imm2 type Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-363
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Decode for all variants of this encoding

if Rd == '1111' && S == '1' then SEE "TEQ (register)";
if !HaveMainExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
if d == 13 || (d == 15 && S == '0') || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rdn> Is the first general-purpose source register and the destination register, encoded in the "Rdn" field.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the
same as <Rn>.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in the "type" field. It can have
the following values:

LSL when type = 00

LSR when type = 01

ASR when type = 10

ROR when type = 11

<amount> Is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift> =
LSR or ASR) encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
 result = R[n] EOR shifted;
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.
C2-364 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.38 FLDMDBX, FLDMIAX

FLDMX (Decrement Before, Increment After) loads multiple extension registers from consecutive memory
locations using an address from a general-purpose register.

ARM deprecates use of FLDMDBX and FLDMIAX, except for disassembly purposes, and reassembly of
disassembled code.

T1

ARMv8-M Floating-point Extension only

Decrement Before variant

Applies when P == 1 && U == 0 && W == 1.

FLDMDBX{<c>}{<q>} <Rn>{!}, <dreglist>

Increment After variant

Applies when P == 0 && U == 1.

FLDMIAX{<c>}{<q>} <Rn>{!}, <dreglist>

Decode for all variants of this encoding

if P == '0' && U == '0' && W == '0' then SEE "Related encodings";
if P == '1' && W == '0' then SEE VLDR;
if P == U && W == '1' then UNDEFINED;
if !HaveFPExt() then UNDEFINED;
// Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
single_regs = FALSE; add = (U == '1'); wback = (W == '1');
d = UInt(D:Vd); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
regs = UInt(imm8) DIV 2;
if n == 15 then UNPREDICTABLE;
if regs == 0 || regs > 16 || (d+regs) > 32 then UNPREDICTABLE;
if VFPSmallRegisterBank() && (d+regs) > 16 then UNPREDICTABLE;

Notes for all encodings

Related encodings: Floating-point load/store and 64-bit register moves on page C2-292.

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

! Specifies base register writeback. Encoded in the "W" field as 1 if present, otherwise 0.

<dreglist> Is the list of consecutively numbered 64-bit floating-point registers to be transferred. The first
register in the list is encoded in "D:Vd", and "imm8" is set to twice the number of registers in the
list plus one. The list must contain at least one register, all registers must be in the range D0-D15,
and must not contain more than 16 registers.

1 1 1 0 1 1 0 P U D W 1 Rn Vd 1 0 1 1 imm8<7:1> 1
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 1 0

imm8<0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-365
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 ExecuteFPCheck();
 address = if add then R[n] else R[n]-imm32;
 regval = if add then R[n]+imm32 else R[n]-imm32;

 // Determine if the stack pointer limit should be checked
 if n == 13 && wback then
 (limit, applylimit) = LookUpSPLim(LookUpSP());
 else
 applylimit = FALSE;

 // Memory operation only performed if limit not violated
 if !applylimit || (UInt(regval) >= UInt(limit)) then
 for r = 0 to regs-1
 if single_regs then
 S[d+r] = MemA[address,4];
 address = address+4;
 else
 word1 = MemA[address,4]; word2 = MemA[address+4,4];
 address = address+8;
 // Combine the word-aligned words in the correct order for
 // current endianness.
 D[d+r] = if BigEndian() then word1:word2 else word2:word1;

 // If the stack pointer is being updated update a fault will be raised if
 // the limit is violated
 if wback then RSPCheck[n] = regval;

Exceptions

UsageFault, BusFault, MemManage, and SecureFault.
C2-366 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.39 FSTMDBX, FSTMIAX

FSTMX (Decrement Before, Increment After) stores multiple extension registers to consecutive memory locations
using an address from a general-purpose register.

ARM deprecates use of FSTMDBX and FSTMIAX, except for disassembly purposes, and reassembly of
disassembled code.

T1

ARMv8-M Floating-point Extension only

Decrement Before variant

Applies when P == 1 && U == 0 && W == 1.

FSTMDBX{<c>}{<q>} <Rn>{!}, <dreglist>

Increment After variant

Applies when P == 0 && U == 1.

FSTMIAX{<c>}{<q>} <Rn>{!}, <dreglist>

Decode for all variants of this encoding

if P == '0' && U == '0' && W == '0' then SEE "Related encodings";
if P == '1' && W == '0' then SEE VSTR;
if P == U && W == '1' then UNDEFINED;
if !HaveFPExt() then UNDEFINED;
// Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
single_regs = FALSE; add = (U == '1'); wback = (W == '1');
d = UInt(D:Vd); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
regs = UInt(imm8) DIV 2;
if n == 15 then UNPREDICTABLE;
if regs == 0 || regs > 16 || (d+regs) > 32 then UNPREDICTABLE;
if VFPSmallRegisterBank() && (d+regs) > 16 then UNPREDICTABLE;

Notes for all encodings

Related encodings: Floating-point load/store and 64-bit register moves on page C2-292.

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

! Specifies base register writeback. Encoded in the "W" field as 1 if present, otherwise 0.

<dreglist> Is the list of consecutively numbered 64-bit floating-point registers to be transferred. The first
register in the list is encoded in "D:Vd", and "imm8" is set to twice the number of registers in the
list plus one. The list must contain at least one register, all registers must be in the range D0-D15,
and must not contain more than 16 registers.

1 1 1 0 1 1 0 P U D W 0 Rn Vd 1 0 1 1 imm8<7:1> 1
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 1 0

imm8<0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-367
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 ExecuteFPCheck();
 address = if add then R[n] else R[n]-imm32;
 regval = if add then R[n]+imm32 else R[n]-imm32;

 // Determine if the stack pointer limit should be checked
 if n == 13 && wback then
 (limit, applylimit) = LookUpSPLim(LookUpSP());
 else
 applylimit = FALSE;

 // Memory operation only performed if limit not violated
 if !applylimit || (UInt(regval) >= UInt(limit)) then
 for r = 0 to regs-1
 if single_regs then
 MemA[address,4] = S[d+r];
 address = address+4;
 else
 // Store as two word-aligned words in the correct order for current endianness.
 MemA[address,4] = if BigEndian() then D[d+r]<63:32> else D[d+r]<31:0>;
 MemA[address+4,4] = if BigEndian() then D[d+r]<31:0> else D[d+r]<63:32>;
 address = address+8;

 // If the stack pointer is being updated update a fault will be raised if
 // the limit is violated
 if wback then RSPCheck[n] = regval;

Exceptions

UsageFault, BusFault, MemManage, and SecureFault.
C2-368 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.40 ISB

Instruction Synchronization Barrier flushes the pipeline in the PE and is a context synchronization event. For more
information, see Instruction Synchronization Barrier on page B6-125.

T1

ARMv8-M

T1 variant

ISB{<c>}{<q>} {<option>}

Decode for this encoding

// No additional decoding required

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<option> Specifies an optional limitation on the barrier operation. Values are:

SY Full system barrier operation, encoded as option = 0b1111. Can be omitted.

 All other encodings of option are reserved. The corresponding instructions execute as full system
barrier operations, but must not be relied upon by software.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 InstructionSynchronizationBarrier(option);

Exceptions

None.

1 1 1 1 0 0 1 1 1 0 1 1 (1) (1) (1) (1) 1 0 (0) 0 (1) (1) (1) (1) 0 1 1 0 option
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-369
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.41 IT

If Then makes up to four following instructions (the IT block) conditional. The conditions for the instructions in the
IT block can be the same, or some of them can be the inverse of others.

IT does not affect the condition code flags. Branches to any instruction in the IT block are not permitted, apart from
those performed by exception returns.

16-bit instructions in the IT block, other than CMP, CMN, and TST, do not set the condition code flags. The AL condition
can be specified to get this changed behavior without conditional execution.

T1

ARMv8-M Main Extension only

T1 variant

IT{<x>{<y>{<z>}}}{<q>} <cond>

Decode for this encoding

if mask == '0000' then SEE "Related encodings";
if !HaveMainExt() then UNDEFINED;
if firstcond == '1111' || (firstcond == '1110' && BitCount(mask) != 1) then UNPREDICTABLE;
if InITBlock() then UNPREDICTABLE;

Notes for all encodings

Related encodings: Hints on page C2-278.

Assembler symbols

<x> The condition for the second instruction in the IT block. If omitted, the "mask" field is set to 0b1000.
If present it is encoded in the "mask[3]" field:

T firstcond[0]

E NOT firstcond[0]

<y> The condition for the third instruction in the IT block. If omitted and <x> is present, the "mask[2:0]"
field is set to 0b100. If <y> is present it is encoded in the "mask[2]" field:

T firstcond[0]

E NOT firstcond[0]

<z> The condition for the fourth instruction in the IT block. If omitted and <y> is present, the "mask[1:0]"
field is set to 0b10. If <z> is present, the "mask[0]" field is set to 1, and it is encoded in the "mask[1]"
field:

T firstcond[0]

E NOT firstcond[0]

<q> See Standard assembler syntax fields on page C1-240.

1 0 1 1 1 1 1 1 firstcond !=0000
15 14 13 12 11 10 9 8 7 4 3 0

mask
C2-370 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
<cond> The condition for the first instruction in the IT block, encoded in the "firstcond" field. See
Conditional execution on page C1-241 for the range of conditions available, and the encodings.

Operation

EncodingSpecificOperations();
ITSTATE.IT<7:0> = firstcond:mask;

Exceptions

None.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-371
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.42 LDA

Load-Acquire Word loads a word from memory and writes it to a register. The instruction also has memory ordering
semantics.

T1

ARMv8-M

T1 variant

LDA{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding

t = UInt(Rt); n = UInt(Rn);
if t IN {13,15} || n == 15 then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];
 R[t] = MemO[address, 4];

Exceptions

BusFault, UsageFault, MemManage, and SecureFault.

1 1 1 0 1 0 0 0 1 1 0 1 Rn Rt (1) (1) (1) (1) 1 0 1 0 (1) (1) (1) (1)
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 2 1 0
C2-372 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.43 LDAB

Load-Acquire Byte loads a byte from memory, zero-extends it to form a 32-bit word and writes it to a register. The
instruction also has memory ordering semantics.

T1

ARMv8-M

T1 variant

LDAB{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding

t = UInt(Rt); n = UInt(Rn);
if t IN {13,15} || n == 15 then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];
 R[t] = ZeroExtend(MemO[address, 1], 32);

Exceptions

BusFault, UsageFault, MemManage, and SecureFault.

1 1 1 0 1 0 0 0 1 1 0 1 Rn Rt (1) (1) (1) (1) 1 0 0 0 (1) (1) (1) (1)
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-373
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.44 LDAEX

Load-Acquire Exclusive Word loads a word from memory, writes it to a register, and:

• If the address has the Shareable memory attribute, marks the physical address as exclusive access for the
executing PE in a global monitor.

• Causes the executing PE to indicate an active exclusive access in the local monitor. The instruction also has
memory ordering semantics.

T1

ARMv8-M

T1 variant

LDAEX{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding

t = UInt(Rt); n = UInt(Rn);
if t IN {13,15} || n == 15 then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];
 SetExclusiveMonitors(address, 4);
 R[t] = MemO[address, 4];

Exceptions

MemManage, SecureFault, BusFault, and UsageFault.

1 1 1 0 1 0 0 0 1 1 0 1 Rn Rt (1) (1) (1) (1) 1 1 1 0 (1) (1) (1) (1)
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 2 1 0
C2-374 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.45 LDAEXB

Load-Acquire Exclusive Byte loads a byte from memory, zero-extends it to form a 32-bit word, writes it to a register,
and:

• If the address has the Shareable memory attribute, marks the physical address as exclusive access for the
executing PE in a global monitor.

• Causes the executing PE to indicate an active exclusive access in the local monitor. The instruction also has
memory ordering semantics.

T1

ARMv8-M

T1 variant

LDAEXB{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding

t = UInt(Rt); n = UInt(Rn);
if t IN {13,15} || n == 15 then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];
 SetExclusiveMonitors(address, 1);
 R[t] = ZeroExtend(MemO[address, 1], 32);

Exceptions

MemManage, SecureFault, BusFault, and UsageFault.

1 1 1 0 1 0 0 0 1 1 0 1 Rn Rt (1) (1) (1) (1) 1 1 0 0 (1) (1) (1) (1)
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-375
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.46 LDAEXH

Load-Acquire Exclusive Halfword loads a halfword from memory, zero-extends it to form a 32-bit word, writes it
to a register, and:

• If the address has the Shareable memory attribute, marks the physical address as exclusive access for the
executing PE in a global monitor.

• Causes the executing PE to indicate an active exclusive access in the local monitor. The instruction also has
memory ordering semantics.

T1

ARMv8-M

T1 variant

LDAEXH{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding

t = UInt(Rt); n = UInt(Rn);
if t IN {13,15} || n == 15 then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];
 SetExclusiveMonitors(address, 2);
 R[t] = ZeroExtend(MemO[address, 2], 32);

Exceptions

MemManage, SecureFault, BusFault, and UsageFault.

1 1 1 0 1 0 0 0 1 1 0 1 Rn Rt (1) (1) (1) (1) 1 1 0 1 (1) (1) (1) (1)
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 2 1 0
C2-376 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.47 LDAH

Load-Acquire Halfword loads a halfword from memory, zero-extends it to form a 32-bit word and writes it to a
register. The instruction also has memory ordering semantics.

T1

ARMv8-M

T1 variant

LDAH{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding

t = UInt(Rt); n = UInt(Rn);
if t IN {13,15} || n == 15 then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];
 R[t] = ZeroExtend(MemO[address, 2], 32);

Exceptions

BusFault, UsageFault, MemManage, and SecureFault.

1 1 1 0 1 0 0 0 1 1 0 1 Rn Rt (1) (1) (1) (1) 1 0 0 1 (1) (1) (1) (1)
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-377
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.48 LDC, LDC2 (immediate)

Load Coprocessor loads memory data from a sequence of consecutive memory addresses to a coprocessor. If no
coprocessor can execute the instruction, an UsageFault exception is generated.

This is a generic coprocessor instruction. Some of the fields have no functionality defined by the architecture and
are free for use by the coprocessor instruction set designer. These fields are the D bit, the CRd field, and in the
Unindexed addressing mode only, the imm8 field.

T1

ARMv8-M Main Extension only

Offset variant

Applies when P == 1 && W == 0.

LDC{L}{<c>}{<q>} <coproc>, <CRd>, [<Rn>{, #{+/-}<imm>}]

Post-indexed variant

Applies when P == 0 && W == 1.

LDC{L}{<c>}{<q>} <coproc>, <CRd>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

LDC{L}{<c>}{<q>} <coproc>, <CRd>, [<Rn>, #{+/-}<imm>]!

Unindexed variant

Applies when P == 0 && U == 1 && W == 0.

LDC{L}{<c>}{<q>} <coproc>, <CRd>, [<Rn>], <option>

Decode for all variants of this encoding

if Rn == '1111' then SEE "LDC (literal)";
if P == '0' && U == '0' && D == '0' && W == '0' then UNDEFINED;
if P == '0' && U == '0' && D == '1' && W == '0' then SEE "MRRC, MRRC2";
if coproc IN '101x' then SEE "Floating-point";
if !HaveMainExt() then UNDEFINED;
n = UInt(Rn); cp = UInt(coproc); imm32 = ZeroExtend(imm8:'00', 32);
index = (P == '1'); add = (U == '1'); wback = (W == '1');

T2

ARMv8-M Main Extension only

Offset variant

Applies when P == 1 && W == 0.

1 1 1 0 1 1 0 P U D W 1 !=1111 CRd !=101x imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 0

Rn coproc

1 1 1 1 1 1 0 P U D W 1 !=1111 CRd !=101x imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 0

Rn coproc
C2-378 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
LDC2{L}{<c>}{<q>} <coproc>, <CRd>, [<Rn>{, #{+/-}<imm>}]

Post-indexed variant

Applies when P == 0 && W == 1.

LDC2{L}{<c>}{<q>} <coproc>, <CRd>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

LDC2{L}{<c>}{<q>} <coproc>, <CRd>, [<Rn>, #{+/-}<imm>]!

Unindexed variant

Applies when P == 0 && U == 1 && W == 0.

LDC2{L}{<c>}{<q>} <coproc>, <CRd>, [<Rn>], <option>

Decode for all variants of this encoding

if Rn == '1111' then SEE "LDC (literal)";
if P == '0' && U == '0' && D == '0' && W == '0' then UNDEFINED;
if P == '0' && U == '0' && D == '1' && W == '0' then SEE "MRRC, MRRC2";
if coproc IN '101x' then SEE "Floating-point";
if !HaveMainExt() then UNDEFINED;
n = UInt(Rn); cp = UInt(coproc); imm32 = ZeroExtend(imm8:'00', 32);
index = (P == '1'); add = (U == '1'); wback = (W == '1');

Notes for all encodings

Floating-point: Floating-point load/store on page C2-293.

Assembler symbols

L If specified, selects the D == 1 form of the encoding. If omitted, selects the D == 0 form.

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<coproc> Is the name of the coprocessor, encoded in the "coproc" field. The valid coprocessor names are p10,
p11, p14, and p15.

<CRd> Is the coprocessor register to be transferred, encoded in the "CRd" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field. If the PC is used, see LDC, LDC2
(literal).

<option> Is a coprocessor option, in the range 0 to 255 enclosed in { }, encoded in the "imm8" field.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

<imm> Is the immediate offset used for forming the address, a multiple of 4 in the range 0-1020, defaulting
to 0 and encoded in the "imm8" field, as <imm>/4.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-379
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 ExecuteCPCheck(cp);
 if !Coproc_Accepted(cp, ThisInstr()) then
 GenerateCoprocessorException();
 else
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];

 // Determine if the stack pointer limit check should be performed
 if wback && n == 13 then
 (limit, applylimit) = LookUpSPLim(LookUpSP());
 else
 applylimit = FALSE;

 // Memory operation only performed if limit not violated
 if !applylimit || (UInt(offset_addr) >= UInt(limit)) then
 repeat
 Coproc_SendLoadedWord(MemA[address,4], cp, ThisInstr());
 address = address + 4;
 until Coproc_DoneLoading(cp, ThisInstr());

 // If the stack pointer is being updated update a fault will be raised
 // if the limit is violated
 if wback then RSPCheck[n] = offset_addr;

Exceptions

UsageFault, BusFault, MemManage, and SecureFault.
C2-380 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.49 LDC, LDC2 (literal)

Load Coprocessor loads memory data from a sequence of consecutive memory addresses to a coprocessor. If no
coprocessor can execute the instruction, a UsageFault exception is generated.

This is a generic coprocessor instruction. The D bit and the CRd field have no functionality defined by the
architecture and are free for use by the coprocessor instruction set designer.

T1

ARMv8-M Main Extension only

T1 variant

Applies when !(P == 0 && U == 0 && W == 0).

LDC{L}{<c>}{<q>} <coproc>, <CRd>, <label>
LDC{L}{<c>}{<q>} <coproc>, <CRd>, [PC, #{+/-}<imm>]

Decode for this encoding

if P == '0' && U == '0' && D == '0' && W == '0' then UNDEFINED;
if P == '0' && U == '0' && D == '1' && W == '0' then SEE "MRRC, MRRC2";
if coproc IN '101x' then SEE "Floating-point";
if !HaveMainExt() then UNDEFINED;
index = (P == '1'); // Always TRUE in the T32 instruction set
add = (U == '1'); cp = UInt(coproc); imm32 = ZeroExtend(imm8:'00', 32);
if W == '1' || P == '0' then UNPREDICTABLE;

T2

ARMv8-M Main Extension only

T2 variant

Applies when !(P == 0 && U == 0 && W == 0).

LDC2{L}{<c>}{<q>} <coproc>, <CRd>, <label>
LDC2{L}{<c>}{<q>} <coproc>, <CRd>, [PC, #{+/-}<imm>]

Decode for this encoding

if P == '0' && U == '0' && D == '0' && W == '0' then UNDEFINED;
if P == '0' && U == '0' && D == '1' && W == '0' then SEE "MRRC, MRRC2";
if coproc IN '101x' then UNDEFINED;
if !HaveMainExt() then UNDEFINED;
index = (P == '1'); // Always TRUE in the T32 instruction set
add = (U == '1'); cp = UInt(coproc); imm32 = ZeroExtend(imm8:'00', 32);
if W == '1' || P == '0' then UNPREDICTABLE;

Notes for all encodings

Floating-point: Floating-point load/store on page C2-293.

1 1 1 0 1 1 0 P U D W 1 1 1 1 1 CRd !=101x imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 8 7 0

coproc

1 1 1 1 1 1 0 P U D W 1 1 1 1 1 CRd !=101x imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 8 7 0

coproc
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-381
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Assembler symbols

L If specified, selects the D == 1 form of the encoding. If omitted, selects the D == 0 form.

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<coproc> Is the name of the coprocessor, encoded in the "coproc" field. The valid coprocessor names are p10,
p11, p14, and p15.

<CRd> Is the coprocessor register to be transferred, encoded in the "CRd" field.

<label> The label of the literal data item that is to be loaded into <Rt>. The assembler calculates the required
value of the offset from the Align(PC, 4) value of the instruction to this label. Permitted values of
the offset are multiples of 4 in the range -1020 to 1020. If the offset is zero or positive, imm32 is equal
to the offset and add == TRUE (encoded as U == 1). If the offset is negative, imm32 is equal to minus
the offset and add == FALSE (encoded as U == 0).

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

<imm> Is the immediate offset used for forming the address, a multiple of 4 in the range 0-1020, defaulting
to 0 and encoded in the "imm8" field, as <imm>/4.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 ExecuteCPCheck(cp);
 if !Coproc_Accepted(cp, ThisInstr()) then
 GenerateCoprocessorException();
 else
 offset_addr = if add then (Align(PC,4) + imm32) else (Align(PC,4) - imm32);
 address = if index then offset_addr else Align(PC,4);
 repeat
 Coproc_SendLoadedWord(MemA[address,4], cp, ThisInstr()); address = address + 4;
 until Coproc_DoneLoading(cp, ThisInstr());

Exceptions

UsageFault, BusFault, MemManage, and SecureFault.
C2-382 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.50 LDM, LDMIA, LDMFD

Load Multiple loads multiple registers from consecutive memory locations using an address from a base register.
The sequential memory locations start at this address, and the address just above the last of those locations can
optionally be written back to the base register.

The registers loaded can include the PC. If they do, the word loaded for the PC is treated as a branch address, a
function return value, or an exception return value. Bit[0] of the address in the PC complies with the ARM
architecture interworking rules for switching between the A32 and T32 instruction sets. However, ARMv8-M only
supports the T32 instruction set, so bit[0] must be 1. If bit[0] of the target address is 0, and the target address is not
FNC_RETURN or EXC_RETURN, the PE takes an INVSTATE UsageFault exception on the instruction at the
target address.

This instruction is used by the alias POP. The alias is always the preferred disassembly.

T1

ARMv8-M

T1 variant

LDM{IA}{<c>}{<q>} <Rn>{!}, <registers> // Preferred syntax
LDMFD{<c>}{<q>} <Rn>{!}, <registers> // Alternate syntax, Full Descending stack

Decode for this encoding

n = UInt(Rn); registers = '00000000':register_list; wback = (registers<n> == '0');
if BitCount(registers) < 1 then UNPREDICTABLE;

T2

ARMv8-M Main Extension only

T2 variant

LDM{IA}{<c>}.W <Rn>{!}, <registers> // Preferred syntax, if <Rn>, '!' and <registers> can be represented
in T1
LDMFD{<c>}.W <Rn>{!}, <registers> // Alternate syntax, Full Descending stack, if <Rn>, '!' and
<registers> can be represented in T1
LDM{IA}{<c>}{<q>} <Rn>{!}, <registers> // Preferred syntax
LDMFD{<c>}{<q>} <Rn>{!}, <registers> // Alternate syntax, Full Descending stack

Decode for this encoding

if !HaveMainExt() then UNDEFINED;
n = UInt(Rn); registers = P:M:'0':register_list; wback = (W == '1');
if n == 15 || BitCount(registers) < 2 || (P == '1' && M == '1') then UNPREDICTABLE;
if registers<15> == '1' && InITBlock() && !LastInITBlock() then UNPREDICTABLE;
if wback && registers<n> == '1' then UNPREDICTABLE;

1 1 0 0 1 Rn register_list
15 14 13 12 11 10 8 7 0

1 1 1 0 1 0 0 0 1 0 W 1 Rn P M (0) register_list
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-383
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
T3

ARMv8-M

T3 variant

LDM{<c>}{<q>} SP!, <registers>

Decode for this encoding

n = 13; wback = TRUE;
registers = P:'0000000':register_list;
if BitCount(registers) < 1 then UNPREDICTABLE;
if registers<15> == '1' && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Assembler symbols

IA Is an optional suffix for the Increment After form.

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

! For encoding T1: the address adjusted by the size of the data loaded is written back to the base
register. It is omitted if <Rn> is included in <registers>, otherwise it must be present.

For encoding T2: the address adjusted by the size of the data loaded is written back to the base
register. If specified, it is encoded in the "W" field as 1, otherwise this field defaults to 0.

<registers> For encoding T1: is a list of one or more registers to be loaded, separated by commas and surrounded
by { and }. The registers in the list must be in the range R0-R7, encoded in the "register_list" field.

For encoding T2: is a list of one or more registers to be loaded, separated by commas and surrounded
by { and }. The registers in the list must be in the range R0-R12, encoded in the "register_list" field,
and can optionally contain one of the LR or the PC. If the LR is in the list, the "M" field is set to 1,
otherwise it defaults to 0. If the PC is in the list, the "P" field is set to 1, otherwise it defaults to 0.
If the PC is in the list:

• The LR must not be in the list.

• The instruction must be either outside any IT block, or the last instruction in an IT block.

For encoding T3: is a list of one or more registers to be loaded, separated by commas and surrounded
by { and }. The registers in the list must be in the range R0-R7, encoded in the "register_list" field,
and can optionally include the PC. If the PC is in the list, the "P" field is set to 1, otherwise this field
defaults to 0. If the PC is in the list, the instruction must be either outside any IT block, or the last
instruction in an IT block.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];
 if n == 13 then
 (limit, applylimit) = LookUpSPLim(LookUpSP());
 else
 applylimit = FALSE;

1 0 1 1 1 1 0 P register_list
15 14 13 12 11 10 9 8 7 0
C2-384 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions

 for i = 0 to 14
 // If R[n] is the SP, memory operation only performed if limit not violated
 if registers<i> == '1' && (!applylimit || (UInt(address) >= UInt(limit))) then
 if i != n then
 R[i] = MemA[address,4];
 else
 newBaseVal = MemA[address,4];
 address = address + 4;
 if registers<15> == '1' && (!applylimit || (UInt(address) >= UInt(limit))) then
 newPCVal = MemA[address,4];

 // If the register list contains the register that holds the base address it
 // must be updated after all memory reads have been performed. This prevents
 // the base address being overwritten if one of the memory reads generates a
 // fault.
 if registers<n> == '1' then
 wback = TRUE;
 else
 newBaseVal = R[n] + 4*BitCount(registers);
 // If the PC is in the register list update that now, which may raise a fault
 // Likewise if R[n] is the SP writing back may raise a fault due to SP limit violation
 if registers<15> == '1' then
 LoadWritePC(newPCVal, n, newBaseVal, wback, FALSE);
 elsif wback then
 RSPCheck[n] = newBaseVal;

Exceptions

BusFault, UsageFault, MemManage, and SecureFault.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-385
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.51 LDMDB, LDMEA

Load Multiple Decrement Before (Load Multiple Empty Ascending) loads multiple registers from sequential
memory locations using an address from a base register. The sequential memory locations end just below this
address, and the address of the first of those locations can optionally be written back to the base register.

The registers loaded can include the PC. If they do, the word loaded for the PC is treated as a branch address or an
exception return value. Bit[0] complies with the ARM architecture interworking rules for switching between the
A32 and T32 instruction sets. However, ARMv8-M only supports the T32 instruction set, so bit[0] must be 1. If
bit[0] is 0 the PE takes an INVSTATE UsageFault exception on the instruction at the target address.

T1

ARMv8-M Main Extension only

T1 variant

LDMDB{<c>}{<q>} <Rn>{!}, <registers> // Preferred syntax
LDMEA{<c>}{<q>} <Rn>{!}, <registers> // Alternate syntax, Empty Ascending stack

Decode for this encoding

if !HaveMainExt() then UNDEFINED;
n = UInt(Rn); registers = P:M:'0':register_list; wback = (W == '1');
if n == 15 || BitCount(registers) < 2 || (P == '1' && M == '1') then UNPREDICTABLE;
if registers<15> == '1' && InITBlock() && !LastInITBlock() then UNPREDICTABLE;
if wback && registers<n> == '1' then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

! The address adjusted by the size of the data loaded is written back to the base register. If specified,
it is encoded in the "W" field as 1, otherwise this field defaults to 0.

<registers> Is a list of one or more registers to be loaded, separated by commas and surrounded by { and }. The
registers in the list must be in the range R0-R12, encoded in the "register_list" field, and can
optionally contain one of the LR or the PC. If the LR is in the list, the "M" field is set to 1, otherwise
it defaults to 0. If the PC is in the list, the "P" field is set to 1, otherwise it defaults to 0. If the PC is
in the list:

• The LR must not be in the list.

• The instruction must be either outside any IT block, or the last instruction in an IT block.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n] - 4*BitCount(registers);

 // Determine if the stack pointer limit should be checked
 if n == 13 && wback && registers<n> == '0' then

1 1 1 0 1 0 0 1 0 0 W 1 Rn P M (0) register_list
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 0
C2-386 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
 (limit, applylimit) = LookUpSPLim(LookUpSP());
 doOperation = (!applylimit || (UInt(address) >= UInt(limit)));
 else
 doOperation = TRUE;

 for i = 0 to 15
 // Memory operation only performed if limit not violated
 if registers<i> == '1' && doOperation then
 data = MemA[address,4];
 address = address + 4;
 if i == 15 then
 newPCVal = data;
 elsif i == n then
 newBaseVal = data;
 else
 R[i] = data;

 // If the register list contains the register that holds the base address it
 // must be updated after all memory reads have been performed. This prevents
 // the base address being overwritten if one of the memory reads generates a
 // fault.
 if registers<n> == '1' then
 wback = TRUE;
 else
 newBaseVal = R[n] - 4*BitCount(registers);
 // If the PC is in the register list update that now, which may raise a fault
 if registers<15> == '1' then
 LoadWritePC(newPCVal, n, newBaseVal, wback, TRUE);
 elsif wback then
 RSPCheck[n] = newBaseVal;

Exceptions

BusFault, UsageFault, MemManage, and SecureFault.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-387
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.52 LDR (immediate)

Load Register (immediate) calculates an address from a base register value and an immediate offset, loads a word
from memory, and writes it to a register. It can use offset, post-indexed, or pre-indexed addressing.

The register loaded can be the PC. If it is, the word loaded for the PC is treated as a branch address or an exception
return value. Bit[0] complies with the ARM architecture interworking rules for switching between the A32 and T32
instruction sets. However, ARMv8-M only supports the T32 instruction set, so bit[0] must be 1. If bit[0] is 0 the PE
takes an INVSTATE UsageFault exception on the instruction at the target address.

This instruction is used by the alias POP. See Alias conditions on page C2-389 for details of when each alias is
preferred.

T1

ARMv8-M

T1 variant

LDR{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding

t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm5:'00', 32);
index = TRUE; add = TRUE; wback = FALSE;

T2

ARMv8-M

T2 variant

LDR{<c>}{<q>} <Rt>, [SP{, #{+}<imm>}]

Decode for this encoding

t = UInt(Rt); n = 13; imm32 = ZeroExtend(imm8:'00', 32);
index = TRUE; add = TRUE; wback = FALSE;

T3

ARMv8-M Main Extension only

T3 variant

LDR{<c>}.W <Rt>, [<Rn> {, #{+}<imm>}] // <Rt>, <Rn>, <imm> can be represented in T1 or T2
LDR{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

0 1 1 0 1 imm5 Rn Rt
15 14 13 12 11 10 6 5 3 2 0

1 0 0 1 1 Rt imm8
15 14 13 12 11 10 8 7 0

1 1 1 1 1 0 0 0 1 1 0 1 !=1111 Rt imm12
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 0

Rn
C2-388 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Decode for this encoding

if Rn == '1111' then SEE "LDR (literal)";
if !HaveMainExt() then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32); index = TRUE; add = TRUE;
wback = FALSE; if t == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

T4

ARMv8-M Main Extension only

Offset variant

Applies when P == 1 && U == 0 && W == 0.

LDR{<c>}{<q>} <Rt>, [<Rn> {, #-<imm>}]

Post-indexed variant

Applies when P == 0 && W == 1.

LDR{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

LDR{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

Decode for all variants of this encoding

if Rn == '1111' then SEE "LDR (literal)";
if P == '1' && U == '1' && W == '0' then SEE LDRT;
if P == '0' && W == '0' then UNDEFINED;
if !HaveMainExt() then UNDEFINED;
t = UInt(Rt); n = UInt(Rn);
imm32 = ZeroExtend(imm8, 32); index = (P == '1'); add = (U == '1'); wback = (W == '1');
if (wback && n == t) || (t == 15 && InITBlock() && !LastInITBlock()) then UNPREDICTABLE;

Alias conditions

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rt> For encoding T1 and T2: is the general-purpose register to be transferred, encoded in the "Rt" field.

For encoding T3: is the general-purpose register to be transferred, encoded in the "Rt" field. The SP
can be used. The PC can be used, provided the instruction is either outside an IT block or the last
instruction of an IT block. If the PC is used, the instruction branches to the address (data) loaded to
the PC.

Alias is preferred when

POP Rn == '1101' && U == '1' && imm8 == '00000100'

1 1 1 1 1 0 0 0 0 1 0 1 !=1111 Rt 1 P U W imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-389
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
For encoding T4: is the general-purpose register to be transferred, encoded in the "Rt" field. The PC
can be used, provided the instruction is either outside an IT block or the last instruction of an IT
block. If the PC is used, the instruction branches to the address (data) loaded to the PC.

<Rn> For encoding T1: is the general-purpose base register, encoded in the "Rn" field.

For encoding T3 and T4: is the general-purpose base register, encoded in the "Rn" field. For PC use
see LDR (literal).

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

+ Specifies the offset is added to the base register.

<imm> For the post-indexed or pre-indexed variant: is a 8-bit unsigned immediate byte offset, in the range
0 to 255, encoded in the "imm8" field.

For encoding T1: is the optional positive unsigned immediate byte offset, a multiple of 4 in the range
0 to 124, defaulting to 0 and encoded in the "imm5" field as <imm>/4.

For encoding T2: is the optional positive unsigned immediate byte offset, a multiple of 4, in the
range 0 to 1020, defaulting to 0 and encoded in the "imm8" field as <imm>/4.

For encoding T3: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095,
defaulting to 0 and encoded in the "imm12" field.

For encoding T4: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255,
defaulting to 0 and encoded in the "imm8" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];

 // Determine if the stack pointer limit should be checked
 if n == 13 && wback then
 (limit, applylimit) = LookUpSPLim(LookUpSP());
 else
 applylimit = FALSE;
 // Memory operation only performed if limit not violated
 if !applylimit || (UInt(offset_addr) >= UInt(limit)) then
 data = MemU[address,4];

 // If the stack pointer is being updated update a fault will be raised if
 // the limit is violated
 if t == 15 then
 if address<1:0> == '00' then
 LoadWritePC(data, n, offset_addr, wback, TRUE);
 else
 UNPREDICTABLE;
 else
 if wback then RSPCheck[n] = offset_addr;
 R[t] = data;

Exceptions

BusFault, UsageFault, MemManage, and SecureFault.
C2-390 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.53 LDR (literal)

Load Register (literal) calculates an address from the PC value and an immediate offset, loads a word from memory,
and writes it to a register.

The register loaded can be the PC. If it is, the word loaded for the PC is treated as a branch address or an exception
return value. Bit[0] complies with the ARM architecture interworking rules for switching between the A32 and T32
instruction sets. However, ARMv8-M only supports the T32 instruction set, so bit[0] must be 1. If bit[0] is 0 the PE
takes an INVSTATE UsageFault exception on the instruction at the target address.

T1

ARMv8-M

T1 variant

LDR{<c>}{<q>} <Rt>, <label> // Normal form

Decode for this encoding

t = UInt(Rt); imm32 = ZeroExtend(imm8:'00', 32); add = TRUE;

T2

ARMv8-M Main Extension only

T2 variant

LDR{<c>}.W <Rt>, <label> // Preferred syntax, and <Rt>, <label> can be represented in T1
LDR{<c>}{<q>} <Rt>, <label> // Preferred syntax
LDR{<c>}{<q>} <Rt>, [PC, #{+/-}<imm>] // Alternative syntax

Decode for this encoding

if !HaveMainExt() then UNDEFINED;
t = UInt(Rt); imm32 = ZeroExtend(imm12, 32); add = (U == '1');
if t == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rt> For encoding T1: is the general-purpose register to be transferred, encoded in the "Rt" field.

For encoding T2: is the general-purpose register to be transferred, encoded in the "Rt" field. The SP
can be used. The PC can be used, provided the instruction is either outside an IT block or the last
instruction of an IT block. If the PC is used, the instruction branches to the address (data) loaded to
the PC.

0 1 0 0 1 Rt imm8
15 14 13 12 11 10 8 7 0

1 1 1 1 1 0 0 0 U 1 0 1 1 1 1 1 Rt imm12
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-391
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
<label> For encoding T1: the label of the literal data item that is to be loaded into <Rt>. The assembler
calculates the required value of the offset from the Align(PC, 4) value of the instruction to this label.
Permitted values of the offset are Multiples of four in the range 0 to 1020.

For encoding T2: the label of the literal data item that is to be loaded into <Rt>. The assembler
calculates the required value of the offset from the Align(PC, 4) value of the instruction to this label.
Permitted values of the offset are -4095 to 4095. If the offset is zero or positive, imm32 is equal to the
offset and add == TRUE, encoded as U == 1. If the offset is negative, imm32 is equal to minus the offset
and add == FALSE, encoded as U == 0.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

<imm> Is a 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded in the "imm12" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 base = Align(PC,4);
 address = if add then (base + imm32) else (base - imm32);
 data = MemU[address,4];
 if t == 15 then
 if address<1:0> == '00' then
 LoadWritePC(data, 0, Zeros(32), FALSE, FALSE);
 else
 UNPREDICTABLE;
 else
 R[t] = data;

Exceptions

BusFault, UsageFault, MemManage, and SecureFault.
C2-392 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.54 LDR (register)

Load Register (register) calculates an address from a base register value and an offset register value, loads a word
from memory, and writes it to a register. The offset register value can be shifted left by 0, 1, 2, or 3 bits.

The register loaded can be the PC. If it is, the word loaded for the PC is treated as a branch address or an exception
return value. Bit[0] complies with the ARM architecture interworking rules for switching between the A32 and T32
instruction sets. However, ARMv8-M only supports the T32 instruction set, so bit[0] must be 1. If bit[0] is 0 the PE
takes an INVSTATE UsageFault exception on the instruction at the target address.

T1

ARMv8-M

T1 variant

LDR{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>]

Decode for this encoding

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, 0);

T2

ARMv8-M Main Extension only

T2 variant

LDR{<c>}.W <Rt>, [<Rn>, {+}<Rm>] // <Rt>, <Rn>, <Rm> can be represented in T1
LDR{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>{, LSL #<imm>}]

Decode for this encoding

if Rn == '1111' then SEE "LDR (literal)";
if !HaveMainExt() then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, UInt(imm2));
if m IN {13,15} then UNPREDICTABLE;
if t == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rt> For encoding T1: is the general-purpose register to be transferred, encoded in the "Rt" field.

0 1 0 1 1 0 0 Rm Rn Rt
15 14 13 12 11 10 9 8 6 5 3 2 0

1 1 1 1 1 0 0 0 0 1 0 1 !=1111 Rt 0 0 0 0 0 0 imm2 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

Rn
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-393
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
For encoding T2: is the general-purpose register to be transferred, encoded in the "Rt" field. The SP
can be used. The PC can be used, provided the instruction is either outside an IT block or the last
instruction of an IT block. If the PC is used, the instruction branches to the address (data) loaded to
the PC.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+ Specifies the index register is added to the base register.

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

<imm> If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. <imm> is encoded
in imm2. If absent, no shift is specified and imm2 is encoded as 0b00.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 offset = Shift(R[m], shift_t, shift_n, APSR.C);
 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
 address = if index then offset_addr else R[n];

 // Determine if the stack pointer limit should be checked
 if n == 13 && wback then
 (limit, applylimit) = LookUpSPLim(LookUpSP());
 else
 applylimit = FALSE;
 // Memory operation only performed if limit not violated
 if !applylimit || (UInt(offset_addr) >= UInt(limit)) then
 data = MemU[address,4];

 // If the stack pointer is being updated update a fault will be raised if
 // the limit is violated
 if t == 15 then
 if address<1:0> == '00' then
 LoadWritePC(data, n, offset_addr, wback, TRUE);
 else
 UNPREDICTABLE;
 else
 if wback then RSPCheck[n] = offset_addr;
 R[t] = data;

Exceptions

BusFault, UsageFault, MemManage, and SecureFault.
C2-394 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.55 LDRB (immediate)

Load Register Byte (immediate) calculates an address from a base register value and an immediate offset, loads a
byte from memory, zero-extends it to form a 32-bit word, and writes it to a register. It can use offset, post-indexed,
or pre-indexed addressing.

T1

ARMv8-M

T1 variant

LDRB{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding

t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm5, 32);
index = TRUE; add = TRUE; wback = FALSE;

T2

ARMv8-M Main Extension only

T2 variant

LDRB{<c>}.W <Rt>, [<Rn> {, #{+}<imm>}] // <Rt>, <Rn>, <imm> can be represented in T1
LDRB{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding

if Rt == '1111' then SEE PLD;
if Rn == '1111' then SEE "LDRB (literal)";
if !HaveMainExt() then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
index = TRUE; add = TRUE; wback = FALSE;
if t == 13 then UNPREDICTABLE;

T3

ARMv8-M Main Extension only

Offset variant

Applies when Rt != 1111 && P == 1 && U == 0 && W == 0.

LDRB{<c>}{<q>} <Rt>, [<Rn> {, #-<imm>}]

0 1 1 1 1 imm5 Rn Rt
15 14 13 12 11 10 6 5 3 2 0

1 1 1 1 1 0 0 0 1 0 0 1 !=1111 !=1111 imm12
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 0

Rn Rt

1 1 1 1 1 0 0 0 0 0 0 1 !=1111 Rt 1 P U W imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-395
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Post-indexed variant

Applies when P == 0 && W == 1.

LDRB{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

LDRB{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

Decode for all variants of this encoding

if Rt == '1111' && P == '1' && U == '0' && W == '0' then SEE "PLD (immediate)";
if Rn == '1111' then SEE "LDRB (literal)";
if P == '1' && U == '1' && W == '0' then SEE LDRBT;
if P == '0' && W == '0' then UNDEFINED;
if !HaveMainExt() then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
index = (P == '1'); add = (U == '1'); wback = (W == '1');
if t == 13 || (wback && n == t) then UNPREDICTABLE;
if t == 15 && (P == '0' || U == '1' || W == '1') then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> For encoding T1: is the general-purpose base register, encoded in the "Rn" field.

For encoding T2 and T3: is the general-purpose base register, encoded in the "Rn" field. For PC use
see LDRB (literal).

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

+ Specifies the offset is added to the base register.

<imm> For the post-indexed or pre-indexed variant: is a 8-bit unsigned immediate byte offset, in the range
0 to 255, encoded in the "imm8" field.

For encoding T1: is an optional 5-bit unsigned immediate byte offset, in the range 0 to 31, defaulting
to 0 and encoded in the "imm5" field.

For encoding T2: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095,
defaulting to 0 and encoded in the "imm12" field.

For encoding T3: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255,
defaulting to 0 and encoded in the "imm8" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];

 // Determine if the stack pointer limit should be checked
 if n == 13 && wback then
 (limit, applylimit) = LookUpSPLim(LookUpSP());
C2-396 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
 else
 applylimit = FALSE;
 // Memory operation only performed if limit not violated
 if !applylimit || (UInt(offset_addr) >= UInt(limit)) then
 R[t] = ZeroExtend(MemU[address,1], 32);

 // If the stack pointer is being updated update a fault will be raised if
 // the limit is violated
 if wback then RSPCheck[n] = offset_addr;

Exceptions

BusFault, UsageFault, MemManage, and SecureFault.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-397
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.56 LDRB (literal)

Load Register Byte (literal) calculates an address from the PC value and an immediate offset, loads a byte from
memory, zero-extends it to form a 32-bit word, and writes it to a register.

T1

ARMv8-M Main Extension only

T1 variant

LDRB{<c>}{<q>} <Rt>, <label> // Preferred syntax
LDRB{<c>}{<q>} <Rt>, [PC, #{+/-}<imm>] // Alternative syntax

Decode for this encoding

if Rt == '1111' then SEE PLD;
if !HaveMainExt() then UNDEFINED;
t = UInt(Rt); imm32 = ZeroExtend(imm12, 32); add = (U == '1');
if t == 13 then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<label> The label of the literal data item that is to be loaded into <Rt>. The assembler calculates the required
value of the offset from the Align(PC, 4) value of the instruction to this label. Permitted values of
the offset are -4095 to 4095. If the offset is zero or positive, imm32 is equal to the offset and add ==
TRUE, encoded as U == 1. If the offset is negative, imm32 is equal to minus the offset and add == FALSE,
encoded as U == 0.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

<imm> Is a 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded in the "imm12" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 base = Align(PC,4);
 address = if add then (base + imm32) else (base - imm32);
 R[t] = ZeroExtend(MemU[address,1], 32);

Exceptions

BusFault, UsageFault, MemManage, and SecureFault.

1 1 1 1 1 0 0 0 U 0 0 1 1 1 1 1 !=1111 imm12
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 0

Rt
C2-398 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.57 LDRB (register)

Load Register Byte (register) calculates an address from a base register value and an offset register value, loads a
byte from memory, zero-extends it to form a 32-bit word, and writes it to a register. The offset register value can be
shifted left by 0, 1, 2, or 3 bits.

T1

ARMv8-M

T1 variant

LDRB{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>]

Decode for this encoding

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, 0);

T2

ARMv8-M Main Extension only

T2 variant

LDRB{<c>}.W <Rt>, [<Rn>, {+}<Rm>] // <Rt>, <Rn>, <Rm> can be represented in T1
LDRB{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>{, LSL #<imm>}]

Decode for this encoding

if Rt == '1111' then SEE PLD;
if Rn == '1111' then SEE "LDRB (literal)";
if !HaveMainExt() then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, UInt(imm2));
if t == 13 || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+ Specifies the index register is added to the base register.

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

0 1 0 1 1 1 0 Rm Rn Rt
15 14 13 12 11 10 9 8 6 5 3 2 0

1 1 1 1 1 0 0 0 0 0 0 1 !=1111 !=1111 0 0 0 0 0 0 imm2 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

Rn Rt
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-399
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
<imm> If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. <imm> is encoded
in imm2. If absent, no shift is specified and imm2 is encoded as 0b00.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 offset = Shift(R[m], shift_t, shift_n, APSR.C);
 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
 address = if index then offset_addr else R[n];
 R[t] = ZeroExtend(MemU[address,1],32);

Exceptions

BusFault, UsageFault, MemManage, and SecureFault.
C2-400 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.58 LDRBT

Load Register Byte Unprivileged calculates an address from a base register value and an immediate offset, loads a
byte from memory, zero-extends it to form a 32-bit word, and writes it to a register.

When privileged software uses an LDRBT instruction, the memory access is restricted as if the software was
unprivileged.

T1

ARMv8-M Main Extension only

T1 variant

LDRBT{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding

if Rn == '1111' then SEE "LDRB (literal)";
if !HaveMainExt() then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
register_form = FALSE; imm32 = ZeroExtend(imm8, 32);
if t IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+ Specifies the offset is added to the base register.

<imm> Is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 and
encoded in the "imm8" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n] + imm32;
 R[t] = ZeroExtend(MemU_unpriv[address,1],32);

Exceptions

UsageFault, BusFault, MemManage, and SecureFault.

1 1 1 1 1 0 0 0 0 0 0 1 !=1111 Rt 1 1 1 0 imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-401
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.59 LDRD (immediate)

Load Register Dual (immediate) calculates an address from a base register value and an immediate offset, loads two
words from memory, and writes them to two registers. It can use offset, post-indexed, or pre-indexed addressing.

T1

ARMv8-M Main Extension only

Offset variant

Applies when P == 1 && W == 0.

LDRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn> {, #{+/-}<imm>}]

Post-indexed variant

Applies when P == 0 && W == 1.

LDRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

LDRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>, #{+/-}<imm>]!

Decode for all variants of this encoding

if P == '0' && W == '0' then SEE "Related encodings";
if Rn == '1111' then SEE "LDRD (literal)";
if !HaveMainExt() then UNDEFINED;
t = UInt(Rt); t2 = UInt(Rt2); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
index = (P == '1'); add = (U == '1'); wback = (W == '1');
if wback && (n == t || n == t2) then UNPREDICTABLE;
if t IN {13,15} || t2 IN {13,15} || t == t2 then UNPREDICTABLE;

Notes for all encodings

Related encodings: Load/store (multiple, dual, exclusive, acquire-release), table branch on page C2-266.

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rt> Is the first general-purpose register to be transferred, encoded in the "Rt" field.

<Rt2> Is the second general-purpose register to be transferred, encoded in the "Rt2" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field. For PC use see LDRD (literal).

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

1 1 1 0 1 0 0 P U 1 W 1 !=1111 Rt Rt2 imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 0

Rn
C2-402 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
<imm> For the offset variant: is the optional unsigned immediate byte offset, a multiple of 4, in the range 0
to 1020, defaulting to 0 and encoded in the "imm8" field as <imm>/4.

For the post-indexed and pre-indexed variant: is the unsigned immediate byte offset, a multiple of
4, in the range 0 to 1020, encoded in the "imm8" field as <imm>/4.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];

 // Determine if the stack pointer limit should be checked
 if n == 13 && wback then
 (limit, applylimit) = LookUpSPLim(LookUpSP());
 else
 applylimit = FALSE;
 // Memory operation only performed if limit not violated
 if !applylimit || (UInt(offset_addr) >= UInt(limit)) then
 R[t] = MemA[address,4];
 R[t2] = MemA[address+4,4];

 // If the stack pointer is being updated update a fault will be raised if
 // the limit is violated
 if wback then RSPCheck[n] = offset_addr;

Exceptions

BusFault, UsageFault, MemManage, and SecureFault.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-403
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.60 LDRD (literal)

Load Register Dual (literal) calculates an address from the PC value and an immediate offset, loads two words from
memory, and writes them to two registers.

Note
 For the M profile, the PC value must be word-aligned, otherwise the behavior of the instruction is UNPREDICTABLE.

T1

ARMv8-M Main Extension only

T1 variant

LDRD{<c>}{<q>} <Rt>, <Rt2>, <label> // Normal form
LDRD{<c>}{<q>} <Rt>, <Rt2>, [PC, #{+/-}<imm>] // Alternative form

Decode for this encoding

if P == '0' && W == '0' then SEE "Related encodings";
if P == '1' && W == '1' && U == '0' then SEE SG;
if !HaveMainExt() then UNDEFINED;
t = UInt(Rt); t2 = UInt(Rt2);
imm32 = ZeroExtend(imm8:'00', 32); add = (U == '1');
if t IN {13,15} || t2 IN {13,15} || t == t2 then UNPREDICTABLE;
if W == '1' then UNPREDICTABLE;

Notes for all encodings

Related encodings: Load/store (multiple, dual, exclusive, acquire-release), table branch on page C2-266.

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rt> Is the first general-purpose register to be transferred, encoded in the "Rt" field.

<Rt2> Is the second general-purpose register to be transferred, encoded in the "Rt2" field.

<label> The label of the literal data item that is to be loaded into <Rt>. The assembler calculates the required
value of the offset from the Align(PC, 4) value of the instruction to this label. Permitted values of
the offset are multiples of 4 in the range -1020 to 1020. If the offset is zero or positive, imm32 is equal
to the offset and add == TRUE, encoded as U == 1. If the offset is negative, imm32 is equal to minus
the offset and add == FALSE, encoded as U == 0.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

<imm> Is the optional 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 and
encoded in the "imm8" field.

1 1 1 0 1 0 0 1 U 1 0 1 1 1 1 1 Rt Rt2 imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 8 7 0

P W
C2-404 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 if PC<1:0> != '00' then UNPREDICTABLE;
 address = if add then (PC + imm32) else (PC - imm32);
 R[t] = MemA[address,4];
 R[t2] = MemA[address+4,4];

Exceptions

BusFault, UsageFault, MemManage, and SecureFault.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-405
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.61 LDREX

Load Register Exclusive calculates an address from a base register value and an immediate offset, loads a word from
memory, writes it to a register, and:

• If the address has the Shareable memory attribute, marks the physical address as exclusive access for the
executing PE in a global monitor.

• Causes the executing PE to indicate an active exclusive access in the local monitor.

T1

ARMv8-M

T1 variant

LDREX{<c>}{<q>} <Rt>, [<Rn> {, #<imm>}]

Decode for this encoding

t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
if t IN {13,15} || n == 15 then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<imm> The immediate offset added to the value of <Rn> to calculate the address. <imm> can be omitted,
meaning an offset of 0. Values are multiples of 4 in the range 0-1020.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n] + imm32;
 SetExclusiveMonitors(address,4);
 R[t] = MemA[address,4];

Exceptions

MemManage, SecureFault, BusFault, and UsageFault.

1 1 1 0 1 0 0 0 0 1 0 1 Rn Rt (1) (1) (1) (1) imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0
C2-406 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.62 LDREXB

Load Register Exclusive Byte derives an address from a base register value, loads a byte from memory, zero-extends
it to form a 32-bit word, writes it to a register, and:

• If the address has the Shareable memory attribute, marks the physical address as exclusive access for the
executing PE in a global monitor.

• Causes the executing PE to indicate an active exclusive access in the local monitor.

T1

ARMv8-M

T1 variant

LDREXB{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding

t = UInt(Rt); n = UInt(Rn);
if t IN {13,15} || n == 15 then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];
 SetExclusiveMonitors(address,1);
 R[t] = ZeroExtend(MemA[address,1], 32);

Exceptions

MemManage, SecureFault, BusFault, and UsageFault.

1 1 1 0 1 0 0 0 1 1 0 1 Rn Rt (1) (1) (1) (1) 0 1 0 0 (1) (1) (1) (1)
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-407
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.63 LDREXH

Load Register Exclusive Halfword derives an address from a base register value, loads a halfword from memory,
zero-extends it to form a 32-bit word, writes it to a register, and:

• If the address has the Shareable memory attribute, marks the physical address as exclusive access for the
executing PE in a global monitor.

• Causes the executing PE to indicate an active exclusive access in the local monitor.

T1

ARMv8-M

T1 variant

LDREXH{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding

t = UInt(Rt); n = UInt(Rn);
if t IN {13,15} || n == 15 then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];
 SetExclusiveMonitors(address,2);
 R[t] = ZeroExtend(MemA[address,2], 32);

Exceptions

MemManage, SecureFault, BusFault, and UsageFault.

1 1 1 0 1 0 0 0 1 1 0 1 Rn Rt (1) (1) (1) (1) 0 1 0 1 (1) (1) (1) (1)
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 2 1 0
C2-408 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.64 LDRH (immediate)

Load Register Halfword (immediate) calculates an address from a base register value and an immediate offset, loads
a halfword from memory, zero-extends it to form a 32-bit word, and writes it to a register. It can use offset,
post-indexed, or pre-indexed addressing.

T1

ARMv8-M

T1 variant

LDRH{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding

t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm5:'0', 32);
index = TRUE; add = TRUE; wback = FALSE;

T2

ARMv8-M Main Extension only

T2 variant

LDRH{<c>}.W <Rt>, [<Rn> {, #{+}<imm>}] // <Rt>, <Rn>, <imm> can be represented in T1
LDRH{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding

if Rt == '1111' then SEE "PLD (immediate)";
if Rn == '1111' then SEE "LDRH (literal)";
if !HaveMainExt() then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
index = TRUE; add = TRUE; wback = FALSE;
if t == 13 then UNPREDICTABLE;

T3

ARMv8-M Main Extension only

Offset variant

Applies when Rt != 1111 && P == 1 && U == 0 && W == 0.

LDRH{<c>}{<q>} <Rt>, [<Rn> {, #-<imm>}]

1 0 0 0 1 imm5 Rn Rt
15 14 13 12 11 10 6 5 3 2 0

1 1 1 1 1 0 0 0 1 0 1 1 !=1111 !=1111 imm12
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 0

Rn Rt

1 1 1 1 1 0 0 0 0 0 1 1 !=1111 Rt 1 P U W imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-409
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Post-indexed variant

Applies when P == 0 && W == 1.

LDRH{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

LDRH{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

Decode for all variants of this encoding

if Rn == '1111' then SEE "LDRH (literal)";
if Rt == '1111' && P == '1' && U == '0' && W == '0' then SEE PLD;
if P == '1' && U == '1' && W == '0' then SEE LDRHT;
if P == '0' && W == '0' then UNDEFINED;
if !HaveMainExt() then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
index = (P == '1'); add = (U == '1'); wback = (W == '1');
if t == 13 || (t == 15 && W == '1') || (wback && n == t) then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> For encoding T1: is the general-purpose base register, encoded in the "Rn" field.

For encoding T2 and T3: is the general-purpose base register, encoded in the "Rn" field. For PC use
see LDRH (literal).

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

+ Specifies the offset is added to the base register.

<imm> For the post-indexed or pre-indexed variant: is a 8-bit unsigned immediate byte offset, in the range
0 to 255, encoded in the "imm8" field.

For encoding T1: is the optional positive unsigned immediate byte offset, a multiple of 2 in the range
0 to 62, defaulting to 0 and encoded in the "imm5" field as <imm>/2.

For encoding T2: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095,
defaulting to 0 and encoded in the "imm12" field.

For encoding T3: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255,
defaulting to 0 and encoded in the "imm8" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];

 // Determine if the stack pointer limit should be checked
 if n == 13 && wback then
 (limit, applylimit) = LookUpSPLim(LookUpSP());
 else
C2-410 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
 applylimit = FALSE;
 // Memory operation only performed if limit not violated
 if !applylimit || (UInt(offset_addr) >= UInt(limit)) then
 R[t] = ZeroExtend(MemU[address,2], 32);

 // If the stack pointer is being updated update a fault will be raised if
 // the limit is violated
 if wback then RSPCheck[n] = offset_addr;

Exceptions

BusFault, UsageFault, MemManage, and SecureFault.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-411
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.65 LDRH (literal)

Load Register Halfword (literal) calculates an address from the PC value and an immediate offset, loads a halfword
from memory, zero-extends it to form a 32-bit word, and writes it to a register.

T1

ARMv8-M Main Extension only

T1 variant

LDRH{<c>}{<q>} <Rt>, <label> // Preferred syntax
LDRH{<c>}{<q>} <Rt>, [PC, #{+/-}<imm>] // Alternative syntax

Decode for this encoding

if Rt == '1111' then SEE "PLD (literal)";
if !HaveMainExt() then UNDEFINED;
t = UInt(Rt); imm32 = ZeroExtend(imm12, 32); add = (U == '1');
if t == 13 then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<label> The label of the literal data item that is to be loaded into <Rt>. The assembler calculates the required
value of the offset from the Align(PC, 4) value of the instruction to this label. Permitted values of
the offset are -4095 to 4095. If the offset is zero or positive, imm32 is equal to the offset and add ==
TRUE, encoded as U == 1. If the offset is negative, imm32 is equal to minus the offset and add == FALSE,
encoded as U == 0.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

<imm> Is a 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded in the "imm12" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 base = Align(PC,4);
 address = if add then (base + imm32) else (base - imm32);
 data = MemU[address,2];
 R[t] = ZeroExtend(data, 32);

Exceptions

BusFault, UsageFault, MemManage, and SecureFault.

1 1 1 1 1 0 0 0 U 0 1 1 1 1 1 1 !=1111 imm12
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 0

Rt
C2-412 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.66 LDRH (register)

Load Register Halfword (register) calculates an address from a base register value and an offset register value, loads
a halfword from memory, zero-extends it to form a 32-bit word, and writes it to a register. The offset register value
can be shifted left by 0, 1, 2, or 3 bits.

T1

ARMv8-M

T1 variant

LDRH{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>]

Decode for this encoding

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, 0);

T2

ARMv8-M Main Extension only

T2 variant

LDRH{<c>}.W <Rt>, [<Rn>, {+}<Rm>] // <Rt>, <Rn>, <Rm> can be represented in T1
LDRH{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>{, LSL #<imm>}]

Decode for this encoding

if Rn == '1111' then SEE "LDRH (literal)";
if Rt == '1111' then SEE "PLDW (register)";
if !HaveMainExt() then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, UInt(imm2));
if t == 13 || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+ Specifies the index register is added to the base register.

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

0 1 0 1 1 0 1 Rm Rn Rt
15 14 13 12 11 10 9 8 6 5 3 2 0

1 1 1 1 1 0 0 0 0 0 1 1 !=1111 !=1111 0 0 0 0 0 0 imm2 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

Rn Rt
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-413
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
<imm> If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. <imm> is encoded
in imm2. If absent, no shift is specified and imm2 is encoded as 0b00.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 offset = Shift(R[m], shift_t, shift_n, APSR.C);
 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
 address = if index then offset_addr else R[n];
 data = MemU[address,2];
 if wback then R[n] = offset_addr;
 R[t] = ZeroExtend(data, 32);

Exceptions

BusFault, UsageFault, MemManage, and SecureFault.
C2-414 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.67 LDRHT

Load Register Halfword Unprivileged calculates an address from a base register value and an immediate offset,
loads a halfword from memory, zero-extends it to form a 32-bit word, and writes it to a register.

When privileged software uses an LDRHT instruction, the memory access is restricted as if the software was
unprivileged.

T1

ARMv8-M Main Extension only

T1 variant

LDRHT{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding

if Rn == '1111' then SEE "LDRH (literal)";
if !HaveMainExt() then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
register_form = FALSE; imm32 = ZeroExtend(imm8, 32);
if t IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+ Specifies the offset is added to the base register.

<imm> Is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 and
encoded in the "imm8" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n] + imm32;
 data = MemU_unpriv[address,2];
 R[t] = ZeroExtend(data, 32);

Exceptions

UsageFault, BusFault, MemManage, and SecureFault.

1 1 1 1 1 0 0 0 0 0 1 1 !=1111 Rt 1 1 1 0 imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-415
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.68 LDRSB (immediate)

Load Register Signed Byte (immediate) calculates an address from a base register value and an immediate offset,
loads a byte from memory, sign-extends it to form a 32-bit word, and writes it to a register. It can use offset,
post-indexed, or pre-indexed addressing.

T1

ARMv8-M Main Extension only

T1 variant

LDRSB{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding

if Rt == '1111' then SEE PLI;
if Rn == '1111' then SEE "LDRSB (literal)";
if !HaveMainExt() then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
index = TRUE; add = TRUE; wback = FALSE;
if t == 13 then UNPREDICTABLE;

T2

ARMv8-M Main Extension only

Offset variant

Applies when P == 1 && U == 0 && W == 0.

LDRSB{<c>}{<q>} <Rt>, [<Rn> {, #-<imm>}]

Post-indexed variant

Applies when P == 0 && W == 1.

LDRSB{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

LDRSB{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

Decode for all variants of this encoding

if Rt == '1111' && P == '1' && U == '0' && W == '0' then SEE PLI;
if Rn == '1111' then SEE "LDRSB (literal)";
if P == '1' && U == '1' && W == '0' then SEE LDRSBT;
if P == '0' && W == '0' then UNDEFINED;
if !HaveMainExt() then UNDEFINED;

1 1 1 1 1 0 0 1 1 0 0 1 !=1111 !=1111 imm12
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 0

Rn Rt

1 1 1 1 1 0 0 1 0 0 0 1 !=1111 Rt 1 P U W imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn
C2-416 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
index = (P == '1'); add = (U == '1'); wback = (W == '1');
if t == 13 || (t == 15 && W == '1') || (wback && n == t) then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field. For PC use see LDRSB (literal).

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

+ Specifies the offset is added to the base register.

<imm> For the post-indexed or pre-indexed variant: is a 8-bit unsigned immediate byte offset, in the range
0 to 255, encoded in the "imm8" field.

For encoding T1: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095,
defaulting to 0 and encoded in the "imm12" field.

For encoding T2: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255,
defaulting to 0 and encoded in the "imm8" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];

 // Determine if the stack pointer limit should be checked
 if n == 13 && wback then
 (limit, applylimit) = LookUpSPLim(LookUpSP());
 else
 applylimit = FALSE;
 // Memory operation only performed if limit not violated
 if !applylimit || (UInt(offset_addr) >= UInt(limit)) then
 R[t] = SignExtend(MemU[address,1], 32);

 // If the stack pointer is being updated update a fault will be raised if
 // the limit is violated
 if wback then RSPCheck[n] = offset_addr;

Exceptions

BusFault, UsageFault, MemManage, and SecureFault.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-417
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.69 LDRSB (literal)

Load Register Signed Byte (literal) calculates an address from the PC value and an immediate offset, loads a byte
from memory, sign-extends it to form a 32-bit word, and writes it to a register.

T1

ARMv8-M Main Extension only

T1 variant

LDRSB{<c>}{<q>} <Rt>, <label> // Preferred syntax
LDRSB{<c>}{<q>} <Rt>, [PC, #{+/-}<imm>] // Alternative syntax

Decode for this encoding

if Rt == '1111' then SEE PLI;
if !HaveMainExt() then UNDEFINED;
t = UInt(Rt); imm32 = ZeroExtend(imm12, 32); add = (U == '1');
if t == 13 then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<label> The label of the literal data item that is to be loaded into <Rt>. The assembler calculates the required
value of the offset from the Align(PC, 4) value of the instruction to this label. Permitted values of
the offset are -4095 to 4095. If the offset is zero or positive, imm32 is equal to the offset and add ==
TRUE, encoded as U == 1. If the offset is negative, imm32 is equal to minus the offset and add == FALSE,
encoded as U == 0.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

<imm> Is a 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded in the "imm12" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 base = Align(PC,4);
 address = if add then (base + imm32) else (base - imm32);
 R[t] = SignExtend(MemU[address,1], 32);

Exceptions

BusFault, UsageFault, MemManage, and SecureFault.

1 1 1 1 1 0 0 1 U 0 0 1 1 1 1 1 !=1111 imm12
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 0

Rt
C2-418 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.70 LDRSB (register)

Load Register Signed Byte (register) calculates an address from a base register value and an offset register value,
loads a byte from memory, sign-extends it to form a 32-bit word, and writes it to a register. The offset register value
can be shifted left by 0, 1, 2, or 3 bits.

T1

ARMv8-M

T1 variant

LDRSB{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>]

Decode for this encoding

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, 0);

T2

ARMv8-M Main Extension only

T2 variant

LDRSB{<c>}.W <Rt>, [<Rn>, {+}<Rm>] // <Rt>, <Rn>, <Rm> can be represented in T1
LDRSB{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>{, LSL #<imm>}]

Decode for this encoding

if Rt == '1111' then SEE PLI;
if Rn == '1111' then SEE "LDRSB (literal)";
if !HaveMainExt() then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, UInt(imm2));
if t == 13 || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+ Specifies the index register is added to the base register.

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

0 1 0 1 0 1 1 Rm Rn Rt
15 14 13 12 11 10 9 8 6 5 3 2 0

1 1 1 1 1 0 0 1 0 0 0 1 !=1111 !=1111 0 0 0 0 0 0 imm2 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

Rn Rt
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-419
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
<imm> If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. <imm> is encoded
in imm2. If absent, no shift is specified and imm2 is encoded as 0b00.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 offset = Shift(R[m], shift_t, shift_n, APSR.C);
 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
 address = if index then offset_addr else R[n];
 R[t] = SignExtend(MemU[address,1], 32);

Exceptions

BusFault, UsageFault, MemManage, and SecureFault.
C2-420 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.71 LDRSBT

Load Register Signed Byte Unprivileged calculates an address from a base register value and an immediate offset,
loads a byte from memory, sign-extends it to form a 32-bit word, and writes it to a register.

When privileged software uses an LDRSBT instruction, the memory access is restricted as if the software was
unprivileged.

T1

ARMv8-M Main Extension only

T1 variant

LDRSBT{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding

if Rn == '1111' then SEE "LDRSB (literal)";
if !HaveMainExt() then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
register_form = FALSE; imm32 = ZeroExtend(imm8, 32);
if t IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+ Specifies the offset is added to the base register.

<imm> Is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 and
encoded in the "imm8" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n] + imm32;
 R[t] = SignExtend(MemU_unpriv[address,1], 32);

Exceptions

UsageFault, BusFault, MemManage, and SecureFault.

1 1 1 1 1 0 0 1 0 0 0 1 !=1111 Rt 1 1 1 0 imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-421
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.72 LDRSH (immediate)

Load Register Signed Halfword (immediate) calculates an address from a base register value and an immediate
offset, loads a halfword from memory, sign-extends it to form a 32-bit word, and writes it to a register. It can use
offset, post-indexed, or pre-indexed addressing.

T1

ARMv8-M Main Extension only

T1 variant

LDRSH{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding

if Rn == '1111' then SEE "LDRSH (literal)";
if Rt == '1111' then SEE "Related instructions";
if !HaveMainExt() then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
index = TRUE; add = TRUE; wback = FALSE;
if t == 13 then UNPREDICTABLE;

T2

ARMv8-M Main Extension only

Offset variant

Applies when Rt != 1111 && P == 1 && U == 0 && W == 0.

LDRSH{<c>}{<q>} <Rt>, [<Rn> {, #-<imm>}]

Post-indexed variant

Applies when P == 0 && W == 1.

LDRSH{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

LDRSH{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

Decode for all variants of this encoding

if Rn == '1111' then SEE "LDRSH (literal)";
if Rt == '1111' && P == '1' && U == '0' && W == '0' then SEE "Related instructions";
if P == '1' && U == '1' && W == '0' then SEE LDRSHT;
if P == '0' && W == '0' then UNDEFINED;
if !HaveMainExt() then UNDEFINED;

1 1 1 1 1 0 0 1 1 0 1 1 !=1111 !=1111 imm12
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 0

Rn Rt

1 1 1 1 1 0 0 1 0 0 1 1 !=1111 Rt 1 P U W imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn
C2-422 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
index = (P == '1'); add = (U == '1'); wback = (W == '1');
if t == 13 || (t == 15 && W == '1') || (wback && n == t) then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field. For PC use see LDRSH (literal).

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

+ Specifies the offset is added to the base register.

<imm> For the post-indexed or pre-indexed variant: is a 8-bit unsigned immediate byte offset, in the range
0 to 255, encoded in the "imm8" field.

For encoding T1: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095,
defaulting to 0 and encoded in the "imm12" field.

For encoding T2: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255,
defaulting to 0 and encoded in the "imm8" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 // Determine if the stack pointer limit should be checked
 if n == 13 && wback then
 (limit, applylimit) = LookUpSPLim(LookUpSP());
 else
 applylimit = FALSE;
 // Memory operation only performed if limit not violated
 if !applylimit || (UInt(offset_addr) >= UInt(limit)) then
 R[t] = SignExtend(MemU[address,2], 32);

 // If the stack pointer is being updated update a fault will be raised if
 // the limit is violated
 if wback then RSPCheck[n] = offset_addr;

Exceptions

BusFault, UsageFault, MemManage, and SecureFault.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-423
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.73 LDRSH (literal)

Load Register Signed Halfword (literal) calculates an address from the PC value and an immediate offset, loads a
halfword from memory, sign-extends it to form a 32-bit word, and writes it to a register.

T1

ARMv8-M Main Extension only

T1 variant

LDRSH{<c>}{<q>} <Rt>, <label> // Preferred syntax
LDRSH{<c>}{<q>} <Rt>, [PC, #{+/-}<imm>] // Alternative syntax

Decode for this encoding

if Rt == '1111' then SEE "Related instructions";
if !HaveMainExt() then UNDEFINED;
t = UInt(Rt); imm32 = ZeroExtend(imm12, 32); add = (U == '1');
if t == 13 then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<label> The label of the literal data item that is to be loaded into <Rt>. The assembler calculates the required
value of the offset from the Align(PC, 4) value of the instruction to this label. Permitted values of
the offset are -4095 to 4095. If the offset is zero or positive, imm32 is equal to the offset and add ==
TRUE, encoded as U == 1. If the offset is negative, imm32 is equal to minus the offset and add == FALSE,
encoded as U == 0.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

<imm> Is a 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded in the "imm12" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 base = Align(PC,4);
 address = if add then (base + imm32) else (base - imm32);
 data = MemU[address,2];
 R[t] = SignExtend(data, 32);

Exceptions

BusFault, UsageFault, MemManage, and SecureFault.

1 1 1 1 1 0 0 1 U 0 1 1 1 1 1 1 !=1111 imm12
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 0

Rt
C2-424 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.74 LDRSH (register)

Load Register Signed Halfword (register) calculates an address from a base register value and an offset register
value, loads a halfword from memory, sign-extends it to form a 32-bit word, and writes it to a register. The offset
register value can be shifted left by 0, 1, 2, or 3 bits.

T1

ARMv8-M

T1 variant

LDRSH{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>]

Decode for this encoding

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, 0);

T2

ARMv8-M Main Extension only

T2 variant

LDRSH{<c>}.W <Rt>, [<Rn>, {+}<Rm>] // <Rt>, <Rn>, <Rm> can be represented in T1
LDRSH{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>{, LSL #<imm>}]

Decode for this encoding

if Rn == '1111' then SEE "LDRSH (literal)";
if Rt == '1111' then SEE "Related instructions";
if !HaveMainExt() then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, UInt(imm2));
if t == 13 || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+ Specifies the index register is added to the base register.

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

0 1 0 1 1 1 1 Rm Rn Rt
15 14 13 12 11 10 9 8 6 5 3 2 0

1 1 1 1 1 0 0 1 0 0 1 1 !=1111 !=1111 0 0 0 0 0 0 imm2 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

Rn Rt
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-425
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
<imm> If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. <imm> is encoded
in imm2. If absent, no shift is specified and imm2 is encoded as 0b00.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 offset = Shift(R[m], shift_t, shift_n, APSR.C);
 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
 address = if index then offset_addr else R[n];
 data = MemU[address,2];
 if wback then R[n] = offset_addr;
 R[t] = SignExtend(data, 32);

Exceptions

BusFault, UsageFault, MemManage, and SecureFault.
C2-426 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.75 LDRSHT

Load Register Signed Halfword Unprivileged calculates an address from a base register value and an immediate
offset, loads a halfword from memory, sign-extends it to form a 32-bit word, and writes it to a register.

When privileged software uses an LDRSHT instruction, the memory access is restricted as if the software was
unprivileged.

T1

ARMv8-M Main Extension only

T1 variant

LDRSHT{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding

if Rn == '1111' then SEE "LDRSH (literal)";
if !HaveMainExt() then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
register_form = FALSE; imm32 = ZeroExtend(imm8, 32);
if t IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+ Specifies the offset is added to the base register.

<imm> Is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 and
encoded in the "imm8" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n] + imm32;
 data = MemU_unpriv[address,2];
 R[t] = SignExtend(data, 32);

Exceptions

UsageFault, BusFault, MemManage, and SecureFault.

1 1 1 1 1 0 0 1 0 0 1 1 !=1111 Rt 1 1 1 0 imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-427
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.76 LDRT

Load Register Unprivileged calculates an address from a base register value and an immediate offset, loads a word
from memory, and writes it to a register.

When privileged software uses an LDRT instruction, the memory access is restricted as if the software was
unprivileged.

T1

ARMv8-M Main Extension only

T1 variant

LDRT{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding

if Rn == '1111' then SEE "LDR (literal)";
if !HaveMainExt() then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
register_form = FALSE; imm32 = ZeroExtend(imm8, 32);
if t IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+ Specifies the offset is added to the base register.

<imm> Is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 and
encoded in the "imm8" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n] + imm32;
 data = MemU_unpriv[address,4];
 R[t] = data;

Exceptions

UsageFault, BusFault, MemManage, and SecureFault.

1 1 1 1 1 0 0 0 0 1 0 1 !=1111 Rt 1 1 1 0 imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn
C2-428 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.77 LSL (immediate)

Logical Shift Left (immediate) shifts a register value left by an immediate number of bits, shifting in zeros, and
writes the result to the destination register.

This instruction is an alias of the MOV (register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV (register).

• The description of MOV (register) gives the operational pseudocode for this instruction.

T2

ARMv8-M Main Extension only

T2 variant

LSL<c>{<q>} {<Rd>,} <Rm>, #<imm> // Inside IT block

is equivalent to

MOV<c>{<q>} <Rd>, <Rm>, LSL #<imm>

and is the preferred disassembly when InITBlock().

T3

ARMv8-M Main Extension only

MOV, shift or rotate by value variant

LSL<c>.W {<Rd>,} <Rm>, #<imm> // Inside IT block, and <Rd>, <Rm>, <imm> can be represented in T2

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, LSL #<imm>

and is always the preferred disassembly.

LSL{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, LSL #<imm>

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

0 0 0 0 0 !=00000 Rm Rd
15 14 13 12 11 10 6 5 3 2 0

imm5

1 1 1 0 1 0 1 0 0 1 0 0 1 1 1 1 (0) imm3 Rd imm2 0 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 6 5 4 3 0

S

ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-429
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
<Rm> Is the general-purpose source register, encoded in the "Rm" field.

<imm> For encoding T2: is the shift amount, in the range 1 to 31, encoded in the "imm5" field.

For encoding T3: is the shift amount, in the range 1 to 31, encoded in the "imm3:imm2" field.

Operation for all encodings

The description of MOV (register) gives the operational pseudocode for this instruction.
C2-430 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.78 LSL (register)

Logical Shift Left (register) shifts a register value left by a variable number of bits, shifting in zeros, and writes the
result to the destination register. The variable number of bits is read from the bottom byte of a register.

This instruction is an alias of the MOV, MOVS (register-shifted register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted
register).

• The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this
instruction.

T1

ARMv8-M Main Extension only

Logical shift left variant

LSL<c>{<q>} {<Rdm>,} <Rdm>, <Rs> // Inside IT block

is equivalent to

MOV<c>{<q>} <Rdm>, <Rdm>, LSL <Rs>

and is the preferred disassembly when InITBlock().

T2

ARMv8-M Main Extension only

Not flag setting variant

LSL<c>.W {<Rd>,} <Rm>, <Rs> // Inside IT block, and <Rd>, <Rm>, <type>, <Rs> can be represented in T1

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, LSL <Rs>

and is always the preferred disassembly.

LSL{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, LSL <Rs>

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

0 1 0 0 0 0 0 0 1 0 Rs Rdm
15 14 13 12 11 10 9 6 5 3 2 0

op

1 1 1 1 1 0 1 0 0 0 0 0 Rm 1 1 1 1 Rd 0 0 0 0 Rs
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0

type S
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-431
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
<Rdm> Is the first general-purpose source register and the destination register, encoded in the "Rdm" field.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the first general-purpose source register, encoded in the "Rm" field.

<Rs> Is the second general-purpose source register holding a shift amount in its bottom 8 bits, encoded in
the "Rs" field.

Operation for all encodings

The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.
C2-432 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.79 LSLS (immediate)

Logical Shift Left, Setting flags (immediate) shifts a register value left by an immediate number of bits, shifting in
zeros, writes the result to the destination register, and updates the condition flags based on the result.

This instruction is an alias of the MOV (register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV (register).

• The description of MOV (register) gives the operational pseudocode for this instruction.

T2

ARMv8-M

T2 variant

LSLS{<q>} {<Rd>,} <Rm>, #<imm> // Outside IT block

is equivalent to

MOVS{<q>} <Rd>, <Rm>, LSL #<imm>

and is the preferred disassembly when !InITBlock().

T3

ARMv8-M Main Extension only

MOVS, shift or rotate by value variant

LSLS.W {<Rd>,} <Rm>, #<imm> // Outside IT block, and <Rd>, <Rm>, <imm> can be represented in T2

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, LSL #<imm>

and is always the preferred disassembly.

LSLS{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, LSL #<imm>

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

0 0 0 0 0 !=00000 Rm Rd
15 14 13 12 11 10 6 5 3 2 0

imm5

1 1 1 0 1 0 1 0 0 1 0 1 1 1 1 1 (0) imm3 Rd imm2 0 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 6 5 4 3 0

S

ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-433
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
<Rm> Is the general-purpose source register, encoded in the "Rm" field.

<imm> For encoding T2: is the shift amount, in the range 1 to 31, encoded in the "imm5" field.

For encoding T3: is the shift amount, in the range 1 to 31, encoded in the "imm3:imm2" field.

Operation for all encodings

The description of MOV (register) gives the operational pseudocode for this instruction.
C2-434 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.80 LSLS (register)

Logical Shift Left, Setting flags (register) shifts a register value left by a variable number of bits, shifting in zeros,
writes the result to the destination register, and updates the condition flags based on the result. The variable number
of bits is read from the bottom byte of a register.

This instruction is an alias of the MOV, MOVS (register-shifted register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted
register).

• The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this
instruction.

T1

ARMv8-M

Logical shift left variant

LSLS{<q>} {<Rdm>,} <Rdm>, <Rs> // Outside IT block

is equivalent to

MOVS{<q>} <Rdm>, <Rdm>, LSL <Rs>

and is the preferred disassembly when !InITBlock().

T2

ARMv8-M Main Extension only

Flag setting variant

LSLS.W {<Rd>,} <Rm>, <Rs> // Outside IT block, and <Rd>, <Rm>, <type>, <Rs> can be represented in T1

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, LSL <Rs>

and is always the preferred disassembly.

LSLS{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, LSL <Rs>

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

0 1 0 0 0 0 0 0 1 0 Rs Rdm
15 14 13 12 11 10 9 6 5 3 2 0

op

1 1 1 1 1 0 1 0 0 0 0 1 Rm 1 1 1 1 Rd 0 0 0 0 Rs
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0

type S
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-435
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
<q> See Standard assembler syntax fields on page C1-240.

<Rdm> Is the first general-purpose source register and the destination register, encoded in the "Rdm" field.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the first general-purpose source register, encoded in the "Rm" field.

<Rs> Is the second general-purpose source register holding a shift amount in its bottom 8 bits, encoded in
the "Rs" field.

Operation for all encodings

The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.
C2-436 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.81 LSR (immediate)

Logical Shift Right (immediate) shifts a register value right by an immediate number of bits, shifting in zeros, and
writes the result to the destination register.

This instruction is an alias of the MOV (register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV (register).

• The description of MOV (register) gives the operational pseudocode for this instruction.

T2

ARMv8-M Main Extension only

T2 variant

LSR<c>{<q>} {<Rd>,} <Rm>, #<imm> // Inside IT block

is equivalent to

MOV<c>{<q>} <Rd>, <Rm>, LSR #<imm>

and is the preferred disassembly when InITBlock().

T3

ARMv8-M Main Extension only

MOV, shift or rotate by value variant

LSR<c>.W {<Rd>,} <Rm>, #<imm> // Inside IT block, and <Rd>, <Rm>, <imm> can be represented in T2

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, LSR #<imm>

and is always the preferred disassembly.

LSR{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, LSR #<imm>

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

0 0 0 0 1 imm5 Rm Rd
15 14 13 12 11 10 6 5 3 2 0

1 1 1 0 1 0 1 0 0 1 0 0 1 1 1 1 (0) imm3 Rd imm2 0 1 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 6 5 4 3 0

S

ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-437
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
<Rm> Is the general-purpose source register, encoded in the "Rm" field.

<imm> For encoding T2: is the shift amount, in the range 1 to 32, encoded in the "imm5" field as <imm>
modulo 32.

For encoding T3: is the shift amount, in the range 1 to 32, encoded in the "imm3:imm2" field as
<imm> modulo 32.

Operation for all encodings

The description of MOV (register) gives the operational pseudocode for this instruction.
C2-438 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.82 LSR (register)

Logical Shift Right (register) shifts a register value right by a variable number of bits, shifting in zeros, and writes
the result to the destination register. The variable number of bits is read from the bottom byte of a register.

This instruction is an alias of the MOV, MOVS (register-shifted register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted
register).

• The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this
instruction.

T1

ARMv8-M Main Extension only

Logical shift right variant

LSR<c>{<q>} {<Rdm>,} <Rdm>, <Rs> // Inside IT block

is equivalent to

MOV<c>{<q>} <Rdm>, <Rdm>, LSR <Rs>

and is the preferred disassembly when InITBlock().

T2

ARMv8-M Main Extension only

Not flag setting variant

LSR<c>.W {<Rd>,} <Rm>, <Rs> // Inside IT block, and <Rd>, <Rm>, <type>, <Rs> can be represented in T1

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, LSR <Rs>

and is always the preferred disassembly.

LSR{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, LSR <Rs>

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

0 1 0 0 0 0 0 0 1 1 Rs Rdm
15 14 13 12 11 10 9 6 5 3 2 0

op

1 1 1 1 1 0 1 0 0 0 1 0 Rm 1 1 1 1 Rd 0 0 0 0 Rs
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0

type S
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-439
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
<Rdm> Is the first general-purpose source register and the destination register, encoded in the "Rdm" field.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the first general-purpose source register, encoded in the "Rm" field.

<Rs> Is the second general-purpose source register holding a shift amount in its bottom 8 bits, encoded in
the "Rs" field.

Operation for all encodings

The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.
C2-440 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.83 LSRS (immediate)

Logical Shift Right, Setting flags (immediate) shifts a register value right by an immediate number of bits, shifting
in zeros, writes the result to the destination register, and updates the condition flags based on the result.

This instruction is an alias of the MOV (register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV (register).

• The description of MOV (register) gives the operational pseudocode for this instruction.

T2

ARMv8-M

T2 variant

LSRS{<q>} {<Rd>,} <Rm>, #<imm> // Outside IT block

is equivalent to

MOVS{<q>} <Rd>, <Rm>, LSR #<imm>

and is the preferred disassembly when !InITBlock().

T3

ARMv8-M Main Extension only

MOVS, shift or rotate by value variant

LSRS.W {<Rd>,} <Rm>, #<imm> // Outside IT block, and <Rd>, <Rm>, <imm> can be represented in T2

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, LSR #<imm>

and is always the preferred disassembly.

LSRS{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, LSR #<imm>

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

0 0 0 0 1 imm5 Rm Rd
15 14 13 12 11 10 6 5 3 2 0

1 1 1 0 1 0 1 0 0 1 0 1 1 1 1 1 (0) imm3 Rd imm2 0 1 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 6 5 4 3 0

S

ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-441
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
<Rm> Is the general-purpose source register, encoded in the "Rm" field.

<imm> For encoding T2: is the shift amount, in the range 1 to 32, encoded in the "imm5" field as <imm>
modulo 32.

For encoding T3: is the shift amount, in the range 1 to 32, encoded in the "imm3:imm2" field as
<imm> modulo 32.

Operation for all encodings

The description of MOV (register) gives the operational pseudocode for this instruction.
C2-442 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.84 LSRS (register)

Logical Shift Right, Setting flags (register) shifts a register value right by an immediate number of bits, shifting in
zeros, writes the result to the destination register, and updates the condition flags based on the result. The variable
number of bits is read from the bottom byte of a register.

This instruction is an alias of the MOV, MOVS (register-shifted register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted
register).

• The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this
instruction.

T1

ARMv8-M

Logical shift right variant

LSRS{<q>} {<Rdm>,} <Rdm>, <Rs> // Outside IT block

is equivalent to

MOVS{<q>} <Rdm>, <Rdm>, LSR <Rs>

and is the preferred disassembly when !InITBlock().

T2

ARMv8-M Main Extension only

Flag setting variant

LSRS.W {<Rd>,} <Rm>, <Rs> // Outside IT block, and <Rd>, <Rm>, <type>, <Rs> can be represented in T1

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, LSR <Rs>

and is always the preferred disassembly.

LSRS{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, LSR <Rs>

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

0 1 0 0 0 0 0 0 1 1 Rs Rdm
15 14 13 12 11 10 9 6 5 3 2 0

op

1 1 1 1 1 0 1 0 0 0 1 1 Rm 1 1 1 1 Rd 0 0 0 0 Rs
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0

type S
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-443
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
<q> See Standard assembler syntax fields on page C1-240.

<Rdm> Is the first general-purpose source register and the destination register, encoded in the "Rdm" field.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the first general-purpose source register, encoded in the "Rm" field.

<Rs> Is the second general-purpose source register holding a shift amount in its bottom 8 bits, encoded in
the "Rs" field.

Operation for all encodings

The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.
C2-444 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.85 MCR, MCR2

Move to Coprocessor from Register passes the value of a general-purpose register to a coprocessor.

If no coprocessor can execute the instruction, a UsageFault exception is generated.

T1

ARMv8-M Main Extension only

T1 variant

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

Decode for this encoding

if coproc IN '101x' then SEE "Floating-point";
if !HaveMainExt() then UNDEFINED;
t = UInt(Rt); cp = UInt(coproc);
if t == 15 || t == 13 then UNPREDICTABLE;

T2

ARMv8-M Main Extension only

T2 variant

MCR2{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

Decode for this encoding

if coproc IN '101x' then UNDEFINED;
if !HaveMainExt() then UNDEFINED;
t = UInt(Rt); cp = UInt(coproc);
if t == 15 || t == 13 then UNPREDICTABLE;

Notes for all encodings

Floating-point: Floating-point 32-bit move on page C2-298.

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<coproc> Is the name of the coprocessor, encoded in the "coproc" field. The valid coprocessor names are p10,
p11, p14, and p15.

<opc1> Is a coprocessor-specific opcode in the range 0 to 7, encoded in the "opc1" field.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

1 1 1 0 1 1 1 0 opc1 0 CRn Rt !=101x opc2 1 CRm
15 14 13 12 11 10 9 8 7 5 4 3 0 15 12 11 8 7 5 4 3 0

coproc

1 1 1 1 1 1 1 0 opc1 0 CRn Rt !=101x opc2 1 CRm
15 14 13 12 11 10 9 8 7 5 4 3 0 15 12 11 8 7 5 4 3 0

coproc
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-445
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
<CRn> Is the first coprocessor register, encoded in the "CRn" field.

<CRm> Is the second coprocessor register, encoded in the "CRm" field.

<opc2> Is a coprocessor-specific opcode in the range 0 to 7, defaulting to 0 and encoded in the "opc2" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 ExecuteCPCheck(cp);
 if !Coproc_Accepted(cp, ThisInstr()) then
 GenerateCoprocessorException();
 else
 Coproc_SendOneWord(R[t], cp, ThisInstr());

Exceptions

UsageFault.
C2-446 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.86 MCRR, MCRR2

Move to Coprocessor from two Registers passes the values of two general-purpose registers to a coprocessor.

If no coprocessor can execute the instruction, a UsageFault exception is generated.

T1

ARMv8-M Main Extension only

T1 variant

MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

Decode for this encoding

if coproc IN '101x' then SEE "Floating-point";
if !HaveMainExt() then UNDEFINED;
t = UInt(Rt); t2 = UInt(Rt2); cp = UInt(coproc);
if t == 15 || t2 == 15 then UNPREDICTABLE;
if t == 13 || t2 == 13 then UNPREDICTABLE;

T2

ARMv8-M Main Extension only

T2 variant

MCRR2{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

Decode for this encoding

if coproc IN '101x' then UNDEFINED;
if !HaveMainExt() then UNDEFINED;
t = UInt(Rt); t2 = UInt(Rt2); cp = UInt(coproc);
if t == 15 || t2 == 15 then UNPREDICTABLE;
if t == 13 || t2 == 13 then UNPREDICTABLE;

Notes for all encodings

Floating-point: Floating-point 64-bit move on page C2-293.

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<coproc> Is the name of the coprocessor, encoded in the "coproc" field. The valid coprocessor names are p10,
p11, p14, and p15.

<opc1> Is a coprocessor-specific opcode in the range 0 to 15, encoded in the "opc1" field.

1 1 1 0 1 1 0 0 0 1 0 0 Rt2 Rt !=101x opc1 CRm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 4 3 0

coproc

1 1 1 1 1 1 0 0 0 1 0 0 Rt2 Rt !=101x opc1 CRm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 4 3 0

coproc
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-447
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
<Rt> Is the first general-purpose register to be transferred, encoded in the "Rt" field.

<Rt2> Is the second general-purpose register to be transferred, encoded in the "Rt2" field.

<CRm> Is a coprocessor register, encoded in the "CRm" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 ExecuteCPCheck(cp);
 if !Coproc_Accepted(cp, ThisInstr()) then
 GenerateCoprocessorException();
 else
 Coproc_SendTwoWords(R[t2], R[t], cp, ThisInstr());

Exceptions

UsageFault.
C2-448 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.87 MLA

Multiply Accumulate multiplies two register values, and adds a third register value. The least significant 32 bits of
the result are written to the destination register. These 32 bits do not depend on whether signed or unsigned
calculations are performed.

T1

ARMv8-M Main Extension only

T1 variant

MLA{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for this encoding

if Ra == '1111' then SEE MUL;
if !HaveMainExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); setflags = FALSE;
if d IN {13,15} || n IN {13,15} || m IN {13,15} || a == 13 then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

<Ra> Is the third general-purpose source register holding the addend, encoded in the "Ra" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 operand1 = SInt(R[n]); // operand1 = UInt(R[n]) produces the same final results
 operand2 = SInt(R[m]); // operand2 = UInt(R[m]) produces the same final results
 addend = SInt(R[a]); // addend = UInt(R[a]) produces the same final results
 result = operand1 * operand2 + addend;
 R[d] = result<31:0>;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result<31:0>);
 // APSR.C unchanged
 // APSR.V unchanged

Exceptions

None.

1 1 1 1 1 0 1 1 0 0 0 0 Rn !=1111 Rd 0 0 0 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0

Ra
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-449
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.88 MLS

Multiply and Subtract multiplies two register values, and subtracts the least significant 32 bits of the result from a
third register value. These 32 bits do not depend on whether signed or unsigned calculations are performed. The
result is written to the destination register.

T1

ARMv8-M Main Extension only

T1 variant

MLS{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for this encoding

if !HaveMainExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra);
if d IN {13,15} || n IN {13,15} || m IN {13,15} || a IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

<Ra> Is the third general-purpose source register holding the minuend, encoded in the "Ra" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 operand1 = SInt(R[n]); // operand1 = UInt(R[n]) produces the same final results
 operand2 = SInt(R[m]); // operand2 = UInt(R[m]) produces the same final results
 addend = SInt(R[a]); // addend = UInt(R[a]) produces the same final results
 result = addend - operand1 * operand2;
 R[d] = result<31:0>;

Exceptions

None.

1 1 1 1 1 0 1 1 0 0 0 0 Rn Ra Rd 0 0 0 1 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0
C2-450 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.89 MOV (immediate)

Move (immediate) writes an immediate value to the destination register. It can optionally update the condition flags
based on the value.

T1

ARMv8-M

T1 variant

MOV<c>{<q>} <Rd>, #<imm8> // Inside IT block
MOVS{<q>} <Rd>, #<imm8> // Outside IT block

Decode for this encoding

d = UInt(Rd); setflags = !InITBlock(); imm32 = ZeroExtend(imm8, 32); carry = APSR.C;

T2

ARMv8-M Main Extension only

MOV variant

Applies when S == 0.

MOV<c>.W <Rd>, #<const> // Inside IT block, and <Rd>, <const> can be represented in T1
MOV{<c>}{<q>} <Rd>, #<const>

MOVS variant

Applies when S == 1.

MOVS.W <Rd>, #<const> // Outside IT block, and <Rd>, <const> can be represented in T1
MOVS{<c>}{<q>} <Rd>, #<const>

Decode for all variants of this encoding

if !HaveMainExt() then UNDEFINED;
d = UInt(Rd); setflags = (S == '1'); (imm32, carry) = T32ExpandImm_C(i:imm3:imm8, APSR.C);
if d IN {13,15} then UNPREDICTABLE;

T3

ARMv8-M

0 0 1 0 0 Rd imm8
15 14 13 12 11 10 8 7 0

1 1 1 1 0 i 0 0 0 1 0 S 1 1 1 1 0 imm3 Rd imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 0

1 1 1 1 0 i 1 0 0 1 0 0 imm4 0 imm3 Rd imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-451
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
T3 variant

MOV{<c>}{<q>} <Rd>, #<imm16> // <imm16> cannot be represented in T1 or T2
MOVW{<c>}{<q>} <Rd>, #<imm16> // <imm16> can be represented in T1 or T2

Decode for this encoding

d = UInt(Rd); setflags = FALSE; imm32 = ZeroExtend(imm4:i:imm3:imm8, 32);
if d IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<imm8> Is a 8-bit unsigned immediate, in the range 0 to 255, encoded in the "imm8" field.

<imm16> Is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm4:i:imm3:imm8" field.

<const> An immediate value. See Modified immediate constants on page C1-249 for the range of values.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 result = imm32;
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.
C2-452 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.90 MOV (register)

Move (register) copies a value from a register to the destination register. It can optionally update the condition flags
based on the value.

This instruction is used by the aliases ASRS (immediate), ASR (immediate), LSLS (immediate), LSL (immediate),
LSRS (immediate), LSR (immediate), RORS (immediate), ROR (immediate), RRXS, and RRX. See Alias
conditions on page C2-454 for details of when each alias is preferred.

T1

ARMv8-M

T1 variant

MOV{<c>}{<q>} <Rd>, <Rm>

Decode for this encoding

d = UInt(D:Rd); m = UInt(Rm); setflags = FALSE;
(shift_t, shift_n) = (SRType_LSL, 0);
if HaveMainExt() then
 if d == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

T2

ARMv8-M

T2 variant

MOV<c>{<q>} <Rd>, <Rm> {, <shift> #<amount>} // Inside IT block
MOVS{<q>} <Rd>, <Rm> {, <shift> #<amount>} // Outside IT block

Decode for this encoding

if op == '11' then SEE "Related encodings";
d = UInt(Rd); m = UInt(Rm); setflags = !InITBlock();
(shift_t, shift_n) = DecodeImmShift(op, imm5);
if op == '00' && imm5 == '00000' && InITBlock() then UNPREDICTABLE;

T3

ARMv8-M Main Extension only

0 1 0 0 0 1 1 0 D Rm Rd
15 14 13 12 11 10 9 8 7 6 3 2 0

0 0 0 !=11 imm5 Rm Rd
15 14 13 12 11 10 6 5 3 2 0

op

1 1 1 0 1 0 1 0 0 1 0 S 1 1 1 1 (0) imm3 Rd imm2 type Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-453
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
MOV, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && type == 11.

MOV{<c>}{<q>} <Rd>, <Rm>, RRX

MOV, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && type == 11).

MOV<c>.W <Rd>, <Rm> {, <shift> #<amount>} // Inside IT block, and <Rd>, <Rm>, <shift>, <amount> can be
represented in T1 or T2
MOV{<c>}{<q>} <Rd>, <Rm> {, <shift> #<amount>}

MOVS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && imm2 == 00 && type == 11.

MOVS{<c>}{<q>} <Rd>, <Rm>, RRX

MOVS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && type == 11).

MOVS.W <Rd>, <Rm> {, <shift> #<amount>} // Outside IT block, and <Rd>, <Rm>, <shift>, <amount> can be
represented in T1 or T2
MOVS{<c>}{<q>} <Rd>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

if !HaveMainExt() then UNDEFINED;
d = UInt(Rd); m = UInt(Rm); setflags = (S == '1');
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
if setflags && (d IN {13,15} || m IN {13,15}) then UNPREDICTABLE;
if !setflags && (d == 15 || m == 15 || (d == 13 && m == 13)) then UNPREDICTABLE;

Notes for all encodings

Related encodings: In encoding T2, for op == 11, see Add, subtract (three low registers) on page C2-256 and Add,
subtract (two low registers and immediate) on page C2-256

Alias conditions

Alias of variant is preferred when

ASRS (immediate) T3 (MOVS, shift or rotate by value) S == '1' && type == '10'

ASRS (immediate) T2 op == '10' && !InITBlock()

ASR (immediate) T3 (MOV, shift or rotate by value) S == '0' && type == '10'

ASR (immediate) T2 op == '10' && InITBlock()

LSLS (immediate) T3 (MOVS, shift or rotate by value) S == '1' && imm3:Rd:imm2 != '000xxxx00' && type == '00'

LSLS (immediate) T2 op == '00' && imm5 != '00000' && !InITBlock()

LSL (immediate) T3 (MOV, shift or rotate by value) S == '0' && imm3:Rd:imm2 != '000xxxx00' && type == '00'

LSL (immediate) T2 op == '00' && imm5 != '00000' && InITBlock()

LSRS (immediate) T3 (MOVS, shift or rotate by value) S == '1' && type == '01'

LSRS (immediate) T2 op == '01' && !InITBlock()
C2-454 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> For encoding T1: is the general-purpose destination register, encoded in the "D:Rd" field. If the PC
is used:

• The instruction causes a simple branch to the address moved to the PC.

• The instruction must either be outside an IT block or the last instruction of an IT block.

For encoding T2 and T3: is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding T1: is the general-purpose source register, encoded in the "Rm" field. The PC can be
used.

For encoding T2 and T3: is the general-purpose source register, encoded in the "Rm" field.

<shift> For encoding T2: is the type of shift to be applied to the source register, encoded in the "op" field.
It can have the following values:

LSL when op = 00

LSR when op = 01

ASR when op = 10

For encoding T3: is the type of shift to be applied to the source register, encoded in the "type" field.
It can have the following values:

LSL when type = 00

LSR when type = 01

ASR when type = 10

ROR when type = 11

<amount> For encoding T2: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR) encoded in the "imm5" field as <amount> modulo 32.

For encoding T3: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR) encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 (result, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
 if d == 15 then
 ALUWritePC(result); // setflags is always FALSE here
 else

LSR (immediate) T3 (MOV, shift or rotate by value) S == '0' && type == '01'

LSR (immediate) T2 op == '01' && InITBlock()

RORS (immediate) - S == '1' && imm3:Rd:imm2 != '000xxxx00' && type == '11'

ROR (immediate) - S == '0' && imm3:Rd:imm2 != '000xxxx00' && type == '11'

RRXS - S == '1' && imm3 == '000' && imm2 == '00' && type == '11'

RRX - S == '0' && imm3 == '000' && imm2 == '00' && type == '11'

Alias of variant is preferred when
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-455
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
 RSPCheck[d] = result;
 if setflags then
 APSR.N = result<31>; ;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

UsageFault.
C2-456 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.91 MOV, MOVS (register-shifted register)

Move (register-shifted register) copies a register-shifted register value to the destination register. It can optionally
update the condition flags based on the value.

This instruction is used by the aliases ASRS (register), ASR (register), LSLS (register), LSL (register), LSRS
(register), LSR (register), RORS (register), and ROR (register). See Alias conditions on page C2-458 for details of
when each alias is preferred.

T1

ARMv8-M

Arithmetic shift right variant

Applies when op == 0100.

MOV<c>{<q>} <Rdm>, <Rdm>, ASR <Rs> // Inside IT block
MOVS{<q>} <Rdm>, <Rdm>, ASR <Rs> // Outside IT block

Logical shift left variant

Applies when op == 0010.

MOV<c>{<q>} <Rdm>, <Rdm>, LSL <Rs> // Inside IT block
MOVS{<q>} <Rdm>, <Rdm>, LSL <Rs> // Outside IT block

Logical shift right variant

Applies when op == 0011.

MOV<c>{<q>} <Rdm>, <Rdm>, LSR <Rs> // Inside IT block
MOVS{<q>} <Rdm>, <Rdm>, LSR <Rs> // Outside IT block

Rotate right variant

Applies when op == 0111.

MOV<c>{<q>} <Rdm>, <Rdm>, ROR <Rs> // Inside IT block
MOVS{<q>} <Rdm>, <Rdm>, ROR <Rs> // Outside IT block

Decode for all variants of this encoding

if !(op IN {'0010', '0011', '0100', '0111'}) then SEE "Related encodings";
d = UInt(Rdm); m = UInt(Rdm); s = UInt(Rs);
setflags = !InITBlock(); shift_t = DecodeRegShift(op<2>:op<0>);

T2

ARMv8-M Main Extension only

Flag setting variant

Applies when S == 1.

0 1 0 0 0 0 0 x x x Rs Rdm
15 14 13 12 11 10 9 6 5 3 2 0

op

1 1 1 1 1 0 1 0 0 type S Rm 1 1 1 1 Rd 0 0 0 0 Rs
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-457
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
MOVS.W <Rd>, <Rm>, <type> <Rs> // Outside IT block, and <Rd>, <Rm>, <type>, <Rs> can be represented in T1
MOVS{<c>}{<q>} <Rd>, <Rm>, <type> <Rs>

Not flag setting variant

Applies when S == 0.

MOV<c>.W <Rd>, <Rm>, <type> <Rs> // Inside IT block, and <Rd>, <Rm>, <type>, <Rs> can be represented in
T1
MOV{<c>}{<q>} <Rd>, <Rm>, <type> <Rs>

Decode for all variants of this encoding

if !HaveMainExt() then UNDEFINED;
d = UInt(Rd); m = UInt(Rm); s = UInt(Rs);
setflags = (S == '1'); shift_t = DecodeRegShift(type);
if d IN {13,15} || m IN {13,15} || s IN {13,15} then UNPREDICTABLE;

Notes for all encodings

Related encodings: In encoding T1, for an op field value that is not listed, see Data-processing (two low registers)
on page C2-257.

Alias conditions

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

Alias of variant is preferred when

ASRS (register) T1 (arithmetic shift right) op == '0100' && !InITBlock()

ASRS (register) T2 (flag setting) type == '10' && S == '1'

ASR (register) T1 (arithmetic shift right) op == '0100' && InITBlock()

ASR (register) T2 (not flag setting) type == '10' && S == '0'

LSLS (register) T1 (logical shift left) op == '0010' && !InITBlock()

LSLS (register) T2 (flag setting) type == '00' && S == '1'

LSL (register) T1 (logical shift left) op == '0010' && InITBlock()

LSL (register) T2 (not flag setting) type == '00' && S == '0'

LSRS (register) T1 (logical shift right) op == '0011' && !InITBlock()

LSRS (register) T2 (flag setting) type == '01' && S == '1'

LSR (register) T1 (logical shift right) op == '0011' && InITBlock()

LSR (register) T2 (not flag setting) type == '01' && S == '0'

RORS (register) T1 (rotate right) op == '0111' && !InITBlock()

RORS (register) T2 (flag setting) type == '11' && S == '1'

ROR (register) T1 (rotate right) op == '0111' && InITBlock()

ROR (register) T2 (not flag setting) type == '11' && S == '0'
C2-458 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
<Rdm> Is the general-purpose source register and the destination register, encoded in the "Rdm" field.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the general-purpose source register, encoded in the "Rm" field.

<type> Is the type of shift to be applied to the second source register, encoded in the "type" field. It can have
the following values:

LSL when type = 00

LSR when type = 01

ASR when type = 10

ROR when type = 11

<Rs> Is the general-purpose source register holding a shift amount in its bottom 8 bits, encoded in the "Rs"
field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 shift_n = UInt(R[s]<7:0>);
 (result, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-459
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.92 MOVT

Move Top writes an immediate value to the top halfword of the destination register. It does not affect the contents
of the bottom halfword.

T1

ARMv8-M

T1 variant

MOVT{<c>}{<q>} <Rd>, #<imm16>

Decode for this encoding

d = UInt(Rd); imm16 = imm4:i:imm3:imm8;
if d IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<imm16> Is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm4:i:imm3:imm8" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 R[d]<31:16> = imm16;
 // R[d]<15:0> unchanged

Exceptions

None.

1 1 1 1 0 i 1 0 1 1 0 0 imm4 0 imm3 Rd imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 0
C2-460 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.93 MRC, MRC2

Move to Register from Coprocessor causes a coprocessor to transfer a value to a general-purpose register or to the
condition flags.

T1

ARMv8-M Main Extension only

T1 variant

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

Decode for this encoding

if coproc IN '101x' then SEE "Floating-point";
if !HaveMainExt() then UNDEFINED;
t = UInt(Rt); cp = UInt(coproc);
if t == 13 then UNPREDICTABLE;

T2

ARMv8-M Main Extension only

T2 variant

MRC2{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

Decode for this encoding

if coproc IN '101x' then UNDEFINED;
if !HaveMainExt() then UNDEFINED;
t = UInt(Rt); cp = UInt(coproc);
if t == 13 then UNPREDICTABLE;

Notes for all encodings

Floating-point: Floating-point 32-bit move on page C2-298.

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<coproc> Is the name of the coprocessor, encoded in the "coproc" field. The valid coprocessor names are p10,
p11, p14, and p15.

<opc1> Is a coprocessor-specific opcode in the range 0 to 7, encoded in the "opc1" field.

1 1 1 0 1 1 1 0 opc1 1 CRn Rt !=101x opc2 1 CRm
15 14 13 12 11 10 9 8 7 5 4 3 0 15 12 11 8 7 5 4 3 0

coproc

1 1 1 1 1 1 1 0 opc1 1 CRn Rt !=101x opc2 1 CRm
15 14 13 12 11 10 9 8 7 5 4 3 0 15 12 11 8 7 5 4 3 0

coproc
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-461
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
<Rt> Is the general-purpose register to be transferred or APSR_nzcv (encoded as 0b1111), encoded in the
"Rt" field. If APSR_nzcv is used, bits [31:28] of the transferred value are written to the APSR
condition flags.

<CRn> Is the first coprocessor register, encoded in the "CRn" field.

<CRm> Is the second coprocessor register, encoded in the "CRm" field.

<opc2> Is a coprocessor-specific opcode in the range 0 to 7, defaulting to 0 and encoded in the "opc2" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 ExecuteCPCheck(cp);
 if !Coproc_Accepted(cp, ThisInstr()) then
 GenerateCoprocessorException();
 else
 value = Coproc_GetOneWord(cp, ThisInstr());
 if t != 15 then
 R[t] = value;
 else
 APSR.N = value<31>;
 APSR.Z = value<30>;
 APSR.C = value<29>;
 APSR.V = value<28>;
 // value<27:0> are not used.

Exceptions

UsageFault.
C2-462 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.94 MRRC, MRRC2

Move to two Registers from Coprocessor causes a coprocessor to transfer values to two general-purpose registers.

If no coprocessor can execute the instruction, a UsageFault exception is generated.

T1

ARMv8-M Main Extension only

T1 variant

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

Decode for this encoding

if coproc IN '101x' then SEE "Floating-point";
if !HaveMainExt() then UNDEFINED;
t = UInt(Rt); t2 = UInt(Rt2); cp = UInt(coproc);
if t == 15 || t2 == 15 || t == t2 then UNPREDICTABLE;
if t == 13 || t2 == 13 then UNPREDICTABLE;

T2

ARMv8-M Main Extension only

T2 variant

MRRC2{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

Decode for this encoding

if coproc IN '101x' then UNDEFINED;
if !HaveMainExt() then UNDEFINED;
t = UInt(Rt); t2 = UInt(Rt2); cp = UInt(coproc);
if t == 15 || t2 == 15 || t == t2 then UNPREDICTABLE;
if t == 13 || t2 == 13 then UNPREDICTABLE;

Notes for all encodings

Floating-point: Floating-point 64-bit move on page C2-293.

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<coproc> Is the name of the coprocessor, encoded in the "coproc" field. The valid coprocessor names are p10,
p11, p14, and p15.

<opc1> Is a coprocessor-specific opcode in the range 0 to 15, encoded in the "opc1" field.

1 1 1 0 1 1 0 0 0 1 0 1 Rt2 Rt !=101x opc1 CRm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 4 3 0

coproc

1 1 1 1 1 1 0 0 0 1 0 1 Rt2 Rt !=101x opc1 CRm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 4 3 0

coproc
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-463
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
<Rt> Is the first general-purpose register to be transferred, encoded in the "Rt" field.

<Rt2> Is the second general-purpose register to be transferred, encoded in the "Rt2" field.

<CRm> Is a coprocessor register, encoded in the "CRm" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 ExecuteCPCheck(cp);
 if !Coproc_Accepted(cp, ThisInstr()) then
 GenerateCoprocessorException();
 else
 (R[t2], R[t]) = Coproc_GetTwoWords(cp, ThisInstr());

Exceptions

UsageFault.
C2-464 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.95 MRS

Move to Register from Special register moves the value from the selected special-purpose register into a
general-purpose register.

T1

ARMv8-M

T1 variant

MRS{<c>}{<q>} <Rd>, <spec_reg>

Decode for this encoding

d = UInt(Rd);
if d IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<spec_reg> Is the special register to be accessed, encoded in the "SYSm" field. It can have the following values:

APSR when SYSm = 00000000

IAPSR when SYSm = 00000001

EAPSR when SYSm = 00000010

XPSR when SYSm = 00000011

IPSR when SYSm = 00000101

EPSR when SYSm = 00000110

IEPSR when SYSm = 00000111

MSP when SYSm = 00001000

PSP when SYSm = 00001001

MSPLIM when SYSm = 00001010

PSPLIM when SYSm = 00001011

PRIMASK when SYSm = 00010000

BASEPRI when SYSm = 00010001

BASEPRI_MAX when SYSm = 00010010

FAULTMASK when SYSm = 00010011

CONTROL when SYSm = 00010100

MSP_NS when SYSm = 10001000

PSP_NS when SYSm = 10001001

MSPLIM_NS when SYSm = 10001010

PSPLIM_NS when SYSm = 10001011

PRIMASK_NS when SYSm = 10010000

1 1 1 1 0 0 1 1 1 1 1 (0) (1) (1) (1) (1) 1 0 (0) 0 Rd SYSm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 8 7 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-465
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
BASEPRI_NS when SYSm = 10010001

FAULTMASK_NS when SYSm = 10010011

CONTROL_NS when SYSm = 10010100

SP_NS when SYSm = 10011000

The following encodings are UNPREDICTABLE:

• SYSm = 00000100.

• SYSm = 000011xx.

• SYSm = 00010101.

• SYSm = 0001011x.

• SYSm = 00011xxx.

• SYSm = 001xxxxx.

• SYSm = 01xxxxxx.

• SYSm = 10000xxx.

• SYSm = 100011xx.

• SYSm = 10010010.

• SYSm = 10010101.

• SYSm = 1001011x.

• SYSm = 10011001.

• SYSm = 1001101x.

• SYSm = 100111xx.

• SYSm = 101xxxxx.

• SYSm = 11xxxxxx.

An access to a register not ending in _NS returns the register associated with the current Security
state. Access to a register ending in _NS in Secure state returns the Non-secure register. Access to
a register ending in _NS in Non-secure state is RAZ/WI. Access to BASEPRI_MAX returns the
contents of BASEPRI.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 R[d] = Zeros(32);

 // NOTE: the MSB of SYSm is used to select between either the current
 // domains view of the registers and other domains view of the register.
 // This is required to that the Secure state can access the Non-secure
 // versions of banked registers. For security reasons the Secure versions of
 // the registers are not accessible from the Non-secure state.
 case SYSm<7:3> of
 when '00000' /* xPSR accesses */
 if UInt(SYSm) == 4 then UNPREDICTABLE;
 if CurrentModeIsPrivileged() && SYSm<0> == '1' then
 R[d]<8:0> = IPSR.Exception;
 if SYSm<1> == '1' then
 R[d]<26:24> = '000'; /* EPSR reads as zero */
 R[d]<15:10> = '000000';
 if SYSm<2> == '0' then
 R[d]<31:27> = APSR<31:27>;
 if HaveDSPExt() then
 R[d]<19:16> = APSR<19:16>;
 when '00001' /* SP access */
 if CurrentModeIsPrivileged() then
 case SYSm<2:0> of
 when '000'
C2-466 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
 R[d] = SP_Main;
 when '001'
 R[d] = SP_Process;
 when '010'
 if IsSecure() then
 R[d] = MSPLIM_S.LIMIT:'000';
 else
 if HaveMainExt() then
 R[d] = MSPLIM_NS.LIMIT:'000';
 else
 UNPREDICTABLE;
 when '011'
 if IsSecure() then
 R[d] = PSPLIM_S.LIMIT:'000';
 else
 if HaveMainExt() then
 R[d] = PSPLIM_NS.LIMIT:'000';
 else
 UNPREDICTABLE;
 otherwise
 UNPREDICTABLE;
 when '10001' /* SP access - alt domain */
 if !HaveSecurityExt() then UNPREDICTABLE;
 if CurrentModeIsPrivileged() && CurrentState == SecurityState_Secure then
 case SYSm<2:0> of
 when '000'
 R[d] = SP_Main_NonSecure;
 when '001'
 R[d] = SP_Process_NonSecure;
 when '010'
 if HaveMainExt() then
 R[d] = MSPLIM_NS.LIMIT:'000';
 else
 UNPREDICTABLE;
 when '011'
 if HaveMainExt() then
 R[d] = PSPLIM_NS.LIMIT:'000';
 else
 UNPREDICTABLE;
 otherwise
 UNPREDICTABLE;
 when '00010' /* Priority mask or CONTROL access */
 case SYSm<2:0> of
 when '000'
 if CurrentModeIsPrivileged() then
 R[d]<0> = PRIMASK.PM;
 when '001'
 if HaveMainExt() then
 if CurrentModeIsPrivileged() then
 R[d]<7:0> = BASEPRI<7:0>;
 else
 UNPREDICTABLE;
 when '010'
 if HaveMainExt() then
 if CurrentModeIsPrivileged() then
 R[d]<7:0> = BASEPRI<7:0>;
 else
 UNPREDICTABLE;
 when '011'
 if HaveMainExt() then
 if CurrentModeIsPrivileged() then
 R[d]<0> = FAULTMASK.FM;
 else
 UNPREDICTABLE;
 when '100'
 if HaveFPExt() && IsSecure() then
 R[d]<3:0> = CONTROL<3:0>;
 elsif HaveFPExt() then
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-467
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
 R[d]<2:0> = CONTROL<2:0>;
 else
 R[d]<1:0> = CONTROL<1:0>;
 otherwise
 UNPREDICTABLE;
 when '10010' /* Priority mask or CONTROL access - alt domain */
 if !HaveSecurityExt() then UNPREDICTABLE;
 if CurrentState == SecurityState_Secure then
 case SYSm<2:0> of
 when '000'
 if CurrentModeIsPrivileged() then
 R[d]<0> = PRIMASK_NS.PM;
 when '001'
 if HaveMainExt() then
 if CurrentModeIsPrivileged() then
 R[d]<7:0> = BASEPRI_NS<7:0>;
 else
 UNPREDICTABLE;
 when '011'
 if HaveMainExt() then
 if CurrentModeIsPrivileged() then
 R[d]<0> = FAULTMASK_NS.FM;
 else
 UNPREDICTABLE;
 when '100'
 if HaveFPExt() then
 R[d]<2:0> = CONTROL_NS<2:0>;
 else
 R[d]<1:0> = CONTROL_NS<1:0>;
 otherwise
 UNPREDICTABLE;
 when '10011' /* SP_NS - Non-secure stack pointer */
 if !HaveSecurityExt() then UNPREDICTABLE;
 if CurrentState == SecurityState_Secure then
 case SYSm<2:0> of
 when '000'
 R[d] = _SP(LookUpSP_with_security_mode(FALSE, CurrentMode()));
 otherwise
 UNPREDICTABLE;
 otherwise
 UNPREDICTABLE;

Exceptions

None.
C2-468 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.96 MSR (register)

Move to Special register from Register moves the value of a general-purpose register to the specified
special-purpose register.

T1

ARMv8-M

T1 variant

MSR{<c>}{<q>} <spec_reg>, <Rn>

Decode for this encoding

n = UInt(Rn);
if HaveMainExt() then
 if mask == '00' || (mask != '10' && !(UInt(SYSm) IN {0..3})) then UNPREDICTABLE;
if n IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<spec_reg> Is the special register to be accessed, encoded in the "SYSm" field. It can have the following values:

APSR when SYSm = 00000000

IAPSR when SYSm = 00000001

EAPSR when SYSm = 00000010

XPSR when SYSm = 00000011

IPSR when SYSm = 00000101

EPSR when SYSm = 00000110

IEPSR when SYSm = 00000111

MSP when SYSm = 00001000

PSP when SYSm = 00001001

MSPLIM when SYSm = 00001010

PSPLIM when SYSm = 00001011

PRIMASK when SYSm = 00010000

BASEPRI when SYSm = 00010001

BASEPRI_MAX when SYSm = 00010010

FAULTMASK when SYSm = 00010011

CONTROL when SYSm = 00010100

MSP_NS when SYSm = 10001000

PSP_NS when SYSm = 10001001

MSPLIM_NS when SYSm = 10001010

PSPLIM_NS when SYSm = 10001011

PRIMASK_NS when SYSm = 10010000

1 1 1 1 0 0 1 1 1 0 0 (0) Rn 1 0 (0) 0 mask (0) (0) SYSm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 10 9 8 7 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-469
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
BASEPRI_NS when SYSm = 10010001

FAULTMASK_NS when SYSm = 10010011

CONTROL_NS when SYSm = 10010100

SP_NS when SYSm = 10011000

The following encodings are UNPREDICTABLE:

• SYSm = 00000100.

• SYSm = 000011xx.

• SYSm = 00010101.

• SYSm = 0001011x.

• SYSm = 00011xxx.

• SYSm = 001xxxxx.

• SYSm = 01xxxxxx.

• SYSm = 10000xxx.

• SYSm = 100011xx.

• SYSm = 10010010.

• SYSm = 10010101.

• SYSm = 1001011x.

• SYSm = 10011001.

• SYSm = 1001101x.

• SYSm = 100111xx.

• SYSm = 101xxxxx.

• SYSm = 11xxxxxx.

An access to a register not ending in _NS returns the register associated with the current Security
state. Access to a register ending in _NS in Secure state returns the Non-secure register. Access to
a register ending in _NS in Non-secure state is RAZ/WI. Access to BASEPRI_MAX writes to
BASEPRI if the priority that is written is higher than the existing priority in BASEPRI. Otherwise,
the access is ignored.

<Rn> Is the general-purpose source register, encoded in the "Rn" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();

 // NOTE: the MSB of SYSm is used to select between either the current
 // domains view of the registers and other domains view of the register.
 // This is required to that the Secure state can access the Non-secure
 // versions of banked registers. For security reasons the Secure versions of
 // the registers are not accessible from the Non-secure state.
 case SYSm<7:3> of
 when '00000' /* xPSR accesses */
 if UInt(SYSm) == 4 then UNPREDICTABLE;
 if SYSm<2> == '0' then /* Include APSR */
 if mask<0> == '1' then /* GE[3:0] bits */
 if !HaveDSPExt() then
 UNPREDICTABLE;
 else
 APSR<19:16> = R[n]<19:16>;
 if mask<1> == '1' then /* N, Z, C, V, Q bits */
 APSR<31:27> = R[n]<31:27>;
 when '00001' /* SP access */
 if CurrentModeIsPrivileged() then
 case SYSm<2:0> of
C2-470 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
 when '000'
 // MSR not subject to SP limit, write directly to register.
 if IsSecure() then
 _R[RNameSP_Main_Secure] = R[n]<31:2>:'00';
 else
 _R[RNameSP_Main_NonSecure] = R[n]<31:2>:'00';
 when '001'
 // MSR not subject to SP limit, write directly to register.
 if IsSecure() then
 _R[RNameSP_Process_Secure] = R[n]<31:2>:'00';
 else
 _R[RNameSP_Process_NonSecure] = R[n]<31:2>:'00';
 when '010'
 if IsSecure() then
 MSPLIM_S.LIMIT = R[n]<31:3>;
 else
 if HaveMainExt() then
 MSPLIM_NS.LIMIT = R[n]<31:3>;
 else
 UNPREDICTABLE;
 when '011'
 if IsSecure() then
 PSPLIM_S.LIMIT = R[n]<31:3>;
 else
 if HaveMainExt() then
 PSPLIM_NS.LIMIT = R[n]<31:3>;
 else
 UNPREDICTABLE;
 otherwise
 UNPREDICTABLE;
 when '10001' /* SP access - alt domain */
 if !HaveSecurityExt() then UNPREDICTABLE;
 if CurrentModeIsPrivileged() && CurrentState == SecurityState_Secure then
 case SYSm<2:0> of
 when '000'
 // MSR not subject to SP limit, write directly to register.
 _R[RNameSP_Main_NonSecure] = R[n]<31:2>:'00';
 when '001'
 // MSR not subject to SP limit, write directly to register.
 _R[RNameSP_Process_NonSecure] = R[n]<31:2>:'00';
 when '010'
 if HaveMainExt() then
 MSPLIM_NS.LIMIT = R[n]<31:3>;
 else
 UNPREDICTABLE;
 when '011'
 if HaveMainExt() then
 PSPLIM_NS.LIMIT = R[n]<31:3>;
 else
 UNPREDICTABLE;
 otherwise
 UNPREDICTABLE;
 when '00010' /* Priority mask or CONTROL access */
 case SYSm<2:0> of
 when '000'
 if CurrentModeIsPrivileged() then
 PRIMASK.PM = R[n]<0>;
 when '001'
 if CurrentModeIsPrivileged() then
 if HaveMainExt() then
 BASEPRI<7:0> = R[n]<7:0>;
 else
 UNPREDICTABLE;
 when '010'
 if CurrentModeIsPrivileged() then
 if HaveMainExt() then
 if (R[n]<7:0> != '00000000') &&
 (UInt(R[n]<7:0>) < UInt(BASEPRI<7:0>) || BASEPRI<7:0> == '00000000') then
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-471
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
 BASEPRI<7:0> = R[n]<7:0>;
 else
 UNPREDICTABLE;
 when '011'
 if CurrentModeIsPrivileged() then
 if HaveMainExt() then
 if ExecutionPriority() > -1 || R[n]<0> == '0' then
 FAULTMASK.FM = R[n]<0>;
 else
 UNPREDICTABLE;
 when '100'
 if CurrentModeIsPrivileged() then
 CONTROL.nPRIV = R[n]<0>;
 CONTROL.SPSEL = R[n]<1>;
 if HaveFPExt() && (IsSecure() || NSACR.CP10 == '1') then
 CONTROL.FPCA = R[n]<2>;
 if HaveFPExt() && IsSecure() then
 CONTROL_S.SFPA = R[n]<3>;
 otherwise
 UNPREDICTABLE;
 when '10010' /* Priority mask or CONTROL access - alt domain */
 if !HaveSecurityExt() then UNPREDICTABLE;
 if CurrentModeIsPrivileged() && CurrentState == SecurityState_Secure then
 case SYSm<2:0> of
 when '000'
 PRIMASK_NS.PM = R[n]<0>;
 when '001'
 if HaveMainExt() then
 BASEPRI_NS<7:0> = R[n]<7:0>;
 else
 UNPREDICTABLE;
 when '011'
 if HaveMainExt() then
 if ExecutionPriority() > -1 || R[n]<0> == '0' then
 FAULTMASK_NS.FM = R[n]<0>;
 else
 UNPREDICTABLE;
 when '100'
 CONTROL_NS.nPRIV = R[n]<0>;
 CONTROL_NS.SPSEL = R[n]<1>;
 if HaveFPExt() then CONTROL_NS.FPCA = R[n]<2>;
 otherwise
 UNPREDICTABLE;
 when '10011' /* SP_NS - Non-secure stack pointer */
 if !HaveSecurityExt() then UNPREDICTABLE;
 if CurrentState == SecurityState_Secure then
 case SYSm<2:0> of
 when '000'
 spName = LookUpSP_with_security_mode(FALSE, CurrentMode());
 // MSR SP_NS is subject to SP limit check.
 - = _SP(spName, FALSE, R[n]);
 otherwise
 UNPREDICTABLE;
 otherwise
 UNPREDICTABLE;

Exceptions

UsageFault.
C2-472 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.97 MUL

Multiply multiplies two register values. The least significant 32 bits of the result are written to the destination
register. These 32 bits do not depend on whether signed or unsigned calculations are performed.

It can optionally update the condition flags based on the result. In the T32 instruction set, this option is limited to
only a few forms of the instruction. Use of this option adversely affects performance on many implementations.

T1

ARMv8-M

T1 variant

MUL<c>{<q>} <Rdm>, <Rn>{, <Rdm>} // Inside IT block
MULS{<q>} <Rdm>, <Rn>{, <Rdm>} // Outside IT block

Decode for this encoding

d = UInt(Rdm); n = UInt(Rn); m = UInt(Rdm); setflags = !InITBlock();

T2

ARMv8-M Main Extension only

T2 variant

MUL<c>.W <Rd>, <Rn>{, <Rm>} // Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1
MUL{<c>}{<q>} <Rd>, <Rn>{, <Rm>}

Decode for this encoding

if !HaveMainExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = FALSE;
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rdm> Is the second general-purpose source register holding the multiplier and the destination register,
encoded in the "Rdm" field.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm" field. If
omitted, <Rd> is used.

0 1 0 0 0 0 1 1 0 1 Rn Rdm
15 14 13 12 11 10 9 8 7 6 5 3 2 0

1 1 1 1 1 0 1 1 0 0 0 0 Rn 1 1 1 1 Rd 0 0 0 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-473
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 operand1 = SInt(R[n]); // operand1 = UInt(R[n]) produces the same final results
 operand2 = SInt(R[m]); // operand2 = UInt(R[m]) produces the same final results
 result = operand1 * operand2;
 R[d] = result<31:0>;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result<31:0>);
 // APSR.C unchanged
 // APSR.V unchanged

Exceptions

None.
C2-474 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.98 MVN (immediate)

Bitwise NOT (immediate) writes the bitwise inverse of an immediate value to the destination register. It can
optionally update the condition flags based on the value.

T1

ARMv8-M Main Extension only

MVN variant

Applies when S == 0.

MVN{<c>}{<q>} <Rd>, #<const>

MVNS variant

Applies when S == 1.

MVNS{<c>}{<q>} <Rd>, #<const>

Decode for all variants of this encoding

if !HaveMainExt() then UNDEFINED;
d = UInt(Rd); setflags = (S == '1');
(imm32, carry) = T32ExpandImm_C(i:imm3:imm8, APSR.C);
if d IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<const> An immediate value. See Modified immediate constants on page C1-249 for the range of values.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 result = NOT(imm32);
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.

1 1 1 1 0 i 0 0 0 1 1 S 1 1 1 1 0 imm3 Rd imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-475
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.99 MVN (register)

Bitwise NOT (register) writes the bitwise inverse of a register value to the destination register. It can optionally
update the condition flags based on the result.

T1

ARMv8-M

T1 variant

MVN<c>{<q>} <Rd>, <Rm> // Inside IT block
MVNS{<q>} <Rd>, <Rm> // Outside IT block

Decode for this encoding

d = UInt(Rd); m = UInt(Rm); setflags = !InITBlock();
(shift_t, shift_n) = (SRType_LSL, 0);

T2

ARMv8-M Main Extension only

MVN, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && type == 11.

MVN{<c>}{<q>} <Rd>, <Rm>, RRX

MVN, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && type == 11).

MVN<c>.W <Rd>, <Rm> // Inside IT block, and <Rd>, <Rm> can be represented in T1
MVN{<c>}{<q>} <Rd>, <Rm> {, <shift> #<amount>}

MVNS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && imm2 == 00 && type == 11.

MVNS{<c>}{<q>} <Rd>, <Rm>, RRX

MVNS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && type == 11).

MVNS.W <Rd>, <Rm> // Outside IT block, and <Rd>, <Rm> can be represented in T1
MVNS{<c>}{<q>} <Rd>, <Rm> {, <shift> #<amount>}

0 1 0 0 0 0 1 1 1 1 Rm Rd
15 14 13 12 11 10 9 8 7 6 5 3 2 0

1 1 1 0 1 0 1 0 0 1 1 S 1 1 1 1 (0) imm3 Rd imm2 type Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 6 5 4 3 0
C2-476 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Decode for all variants of this encoding

if !HaveMainExt() then UNDEFINED;
d = UInt(Rd); m = UInt(Rm); setflags = (S == '1');
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
if d IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the source register, encoded in the "type" field. It can have the
following values:

LSL when type = 00

LSR when type = 01

ASR when type = 10

ROR when type = 11

<amount> Is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift> =
LSR or ASR) encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
 result = NOT(shifted);
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-477
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.100 NOP

No Operation does nothing.

The architecture makes no guarantees about any timing effects of including a NOP instruction.

This is a NOP-compatible hint. For more information about NOP-compatible hints, see NOP-compatible hint
instructions on page C1-251.

T1

ARMv8-M

T1 variant

NOP{<c>}{<q>}

Decode for this encoding

// No additional decoding required

T2

ARMv8-M Main Extension only

T2 variant

NOP{<c>}.W

Decode for this encoding

if !HaveMainExt() then UNDEFINED;
// No additional decoding required

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 // Do nothing

Exceptions

None.

1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 0 0 0 0 0 0 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
C2-478 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.101 ORN (immediate)

Logical OR NOT (immediate) performs a bitwise (inclusive) OR of a register value and the complement of an
immediate value, and writes the result to the destination register. It can optionally update the condition flags based
on the result.

T1

ARMv8-M Main Extension only

Flag setting variant

Applies when S == 1.

ORNS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Not flag setting variant

Applies when S == 0.

ORN{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for all variants of this encoding

if Rn == '1111' then SEE "MVN (immediate)";
if !HaveMainExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); setflags = (S == '1');
(imm32, carry) = T32ExpandImm_C(i:imm3:imm8, APSR.C);
if d IN {13,15} || n == 13 then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the
same as <Rn>.

<Rn> Is the general-purpose source register, encoded in the "Rn" field.

<const> An immediate value. See Modified immediate constants on page C1-249 for the range of values.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 result = R[n] OR NOT(imm32);
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.

1 1 1 1 0 i 0 0 0 1 1 S !=1111 0 imm3 Rd imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 0

Rn
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-479
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.102 ORN (register)

Logical OR NOT (register) performs a bitwise (inclusive) OR of a register value and the complement of an
optionally-shifted register value, and writes the result to the destination register. It can optionally update the
condition flags based on the result.

T1

ARMv8-M Main Extension only

ORN, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && type == 11.

ORN{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ORN, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && type == 11).

ORN{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

ORNS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && imm2 == 00 && type == 11.

ORNS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ORNS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && type == 11).

ORNS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

if Rn == '1111' then SEE "MVN (register)";
if !HaveMainExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
if d IN {13,15} || n == 13 || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in the "type" field. It can have
the following values:

LSL when type = 00

LSR when type = 01

1 1 1 0 1 0 1 0 0 1 1 S !=1111 (0) imm3 Rd imm2 type Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 6 5 4 3 0

Rn
C2-480 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
ASR when type = 10

ROR when type = 11

<amount> Is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift> =
LSR or ASR) encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
 result = R[n] OR NOT(shifted);
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-481
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.103 ORR (immediate)

Logical OR (immediate) performs a bitwise (inclusive) OR of a register value and an immediate value, and writes
the result to the destination register. It can optionally update the condition flags based on the result.

T1

ARMv8-M Main Extension only

ORR variant

Applies when S == 0.

ORR{<c>}{<q>} {<Rd>,} <Rn>, #<const>

ORRS variant

Applies when S == 1.

ORRS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for all variants of this encoding

if Rn == '1111' then SEE "MOV (immediate)";
if !HaveMainExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); setflags = (S == '1');
(imm32, carry) = T32ExpandImm_C(i:imm3:imm8, APSR.C);
if d IN {13,15} || n == 13 then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the
same as <Rn>.

<Rn> Is the general-purpose source register, encoded in the "Rn" field.

<const> An immediate value. See Modified immediate constants on page C1-249 for the range of values.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 result = R[n] OR imm32;
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.

1 1 1 1 0 i 0 0 0 1 0 S !=1111 0 imm3 Rd imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 0

Rn
C2-482 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.104 ORR (register)

Logical OR (register) performs a bitwise (inclusive) OR of a register value and an optionally-shifted register value,
and writes the result to the destination register. It can optionally update the condition flags based on the result.

T1

ARMv8-M

T1 variant

ORR<c>{<q>} {<Rdn>,} <Rdn>, <Rm> // Inside IT block
ORRS{<q>} {<Rdn>,} <Rdn>, <Rm> // Outside IT block

Decode for this encoding

d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();
(shift_t, shift_n) = (SRType_LSL, 0);

T2

ARMv8-M Main Extension only

ORR, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && type == 11.

ORR{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ORR, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && type == 11).

ORR<c>.W {<Rd>,} <Rn>, <Rm> // Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1
ORR{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

ORRS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && imm2 == 00 && type == 11.

ORRS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ORRS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && type == 11).

ORRS.W {<Rd>,} <Rn>, <Rm> // Outside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1
ORRS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

0 1 0 0 0 0 1 1 0 0 Rm Rdn
15 14 13 12 11 10 9 8 7 6 5 3 2 0

1 1 1 0 1 0 1 0 0 1 0 S !=1111 (0) imm3 Rd imm2 type Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 6 5 4 3 0

Rn
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-483
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Decode for all variants of this encoding

if Rn == '1111' then SEE "MOV (register)";
if !HaveMainExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
if d IN {13,15} || n == 13 || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rdn> Is the first general-purpose source register and the destination register, encoded in the "Rdn" field.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the
same as <Rn>.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in the "type" field. It can have
the following values:

LSL when type = 00

LSR when type = 01

ASR when type = 10

ROR when type = 11

<amount> Is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift> =
LSR or ASR) encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
 result = R[n] OR shifted;
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.
C2-484 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.105 PKHBT, PKHTB

Pack Halfword combines one halfword of its first operand with the other halfword of its shifted second operand.

T1

ARMv8-M DSP Extension only

PKHBT variant

Applies when tb == 0.

PKHBT{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, LSL #<imm>} // tbform == FALSE

PKHTB variant

Applies when tb == 1.

PKHTB{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ASR #<imm>} // tbform == TRUE

Decode for all variants of this encoding

if S == '1' || T == '1' then UNDEFINED;
if !HaveDSPExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); tbform = (tb == '1');
(shift_t, shift_n) = DecodeImmShift(tb:'0', imm3:imm2);
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<imm> The shift to apply to the value read from <Rm>, encoded in imm3:imm2. For PKHBT, it is one of:

omitted No shift, encoded as 0b00000.

1-31 Left shift by specified number of bits, encoded as a binary number.

 For PKHTB, it is one of:

omitted Instruction is a pseudo-instruction and is assembled as though PKHBT{<c>}{<q>} <Rd>,
<Rm>, <Rn> had been written.

1-32 Arithmetic right shift by specified number of bits. A shift by 32 bits is encoded as
0b00000. Other shift amounts are encoded as binary numbers.

Note
 An assembler can permit <imm> = 0 to mean the same thing as omitting the shift, but this is not

standard UAL and must not be used for disassembly.

1 1 1 0 1 0 1 0 1 1 0 0 Rn (0) imm3 Rd imm2 tb 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 6 5 4 3 0

S T
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-485
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 operand2 = Shift(R[m], shift_t, shift_n, APSR.C); // APSR.C ignored
 bits(32) result;
 result<15:0> = if tbform then operand2<15:0> else R[n]<15:0>;
 result<31:16> = if tbform then R[n]<31:16> else operand2<31:16>;
 R[d] = result;

Exceptions

None.
C2-486 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.106 PLD (immediate)

Preload Data signals the memory system that data memory accesses from a specified address are likely in the near
future. The memory system can respond by taking actions that are expected to speed up the memory accesses when
they do occur, such as pre-loading the cache line containing the specified address into the data cache.

T1

ARMv8-M Main Extension only

T1 variant

PLD{<c>}{<q>} [<Rn> {, #{+}<imm>}]

Decode for this encoding

if Rn == '1111' then SEE "PLD (literal)";
if !HaveMainExt() then UNDEFINED;
n = UInt(Rn); imm32 = ZeroExtend(imm12, 32); add = TRUE;

T2

ARMv8-M Main Extension only

T2 variant

PLD{<c>}{<q>} [<Rn> {, #-<imm>}]

Decode for this encoding

if Rn == '1111' then SEE "PLD (literal)";
if !HaveMainExt() then UNDEFINED;
n = UInt(Rn); imm32 = ZeroExtend(imm8, 32); add = FALSE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rn> Is the general-purpose base register, encoded in the "Rn" field. If the PC is used, see PLD (literal).

+ Specifies the offset is added to the base register.

<imm> For encoding T1: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095,
defaulting to 0 and encoded in the "imm12" field.

For encoding T2: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255,
defaulting to 0 and encoded in the "imm8" field.

1 1 1 1 1 0 0 0 1 0 0 1 !=1111 1 1 1 1 imm12
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 0

Rn

1 1 1 1 1 0 0 0 0 0 0 1 !=1111 1 1 1 1 1 1 0 0 imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 10 9 8 7 0

Rn
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-487
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 address = if add then (R[n] + imm32) else (R[n] - imm32);
 Hint_PreloadData(address);

Exceptions

None.
C2-488 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.107 PLD (literal)

Preload Data signals the memory system that data memory accesses from a specified address are likely in the near
future. The memory system can respond by taking actions that are expected to speed up the memory accesses when
they do occur, such as pre-loading the cache line containing the specified address into the data cache.

T1

ARMv8-M Main Extension only

T1 variant

PLD{<c>}{<q>} <label> // Preferred syntax
PLD{<c>}{<q>} [PC, #{+/-}<imm>] // Alternative syntax

Decode for this encoding

if !HaveMainExt() then UNDEFINED;
imm32 = ZeroExtend(imm12, 32); add = (U == '1');

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<label> The label of the literal data item that is likely to be accessed in the near future. The assembler
calculates the required value of the offset from the Align(PC, 4) value of the instruction to this label.
The offset must be in the range –4095 to 4095. If the offset is zero or positive, imm32 is equal to the
offset and add == TRUE. If the offset is negative, imm32 is equal to minus the offset and add == FALSE.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

<imm> Is a 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded in the "imm12" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 address = if add then (Align(PC,4) + imm32) else (Align(PC,4) - imm32);
 Hint_PreloadData(address);

Exceptions

None.

1 1 1 1 1 0 0 0 U 0 0 1 1 1 1 1 1 1 1 1 imm12
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-489
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.108 PLD (register)

Preload Data is a memory hint instruction that can signal the memory system that data memory accesses from a
specified address are likely in the near future. The memory system can respond by taking actions that are expected
to speed up the memory accesses when they do occur, such as pre-loading the cache line containing the specified
address into the data cache.

T1

ARMv8-M Main Extension only

T1 variant

PLD{<c>}{<q>} [<Rn>, {+}<Rm> {, LSL #<amount>}]

Decode for this encoding

if Rn == '1111' then SEE "PLD (literal)";
if !HaveMainExt() then UNDEFINED;
n = UInt(Rn); m = UInt(Rm); add = TRUE;
(shift_t, shift_n) = (SRType_LSL, UInt(shift));
if m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+ Specifies the index register is added to the base register.

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

<amount> Is the shift amount, in the range 0 to 3, defaulting to 0 and encoded in the "imm2" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 offset = Shift(R[m], shift_t, shift_n, APSR.C);
 address = if add then (R[n] + offset) else (R[n] - offset);
 Hint_PreloadData(address);

Exceptions

None.

1 1 1 1 1 0 0 0 0 0 0 1 !=1111 1 1 1 1 0 0 0 0 0 0 imm2 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 10 9 8 7 6 5 4 3 0

Rn
C2-490 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.109 PLI (immediate, literal)

Preload Instruction is a memory hint instruction that can signal the memory system that instruction memory
accesses from a specified address are likely in the near future. The memory system can respond by taking actions
that are expected to speed up the memory accesses when they do occur, such as pre-loading the cache line containing
the specified address into the instruction cache.

T1

ARMv8-M Main Extension only

T1 variant

PLI{<c>}{<q>} [<Rn> {, #{+}<imm>}]

Decode for this encoding

if Rn == '1111' then SEE "encoding T3";
if !HaveMainExt() then UNDEFINED;
n = UInt(Rn); imm32 = ZeroExtend(imm12, 32); add = TRUE;

T2

ARMv8-M Main Extension only

T2 variant

PLI{<c>}{<q>} [<Rn> {, #-<imm>}]

Decode for this encoding

if Rn == '1111' then SEE "encoding T3";
if !HaveMainExt() then UNDEFINED;
n = UInt(Rn); imm32 = ZeroExtend(imm8, 32); add = FALSE;

T3

ARMv8-M Main Extension only

T3 variant

PLI{<c>}{<q>} <label> // Preferred syntax
PLI{<c>}{<q>} [PC, #{+/-}<imm>] // Alternative syntax

1 1 1 1 1 0 0 1 1 0 0 1 !=1111 1 1 1 1 imm12
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 0

Rn

1 1 1 1 1 0 0 1 0 0 0 1 !=1111 1 1 1 1 1 1 0 0 imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 10 9 8 7 0

Rn

1 1 1 1 1 0 0 1 U 0 0 1 1 1 1 1 1 1 1 1 imm12
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-491
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Decode for this encoding

if !HaveMainExt() then UNDEFINED;
n = 15; imm32 = ZeroExtend(imm12, 32); add = (U == '1');

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<label> The label of the instruction that is likely to be accessed in the near future. The assembler calculates
the required value of the offset from the Align(PC, 4) value of the instruction to this label. The offset
must be in the range –4095 to 4095. If the offset is zero or positive, imm32 is equal to the offset and
add == TRUE. If the offset is negative, imm32 is equal to minus the offset and add == FALSE.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+ Specifies the offset is added to the base register.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

<imm> For encoding T1: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095,
defaulting to 0 and encoded in the "imm12" field.

For encoding T2: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255,
defaulting to 0 and encoded in the "imm8" field.

For encoding T3: is a 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded in the
"imm12" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 base = if n == 15 then Align(PC,4) else R[n];
 address = if add then (base + imm32) else (base - imm32);
 Hint_PreloadInstr(address);

Exceptions

None.
C2-492 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.110 PLI (register)

Preload Instruction is a memory hint instruction that can signal the memory system that instruction memory
accesses from a specified address are likely in the near future. The memory system can respond by taking actions
that are expected to speed up the memory accesses when they do occur, such as pre-loading the cache line containing
the specified address into the instruction cache.

T1

ARMv8-M Main Extension only

T1 variant

PLI{<c>}{<q>} [<Rn>, {+}<Rm> {, LSL #<amount>}]

Decode for this encoding

if Rn == '1111' then SEE "PLI (immediate, literal)";
if !HaveMainExt() then UNDEFINED;
n = UInt(Rn); m = UInt(Rm); add = TRUE;
(shift_t, shift_n) = (SRType_LSL, UInt(imm2));
if m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+ Specifies the index register is added to the base register.

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

<amount> Is the shift amount, in the range 0 to 3, defaulting to 0 and encoded in the "imm2" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 offset = Shift(R[m], shift_t, shift_n, APSR.C);
 address = if add then (R[n] + offset) else (R[n] - offset);
 Hint_PreloadInstr(address);

Exceptions

None.

1 1 1 1 1 0 0 1 0 0 0 1 !=1111 1 1 1 1 0 0 0 0 0 0 imm2 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 10 9 8 7 6 5 4 3 0

Rn
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-493
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.111 POP

Pop registers from stack loads one or more general-purpose registers from the stack, loading from consecutive
memory locations starting at the address in SP, and updates SP to point above the loaded data.

If the registers loaded include the PC, the word loaded for the PC is treated as a branch address or an exception
return value. Bit[0] complies with the ARM architecture interworking rules for switching between the A32 and T32
instruction sets. However, ARMv8-M only supports the T32 instruction set, so bit[0] must be 1. If bit[0] is 0 the PE
takes an INVSTATE UsageFault exception on the instruction at the target address.

This instruction is an alias of LDM, LDMIA, LDMFD and LDR (immediate). This means that:

• The encodings in this description are named to match the encodings of LDM, LDMIA, LDMFD and LDR
(immediate).

• The descriptions of LDM, LDMIA, LDMFD and LDR (immediate) give the operational pseudocode for this
instruction.

T2 - alias of LDM

ARMv8-M Main Extension only

T2 variant

POP{<c>}{<q>} <registers>

is equivalent to

LDM{<c>}{<q>} SP!, <registers>

and is the preferred disassembly when BitCount(register_list) > 1.

T3 - alias of LDM

ARMv8-M

T3 variant

POP{<c>}{<q>} <registers>

is equivalent to

LDM{<c>}{<q>} SP!, <registers>

and is always the preferred disassembly.

T4 - alias of LDR (immediate)

ARMv8-M Main Extension only

1 1 1 0 1 0 0 0 1 0 1 1 1 1 0 1 P M (0) register_list
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 0

W Rn

1 0 1 1 1 1 0 P register_list
15 14 13 12 11 10 9 8 7 0
C2-494 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Post-indexed variant

POP{<c>}{<q>} <single_register_list>

is equivalent to

LDR{<c>}{<q>} <Rt>, [SP], #4

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<registers> For encoding T2: is a list of two or more registers to be loaded, separated by commas and
surrounded by { and }. The lowest-numbered register is loaded from the lowest memory address,
through to the highest-numbered register from the highest memory address. The registers in the list
must be in the range R0-R12, encoded in the "register_list" field, and can optionally contain one of
the LR or the PC. If the LR is in the list, the "M" field is set to 1, otherwise it defaults to 0. If the PC
is in the list, the "P" field is set to 1, otherwise it defaults to 0. The PC can be in the list. If it is, the
instruction branches to the address loaded to the PC, and:

If the PC is in the list:

• The LR must not be in the list.

• The instruction must be either outside any IT block, or the last instruction in an IT block.

For encoding T3: is a list of one or more registers to be loaded, separated by commas and surrounded
by { and }. The registers in the list must be in the range R0-R7, encoded in the "register_list" field,
and can optionally include the PC. If the PC is in the list, the "P" field is set to 1, otherwise this field
defaults to 0. If the PC is in the list, the instruction must be either outside any IT block, or the last
instruction in an IT block.

<single_register_list>

Is the general-purpose register <Rt> to be loaded surrounded by { and }.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field. The PC can be used,
provided the instruction is either outside an IT block or the last instruction of an IT block. If the PC
is used, the instruction branches to the address (data) loaded to the PC.

Operation for all encodings

The descriptions of LDM, LDMIA, LDMFD and LDR (immediate) give the operational pseudocode for this
instruction.

1 1 1 1 1 0 0 0 0 1 0 1 1 1 0 1 Rt 1 0 1 1 0 0 0 0 0 1 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn P U W imm8
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-495
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.112 PUSH

Push registers to stack stores one or more general-purpose registers to the stack, storing to consecutive memory
locations ending below the address in SP, and updates SP to point to the start of the stored data.

This instruction is an alias of the STMDB, STMFD and STR (immediate). This means:

• The encodings in this description are named to match the encodings of STMDB, STMFD and STR
(immediate).

• The descriptions of STMDB, STMFD and STR (immediate) give the operational pseudocode for this
instruction.

T1 - alias of STMDB

ARMv8-M Main Extension only

T1 variant

PUSH{<c>}{<q>} <registers>

is equivalent to

STMDB{<c>}{<q>} SP!, <registers>

and is the preferred disassembly when BitCount(register_list) > 1.

T2 - alias of STMDB

ARMv8-M

T2 variant

PUSH{<c>}{<q>} <registers>

is equivalent to

STMDB{<c>}{<q>} SP!, <registers>

and is always the preferred disassembly.

T4 - alias of STR (immediate)

ARMv8-M Main Extension only

Pre-indexed variant

PUSH{<c>}{<q>} <single_register_list> // Standard syntax

1 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 (0) M (0) register_list
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 0

W Rn

1 0 1 1 0 1 0 P register_list
15 14 13 12 11 10 9 8 7 0

1 1 1 1 1 0 0 0 0 1 0 0 1 1 0 1 Rt 1 1 0 1 0 0 0 0 0 1 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn P U W imm8
C2-496 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
is equivalent to

STR{<c>}{<q>} <Rt>, [SP, #-4]!

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<registers> For encoding T1: is a list of one or more registers to be stored, separated by commas and surrounded
by { and }. The lowest-numbered register is stored to the lowest memory address, through to the
highest-numbered register to the highest memory address. The registers in the list must be in the
range R0-R12, encoded in the "register_list" field, and can optionally contain the LR. If the LR is
in the list, the "M" field is set to 1, otherwise it defaults to 0.

For encoding T2: is a list of one or more registers to be stored, separated by commas and surrounded
by { and }. The registers in the list must be in the range R0-R7, encoded in the "register_list" field,
and can optionally include the LR. If the LR is in the list, the "M" field is set to 1, otherwise this
field defaults to 0.

<single_register_list>

Is the general-purpose register <Rt> to be stored surrounded by { and }.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

Operation for all encodings

The descriptions of STMDB, STMFD and STR (immediate) give the operational pseudocode for this instruction.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-497
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.113 QADD

Saturating Add adds two register values, saturates the result to the 32-bit signed integer range -231 to 231-1, and
writes the result to the destination register. If saturation occurs, it sets the Q flag in the APSR.

T1

ARMv8-M DSP Extension only

T1 variant

QADD{<c>}{<q>} {<Rd>,} <Rm>, <Rn>

Decode for this encoding

if !HaveDSPExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the first general-purpose source register, encoded in the "Rm" field.

<Rn> Is the second general-purpose source register, encoded in the "Rn" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 (R[d], sat) = SignedSatQ(SInt(R[m]) + SInt(R[n]), 32);
 if sat then
 APSR.Q = '1';

Exceptions

None.

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 1 0 0 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
C2-498 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.114 QADD16

Saturating Add 16 performs two 16-bit integer additions, saturates the results to the 16-bit signed integer range -215
to 215-1, and writes the results to the destination register.

T1

ARMv8-M DSP Extension only

T1 variant

QADD16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

if !HaveDSPExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 sum1 = SInt(R[n]<15:0>) + SInt(R[m]<15:0>);
 sum2 = SInt(R[n]<31:16>) + SInt(R[m]<31:16>);
 bits(32) result;
 result<15:0> = SignedSat(sum1, 16);
 result<31:16> = SignedSat(sum2, 16);
 R[d] = result;

Exceptions

None.

1 1 1 1 1 0 1 0 1 0 0 1 Rn 1 1 1 1 Rd 0 0 0 1 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-499
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.115 QADD8

Saturating Add 8 performs four 8-bit integer additions, saturates the results to the 8-bit signed integer range -27 to
27-1, and writes the results to the destination register.

T1

ARMv8-M DSP Extension only

T1 variant

QADD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

if !HaveDSPExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 sum1 = SInt(R[n]<7:0>) + SInt(R[m]<7:0>);
 sum2 = SInt(R[n]<15:8>) + SInt(R[m]<15:8>);
 sum3 = SInt(R[n]<23:16>) + SInt(R[m]<23:16>);
 sum4 = SInt(R[n]<31:24>) + SInt(R[m]<31:24>);
 bits(32) result;
 result<7:0> = SignedSat(sum1, 8);
 result<15:8> = SignedSat(sum2, 8);
 result<23:16> = SignedSat(sum3, 8);
 result<31:24> = SignedSat(sum4, 8);
 R[d] = result;

Exceptions

None.

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 0 0 0 1 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
C2-500 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.116 QASX

Saturating Add and Subtract with Exchange exchanges the two halfwords of the second operand, performs one
16-bit integer addition and one 16-bit subtraction, saturates the results to the 16-bit signed integer range -215 to
215-1, and writes the results to the destination register.

T1

ARMv8-M DSP Extension only

T1 variant

QASX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

if !HaveDSPExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 diff = SInt(R[n]<15:0>) - SInt(R[m]<31:16>);
 sum = SInt(R[n]<31:16>) + SInt(R[m]<15:0>);
 bits(32) result;
 result<15:0> = SignedSat(diff, 16);
 result<31:16> = SignedSat(sum, 16);
 R[d] = result;

Exceptions

None.

1 1 1 1 1 0 1 0 1 0 1 0 Rn 1 1 1 1 Rd 0 0 0 1 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-501
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.117 QDADD

Saturating Double and Add adds a doubled register value to another register value, and writes the result to the
destination register. Both the doubling and the addition have their results saturated to the 32-bit signed integer range
-231 to 231-1. If saturation occurs in either operation, it sets the Q flag in the APSR.

T1

ARMv8-M DSP Extension only

T1 variant

QDADD{<c>}{<q>} {<Rd>,} <Rm>, <Rn>

Decode for this encoding

if !HaveDSPExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the first general-purpose source register, encoded in the "Rm" field.

<Rn> Is the second general-purpose source register, encoded in the "Rn" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 (doubled, sat1) = SignedSatQ(2 * SInt(R[n]), 32);
 (R[d], sat2) = SignedSatQ(SInt(R[m]) + SInt(doubled), 32);
 if sat1 || sat2 then
 APSR.Q = '1';

Exceptions

None.

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 1 0 0 1 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
C2-502 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.118 QDSUB

Saturating Double and Subtract subtracts a doubled register value from another register value, and writes the result
to the destination register. Both the doubling and the subtraction have their results saturated to the 32-bit signed
integer range -231 to 231-1. If saturation occurs in either operation, it sets the Q flag in the APSR.

T1

ARMv8-M DSP Extension only

T1 variant

QDSUB{<c>}{<q>} {<Rd>,} <Rm>, <Rn>

Decode for this encoding

if !HaveDSPExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the first general-purpose source register, encoded in the "Rm" field.

<Rn> Is the second general-purpose source register, encoded in the "Rn" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 (doubled, sat1) = SignedSatQ(2 * SInt(R[n]), 32);
 (R[d], sat2) = SignedSatQ(SInt(R[m]) - SInt(doubled), 32);
 if sat1 || sat2 then
 APSR.Q = '1';

Exceptions

None.

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 1 0 1 1 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-503
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.119 QSAX

Saturating Subtract and Add with Exchange exchanges the two halfwords of the second operand, performs one
16-bit integer subtraction and one 16-bit addition, saturates the results to the 16-bit signed integer range -215 to
215-1, and writes the results to the destination register.

T1

ARMv8-M DSP Extension only

T1 variant

QSAX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

if !HaveDSPExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 sum = SInt(R[n]<15:0>) + SInt(R[m]<31:16>);
 diff = SInt(R[n]<31:16>) - SInt(R[m]<15:0>);
 bits(32) result;
 result<15:0> = SignedSat(sum, 16);
 result<31:16> = SignedSat(diff, 16);
 R[d] = result;

Exceptions

None.

1 1 1 1 1 0 1 0 1 1 1 0 Rn 1 1 1 1 Rd 0 0 0 1 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
C2-504 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.120 QSUB

Saturating Subtract subtracts one register value from another register value, saturates the result to the 32-bit signed
integer range -231 to 231-1, and writes the result to the destination register. If saturation occurs, it sets the Q flag in
the APSR.

T1

ARMv8-M DSP Extension only

T1 variant

QSUB{<c>}{<q>} {<Rd>,} <Rm>, <Rn>

Decode for this encoding

if !HaveDSPExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the first general-purpose source register, encoded in the "Rm" field.

<Rn> Is the second general-purpose source register, encoded in the "Rn" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 (R[d], sat) = SignedSatQ(SInt(R[m]) - SInt(R[n]), 32);
 if sat then
 APSR.Q = '1';

Exceptions

None.

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 1 0 1 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-505
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.121 QSUB16

Saturating Subtract 16 performs two 16-bit integer subtractions, saturates the results to the 16-bit signed integer
range -215 to 215-1, and writes the results to the destination register.

T1

ARMv8-M DSP Extension only

T1 variant

QSUB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

if !HaveDSPExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 diff1 = SInt(R[n]<15:0>) - SInt(R[m]<15:0>);
 diff2 = SInt(R[n]<31:16>) - SInt(R[m]<31:16>);
 bits(32) result;
 result<15:0> = SignedSat(diff1, 16);
 result<31:16> = SignedSat(diff2, 16);
 R[d] = result;

Exceptions

None.

1 1 1 1 1 0 1 0 1 1 0 1 Rn 1 1 1 1 Rd 0 0 0 1 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
C2-506 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.122 QSUB8

Saturating Subtract 8 performs four 8-bit integer subtractions, saturates the results to the 8-bit signed integer range
-27 to 27-1, and writes the results to the destination register.

T1

ARMv8-M DSP Extension only

T1 variant

QSUB8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

if !HaveDSPExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 diff1 = SInt(R[n]<7:0>) - SInt(R[m]<7:0>);
 diff2 = SInt(R[n]<15:8>) - SInt(R[m]<15:8>);
 diff3 = SInt(R[n]<23:16>) - SInt(R[m]<23:16>);
 diff4 = SInt(R[n]<31:24>) - SInt(R[m]<31:24>);
 R[d]<7:0> = SignedSat(diff1, 8);
 R[d]<15:8> = SignedSat(diff2, 8);
 R[d]<23:16> = SignedSat(diff3, 8);
 R[d]<31:24> = SignedSat(diff4, 8);

Exceptions

None.

1 1 1 1 1 0 1 0 1 1 0 0 Rn 1 1 1 1 Rd 0 0 0 1 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-507
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.123 RBIT

Reverse Bits reverses the bit order in a 32-bit register.

T1

ARMv8-M Main Extension only

T1 variant

RBIT{<c>}{<q>} <Rd>, <Rm>

Decode for this encoding

if !HaveMainExt() then UNDEFINED;
if !Consistent(Rm) then UNPREDICTABLE;
d = UInt(Rd); m = UInt(Rm);
if d IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the general-purpose source register, encoded in the "Rm" field. Its number must be encoded twice.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 bits(32) result;
 for i = 0 to 31
 result<31-i> = R[m]<i>;
 R[d] = result;

Exceptions

None.

1 1 1 1 1 0 1 0 1 0 0 1 Rm 1 1 1 1 Rd 1 0 1 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
C2-508 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.124 REV

Byte-Reverse Word reverses the byte order in a 32-bit register.

T1

ARMv8-M

T1 variant

REV{<c>}{<q>} <Rd>, <Rm>

Decode for this encoding

d = UInt(Rd); m = UInt(Rm);

T2

ARMv8-M Main Extension only

T2 variant

REV{<c>}.W <Rd>, <Rm> // <Rd>, <Rm> can be represented in T1
REV{<c>}{<q>} <Rd>, <Rm>

Decode for this encoding

if !HaveMainExt() then UNDEFINED;
if !Consistent(Rm) then UNPREDICTABLE;
d = UInt(Rd); m = UInt(Rm);
if d IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding T1: is the general-purpose source register, encoded in the "Rm" field.

For encoding T2: is the general-purpose source register, encoded in the "Rm" field. Its number must
be encoded twice.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 bits(32) result;
 result<31:24> = R[m]<7:0>;
 result<23:16> = R[m]<15:8>;

1 0 1 1 1 0 1 0 0 0 Rm Rd
15 14 13 12 11 10 9 8 7 6 5 3 2 0

1 1 1 1 1 0 1 0 1 0 0 1 Rm 1 1 1 1 Rd 1 0 0 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-509
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
 result<15:8> = R[m]<23:16>;
 result<7:0> = R[m]<31:24>;
 R[d] = result;

Exceptions

None.
C2-510 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.125 REV16

Byte-Reverse Packed Halfword reverses the byte order in each 16-bit halfword of a 32-bit register.

T1

ARMv8-M

T1 variant

REV16{<c>}{<q>} <Rd>, <Rm>

Decode for this encoding

d = UInt(Rd); m = UInt(Rm);

T2

ARMv8-M Main Extension only

T2 variant

REV16{<c>}.W <Rd>, <Rm> // <Rd>, <Rm> can be represented in T1
REV16{<c>}{<q>} <Rd>, <Rm>

Decode for this encoding

if !HaveMainExt() then UNDEFINED;
if !Consistent(Rm) then UNPREDICTABLE;
d = UInt(Rd); m = UInt(Rm);
if d IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding T1: is the general-purpose source register, encoded in the "Rm" field.

For encoding T2: is the general-purpose source register, encoded in the "Rm" field. Its number must
be encoded twice.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 bits(32) result;
 result<31:24> = R[m]<23:16>;
 result<23:16> = R[m]<31:24>;

1 0 1 1 1 0 1 0 0 1 Rm Rd
15 14 13 12 11 10 9 8 7 6 5 3 2 0

1 1 1 1 1 0 1 0 1 0 0 1 Rm 1 1 1 1 Rd 1 0 0 1 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-511
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
 result<15:8> = R[m]<7:0>;
 result<7:0> = R[m]<15:8>;
 R[d] = result;

Exceptions

None.
C2-512 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.126 REVSH

Byte-Reverse Signed Halfword reverses the byte order in the lower 16-bit halfword of a 32-bit register, and sign
extends the result to 32 bits.

T1

ARMv8-M

T1 variant

REVSH{<c>}{<q>} <Rd>, <Rm>

Decode for this encoding

d = UInt(Rd); m = UInt(Rm);

T2

ARMv8-M Main Extension only

T2 variant

REVSH{<c>}.W <Rd>, <Rm> // <Rd>, <Rm> can be represented in T1
REVSH{<c>}{<q>} <Rd>, <Rm>

Decode for this encoding

if !HaveMainExt() then UNDEFINED;
if !Consistent(Rm) then UNPREDICTABLE;
d = UInt(Rd); m = UInt(Rm);
if d IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding T1: is the general-purpose source register, encoded in the "Rm" field.

For encoding T2: is the general-purpose source register, encoded in the "Rm" field. Its number must
be encoded twice.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 bits(32) result;

1 0 1 1 1 0 1 0 1 1 Rm Rd
15 14 13 12 11 10 9 8 7 6 5 3 2 0

1 1 1 1 1 0 1 0 1 0 0 1 Rm 1 1 1 1 Rd 1 0 1 1 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-513
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
 result<31:8> = SignExtend(R[m]<7:0>, 24);
 result<7:0> = R[m]<15:8>;
 R[d] = result;

Exceptions

None.
C2-514 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.127 ROR (immediate)

Rotate Right (immediate) rotates a register value by a constant number of bits, inserting the bits that are rotated off
the right end into the vacated bit positions on the left, and writes the result to the destination register.

This instruction is an alias of the MOV (register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV (register).

• The description of MOV (register) gives the operational pseudocode for this instruction.

T3

ARMv8-M Main Extension only

MOV, shift or rotate by value variant

Applies when !(imm3 == 000 && imm2 == 00).

ROR{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, ROR #<imm>

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the general-purpose source register, encoded in the "Rm" field.

<imm> Is the shift amount, in the range 1 to 31, encoded in the "imm3:imm2" field.

Operation

The description of MOV (register) gives the operational pseudocode for this instruction.

1 1 1 0 1 0 1 0 0 1 0 0 1 1 1 1 (0) imm3 Rd imm2 1 1 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 6 5 4 3 0

S

ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-515
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.128 ROR (register)

Rotate Right (register) rotates a register value by a variable number of bits, inserting the bits that are rotated off the
right end into the vacated bit positions on the left, and writes the result to the destination register. The variable
number of bits is read from the bottom byte of a register.

This instruction is an alias of the MOV, MOVS (register-shifted register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted
register).

• The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this
instruction.

T1

ARMv8-M Main Extension only

Rotate right variant

ROR<c>{<q>} {<Rdm>,} <Rdm>, <Rs> // Inside IT block

is equivalent to

MOV<c>{<q>} <Rdm>, <Rdm>, ROR <Rs>

and is the preferred disassembly when InITBlock().

T2

ARMv8-M Main Extension only

Not flag setting variant

ROR<c>.W {<Rd>,} <Rm>, <Rs> // Inside IT block, and <Rd>, <Rm>, <type>, <Rs> can be represented in T1

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, ROR <Rs>

and is always the preferred disassembly.

ROR{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, ROR <Rs>

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

0 1 0 0 0 0 0 1 1 1 Rs Rdm
15 14 13 12 11 10 9 6 5 3 2 0

op

1 1 1 1 1 0 1 0 0 1 1 0 Rm 1 1 1 1 Rd 0 0 0 0 Rs
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0

type S
C2-516 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
<q> See Standard assembler syntax fields on page C1-240.

<Rdm> Is the first general-purpose source register and the destination register, encoded in the "Rdm" field.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the first general-purpose source register, encoded in the "Rm" field.

<Rs> Is the second general-purpose source register holding a rotate amount in its bottom 8 bits, encoded
in the "Rs" field.

Operation for all encodings

The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-517
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.129 RORS (immediate)

Rotate Right, Setting flags (immediate) rotates a register value by a constant number of bits, inserting the bits that
are rotated off the right end into the vacated bit positions on the left, writes the result to the destination register, and
updates the condition flags based on the result.

This instruction is an alias of the MOV (register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV (register).

• The description of MOV (register) gives the operational pseudocode for this instruction.

T3

ARMv8-M Main Extension only

MOVS, shift or rotate by value variant

Applies when !(imm3 == 000 && imm2 == 00).

RORS{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, ROR #<imm>

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the general-purpose source register, encoded in the "Rm" field.

<imm> Is the shift amount, in the range 1 to 31, encoded in the "imm3:imm2" field.

Operation

The description of MOV (register) gives the operational pseudocode for this instruction.

1 1 1 0 1 0 1 0 0 1 0 1 1 1 1 1 (0) imm3 Rd imm2 1 1 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 6 5 4 3 0

S

C2-518 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.130 RORS (register)

Rotate Right, Setting flags (register) rotates a register value by a variable number of bits, inserting the bits that are
rotated off the right end into the vacated bit positions on the left, writes the result to the destination register, and
updates the condition flags based on the result. The variable number of bits is read from the bottom byte of a register.

This instruction is an alias of the MOV, MOVS (register-shifted register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted
register).

• The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this
instruction.

T1

ARMv8-M

Rotate right variant

RORS{<q>} {<Rdm>,} <Rdm>, <Rs> // Outside IT block

is equivalent to

MOVS{<q>} <Rdm>, <Rdm>, ROR <Rs>

and is the preferred disassembly when !InITBlock().

T2

ARMv8-M Main Extension only

Flag setting variant

RORS.W {<Rd>,} <Rm>, <Rs> // Outside IT block, and <Rd>, <Rm>, <type>, <Rs> can be represented in T1

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, ROR <Rs>

and is always the preferred disassembly.

RORS{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, ROR <Rs>

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

0 1 0 0 0 0 0 1 1 1 Rs Rdm
15 14 13 12 11 10 9 6 5 3 2 0

op

1 1 1 1 1 0 1 0 0 1 1 1 Rm 1 1 1 1 Rd 0 0 0 0 Rs
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0

type S
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-519
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
<q> See Standard assembler syntax fields on page C1-240.

<Rdm> Is the first general-purpose source register and the destination register, encoded in the "Rdm" field.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the first general-purpose source register, encoded in the "Rm" field.

<Rs> Is the second general-purpose source register holding a rotate amount in its bottom 8 bits, encoded
in the "Rs" field.

Operation for all encodings

The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.
C2-520 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.131 RRX

Rotate Right with Extend shifts a register value right by one bit, shifting the Carry flag into bit[31], and writes the
result to the destination register.

This instruction is an alias of the MOV (register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV (register).

• The description of MOV (register) gives the operational pseudocode for this instruction.

T3

ARMv8-M Main Extension only

MOV, rotate right with extend variant

RRX{<c>}{<q>} {<Rd>,} <Rm>

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, RRX

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the general-purpose source register, encoded in the "Rm" field.

Operation

The description of MOV (register) gives the operational pseudocode for this instruction.

1 1 1 0 1 0 1 0 0 1 0 0 1 1 1 1 (0) 0 0 0 Rd 0 0 1 1 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 8 7 6 5 4 3 0

S

ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-521
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.132 RRXS

Rotate Right with Extend, Setting flags shifts a register value right by one bit, shifting the Carry flag into bit[31]
and bit[0] into the Carry flag, writes the result to the destination register and updates the condition flags (other than
Carry) based on the result.

This instruction is an alias of the MOV (register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV (register).

• The description of MOV (register) gives the operational pseudocode for this instruction.

T3

ARMv8-M Main Extension only

MOVS, rotate right with extend variant

RRXS{<c>}{<q>} {<Rd>,} <Rm>

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, RRX

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the general-purpose source register, encoded in the "Rm" field.

Operation

The description of MOV (register) gives the operational pseudocode for this instruction.

1 1 1 0 1 0 1 0 0 1 0 1 1 1 1 1 (0) 0 0 0 Rd 0 0 1 1 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 8 7 6 5 4 3 0

S

C2-522 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.133 RSB (immediate)

Reverse Subtract (immediate) subtracts a register value from an immediate value, and writes the result to the
destination register. It can optionally update the condition flags based on the result.

T1

ARMv8-M

T1 variant

RSB<c>{<q>} {<Rd>, }<Rn>, #0 // Inside IT block
RSBS{<q>} {<Rd>, }<Rn>, #0 // Outside IT block

Decode for this encoding

d = UInt(Rd); n = UInt(Rn); setflags = !InITBlock(); imm32 = Zeros(32); // immediate = #0

T2

ARMv8-M Main Extension only

RSB variant

Applies when S == 0.

RSB<c>.W {<Rd>,} <Rn>, #0 // Inside IT block
RSB{<c>}{<q>} {<Rd>,} <Rn>, #<const>

RSBS variant

Applies when S == 1.

RSBS.W {<Rd>,} <Rn>, #0 // Outside IT block
RSBS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for all variants of this encoding

if !HaveMainExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); setflags = (S == '1'); imm32 = T32ExpandImm(i:imm3:imm8);
if d IN {13,15} || n IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the
same as <Rn>.

<Rn> Is the general-purpose source register, encoded in the "Rn" field.

0 1 0 0 0 0 1 0 0 1 Rn Rd
15 14 13 12 11 10 9 8 7 6 5 3 2 0

1 1 1 1 0 i 0 1 1 1 0 S Rn 0 imm3 Rd imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-523
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
<const> An immediate value. See Modified immediate constants on page C1-249 for the range of values.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 (result, carry, overflow) = AddWithCarry(NOT(R[n]), imm32, '1');
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 APSR.V = overflow;

Exceptions

None.
C2-524 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.134 RSB (register)

Reverse Subtract (register) subtracts a register value from an optionally-shifted register value, and writes the result
to the destination register. It can optionally update the condition flags based on the result.

T1

ARMv8-M Main Extension only

RSB, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && type == 11.

RSB{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

RSB, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && type == 11).

RSB{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

RSBS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && imm2 == 00 && type == 11.

RSBS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

RSBS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && type == 11).

RSBS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

if !HaveMainExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the
same as <Rn>.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in the "type" field. It can have
the following values:

LSL when type = 00

LSR when type = 01

ASR when type = 10

1 1 1 0 1 0 1 1 1 1 0 S Rn (0) imm3 Rd imm2 type Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-525
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
ROR when type = 11

<amount> Is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift> =
LSR or ASR) encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 shifted = Shift(R[m], shift_t, shift_n, APSR.C);
 (result, carry, overflow) = AddWithCarry(NOT(R[n]), shifted, '1');
 R[d] = result;
 if setflags then
 APSR.Z = IsZeroBit(result);
 APSR.N = result<31>;
 APSR.C = carry;
 APSR.V = overflow;

Exceptions

None.
C2-526 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.135 SADD16

Signed Add 16 performs two 16-bit signed integer additions, and writes the results to the destination register. It sets
the APSR.GE bits according to the results of the additions.

T1

ARMv8-M DSP Extension only

T1 variant

SADD16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

if !HaveDSPExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 sum1 = SInt(R[n]<15:0>) + SInt(R[m]<15:0>);
 sum2 = SInt(R[n]<31:16>) + SInt(R[m]<31:16>);
 R[d] = sum2<15:0> : sum1<15:0>;
 APSR.GE<1:0> = if sum1 >= 0 then '11' else '00';
 APSR.GE<3:2> = if sum2 >= 0 then '11' else '00';

Exceptions

None.

1 1 1 1 1 0 1 0 1 0 0 1 Rn 1 1 1 1 Rd 0 0 0 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-527
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.136 SADD8

Signed Add 8 performs four 8-bit signed integer additions, and writes the results to the destination register. It sets
the APSR.GE bits according to the results of the additions.

T1

ARMv8-M DSP Extension only

T1 variant

SADD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

if !HaveDSPExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 sum1 = SInt(R[n]<7:0>) + SInt(R[m]<7:0>);
 sum2 = SInt(R[n]<15:8>) + SInt(R[m]<15:8>);
 sum3 = SInt(R[n]<23:16>) + SInt(R[m]<23:16>);
 sum4 = SInt(R[n]<31:24>) + SInt(R[m]<31:24>);
 R[d] = sum4<7:0> : sum3<7:0> : sum2<7:0> : sum1<7:0>;
 APSR.GE<0> = if sum1 >= 0 then '1' else '0';
 APSR.GE<1> = if sum2 >= 0 then '1' else '0';
 APSR.GE<2> = if sum3 >= 0 then '1' else '0';
 APSR.GE<3> = if sum4 >= 0 then '1' else '0';

Exceptions

None.

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 0 0 0 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
C2-528 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.137 SASX

Signed Add and Subtract with Exchange exchanges the two halfwords of the second operand, performs one 16-bit
integer addition and one 16-bit subtraction, and writes the results to the destination register. It sets the APSR.GE
bits according to the results.

T1

ARMv8-M DSP Extension only

T1 variant

SASX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

if !HaveDSPExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 diff = SInt(R[n]<15:0>) - SInt(R[m]<31:16>);
 sum = SInt(R[n]<31:16>) + SInt(R[m]<15:0>);
 R[d] = sum<15:0> : diff<15:0>;
 APSR.GE<1:0> = if diff >= 0 then '11' else '00';
 APSR.GE<3:2> = if sum >= 0 then '11' else '00';

Exceptions

None.

1 1 1 1 1 0 1 0 1 0 1 0 Rn 1 1 1 1 Rd 0 0 0 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-529
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.138 SBC (immediate)

Subtract with Carry (immediate) subtracts an immediate value and the value of NOT(Carry flag) from a register
value, and writes the result to the destination register. It can optionally update the condition flags based on the result.

T1

ARMv8-M Main Extension only

SBC variant

Applies when S == 0.

SBC{<c>}{<q>} {<Rd>,} <Rn>, #<const>

SBCS variant

Applies when S == 1.

SBCS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for all variants of this encoding

if !HaveMainExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); setflags = (S == '1'); imm32 = T32ExpandImm(i:imm3:imm8);
if d IN {13,15} || n IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the
same as <Rn>.

<Rn> Is the general-purpose source register, encoded in the "Rn" field.

<const> An immediate value. See Modified immediate constants on page C1-249 for the range of values.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 (result, carry, overflow) = AddWithCarry(R[n], NOT(imm32), APSR.C);
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 APSR.V = overflow;

Exceptions

None.

1 1 1 1 0 i 0 1 0 1 1 S Rn 0 imm3 Rd imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 0
C2-530 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.139 SBC (register)

Subtract with Carry (register) subtracts an optionally-shifted register value and the value of NOT(Carry flag) from
a register value, and writes the result to the destination register. It can optionally update the condition flags based
on the result.

T1

ARMv8-M

T1 variant

SBC<c>{<q>} {<Rdn>,} <Rdn>, <Rm> // Inside IT block
SBCS{<q>} {<Rdn>,} <Rdn>, <Rm> // Outside IT block

Decode for this encoding

d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();
(shift_t, shift_n) = (SRType_LSL, 0);

T2

ARMv8-M Main Extension only

SBC, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && type == 11.

SBC{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

SBC, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && type == 11).

SBC<c>.W {<Rd>,} <Rn>, <Rm> // Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1
SBC{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

SBCS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && imm2 == 00 && type == 11.

SBCS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

SBCS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && type == 11).

SBCS.W {<Rd>,} <Rn>, <Rm> // Outside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1
SBCS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

0 1 0 0 0 0 0 1 1 0 Rm Rdn
15 14 13 12 11 10 9 8 7 6 5 3 2 0

1 1 1 0 1 0 1 1 0 1 1 S Rn (0) imm3 Rd imm2 type Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-531
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Decode for all variants of this encoding

if !HaveMainExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rdn> Is the first general-purpose source register and the destination register, encoded in the "Rdn" field.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the
same as <Rn>.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in the "type" field. It can have
the following values:

LSL when type = 00

LSR when type = 01

ASR when type = 10

ROR when type = 11

<amount> Is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift> =
LSR or ASR) encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 shifted = Shift(R[m], shift_t, shift_n, APSR.C);
 (result, carry, overflow) = AddWithCarry(R[n], NOT(shifted), APSR.C);
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 APSR.V = overflow;

Exceptions

None.
C2-532 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.140 SBFX

Signed Bit Field Extract extracts any number of adjacent bits at any position from one register, sign extends them
to 32 bits, and writes the result to the destination register.

T1

ARMv8-M Main Extension only

T1 variant

SBFX{<c>}{<q>} <Rd>, <Rn>, #<lsb>, #<width>

Decode for this encoding

if !HaveMainExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn);
lsbit = UInt(imm3:imm2); widthminus1 = UInt(widthm1);
msbit = lsbit + widthminus1;
if msbit > 31 then UNPREDICTABLE;
if d IN {13,15} || n IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the general-purpose source register, encoded in the "Rn" field.

<lsb> Is the bit number of the least significant bit in the field, in the range 0 to 31, encoded in the
"imm3:imm2" field.

<width> Is the width of the field, in the range 1 to 32-<lsb>, encoded in the "widthm1" field as <width>-1.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 if msbit <= 31 then
 R[d] = SignExtend(R[n]<msbit:lsbit>, 32);
 else
 R[d] = bits(32) UNKNOWN;

Exceptions

None.

1 1 1 1 0 (0) 1 1 0 1 0 0 Rn 0 imm3 Rd imm2 (0) widthm1
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 6 5 4 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-533
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.141 SDIV

Signed Divide divides a 32-bit signed integer register value by a 32-bit signed integer register value, and writes the
result to the destination register. The condition code flags are not affected.

T1

ARMv8-M

T1 variant

SDIV{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register holding the dividend, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the divisor, encoded in the "Rm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 if SInt(R[m]) == 0 then
 if IntegerZeroDivideTrappingEnabled() then
 GenerateIntegerZeroDivide();
 else
 result = 0;
 else
 result = RoundTowardsZero(Real(SInt(R[n])) / Real(SInt(R[m])));
 R[d] = result<31:0>;

Exceptions

UsageFault.

1 1 1 1 1 0 1 1 1 0 0 1 Rn (1) (1) (1) (1) Rd 1 1 1 1 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
C2-534 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.142 SEL

Select Bytes selects each byte of its result from either its first operand or its second operand, according to the values
of the GE flags.

T1

ARMv8-M DSP Extension only

T1 variant

SEL{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

if !HaveDSPExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 bits(32) result;
 result<7:0> = if APSR.GE<0> == '1' then R[n]<7:0> else R[m]<7:0>;
 result<15:8> = if APSR.GE<1> == '1' then R[n]<15:8> else R[m]<15:8>;
 result<23:16> = if APSR.GE<2> == '1' then R[n]<23:16> else R[m]<23:16>;
 result<31:24> = if APSR.GE<3> == '1' then R[n]<31:24> else R[m]<31:24>;
 R[d] = result;

Exceptions

None.

1 1 1 1 1 0 1 0 1 0 1 0 Rn 1 1 1 1 Rd 1 0 0 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-535
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.143 SEV

Send Event is a hint instruction. It causes an event to be signaled to all PEs within the multiprocessor system.

This is a NOP-compatible hint. For more information about NOP-compatible hints, see NOP-compatible hint
instructions on page C1-251.

T1

ARMv8-M

T1 variant

SEV{<c>}{<q>}

Decode for this encoding

// No additional decoding required

T2

ARMv8-M Main Extension only

T2 variant

SEV{<c>}.W

Decode for this encoding

if !HaveMainExt() then UNDEFINED;
// No additional decoding required

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 SendEvent();

Exceptions

None.

1 0 1 1 1 1 1 1 0 1 0 0 0 0 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 0 0 0 0 0 1 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
C2-536 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.144 SG

Secure Gateway marks a valid branch target for branches from Non-secure code that call Secure code.

This instruction sets the Security state to Secure if its address is in Secure memory. If the address of this instruction
is in Non-secure memory, it behaves as a NOP.

If the PE was previously in Non-secure state:

• This instruction sets bit[0] of LR to 0, to indicate that the return address will cause a transition from Secure
to Non-secure state.

• If the Floating-point Extension is implemented, this instruction marks Secure floating-point state as inactive,
by setting CONTROL_S.SFPA to 0. This indicates that the floating-point registers do not contain active state
that belongs to the Secure state.

If the Security Extension is not implemented, this instruction behaves as a NOP.

Note
 SG is an unconditional instruction and executes as such both inside and outside an IT instruction block.

T1

ARMv8-M

T1 variant

SG{<q>}

Decode for this encoding

// No encoding specific operations

Assembler symbols

<q> See Standard assembler syntax fields on page C1-240.

Operation

EncodingSpecificOperations();

if HaveSecurityExt() then
 sAttributes = SecurityCheck(ThisInstrAddr(), TRUE, IsSecure());
 if !sAttributes.ns then
 if !IsSecure() then
 LR<0> = '0';
 if HaveFPExt() then
 CONTROL_S.SFPA = '0';
 CurrentState = SecurityState_Secure;
 // IT/ICI bits cleared to prevent Non-secure code interfering with
 // Secure execution
 if HaveMainExt() then
 ITSTATE.IT = Zeros(8);

Exceptions

None.

1 1 1 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 0 1 1 1 1 1 1 1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-537
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.145 SHADD16

Signed Halving Add 16 performs two signed 16-bit integer additions, halves the results, and writes the results to the
destination register.

T1

ARMv8-M DSP Extension only

T1 variant

SHADD16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

if !HaveDSPExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 sum1 = SInt(R[n]<15:0>) + SInt(R[m]<15:0>);
 sum2 = SInt(R[n]<31:16>) + SInt(R[m]<31:16>);
 R[d] = sum2<16:1> : sum1<16:1>;

Exceptions

None.

1 1 1 1 1 0 1 0 1 0 0 1 Rn 1 1 1 1 Rd 0 0 1 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
C2-538 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.146 SHADD8

Signed Halving Add 8 performs four signed 8-bit integer additions, halves the results, and writes the results to the
destination register.

T1

ARMv8-M DSP Extension only

T1 variant

SHADD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

if !HaveDSPExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 sum1 = SInt(R[n]<7:0>) + SInt(R[m]<7:0>);
 sum2 = SInt(R[n]<15:8>) + SInt(R[m]<15:8>);
 sum3 = SInt(R[n]<23:16>) + SInt(R[m]<23:16>);
 sum4 = SInt(R[n]<31:24>) + SInt(R[m]<31:24>);
 R[d] = sum4<8:1> : sum3<8:1> : sum2<8:1> : sum1<8:1>;

Exceptions

None.

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 0 0 1 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-539
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.147 SHASX

Signed Halving Add and Subtract with Exchange exchanges the two halfwords of the second operand, performs one
signed 16-bit integer addition and one signed 16-bit subtraction, halves the results, and writes the results to the
destination register.

T1

ARMv8-M DSP Extension only

T1 variant

SHASX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

if !HaveDSPExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 diff = SInt(R[n]<15:0>) - SInt(R[m]<31:16>);
 sum = SInt(R[n]<31:16>) + SInt(R[m]<15:0>);
 R[d] = sum<16:1> : diff<16:1>;

Exceptions

None.

1 1 1 1 1 0 1 0 1 0 1 0 Rn 1 1 1 1 Rd 0 0 1 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
C2-540 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.148 SHSAX

Signed Halving Subtract and Add with Exchange exchanges the two halfwords of the second operand, performs one
signed 16-bit integer subtraction and one signed 16-bit addition, halves the results, and writes the results to the
destination register.

T1

ARMv8-M DSP Extension only

T1 variant

SHSAX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

if !HaveDSPExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 sum = SInt(R[n]<15:0>) + SInt(R[m]<31:16>);
 diff = SInt(R[n]<31:16>) - SInt(R[m]<15:0>);
 R[d] = diff<16:1> : sum<16:1>;

Exceptions

None.

1 1 1 1 1 0 1 0 1 1 1 0 Rn 1 1 1 1 Rd 0 0 1 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-541
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.149 SHSUB16

Signed Halving Subtract 16 performs two signed 16-bit integer subtractions, halves the results, and writes the results
to the destination register.

T1

ARMv8-M DSP Extension only

T1 variant

SHSUB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

if !HaveDSPExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 diff1 = SInt(R[n]<15:0>) - SInt(R[m]<15:0>);
 diff2 = SInt(R[n]<31:16>) - SInt(R[m]<31:16>);
 R[d] = diff2<16:1> : diff1<16:1>;

Exceptions

None.

1 1 1 1 1 0 1 0 1 1 0 1 Rn 1 1 1 1 Rd 0 0 1 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
C2-542 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.150 SHSUB8

Signed Halving Subtract 8 performs four signed 8-bit integer subtractions, halves the results, and writes the results
to the destination register.

T1

ARMv8-M DSP Extension only

T1 variant

SHSUB8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

if !HaveDSPExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 diff1 = SInt(R[n]<7:0>) - SInt(R[m]<7:0>);
 diff2 = SInt(R[n]<15:8>) - SInt(R[m]<15:8>);
 diff3 = SInt(R[n]<23:16>) - SInt(R[m]<23:16>);
 diff4 = SInt(R[n]<31:24>) - SInt(R[m]<31:24>);
 R[d] = diff4<8:1> : diff3<8:1> : diff2<8:1> : diff1<8:1>;

Exceptions

None.

1 1 1 1 1 0 1 0 1 1 0 0 Rn 1 1 1 1 Rd 0 0 1 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-543
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.151 SMLABB, SMLABT, SMLATB, SMLATT

Signed Multiply Accumulate (halfwords) performs a signed multiply accumulate operation. The multiply acts on
two signed 16-bit quantities, taken from either the bottom or the top half of their respective source registers. The
other halves of these source registers are ignored. The 32-bit product is added to a 32-bit accumulate value and the
result is written to the destination register.

If overflow occurs during the addition of the accumulate value, the instruction sets the Q flag in the APSR. It is not
possible for overflow to occur during the multiplication.

T1

ARMv8-M DSP Extension only

SMLABB variant

Applies when N == 0 && M == 0.

SMLABB{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMLABT variant

Applies when N == 0 && M == 1.

SMLABT{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMLATB variant

Applies when N == 1 && M == 0.

SMLATB{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMLATT variant

Applies when N == 1 && M == 1.

SMLATT{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for all variants of this encoding

if Ra == '1111' then SEE "SMULBB, SMULBT, SMULTB, SMULTT";
if !HaveDSPExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra);
n_high = (N == '1'); m_high = (M == '1');
if d IN {13,15} || n IN {13,15} || m IN {13,15} || a == 13 then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register holding the multiplicand in the bottom or top half
(selected by <x>), encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the multiplier in the bottom or top half
(selected by <y>), encoded in the "Rm" field.

1 1 1 1 1 0 1 1 0 0 0 1 Rn !=1111 Rd 0 0 N M Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0

Ra
C2-544 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
<Ra> Is the third general-purpose source register holding the addend, encoded in the "Ra" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 operand1 = if n_high then R[n]<31:16> else R[n]<15:0>;
 operand2 = if m_high then R[m]<31:16> else R[m]<15:0>;
 result = SInt(operand1) * SInt(operand2) + SInt(R[a]);
 R[d] = result<31:0>;
 if result != SInt(result<31:0>) then // Signed overflow
 APSR.Q = '1';

Exceptions

None.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-545
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.152 SMLAD, SMLADX

Signed Multiply Accumulate Dual performs two signed 16-bit by 16-bit multiplications. It adds the products to a
32-bit accumulate operand.

Optionally, the instruction can exchange the halfwords of the second operand before performing the arithmetic.

This instruction sets the Q flag if the accumulate operation overflows. Overflow cannot occur during the
multiplications.

T1

ARMv8-M DSP Extension only

SMLAD variant

Applies when M == 0.

SMLAD{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMLADX variant

Applies when M == 1.

SMLADX{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for all variants of this encoding

if Ra == '1111' then SEE SMUAD;
if !HaveDSPExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra);
m_swap = (M == '1');
if d IN {13,15} || n IN {13,15} || m IN {13,15} || a == 13 then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<Ra> Is the third general-purpose source register holding the addend, encoded in the "Ra" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 operand2 = if m_swap then ROR(R[m],16) else R[m];
 product1 = SInt(R[n]<15:0>) * SInt(operand2<15:0>);
 product2 = SInt(R[n]<31:16>) * SInt(operand2<31:16>);
 result = product1 + product2 + SInt(R[a]);
 R[d] = result<31:0>;
 if result != SInt(result<31:0>) then // Signed overflow
 APSR.Q = '1';

1 1 1 1 1 0 1 1 0 0 1 0 Rn !=1111 Rd 0 0 0 M Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0

Ra
C2-546 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Exceptions

None.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-547
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.153 SMLAL

Signed Multiply Accumulate Long multiplies two signed 32-bit values to produce a 64-bit value, and accumulates
this with a 64-bit value.

T1

ARMv8-M Main Extension only

T1 variant

SMLAL{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Decode for this encoding

if !HaveMainExt() then UNDEFINED;
dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); setflags = FALSE;
if dLo IN {13,15} || dHi IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;
if dHi == dLo then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<RdLo> Is the general-purpose source register holding the lower 32 bits of the addend, and the destination
register for the lower 32 bits of the result, encoded in the "RdLo" field.

<RdHi> Is the general-purpose source register holding the upper 32 bits of the addend, and the destination
register for the upper 32 bits of the result, encoded in the "RdHi" field.

<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 result = SInt(R[n]) * SInt(R[m]) + SInt(R[dHi]:R[dLo]);
 R[dHi] = result<63:32>;
 R[dLo] = result<31:0>;

Exceptions

None.

1 1 1 1 1 0 1 1 1 1 0 0 Rn RdLo RdHi 0 0 0 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0
C2-548 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.154 SMLALBB, SMLALBT, SMLALTB, SMLALTT

Signed Multiply Accumulate Long (halfwords) multiplies two signed 16-bit values to produce a 32-bit value, and
accumulates this with a 64-bit value. The multiply acts on two signed 16-bit quantities, taken from either the bottom
or the top half of their respective source registers. The other halves of these source registers are ignored. The 32-bit
product is sign-extended and accumulated with a 64-bit accumulate value.

Overflow is possible during this instruction, but only as a result of the 64-bit addition. This overflow is not detected
if it occurs. Instead, the result wraps around modulo 264.

T1

ARMv8-M DSP Extension only

SMLALBB variant

Applies when N == 0 && M == 0.

SMLALBB{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

SMLALBT variant

Applies when N == 0 && M == 1.

SMLALBT{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

SMLALTB variant

Applies when N == 1 && M == 0.

SMLALTB{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

SMLALTT variant

Applies when N == 1 && M == 1.

SMLALTT{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Decode for all variants of this encoding

if !HaveDSPExt() then UNDEFINED;
dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm);
n_high = (N == '1'); m_high = (M == '1');
if dLo IN {13,15} || dHi IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;
if dHi == dLo then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<RdLo> Is the general-purpose source register holding the lower 32 bits of the addend, and the destination
register for the lower 32 bits of the result, encoded in the "RdLo" field.

<RdHi> Is the general-purpose source register holding the upper 32 bits of the addend, and the destination
register for the upper 32 bits of the result, encoded in the "RdHi" field.

1 1 1 1 1 0 1 1 1 1 0 0 Rn RdLo RdHi 1 0 N M Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-549
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
<Rn> Is the first general-purpose source register holding the multiplicand in the bottom or top half
(selected by <x>), encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the multiplier in the bottom or top half
(selected by <x>), encoded in the "Rm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 operand1 = if n_high then R[n]<31:16> else R[n]<15:0>;
 operand2 = if m_high then R[m]<31:16> else R[m]<15:0>;
 result = SInt(operand1) * SInt(operand2) + SInt(R[dHi]:R[dLo]);
 R[dHi] = result<63:32>;
 R[dLo] = result<31:0>;

Exceptions

None.
C2-550 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.155 SMLALD, SMLALDX

Signed Multiply Accumulate Long Dual performs two signed 16-bit by 16-bit multiplications. It adds the products
to a 64-bit accumulate operand.

Optionally, the instruction can exchange the halfwords of the second operand before performing the arithmetic.

Overflow is possible during this instruction, but only as a result of the 64-bit addition. This overflow is not detected
if it occurs. Instead, the result wraps around modulo 264.

T1

ARMv8-M DSP Extension only

SMLALD variant

Applies when M == 0.

SMLALD{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

SMLALDX variant

Applies when M == 1.

SMLALDX{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Decode for all variants of this encoding

if !HaveDSPExt() then UNDEFINED;
dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); m_swap = (M == '1');
if dLo IN {13,15} || dHi IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;
if dHi == dLo then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<RdLo> Is the general-purpose source register holding the lower 32 bits of the addend, and the destination
register for the lower 32 bits of the result, encoded in the "RdLo" field.

<RdHi> Is the general-purpose source register holding the upper 32 bits of the addend, and the destination
register for the upper 32 bits of the result, encoded in the "RdHi" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 operand2 = if m_swap then ROR(R[m],16) else R[m];
 product1 = SInt(R[n]<15:0>) * SInt(operand2<15:0>);
 product2 = SInt(R[n]<31:16>) * SInt(operand2<31:16>);
 result = product1 + product2 + SInt(R[dHi]:R[dLo]);
 R[dHi] = result<63:32>;
 R[dLo] = result<31:0>;

1 1 1 1 1 0 1 1 1 1 0 0 Rn RdLo RdHi 1 1 0 M Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-551
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Exceptions

None.
C2-552 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.156 SMLAWB, SMLAWT

Signed Multiply Accumulate (word by halfword) performs a signed multiply accumulate operation. The multiply
acts on a signed 32-bit quantity and a signed 16-bit quantity. The signed 16-bit quantity is taken from either the
bottom or the top half of its source register. The other half of the second source register is ignored. The top 32 bits
of the 48-bit product are added to a 32-bit accumulate value and the result is written to the destination register. The
bottom 16 bits of the 48-bit product are ignored.

If overflow occurs during the addition of the accumulate value, the instruction sets the Q flag in the APSR. No
overflow can occur during the multiplication.

T1

ARMv8-M DSP Extension only

SMLAWB variant

Applies when M == 0.

SMLAWB{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMLAWT variant

Applies when M == 1.

SMLAWT{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for all variants of this encoding

if Ra == '1111' then SEE "SMULWB, SMULWT";
if !HaveDSPExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); m_high = (M == '1');
if d IN {13,15} || n IN {13,15} || m IN {13,15} || a == 13 then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the multiplier in the bottom or top half
(selected by <y>), encoded in the "Rm" field.

<Ra> Is the third general-purpose source register holding the addend, encoded in the "Ra" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 operand2 = if m_high then R[m]<31:16> else R[m]<15:0>;
 result = SInt(R[n]) * SInt(operand2) + (SInt(R[a]) << 16);
 R[d] = result<47:16>;
 if (result >> 16) != SInt(R[d]) then // Signed overflow
 APSR.Q = '1';

1 1 1 1 1 0 1 1 0 0 1 1 Rn !=1111 Rd 0 0 0 M Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0

Ra
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-553
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Exceptions

None.
C2-554 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.157 SMLSD, SMLSDX

Signed Multiply Subtract Dual performs two signed 16-bit by 16-bit multiplications. It adds the difference of the
products to a 32-bit accumulate operand.

Optionally, the instruction can exchange the halfwords of the second operand before performing the arithmetic.

This instruction sets the Q flag if the accumulate operation overflows. Overflow cannot occur during the
multiplications or subtraction.

T1

ARMv8-M DSP Extension only

SMLSD variant

Applies when M == 0.

SMLSD{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMLSDX variant

Applies when M == 1.

SMLSDX{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for all variants of this encoding

if Ra == '1111' then SEE SMUSD;
if !HaveDSPExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); m_swap = (M == '1');
if d IN {13,15} || n IN {13,15} || m IN {13,15} || a == 13 then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<Ra> Is the third general-purpose source register holding the addend, encoded in the "Ra" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 operand2 = if m_swap then ROR(R[m],16) else R[m];
 product1 = SInt(R[n]<15:0>) * SInt(operand2<15:0>);
 product2 = SInt(R[n]<31:16>) * SInt(operand2<31:16>);
 result = product1 - product2 + SInt(R[a]);
 R[d] = result<31:0>;
 if result != SInt(result<31:0>) then // Signed overflow
 APSR.Q = '1';

1 1 1 1 1 0 1 1 0 1 0 0 Rn !=1111 Rd 0 0 0 M Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0

Ra
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-555
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Exceptions

None.
C2-556 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.158 SMLSLD, SMLSLDX

Signed Multiply Subtract Long Dual performs two signed 16-bit by 16-bit multiplications. It adds the difference of
the products to a 64-bit accumulate operand.

Optionally, the instruction can exchange the halfwords of the second operand before performing the arithmetic.

Overflow is possible during this instruction, but only as a result of the 64-bit addition. This overflow is not detected
if it occurs. Instead, the result wraps around modulo 264.

T1

ARMv8-M DSP Extension only

SMLSLD variant

Applies when M == 0.

SMLSLD{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

SMLSLDX variant

Applies when M == 1.

SMLSLDX{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Decode for all variants of this encoding

if !HaveDSPExt() then UNDEFINED;
dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); m_swap = (M == '1');
if dLo IN {13,15} || dHi IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;
if dHi == dLo then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<RdLo> Is the general-purpose source register holding the lower 32 bits of the addend, and the destination
register for the lower 32 bits of the result, encoded in the "RdLo" field.

<RdHi> Is the general-purpose source register holding the upper 32 bits of the addend, and the destination
register for the upper 32 bits of the result, encoded in the "RdHi" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 operand2 = if m_swap then ROR(R[m],16) else R[m];
 product1 = SInt(R[n]<15:0>) * SInt(operand2<15:0>);
 product2 = SInt(R[n]<31:16>) * SInt(operand2<31:16>);
 result = product1 - product2 + SInt(R[dHi]:R[dLo]);
 R[dHi] = result<63:32>;
 R[dLo] = result<31:0>;

1 1 1 1 1 0 1 1 1 1 0 1 Rn RdLo RdHi 1 1 0 M Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-557
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Exceptions

None.
C2-558 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.159 SMMLA, SMMLAR

Signed Most Significant Word Multiply Accumulate multiplies two signed 32-bit values, extracts the most
significant 32 bits of the result, and adds an accumulate value.

Optionally, the instruction can specify that the result is rounded instead of being truncated. In this case, the constant
0x80000000 is added to the product before the high word is extracted.

T1

ARMv8-M DSP Extension only

SMMLA variant

Applies when R == 0.

SMMLA{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMMLAR variant

Applies when R == 1.

SMMLAR{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for all variants of this encoding

if Ra == '1111' then SEE SMMUL;
if !HaveDSPExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); round = (R == '1');
if d IN {13,15} || n IN {13,15} || m IN {13,15} || a == 13 then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

<Ra> Is the third general-purpose source register holding the addend, encoded in the "Ra" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 result = (SInt(R[a]) << 32) + SInt(R[n]) * SInt(R[m]);
 if round then result = result + 0x80000000;
 R[d] = result<63:32>;

Exceptions

None.

1 1 1 1 1 0 1 1 0 1 0 1 Rn !=1111 Rd 0 0 0 R Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0

Ra
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-559
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.160 SMMLS, SMMLSR

Signed Most Significant Word Multiply Subtract multiplies two signed 32-bit values, subtracts the result from a
32-bit accumulate value that is shifted left by 32 bits, and extracts the most significant 32 bits of the result of that
subtraction.

Optionally, the instruction can specify that the result of the instruction is rounded instead of being truncated. In this
case, the constant 0x80000000 is added to the result of the subtraction before the high word is extracted.

T1

ARMv8-M DSP Extension only

SMMLS variant

Applies when R == 0.

SMMLS{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMMLSR variant

Applies when R == 1.

SMMLSR{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for all variants of this encoding

if !HaveDSPExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); round = (R == '1');
if d IN {13,15} || n IN {13,15} || m IN {13,15} || a IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

<Ra> Is the third general-purpose source register holding the addend, encoded in the "Ra" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 result = (SInt(R[a]) << 32) - SInt(R[n]) * SInt(R[m]);
 if round then result = result + 0x80000000;
 R[d] = result<63:32>;

Exceptions

None.

1 1 1 1 1 0 1 1 0 1 1 0 Rn Ra Rd 0 0 0 R Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0
C2-560 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.161 SMMUL, SMMULR

Signed Most Significant Word Multiply multiplies two signed 32-bit values, extracts the most significant 32 bits of
the result, and writes those bits to the destination register.

Optionally, the instruction can specify that the result is rounded instead of being truncated. In this case, the constant
0x80000000 is added to the product before the high word is extracted.

T1

ARMv8-M DSP Extension only

SMMUL variant

Applies when R == 0.

SMMUL{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

SMMULR variant

Applies when R == 1.

SMMULR{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for all variants of this encoding

if !HaveDSPExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); round = (R == '1');
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 result = SInt(R[n]) * SInt(R[m]);
 if round then result = result + 0x80000000;
 R[d] = result<63:32>;

Exceptions

None.

1 1 1 1 1 0 1 1 0 1 0 1 Rn 1 1 1 1 Rd 0 0 0 R Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-561
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.162 SMUAD, SMUADX

Signed Dual Multiply Add performs two signed 16-bit by 16-bit multiplications. It adds the products together, and
writes the result to the destination register.

Optionally, the instruction can exchange the halfwords of the second operand before performing the arithmetic.

This instruction sets the Q flag if the addition overflows. The multiplications cannot overflow.

T1

ARMv8-M DSP Extension only

SMUAD variant

Applies when M == 0.

SMUAD{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

SMUADX variant

Applies when M == 1.

SMUADX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for all variants of this encoding

if !HaveDSPExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); m_swap = (M == '1');
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 operand2 = if m_swap then ROR(R[m],16) else R[m];
 product1 = SInt(R[n]<15:0>) * SInt(operand2<15:0>);
 product2 = SInt(R[n]<31:16>) * SInt(operand2<31:16>);
 result = product1 + product2;
 R[d] = result<31:0>;
 if result != SInt(result<31:0>) then // Signed overflow
 APSR.Q = '1';

Exceptions

None.

1 1 1 1 1 0 1 1 0 0 1 0 Rn 1 1 1 1 Rd 0 0 0 M Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
C2-562 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.163 SMULBB, SMULBT, SMULTB, SMULTT

Signed Multiply (halfwords) multiplies two signed 16-bit quantities, taken from either the bottom or the top half of
their respective source registers. The other halves of these source registers are ignored. The 32-bit product is written
to the destination register. No overflow is possible during this instruction.

T1

ARMv8-M DSP Extension only

SMULBB variant

Applies when N == 0 && M == 0.

SMULBB{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

SMULBT variant

Applies when N == 0 && M == 1.

SMULBT{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

SMULTB variant

Applies when N == 1 && M == 0.

SMULTB{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

SMULTT variant

Applies when N == 1 && M == 1.

SMULTT{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for all variants of this encoding

if !HaveDSPExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
n_high = (N == '1'); m_high = (M == '1');
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register holding the multiplicand in the bottom or top half
(selected by <x>), encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the multiplier in the bottom or top half
(selected by <y>), encoded in the "Rm" field.

1 1 1 1 1 0 1 1 0 0 0 1 Rn 1 1 1 1 Rd 0 0 N M Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-563
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 operand1 = if n_high then R[n]<31:16> else R[n]<15:0>;
 operand2 = if m_high then R[m]<31:16> else R[m]<15:0>;
 result = SInt(operand1) * SInt(operand2);
 R[d] = result<31:0>;
 // Signed overflow cannot occur

Exceptions

None.
C2-564 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.164 SMULL

Signed Multiply Long multiplies two 32-bit signed values to produce a 64-bit result.

T1

ARMv8-M Main Extension only

T1 variant

SMULL{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Decode for this encoding

if !HaveMainExt() then UNDEFINED;
dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); setflags = FALSE;
if dLo IN {13,15} || dHi IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;
if dHi == dLo then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<RdLo> Is the general-purpose destination register for the lower 32 bits of the result, encoded in the "RdLo"
field.

<RdHi> Is the general-purpose destination register for the upper 32 bits of the result, encoded in the "RdHi"
field.

<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 result = SInt(R[n]) * SInt(R[m]);
 R[dHi] = result<63:32>;
 R[dLo] = result<31:0>;

Exceptions

None.

1 1 1 1 1 0 1 1 1 0 0 0 Rn RdLo RdHi 0 0 0 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-565
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.165 SMULWB, SMULWT

Signed Multiply (word by halfword) multiplies a signed 32-bit quantity and a signed 16-bit quantity. The signed
16-bit quantity is taken from either the bottom or the top half of its source register. The other half of the second
source register is ignored. The top 32 bits of the 48-bit product are written to the destination register. The bottom
16 bits of the 48-bit product are ignored. No overflow is possible during this instruction.

T1

ARMv8-M DSP Extension only

SMULWB variant

Applies when M == 0.

SMULWB{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

SMULWT variant

Applies when M == 1.

SMULWT{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for all variants of this encoding

if !HaveDSPExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); m_high = (M == '1');
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the multiplier in the bottom or top half
(selected by <y>), encoded in the "Rm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 operand2 = if m_high then R[m]<31:16> else R[m]<15:0>;
 product = SInt(R[n]) * SInt(operand2);
 R[d] = product<47:16>;
 // Signed overflow cannot occur

Exceptions

None.

1 1 1 1 1 0 1 1 0 0 1 1 Rn 1 1 1 1 Rd 0 0 0 M Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
C2-566 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.166 SMUSD, SMUSDX

Signed Dual Multiply Subtract performs two signed 16-bit by 16-bit multiplications. It subtracts one of the products
from the other, and writes the result to the destination register.

Optionally, the instruction can exchange the halfwords of the second operand before performing the arithmetic.

Overflow cannot occur.

T1

ARMv8-M DSP Extension only

SMUSD variant

Applies when M == 0.

SMUSD{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

SMUSDX variant

Applies when M == 1.

SMUSDX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for all variants of this encoding

if !HaveDSPExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); m_swap = (M == '1');
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 operand2 = if m_swap then ROR(R[m],16) else R[m];
 product1 = SInt(R[n]<15:0>) * SInt(operand2<15:0>);
 product2 = SInt(R[n]<31:16>) * SInt(operand2<31:16>);
 result = product1 - product2;
 R[d] = result<31:0>;
 // Signed overflow cannot occur

Exceptions

None.

1 1 1 1 1 0 1 1 0 1 0 0 Rn 1 1 1 1 Rd 0 0 0 M Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-567
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.167 SSAT

Signed Saturate saturates an optionally-shifted signed value to a selectable signed range.

The Q flag is set to 1 if the operation saturates.

T1

ARMv8-M Main Extension only

Arithmetic shift right variant

Applies when sh == 1 && !(imm3 == 000 && imm2 == 00).

SSAT{<c>}{<q>} <Rd>, #<imm>, <Rn>, ASR #<amount>

Logical shift left variant

Applies when sh == 0.

SSAT{<c>}{<q>} <Rd>, #<imm>, <Rn> {, LSL #<amount>}

Decode for all variants of this encoding

if sh == '1' && (imm3:imm2) == '00000' then
 if HaveDSPExt() then
 SEE SSAT16;
 else
 UNDEFINED;
if !HaveMainExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); saturate_to = UInt(sat_imm)+1;
(shift_t, shift_n) = DecodeImmShift(sh:'0', imm3:imm2);
if d IN {13,15} || n IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<imm> Is the bit position for saturation, in the range 1 to 32, encoded in the "sat_imm" field as <imm>-1.

<Rn> Is the general-purpose source register, encoded in the "Rn" field.

<amount> For the arithmetic shift right variant: is the shift amount, in the range 1 to 31 encoded in the
"imm3:imm2" field as <amount>.

For the logical shift left variant: is the optional shift amount, in the range 0 to 31, defaulting to 0 and
encoded in the "imm3:imm2" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 operand = Shift(R[n], shift_t, shift_n, APSR.C); // APSR.C ignored
 (result, sat) = SignedSatQ(SInt(operand), saturate_to);

1 1 1 1 0 (0) 1 1 0 0 sh 0 Rn 0 imm3 Rd imm2 (0) sat_imm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 6 5 4 0
C2-568 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
 R[d] = SignExtend(result, 32);
 if sat then
 APSR.Q = '1';

Exceptions

None.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-569
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.168 SSAT16

Signed Saturate 16 saturates two signed 16-bit values to a selected signed range.

The Q flag is set to 1 if the operation saturates.

T1

ARMv8-M DSP Extension only

T1 variant

SSAT16{<c>}{<q>} <Rd>, #<imm>, <Rn>

Decode for this encoding

if !HaveDSPExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); saturate_to = UInt(sat_imm)+1;
if d IN {13,15} || n IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<imm> Is the bit position for saturation, in the range 1 to 16, encoded in the "sat_imm" field as <imm>-1.

<Rn> Is the general-purpose source register, encoded in the "Rn" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 (result1, sat1) = SignedSatQ(SInt(R[n]<15:0>), saturate_to);
 (result2, sat2) = SignedSatQ(SInt(R[n]<31:16>), saturate_to);
 bits(32) result;
 result<15:0> = SignExtend(result1, 16);
 result<31:16> = SignExtend(result2, 16);
 R[d] = result;
 if sat1 || sat2 then
 APSR.Q = '1';

Exceptions

None.

1 1 1 1 0 (0) 1 1 0 0 1 0 Rn 0 0 0 0 Rd 0 0 (0) (0) sat_imm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
C2-570 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.169 SSAX

Signed Subtract and Add with Exchange exchanges the two halfwords of the second operand, performs one 16-bit
integer subtraction and one 16-bit addition, and writes the results to the destination register. It sets the APSR.GE
bits according to the results.

T1

ARMv8-M DSP Extension only

T1 variant

SSAX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

if !HaveDSPExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 sum = SInt(R[n]<15:0>) + SInt(R[m]<31:16>);
 diff = SInt(R[n]<31:16>) - SInt(R[m]<15:0>);
 R[d] = diff<15:0> : sum<15:0>;
 APSR.GE<1:0> = if sum >= 0 then '11' else '00';
 APSR.GE<3:2> = if diff >= 0 then '11' else '00';

Exceptions

None.

1 1 1 1 1 0 1 0 1 1 1 0 Rn 1 1 1 1 Rd 0 0 0 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-571
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.170 SSUB16

Signed Subtract 16 performs two 16-bit signed integer subtractions, and writes the results to the destination register.
It sets the APSR.GE bits according to the results of the subtractions.

T1

ARMv8-M DSP Extension only

T1 variant

SSUB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

if !HaveDSPExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 diff1 = SInt(R[n]<15:0>) - SInt(R[m]<15:0>);
 diff2 = SInt(R[n]<31:16>) - SInt(R[m]<31:16>);
 R[d] = diff2<15:0> : diff1<15:0>;
 APSR.GE<1:0> = if diff1 >= 0 then '11' else '00';
 APSR.GE<3:2> = if diff2 >= 0 then '11' else '00';

Exceptions

None.

1 1 1 1 1 0 1 0 1 1 0 1 Rn 1 1 1 1 Rd 0 0 0 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
C2-572 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.171 SSUB8

Signed Subtract 8 performs four 8-bit signed integer subtractions, and writes the results to the destination register.
It sets the APSR.GE bits according to the results of the subtractions.

T1

ARMv8-M DSP Extension only

T1 variant

SSUB8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

if !HaveDSPExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 diff1 = SInt(R[n]<7:0>) - SInt(R[m]<7:0>);
 diff2 = SInt(R[n]<15:8>) - SInt(R[m]<15:8>);
 diff3 = SInt(R[n]<23:16>) - SInt(R[m]<23:16>);
 diff4 = SInt(R[n]<31:24>) - SInt(R[m]<31:24>);
 R[d] = diff4<7:0> : diff3<7:0> : diff2<7:0> : diff1<7:0>;
 APSR.GE<0> = if diff1 >= 0 then '1' else '0';
 APSR.GE<1> = if diff2 >= 0 then '1' else '0';
 APSR.GE<2> = if diff3 >= 0 then '1' else '0';
 APSR.GE<3> = if diff4 >= 0 then '1' else '0';

Exceptions

None.

1 1 1 1 1 0 1 0 1 1 0 0 Rn 1 1 1 1 Rd 0 0 0 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-573
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.172 STC, STC2

Store Coprocessor stores data from a coprocessor to a sequence of consecutive memory addresses.

If no coprocessor can execute the instruction, a UsageFault exception is generated.

T1

ARMv8-M Main Extension only

Offset variant

Applies when P == 1 && W == 0.

STC{L}{<c>}{<q>} <coproc>, <CRd>, [<Rn>{, #{+/-}<imm>}]

Post-indexed variant

Applies when P == 0 && W == 1.

STC{L}{<c>}{<q>} <coproc>, <CRd>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

STC{L}{<c>}{<q>} <coproc>, <CRd>, [<Rn>, #{+/-}<imm>]!

Unindexed variant

Applies when P == 0 && U == 1 && W == 0.

STC{L}{<c>}{<q>} <coproc>, <CRd>, [<Rn>], <option>

Decode for all variants of this encoding

if P == '0' && U == '0' && D == '0' && W == '0' then UNDEFINED;
if P == '0' && U == '0' && D == '1' && W == '0' then SEE "MCRR, MCRR2";
if coproc IN '101x' then SEE "Floating-point";
if !HaveMainExt() then UNDEFINED;
n = UInt(Rn); cp = UInt(coproc); imm32 = ZeroExtend(imm8:'00', 32);
index = (P == '1'); add = (U == '1'); wback = (W == '1');
if n == 15 then UNPREDICTABLE;

T2

ARMv8-M Main Extension only

Offset variant

Applies when P == 1 && W == 0.

STC2{L}{<c>}{<q>} <coproc>, <CRd>, [<Rn>{, #{+/-}<imm>}]

1 1 1 0 1 1 0 P U D W 0 Rn CRd !=101x imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 0

coproc

1 1 1 1 1 1 0 P U D W 0 Rn CRd !=101x imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 0

coproc
C2-574 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Post-indexed variant

Applies when P == 0 && W == 1.

STC2{L}{<c>}{<q>} <coproc>, <CRd>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

STC2{L}{<c>}{<q>} <coproc>, <CRd>, [<Rn>, #{+/-}<imm>]!

Unindexed variant

Applies when P == 0 && U == 1 && W == 0.

STC2{L}{<c>}{<q>} <coproc>, <CRd>, [<Rn>], <option>

Decode for all variants of this encoding

if P == '0' && U == '0' && D == '0' && W == '0' then UNDEFINED;
if P == '0' && U == '0' && D == '1' && W == '0' then SEE "MCRR, MCRR2";
if coproc IN '101x' then UNDEFINED;
if !HaveMainExt() then UNDEFINED;
n = UInt(Rn); cp = UInt(coproc); imm32 = ZeroExtend(imm8:'00', 32);
index = (P == '1'); add = (U == '1'); wback = (W == '1');
if n == 15 then UNPREDICTABLE;

Notes for all encodings

Floating-point: Floating-point load/store on page C2-293.

Assembler symbols

L If specified, selects the D == 1 form of the encoding. If omitted, selects the D == 0 form.

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<coproc> Is the name of the coprocessor, encoded in the "coproc" field. The valid coprocessor names are p10,
p11, p14, and p15.

<CRd> Is the coprocessor register to be transferred, encoded in the "CRd" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<option> Is a coprocessor option, in the range 0 to 255 enclosed in { }, encoded in the "imm8" field.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

<imm> Is the immediate offset used for forming the address, a multiple of 4 in the range 0-1020, defaulting
to 0 and encoded in the "imm8" field, as <imm>/4.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 ExecuteCPCheck(cp);
 if !Coproc_Accepted(cp, ThisInstr()) then
 GenerateCoprocessorException();
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-575
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
 else
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];

 // Determine if the stack pointer limit check should be performed
 if wback && n == 13 then
 (limit, applylimit) = LookUpSPLim(LookUpSP());
 else
 applylimit = FALSE;

 // Memory operation only performed if limit not violated
 if !applylimit || (UInt(offset_addr) >= UInt(limit)) then
 repeat
 MemA[address,4] = Coproc_GetWordToStore(cp, ThisInstr());
 address = address + 4;
 until Coproc_DoneStoring(cp, ThisInstr());

 // If the stack pointer is being updated update a fault will be raised
 // if the limit is violated
 if wback then RSPCheck[n] = offset_addr;

Exceptions

UsageFault, BusFault, MemManage, and SecureFault.
C2-576 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.173 STL

Store Release Word stores a word from a register to memory. The instruction also has memory ordering semantics.

T1

ARMv8-M

T1 variant

STL{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding

t = UInt(Rt); n = UInt(Rn);
if t IN {13,15} || n == 15 then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];
 MemO[address, 4] = R[t];

Exceptions

BusFault, UsageFault, MemManage, and SecureFault.

1 1 1 0 1 0 0 0 1 1 0 0 Rn Rt (1) (1) (1) (1) 1 0 1 0 (1) (1) (1) (1)
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-577
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.174 STLB

Store Release Byte stores a byte from a register to memory. The instruction also has memory ordering semantics.

T1

ARMv8-M

T1 variant

STLB{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding

t = UInt(Rt); n = UInt(Rn);
if t IN {13,15} || n == 15 then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];
 MemO[address, 1] = R[t]<7:0>;

Exceptions

BusFault, UsageFault, MemManage, and SecureFault.

1 1 1 0 1 0 0 0 1 1 0 0 Rn Rt (1) (1) (1) (1) 1 0 0 0 (1) (1) (1) (1)
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 2 1 0
C2-578 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.175 STLEX

Store Release Exclusive Word stores a word from a register to memory if the executing PE has exclusive access to
the memory addressed. The instruction also has memory ordering semantics.

T1

ARMv8-M

T1 variant

STLEX{<c>}{<q>} <Rd>, <Rt>, [<Rn>]

Decode for this encoding

d = UInt(Rd); t = UInt(Rt); n = UInt(Rn);
if d IN {13,15} || t IN {13,15} || n == 15 then UNPREDICTABLE;
if d == n || d == t then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the destination general-purpose register into which the status result of the store exclusive is
written, encoded in the "Rd" field. The value returned is:

0 If the operation updates memory.

1 If the operation fails to update memory.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];
 if ExclusiveMonitorsPass(address,4) then
 MemO[address, 4] = R[t];
 R[d] = ZeroExtend('0');
 else
 R[d] = ZeroExtend('1');

Exceptions

UsageFault, MemManage, SecureFault, and BusFault.

1 1 1 0 1 0 0 0 1 1 0 0 Rn Rt (1) (1) (1) (1) 1 1 1 0 Rd
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-579
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.176 STLEXB

Store Release Exclusive Byte stores a byte from a register to memory if the executing PE has exclusive access to
the memory addressed. The instruction also has memory ordering semantics.

T1

ARMv8-M

T1 variant

STLEXB{<c>}{<q>} <Rd>, <Rt>, [<Rn>]

Decode for this encoding

d = UInt(Rd); t = UInt(Rt); n = UInt(Rn);
if d IN {13,15} || t IN {13,15} || n == 15 then UNPREDICTABLE;
if d == n || d == t then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the destination general-purpose register into which the status result of the store exclusive is
written, encoded in the "Rd" field. The value returned is:

0 If the operation updates memory.

1 If the operation fails to update memory.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];
 if ExclusiveMonitorsPass(address,1) then
 MemO[address, 1] = R[t]<7:0>;
 R[d] = ZeroExtend('0');
 else
 R[d] = ZeroExtend('1');

Exceptions

UsageFault, MemManage, SecureFault, and BusFault.

1 1 1 0 1 0 0 0 1 1 0 0 Rn Rt (1) (1) (1) (1) 1 1 0 0 Rd
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
C2-580 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.177 STLEXH

Store Release Exclusive Halfword stores a halfword from a register to memory if the executing PE has exclusive
access to the memory addressed. The instruction also has memory ordering semantics.

T1

ARMv8-M

T1 variant

STLEXH{<c>}{<q>} <Rd>, <Rt>, [<Rn>]

Decode for this encoding

d = UInt(Rd); t = UInt(Rt); n = UInt(Rn);
if d IN {13,15} || t IN {13,15} || n == 15 then UNPREDICTABLE;
if d == n || d == t then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the destination general-purpose register into which the status result of the store exclusive is
written, encoded in the "Rd" field. The value returned is:

0 If the operation updates memory.

1 If the operation fails to update memory.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];
 if ExclusiveMonitorsPass(address,2) then
 MemO[address, 2] = R[t]<15:0>;
 R[d] = ZeroExtend('0');
 else
 R[d] = ZeroExtend('1');

Exceptions

UsageFault, MemManage, SecureFault, and BusFault.

1 1 1 0 1 0 0 0 1 1 0 0 Rn Rt (1) (1) (1) (1) 1 1 0 1 Rd
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-581
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.178 STLH

Store Release Halfword stores a halfword from a register to memory. The instruction also has memory ordering
semantics.

T1

ARMv8-M

T1 variant

STLH{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding

t = UInt(Rt); n = UInt(Rn);
if t IN {13,15} || n == 15 then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];
 MemO[address, 2] = R[t]<15:0>;

Exceptions

BusFault, UsageFault, MemManage, and SecureFault.

1 1 1 0 1 0 0 0 1 1 0 0 Rn Rt (1) (1) (1) (1) 1 0 0 1 (1) (1) (1) (1)
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 2 1 0
C2-582 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.179 STM, STMIA, STMEA

Store Multiple stores multiple registers to consecutive memory locations using an address from a base register. The
consecutive memory locations start at this address, and the address just above the last of those locations can
optionally be written back to the base register.

T1

ARMv8-M

T1 variant

STM{IA}{<c>}{<q>} <Rn>!, <registers> // Preferred syntax
STMEA{<c>}{<q>} <Rn>!, <registers> // Alternate syntax, Empty Ascending stack

Decode for this encoding

n = UInt(Rn); registers = '00000000':register_list; wback = TRUE;
if BitCount(registers) < 1 then UNPREDICTABLE;

T2

ARMv8-M Main Extension only

T2 variant

STM{IA}{<c>}.W <Rn>{!}, <registers> // Preferred syntax, if <Rn>, '!' and <registers> can be represented
in T1
STMEA{<c>}.W <Rn>{!}, <registers> // Alternate syntax, Empty Ascending stack, if <Rn>, '!' and
<registers> can be represented in T1
STM{IA}{<c>}{<q>} <Rn>{!}, <registers> // Preferred syntax
STMEA{<c>}{<q>} <Rn>{!}, <registers> // Alternate syntax, Empty Ascending stack

Decode for this encoding

if !HaveMainExt() then UNDEFINED;
n = UInt(Rn); registers = '0':M:'0':register_list; wback = (W == '1');
if n == 15 || BitCount(registers) < 2 then UNPREDICTABLE;
if wback && registers<n> == '1' then UNPREDICTABLE;

Assembler symbols

IA Is an optional suffix for the Increment After form.

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

! The address adjusted by the size of the data loaded is written back to the base register. If specified,
it is encoded in the "W" field as 1, otherwise this field defaults to 0.

1 1 0 0 0 Rn register_list
15 14 13 12 11 10 8 7 0

1 1 1 0 1 0 0 0 1 0 W 0 Rn (0) M (0) register_list
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-583
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
<registers> For encoding T1: is a list of one or more registers to be stored, separated by commas and surrounded
by { and }. The registers in the list must be in the range R0-R7, encoded in the "register_list" field.
If the base register is not the lowest-numbered register in the list, such an instruction stores an
UNKNOWN value for the base register.

For encoding T2: is a list of one or more registers to be stored, separated by commas and surrounded
by { and }. The registers in the list must be in the range R0-R12, encoded in the "register_list" field,
and can optionally contain the LR. If the LR is in the list, the "M" field is set to 1, otherwise it
defaults to 0.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];
 endAddress = R[n] + 4*BitCount(registers);

 for i = 0 to 14
 // Memory operation only performed if limit not violated
 if registers<i> == '1' then
 if i == n && wback && i != LowestSetBit(registers) then
 MemA[address,4] = bits(32) UNKNOWN; // encoding T1 only
 else
 MemA[address,4] = R[i];
 address = address + 4;

 if wback then R[n] = endAddress;

Exceptions

BusFault, UsageFault, MemManage, and SecureFault.
C2-584 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.180 STMDB, STMFD

Store Multiple Decrement Before stores multiple registers to consecutive memory locations using an address from
a base register. The consecutive memory locations end just below this address, and the address of the first of those
locations can optionally be written back to the base register.

This instruction is used by the alias PUSH. The alias is always the preferred disassembly.

T1

ARMv8-M Main Extension only

T1 variant

STMDB{<c>}{<q>} <Rn>{!}, <registers> // Preferred syntax
STMFD{<c>}{<q>} <Rn>{!}, <registers> // Alternate syntax, Full Descending stack

Decode for this encoding

if !HaveMainExt() then UNDEFINED;
n = UInt(Rn); registers = '0':M:'0':register_list; wback = (W == '1');
if n == 15 || BitCount(registers) < 2 then UNPREDICTABLE;
if wback && registers<n> == '1' then UNPREDICTABLE;

T2

ARMv8-M

T2 variant

STMDB{<c>}{<q>} SP!, <registers>

Decode for this encoding

n = 13; wback = TRUE;
registers = '0':M:'000000':register_list;
if BitCount(registers) < 1 then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

! The address adjusted by the size of the data loaded is written back to the base register. If specified,
it is encoded in the "W" field as 1, otherwise this field defaults to 0.

1 1 1 0 1 0 0 1 0 0 W 0 Rn (0) M (0) register_list
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 0

1 0 1 1 0 1 0 P register_list
15 14 13 12 11 10 9 8 7 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-585
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
<registers> For encoding T1: is a list of one or more registers to be stored, separated by commas and surrounded
by { and }. The registers in the list must be in the range R0-R12, encoded in the "register_list" field,
and can optionally contain the LR. If the LR is in the list, the "M" field is set to 1, otherwise it
defaults to 0.

For encoding T2: is a list of one or more registers to be stored, separated by commas and surrounded
by { and }. The registers in the list must be in the range R0-R7, encoded in the "register_list" field,
and can optionally include the LR. If the LR is in the list, the "M" field is set to 1, otherwise this
field defaults to 0.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n] - 4*BitCount(registers);
 if n == 13 then
 (limit, applylimit) = LookUpSPLim(LookUpSP());
 else
 applylimit = FALSE;

 for i = 0 to 14
 // If R[n] is the SP, memory operation only performed if limit not violated
 if registers<i> == '1' && (!applylimit || (UInt(address) >= UInt(limit))) then
 MemA[address,4] = R[i];
 address = address + 4;

 // If R[n] is the SP, stack pointer update will raise a fault if limit violated
 if wback then RSPCheck[n] = R[n] - 4*BitCount(registers);

Exceptions

BusFault, UsageFault, MemManage, and SecureFault.
C2-586 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.181 STR (immediate)

Store Register (immediate) calculates an address from a base register value and an immediate offset, and stores a
word from a register to memory. It can use offset, post-indexed, or pre-indexed addressing.

This instruction is used by the alias PUSH. See Alias conditions on page C2-588 for details of when each alias is
preferred.

T1

ARMv8-M

T1 variant

STR{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding

t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm5:'00', 32);
index = TRUE; add = TRUE; wback = FALSE;

T2

ARMv8-M

T2 variant

STR{<c>}{<q>} <Rt>, [SP{, #{+}<imm>}]

Decode for this encoding

t = UInt(Rt); n = 13; imm32 = ZeroExtend(imm8:'00', 32);
index = TRUE; add = TRUE; wback = FALSE;

T3

ARMv8-M Main Extension only

T3 variant

STR{<c>}.W <Rt>, [<Rn> {, #{+}<imm>}] // <Rt>, <Rn>, <imm> can be represented in T1 or T2
STR{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

0 1 1 0 0 imm5 Rn Rt
15 14 13 12 11 10 6 5 3 2 0

1 0 0 1 0 Rt imm8
15 14 13 12 11 10 8 7 0

1 1 1 1 1 0 0 0 1 1 0 0 !=1111 Rt imm12
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 0

Rn
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-587
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Decode for this encoding

if Rn == '1111' then UNDEFINED;
if !HaveMainExt() then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
index = TRUE; add = TRUE; wback = FALSE;
if t == 15 then UNPREDICTABLE;

T4

ARMv8-M Main Extension only

Offset variant

Applies when P == 1 && U == 0 && W == 0.

STR{<c>}{<q>} <Rt>, [<Rn> {, #-<imm>}]

Post-indexed variant

Applies when P == 0 && W == 1.

STR{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

STR{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

Decode for all variants of this encoding

if P == '1' && U == '1' && W == '0' then SEE STRT;
if Rn == '1111' || (P == '0' && W == '0') then UNDEFINED;
if !HaveMainExt() then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
index = (P == '1'); add = (U == '1'); wback = (W == '1');
if t == 15 || (wback && n == t) then UNPREDICTABLE;

Alias conditions

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Alias is preferred when

PUSH Rn == '1101' && U == '0' && imm8 == '00000100'

1 1 1 1 1 0 0 0 0 1 0 0 !=1111 Rt 1 P U W imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn
C2-588 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

+ Specifies the offset is added to the base register.

<imm> For the post-indexed or pre-indexed variant: is a 8-bit unsigned immediate byte offset, in the range
0 to 255, encoded in the "imm8" field.

For encoding T1: is the optional positive unsigned immediate byte offset, a multiple of 4 in the range
0 to 124, defaulting to 0 and encoded in the "imm5" field as <imm>/4.

For encoding T2: is the optional positive unsigned immediate byte offset, a multiple of 4, in the
range 0 to 1020, defaulting to 0 and encoded in the "imm8" field as <imm>/4.

For encoding T3: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095,
defaulting to 0 and encoded in the "imm12" field.

For encoding T4: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255,
defaulting to 0 and encoded in the "imm8" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];

 // Determine if the stack pointer limit should be checked
 if n == 13 && wback then
 (limit, applylimit) = LookUpSPLim(LookUpSP());
 else
 applylimit = FALSE;
 // Memory operation only performed if limit not violated
 if !applylimit || (UInt(offset_addr) >= UInt(limit)) then
 MemU[address,4] = R[t];

 // If the stack pointer is being updated update a fault will be raised if
 // the limit is violated
 if wback then RSPCheck[n] = offset_addr;

Exceptions

BusFault, UsageFault, MemManage, and SecureFault.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-589
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.182 STR (register)

Store Register (register) calculates an address from a base register value and an offset register value, stores a word
from a register to memory. The offset register value can be shifted left by 0, 1, 2, or 3 bits.

T1

ARMv8-M

T1 variant

STR{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>]

Decode for this encoding

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, 0);

T2

ARMv8-M Main Extension only

T2 variant

STR{<c>}.W <Rt>, [<Rn>, {+}<Rm>] // <Rt>, <Rn>, <Rm> can be represented in T1
STR{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>{, LSL #<imm>}]

Decode for this encoding

if Rn == '1111' then UNDEFINED;
if !HaveMainExt() then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, UInt(imm2));
if t == 15 || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+ Specifies the index register is added to the base register.

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

<imm> If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. <imm> is encoded
in imm2. If absent, no shift is specified and imm2 is encoded as 0b00.

0 1 0 1 0 0 0 Rm Rn Rt
15 14 13 12 11 10 9 8 6 5 3 2 0

1 1 1 1 1 0 0 0 0 1 0 0 !=1111 Rt 0 0 0 0 0 0 imm2 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

Rn
C2-590 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 offset = Shift(R[m], shift_t, shift_n, APSR.C);
 address = R[n] + offset;
 MemU[address,4] = R[t];

Exceptions

BusFault, UsageFault, MemManage, and SecureFault.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-591
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.183 STRB (immediate)

Store Register Byte (immediate) calculates an address from a base register value and an immediate offset, and stores
a byte from a register to memory. It can use offset, post-indexed, or pre-indexed addressing.

T1

ARMv8-M

T1 variant

STRB{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding

t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm5, 32);
index = TRUE; add = TRUE; wback = FALSE;

T2

ARMv8-M Main Extension only

T2 variant

STRB{<c>}.W <Rt>, [<Rn> {, #{+}<imm>}] // <Rt>, <Rn>, <imm> can be represented in T1
STRB{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding

if Rn == '1111' then UNDEFINED;
if !HaveMainExt() then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
index = TRUE; add = TRUE; wback = FALSE;
if t IN {13,15} then UNPREDICTABLE;

T3

ARMv8-M Main Extension only

Offset variant

Applies when P == 1 && U == 0 && W == 0.

STRB{<c>}{<q>} <Rt>, [<Rn> {, #-<imm>}]

0 1 1 1 0 imm5 Rn Rt
15 14 13 12 11 10 6 5 3 2 0

1 1 1 1 1 0 0 0 1 0 0 0 !=1111 Rt imm12
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 0

Rn

1 1 1 1 1 0 0 0 0 0 0 0 !=1111 Rt 1 P U W imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn
C2-592 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Post-indexed variant

Applies when P == 0 && W == 1.

STRB{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

STRB{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

Decode for all variants of this encoding

if P == '1' && U == '1' && W == '0' then SEE STRBT;
if Rn == '1111' || (P == '0' && W == '0') then UNDEFINED;
if !HaveMainExt() then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
index = (P == '1'); add = (U == '1'); wback = (W == '1');
if t IN {13,15} || (wback && n == t) then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

+ Specifies the offset is added to the base register.

<imm> For the post-indexed or pre-indexed variant: is a 8-bit unsigned immediate byte offset, in the range
0 to 255, encoded in the "imm8" field.

For encoding T1: is an optional 5-bit unsigned immediate byte offset, in the range 0 to 31, defaulting
to 0 and encoded in the "imm5" field.

For encoding T2: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095,
defaulting to 0 and encoded in the "imm12" field.

For encoding T3: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255,
defaulting to 0 and encoded in the "imm8" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];

 // Determine if the stack pointer limit should be checked
 if n == 13 && wback then
 (limit, applylimit) = LookUpSPLim(LookUpSP());
 else
 applylimit = FALSE;
 // Memory operation only performed if limit not violated
 if !applylimit || (UInt(offset_addr) >= UInt(limit)) then
 MemU[address,1] = R[t]<7:0>;

ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-593
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
 // If the stack pointer is being updated update a fault will be raised if
 // the limit is violated
 if wback then RSPCheck[n] = offset_addr;

Exceptions

BusFault, UsageFault, MemManage, and SecureFault.
C2-594 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.184 STRB (register)

Store Register Byte (register) calculates an address from a base register value and an offset register value, and stores
a byte from a register to memory. The offset register value can be shifted left by 0, 1, 2, or 3 bits.

T1

ARMv8-M

T1 variant

STRB{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>]

Decode for this encoding

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, 0);

T2

ARMv8-M Main Extension only

T2 variant

STRB{<c>}.W <Rt>, [<Rn>, {+}<Rm>] // <Rt>, <Rn>, <Rm> can be represented in T1
STRB{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>{, LSL #<imm>}]

Decode for this encoding

if Rn == '1111' then UNDEFINED;
if !HaveMainExt() then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, UInt(imm2));
if t IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+ Specifies the index register is added to the base register.

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

<imm> If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. <imm> is encoded
in imm2. If absent, no shift is specified and imm2 is encoded as 0b00.

0 1 0 1 0 1 0 Rm Rn Rt
15 14 13 12 11 10 9 8 6 5 3 2 0

1 1 1 1 1 0 0 0 0 0 0 0 !=1111 Rt 0 0 0 0 0 0 imm2 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

Rn
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-595
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 offset = Shift(R[m], shift_t, shift_n, APSR.C);
 address = R[n] + offset;
 MemU[address,1] = R[t]<7:0>;

Exceptions

BusFault, UsageFault, MemManage, and SecureFault.
C2-596 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.185 STRBT

Store Register Byte Unprivileged calculates an address from a base register value and an immediate offset, and
stores a byte from a register to memory. When privileged software uses an STRBT instruction, the memory access is
restricted as if the software was unprivileged.

T1

ARMv8-M Main Extension only

T1 variant

STRBT{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding

if Rn == '1111' then UNDEFINED;
if !HaveMainExt() then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
register_form = FALSE; imm32 = ZeroExtend(imm8, 32);
if t IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+ Specifies the offset is added to the base register.

<imm> Is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 and
encoded in the "imm8" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n] + imm32;
 MemU_unpriv[address,1] = R[t]<7:0>;

Exceptions

UsageFault, BusFault, MemManage, and SecureFault.

1 1 1 1 1 0 0 0 0 0 0 0 !=1111 Rt 1 1 1 0 imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-597
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.186 STRD (immediate)

Store Register Dual (immediate) calculates an address from a base register value and an immediate offset, and stores
two words from two registers to memory. It can use offset, post-indexed, or pre-indexed addressing.

T1

ARMv8-M Main Extension only

Offset variant

Applies when P == 1 && W == 0.

STRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn> {, #{+/-}<imm>}]

Post-indexed variant

Applies when P == 0 && W == 1.

STRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

STRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>, #{+/-}<imm>]!

Decode for all variants of this encoding

if P == '0' && W == '0' then SEE "Related encodings";
if !HaveMainExt() then UNDEFINED;
t = UInt(Rt); t2 = UInt(Rt2); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
index = (P == '1'); add = (U == '1'); wback = (W == '1');
if wback && (n == t || n == t2) then UNPREDICTABLE;
if n == 15 || t IN {13,15} || t2 IN {13,15} then UNPREDICTABLE;

Notes for all encodings

Related encodings: Load/store (multiple, dual, exclusive, acquire-release), table branch on page C2-266.

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rt> Is the first general-purpose register to be transferred, encoded in the "Rt" field.

<Rt2> Is the second general-purpose register to be transferred, encoded in the "Rt2" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

1 1 1 0 1 0 0 P U 1 W 0 !=1111 Rt Rt2 imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 0

Rn
C2-598 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
<imm> For the offset variant: is the optional unsigned immediate byte offset, a multiple of 4, in the range 0
to 1020, defaulting to 0 and encoded in the "imm8" field as <imm>/4.

For the post-indexed and pre-indexed variant: is the unsigned immediate byte offset, a multiple of
4, in the range 0 to 1020, encoded in the "imm8" field as <imm>/4.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];

 // Determine if the stack pointer limit should be checked
 if n == 13 && wback then
 (limit, applylimit) = LookUpSPLim(LookUpSP());
 else
 applylimit = FALSE;
 // Memory operation only performed if limit not violated
 if !applylimit || (UInt(offset_addr) >= UInt(limit)) then
 MemA[address,4] = R[t];
 MemA[address+4,4] = R[t2];

 // If the stack pointer is being updated update a fault will be raised if
 // the limit is violated
 if wback then RSPCheck[n] = offset_addr;

Exceptions

BusFault, UsageFault, MemManage, and SecureFault.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-599
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.187 STREX

Store Register Exclusive calculates an address from a base register value and an immediate offset, and stores a word
from a register to memory if the executing PE has exclusive access to the memory addressed.

T1

ARMv8-M

T1 variant

STREX{<c>}{<q>} <Rd>, <Rt>, [<Rn> {, #<imm>}]

Decode for this encoding

d = UInt(Rd); t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
if t == 15 then SEE "TT";
if d IN {13,15} || t == 13 || n == 15 then UNPREDICTABLE;
if d == n || d == t then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the destination general-purpose register into which the status result of the store exclusive is
written, encoded in the "Rd" field. The value returned is:

0 If the operation updates memory.

1 If the operation fails to update memory.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<imm> The immediate offset added to the value of <Rn> to calculate the address. <imm> can be omitted,
meaning an offset of 0. Values are multiples of 4 in the range 0-1020.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n] + imm32;
 if ExclusiveMonitorsPass(address,4) then
 MemA[address,4] = R[t];
 R[d] = ZeroExtend('0');
 else
 R[d] = ZeroExtend('1');

Exceptions

UsageFault, MemManage, SecureFault, and BusFault.

1 1 1 0 1 0 0 0 0 1 0 0 Rn !=1111 Rd imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 0

Rt
C2-600 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.188 STREXB

Store Register Exclusive Byte derives an address from a base register value, and stores a byte from a register to
memory if the executing PE has exclusive access to the memory addressed.

T1

ARMv8-M

T1 variant

STREXB{<c>}{<q>} <Rd>, <Rt>, [<Rn>]

Decode for this encoding

d = UInt(Rd); t = UInt(Rt); n = UInt(Rn);
if d IN {13,15} || t IN {13,15} || n == 15 then UNPREDICTABLE;
if d == n || d == t then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the destination general-purpose register into which the status result of the store exclusive is
written, encoded in the "Rd" field. The value returned is:

0 If the operation updates memory.

1 If the operation fails to update memory.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];
 if ExclusiveMonitorsPass(address,1) then
 MemA[address,1] = R[t]<7:0>;
 R[d] = ZeroExtend('0');
 else
 R[d] = ZeroExtend('1');

Exceptions

UsageFault, MemManage, SecureFault, and BusFault.

1 1 1 0 1 0 0 0 1 1 0 0 Rn Rt (1) (1) (1) (1) 0 1 0 0 Rd
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-601
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.189 STREXH

Store Register Exclusive Halfword derives an address from a base register value, and stores a halfword from a
register to memory if the executing PE has exclusive access to the memory addressed.

T1

ARMv8-M

T1 variant

STREXH{<c>}{<q>} <Rd>, <Rt>, [<Rn>]

Decode for this encoding

d = UInt(Rd); t = UInt(Rt); n = UInt(Rn);
if d IN {13,15} || t IN {13,15} || n == 15 then UNPREDICTABLE;
if d == n || d == t then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the destination general-purpose register into which the status result of the store exclusive is
written, encoded in the "Rd" field. The value returned is:

0 If the operation updates memory.

1 If the operation fails to update memory.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];
 if ExclusiveMonitorsPass(address,2) then
 MemA[address,2] = R[t]<15:0>;
 R[d] = ZeroExtend('0');
 else
 R[d] = ZeroExtend('1');

Exceptions

UsageFault, MemManage, SecureFault, and BusFault.

1 1 1 0 1 0 0 0 1 1 0 0 Rn Rt (1) (1) (1) (1) 0 1 0 1 Rd
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
C2-602 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.190 STRH (immediate)

Store Register Halfword (immediate) calculates an address from a base register value and an immediate offset, and
stores a halfword from a register to memory. It can use offset, post-indexed, or pre-indexed addressing.

T1

ARMv8-M

T1 variant

STRH{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding

t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm5:'0', 32);
index = TRUE; add = TRUE; wback = FALSE;

T2

ARMv8-M Main Extension only

T2 variant

STRH{<c>}.W <Rt>, [<Rn> {, #{+}<imm>}] // <Rt>, <Rn>, <imm> can be represented in T1
STRH{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding

if Rn == '1111' then UNDEFINED;
if !HaveMainExt() then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
index = TRUE; add = TRUE; wback = FALSE;
if t IN {13,15} then UNPREDICTABLE;

T3

ARMv8-M Main Extension only

Offset variant

Applies when P == 1 && U == 0 && W == 0.

STRH{<c>}{<q>} <Rt>, [<Rn> {, #-<imm>}]

1 0 0 0 0 imm5 Rn Rt
15 14 13 12 11 10 6 5 3 2 0

1 1 1 1 1 0 0 0 1 0 1 0 !=1111 Rt imm12
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 0

Rn

1 1 1 1 1 0 0 0 0 0 1 0 !=1111 Rt 1 P U W imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-603
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Post-indexed variant

Applies when P == 0 && W == 1.

STRH{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

STRH{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

Decode for all variants of this encoding

if P == '1' && U == '1' && W == '0' then SEE STRHT;
if Rn == '1111' || (P == '0' && W == '0') then UNDEFINED;
if !HaveMainExt() then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
index = (P == '1'); add = (U == '1'); wback = (W == '1');
if t IN {13,15} || (wback && n == t) then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

+ Specifies the offset is added to the base register.

<imm> For the post-indexed or pre-indexed variant: is a 8-bit unsigned immediate byte offset, in the range
0 to 255, encoded in the "imm8" field.

For encoding T1: is the optional positive unsigned immediate byte offset, a multiple of 2 in the range
0 to 62, defaulting to 0 and encoded in the "imm5" field as <imm>/2.

For encoding T2: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095,
defaulting to 0 and encoded in the "imm12" field.

For encoding T3: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255,
defaulting to 0 and encoded in the "imm8" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];

 // Determine if the stack pointer limit should be checked
 if n == 13 && wback then
 (limit, applylimit) = LookUpSPLim(LookUpSP());
 else
 applylimit = FALSE;
 // Memory operation only performed if limit not violated
 if !applylimit || (UInt(offset_addr) >= UInt(limit)) then
 MemU[address,2] = R[t]<15:0>;

C2-604 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
 // If the stack pointer is being updated update a fault will be raised if
 // the limit is violated
 if wback then RSPCheck[n] = offset_addr;

Exceptions

BusFault, UsageFault, MemManage, and SecureFault.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-605
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.191 STRH (register)

Store Register Halfword (register) calculates an address from a base register value and an offset register value, and
stores a halfword from a register to memory. The offset register value can be shifted left by 0, 1, 2, or 3 bits.

T1

ARMv8-M

T1 variant

STRH{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>]

Decode for this encoding

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, 0);

T2

ARMv8-M Main Extension only

T2 variant

STRH{<c>}.W <Rt>, [<Rn>, {+}<Rm>] // <Rt>, <Rn>, <Rm> can be represented in T1
STRH{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>{, LSL #<imm>}]

Decode for this encoding

if Rn == '1111' then UNDEFINED;
if !HaveMainExt() then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, UInt(imm2));
if t IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+ Specifies the index register is added to the base register.

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

<imm> If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. <imm> is encoded
in imm2. If absent, no shift is specified and imm2 is encoded as 0b00.

0 1 0 1 0 0 1 Rm Rn Rt
15 14 13 12 11 10 9 8 6 5 3 2 0

1 1 1 1 1 0 0 0 0 0 1 0 !=1111 Rt 0 0 0 0 0 0 imm2 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

Rn
C2-606 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 offset = Shift(R[m], shift_t, shift_n, APSR.C);
 address = R[n] + offset;
 MemU[address,2] = R[t]<15:0>;

Exceptions

BusFault, UsageFault, MemManage, and SecureFault.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-607
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.192 STRHT

Store Register Halfword Unprivileged calculates an address from a base register value and an immediate offset, and
stores a halfword from a register to memory.

When privileged software uses an STRHT instruction, the memory access is restricted as if the software was
unprivileged.

T1

ARMv8-M Main Extension only

T1 variant

STRHT{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding

if Rn == '1111' then UNDEFINED;
if !HaveMainExt() then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
register_form = FALSE; imm32 = ZeroExtend(imm8, 32);
if t IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+ Specifies the offset is added to the base register.

<imm> Is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 and
encoded in the "imm8" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n] + imm32;
 MemU_unpriv[address,2] = R[t]<15:0>;

Exceptions

UsageFault, BusFault, MemManage, and SecureFault.

1 1 1 1 1 0 0 0 0 0 1 0 !=1111 Rt 1 1 1 0 imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn
C2-608 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.193 STRT

Store Register Unprivileged calculates an address from a base register value and an immediate offset, and stores a
word from a register to memory.

When privileged software uses an STRT instruction, the memory access is restricted as if the software was
unprivileged.

T1

ARMv8-M Main Extension only

T1 variant

STRT{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding

if Rn == '1111' then UNDEFINED;
if !HaveMainExt() then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
register_form = FALSE; imm32 = ZeroExtend(imm8, 32);
if t IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+ Specifies the offset is added to the base register.

<imm> Is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 and
encoded in the "imm8" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n] + imm32;
 data = R[t];
 MemU_unpriv[address,4] = data;

Exceptions

UsageFault, BusFault, MemManage, and SecureFault.

1 1 1 1 1 0 0 0 0 1 0 0 !=1111 Rt 1 1 1 0 imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

Rn
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-609
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.194 SUB (SP minus immediate)

Subtract (SP minus immediate) subtracts an immediate value from the SP value, and writes the result to the
destination register.

T1

ARMv8-M

T1 variant

SUB{<c>}{<q>} {SP,} SP, #<imm7>

Decode for this encoding

d = 13; setflags = FALSE; imm32 = ZeroExtend(imm7:'00', 32);

T2

ARMv8-M Main Extension only

SUB variant

Applies when S == 0.

SUB{<c>}.W {<Rd>,} SP, #<const> // <Rd>, <const> can be represented in T1
SUB{<c>}{<q>} {<Rd>,} SP, #<const>

SUBS variant

Applies when S == 1 && Rd != 1111.

SUBS{<c>}{<q>} {<Rd>,} SP, #<const>

Decode for all variants of this encoding

if Rd == '1111' && S == '1' then SEE "CMP (immediate)";
if !HaveMainExt() then UNDEFINED;
d = UInt(Rd); setflags = (S == '1'); imm32 = T32ExpandImm(i:imm3:imm8);
if d == 15 && S == '0' then UNPREDICTABLE;

T3

ARMv8-M Main Extension only

1 0 1 1 0 0 0 0 1 imm7
15 14 13 12 11 10 9 8 7 6 0

1 1 1 1 0 i 0 1 1 0 1 S 1 1 0 1 0 imm3 Rd imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 0

1 1 1 1 0 i 1 0 1 0 1 0 1 1 0 1 0 imm3 Rd imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 0
C2-610 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
T3 variant

SUB{<c>}{<q>} {<Rd>,} SP, #<imm12> // <imm12> cannot be represented in T1, T2, or T3
SUBW{<c>}{<q>} {<Rd>,} SP, #<imm12> // <imm12> can be represented in T1, T2, or T3

Decode for this encoding

if !HaveMainExt() then UNDEFINED;
d = UInt(Rd); setflags = FALSE; imm32 = ZeroExtend(i:imm3:imm8, 32);
if d == 15 then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<imm7> Is an unsigned immediate, a multiple of 4 in the range 0 to 508, encoded in the "imm7" field as
<imm7>/4.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the
SP.

<imm12> Is a 12-bit unsigned immediate, in the range 0 to 4095, encoded in the "i:imm3:imm8" field.

<const> An immediate value. See Modified immediate constants on page C1-249 for the range of values.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 (result, carry, overflow) = AddWithCarry(SP, NOT(imm32), '1');
 RSPCheck[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 APSR.V = overflow;

Exceptions

UsageFault.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-611
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.195 SUB (SP minus register)

Subtract (SP minus register) subtracts an optionally-shifted register value from the SP value, and writes the result
to the destination register.

T1

ARMv8-M Main Extension only

SUB, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && type == 11.

SUB{<c>}{<q>} {<Rd>,} SP, <Rm>, RRX

SUB, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && type == 11).

SUB{<c>}.W {<Rd>,} SP, <Rm> // <Rd>, <Rm> can be represented in T1 or T2
SUB{<c>}{<q>} {<Rd>,} SP, <Rm> {, <shift> #<amount>}

SUBS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && Rd != 1111 && imm2 == 00 && type == 11.

SUBS{<c>}{<q>} {<Rd>,} SP, <Rm>, RRX

SUBS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && type == 11) && Rd != 1111.

SUBS{<c>}{<q>} {<Rd>,} SP, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

if Rd == '1111' && S == '1' then SEE "CMP (register)";
if !HaveMainExt() then UNDEFINED;
d = UInt(Rd); m = UInt(Rm); setflags = (S == '1');
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
if d == 13 && (shift_t != SRType_LSL || shift_n > 3) then UNPREDICTABLE;
if (d == 15 && S == '0') || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the
SP.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in the "type" field. It can have
the following values:

LSL when type = 00

LSR when type = 01

1 1 1 0 1 0 1 1 1 0 1 S 1 1 0 1 (0) imm3 Rd imm2 type Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 6 5 4 3 0
C2-612 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
ASR when type = 10

ROR when type = 11

<amount> Is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift> =
LSR or ASR) encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 shifted = Shift(R[m], shift_t, shift_n, APSR.C);
 (result, carry, overflow) = AddWithCarry(SP, NOT(shifted), '1');
 RSPCheck[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 APSR.V = overflow;

Exceptions

UsageFault.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-613
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.196 SUB (immediate)

Subtract (immediate) subtracts an immediate value from a register value, and writes the result to the destination
register. It can optionally update the condition flags based on the result.

T1

ARMv8-M

T1 variant

SUB<c>{<q>} <Rd>, <Rn>, #<imm3> // Inside IT block
SUBS{<q>} <Rd>, <Rn>, #<imm3> // Outside IT block

Decode for this encoding

d = UInt(Rd); n = UInt(Rn); setflags = !InITBlock(); imm32 = ZeroExtend(imm3, 32);

T2

ARMv8-M

T2 variant

SUB<c>{<q>} <Rdn>, #<imm8> // Inside IT block, and <Rdn>, <imm8> can be represented in T1
SUB<c>{<q>} {<Rdn>,} <Rdn>, #<imm8> // Inside IT block, and <Rdn>, <imm8> cannot be represented in T1
SUBS{<q>} <Rdn>, #<imm8> // Outside IT block, and <Rdn>, <imm8> can be represented in T1
SUBS{<q>} {<Rdn>,} <Rdn>, #<imm8> // Outside IT block, and <Rdn>, <imm8> cannot be represented in T1

Decode for this encoding

d = UInt(Rdn); n = UInt(Rdn); setflags = !InITBlock(); imm32 = ZeroExtend(imm8, 32);

T3

ARMv8-M Main Extension only

SUB variant

Applies when S == 0.

SUB<c>.W {<Rd>,} <Rn>, #<const> // Inside IT block, and <Rd>, <Rn>, <const> can be represented in T1 or
T2
SUB{<c>}{<q>} {<Rd>,} <Rn>, #<const>

0 0 0 1 1 1 1 imm3 Rn Rd
15 14 13 12 11 10 9 8 6 5 3 2 0

0 0 1 1 1 Rdn imm8
15 14 13 12 11 10 8 7 0

1 1 1 1 0 i 0 1 1 0 1 S !=1101 0 imm3 Rd imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 0

Rn
C2-614 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
SUBS variant

Applies when S == 1 && Rd != 1111.

SUBS.W {<Rd>,} <Rn>, #<const> // Outside IT block, and <Rd>, <Rn>, <const> can be represented in T1 or T2
SUBS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for all variants of this encoding

if Rd == '1111' && S == '1' then SEE "CMP (immediate)";
if Rn == '1101' then SEE "SUB (SP minus immediate)";
if !HaveMainExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); setflags = (S == '1'); imm32 = T32ExpandImm(i:imm3:imm8);
if d == 13 || (d == 15 && S == '0') || n == 15 then UNPREDICTABLE;

T4

ARMv8-M Main Extension only

T4 variant

SUB{<c>}{<q>} {<Rd>,} <Rn>, #<imm12> // <imm12> cannot be represented in T1, T2, or T3
SUBW{<c>}{<q>} {<Rd>,} <Rn>, #<imm12> // <imm12> can be represented in T1, T2, or T3

Decode for this encoding

if Rn == '1111' then SEE ADR;
if Rn == '1101' then SEE "SUB (SP minus immediate)";
if !HaveMainExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); setflags = FALSE; imm32 = ZeroExtend(i:imm3:imm8, 32);
if d IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rdn> Is the general-purpose source and destination register, encoded in the "Rdn" field.

<imm8> Is a 8-bit unsigned immediate, in the range 0 to 255, encoded in the "imm8" field.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the
same as <Rn>.

<Rn> For encoding T1: is the general-purpose source register, encoded in the "Rn" field.

For encoding T3: is the general-purpose source register, encoded in the "Rn" field. If the SP is used,
see SUB (SP minus immediate).

For encoding T4: is the general-purpose source register, encoded in the "Rn" field. If the SP is used,
see SUB (SP minus immediate). If the PC is used, see ADR.

<imm3> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "imm3" field.

<imm12> Is a 12-bit unsigned immediate, in the range 0 to 4095, encoded in the "i:imm3:imm8" field.

<const> An immediate value. See Modified immediate constants on page C1-249 for the range of values.

1 1 1 1 0 i 1 0 1 0 1 0 !=11x1 0 imm3 Rd imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 0

Rn
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-615
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 (result, carry, overflow) = AddWithCarry(R[n], NOT(imm32), '1');
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 APSR.V = overflow;

Exceptions

None.
C2-616 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.197 SUB (immediate, from PC)

Subtract from PC subtracts an immediate value from the Align(PC, 4) value to form a PC-relative address, and
writes the result to the destination register. ARM recommends that, where possible, software avoids using this alias.

This instruction is an alias of the ADR instruction. This means that:

• The encodings in this description are named to match the encodings of ADR.

• The description of ADR gives the operational pseudocode for this instruction.

T2

ARMv8-M Main Extension only

T2 variant

SUB{<c>}{<q>} <Rd>, PC, #<imm12>

is equivalent to

ADR{<c>}{<q>} <Rd>, <label>

and is the preferred disassembly when i:imm3:imm8 == '000000000000'.

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<label> For encoding T1: the label of an instruction or literal data item whose address is to be loaded into
<Rd>. The assembler calculates the required value of the offset from the Align(PC, 4) value of the
ADR instruction to this label. Permitted values of the size of the offset are multiples of 4 in the range
0 to 1020.

For encoding T2 and T3: the label of an instruction or literal data item whose address is to be loaded
into <Rd>. The assembler calculates the required value of the offset from the Align(PC, 4) value of
the ADR instruction to this label. If the offset is zero or positive, encoding T3 is used, with imm32 equal
to the offset. If the offset is negative, encoding T2 is used, with imm32 equal to the size of the offset.
That is, the use of encoding T2 indicates that the required offset is minus the value of imm32.
Permitted values of the size of the offset are 0-4095.

<imm12> Is a 12-bit unsigned immediate, in the range 0 to 4095, encoded in the "i:imm3:imm8" field.

Operation

The description of ADR gives the operational pseudocode for this instruction.

1 1 1 1 0 i 1 0 1 0 1 0 1 1 1 1 0 imm3 Rd imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 12 11 8 7 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-617
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.198 SUB (register)

Subtract (register) subtracts an optionally-shifted register value from a register value, and writes the result to the
destination register. It can optionally update the condition flags based on the result.

T1

ARMv8-M

T1 variant

SUB<c>{<q>} <Rd>, <Rn>, <Rm> // Inside IT block
SUBS{<q>} {<Rd>,} <Rn>, <Rm> // Outside IT block

Decode for this encoding

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = !InITBlock();
(shift_t, shift_n) = (SRType_LSL, 0);

T2

ARMv8-M Main Extension only

SUB, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && type == 11.

SUB{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

SUB, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && type == 11).

SUB<c>.W {<Rd>,} <Rn>, <Rm> // Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1
SUB{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

SUBS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && Rd != 1111 && imm2 == 00 && type == 11.

SUBS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

SUBS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && type == 11) && Rd != 1111.

SUBS.W {<Rd>,} <Rn>, <Rm> // Outside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1
SUBS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

if Rd == '1111' && S == '1' then SEE "CMP (register)";
if Rn == '1101' then SEE "SUB (SP minus register)";
if !HaveMainExt() then UNDEFINED;

0 0 0 1 1 0 1 Rm Rn Rd
15 14 13 12 11 10 9 8 6 5 3 2 0

1 1 1 0 1 0 1 1 1 0 1 S !=1101 (0) imm3 Rd imm2 type Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 6 5 4 3 0

Rn
C2-618 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
if d == 13 || (d == 15 && S == '0') || n == 15 || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the
same as <Rn>.

<Rn> For encoding T1: is the first general-purpose source register, encoded in the "Rn" field.

For encoding T2: is the first general-purpose source register, encoded in the "Rn" field. If the SP is
used, see SUB (SP minus register).

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in the "type" field. It can have
the following values:

LSL when type = 00

LSR when type = 01

ASR when type = 10

ROR when type = 11

<amount> Is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift> =
LSR or ASR) encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 shifted = Shift(R[m], shift_t, shift_n, APSR.C);
 (result, carry, overflow) = AddWithCarry(R[n], NOT(shifted), '1');
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 APSR.V = overflow;

Exceptions

None.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-619
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.199 SVC

The Supervisor Call instruction generates a call to a system supervisor.

Use it as a call to an operating system to provide a service.

Note
 In older versions of the ARM architecture, SVC was called SWI, Software Interrupt.

T1

ARMv8-M

T1 variant

SVC{<c>}{<q>} {#}<imm>

Decode for this encoding

imm32 = ZeroExtend(imm8, 32);
// imm32 is for assembly/disassembly. SVC handlers in some
// systems interpret imm8 in software, for example to determine the required service.

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<imm> Is a 8-bit unsigned immediate, in the range 0 to 255, encoded in the "imm8" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 CallSupervisor();

Exceptions

SVCall.

1 1 0 1 1 1 1 1 imm8
15 14 13 12 11 10 9 8 7 0
C2-620 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.200 SXTAB

Signed Extend and Add Byte extracts an 8-bit value from a register, sign-extends it to 32 bits, adds the result to the
value in another register, and writes the final result to the destination register. The instruction can specify a rotation
by 0, 8, 16, or 24 bits before extracting the 8-bit value.

T1

ARMv8-M DSP Extension only

T1 variant

SXTAB{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ROR #<amount>}

Decode for this encoding

if Rn == '1111' then SEE SXTB;
if !HaveDSPExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:'000');
if d IN {13,15} || n == 13 || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<amount> Is the rotate amount, encoded in the "rotate" field. It can have the following values:

(omitted) when rotate = 00

8 when rotate = 01

16 when rotate = 10

24 when rotate = 11

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 rotated = ROR(R[m], rotation);
 R[d] = R[n] + SignExtend(rotated<7:0>, 32);

Exceptions

None.

1 1 1 1 1 0 1 0 0 1 0 0 !=1111 1 1 1 1 Rd 1 (0) rotate Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0

Rn
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-621
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.201 SXTAB16

Signed Extend and Add Byte 16 extracts two 8-bit values from a register, sign-extends them to 16 bits each, adds
the results to two 16-bit values from another register, and writes the final results to the destination register. The
instruction can specify a rotation by 0, 8, 16, or 24 bits before extracting the 8-bit values.

T1

ARMv8-M DSP Extension only

T1 variant

SXTAB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ROR #<amount>}

Decode for this encoding

if Rn == '1111' then SEE SXTB16;
if !HaveDSPExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:'000');
if d IN {13,15} || n == 13 || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<amount> Is the rotate amount, encoded in the "rotate" field. It can have the following values:

(omitted) when rotate = 00

8 when rotate = 01

16 when rotate = 10

24 when rotate = 11

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 rotated = ROR(R[m], rotation);
 bits(32) result;
 result<15:0> = R[n]<15:0> + SignExtend(rotated<7:0>, 16);
 result<31:16> = R[n]<31:16> + SignExtend(rotated<23:16>, 16);
 R[d] = result;

Exceptions

None.

1 1 1 1 1 0 1 0 0 0 1 0 !=1111 1 1 1 1 Rd 1 (0) rotate Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0

Rn
C2-622 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.202 SXTAH

Signed Extend and Add Halfword extracts a 16-bit value from a register, sign-extends it to 32 bits, adds the result
to a value from another register, and writes the final result to the destination register. The instruction can specify a
rotation by 0, 8, 16, or 24 bits before extracting the 16-bit value.

T1

ARMv8-M DSP Extension only

T1 variant

SXTAH{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ROR #<amount>}

Decode for this encoding

if Rn == '1111' then SEE SXTH;
if !HaveDSPExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:'000');
if d IN {13,15} || n == 13 || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<amount> Is the rotate amount, encoded in the "rotate" field. It can have the following values:

(omitted) when rotate = 00

8 when rotate = 01

16 when rotate = 10

24 when rotate = 11

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 rotated = ROR(R[m], rotation);
 R[d] = R[n] + SignExtend(rotated<15:0>, 32);

Exceptions

None.

1 1 1 1 1 0 1 0 0 0 0 0 !=1111 1 1 1 1 Rd 1 (0) rotate Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0

Rn
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-623
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.203 SXTB

Signed Extend Byte extracts an 8-bit value from a register, sign extends it to 32 bits, and writes the result to the
destination register. The instruction can specify a rotation by 0, 8, 16, or 24 bits before extracting the 8-bit value.

T1

ARMv8-M

T1 variant

SXTB{<c>}{<q>} {<Rd>,} <Rm>

Decode for this encoding

d = UInt(Rd); m = UInt(Rm); rotation = 0;

T2

ARMv8-M Main Extension only

T2 variant

SXTB{<c>}.W {<Rd>,} <Rm> // <Rd>, <Rm> can be represented in T1
SXTB{<c>}{<q>} {<Rd>,} <Rm> {, ROR #<amount>}

Decode for this encoding

if !HaveMainExt() then UNDEFINED;
d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
if d IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the general-purpose source register, encoded in the "Rm" field.

<amount> Is the rotate amount, encoded in the "rotate" field. It can have the following values:

(omitted) when rotate = 00

8 when rotate = 01

16 when rotate = 10

24 when rotate = 11

1 0 1 1 0 0 1 0 0 1 Rm Rd
15 14 13 12 11 10 9 8 7 6 5 3 2 0

1 1 1 1 1 0 1 0 0 1 0 0 1 1 1 1 1 1 1 1 Rd 1 (0) rotate Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 8 7 6 5 4 3 0
C2-624 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 rotated = ROR(R[m], rotation);
 R[d] = SignExtend(rotated<7:0>, 32);

Exceptions

None.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-625
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.204 SXTB16

Signed Extend Byte 16 extracts two 8-bit values from a register, sign-extends them to 16 bits each, and writes the
results to the destination register. The instruction can specify a rotation by 0, 8, 16, or 24 bits before extracting the
8-bit values.

T1

ARMv8-M DSP Extension only

T1 variant

SXTB16{<c>}{<q>} {<Rd>,} <Rm> {, ROR #<amount>}

Decode for this encoding

if !HaveDSPExt() then UNDEFINED;
d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
if d IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the general-purpose source register, encoded in the "Rm" field.

<amount> Is the rotate amount, encoded in the "rotate" field. It can have the following values:

(omitted) when rotate = 00

8 when rotate = 01

16 when rotate = 10

24 when rotate = 11

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 rotated = ROR(R[m], rotation);
 bits(32) result;
 result<15:0> = SignExtend(rotated<7:0>, 16);
 result<31:16> = SignExtend(rotated<23:16>, 16);
 R[d] = result;

Exceptions

None.

1 1 1 1 1 0 1 0 0 0 1 0 1 1 1 1 1 1 1 1 Rd 1 (0) rotate Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 8 7 6 5 4 3 0
C2-626 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.205 SXTH

Signed Extend Halfword extracts a 16-bit value from a register, sign extends it to 32 bits, and writes the result to
the destination register. The instruction can specify a rotation by 0, 8, 16, or 24 bits before extracting the 16-bit
value.

T1

ARMv8-M

T1 variant

SXTH{<c>}{<q>} {<Rd>,} <Rm>

Decode for this encoding

d = UInt(Rd); m = UInt(Rm); rotation = 0;

T2

ARMv8-M Main Extension only

T2 variant

SXTH{<c>}.W {<Rd>,} <Rm> // <Rd>, <Rm> can be represented in T1
SXTH{<c>}{<q>} {<Rd>,} <Rm> {, ROR #<amount>}

Decode for this encoding

if !HaveMainExt() then UNDEFINED;
d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
if d IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the general-purpose source register, encoded in the "Rm" field.

<amount> Is the rotate amount, encoded in the "rotate" field. It can have the following values:

(omitted) when rotate = 00

8 when rotate = 01

16 when rotate = 10

24 when rotate = 11

1 0 1 1 0 0 1 0 0 0 Rm Rd
15 14 13 12 11 10 9 8 7 6 5 3 2 0

1 1 1 1 1 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 Rd 1 (0) rotate Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-627
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 rotated = ROR(R[m], rotation);
 R[d] = SignExtend(rotated<15:0>, 32);

Exceptions

None.
C2-628 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.206 TBB, TBH

Table Branch Byte causes a PC-relative forward branch using a table of single byte offsets. A base register provides
a pointer to the table, and a second register supplies an index into the table. The branch length is twice the value of
the byte returned from the table.

Table Branch Halfword causes a PC-relative forward branch using a table of single halfword offsets. A base register
provides a pointer to the table, and a second register supplies an index into the table. The branch length is twice the
value of the halfword returned from the table.

T1

ARMv8-M Main Extension only

Byte variant

Applies when H == 0.

TBB{<c>}{<q>} [<Rn>, <Rm>] // Outside or last in IT block

Halfword variant

Applies when H == 1.

TBH{<c>}{<q>} [<Rn>, <Rm>, LSL #1] // Outside or last in IT block

Decode for all variants of this encoding

if !HaveMainExt() then UNDEFINED;
n = UInt(Rn); m = UInt(Rm); is_tbh = (H == '1');
if n == 13 || m IN {13,15} then UNPREDICTABLE;
if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rn> Is the general-purpose base register holding the address of the table of branch lengths, encoded in
the "Rn" field. The PC can be used. If it is, the table immediately follows this instruction.

<Rm> For the byte variant: is the general-purpose index register, encoded in the "Rm" field. This register
contains an integer pointing to a single byte in the table. The offset in the table is the value of the
index.

For the halfword variant: is the general-purpose index register, encoded in the "Rm" field. This
register contains an integer pointing to a halfword in the table. The offset in the table is twice the
value of the index.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 if is_tbh then
 halfwords = UInt(MemU[R[n]+LSL(R[m],1), 2]);
 else
 halfwords = UInt(MemU[R[n]+R[m], 1]);
 BranchWritePC(PC + 2*halfwords);

1 1 1 0 1 0 0 0 1 1 0 1 Rn (1) (1) (1) (1) (0) (0) (0) (0) 0 0 0 H Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-629
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Exceptions

BusFault, UsageFault, MemManage, and SecureFault.
C2-630 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.207 TEQ (immediate)

Test Equivalence (immediate) performs an exclusive OR operation on a register value and an immediate value. It
updates the condition flags based on the result, and discards the result.

T1

ARMv8-M Main Extension only

T1 variant

TEQ{<c>}{<q>} <Rn>, #<const>

Decode for this encoding

if !HaveMainExt() then UNDEFINED;
n = UInt(Rn);
(imm32, carry) = T32ExpandImm_C(i:imm3:imm8, APSR.C);
if n IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rn> Is the general-purpose source register, encoded in the "Rn" field.

<const> An immediate value. See Modified immediate constants on page C1-249 for the range of values.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 result = R[n] EOR imm32;
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.

1 1 1 1 0 i 0 0 1 0 0 1 Rn 0 imm3 1 1 1 1 imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 10 9 8 7 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-631
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.208 TEQ (register)

Test Equivalence (register) performs an exclusive OR operation on a register value and an optionally-shifted register
value. It updates the condition flags based on the result, and discards the result.

T1

ARMv8-M Main Extension only

Rotate right with extend variant

Applies when imm3 == 000 && imm2 == 00 && type == 11.

TEQ{<c>}{<q>} <Rn>, <Rm>, RRX

Shift or rotate by value variant

Applies when !(imm3 == 000 && imm2 == 00 && type == 11).

TEQ{<c>}{<q>} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

if !HaveMainExt() then UNDEFINED;
n = UInt(Rn); m = UInt(Rm);
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
if n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in the "type" field. It can have
the following values:

LSL when type = 00

LSR when type = 01

ASR when type = 10

ROR when type = 11

<amount> Is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift> =
LSR or ASR) encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
 result = R[n] EOR shifted;
 APSR.N = result<31>;

1 1 1 0 1 0 1 0 1 0 0 1 Rn (0) imm3 1 1 1 1 imm2 type Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 10 9 8 7 6 5 4 3 0
C2-632 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-633
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.209 TST (immediate)

Test (immediate) performs a logical AND operation on a register value and an immediate value. It updates the
condition flags based on the result, and discards the result.

T1

ARMv8-M Main Extension only

T1 variant

TST{<c>}{<q>} <Rn>, #<const>

Decode for this encoding

if !HaveMainExt() then UNDEFINED;
n = UInt(Rn);
(imm32, carry) = T32ExpandImm_C(i:imm3:imm8, APSR.C);
if n IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rn> Is the general-purpose source register, encoded in the "Rn" field.

<const> An immediate value. See Modified immediate constants on page C1-249 for the range of values.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 result = R[n] AND imm32;
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.

1 1 1 1 0 i 0 0 0 0 0 1 Rn 0 imm3 1 1 1 1 imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 10 9 8 7 0
C2-634 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.210 TST (register)

Test (register) performs a logical AND operation on a register value and an optionally-shifted register value. It
updates the condition flags based on the result, and discards the result.

T1

ARMv8-M

T1 variant

TST{<c>}{<q>} <Rn>, <Rm>

Decode for this encoding

n = UInt(Rn); m = UInt(Rm);
(shift_t, shift_n) = (SRType_LSL, 0);

T2

ARMv8-M Main Extension only

Rotate right with extend variant

Applies when imm3 == 000 && imm2 == 00 && type == 11.

TST{<c>}{<q>} <Rn>, <Rm>, RRX

Shift or rotate by value variant

Applies when !(imm3 == 000 && imm2 == 00 && type == 11).

TST{<c>}.W <Rn>, <Rm> // <Rn>, <Rm> can be represented in T1
TST{<c>}{<q>} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

if !HaveMainExt() then UNDEFINED;
n = UInt(Rn); m = UInt(Rm);
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
if n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

0 1 0 0 0 0 1 0 0 0 Rm Rn
15 14 13 12 11 10 9 8 7 6 5 3 2 0

1 1 1 0 1 0 1 0 0 0 0 1 Rn (0) imm3 1 1 1 1 imm2 type Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-635
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
<shift> Is the type of shift to be applied to the second source register, encoded in the "type" field. It can have
the following values:

LSL when type = 00

LSR when type = 01

ASR when type = 10

ROR when type = 11

<amount> Is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift> =
LSR or ASR) encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
 result = R[n] AND shifted;
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.
C2-636 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.211 TT, TTT, TTA, TTAT

Test Target (TT) queries the Security state and access permissions of a memory location.

Test Target Unprivileged (TTT) queries the Security state and access permissions of a memory location for an
unprivileged access to that location.

Test Target Alternate Domain (TTA) and Test Target Alternate Domain Unprivileged (TTAT) query the Security
state and access permissions of a memory location for a Non-secure access to that location. These instructions are
only valid when executing in Secure state, and are UNDEFINED if used from Non-secure state.

These instructions return the Security state and access permissions in the destination register. See TT_RESP for the
format of the destination register.

T1

ARMv8-M

TT variant

Applies when A == 0 && T == 0.

TT{<c>}{<q>} <Rd>, <Rn>

TTA variant

Applies when A == 1 && T == 0.

TTA{<c>}{<q>} <Rd>, <Rn>

TTAT variant

Applies when A == 1 && T == 1.

TTAT{<c>}{<q>} <Rd>, <Rn>

TTT variant

Applies when A == 0 && T == 1.

TTT{<c>}{<q>} <Rd>, <Rn>

Decode for all variants of this encoding

d = UInt(Rd); n = UInt(Rn); alt = (A == '1'); forceunpriv = (T == '1');
if d IN {13,15} || n == 15 then UNPREDICTABLE;
if alt && !IsSecure() then UNDEFINED;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the destination general-purpose register into which the status result of the target test is written,
encoded in the "Rd" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

1 1 1 0 1 0 0 0 0 1 0 0 Rn 1 1 1 1 Rd A T (0) (0) (0) (0) (0) (0)
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 2 1 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-637
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 addr = R[n];
 R[d] = TTResp(addr, alt, forceunpriv);

Exceptions

None.
C2-638 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.212 UADD16

Unsigned Add 16 performs two 16-bit unsigned integer additions, and writes the results to the destination register.
It sets the APSR.GE bits according to the results of the additions.

T1

ARMv8-M DSP Extension only

T1 variant

UADD16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

if !HaveDSPExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 sum1 = UInt(R[n]<15:0>) + UInt(R[m]<15:0>);
 sum2 = UInt(R[n]<31:16>) + UInt(R[m]<31:16>);
 R[d] = sum2<15:0> : sum1<15:0>;
 APSR.GE<1:0> = if sum1 >= 0x10000 then '11' else '00';
 APSR.GE<3:2> = if sum2 >= 0x10000 then '11' else '00';

Exceptions

None.

1 1 1 1 1 0 1 0 1 0 0 1 Rn 1 1 1 1 Rd 0 1 0 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-639
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.213 UADD8

Unsigned Add 8 performs four unsigned 8-bit integer additions, and writes the results to the destination register. It
sets the APSR.GE bits according to the results of the additions.

T1

ARMv8-M DSP Extension only

T1 variant

UADD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

if !HaveDSPExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 sum1 = UInt(R[n]<7:0>) + UInt(R[m]<7:0>);
 sum2 = UInt(R[n]<15:8>) + UInt(R[m]<15:8>);
 sum3 = UInt(R[n]<23:16>) + UInt(R[m]<23:16>);
 sum4 = UInt(R[n]<31:24>) + UInt(R[m]<31:24>);
 R[d] = sum4<7:0> : sum3<7:0> : sum2<7:0> : sum1<7:0>;
 APSR.GE<0> = if sum1 >= 0x100 then '1' else '0';
 APSR.GE<1> = if sum2 >= 0x100 then '1' else '0';
 APSR.GE<2> = if sum3 >= 0x100 then '1' else '0';
 APSR.GE<3> = if sum4 >= 0x100 then '1' else '0';

Exceptions

None.

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 0 1 0 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
C2-640 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.214 UASX

Unsigned Add and Subtract with Exchange exchanges the two halfwords of the second operand, performs one
unsigned 16-bit integer addition and one unsigned 16-bit subtraction, and writes the results to the destination
register. It sets the APSR.GE bits according to the results.

T1

ARMv8-M DSP Extension only

T1 variant

UASX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

if !HaveDSPExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 diff = UInt(R[n]<15:0>) - UInt(R[m]<31:16>);
 sum = UInt(R[n]<31:16>) + UInt(R[m]<15:0>);
 R[d] = sum<15:0> : diff<15:0>;
 APSR.GE<1:0> = if diff >= 0 then '11' else '00';
 APSR.GE<3:2> = if sum >= 0x10000 then '11' else '00';

Exceptions

None.

1 1 1 1 1 0 1 0 1 0 1 0 Rn 1 1 1 1 Rd 0 1 0 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-641
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.215 UBFX

Unsigned Bit Field Extract extracts any number of adjacent bits at any position from one register, zero extends them
to 32 bits, and writes the result to the destination register.

T1

ARMv8-M Main Extension only

T1 variant

UBFX{<c>}{<q>} <Rd>, <Rn>, #<lsb>, #<width>

Decode for this encoding

if !HaveMainExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn);
lsbit = UInt(imm3:imm2); widthminus1 = UInt(widthm1);
msbit = lsbit + widthminus1;
if msbit > 31 then UNPREDICTABLE;
if d IN {13,15} || n IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the general-purpose source register, encoded in the "Rn" field.

<lsb> Is the bit number of the least significant bit in the field, in the range 0 to 31, encoded in the
"imm3:imm2" field.

<width> Is the width of the field, in the range 1 to 32-<lsb>, encoded in the "widthm1" field as <width>-1.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 if msbit <= 31 then
 R[d] = ZeroExtend(R[n]<msbit:lsbit>, 32);
 else
 R[d] = bits(32) UNKNOWN;

Exceptions

None.

1 1 1 1 0 (0) 1 1 1 1 0 0 Rn 0 imm3 Rd imm2 (0) widthm1
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 6 5 4 0
C2-642 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.216 UDF

Permanently Undefined generates an Undefined Instruction exception.

T1

ARMv8-M

T1 variant

UDF{<c>}{<q>} {#}<imm>

Decode for this encoding

imm32 = ZeroExtend(imm8, 32);
// imm32 is for assembly and disassembly only, and is ignored by hardware.

T2

ARMv8-M

T2 variant

UDF{<c>}.W {#}<imm> // <imm> can be represented in T1
UDF{<c>}{<q>} {#}<imm>

Decode for this encoding

if !HaveMainExt() then UNDEFINED;
imm32 = ZeroExtend(imm4:imm12, 32);
// imm32 is for assembly and disassembly only, and is ignored by hardware.

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240. ARM deprecates using any <c> value other
than AL.

<q> See Standard assembler syntax fields on page C1-240.

<imm> For encoding T1: is a 8-bit unsigned immediate, in the range 0 to 255, encoded in the "imm8" field.
The PE ignores the value of this constant.

For encoding T2: is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the
"imm4:imm12" field. The PE ignores the value of this constant.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 UNDEFINED;

1 1 0 1 1 1 1 0 imm8
15 14 13 12 11 10 9 8 7 0

1 1 1 1 0 1 1 1 1 1 1 1 imm4 1 0 1 0 imm12
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-643
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Exceptions

None.
C2-644 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.217 UDIV

Unsigned Divide divides a 32-bit unsigned integer register value by a 32-bit unsigned integer register value, and
writes the result to the destination register. The condition flags are not affected.

T1

ARMv8-M

T1 variant

UDIV{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register holding the dividend, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the divisor, encoded in the "Rm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 if UInt(R[m]) == 0 then
 if IntegerZeroDivideTrappingEnabled() then
 GenerateIntegerZeroDivide();
 else
 result = 0;
 else
 result = RoundTowardsZero(Real(UInt(R[n])) / Real(UInt(R[m])));
 R[d] = result<31:0>;

Exceptions

UsageFault.

1 1 1 1 1 0 1 1 1 0 1 1 Rn (1) (1) (1) (1) Rd 1 1 1 1 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-645
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.218 UHADD16

Unsigned Halving Add 16 performs two unsigned 16-bit integer additions, halves the results, and writes the results
to the destination register.

T1

ARMv8-M DSP Extension only

T1 variant

UHADD16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

if !HaveDSPExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 sum1 = UInt(R[n]<15:0>) + UInt(R[m]<15:0>);
 sum2 = UInt(R[n]<31:16>) + UInt(R[m]<31:16>);
 R[d] = sum2<16:1> : sum1<16:1>;

Exceptions

None.

1 1 1 1 1 0 1 0 1 0 0 1 Rn 1 1 1 1 Rd 0 1 1 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
C2-646 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.219 UHADD8

Unsigned Halving Add 8 performs four unsigned 8-bit integer additions, halves the results, and writes the results to
the destination register.

T1

ARMv8-M DSP Extension only

T1 variant

UHADD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

if !HaveDSPExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 sum1 = UInt(R[n]<7:0>) + UInt(R[m]<7:0>);
 sum2 = UInt(R[n]<15:8>) + UInt(R[m]<15:8>);
 sum3 = UInt(R[n]<23:16>) + UInt(R[m]<23:16>);
 sum4 = UInt(R[n]<31:24>) + UInt(R[m]<31:24>);
 R[d] = sum4<8:1> : sum3<8:1> : sum2<8:1> : sum1<8:1>;

Exceptions

None.

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 0 1 1 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-647
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.220 UHASX

Unsigned Halving Add and Subtract with Exchange exchanges the two halfwords of the second operand, performs
one unsigned 16-bit integer addition and one unsigned 16-bit subtraction, halves the results, and writes the results
to the destination register.

T1

ARMv8-M DSP Extension only

T1 variant

UHASX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

if !HaveDSPExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 diff = UInt(R[n]<15:0>) - UInt(R[m]<31:16>);
 sum = UInt(R[n]<31:16>) + UInt(R[m]<15:0>);
 R[d] = sum<16:1> : diff<16:1>;

Exceptions

None.

1 1 1 1 1 0 1 0 1 0 1 0 Rn 1 1 1 1 Rd 0 1 1 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
C2-648 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.221 UHSAX

Unsigned Halving Subtract and Add with Exchange exchanges the two halfwords of the second operand, performs
one unsigned 16-bit integer subtraction and one unsigned 16-bit addition, halves the results, and writes the results
to the destination register.

T1

ARMv8-M DSP Extension only

T1 variant

UHSAX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

if !HaveDSPExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 sum = UInt(R[n]<15:0>) + UInt(R[m]<31:16>);
 diff = UInt(R[n]<31:16>) - UInt(R[m]<15:0>);
 R[d] = diff<16:1> : sum<16:1>;

Exceptions

None.

1 1 1 1 1 0 1 0 1 1 1 0 Rn 1 1 1 1 Rd 0 1 1 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-649
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.222 UHSUB16

Unsigned Halving Subtract 16 performs two unsigned 16-bit integer subtractions, halves the results, and writes the
results to the destination register.

T1

ARMv8-M DSP Extension only

T1 variant

UHSUB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

if !HaveDSPExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 diff1 = UInt(R[n]<15:0>) - UInt(R[m]<15:0>);
 diff2 = UInt(R[n]<31:16>) - UInt(R[m]<31:16>);
 R[d] = diff2<16:1> : diff1<16:1>;

Exceptions

None.

1 1 1 1 1 0 1 0 1 1 0 1 Rn 1 1 1 1 Rd 0 1 1 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
C2-650 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.223 UHSUB8

Unsigned Halving Subtract 8 performs four unsigned 8-bit integer subtractions, halves the results, and writes the
results to the destination register.

T1

ARMv8-M DSP Extension only

T1 variant

UHSUB8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

if !HaveDSPExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 diff1 = UInt(R[n]<7:0>) - UInt(R[m]<7:0>);
 diff2 = UInt(R[n]<15:8>) - UInt(R[m]<15:8>);
 diff3 = UInt(R[n]<23:16>) - UInt(R[m]<23:16>);
 diff4 = UInt(R[n]<31:24>) - UInt(R[m]<31:24>);
 R[d] = diff4<8:1> : diff3<8:1> : diff2<8:1> : diff1<8:1>;

Exceptions

None.

1 1 1 1 1 0 1 0 1 1 0 0 Rn 1 1 1 1 Rd 0 1 1 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-651
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.224 UMAAL

Unsigned Multiply Accumulate Accumulate Long multiplies two unsigned 32-bit values to produce a 64-bit value,
adds two unsigned 32-bit values, and writes the 64-bit result to two registers.

T1

ARMv8-M DSP Extension only

T1 variant

UMAAL{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Decode for this encoding

if !HaveDSPExt() then UNDEFINED;
dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm);
if dLo IN {13,15} || dHi IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;
if dHi == dLo then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<RdLo> Is the general-purpose source register holding the first addend and the destination register for the
lower 32 bits of the result, encoded in the "RdLo" field.

<RdHi> Is the general-purpose source register holding the second addend and the destination register for the
upper 32 bits of the result, encoded in the "RdHi" field.

<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 result = UInt(R[n]) * UInt(R[m]) + UInt(R[dHi]) + UInt(R[dLo]);
 R[dHi] = result<63:32>;
 R[dLo] = result<31:0>;

Exceptions

None.

1 1 1 1 1 0 1 1 1 1 1 0 Rn RdLo RdHi 0 1 1 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0
C2-652 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.225 UMLAL

Unsigned Multiply Accumulate Long multiplies two unsigned 32-bit values to produce a 64-bit value, and
accumulates this with a 64-bit value.

T1

ARMv8-M Main Extension only

T1 variant

UMLAL{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Decode for this encoding

if !HaveMainExt() then UNDEFINED;
dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); setflags = FALSE;
if dLo IN {13,15} || dHi IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;
if dHi == dLo then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<RdLo> Is the general-purpose source register holding the lower 32 bits of the addend, and the destination
register for the lower 32 bits of the result, encoded in the "RdLo" field.

<RdHi> Is the general-purpose source register holding the upper 32 bits of the addend, and the destination
register for the upper 32 bits of the result, encoded in the "RdHi" field.

<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 result = UInt(R[n]) * UInt(R[m]) + UInt(R[dHi]:R[dLo]);
 R[dHi] = result<63:32>;
 R[dLo] = result<31:0>;

Exceptions

None.

1 1 1 1 1 0 1 1 1 1 1 0 Rn RdLo RdHi 0 0 0 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-653
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.226 UMULL

Unsigned Multiply Long multiplies two 32-bit unsigned values to produce a 64-bit result.

T1

ARMv8-M Main Extension only

T1 variant

UMULL{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Decode for this encoding

if !HaveMainExt() then UNDEFINED;
dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); setflags = FALSE;
if dLo IN {13,15} || dHi IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;
if dHi == dLo then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<RdLo> Is the general-purpose destination register for the lower 32 bits of the result, encoded in the "RdLo"
field.

<RdHi> Is the general-purpose destination register for the upper 32 bits of the result, encoded in the "RdHi"
field.

<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 result = UInt(R[n]) * UInt(R[m]);
 R[dHi] = result<63:32>;
 R[dLo] = result<31:0>;

Exceptions

None.

1 1 1 1 1 0 1 1 1 0 1 0 Rn RdLo RdHi 0 0 0 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0
C2-654 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.227 UQADD16

Unsigned Saturating Add 16 performs two unsigned 16-bit integer additions, saturates the results to the 16-bit
unsigned integer range 0 to 216-1, and writes the results to the destination register.

T1

ARMv8-M DSP Extension only

T1 variant

UQADD16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

if !HaveDSPExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 sum1 = UInt(R[n]<15:0>) + UInt(R[m]<15:0>);
 sum2 = UInt(R[n]<31:16>) + UInt(R[m]<31:16>);
 bits(32) result;
 result<15:0> = UnsignedSat(sum1, 16);
 result<31:16> = UnsignedSat(sum2, 16);
 R[d] = result;

Exceptions

None.

1 1 1 1 1 0 1 0 1 0 0 1 Rn 1 1 1 1 Rd 0 1 0 1 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-655
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.228 UQADD8

Unsigned Saturating Add 8 performs four unsigned 8-bit integer additions, saturates the results to the 8-bit unsigned
integer range 0 to 28-1, and writes the results to the destination register.

T1

ARMv8-M DSP Extension only

T1 variant

UQADD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

if !HaveDSPExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 sum1 = UInt(R[n]<7:0>) + UInt(R[m]<7:0>);
 sum2 = UInt(R[n]<15:8>) + UInt(R[m]<15:8>);
 sum3 = UInt(R[n]<23:16>) + UInt(R[m]<23:16>);
 sum4 = UInt(R[n]<31:24>) + UInt(R[m]<31:24>);
 bits(32) result;
 result<7:0> = UnsignedSat(sum1, 8);
 result<15:8> = UnsignedSat(sum2, 8);
 result<23:16> = UnsignedSat(sum3, 8);
 result<31:24> = UnsignedSat(sum4, 8);
 R[d] = result;

Exceptions

None.

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 0 1 0 1 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
C2-656 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.229 UQASX

Unsigned Saturating Add and Subtract with Exchange exchanges the two halfwords of the second operand,
performs one unsigned 16-bit integer addition and one unsigned 16-bit subtraction, saturates the results to the 16-bit
unsigned integer range 0 to 216-1, and writes the results to the destination register.

T1

ARMv8-M DSP Extension only

T1 variant

UQASX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

if !HaveDSPExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 diff = UInt(R[n]<15:0>) - UInt(R[m]<31:16>);
 sum = UInt(R[n]<31:16>) + UInt(R[m]<15:0>);
 bits(32) result;
 result<15:0> = UnsignedSat(diff, 16);
 result<31:16> = UnsignedSat(sum, 16);
 R[d] = result;

Exceptions

None.

1 1 1 1 1 0 1 0 1 0 1 0 Rn 1 1 1 1 Rd 0 1 0 1 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-657
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.230 UQSAX

Unsigned Saturating Subtract and Add with Exchange exchanges the two halfwords of the second operand,
performs one unsigned 16-bit integer subtraction and one unsigned 16-bit addition, saturates the results to the 16-bit
unsigned integer range 0 to 216-1, and writes the results to the destination register.

T1

ARMv8-M DSP Extension only

T1 variant

UQSAX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

if !HaveDSPExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 sum = UInt(R[n]<15:0>) + UInt(R[m]<31:16>);
 diff = UInt(R[n]<31:16>) - UInt(R[m]<15:0>);
 bits(32) result;
 result<15:0> = UnsignedSat(sum, 16);
 result<31:16> = UnsignedSat(diff, 16);
 R[d] = result;

Exceptions

None.

1 1 1 1 1 0 1 0 1 1 1 0 Rn 1 1 1 1 Rd 0 1 0 1 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
C2-658 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.231 UQSUB16

Unsigned Saturating Subtract 16 performs two unsigned 16-bit integer subtractions, saturates the results to the
16-bit unsigned integer range 0 to 216-1, and writes the results to the destination register.

T1

ARMv8-M DSP Extension only

T1 variant

UQSUB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

if !HaveDSPExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 diff1 = UInt(R[n]<15:0>) - UInt(R[m]<15:0>);
 diff2 = UInt(R[n]<31:16>) - UInt(R[m]<31:16>);
 bits(32) result;
 result<15:0> = UnsignedSat(diff1, 16);
 result<31:16> = UnsignedSat(diff2, 16);
 R[d] = result;

Exceptions

None.

1 1 1 1 1 0 1 0 1 1 0 1 Rn 1 1 1 1 Rd 0 1 0 1 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-659
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.232 UQSUB8

Unsigned Saturating Subtract 8 performs four unsigned 8-bit integer subtractions, saturates the results to the 8-bit
unsigned integer range 0 to 28-1, and writes the results to the destination register.

T1

ARMv8-M DSP Extension only

T1 variant

UQSUB8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

if !HaveDSPExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 diff1 = UInt(R[n]<7:0>) - UInt(R[m]<7:0>);
 diff2 = UInt(R[n]<15:8>) - UInt(R[m]<15:8>);
 diff3 = UInt(R[n]<23:16>) - UInt(R[m]<23:16>);
 diff4 = UInt(R[n]<31:24>) - UInt(R[m]<31:24>);
 bits(32) result;
 result<7:0> = UnsignedSat(diff1, 8);
 result<15:8> = UnsignedSat(diff2, 8);
 result<23:16> = UnsignedSat(diff3, 8);
 result<31:24> = UnsignedSat(diff4, 8);
 R[d] = result;

Exceptions

None.

1 1 1 1 1 0 1 0 1 1 0 0 Rn 1 1 1 1 Rd 0 1 0 1 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
C2-660 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.233 USAD8

Unsigned Sum of Absolute Differences performs four unsigned 8-bit subtractions, and adds the absolute values of
the differences together.

T1

ARMv8-M DSP Extension only

T1 variant

USAD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

if !HaveDSPExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 absdiff1 = Abs(UInt(R[n]<7:0>) - UInt(R[m]<7:0>));
 absdiff2 = Abs(UInt(R[n]<15:8>) - UInt(R[m]<15:8>));
 absdiff3 = Abs(UInt(R[n]<23:16>) - UInt(R[m]<23:16>));
 absdiff4 = Abs(UInt(R[n]<31:24>) - UInt(R[m]<31:24>));
 result = absdiff1 + absdiff2 + absdiff3 + absdiff4;
 R[d] = result<31:0>;

Exceptions

None.

1 1 1 1 1 0 1 1 0 1 1 1 Rn 1 1 1 1 Rd 0 0 0 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-661
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.234 USADA8

Unsigned Sum of Absolute Differences and Accumulate performs four unsigned 8-bit subtractions, and adds the
absolute values of the differences to a 32-bit accumulate operand.

T1

ARMv8-M DSP Extension only

T1 variant

USADA8{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for this encoding

if Ra == '1111' then SEE USAD8;
if !HaveDSPExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra);
if d IN {13,15} || n IN {13,15} || m IN {13,15} || a == 13 then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<Ra> Is the third general-purpose source register holding the addend, encoded in the "Ra" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 absdiff1 = Abs(UInt(R[n]<7:0>) - UInt(R[m]<7:0>));
 absdiff2 = Abs(UInt(R[n]<15:8>) - UInt(R[m]<15:8>));
 absdiff3 = Abs(UInt(R[n]<23:16>) - UInt(R[m]<23:16>));
 absdiff4 = Abs(UInt(R[n]<31:24>) - UInt(R[m]<31:24>));
 result = UInt(R[a]) + absdiff1 + absdiff2 + absdiff3 + absdiff4;
 R[d] = result<31:0>;

Exceptions

None.

1 1 1 1 1 0 1 1 0 1 1 1 Rn !=1111 Rd 0 0 0 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0

Ra
C2-662 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.235 USAT

Unsigned Saturate saturates an optionally-shifted signed value to a selected unsigned range.

The Q flag is set to 1 if the operation saturates.

T1

ARMv8-M Main Extension only

Arithmetic shift right variant

Applies when sh == 1 && !(imm3 == 000 && imm2 == 00).

USAT{<c>}{<q>} <Rd>, #<imm>, <Rn>, ASR #<amount>

Logical shift left variant

Applies when sh == 0.

USAT{<c>}{<q>} <Rd>, #<imm>, <Rn> {, LSL #<amount>}

Decode for all variants of this encoding

if sh == '1' && (imm3:imm2) == '00000' then
 if HaveDSPExt() then
 SEE USAT16;
 else
 UNDEFINED;
if !HaveMainExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); saturate_to = UInt(sat_imm);
(shift_t, shift_n) = DecodeImmShift(sh:'0', imm3:imm2);
if d IN {13,15} || n IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<imm> Is the bit position for saturation, in the range 0 to 31, encoded in the "sat_imm" field.

<Rn> Is the general-purpose source register, encoded in the "Rn" field.

<amount> For the arithmetic shift right variant: is the shift amount, in the range 1 to 31 encoded in the
"imm3:imm2" field as <amount>.

For the logical shift left variant: is the optional shift amount, in the range 0 to 31, defaulting to 0 and
encoded in the "imm3:imm2" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 operand = Shift(R[n], shift_t, shift_n, APSR.C); // APSR.C ignored
 (result, sat) = UnsignedSatQ(SInt(operand), saturate_to);

1 1 1 1 0 (0) 1 1 1 0 sh 0 Rn 0 imm3 Rd imm2 (0) sat_imm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 6 5 4 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-663
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
 R[d] = ZeroExtend(result, 32);
 if sat then
 APSR.Q = '1';

Exceptions

None.
C2-664 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.236 USAT16

Unsigned Saturate 16 saturates two signed 16-bit values to a selected unsigned range.

The Q flag is set to 1 if the operation saturates.

T1

ARMv8-M DSP Extension only

T1 variant

USAT16{<c>}{<q>} <Rd>, #<imm>, <Rn>

Decode for this encoding

if !HaveDSPExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); saturate_to = UInt(sat_imm);
if d IN {13,15} || n IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<imm> Is the bit position for saturation, in the range 0 to 15, encoded in the "sat_imm" field.

<Rn> Is the general-purpose source register, encoded in the "Rn" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 (result1, sat1) = UnsignedSatQ(SInt(R[n]<15:0>), saturate_to);
 (result2, sat2) = UnsignedSatQ(SInt(R[n]<31:16>), saturate_to);
 bits(32) result;
 result<15:0> = ZeroExtend(result1, 16);
 result<31:16> = ZeroExtend(result2, 16);
 R[d] = result;
 if sat1 || sat2 then
 APSR.Q = '1';

Exceptions

None.

1 1 1 1 0 (0) 1 1 1 0 1 0 Rn 0 0 0 0 Rd 0 0 (0) (0) sat_imm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-665
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.237 USAX

Unsigned Subtract and Add with Exchange exchanges the two halfwords of the second operand, performs one
unsigned 16-bit integer subtraction and one unsigned 16-bit addition, and writes the results to the destination
register. It sets the APSR.GE bits according to the results.

T1

ARMv8-M DSP Extension only

T1 variant

USAX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

if !HaveDSPExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 sum = UInt(R[n]<15:0>) + UInt(R[m]<31:16>);
 diff = UInt(R[n]<31:16>) - UInt(R[m]<15:0>);
 R[d] = diff<15:0> : sum<15:0>;
 APSR.GE<1:0> = if sum >= 0x10000 then '11' else '00';
 APSR.GE<3:2> = if diff >= 0 then '11' else '00';

Exceptions

None.

1 1 1 1 1 0 1 0 1 1 1 0 Rn 1 1 1 1 Rd 0 1 0 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
C2-666 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.238 USUB16

Unsigned Subtract 16 performs two 16-bit unsigned integer subtractions, and writes the results to the destination
register. It sets the APSR.GE bits according to the results of the subtractions.

T1

ARMv8-M DSP Extension only

T1 variant

USUB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

if !HaveDSPExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 diff1 = UInt(R[n]<15:0>) - UInt(R[m]<15:0>);
 diff2 = UInt(R[n]<31:16>) - UInt(R[m]<31:16>);
 R[d] = diff2<15:0> : diff1<15:0>;
 APSR.GE<1:0> = if diff1 >= 0 then '11' else '00';
 APSR.GE<3:2> = if diff2 >= 0 then '11' else '00';

Exceptions

None.

1 1 1 1 1 0 1 0 1 1 0 1 Rn 1 1 1 1 Rd 0 1 0 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-667
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.239 USUB8

Unsigned Subtract 8 performs four 8-bit unsigned integer subtractions, and writes the results to the destination
register. It sets the APSR.GE bits according to the results of the subtractions.

T1

ARMv8-M DSP Extension only

T1 variant

USUB8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

if !HaveDSPExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 diff1 = UInt(R[n]<7:0>) - UInt(R[m]<7:0>);
 diff2 = UInt(R[n]<15:8>) - UInt(R[m]<15:8>);
 diff3 = UInt(R[n]<23:16>) - UInt(R[m]<23:16>);
 diff4 = UInt(R[n]<31:24>) - UInt(R[m]<31:24>);
 R[d] = diff4<7:0> : diff3<7:0> : diff2<7:0> : diff1<7:0>;
 APSR.GE<0> = if diff1 >= 0 then '1' else '0';
 APSR.GE<1> = if diff2 >= 0 then '1' else '0';
 APSR.GE<2> = if diff3 >= 0 then '1' else '0';
 APSR.GE<3> = if diff4 >= 0 then '1' else '0';

Exceptions

None.

1 1 1 1 1 0 1 0 1 1 0 0 Rn 1 1 1 1 Rd 0 1 0 0 Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0
C2-668 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.240 UXTAB

Unsigned Extend and Add Byte extracts an 8-bit value from a register, zero-extends it to 32 bits, adds the result to
the value in another register, and writes the final result to the destination register. The instruction can specify a
rotation by 0, 8, 16, or 24 bits before extracting the 8-bit value.

T1

ARMv8-M DSP Extension only

T1 variant

UXTAB{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ROR #<amount>}

Decode for this encoding

if Rn == '1111' then SEE UXTB;
if !HaveDSPExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:'000');
if d IN {13,15} || n == 13 || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<amount> Is the rotate amount, encoded in the "rotate" field. It can have the following values:

(omitted) when rotate = 00

8 when rotate = 01

16 when rotate = 10

24 when rotate = 11

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 rotated = ROR(R[m], rotation);
 R[d] = R[n] + ZeroExtend(rotated<7:0>, 32);

Exceptions

None.

1 1 1 1 1 0 1 0 0 1 0 1 !=1111 1 1 1 1 Rd 1 (0) rotate Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0

Rn
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-669
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.241 UXTAB16

Unsigned Extend and Add Byte 16 extracts two 8-bit values from a register, zero-extends them to 16 bits each, adds
the results to two 16-bit values from another register, and writes the final results to the destination register. The
instruction can specify a rotation by 0, 8, 16, or 24 bits before extracting the 8-bit values.

T1

ARMv8-M DSP Extension only

T1 variant

UXTAB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ROR #<amount>}

Decode for this encoding

if Rn == '1111' then SEE UXTB16;
if !HaveDSPExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:'000');
if d IN {13,15} || n == 13 || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<amount> Is the rotate amount, encoded in the "rotate" field. It can have the following values:

(omitted) when rotate = 00

8 when rotate = 01

16 when rotate = 10

24 when rotate = 11

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 rotated = ROR(R[m], rotation);
 bits(32) result;
 result<15:0> = R[n]<15:0> + ZeroExtend(rotated<7:0>, 16);
 result<31:16> = R[n]<31:16> + ZeroExtend(rotated<23:16>, 16);
 R[d] = result;

Exceptions

None.

1 1 1 1 1 0 1 0 0 0 1 1 !=1111 1 1 1 1 Rd 1 (0) rotate Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0

Rn
C2-670 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.242 UXTAH

Unsigned Extend and Add Halfword extracts a 16-bit value from a register, zero-extends it to 32 bits, adds the result
to a value from another register, and writes the final result to the destination register. The instruction can specify a
rotation by 0, 8, 16, or 24 bits before extracting the 16-bit value.

T1

ARMv8-M DSP Extension only

T1 variant

UXTAH{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ROR #<amount>}

Decode for this encoding

if Rn == '1111' then SEE UXTH;
if !HaveDSPExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:'000');
if d IN {13,15} || n == 13 || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<amount> Is the rotate amount, encoded in the "rotate" field. It can have the following values:

(omitted) when rotate = 00

8 when rotate = 01

16 when rotate = 10

24 when rotate = 11

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 rotated = ROR(R[m], rotation);
 R[d] = R[n] + ZeroExtend(rotated<15:0>, 32);

Exceptions

None.

1 1 1 1 1 0 1 0 0 0 0 1 !=1111 1 1 1 1 Rd 1 (0) rotate Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 8 7 6 5 4 3 0

Rn
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-671
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.243 UXTB

Unsigned Extend Byte extracts an 8-bit value from a register, zero extends it to 32 bits, and writes the result to the
destination register. The instruction can specify a rotation by 0, 8, 16, or 24 bits before extracting the 8-bit value.

T1

ARMv8-M

T1 variant

UXTB{<c>}{<q>} {<Rd>,} <Rm>

Decode for this encoding

d = UInt(Rd); m = UInt(Rm); rotation = 0;

T2

ARMv8-M Main Extension only

T2 variant

UXTB{<c>}.W {<Rd>,} <Rm> // <Rd>, <Rm> can be represented in T1
UXTB{<c>}{<q>} {<Rd>,} <Rm> {, ROR #<amount>}

Decode for this encoding

if !HaveMainExt() then UNDEFINED;
d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
if d IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the general-purpose source register, encoded in the "Rm" field.

<amount> Is the rotate amount, encoded in the "rotate" field. It can have the following values:

(omitted) when rotate = 00

8 when rotate = 01

16 when rotate = 10

24 when rotate = 11

1 0 1 1 0 0 1 0 1 1 Rm Rd
15 14 13 12 11 10 9 8 7 6 5 3 2 0

1 1 1 1 1 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 Rd 1 (0) rotate Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 8 7 6 5 4 3 0
C2-672 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 rotated = ROR(R[m], rotation);
 R[d] = ZeroExtend(rotated<7:0>, 32);

Exceptions

None.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-673
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.244 UXTB16

Unsigned Extend Byte 16 extracts two 8-bit values from a register, zero-extends them to 16 bits each, and writes
the results to the destination register. The instruction can specify a rotation by 0, 8, 16, or 24 bits before extracting
the 8-bit values.

T1

ARMv8-M DSP Extension only

T1 variant

UXTB16{<c>}{<q>} {<Rd>,} <Rm> {, ROR #<amount>}

Decode for this encoding

if !HaveDSPExt() then UNDEFINED;
d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
if d IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<amount> Is the rotate amount, encoded in the "rotate" field. It can have the following values:

(omitted) when rotate = 00

8 when rotate = 01

16 when rotate = 10

24 when rotate = 11

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 rotated = ROR(R[m], rotation);
 bits(32) result;
 result<15:0> = ZeroExtend(rotated<7:0>, 16);
 result<31:16> = ZeroExtend(rotated<23:16>, 16);
 R[d] = result;

Exceptions

None.

1 1 1 1 1 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 Rd 1 (0) rotate Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 8 7 6 5 4 3 0
C2-674 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.245 UXTH

Unsigned Extend Halfword extracts a 16-bit value from a register, zero extends it to 32 bits, and writes the result to
the destination register. The instruction can specify a rotation by 0, 8, 16, or 24 bits before extracting the 16-bit
value.

T1

ARMv8-M

T1 variant

UXTH{<c>}{<q>} {<Rd>,} <Rm>

Decode for this encoding

d = UInt(Rd); m = UInt(Rm); rotation = 0;

T2

ARMv8-M Main Extension only

T2 variant

UXTH{<c>}.W {<Rd>,} <Rm> // <Rd>, <Rm> can be represented in T1
UXTH{<c>}{<q>} {<Rd>,} <Rm> {, ROR #<amount>}

Decode for this encoding

if !HaveMainExt() then UNDEFINED;
d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
if d IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the general-purpose source register, encoded in the "Rm" field.

<amount> Is the rotate amount, encoded in the "rotate" field. It can have the following values:

(omitted) when rotate = 00

8 when rotate = 01

16 when rotate = 10

24 when rotate = 11

1 0 1 1 0 0 1 0 1 0 Rm Rd
15 14 13 12 11 10 9 8 7 6 5 3 2 0

1 1 1 1 1 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 Rd 1 (0) rotate Rm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-675
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 rotated = ROR(R[m], rotation);
 R[d] = ZeroExtend(rotated<15:0>, 32);

Exceptions

None.
C2-676 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.246 VABS

Floating-point Absolute takes the absolute value of a single-precision or double-precision register, and places the
result in the destination register.

T2

ARMv8-M Floating-point Extension only, sz == 1 UNDEFINED in single-precision only implementations.

Single-precision scalar variant

Applies when sz == 0.

VABS{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when sz == 1.

VABS{<c>}{<q>}.F64 <Dd>, <Dm>

Decode for all variants of this encoding

if !HaveFPExt() then UNDEFINED;
dp_operation = (sz == '1');
if dp_operation && HaveSPFPOnly() then UNDEFINED;
d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the floating-point source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 ExecuteFPCheck();
 if dp_operation then
 D[d] = FPAbs(D[m]);
 else
 S[d] = FPAbs(S[m]);

Exceptions

UsageFault, BusFault, MemManage, and SecureFault.

1 1 1 0 1 1 1 0 1 D 1 1 0 0 0 0 Vd 1 0 1 sz 1 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-677
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.247 VADD

Floating-point Add adds two single-precision or double-precision registers, and places the results in the destination
register.

T2

ARMv8-M Floating-point Extension only, sz == 1 UNDEFINED in single-precision only implementations.

Single-precision scalar variant

Applies when sz == 0.

VADD{<c>}{<q>}.F32 {<Sd>,} <Sn>, <Sm>

Double-precision scalar variant

Applies when sz == 1.

VADD{<c>}{<q>}.F64 {<Dd>,} <Dn>, <Dm>

Decode for all variants of this encoding

if !HaveFPExt() then UNDEFINED;
dp_operation = (sz == '1');
if dp_operation && HaveSPFPOnly() then UNDEFINED;
d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
n = if dp_operation then UInt(N:Vn) else UInt(Vn:N);
m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.

<Sn> Is the 32-bit name of the first floating-point source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second floating-point source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first floating-point source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second floating-point source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 ExecuteFPCheck();
 if dp_operation then
 D[d] = FPAdd(D[n], D[m], TRUE);
 else
 S[d] = FPAdd(S[n], S[m], TRUE);

1 1 1 0 1 1 1 0 0 D 1 1 Vn Vd 1 0 1 sz N 0 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
C2-678 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Exceptions

UsageFault, BusFault, MemManage, and SecureFault.

Floating-point exceptions: Invalid Operation, Inexact, Overflow, Underflow, and Input Denormal.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-679
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.248 VCMP

Floating-point Compare compares two registers, or one register and zero. It writes the result to the FPSCR condition
flags. These are normally transferred to the APSR condition flags by a subsequent VMRS instruction.

It raises an Invalid Operation exception only if either operand is a signaling NaN.

T1

ARMv8-M Floating-point Extension only, sz == 1 UNDEFINED in single-precision only implementations.

Single-precision scalar variant

Applies when sz == 0.

VCMP{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when sz == 1.

VCMP{<c>}{<q>}.F64 <Dd>, <Dm>

Decode for all variants of this encoding

if !HaveFPExt() then UNDEFINED;
dp_operation = (sz == '1');
if dp_operation && HaveSPFPOnly() then UNDEFINED;
quiet_nan_exc = (E == '1'); with_zero = FALSE;
d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

T2

ARMv8-M Floating-point Extension only, sz == 1 UNDEFINED in single-precision only implementations.

Single-precision scalar variant

Applies when sz == 0.

VCMP{<c>}{<q>}.F32 <Sd>, #0.0

Double-precision scalar variant

Applies when sz == 1.

VCMP{<c>}{<q>}.F64 <Dd>, #0.0

1 1 1 0 1 1 1 0 1 D 1 1 0 1 0 0 Vd 1 0 1 sz 0 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

E

1 1 1 0 1 1 1 0 1 D 1 1 0 1 0 1 Vd 1 0 1 sz 0 1 (0) 0 (0) (0) (0) (0)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 2 1 0

E

C2-680 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Decode for all variants of this encoding

if !HaveFPExt() then UNDEFINED;
dp_operation = (sz == '1');
if dp_operation && HaveSPFPOnly() then UNDEFINED;
quiet_nan_exc = (E == '1'); with_zero = TRUE;
d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the floating-point source register, encoded in the "M:Vm" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 ExecuteFPCheck();
 if dp_operation then
 op64 = if with_zero then FPZero('0',64) else D[m];
 (FPSCR.N, FPSCR.Z, FPSCR.C, FPSCR.V) = FPCompare(D[d], op64, quiet_nan_exc, TRUE);
 else
 op32 = if with_zero then FPZero('0',32) else S[m];
 (FPSCR.N, FPSCR.Z, FPSCR.C, FPSCR.V) = FPCompare(S[d], op32, quiet_nan_exc, TRUE);

Exceptions

UsageFault, BusFault, MemManage, and SecureFault.

Floating-point exceptions: Invalid Operation and Input Denormal.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-681
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.249 VCMPE

Floating-point Compare, raising Invalid Operation on NaN compares two registers, or one register and zero. It
writes the result to the FPSCR condition flags. These are normally transferred to the APSR condition flags by a
subsequent VMRS instruction.

It raises an Invalid Operation exception if either operand is any type of NaN.

T1

ARMv8-M Floating-point Extension only, sz == 1 UNDEFINED in single-precision only implementations.

Single-precision scalar variant

Applies when sz == 0.

VCMPE{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when sz == 1.

VCMPE{<c>}{<q>}.F64 <Dd>, <Dm>

Decode for all variants of this encoding

if !HaveFPExt() then UNDEFINED;
dp_operation = (sz == '1');
if dp_operation && HaveSPFPOnly() then UNDEFINED;
quiet_nan_exc = (E == '1'); with_zero = FALSE;
d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

T2

ARMv8-M Floating-point Extension only, sz == 1 UNDEFINED in single-precision only implementations.

Single-precision scalar variant

Applies when sz == 0.

VCMPE{<c>}{<q>}.F32 <Sd>, #0.0

Double-precision scalar variant

Applies when sz == 1.

VCMPE{<c>}{<q>}.F64 <Dd>, #0.0

1 1 1 0 1 1 1 0 1 D 1 1 0 1 0 0 Vd 1 0 1 sz 1 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

E

1 1 1 0 1 1 1 0 1 D 1 1 0 1 0 1 Vd 1 0 1 sz 1 1 (0) 0 (0) (0) (0) (0)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 2 1 0

E

C2-682 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Decode for all variants of this encoding

if !HaveFPExt() then UNDEFINED;
dp_operation = (sz == '1');
if dp_operation && HaveSPFPOnly() then UNDEFINED;
quiet_nan_exc = (E == '1'); with_zero = TRUE;
d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the floating-point source register, encoded in the "M:Vm" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 ExecuteFPCheck();
 if dp_operation then
 op64 = if with_zero then FPZero('0',64) else D[m];
 (FPSCR.N, FPSCR.Z, FPSCR.C, FPSCR.V) = FPCompare(D[d], op64, quiet_nan_exc, TRUE);
 else
 op32 = if with_zero then FPZero('0',32) else S[m];
 (FPSCR.N, FPSCR.Z, FPSCR.C, FPSCR.V) = FPCompare(S[d], op32, quiet_nan_exc, TRUE);

Exceptions

UsageFault, BusFault, MemManage, and SecureFault.

Floating-point exceptions: Invalid Operation and Input Denormal.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-683
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.250 VCVT (between double-precision and single-precision)

This instruction does one of the following:

• Converts the value in a double-precision register to single-precision and writes the result to a single-precision
register.

• Converts the value in a single-precision register to double-precision and writes the result to a
double-precision register.

T1

ARMv8-M Floating-point Extension only

Encoding

Applies when sz == 0.

VCVT{<c>}{<q>}.F64.F32 <Dd>, <Sm>

Encoding

Applies when sz == 1.

VCVT{<c>}{<q>}.F32.F64 <Sd>, <Dm>

Decode for all variants of this encoding

if !HaveFPExt() then UNDEFINED;
double_to_single = (sz == '1');
d = if double_to_single then UInt(Vd:D) else UInt(D:Vd);
m = if double_to_single then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.

<Dm> Is the 64-bit name of the floating-point source register, encoded in the "M:Vm" field.

<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.

<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations(); ExecuteFPCheck();
 if double_to_single then
 S[d] = FPDoubleToSingle(D[m], TRUE);
 else
 D[d] = FPSingleToDouble(S[m], TRUE);

Exceptions

UsageFault, BusFault, MemManage, and SecureFault.

1 1 1 0 1 1 1 0 1 D 1 1 0 1 1 1 Vd 1 0 1 sz 1 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
C2-684 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Floating-point exceptions: Invalid Operation, Inexact, Overflow, Underflow, and Input Denormal.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-685
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.251 VCVT (between floating-point and fixed-point)

Floating-point Convert (between floating-point and fixed-point) converts a value in a register from floating-point
to fixed-point, or from fixed-point to floating-point, and places the result in the destination register. You can specify
the fixed-point value as either signed or unsigned.

The fixed-point value can be 16-bit or 32-bit. Conversions from fixed-point values take their operand from the
low-order bits of the source register and ignore any remaining bits. Signed conversions to fixed-point values
sign-extend the result value to the destination register width. Unsigned conversions to fixed-point values
zero-extend the result value to the destination register width.

The floating-point to fixed-point operation uses the Round towards Zero rounding mode. The fixed-point to
floating-point operation uses the Round to Nearest rounding mode.

T1

ARMv8-M Floating-point Extension only, sf == 1 UNDEFINED in single-precision only implementations.

Single-precision scalar variant

Applies when op == 0 && sf == 0.

VCVT{<c>}{<q>}.F32.<dt> <Sdm>, <Sdm>, #<fbits>

Single-precision scalar variant

Applies when op == 1 && sf == 0.

VCVT{<c>}{<q>}.<dt>.F32 <Sdm>, <Sdm>, #<fbits>

Double-precision scalar variant

Applies when op == 0 && sf == 1.

VCVT{<c>}{<q>}.F64.<dt> <Ddm>, <Ddm>, #<fbits>

Double-precision scalar variant

Applies when op == 1 && sf == 1.

VCVT{<c>}{<q>}.<dt>.F64 <Ddm>, <Ddm>, #<fbits>

Decode for all variants of this encoding

if !HaveFPExt() then UNDEFINED;
dp_operation = (sf == '1');
if dp_operation && HaveSPFPOnly() then UNDEFINED;
to_fixed = (op == '1'); unsigned = (U == '1');
size = if sx == '0' then 16 else 32;
frac_bits = size - UInt(imm4:i);
if to_fixed then
 round_zero = TRUE;
else
 round_nearest = TRUE;
d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
if frac_bits < 0 then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

1 1 1 0 1 1 1 0 1 D 1 1 1 op 1 U Vd 1 0 1 sf sx 1 i 0 imm4
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
C2-686 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
<q> See Standard assembler syntax fields on page C1-240.

<dt> Is the data type for the fixed-point number, encoded in the "U:sx" field. It can have the following
values:

S16 when U = 0, sx = 0

S32 when U = 0, sx = 1

U16 when U = 1, sx = 0

U32 when U = 1, sx = 1

<Sdm> Is the 32-bit name of the floating-point destination and source register, encoded in the "Vd:D" field.

<Ddm> Is the 64-bit name of the floating-point destination and source register, encoded in the "D:Vd" field.

<fbits> The number of fraction bits in the fixed-point number:

• If <dt> is S16 or U16, <fbits> must be in the range 0-16. (16 - <fbits>) is encoded in [imm4, i]

• If <dt> is S32 or U32, <fbits> must be in the range 1-32. (32 - <fbits>) is encoded in [imm4, i].

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 ExecuteFPCheck();
 if to_fixed then
 if dp_operation then
 result = FPToFixed(D[d], size, frac_bits, unsigned, round_zero, TRUE);
 D[d] = if unsigned then ZeroExtend(result, 64) else SignExtend(result, 64);
 else
 result = FPToFixed(S[d], size, frac_bits, unsigned, round_zero, TRUE);
 S[d] = if unsigned then ZeroExtend(result, 32) else SignExtend(result, 32);
 else
 if dp_operation then
 D[d] = FixedToFP(D[d]<size-1:0>, 64, frac_bits, unsigned, round_nearest, TRUE);
 else
 S[d] = FixedToFP(S[d]<size-1:0>, 32, frac_bits, unsigned, round_nearest, TRUE);

Exceptions

UsageFault, BusFault, MemManage, and SecureFault.

Floating-point exceptions: Inexact, Invalid Operation, Input Denormal, Overflow, and Underflow.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-687
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.252 VCVT (floating-point to integer)

Convert floating-point to integer with Round towards Zero converts a value in a register from floating-point to a
32-bit integer, using the Round towards Zero rounding mode, and places the result in the destination register.

T1

ARMv8-M Floating-point Extension only, sz == 1 UNDEFINED in single-precision only implementations.

Single-precision scalar variant

Applies when opc2 == 100 && sz == 0.

VCVT{<c>}{<q>}.U32.F32 <Sd>, <Sm>

Single-precision scalar variant

Applies when opc2 == 101 && sz == 0.

VCVT{<c>}{<q>}.S32.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when opc2 == 100 && sz == 1.

VCVT{<c>}{<q>}.U32.F64 <Sd>, <Dm>

Double-precision scalar variant

Applies when opc2 == 101 && sz == 1.

VCVT{<c>}{<q>}.S32.F64 <Sd>, <Dm>

Decode for all variants of this encoding

if opc2 != '000' && !(opc2 IN '10x') then SEE "Related encodings";
if !HaveFPExt() then UNDEFINED;
dp_operation = (sz == '1');
if dp_operation && HaveSPFPOnly() then UNDEFINED;
to_integer = (opc2<2> == '1');
if to_integer then
 unsigned = (opc2<0> == '0'); round_zero = (op == '1');
 d = UInt(Vd:D); m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);
else
 unsigned = (op == '0'); round_nearest = FALSE; // FALSE selects FPSCR rounding
 m = UInt(Vm:M); d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);

Notes for all encodings

Related encodings: VCVT (between floating-point and fixed-point).

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.

1 1 1 0 1 1 1 0 1 D 1 1 1 1 0 x Vd 1 0 1 sz 1 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 15 12 11 10 9 8 7 6 5 4 3 0

opc2 op
C2-688 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.

<Dm> Is the 64-bit name of the floating-point source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 ExecuteFPCheck();
 if to_integer then
 if dp_operation then
 S[d] = FPToFixed(D[m], 32, 0, unsigned, round_zero, TRUE);
 else
 S[d] = FPToFixed(S[m], 32, 0, unsigned, round_zero, TRUE);
 else
 if dp_operation then
 D[d] = FixedToFP(S[m], 64, 0, unsigned, round_nearest, TRUE);
 else
 S[d] = FixedToFP(S[m], 32, 0, unsigned, round_nearest, TRUE);

Exceptions

UsageFault, BusFault, MemManage, and SecureFault.

Floating-point exceptions: Inexact, Invalid Operation, Input Denormal, Overflow, and Underflow.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-689
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.253 VCVT (integer to floating-point)

Convert integer to floating-point converts a value in a register from a 32-bit integer to floating-point, using the
rounding mode specified by the FPSCR, and places the result in the destination register.

T1

ARMv8-M Floating-point Extension only, sz == 1 UNDEFINED in single-precision only implementations.

Single-precision scalar variant

Applies when sz == 0.

VCVT{<c>}{<q>}.F32.<dt> <Sd>, <Sm>

Double-precision scalar variant

Applies when sz == 1.

VCVT{<c>}{<q>}.F64.<dt> <Dd>, <Sm>

Decode for all variants of this encoding

if opc2 != '000' && !(opc2 IN '10x') then SEE "Related encodings";
if !HaveFPExt() then UNDEFINED;
dp_operation = (sz == '1');
if dp_operation && HaveSPFPOnly() then UNDEFINED;
to_integer = (opc2<2> == '1');
if to_integer then
 unsigned = (opc2<0> == '0'); round_zero = (op == '1');
 d = UInt(Vd:D); m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);
else
 unsigned = (op == '0'); round_nearest = FALSE; // FALSE selects FPSCR rounding
 m = UInt(Vm:M); d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);

Notes for all encodings

Related encodings: VCVT (between floating-point and fixed-point).

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<dt> Is the data type for the operand, encoded in the "op" field. It can have the following values:

U32 when op = 0

S32 when op = 1

<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.

<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.

<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.

1 1 1 0 1 1 1 0 1 D 1 1 1 0 0 0 Vd 1 0 1 sz op 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 15 12 11 10 9 8 7 6 5 4 3 0

opc2
C2-690 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 ExecuteFPCheck();
 if to_integer then
 if dp_operation then
 S[d] = FPToFixed(D[m], 32, 0, unsigned, round_zero, TRUE);
 else
 S[d] = FPToFixed(S[m], 32, 0, unsigned, round_zero, TRUE);
 else
 if dp_operation then
 D[d] = FixedToFP(S[m], 64, 0, unsigned, round_nearest, TRUE);
 else
 S[d] = FixedToFP(S[m], 32, 0, unsigned, round_nearest, TRUE);

Exceptions

UsageFault, BusFault, MemManage, and SecureFault.

Floating-point exceptions: Inexact, Invalid Operation, Input Denormal, Overflow, and Underflow.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-691
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.254 VCVTA

Convert floating-point to integer with Round to Nearest with Ties to Away converts a value in a register from
floating-point to a 32-bit integer using the Round to Nearest with Ties to Away rounding mode, and places the result
in the destination register.

T1

ARMv8-M Floating-point Extension only, sz == 1 UNDEFINED in single-precision only implementations.

Single-precision scalar variant

Applies when sz == 0.

VCVTA{<q>}.<dt>.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when sz == 1.

VCVTA{<q>}.<dt>.F64 <Sd>, <Dm>

Decode for all variants of this encoding

if !HaveFPExt() then UNDEFINED;
if InITBlock() then UNPREDICTABLE;
dp_operation = (sz == '1');
if dp_operation && HaveSPFPOnly() then UNDEFINED;
unsigned = (op == '0');
round_mode = RM;
d = UInt(Vd:D);
m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols

<q> See Standard assembler syntax fields on page C1-240.

<dt> Is the data type for the elements of the destination, encoded in the "op" field. It can have the
following values:

S32 when op = 0

U32 when op = 1

<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.

<Dm> Is the 64-bit name of the floating-point source register, encoded in the "M:Vm" field.

Operation

EncodingSpecificOperations();
ExecuteFPCheck();

if dp_operation then
 S[d] = FPToFixedDirected(D[m],0,unsigned,round_mode,TRUE);
else
 S[d] = FPToFixedDirected(S[m],0,unsigned,round_mode,TRUE);

1 1 1 1 1 1 1 0 1 D 1 1 1 1 0 0 Vd 1 0 1 sz op 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

op RM
C2-692 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Exceptions

UsageFault, BusFault, MemManage, and SecureFault.

Floating-point exceptions: Inexact, Invalid Operation, and Input Denormal.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-693
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.255 VCVTB

Floating-point Convert Bottom does one of the following:

• Converts the half-precision value in the bottom half of a single-precision register to single-precision and
writes the result to a single-precision register.

• Converts the value in a single-precision register to half-precision and writes the result into the bottom half of
a single-precision register, preserving the other half of the target register.

• Converts the half-precision value in the bottom half of a single-precision register to double-precision and
writes the result to a double-precision register, without intermediate rounding.

• Converts the value in the double-precision register to half-precision and writes the result into the bottom half
of a single-precision register, preserving the other half of the target register, without intermediate rounding.

T1

ARMv8-M Floating-point Extension only, sz == 1 UNDEFINED in single-precision only implementations.

Single-precision scalar variant

Applies when op == 0 && sz == 0.

VCVTB{<c>}{<q>}.F32.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when op == 1 && sz == 0.

VCVTB{<c>}{<q>}.F16.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when op == 0 && sz == 1.

VCVTB{<c>}{<q>}.F64.F16 <Dd>, <Sm>

Double-precision scalar variant

Applies when op == 1 && sz == 1.

VCVTB{<c>}{<q>}.F16.F64 <Sd>, <Dm>

Decode for all variants of this encoding

if !HaveFPExt() then UNDEFINED;
dp_operation = (sz == '1');
if dp_operation && HaveSPFPOnly() then UNDEFINED;
convert_from_half = (op == '0');
lowbit = if T == '1' then 16 else 0;
if dp_operation then
 if convert_from_half then
 d = UInt(D:Vd); m = UInt(Vm:M);
 else
 d = UInt(Vd:D); m = UInt(M:Vm);
else
 d = UInt(Vd:D); m = UInt(Vm:M);

1 1 1 0 1 1 1 0 1 D 1 1 0 0 1 op Vd 1 0 1 sz 0 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

T

C2-694 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.

<Dm> Is the 64-bit name of the floating-point source register, encoded in the "M:Vm" field.

<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.

<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 ExecuteFPCheck();

 if convert_from_half then
 if dp_operation then
 D[d] = FPHalfToDouble(S[m]<lowbit+15:lowbit>, TRUE);
 else
 S[d] = FPHalfToSingle(S[m]<lowbit+15:lowbit>, TRUE);
 else
 if dp_operation then
 S[d]<lowbit+15:lowbit> = FPDoubleToHalf(D[m], TRUE);
 else
 S[d]<lowbit+15:lowbit> = FPSingleToHalf(S[m], TRUE);

Exceptions

UsageFault, BusFault, MemManage, and SecureFault.

Floating-point exceptions: Invalid Operation, Inexact, Overflow, Underflow, and Input Denormal.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-695
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.256 VCVTM

Convert floating-point to integer with Round towards -Infinity converts a value in a register from floating-point to
a 32-bit integer using the Round towards -Infinity rounding mode, and places the result in the destination register.

T1

ARMv8-M Floating-point Extension only, sz == 1 UNDEFINED in single-precision only implementations.

Single-precision scalar variant

Applies when sz == 0.

VCVTM{<q>}.<dt>.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when sz == 1.

VCVTM{<q>}.<dt>.F64 <Sd>, <Dm>

Decode for all variants of this encoding

if !HaveFPExt() then UNDEFINED;
if InITBlock() then UNPREDICTABLE;
dp_operation = (sz == '1');
if dp_operation && HaveSPFPOnly() then UNDEFINED;
unsigned = (op == '0');
round_mode = RM;
d = UInt(Vd:D);
m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols

<q> See Standard assembler syntax fields on page C1-240.

<dt> Is the data type for the elements of the destination, encoded in the "op" field. It can have the
following values:

S32 when op = 0

U32 when op = 1

<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.

<Dm> Is the 64-bit name of the floating-point source register, encoded in the "M:Vm" field.

Operation

EncodingSpecificOperations();
ExecuteFPCheck();

if dp_operation then
 S[d] = FPToFixedDirected(D[m],0,unsigned,round_mode,TRUE);
else
 S[d] = FPToFixedDirected(S[m],0,unsigned,round_mode,TRUE);

1 1 1 1 1 1 1 0 1 D 1 1 1 1 1 1 Vd 1 0 1 sz op 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

op RM
C2-696 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Exceptions

UsageFault, BusFault, MemManage, and SecureFault.

Floating-point exceptions: Inexact, Invalid Operation, and Input Denormal.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-697
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.257 VCVTN

Convert floating-point to integer with Round to Nearest converts a value in a register from floating-point to a 32-bit
integer using the Round to Nearest rounding mode, and places the result in the destination register.

T1

ARMv8-M Floating-point Extension only, sz == 1 UNDEFINED in single-precision only implementations.

Single-precision scalar variant

Applies when sz == 0.

VCVTN{<q>}.<dt>.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when sz == 1.

VCVTN{<q>}.<dt>.F64 <Sd>, <Dm>

Decode for all variants of this encoding

if !HaveFPExt() then UNDEFINED;
if InITBlock() then UNPREDICTABLE;
dp_operation = (sz == '1');
if dp_operation && HaveSPFPOnly() then UNDEFINED;
unsigned = (op == '0');
round_mode = RM;
d = UInt(Vd:D);
m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols

<q> See Standard assembler syntax fields on page C1-240.

<dt> Is the data type for the elements of the destination, encoded in the "op" field. It can have the
following values:

S32 when op = 0

U32 when op = 1

<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.

<Dm> Is the 64-bit name of the floating-point source register, encoded in the "M:Vm" field.

Operation

EncodingSpecificOperations();
ExecuteFPCheck();

if dp_operation then
 S[d] = FPToFixedDirected(D[m],0,unsigned,round_mode,TRUE);
else
 S[d] = FPToFixedDirected(S[m],0,unsigned,round_mode,TRUE);

1 1 1 1 1 1 1 0 1 D 1 1 1 1 0 1 Vd 1 0 1 sz op 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

op RM
C2-698 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Exceptions

UsageFault, BusFault, MemManage, and SecureFault.

Floating-point exceptions: Inexact, Invalid Operation, and Input Denormal.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-699
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.258 VCVTP

Convert floating-point to integer with Round towards +Infinity converts a value in a register from floating-point to
a 32-bit integer using the Round towards +Infinity rounding mode, and places the result in the destination register.

T1

ARMv8-M Floating-point Extension only, sz == 1 UNDEFINED in single-precision only implementations.

Single-precision scalar variant

Applies when sz == 0.

VCVTP{<q>}.<dt>.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when sz == 1.

VCVTP{<q>}.<dt>.F64 <Sd>, <Dm>

Decode for all variants of this encoding

if !HaveFPExt() then UNDEFINED;
if InITBlock() then UNPREDICTABLE;
dp_operation = (sz == '1');
if dp_operation && HaveSPFPOnly() then UNDEFINED;
unsigned = (op == '0');
round_mode = RM;
d = UInt(Vd:D);
m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols

<q> See Standard assembler syntax fields on page C1-240.

<dt> Is the data type for the elements of the destination, encoded in the "op" field. It can have the
following values:

S32 when op = 0

U32 when op = 1

<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.

<Dm> Is the 64-bit name of the floating-point source register, encoded in the "M:Vm" field.

Operation

EncodingSpecificOperations();
ExecuteFPCheck();

if dp_operation then
 S[d] = FPToFixedDirected(D[m],0,unsigned,round_mode,TRUE);
else
 S[d] = FPToFixedDirected(S[m],0,unsigned,round_mode,TRUE);

1 1 1 1 1 1 1 0 1 D 1 1 1 1 1 0 Vd 1 0 1 sz op 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

op RM
C2-700 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Exceptions

UsageFault, BusFault, MemManage, and SecureFault.

Floating-point exceptions: Inexact, Invalid Operation, and Input Denormal.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-701
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.259 VCVTR

Convert floating-point to integer converts a value in a register from floating-point to a 32-bit integer, using the
rounding mode specified by the FPSCR, and places the result in the destination register.

T1

ARMv8-M Floating-point Extension only, sz == 1 UNDEFINED in single-precision only implementations.

Single-precision scalar variant

Applies when opc2 == 100 && sz == 0.

VCVTR{<c>}{<q>}.U32.F32 <Sd>, <Sm>

Single-precision scalar variant

Applies when opc2 == 101 && sz == 0.

VCVTR{<c>}{<q>}.S32.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when opc2 == 100 && sz == 1.

VCVTR{<c>}{<q>}.U32.F64 <Sd>, <Dm>

Double-precision scalar variant

Applies when opc2 == 101 && sz == 1.

VCVTR{<c>}{<q>}.S32.F64 <Sd>, <Dm>

Decode for all variants of this encoding

if opc2 != '000' && !(opc2 IN '10x') then SEE "Related encodings";
if !HaveFPExt() then UNDEFINED;
dp_operation = (sz == '1');
if dp_operation && HaveSPFPOnly() then UNDEFINED;
to_integer = (opc2<2> == '1');
if to_integer then
 unsigned = (opc2<0> == '0'); round_zero = (op == '1');
 d = UInt(Vd:D); m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);
else
 unsigned = (op == '0'); round_nearest = FALSE; // FALSE selects FPSCR rounding
 m = UInt(Vm:M); d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);

Notes for all encodings

Related encodings: VCVT (between floating-point and fixed-point).

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.

1 1 1 0 1 1 1 0 1 D 1 1 1 1 0 x Vd 1 0 1 sz 0 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 15 12 11 10 9 8 7 6 5 4 3 0

opc2 op
C2-702 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.

<Dm> Is the 64-bit name of the floating-point source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 ExecuteFPCheck();
 if to_integer then
 if dp_operation then
 S[d] = FPToFixed(D[m], 32, 0, unsigned, round_zero, TRUE);
 else
 S[d] = FPToFixed(S[m], 32, 0, unsigned, round_zero, TRUE);
 else
 if dp_operation then
 D[d] = FixedToFP(S[m], 64, 0, unsigned, round_nearest, TRUE);
 else
 S[d] = FixedToFP(S[m], 32, 0, unsigned, round_nearest, TRUE);

Exceptions

UsageFault, BusFault, MemManage, and SecureFault.

Floating-point exceptions: Inexact, Invalid Operation, Input Denormal, Overflow, and Underflow.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-703
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.260 VCVTT

Floating-point Convert Top does one of the following:

• Converts the half-precision value in the top half of a single-precision register to single-precision and writes
the result to a single-precision register.

• Converts the value in a single-precision register to half-precision and writes the result into the top half of a
single-precision register, preserving the other half of the target register.

• Converts the half-precision value in the top half of a single-precision register to double-precision and writes
the result to a double-precision register, without intermediate rounding.

• Converts the value in the double-precision register to half-precision and writes the result into the top half of
a double-precision register, preserving the other half of the target register, without intermediate rounding.

T1

ARMv8-M Floating-point Extension only, sz == 1 UNDEFINED in single-precision only implementations.

Single-precision scalar variant

Applies when op == 0 && sz == 0.

VCVTT{<c>}{<q>}.F32.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when op == 1 && sz == 0.

VCVTT{<c>}{<q>}.F16.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when op == 0 && sz == 1.

VCVTT{<c>}{<q>}.F64.F16 <Dd>, <Sm>

Double-precision scalar variant

Applies when op == 1 && sz == 1.

VCVTT{<c>}{<q>}.F16.F64 <Sd>, <Dm>

Decode for all variants of this encoding

if !HaveFPExt() then UNDEFINED;
dp_operation = (sz == '1');
if dp_operation && HaveSPFPOnly() then UNDEFINED;
convert_from_half = (op == '0');
lowbit = if T == '1' then 16 else 0;
if dp_operation then
 if convert_from_half then
 d = UInt(D:Vd); m = UInt(Vm:M);
 else
 d = UInt(Vd:D); m = UInt(M:Vm);
else
 d = UInt(Vd:D); m = UInt(Vm:M);

1 1 1 0 1 1 1 0 1 D 1 1 0 0 1 op Vd 1 0 1 sz 1 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

T

C2-704 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.

<Dm> Is the 64-bit name of the floating-point source register, encoded in the "M:Vm" field.

<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.

<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 ExecuteFPCheck();

 if convert_from_half then
 if dp_operation then
 D[d] = FPHalfToDouble(S[m]<lowbit+15:lowbit>, TRUE);
 else
 S[d] = FPHalfToSingle(S[m]<lowbit+15:lowbit>, TRUE);
 else
 if dp_operation then
 S[d]<lowbit+15:lowbit> = FPDoubleToHalf(D[m], TRUE);
 else
 S[d]<lowbit+15:lowbit> = FPSingleToHalf(S[m], TRUE);

Exceptions

UsageFault, BusFault, MemManage, and SecureFault.

Floating-point exceptions: Invalid Operation, Inexact, Overflow, Underflow, and Input Denormal.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-705
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.261 VDIV

Floating-point Divide divides one floating-point value by another floating-point value and writes the result to a third
floating-point register.

T1

ARMv8-M Floating-point Extension only, sz == 1 UNDEFINED in single-precision only implementations.

Single-precision scalar variant

Applies when sz == 0.

VDIV{<c>}{<q>}.F32 {<Sd>,} <Sn>, <Sm>

Double-precision scalar variant

Applies when sz == 1.

VDIV{<c>}{<q>}.F64 {<Dd>,} <Dn>, <Dm>

Decode for all variants of this encoding

if !HaveFPExt() then UNDEFINED;
dp_operation = (sz == '1');
if dp_operation && HaveSPFPOnly() then UNDEFINED;
d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
n = if dp_operation then UInt(N:Vn) else UInt(Vn:N);
m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.

<Sn> Is the 32-bit name of the first floating-point source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second floating-point source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first floating-point source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second floating-point source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 ExecuteFPCheck();
 if dp_operation then
 D[d] = FPDiv(D[n], D[m], TRUE);
 else
 S[d] = FPDiv(S[n], S[m], TRUE);

1 1 1 0 1 1 1 0 1 D 0 0 Vn Vd 1 0 1 sz N 0 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
C2-706 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Exceptions

UsageFault, BusFault, MemManage, and SecureFault.

Floating-point exceptions: Divide by Zero, Invalid Operation, Inexact, Overflow, Underflow, and Input Denormal.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-707
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.262 VFMA

Floating-point Fused Multiply Accumulate multiplies two registers, adds the product to the destination register, and
places the result in the destination register. The result of the multiply is not rounded before the addition.

T2

ARMv8-M Floating-point Extension only, sz == 1 UNDEFINED in single-precision only implementations.

Single-precision scalar variant

Applies when sz == 0.

VFMA{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar variant

Applies when sz == 1.

VFMA{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

Decode for all variants of this encoding

if !HaveFPExt() then UNDEFINED;
dp_operation = (sz == '1');
if dp_operation && HaveSPFPOnly() then UNDEFINED;
op1_neg = (op == '1');
d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
n = if dp_operation then UInt(N:Vn) else UInt(Vn:N);
m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.

<Sn> Is the 32-bit name of the first floating-point source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second floating-point source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first floating-point source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second floating-point source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 ExecuteFPCheck();
 if dp_operation then
 op64 = if op1_neg then FPNeg(D[n]) else D[n];
 D[d] = FPMulAdd(D[d], op64, D[m], TRUE);

1 1 1 0 1 1 1 0 1 D 1 0 Vn Vd 1 0 1 sz N 0 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
C2-708 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
 else
 op32 = if op1_neg then FPNeg(S[n]) else S[n];
 S[d] = FPMulAdd(S[d], op32, S[m], TRUE);

Exceptions

UsageFault, BusFault, MemManage, and SecureFault.

Floating-point exceptions: Invalid Operation, Inexact, Overflow, Underflow, and Input Denormal.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-709
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.263 VFMS

Floating-point Fused Multiply Subtract negates one register and multiplies it with another register, adds the product
to the destination register, and places the result in the destination register. The result of the multiply is not rounded
before the addition.

T2

ARMv8-M Floating-point Extension only, sz == 1 UNDEFINED in single-precision only implementations.

Single-precision scalar variant

Applies when sz == 0.

VFMS{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar variant

Applies when sz == 1.

VFMS{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

Decode for all variants of this encoding

if !HaveFPExt() then UNDEFINED;
dp_operation = (sz == '1');
if dp_operation && HaveSPFPOnly() then UNDEFINED;
op1_neg = (op == '1');
d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
n = if dp_operation then UInt(N:Vn) else UInt(Vn:N);
m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.

<Sn> Is the 32-bit name of the first floating-point source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second floating-point source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first floating-point source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second floating-point source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 ExecuteFPCheck();
 if dp_operation then
 op64 = if op1_neg then FPNeg(D[n]) else D[n];
 D[d] = FPMulAdd(D[d], op64, D[m], TRUE);

1 1 1 0 1 1 1 0 1 D 1 0 Vn Vd 1 0 1 sz N 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
C2-710 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
 else
 op32 = if op1_neg then FPNeg(S[n]) else S[n];
 S[d] = FPMulAdd(S[d], op32, S[m], TRUE);

Exceptions

UsageFault, BusFault, MemManage, and SecureFault.

Floating-point exceptions: Invalid Operation, Inexact, Overflow, Underflow, and Input Denormal.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-711
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.264 VFNMA

Floating-point Fused Negate Multiply Accumulate negates one floating-point register value and multiplies it by
another floating-point register value, adds the negation of the floating-point value in the destination register to the
product, and writes the result back to the destination register. The result of the multiply is not rounded before the
addition.

T1

ARMv8-M Floating-point Extension only, sz == 1 UNDEFINED in single-precision only implementations.

Single-precision scalar variant

Applies when sz == 0.

VFNMA{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar variant

Applies when sz == 1.

VFNMA{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

Decode for all variants of this encoding

if !HaveFPExt() then UNDEFINED;
dp_operation = (sz == '1');
if dp_operation && HaveSPFPOnly() then UNDEFINED;
op1_neg = (op == '1');
d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
n = if dp_operation then UInt(N:Vn) else UInt(Vn:N);
m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.

<Sn> Is the 32-bit name of the first floating-point source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second floating-point source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first floating-point source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second floating-point source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 ExecuteFPCheck();
 if dp_operation then
 op64 = if op1_neg then FPNeg(D[n]) else D[n];
 D[d] = FPMulAdd(FPNeg(D[d]), op64, D[m], TRUE);

1 1 1 0 1 1 1 0 1 D 0 1 Vn Vd 1 0 1 sz N 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
C2-712 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
 else
 op32 = if op1_neg then FPNeg(S[n]) else S[n];
 S[d] = FPMulAdd(FPNeg(S[d]), op32, S[m], TRUE);

Exceptions

UsageFault, BusFault, MemManage, and SecureFault.

Floating-point exceptions: Invalid Operation, Inexact, Overflow, Underflow, and Input Denormal.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-713
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.265 VFNMS

Floating-point Fused Negate Multiply Subtract multiplies together two floating-point register values, adds the
negation of the floating-point value in the destination register to the product, and writes the result back to the
destination register. The result of the multiply is not rounded before the addition.

T1

ARMv8-M Floating-point Extension only, sz == 1 UNDEFINED in single-precision only implementations.

Single-precision scalar variant

Applies when sz == 0.

VFNMS{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar variant

Applies when sz == 1.

VFNMS{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

Decode for all variants of this encoding

if !HaveFPExt() then UNDEFINED;
dp_operation = (sz == '1');
if dp_operation && HaveSPFPOnly() then UNDEFINED;
op1_neg = (op == '1');
d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
n = if dp_operation then UInt(N:Vn) else UInt(Vn:N);
m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.

<Sn> Is the 32-bit name of the first floating-point source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second floating-point source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first floating-point source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second floating-point source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 ExecuteFPCheck();
 if dp_operation then
 op64 = if op1_neg then FPNeg(D[n]) else D[n];
 D[d] = FPMulAdd(FPNeg(D[d]), op64, D[m], TRUE);

1 1 1 0 1 1 1 0 1 D 0 1 Vn Vd 1 0 1 sz N 0 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
C2-714 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
 else
 op32 = if op1_neg then FPNeg(S[n]) else S[n];
 S[d] = FPMulAdd(FPNeg(S[d]), op32, S[m], TRUE);

Exceptions

UsageFault, BusFault, MemManage, and SecureFault.

Floating-point exceptions: Invalid Operation, Inexact, Overflow, Underflow, and Input Denormal.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-715
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.266 VLDM

Floating-point Load Multiple loads multiple extension registers from consecutive memory locations using an
address from a general-purpose register.

This instruction is used by the alias VPOP. See Alias conditions on page C2-717 for details of when each alias is
preferred.

T1

ARMv8-M Floating-point Extension only

Decrement Before variant

Applies when P == 1 && U == 0 && W == 1.

VLDMDB{<c>}{<q>}{.<size>} <Rn>!, <dreglist>

Increment After variant

Applies when P == 0 && U == 1.

VLDM{<c>}{<q>}{.<size>} <Rn>{!}, <dreglist>
VLDMIA{<c>}{<q>}{.<size>} <Rn>{!}, <dreglist>

Decode for all variants of this encoding

if P == '0' && U == '0' && W == '0' then SEE "Related encodings";
if P == '1' && W == '0' then SEE VLDR;
if P == U && W == '1' then UNDEFINED;
if !HaveFPExt() then UNDEFINED;
// Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
single_regs = FALSE; add = (U == '1'); wback = (W == '1');
d = UInt(D:Vd); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
regs = UInt(imm8) DIV 2;
if n == 15 then UNPREDICTABLE;
if regs == 0 || regs > 16 || (d+regs) > 32 then UNPREDICTABLE;
if VFPSmallRegisterBank() && (d+regs) > 16 then UNPREDICTABLE;

T2

ARMv8-M Floating-point Extension only

Decrement Before variant

Applies when P == 1 && U == 0 && W == 1.

VLDMDB{<c>}{<q>}{.<size>} <Rn>!, <sreglist>

Increment After variant

Applies when P == 0 && U == 1.

VLDM{<c>}{<q>}{.<size>} <Rn>{!}, <sreglist>

1 1 1 0 1 1 0 P U D W 1 Rn Vd 1 0 1 1 imm8<7:1> 0
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 1 0

imm8<0

1 1 1 0 1 1 0 P U D W 1 Rn Vd 1 0 1 0 imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0
C2-716 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
VLDMIA{<c>}{<q>}{.<size>} <Rn>{!}, <sreglist>

Decode for all variants of this encoding

if P == '0' && U == '0' then SEE "Related encodings";
if P == '1' && W == '0' then SEE VLDR;
if P == '1' && U == '1' && W == '1' then UNDEFINED;
if !HaveFPExt() then UNDEFINED;
// Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
single_regs = TRUE; add = (U == '1'); wback = (W == '1');
d = UInt(Vd:D); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
regs = UInt(imm8);
if n == 15 then UNPREDICTABLE;
if regs == 0 || (d+regs) > 32 then UNPREDICTABLE;

Notes for all encodings

Related encodings: Floating-point load/store and 64-bit register moves on page C2-292.

Alias conditions

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<size> An optional data size specifier. If present, it must be equal to the size in bits, 32 or 64, of the registers
being transferred.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

! Specifies base register writeback. Encoded in the "W" field as 1 if present, otherwise 0.

<sreglist> Is the list of consecutively numbered 32-bit floating-point registers to be transferred. The first
register in the list is encoded in "Vd:D", and "imm8" is set to the number of registers in the list. The
list must contain at least one register.

<dreglist> Is the list of consecutively numbered 64-bit floating-point registers to be transferred. The first
register in the list is encoded in "D:Vd", and "imm8" is set to twice the number of registers in the
list. The list must contain at least one register, and must not contain more than 16 registers.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 ExecuteFPCheck();
 address = if add then R[n] else R[n]-imm32;
 regval = if add then R[n]+imm32 else R[n]-imm32;

 // Determine if the stack pointer limit should be checked
 if n == 13 && wback then
 (limit, applylimit) = LookUpSPLim(LookUpSP());
 else
 applylimit = FALSE;

 // Memory operation only performed if limit not violated
 if !applylimit || (UInt(regval) >= UInt(limit)) then

Alias is preferred when

VPOP P == '0' && U == '1' && W == '1' && Rn == '1101'
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-717
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
 for r = 0 to regs-1
 if single_regs then
 S[d+r] = MemA[address,4];
 address = address+4;
 else
 word1 = MemA[address,4]; word2 = MemA[address+4,4];
 address = address+8;
 // Combine the word-aligned words in the correct order for
 // current endianness.
 D[d+r] = if BigEndian() then word1:word2 else word2:word1;

 // If the stack pointer is being updated update a fault will be raised if
 // the limit is violated
 if wback then RSPCheck[n] = regval;

Exceptions

UsageFault, BusFault, MemManage, and SecureFault.
C2-718 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.267 VLDR

Floating-point Load Register loads an extension register from memory, using an address from a general-purpose
register, with an optional offset.

T1

ARMv8-M Floating-point Extension only

Literal variant

Applies when Rn == 1111.

VLDR{<c>}{<q>}{.64} <Dd>, <label>
VLDR{<c>}{<q>}{.64} <Dd>, [PC, #{+/-}<imm>]

Offset variant

Applies when Rn != 1111.

VLDR{<c>}{<q>}{.64} <Dd>, [<Rn> {, #{+/-}<imm>}]

Decode for all variants of this encoding

if !HaveFPExt() then UNDEFINED;
single_reg = FALSE; add = (U == '1'); imm32 = ZeroExtend(imm8:'00', 32);
d = UInt(D:Vd); n = UInt(Rn);

T2

ARMv8-M Floating-point Extension only

Literal variant

Applies when Rn == 1111.

VLDR{<c>}{<q>}{.32} <Sd>, <label>
VLDR{<c>}{<q>}{.32} <Sd>, [PC, #{+/-}<imm>]

Offset variant

Applies when Rn != 1111.

VLDR{<c>}{<q>}{.32} <Sd>, [<Rn> {, #{+/-}<imm>}]

Decode for all variants of this encoding

if !HaveFPExt() then UNDEFINED;
single_reg = TRUE; add = (U == '1'); imm32 = ZeroExtend(imm8:'00', 32);
d = UInt(Vd:D); n = UInt(Rn);

1 1 1 0 1 1 0 1 U D 0 1 Rn Vd 1 0 1 1 imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

1 1 1 0 1 1 0 1 U D 0 1 Rn Vd 1 0 1 0 imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-719
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

.64 Optional data size specifiers.

<Dd> The destination register for a doubleword load.

.32 Optional data size specifiers.

<Sd> The destination register for a singleword load.

<label> The label of the literal data item to be loaded. The assembler calculates the required value of the
offset from the Align(PC, 4) value of the instruction to this label. Permitted values are multiples of
4 in the range -1020 to 1020. If the offset is zero or positive, imm32 is equal to the offset and add ==
TRUE. If the offset is negative, imm32 is equal to minus the offset and add == FALSE.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

<imm> The immediate offset used for forming the address. For the immediate forms of the syntax, <imm>
can be omitted, in which case the #0 form of the instruction is assembled. Permitted values are
multiples of 4 in the range 0 to 1020.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 ExecuteFPCheck();
 base = if n == 15 then Align(PC,4) else R[n];
 address = if add then (base + imm32) else (base - imm32);
 if single_reg then
 S[d] = MemA[address,4];
 else
 word1 = MemA[address,4]; word2 = MemA[address+4,4];
 // Combine the word-aligned words in the correct order for current endianness.
 D[d] = if BigEndian() then word1:word2 else word2:word1;

Exceptions

UsageFault, BusFault, MemManage, and SecureFault.
C2-720 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.268 VLLDM

Floating-point Lazy Load Multiple restores the contents of the Secure floating-point registers that were protected
by a VLSTM instruction, and marks the floating-point context as active.

If the lazy state preservation set up by a previous VLSTM instruction is active (FPCCR.LSPACT == 1), this
instruction deactivates lazy state preservation and enables access to the Secure floating-point registers.

If lazy state preservation is inactive (FPCCR.LSPACT == 0), either because lazy state preservation was not enabled
(FPCCR.LSPEN == 0) or because a floating-point instruction caused the Secure floating-point register contents to
be stored to memory, this instruction loads the stored Secure floating-point register contents back into the
floating-point registers.

If Secure floating-point is not in use (CONTROL_S.SFPA == 0), this instruction behaves as a NOP.

This instruction is only available in Secure state, and is UNDEFINED in Non-secure state.

If the Floating-point Extension is not implemented, this instruction is available in Secure state, but behaves as a
NOP.

T1

ARMv8-M Main Extension only

T1 variant

VLLDM{<c>}{<q>} <Rn>

Decode for this encoding

if !HaveMainExt() then UNDEFINED;
n = UInt(Rn);
if !IsSecure() then UNDEFINED;
if n == 15 then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();

 if CONTROL_S.SFPA == '1' then
 // Check access to the co-processor is permitted
 exc = CheckCPEnabled(10);
 HandleException(exc);

 if FPCCR_S.LSPACT == '1' then // state in FP is still valid
 FPCCR_S.LSPACT = '0';
 else
 if !IsAligned(R[n],8) then
 UFSR.UNALIGNED = '1';
 exc = CreateException(UsageFault, FALSE, boolean UNKNOWN);

1 1 1 0 1 1 0 0 0 (0) 1 1 Rn (0) (0) (0) (0) 1 0 1 0 (0) (0) (0) (0) (0) (0) (0) (0)
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-721
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
 HandleException(exc);

 for i = 0 to 15
 S[i] = MemA[R[n] + (4*i), 4];
 FPSCR = MemA[R[n] + 0x40, 4];
 if FPCCR_S.TS == '1' then
 for i = 0 to 15
 S[i+16] = MemA[R[n] + 0x48 + (4*i), 4];
 CONTROL.FPCA = '1';

Exceptions

UsageFault, BusFault, MemManage, and SecureFault.
C2-722 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.269 VLSTM

Floating-point Lazy Store Multiple stores the contents of Secure floating-point registers to a prepared stack frame,
and clears the Secure floating-point registers.

If floating-point lazy preservation is enabled (FPCCR.LSPEN == 1), then the next time a floating-point instruction
other than VLSTM or VLLDM is executed:

• The contents of Secure floating-point registers are stored to memory.

• The Secure floating-point registers are cleared.

If Secure floating-point is not in use (CONTROL_S.SFPA == 0), this instruction behaves as a NOP.

This instruction is only available in Secure state, and is UNDEFINED in Non-secure state.

If the Floating-point Extension is not implemented, this instruction is available in Secure state, but behaves as a
NOP.

T1

ARMv8-M Main Extension only

T1 variant

VLSTM{<c>}{<q>} <Rn>

Decode for this encoding

if !HaveMainExt() then UNDEFINED;
n = UInt(Rn);
if !IsSecure() then UNDEFINED;
if n == 15 then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();

 if CONTROL_S.SFPA == '1' then
 // Check access to the co-processor is permitted
 exc = CheckCPEnabled(10);
 HandleException(exc);

 // LSPACT should not be active at the same time as there is active FP
 // state. This is a possible attack scenario so raise a SecureFault.
 lspact = if FPCCR_S.S == '1' then FPCCR_S.LSPACT else FPCCR_NS.LSPACT;
 if lspact == '1' then
 SFSR.LSERR = '1';
 exc = CreateException(SecureFault, TRUE, TRUE);
 HandleException(exc);

1 1 1 0 1 1 0 0 0 (0) 1 0 Rn (0) (0) (0) (0) 1 0 1 0 (0) (0) (0) (0) (0) (0) (0) (0)
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-723
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
 else
 if !IsAligned(R[n],8) then
 UFSR.UNALIGNED = '1';
 exc = CreateException(UsageFault, FALSE, boolean UNKNOWN);
 HandleException(exc);

 if FPCCR.LSPEN == '0' then
 for i = 0 to 15
 MemA[R[n] + (4*i), 4] = S[i];
 MemA[R[n] + 0x40, 4] = FPSCR;
 if FPCCR.TS == '1' then
 for i = 0 to 15
 MemA[R[n] + 0x48 + (4*i), 4] = S[i+16];
 S[i+16] = Zeros(32);
 S[i] = Zeros(32);
 FPSCR = Zeros(32);
 else
 for i = 0 to 15
 S[i] = bits(32) UNKNOWN;
 FPSCR = bits(32) UNKNOWN;
 else
 UpdateFPCCR(R[n], FALSE);
 CONTROL.FPCA = '0';

Exceptions

UsageFault, SecureFault, BusFault, and MemManage.
C2-724 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.270 VMAXNM

Floating-point Maximum Number determines the floating-point maximum number.

NaN handling is specified by IEEE754-2008.

T2

ARMv8-M Floating-point Extension only, sz == 1 UNDEFINED in single-precision only implementations.

Single-precision scalar variant

Applies when sz == 0.

VMAXNM{<q>}.F32 <Sd>, <Sn>, <Sm> // Not permitted in IT block

Double-precision scalar variant

Applies when sz == 1.

VMAXNM{<q>}.F64 <Dd>, <Dn>, <Dm> // Not permitted in IT block

Decode for all variants of this encoding

if !HaveFPExt() then UNDEFINED;
if InITBlock() then UNPREDICTABLE;
dp_operation = (sz == '1');
if dp_operation && HaveSPFPOnly() then UNDEFINED;
maximum = (op == '0');
d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
n = if dp_operation then UInt(N:Vn) else UInt(Vn:N);
m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols

<q> See Standard assembler syntax fields on page C1-240.

<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.

<Sn> Is the 32-bit name of the first floating-point source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second floating-point source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first floating-point source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second floating-point source register, encoded in the "M:Vm" field.

Operation

EncodingSpecificOperations();
ExecuteFPCheck();
if dp_operation then
 if maximum then
 D[d] = FPMaxNum(D[n], D[m]);
 else
 D[d] = FPMinNum(D[n], D[m]);
else
 if maximum then

1 1 1 1 1 1 1 0 1 D 0 0 Vn Vd 1 0 1 sz N 0 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-725
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
 S[d] = FPMaxNum(S[n], S[m]);
 else
 S[d] = FPMinNum(S[n], S[m]);

Exceptions

UsageFault, BusFault, MemManage, and SecureFault.

Floating-point exceptions: Invalid Operation, Inexact, Overflow, Underflow, and Input Denormal.
C2-726 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.271 VMINNM

Floating-point Minimum Number determines the floating-point minimum number.

NaN handling is specified by IEEE754-2008.

T2

ARMv8-M Floating-point Extension only, sz == 1 UNDEFINED in single-precision only implementations.

Single-precision scalar variant

Applies when sz == 0.

VMINNM{<q>}.F32 <Sd>, <Sn>, <Sm> // Not permitted in IT block

Double-precision scalar variant

Applies when sz == 1.

VMINNM{<q>}.F64 <Dd>, <Dn>, <Dm> // Not permitted in IT block

Decode for all variants of this encoding

if !HaveFPExt() then UNDEFINED;
if InITBlock() then UNPREDICTABLE;
dp_operation = (sz == '1');
if dp_operation && HaveSPFPOnly() then UNDEFINED;
maximum = (op == '0');
d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
n = if dp_operation then UInt(N:Vn) else UInt(Vn:N);
m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols

<q> See Standard assembler syntax fields on page C1-240.

<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.

<Sn> Is the 32-bit name of the first floating-point source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second floating-point source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first floating-point source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second floating-point source register, encoded in the "M:Vm" field.

Operation

EncodingSpecificOperations();
ExecuteFPCheck();
if dp_operation then
 if maximum then
 D[d] = FPMaxNum(D[n], D[m]);
 else
 D[d] = FPMinNum(D[n], D[m]);
else
 if maximum then

1 1 1 1 1 1 1 0 1 D 0 0 Vn Vd 1 0 1 sz N 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-727
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
 S[d] = FPMaxNum(S[n], S[m]);
 else
 S[d] = FPMinNum(S[n], S[m]);

Exceptions

UsageFault, BusFault, MemManage, and SecureFault.

Floating-point exceptions: Invalid Operation, Inexact, Overflow, Underflow, and Input Denormal.
C2-728 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.272 VMLA

Floating-point Multiply Accumulate multiplies two floating-point registers, adds the product to the destination
register, and places the result in the destination register.

T2

ARMv8-M Floating-point Extension only, sz == 1 UNDEFINED in single-precision only implementations.

Single-precision scalar variant

Applies when sz == 0.

VMLA{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar variant

Applies when sz == 1.

VMLA{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

Decode for all variants of this encoding

if !HaveFPExt() then UNDEFINED;
dp_operation = (sz == '1');
if dp_operation && HaveSPFPOnly() then UNDEFINED;
add = (op == '0');
d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
n = if dp_operation then UInt(N:Vn) else UInt(Vn:N);
m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.

<Sn> Is the 32-bit name of the first floating-point source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second floating-point source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first floating-point source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second floating-point source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 ExecuteFPCheck();
 if dp_operation then
 addend64 = if add then FPMul(D[n], D[m], TRUE) else FPNeg(FPMul(D[n], D[m], TRUE));
 D[d] = FPAdd(D[d], addend64, TRUE);

1 1 1 0 1 1 1 0 0 D 0 0 Vn Vd 1 0 1 sz N 0 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-729
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
 else
 addend32 = if add then FPMul(S[n], S[m], TRUE) else FPNeg(FPMul(S[n], S[m], TRUE));
 S[d] = FPAdd(S[d], addend32, TRUE);

Exceptions

UsageFault, BusFault, MemManage, and SecureFault.

Floating-point exceptions: Invalid Operation, Inexact, Overflow, Underflow, and Input Denormal.
C2-730 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.273 VMLS

Floating-point Multiply Subtract multiplies two floating-point registers, subtracts the product from the destination
floating-point register, and places the result in the destination floating-point register.

Note
 ARM recommends that software does not use the VMLS instruction in the Round towards +Infinity and Round
towards -Infinity rounding modes, because the rounding of the product and of the sum can change the result of the
instruction in opposite directions, defeating the purpose of these rounding modes.

T2

ARMv8-M Floating-point Extension only, sz == 1 UNDEFINED in single-precision only implementations.

Single-precision scalar variant

Applies when sz == 0.

VMLS{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar variant

Applies when sz == 1.

VMLS{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

Decode for all variants of this encoding

if !HaveFPExt() then UNDEFINED;
dp_operation = (sz == '1');
if dp_operation && HaveSPFPOnly() then UNDEFINED;
add = (op == '0');
d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
n = if dp_operation then UInt(N:Vn) else UInt(Vn:N);
m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.

<Sn> Is the 32-bit name of the first floating-point source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second floating-point source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first floating-point source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second floating-point source register, encoded in the "M:Vm" field.

1 1 1 0 1 1 1 0 0 D 0 0 Vn Vd 1 0 1 sz N 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-731
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 ExecuteFPCheck();
 if dp_operation then
 addend64 = if add then FPMul(D[n], D[m], TRUE) else FPNeg(FPMul(D[n], D[m], TRUE));
 D[d] = FPAdd(D[d], addend64, TRUE);
 else
 addend32 = if add then FPMul(S[n], S[m], TRUE) else FPNeg(FPMul(S[n], S[m], TRUE));
 S[d] = FPAdd(S[d], addend32, TRUE);

Exceptions

UsageFault, BusFault, MemManage, and SecureFault.

Floating-point exceptions: Invalid Operation, Inexact, Overflow, Underflow, and Input Denormal.
C2-732 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.274 VMOV (between general-purpose register and single-precision register)

Floating-point Move (between general-purpose register and single-precision register) transfers the contents of a
single-precision register to a general-purpose register, or the contents of a general-purpose register to a
single-precision register.

T1

ARMv8-M Floating-point Extension only

Encoding

Applies when op == 0.

VMOV{<c>}{<q>} <Sn>, <Rt>

Encoding

Applies when op == 1.

VMOV{<c>}{<q>} <Rt>, <Sn>

Decode for all variants of this encoding

if !HaveFPExt() then UNDEFINED;
to_arm_register = (op == '1'); t = UInt(Rt); n = UInt(Vn:N);
if t == 15 || t == 13 then UNPREDICTABLE;

Assembler symbols

<Rt> Is the general-purpose register that <Sn> will be transferred to or from, encoded in the "Rt" field.

<Sn> Is the 32-bit name of the floating-point register to be transferred, encoded in the "Vn:N" field.

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 ExecuteFPCheck();
 if to_arm_register then
 R[t] = S[n];
 else
 S[n] = R[t];

Exceptions

UsageFault, BusFault, MemManage, and SecureFault.

1 1 1 0 1 1 1 0 0 0 0 op Vn Rt 1 0 1 0 N (0) (0) 1 (0) (0) (0) (0)
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-733
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.275 VMOV (between two general-purpose registers and a doubleword register)

Floating-point Move (between two general-purpose registers and a doubleword register) transfers two words from
two general-purpose registers to a doubleword register, or from a doubleword register to two general-purpose
registers.

T1

ARMv8-M Floating-point Extension only

Encoding

Applies when op == 1.

VMOV{<c>}{<q>} <Rt>, <Rt2>, <Dm>

Encoding

Applies when op == 0.

VMOV{<c>}{<q>} <Dm>, <Rt>, <Rt2>

Decode for all variants of this encoding

if !HaveFPExt() then UNDEFINED;
to_arm_registers = (op == '1'); t = UInt(Rt); t2 = UInt(Rt2); m = UInt(M:Vm);
if t == 15 || t2 == 15 then UNPREDICTABLE;
if t == 13 || t2 == 13 then UNPREDICTABLE;
if to_arm_registers && t == t2 then UNPREDICTABLE;

Assembler symbols

<Dm> Is the 64-bit name of the floating-point register to be transferred, encoded in the "M:Vm" field.

<Rt2> Is the first general-purpose register that <Dm>[63:32] will be transferred to or from, encoded in the
"Rt" field.

<Rt> Is the first general-purpose register that <Dm>[31:0] will be transferred to or from, encoded in the "Rt"
field.

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 ExecuteFPCheck();
 if to_arm_registers then
 R[t] = D[m]<31:0>;
 R[t2] = D[m]<63:32>;
 else
 D[m]<31:0> = R[t];
 D[m]<63:32> = R[t2];

1 1 1 0 1 1 0 0 0 1 0 op Rt2 Rt 1 0 1 1 0 0 M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
C2-734 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Exceptions

UsageFault, BusFault, MemManage, and SecureFault.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-735
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.276 VMOV (between two general-purpose registers and two single-precision registers)

Floating-point Move (between two general-purpose registers and two single-precision registers) transfers the
contents of two consecutively numbered single-precision registers to two general-purpose registers, or the contents
of two general-purpose registers to a pair of single-precision registers. The general-purpose registers do not have to
be contiguous.

T1

ARMv8-M Floating-point Extension only

Encoding

Applies when op == 1.

VMOV{<c>}{<q>} <Rt>, <Rt2>, <Sm>, <Sm1>

Encoding

Applies when op == 0.

VMOV{<c>}{<q>} <Sm>, <Sm1>, <Rt>, <Rt2>

Decode for all variants of this encoding

if !HaveFPExt() then UNDEFINED;
to_arm_registers = (op == '1'); t = UInt(Rt); t2 = UInt(Rt2); m = UInt(Vm:M);
if t == 15 || t2 == 15 || m == 31 then UNPREDICTABLE;
if t == 13 || t2 == 13 then UNPREDICTABLE;
if to_arm_registers && t == t2 then UNPREDICTABLE;

Assembler symbols

<Rt2> Is the second general-purpose register that <Sm1> will be transferred to or from, encoded in the "Rt"
field.

<Rt> Is the first general-purpose register that <Sm> will be transferred to or from, encoded in the "Rt" field.

<Sm1> Is the 32-bit name of the second floating-point register to be transferred. This is the next
floating-point register after <Sm>.

<Sm> Is the 32-bit name of the first floating-point register to be transferred, encoded in the "Vm:M" field.

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 ExecuteFPCheck();
 if to_arm_registers then
 R[t] = S[m];
 R[t2] = S[m+1];
 else
 S[m] = R[t];
 S[m+1] = R[t2];

1 1 1 0 1 1 0 0 0 1 0 op Rt2 Rt 1 0 1 0 0 0 M 1 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
C2-736 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Exceptions

UsageFault, BusFault, MemManage, and SecureFault.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-737
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.277 VMOV (half of doubleword register to single general-purpose register)

Floating-point Move (half of doubleword register to single general-purpose register) transfers one word from the
upper or lower half of a doubleword register to a general-purpose register.

Note
 The pseudocode descriptions of the instruction operation convert the doubleword register description into the
corresponding single-precision register. For example, D3[1], indicating the upper word of D3, becomes S7.

T1

ARMv8-M Floating-point Extension only

T1 variant

VMOV{<c>}{<q>}{.<dt>} <Rt>, <Dn[x]>

Decode for this encoding

if !HaveFPExt() then UNDEFINED;
t = UInt(Rt); n = UInt(N:Vn);
upper = (H == '1');
if t == 15 || t == 13 then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<dt> The data size. It must be either 32 or omitted.

<Rt> The destination general-purpose register, encoded in the "Rt" field.

<Dn[x]> The source doubleword register and required word. The register <Dd> is encoded in N:Vn. x is 1 for
the top half of the register, or 0 for the bottom half of the register, and is encoded in H.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 ExecuteFPCheck();
 if upper then
 R[t] = D[n]<63:32>;
 else
 R[t] = D[n]<31:0>;

Exceptions

UsageFault, BusFault, MemManage, and SecureFault.

1 1 1 0 1 1 1 0 0 0 H 1 Vn Rt 1 0 1 1 N 0 0 1 (0) (0) (0) (0)
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 2 1 0
C2-738 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.278 VMOV (immediate)

Floating-point Move (immediate) places an immediate constant into the destination floating-point register.

T2

ARMv8-M Floating-point Extension only, sz == 1 UNDEFINED in single-precision only implementations.

Single-precision scalar variant

Applies when sz == 0.

VMOV{<c>}{<q>}.F32 <Sd>, #<imm>

Double-precision scalar variant

Applies when sz == 1.

VMOV{<c>}{<q>}.F64 <Dd>, #<imm>

Decode for all variants of this encoding

if !HaveFPExt() then UNDEFINED;
dp_operation = (sz == '1');
if dp_operation && HaveSPFPOnly() then UNDEFINED;
if dp_operation then
 d = UInt(D:Vd); imm64 = VFPExpandImm(imm4H:imm4L, 64);
else
 d = UInt(Vd:D); imm32 = VFPExpandImm(imm4H:imm4L, 32);

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.

<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.

<imm> Is a floating-point constant. For details of the range of constants available and the encoding of <imm>,
see the definition of VFPExpandImm().

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 ExecuteFPCheck();
 if dp_operation then
 D[d] = imm64;
 else
 S[d] = imm32;

Exceptions

UsageFault, BusFault, MemManage, and SecureFault.

1 1 1 0 1 1 1 0 1 D 1 1 imm4H Vd 1 0 1 sz (0) 0 (0) 0 imm4L
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-739
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.279 VMOV (register)

Floating-point Move (immediate) copies the contents of one register to another.

T2

ARMv8-M Floating-point Extension only, sz == 1 UNDEFINED in single-precision only implementations.

Single-precision scalar variant

Applies when sz == 0.

VMOV{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when sz == 1.

VMOV{<c>}{<q>}.F64 <Dd>, <Dm>

Decode for all variants of this encoding

if !HaveFPExt() then UNDEFINED;
dp_operation = (sz == '1');
if dp_operation && HaveSPFPOnly() then UNDEFINED;
d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the floating-point source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 ExecuteFPCheck();
 if dp_operation then
 D[d] = D[m];
 else
 S[d] = S[m];

Exceptions

UsageFault, BusFault, MemManage, and SecureFault.

1 1 1 0 1 1 1 0 1 D 1 1 0 0 0 0 Vd 1 0 1 sz 0 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
C2-740 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.280 VMOV (single general-purpose register to half of doubleword register)

Floating-point Move (single general-purpose register to half of doubleword register) transfers one word from a
general-purpose register to the upper or lower half of a doubleword register.

Note
 The pseudocode descriptions of the instruction operation convert the doubleword register description into the
corresponding single-precision register. For example, D3[1], indicating the upper word of D3, becomes S7.

T1

ARMv8-M Floating-point Extension only

T1 variant

VMOV{<c>}{<q>}{.<size>} <Dd[x]>, <Rt>

Decode for this encoding

if !HaveFPExt() then UNDEFINED;
d = UInt(D:Vd); t = UInt(Rt);
upper = (H == '1');
if t == 15 || t == 13 then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<size> The data size. It must be either 32 or omitted.

<Dd[x]> The destination doubleword register and required word. The register <Dd> is encoded in D:Vd. x is
1 for the top half of the register, or 0 for the bottom half of the register, and is encoded in H.

<Rt> The source general-purpose register, encoded in the "Rt" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 ExecuteFPCheck();
 if upper then
 D[d]<63:32> = R[t];
 else
 D[d]<31:0> = R[t];

Exceptions

UsageFault, BusFault, MemManage, and SecureFault.

1 1 1 0 1 1 1 0 0 0 H 0 Vd Rt 1 0 1 1 D 0 0 1 (0) (0) (0) (0)
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-741
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.281 VMRS

Move to general-purpose Register from Floating-point Special register moves the value of the FPSCR to a
general-purpose register, or the values of the FPSCR condition flags to the APSR condition flags.

T1

ARMv8-M Floating-point Extension only

T1 variant

VMRS{<c>}{<q>} <Rt>, FPSCR

Decode for this encoding

if !HaveFPExt() then UNDEFINED;
t = UInt(Rt);
if t == 13 then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rt> Is the general-purpose destination register, encoded in the "Rt" field. Is one of:

R0-R14 General-purpose register.

APSR_nzcv If <spec_reg> is FPSCR, encoded as 0b1111. This instruction transfers the FPSCR.{N, Z,
C, V} condition flags to the APSR.{N, Z, C, V} condition flags.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 ExecuteFPCheck();
 SerializeVFP();
 VFPExcBarrier();
 if t == 15 then
 APSR.N = FPSCR.N;
 APSR.Z = FPSCR.Z;
 APSR.C = FPSCR.C;
 APSR.V = FPSCR.V;
 else
 R[t] = FPSCR;

Exceptions

UsageFault, BusFault, MemManage, and SecureFault.

1 1 1 0 1 1 1 0 1 1 1 1 (0) (0) (0) (1) Rt 1 0 1 0 (0) (0) (0) 1 (0) (0) (0) (0)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 2 1 0
C2-742 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.282 VMSR

Move to Floating-point Special register from general-purpose Register moves the value of a general-purpose
register to the FPSCR.

T1

ARMv8-M Floating-point Extension only

T1 variant

VMSR{<c>}{<q>} FPSCR, <Rt>

Decode for this encoding

if !HaveFPExt() then UNDEFINED;
t = UInt(Rt);
if t == 15 || t == 13 then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Rt> Is the general-purpose source register to be transferred to the FPSCR, encoded in the "Rt" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 ExecuteFPCheck();
 SerializeVFP();
 VFPExcBarrier();
 FPSCR = R[t];

Exceptions

UsageFault, BusFault, MemManage, and SecureFault.

1 1 1 0 1 1 1 0 1 1 1 0 (0) (0) (0) (1) Rt 1 0 1 0 (0) (0) (0) 1 (0) (0) (0) (0)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-743
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.283 VMUL

Floating-point Multiply multiplies two floating-point register values, and places the result in the destination
floating-point register.

T2

ARMv8-M Floating-point Extension only, sz == 1 UNDEFINED in single-precision only implementations.

Single-precision scalar variant

Applies when sz == 0.

VMUL{<c>}{<q>}.F32 {<Sd>,} <Sn>, <Sm>

Double-precision scalar variant

Applies when sz == 1.

VMUL{<c>}{<q>}.F64 {<Dd>,} <Dn>, <Dm>

Decode for all variants of this encoding

if !HaveFPExt() then UNDEFINED;
dp_operation = (sz == '1');
if dp_operation && HaveSPFPOnly() then UNDEFINED;
d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
n = if dp_operation then UInt(N:Vn) else UInt(Vn:N);
m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.

<Sn> Is the 32-bit name of the first floating-point source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second floating-point source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first floating-point source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second floating-point source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 ExecuteFPCheck();
 if dp_operation then
 D[d] = FPMul(D[n], D[m], TRUE);
 else
 S[d] = FPMul(S[n], S[m], TRUE);

1 1 1 0 1 1 1 0 0 D 1 0 Vn Vd 1 0 1 sz N 0 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
C2-744 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Exceptions

UsageFault, BusFault, MemManage, and SecureFault.

Floating-point exceptions: Invalid Operation, Inexact, Overflow, Underflow, and Input Denormal.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-745
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.284 VNEG

Floating-point Negate inverts the sign bit of a single-precision or double-precision register, and places the result in
the destination register.

T2

ARMv8-M Floating-point Extension only, sz == 1 UNDEFINED in single-precision only implementations.

Single-precision scalar variant

Applies when sz == 0.

VNEG{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when sz == 1.

VNEG{<c>}{<q>}.F64 <Dd>, <Dm>

Decode for all variants of this encoding

if !HaveFPExt() then UNDEFINED;
dp_operation = (sz == '1');
if dp_operation && HaveSPFPOnly() then UNDEFINED;
d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the floating-point source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 ExecuteFPCheck();
 if dp_operation then
 D[d] = FPNeg(D[m]);
 else
 S[d] = FPNeg(S[m]);

Exceptions

UsageFault, BusFault, MemManage, and SecureFault.

1 1 1 0 1 1 1 0 1 D 1 1 0 0 0 1 Vd 1 0 1 sz 0 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
C2-746 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.285 VNMLA

Floating-point Multiply Accumulate and Negate multiplies two floating-point register values, adds the negation of
the floating-point value in the destination register to the negation of the product, and writes the result back to the
destination register.

Note
 ARM recommends that software does not use the VNMLA instruction in the Round towards +Infinity and Round
towards -Infinity rounding modes, because the rounding of the product and of the sum can change the result of the
instruction in opposite directions, defeating the purpose of these rounding modes.

T1

ARMv8-M Floating-point Extension only, sz == 1 UNDEFINED in single-precision only implementations.

Single-precision scalar variant

Applies when sz == 0.

VNMLA{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar variant

Applies when sz == 1.

VNMLA{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

Decode for all variants of this encoding

if !HaveFPExt() then UNDEFINED;
type = if op == '1' then VFPNegMul_VNMLA else VFPNegMul_VNMLS;
dp_operation = (sz == '1');
if dp_operation && HaveSPFPOnly() then UNDEFINED;
d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
n = if dp_operation then UInt(N:Vn) else UInt(Vn:N);
m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.

<Sn> Is the 32-bit name of the first floating-point source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second floating-point source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first floating-point source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second floating-point source register, encoded in the "M:Vm" field.

1 1 1 0 1 1 1 0 0 D 0 1 Vn Vd 1 0 1 sz N 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-747
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 ExecuteFPCheck();
 if dp_operation then
 product64 = FPMul(D[n], D[m], TRUE);
 case type of
 when VFPNegMul_VNMLA D[d] = FPAdd(FPNeg(D[d]), FPNeg(product64), TRUE);
 when VFPNegMul_VNMLS D[d] = FPAdd(FPNeg(D[d]), product64, TRUE);
 when VFPNegMul_VNMUL D[d] = FPNeg(product64);
 else
 product32 = FPMul(S[n], S[m], TRUE);
 case type of
 when VFPNegMul_VNMLA S[d] = FPAdd(FPNeg(S[d]), FPNeg(product32), TRUE);
 when VFPNegMul_VNMLS S[d] = FPAdd(FPNeg(S[d]), product32, TRUE);
 when VFPNegMul_VNMUL S[d] = FPNeg(product32);

Exceptions

UsageFault, BusFault, MemManage, and SecureFault.

Floating-point exceptions: Invalid Operation, Inexact, Overflow, Underflow, and Input Denormal.
C2-748 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.286 VNMLS

Floating-point Multiply Subtract and Negate multiplies two floating-point register values, adds the negation of the
floating-point value in the destination register to the product, and writes the result back to the destination register.

T1

ARMv8-M Floating-point Extension only, sz == 1 UNDEFINED in single-precision only implementations.

Single-precision scalar variant

Applies when sz == 0.

VNMLS{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar variant

Applies when sz == 1.

VNMLS{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

Decode for all variants of this encoding

if !HaveFPExt() then UNDEFINED;
type = if op == '1' then VFPNegMul_VNMLA else VFPNegMul_VNMLS;
dp_operation = (sz == '1');
if dp_operation && HaveSPFPOnly() then UNDEFINED;
d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
n = if dp_operation then UInt(N:Vn) else UInt(Vn:N);
m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.

<Sn> Is the 32-bit name of the first floating-point source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second floating-point source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first floating-point source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second floating-point source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 ExecuteFPCheck();
 if dp_operation then
 product64 = FPMul(D[n], D[m], TRUE);
 case type of
 when VFPNegMul_VNMLA D[d] = FPAdd(FPNeg(D[d]), FPNeg(product64), TRUE);
 when VFPNegMul_VNMLS D[d] = FPAdd(FPNeg(D[d]), product64, TRUE);

1 1 1 0 1 1 1 0 0 D 0 1 Vn Vd 1 0 1 sz N 0 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-749
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
 when VFPNegMul_VNMUL D[d] = FPNeg(product64);
 else
 product32 = FPMul(S[n], S[m], TRUE);
 case type of
 when VFPNegMul_VNMLA S[d] = FPAdd(FPNeg(S[d]), FPNeg(product32), TRUE);
 when VFPNegMul_VNMLS S[d] = FPAdd(FPNeg(S[d]), product32, TRUE);
 when VFPNegMul_VNMUL S[d] = FPNeg(product32);

Exceptions

UsageFault, BusFault, MemManage, and SecureFault.

Floating-point exceptions: Invalid Operation, Inexact, Overflow, Underflow, and Input Denormal.
C2-750 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.287 VNMUL

Floating-point Multiply and Negate multiplies two floating-point register values, and writes the negation of the
result to the destination register.

T1

ARMv8-M Floating-point Extension only, sz == 1 UNDEFINED in single-precision only implementations.

Single-precision scalar variant

Applies when sz == 0.

VNMUL{<c>}{<q>}.F32 {<Sd>,} <Sn>, <Sm>

Double-precision scalar variant

Applies when sz == 1.

VNMUL{<c>}{<q>}.F64 {<Dd>,} <Dn>, <Dm>

Decode for all variants of this encoding

if !HaveFPExt() then UNDEFINED;
type = if op == '1' then VFPNegMul_VNMLA else VFPNegMul_VNMLS;
dp_operation = (sz == '1');
if dp_operation && HaveSPFPOnly() then UNDEFINED;
d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
n = if dp_operation then UInt(N:Vn) else UInt(Vn:N);
m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.

<Sn> Is the 32-bit name of the first floating-point source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second floating-point source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first floating-point source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second floating-point source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 ExecuteFPCheck();
 if dp_operation then
 product64 = FPMul(D[n], D[m], TRUE);
 case type of
 when VFPNegMul_VNMLA D[d] = FPAdd(FPNeg(D[d]), FPNeg(product64), TRUE);
 when VFPNegMul_VNMLS D[d] = FPAdd(FPNeg(D[d]), product64, TRUE);

1 1 1 0 1 1 1 0 0 D 1 0 Vn Vd 1 0 1 sz N 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-751
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
 when VFPNegMul_VNMUL D[d] = FPNeg(product64);
 else
 product32 = FPMul(S[n], S[m], TRUE);
 case type of
 when VFPNegMul_VNMLA S[d] = FPAdd(FPNeg(S[d]), FPNeg(product32), TRUE);
 when VFPNegMul_VNMLS S[d] = FPAdd(FPNeg(S[d]), product32, TRUE);
 when VFPNegMul_VNMUL S[d] = FPNeg(product32);

Exceptions

UsageFault, BusFault, MemManage, and SecureFault.

Floating-point exceptions: Invalid Operation, Inexact, Overflow, Underflow, and Input Denormal.
C2-752 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.288 VPOP

Pop FP registers from Stack loads multiple consecutive floating-point register file registers from the stack.

This instruction is an alias of the VLDM instruction. This means that:

• The encodings in this description are named to match the encodings of VLDM.

• The description of VLDM gives the operational pseudocode for this instruction.

T1

ARMv8-M Floating-point Extension only

Increment After variant

VPOP{<c>}{<q>}{.<size>} <dreglist>

is equivalent to

VLDM{<c>}{<q>}{.<size>} SP!, <dreglist>

and is always the preferred disassembly.

T2

ARMv8-M Floating-point Extension only

Increment After variant

VPOP{<c>}{<q>}{.<size>} <sreglist>

is equivalent to

VLDM{<c>}{<q>}{.<size>} SP!, <sreglist>

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<size> An optional data size specifier. If present, it must be equal to the size in bits, 32 or 64, of the registers
being transferred.

<sreglist> Is the list of consecutively numbered 32-bit floating-point registers to be transferred. The first
register in the list is encoded in "Vd:D", and "imm8" is set to the number of registers in the list. The
list must contain at least one register.

<dreglist> Is the list of consecutively numbered 64-bit floating-point registers to be transferred. The first
register in the list is encoded in "D:Vd", and "imm8" is set to twice the number of registers in the
list. The list must contain at least one register, and must not contain more than 16 registers.

1 1 1 0 1 1 0 0 1 D 1 1 1 1 0 1 Vd 1 0 1 1 imm8<7:1> 0
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 1 0

P U W Rn imm8<0

1 1 1 0 1 1 0 0 1 D 1 1 1 1 0 1 Vd 1 0 1 0 imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

P U W Rn
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-753
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Operation for all encodings

The description of VLDM gives the operational pseudocode for this instruction.
C2-754 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.289 VPUSH

Push FP registers to Stack stores multiple consecutive registers from the floating-point register file to the stack.

This instruction is an alias of the VSTM instruction. This means that:

• The encodings in this description are named to match the encodings of VSTM.

• The description of VSTM gives the operational pseudocode for this instruction.

T1

ARMv8-M Floating-point Extension only

Decrement Before variant

VPUSH{<c>}{<q>}{.<size>} <dreglist>

is equivalent to

VSTMDB{<c>}{<q>}{.<size>} SP!, <dreglist>

and is always the preferred disassembly.

T2

ARMv8-M Floating-point Extension only

Decrement Before variant

VPUSH{<c>}{<q>}{.<size>} <sreglist>

is equivalent to

VSTMDB{<c>}{<q>}{.<size>} SP!, <sreglist>

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<size> An optional data size specifier. If present, it must be equal to the size in bits, 32 or 64, of the registers
being transferred.

<sreglist> Is the list of consecutively numbered 32-bit floating-point registers to be transferred. The first
register in the list is encoded in "Vd:D", and "imm8" is set to the number of registers in the list. The
list must contain at least one register.

<dreglist> Is the list of consecutively numbered 64-bit floating-point registers to be transferred. The first
register in the list is encoded in "D:Vd", and "imm8" is set to twice the number of registers in the
list. The list must contain at least one register, and must not contain more than 16 registers.

1 1 1 0 1 1 0 1 0 D 1 0 1 1 0 1 Vd 1 0 1 1 imm8<7:1> 0
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 1 0

P U W Rn imm8<0

1 1 1 0 1 1 0 1 0 D 1 0 1 1 0 1 Vd 1 0 1 0 imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

P U W Rn
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-755
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Operation for all encodings

The description of VSTM gives the operational pseudocode for this instruction.
C2-756 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.290 VRINTA

Floating-point Round to Nearest Integer with Ties to Away rounds a floating-point value to an integral floating-point
value of the same size using the Round to Nearest with Ties to Away rounding mode. A zero input gives a zero result
with the same sign, an infinite input gives an infinite result with the same sign, and a NaN is propagated as for
normal arithmetic.

T1

ARMv8-M Floating-point Extension only, sz == 1 UNDEFINED in single-precision only implementations.

Single-precision scalar variant

Applies when sz == 0.

VRINTA{<q>}.F32.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when sz == 1.

VRINTA{<q>}.F64.F64 <Dd>, <Dm>

Decode for all variants of this encoding

if !HaveFPExt() then UNDEFINED;
dp_operation = (sz == '1');
if dp_operation && HaveSPFPOnly() then UNDEFINED;
case RM of
 when '00' // Round to nearest, with ties away
 rmode = '01'; away = TRUE;
 when '01' // Round to nearest, with ties to even
 rmode = '00'; away = FALSE;
 when '10' // Round towards Plus Infinity
 rmode = '01'; away = FALSE;
 when '11' // Round towards Minus Infinity
 rmode = '10'; away = FALSE;
d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols

<q> See Standard assembler syntax fields on page C1-240.

<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the floating-point source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 ExecuteFPCheck();

 exact = FALSE;

1 1 1 1 1 1 1 0 1 D 1 1 1 0 0 0 Vd 1 0 1 sz 0 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

RM
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-757
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions

 if dp_operation then
 D[d] = FPRoundInt(D[m], rmode, away, exact);
 else
 S[d] = FPRoundInt(S[m], rmode, away, exact);

Exceptions

UsageFault, BusFault, MemManage, and SecureFault.

Floating-point exceptions: Inexact, Invalid Operation, Overflow, Underflow, and Input Denormal.
C2-758 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.291 VRINTM

Floating-point Round to Integer towards -Infinity rounds a floating-point value to an integral floating-point value
of the same size using the Round towards -Infinity rounding mode. A zero input gives a zero result with the same
sign, an infinite input gives an infinite result with the same sign, and a NaN is propagated as for normal arithmetic.

T1

ARMv8-M Floating-point Extension only, sz == 1 UNDEFINED in single-precision only implementations.

Single-precision scalar variant

Applies when sz == 0.

VRINTM{<q>}.F32.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when sz == 1.

VRINTM{<q>}.F64.F64 <Dd>, <Dm>

Decode for all variants of this encoding

if !HaveFPExt() then UNDEFINED;
dp_operation = (sz == '1');
if dp_operation && HaveSPFPOnly() then UNDEFINED;
case RM of
 when '00' // Round to nearest, with ties away
 rmode = '01'; away = TRUE;
 when '01' // Round to nearest, with ties to even
 rmode = '00'; away = FALSE;
 when '10' // Round towards Plus Infinity
 rmode = '01'; away = FALSE;
 when '11' // Round towards Minus Infinity
 rmode = '10'; away = FALSE;
d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols

<q> See Standard assembler syntax fields on page C1-240.

<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the floating-point source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 ExecuteFPCheck();

 exact = FALSE;

1 1 1 1 1 1 1 0 1 D 1 1 1 0 1 1 Vd 1 0 1 sz 0 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

RM
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-759
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
 if dp_operation then
 D[d] = FPRoundInt(D[m], rmode, away, exact);
 else
 S[d] = FPRoundInt(S[m], rmode, away, exact);

Exceptions

UsageFault, BusFault, MemManage, and SecureFault.

Floating-point exceptions: Inexact, Invalid Operation, Overflow, Underflow, and Input Denormal.
C2-760 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.292 VRINTN

Floating-point Round to Nearest Integer with Ties to Even rounds a floating-point value to an integral floating-point
value of the same size using the Round to Nearest rounding mode. A zero input gives a zero result with the same
sign, an infinite input gives an infinite result with the same sign, and a NaN is propagated as for normal arithmetic.

T1

ARMv8-M Floating-point Extension only, sz == 1 UNDEFINED in single-precision only implementations.

Single-precision scalar variant

Applies when sz == 0.

VRINTN{<q>}.F32.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when sz == 1.

VRINTN{<q>}.F64.F64 <Dd>, <Dm>

Decode for all variants of this encoding

if !HaveFPExt() then UNDEFINED;
dp_operation = (sz == '1');
if dp_operation && HaveSPFPOnly() then UNDEFINED;
case RM of
 when '00' // Round to nearest, with ties away
 rmode = '01'; away = TRUE;
 when '01' // Round to nearest, with ties to even
 rmode = '00'; away = FALSE;
 when '10' // Round towards Plus Infinity
 rmode = '01'; away = FALSE;
 when '11' // Round towards Minus Infinity
 rmode = '10'; away = FALSE;
d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols

<q> See Standard assembler syntax fields on page C1-240.

<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the floating-point source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 ExecuteFPCheck();

 exact = FALSE;

1 1 1 1 1 1 1 0 1 D 1 1 1 0 0 1 Vd 1 0 1 sz 0 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

RM
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-761
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
 if dp_operation then
 D[d] = FPRoundInt(D[m], rmode, away, exact);
 else
 S[d] = FPRoundInt(S[m], rmode, away, exact);

Exceptions

UsageFault, BusFault, MemManage, and SecureFault.

Floating-point exceptions: Inexact, Invalid Operation, Overflow, Underflow, and Input Denormal.
C2-762 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.293 VRINTP

Floating-point Round to Integer towards +Infinity rounds a floating-point value to an integral floating-point value
of the same size using the Round towards +Infinity rounding mode. A zero input gives a zero result with the same
sign, an infinite input gives an infinite result with the same sign, and a NaN is propagated as for normal arithmetic.

T1

ARMv8-M Floating-point Extension only, sz == 1 UNDEFINED in single-precision only implementations.

Single-precision scalar variant

Applies when sz == 0.

VRINTP{<q>}.F32.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when sz == 1.

VRINTP{<q>}.F64.F64 <Dd>, <Dm>

Decode for all variants of this encoding

if !HaveFPExt() then UNDEFINED;
dp_operation = (sz == '1');
if dp_operation && HaveSPFPOnly() then UNDEFINED;
case RM of
 when '00' // Round to nearest, with ties away
 rmode = '01'; away = TRUE;
 when '01' // Round to nearest, with ties to even
 rmode = '00'; away = FALSE;
 when '10' // Round towards Plus Infinity
 rmode = '01'; away = FALSE;
 when '11' // Round towards Minus Infinity
 rmode = '10'; away = FALSE;
d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols

<q> See Standard assembler syntax fields on page C1-240.

<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the floating-point source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 ExecuteFPCheck();

 exact = FALSE;

1 1 1 1 1 1 1 0 1 D 1 1 1 0 1 0 Vd 1 0 1 sz 0 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

RM
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-763
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
 if dp_operation then
 D[d] = FPRoundInt(D[m], rmode, away, exact);
 else
 S[d] = FPRoundInt(S[m], rmode, away, exact);

Exceptions

UsageFault, BusFault, MemManage, and SecureFault.

Floating-point exceptions: Inexact, Invalid Operation, Overflow, Underflow, and Input Denormal.
C2-764 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.294 VRINTR

Floating-point Round to Integer rounds a floating-point value to an integral floating-point value of the same size
using the rounding mode specified in the FPSCR. A zero input gives a zero result with the same sign, an infinite
input gives an infinite result with the same sign, and a NaN is propagated as for normal arithmetic.

T1

ARMv8-M Floating-point Extension only, sz == 1 UNDEFINED in single-precision only implementations.

Single-precision scalar variant

Applies when sz == 0.

VRINTR{<c>}{<q>}.F32.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when sz == 1.

VRINTR{<c>}{<q>}.F64.F64 <Dd>, <Dm>

Decode for all variants of this encoding

if !HaveFPExt() then UNDEFINED;
dp_operation = (sz == '1');
if dp_operation && HaveSPFPOnly() then UNDEFINED;
rmode = if op == '1' then '11' else FPSCR<23:22>;
d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the floating-point source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 ExecuteFPCheck();

 exact = FALSE;
 away = FALSE;

 if dp_operation then
 D[d] = FPRoundInt(D[m], rmode, away, exact);
 else
 S[d] = FPRoundInt(S[m], rmode, away, exact);

1 1 1 0 1 1 1 0 1 D 1 1 0 1 1 0 Vd 1 0 1 sz 0 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-765
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Exceptions

UsageFault, BusFault, MemManage, and SecureFault.

Floating-point exceptions: Inexact, Invalid Operation, Overflow, Underflow, and Input Denormal.
C2-766 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.295 VRINTX

This instruction rounds a floating-point value to an integral floating-point value of the same size. A zero input gives
a zero result with the same sign, an infinite input gives an infinite result with the same sign, and a NaN is propagated
as for normal arithmetic.

VRINTX uses the rounding mode specified in the FPSCR, and raises an Inexact exception when the result value is not
numerically equal to the input value.

T1

ARMv8-M Floating-point Extension only, sz == 1 UNDEFINED in single-precision only implementations.

Single-precision scalar variant

Applies when sz == 0.

VRINTX{<c>}{<q>}.F32.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when sz == 1.

VRINTX{<c>}{<q>}.F64.F64 <Dd>, <Dm>

Decode for all variants of this encoding

if !HaveFPExt() then UNDEFINED;
dp_operation = (sz == '1');
if dp_operation && HaveSPFPOnly() then UNDEFINED;
d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the floating-point source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 ExecuteFPCheck();

 rmode = FPSCR<23:22>;
 away = FALSE;
 exact = TRUE;

 if dp_operation then

1 1 1 0 1 1 1 0 1 D 1 1 0 1 1 1 Vd 1 0 1 sz 0 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-767
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
 D[d] = FPRoundInt(D[m], rmode, away, exact);
 else
 S[d] = FPRoundInt(S[m], rmode, away, exact);

Exceptions

UsageFault, BusFault, MemManage, and SecureFault.

Floating-point exceptions: Inexact, Invalid Operation, Overflow, Underflow, and Input Denormal.
C2-768 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.296 VRINTZ

Floating-point Round to Integer towards Zero rounds a floating-point value to an integral floating-point value of the
same size, using the Round towards Zero rounding mode. A zero input gives a zero result with the same sign, an
infinite input gives an infinite result with the same sign, and a NaN is propagated as for normal arithmetic.

T1

ARMv8-M Floating-point Extension only, sz == 1 UNDEFINED in single-precision only implementations.

Single-precision scalar variant

Applies when sz == 0.

VRINTZ{<c>}{<q>}.F32.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when sz == 1.

VRINTZ{<c>}{<q>}.F64.F64 <Dd>, <Dm>

Decode for all variants of this encoding

if !HaveFPExt() then UNDEFINED;
dp_operation = (sz == '1');
if dp_operation && HaveSPFPOnly() then UNDEFINED;
rmode = if op == '1' then '11' else FPSCR<23:22>;
d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the floating-point source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 ExecuteFPCheck();

 exact = FALSE;
 away = FALSE;

 if dp_operation then
 D[d] = FPRoundInt(D[m], rmode, away, exact);
 else
 S[d] = FPRoundInt(S[m], rmode, away, exact);

1 1 1 0 1 1 1 0 1 D 1 1 0 1 1 0 Vd 1 0 1 sz 1 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0

op
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-769
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Exceptions

UsageFault, BusFault, MemManage, and SecureFault.

Floating-point exceptions: Inexact, Invalid Operation, Overflow, Underflow, and Input Denormal.
C2-770 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.297 VSEL

Floating-point Conditional Select allows the destination register to take the value from either one or the other of two
source registers according to the condition codes in the APSR.

The condition codes for VSEL are limited to GE, GT, EQ, and VS, with the effect of LT, LE, NE, and VC being
achievable by exchanging the source operands.

T1

ARMv8-M Floating-point Extension only, sz == 1 UNDEFINED in single-precision only implementations.

VSELEQ,doubleprec variant

Applies when cc == 00 && sz == 1.

VSELEQ.F64 <Dd>, <Dn>, <Dm> // Not permitted in IT block

VSELEQ,singleprec variant

Applies when cc == 00 && sz == 0.

VSELEQ.F32 <Sd>, <Sn>, <Sm> // Not permitted in IT block

VSELGE,doubleprec variant

Applies when cc == 10 && sz == 1.

VSELGE.F64 <Dd>, <Dn>, <Dm> // Not permitted in IT block

VSELGE,singleprec variant

Applies when cc == 10 && sz == 0.

VSELGE.F32 <Sd>, <Sn>, <Sm> // Not permitted in IT block

VSELGT,doubleprec variant

Applies when cc == 11 && sz == 1.

VSELGT.F64 <Dd>, <Dn>, <Dm> // Not permitted in IT block

VSELGT,singleprec variant

Applies when cc == 11 && sz == 0.

VSELGT.F32 <Sd>, <Sn>, <Sm> // Not permitted in IT block

VSELVS,doubleprec variant

Applies when cc == 01 && sz == 1.

VSELVS.F64 <Dd>, <Dn>, <Dm> // Not permitted in IT block

VSELVS,singleprec variant

Applies when cc == 01 && sz == 0.

VSELVS.F32 <Sd>, <Sn>, <Sm> // Not permitted in IT block

1 1 1 1 1 1 1 0 0 D cc Vn Vd 1 0 1 sz N 0 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-771
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Decode for all variants of this encoding

if !HaveFPExt() then UNDEFINED;
if InITBlock() then UNPREDICTABLE;
dp_operation = (sz == '1');
if dp_operation && HaveSPFPOnly() then UNDEFINED;
cond = cc:(cc<1> EOR cc<0>):'0';
d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
n = if dp_operation then UInt(N:Vn) else UInt(Vn:N);
m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols

<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first floating-point source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second floating-point source register, encoded in the "M:Vm" field.

<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.

<Sn> Is the 32-bit name of the first floating-point source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second floating-point source register, encoded in the "Vm:M" field.

Operation

EncodingSpecificOperations();
ExecuteFPCheck();

if dp_operation then
 D[d] = if ConditionHolds(cond) then D[n] else D[m];
else
 S[d] = if ConditionHolds(cond) then S[n] else S[m];

Exceptions

UsageFault, BusFault, MemManage, and SecureFault.
C2-772 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.298 VSQRT

Floating-point Square Root calculates the square root of a floating-point register value and writes the result to
another floating-point register.

T1

ARMv8-M Floating-point Extension only, sz == 1 UNDEFINED in single-precision only implementations.

Single-precision scalar variant

Applies when sz == 0.

VSQRT{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when sz == 1.

VSQRT{<c>}{<q>}.F64 <Dd>, <Dm>

Decode for all variants of this encoding

if !HaveFPExt() then UNDEFINED;
dp_operation = (sz == '1');
if dp_operation && HaveSPFPOnly() then UNDEFINED;
d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the floating-point source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 ExecuteFPCheck();
 if dp_operation then
 D[d] = FPSqrt(D[m]);
 else
 S[d] = FPSqrt(S[m]);

Exceptions

UsageFault, BusFault, MemManage, and SecureFault.

Floating-point exceptions: Invalid Operation, Inexact, Overflow, Underflow, and Input Denormal.

1 1 1 0 1 1 1 0 1 D 1 1 0 0 0 1 Vd 1 0 1 sz 1 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-773
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.299 VSTM

Floating-point Store Multiple stores multiple extension registers to consecutive memory locations using an address
from a general-purpose register.

This instruction is used by the alias VPUSH. See Alias conditions on page C2-775 for details of when each alias is
preferred.

T1

ARMv8-M Floating-point Extension only

Decrement Before variant

Applies when P == 1 && U == 0 && W == 1.

VSTMDB{<c>}{<q>}{.<size>} <Rn>!, <dreglist>

Increment After variant

Applies when P == 0 && U == 1.

VSTM{<c>}{<q>}{.<size>} <Rn>{!}, <dreglist>
VSTMIA{<c>}{<q>}{.<size>} <Rn>{!}, <dreglist>

Decode for all variants of this encoding

if P == '0' && U == '0' && W == '0' then SEE "Related encodings";
if P == '1' && W == '0' then SEE VSTR;
if P == U && W == '1' then UNDEFINED;
if !HaveFPExt() then UNDEFINED;
// Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
single_regs = FALSE; add = (U == '1'); wback = (W == '1');
d = UInt(D:Vd); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
regs = UInt(imm8) DIV 2;
if n == 15 then UNPREDICTABLE;
if regs == 0 || regs > 16 || (d+regs) > 32 then UNPREDICTABLE;
if VFPSmallRegisterBank() && (d+regs) > 16 then UNPREDICTABLE;

T2

ARMv8-M Floating-point Extension only

Decrement Before variant

Applies when P == 1 && U == 0 && W == 1.

VSTMDB{<c>}{<q>}{.<size>} <Rn>!, <sreglist>

Increment After variant

Applies when P == 0 && U == 1.

VSTM{<c>}{<q>}{.<size>} <Rn>{!}, <sreglist>

1 1 1 0 1 1 0 P U D W 0 Rn Vd 1 0 1 1 imm8<7:1> 0
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 1 0

imm8<0

1 1 1 0 1 1 0 P U D W 0 Rn Vd 1 0 1 0 imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0
C2-774 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
VSTMIA{<c>}{<q>}{.<size>} <Rn>{!}, <sreglist>

Decode for all variants of this encoding

if P == '0' && U == '0' then SEE "Related encodings";
if P == '1' && W == '0' then SEE VSTR;
if P == '1' && U == '1' && W == '1' then UNDEFINED;
if !HaveFPExt() then UNDEFINED;
// Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
single_regs = TRUE; add = (U == '1'); wback = (W == '1'); d = UInt(Vd:D); n = UInt(Rn);
imm32 = ZeroExtend(imm8:'00', 32); regs = UInt(imm8);
if n == 15 then UNPREDICTABLE;
if regs == 0 || (d+regs) > 32 then UNPREDICTABLE;

Notes for all encodings

Related encodings: Floating-point load/store and 64-bit register moves on page C2-292.

Alias conditions

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<size> An optional data size specifier. If present, it must be equal to the size in bits, 32 or 64, of the registers
being transferred.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

! Specifies base register writeback. Encoded in the "W" field as 1 if present, otherwise 0.

<sreglist> Is the list of consecutively numbered 32-bit floating-point registers to be transferred. The first
register in the list is encoded in "Vd:D", and "imm8" is set to the number of registers in the list. The
list must contain at least one register.

<dreglist> Is the list of consecutively numbered 64-bit floating-point registers to be transferred. The first
register in the list is encoded in "D:Vd", and "imm8" is set to twice the number of registers in the
list. The list must contain at least one register, and must not contain more than 16 registers.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 ExecuteFPCheck();
 address = if add then R[n] else R[n]-imm32;
 regval = if add then R[n]+imm32 else R[n]-imm32;

 // Determine if the stack pointer limit should be checked
 if n == 13 && wback then
 (limit, applylimit) = LookUpSPLim(LookUpSP());
 else
 applylimit = FALSE;

 // Memory operation only performed if limit not violated
 if !applylimit || (UInt(regval) >= UInt(limit)) then
 for r = 0 to regs-1

Alias is preferred when

VPUSH P == '1' && U == '0' && W == '1' && Rn == '1101'
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-775
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
 if single_regs then
 MemA[address,4] = S[d+r];
 address = address+4;
 else
 // Store as two word-aligned words in the correct order for current endianness.
 MemA[address,4] = if BigEndian() then D[d+r]<63:32> else D[d+r]<31:0>;
 MemA[address+4,4] = if BigEndian() then D[d+r]<31:0> else D[d+r]<63:32>;
 address = address+8;

 // If the stack pointer is being updated update a fault will be raised if
 // the limit is violated
 if wback then RSPCheck[n] = regval;

Exceptions

UsageFault, BusFault, MemManage, and SecureFault.
C2-776 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.300 VSTR

Floating-point Store Register stores a single extension register to memory, using an address from a general-purpose
register, with an optional offset.

T1

ARMv8-M Floating-point Extension only

T1 variant

VSTR{<c>}{<q>}{.64} <Dd>, [<Rn>{, #{+/-}<imm>}]

Decode for this encoding

if !HaveFPExt() then UNDEFINED;
single_reg = FALSE; add = (U == '1'); imm32 = ZeroExtend(imm8:'00', 32);
d = UInt(D:Vd); n = UInt(Rn);
if n == 15 then UNPREDICTABLE;

T2

ARMv8-M Floating-point Extension only

T2 variant

VSTR{<c>}{<q>}{.32} <Sd>, [<Rn>{, #{+/-}<imm>}]

Decode for this encoding

if !HaveFPExt() then UNDEFINED;
single_reg = TRUE; add = (U == '1'); imm32 = ZeroExtend(imm8:'00', 32);
d = UInt(Vd:D); n = UInt(Rn);
if n == 15 then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

.64 Optional data size specifiers.

<Dd> The source register for a doubleword store.

.32 Optional data size specifiers.

<Sd> The source register for a singleword store.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

1 1 1 0 1 1 0 1 U D 0 0 Rn Vd 1 0 1 1 imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0

1 1 1 0 1 1 0 1 U D 0 0 Rn Vd 1 0 1 0 imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-777
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

<imm> The immediate offset used for forming the address. Values are multiples of 4 in the range 0-1020.
<imm> can be omitted, meaning an offset of +0.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 ExecuteFPCheck();
 address = if add then (R[n] + imm32) else (R[n] - imm32);
 if single_reg then
 MemA[address,4] = S[d];
 else
 // Store as two word-aligned words in the correct order for current endianness.
 MemA[address,4] = if BigEndian() then D[d]<63:32> else D[d]<31:0>;
 MemA[address+4,4] = if BigEndian() then D[d]<31:0> else D[d]<63:32>;

Exceptions

UsageFault, BusFault, MemManage, and SecureFault.
C2-778 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.301 VSUB

Floating-point Subtract subtracts one floating-point register value from another floating-point register value, and
places the results in the destination floating-point register.

T2

ARMv8-M Floating-point Extension only, sz == 1 UNDEFINED in single-precision only implementations.

Single-precision scalar variant

Applies when sz == 0.

VSUB{<c>}{<q>}.F32 {<Sd>,} <Sn>, <Sm>

Double-precision scalar variant

Applies when sz == 1.

VSUB{<c>}{<q>}.F64 {<Dd>,} <Dn>, <Dm>

Decode for all variants of this encoding

if !HaveFPExt() then UNDEFINED;
dp_operation = (sz == '1');
if dp_operation && HaveSPFPOnly() then UNDEFINED;
d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
n = if dp_operation then UInt(N:Vn) else UInt(Vn:N);
m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.

<Sn> Is the 32-bit name of the first floating-point source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second floating-point source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first floating-point source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second floating-point source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 ExecuteFPCheck();
 if dp_operation then
 D[d] = FPSub(D[n], D[m], TRUE);
 else
 S[d] = FPSub(S[n], S[m], TRUE);

1 1 1 0 1 1 1 0 0 D 1 1 Vn Vd 1 0 1 sz N 1 M 0 Vm
15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-779
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Exceptions

UsageFault, BusFault, MemManage, and SecureFault.

Floating-point exceptions: Invalid Operation, Inexact, Overflow, Underflow, and Input Denormal.
C2-780 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.302 WFE

Wait For Event is a hint instruction. If the Event Register is clear, it suspends execution in the lowest power state
available consistent with a fast wakeup without the need for software restoration, until a reset, exception or other
event occurs.

This is a NOP-compatible hint. For more information about NOP-compatible hints, see NOP-compatible hint
instructions on page C1-251.

T1

ARMv8-M

T1 variant

WFE{<c>}{<q>}

Decode for this encoding

// No additional decoding required

T2

ARMv8-M Main Extension only

T2 variant

WFE{<c>}.W

Decode for this encoding

if !HaveMainExt() then UNDEFINED;
// No additional decoding required

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 if EventRegistered() then
 ClearEventRegister();
 else
 WaitForEvent();

1 0 1 1 1 1 1 1 0 0 1 0 0 0 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 0 0 0 0 0 0 1 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-781
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
Exceptions

None.
C2-782 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.303 WFI

Wait For Interrupt is a hint instruction. It suspends execution, in the lowest power state available consistent with a
fast wakeup without the need for software restoration, until a reset, asynchronous exception or other event occurs.

This is a NOP-compatible hint. For more information about NOP-compatible hints, see NOP-compatible hint
instructions on page C1-251.

T1

ARMv8-M

T1 variant

WFI{<c>}{<q>}

Decode for this encoding

// No additional decoding required

T2

ARMv8-M Main Extension only

T2 variant

WFI{<c>}.W

Decode for this encoding

if !HaveMainExt() then UNDEFINED;
// No additional decoding required

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 WaitForInterrupt();

Exceptions

None.

1 0 1 1 1 1 1 1 0 0 1 1 0 0 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 0 0 0 0 0 0 1 1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-783
ID072816 Non-Confidential - Beta

C2 Instruction Specification
C2.4 Alphabetical list of instructions
C2.4.304 YIELD

Yield is a hint instruction. It enables software with a multithreading capability to indicate to the hardware that it is
performing a task, for example a spinlock, that could be swapped out to improve overall system performance.
Hardware can use this hint to suspend and resume multiple code threads if it supports the capability.

This is a NOP-compatible hint. For more information about NOP-compatible hints, see NOP-compatible hint
instructions on page C1-251.

T1

ARMv8-M

T1 variant

YIELD{<c>}{<q>}

Decode for this encoding

// No additional decoding required

T2

ARMv8-M Main Extension only

T2 variant

YIELD{<c>}.W

Decode for this encoding

if !HaveMainExt() then UNDEFINED;
// No additional decoding required

Assembler symbols

<c> See Standard assembler syntax fields on page C1-240.

<q> See Standard assembler syntax fields on page C1-240.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 Hint_Yield();

Exceptions

None.

1 0 1 1 1 1 1 1 0 0 0 1 0 0 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 0 0 0 0 0 0 0 1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
C2-784 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

Part D
ARMv8-M Registers

Chapter D1
Register Overview

This chapter describes the register descriptions contained in Chapter D2 Register Specification. It contains the
following section:

• Understanding the register descriptions in the register specification on page D1-788.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D1-787
ID072816 Non-Confidential - Beta

D1 Register Overview
D1.1 Understanding the register descriptions in the register specification
D1.1 Understanding the register descriptions in the register specification
Each register description in Chapter D2 Register Specification has the following content:
• A title.
• A list of Characteristics.
• A bit assignment diagram.
• A description of each field that the register contains.

The following figure shows an example. A register description always starts on a new page.

Figure D1-1 Register description example

The following section describes the Characteristics. ARM assumes that the title, bit assignment diagram, and field
descriptions are self-evident.

D1.1.1 Characteristics

1. Purpose. Briefly describes the purpose of the register.

2. Usage constraints. Specifies, for example, when a register is accessible.

3. Configurations. Specifies the PE configurations that implement the register. For example, some registers are
only implemented if a particular v8-M extension is implemented.

4. Attributes. Specifies, for example, the access type, and the address of the register if it is memory-mapped.

Characteristics

Bit assignment
diagram

Field
descriptions

Title
D1-788 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

Chapter D2
Register Specification

This chapter specifies the ARMv8-M registers. It contains the following sections:
• Register index on page D2-790.
• Alphabetical list of registers on page D2-806.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-789
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.1 Register index
D2.1 Register index

Address Component

- Special and general-purpose registers on page D2-791

- Payloads on page D2-791

0xE0000000 Instrumentation Macrocell on page D2-791

0xE0001000 Data Watchpoint and Trace on page D2-793

0xE0002000 Flash Patch and Breakpoint on page D2-794

0xE000E004 Implementation Control Block on page D2-794

0xE000E010 SysTick Timer on page D2-794

0xE000E100 Nested Vectored Interrupt Controller on page D2-796

0xE000ED00 System Control Block on page D2-796

0xE000ED90 Memory Protection Unit on page D2-798

0xE000EDD0 Security Attribution Unit on page D2-798

0xE000EDF0 Debug Control Block on page D2-798

0xE000EF00 Software Interrupt Generation on page D2-799

0xE000EF34 Floating-Point Extension on page D2-799

0xE000EF50 Cache Maintenance Operations on page D2-799

0xE000EFB0 Debug Identification Block on page D2-799

0xE002E004 Implementation Control Block (NS alias) on page D2-801

0xE002E010 SysTick Timer (NS alias) on page D2-801

0xE002E100 Nested Vectored Interrupt Controller (NS alias) on page D2-801

0xE002ED00 System Control Block (NS alias) on page D2-801

0xE002ED90 Memory Protection Unit (NS alias) on page D2-803

0xE002EDF0 Debug Control Block (NS alias) on page D2-803

0xE002EF00 Software Interrupt Generation (NS alias) on page D2-803

0xE002EF34 Floating-Point Extension (NS alias) on page D2-803

0xE002EF50 Cache Maintenance Operations (NS alias) on page D2-804

0xE002EFB0 Debug Identification Block (NS alias) on page D2-804

0xE0040000 Trace Port Interface Unit on page D2-805
D2-790 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.1 Register index
D2.1.1 Special and general-purpose registers

D2.1.2 Payloads

D2.1.3 Instrumentation Macrocell

Name Description

APSR Application Program Status Register

BASEPRI Base Priority Mask Register

CONTROL Control Register

EPSR Execution Program Status Register

FAULTMASK Fault Mask Register

FPSCR Floating-point Status and Control Register

IPSR Interrupt Program Status Register

LR Link Register

MSPLIM Main Stack Pointer Limit Register

PC Program Counter

PRIMASK Exception Mask Register

PSPLIM Process Stack Pointer Limit Register

R<n> General-Purpose Register n

SP Current Stack Pointer Register

SP_NS Stack Pointer (Non-secure)

XPSR Combined Program Status Registers

Name Description

EXC_RETURN Exception Return Payload

FNC_RETURN Function Return Payload

MAIR_ATTR Memory Attribute Indirection Register Attributes

RETPSR Combined Exception Return Program Status Registers

TT_RESP Test Target Response Payload

Address Register Description

0xE0000000 ITM_STIM<n> ITM Stimulus Port Register n

0xE0000E00 ITM_TER<n> ITM Trace Enable Register n

0xE0000E40 ITM_TPR ITM Trace Privilege Register

0xE0000E80 ITM_TCR ITM Trace Control Register
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-791
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.1 Register index
0xE0000FB0 ITM_LAR ITM Software Lock Access Register

0xE0000FB4 ITM_LSR ITM Software Lock Status Register

0xE0000FBC ITM_DEVARCH ITM Device Architecture Register

0xE0000FCC ITM_DEVTYPE ITM Device Type Register

0xE0000FD0 ITM_PIDR4 ITM Peripheral Identification Register 4

0xE0000FD4 ITM_PIDR5 ITM Peripheral Identification Register 5

0xE0000FD8 ITM_PIDR6 ITM Peripheral Identification Register 6

0xE0000FDC ITM_PIDR7 ITM Peripheral Identification Register 7

0xE0000FE0 ITM_PIDR0 ITM Peripheral Identification Register 0

0xE0000FE4 ITM_PIDR1 ITM Peripheral Identification Register 1

0xE0000FE8 ITM_PIDR2 ITM Peripheral Identification Register 2

0xE0000FEC ITM_PIDR3 ITM Peripheral Identification Register 3

0xE0000FF0 ITM_CIDR0 ITM Component Identification Register 0

0xE0000FF4 ITM_CIDR1 ITM Component Identification Register 1

0xE0000FF8 ITM_CIDR2 ITM Component Identification Register 2

0xE0000FFC ITM_CIDR3 ITM Component Identification Register 3

Address Register Description
D2-792 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.1 Register index
D2.1.4 Data Watchpoint and Trace

Address Register Description

0xE0001000 DWT_CTRL DWT Control Register

0xE0001004 DWT_CYCCNT DWT Cycle Count Register

0xE0001008 DWT_CPICNT DWT CPI Count Register

0xE000100C DWT_EXCCNT DWT Exception Overhead Count Register

0xE0001010 DWT_SLEEPCNT DWT Sleep Count Register

0xE0001014 DWT_LSUCNT DWT LSU Count Register

0xE0001018 DWT_FOLDCNT DWT Folded Instruction Count Register

0xE000101C DWT_PCSR DWT Program Counter Sample Register

0xE0001020 DWT_COMP<n> DWT Comparator Register n

0xE0001028 DWT_FUNCTION<n> DWT Comparator Function Register n

0xE0001FB0 DWT_LAR DWT Software Lock Access Register

0xE0001FB4 DWT_LSR DWT Software Lock Status Register

0xE0001FBC DWT_DEVARCH DWT Device Architecture Register

0xE0001FCC DWT_DEVTYPE DWT Device Type Register

0xE0001FD0 DWT_PIDR4 DWT Peripheral Identification Register 4

0xE0001FD4 DWT_PIDR5 DWT Peripheral Identification Register 5

0xE0001FD8 DWT_PIDR6 DWT Peripheral Identification Register 6

0xE0001FDC DWT_PIDR7 DWT Peripheral Identification Register 7

0xE0001FE0 DWT_PIDR0 DWT Peripheral Identification Register 0

0xE0001FE4 DWT_PIDR1 DWT Peripheral Identification Register 1

0xE0001FE8 DWT_PIDR2 DWT Peripheral Identification Register 2

0xE0001FEC DWT_PIDR3 DWT Peripheral Identification Register 3

0xE0001FF0 DWT_CIDR0 DWT Component Identification Register 0

0xE0001FF4 DWT_CIDR1 DWT Component Identification Register 1

0xE0001FF8 DWT_CIDR2 DWT Component Identification Register 2

0xE0001FFC DWT_CIDR3 DWT Component Identification Register 3
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-793
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.1 Register index
D2.1.5 Flash Patch and Breakpoint

D2.1.6 Implementation Control Block

D2.1.7 SysTick Timer

Address Register Description

0xE0002000 FP_CTRL Flash Patch Control Register

0xE0002004 FP_REMAP Flash Patch Remap Register

0xE0002008 FP_COMP<n> Flash Patch Comparator Register n

0xE0002FB0 FP_LAR FPB Software Lock Access Register

0xE0002FB4 FP_LSR FPB Software Lock Status Register

0xE0002FBC FP_DEVARCH FPB Device Architecture Register

0xE0002FCC FPB_DEVTYPE FPB Device Type Register

0xE0002FD0 FP_PIDR4 FP Peripheral Identification Register 4

0xE0002FD4 FP_PIDR5 FP Peripheral Identification Register 5

0xE0002FD8 FP_PIDR6 FP Peripheral Identification Register 6

0xE0002FDC FP_PIDR7 FP Peripheral Identification Register 7

0xE0002FE0 FP_PIDR0 FP Peripheral Identification Register 0

0xE0002FE4 FP_PIDR1 FP Peripheral Identification Register 1

0xE0002FE8 FP_PIDR2 FP Peripheral Identification Register 2

0xE0002FEC FP_PIDR3 FP Peripheral Identification Register 3

0xE0002FF0 FP_CIDR0 FP Component Identification Register 0

0xE0002FF4 FP_CIDR1 FP Component Identification Register 1

0xE0002FF8 FP_CIDR2 FP Component Identification Register 2

0xE0002FFC FP_CIDR3 FP Component Identification Register 3

Address Register Description

0xE000E004 ICTR Interrupt Controller Type Register

0xE000E008 ACTLR Auxiliary Control Register

0xE000E00C CPPWR Coprocessor Power Control Register

Address Register Description

0xE000E010 SYST_CSR SysTick Control and Status Register
D2-794 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.1 Register index
0xE000E014 SYST_RVR SysTick Reload Value Register

0xE000E018 SYST_CVR SysTick Current Value Register

0xE000E01C SYST_CALIB SysTick Calibration Value Register

Address Register Description
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-795
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.1 Register index
D2.1.8 Nested Vectored Interrupt Controller

D2.1.9 System Control Block

Address Register Description

0xE000E100 NVIC_ISER<n> Interrupt Set Enable Register n

0xE000E180 NVIC_ICER<n> Interrupt Clear Enable Register n

0xE000E200 NVIC_ISPR<n> Interrupt Set Pending Register n

0xE000E280 NVIC_ICPR<n> Interrupt Clear Pending Register n

0xE000E300 NVIC_IABR<n> Interrupt Active Bit Register n

0xE000E380 NVIC_ITNS<n> Interrupt Target Non-secure Register n

0xE000E400 NVIC_IPR<n> Interrupt Priority Register n

Address Register Description

0xE000ED00 CPUID CPUID Base Register

0xE000ED04 ICSR Interrupt Control and State Register

0xE000ED08 VTOR Vector Table Offset Register

0xE000ED0C AIRCR Application Interrupt and Reset Control Register

0xE000ED10 SCR System Control Register

0xE000ED14 CCR Configuration and Control Register

0xE000ED18 SHPR1 System Handler Priority Register 1

0xE000ED1C SHPR2 System Handler Priority Register 2

0xE000ED20 SHPR3 System Handler Priority Register 3

0xE000ED24 SHCSR System Handler Control and State Register

0xE000ED28 CFSR Configurable Fault Status Register

0xE000ED28 MMFSR MemManage Fault Status Register

0xE000ED29 BFSR BusFault Status Register

0xE000ED2A UFSR UsageFault Status Register

0xE000ED2C HFSR HardFault Status Register

0xE000ED30 DFSR Debug Fault Status Register

0xE000ED34 MMFAR MemManage Fault Address Register

0xE000ED38 BFAR BusFault Address Register

0xE000ED3C AFSR Auxiliary Fault Status Register

0xE000ED40 ID_PFR0 Processor Feature Register 0

0xE000ED44 ID_PFR1 Processor Feature Register 1
D2-796 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.1 Register index
0xE000ED48 ID_DFR0 Debug Feature Register 0

0xE000ED4C ID_AFR0 Auxiliary Feature Register 0

0xE000ED50 ID_MMFR0 Memory Model Feature Register 0

0xE000ED54 ID_MMFR1 Memory Model Feature Register 1

0xE000ED58 ID_MMFR2 Memory Model Feature Register 2

0xE000ED5C ID_MMFR3 Memory Model Feature Register 3

0xE000ED60 ID_ISAR0 Instruction Set Attribute Register 0

0xE000ED64 ID_ISAR1 Instruction Set Attribute Register 1

0xE000ED68 ID_ISAR2 Instruction Set Attribute Register 2

0xE000ED6C ID_ISAR3 Instruction Set Attribute Register 3

0xE000ED70 ID_ISAR4 Instruction Set Attribute Register 4

0xE000ED74 ID_ISAR5 Instruction Set Attribute Register 5

0xE000ED78 CLIDR Cache Level ID Register

0xE000ED7C CTR Cache Type Register

0xE000ED80 CCSIDR Current Cache Size ID register

0xE000ED84 CSSELR Cache Size Selection Register

0xE000ED88 CPACR Coprocessor Access Control Register

0xE000ED8C NSACR Non-secure Access Control Register

Address Register Description
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-797
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.1 Register index
D2.1.10 Memory Protection Unit

D2.1.11 Security Attribution Unit

D2.1.12 Debug Control Block

Address Register Description

0xE000ED90 MPU_TYPE MPU Type Register

0xE000ED94 MPU_CTRL MPU Control Register

0xE000ED98 MPU_RNR MPU Region Number Register

0xE000ED9C MPU_RBAR MPU Region Base Address Register

0xE000EDA0 MPU_RLAR MPU Region Limit Address Register

0xE000EDA4 MPU_RBAR_A<n> MPU Region Base Address Register Alias n

0xE000EDA8 MPU_RLAR_A<n> MPU Region Limit Address Register Alias n

0xE000EDC0 MPU_MAIR0 MPU Memory Attribute Indirection Register 0

0xE000EDC4 MPU_MAIR1 MPU Memory Attribute Indirection Register 1

Address Register Description

0xE000EDD0 SAU_CTRL SAU Control Register

0xE000EDD4 SAU_TYPE SAU Type Register

0xE000EDD8 SAU_RNR SAU Region Number Register

0xE000EDDC SAU_RBAR SAU Region Base Address Register

0xE000EDE0 SAU_RLAR SAU Region Limit Address Register

0xE000EDE4 SFSR Secure Fault Status Register

0xE000EDE8 SFAR Secure Fault Address Register

Address Register Description

0xE000EDF0 DHCSR Debug Halting Control and Status Register

0xE000EDF4 DCRSR Debug Core Register Select Register

0xE000EDF8 DCRDR Debug Core Register Data Register

0xE000EDFC DEMCR Debug Exception and Monitor Control Register

0xE000EE04 DAUTHCTRL Debug Authentication Control Register

0xE000EE08 DSCSR Debug Security Control and Status Register
D2-798 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.1 Register index
D2.1.13 Software Interrupt Generation

D2.1.14 Floating-Point Extension

D2.1.15 Cache Maintenance Operations

D2.1.16 Debug Identification Block

Address Register Description

0xE000EF00 STIR Software Triggered Interrupt Register

Address Register Description

0xE000EF34 FPCCR Floating-Point Context Control Register

0xE000EF38 FPCAR Floating-Point Context Address Register

0xE000EF3C FPDSCR Floating-Point Default Status Control Register

0xE000EF40 MVFR0 Media and VFP Feature Register 0

0xE000EF44 MVFR1 Media and VFP Feature Register 1

0xE000EF48 MVFR2 Media and VFP Feature Register 2

Address Register Description

0xE000EF50 ICIALLU Instruction Cache Invalidate All to PoU

0xE000EF58 ICIMVAU Instruction Cache line Invalidate by Address to PoU

0xE000EF5C DCIMVAC Data Cache line Invalidate by Address to PoC

0xE000EF60 DCISW Data Cache line Invalidate by Set/Way

0xE000EF64 DCCMVAU Data Cache line Clean by address to PoU

0xE000EF68 DCCMVAC Data Cache line Clean by Address to PoC

0xE000EF6C DCCSW Data Cache Clean line by Set/Way

0xE000EF70 DCCIMVAC Data Cache line Clean and Invalidate by Address to PoC

0xE000EF74 DCCISW Data Cache line Clean and Invalidate by Set/Way

0xE000EF78 BPIALL Branch Predictor Invalidate All

Address Register Description

0xE000EFB0 DLAR SCS Software Lock Access Register

0xE000EFB4 DLSR SCS Software Lock Status Register

0xE000EFB8 DAUTHSTATUS Debug Authentication Status Register

0xE000EFBC DDEVARCH SCS Device Architecture Register

0xE000EFCC DDEVTYPE SCS Device Type Register
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-799
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.1 Register index
0xE000EFD0 DPIDR4 SCS Peripheral Identification Register 4

0xE000EFD4 DPIDR5 SCS Peripheral Identification Register 5

0xE000EFD8 DPIDR6 SCS Peripheral Identification Register 6

0xE000EFDC DPIDR7 SCS Peripheral Identification Register 7

0xE000EFE0 DPIDR0 SCS Peripheral Identification Register 0

0xE000EFE4 DPIDR1 SCS Peripheral Identification Register 1

0xE000EFE8 DPIDR2 SCS Peripheral Identification Register 2

0xE000EFEC DPIDR3 SCS Peripheral Identification Register 3

0xE000EFF0 DCIDR0 SCS Component Identification Register 0

0xE000EFF4 DCIDR1 SCS Component Identification Register 1

0xE000EFF8 DCIDR2 SCS Component Identification Register 2

0xE000EFFC DCIDR3 SCS Component Identification Register 3

Address Register Description
D2-800 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.1 Register index
D2.1.17 Implementation Control Block (NS alias)

D2.1.18 SysTick Timer (NS alias)

D2.1.19 Nested Vectored Interrupt Controller (NS alias)

D2.1.20 System Control Block (NS alias)

Address Register Description

0xE002E004 ICTR_NS Interrupt Controller Type Register (NS)

0xE002E008 ACTLR_NS Auxiliary Control Register (NS)

0xE002E00C CPPWR_NS Coprocessor Power Control Register (NS)

Address Register Description

0xE002E010 SYST_CSR_NS SysTick Control and Status Register (NS)

0xE002E014 SYST_RVR_NS SysTick Reload Value Register (NS)

0xE002E018 SYST_CVR_NS SysTick Current Value Register (NS)

0xE002E01C SYST_CALIB_NS SysTick Calibration Value Register (NS)

Address Register Description

0xE002E100 NVIC_ISER<n>_NS Interrupt Set Enable Register n (NS)

0xE002E180 NVIC_ICER<n>_NS Interrupt Clear Enable Register n (NS)

0xE002E200 NVIC_ISPR<n>_NS Interrupt Set Pending Register n (NS)

0xE002E280 NVIC_ICPR<n>_NS Interrupt Clear Pending Register n (NS)

0xE002E300 NVIC_IABR<n>_NS Interrupt Active Bit Register n (NS)

0xE002E400 NVIC_IPR<n>_NS Interrupt Priority Register n (NS)

Address Register Description

0xE002ED00 CPUID_NS CPUID Base Register (NS)

0xE002ED04 ICSR_NS Interrupt Control and State Register (NS)

0xE002ED08 VTOR_NS Vector Table Offset Register (NS)

0xE002ED0C AIRCR_NS Application Interrupt and Reset Control Register (NS)

0xE002ED10 SCR_NS System Control Register (NS)

0xE002ED14 CCR_NS Configuration and Control Register (NS)

0xE002ED18 SHPR1_NS System Handler Priority Register 1 (NS)

0xE002ED1C SHPR2_NS System Handler Priority Register 2 (NS)

0xE002ED20 SHPR3_NS System Handler Priority Register 3 (NS)
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-801
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.1 Register index
0xE002ED24 SHCSR_NS System Handler Control and State Register (NS)

0xE002ED28 CFSR_NS Configurable Fault Status Register (NS)

0xE002ED28 MMFSR_NS MemManage Fault Status Register (NS)

0xE002ED29 BFSR_NS BusFault Status Register (NS)

0xE002ED2A UFSR_NS UsageFault Status Register (NS)

0xE002ED2C HFSR_NS HardFault Status Register (NS)

0xE002ED30 DFSR_NS Debug Fault Status Register (NS)

0xE002ED34 MMFAR_NS MemManage Fault Address Register (NS)

0xE002ED38 BFAR_NS BusFault Address Register (NS)

0xE002ED3C AFSR_NS Auxiliary Fault Status Register (NS)

0xE002ED40 ID_PFR0_NS Processor Feature Register 0 (NS)

0xE002ED44 ID_PFR1_NS Processor Feature Register 1 (NS)

0xE002ED48 ID_DFR0_NS Debug Feature Register 0 (NS)

0xE002ED4C ID_AFR0_NS Auxiliary Feature Register 0 (NS)

0xE002ED50 ID_MMFR0_NS Memory Model Feature Register 0 (NS)

0xE002ED54 ID_MMFR1_NS Memory Model Feature Register 1 (NS)

0xE002ED58 ID_MMFR2_NS Memory Model Feature Register 2 (NS)

0xE002ED5C ID_MMFR3_NS Memory Model Feature Register 3 (NS)

0xE002ED60 ID_ISAR0_NS Instruction Set Attribute Register 0 (NS)

0xE002ED64 ID_ISAR1_NS Instruction Set Attribute Register 1 (NS)

0xE002ED68 ID_ISAR2_NS Instruction Set Attribute Register 2 (NS)

0xE002ED6C ID_ISAR3_NS Instruction Set Attribute Register 3 (NS)

0xE002ED70 ID_ISAR4_NS Instruction Set Attribute Register 4 (NS)

0xE002ED74 ID_ISAR5_NS Instruction Set Attribute Register 5 (NS)

0xE002ED78 CLIDR_NS Cache Level ID Register (NS)

0xE002ED7C CTR_NS Cache Type Register (NS)

0xE002ED80 CCSIDR_NS Current Cache Size ID register (NS)

0xE002ED84 CSSELR_NS Cache Size Selection Register (NS)

0xE002ED88 CPACR_NS Coprocessor Access Control Register (NS)

Address Register Description
D2-802 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.1 Register index
D2.1.21 Memory Protection Unit (NS alias)

D2.1.22 Debug Control Block (NS alias)

D2.1.23 Software Interrupt Generation (NS alias)

D2.1.24 Floating-Point Extension (NS alias)

Address Register Description

0xE002ED90 MPU_TYPE_NS MPU Type Register (NS)

0xE002ED94 MPU_CTRL_NS MPU Control Register (NS)

0xE002ED98 MPU_RNR_NS MPU Region Number Register (NS)

0xE002ED9C MPU_RBAR_NS MPU Region Base Address Register (NS)

0xE002EDA0 MPU_RLAR_NS MPU Region Limit Address Register (NS)

0xE002EDA4 MPU_RBAR_A<n>_NS MPU Region Base Address Register Alias n (NS)

0xE002EDA8 MPU_RLAR_A<n>_NS MPU Region Limit Address Register Alias n (NS)

0xE002EDC0 MPU_MAIR0_NS MPU Memory Attribute Indirection Register 0 (NS)

0xE002EDC4 MPU_MAIR1_NS MPU Memory Attribute Indirection Register 1 (NS)

Address Register Description

0xE002EDF0 DHCSR_NS Debug Halting Control and Status Register (NS)

0xE002EDF8 DCRDR_NS Debug Core Register Data Register (NS)

0xE002EDFC DEMCR_NS Debug Exception and Monitor Control Register (NS)

Address Register Description

0xE002EF00 STIR_NS Software Triggered Interrupt Register (NS)

Address Register Description

0xE002EF34 FPCCR_NS Floating-Point Context Control Register (NS)

0xE002EF38 FPCAR_NS Floating-Point Context Address Register (NS)

0xE002EF3C FPDSCR_NS Floating-Point Default Status Control Register (NS)

0xE002EF40 MVFR0_NS Media and VFP Feature Register 0 (NS)

0xE002EF44 MVFR1_NS Media and VFP Feature Register 1 (NS)

0xE002EF48 MVFR2_NS Media and VFP Feature Register 2 (NS)
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-803
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.1 Register index
D2.1.25 Cache Maintenance Operations (NS alias)

D2.1.26 Debug Identification Block (NS alias)

Address Register Description

0xE002EF50 ICIALLU_NS Instruction Cache Invalidate All to PoU (NS)

0xE002EF58 ICIMVAU_NS Instruction Cache line Invalidate by Address to PoU (NS)

0xE002EF5C DCIMVAC_NS Data Cache line Invalidate by Address to PoC (NS)

0xE002EF60 DCISW_NS Data Cache line Invalidate by Set/Way (NS)

0xE002EF64 DCCMVAU_NS Data Cache line Clean by address to PoU (NS)

0xE002EF68 DCCMVAC_NS Data Cache line Clean by Address to PoC (NS)

0xE002EF6C DCCSW_NS Data Cache Clean line by Set/Way (NS)

0xE002EF70 DCCIMVAC_NS Data Cache line Clean and Invalidate by Address to PoC (NS)

0xE002EF74 DCCISW_NS Data Cache line Clean and Invalidate by Set/Way (NS)

0xE002EF78 BPIALL_NS Branch Predictor Invalidate All (NS)

Address Register Description

0xE002EFB0 DLAR_NS SCS Software Lock Access Register (NS)

0xE002EFB4 DLSR_NS SCS Software Lock Status Register (NS)

0xE002EFB8 DAUTHSTATUS_NS Debug Authentication Status Register (NS)

0xE002EFBC DDEVARCH_NS SCS Device Architecture Register (NS)

0xE002EFCC DDEVTYPE_NS SCS Device Type Register (NS)

0xE002EFD0 DPIDR4_NS SCS Peripheral Identification Register 4 (NS)

0xE002EFD4 DPIDR5_NS SCS Peripheral Identification Register 5 (NS)

0xE002EFD8 DPIDR6_NS SCS Peripheral Identification Register 6 (NS)

0xE002EFDC DPIDR7_NS SCS Peripheral Identification Register 7 (NS)

0xE002EFE0 DPIDR0_NS SCS Peripheral Identification Register 0 (NS)

0xE002EFE4 DPIDR1_NS SCS Peripheral Identification Register 1 (NS)

0xE002EFE8 DPIDR2_NS SCS Peripheral Identification Register 2 (NS)

0xE002EFEC DPIDR3_NS SCS Peripheral Identification Register 3 (NS)

0xE002EFF0 DCIDR0_NS SCS Component Identification Register 0 (NS)

0xE002EFF4 DCIDR1_NS SCS Component Identification Register 1 (NS)

0xE002EFF8 DCIDR2_NS SCS Component Identification Register 2 (NS)

0xE002EFFC DCIDR3_NS SCS Component Identification Register 3 (NS)
D2-804 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.1 Register index
D2.1.27 Trace Port Interface Unit

Address Register Description

0xE0040000 TPIU_SSPSR TPIU Supported Parallel Port Sizes Register

0xE0040004 TPIU_CSPSR TPIU Current Parallel Port Sizes Register

0xE0040010 TPIU_ACPR TPIU Asynchronous Clock Prescaler Register

0xE00400F0 TPIU_SPPR TPIU Selected Pin Protocol Register

0xE0040300 TPIU_FFSR TPIU Formatter and Flush Status Register

0xE0040304 TPIU_FFCR TPIU Formatter and Flush Control Register

0xE0040308 TPIU_PSCR TPIU Periodic Synchronization Control Register

0xE0040FB0 TPIU_LAR TPIU Software Lock Access Register

0xE0040FB4 TPIU_LSR TPIU Software Lock Status Register

0xE0040FC8 TPIU_TYPE TPIU Device Identifier Register

0xE0040FCC TPIU_DEVTYPE TPIU Device Type Register

0xE0040FD0 TPIU_PIDR4 TPIU Peripheral Identification Register 4

0xE0040FD4 TPIU_PIDR5 TPIU Peripheral Identification Register 5

0xE0040FD8 TPIU_PIDR6 TPIU Peripheral Identification Register 6

0xE0040FDC TPIU_PIDR7 TPIU Peripheral Identification Register 7

0xE0040FE0 TPIU_PIDR0 TPIU Peripheral Identification Register 0

0xE0040FE4 TPIU_PIDR1 TPIU Peripheral Identification Register 1

0xE0040FE8 TPIU_PIDR2 TPIU Peripheral Identification Register 2

0xE0040FEC TPIU_PIDR3 TPIU Peripheral Identification Register 3

0xE0040FF0 TPIU_CIDR0 TPIU Component Identification Register 0

0xE0040FF4 TPIU_CIDR1 TPIU Component Identification Register 1

0xE0040FF8 TPIU_CIDR2 TPIU Component Identification Register 2

0xE0040FFC TPIU_CIDR3 TPIU Component Identification Register 3
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-805
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2 Alphabetical list of registers
D2-806 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.1 ACTLR, Auxiliary Control Register

The ACTLR characteristics are:

Purpose Provides IMPLEMENTATION DEFINED configuration and control options.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations This register is always implemented.

Attributes 32-bit read/write register located at 0xE000E008.

Secure software can access the Non-secure view of this register via ACTLR_NS located at
0xE002E008. The location 0xE002E008 is RES0 to software executing in Non-secure state and
the debugger.

This register is not banked between Security states.

Field descriptions

The ACTLR bit assignments are:

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED. The contents of this field are IMPLEMENTATION DEFINED.

031

IMPLEMENTATION DEFINED
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-807
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.2 AFSR, Auxiliary Fault Status Register

The AFSR characteristics are:

Purpose Provides IMPLEMENTATION DEFINED fault status information.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations This register is always implemented.

Attributes 32-bit read/write register located at 0xE000ED3C.

Secure software can access the Non-secure view of this register via AFSR_NS located at
0xE002ED3C. The location 0xE002ED3C is RES0 to software executing in Non-secure state and
the debugger.

This register is not banked between Security states.

Field descriptions

The AFSR bit assignments are:

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED. The contents of this field are IMPLEMENTATION DEFINED.

031

IMPLEMENTATION DEFINED
D2-808 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.3 AIRCR, Application Interrupt and Reset Control Register

The AIRCR characteristics are:

Purpose Sets or returns interrupt control and reset configuration.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations This register is always implemented.

Attributes 32-bit read/write register located at 0xE000ED0C.

Secure software can access the Non-secure view of this register via AIRCR_NS located at
0xE002ED0C. The location 0xE002ED0C is RES0 to software executing in Non-secure state and
the debugger.

This register is banked between Security states on a bit by bit basis.

Field descriptions

The AIRCR bit assignments are:

On a read:

On a write:

VECTKEY, bits [31:16], on a write

Vector key. Writes to the AIRCR must be accompanied by a write of the value 0x05FA to this field.
Writes to the AIRCR fields that are not accompanied by this value are ignored for the purpose of
updating any of the AIRCR values or initiating any AIRCR functionality.

This field is not banked between Security states.

The possible values of this field are:

0x05FA Permit write to AIRCR fields.

Not 0x05FA
Accompanying write to AIRCR fields ignored.

VECTKEYSTAT, bits [31:16], on a read

Vector key status. Returns the bitwise inverse of the value required to be written to VECTKEY.

This field is not banked between Security states.

This field reads as 0xFA05.

ENDIANNESS, bit [15]

Data endianness. Indicates how the PE interprets the memory system data endianness.

0

(0)

12347

RES0

8101112

RES0

1314151631

VECTKEYSTAT

ENDIANNESS
PRIS

BFHFNMINS
PRIGROUP

VECTCLRACTIVE
SYSRESETREQ
SYSRESETREQS

0

(0)

12347

RES0

8101112

RES0

1314151631

VECTKEY

ENDIANNESS
PRIS

BFHFNMINS
PRIGROUP

VECTCLRACTIVE
SYSRESETREQ
SYSRESETREQS
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-809
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
This bit is not banked between Security states.

The possible values of this bit are:

0 Little-endian.

1 Big-endian.

This bit is read-only.

This bit reads as an IMPLEMENTATION DEFINED value.

PRIS, bit [14]

Prioritize Secure exceptions. The value of this bit defines whether Secure exception priority
boosting is enabled.

This bit is not banked between Security states.

The possible values of this bit are:

0 Priority ranges of Secure and Non-secure exceptions are identical.

1 Non-secure exceptions are de-prioritized.

To allow lock down of this bit, it is IMPLEMENTATION DEFINED whether this bit is writable.

This bit is RAZ/WI from Non-secure.

This bit resets to zero on a Warm reset.

BFHFNMINS, bit [13]

BusFault, HardFault, and NMI Non-secure enable. The value of this bit defines whether BusFault
and NMI exceptions are Non-secure, and whether exceptions target the Non-secure HardFault
exception.

This bit is not banked between Security states.

The possible values of this bit are:

0 BusFault, HardFault, and NMI are Secure.

1 BusFault and NMI are Non-secure and exceptions can target Non-secure HardFault.

If an implementation resets into Secure state, this bit resets to zero. If an implementation does not
support Secure state, this bit is RAO/WI. To allow lock down of this filed it is IMPLEMENTATION
DEFINED whether this bit is writable. The effect of setting both BFHFNMINS and PRIS to 1 is
UNPREDICTABLE.

This bit is read-only from Non-secure.

This bit resets to zero on a Warm reset.

Bits [12:11]

Reserved, RES0.

PRIGROUP, bits [10:8]

Priority grouping. The value of this field defines the exception priority binary point position for the
selected Security state.

This field is banked between Security states.

The possible values of this field are:

0b000 Group priority [7:1], subpriority [0].

0b001 Group priority [7:2], subpriority [1:0].

0b010 Group priority [7:3], subpriority [2:0].

0b011 Group priority [7:4], subpriority [3:0].

0b100 Group priority [7:5], subpriority [4:0].

0b101 Group priority [7:6], subpriority [5:0].

0b110 Group priority [7], subpriority [6:0].

0b111 No group priority, subpriority [7:0].
D2-810 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
If the Main Extension is not implemented, this field is RES0.

This field resets to zero on a Warm reset.

Bits [7:4]

Reserved, RES0.

SYSRESETREQS, bit [3]

System reset request Secure only. The value of this bit defines whether the SYSRESETREQ bit is
functional for Non-secure use.

This bit is not banked between Security states.

The possible values of this bit are:

0 SYSRESETREQ functionality is available to both Security states.

1 SYSRESETREQ functionality is only available to Secure state.

This bit is RAZ/WI from Non-secure.

This bit resets to zero on a Warm reset.

SYSRESETREQ, bit [2]

System reset request. This bit allows software or a debugger to request a system reset.

This bit is not banked between Security states.

The possible values of this bit are:

0 Do not request a system reset.

1 Request a system reset.

When SYSRESETREQS is set to 1, the Non-secure view of this bit is RAZ/WI.

This bit resets to zero on a Warm reset.

VECTCLRACTIVE, bit [1]

Clear active state.

A debugger write of one to this bit when the PE is halted in Debug state:

• IPSR is cleared to zero.

• The active state for all Non-secure exceptions is cleared.

• If DHCSR.S_SDE==1, the active state for all Secure exceptions are cleared.

This bit is not banked between Security states.

The possible values of this bit are:

0 Do not clear active state.

1 Clear active state.

Writes to this bit while the PE is in Non-debug state are ignored.

This bit reads as zero.

Bit [0]

Reserved, RES0.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-811
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.4 APSR, Application Program Status Register

The APSR characteristics are:

Purpose Provides privileged and unprivileged access to the PE Execution state fields.

Usage constraints Privileged and unprivileged access permitted.

Configurations This register is always implemented.

Attributes 32-bit read/write special-purpose register.

This register is not banked between Security states.

Field descriptions

The APSR bit assignments are:

N, bit [31]

Negative condition flag. When updated by a flag setting instruction this bit indicates whether the
result of the operation when treated as a two's complement signed integer is negative.

The possible values of this bit are:

0 Result is positive or zero.

1 Result is negative.

See individual instruction pages for details.

This bit resets to an UNKNOWN value on a Warm reset.

Z, bit [30]

Zero condition flag. When updated by a flag setting instruction this bit indicates whether the result
of the operation was zero.

The possible values of this bit are:

0 Result is non-zero.

1 Result is zero.

See individual instruction pages for details.

This bit resets to an UNKNOWN value on a Warm reset.

C, bit [29]

Carry Condition flag. When updated by a flag setting instruction this bit indicates whether the
operation resulted in an unsigned overflow or whether the last bit shifted out of the result was set.

The possible values of this bit are:

0 No carry occurred, or last bit shifted was clear.

1 Carry occurred, or last bit shifted was set.

See individual instruction pages for details.

This bit resets to an UNKNOWN value on a Warm reset.

V, bit [28]

Overflow condition flag. When updated by a flag setting instruction this bit indicates whether a
signed overflow occurred.

The possible values of this bit are:

0 Signed overflow did not occur.

015

RES0

1619

GE

2026

RES0

27

Q

28

V

29

C

30

Z

31

N

D2-812 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
1 Signed overflow occurred.

See individual instruction pages for details.

This bit resets to an UNKNOWN value on a Warm reset.

Q, bit [27]

Sticky saturation flag. When updated by certain instructions this bit indicates either that an overflow
occurred or that the result was saturated. This bit is cumulative and can only be cleared to zero by
software.

The possible values of this bit are:

0 Saturation or overflow has not occurred since bit was last cleared.

1 Saturation or overflow has occurred since bit was last cleared.

See individual instruction pages for details.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to an UNKNOWN value on a Warm reset.

Bits [26:20]

Reserved, RES0.

GE, bits [19:16]

Greater than or equal flags. When updated by parallel addition and subtraction instructions these bits
record whether the result was greater than or equal to zero. SEL instructions use these bits to
determine which register to select a particular byte from.

See individual instruction pages for details.

If the DSP Extension is not implemented, this field is RES0.

This field resets to an UNKNOWN value on a Warm reset.

Bits [15:0]

Reserved, RES0.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-813
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.5 BASEPRI, Base Priority Mask Register

The BASEPRI characteristics are:

Purpose Changes the priority level required for exception preemption.

Usage constraints Privileged access only. Unprivileged access is RAZ/WI.

Configurations Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes 32-bit read/write special-purpose register.

This register is banked between Security states.

Field descriptions

The BASEPRI bit assignments are:

Bits [31:8]

Reserved, RES0.

BASEPRI, bits [7:0]

Base priority mask. BASEPRI changes the priority level required for exception preemption. It has
an effect only when BASEPRI has a lower value than the unmasked priority level of the currently
executing software.

The possible values of this field are:

0 Disables masking by BASEPRI.

1-255 Priority value.

The number of implemented bits in BASEPRI is the same as the number of implemented bits in each
field of the priority registers, and BASEPRI has the same format as those fields.

This field resets to zero on a Warm reset.

07

BASEPRI

831

RES0
D2-814 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.6 BFAR, BusFault Address Register

The BFAR characteristics are:

Purpose Shows the address associated with a precise data access BusFault.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes 32-bit read/write register located at 0xE000ED38.

Secure software can access the Non-secure view of this register via BFAR_NS located at
0xE002ED38. The location 0xE002ED38 is RES0 to software executing in Non-secure state and
the debugger.

This register is not banked between Security states.

Field descriptions

The BFAR bit assignments are:

ADDRESS, bits [31:0]

Data address for a precise BusFault. This register is updated with the address of a location that
produced a BusFault. The BFSR shows the reason for the fault. This field is valid only when
BFSR.BFARVALID is set, otherwise it is UNKNOWN.

In implementations without unique BFAR and MMFAR registers, the value of this register is
UNKNOWN if MMFSR.MMARVALID is set.

If AIRCR.BFHFNMINS is zero this field is RAZ/WI from Non-secure state.

This field resets to an UNKNOWN value on a Warm reset.

Note
 If an implementation shares a common BFAR and MMFAR it must not leak Secure state

information to the Non-secure state. One possible implementation is that BFAR shares resource
with the Secure MMFAR if AIRCR.BFHFNMINS is zero, and with the Non-secure MMFAR if
AIRCR.BFHFNMINS is set.

031

ADDRESS
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-815
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.7 BFSR, BusFault Status Register

The BFSR characteristics are:

Purpose Shows the status of bus errors resulting from instruction fetches and data accesses.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

If the Main Extension is implemented, this register is word, halfword, and byte accessible.

If the Main Extension is not implemented, this register is word accessible only, halfword
and byte accesses are UNPREDICTABLE.

Configurations Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes 8-bit read/write-one-to-clear register located at 0xE000ED29.

Secure software can access the Non-secure view of this register via BFSR_NS located at
0xE002ED29. The location 0xE002ED29 is RES0 to software executing in Non-secure state and
the debugger.

This register is not banked between Security states.

This register is part of CFSR.

Field descriptions

The BFSR bit assignments are:

BFARVALID, bit [7]

BFAR valid. Indicates validity of the contents of the BFAR register.

The possible values of this bit are:

0 BFAR content not valid.

1 BFAR content valid.

This bit resets to zero on a Warm reset.

Bit [6]

Reserved, RES0.

LSPERR, bit [5]

Lazy state preservation error. Records whether a BusFault occurred during FP lazy state
preservation.

The possible values of this bit are:

0 No BusFault occurred.

1 BusFault occurred.

This bit resets to zero on a Warm reset.

STKERR, bit [4]

Stack error. Records whether a derived BusFault occurred during exception entry stacking.

The possible values of this bit are:

0 No derived BusFault occurred.

0123456

(0)

7

BFARVALID
LSPERR
STKERR

UNSTKERR

IBUSERR
PRECISERR
IMPRECISERR
D2-816 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
1 Derived BusFault occurred during exception entry.

This bit resets to zero on a Warm reset.

UNSTKERR, bit [3]

Unstack error. Records whether a derived BusFault occurred during exception return unstacking.

The possible values of this bit are:

0 No derived BusFault occurred.

1 Derived BusFault occurred during exception return.

This bit resets to zero on a Warm reset.

IMPRECISERR, bit [2]

Imprecise error. Records whether an imprecise data access error has occurred.

The possible values of this bit are:

0 No imprecise data access error has occurred.

1 Imprecise data access error has occurred.

This bit resets to zero on a Warm reset.

PRECISERR, bit [1]

Precise error. Records whether a precise data access error has occurred.

The possible values of this bit are:

0 No precise data access error has occurred.

1 Precise data access error has occurred.

When a precise error is recorded, the associated address is written to the BFAR and
BFSR.BFARVALID bit is set.

This bit resets to zero on a Warm reset.

IBUSERR, bit [0]

Instruction bus error. Records whether a BusFault on an instruction prefetch has occurred.

The possible values of this bit are:

0 No BusFault on instruction prefetch has occurred.

1 A BusFault on an instruction prefetch has occurred.

An IBUSERR is only recorded if the instruction is issued for execution.

This bit resets to zero on a Warm reset.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-817
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.8 BPIALL, Branch Predictor Invalidate All

The BPIALL characteristics are:

Purpose Invalidate all entries from branch predictors.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations This register is always implemented.

Attributes 32-bit write-only register located at 0xE000EF78.

Secure software can access the Non-secure view of this register via BPIALL_NS located at
0xE002EF78. The location 0xE002EF78 is RES0 to software executing in Non-secure state and
the debugger.

This register is not banked between Security states.

Field descriptions

The BPIALL bit assignments are:

Ignored, bits [31:0]

Ignored. The value written to this field is ignored.

031

Ignored
D2-818 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.9 CCR, Configuration and Control Register

The CCR characteristics are:

Purpose Sets or returns configuration and control data.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations This register is always implemented.

Attributes 32-bit read/write register located at 0xE000ED14.

Secure software can access the Non-secure view of this register via CCR_NS located at
0xE002ED14. The location 0xE002ED14 is RES0 to software executing in Non-secure state and
the debugger.

This register is banked between Security states on a bit by bit basis.

Field descriptions

The CCR bit assignments are:

Bits [31:19]

Reserved, RES0.

BP, bit [18]

Branch prediction enable. Enables program flow prediction for the selected Security state.

This bit is banked between Security states.

The possible values of this bit are:

0 Program flow prediction disabled for the selected Security state.

1 Program flow prediction enabled for the selected Security state.

If program flow prediction cannot be disabled, this bit is RAO/WI. If the program flow prediction
is not supported, this bit is RAZ/WI.

This bit resets to zero on a Warm reset.

IC, bit [17]

Instruction cache enable. This is a global enable bit for instruction caches in the selected Security
state.

This bit is banked between Security states.

The possible values of this bit are:

0 Instruction caches disabled for the selected Security state.

1 Instruction caches enabled for the selected Security state.

If the PE does not implement instruction caches, this bit is RAZ/WI.

This bit resets to zero on a Warm reset.

DC, bit [16]

Data cache enable. Enables data caching of all data accesses to Normal memory for the selected
Security state.

This bit is banked between Security states.

0

(1)

12

(0)

3457

RES0

89

(1)

101115

RES0

1617

IC

18

BP

1931

RES0

DC
STKOFHFNMIGN

BFHFNMIGN

USERSETMPEND
UNALIGN_TRP

DIV_0_TRP
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-819
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
The possible values of this bit are:

0 Data caching disabled for the selected Security state.

1 Data caching enabled for the selected Security state.

If the PE does not implement data caches, this bit is RAZ/WI.

This bit resets to zero on a Warm reset.

Bits [15:11]

Reserved, RES0.

STKOFHFNMIGN, bit [10]

Stack overflow in HardFault and NMI ignore. Controls the effect of a stack limit violation while
executing at a requested priority less than 0.

This bit is banked between Security states.

The possible values of this bit are:

0 Stack limit faults not ignored.

1 Stack limit faults at requested priorities of less than 0 ignored.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

Bit [9]

Reserved, RES1.

BFHFNMIGN, bit [8]

BusFault in HardFault or NMI ignore. Determines the effect of precise BusFaults on handlers
running at a requested priority less than 0.

This bit is not banked between Security states.

The possible values of this bit are:

0 Precise BusFaults not ignored.

1 Precise BusFaults at requested priorities of less than 0 ignored.

If AIRCR.BFHFNMINS is 0, this bit is read only from Non-secure state.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

Bits [7:5]

Reserved, RES0.

DIV_0_TRP, bit [4]

Divide by zero trap. Controls the generation of a DIVBYZERO UsageFault when attempting to
perform integer division by zero.

This bit is banked between Security states.

The possible values of this bit are:

0 DIVBYZERO UsageFault generation disabled.

1 DIVBYZERO UsageFault generation enabled.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

UNALIGN_TRP, bit [3]

Unaligned trap. Controls the trapping of unaligned word or halfword accesses.

This bit is banked between Security states.
D2-820 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
The possible values of this bit are:

0 Unaligned accesses permitted from LDR, LDRH, STR, and STRH.

1 Any unaligned transaction generates an UNALIGNED UsageFault.

Unaligned load/store multiples and atomic/exclusive accesses always generate an UNALIGNED
UsageFault.

If the Main Extension is not implemented, this bit is RES1.

This bit resets to zero on a Warm reset if the Main Extension is implemented.

Bit [2]

Reserved, RES0.

USERSETMPEND, bit [1]

User set main pending. Determines whether unprivileged accesses are permitted to pend interrupts
via the STIR.

This bit is banked between Security states.

The possible values of this bit are:

0 Unprivileged accesses to the STIR generate a fault.

1 Unprivileged accesses to the STIR are permitted.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

Bit [0]

Reserved, RES1.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-821
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.10 CCSIDR, Current Cache Size ID register

The CCSIDR characteristics are:

Purpose The CCSIDR provides information about the architecture of the currently selected cache.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If CSSELR points to an unimplemented cache, the value of this register is UNKNOWN.

Configurations This register is always implemented.

Attributes 32-bit read-only register located at 0xE000ED80.

Secure software can access the Non-secure view of this register via CCSIDR_NS located at
0xE002ED80. The location 0xE002ED80 is RES0 to software executing in Non-secure state and
the debugger.

This register is banked between Security states.

Preface

Provides indirect read access to the architecture of the cache currently selected by CSSELR.

Field descriptions

The CCSIDR bit assignments are:

WT, bit [31]

Write-through. Indicates whether the currently selected cache level supports write-through.

The possible values of this bit are:

0 Not supported.

1 Supported.

This bit reads as an IMPLEMENTATION DEFINED value.

WB, bit [30]

Writeback. Indicates whether the currently selected cache level supports writeback.

The possible values of this bit are:

0 Not supported.

1 Supported.

This bit reads as an IMPLEMENTATION DEFINED value.

RA, bit [29]

Read-allocate. Indicates whether the currently selected cache level supports read-allocation.

The possible values of this bit are:

0 Not supported.

1 Supported.

This bit reads as an IMPLEMENTATION DEFINED value.

012

LineSize

1327

NumSets

2829

RA

3031

WT WA
WB
D2-822 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
WA, bit [28]

Write-allocate. Indicates whether the currently selected cache level supports write-allocation.

The possible values of this bit are:

0 Not supported.

1 Supported.

This bit reads as an IMPLEMENTATION DEFINED value.

NumSets, bits [27:13]

Number of sets. Indicates (Number of sets in the currently selected cache) - 1. Therefore, a value of
0 indicates that 1 is set in the cache. The number of sets does not have to be a power of 2.

This field reads as an IMPLEMENTATION DEFINED value.

LineSize, bits [2:0]

Line size. Indicates (Log2(Number of words per line in the currently selected cache)) - 2.

This field reads as an IMPLEMENTATION DEFINED value.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-823
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.11 CFSR, Configurable Fault Status Register

The CFSR characteristics are:

Purpose Contains the three Configurable Fault Status Registers.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

If the Main Extension is implemented, this register is word, halfword, and byte accessible.

If the Main Extension is not implemented, this register is word accessible only, halfword
and byte accesses are UNPREDICTABLE.

Configurations Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes 32-bit read/write-one-to-clear register located at 0xE000ED28.

Secure software can access the Non-secure view of this register via CFSR_NS located at
0xE002ED28. The location 0xE002ED28 is RES0 to software executing in Non-secure state and
the debugger.

This register is banked between Security states on a bit by bit basis.

Field descriptions

The CFSR bit assignments are:

UFSR, bits [31:16]

UsageFault Status Register. Provides information on UsageFault exceptions.

This field is banked between Security states.

See UFSR.

This field resets to zero on a Warm reset.

BFSR, bits [15:8]

BusFault Status Register. Provides information on BusFault exceptions.

This field is not banked between Security states.

See BFSR.

This field resets to zero on a Warm reset.

MMFSR, bits [7:0]

MemManage Fault Status Register. Provides information on MemManage exceptions.

This field is banked between Security states.

See MMFSR.

This field resets to zero on a Warm reset.

07

MMFSR

815

BFSR

1631

UFSR
D2-824 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.12 CLIDR, Cache Level ID Register

The CLIDR characteristics are:

Purpose Identifies the type of caches implemented and the level of coherency and unification.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations This register is always implemented.

Attributes 32-bit read-only register located at 0xE000ED78.

Secure software can access the Non-secure view of this register via CLIDR_NS located at
0xE002ED78. The location 0xE002ED78 is RES0 to software executing in Non-secure state and
the debugger.

This register is not banked between Security states.

Field descriptions

The CLIDR bit assignments are:

ICB, bits [31:30]

Inner cache boundary. This field indicates the boundary between inner and outer domain.

The possible values of this field are:

0b00 Not disclosed in this mechanism.

0b01 L1 cache is the highest inner level.

0b10 L2 cache is the highest inner level.

0b11 L3 cache is the highest inner level.

This field reads as an IMPLEMENTATION DEFINED value.

LoUU, bits [29:27]

Level of Unification Uniprocessor. This field indicates the Level of Unification Uniprocessor for
the cache hierarchy.

This field reads as an IMPLEMENTATION DEFINED value.

LoC, bits [26:24]

Level of Coherence. This field indicates the Level of Coherence for the cache hierarchy.

This field reads as an IMPLEMENTATION DEFINED value.

LoUIS, bits [23:21]

Level of Unification Inner Shareable. This field indicates the Level of Unification Shareable for the
cache hierarchy.

This field reads as an IMPLEMENTATION DEFINED value.

Ctypem, bits [3(m-1)+2:3(m-1)], for m = 1 to 7

Cache type field m. Indicates the type of cache implemented at level m.

The possible values of this field are:

0b000 No cache.

0b001 Instruction cache only.

0b010 Data cache only.

02

Ctype1

35

Ctype2

68

Ctype3

911

Ctype4

1214

Ctype5

1517

Ctype6

1820

Ctype7

2123

LoUIS

2426

LoC

2729

LoUU

3031

ICB
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-825
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
0b011 Separate instruction and data caches.

0b100 Unified cache.

All other values are reserved.

If software reads the Cache Type fields from Ctype1 upwards, once it has seen a value of 000, no
caches exist at further-out levels of the hierarchy. So, for example, if Ctype3 is the first Cache Type
field with a value of 000, the values of Ctype4 to Ctype7 must be ignored.

This field reads as an IMPLEMENTATION DEFINED value.
D2-826 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.13 CONTROL, Control Register

The CONTROL characteristics are:

Purpose Provides access to the PE control fields.

Usage constraints Privileged access only. Unprivileged access is RAZ/WI.

Configurations This register is always implemented.

Attributes 32-bit read/write special-purpose register.

This register is banked between Security states on a bit by bit basis.

Field descriptions

The CONTROL bit assignments are:

Bits [31:4]

Reserved, RES0.

SFPA, bit [3]

Secure floating-point active. Indicates that the floating-point registers contain active state that
belongs to the Secure state.

This bit is not banked between Security states.

The possible values of this bit are:

0 The floating-point registers do not contain state that belongs to the Secure state.

1 The floating-point registers contain state that belongs to the Secure state.

This bit is accessible from both privileged and unprivileged modes, but unprivileged writes are
ignored.

This bit is RAZ/WI from Non-secure.

If the Security Extension is not implemented, this bit is RES0.

If the Floating-point Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

FPCA, bit [2]

Floating-point context active. Defines whether the FP Extension is active in the current context.

This bit is not banked between Security states.

The possible values of this bit are:

0 FP Extension is not active.

1 FP Extension is active.

When NSACR.CP10 is set to zero, the Non-secure view of this bit is read-only. If FPCCR.ASPEN
is set to 1, enabling automatic Floating-point state preservation, then the PE sets this bit to 1 on
successful completion of any Floating-point instruction.

If the Floating-point Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

SPSEL, bit [1]

Stack-pointer select. Defines the stack pointer to be used.

0123431

RES0

SFPA
FPCA

nPRIV
SPSEL
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-827
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
This bit is banked between Security states.

The possible values of this bit are:

0 Use SP_main as the current stack.

1 In Thread mode use SP_process as the current stack.

This bit resets to zero on a Warm reset.

nPRIV, bit [0]

Not privileged. Defines the execution privilege in Thread mode.

This bit is banked between Security states.

The possible values of this bit are:

0 Thread mode has privileged access.

1 Thread mode has unprivileged access only.

If the Main Extension is not implemented, it is IMPLEMENTATION DEFINED whether this field is RW
or RAZ/WI.

This bit resets to zero on a Warm reset.
D2-828 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.14 CPACR, Coprocessor Access Control Register

The CPACR characteristics are:

Purpose Specifies the access privileges for coprocessors and the FP Extension.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations This register is always implemented.

Attributes 32-bit read/write register located at 0xE000ED88.

Secure software can access the Non-secure view of this register via CPACR_NS located at
0xE002ED88. The location 0xE002ED88 is RES0 to software executing in Non-secure state and
the debugger.

This register is banked between Security states.

Field descriptions

The CPACR bit assignments are:

Bits [31:24]

Reserved, RES0.

CP11, bits [23:22]

CP11 Privilege. The value in this field is ignored. If the implementation does not include the FP
Extension, this field is RAZ/WI. If the value of this bit is not programmed to the same value as the
CP10 field, then the value is UNKNOWN.

This field resets to zero on a Warm reset.

CP10, bits [21:20]

CP10 Privilege. Defines the access rights for the floating-point functionality.

The possible values of this field are:

0b00 All accesses to the FP Extension result in NOCP UsageFault.

0b01 Unprivileged accesses to the FP Extension result in NOCP UsageFault.

0b11 Full access to the FP Extension.

All other values are reserved.

The features controlled by this field are the execution of any floating-point instruction and access
to any floating-point registers D0-D16. If the implementation does not include the FP Extension,
this field is RAZ/WI. See individual floating-point instruction pages for details.

This field resets to zero on a Warm reset.

Bits [19:16]

Reserved, RES0.

CPm, bits [2m+1:2m], for m = 0 to 7

Coprocessor m privilege. Controls access privileges for coprocessor m.

The possible values of this field are:

0b00 Access denied. Any attempted access generates a NOCP UsageFault.

0b01 Privileged access only. An unprivileged access generates a NOCP UsageFault.

0b10 Reserved.

01

CP0

23

CP1

45

CP2

67

CP3

89

CP4

1011

CP5

1213

CP6

1415

CP7

1619

RES0

2021

CP10

2223

CP11

2431

RES0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-829
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
0b11 Full access.

If coprocessor m is not implemented, this field is RAZ/WI.

This field resets to zero on a Warm reset.
D2-830 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.15 CPPWR, Coprocessor Power Control Register

The CPPWR characteristics are:

Purpose Specifies whether coprocessors are permitted to enter a non-retentive power state.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations This register is always implemented.

Attributes 32-bit read/write register located at 0xE000E00C.

Secure software can access the Non-secure view of this register via CPPWR_NS located at
0xE002E00C. The location 0xE002E00C is RES0 to software executing in Non-secure state and
the debugger.

This register is not banked between Security states.

Field descriptions

The CPPWR bit assignments are:

Bits [31:24]

Reserved, RES0.

SUS11, bit [23]

State UNKNOWN Secure only 11. The value in this field is ignored. If SUS11 is RAZ/WI this field is
also RAZ/WI. If the value of this bit is not programmed to the same value as the SUS10 field, then
the value is UNKNOWN.

This bit resets to zero on a Warm reset.

SU11, bit [22]

State UNKNOWN 11. The value in this field is ignored. If SUS11 is RAZ/WI this field is also
RAZ/WI. If the value of this bit is not programmed to the same value as the SU10 field, then the
value is UNKNOWN.

This bit resets to zero on a Warm reset.

SUS10, bit [21]

State UNKNOWN Secure only 10. This bit indicates and allows modification of whether the SU10
field can be modified from Non-secure state.

The possible values of this bit are:

0 The SU10 field is accessible from both Security states.

1 The SU10 field is only accessible from the Secure state.

If SU10 is always RAZ/WI this field is also RAZ/WI.

This bit is RAZ/WI from Non-secure.

01234567891011121314151619

RES0

202122232431

RES0

SUS11
SU11

SUS10
SU10

SUS7
SU7

SUS6
SU6

SUS5
SU5

SU0
SUS0
SU1
SUS1

SU2
SUS2
SU3
SUS3

SU4
SUS4
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-831
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
This bit resets to zero on a Warm reset.

SU10, bit [20]

State UNKNOWN 10. This bit indicates and allows modification of whether the state associated with
the floating-point unit is permitted to become UNKNOWN. This can be used as a hint to power control
logic that the floating-point unit might be powered down.

The possible values of this bit are:

0 The floating-point state is not permitted to become UNKNOWN.

1 The floating-point state is permitted to become UNKNOWN.

When SUS10 is set to 1, the Non-secure view of this bit is RAZ/WI. It is IMPLEMENTATION DEFINED
whether this bit is always RAZ/WI.

This bit resets to zero on a Warm reset.

Bits [19:16]

Reserved, RES0.

SUSm, bit [2m+1], for m = 0 to 7

State UNKNOWN Secure only m. This field indicates and allows modification of whether the SUm
field can be modified from Non-secure state.

The possible values of this field are:

0 The SUm field is accessible from both Security states.

1 The SUm field is only accessible from the Secure state.

If SUm is always RAZ/WI this field is also RAZ/WI.

This field is RAZ/WI from Non-secure.

This field resets to zero on a Warm reset.

SUm, bit [2m], for m = 0 to 7

State UNKNOWN m. This field indicates and allows modification of whether the state associated with
coprocessor m is permitted to become UNKNOWN. This can be used as a hint to power control logic
that the coprocessor might be powered down.

The possible values of this field are:

0 The coprocessor state is not permitted to become UNKNOWN.

1 The coprocessor state is permitted to become UNKNOWN.

When SUSm is set to 1, the Non-secure view of this bit is RAZ/WI. It is IMPLEMENTATION DEFINED
whether this bit is always RAZ/WI.

This field resets to zero on a Warm reset.
D2-832 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.16 CPUID, CPUID Base Register

The CPUID characteristics are:

Purpose Provides identification information for the PE, including an implementer code for the
device and a device ID number.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations This register is always implemented.

Attributes 32-bit read-only register located at 0xE000ED00.

Secure software can access the Non-secure view of this register via CPUID_NS located at
0xE002ED00. The location 0xE002ED00 is RES0 to software executing in Non-secure state and
the debugger.

This register is not banked between Security states.

Field descriptions

The CPUID bit assignments are:

Implementer, bits [31:24]

Implementer code. This field must hold an implementer code that has been assigned by ARM.

The possible values of this field are:

0x41 'A' : ARM Limited.

Not 0x41 Implementer other than ARM Limited.

ARM can assign codes that are not published in this manual. All values not assigned by ARM are
reserved and must not be used.

This field reads as an IMPLEMENTATION DEFINED value.

Variant, bits [23:20]

Variant number. IMPLEMENTATION DEFINED variant number. Typically, this field is used to
distinguish between different product variants, or major revisions of a product.

This field reads as an IMPLEMENTATION DEFINED value.

Architecture, bits [19:16]

Architecture version. Defines the Architecture implemented by the PE.

The possible values of this field are:

0b1100 ARMv8-M architecture without Main Extension.

0b1111 ARMv8-M architecture with Main Extension.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

PartNo, bits [15:4]

Part number. IMPLEMENTATION DEFINED primary part number for the device.

This field reads as an IMPLEMENTATION DEFINED value.

Revision, bits [3:0]

Revision number. IMPLEMENTATION DEFINED revision number for the device.

03

Revision

415

PartNo

1619

Architecture

2023

Variant

2431

Implementer
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-833
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
This field reads as an IMPLEMENTATION DEFINED value.
D2-834 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.17 CSSELR, Cache Size Selection Register

The CSSELR characteristics are:

Purpose Selects the current Cache Size ID Register, CCSIDR, by specifying the required cache level
and the cache type (either instruction or data cache)

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations This register is always implemented.

Attributes 32-bit read/write register located at 0xE000ED84.

Secure software can access the Non-secure view of this register via CSSELR_NS located at
0xE002ED84. The location 0xE002ED84 is RES0 to software executing in Non-secure state and
the debugger.

This register is banked between Security states.

Field descriptions

The CSSELR bit assignments are:

Bits [31:4]

Reserved, RES0.

Level, bits [3:1]

Cache level. Selects which cache level is to be identified. Permitted values are from 0b000,
indicating Level 1 cache, to 0b110 indicating Level 7 cache.

The possible values of this field are:

0b000 Level 1 cache.

0b001 Level 2 cache.

0b010 Level 3 cache.

0b011 Level 4 cache.

0b100 Level 5 cache.

0b101 Level 6 cache.

0b110 Level 7 cache.

All other values are reserved.

This field resets to an UNKNOWN value on a Warm reset.

InD, bit [0]

Instruction not data. Selects whether the instruction or the data cache is to be identified.

The possible values of this bit are:

0 Data or unified cache.

1 Instruction cache.

This bit resets to an UNKNOWN value on a Warm reset.

013

Level

431

RES0

InD
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-835
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.18 CTR, Cache Type Register

The CTR characteristics are:

Purpose Provides information about the architecture of the caches.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations This register is always implemented.

Attributes 32-bit read-only register located at 0xE000ED7C.

Secure software can access the Non-secure view of this register via CTR_NS located at
0xE002ED7C. The location 0xE002ED7C is RES0 to software executing in Non-secure state and
the debugger.

This register is banked between Security states.

Field descriptions

The CTR bit assignments are:

Bit [31]

Reserved, RES1.

Bits [30:28]

Reserved, RES0.

CWG, bits [27:24]

Cache Writeback Granule. Log2 of the number of words of the maximum size of memory that can
be overwritten as a result of the eviction of a cache entry that has had a memory location in it
modified.

The possible values of this field are:

0b0000 Indicates that this register does not provide Cache Writeback Granule information and
either the architectural maximum of 512 words (2KB) must be assumed, or the Cache
Writeback Granule can be determined from maximum cache line size encoded in the
Cache Size ID Registers.

0b0001-0b1000
Log2 of the number of words.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

ERG, bits [23:20]

Exclusives Reservation Granule. Log2 of the number of words of the maximum size of the
reservation granule that has been implemented for the Load-Exclusive and Store-Exclusive
instructions.

The possible values of this field are:

0b0000 Indicates that this register does not provide Exclusives Reservation Granule information
and the architectural maximum of 512 words (2KB) must be assumed.

0b0001-0b1000
Log2 of the number of words.

All other values are reserved.

03

IminLine

413

RES0

1415

RES1

1619

DminLine

2023

ERG

2427

CWG

2830

RES0

31

(1)
D2-836 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
This field reads as an IMPLEMENTATION DEFINED value.

DminLine, bits [19:16]

Data cache minimum line length. Log2 of the number of words in the smallest cache line of all the
data caches and unified caches that are controlled by the PE.

This field reads as an IMPLEMENTATION DEFINED value.

Bits [15:14]

Reserved, RES1.

Bits [13:4]

Reserved, RES0.

IminLine, bits [3:0]

Instruction cache minimum line length. Log2 of the number of words in the smallest cache line of
all the instruction caches that are controlled by the PE.

This field reads as an IMPLEMENTATION DEFINED value.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-837
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.19 DAUTHCTRL, Debug Authentication Control Register

The DAUTHCTRL characteristics are:

Purpose This register allows the IMPLEMENTATION DEFINED authentication interface to be
overridden from software.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

This register is RES0 if accessed via the debugger.

Configurations Present only if halting debug or the Main Extension is implemented.

This register is RES0 if both halting debug and Main Extension are not implemented.

Present only if the Security Extension is implemented.

This register is RES0 if the Security Extension is not implemented.

Attributes 32-bit read/write register located at 0xE000EE04.

This register is RAZ/WI when accessed as Non-secure.

This register is not banked between Security states.

Field descriptions

The DAUTHCTRL bit assignments are:

Bits [31:4]

Reserved, RES0.

INTSPNIDEN, bit [3]

Internal Secure non-invasive debug enable. Overrides the external Secure non-invasive debug
authentication interface.

The possible values of this bit are:

0 Secure Non-invasive debug disabled.

1 Secure Non-invasive debug enabled.

Ignored if DAUTHCTRL.SPNIDENSEL == 0. See SecureNoninvasiveDebugAllowed().

This bit resets to zero on a Cold reset.

SPNIDENSEL, bit [2]

Secure non-invasive debug enable select. Selects between DAUTHCTRL and the IMPLEMENTATION
DEFINED external authentication interface for control of Secure non-invasive debug.

The possible values of this bit are:

0 Secure non-invasive debug controlled by the IMPLEMENTATION DEFINED external
authentication interface. In the CoreSight authentication interface, this is controlled by
the SPNIDEN signal.

1 Secure non-invasive debug controlled by DAUTHCTRL.INTSPNIDEN.

The PE ignores the value of this bit and Secure non-invasive debug is enabled if DHCSR.S_SDE
== 1. See SecureNoninvasiveDebugAllowed().

This bit resets to zero on a Cold reset.

0123431

RES0

INTSPNIDEN
SPNIDENSEL

SPIDENSEL
INTSPIDEN
D2-838 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
INTSPIDEN, bit [1]

Internal Secure invasive debug enable. Overrides the external Secure invasive debug authentication
interfaces.

The possible values of this bit are:

0 Secure halting and self-hosted debug disabled.

1 Secure halting and self-hosted debug enabled.

Ignored if DAUTHCTRL.SPIDENSEL == 0. See SecureHaltingDebugAllowed() and
SecureDebugMonitorAllowed().

This bit resets to zero on a Cold reset.

SPIDENSEL, bit [0]

Secure invasive debug enable select. Selects between DAUTHCTRL and the IMPLEMENTATION
DEFINED external authentication interface for control of Secure invasive debug.

The possible values of this bit are:

0 Secure halting and self-hosted debug controlled by the IMPLEMENTATION DEFINED
external authentication interface. In the CoreSight authentication interface, both are
controlled by the SPIDEN signal.

1 Secure halting and self-hosted debug controlled by DAUTHCTRL.INTSPIDEN.

See SecureHaltingDebugAllowed() and SecureDebugMonitorAllowed().

This bit resets to zero on a Cold reset.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-839
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.20 DAUTHSTATUS, Debug Authentication Status Register

The DAUTHSTATUS characteristics are:

Purpose Provides information about the state of the IMPLEMENTATION DEFINED authentication
interface for debug.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if halting debug is implemented.

This register is RES0 if halting debug is not implemented.

Attributes 32-bit read-only register located at 0xE000EFB8.

Secure software can access the Non-secure view of this register via DAUTHSTATUS_NS
located at 0xE002EFB8. The location 0xE002EFB8 is RES0 to software executing in Non-secure
state and the debugger.

This register is not banked between Security states.

Field descriptions

The DAUTHSTATUS bit assignments are:

Bits [31:8]

Reserved, RES0.

SNID, bits [7:6]

Secure Non-invasive Debug. Indicates whether Secure non-invasive debug is enabled.

The possible values of this field are:

0b00 Security Extension not implemented.

0b01 Reserved.

0b10 Security Extension implemented and Secure non-invasive debug disabled.

0b11 Security Extension implemented and Secure non-invasive debug enabled.

SID, bits [5:4]

Secure Invasive Debug. Indicates whether Secure invasive debug is enabled.

The possible values of this field are:

0b00 Security Extension not implemented.

0b01 Reserved.

0b10 Security Extension implemented and Secure invasive debug disabled.

0b11 Security Extension implemented and Secure invasive debug enabled.

NSNID, bits [3:2]

Non-secure Non-invasive Debug. Indicates whether Non-secure non-invasive debug is enabled.

The possible values of this field are:

0b0x Reserved.

01

NSID

2345

SID

67

SNID

831

RES0

NSNID
D2-840 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
0b10 Non-secure non-invasive debug disabled.

0b11 Non-secure non-invasive debug enabled.

NSID, bits [1:0]

Non-secure Invasive Debug. Indicates whether Non-secure invasive debug is enabled.

The possible values of this field are:

0b0x Reserved.

0b10 Non-secure invasive debug disabled.

0b11 Non-secure invasive debug enabled.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-841
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.21 DCCIMVAC, Data Cache line Clean and Invalidate by Address to PoC

The DCCIMVAC characteristics are:

Purpose Clean and invalidate data or unified cache line by address to PoC.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations This register is always implemented.

Attributes 32-bit write-only register located at 0xE000EF70.

Secure software can access the Non-secure view of this register via DCCIMVAC_NS
located at 0xE002EF70. The location 0xE002EF70 is RES0 to software executing in Non-secure
state and the debugger.

This register is not banked between Security states.

Field descriptions

The DCCIMVAC bit assignments are:

ADDRESS, bits [31:0]

Address. Writing to this field initiates the maintenance operation for the address written.

031

ADDRESS
D2-842 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.22 DCCISW, Data Cache line Clean and Invalidate by Set/Way

The DCCISW characteristics are:

Purpose Clean and invalidate data or unified cache line by set/way.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations This register is always implemented.

Attributes 32-bit write-only register located at 0xE000EF74.

Secure software can access the Non-secure view of this register via DCCISW_NS located
at 0xE002EF74. The location 0xE002EF74 is RES0 to software executing in Non-secure state and
the debugger.

This register is not banked between Security states.

Field descriptions

The DCCISW bit assignments are:

SetWay, bits [31:4]

Cache set/way. Contains two fields: Way, bits[31:32-A], the number of the way to operate on. Set,
bits[B-1:L], the number of the set to operate on. Bits[L-1:4] are RES0. A = Log2(ASSOCIATIVITY),
L = Log2(LINELEN), B = (L + S), S = Log2(NSETS). ASSOCIATIVITY, LINELEN (line length,
in bytes), and NSETS (number of sets) have their usual meanings and are the values for the cache
level being operated on. The values of A and S are rounded up to the next integer.

Level, bits [3:1]

Cache level. Cache level to operate on, minus 1. For example, this field is 0 for operations on L1
cache, or 1 for operations on L2 cache.

Bit [0]

Reserved, RES0.

0

(0)

13

Level

431

SetWay
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-843
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.23 DCCMVAC, Data Cache line Clean by Address to PoC

The DCCMVAC characteristics are:

Purpose Clean data or unified cache line by address to PoC.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations This register is always implemented.

Attributes 32-bit write-only register located at 0xE000EF68.

Secure software can access the Non-secure view of this register via DCCMVAC_NS located
at 0xE002EF68. The location 0xE002EF68 is RES0 to software executing in Non-secure state and
the debugger.

This register is not banked between Security states.

Field descriptions

The DCCMVAC bit assignments are:

ADDRESS, bits [31:0]

Address. Writing to this field initiates the maintenance operation for the address written.

031

ADDRESS
D2-844 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.24 DCCMVAU, Data Cache line Clean by address to PoU

The DCCMVAU characteristics are:

Purpose Clean data or unified cache line by address to PoU.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations This register is always implemented.

Attributes 32-bit write-only register located at 0xE000EF64.

Secure software can access the Non-secure view of this register via DCCMVAU_NS
located at 0xE002EF64. The location 0xE002EF64 is RES0 to software executing in Non-secure
state and the debugger.

This register is not banked between Security states.

Field descriptions

The DCCMVAU bit assignments are:

ADDRESS, bits [31:0]

Address. Writing to this field initiates the maintenance operation for the address written.

031

ADDRESS
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-845
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.25 DCCSW, Data Cache Clean line by Set/Way

The DCCSW characteristics are:

Purpose Clean data or unified cache line by set/way.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations This register is always implemented.

Attributes 32-bit write-only register located at 0xE000EF6C.

Secure software can access the Non-secure view of this register via DCCSW_NS located at
0xE002EF6C. The location 0xE002EF6C is RES0 to software executing in Non-secure state and
the debugger.

This register is not banked between Security states.

Field descriptions

The DCCSW bit assignments are:

SetWay, bits [31:4]

Cache set/way. Contains two fields: Way, bits [31:32-A], the number of the way to operate on. Set,
bits [B-1:L], the number of the set to operate on. Bits [L-1:4] are RES0. A =
Log2(ASSOCIATIVITY), L = Log2(LINELEN), B = (L + S), S = Log2(NSETS).
ASSOCIATIVITY, LINELEN (line length, in bytes), and NSETS (number of sets) have their usual
meanings and are the values for the cache level being operated on. The values of A and S are
rounded up to the next integer.

Level, bits [3:1]

Cache level. Cache level to operate on, minus 1. For example, this field is 0 for operations on L1
cache, or 1 for operations on L2 cache.

Bit [0]

Reserved, RES0.

0

(0)

13

Level

431

SetWay
D2-846 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.26 DCIDR0, SCS Component Identification Register 0

The DCIDR0 characteristics are:

Purpose Provides CoreSight discovery information for the SCS.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if halting debug is implemented.

This register is RES0 if halting debug is not implemented.

Attributes 32-bit read-only register located at 0xE000EFF0.

Secure software can access the Non-secure view of this register via DCIDR0_NS located at
0xE002EFF0. The location 0xE002EFF0 is RES0 to software executing in Non-secure state and
the debugger.

This register is not banked between Security states.

Field descriptions

The DCIDR0 bit assignments are:

Bits [31:8]

Reserved, RES0.

PRMBL_0, bits [7:0]

CoreSight component identification preamble. See the ARM® CoreSight™ Architecture
Specification.

This field reads as 0x0D.

07

PRMBL_0

831

RES0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-847
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.27 DCIDR1, SCS Component Identification Register 1

The DCIDR1 characteristics are:

Purpose Provides CoreSight discovery information for the SCS.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if halting debug is implemented.

This register is RES0 if halting debug is not implemented.

Attributes 32-bit read-only register located at 0xE000EFF4.

Secure software can access the Non-secure view of this register via DCIDR1_NS located at
0xE002EFF4. The location 0xE002EFF4 is RES0 to software executing in Non-secure state and
the debugger.

This register is not banked between Security states.

Field descriptions

The DCIDR1 bit assignments are:

Bits [31:8]

Reserved, RES0.

CLASS, bits [7:4]

CoreSight component class. See the ARM® CoreSight™ Architecture Specification .

This field reads as 0x9.

PRMBL_1, bits [3:0]

CoreSight component identification preamble. See the ARM® CoreSight™ Architecture
Specification.

This field reads as 0x0.

03

PRMBL_1

47

CLASS

831

RES0
D2-848 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.28 DCIDR2, SCS Component Identification Register 2

The DCIDR2 characteristics are:

Purpose Provides CoreSight discovery information for the SCS.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if halting debug is implemented.

This register is RES0 if halting debug is not implemented.

Attributes 32-bit read-only register located at 0xE000EFF8.

Secure software can access the Non-secure view of this register via DCIDR2_NS located at
0xE002EFF8. The location 0xE002EFF8 is RES0 to software executing in Non-secure state and
the debugger.

This register is not banked between Security states.

Field descriptions

The DCIDR2 bit assignments are:

Bits [31:8]

Reserved, RES0.

PRMBL_2, bits [7:0]

CoreSight component identification preamble. See the ARM® CoreSight™ Architecture Specification
.

This field reads as 0x05.

07

PRMBL_2

831

RES0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-849
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.29 DCIDR3, SCS Component Identification Register 3

The DCIDR3 characteristics are:

Purpose Provides CoreSight discovery information for the SCS.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if halting debug is implemented.

This register is RES0 if halting debug is not implemented.

Attributes 32-bit read-only register located at 0xE000EFFC.

Secure software can access the Non-secure view of this register via DCIDR3_NS located at
0xE002EFFC. The location 0xE002EFFC is RES0 to software executing in Non-secure state and
the debugger.

This register is not banked between Security states.

Field descriptions

The DCIDR3 bit assignments are:

Bits [31:8]

Reserved, RES0.

PRMBL_3, bits [7:0]

CoreSight component identification preamble. See the ARM® CoreSight™ Architecture
Specification.

This field reads as 0xB1.

07

PRMBL_3

831

RES0
D2-850 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.30 DCIMVAC, Data Cache line Invalidate by Address to PoC

The DCIMVAC characteristics are:

Purpose Invalidate data or unified cache line by address to PoC.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations This register is always implemented.

Attributes 32-bit write-only register located at 0xE000EF5C.

Secure software can access the Non-secure view of this register via DCIMVAC_NS located
at 0xE002EF5C. The location 0xE002EF5C is RES0 to software executing in Non-secure state and
the debugger.

This register is not banked between Security states.

Field descriptions

The DCIMVAC bit assignments are:

ADDRESS, bits [31:0]

Address. Writing to this field initiates the maintenance operation for the address written.

031

ADDRESS
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-851
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.31 DCISW, Data Cache line Invalidate by Set/Way

The DCISW characteristics are:

Purpose Invalidate data or unified cache line by set/way.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations This register is always implemented.

Attributes 32-bit write-only register located at 0xE000EF60.

Secure software can access the Non-secure view of this register via DCISW_NS located at
0xE002EF60. The location 0xE002EF60 is RES0 to software executing in Non-secure state and
the debugger.

This register is not banked between Security states.

Field descriptions

The DCISW bit assignments are:

SetWay, bits [31:4]

Cache set/way. Contains two fields: Way, bits[31:32-A], the number of the way to operate on. Set,
bits[B-1:L], the number of the set to operate on. Bits[L-1:4] are RES0. A = Log2(ASSOCIATIVITY),
L = Log2(LINELEN), B = (L + S), S = Log2(NSETS). ASSOCIATIVITY, LINELEN (line length,
in bytes), and NSETS (number of sets) have their usual meanings and are the values for the cache
level being operated on. The values of A and S are rounded up to the next integer.

Level, bits [3:1]

Cache level. Cache level to operate on, minus 1. For example, this field is 0 for operations on L1
cache, or 1 for operations on L2 cache.

Bit [0]

Reserved, RES0.

0

(0)

13

Level

431

SetWay
D2-852 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.32 DCRDR, Debug Core Register Data Register

The DCRDR characteristics are:

Purpose With the DCRSR, provides debug access to the general-purpose registers, special-purpose
registers, and the FP Extension registers. If the Main Extension is implemented, it can also
be used for message passing between an external debugger and a debug agent running on
the PE.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if halting debug is implemented.

This register is RES0 if halting debug is not implemented.

Attributes 32-bit read/write register located at 0xE000EDF8.

Secure software can access the Non-secure view of this register via DCRDR_NS located at
0xE002EDF8. The location 0xE002EDF8 is RES0 to software executing in Non-secure state and
the debugger.

This register is not banked between Security states.

Field descriptions

The DCRDR bit assignments are:

DBGTMP, bits [31:0]

Data temporary buffer. Provides debug access for reading and writing the general-purpose registers,
special-purpose registers, and Floating-point Extension registers.

The value of this register is UNKNOWN if the PE is in Debug state, the debugger has written to
DCRSR since entering Debug state and DHCSR.S_REGRDY is set to 0. The value of this register
is UNKNOWN if the Main Extension is not implemented and the PE is in Non-debug state.

This field resets to an UNKNOWN value on a Warm reset.

031

DBGTMP
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-853
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.33 DCRSR, Debug Core Register Select Register

The DCRSR characteristics are:

Purpose With the DCRDR, provides debug access to the general-purpose registers, special-purpose
registers, and the FP extension registers. A write to the DCRSR specifies the register to
transfer, whether the transfer is a read or write, and starts the transfer.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Writes to this register while the PE is in Non-debug state are ignored.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if halting debug is implemented.

This register is RES0 if halting debug is not implemented.

Attributes 32-bit write-only register located at 0xE000EDF4.

This register is not banked between Security states.

Field descriptions

The DCRSR bit assignments are:

Bits [31:17]

Reserved, RES0.

REGWnR, bit [16]

Register write/not-read. Specifies the access type for the transfer.

The possible values of this bit are:

0 Read.

1 Write.

Bits [15:7]

Reserved, RES0.

REGSEL, bits [6:0]

Register selector. Specifies the general-purpose register, special-purpose register, or FP register to
transfer.

The possible values of this field are:

0b0000000-0b0001100
General-purpose registers R0-R12.

0b0001101 Current stack pointer, SP.

0b0001110 LR.

0b0001111 DebugReturnAddress.

0b0010000 xPSR.

0b0010001 Current state main stack pointer, SP_main.

0b0010010 Current state process stack pointer, SP_process.

0b0010100 Current state {CONTROL[7:0],FAULTMASK[7:0],BASEPRI[7:0],PRIMASK[7:0]}.

06

REGSEL

715

RES0

161731

RES0

REGWnR
D2-854 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
If the Main Extension is not implemented, bits [23:8] of the transfer value are RES0.

0b0011000 Non-secure main stack pointer, MSP_NS.
If the Security Extension is not implemented, this value is reserved.

0b0011001 Non-secure process stack pointer, PSP_NS.
If the Security Extension is not implemented, this value is reserved.

0b0011010 Secure main stack pointer, MSP_S. Accessible only when DHCSR.S_SDE == 1.
If the Security Extension is not implemented, this value is reserved.

0b0011011 Secure process stack pointer, PSP_S. Accessible only when DHCSR.S_SDE == 1.
If the Security Extension is not implemented, this value is reserved.

0b0011100 Secure main stack limit, MSPLIM_S. Accessible only when DHCSR.S_SDE == 1.
If the Security Extension is not implemented, this value is reserved.

0b0011101 Secure process stack limit, PSPLIM_S. Accessible only when DHCSR.S_SDE == 1.
If the Security Extension is not implemented, this value is reserved.

0b0011110 Non-secure main stack limit, MSPLIM_NS.
If the Main Extension is not implemented, this value is reserved.

0b0011111 Non-secure process stack limit, PSPLIM_NS.
If the Main Extension is not implemented, this value is reserved.

0b0100001 FPSCR.
If the Floating-point Extension is not implemented, this value is reserved.

0b0100010 {CONTROL[7:0],FAULTMASK[7:0],BASEPRI[7:0],PRIMASK[7:0]}_S.
If the Main Extension is not implemented, bits [23:8] of the transfer value are RES0. If
the Security Extension is not implemented, this value is reserved.

0b0100011 {CONTROL[7:0],FAULTMASK[7:0],BASEPRI[7:0],PRIMASK[7:0]}_NS.
If the Main Extension is not implemented, bits [23:8] of the transfer value are RES0. If
the Security Extension is not implemented, this value is reserved.

0b1000000-0b1011111
FP registers, S0-S31.
If the Floating-point Extension is not implemented, these values are reserved.

All other values are reserved.

If the Floating-point and Security Extensions are implemented, then the FPSCR and S0-S31 are not
accessible from Non-secure state if DHCSR.S_SDE == 0 and either:

• FPCCR indicates the registers contain values from Secure state.

• NSACR prevents Non-secure access to the registers.

Registers that are not accessible are RAZ/WI.

If this field is written with a reserved value, the PE might behave as if a defined value was written,
or ignore the value written, and the value of DCRDR becomes UNKNOWN.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-855
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.34 DDEVARCH, SCS Device Architecture Register

The DDEVARCH characteristics are:

Purpose Provides CoreSight discovery information for the SCS.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if halting debug is implemented.

This register is RES0 if halting debug is not implemented.

Attributes 32-bit read-only register located at 0xE000EFBC.

Secure software can access the Non-secure view of this register via DDEVARCH_NS
located at 0xE002EFBC. The location 0xE002EFBC is RES0 to software executing in Non-secure
state and the debugger.

This register is not banked between Security states.

Field descriptions

The DDEVARCH bit assignments are:

ARCHITECT, bits [31:21]

Architect. Defines the architect of the component. Bits [31:28] are the JEP106 continuation code
(JEP106 bank ID, minus 1) and bits [27:21] are the JEP106 ID code.

The possible values of this field are:

0x23B JEP106 continuation code 0x4, ID code 0x3B. ARM Limited.

Other values are defined by the JEDEC JEP106 standard.

This field reads as 0x23B.

PRESENT, bit [20]

DEVARCH Present. Defines that the DEVARCH register is present.

The possible values of this bit are:

1 DEVARCH information present.

This bit reads as one.

REVISION, bits [19:16]

Revision. Defines the architecture revision of the component.

The possible values of this field are:

0000 M-profile debug architecture v3.0.

This field reads as 0b0000.

ARCHVER, bits [15:12]

Architecture Version. Defines the architecture version of the component.

011

ARCHPART

1215

ARCHVER

1619

REVISION

202131

ARCHITECT

PRESENT
D2-856 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
The possible values of this field are:

0010 M-profile debug architecture v3.

ARCHVER and ARCHPART are also defined as a single field, ARCHID, such that ARCHVER is
ARCHID[15:12].

This field reads as 0b0010.

ARCHPART, bits [11:0]

Architecture Part. Defines the architecture of the component.

The possible values of this field are:

0xA04 M-profile debug architecture.

ARCHVER and ARCHPART are also defined as a single field, ARCHID, such that ARCHPART is
ARCHID[11:0].

This field reads as 0xA04.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-857
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.35 DDEVTYPE, SCS Device Type Register

The DDEVTYPE characteristics are:

Purpose Provides CoreSight discovery information for the SCS.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if halting debug is implemented.

This register is RES0 if halting debug is not implemented.

Attributes 32-bit read/write register located at 0xE000EFCC.

Secure software can access the Non-secure view of this register via DDEVTYPE_NS
located at 0xE002EFCC. The location 0xE002EFCC is RES0 to software executing in Non-secure
state and the debugger.

This register is not banked between Security states.

Field descriptions

The DDEVTYPE bit assignments are:

Bits [31:8]

Reserved, RES0.

SUB, bits [7:4]

Sub-type. Component sub-type.

The possible values of this field are:

0x0 Other.

This field reads as 0b0000.

MAJOR, bits [3:0]

Major type. CoreSight major type.

The possible values of this field are:

0x0 Miscellaneous.

This field reads as 0b0000.

03

MAJOR

47

SUB

831

RES0
D2-858 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.36 DEMCR, Debug Exception and Monitor Control Register

The DEMCR characteristics are:

Purpose Manages vector catch behavior and DebugMonitor handling when debugging.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if halting debug or the Main Extension is implemented.

This register is RES0 if both halting debug and Main Extension are not implemented.

Attributes 32-bit read/write register located at 0xE000EDFC.

Secure software can access the Non-secure view of this register via DEMCR_NS located at
0xE002EDFC. The location 0xE002EDFC is RES0 to software executing in Non-secure state and
the debugger.

This register is not banked between Security states.

Field descriptions

The DEMCR bit assignments are:

Bits [31:25]

Reserved, RES0.

TRCENA, bit [24]

Trace enable. Global enable for all DWT and ITM features.

The possible values of this bit are:

0 DWT and ITM features disabled.

1 DWT and ITM features enabled.

If the DWT and ITM units are not implemented, this bit is RES0. See the descriptions of DWT and
ITM for details of which features this bit controls.

Setting this bit to 0 might not stop all events. To ensure that all events are stopped, software must
set all DWT and ITM feature enable bits to 0, and that all trace generated by the DWT and ITM has
been flushed, before setting this bit to 0.

The effect of this bit on the TPIU, ETM, and other system trace components is IMPLEMENTATION
DEFINED.

This bit resets to zero on a Cold reset.

Bits [23:21]

Reserved, RES0.

013

RES0

45678910111215

RES0

16171819202123

RES0

242531

RES0

TRCENA
SDME

MON_REQ
MON_STEP
MON_PEND

MON_EN
VC_SFERR

VC_HARDERR

VC_CORERESET
VC_MMERR
VC_NOCPERR
VC_CHKERR
VC_STATERR

VC_BUSERR
VC_INTERR
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-859
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
SDME, bit [20]

Secure DebugMonitor enable. Indicates whether the DebugMonitor targets the Secure or the
Non-secure state and whether debug events are allowed in Secure state.

The possible values of this bit are:

0 Debug events prohibited in Secure state and the DebugMonitor exception targets
Non-secure state.

1 Debug events allowed in Secure state and the DebugMonitor exception targets Secure
state.

When DebugMonitor is not pending or active, this bit reflects the value of
SecureDebugMonitorAllowed(), otherwise, the previous value is retained.

This bit is read-only.

If the Security Extension is not implemented, this bit is RES0.

If the Main Extension is not implemented, this bit is RES0.

MON_REQ, bit [19]

Monitor request. DebugMonitor semaphore bit.

The PE does not use this bit. The monitor software defines the meaning and use of this bit.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

MON_STEP, bit [18]

Monitor step. Enable DebugMonitor stepping.

The possible values of this bit are:

0 Stepping disabled.

1 Stepping enabled.

The effect of changing this bit at an execution priority that is lower than the priority of the
DebugMonitor exception is UNPREDICTABLE.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

MON_PEND, bit [17]

Monitor pend. Sets or clears the pending state of the DebugMonitor exception.

The possible values of this bit are:

0 Clear the status of the DebugMonitor exception to not pending.

1 Set the status of the DebugMonitor exception to pending.

When the DebugMonitor exception is pending it becomes active subject to the exception priority
rules. The effect of setting this bit to 1 is not affected by the value of the MON_EN bit. This means
that software or a debugger can set MON_PEND to 1 and pend a DebugMonitor exception, even
when MON_EN is set to 0.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

MON_EN, bit [16]

Monitor enable. Enable the DebugMonitor exception.

The possible values of this bit are:

0 DebugMonitor exception disabled.

1 DebugMonitor exception enabled.

If a debug event halts the PE, the PE ignores the value of this bit.

If the Main Extension is not implemented, this bit is RES0.
D2-860 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
This bit resets to zero on a Warm reset.

Bits [15:12]

Reserved, RES0.

VC_SFERR, bit [11]

Vector Catch SecureFault. SecureFault exception halting debug vector catch enable.

The possible values of this bit are:

0 Halting debug trap on SecureFault disabled.

1 Halting debug trap on SecureFault enabled.

The PE ignores the value of this bit if DHCSR.C_DEBUGEN == 0, HaltingDebugAllowed() ==
FALSE, or DHCSR.S_SDE == 0.

If the Security Extension is not implemented, this bit is RES0.

If the Main Extension is not implemented, this bit is RES0.

If halting debug is not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.

VC_HARDERR, bit [10]

Vector Catch HardFault errors. HardFault exception halting debug vector catch enable.

The possible values of this bit are:

0 Halting debug trap on HardFault disabled.

1 Halting debug trap on HardFault enabled.

The PE ignores the value of this bit if DHCSR.C_DEBUGEN == 0, HaltingDebugAllowed() ==
FALSE, or the Security Extension is implemented, DHCSR.S_SDE == 0 and the exception targets
Secure state.

If halting debug is not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.

VC_INTERR, bit [9]

Vector Catch interrupt errors. Enable halting debug vector catch for faults during exception entry
and return.

The possible values of this bit are:

0 Halting debug trap on faults during exception entry and return disabled.

1 Halting debug trap on faults during exception entry and return enabled.

The PE ignores the value of this bit if DHCSR.C_DEBUGEN == 0, HaltingDebugAllowed() ==
FALSE, or the Security Extension is implemented, DHCSR.S_SDE == 0 and the exception targets
Secure state.

If the Main Extension is not implemented, this bit is RES0.

If halting debug is not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.

VC_BUSERR, bit [8]

Vector Catch BusFault errors. BusFault exception halting debug vector catch enable.

The possible values of this bit are:

0 Halting debug trap on BusFault disabled.

1 Halting debug trap on BusFault enabled.

The PE ignores the value of this bit if DHCSR.C_DEBUGEN == 0, HaltingDebugAllowed() ==
FALSE, or the Security Extension is implemented, DHCSR.S_SDE == 0 and the exception targets
Secure state.

If the Main Extension is not implemented, this bit is RES0.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-861
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
If halting debug is not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.

VC_STATERR, bit [7]

Vector Catch state errors. Enable halting debug trap on a UsageFault exception caused by a state
information error, for example an Undefined Instruction exception.

The possible values of this bit are:

0 Halting debug trap on UsageFault caused by state information error disabled.

1 Halting debug trap on UsageFault caused by state information error enabled.

The PE ignores the value of this bit if DHCSR.C_DEBUGEN == 0, HaltingDebugAllowed() ==
FALSE, or the Security Extension is implemented, DHCSR.S_SDE == 0 and the exception targets
Secure state.

If the Main Extension is not implemented, this bit is RES0.

If halting debug is not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.

VC_CHKERR, bit [6]

Vector Catch check errors. Enable halting debug trap on a UsageFault exception caused by a
checking error, for example an alignment check error.

The possible values of this bit are:

0 Halting debug trap on UsageFault caused by checking error disabled.

1 Halting debug trap on UsageFault caused by checking error enabled.

The PE ignores the value of this bit if DHCSR.C_DEBUGEN == 0, HaltingDebugAllowed() ==
FALSE, or the Security Extension is implemented, DHCSR.S_SDE == 0 and the exception targets
Secure state.

If the Main Extension is not implemented, this bit is RES0.

If halting debug is not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.

VC_NOCPERR, bit [5]

Vector Catch NOCP errors. Enable halting debug trap on a UsageFault caused by an access to a
coprocessor.

The possible values of this bit are:

0 Halting debug trap on UsageFault caused by access to a coprocessor disabled.

1 Halting debug trap on UsageFault caused by access to a coprocessor enabled.

The PE ignores the value of this bit if DHCSR.C_DEBUGEN == 0, HaltingDebugAllowed() ==
FALSE, or the Security Extension is implemented, DHCSR.S_SDE == 0 and the exception targets
Secure state.

If the Main Extension is not implemented, this bit is RES0.

If halting debug is not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.

VC_MMERR, bit [4]

Vector Catch MemManage errors. Enable halting debug trap on a MemManage exception.

The possible values of this bit are:

0 Halting debug trap on MemManage disabled.

1 Halting debug trap on MemManage enabled.

The PE ignores the value of this bit if DHCSR.C_DEBUGEN == 0, HaltingDebugAllowed() ==
FALSE, or the Security Extension is implemented, DHCSR.S_SDE == 0 and the exception targets
Secure state.
D2-862 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
If the Main Extension is not implemented, this bit is RES0.

If halting debug is not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.

Bits [3:1]

Reserved, RES0.

VC_CORERESET, bit [0]

Vector Catch core reset. Enable Reset Vector Catch. This causes a warm reset to halt a running
system.

The possible values of this bit are:

0 Halting debug trap on reset disabled.

1 Halting debug trap on reset enabled.

If DHCSR.C_DEBUGEN == 0 or HaltingDebugAllowed() == FALSE, the PE ignores the value of
this bit. Otherwise, when this bit is set to 1 a Warm reset will pend a Vector Catch debug event. The
debug event is pended even the PE resets into Secure state and DHCSR.S_SDE == 0.

If halting debug is not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-863
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.37 DFSR, Debug Fault Status Register

The DFSR characteristics are:

Purpose Shows which debug event occurred.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if halting debug or the Main Extension is implemented.

This register is RES0 if both halting debug and Main Extension are not implemented.

Attributes 32-bit read/write-one-to-clear register located at 0xE000ED30.

Secure software can access the Non-secure view of this register via DFSR_NS located at
0xE002ED30. The location 0xE002ED30 is RES0 to software executing in Non-secure state and
the debugger.

This register is not banked between Security states.

Field descriptions

The DFSR bit assignments are:

Bits [31:5]

Reserved, RES0.

EXTERNAL, bit [4]

External event. Sticky flag indicating whether an External debug request debug event has occurred.

The possible values of this bit are:

0 Debug event has not occurred.

1 Debug event has occurred.

This bit resets to zero on a Cold reset.

VCATCH, bit [3]

Vector Catch event. Sticky flag indicating whether a Vector catch debug event has occurred.

The possible values of this bit are:

0 Debug event has not occurred.

1 Debug event has occurred.

If halting debug is not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.

DWTTRAP, bit [2]

Watchpoint event. Sticky flag indicating whether a Watchpoint debug event has occurred.

The possible values of this bit are:

0 Debug event has not occurred.

1 Debug event has occurred.

01234531

RES0

EXTERNAL
VCATCH

DWTTRAP

HALTED
BKPT
D2-864 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
If the DWT is not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.

BKPT, bit [1]

Breakpoint event. Sticky flag indicating whether a Breakpoint debug event has occurred.

The possible values of this bit are:

0 Debug event has not occurred.

1 Debug event has occurred.

This bit resets to zero on a Cold reset.

HALTED, bit [0]

Halt or step event. Sticky flag indicating that a Halt request debug event or Step debug event has
occurred.

The possible values of this bit are:

0 Debug event has not occurred.

1 Debug event has occurred.

This bit resets to zero on a Cold reset.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-865
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.38 DHCSR, Debug Halting Control and Status Register

The DHCSR characteristics are:

Purpose Controls halting debug.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if halting debug is implemented.

This register is RES0 if halting debug is not implemented.

Attributes 32-bit read/write register located at 0xE000EDF0.

Secure software can access the Non-secure view of this register via DHCSR_NS located at
0xE002EDF0. The location 0xE002EDF0 is RES0 to software executing in Non-secure state and
the debugger.

This register is not banked between Security states.

Field descriptions

The DHCSR bit assignments are:

On a read:

On a write:

DBGKEY, bits [31:16], on a write

Debug key. A debugger must write 0xA05F to this field to enable write access to the remaining bits,
otherwise the PE ignores the write access.

The possible values of this field are:

0xA05F Writes accompanied by this value update bits[15:0].

Not 0xA05F
Write ignored.

Bits [31:27], on a read

Reserved, RES0.

01234

(0)

5615

RES0

16171819202123

RES0

2425262731

RES0

S_RESTART_ST
S_RESET_ST

S_RETIRE_ST
S_SDE

S_LOCKUP
S_SLEEP

C_DEBUGEN
C_HALT
C_STEP
C_MASKINTS

C_SNAPSTALL
S_REGRDY
S_HALT

01234

(0)

5615

RES0

1631

DBGKEY

C_SNAPSTALL
C_MASKINTS

C_STEP

C_DEBUGEN
C_HALT
D2-866 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
S_RESTART_ST, bit [26], on a read

Restart sticky status. Indicates the PE has processed a request to clear DHCSR.C_HALT to 0. That
is, either a write to DHCSR that clears DHCSR.C_HALT from 1 to 0, or an External Restart
Request.

The possible values of this bit are:

0 PE has not left Debug state since the last read of DHCSR.

1 PE has left Debug state since the last read of DHCSR.

If the PE is not halted when C_HALT is cleared to zero, it is UNPREDICTABLE whether this bit is set
to 1. If DHCSR.C_DEBUGEN == 0 this bit reads as an UNKNOWN value.

This bit clears to zero when read.

Note
 If the request to clear C_HALT is made simultaneously with a request to set C_HALT, for example

a restart request and external debug request occur together, then the PE notionally leaves Debug
state and immediately halts again and S_RESTART_ST is set to 1.

S_RESET_ST, bit [25], on a read

Reset sticky status. Indicates whether the PE has been reset since the last read of the DHCSR.

The possible values of this bit are:

0 No reset since last DHCSR read.

1 At least one reset since last DHCSR read.

This bit clears to zero when read.

This bit resets to one on a Warm reset.

S_RETIRE_ST, bit [24], on a read

Retire sticky status. Set to 1 every time the PE retires one of more instructions.

The possible values of this bit are:

0 No instruction retired since last DHCSR read.

1 At least one instruction retired since last DHCSR read.

This bit clears to zero when read.

This bit resets to an UNKNOWN value on a Warm reset.

Bits [23:21], on a read

Reserved, RES0.

S_SDE, bit [20], on a read

Secure debug enabled. Indicates whether Secure invasive debug is allowed.

The possible values of this bit are:

0 Secure invasive debug prohibited.

1 Secure invasive debug allowed.

If the PE is in Non-debug state, this bit reflects the value of SecureHaltingDebugAllowed().

If the PE is in Debug state then this bit is 1 if the PE entered Debug state from either Non-secure
state with SecureHaltingDebugAllowed() == TRUE or from Secure state, and 0 otherwise. The
value of this bit does not change whilst the PE remains in Debug state.

If the Security Extension is not implemented, this bit is RES0.

S_LOCKUP, bit [19], on a read

Lockup status. Indicates whether the PE is in Lockup state.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-867
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
The possible values of this bit are:

0 Not locked up.

1 Locked up.

This bit can only be read as 1 by a remote debugger, using the DAP. The value of 1 indicates that
the PE is running but locked up. The bit clears to 0 when the PE enters Debug state.

S_SLEEP, bit [18], on a read

Sleeping status. Indicates whether the PE is sleeping.

The possible values of this bit are:

0 Not sleeping.

1 Sleeping.

The debugger must set the C_HALT bit to 1 to gain control, or wait for an interrupt or other wakeup
event to wakeup the system.

S_HALT, bit [17], on a read

Halted status. Indicates whether the PE is in Debug state.

The possible values of this bit are:

0 In Non-debug state.

1 In Debug state.

S_REGRDY, bit [16], on a read

Register ready status. Handshake flag to transfers through the DCRDR.

The possible values of this bit are:

0 Write to DCRSR performed, but transfer not yet complete.

1 Transfer complete, or no outstanding transfer.

This bit is valid only when the PE is in Debug state, otherwise this bit is UNKNOWN.

This bit resets to an UNKNOWN value on a Warm reset.

Bits [15:6]

Reserved, RES0.

C_SNAPSTALL, bit [5]

Snap stall control. Allow imprecise entry to Debug state.

The possible values of this bit are:

0 No action.

1 Allow imprecise entry to Debug state, for example by forcing any stalled load or store
instruction to be abandoned.

Setting this bit to 1 allows a debugger to request imprecise entry to Debug state. Writing 1 to this
bit makes the state of the memory system UNPREDICTABLE. Therefore if a debugger writes 1 to this
bit it must reset the system before leaving Debug state.

The effect of setting this bit to 1 is UNPREDICTABLE unless the DHCSR write also sets
C_DEBUGEN and C_HALT to 1. This means that if the PE is not already in Debug state, it enters
Debug state when the stalled instruction completes.

If the Security Extension is implemented, then writes to this bit are ignored when DHCSR.S_SDE
== 0.

If DHCSR.C_DEBUGEN == 0 or HaltingDebugAllowed() == FALSE, the PE ignores this bit and
behaves as if it is set to 0.

If the Main Extension is not implemented, this bit is RES0.
D2-868 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
Note
 A debugger can write to the DHCSR to clear this bit to 0, However, this does not remove the

UNPREDICTABLE state of the memory system caused by setting C_SNAPSTALL to 1. The
architecture does not guarantee that setting this bit to 1 will force entry to Debug State. ARM
strongly recommends that a value of 1 is never written to C_SNAPSTALL when the PE is in Debug
state.

Bit [4]

Reserved, RES0.

C_MASKINTS, bit [3]

Mask interrupts control. When debug is enabled, the debugger can write to this bit to mask PendSV,
SysTick and external configurable interrupts.

The possible values of this bit are:

0 Do not mask.

1 Mask PendSV, SysTick and external configurable interrupts.

The effect of any single write to DHCSR that changes the value of this bit is UNPREDICTABLE unless
one of:

• Before the write, DHCSR.C_HALT == 1 and the write also writes 1 to DHCSR.C_HALT.

• Before the write, DHCSR.C_DEBUGEN == 0 or HaltingDebugAllowed() == FALSE and
the write writes 0 to this bit.

This means that a single write to DHCSR must not clear DHCSR.C_HALT to 0 and change the
value of the C_MASKINTS bit.

If the Security Extension is implemented and DHCSR.S_SDE == 0, this bit does not affect
interrupts targeting Secure state.

If DHCSR.C_DEBUGEN == 0 or HaltingDebugAllowed() == FALSE, the PE ignores this bit and
behaves as if it is set to 0.

If DHCSR.C_DEBUGEN == 0 this bit reads as an UNKNOWN value.

This bit resets to an UNKNOWN value on a Cold reset.

Note
 This bit does not affect NMI.

C_STEP, bit [2]

Step control. Enable single instruction step.

The possible values of this bit are:

0 No effect.

1 Single step enabled.

The PE ignores this bit and behaves as if it set to 0 if any of:

• DHCSR.C_DEBUGEN == 0 or HaltingDebugAllowed() == FALSE.

• The Security Extension is implemented, DHCSR.S_SDE == 0 and the PE is in Secure state.

If DHCSR.C_DEBUGEN == 0 this bit reads as an UNKNOWN value.

This bit resets to an UNKNOWN value on a Cold reset.

C_HALT, bit [1]

Halt control. PE enter Debug state halt request.

The possible values of this bit are:

0 Causes the PE to leave Debug state, if in Debug state.

1 Halt the PE.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-869
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
The PE sets C_HALT to 1 when a debug event pends an entry to Debug state.

The PE ignores this bit and behaves as if it is set to 0 if any of:

• DHCSR.C_DEBUGEN == 0 or HaltingDebugAllowed() == FALSE.

• The Security Extension is implemented, DHCSR.S_SDE == 0 and the PE is in Secure state.

If DHCSR.C_DEBUGEN == 0 this bit reads as an UNKNOWN value.

This bit resets to zero on a Warm reset.

C_DEBUGEN, bit [0]

Debug enable control. Enable Halting debug.

The possible values of this bit are:

0 Disabled.

1 Enabled.

If a debugger writes to DHCSR to change the value of this bit from 0 to 1, it must also write 0 to the
C_MASKINTS bit, otherwise behavior is UNPREDICTABLE.

If this bit is set to 0:

• The PE behaves as if DHCSR.{C_MASKINTS, C_STEP, C_HALT} are all set to 0.

• DHCSR.{S_RESTART_ST, C_MASKINTS, C_STEP, C_HALT} are UNKNOWN on reads of
DHCSR.

This bit is read/write to the debugger. Writes from software are ignored.

This bit resets to zero on a Cold reset.
D2-870 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.39 DLAR, SCS Software Lock Access Register

The DLAR characteristics are:

Purpose Provides CoreSight Software Lock control for the SCS, see the ARM® CoreSight™
Architecture Specification for details.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

This register is RAZ/WI if accessed via the debugger.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the optional Software Lock is implemented.

This register is RAZ/WI if the Software Lock is not implemented.

Attributes 32-bit write-only register located at 0xE000EFB0.

Secure software can access the Non-secure view of this register via DLAR_NS located at
0xE002EFB0. The location 0xE002EFB0 is RES0 to software executing in Non-secure state and
the debugger.

This register is not banked between Security states.

Field descriptions

The DLAR bit assignments are:

KEY, bits [31:0]

Lock Access control.

Writing the key value 0xC5ACCE55 to this field unlocks the lock, enabling write accesses to this
component's registers through a memory-mapped interface.

Writing any other value to this register locks the lock, disabling write accesses to this component's
registers through a memory mapped interface.

031

KEY
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-871
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.40 DLSR, SCS Software Lock Status Register

The DLSR characteristics are:

Purpose Provides CoreSight Software Lock status information for the SCS, see the ARM®
CoreSight™ Architecture Specification for details.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

This register is RAZ/WI if accessed via the debugger.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the optional Software Lock is implemented.

This register is RAZ/WI if the Software Lock is not implemented.

Attributes 32-bit read-only register located at 0xE000EFB4.

Secure software can access the Non-secure view of this register via DLSR_NS located at
0xE002EFB4. The location 0xE002EFB4 is RES0 to software executing in Non-secure state and
the debugger.

This register is not banked between Security states.

Field descriptions

The DLSR bit assignments are:

Bits [31:3]

Reserved, RES0.

nTT, bit [2]

Not thirty-two bit. See the ARM® CoreSight™ Architecture Specification.

This bit reads as zero.

SLK, bit [1]

Software Lock status. See the ARM® CoreSight™ Architecture Specification.

The possible values of this bit are:

0 Lock clear. Software writes are permitted to this component's registers.

1 Lock set. Software writes to this component's registers are ignored, and reads have no
side effects.

For a debugger read of this register, or when the Software Lock is not implemented, this bit is RES0.

This bit resets to one on a Warm reset.

SLI, bit [0]

Software Lock implemented. See the ARM® CoreSight™ Architecture Specification.

The possible values of this bit are:

0 Software Lock not implemented or debugger access.

1 Software Lock is implemented and software access.

For a debugger read of this register, or when the Software Lock is not implemented, this bit is RAZ.

012331

RES0

nTT
SLK

SLI
D2-872 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
This bit reads as an IMPLEMENTATION DEFINED value.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-873
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.41 DPIDR0, SCS Peripheral Identification Register 0

The DPIDR0 characteristics are:

Purpose Provides CoreSight discovery information for the SCS.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if halting debug is implemented.

This register is RES0 if halting debug is not implemented.

Attributes 32-bit read-only register located at 0xE000EFE0.

Secure software can access the Non-secure view of this register via DPIDR0_NS located at
0xE002EFE0. The location 0xE002EFE0 is RES0 to software executing in Non-secure state and
the debugger.

This register is not banked between Security states.

Field descriptions

The DPIDR0 bit assignments are:

Bits [31:8]

Reserved, RES0.

PART_0, bits [7:0]

Part number bits [7:0]. See the ARM® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

07

PART_0

831

RES0
D2-874 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.42 DPIDR1, SCS Peripheral Identification Register 1

The DPIDR1 characteristics are:

Purpose Provides CoreSight discovery information for the SCS.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if halting debug is implemented.

This register is RES0 if halting debug is not implemented.

Attributes 32-bit read-only register located at 0xE000EFE4.

Secure software can access the Non-secure view of this register via DPIDR1_NS located at
0xE002EFE4. The location 0xE002EFE4 is RES0 to software executing in Non-secure state and
the debugger.

This register is not banked between Security states.

Field descriptions

The DPIDR1 bit assignments are:

Bits [31:8]

Reserved, RES0.

DES_0, bits [7:4]

JEP106 identification code bits [3:0]. See the ARM® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

PART_1, bits [3:0]

Part number bits [11:8]. See the ARM® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

03

PART_1

47

DES_0

831

RES0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-875
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.43 DPIDR2, SCS Peripheral Identification Register 2

The DPIDR2 characteristics are:

Purpose Provides CoreSight discovery information for the SCS.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if halting debug is implemented.

This register is RES0 if halting debug is not implemented.

Attributes 32-bit read-only register located at 0xE000EFE8.

Secure software can access the Non-secure view of this register via DPIDR2_NS located at
0xE002EFE8. The location 0xE002EFE8 is RES0 to software executing in Non-secure state and
the debugger.

This register is not banked between Security states.

Field descriptions

The DPIDR2 bit assignments are:

Bits [31:8]

Reserved, RES0.

REVISION, bits [7:4]

Component revision. See the ARM® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

JEDEC, bit [3]

JEDEC assignee value is used. See the ARM® CoreSight™ Architecture Specification .

This bit reads as one.

DES_1, bits [2:0]

JEP106 identification code bits [6:4]. See the ARM® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

02

DES_1

347

REVISION

831

RES0

JEDEC
D2-876 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.44 DPIDR3, SCS Peripheral Identification Register 3

The DPIDR3 characteristics are:

Purpose Provides CoreSight discovery information for the SCS.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if halting debug is implemented.

This register is RES0 if halting debug is not implemented.

Attributes 32-bit read-only register located at 0xE000EFEC.

Secure software can access the Non-secure view of this register via DPIDR3_NS located at
0xE002EFEC. The location 0xE002EFEC is RES0 to software executing in Non-secure state and
the debugger.

This register is not banked between Security states.

Field descriptions

The DPIDR3 bit assignments are:

Bits [31:8]

Reserved, RES0.

REVAND, bits [7:4]

RevAnd. See the ARM® CoreSight™ Architecture Specification

This field reads as an IMPLEMENTATION DEFINED value.

CMOD, bits [3:0]

Customer Modified. See the ARM® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

03

CMOD

47

REVAND

831

RES0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-877
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.45 DPIDR4, SCS Peripheral Identification Register 4

The DPIDR4 characteristics are:

Purpose Provides CoreSight discovery information for the SCS.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if halting debug is implemented.

This register is RES0 if halting debug is not implemented.

Attributes 32-bit read-only register located at 0xE000EFD0.

Secure software can access the Non-secure view of this register via DPIDR4_NS located at
0xE002EFD0. The location 0xE002EFD0 is RES0 to software executing in Non-secure state and
the debugger.

This register is not banked between Security states.

Field descriptions

The DPIDR4 bit assignments are:

Bits [31:8]

Reserved, RES0.

SIZE, bits [7:4]

4KB count. See the ARM® CoreSight™ Architecture Specification.

This field reads as zero.

DES_2, bits [3:0]

JEP106 continuation code. See the ARM® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

03

DES_2

47

SIZE

831

RES0
D2-878 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.46 DPIDR5, SCS Peripheral Identification Register 5

The DPIDR5 characteristics are:

Purpose Provides CoreSight discovery information for the SCS.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if halting debug is implemented.

This register is RES0 if halting debug is not implemented.

Attributes 32-bit read-only register located at 0xE000EFD4.

Secure software can access the Non-secure view of this register via DPIDR5_NS located at
0xE002EFD4. The location 0xE002EFD4 is RES0 to software executing in Non-secure state and
the debugger.

This register is not banked between Security states.

Field descriptions

The DPIDR5 bit assignments are:

Bits [31:0]

Reserved, RES0.

031

RES0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-879
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.47 DPIDR6, SCS Peripheral Identification Register 6

The DPIDR6 characteristics are:

Purpose Provides CoreSight discovery information for the SCS.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if halting debug is implemented.

This register is RES0 if halting debug is not implemented.

Attributes 32-bit read-only register located at 0xE000EFD8.

Secure software can access the Non-secure view of this register via DPIDR6_NS located at
0xE002EFD8. The location 0xE002EFD8 is RES0 to software executing in Non-secure state and
the debugger.

This register is not banked between Security states.

Field descriptions

The DPIDR6 bit assignments are:

Bits [31:0]

Reserved, RES0.

031

RES0
D2-880 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.48 DPIDR7, SCS Peripheral Identification Register 7

The DPIDR7 characteristics are:

Purpose Provides CoreSight discovery information for the SCS.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if halting debug is implemented.

This register is RES0 if halting debug is not implemented.

Attributes 32-bit read-only register located at 0xE000EFDC.

Secure software can access the Non-secure view of this register via DPIDR7_NS located at
0xE002EFDC. The location 0xE002EFDC is RES0 to software executing in Non-secure state and
the debugger.

This register is not banked between Security states.

Field descriptions

The DPIDR7 bit assignments are:

Bits [31:0]

Reserved, RES0.

031

RES0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-881
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.49 DSCSR, Debug Security Control and Status Register

The DSCSR characteristics are:

Purpose Provides control and status information for Secure debug.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if the Security Extension is implemented.

This register is RES0 if the Security Extension is not implemented.

Present only if halting debug is implemented.

This register is RES0 if halting debug is not implemented.

Attributes 32-bit read/write register located at 0xE000EE08.

This register is not banked between Security states.

Field descriptions

The DSCSR bit assignments are:

Bits [31:17]

Reserved, RES0.

CDS, bit [16]

Current domain Secure. This field indicates the current Security state of the processor.

The possible values of this bit are:

0 PE is in Non-secure state.

1 PE is in Secure state.

This bit is only writeable if DHCSR.S_SDE is 1, the access to the register originates from the
debugger, and the PE is halted in Debug state.

Note
 This means debuggers must take care to avoid a race between a debugger write to this register when

the debugger believes the PE is in Non-debug state and the PE halting and entering Debug state.

Bits [15:2]

Reserved, RES0.

SBRSEL, bit [1]

Secure Banked register select. If SBRSELEN is 1 this bit selects whether the Non-secure or the
Secure version of the memory-mapped Banked registers are accessible to the debugger.

The possible values of this bit are:

0 Selects the Non-secure versions.

1 Selects the Secure versions.

This bit behaves as RAZ/WI if DHCSR.S_SDE is 0.

01215

RES0

161731

RES0

CDS
SBRSEL

SBRSELEN
D2-882 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
This bit resets to zero on a Cold reset.

SBRSELEN, bit [0]

Secure Banked register select enable. Controls whether the SBRSEL field or the current Security
state of the processor selects which version of the memory-mapped Banked registers are accessed
to the debugger.

The possible values of this bit are:

0 The current Security state of the PE determines which memory-mapped Banked
registers are accessed by the debugger.

1 DSCSR.SBRSEL selects which memory-mapped Banked registers are accessed by the
debugger.

This bit behaves as RAO/WI if DHCSR.S_SDE is 0.

This bit resets to zero on a Cold reset.

Note
 This method of Banked register selection means that the register aliasing is not used for accesses

from the debugger. Accesses to the aliased addresses from the debugger have the same behavior as
reserved addresses.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-883
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.50 DWT_CIDR0, DWT Component Identification Register 0

The DWT_CIDR0 characteristics are:

Purpose Provides CoreSight discovery information for the DWT.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Attributes 32-bit read-only register located at 0xE0001FF0.

This register is not banked between Security states.

Field descriptions

The DWT_CIDR0 bit assignments are:

Bits [31:8]

Reserved, RES0.

PRMBL_0, bits [7:0]

CoreSight component identification preamble. See the ARM® CoreSight™ Architecture
Specification.

This field reads as 0x0D.

07

PRMBL_0

831

RES0
D2-884 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.51 DWT_CIDR1, DWT Component Identification Register 1

The DWT_CIDR1 characteristics are:

Purpose Provides CoreSight discovery information for the DWT.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Attributes 32-bit read-only register located at 0xE0001FF4.

This register is not banked between Security states.

Field descriptions

The DWT_CIDR1 bit assignments are:

Bits [31:8]

Reserved, RES0.

CLASS, bits [7:4]

CoreSight component class. See the ARM® CoreSight™ Architecture Specification.

This field reads as 0x9.

PRMBL_1, bits [3:0]

CoreSight component identification preamble. See the ARM® CoreSight™ Architecture
Specification.

This field reads as 0x0.

03

PRMBL_1

47

CLASS

831

RES0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-885
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.52 DWT_CIDR2, DWT Component Identification Register 2

The DWT_CIDR2 characteristics are:

Purpose Provides CoreSight discovery information for the DWT.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Attributes 32-bit read-only register located at 0xE0001FF8.

This register is not banked between Security states.

Field descriptions

The DWT_CIDR2 bit assignments are:

Bits [31:8]

Reserved, RES0.

PRMBL_2, bits [7:0]

CoreSight component identification preamble. See the ARM® CoreSight™ Architecture
Specification.

This field reads as 0x05.

07

PRMBL_2

831

RES0
D2-886 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.53 DWT_CIDR3, DWT Component Identification Register 3

The DWT_CIDR3 characteristics are:

Purpose Provides CoreSight discovery information for the DWT.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Attributes 32-bit read-only register located at 0xE0001FFC.

This register is not banked between Security states.

Field descriptions

The DWT_CIDR3 bit assignments are:

Bits [31:8]

Reserved, RES0.

PRMBL_3, bits [7:0]

CoreSight component identification preamble. See the ARM® CoreSight™ Architecture
Specification.

This field reads as 0xB1.

07

PRMBL_3

831

RES0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-887
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.54 DWT_COMP<n>, DWT Comparator Register, n = 0 - 15

The DWT_COMP<n> characteristics are:

Purpose Provides a reference value for use by watchpoint comparator n.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Attributes 32-bit read/write register located at 0xE0001020 + 16n.

This register is not banked between Security states.

Field descriptions

The DWT_COMP<n> bit assignments are:

When DWT_FUNCTIONn.MATCH == 0b0001:

When DWT_FUNCTIONn.MATCH == 0b001x:

When DWT_FUNCTIONn.MATCH == 0b10xx:

When DWT_FUNCTIONn.MATCH == 0bx1xx:

CYCVALUE, bits [31:0], when DWT_FUNCTIONn.MATCH == 0b0001

Cycle value. Reference value for comparison with cycle count.

This field resets to an UNKNOWN value on a Cold reset.

PCVALUE, bits [31:1], when DWT_FUNCTIONn.MATCH == 0b001x

PC value. Reference value for comparison with program counter.

This field resets to an UNKNOWN value on a Cold reset.

Bit [0], when DWT_FUNCTIONn.MATCH == 0b001x

Reserved, RES0.

DADDR, bits [31:0], when DWT_FUNCTIONn.MATCH == 0bx1xx

Data address. Reference value for comparison with load or store address.

For halfword address comparisons, DADDR[0] is RES0. For byte address comparisons,
DADDR[1:0] are RES0.

031

CYCVALUE

0

(0)

131

PCVALUE

031

DVALUE

031

DADDR
D2-888 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
This field resets to an UNKNOWN value on a Cold reset.

DVALUE, bits [31:0], when DWT_FUNCTIONn.MATCH == 0b10xx

Data value. Reference value for comparison with load or store data.

For halfword or word comparisons, the data value is in little-endian order. That is, the least
significant byte of this register is compared with the byte targeting the lowest address in memory.

For byte or halfword comparisons, if the value of the byte or halfword is not replicated across all
byte or halfword lanes, the value used for the comparison is UNKNOWN.

This field resets to an UNKNOWN value on a Cold reset.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-889
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.55 DWT_CPICNT, DWT CPI Count Register

The DWT_CPICNT characteristics are:

Purpose Counts additional cycles required to execute multi-cycle instructions and instruction fetch
stalls.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Present only if DWT_CTRL.NOPRFCNT == '0'.

This register is RES0 if DWT_CTRL.NOPRFCNT == '1'.

Attributes 32-bit read/write register located at 0xE0001008.

This register is not banked between Security states.

Field descriptions

The DWT_CPICNT bit assignments are:

Bits [31:8]

Reserved, RES0.

CPICNT, bits [7:0]

Base instruction overhead counter.

Counts one on each cycle when all of the following are true:

• DWT_CTRL.CPIEVTENA == 1 and DEMCR.TRCENA == 1.

• No instruction is executed.

• No load-store operation is in progress, see DWT_LSUCNT.

• No exception-entry or exception-exit operation is in progress, see DWT_EXCCNT.

• The PE is not in a power saving mode, see DWT_SLEEPCNT.

• Either SecureNoninvasiveDebugAllowed() == TRUE, or the PE is in Non-secure state and
NoninvasiveDebugAllowed() == TRUE.

The definition of "no instruction is executed" is IMPLEMENTATION DEFINED. ARM recommends that
this counts each cycle on which no instruction is retired.

Initialized to zero when the counter is disabled and DWT_CTRL.CPIEVTENA is written with 1.
An Event Counter packet is emitted on counter overflow.

This field resets to an UNKNOWN value on a Cold reset.

07

CPICNT

831

RES0
D2-890 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.56 DWT_CTRL, DWT Control Register

The DWT_CTRL characteristics are:

Purpose Provides configuration and status information for the DWT unit, and used to control
features of the unit.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Attributes 32-bit read/write register located at 0xE0001000.

This register is not banked between Security states.

Field descriptions

The DWT_CTRL bit assignments are:

NUMCOMP, bits [31:28]

Number of comparators. Number of DWT comparators implemented.

A value of zero indicates no comparator support.

This field reads as an IMPLEMENTATION DEFINED value.

NOTRCPKT, bit [27]

No trace packets. Indicates whether the implementation does not support trace.

The possible values of this bit are:

0 Trace supported.

1 Trace not supported.

If this bit is RAZ, the NOCYCCNT bit must also RAZ.

If the Main Extension is not implemented, this bit is RES1.

This bit reads as an IMPLEMENTATION DEFINED value.

NOEXTTRIG, bit [26]

No External Triggers. Shows whether the implementation does not support external triggers.

NOCYCCNT, bit [25]

No cycle count. Indicates whether the implementation does not include a cycle counter.

The possible values of this bit are:

0 Cycle counter implemented.

01458

POSTINIT

91011121315

RES0

1617181920212223242526272831

NUMCOMP

NOTRCPKT
NOEXTTRIG
NOCYCCNT
NOPRFCNT

CYCDISS
CYCEVTENA

FOLDEVTENA
LSUEVTENA

CYCCNTENA
POSTPRESET

CYCTAP
SYNCTAP

PCSAMPLENA
EXTTRCENA
CPIEVTENA
EXCEVTENA
SLEEPEVTENA
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-891
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
1 Cycle counter not implemented.

If the Main Extension is not implemented, this bit is RES1.

This bit reads as an IMPLEMENTATION DEFINED value.

NOPRFCNT, bit [24]

No profile counters. Indicates whether the implementation does not include the profiling counters.

The possible values of this bit are:

0 Profiling counters implemented.

1 Profiling counters not implemented.

If the Main Extension is not implemented, this bit is RES1.

This bit reads as an IMPLEMENTATION DEFINED value.

CYCDISS, bit [23]

Cycle counter disabled secure. Controls whether the cycle counter is disabled in Secure state.

The possible values of this bit are:

0 No effect.

1 Disable incrementing of the cycle counter when the PE is in Secure state.

RES0 if the NOCYCCNT bit is RAO.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.

CYCEVTENA, bit [22]

Cycle event enable. Enables Event Counter packet generation on POSTCNT underflow.

The possible values of this bit are:

0 No Event Counter packets generated when POSTCNT underflows.

1 If PCSAMPLENA set to 0, an Event Counter packet is generated when POSTCNT
underflows.

RES0 if the NOTRCPKT bit is RAO or the NOCYCCNT bit is RAO.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.

FOLDEVTENA, bit [21]

Fold event enable. Enables DWT_FOLDCNT counter.

The possible values of this bit are:

0 DWT_FOLDCNT disabled.

1 DWT_FOLDCNT enabled.

RES0 if the NOPRFCNT bit is RAO. The reset value is 0.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.

LSUEVTENA, bit [20]

LSU event enable. Enables DWT_LSUCNT counter.

The possible values of this bit are:

0 DWT_LSUCNT disabled.

1 DWT_LSUCNT enabled.

RES0 if the NOPRFCNT bit is RAO.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.
D2-892 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
SLEEPEVTENA, bit [19]

Sleep event enable. Enable DWT_SLEEPCNT counter.

The possible values of this bit are:

0 DWT_SLEEPCNT disabled.

1 DWT_SLEEPCNT enabled.

RES0 if the NOPRFCNT bit is RAO.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.

EXCEVTENA, bit [18]

Exception event enable. Enables DWT_EXCCNT counter.

The possible values of this bit are:

0 DWT_EXCCNT disabled.

1 DWT_EXCCNT enabled.

RES0 if the NOPRFCNT bit is RAO.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.

CPIEVTENA, bit [17]

CPI event enable. Enables DWT_CPICNT counter.

The possible values of this bit are:

0 DWT_CPICNT disabled.

1 DWT_CPICNT enabled.

RES0 if the NOPRFCNT bit is RAO.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.

EXTTRCENA, bit [16]

Exception trace enable. Enables generation of Exception Trace packets.

The possible values of this bit are:

0 Exception Trace packet generation disabled.

1 Exception Trace packet generation enabled.

RES0 if the NOTRCPKT bit is RAO.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.

Bits [15:13]

Reserved, RES0.

PCSAMPLENA, bit [12]

PC sample enable. Enables use of POSTCNT counter as a timer for Periodic PC Sample packet
generation.

The possible values of this bit are:

0 Periodic PC Sample packet generation disabled.

1 Periodic PC Sample packet generated on POSTCNT underflow.

RES0 if the NOTRCPKT bit is RAO or the NOCYCCNT bit is RAO.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-893
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
SYNCTAP, bits [11:10]

Synchronization tap. Selects the position of the synchronization packet counter tap on the CYCCNT
counter. This determines the Synchronization packet rate.

The possible values of this field are:

0b00 Synchronization packet generation disabled.

0b01 Synchronization counter tap at CYCCNT[24].

0b10 Synchronization counter tap at CYCCNT[26].

0b11 Synchronization counter tap at CYCCNT[28].

RES0 if the NOCYCCNT bit is RAO.

If the Main Extension is not implemented, this field is RES0.

This field resets to an UNKNOWN value on a Cold reset.

CYCTAP, bit [9]

Cycle count tap. Selects the position of the POSTCNT tap on the CYCCNT counter.

The possible values of this bit are:

0 POSTCNT tap at CYCCNT[6].

1 POSTCNT tap at CYCCNT[10].

RES0 if the NOCYCCNT bit is RAO.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to an UNKNOWN value on a Cold reset.

POSTINIT, bits [8:5]

POSTCNT initial. Initial value for the POSTCNT counter.

RES0 if the NOCYCCNT bit is RAO.

If the Main Extension is not implemented, this field is RES0.

This field resets to an UNKNOWN value on a Cold reset.

POSTPRESET, bits [4:1]

POSTCNT preset. Reload value for the POSTCNT counter.

RES0 if the NOCYCCNT bit is RAO.

If the Main Extension is not implemented, this field is RES0.

This field resets to an UNKNOWN value on a Cold reset.

CYCCNTENA, bit [0]

CYCCNT enable. Enables CYCCNT.

The possible values of this bit are:

0 CYCCNT disabled.

1 CYCCNT enabled.

RES0 if the NOCYCCNT bit is RAO.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.
D2-894 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.57 DWT_CYCCNT, DWT Cycle Count Register

The DWT_CYCCNT characteristics are:

Purpose Shows or sets the value of the processor cycle counter, CYCCNT.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Present only if DWT_CTRL.NOCYCCNT == '0'.

This register is RES0 if DWT_CTRL.NOCYCCNT == '1'.

Attributes 32-bit read/write register located at 0xE0001004.

This register is not banked between Security states.

Field descriptions

The DWT_CYCCNT bit assignments are:

CYCCNT, bits [31:0]

Incrementing cycle counter value. Increments one on each processor clock cycle when
DWT_CTRL.CYCCNTENA == 1 and DEMCR.TRCENA == 1. On overflow, CYCCNT wraps to
zero.

This field resets to an UNKNOWN value on a Cold reset.

031

CYCCNT
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-895
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.58 DWT_DEVARCH, DWT Device Architecture Register

The DWT_DEVARCH characteristics are:

Purpose Provides CoreSight discovery information for the DWT.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Attributes 32-bit read-only register located at 0xE0001FBC.

This register is not banked between Security states.

Field descriptions

The DWT_DEVARCH bit assignments are:

ARCHITECT, bits [31:21]

Architect. Defines the architect of the component. Bits [31:28] are the JEP106 continuation code
(JEP106 bank ID, minus 1) and bits [27:21] are the JEP106 ID code.

The possible values of this field are:

0x23B JEP106 continuation code 0x4, ID code 0x3B. ARM Limited.

Other values are defined by the JEDEC JEP106 standard.

This field reads as 0x23B.

PRESENT, bit [20]

DEVARCH Present. Defines that the DEVARCH register is present.

The possible values of this bit are:

1 DEVARCH information present.

This bit reads as one.

REVISION, bits [19:16]

Revision. Defines the architecture revision of the component.

The possible values of this field are:

0000 DWT architecture v2.0.

This field reads as 0b0000.

ARCHVER, bits [15:12]

Architecture Version. Defines the architecture version of the component.

The possible values of this field are:

0001 DWT architecture v2.

011

ARCHPART

1215

ARCHVER

1619

REVISION

202131

ARCHITECT

PRESENT
D2-896 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
ARCHVER and ARCHPART are also defined as a single field, ARCHID, such that ARCHVER is
ARCHID[15:12].

This field reads as 0b0001.

ARCHPART, bits [11:0]

Architecture Part. Defines the architecture of the component.

The possible values of this field are:

0xA02 DWT architecture.

ARCHVER and ARCHPART are also defined as a single field, ARCHID, such that ARCHPART is
ARCHID[11:0].

This field reads as 0xA02.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-897
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.59 DWT_DEVTYPE, DWT Device Type Register

The DWT_DEVTYPE characteristics are:

Purpose Provides CoreSight discovery information for the DWT.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Attributes 32-bit read/write register located at 0xE0001FCC.

This register is not banked between Security states.

Field descriptions

The DWT_DEVTYPE bit assignments are:

Bits [31:8]

Reserved, RES0.

SUB, bits [7:4]

Sub-type. Component sub-type.

The possible values of this field are:

0x0 Other.

This field reads as 0b0000.

MAJOR, bits [3:0]

Major type. Component major type.

The possible values of this field are:

0x0 Miscellaneous.

This field reads as 0b0000.

03

MAJOR

47

SUB

831

RES0
D2-898 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.60 DWT_EXCCNT, DWT Exception Overhead Count Register

The DWT_EXCCNT characteristics are:

Purpose Counts the total cycles spent in exception processing.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Present only if DWT_CTRL.NOPRFCNT == '0'.

This register is RES0 if DWT_CTRL.NOPRFCNT == '1'.

Attributes 32-bit read/write register located at 0xE000100C.

This register is not banked between Security states.

Field descriptions

The DWT_EXCCNT bit assignments are:

Bits [31:8]

Reserved, RES0.

EXCCNT, bits [7:0]

The exception overhead counter.

Counts one on each cycle when all of the following are true:

• DWT_CTRL.EXCEVTENA == 1 and DEMCR.TRCENA == 1.

• No instruction is executed, see DWT_CPICNT.

• An exception-entry or exception-exit related operation is in progress.

• Either SecureNoninvasiveDebugAllowed() == TRUE, or NS-Req for the operation is set to
Non-secure and NoninvasiveDebugAllowed() == TRUE.

Exception-entry or exception-exit related operations include the stacking of registers on exception
entry, lazy state preservation, unstacking of registers on exception exit, and preemption.

Initialized to zero when the counter is disabled and DWT_CTRL.EXCEVTENA is written with 1.
An Event Counter packet is emitted on counter overflow.

This field resets to an UNKNOWN value on a Cold reset.

07

EXCCNT

831

RES0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-899
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.61 DWT_FOLDCNT, DWT Folded Instruction Count Register

The DWT_FOLDCNT characteristics are:

Purpose Increments on the additional cycles required to execute all load or store instructions.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Present only if DWT_CTRL.NOPRFCNT == '0'.

This register is RES0 if DWT_CTRL.NOPRFCNT == '1'.

Attributes 32-bit read/write register located at 0xE0001018.

This register is not banked between Security states.

Field descriptions

The DWT_FOLDCNT bit assignments are:

Bits [31:8]

Reserved, RES0.

FOLDCNT, bits [7:0]

Folded instruction counter.

Counts on each cycle when all of the following are true:

• DWT_CTRL.FOLDEVTENA == 1 and DEMCR.TRCENA == 1.

• At least two instructions are executed, see DWT_CPICNT.

• Either SecureNoninvasiveDebugAllowed() == TRUE, or the PE is in Non-secure state and
NoninvasiveDebugAllowed() == TRUE.

The counter is incremented by the number of instructions executed, minus one.

Initialized to zero when the counter is disabled and DWT_CTRL.FOLDEVTENA is written with 1.
An event is emitted on counter overflow.

This field resets to an UNKNOWN value on a Cold reset.

07

FOLDCNT

831

RES0
D2-900 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.62 DWT_FUNCTION<n>, DWT Comparator Function Register, n = 0 - 15

The DWT_FUNCTION<n> characteristics are:

Purpose Controls the operation of watchpoint comparator n.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Attributes 32-bit read/write register located at 0xE0001028 + 16n.

This register is not banked between Security states.

Field descriptions

The DWT_FUNCTION<n> bit assignments are:

ID, bits [31:27]

Identify capability. Identifies the capabilities for MATCH for comparator n.

The possible values of this field are:

0b00000 Reserved.

0b01000 Data Address, and Data Address With Value.

0b01001 Cycle Counter, Data Address, and Data Address With Value.

0b01010 Instruction Address, Data Address, and Data Address With Value.

0b01011 Cycle Counter, Instruction Address, Data Address and Data Address With Value.

0b11000 Data Address, Data Address Limit, and Data Address With Value.

0b11010 Instruction Address, Instruction Address Limit, Data Address, Data Address Limit, and
Data Address With Value.

0b11100 Data Address, Data Address Limit, Data Value, Linked Data Value, and Data Address
With Value.

0b11110 Instruction Address, Instruction Address Limit, Data Address, Data Address Limit,
Data value, Linked Data Value, and Data Address With Value.

All other values are reserved.

Comparator 0 never supports linking. If more than one comparator is implemented, then at least one
comparator must support linking. ARM recommends that odd-numbered comparators support
linking.

Cycle Counter matching is only supported if the Main Extension is implemented and
DWT_CTRL.NOCYCCNT == 0, meaning the cycle counter is implemented. Comparator 0 must
support Cycle Counter matching if the cycle counter is implemented.

Data Address With Value is supported for the first four comparators only, and only if the Main
Extension and ITM are implemented, and DWT_CTRL.NOTRCPKT == 0. Data Value and Linked
Data Value are only supported if the Main Extension is implemented.

This field is read-only.

03

MATCH

4569

RES0

10111223

RES0

242526

RES0

2731

ID

MATCHED
DATAVSIZE

ACTION
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-901
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
This field reads as an IMPLEMENTATION DEFINED value.

Bits [26:25]

Reserved, RES0.

MATCHED, bit [24]

Comparator matched. Set to 1 when the comparator matches.

The possible values of this bit are:

0 No match.

1 Match. The comparator has matched since the last read of this register.

For an Instruction Address Limit or Data Address Limit comparator, this bit is UNKNOWN on reads.

This bit is read-only.

This bit clears to zero when read.

This bit resets to an UNKNOWN value on a Cold reset.

Bits [23:12]

Reserved, RES0.

DATAVSIZE, bits [11:10]

Data value size. Defines the size of the object being watched for by Data Value and Data Address
comparators.

The possible values of this field are:

0b00 1 byte.

0b01 2 bytes.

0b10 4 bytes.

All other values are reserved.

For an Instruction Address or Instruction Address Limit comparator, DATAVSIZE must be 0b01 (2
bytes). If this comparator is part of an data address range pair, DATAVSIZE must be 0b00 (1 byte).

For a Data Address comparator, DWT_COMPn must be aligned to the size specified by
DATAVSIZE. For a Data Value or Linked Data Value comparator, the data value must be replicated
at the specified size across DWT_COMPn.

This field resets to an UNKNOWN value on a Cold reset.

Bits [9:6]

Reserved, RES0.

ACTION, bits [5:4]

Action on match. Defines the action on a match. This field is ignored and the comparator generates
no actions if it is disabled by MATCH.

The possible values of this field are:

0b00 Trigger only.

0b01 Generate debug event.

0b10 For a Cycle Counter, Instruction Address, Data Address, Data Value or Linked Data
Value comparator, generate a Data Trace Match packet.
For a Data Address With Value comparator, generate a Data Trace Data Value packet.

0b11 For a Data Address Limit comparator, generate a Data Trace Data Address packet.
For a Cycle Counter, Instruction Address Limit, or Data Address comparator, generate
a Data Trace PC Value packet.
For a Data Address With Value comparator, generate both a Data Trace PC Value packet
and a Data Trace Data Value packet.

If the Main Extension is not implemented, the values 0b10 and 0b11 are reserved.
D2-902 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
This field resets to an UNKNOWN value on a Cold reset.

MATCH, bits [3:0]

Match type. Controls the type of match generated by this comparator.

The possible values of this field are:

0b0000 Disabled. Never generates a match.

0b0001 Cycle Counter. Matches if DWT_CYCCNT equals the comparator value. The
comparator is checked each time DWT_CYCCNT is written to, directly or indirectly.
Only supported if the Main Extension is implemented, DWT_FUNCTION<n>.ID<0>
== 1 and DWT_CTRL.NOCYCCNT == 0.

0b0010 Instruction Address. If not linked to, an instruction matches if the address of the first
byte of the instruction matches the comparator address.
Only supported if DWT_FUNCTION<n>.ID<1> == 1.

0b0011 Instruction Address Limit. An instruction matches if the address of the first byte of the
instruction lies between the lower comparator address (specified by comparator <n-1>)
and the limit comparator address (specified by this comparator, <n>). Both addresses
are inclusive to the range. Comparator <n-1> must be programmed for Instruction
Address (0b0010), and the lower address must be strictly less-than the limit comparator
address, otherwise it is UNPREDICTABLE whether or not either comparator generates
matches.
Only supported if DWT_FUNCTION<n>.ID<4> == 1 and
DWT_FUNCTION<n>.ID<1> == 1.

0b0100 Data Address. If not linked to by a Data Address Limit comparator, an access matches
if any accessed byte lies between the comparator address and a limit defined by the
DATAVSIZE field. Supported for all comparators.

0b0101 Data Address, writes. As 0b0100, except that only write accesses generate a match.

0b0110 Data Address, reads. As 0b0100, except that only read accesses generate a match.

0b0111 Data Address Limit. An access matches if any byte made by the access lies between the
lower address (specified by comparator <n-1>) and the limit address (specified by this
comparator, <n>). Both addresses are inclusive to the range. Comparator <n-1> must be
programmed for Data Address or Data Address With Data Value (0bx1xx, not 0bx111),
and the lower address must be strictly less-than the limit comparator address, otherwise
it is UNPREDICTABLE whether or not either comparator generates matches.
DWT_FUNCTION<n-1>.MATCH[1:0] determines the matching access types.
Only supported if DWT_FUNCTION<n>.ID<4> == 1.

0b1000 Data Value. An access matches if the value accessed matches the comparator value.
Only supported if the Main Extension is implemented and
DWT_FUNCTION<n>.ID<2> == 1.

0b1001 Data Value, writes. As 0b1000, except that only write accesses generate a match.

0b1010 Data Value, reads. As 0b1000, except that only read accesses generate a match.

0b1011 Linked Data Value. An access matches if the value accessed matches the comparator
value (specified by comparator <n>) and the linked data address (specified by
comparator <n-1>) for the same access matches. Comparator <n-1> must be
programmed for Data Address or Data Address With Value (0bx1xx, not 0bx111), and
DATAVSIZE for the two comparators must be the same, otherwise it is UNPREDICTABLE
whether or not either comparator generates matches.
DWT_FUNCTION<n-1>.MATCH[1:0] determines the matching access types.
Only supported if the Main Extension is implemented and
DWT_FUNCTION<n>.ID<4> == 1 and DWT_FUNCTION<n>.ID<2> == 1.

0b1100 Data Address With Value. As 0b01xx, except that the data value is traced.
Supported for the first four comparators only, and only if DWT_CTRL.NOTRCPKT ==
0 and ITM is also implemented.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-903
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
0b1101 Data Address With Value, writes. As 0b1100, except that only write accesses generate a
match.

0b1110 Data Address With Value, reads. As 0b1100, except that only read accesses generate a
match.

Any value not supported by the comparator is reserved. For a pair of linked comparators, <n> and
<n-1>, DWT_FUNCTION<n-1>.MATCH[1:0] determines the matching access types. See MATCH
table for further details.

This field resets to zero on a Cold reset.
D2-904 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.63 DWT_LAR, DWT Software Lock Access Register

The DWT_LAR characteristics are:

Purpose Provides CoreSight Software Lock control for the DWT, see the ARM® CoreSight™
Architecture Specification for details.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

This register is RAZ/WI if accessed via the debugger.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Present only if the optional Software Lock is implemented.

This register is RAZ/WI if the Software Lock is not implemented.

Attributes 32-bit write-only register located at 0xE0001FB0.

This register is not banked between Security states.

Field descriptions

The DWT_LAR bit assignments are:

KEY, bits [31:0]

Lock Access control.

Writing the key value 0xC5ACCE55 to this field unlocks the lock, enabling write accesses to this
component's registers through a memory-mapped interface.

Writing any other value to this register locks the lock, disabling write accesses to this component's
registers through a memory mapped interface.

031

KEY
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-905
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.64 DWT_LSR, DWT Software Lock Status Register

The DWT_LSR characteristics are:

Purpose Provides CoreSight Software Lock status information for the DWT, see the ARM®
CoreSight™ Architecture Specification for details.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

This register is RAZ/WI if accessed via the debugger.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Present only if the optional Software Lock is implemented.

This register is RAZ/WI if the Software Lock is not implemented.

Attributes 32-bit read-only register located at 0xE0001FB4.

This register is not banked between Security states.

Field descriptions

The DWT_LSR bit assignments are:

Bits [31:3]

Reserved, RES0.

nTT, bit [2]

Not thirty-two bit. See the ARM® CoreSight™ Architecture Specification.

This bit reads as zero.

SLK, bit [1]

Software Lock status. See the ARM® CoreSight™ Architecture Specification.

The possible values of this bit are:

0 Lock clear. Software writes are permitted to this component's registers.

1 Lock set. Software writes to this component's registers are ignored, and reads have no
side effects.

For a debugger read of this register, or when the Software Lock is not implemented, this bit is RES0.

This bit resets to one on a Cold reset.

SLI, bit [0]

Software Lock implemented. See the ARM® CoreSight™ Architecture Specification.

The possible values of this bit are:

0 Software Lock not implemented or debugger access.

1 Software Lock is implemented and software access.

For a debugger read of this register, or when the Software Lock is not implemented, this bit is RAZ.

012331

RES0

nTT
SLK

SLI
D2-906 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
This bit reads as an IMPLEMENTATION DEFINED value.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-907
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.65 DWT_LSUCNT, DWT LSU Count Register

The DWT_LSUCNT characteristics are:

Purpose Increments on the additional cycles required to execute all load or store instructions.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Present only if DWT_CTRL.NOPRFCNT == '0'.

This register is RES0 if DWT_CTRL.NOPRFCNT == '1'.

Attributes 32-bit read/write register located at 0xE0001014.

This register is not banked between Security states.

Field descriptions

The DWT_LSUCNT bit assignments are:

Bits [31:8]

Reserved, RES0.

LSUCNT, bits [7:0]

Load-store overhead counter.

Counts one on each cycle when all of the following are true:

• DWT_CTRL.LSUEVTENA == 1 and DEMCR.TRCENA == 1.

• No instruction is executed, see DWT_CPICNT.

• No exception-entry or exception-exit operation is in progress, see DWT_EXCCNT.

• A load-store operation is in progress.

• Either SecureNoninvasiveDebugAllowed() == TRUE, or NS-Req for the operation is set to
Non-secure and NoninvasiveDebugAllowed() == TRUE.

Initialized to zero when the counter is disabled and DWT_CTRL.LSUEVTENA is written with 1.
An Event Counter packet is emitted on counter overflow.

This field resets to an UNKNOWN value on a Cold reset.

07

LSUCNT

831

RES0
D2-908 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.66 DWT_PCSR, DWT Program Counter Sample Register

The DWT_PCSR characteristics are:

Purpose Samples the current value of the program counter.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Attributes 32-bit read-only register located at 0xE000101C.

This register is not banked between Security states.

Field descriptions

The DWT_PCSR bit assignments are:

EIASAMPLE, bits [31:0]

Executed instruction address sample. Recently executed instruction address sample value.

The possible values of this field are:

0xFFFFFFFF
One of the following is true:

• The PE is halted in Debug state.

• The Security Extension is implemented, the sampled instruction was executed in
Secure state, and SecureNoninvasiveDebugAllowed() == FALSE.

• NoninvasiveDebugAllowed() == FALSE - DEMCR.TRCENA == 0.

• The address of a recently-executed instruction is not available.

Not 0xFFFFFFFF
Instruction address of a recently executed instruction. Bit [0] of the sample instruction
address is 0.

The conditions when the address of a recently-executed instruction is not available are
IMPLEMENTATION DEFINED.

031

EIASAMPLE
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-909
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.67 DWT_PIDR0, DWT Peripheral Identification Register 0

The DWT_PIDR0 characteristics are:

Purpose Provides CoreSight discovery information for the DWT.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Attributes 32-bit read-only register located at 0xE0001FE0.

This register is not banked between Security states.

Field descriptions

The DWT_PIDR0 bit assignments are:

Bits [31:8]

Reserved, RES0.

PART_0, bits [7:0]

Part number bits [7:0]. See the ARM® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

07

PART_0

831

RES0
D2-910 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.68 DWT_PIDR1, DWT Peripheral Identification Register 1

The DWT_PIDR1 characteristics are:

Purpose Provides CoreSight discovery information for the DWT.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Attributes 32-bit read-only register located at 0xE0001FE4.

This register is not banked between Security states.

Field descriptions

The DWT_PIDR1 bit assignments are:

Bits [31:8]

Reserved, RES0.

DES_0, bits [7:4]

JEP106 identification code bits [3:0]. See the ARM® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

PART_1, bits [3:0]

Part number bits [11:8]. See the ARM® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

03

PART_1

47

DES_0

831

RES0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-911
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.69 DWT_PIDR2, DWT Peripheral Identification Register 2

The DWT_PIDR2 characteristics are:

Purpose Provides CoreSight discovery information for the DWT.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Attributes 32-bit read-only register located at 0xE0001FE8.

This register is not banked between Security states.

Field descriptions

The DWT_PIDR2 bit assignments are:

Bits [31:8]

Reserved, RES0.

REVISION, bits [7:4]

Component revision. See the ARM® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

JEDEC, bit [3]

JEDEC assignee value is used. See the ARM® CoreSight™ Architecture Specification.

This bit reads as one.

DES_1, bits [2:0]

JEP106 identification code bits [6:4]. See the ARM® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

02

DES_1

347

REVISION

831

RES0

JEDEC
D2-912 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.70 DWT_PIDR3, DWT Peripheral Identification Register 3

The DWT_PIDR3 characteristics are:

Purpose Provides CoreSight discovery information for the DWT.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Attributes 32-bit read-only register located at 0xE0001FEC.

This register is not banked between Security states.

Field descriptions

The DWT_PIDR3 bit assignments are:

Bits [31:8]

Reserved, RES0.

REVAND, bits [7:4]

RevAnd. See the ARM® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

CMOD, bits [3:0]

Customer Modified. See the ARM® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

03

CMOD

47

REVAND

831

RES0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-913
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.71 DWT_PIDR4, DWT Peripheral Identification Register 4

The DWT_PIDR4 characteristics are:

Purpose Provides CoreSight discovery information for the DWT.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Attributes 32-bit read-only register located at 0xE0001FD0.

This register is not banked between Security states.

Field descriptions

The DWT_PIDR4 bit assignments are:

Bits [31:8]

Reserved, RES0.

SIZE, bits [7:4]

4KB count. See the ARM® CoreSight™ Architecture Specification.

This field reads as zero.

DES_2, bits [3:0]

JEP106 continuation code. See the ARM® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

03

DES_2

47

SIZE

831

RES0
D2-914 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.72 DWT_PIDR5, DWT Peripheral Identification Register 5

The DWT_PIDR5 characteristics are:

Purpose Provides CoreSight discovery information for the DWT.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Attributes 32-bit read-only register located at 0xE0001FD4.

This register is not banked between Security states.

Field descriptions

The DWT_PIDR5 bit assignments are:

Bits [31:0]

Reserved, RES0.

031

RES0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-915
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.73 DWT_PIDR6, DWT Peripheral Identification Register 6

The DWT_PIDR6 characteristics are:

Purpose Provides CoreSight discovery information for the DWT.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Attributes 32-bit read-only register located at 0xE0001FD8.

This register is not banked between Security states.

Field descriptions

The DWT_PIDR6 bit assignments are:

Bits [31:0]

Reserved, RES0.

031

RES0
D2-916 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.74 DWT_PIDR7, DWT Peripheral Identification Register 7

The DWT_PIDR7 characteristics are:

Purpose Provides CoreSight discovery information for the DWT.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Attributes 32-bit read-only register located at 0xE0001FDC.

This register is not banked between Security states.

Field descriptions

The DWT_PIDR7 bit assignments are:

Bits [31:0]

Reserved, RES0.

031

RES0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-917
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.75 DWT_SLEEPCNT, DWT Sleep Count Register

The DWT_SLEEPCNT characteristics are:

Purpose Counts the total number of cycles that the processor is sleeping.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Present only if DWT_CTRL.NOPRFCNT == '0'.

This register is RES0 if DWT_CTRL.NOPRFCNT == '1'.

Attributes 32-bit read/write register located at 0xE0001010.

This register is not banked between Security states.

Field descriptions

The DWT_SLEEPCNT bit assignments are:

Bits [31:8]

Reserved, RES0.

SLEEPCNT, bits [7:0]

Sleep counter.

Counts one on each cycle when all of the following are true:

• DWT_CTRL.SLEEPEVTENA == 1 and DEMCR.TRCENA == 1.

• No instruction is executed, see DWT_CPICNT.

• No load-store operation is in progress, see DWT_LSUCNT.

• No exception-entry or exception-exit operation is in progress, see DWT_EXCCNT.

• The PE is in a power saving mode.

• Either SecureNoninvasiveDebugAllowed() == TRUE, or the PE is in Non-secure state and
NoninvasiveDebugAllowed() == TRUE.

Power saving modes include WFI, WFE, and Sleep-on-exit.

All power saving features are IMPLEMENTATION DEFINED and therefore when this counter counts is
IMPLEMENTATION DEFINED. In particular, it is IMPLEMENTATION DEFINED whether the counter
increments if the PE is in a power saving mode and SCR.SLEEPDEEP is set.

Initialized to zero when the counter is disabled and DWT_CTRL.SLEEPEVTENA is written with
1. An Event Counter packet is emitted on counter overflow.

This field resets to an UNKNOWN value on a Cold reset.

Note
 ARM recommends that this counter counts all cycles when the PE is sleeping and

SCR.SLEEPDEEP is clear, regardless of whether a WFI or WFE instruction, or Sleep-on-exit,
caused the entry to the power saving mode.

07

SLEEPCNT

831

RES0
D2-918 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.76 EPSR, Execution Program Status Register

The EPSR characteristics are:

Purpose Holds Execution state bits.

Usage constraints Privileged access only. Unprivileged access is RAZ/WI.

Configurations This register is always implemented.

Attributes 32-bit read/write special-purpose register.

This register is not banked between Security states.

Field descriptions

The EPSR bit assignments are:

Bits [31:27]

Reserved, RES0.

T, bit [24]

T32 state bit. Determines the current instruction set state.

The possible values of this bit are:

0 All instructions generate an INVSTATE UsageFault.

1 Instructions decoded as T32 instructions.

This bit resets to an UNKNOWN value on a Warm reset.

Bits [23:16]

Reserved, RES0.

IT/ICI, bits [15:10, 26:25]

If-then and interrupt continuation. Depending on value, this field encodes either the current
condition and position in an IT block sequence, or information on the outstanding register list for
an interrupted exception-continuable multi-cycle load or store instruction.

The field IT[7:0] is equivalent to EPSR[15:10,26:25]. The field ICI[7:0] is equivalent to
EPSR[26:25,15:10].

If the Main Extension is not implemented, this field is RES0.

This field resets to zero on a Warm reset.

Bits [9:0]

Reserved, RES0.

09

RES0

1015

IT/ICI

1623

RES0

24

T

2526

IT/ICI

2731

RES0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-919
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.77 EXC_RETURN, Exception Return Payload

The EXC_RETURN characteristics are:

Purpose Value provided in LR on entry to an exception, and used with a BX or load to PC to perform
an exception return.

Usage constraints None.

Configurations All.

Attributes 32-bit payload.

Field descriptions

The EXC_RETURN bit assignments are:

PREFIX, bits [31:24]

Prefix. Indicates that this is an EXC_RETURN value.

This field reads as 0b11111111.

Bits [23:7]

Reserved, RES1.

S, bit [6]

Secure or Non-secure stack. Indicates whether a Secure or Non-secure stack is used to restore stack
frame on exception return.

The possible values of this bit are:

0 Non-secure stack used.

1 Secure stack used.

DCRS, bit [5]

Default callee register stacking. Indicates whether the default stacking rules apply, or whether the
callee registers are already on the stack.

The possible values of this bit are:

0 Stacking of the callee saved registers skipped.

1 Default rules for stacking the callee registers followed.

FType, bit [4]

Stack frame type. Indicates whether the stack frame is a standard integer only stack frame, or an
extended floating-point stack frame.

The possible values of this bit are:

0 Extended stack frame.

1 Standard stack frame.

Mode, bit [3]

Mode. Indicates the Mode that was stacked from.

The possible values of this bit are:

0 Handler mode.

0

ES

1

(0)

23456

S

723

RES1

2431

PREFIX

DCRS
FType

SPSEL
Mode
D2-920 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
1 Thread mode.

SPSEL, bit [2]

Stack pointer selection. Indicates which stack pointer the exception frame resides on.

The possible values of this bit are:

0 Main stack pointer.

1 Process stack pointer.

Bit [1]

Reserved, RES0.

ES, bit [0]

Exception Secure. The security domain the exception was taken to.

The possible values of this bit are:

0 Non-secure.

1 Secure.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-921
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.78 FAULTMASK, Fault Mask Register

The FAULTMASK characteristics are:

Purpose Provides access to the PE FAULTMASK register.

Usage constraints Privileged access only. Unprivileged access is RAZ/WI.

Configurations Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes 32-bit read/write special-purpose register.

This register is banked between Security states.

Field descriptions

The FAULTMASK bit assignments are:

Bits [31:1]

Reserved, RES0.

FM, bit [0]

Fault mask enable. The Secure and Non-secure FAULTMASK registers individually boost the
current execution priority based on the settings of AIRCR.PRIS and AIRCR.BFHFNMINS. If
AIRCR.BFHFNMINS is zero, AIRCR.PRIS is zero, and FAULTMASK_NS.FM is one, the
execution priority is boosted to 0. If AIRCR.BFHFNMINS is zero, AIRCR.PRIS is one, and
FAULTMASK_NS.FM is one, the execution priority is boosted to 0x80. If AIRCR.BFHFNMINS is
zero and FAULTMASK_S is one, the execution priority is boosted to -1. If AIRCR.BFHFNMINS
is one and FAULTMASK_NS is one, the execution priority is boosted to -1. If
AIRCR.BFHFNMINS is one and FAULTMASK_S is one, the execution priority is boosted to -3.

The possible values of this bit are:

0 No effect.

1 Boost priority.

On an exception return from a raw execution priority greater or equal to zero, the FM bit
corresponding to EXC_RETURN.ES is cleared.

This bit resets to zero on a Warm reset.

0131

RES0

FM
D2-922 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.79 FNC_RETURN, Function Return Payload

The FNC_RETURN characteristics are:

Purpose Value provided in LR on entry to Non-secure state from a Secure BL or BLX.

Usage constraints None.

Configurations All.

Attributes 32-bit payload.

Field descriptions

The FNC_RETURN bit assignments are:

PREFIX, bits [31:24]

This field reads as 0b11111110.

ONES, bits [23:1]

This field reads as 0b11111111111111111111111.

S, bit [0]

Secure. Indicates whether the function call was from the Non-secure or Secure state. Because
FNC_RETURN is only used when calling from the Secure state, this bit is always set to 1. However,
some function chaining cases can result in an SG instruction clearing this bit, so the architecture
ignores the state of this bit when processing a branch to FNC_RETURN.

The possible values of this bit are:

0 From Secure state.

1 From Non-secure state.

0

S

123

ONES

2431

PREFIX
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-923
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.80 FPCAR, Floating-Point Context Address Register

The FPCAR characteristics are:

Purpose Holds the location of the unpopulated floating-point register space allocated on an exception
stack frame.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations Present only if the Floating-point Extension is implemented.

This register is RES0 if the Floating-point Extension is not implemented.

Attributes 32-bit read/write register located at 0xE000EF38.

Secure software can access the Non-secure view of this register via FPCAR_NS located at
0xE002EF38. The location 0xE002EF38 is RES0 to software executing in Non-secure state and
the debugger.

This register is banked between Security states.

Field descriptions

The FPCAR bit assignments are:

ADDRESS, bits [31:3]

Address. The location of the unpopulated floating-point register space allocated on an exception
stack frame.

This field resets to an UNKNOWN value on a Warm reset.

Bits [2:0]

Reserved, RES0.

02

RES0

331

ADDRESS
D2-924 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.81 FPCCR, Floating-Point Context Control Register

The FPCCR characteristics are:

Purpose Holds control data for the Floating-point extension.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations Present only if the Floating-point Extension is implemented.

This register is RES0 if the Floating-point Extension is not implemented.

Attributes 32-bit read/write register located at 0xE000EF34.

Secure software can access the Non-secure view of this register via FPCCR_NS located at
0xE002EF34. The location 0xE002EF34 is RES0 to software executing in Non-secure state and
the debugger.

This register is banked between Security states on a bit by bit basis.

Field descriptions

The FPCCR bit assignments are:

ASPEN, bit [31]

Automatic state preservation enable. When this bit is set to 1, execution of a floating-point
instruction sets the CONTROL.FPCA bit to 1.

This bit is banked between Security states.

The possible values of this bit are:

0 Executing a floating-point instruction has no effect on CONTROL.FPCA.

1 Executing a floating-point instruction sets CONTROL.FPCA to 1.

Setting this bit to 1 means the hardware automatically preserves FP context on exception entry and
restores it on exception return.

This bit resets to one on a Warm reset.

LSPEN, bit [30]

Lazy state preservation enable. Enables lazy context save of FP state.

This bit is not banked between Security states.

The possible values of this bit are:

0 Disable automatic lazy context save.

1 Enable automatic lazy context save.

This bit resets to one on a Warm reset.

LSPENS, bit [29]

Lazy state preservation enable Secure only. This bit controls whether the LSPEN bit is writeable
from the Non-secure state.

012

S

3456789101125

RES0

26

TS

2728293031

ASPEN
LSPEN

LSPENS
CLRONRET

CLRONRETS
UFRDY

SPLIMVIOL
MONRDY

LSPACT
USER
THREAD

HFRDY
MMRDY
BFRDY
SFRDY
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-925
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
This bit is not banked between Security states.

The possible values of this bit are:

0 LSPEN is readable and writeable from both Security states.

1 LSPEN is readable from both Security states, but writes to LSPEN are ignored from the
Non-secure state.

This bit is RAZ/WI from Non-secure.

This bit resets to zero on a Warm reset.

CLRONRET, bit [28]

Clear on return. Clear floating-point caller saved registers on exception return.

This bit is not banked between Security states.

The possible values of this bit are:

0 Disabled.

1 Enabled.

When set to 1 the caller saved floating-point registers (I.E. S0 to S15, and FPSCR) are cleared on
exception return (including tail chaining) if CONTROL.FPCA is set to 1 and FPCCR_S.LSPACT
is set to 0.

This bit resets to zero on a Warm reset.

CLRONRETS, bit [27]

Clear on return Secure only. This bit controls whether the CLRONRET bit is writeable from the
Non-secure state.

This bit is not banked between Security states.

The possible values of this bit are:

0 The CLRONRET field is accessibly from both Security states.

1 The Non-secure view of the CLRONRET field is read only.

This bit is RAZ/WI from Non-secure.

This bit resets to zero on a Warm reset.

TS, bit [26]

Treat as Secure. Treat FP registers as Secure enable.

This bit is not banked between Security states.

The possible values of this bit are:

0 Disabled.

1 Enabled.

When set to 0 the floating-point registers are treated as Non-secure even when the PE is in the secure
state and, therefore, the callee saved registers are never pushed to the stack. If the floating-point
registers never contain data that needs to be protected, clearing this flag can reduce interrupt latency.
Because this field changes how secure stack frames are interpreted, unpredictable behavior can
result if the state of this bit is not consistent with the current secure stacks. Therefore, firmware must
take care when modifying this value. This field behaves as RAZ/WI from the Non-secure state.

This bit is RAZ/WI from Non-secure.

This bit resets to zero on a Warm reset.

Bits [25:11]

Reserved, RES0.

UFRDY, bit [10]

UsageFault ready. Indicates whether the software executing when the PE allocated the FP stack
frame was able to set the UsageFault exception to pending.
D2-926 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
This bit is banked between Security states.

The possible values of this bit are:

0 Not able to set the UsageFault exception to pending.

1 Able to set the UsageFault exception to pending.

This bit resets to an UNKNOWN value on a Warm reset.

SPLIMVIOL, bit [9]

Stack pointer limit violation. This bit is banked between the Security states and indicates whether
the FP context violates the stack pointer limit that was active when lazy state preservation was
activated. SPLIMVIOL modifies the lazy FP state preservation behavior.

This bit is banked between Security states.

The possible values of this bit are:

0 The existing behavior is retained.

1 The memory accesses associated with the floating-point state preservation are not
performed. However if the floating-point state is secure and FPCCR.TS is set to 1 the
registers are still zeroed and the floating-point state is lost.

This bit resets to an UNKNOWN value on a Warm reset.

MONRDY, bit [8]

DebugMonitor ready. Indicates whether the software executing when the PE allocated the FP stack
frame was able to set the DebugMonitor exception to pending.

This bit is not banked between Security states.

The possible values of this bit are:

0 Not able to set the DebugMonitor exception to pending.

1 Able to set the DebugMonitor exception to pending.

If DEMCR.SDME is one this bit is RAZ/WI from Non-secure state

This bit resets to an UNKNOWN value on a Warm reset.

SFRDY, bit [7]

SecureFault ready. Indicates whether the software executing when the PE allocated the FP stack
frame was able to set the SecureFault exception to pending. This bit is only present in the Secure
version of the register, and behaves as RAZ/WI when accessed from the Non-secure state.

This bit is not banked between Security states.

This bit is RAZ/WI from Non-secure.

This bit resets to an UNKNOWN value on a Warm reset.

BFRDY, bit [6]

BusFault ready. Indicates whether the software executing when the PE allocated the FP stack frame
was able to set the BusFault exception to pending.

This bit is not banked between Security states.

The possible values of this bit are:

0 Not able to set the BusFault exception to pending.

1 Able to set the BusFault exception to pending.

If AIRCR.BFHFNMINS is zero this bit is RAZ/WI from Non-secure state.

This bit resets to an UNKNOWN value on a Warm reset.

MMRDY, bit [5]

MemManage ready. Indicates whether the software executing when the PE allocated the FP stack
frame was able to set the MemManage exception to pending.

This bit is banked between Security states.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-927
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
The possible values of this bit are:

0 Not able to set the MemManage exception to pending.

1 Able to set the MemManage exception to pending.

This bit resets to an UNKNOWN value on a Warm reset.

HFRDY, bit [4]

HardFault ready. Indicates whether the software executing when the PE allocated the FP stack frame
was able to set the HardFault exception to pending.

This bit is not banked between Security states.

The possible values of this bit are:

0 Not able to set the HardFault exception to pending.

1 Able to set the HardFault exception to pending.

If AIRCR.BFHFNMINS is zero this bit is RAZ/WI from Non-secure state.

This bit resets to an UNKNOWN value on a Warm reset.

THREAD, bit [3]

Thread mode. Indicates the PE mode when it allocated the FP stack frame.

This bit is banked between Security states.

The possible values of this bit are:

0 Handler mode.

1 Thread mode.

This bit is for fault handler information only and does not interact with the exception model.

This bit resets to an UNKNOWN value on a Warm reset.

S, bit [2]

Security. Security status of the FP context. This bit is only present in the Secure version of the
register, and behaves as RAZ/WI when accessed from the Non-secure state. This bit is updated
whenever lazy state preservation is activated, or when a floating-point instruction is executed.

This bit is not banked between Security states.

The possible values of this bit are:

0 Indicates the FP context belongs to the non-secure state.

1 Indicates the FP context belongs to the secure state.

This bit is RAZ/WI from Non-secure.

This bit resets to one on a Warm reset.

USER, bit [1]

User privilege. Indicates the privilege level of the software executing when the PE allocated the FP
stack frame.

This bit is banked between Security states.

The possible values of this bit are:

0 Privileged.

1 Unprivileged.

This bit resets to an UNKNOWN value on a Warm reset.

LSPACT, bit [0]

Lazy state preservation active. Indicates whether lazy preservation of the FP state is active.

This bit is banked between Security states.
D2-928 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
The possible values of this bit are:

0 Lazy state preservation is not active.

1 Lazy state preservation is active.

This bit resets to zero on a Warm reset.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-929
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.82 FPDSCR, Floating-Point Default Status Control Register

The FPDSCR characteristics are:

Purpose Holds the default values for the floating-point status control data that the PE assigns to the
FPSCR when it creates a new floating-point context.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations Present only if the Floating-point Extension is implemented.

This register is RES0 if the Floating-point Extension is not implemented.

Attributes 32-bit read/write register located at 0xE000EF3C.

Secure software can access the Non-secure view of this register via FPDSCR_NS located at
0xE002EF3C. The location 0xE002EF3C is RES0 to software executing in Non-secure state and
the debugger.

This register is banked between Security states.

Field descriptions

The FPDSCR bit assignments are:

Bits [31:27]

Reserved, RES0.

AHP, bit [26]

Alternative half-precision. Default value for FPSCR.AHP.

This bit resets to zero on a Warm reset.

DN, bit [25]

Default NaN. Default value for FPSCR.DN.

This bit resets to zero on a Warm reset.

FZ, bit [24]

Flush-to-zero. Default value for FPSCR.FZ.

This bit resets to zero on a Warm reset.

RMode, bits [23:22]

Rounding mode. Default value for FPSCR.RMode.

This field resets to zero on a Warm reset.

Bits [21:0]

Reserved, RES0.

021

RES0

222324

FZ

25262731

RES0

AHP RMode
DN
D2-930 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.83 FPSCR, Floating-point Status and Control Register

The FPSCR characteristics are:

Purpose Provides control of the floating-point system.

Usage constraints Privileged access only. Unprivileged access is RAZ/WI.

Configurations Present only if the Floating-point Extension is implemented.

This register is RES0 if the Floating-point Extension is not implemented.

Attributes 32-bit read/write special-purpose register.

This register is not banked between Security states.

Preface

Writes to the FPSCR can have side-effects on various aspects of processor operation. All of these side-effects are
synchronous to the FPSCR write. This means that they are guaranteed not to be visible to earlier instructions in the
execution stream, and they are guaranteed to be visible to later instructions in the execution stream.

Field descriptions

The FPSCR bit assignments are:

N, bit [31]

Negative condition flag. When updated by a VCMP instruction, this bit indicates whether the result
was less than.

The possible values of this bit are:

0 Compare result was not less than.

1 Compare result was less than.

See VCMP for details.

This bit resets to an UNKNOWN value on a Warm reset.

Z, bit [30]

Zero condition flag. When updated by a VCMP instruction, this bit indicates whether the result was
equal.

The possible values of this bit are:

0 Compare result was not equal.

1 Compare result was equal.

See VCMP for details.

This bit resets to an UNKNOWN value on a Warm reset.

C, bit [29]

Carry condition flag. When updated by a VCMP instruction, this bit indicates whether the result was
not less than.

The possible values of this bit are:

0 Compare result was less than.

0123456

RES0

7821

RES0

222324

FZ

252627

(0)

28

V

29

C

30

Z

31

N

AHP
DN

RMode
IDC
IXC

IOC
DZC
OFC
UFC
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-931
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
1 Compare result was not less than.

See VCMP for details.

This bit resets to an UNKNOWN value on a Warm reset.

V, bit [28]

Overflow condition flag. When updated by a VCMP instruction, this bit indicates whether the result
was unordered.

The possible values of this bit are:

0 Compare result was not unordered.

1 Compare result was unordered.

See VCMP for details.

This bit resets to an UNKNOWN value on a Warm reset.

Bit [27]

Reserved, RES0.

AHP, bit [26]

Alternative half-precision control bit. This bit controls how the PE interprets 16-bit floating-point
values.

The possible values of this bit are:

0 IEEE half-precision format selected.

1 Alternative half-precision format selected.

This bit resets to an UNKNOWN value on a Warm reset.

DN, bit [25]

Default NaN mode control bit. This bit determines whether floating-point operations propagate
NaNs or use the Default NaN.

The possible values of this bit are:

0 NaN operands propagate through to the output of a floating-point operation.

1 Any operation involving one of more NaNs returns the Default NaN.

This bit resets to an UNKNOWN value on a Warm reset.

FZ, bit [24]

Flush-to-zero mode control. This bit determines whether denormal floating-point values are treated
as though zero.

The possible values of this bit are:

0 Flush-to-zero mode disabled. Behavior of the floating-point system is fully compliant
with the IEEE754 standard.

1 Flush-to-zero mode enabled.

This bit resets to an UNKNOWN value on a Warm reset.

RMode, bits [23:22]

Rounding mode control field. This field determines what rounding mode is applied to floating-point
operations.

The possible values of this field are:

0b00 Round to Nearest (RN) mode.

0b01 Round towards Plus Infinity (RP) mode.

0b10 Round towards Minus Infinity (RM) mode.

0b11 Round towards Zero (RZ) mode.

This field resets to an UNKNOWN value on a Warm reset.
D2-932 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
Bits [21:8]

Reserved, RES0.

IDC, bit [7]

Input Denormal cumulative exception bit. This sticky flag records whether a floating-point input
denormal exception has been detected since last cleared.

The possible values of this bit are:

0 Input Denormal exception has not occurred since 0 was last written to this bit.

1 Input Denormal exception has occurred since 0 was last written to this bit.

This bit resets to an UNKNOWN value on a Warm reset.

Bits [6:5]

Reserved, RES0.

IXC, bit [4]

Inexact cumulative exception bit. This sticky flag records whether a floating-point inexact
exception has been detected since last cleared.

The possible values of this bit are:

0 Inexact exception has not occurred since 0 was last written to this bit.

1 Inexact exception has occurred since 0 was last written to this bit.

This bit resets to an UNKNOWN value on a Warm reset.

UFC, bit [3]

Underflow cumulative exception bit. This sticky flag records whether a floating-point underflow
exception has been detected since last cleared.

The possible values of this bit are:

0 Underflow exception has not occurred since 0 was last written to this bit.

1 Underflow exception has occurred since 0 was last written to this bit.

OFC, bit [2]

Overflow cumulative exception bit. This sticky flag records whether a floating-point overflow
exception has been detected since last cleared.

The possible values of this bit are:

0 Overflow exception has not occurred since 0 was last written to this bit.

1 Overflow exception has occurred since 0 was last written to this bit.

This bit resets to an UNKNOWN value on a Warm reset.

DZC, bit [1]

Divide by Zero cumulative exception bit. This sticky flag records whether a floating-point divide
by zero exception has been detected since last cleared.

The possible values of this bit are:

0 Division by Zero exception has not occurred since 0 was last written to this bit.

1 Division by Zero exception has occurred since 0 was last written to this bit.

This bit resets to an UNKNOWN value on a Warm reset.

IOC, bit [0]

Invalid Operation cumulative exception bit. This sticky flag records whether a floating-point invalid
operation exception has been detected since last cleared.

The possible values of this bit are:

0 Invalid Operation exception has not occurred since 0 was last written to this bit.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-933
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
1 Invalid Operation exception has occurred since 0 was last written to this bit.

This bit resets to an UNKNOWN value on a Warm reset.
D2-934 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.84 FP_CIDR0, FP Component Identification Register 0

The FP_CIDR0 characteristics are:

Purpose Provides CoreSight discovery information for the FP.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the FPB is implemented.

This register is RES0 if the FPB is not implemented.

Attributes 32-bit read-only register located at 0xE0002FF0.

This register is not banked between Security states.

Field descriptions

The FP_CIDR0 bit assignments are:

Bits [31:8]

Reserved, RES0.

PRMBL_0, bits [7:0]

CoreSight component identification preamble. See the ARM® CoreSight™ Architecture
Specification.

This field reads as 0x0D.

07

PRMBL_0

831

RES0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-935
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.85 FP_CIDR1, FP Component Identification Register 1

The FP_CIDR1 characteristics are:

Purpose Provides CoreSight discovery information for the FP.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the FPB is implemented.

This register is RES0 if the FPB is not implemented.

Attributes 32-bit read-only register located at 0xE0002FF4.

This register is not banked between Security states.

Field descriptions

The FP_CIDR1 bit assignments are:

Bits [31:8]

Reserved, RES0.

CLASS, bits [7:4]

CoreSight component class. See the ARM® CoreSight™ Architecture Specification.

This field reads as 0x9.

PRMBL_1, bits [3:0]

CoreSight component identification preamble. See the ARM® CoreSight™ Architecture
Specification.

This field reads as 0x0.

03

PRMBL_1

47

CLASS

831

RES0
D2-936 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.86 FP_CIDR2, FP Component Identification Register 2

The FP_CIDR2 characteristics are:

Purpose Provides CoreSight discovery information for the FP.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the FPB is implemented.

This register is RES0 if the FPB is not implemented.

Attributes 32-bit read-only register located at 0xE0002FF8.

This register is not banked between Security states.

Field descriptions

The FP_CIDR2 bit assignments are:

Bits [31:8]

Reserved, RES0.

PRMBL_2, bits [7:0]

CoreSight component identification preamble. See the ARM® CoreSight™ Architecture
Specification.

This field reads as 0x05.

07

PRMBL_2

831

RES0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-937
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.87 FP_CIDR3, FP Component Identification Register 3

The FP_CIDR3 characteristics are:

Purpose Provides CoreSight discovery information for the FP.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the FPB is implemented.

This register is RES0 if the FPB is not implemented.

Attributes 32-bit read-only register located at 0xE0002FFC.

This register is not banked between Security states.

Field descriptions

The FP_CIDR3 bit assignments are:

Bits [31:8]

Reserved, RES0.

PRMBL_3, bits [7:0]

CoreSight component identification preamble. See the ARM® CoreSight™ Architecture
Specification.

This field reads as 0xB1.

07

PRMBL_3

831

RES0
D2-938 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.88 FP_COMP<n>, Flash Patch Comparator Register, n = 0 - 127

The FP_COMP<n> characteristics are:

Purpose Holds an address for comparison. The effect of the match depends on the configuration of
the FPB and whether the comparator is an instruction address comparator or a literal address
comparator.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if the FPB is implemented.

This register is RES0 if the FPB is not implemented.

Attributes 32-bit read/write register located at 0xE0002008 + 4n.

This register is not banked between Security states.

Field descriptions

The FP_COMP<n> bit assignments are:

When BE==0:

When BE==1:

BPADDR, bits [31:1], when BE==1

Breakpoint address. Specifies bits[31:1] of the breakpoint instruction address.

FE, bit [31], when BE==0

Flash Patch enable. Specifies if Flash Patch enabled.

The possible values of this bit are:

0 Flash Patch disabled.

1 Flash Patch enabled.

Bits [30:29], when BE==0

Reserved, RES0.

FPADDR, bits [28:2], when BE==0

Flash Patch address. Specifies bits[28:2] of the Flash Patch address.

Bit [1], when BE==0

Reserved, RES0.

BE, bit [0]

Breakpoint enable. Selects between flashpatch and breakpoint functionality.

The possible values of this bit are:

0 Breakpoint disabled, flashpatch mode selected.

0

BE

1

(0)

228

FPADDR

2930

RES0

31

FE

0

BE

131

BPADDR
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-939
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
1 Breakpoint enabled, flashpatch mode de-selected.

The comparator can be completely disabled by writing the entire register to zero.

This bit resets to zero on a Cold reset.
D2-940 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.89 FP_CTRL, Flash Patch Control Register

The FP_CTRL characteristics are:

Purpose Provides FPB implementation information, and the global enable for the FPB unit.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if the FPB is implemented.

This register is RES0 if the FPB is not implemented.

Attributes 32-bit read/write register located at 0xE0002000.

This register is not banked between Security states.

Field descriptions

The FP_CTRL bit assignments are:

REV, bits [31:28]

Revision. Flash Patch and Breakpoint Unit architecture revision.

The possible values of this field are:

0b0001 Flash Patch Breakpoint version 2 implemented.

All other values are reserved.

This field is read-only.

This field reads as 0b0001.

Bits [27:15]

Reserved, RES0.

NUM_CODE, bits [14:12,7:4]

Number of implemented code comparators. Indicates the number of implemented instruction
address comparators. Zero indicates no Instruction Address comparators are implemented. The
Instruction Address comparators are numbered from 0 to NUM_CODE - 1.

This field is read-only.

This field reads as an IMPLEMENTATION DEFINED value.

NUM_LIT, bits [11:8]

Number of literal comparators. Indicates the number of implemented literal address comparators.
The Literal Address comparators are numbered from NUM_CODE to NUM_CODE + NUM_LIT
- 1.

If the Flash Patch remap function is not supported, this field is RES0.

This field is read-only.

This field reads as an IMPLEMENTATION DEFINED value.

Bits [3:2]

Reserved, RES0.

0123

RES0

47811

NUM_LIT

12141527

RES0

2831

REV

NUM_CODE
NUM_CODE

ENABLE
KEY
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-941
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
KEY, bit [1]

FP_CTRL write-enable key. Writes to the FP_CTRL are ignored unless KEY is concurrently written
to one.

The possible values of this bit are:

0 Concurrent write to FP_CTRL ignored.

1 Concurrent write to FP_CTRL permitted.

This bit reads-as-zero.

ENABLE, bit [0]

Flashpatch global enable. Enables the FPB.

The possible values of this bit are:

0 All FPB functionality disabled.

1 FPB enabled.

This bit resets to zero on a Cold reset.
D2-942 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.90 FP_DEVARCH, FPB Device Architecture Register

The FP_DEVARCH characteristics are:

Purpose Provides CoreSight discovery information for the FPB.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the FPB is implemented.

This register is RES0 if the FPB is not implemented.

Attributes 32-bit read-only register located at 0xE0002FBC.

This register is not banked between Security states.

Field descriptions

The FP_DEVARCH bit assignments are:

ARCHITECT, bits [31:21]

Architect. Defines the architect of the component. Bits [31:28] are the JEP106 continuation code
(JEP106 bank ID, minus 1) and bits [27:21] are the JEP106 ID code.

The possible values of this field are:

0x23B JEP106 continuation code 0x4, ID code 0x3B. ARM Limited.

Other values are defined by the JEDEC JEP106 standard.

This field reads as 0x23B.

PRESENT, bit [20]

DEVARCH Present. Defines that the DEVARCH register is present.

The possible values of this bit are:

1 DEVARCH information present.

This bit reads as one.

REVISION, bits [19:16]

Revision. Defines the architecture revision of the component.

The possible values of this field are:

0000 FPB architecture v2.0.

This field reads as 0b0000.

ARCHVER, bits [15:12]

Architecture Version. Defines the architecture version of the component.

The possible values of this field are:

0001 FPB architecture v2.

011

ARCHPART

1215

ARCHVER

1619

REVISION

202131

ARCHITECT

PRESENT
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-943
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
ARCHVER and ARCHPART are also defined as a single field, ARCHID, such that ARCHVER is
ARCHID[15:12].

This field reads as 0b0001.

ARCHPART, bits [11:0]

Architecture Part. Defines the architecture of the component.

The possible values of this field are:

0xA03 FPB architecture.

ARCHVER and ARCHPART are also defined as a single field, ARCHID, such that ARCHPART is
ARCHID[11:0].

This field reads as 0xA03.
D2-944 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.91 FPB_DEVTYPE, FPB Device Type Register

The FPB_DEVTYPE characteristics are:

Purpose Provides CoreSight discovery information for the FPB.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the FPB is implemented.

This register is RES0 if the FPB is not implemented.

Attributes 32-bit read/write register located at 0xE0002FCC.

This register is not banked between Security states.

Field descriptions

The FPB_DEVTYPE bit assignments are:

Bits [31:8]

Reserved, RES0.

SUB, bits [7:4]

Sub-type. Component sub-type.

The possible values of this field are:

0x0 Other.

This field reads as 0b0000.

MAJOR, bits [3:0]

Major type. Component major type.

The possible values of this field are:

0x0 Miscellaneous.

This field reads as 0b0000.

03

MAJOR

47

SUB

831

RES0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-945
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.92 FP_LAR, FPB Software Lock Access Register

The FP_LAR characteristics are:

Purpose Provides CoreSight Software Lock control for the FPB, see the ARM® CoreSight™
Architecture Specification for details.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

This register is RAZ/WI if accessed via the debugger.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the FPB is implemented.

This register is RES0 if the FPB is not implemented.

Present only if the optional Software Lock is implemented.

This register is RAZ/WI if the Software Lock is not implemented.

Attributes 32-bit write-only register located at 0xE0002FB0.

This register is not banked between Security states.

Field descriptions

The FP_LAR bit assignments are:

KEY, bits [31:0]

Lock Access control.

Writing the key value 0xC5ACCE55 to this field unlocks the lock, enabling write accesses to this
component's registers through a memory-mapped interface.

Writing any other value to this register locks the lock, disabling write accesses to this component's
registers through a memory mapped interface.

031

KEY
D2-946 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.93 FP_LSR, FPB Software Lock Status Register

The FP_LSR characteristics are:

Purpose Provides CoreSight Software Lock status information for the FPB, see the ARM®
CoreSight™ Architecture Specification for details.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

This register is RAZ/WI if accessed via the debugger.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the FPB is implemented.

This register is RES0 if the FPB is not implemented.

Present only if the optional Software Lock is implemented.

This register is RAZ/WI if the Software Lock is not implemented.

Attributes 32-bit read-only register located at 0xE0002FB4.

This register is not banked between Security states.

Field descriptions

The FP_LSR bit assignments are:

Bits [31:3]

Reserved, RES0.

nTT, bit [2]

Not thirty-two bit. See the ARM® CoreSight™ Architecture Specification.

This bit reads as zero.

SLK, bit [1]

Software Lock status. See the ARM® CoreSight™ Architecture Specification.

The possible values of this bit are:

0 Lock clear. Software writes are permitted to this component's registers.

1 Lock set. Software writes to this component's registers are ignored, and reads have no
side effects.

For a debugger read of this register, or when the Software Lock is not implemented, this bit is RES0.

This bit resets to one on a Cold reset.

SLI, bit [0]

Software Lock implemented. See the ARM® CoreSight™ Architecture Specification.

The possible values of this bit are:

0 Software Lock not implemented or debugger access.

1 Software Lock is implemented and software access.

For a debugger read of this register, or when the Software Lock is not implemented, this bit is RAZ.

012331

RES0

nTT
SLK

SLI
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-947
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
This bit reads as an IMPLEMENTATION DEFINED value.
D2-948 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.94 FP_PIDR0, FP Peripheral Identification Register 0

The FP_PIDR0 characteristics are:

Purpose Provides CoreSight discovery information for the FP.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the FPB is implemented.

This register is RES0 if the FPB is not implemented.

Attributes 32-bit read-only register located at 0xE0002FE0.

This register is not banked between Security states.

Field descriptions

The FP_PIDR0 bit assignments are:

Bits [31:8]

Reserved, RES0.

PART_0, bits [7:0]

Part number bits [7:0]. See the ARM® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

07

PART_0

831

RES0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-949
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.95 FP_PIDR1, FP Peripheral Identification Register 1

The FP_PIDR1 characteristics are:

Purpose Provides CoreSight discovery information for the FP.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the FPB is implemented.

This register is RES0 if the FPB is not implemented.

Attributes 32-bit read-only register located at 0xE0002FE4.

This register is not banked between Security states.

Field descriptions

The FP_PIDR1 bit assignments are:

Bits [31:8]

Reserved, RES0.

DES_0, bits [7:4]

JEP106 identification code bits [3:0]. See the ARM® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

PART_1, bits [3:0]

Part number bits [11:8]. See the ARM® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

03

PART_1

47

DES_0

831

RES0
D2-950 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.96 FP_PIDR2, FP Peripheral Identification Register 2

The FP_PIDR2 characteristics are:

Purpose Provides CoreSight discovery information for the FP.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the FPB is implemented.

This register is RES0 if the FPB is not implemented.

Attributes 32-bit read-only register located at 0xE0002FE8.

This register is not banked between Security states.

Field descriptions

The FP_PIDR2 bit assignments are:

Bits [31:8]

Reserved, RES0.

REVISION, bits [7:4]

Component revision. See the ARM® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

JEDEC, bit [3]

JEDEC assignee value is used. See the ARM® CoreSight™ Architecture Specification.

This bit reads as one.

DES_1, bits [2:0]

JEP106 identification code bits [6:4]. See the ARM® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

02

DES_1

347

REVISION

831

RES0

JEDEC
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-951
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.97 FP_PIDR3, FP Peripheral Identification Register 3

The FP_PIDR3 characteristics are:

Purpose Provides CoreSight discovery information for the FP.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the FPB is implemented.

This register is RES0 if the FPB is not implemented.

Attributes 32-bit read-only register located at 0xE0002FEC.

This register is not banked between Security states.

Field descriptions

The FP_PIDR3 bit assignments are:

Bits [31:8]

Reserved, RES0.

REVAND, bits [7:4]

RevAnd. See the ARM® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

CMOD, bits [3:0]

Customer Modified. See the ARM® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

03

CMOD

47

REVAND

831

RES0
D2-952 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.98 FP_PIDR4, FP Peripheral Identification Register 4

The FP_PIDR4 characteristics are:

Purpose Provides CoreSight discovery information for the FP.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the FPB is implemented.

This register is RES0 if the FPB is not implemented.

Attributes 32-bit read-only register located at 0xE0002FD0.

This register is not banked between Security states.

Field descriptions

The FP_PIDR4 bit assignments are:

Bits [31:8]

Reserved, RES0.

SIZE, bits [7:4]

4KB count. See the ARM® CoreSight™ Architecture Specification.

This field reads as zero.

DES_2, bits [3:0]

JEP106 continuation code. See the ARM® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

03

DES_2

47

SIZE

831

RES0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-953
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.99 FP_PIDR5, FP Peripheral Identification Register 5

The FP_PIDR5 characteristics are:

Purpose Provides CoreSight discovery information for the FP.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the FPB is implemented.

This register is RES0 if the FPB is not implemented.

Attributes 32-bit read-only register located at 0xE0002FD4.

This register is not banked between Security states.

Field descriptions

The FP_PIDR5 bit assignments are:

Bits [31:0]

Reserved, RES0.

031

RES0
D2-954 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.100 FP_PIDR6, FP Peripheral Identification Register 6

The FP_PIDR6 characteristics are:

Purpose Provides CoreSight discovery information for the FP.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the FPB is implemented.

This register is RES0 if the FPB is not implemented.

Attributes 32-bit read-only register located at 0xE0002FD8.

This register is not banked between Security states.

Field descriptions

The FP_PIDR6 bit assignments are:

Bits [31:0]

Reserved, RES0.

031

RES0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-955
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.101 FP_PIDR7, FP Peripheral Identification Register 7

The FP_PIDR7 characteristics are:

Purpose Provides CoreSight discovery information for the FP.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the FPB is implemented.

This register is RES0 if the FPB is not implemented.

Attributes 32-bit read-only register located at 0xE0002FDC.

This register is not banked between Security states.

Field descriptions

The FP_PIDR7 bit assignments are:

Bits [31:0]

Reserved, RES0.

031

RES0
D2-956 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.102 FP_REMAP, Flash Patch Remap Register

The FP_REMAP characteristics are:

Purpose Indicates whether the implementation supports Flash Patch remap and, if it does, holds the
target address for remap.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if the FPB is implemented.

This register is RES0 if the FPB is not implemented.

Attributes 32-bit read-only register located at 0xE0002004.

This register is not banked between Security states.

Field descriptions

The FP_REMAP bit assignments are:

Bits [31:30]

Reserved, RES0.

RMPSPT, bit [29]

Remap supported. Indicates whether the FPB unit supports the Flash Patch remap function.

The possible values of this bit are:

0 Flash Patch remap function is not implemented.

1 Flash Patch remap function is implemented.

Note
 The Flash Patch remap function must not be implemented if either the Main Extension is not

implemented or the Security Extension is implemented.

This bit reads as an IMPLEMENTATION DEFINED value.

REMAP, bits [28:5]

Remap address. Holds the bits[28:5] of the Flash Patch remap address.

This field is RES0 if the FPB is not implemented, or if the Flash Patch remap function is not
supported.

This field resets to an UNKNOWN value on a Cold reset.

Bits [4:0]

Reserved, RES0.

04

RES0

528

REMAP

293031

RES0

RMPSPT
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-957
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.103 HFSR, HardFault Status Register

The HFSR characteristics are:

Purpose Shows the cause of any HardFaults.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes 32-bit read/write-one-to-clear register located at 0xE000ED2C.

Secure software can access the Non-secure view of this register via HFSR_NS located at
0xE002ED2C. The location 0xE002ED2C is RES0 to software executing in Non-secure state and
the debugger.

This register is not banked between Security states.

Field descriptions

The HFSR bit assignments are:

DEBUGEVT, bit [31]

Debug event. Indicates when a Debug event has occurred.

The possible values of this bit are:

0 No Debug event has occurred.

1 Debug event has occurred. The Debug Fault Status Register has been updated.

The PE sets this bit to 1 only when halting debug is disabled and a Debug event occurs. When
AIRCR.BFHFNMINS is set to zero, the Non-secure view of this bit is RAZ/WI.

This bit resets to zero on a Warm reset.

FORCED, bit [30]

Forced. Indicates that a fault with configurable priority has been escalated to a HardFault exception,
because it could not be made active, because of priority, or because it was disabled.

The possible values of this bit are:

0 No priority escalation has occurred.

1 Processor has escalated a configurable-priority exception to HardFault.

When AIRCR.BFHFNMINS is set to zero, the Non-secure view of this bit is RAZ/WI.

This bit resets to zero on a Warm reset.

Bits [29:2]

Reserved, RES0.

VECTTBL, bit [1]

Vector table. Indicates when a fault has occurred because of a vector table read error on exception
processing.

The possible values of this bit are:

0 No vector table read fault has occurred.

0

(0)

1229

RES0

3031

DEBUGEVT VECTTBL
FORCED
D2-958 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
1 Vector table read fault has occurred.

When AIRCR.BFHFNMINS is set to zero, the Non-secure view of this bit is RAZ/WI.

This bit resets to zero on a Warm reset.

Bit [0]

Reserved, RES0.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-959
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.104 ICIALLU, Instruction Cache Invalidate All to PoU

The ICIALLU characteristics are:

Purpose Invalidate all instruction caches to PoU.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations This register is always implemented.

Attributes 32-bit write-only register located at 0xE000EF50.

Secure software can access the Non-secure view of this register via ICIALLU_NS located
at 0xE002EF50. The location 0xE002EF50 is RES0 to software executing in Non-secure state and
the debugger.

This register is not banked between Security states.

Field descriptions

The ICIALLU bit assignments are:

Ignored, bits [31:0]

The value written to this field is ignored. Ignored.

031

Ignored
D2-960 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.105 ICIMVAU, Instruction Cache line Invalidate by Address to PoU

The ICIMVAU characteristics are:

Purpose Invalidate instruction cache line by address to PoU.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations This register is always implemented.

Attributes 32-bit write-only register located at 0xE000EF58.

Secure software can access the Non-secure view of this register via ICIMVAU_NS located
at 0xE002EF58. The location 0xE002EF58 is RES0 to software executing in Non-secure state and
the debugger.

This register is not banked between Security states.

Field descriptions

The ICIMVAU bit assignments are:

ADDRESS, bits [31:0]

Address. Writing to this field initiates the maintenance operation for the address written.

031

ADDRESS
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-961
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.106 ICSR, Interrupt Control and State Register

The ICSR characteristics are:

Purpose Controls and provides status information for NMI, PendSV, SysTick and interrupts.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations This register is always implemented.

Attributes 32-bit read/write register located at 0xE000ED04.

Secure software can access the Non-secure view of this register via ICSR_NS located at
0xE002ED04. The location 0xE002ED04 is RES0 to software executing in Non-secure state and
the debugger.

This register is banked between Security states on a bit by bit basis.

Field descriptions

The ICSR bit assignments are:

PENDNMISET, bit [31], on a write

Pend NMI set. Allows the NMI exception to be set as pending.

This bit is not banked between Security states.

The possible values of this bit are:

0 No effect.

1 Sets the NMI exception pending.

If both PENDNMISET and PENDNMICLR are written to one simultaneously, the pending state of
the NMI exception becomes UNKNOWN.

This bit is write-one-to-set. Writes of zero are ignored.

If AIRCR.BFHFNMINS is zero this bit is RAZ/WI from Non-secure state.

PENDNMISET, bit [31], on a read

Pend NMI set. Indicates whether the NMI exception is pending.

This bit is not banked between Security states.

The possible values of this bit are:

0 NMI exception not pending.

1 NMI exception pending.

If AIRCR.BFHFNMINS is zero this bit is RAZ/WI from Non-secure state.

This bit resets to zero on a Warm reset.

PENDNMICLR, bit [30]

Pend NMI clear. Allows the NMI exception pend state to be cleared.

This bit is not banked between Security states.

08

VECTACTIVE

910

RES0

111220

VECTPENDING

21

(0)

2223242526272829

(0)

3031

PENDNMISET
PENDNMICLR
PENDSVSET

PENDSVCLR
PENDSTSET

RETTOBASE
ISRPENDING
ISRPREEMPT

STTNS
PENDSTCLR
D2-962 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
The possible values of this bit are:

0 No effect.

1 Clear pending status.

This bit is write-only, and reads-as-zero.

This bit is write-one-to-clear. Writes of zero are ignored.

If AIRCR.BFHFNMINS is zero this bit is RAZ/WI from Non-secure state.

Bit [29]

Reserved, RES0.

PENDSVSET, bit [28], on a write

Pend PendSV set. Allows the PendSV exception for the selected Security state to be set as pending.

This bit is banked between Security states.

The possible values of this bit are:

0 No effect.

1 Sets the PendSV exception pending.

If both PENDNSVSET and PENDSVCLR are written to one simultaneously, the pending state of
the associated PendSV exception becomes UNKNOWN.

This bit is write-one-to-set. Writes of zero are ignored.

PENDSVSET, bit [28], on a read

Pend PendSV set. Indicates whether the PendSV for the selected Security state exception is pending.

This bit is banked between Security states.

The possible values of this bit are:

0 PendSV exception not pending.

1 PendSV exception pending.

This bit resets to zero on a Warm reset.

PENDSVCLR, bit [27]

Pend PendSV clear. Allows the PendSV exception pend state to be cleared for the selected Security
state.

This bit is banked between Security states.

The possible values of this bit are:

0 No effect.

1 Clear pending status.

This bit is write-only, and reads-as-zero.

This bit is write-one-to-clear. Writes of zero are ignored.

PENDSTSET, bit [26], on a write

Pend SysTick set. Allows the SysTick for the selected Security state exception to be set as pending.

This bit is banked between Security states.

The possible values of this bit are:

0 No effect.

1 Sets the SysTick exception for the selected Security state pending.

PENDSTSET, bit [26], on a read

Pend SysTick set. Indicates whether the SysTick for the selected Security state exception is pending.

This bit is banked between Security states.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-963
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
The possible values of this bit are:

0 SysTick exception not pending.

1 SysTick exception pending.

If both PENDSTSET and PENDSTCLR are written to one simultaneously, the pending state of the
associated SysTick exception becomes UNKNOWN.

This bit resets to zero on a Warm reset.

PENDSTCLR, bit [25]

Pend SysTick clear. Allows the SysTick exception pend state to be cleared for the selected Security
state.

This bit is banked between Security states.

The possible values of this bit are:

0 No effect.

1 Clear pending status.

This bit is write-only, and reads-as-zero.

This bit is write-one-to-clear. Writes of zero are ignored.

STTNS, bit [24]

SysTick Targets Non-secure. Controls whether in a single SysTick implementation, the SysTick is
Secure or Non-secure.

This bit is not banked between Security states.

The possible values of this bit are:

0 SysTick is Secure.

1 SysTick is Non-secure.

Behaves as RAZ/WI when accessed from Non-secure state, or when either no SysTick or both
SysTick timers are implemented.

This bit is RAZ/WI from Non-secure.

This bit resets to zero on a Warm reset.

ISRPREEMPT, bit [23]

Interrupt preempt. Indicates whether a pending exception will be serviced on exit from debug halt
state.

This bit is not banked between Security states.

The possible values of this bit are:

0 Will not service.

1 Will service a pending exception.

The value of this bit is UNKNOWN when not in debug state.

This bit is read-only.

If neither halting debug or the Main Extension are implemented, this bit is RES0.

ISRPENDING, bit [22]

Interrupt pending. Indicates whether an external interrupt, generated by the NVIC, is pending.

This bit is not banked between Security states.

The possible values of this bit are:

0 No external interrupt pending.

1 External interrupt pending.

This bit is read-only.

If neither halting debug or the Main Extension are implemented, this bit is RES0.
D2-964 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
Note
 The value of DHCSR.C_MASKINTS is ignored.

Bit [21]

Reserved, RES0.

VECTPENDING, bits [20:12]

Vector pending. The exception number of the highest priority pending and enabled interrupt.

This field is not banked between Security states.

The possible values of this field are:

Zero No pending and enabled exception.

Non zero Exception number.

This field is read-only.

Note
 If DHCSR.C_MASKINTS is set, the PendSV, SysTick, and configurable external interrupts are

masked and will not be shown as pending in VECTPENDING.

RETTOBASE, bit [11]

Return to base. In Handler mode, indicates whether there is more than one active exception.

This bit is not banked between Security states.

The possible values of this bit are:

0 There is more than one active exception.

1 There is only one active exception.

In Thread mode the value of this bit is UNKNOWN.

This bit is read-only.

If the Main Extension is not implemented, this bit is RES0.

Bits [10:9]

Reserved, RES0.

VECTACTIVE, bits [8:0]

Vector active. The exception number of the current executing exception.

This field is not banked between Security states.

The possible values of this field are:

Zero Thread mode.

Non zero Exception number.

This value is the same as the IPSR Exception number. When the IPSR value has been sent to 1
because of a function call to Non-secure state, this field is also set to 1.

This field is read-only.

If neither halting debug or the Main Extension are implemented, this field is RES0.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-965
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.107 ICTR, Interrupt Controller Type Register

The ICTR characteristics are:

Purpose Provides information about the interrupt controller.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations This register is always implemented.

Attributes 32-bit read-only register located at 0xE000E004.

Secure software can access the Non-secure view of this register via ICTR_NS located at
0xE002E004. The location 0xE002E004 is RES0 to software executing in Non-secure state and
the debugger.

This register is not banked between Security states.

Field descriptions

The ICTR bit assignments are:

Bits [31:4]

Reserved, RES0.

INTLINESNUM, bits [3:0]

Interrupt line set number. Indicates the number of the highest implemented register in each of the
NVIC control register sets, or in the case of NVIC_IPRn, 4×INTLINESNUM.

This field reads as an IMPLEMENTATION DEFINED value.

03431

RES0

INTLINESNUM
D2-966 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.108 ID_AFR0, Auxiliary Feature Register 0

The ID_AFR0 characteristics are:

Purpose Provides information about the IMPLEMENTATION DEFINED features of the PE.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes 32-bit read-only register located at 0xE000ED4C.

Secure software can access the Non-secure view of this register via ID_AFR0_NS located
at 0xE002ED4C. The location 0xE002ED4C is RES0 to software executing in Non-secure state and
the debugger.

This register is not banked between Security states.

Field descriptions

The ID_AFR0 bit assignments are:

Bits [31:16]

Reserved, RES0.

IMPDEFm, bits [4m+3:4m], for m = 0 to 3

IMPLEMENTATION DEFINED. IMPLEMENTATION DEFINED meaning.

This field reads as an IMPLEMENTATION DEFINED value.

03

IMPDEF0

47

IMPDEF1

811

IMPDEF2

1215

IMPDEF3

1631

RES0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-967
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.109 ID_DFR0, Debug Feature Register 0

The ID_DFR0 characteristics are:

Purpose Provides top level information about the debug system.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes 32-bit read-only register located at 0xE000ED48.

Secure software can access the Non-secure view of this register via ID_DFR0_NS located
at 0xE002ED48. The location 0xE002ED48 is RES0 to software executing in Non-secure state and
the debugger.

This register is not banked between Security states.

Preface

If Halting Debug is not implemented this register reads as 0x00000000.

If Halting Debug is implemented this register reads as 0x00200000.

Field descriptions

The ID_DFR0 bit assignments are:

Bits [31:24]

Reserved, RES0.

MProfDbg, bits [23:20]

M-profile debug. Indicates the supported M-profile debug architecture.

The possible values of this field are:

0b0000 Halting Debug is not implemented.

0b0010 ARMv8-M Debug architecture.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

Bits [19:0]

Reserved, RES0.

019

RES0

2023

MProfDbg

2431

RES0
D2-968 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.110 ID_ISAR0, Instruction Set Attribute Register 0

The ID_ISAR0 characteristics are:

Purpose Provides information about the instruction set implemented by the PE.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes 32-bit read-only register located at 0xE000ED60.

Secure software can access the Non-secure view of this register via ID_ISAR0_NS located
at 0xE002ED60. The location 0xE002ED60 is RES0 to software executing in Non-secure state and
the debugger.

This register is not banked between Security states.

Preface

If coprocessors excluding the floating-point Extension are not supported this register reads as 0x01101110.

If coprocessors excluding the floating-point Extension are supported this register reads as 0x01141110.

Field descriptions

The ID_ISAR0 bit assignments are:

Bits [31:28]

Reserved, RES0.

Divide, bits [27:24]

Divide. Indicates the supported Divide instructions.

The possible values of this field are:

0b0001 Supports SDIV and UDIV instructions.

All other values are reserved.

This field reads as 0b0001.

Debug, bits [23:20]

Debug. Indicates the implemented Debug instructions.

The possible values of this field are:

0b0001 Supports BKPT instruction.

All other values are reserved.

This field reads as 0b0001.

Coproc, bits [19:16]

Coprocessor. Indicates the supported Coprocessor instructions.

The possible values of this field are:

0b0000 No coprocessor instructions support other than FPU.

0b0100 Coprocessor instructions supported.

All other values are reserved.

03

RES0

47

BitCount

811

BitField

1215

CmpBranch

1619

Coproc

2023

Debug

2427

Divide

2831

RES0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-969
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
This field reads as an IMPLEMENTATION DEFINED value.

CmpBranch, bits [15:12]

Compare and branch. Indicates the supported combined Compare and Branch instructions.

The possible values of this field are:

0b0001 Supports CBNZ and CBZ instructions.

All other values are reserved.

This field reads as 0b0001.

BitField, bits [11:8]

Bit field. Indicates the supported bit field instructions.

The possible values of this field are:

0b0001 BFC, BFI, SBFX, and UBFX supported.

All other values are reserved.

This field reads as 0b0001.

BitCount, bits [7:4]

Bit count. Indicates the supported bit count instructions.

The possible values of this field are:

0b0001 CLZ supported.

All other values are reserved.

This field reads as 0b0001.

Bits [3:0]

Reserved, RES0.
D2-970 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.111 ID_ISAR1, Instruction Set Attribute Register 1

The ID_ISAR1 characteristics are:

Purpose Provides information about the instruction set implemented by the PE.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes 32-bit read-only register located at 0xE000ED64.

Secure software can access the Non-secure view of this register via ID_ISAR1_NS located
at 0xE002ED64. The location 0xE002ED64 is RES0 to software executing in Non-secure state and
the debugger.

This register is not banked between Security states.

Preface

If the DSP Extension is not implemented, this register reads as 0x02211000.

If the DSP Extension is implemented, this register reads as 0x02212000.

Field descriptions

The ID_ISAR1 bit assignments are:

Bits [31:28]

Reserved, RES0.

Interwork, bits [27:24]

Interworking. Indicates the implemented Interworking instructions.

The possible values of this field are:

0b0010 BLX, BX, and loads to PC interwork.

All other values are reserved.

This field reads as 0b0010.

Immediate, bits [23:20]

Immediate. Indicates the implemented for data-processing instructions with long immediates.

The possible values of this field are:

0b0010 ADDW, MOVW, MOVT, and SUBW supported.

All other values are reserved.

This field reads as 0b0010.

IfThen, bits [19:16]

If-Then. Indicates the implemented If-Then instructions.

The possible values of this field are:

0b0001 IT instruction supported.

All other values are reserved.

This field reads as 0b0001.

011

RES0

1215

Extend

1619

IfThen

2023

Immediate

2427

Interwork

2831

RES0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-971
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
Extend, bits [15:12]

Extend. Indicates the implemented Extend instructions.

The possible values of this field are:

0b0001 SXTB, SXTH, UXTB, and UXTH.

0b0010 Adds SXTB16, SXTAB, SXTAB16, SXTAH, UXTB16, UXTAB, UXTAB16, and
UXTAH, DSP Extension only.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

Bits [11:0]

Reserved, RES0.
D2-972 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.112 ID_ISAR2, Instruction Set Attribute Register 2

The ID_ISAR2 characteristics are:

Purpose Provides information about the instruction set implemented by the PE.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes 32-bit read-only register located at 0xE000ED68.

Secure software can access the Non-secure view of this register via ID_ISAR2_NS located
at 0xE002ED68. The location 0xE002ED68 is RES0 to software executing in Non-secure state and
the debugger.

This register is not banked between Security states.

Preface

With bits [11:8] masked, if the DSP Extension is not implemented, this register reads as 0x20112032.

With bits[11:8] masked, if the DSP Extension is implemented, this register reads as 0x20232032.

The value of bits [11:8] is determined by whether the PE implements restartable or continuable multi-access
instructions.

Field descriptions

The ID_ISAR2 bit assignments are:

Reversal, bits [31:28]

Reversal. Indicates the implemented Reversal instructions.

The possible values of this field are:

0b0010 REV, REV16, REVSH and RBIT instructions supported.

All other values are reserved.

This field reads as 0b0010.

Bits [27:24]

Reserved, RES0.

MultU, bits [23:20]

Multiply unsigned. Indicates the implemented advanced unsigned Multiply instructions.

The possible values of this field are:

0b0001 UMULL and UMLAL.

0b0010 Adds UMAAL, DSP Extension only.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

MultS, bits [19:16]

Multiply signed. Indicates the implemented advanced signed Multiply instructions.

03

LoadStore

47

MemHint

8111215

Mult

1619

MultS

2023

MultU

2427

RES0

2831

Reversal

MultiAccessInt
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-973
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
The possible values of this field are:

0b0001 SMULL and SMLAL.

0b0011 Adds all saturating and DSP signed multiplies, DSP Extension only.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

Mult, bits [15:12]

Multiplies. Indicates the implemented additional Multiply instructions.

The possible values of this field are:

0b0010 MUL, MLA, and MLS.

All other values are reserved.

This field reads as 0b0010.

MultiAccessInt, bits [11:8]

Multi-access instructions. Indicates the support for interruptible multi-access instructions.

The possible values of this field are:

0b0000 No support. LDM and STM instructions are not interruptible.

0b0001 LDM and STM instructions are restartable.

0b0010 LDM and STM instructions are continuable.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

MemHint, bits [7:4]

Memory hints. Indicates the implemented Memory Hint instructions.

The possible values of this field are:

0b0011 PLI and PLD instructions implemented.

All other values are reserved.

This field reads as 0b0011.

LoadStore, bits [3:0]

Load/store. Indicates the implemented additional load/store instructions.

The possible values of this field are:

0b0010 Supports load-acquire, store-release, and exclusive load and store instructions.

All other values are reserved.

This field reads as 0b0010.
D2-974 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.113 ID_ISAR3, Instruction Set Attribute Register 3

The ID_ISAR3 characteristics are:

Purpose Provides information about the instruction set implemented by the PE.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes 32-bit read-only register located at 0xE000ED6C.

Secure software can access the Non-secure view of this register via ID_ISAR3_NS located
at 0xE002ED6C. The location 0xE002ED6C is RES0 to software executing in Non-secure state and
the debugger.

This register is not banked between Security states.

Preface

If the DSP Extension is not implemented, this register reads as 0x01111110.

If the DSP Extension is implemented, this register reads as 0x01111131.

Field descriptions

The ID_ISAR3 bit assignments are:

Bits [31:28]

Reserved, RES0.

TrueNOP, bits [27:24]

True no-operation. Indicates the implemented true NOP instructions.

The possible values of this field are:

0b0001 NOP instruction and compatible hints implemented.

All other values are reserved.

This field reads as 0b0001.

T32Copy, bits [23:20]

T32 copy. Indicates the support for T32 non flag-setting MOV instructions.

The possible values of this field are:

0b0001 Encoding T1 of MOV (register) supports copying low register to low register.

All other values are reserved.

This field reads as 0b0001.

TabBranch, bits [19:16]

Table branch. Indicates the implemented Table Branch instructions.

The possible values of this field are:

0b0001 TBB and TBH implemented.

All other values are reserved.

This field reads as 0b0001.

03

Saturate

47

SIMD

811

SVC

1215

SynchPrim

1619

TabBranch

2023

T32Copy

2427

TrueNOP

2831

RES0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-975
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
SynchPrim, bits [15:12]

Synchronization primitives. Used in conjunction with ID_ISAR4.SynchPrim_frac to indicate the
implemented Synchronization Primitive instructions.

The possible values of this field are:

0b0001 LDREX, STREX, LDREXB, STREXB, LDREXH, STREXH, and CLREX
implemented.

All other values are reserved.

This field reads as 0b0001.

SVC, bits [11:8]

Supervisor call. Indicates the implemented SVC instructions.

The possible values of this field are:

0b0001 SVC instruction implemented.

All other values are reserved.

This field reads as 0b0001.

SIMD, bits [7:4]

Single-instruction, multiple-data. Indicates the implemented SIMD instructions.

The possible values of this field are:

0b0001 SSAT, USAT, and Q-bit implemented.

0b0011 Adds all packed arithmetic and GE-bits, DSP Extension only.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

Saturate, bits [3:0]

Saturate. Indicates the implemented saturating instructions.

The possible values of this field are:

0b0000 None implemented.

0b0001 QADD, QDADD, QDSUB, QSUB, and Q-bit implemented, DSP Extension only.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.
D2-976 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.114 ID_ISAR4, Instruction Set Attribute Register 4

The ID_ISAR4 characteristics are:

Purpose Provides information about the instruction set implemented by the PE.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes 32-bit read-only register located at 0xE000ED70.

Secure software can access the Non-secure view of this register via ID_ISAR4_NS located
at 0xE002ED70. The location 0xE002ED70 is RES0 to software executing in Non-secure state and
the debugger.

This register is not banked between Security states.

Preface

This register reads as 0x01310131.

Field descriptions

The ID_ISAR4 bit assignments are:

Bits [31:28]

Reserved, RES0.

PSR_M, bits [27:24]

Program status registers M. Indicates the implemented M profile instructions to modify the PSRs.

The possible values of this field are:

0b0001 M profile forms of CPS, MRS, and MSR implemented.

All other values are reserved.

This field reads as 0b0001.

SyncPrim_frac, bits [23:20]

Synchronization primitives fractional. Used in conjunction with ID_ISAR3.SynchPrim to indicate
the implemented Synchronization Primitive instructions.

The possible values of this field are:

0b0011 LDREX, STREX, CLREX, LDREXB, LDREXH, STREXB, and STREXH
implemented.

All other values are reserved.

This field reads as 0b0011.

Barrier, bits [19:16]

Barrier. Indicates the implemented Barrier instructions.

The possible values of this field are:

0b0011 DMB, DSB, and ISB barrier instructions implemented.

03

Unpriv

47

WithShifts

811

Writeback

1215

RES0

1619

Barrier

20232427

PSR_M

2831

RES0

SyncPrim_frac
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-977
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
All other values are reserved.

This field reads as 0b0001.

Bits [15:12]

Reserved, RES0.

Writeback, bits [11:8]

Writeback. Indicates the support for writeback addressing modes.

The possible values of this field are:

0b0001 All writeback addressing modes supported.

All other values are reserved.

This field reads as 0b0001.

WithShifts, bits [7:4]

With shifts. Indicates the support for writeback addressing modes.

The possible values of this field are:

0b0011 Support for constant shifts on load/store and other instructions.

All other values are reserved.

This field reads as 0b0011.

Unpriv, bits [3:0]

Unprivileged. Indicates the implemented unprivileged instructions.

The possible values of this field are:

0b0010 LDRBT, LDRHT, LDRSBT, LDRSHT, LDRT, STRBT, STRHT, and STRT
implemented.

All other values are reserved.

This field reads as 0b0010.
D2-978 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.115 ID_ISAR5, Instruction Set Attribute Register 5

The ID_ISAR5 characteristics are:

Purpose Provides information about the instruction set implemented by the PE.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes 32-bit read-only register located at 0xE000ED74.

Secure software can access the Non-secure view of this register via ID_ISAR5_NS located
at 0xE002ED74. The location 0xE002ED74 is RES0 to software executing in Non-secure state and
the debugger.

This register is not banked between Security states.

Field descriptions

The ID_ISAR5 bit assignments are:

Bits [31:0]

Reserved, RES0.

031

RES0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-979
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.116 ID_MMFR0, Memory Model Feature Register 0

The ID_MMFR0 characteristics are:

Purpose Provides information about the implemented memory model and memory management
support.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes 32-bit read-only register located at 0xE000ED50.

Secure software can access the Non-secure view of this register via ID_MMFR0_NS
located at 0xE002ED50. The location 0xE002ED50 is RES0 to software executing in Non-secure
state and the debugger.

This register is not banked between Security states.

Field descriptions

The ID_MMFR0 bit assignments are:

Bits [31:24]

Reserved, RES0.

AuxReg, bits [23:20]

Auxiliary Registers. Indicates support for Auxiliary Control Registers.

The possible values of this field are:

0b0000 No Auxiliary Control Registers.

0b0001 Auxiliary Control Registers supported.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

TCM, bits [19:16]

Tightly coupled memories. Indicates support for tightly coupled memories (TCMs).

The possible values of this field are:

0b0000 None supported.

0b0001 TCMs supported with IMPLEMENTATION DEFINED control.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

ShareLvl, bits [15:12]

Shareability Levels. Indicates the number of shareability levels implemented.

The possible values of this field are:

0b0000 One level of shareability implemented.

0b0001 Two levels of shareability implemented.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

03

RES0

47

PMSA

811

OuterShr

1215

ShareLvl

1619

TCM

2023

AuxReg

2431

RES0
D2-980 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
OuterShr, bits [11:8]

Outermost Shareability. Indicates the outermost shareability domain implemented.

The possible values of this field are:

0b0000 Implemented as Non-cacheable.

0b0001 Implemented with hardware coherency support.

0b1111 Shareability ignored.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

PMSA, bits [7:4]

Protected memory system architecture. Indicates support for the protected memory system
architecture (PMSA).

The possible values of this field are:

0b0100 Supports PMSAv8.

All other values are reserved.

This field reads as 0b0100.

Bits [3:0]

Reserved, RES0.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-981
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.117 ID_MMFR1, Memory Model Feature Register 1

The ID_MMFR1 characteristics are:

Purpose Provides information about the implemented memory model and memory management
support.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes 32-bit read-only register located at 0xE000ED54.

Secure software can access the Non-secure view of this register via ID_MMFR1_NS
located at 0xE002ED54. The location 0xE002ED54 is RES0 to software executing in Non-secure
state and the debugger.

This register is not banked between Security states.

Field descriptions

The ID_MMFR1 bit assignments are:

Bits [31:0]

Reserved, RES0.

031

RES0
D2-982 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.118 ID_MMFR2, Memory Model Feature Register 2

The ID_MMFR2 characteristics are:

Purpose Provides information about the implemented memory model and memory management
support.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes 32-bit read-only register located at 0xE000ED58.

Secure software can access the Non-secure view of this register via ID_MMFR2_NS
located at 0xE002ED58. The location 0xE002ED58 is RES0 to software executing in Non-secure
state and the debugger.

This register is not banked between Security states.

Field descriptions

The ID_MMFR2 bit assignments are:

Bits [31:28]

Reserved, RES0.

WFIStall, bits [27:24]

WFI stall. Indicates the support for Wait For Interrupt (WFI) stalling.

The possible values of this field are:

0b0000 WFI never stalls.

0b0001 WFI has the ability to stall.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

Bits [23:0]

Reserved, RES0.

023

RES0

2427

WFIStall

2831

RES0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-983
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.119 ID_MMFR3, Memory Model Feature Register 3

The ID_MMFR3 characteristics are:

Purpose Provides information about the implemented memory model and memory management
support.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes 32-bit read-only register located at 0xE000ED5C.

Secure software can access the Non-secure view of this register via ID_MMFR3_NS
located at 0xE002ED5C. The location 0xE002ED5C is RES0 to software executing in Non-secure
state and the debugger.

This register is not banked between Security states.

Field descriptions

The ID_MMFR3 bit assignments are:

Bits [31:12]

Reserved, RES0.

BPMaint, bits [11:8]

Branch predictor maintenance. Indicates the supported branch predictor maintenance.

The possible values of this field are:

0b0000 None supported.

0b0001 Support for invalidate all of branch predictors.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

CMaintSW, bits [7:4]

Cache maintenance set/way. Indicates the supported cache maintenance operations by set/way.

The possible values of this field are:

0b0000 None supported.

0b0001 Maintenance by set/way operations supported.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

CMaintVA, bits [3:0]

Cache maintenance by address. Indicates the supported cache maintenance operations by address.

The possible values of this field are:

0b0000 None supported.

0b0001 Maintenance by address and instruction cache invalidate all supported.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

03

CMaintVA

47

CMaintSW

811

BPMaint

1231

RES0
D2-984 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.120 ID_PFR0, Processor Feature Register 0

The ID_PFR0 characteristics are:

Purpose Gives top-level information about the instruction set supported by the PE.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes 32-bit read-only register located at 0xE000ED40.

Secure software can access the Non-secure view of this register via ID_PFR0_NS located
at 0xE002ED40. The location 0xE002ED40 is RES0 to software executing in Non-secure state and
the debugger.

This register is not banked between Security states.

Preface

This register reads as 0x00000030.

Field descriptions

The ID_PFR0 bit assignments are:

Bits [31:8]

Reserved, RES0.

State1, bits [7:4]

State one. T32 instruction set support.

The possible values of this field are:

0b0011 T32 instruction set including Thumb-2 Technology implemented.

All other values are reserved.

This field reads as 0b0011.

State0, bits [3:0]

State two. A32 instruction set support.

The possible values of this field are:

0b0000 A32 instruction set not implemented.

All other values are reserved.

This field reads as 0b0000.

03

State0

47

State1

831

RES0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-985
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.121 ID_PFR1, Processor Feature Register 1

The ID_PFR1 characteristics are:

Purpose Gives information about the programmers' model and Extensions support.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes 32-bit read-only register located at 0xE000ED44.

Secure software can access the Non-secure view of this register via ID_PFR1_NS located
at 0xE002ED44. The location 0xE002ED44 is RES0 to software executing in Non-secure state and
the debugger.

This register is not banked between Security states.

Preface

If the Security Extension is not implemented this register reads as 0x00000200.

If the Security Extension is implemented this register reads as 0x00000210.

Field descriptions

The ID_PFR1 bit assignments are:

Bits [31:12]

Reserved, RES0.

MProgMod, bits [11:8]

M programmers' model. Identifies support for the M-Profile programmers' model support.

The possible values of this field are:

0b0010 Two-stack programmers' model.

All other values are reserved.

This field reads as 0b0010.

Security, bits [7:4]

Security. Identifies whether the Security Extension is implemented.

The possible values of this field are:

0b0000 Security Extension not implemented.

0b0001 Security Extension implemented.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

Bits [3:0]

Reserved, RES0.

03

RES0

47

Security

811

MProgMod

1231

RES0
D2-986 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.122 IPSR, Interrupt Program Status Register

The IPSR characteristics are:

Purpose Provides privileged access to the current exception number field.

Usage constraints Privileged access only. Unprivileged access is RAZ/WI.

Configurations This register is always implemented.

Attributes 32-bit read/write special-purpose register.

This register is not banked between Security states.

Field descriptions

The IPSR bit assignments are:

Bits [31:9]

Reserved, RES0.

Exception, bits [8:0]

Exception number. Holds the exception number of the currently-executing exception, or zero for
Thread mode.

The possible values of this field are:

Zero PE in Thread mode.

Non zero PE in Handler mode in given exception number.

This field resets to zero on a Warm reset.

08

Exception

931

RES0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-987
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.123 ITM_CIDR0, ITM Component Identification Register 0

The ITM_CIDR0 characteristics are:

Purpose Provides CoreSight discovery information for the ITM.

Usage constraints If the Main Extension is implemented, both privileged and unprivileged accesses are
permitted.

If the Main Extension is not implemented, unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the ITM is implemented.

This register is RES0 if the ITM is not implemented.

If the Main Extension is not implemented then the ITM is not implemented.

Attributes 32-bit read-only register located at 0xE0000FF0.

This register is not banked between Security states.

Field descriptions

The ITM_CIDR0 bit assignments are:

Bits [31:8]

Reserved, RES0.

PRMBL_0, bits [7:0]

CoreSight component identification preamble. See the ARM® CoreSight™ Architecture
Specification.

This field reads as 0x0D.

07

PRMBL_0

831

RES0
D2-988 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.124 ITM_CIDR1, ITM Component Identification Register 1

The ITM_CIDR1 characteristics are:

Purpose Provides CoreSight discovery information for the ITM.

Usage constraints If the Main Extension is implemented, both privileged and unprivileged accesses are
permitted.

If the Main Extension is not implemented, unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the ITM is implemented.

This register is RES0 if the ITM is not implemented.

If the Main Extension is not implemented then the ITM is not implemented.

Attributes 32-bit read-only register located at 0xE0000FF4.

This register is not banked between Security states.

Field descriptions

The ITM_CIDR1 bit assignments are:

Bits [31:8]

Reserved, RES0.

CLASS, bits [7:4]

CoreSight component class. See the ARM® CoreSight™ Architecture Specification.

This field reads as 0x9.

PRMBL_1, bits [3:0]

CoreSight component identification preamble. See the ARM® CoreSight™ Architecture
Specification.

This field reads as 0x0.

03

PRMBL_1

47

CLASS

831

RES0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-989
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.125 ITM_CIDR2, ITM Component Identification Register 2

The ITM_CIDR2 characteristics are:

Purpose Provides CoreSight discovery information for the ITM.

Usage constraints If the Main Extension is implemented, both privileged and unprivileged accesses are
permitted.

If the Main Extension is not implemented, unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the ITM is implemented.

This register is RES0 if the ITM is not implemented.

If the Main Extension is not implemented then the ITM is not implemented.

Attributes 32-bit read-only register located at 0xE0000FF8.

This register is not banked between Security states.

Field descriptions

The ITM_CIDR2 bit assignments are:

Bits [31:8]

Reserved, RES0.

PRMBL_2, bits [7:0]

CoreSight component identification preamble. See the ARM® CoreSight™ Architecture
Specification.

This field reads as 0x05.

07

PRMBL_2

831

RES0
D2-990 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.126 ITM_CIDR3, ITM Component Identification Register 3

The ITM_CIDR3 characteristics are:

Purpose Provides CoreSight discovery information for the ITM.

Usage constraints If the Main Extension is implemented, both privileged and unprivileged accesses are
permitted.

If the Main Extension is not implemented, unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the ITM is implemented.

This register is RES0 if the ITM is not implemented.

If the Main Extension is not implemented then the ITM is not implemented.

Attributes 32-bit read-only register located at 0xE0000FFC.

This register is not banked between Security states.

Field descriptions

The ITM_CIDR3 bit assignments are:

Bits [31:8]

Reserved, RES0.

PRMBL_3, bits [7:0]

CoreSight component identification preamble. See the ARM® CoreSight™ Architecture
Specification.

This field reads as 0xB1.

07

PRMBL_3

831

RES0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-991
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.127 ITM_DEVARCH, ITM Device Architecture Register

The ITM_DEVARCH characteristics are:

Purpose Provides CoreSight discovery information for the ITM.

Usage constraints If the Main Extension is implemented, both privileged and unprivileged accesses are
permitted.

If the Main Extension is not implemented, unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the ITM is implemented.

This register is RES0 if the ITM is not implemented.

If the Main Extension is not implemented then the ITM is not implemented.

Attributes 32-bit read-only register located at 0xE0000FBC.

This register is not banked between Security states.

Field descriptions

The ITM_DEVARCH bit assignments are:

ARCHITECT, bits [31:21]

Architect. Defines the architect of the component. Bits [31:28] are the JEP106 continuation code
(JEP106 bank ID, minus 1) and bits [27:21] are the JEP106 ID code.

The possible values of this field are:

0x23B JEP106 continuation code 0x4, ID code 0x3B. ARM Limited.

Other values are defined by the JEDEC JEP106 standard.

This field reads as 0x23B.

PRESENT, bit [20]

DEVARCH Present. Defines that the DEVARCH register is present.

The possible values of this bit are:

1 DEVARCH information present.

This bit reads as one.

REVISION, bits [19:16]

Revision. Defines the architecture revision of the component.

The possible values of this field are:

0000 ITM architecture v2.0.

This field reads as 0b0000.

ARCHVER, bits [15:12]

Architecture Version. Defines the architecture version of the component.

011

ARCHPART

1215

ARCHVER

1619

REVISION

202131

ARCHITECT

PRESENT
D2-992 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
The possible values of this field are:

0001 ITM architecture v2.

ARCHVER and ARCHPART are also defined as a single field, ARCHID, such that ARCHVER is
ARCHID[15:12].

This field reads as 0b0001.

ARCHPART, bits [11:0]

Architecture Part. Defines the architecture of the component.

The possible values of this field are:

0xA01 ITM architecture.

ARCHVER and ARCHPART are also defined as a single field, ARCHID, such that ARCHPART is
ARCHID[11:0].

This field reads as 0xA01.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-993
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.128 ITM_DEVTYPE, ITM Device Type Register

The ITM_DEVTYPE characteristics are:

Purpose Provides CoreSight discovery information for the ITM.

Usage constraints If the Main Extension is implemented, both privileged and unprivileged accesses are
permitted.

If the Main Extension is not implemented, unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the ITM is implemented.

This register is RES0 if the ITM is not implemented.

If the Main Extension is not implemented then the ITM is not implemented.

Attributes 32-bit read/write register located at 0xE0000FCC.

This register is not banked between Security states.

Field descriptions

The ITM_DEVTYPE bit assignments are:

Bits [31:8]

Reserved, RES0.

SUB, bits [7:4]

Sub-type. Component sub-type.

The possible values of this field are:

0x0 Other. Only permitted if the MAJOR field reads as 0x0.

0x4 Associated with a Bus, stimulus derived from bus activity. Only permitted if the
MAJOR field reads as 0x3.

This field reads as an IMPLEMENTATION DEFINED value.

MAJOR, bits [3:0]

Major type. Component major type.

The possible values of this field are:

0x0 Miscellaneous.

0x3 Trace Source.

This field reads as an IMPLEMENTATION DEFINED value.

03

MAJOR

47

SUB

831

RES0
D2-994 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.129 ITM_LAR, ITM Software Lock Access Register

The ITM_LAR characteristics are:

Purpose Provides CoreSight Software Lock control for the ITM, see the ARM® CoreSight™
Architecture Specification for details.

Usage constraints If the Main Extension is implemented, both privileged and unprivileged accesses are
permitted, but unprivileged writes are ignored.

If the Main Extension is not implemented, unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

This register is RAZ/WI if accessed via the debugger.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the ITM is implemented.

This register is RES0 if the ITM is not implemented.

If the Main Extension is not implemented then the ITM is not implemented.

Present only if the optional Software Lock is implemented.

This register is RAZ/WI if the Software Lock is not implemented.

Attributes 32-bit write-only register located at 0xE0000FB0.

This register is not banked between Security states.

Field descriptions

The ITM_LAR bit assignments are:

KEY, bits [31:0]

Lock Access control.

Writing the key value 0xC5ACCE55 to this field unlocks the lock, enabling write accesses to this
component's registers through a memory-mapped interface.

Writing any other value to this register locks the lock, disabling write accesses to this component's
registers through a memory mapped interface.

031

KEY
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-995
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.130 ITM_LSR, ITM Software Lock Status Register

The ITM_LSR characteristics are:

Purpose Provides CoreSight Software Lock status information for the ITM, see the ARM®
CoreSight™ Architecture Specification for details.

Usage constraints If the Main Extension is implemented, both privileged and unprivileged accesses are
permitted.

If the Main Extension is not implemented, unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

This register is RAZ/WI if accessed via the debugger.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the ITM is implemented.

This register is RES0 if the ITM is not implemented.

If the Main Extension is not implemented then the ITM is not implemented.

Present only if the optional Software Lock is implemented.

This register is RAZ/WI if the Software Lock is not implemented.

Attributes 32-bit read-only register located at 0xE0000FB4.

This register is not banked between Security states.

Field descriptions

The ITM_LSR bit assignments are:

Bits [31:3]

Reserved, RES0.

nTT, bit [2]

Not thirty-two bit. See the ARM® CoreSight™ Architecture Specification.

This bit reads as zero.

SLK, bit [1]

Software Lock status. See the ARM® CoreSight™ Architecture Specification.

The possible values of this bit are:

0 Lock clear. Software writes are permitted to this component's registers.

1 Lock set. Software writes to this component's registers are ignored, and reads have no
side effects.

For a debugger read of this register, or when the Software Lock is not implemented, this bit is RES0.

This bit resets to one on a Warm reset.

SLI, bit [0]

Software Lock implemented. See the ARM® CoreSight™ Architecture Specification.

The possible values of this bit are:

0 Software Lock not implemented or debugger access.

012331

RES0

nTT
SLK

SLI
D2-996 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
1 Software Lock is implemented and software access.

For a debugger read of this register, or when the Software Lock is not implemented, this bit is RAZ.

This bit reads as an IMPLEMENTATION DEFINED value.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-997
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.131 ITM_PIDR0, ITM Peripheral Identification Register 0

The ITM_PIDR0 characteristics are:

Purpose Provides CoreSight discovery information for the ITM.

Usage constraints If the Main Extension is implemented, both privileged and unprivileged accesses are
permitted.

If the Main Extension is not implemented, unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the ITM is implemented.

This register is RES0 if the ITM is not implemented.

If the Main Extension is not implemented then the ITM is not implemented.

Attributes 32-bit read-only register located at 0xE0000FE0.

This register is not banked between Security states.

Field descriptions

The ITM_PIDR0 bit assignments are:

Bits [31:8]

Reserved, RES0.

PART_0, bits [7:0]

Part number bits [7:0]. See the ARM® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

07

PART_0

831

RES0
D2-998 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.132 ITM_PIDR1, ITM Peripheral Identification Register 1

The ITM_PIDR1 characteristics are:

Purpose Provides CoreSight discovery information for the ITM.

Usage constraints If the Main Extension is implemented, both privileged and unprivileged accesses are
permitted.

If the Main Extension is not implemented, unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the ITM is implemented.

This register is RES0 if the ITM is not implemented.

If the Main Extension is not implemented then the ITM is not implemented.

Attributes 32-bit read-only register located at 0xE0000FE4.

This register is not banked between Security states.

Field descriptions

The ITM_PIDR1 bit assignments are:

Bits [31:8]

Reserved, RES0.

DES_0, bits [7:4]

JEP106 identification code bits [3:0]. See the ARM® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

PART_1, bits [3:0]

Part number bits [11:8]. See the ARM® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

03

PART_1

47

DES_0

831

RES0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-999
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.133 ITM_PIDR2, ITM Peripheral Identification Register 2

The ITM_PIDR2 characteristics are:

Purpose Provides CoreSight discovery information for the ITM.

Usage constraints If the Main Extension is implemented, both privileged and unprivileged accesses are
permitted.

If the Main Extension is not implemented, unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the ITM is implemented.

This register is RES0 if the ITM is not implemented.

If the Main Extension is not implemented then the ITM is not implemented.

Attributes 32-bit read-only register located at 0xE0000FE8.

This register is not banked between Security states.

Field descriptions

The ITM_PIDR2 bit assignments are:

Bits [31:8]

Reserved, RES0.

REVISION, bits [7:4]

Component revision. See the ARM® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

JEDEC, bit [3]

JEDEC assignee value is used. See the ARM® CoreSight™ Architecture Specification.

This bit reads as one.

DES_1, bits [2:0]

JEP106 identification code bits [6:4]. See the ARM® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

02

DES_1

347

REVISION

831

RES0

JEDEC
D2-1000 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.134 ITM_PIDR3, ITM Peripheral Identification Register 3

The ITM_PIDR3 characteristics are:

Purpose Provides CoreSight discovery information for the ITM.

Usage constraints If the Main Extension is implemented, both privileged and unprivileged accesses are
permitted.

If the Main Extension is not implemented, unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the ITM is implemented.

This register is RES0 if the ITM is not implemented.

If the Main Extension is not implemented then the ITM is not implemented.

Attributes 32-bit read-only register located at 0xE0000FEC.

This register is not banked between Security states.

Field descriptions

The ITM_PIDR3 bit assignments are:

Bits [31:8]

Reserved, RES0.

REVAND, bits [7:4]

RevAnd. See the ARM® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

CMOD, bits [3:0]

Customer Modified. See the ARM® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

03

CMOD

47

REVAND

831

RES0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-1001
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.135 ITM_PIDR4, ITM Peripheral Identification Register 4

The ITM_PIDR4 characteristics are:

Purpose Provides CoreSight discovery information for the ITM.

Usage constraints If the Main Extension is implemented, both privileged and unprivileged accesses are
permitted.

If the Main Extension is not implemented, unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the ITM is implemented.

This register is RES0 if the ITM is not implemented.

If the Main Extension is not implemented then the ITM is not implemented.

Attributes 32-bit read-only register located at 0xE0000FD0.

This register is not banked between Security states.

Field descriptions

The ITM_PIDR4 bit assignments are:

Bits [31:8]

Reserved, RES0.

SIZE, bits [7:4]

4KB count. See the ARM® CoreSight™ Architecture Specification.

This field reads as zero.

DES_2, bits [3:0]

JEP106 continuation code. See the ARM® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

03

DES_2

47

SIZE

831

RES0
D2-1002 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.136 ITM_PIDR5, ITM Peripheral Identification Register 5

The ITM_PIDR5 characteristics are:

Purpose Provides CoreSight discovery information for the ITM.

Usage constraints If the Main Extension is implemented, both privileged and unprivileged accesses are
permitted.

If the Main Extension is not implemented, unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the ITM is implemented.

This register is RES0 if the ITM is not implemented.

If the Main Extension is not implemented then the ITM is not implemented.

Attributes 32-bit read-only register located at 0xE0000FD4.

This register is not banked between Security states.

Field descriptions

The ITM_PIDR5 bit assignments are:

Bits [31:0]

Reserved, RES0.

031

RES0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-1003
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.137 ITM_PIDR6, ITM Peripheral Identification Register 6

The ITM_PIDR6 characteristics are:

Purpose Provides CoreSight discovery information for the ITM.

Usage constraints If the Main Extension is implemented, both privileged and unprivileged accesses are
permitted.

If the Main Extension is not implemented, unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the ITM is implemented.

This register is RES0 if the ITM is not implemented.

If the Main Extension is not implemented then the ITM is not implemented.

Attributes 32-bit read-only register located at 0xE0000FD8.

This register is not banked between Security states.

Field descriptions

The ITM_PIDR6 bit assignments are:

Bits [31:0]

Reserved, RES0.

031

RES0
D2-1004 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.138 ITM_PIDR7, ITM Peripheral Identification Register 7

The ITM_PIDR7 characteristics are:

Purpose Provides CoreSight discovery information for the ITM.

Usage constraints If the Main Extension is implemented, both privileged and unprivileged accesses are
permitted.

If the Main Extension is not implemented, unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the ITM is implemented.

This register is RES0 if the ITM is not implemented.

If the Main Extension is not implemented then the ITM is not implemented.

Attributes 32-bit read-only register located at 0xE0000FDC.

This register is not banked between Security states.

Field descriptions

The ITM_PIDR7 bit assignments are:

Bits [31:0]

Reserved, RES0.

031

RES0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-1005
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.139 ITM_STIM<n>, ITM Stimulus Port Register, n = 0 - 255

The ITM_STIM<n> characteristics are:

Purpose Provides the interface for generating Instrumentation packets.

Usage constraints If the Main Extension is implemented, both privileged and unprivileged accesses are
permitted, but unprivileged writes are ignored if ITM_TPR.PRIVMASK[n/8] is set to one.

If the Main Extension is not implemented, unprivileged accesses generate a BusFault.

All writes are ignored if ITM_TCR.ITMENA == 0 or ITM_TER{n DIV 32}.STIMENA[n
MOD 32] == 0.

This register is word, halfword, and byte accessible.

Accesses that are not word aligned are UNPREDICTABLE.

Configurations Present only if the ITM is implemented.

This register is RES0 if the ITM is not implemented.

If the Main Extension is not implemented then the ITM is not implemented.

Attributes 32-bit read/write register located at 0xE0000000 + 4n.

This register is not banked between Security states.

Field descriptions

The ITM_STIM<n> bit assignments are:

On a read:

On a write:

STIMULUS, bits [31:0], on a write

Stimulus data. Data to write to the Stimulus Port FIFO, for forwarding as an Instrumentation packet.
The size of write access determines the type of Instrumentation packet generated.

Bits [31:2], on a read

Reserved, RES0.

DISABLED, bit [1], on a read

Disabled. Indicates whether the Stimulus Port is enabled or disabled.

The possible values of this bit are:

0 Stimulus Port and ITM are enabled.

1 Stimulus Port or ITM is disabled.

FIFOREADY, bit [0], on a read

FIFO ready. Indicates whether the Stimulus Port can accept data.

The possible values of this bit are:

0 Stimulus Port cannot accept data.

1 Stimulus Port can accept at least one word.

01231

RES0

DISABLED FIFOREADY

031

STIMULUS
D2-1006 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.140 ITM_TCR, ITM Trace Control Register

The ITM_TCR characteristics are:

Purpose Configures and controls transfers through the ITM interface.

Usage constraints If the Main Extension is implemented, both privileged and unprivileged accesses are
permitted, but unprivileged writes are ignored.

If the Main Extension is not implemented, unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations Present only if the ITM is implemented.

This register is RES0 if the ITM is not implemented.

If the Main Extension is not implemented then the ITM is not implemented.

Attributes 32-bit read/write register located at 0xE0000E80.

This register is not banked between Security states.

Field descriptions

The ITM_TCR bit assignments are:

Bits [31:24]

Reserved, RES0.

BUSY, bit [23]

ITM busy. Indicates whether the ITM is currently processing events.

The possible values of this bit are:

0 ITM is not processing any events.

1 Events present and being drained.

Events means the ITM is generating or processing any of:

• Packets generated by the ITM from writes to Stimulus Ports.

• Other packets generated by the ITM itself.

• Packets generated by the DWT.

This bit is read-only.

TraceBusID, bits [22:16]

Trace bus identity. Identifier for multi-source trace stream formatting. If multi-source trace is in use,
the debugger must write a non-zero value to this field.

The possible values of this field are:

Zero Multi-source trace not in use.

Non zero ID number to be used for ITM trace packets.

If the ITM does not support multi-source trace stream formatting, this field is RES0.

This field resets to an UNKNOWN value on a Cold reset.

01234567

RES0

8910111215

RES0

1622

TraceBusID

232431

RES0

BUSY
GTSFREQ

TSPrescale
STALLENA

SWOENA

ITMENA
TSENA
SYNCENA
TXENA
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-1007
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
Bits [15:12]

Reserved, RES0.

GTSFREQ, bits [11:10]

Global timestamp frequency. Defines how often the ITM generates a global timestamp, based on the
global timestamp clock frequency, or disables generation of global timestamps.

The possible values of this field are:

0b00 Disable generation of Global Timestamp packets.

0b01 Generate timestamp request whenever the ITM detects a change in global timestamp
counter bits [47:7]. This is approximately every 128 cycles.

0b10 Generate timestamp request whenever the ITM detects a change in global timestamp
counter bits [47:13]. This is approximately every 8192 cycles.

0b11 Generate a timestamp after every packet, if the output FIFO is empty.

If the implementation does not support global timestamping then these bits are reserved, RAZ/WI.

This field resets to zero on a Cold reset.

TSPrescale, bits [9:8]

Timestamp prescale. Local timestamp prescaler, used with the trace packet reference clock.

The possible values of this field are:

0b00 No prescaling.

0b01 Divide by 4.

0b10 Divide by 16.

0b11 Divide by 64.

If the processor does not implement the timestamp prescaler then these bits are reserved, RAZ/WI.

This field resets to zero on a Cold reset.

Bits [7:6]

Reserved, RES0.

STALLENA, bit [5]

Stall enable. Stall the PE to guarantee delivery of Data Trace packets.

The possible values of this bit are:

0 Drop Hardware Source packets and generate an Overflow packet if the ITM output is
stalled.

1 Stall the PE to guarantee delivery of Data Trace packets.

If stalling is not implemented, this bit is RAZ/WI.

SWOENA, bit [4]

SWO enable. Enables asynchronous clocking of the timestamp counter.

The possible values of this bit are:

0 Timestamp counter uses the processor system clock.

1 Timestamp counter uses asynchronous clock from the TPIU interface. The timestamp
counter is held in reset while the output line is idle.

Which clocking modes are implemented is IMPLEMENTATION DEFINED. If the implementation does
not support both modes this bit is either RAZ or RAO, to indicate the implemented mode.

This bit resets to an UNKNOWN value on a Cold reset.

TXENA, bit [3]

Transmit enable. Enables forwarding of hardware event packet from the DWT unit to the ITM for
output to the TPIU.
D2-1008 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
The possible values of this bit are:

0 Disabled.

1 Enabled.

It is IMPLEMENTATION DEFINED whether the DWT discards packets that it cannot forward to the
ITM.

This bit resets to zero on a Cold reset.

Note
 If a debugger changes this bit from 0 to 1, the DWT might forward a hardware event packet that it

has previously generated.

SYNCENA, bit [2]

Synchronization enable. Enables Synchronization packet transmission for a synchronous TPIU.

The possible values of this bit are:

0 Disabled.

1 Enabled.

This bit resets to zero on a Cold reset.

Note
 If a debugger sets this bit to 1 it must also configure DWT_CTRL.SYNCTAP for the correct

synchronization speed.

TSENA, bit [1]

Timestamp enable. Enables Local timestamp generation.

The possible values of this bit are:

0 Disabled.

1 Enabled.

This bit resets to zero on a Cold reset.

ITMENA, bit [0]

ITM enable. Enables the ITM.

The possible values of this bit are:

0 Disabled.

1 Enabled.

This is the master enable for the ITM unit. A debugger must set this bit to 1 to permit writes to all
Stimulus Port registers.

This bit resets to zero on a Cold reset.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-1009
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.141 ITM_TER<n>, ITM Trace Enable Register, n = 0 - 7

The ITM_TER<n> characteristics are:

Purpose Provide an individual enable bit for each ITM_STIM register.

Usage constraints If the Main Extension is implemented, both privileged and unprivileged accesses are
permitted.

If the Main Extension is not implemented, unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations Present only if the ITM is implemented.

This register is RES0 if the ITM is not implemented.

If the Main Extension is not implemented then the ITM is not implemented.

Attributes 32-bit read/write register located at 0xE0000E00 + 4n.

This register is not banked between Security states.

Field descriptions

The ITM_TER<n> bit assignments are:

STIMENA, bits [31:0]

Stimulus enable. For STIMENA[m] in ITM_TERn, controls whether ITM_STIM(32n + m) is
enabled.

The possible values of each bit are:

0 Stimulus port (32n + m) disabled.

1 Stimulus port (32n + m) enabled.

Bits corresponding to unimplemented stimulus ports are RAZ/WI. Unprivileged writes to
ITM_TERn do not update STIMENA[m] if ITM_TPR.PRIVMASK[(32n+m) DIV 8] is set to 1.

This field resets to zero on a Cold reset.

031

STIMENA
D2-1010 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.142 ITM_TPR, ITM Trace Privilege Register

The ITM_TPR characteristics are:

Purpose Controls which stimulus ports can be accessed by unprivileged code.

Usage constraints If the Main Extension is implemented, both privileged and unprivileged accesses are
permitted, but unprivileged writes are ignored.

If the Main Extension is not implemented, unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations Present only if the ITM is implemented.

This register is RES0 if the ITM is not implemented.

If the Main Extension is not implemented then the ITM is not implemented.

Attributes 32-bit read/write register located at 0xE0000E40.

This register is not banked between Security states.

Field descriptions

The ITM_TPR bit assignments are:

PRIVMASK, bits [31:0]

Privilege mask. For PRIVMASK[m], defines the access permissions of ITM_STIM Stimulus Ports
8m to 8m+7 inclusive.

The possible values of each bit are:

0 Unprivileged access permitted.

1 Privileged access only.

Bits corresponding to unimplemented stimulus ports are RAZ/WI.

This field resets to zero on a Cold reset.

031

PRIVMASK
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-1011
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.143 LR, Link Register

The LR characteristics are:

Purpose Exception and procedure call link register.

Usage constraints Privileged and unprivileged access permitted.

Configurations This register is always implemented.

Attributes 32-bit read/write special-purpose register.

This register is not banked between Security states.

Field descriptions

The LR bit assignments are:

VALUE, bits [31:0]

Link register. 32-bit link register updated to hold a return address, FNC_RETURN or
EXC_RETURN on a function call or exception entry. LR can be used as a general-purpose register.

Software can refer to LR as R14.

This field resets to 0xFFFFFFFF on a Warm reset if the Main Extension is implemented.

Note
 In general, ARM strongly recommends using the names SP, LR and PC instead of R13, R14 and

R15. However, sometimes it is simpler to use the R13-R15 names when referring to a group of
registers. For example, it is simpler to refer to registers R8 to R15, rather than to registers R8 to R12,
the SP, LR and PC. These two descriptions of the group of registers have exactly the same meaning.

031

VALUE
D2-1012 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.144 MAIR_ATTR, Memory Attribute Indirection Register Attributes

The MAIR_ATTR characteristics are:

Purpose Defines the memory attribute encoding for use in the MPU_MAIR0 and MPU_MAIR1.

Usage constraints None.

Configurations All.

Attributes 8-bit payload.

Field descriptions

The MAIR_ATTR bit assignments are:

When Outer != '0000':

When Outer == '0000':

Outer, bits [7:4]

Outer attributes. Specifies the Outer memory attributes.

The possible values of this field are:

0b0000 Device memory.

0b00RW Normal memory, Outer write-through transient (RW!='00').

0b0100 Normal memory, Outer non-cacheable.

0b01RW Normal memory, Outer write-back transient (RW!='00').

0b10RW Normal memory, Outer write-through non-transient.

0b11RW Normal memory, Outer write-back non-transient.

R and W specify the outer read and write allocation policy: 0 = do not allocate, 1 = allocate.

Device, bits [3:2], when Outer == '0000'

Device attributes. Specifies the memory attributes for Device.

The possible values of this field are:

0b00 Device-nGnRnE.

0b01 Device-nGnRE.

0b10 Device-nGRE.

0b11 Device-GRE.

Bits [1:0], when Outer == '0000'

Reserved, RES0.

Inner, bits [3:0], when Outer != '0000'

Inner attributes. Specifies the Inner memory attributes.

The possible values of this field are:

0b0000 UNPREDICTABLE.

03

Inner

47

Outer

01

RES0

2347

Outer

Device
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-1013
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
0b00RW Normal memory, Inner write-through transient (RW!='00').

0b0100 Normal memory, Inner non-cacheable.

0b01RW Normal memory, Inner write-back transient (RW!='00').

0b10RW Normal memory, Inner write-through non-transient.

0b11RW Normal memory, Inner write-back non-transient.

R and W specify the inner read and write allocation policy: 0 = do not allocate, 1 = allocate.
D2-1014 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.145 MMFAR, MemManage Fault Address Register

The MMFAR characteristics are:

Purpose Shows the address of the memory location that caused an MPU fault.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes 32-bit read/write register located at 0xE000ED34.

Secure software can access the Non-secure view of this register via MMFAR_NS located at
0xE002ED34. The location 0xE002ED34 is RES0 to software executing in Non-secure state and
the debugger.

This register is banked between Security states.

Field descriptions

The MMFAR bit assignments are:

ADDRESS, bits [31:0]

Data address for an MemManage fault. This register is updated with the address of a location that
produced a MemManage fault. The MMFSR shows the cause of the fault, and whether this field is
valid. This field is valid only when MMFSR.MMARVALID is set, otherwise it is UNKNOWN.

In implementations without unique BFAR and MMFAR registers, the value of this register is
UNKNOWN if BFSR.BFARVALID is set.

This field resets to an UNKNOWN value on a Warm reset.

031

ADDRESS
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-1015
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.146 MMFSR, MemManage Fault Status Register

The MMFSR characteristics are:

Purpose Shows the status of MPU faults.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

If the Main Extension is implemented, this register is word, halfword, and byte accessible.

If the Main Extension is not implemented, this register is word accessible only, halfword
and byte accesses are UNPREDICTABLE.

Configurations Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes 8-bit read/write-one-to-clear register located at 0xE000ED28.

Secure software can access the Non-secure view of this register via MMFSR_NS located at
0xE002ED28. The location 0xE002ED28 is RES0 to software executing in Non-secure state and
the debugger.

This register is banked between Security states.

This register is part of CFSR.

Field descriptions

The MMFSR bit assignments are:

MMARVALID, bit [7]

MMFAR valid flag. Indicates validity of the MMFAR register.

The possible values of this bit are:

0 MMFAR content not valid.

1 MMFAR content valid.

This bit resets to zero on a Warm reset.

Bit [6]

Reserved, RES0.

MLSPERR, bit [5]

MemManage lazy state preservation error flag. Records whether a MemManage fault occurred
during FP lazy state preservation.

The possible values of this bit are:

0 No MemManage occurred.

1 MemManage occurred.

This bit resets to zero on a Warm reset.

MSTKERR, bit [4]

MemManage stacking error flag. Records whether a derived MemManage fault occurred during
exception entry stacking.

The possible values of this bit are:

0 No derived MemManage occurred.

012

(0)

3456

(0)

7

MMARVALID
MLSPERR
MSTKERR

IACCVIOL
DACCVIOL
MUNSTKERR
D2-1016 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
1 Derived MemManage occurred during exception entry.

This bit resets to zero on a Warm reset.

MUNSTKERR, bit [3]

MemManage unstacking error flag. Records whether a derived MemManage fault occurred during
exception return unstacking.

The possible values of this bit are:

0 No derived MemManage fault occurred.

1 Derived MemManage fault occurred during exception return.

This bit resets to zero on a Warm reset.

Bit [2]

Reserved, RES0.

DACCVIOL, bit [1]

Data access violation flag. Records whether a data access violation has occurred.

The possible values of this bit are:

0 No MemManage fault on data access has occurred.

1 MemManage fault on data access has occurred.

A DACCVIOL will be accompanied by an MMFAR update.

This bit resets to zero on a Warm reset.

IACCVIOL, bit [0]

Instruction access violation. Records whether an instruction related memory access violation has
occurred.

The possible values of this bit are:

0 No MemManage fault on instruction access has occurred.

1 MemManage fault on instruction access has occurred.

An IACCVIOL is only recorded if a faulted instruction is executed.

This bit resets to zero on a Warm reset.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-1017
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.147 MPU_CTRL, MPU Control Register

The MPU_CTRL characteristics are:

Purpose Enables the MPU and, when the MPU is enabled, controls whether the default memory map
is enabled as a background region for privileged accesses, and whether the MPU is enabled
for HardFaults, NMIs, and exception handlers when FAULTMASK is set to 1.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations This register is always implemented.

Attributes 32-bit read/write register located at 0xE000ED94.

Secure software can access the Non-secure view of this register via MPU_CTRL_NS
located at 0xE002ED94. The location 0xE002ED94 is RES0 to software executing in Non-secure
state and the debugger.

This register is banked between Security states.

Field descriptions

The MPU_CTRL bit assignments are:

Bits [31:3]

Reserved, RES0.

PRIVDEFENA, bit [2]

Privileged default enable. Controls whether the default memory map is enabled for privileged
software.

The possible values of this bit are:

0 Use of default memory map disabled.

1 Use of default memory map enabled for privilege code.

When the ENABLE bit is set to 0, the PE ignores the PRIVDEFENA bit. If no regions are enabled
and the PRIVDEFENA and ENABLE bits are set to 1, only privileged code can execute from the
system address map. If no MPU regions are implemented this bit is RES0.

This bit resets to zero on a Warm reset.

HFNMIENA, bit [1]

HardFault, NMI enable. Controls whether handlers executing with priority less than 0 access
memory with the MPU enabled or disabled. This applies to HardFaults, NMIs, and exception
handlers when FAULTMASK is set to 1.

The possible values of this bit are:

0 MPU disabled for these handlers.

1 MPU enabled for these handlers.

If HFNMIENA is set to 1 when ENABLE is set to 0, behavior is UNPREDICTABLE. If no MPU
regions are implemented this bit is RES0.

This bit resets to zero on a Warm reset.

012331

RES0

PRIVDEFENA
HFNMIENA

ENABLE
D2-1018 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
ENABLE, bit [0]

Enable. Enables the MPU.

The possible values of this bit are:

0 The MPU is disabled.

1 The MPU is enabled.

Disabling the MPU, by setting the ENABLE bit to 0, means that privileged and unprivileged
accesses use the default memory map. If no MPU regions are implemented this bit is RES0.

This bit resets to zero on a Warm reset.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-1019
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.148 MPU_MAIR0, MPU Memory Attribute Indirection Register 0

The MPU_MAIR0 characteristics are:

Purpose Along with MPU_MAIR1, provides the memory attribute encodings corresponding to the
AttrIndex values.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations This register is always implemented.

Attributes 32-bit read/write register located at 0xE000EDC0.

Secure software can access the Non-secure view of this register via MPU_MAIR0_NS
located at 0xE002EDC0. The location 0xE002EDC0 is RES0 to software executing in Non-secure
state and the debugger.

This register is banked between Security states.

Preface

This register is RES0 if no MPU regions are implemented in the corresponding Security state.

Field descriptions

The MPU_MAIR0 bit assignments are:

Attrm, bits [8m+7:8m], for m = 0 to 3

Attribute m. Memory attribute encoding for MPU regions with an AttrIndex of m.

The possible values of this field are:

All See MAIR_ATTR for encoding.

This field resets to an UNKNOWN value on a Warm reset.

07

Attr0

815

Attr1

1623

Attr2

2431

Attr3
D2-1020 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.149 MPU_MAIR1, MPU Memory Attribute Indirection Register 1

The MPU_MAIR1 characteristics are:

Purpose Along with MPU_MAIR0, provides the memory attribute encodings corresponding to the
AttrIndex values.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations This register is always implemented.

Attributes 32-bit read/write register located at 0xE000EDC4.

Secure software can access the Non-secure view of this register via MPU_MAIR1_NS
located at 0xE002EDC4. The location 0xE002EDC4 is RES0 to software executing in Non-secure
state and the debugger.

This register is banked between Security states.

Preface

This register is RES0 if no MPU regions are implemented in the corresponding Security state.

Field descriptions

The MPU_MAIR1 bit assignments are:

Attrm, bits [8(m-4)+7:8(m-4)], for m = 4 to 7

Attribute m. Memory attribute encoding for MPU regions with an AttrIndex of m.

The possible values of this field are:

All See MAIR_ATTR for encoding.

This field resets to an UNKNOWN value on a Warm reset.

07

Attr4

815

Attr5

1623

Attr6

2431

Attr7
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-1021
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.150 MPU_RBAR, MPU Region Base Address Register

The MPU_RBAR characteristics are:

Purpose Provides indirect read and write access to the base address of the currently selected MPU
region for the selected Security state.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations This register is always implemented.

Attributes 32-bit read/write register located at 0xE000ED9C.

Secure software can access the Non-secure view of this register via MPU_RBAR_NS
located at 0xE002ED9C. The location 0xE002ED9C is RES0 to software executing in Non-secure
state and the debugger.

This register is banked between Security states.

Preface

This register provides access to the configuration of the MPU region selected by MPU_RNR.REGION for the
appropriate Security state. The field descriptions apply to the currently selected region.

Field descriptions

The MPU_RBAR bit assignments are:

BASE, bits [31:5]

Base address. Contains bits [31:5] of the lower inclusive limit of the selected MPU memory region.
This value is zero extended to provide the base address to be checked against.

This field resets to an UNKNOWN value on a Warm reset.

SH, bits [4:3]

Shareability. Defines the Shareability domain of this region for Normal memory.

The possible values of this field are:

0b00 Non-shareable.

0b10 Outer Shareable.

0b11 Inner Shareable.

All other values are reserved.

For any type of Device memory, the value of this field is ignored.

This field resets to an UNKNOWN value on a Warm reset.

AP[2:1], bits [2:1]

Access permissions. Defines the access permissions for this region.

The possible values of this field are:

0b00 Read/write by privileged code only.

0b01 Read/write by any privilege level.

0b10 Read-only by privileged code only.

0b11 Read-only by any privilege level.

0

XN

1234

SH

531

BASE

AP[2:1]
D2-1022 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
This field resets to an UNKNOWN value on a Warm reset.

XN, bit [0]

Execute never. Defines whether code can be executed from this region.

The possible values of this bit are:

0 Execution only permitted if read permitted.

1 Execution not permitted.

This bit resets to an UNKNOWN value on a Warm reset.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-1023
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.151 MPU_RBAR_A<n>, MPU Region Base Address Register Alias, n = 1 - 3

The MPU_RBAR_A<n> characteristics are:

Purpose Provides indirect read and write access to the base address of the MPU region selected by
MPU_RNR[7:2]:(n[1:0]) for the selected Security state.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes 32-bit read/write register located at 0xE000EDA4 + 8(n-1).

Secure software can access the Non-secure view of this register via
MPU_RBAR_A<n>_NS located at 0xE002EDA4 + 8(n-1). The location 0xE002EDA4 + 8(n-1)
is RES0 to software executing in Non-secure state and the debugger.

This register is banked between Security states.

Preface

This register is an alias of the MPU_RBAR register and provides access to the configuration of the MPU region
selected by MPU_RNR.REGION had REGION[1:0] been set to n[1:0].

Field descriptions

The MPU_RBAR_A<n> bit assignments are:

BASE, bits [31:5]

Base address. Contains bits [31:5] of the lower inclusive limit of the selected MPU memory region.
This value is zero extended to provide the base address to be checked against.

This field resets to an UNKNOWN value on a Warm reset.

SH, bits [4:3]

Shareability. Defines the Shareability domain of this region for Normal memory.

The possible values of this field are:

0b00 Non-shareable.

0b10 Outer Shareable.

0b11 Inner Shareable.

All other values are reserved.

For any type of Device memory, the value of this field is ignored.

This field resets to an UNKNOWN value on a Warm reset.

AP[2:1], bits [2:1]

Access permissions. Defines the access permissions for this region.

The possible values of this field are:

0b00 Read/write by privileged code only.

0b01 Read/write by any privilege level.

0b10 Read-only by privileged code only.

0

XN

1234

SH

531

BASE

AP[2:1]
D2-1024 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
0b11 Read-only by any privilege level.

This field resets to an UNKNOWN value on a Warm reset.

XN, bit [0]

Execute never. Defines whether code can be executed from this region.

The possible values of this bit are:

0 Execution only permitted if read permitted.

1 Execution not permitted.

This bit resets to an UNKNOWN value on a Warm reset.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-1025
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.152 MPU_RLAR, MPU Region Limit Address Register

The MPU_RLAR characteristics are:

Purpose Provides indirect read and write access to the limit address of the currently selected MPU
region for the selected Security state.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations This register is always implemented.

Attributes 32-bit read/write register located at 0xE000EDA0.

Secure software can access the Non-secure view of this register via MPU_RLAR_NS
located at 0xE002EDA0. The location 0xE002EDA0 is RES0 to software executing in Non-secure
state and the debugger.

This register is banked between Security states.

Preface

This register provides access to the configuration of the MPU region selected by MPU_RNR.REGION for the
appropriate Security state. The field descriptions apply to the currently selected region.

Field descriptions

The MPU_RLAR bit assignments are:

LIMIT, bits [31:5]

Limit address. Contains bits [31:5] of the upper inclusive limit of the selected MPU memory region.
This value is postfixed with 0x1F to provide the limit address to be checked against.

This field resets to an UNKNOWN value on a Warm reset.

Bit [4]

Reserved, RES0.

AttrIndx, bits [3:1]

Attribute index. Associates a set of attributes in the MPU_MAIR0 and MPU_MAIR1 fields.

This field resets to an UNKNOWN value on a Warm reset.

EN, bit [0]

Enable. Region enable.

The possible values of this bit are:

0 Region disabled.

1 Region enabled.

This bit resets to zero on a Warm reset.

0

EN

13

AttrIndx

4

(0)

531

LIMIT
D2-1026 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.153 MPU_RLAR_A<n>, MPU Region Limit Address Register Alias, n = 1 - 3

The MPU_RLAR_A<n> characteristics are:

Purpose Provides indirect read and write access to the limit address of the currently selected MPU
region selected by MPU_RNR[7:2]:(n[1:0]) for the selected Security state.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes 32-bit read/write register located at 0xE000EDA8 + 8(n-1).

Secure software can access the Non-secure view of this register via
MPU_RLAR_A<n>_NS located at 0xE002EDA8 + 8(n-1). The location 0xE002EDA8 + 8(n-1)
is RES0 to software executing in Non-secure state and the debugger.

This register is banked between Security states.

Preface

This register is an alias of the MPU_RLAR register and provides access to the configuration of the MPU region
selected by MPU_RNR.REGION had REGION[1:0] been set to n[1:0].

Field descriptions

The MPU_RLAR_A<n> bit assignments are:

LIMIT, bits [31:5]

Limit address. Contains bits [31:5] of the upper inclusive limit of the selected MPU memory region.
This value is postfixed with 0x1F to provide the limit address to be checked against.

This field resets to an UNKNOWN value on a Warm reset.

Bit [4]

Reserved, RES0.

AttrIndx, bits [3:1]

Attribute index. Associates a set of attributes in the MPU_MAIR0 and MPU_MAIR1 fields.

This field resets to an UNKNOWN value on a Warm reset.

EN, bit [0]

Enable. Region enable.

The possible values of this bit are:

0 Region disabled.

1 Region enabled.

This bit resets to zero on a Warm reset.

0

EN

13

AttrIndx

4

(0)

531

LIMIT
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-1027
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.154 MPU_RNR, MPU Region Number Register

The MPU_RNR characteristics are:

Purpose Selects the region currently accessed by MPU_RBAR and MPU_RLAR.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations This register is always implemented.

Attributes 32-bit read/write register located at 0xE000ED98.

Secure software can access the Non-secure view of this register via MPU_RNR_NS located
at 0xE002ED98. The location 0xE002ED98 is RES0 to software executing in Non-secure state and
the debugger.

This register is banked between Security states.

Field descriptions

The MPU_RNR bit assignments are:

Bits [31:8]

Reserved, RES0.

REGION, bits [7:0]

Region number. Indicates the memory region accessed by MPU_RBAR and MPU_RLAR.

If no MPU regions are implemented, this field is RES0. Writing a value corresponding to an
unimplemented region is CONSTRAINED UNPREDICTABLE.

This field resets to an UNKNOWN value on a Warm reset.

07

REGION

831

RES0
D2-1028 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.155 MPU_TYPE, MPU Type Register

The MPU_TYPE characteristics are:

Purpose The MPU Type Register indicates how many regions the MPU for the selected Security
state supports.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations This register is always implemented.

Attributes 32-bit read-only register located at 0xE000ED90.

Secure software can access the Non-secure view of this register via MPU_TYPE_NS
located at 0xE002ED90. The location 0xE002ED90 is RES0 to software executing in Non-secure
state and the debugger.

This register is banked between Security states.

Field descriptions

The MPU_TYPE bit assignments are:

Bits [31:16]

Reserved, RES0.

DREGION, bits [15:8]

Data regions. Number of regions supported by the MPU.

If this field reads-as-zero, the PE does not implement an MPU for the selected Security state.

This field reads as an IMPLEMENTATION DEFINED value.

Bits [7:1]

Reserved, RES0.

SEPARATE, bit [0]

Separate. Indicates support for separate instructions and data address regions.

ARMv8-M only supports unified MPU regions.

This bit reads as zero.

017

RES0

815

DREGION

1631

RES0

SEPARATE
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-1029
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.156 MSPLIM, Main Stack Pointer Limit Register

The MSPLIM characteristics are:

Purpose Holds the lower limit of the Main stack pointer.

Usage constraints Privileged access only. Unprivileged access is RAZ/WI.

Configurations This register is always implemented.

Attributes 32-bit read/write special-purpose register.

This register is banked between Security states.

Field descriptions

The MSPLIM bit assignments are:

LIMIT, bits [31:3]

Stack limit. Bits [31:3] of the Main stack pointer limit address 'FTSSS.

Many instructions and exception entry will generate an exception if the appropriate stack pointer
would be updated to a value lower than this limit. If the Main Extension is not implemented, the
Non-secure MSPLIM is RAZ/WI.

This field resets to zero on a Warm reset.

Bits [2:0]

Reserved, RES0.

02

RES0

331

LIMIT
D2-1030 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.157 MVFR0, Media and VFP Feature Register 0

The MVFR0 characteristics are:

Purpose Describes the features provided by the Floating-point Extension.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations Present only if the Floating-point Extension is implemented.

This register is RES0 if the Floating-point Extension is not implemented.

Attributes 32-bit read-only register located at 0xE000EF40.

Secure software can access the Non-secure view of this register via MVFR0_NS located at
0xE002EF40. The location 0xE002EF40 is RES0 to software executing in Non-secure state and
the debugger.

This register is not banked between Security states.

Preface

When floating-point is not implemented this register reads as 0x00000000.

Where single-precision only floating-point is supported this register reads as 0x10110021.

Where single and double-precision floating-point are supported this register reads as 0x10110221.

Field descriptions

The MVFR0 bit assignments are:

FPRound, bits [31:28]

Floating-point rounding modes. Indicates the rounding modes supported by the FP Extension.

The possible values of this field are:

0b0001 All rounding modes supported.

All other values are reserved.

This field reads as 0b0001.

Bits [27:24]

Reserved, RES0.

FPSqrt, bits [23:20]

Floating-point square root. Indicates the support for FP square root operations.

The possible values of this field are:

0b0001 Supported.

All other values are reserved.

This field reads as 0b0001.

FPDivide, bits [19:16]

Floating-point divide. Indicates the support for FP divide operations.

The possible values of this field are:

0b0001 Supported.

03

SIMDReg

47

FPSP

811

FPDP

1215

RES0

1619

FPDivide

2023

FPSqrt

2427

RES0

2831

FPRound
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-1031
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
All other values are reserved.

This field reads as 0b0001.

Bits [15:12]

Reserved, RES0.

FPDP, bits [11:8]

Floating-point double-precision. Indicates support for FP double-precision operations.

The possible values of this field are:

0b0000 Not supported.

0b0010 Supported.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

FPSP, bits [7:4]

Floating-point single-precision. Indicates support for FP single-precision operations.

The possible values of this field are:

0b0010 Supported.

All other values are reserved.

This field reads as 0b0010.

SIMDReg, bits [3:0]

SIMD registers. Indicates size of FP register file.

The possible values of this field are:

0b0001 16 × 64-bit registers.

All other values are reserved.

This field reads as 0b0001.
D2-1032 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.158 MVFR1, Media and VFP Feature Register 1

The MVFR1 characteristics are:

Purpose Describes the features provided by the Floating-point Extension.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations Present only if the Floating-point Extension is implemented.

This register is RES0 if the Floating-point Extension is not implemented.

Attributes 32-bit read-only register located at 0xE000EF44.

Secure software can access the Non-secure view of this register via MVFR1_NS located at
0xE002EF44. The location 0xE002EF44 is RES0 to software executing in Non-secure state and
the debugger.

This register is not banked between Security states.

Preface

When floating-point is not implemented this register reads as 0x00000000.

Where single-precision only floating-point is supported this register reads as 0x11000011.

Where single and double-precision floating-point are supported this register reads as 0x12000011.

Field descriptions

The MVFR1 bit assignments are:

FMAC, bits [31:28]

Fused multiply accumulate. Indicates whether the FP Extension implements the fused multiply
accumulate instructions.

The possible values of this field are:

0b0001 Implemented.

All other values are reserved.

This field reads as 0b0001.

FPHP, bits [27:24]

Floating-point half-precision. Indicates whether the FP Extension implements half-precision FP
conversion instructions.

The possible values of this field are:

0b0001 Half-precision to single-precision implemented.

0b0010 Half-precision to single and double-precision implemented.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

Bits [23:8]

Reserved, RES0.

03

FPFtZ

47

FPDNaN

823

RES0

2427

FPHP

2831

FMAC
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-1033
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
FPDNaN, bits [7:4]

Floating-point default NaN. Indicates whether the FP hardware implementation supports NaN
propagation.

The possible values of this field are:

0b0001 Propagation of NaN values supported.

All other values are reserved.

This field reads as 0b0001.

FPFtZ, bits [3:0]

Floating-point flush-to-zero. Indicates whether subnormals are always flushed-to-zero.

The possible values of this field are:

0b0001 Full denormalized numbers arithmetic supported.

All other values are reserved.

This field reads as 0b0001.
D2-1034 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.159 MVFR2, Media and VFP Feature Register 2

The MVFR2 characteristics are:

Purpose Describes the features provided by the Floating-point Extension.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations Present only if the Floating-point Extension is implemented.

This register is RES0 if the Floating-point Extension is not implemented.

Attributes 32-bit read-only register located at 0xE000EF48.

Secure software can access the Non-secure view of this register via MVFR2_NS located at
0xE002EF48. The location 0xE002EF48 is RES0 to software executing in Non-secure state and
the debugger.

This register is not banked between Security states.

Preface

When floating-point is not implemented this register reads as 0x00000000.

When floating-point is implemented this register reads as 0x00000040.

Field descriptions

The MVFR2 bit assignments are:

Bits [31:8]

Reserved, RES0.

FPMisc, bits [7:4]

Floating-point miscellaneous. Indicates support for miscellaneous FP features.

The possible values of this field are:

0b0100 Selection, directed conversion to integer, VMINNM and VMAXNM supported.

All other values are reserved.

This field reads as 0b0100.

Bits [3:0]

Reserved, RES0.

03

RES0

47

FPMisc

831

RES0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-1035
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.160 NSACR, Non-secure Access Control Register

The NSACR characteristics are:

Purpose Defines the Non-secure access permissions for both the FP Extension and coprocessors CP0
to CP7.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations This register is always implemented.

Attributes 32-bit read/write register located at 0xE000ED8C.

This register is RAZ/WI when accessed as Non-secure.

This register is not banked between Security states.

Field descriptions

The NSACR bit assignments are:

Bits [31:12]

Reserved, RES0.

CP11, bit [11]

CP11 access. Enables Non-secure access to the Floating-point Extension.

Programming with a different value than that used for CP10 is UNPREDICTABLE. If the
Floating-point Extension is not implemented, this bit is RAZ/WI.

This bit resets to an UNKNOWN value on a Warm reset.

CP10, bit [10]

CP10 access. Enables Non-secure access to the Floating-point Extension.

The possible values of this bit are:

0 Non-secure accesses to the Floating-point Extension generate a NOCP UsageFault.

1 Non-secure access to the Floating-point Extension permitted.

If the Floating-point Extension is not implemented, this bit is RAZ/WI.

This bit resets to an UNKNOWN value on a Warm reset.

Bits [9:8]

Reserved, RES0.

CPm, bit [m], for m = 0 to 7

CPm access. Enables Non-secure access to coprocessor CPm.

The possible values of this field are:

0 Non-secure accesses to this coprocessor generate a NOCP UsageFault.

1 Non-secure access to this coprocessor permitted.

If CPm is not implemented, then this bit is RAZ/WI.

0123456789

RES0

10111231

RES0

CP11
CP10

CP7
CP6
CP5

CP0
CP1
CP2
CP3

CP4
D2-1036 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
This field resets to an UNKNOWN value on a Warm reset.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-1037
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.161 NVIC_IABR<n>, Interrupt Active Bit Register, n = 0 - 15

The NVIC_IABR<n> characteristics are:

Purpose For each group of 32 interrupts, shows the active state of each interrupt.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations This register is always implemented.

Attributes 32-bit read-only register located at 0xE000E300 + 4n.

Secure software can access the Non-secure view of this register via NVIC_IABR<n>_NS
located at 0xE002E300 + 4n. The location 0xE002E300 + 4n is RES0 to software executing in
Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The NVIC_IABR<n> bit assignments are:

ACTIVE, bits [31:0]

Active state. For ACTIVE[m] in NVIC_IABRn, indicates the active state for interrupt 32n+m.

The possible values of each bit are:

0 Interrupt not active.

1 Interrupt is active.

Bits corresponding to unimplemented interrupts are RES0. Bits corresponding to interrupts targeting
Secure state are RAZ/WI from Non-secure.

This field resets to zero on a Warm reset.

031

ACTIVE
D2-1038 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.162 NVIC_ICER<n>, Interrupt Clear Enable Register, n = 0 - 15

The NVIC_ICER<n> characteristics are:

Purpose Clears or reads the enabled state of each group of 32 interrupts.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations This register is always implemented.

Attributes 32-bit read/write-one-to-clear register located at 0xE000E180 + 4n.

Secure software can access the Non-secure view of this register via NVIC_ICER<n>_NS
located at 0xE002E180 + 4n. The location 0xE002E180 + 4n is RES0 to software executing in
Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The NVIC_ICER<n> bit assignments are:

CLRENA, bits [31:0], on a write

Clear enable. For CLRENA[m] in NVIC_ICERn, allows interrupt 32n + m to be disabled.

The possible values of each bit are:

0 No effect.

1 Disable interrupt 32n + m.

Bits corresponding to unimplemented interrupts are RES0. Bits corresponding to interrupts targeting
Secure state are RAZ/WI from Non-secure.

CLRENA, bits [31:0], on a read

Clear enable. For CLRENA[m] in NVIC_ICERn, indicates whether interrupt 32n + m is enabled.

The possible values of each bit are:

0 Interrupt 32n + m disabled.

1 Interrupt 32n + m enabled.

Bits corresponding to unimplemented interrupts are RES0. Bits corresponding to interrupts targeting
Secure state are RAZ/WI from Non-secure.

This field resets to zero on a Warm reset.

031

CLRENA
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-1039
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.163 NVIC_ICPR<n>, Interrupt Clear Pending Register, n = 0 - 15

The NVIC_ICPR<n> characteristics are:

Purpose Clears or reads the pending state of each group of 32 interrupts.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations This register is always implemented.

Attributes 32-bit read/write-one-to-clear register located at 0xE000E280 + 4n.

Secure software can access the Non-secure view of this register via NVIC_ICPR<n>_NS
located at 0xE002E280 + 4n. The location 0xE002E280 + 4n is RES0 to software executing in
Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The NVIC_ICPR<n> bit assignments are:

CLRPEND, bits [31:0], on a write

Clear pending. For CLRPEND[m] in NVIC_ICPRn, allows interrupt 32n + m to be unpended.

The possible values of each bit are:

0 No effect.

1 Clear pending state of interrupt 32n + m.

Bits corresponding to unimplemented interrupts are RES0. Bits corresponding to interrupts targeting
Secure state are RAZ/WI from Non-secure.

CLRPEND, bits [31:0], on a read

Clear pending. For CLRPEND[m] in NVIC_ICPRn, indicates whether interrupt 32n + m is pending.

The possible values of each bit are:

0 Interrupt 32n + m is not pending.

1 Interrupt 32n + m is pending.

Bits corresponding to unimplemented interrupts are RES0. Bits corresponding to interrupts targeting
Secure state are RAZ/WI from Non-secure.

031

CLRPEND
D2-1040 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.164 NVIC_IPR<n>, Interrupt Priority Register, n = 0 - 123

The NVIC_IPR<n> characteristics are:

Purpose Sets or reads interrupt priorities.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

If the Main Extension is implemented, this register is word, halfword, and byte accessible.

If the Main Extension is not implemented, this register is word accessible only, halfword
and byte accesses are UNPREDICTABLE.

Configurations This register is always implemented.

Attributes 32-bit read/write register located at 0xE000E400 + 4n.

Secure software can access the Non-secure view of this register via NVIC_IPR<n>_NS
located at 0xE002E400 + 4n. The location 0xE002E400 + 4n is RES0 to software executing in
Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The NVIC_IPR<n> bit assignments are:

PRI_Nm, bits [8m+7:8m], for m = 0 to 3

Priority 'N'+m. For register NVIC_IPRn, this field indicates and allows modification of the priority
of interrupt number 4n+m, or is RES0 if the PE does not implement this interrupt.

If the PE implements less than 8 bits of priority, then the least significant bits of this field are RES0.
If interrupt number 4n+3 targets Secure state, this field is RAZ/WI from Non-secure.

This field resets to zero on a Warm reset.

07

PRI_N0

815

PRI_N1

1623

PRI_N2

2431

PRI_N3
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-1041
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.165 NVIC_ISER<n>, Interrupt Set Enable Register, n = 0 - 15

The NVIC_ISER<n> characteristics are:

Purpose Enables or reads the enabled state of each group of 32 interrupts.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations This register is always implemented.

Attributes 32-bit read/write-one-to-set register located at 0xE000E100 + 4n.

Secure software can access the Non-secure view of this register via NVIC_ISER<n>_NS
located at 0xE002E100 + 4n. The location 0xE002E100 + 4n is RES0 to software executing in
Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The NVIC_ISER<n> bit assignments are:

SETENA, bits [31:0], on a write

Set enable. For SETENA[m] in NVIC_ISERn, allows interrupt 32n + m to be set enabled.

The possible values of each bit are:

0 No effect.

1 Enable interrupt 32n + m.

Bits corresponding to unimplemented interrupts are RES0. Bits corresponding to interrupts targeting
Secure state are RAZ/WI from Non-secure.

This field resets to zero on a Warm reset.

SETENA, bits [31:0], on a read

Set enable. For SETENA[m] in NVIC_ISERn, indicates whether interrupt 32n + m is enabled.

The possible values of each bit are:

0 Interrupt 32n + m disabled.

1 Interrupt 32n + m enabled.

Bits corresponding to unimplemented interrupts are RES0. Bits corresponding to interrupts targeting
Secure state are RAZ/WI from Non-secure.

This field resets to zero on a Warm reset.

031

SETENA
D2-1042 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.166 NVIC_ISPR<n>, Interrupt Set Pending Register, n = 0 - 15

The NVIC_ISPR<n> characteristics are:

Purpose Enables or reads the pending state of each group of 32 interrupts.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations This register is always implemented.

Attributes 32-bit read/write-one-to-set register located at 0xE000E200 + 4n.

Secure software can access the Non-secure view of this register via NVIC_ISPR<n>_NS
located at 0xE002E200 + 4n. The location 0xE002E200 + 4n is RES0 to software executing in
Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The NVIC_ISPR<n> bit assignments are:

SETPEND, bits [31:0], on a write

Set pending. For SETPEND[m] in NVIC_ISPRn, allows interrupt 32n + m to be set pending.

The possible values of each bit are:

0 No effect.

1 Pend interrupt 32n + m.

Bits corresponding to unimplemented interrupts are RES0. Bits corresponding to interrupts targeting
Secure state are RAZ/WI from Non-secure.

This field is write-one-to-set. Writes of zero are ignored.

This field resets to zero on a Warm reset.

SETPEND, bits [31:0], on a read

Set pending. For SETPEND[m] in NVIC_ISPRn, indicates whether interrupt 32n + m is pending.

The possible values of each bit are:

0 Interrupt 32n + m is not pending.

1 Interrupt 32n + m pending.

Bits corresponding to unimplemented interrupts are RES0. Bits corresponding to interrupts targeting
Secure state are RAZ/WI from Non-secure.

This field resets to zero on a Warm reset.

031

SETPEND
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-1043
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.167 NVIC_ITNS<n>, Interrupt Target Non-secure Register, n = 0 - 15

The NVIC_ITNS<n> characteristics are:

Purpose For each group of 32 interrupts, determines whether each interrupt targets Non-secure or
Secure state.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations This register is always implemented.

Attributes 32-bit read/write register located at 0xE000E380 + 4n.

This register is RAZ/WI when accessed as Non-secure.

This register is not banked between Security states.

Field descriptions

The NVIC_ITNS<n> bit assignments are:

ITNS, bits [31:0]

Interrupt Targets Non-secure. For ITNS[m] in NVIC_ITNSn, this field indicates and allows
modification of the target Security state for interrupt 32n+m.

The possible values of each bit are:

0 Interrupt targets Secure state.

1 Interrupt targets Non-secure state.

Bits corresponding to unimplemented interrupts are RES0. It is IMPLEMENTATION DEFINED whether
individual bits are WI and have an IMPLEMENTATION DEFINED constant value. Where an interrupt is
configured to target Secure state, accesses to the associated fields in Non-secure versions of the
NVIC_IABR, NVIC_ICER, NVIC_ISER, NVIC_ICPR, NVIC_IPR and NVIC_ISPR are RAZ/WI.

This field resets to zero on a Warm reset.

031

ITNS
D2-1044 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.168 PC, Program Counter

The PC characteristics are:

Purpose Holds the current program counter value.

Usage constraints Privileged and unprivileged access permitted.

Configurations This register is always implemented.

Attributes 32-bit read/write special-purpose register.

This register is not banked between Security states.

Field descriptions

The PC bit assignments are:

VALUE, bits [31:0]

Program counter. Holds the address of the current instruction plus four.

Software can refer to PC as R15.

This field resets to an UNKNOWN value on a Warm reset.

Note
 In general, ARM strongly recommends using the names SP, LR and PC instead of R13, R14 and

R15. However, sometimes it is simpler to use the R13-R15 names when referring to a group of
registers. For example, it is simpler to refer to registers R8 to R15, rather than to registers R8 to R12,
the SP, LR and PC. These two descriptions of the group of registers have exactly the same meaning.

031

VALUE
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-1045
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.169 PRIMASK, Exception Mask Register

The PRIMASK characteristics are:

Purpose Provides access to the PE PRIMASK register.

Usage constraints Privileged access only. Unprivileged access is RAZ/WI.

Configurations This register is always implemented.

Attributes 32-bit read/write special-purpose register.

This register is banked between Security states.

Field descriptions

The PRIMASK bit assignments are:

Bits [31:1]

Reserved, RES0.

PM, bit [0]

Exception mask register. Setting the Secure PRIMASK to one raises the execution priority to 0.
Setting the Non-secure PRIMASK to one raises the execution priority to 0 if AIRCR.PRIS is clear,
or 0x80 if AIRCR.PRIS is set.

The possible values of this bit are:

0 No effect on execution priority.

1 Boosts execution priority to either 0 or 0x80.

This bit resets to zero on a Warm reset.

0131

RES0

PM
D2-1046 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.170 PSPLIM, Process Stack Pointer Limit Register

The PSPLIM characteristics are:

Purpose Holds the lower limit for the Process stack pointer.

Usage constraints Privileged access only. Unprivileged access is RAZ/WI.

Configurations This register is always implemented.

Attributes 32-bit read/write special-purpose register.

This register is banked between Security states.

Field descriptions

The PSPLIM bit assignments are:

LIMIT, bits [31:3]

Stack limit. Bits [31:3] of the Process stack limit address for the selected Security state.

Many instructions and exception entry will generate an exception if the appropriate stack pointer
would be updated to a value lower than this limit. If the Main Extension is not implemented, the
Non-secure PSPLIM is RAZ/WI.

This field resets to zero on a Warm reset.

Bits [2:0]

Reserved, RES0.

02

RES0

331

LIMIT
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-1047
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.171 R<n>, General-Purpose Register, n = 0 - 12

The R<n> characteristics are:

Purpose General-purpose register.

Usage constraints Both privileged and unprivileged accesses are permitted.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations This register is always implemented.

Attributes 32-bit read/write register.

This register is not banked between Security states.

Field descriptions

The R<n> bit assignments are:

VALUE, bits [31:0]

General purpose register value. ARMv8-M implemented thirteen general-purpose 32-bit registers,
R0 to R12.

This field resets to an UNKNOWN value on a Warm reset.

031

VALUE
D2-1048 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.172 RETPSR, Combined Exception Return Program Status Registers

The RETPSR characteristics are:

Purpose Value pushed to the stack on exception entry. On exception return this is used to restore the
flags and other architectural state. This payload is also used for FNC_RETURN stacking,
however in this case only some of the fields are used. See FunctionReturn() for details.

Usage constraints None.

Configurations All.

Attributes 32-bit payload.

Field descriptions

The RETPSR bit assignments are:

When {RETPSR[26:25], RETPSR[11:10]} != 0:

When {RETPSR[26:25], RETPSR[11:10]} == 0:

N, bit [31]

Negative flag. Value corresponding to APSR.N.

Z, bit [30]

Zero flag. Value corresponding to APSR.Z.

C, bit [29]

Carry flag. Value corresponding to APSR.C.

V, bit [28]

Overflow flag. Value corresponding to APSR.V.

Q, bit [27]

Saturate flag. Value corresponding to APSR.Q.

T, bit [24]

T32 state. Value corresponding to EPSR.T.

Bits [23:21]

Reserved, RES0.

SFPA, bit [20]

Secure floating-point active. Value corresponding to CONTROL.SFPA.

GE, bits [19:16]

Greater-than or equal flag. Value corresponding to APSR.GE.

08

Exception

91015

IT

1619

GE

202123

RES0

24

T

2526

IT

27

Q

28

V

29

C

30

Z

31

N

SFPA SPREALIGN

08

Exception

91015

ICI

1619

GE

202123

RES0

24

T

2526

ICI

27

Q

28

V

29

C

30

Z

31

N

SFPA SPREALIGN
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-1049
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
IT, bits [15:10,26:25], when {RETPSR[26:25], RETPSR[11:10]} != 0

If-then flags. Value corresponding to EPSR.IT.

ICI, bits [26:25,15:10], when {RETPSR[26:25], RETPSR[11:10]} == 0

Interrupt continuation flags. Value corresponding to EPSR.ICI.

SPREALIGN, bit [9]

Stack-pointer re-align. Indicates whether the SP was re-aligned to an 8-byte alignment on exception
entry.

The possible values of this bit are:

0 The stack pointer was 8-byte aligned before exception entry began, no special handling
is required on exception return.

1 The stack pointer was only 4-byte aligned before exception entry. The exception entry
realigned SP to 8-byte alignment by increasing the stack frame size by 4-bytes.

Exception, bits [8:0]

Exception number. Value corresponding to IPSR.Exception.
D2-1050 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.173 SAU_CTRL, SAU Control Register

The SAU_CTRL characteristics are:

Purpose Allows enabling of the Security Attribution Unit.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations This register is always implemented.

Attributes 32-bit read/write register located at 0xE000EDD0.

This register is RAZ/WI when accessed as Non-secure.

This register is not banked between Security states.

Field descriptions

The SAU_CTRL bit assignments are:

Bits [31:2]

Reserved, RES0.

ALLNS, bit [1]

All Non-secure. When SAU_CTRL.ENABLE is 0 this bit controls if the memory is marked as
Non-secure or Secure.

The possible values of this bit are:

0 Memory is marked as Secure and is not Non-secure callable.

1 Memory is marked as Non-secure.

This bit resets to an IMPLEMENTATION DEFINED value on a Warm reset.

ENABLE, bit [0]

Enable. Enables the SAU.

The possible values of this bit are:

0 The SAU is disabled.

1 The SAU is enabled.

If this register resets to 1, the SAU region registers also reset to an IMPLEMENTATION DEFINED value.

This bit resets to an IMPLEMENTATION DEFINED value on a Warm reset.

01231

RES0

ALLNS ENABLE
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-1051
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.174 SAU_RBAR, SAU Region Base Address Register

The SAU_RBAR characteristics are:

Purpose Provides indirect read and write access to the base address of the currently selected SAU
region.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations This register is always implemented.

Attributes 32-bit read/write register located at 0xE000EDDC.

This register is RAZ/WI when accessed as Non-secure.

This register is not banked between Security states.

Field descriptions

The SAU_RBAR bit assignments are:

BADDR, bits [31:5]

Base address. Holds bits [31:5] of the base address for the selected SAU region.

Bits [4:0] of the base address are defined as 0x00.

This field resets to an IMPLEMENTATION DEFINED value on a Warm reset.

Bits [4:0]

Reserved, RES0.

04

RES0

531

BADDR
D2-1052 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.175 SAU_RLAR, SAU Region Limit Address Register

The SAU_RLAR characteristics are:

Purpose Provides indirect read and write access to the limit address of the currently selected SAU
region.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations This register is always implemented.

Attributes 32-bit read/write register located at 0xE000EDE0.

This register is RAZ/WI when accessed as Non-secure.

This register is not banked between Security states.

Field descriptions

The SAU_RLAR bit assignments are:

LADDR, bits [31:5]

Limit address. Holds bits [31:5] of the limit address for the selected SAU region.

Bits [4:0] of the limit address are defined as 0x1F.

This field resets to an IMPLEMENTATION DEFINED value on a Warm reset.

Bits [4:2]

Reserved, RES0.

NSC, bit [1]

Non-secure callable. Controls whether Non-secure state is permitted to execute an SG instruction
from this region.

The possible values of this bit are:

0 Region is not Non-secure callable.

1 Region is Non-secure callable.

This bit resets to an IMPLEMENTATION DEFINED value on a Warm reset.

ENABLE, bit [0]

Enable. SAU region enable.

The possible values of this bit are:

0 SAU region is disabled.

1 SAU region is enabled.

This bit resets to an IMPLEMENTATION DEFINED value on a Warm reset.

0124

RES0

531

LADDR

NSC ENABLE
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-1053
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.176 SAU_RNR, SAU Region Number Register

The SAU_RNR characteristics are:

Purpose Selects the region currently accessed by SAU_RBAR and SAU_RLAR.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations This register is always implemented.

Attributes 32-bit read/write register located at 0xE000EDD8.

This register is RAZ/WI when accessed as Non-secure.

This register is not banked between Security states.

Field descriptions

The SAU_RNR bit assignments are:

Bits [31:8]

Reserved, RES0.

REGION, bits [7:0]

Region number. Indicates the SAU region accessed by SAU_RBAR and SAU_RLAR.

If no SAU regions are implemented, this field is RES0. Writing a value corresponding to an
unimplemented region is CONSTRAINED UNPREDICTABLE.

This field resets to an UNKNOWN value on a Warm reset.

07

REGION

831

RES0
D2-1054 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.177 SAU_TYPE, SAU Type Register

The SAU_TYPE characteristics are:

Purpose Indicates the number of regions implemented by the Security Attribution Unit.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations This register is always implemented.

Attributes 32-bit read-only register located at 0xE000EDD4.

This register is RAZ/WI when accessed as Non-secure.

This register is not banked between Security states.

Field descriptions

The SAU_TYPE bit assignments are:

Bits [31:8]

Reserved, RES0.

SREGION, bits [7:0]

SAU regions. The number of implemented SAU regions.

This field reads as an IMPLEMENTATION DEFINED value.

07

SREGION

831

RES0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-1055
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.178 SCR, System Control Register

The SCR characteristics are:

Purpose Sets or returns system control data.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations This register is always implemented.

Attributes 32-bit read/write register located at 0xE000ED10.

Secure software can access the Non-secure view of this register via SCR_NS located at
0xE002ED10. The location 0xE002ED10 is RES0 to software executing in Non-secure state and
the debugger.

This register is banked between Security states on a bit by bit basis.

Field descriptions

The SCR bit assignments are:

Bits [31:5]

Reserved, RES0.

SEVONPEND, bit [4]

Send event on pend. Determines whether an interrupt assigned to the same Security state as the
SEVONPEND bit transitioning from inactive state to pending state generates a wakeup event.

This bit is banked between Security states.

The possible values of this bit are:

0 Transitions from inactive to pending are not wakeup events.

1 Transitions from inactive to pending are wakeup events.

This bit resets to zero on a Warm reset.

SLEEPDEEPS, bit [3]

Sleep deep secure. This field controls whether the SLEEPDEEP bit is only accessible from the
secure state.

This bit is not banked between Security states.

The possible values of this bit are:

0 The SLEEPDEEP bit accessible from both Security states.

1 The SLEEPDEEP bit behaves as RAZ/WI when accessed from the Non-secure state.

This bit in only accessible from the secure state, and behaves as RAZ/WI when accessed from the
Non-secure state. If a PE does not implement the deep sleep state this bit behaves as RAZ/WI from
both Security states.

This bit is RAZ/WI from Non-secure.

This bit resets to zero on a Warm reset.

SLEEPDEEP, bit [2]

Sleep deep. Provides a qualifying hint indicating that waking from sleep might take longer. An
implementation can use this bit to select between two alternative sleep states.

0

(0)

1234531

RES0

SEVONPEND
SLEEPDEEPS

SLEEPONEXIT
SLEEPDEEP
D2-1056 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
This bit is not banked between Security states.

The possible values of this bit are:

0 Selected sleep state is not deep sleep.

1 Selected sleep state is deep sleep.

Details of the implemented sleep states, if any, and details of the use of this bit, are
IMPLEMENTATION DEFINED. If the PE does not implement a deep sleep state then this bit can be
RAZ/WI.

This bit resets to zero on a Warm reset.

SLEEPONEXIT, bit [1]

Sleep on exit. Determines whether, on an exit from an ISR that returns to the base level of execution
priority, the PE enters a sleep state.

This bit is banked between Security states.

The possible values of this bit are:

0 Do not enter sleep state.

1 Enter sleep state.

This bit resets to zero on a Warm reset.

Bit [0]

Reserved, RES0.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-1057
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.179 SFAR, Secure Fault Address Register

The SFAR characteristics are:

Purpose Shows the address of the memory location that caused a Security violation.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes 32-bit read/write register located at 0xE000EDE8.

This register is RAZ/WI when accessed as Non-secure.

This register is not banked between Security states.

Field descriptions

The SFAR bit assignments are:

ADDRESS, bits [31:0]

Address. The address of an access that caused a attribution unit violation. This field is only valid
when SFSR.SFARVALID is set. This allows the actual flip flops associated with this register to be
shared with other fault address registers. If an implementation chooses to share the storage in this
way, care must be taken to not leak Secure address information to the Non-secure state. One way of
achieving this is to share the SFAR register with the MMFAR_S register, which is not accessible to
the Non-secure state.

This field resets to an UNKNOWN value on a Warm reset.

031

ADDRESS
D2-1058 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.180 SFSR, Secure Fault Status Register

The SFSR characteristics are:

Purpose Provides information about any security related faults.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes 32-bit read/write-one-to-clear register located at 0xE000EDE4.

This register is RAZ/WI when accessed as Non-secure.

This register is not banked between Security states.

Field descriptions

The SFSR bit assignments are:

Bits [31:8]

Reserved, RES0.

LSERR, bit [7]

Lazy state error flag. Sticky flag indicating that an error occurred during lazy state activation or
deactivation.

The possible values of this bit are:

0 Error has not occurred.

1 Error has occurred.

This bit resets to zero on a Warm reset.

SFARVALID, bit [6]

Secure fault address valid. This bit is set when the SFAR register contains a valid value. As with
similar fields, such as BFSR.BFARVALID and MMFSR.MMARVALID, this bit can be cleared by
other exceptions, such as BusFault.

The possible values of this bit are:

0 SFAR content not valid.

1 SFAR content valid.

This bit resets to zero on a Warm reset.

LSPERR, bit [5]

Lazy state preservation error flag. Stick flag indicating that an SAU or IDAU violation occurred
during the lazy preservation of floating-point state.

The possible values of this bit are:

0 Error has not occurred.

1 Error has occurred.

This bit resets to zero on a Warm reset.

01234567831

RES0

LSERR
SFARVALID

LSPERR
INVTRAN

INVEP
INVIS
INVER
AUVIOL
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-1059
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
INVTRAN, bit [4]

Invalid transition flag. Sticky flag indicating that an exception was raised due to a branch that was
not flagged as being domain crossing causing a transition from Secure to Non-secure memory.

The possible values of this bit are:

0 Error has not occurred.

1 Error has occurred.

This bit resets to zero on a Warm reset.

AUVIOL, bit [3]

Attribution unit violation flag. Sticky flag indicating that an attempt was made to access parts of the
address space that are marked as Secure with NS-Req for the transaction set to Non-secure. This bit
is not set if the violation occurred during lazy state preservation. See LSPERR.

The possible values of this bit are:

0 Error has not occurred.

1 Error has occurred.

This bit resets to zero on a Warm reset.

INVER, bit [2]

Invalid exception return flag. This can be caused by EXC_RETURN.DCRS being set to 0 when
returning from an exception in the Non-secure state, or by EXC_RETURN.ES being set to 1 when
returning from an exception in the Non-secure state.

The possible values of this bit are:

0 Error has not occurred.

1 Error has occurred.

This bit resets to zero on a Warm reset.

INVIS, bit [1]

Invalid integrity signature flag. This bit is set if the integrity signature in an exception stack frame
is found to be invalid during the unstacking operation.

The possible values of this bit are:

0 Error has not occurred.

1 Error has occurred.

This bit resets to zero on a Warm reset.

INVEP, bit [0]

Invalid entry point. This bit is set if a function call from the Non-secure state or exception targets a
non-SG instruction in the Secure state. This bit is also set if the target address is a SG instruction,
but there is no matching SAU/IDAU region with the NSC flag set.

The possible values of this bit are:

0 Error has not occurred.

1 Error has occurred.

This bit resets to zero on a Warm reset.
D2-1060 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.181 SHCSR, System Handler Control and State Register

The SHCSR characteristics are:

Purpose Provides access to the active and pending status of system exceptions.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations This register is always implemented.

Attributes 32-bit read/write register located at 0xE000ED24.

Secure software can access the Non-secure view of this register via SHCSR_NS located at
0xE002ED24. The location 0xE002ED24 is RES0 to software executing in Non-secure state and
the debugger.

This register is banked between Security states on a bit by bit basis.

Preface

Exception processing automatically updates the SHCSR fields. However, software can write to the register to add
or remove the pending or active state of an exception. When updating the SHCSR, ARM recommends using a
read-modify-write sequence, to avoid unintended effects on the state of the exception handlers.

Removing the active state of an exception can change the current execution priority, and affect the exception return
consistency checks. If software removes the active state, causing a change in current execution priority, this can
defeat the architectural behavior that prevents an exception from preempting its own handler.

Pending state bits are set to one when an exception occurs and are cleared to zero when the exception becomes
active.

Active state bits are set to one when the associated exception becomes active.

Field descriptions

The SHCSR bit assignments are:

Bits [31:22]

Reserved, RES0.

HARDFAULTPENDED, bit [21]

HardFault exception pended state. This bit indicates and allows modification of the pending state of
the HardFault exception corresponding to the selected Security state.

This bit is banked between Security states.

The possible values of this bit are:

0 HardFault exception not pending for the selected Security state.

1 HardFault exception pending for the selected Security state.

0123456

(0)

789

(0)

1011121314151617181920212231

RES0

HARDFAULTPENDED
SECUREFAULTPENDED

SECUREFAULTENA
USGFAULTENA
BUSFAULTENA
MEMFAULTENA

SVCALLPENDED
BUSFAULTPENDED
MEMFAULTPENDED
USGFAULTPENDED

MEMFAULTACT
BUSFAULTACT
HARDFAULTACT
USGFAULTACT

SECUREFAULTACT
NMIACT
SVCALLACT

MONITORACT
PENDSVACT
SYSTICKACT
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-1061
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
This bit resets to zero on a Warm reset.

Note
 The Non-secure HardFault exception will not preempt if AIRCR.BFHFNMINS is set to zero.

SECUREFAULTPENDED, bit [20]

SecureFault exception pended state. This bit indicates and allows modification of the pending state
of the SecureFault exception.

This bit is not banked between Security states.

The possible values of this bit are:

0 SecureFault exception not pending.

1 SecureFault exception pending.

This bit is RAZ/WI from Non-secure.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

SECUREFAULTENA, bit [19]

SecureFault exception enable. The value of this bit defines whether the SecureFault exception is
enabled.

This bit is not banked between Security states.

The possible values of this bit are:

0 SecureFault exception disabled.

1 SecureFault exception enabled.

When disabled, exceptions that target SecureFault escalate to Secure state HardFault.

This bit is RAZ/WI from Non-secure.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

USGFAULTENA, bit [18]

UsageFault exception enable. The value of this bit defines whether the UsageFault exception is
enabled for the selected Security state.

This bit is banked between Security states.

The possible values of this bit are:

0 UsageFault exception disabled for the selected Security state.

1 UsageFault exception enabled for the selected Security state.

When the UsageFault exception is disabled, exceptions targeting UsageFault escalate to HardFault.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

BUSFAULTENA, bit [17]

BusFault exception enable. The value of this bit defines whether the BusFault exception is enabled.

This bit is not banked between Security states.

The possible values of this bit are:

0 BusFault exception disabled.

1 BusFault exception enabled.

The BusFault exception is not banked between Security states. When the BusFault exception is
disabled, exceptions targeting BusFault escalate to HardFault.

If AIRCR.BFHFNMINS is zero this bit is RAZ/WI from Non-secure state.
D2-1062 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

MEMFAULTENA, bit [16]

MemManage exception enable. The value of this bit defines whether the MemManage exception is
enabled for the selected Security state.

This bit is banked between Security states.

The possible values of this bit are:

0 MemManage exception disabled for the selected Security state.

1 MemManage exception enabled for the selected Security state.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

Note
 When the MemManage exception is disabled, exceptions targeting MemManage escalate to

HardFault.

SVCALLPENDED, bit [15]

SVCall exception pended state. This bit indicates and allows modification of the pending state of
the SVCall exception for the selected Security state.

This bit is banked between Security states.

The possible values of this bit are:

0 SVCall exception not pending for the selected Security state.

1 SVCall exception pending for the selected Security state.

This bit resets to zero on a Warm reset.

BUSFAULTPENDED, bit [14]

BusFault exception pended state. This bit indicates and allows modification of the pending state of
the BusFault exception.

This bit is not banked between Security states.

The possible values of this bit are:

0 BusFault exception not pending.

1 BusFault exception pending.

The BusFault exception is not banked between Security states.

If AIRCR.BFHFNMINS is zero this bit is RAZ/WI from Non-secure state.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

MEMFAULTPENDED, bit [13]

MemManage exception pended state. This bit indicates and allows modification of the pending state
of the MemManage exception for the selected Security state.

This bit is banked between Security states.

The possible values of this bit are:

0 MemManage exception not pending for the selected Security state.

1 MemManage exception pending for the selected Security state.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-1063
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
USGFAULTPENDED, bit [12]

UsageFault exception pended state. The UsageFault exception is banked between Security states,
this bit indicates and allows modification of the pending state of the UsageFault exception for the
selected Security state.

This bit is banked between Security states.

The possible values of this bit are:

0 UsageFault exception not pending for the selected Security state.

1 UsageFault exception pending for the selected Security state.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

SYSTICKACT, bit [11]

SysTick exception active state. This bit indicates and allows modification of the active state of the
SysTick exception for the selected Security state.

If two SysTick timers are implemented this bit is banked between Security states.

If less than two SysTick timers are implemented this bit is not banked between Security states, and
is RAZ/WI if AIRCR.STTNS is zero.

The possible values of this bit are:

0 SysTick exception not active for the selected Security state.

1 SysTick exception active for the selected Security state.

If two timers are implemented, then SYSTICKACT is banked between Security states. If one timer
is implemented this bit corresponds to the Secure state if AIRCR.STTNS is zero, or the Non-secure
state3 if AIRCR.STTNS is one.

This bit resets to zero on a Warm reset.

PENDSVACT, bit [10]

PendSV exception active state. This bit indicates and allows modification of the active state of the
PendSV exception for the selected Security state.

This bit is banked between Security states.

The possible values of this bit are:

0 PendSV exception not active for the selected Security state.

1 PendSV exception active for the selected Security state.

This bit resets to zero on a Warm reset.

Bit [9]

Reserved, RES0.

MONITORACT, bit [8]

DebugMonitor exception active state. This bit indicates and allows modification of the active state
of the DebugMonitor exception.

This bit is not banked between Security states.

The possible values of this bit are:

0 DebugMonitor exception not active.

1 DebugMonitor exception active.

If DEMCR.SDME is one this bit is RAZ/WI from Non-secure state

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.
D2-1064 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
SVCALLACT, bit [7]

SVCall exception active state. This bit indicates and allows modification of the active state of the
SVCall exception for the selected Security state.

This bit is banked between Security states.

The possible values of this bit are:

0 SVCall exception not active for the selected Security state.

1 SVCall exception active for the selected Security state.

This bit resets to zero on a Warm reset.

Bit [6]

Reserved, RES0.

NMIACT, bit [5]

NMI exception active state. This bit indicates and allows modification of the active state of the NMI
exception.

This bit is not banked between Security states.

The possible values of this bit are:

0 NMI exception not active.

1 NMI exception active.

The NMI exception is not banked between Security states. When AIRCR.BFHFNMINS is zero, the
Non-secure view of this bit is RAZ/WI. This field ignores writes if either the value being written is
one, AIRCR.BFHFNMINS is zero, the access is from Non-secure state, the access is not via the NS
alias, or the access is from a debugger when DHCSR.S_SDE is zero.

This bit resets to zero on a Warm reset.

SECUREFAULTACT, bit [4]

SecureFault exception active state. This bit indicates and allows modification of the active state of
the SecureFault exception.

This bit is not banked between Security states.

The possible values of this bit are:

0 SecureFault exception not active.

1 SecureFault exception active.

This bit is RAZ/WI from Non-secure.

This bit resets to zero on a Warm reset.

USGFAULTACT, bit [3]

UsageFault exception active state for the selected Security state. This bit indicates and allows
modification of the active state of the UsageFault exception for the selected Security state.

This bit is banked between Security states.

The possible values of this bit are:

0 UsageFault exception not active for the selected Security state.

1 UsageFault exception active for the selected Security state.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

HARDFAULTACT, bit [2]

HardFault exception active state. Indicates and allows limited modification of the active state of the
HardFault exception for the selected Security state.

This bit is banked between Security states.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-1065
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
The possible values of this bit are:

0 HardFault exception not active for the selected Security state.

1 HardFault exception active for the selected Security state.

This field ignores writes if either the value being written is one, the write targets the Secure
HardFault active bit, the access is from Non-secure state, or the access is from a debugger when
DHCSR.S_SDE is zero.

This bit resets to zero on a Warm reset.

BUSFAULTACT, bit [1]

BusFault exception active state. This bit indicates and allows modification of the active state of the
BusFault exception.

This bit is not banked between Security states.

The possible values of this bit are:

0 BusFault exception not active.

1 BusFault exception active.

The BusFault exception is not banked between Security states.

If AIRCR.BFHFNMINS is zero this bit is RAZ/WI from Non-secure state.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

MEMFAULTACT, bit [0]

MemManage exception active state for the selected Security state. This bit indicates and allows
modification of the active state of the MemManage exception for the selected Security state.

This bit is banked between Security states.

The possible values of this bit are:

0 MemManage exception not active for the selected Security state.

1 MemManage exception active for the selected Security state.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.
D2-1066 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.182 SHPR1, System Handler Priority Register 1

The SHPR1 characteristics are:

Purpose Sets or returns priority for system handlers 4 - 7.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

If the Main Extension is implemented, this register is word, halfword, and byte accessible.

If the Main Extension is not implemented, this register is word accessible only, halfword
and byte accesses are UNPREDICTABLE.

Configurations Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes 32-bit read/write register located at 0xE000ED18.

Secure software can access the Non-secure view of this register via SHPR1_NS located at
0xE002ED18. The location 0xE002ED18 is RES0 to software executing in Non-secure state and
the debugger.

This register is banked between Security states on a bit by bit basis.

Field descriptions

The SHPR1 bit assignments are:

PRI_7, bits [31:24]

Priority 7. Priority of system handler 7, SecureFault.

This field is not banked between Security states.

If the PE implements less than 8 bits of priority, then the least significant bits of this field are RES0.

This field is RAZ/WI from Non-secure.

This field resets to zero on a Warm reset.

PRI_6, bits [23:16]

Priority 6. Priority of system handler 6, UsageFault.

This field is banked between Security states.

If the PE implements less than 8 bits of priority, then the least significant bits of this field are RES0.

This field resets to zero on a Warm reset.

PRI_5, bits [15:8]

Priority 5. Priority of system handler 5, BusFault.

This field is not banked between Security states.

If the PE implements less than 8 bits of priority, then the least significant bits of this field are RES0.

If AIRCR.BFHFNMINS is zero this field is RAZ/WI from Non-secure state.

This field resets to zero on a Warm reset.

PRI_4, bits [7:0]

Priority 4. Priority of system handler 4, MemManage.

This field is banked between Security states.

If the PE implements less than 8 bits of priority, then the least significant bits of this field are RES0.

This field resets to zero on a Warm reset.

07

PRI_4

815

PRI_5

1623

PRI_6

2431

PRI_7
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-1067
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.183 SHPR2, System Handler Priority Register 2

The SHPR2 characteristics are:

Purpose Sets or returns priority for system handlers 8 - 11.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

If the Main Extension is implemented, this register is word, halfword, and byte accessible.

If the Main Extension is not implemented, this register is word accessible only, halfword
and byte accesses are UNPREDICTABLE.

Configurations This register is always implemented.

Attributes 32-bit read/write register located at 0xE000ED1C.

Secure software can access the Non-secure view of this register via SHPR2_NS located at
0xE002ED1C. The location 0xE002ED1C is RES0 to software executing in Non-secure state and
the debugger.

This register is banked between Security states.

Field descriptions

The SHPR2 bit assignments are:

PRI_11, bits [31:24]

Priority 11. Priority of system handler 11, SVCall.

This field is banked between Security states.

If the PE implements less than 8 bits of priority, then the least significant bits of this field are RES0.

This field resets to zero on a Warm reset.

PRI_10, bits [23:16]

Reserved, RES0.

PRI_9, bits [15:8]

Reserved, RES0.

PRI_8, bits [7:0]

Reserved, RES0.

07

PRI_8

815

PRI_9

1623

PRI_10

2431

PRI_11
D2-1068 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.184 SHPR3, System Handler Priority Register 3

The SHPR3 characteristics are:

Purpose Sets or returns priority for system handlers 12 - 15.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

If the Main Extension is implemented, this register is word, halfword, and byte accessible.

If the Main Extension is not implemented, this register is word accessible only, halfword
and byte accesses are UNPREDICTABLE.

Configurations This register is always implemented.

Attributes 32-bit read/write register located at 0xE000ED20.

Secure software can access the Non-secure view of this register via SHPR3_NS located at
0xE002ED20. The location 0xE002ED20 is RES0 to software executing in Non-secure state and
the debugger.

This register is banked between Security states on a bit by bit basis.

Field descriptions

The SHPR3 bit assignments are:

PRI_15, bits [31:24]

Priority 15. Priority of system handler 15, SysTick.

If two SysTick timers are implemented this field is banked between Security states.

If less than two SysTick timers are implemented this field is not banked between Security states, and
is RAZ/WI if AIRCR.STTNS is zero.

If the PE implements less than 8 bits of priority, then the least significant bits of this field are RES0.
If one timer is implemented this field corresponds to the Secure state if AIRCR.STTNS is zero, or
the Non-secure state if AIRCR.STTNS is one.

If only one SysTick timer is implemented and ICSR.STTNS is clear, this field is RAZ/WI from
Non-secure state.

If no SysTick timer is implemented this field is RES0.

This field resets to zero on a Warm reset.

PRI_14, bits [23:16]

Priority 14. Priority of system handler 14, PendSV.

This field is banked between Security states.

If the PE implements less than 8 bits of priority, then the least significant bits of this field are RES0.

This field resets to zero on a Warm reset.

PRI_13, bits [15:8]

Reserved, RES0.

PRI_12, bits [7:0]

Priority 12. Priority of system handler 12, DebugMonitor.

This field is not banked between Security states.

If DEMCR.SDME is 1, this field is RAZ/WI from Non-secure state. If the PE implements less than
8 bits of priority, then the least significant bits of this field are RES0.

If the Main Extension is not implemented, this field is RES0.

07

PRI_12

815

PRI_13

1623

PRI_14

2431

PRI_15
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-1069
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
This field resets to zero on a Warm reset.
D2-1070 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.185 SP, Current Stack Pointer Register

The SP characteristics are:

Purpose Exception and procedure stack pointer register.

Usage constraints Privileged and unprivileged access permitted.

Configurations This register is always implemented.

Attributes 32-bit read/write special-purpose register.

This register is not banked between Security states.

Field descriptions

The SP bit assignments are:

VALUE, bits [31:2]

Stack pointer. Holds bits[31:2] of the stack pointer address. The current stack pointer is selected
from one of MSP_NS, PSP_NS, MSP_S or PSP_S.

Software can refer to SP as R13.

This field resets to an UNKNOWN value on a Warm reset.

Note
 In general, ARM strongly recommends using the names SP, LR and PC instead of R13, R14 and

R15. However, sometimes it is simpler to use the R13-R15 names when referring to a group of
registers. For example, it is simpler to refer to registers R8 to R15, rather than to registers R8 to R12,
the SP, LR and PC. These two descriptions of the group of registers have exactly the same meaning.

Bits [1:0]

Reserved, RES0.

01

RES0

231

VALUE
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-1071
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.186 SP_NS, Stack Pointer (Non-secure)

The SP_NS characteristics are:

Purpose Provides access to the current Non-secure stack pointer.

Usage constraints Privileged access only. Unprivileged access is RAZ/WI.

Configurations This register is always implemented.

Attributes 32-bit read/write special-purpose register.

This register is not banked between Security states.

Field descriptions

The SP_NS bit assignments are:

VALUE, bits [31:2]

Stack pointer. Holds bits[31:2] of the current Non-secure stack pointer address. SP_NS is selected
from one of MSP_NS or PSP_NS. Access to SP_NS is provided via MRS and MSR and is subject
to stack limit checking.

This field resets to an UNKNOWN value on a Warm reset.

231

VALUE
D2-1072 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.187 STIR, Software Triggered Interrupt Register

The STIR characteristics are:

Purpose Provides a mechanism for software to generate an interrupt.

Usage constraints Unprivileged accesses generate a fault if CCR.USERSETMPEND is zero.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes 32-bit write-only register located at 0xE000EF00.

Secure software can access the Non-secure view of this register via STIR_NS located at
0xE002EF00. The location 0xE002EF00 is RES0 to software executing in Non-secure state and
the debugger.

This register is not banked between Security states.

Field descriptions

The STIR bit assignments are:

Bits [31:9]

Reserved, RES0.

INTID, bits [8:0], on a write

Interrupt ID. Indicates the interrupt to be pended. The value written is (ExceptionNumber - 16).

Writing to this register has the same effect as setting the NVIC_ISPRn bit corresponding to the
interrupt to 1. Like NVIC_ISPRn, an attempt to pend an interrupt targeting Secure state from
Non-secure is ignored.

INTID, bits [8:0], on a read

This field reads as zero.

08

INTID

931

RES0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-1073
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.188 SYST_CALIB, SysTick Calibration Value Register

The SYST_CALIB characteristics are:

Purpose Reads the SysTick timer calibration value and parameters for the selected Security state.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations Present only if at least one SysTick timer is implemented.

This register is RES0 if no SysTick timer is implemented.

Attributes 32-bit read-only register located at 0xE000E01C.

Secure software can access the Non-secure view of this register via SYST_CALIB_NS
located at 0xE002E01C. The location 0xE002E01C is RES0 to software executing in Non-secure
state and the debugger.

This register is banked between Security states.

Preface

If the Main Extension is implemented then, two SysTick timers are implemented. If the Main Extension is not
implemented, then it is IMPLEMENTATION DEFINED whether none, one or two SysTick timers are implemented.
Where two SysTick timers are implemented, this register is banked. Where one SysTick timer is implemented, this
register is not banked, and Non-secure accesses behave as RAZ/WI if ICSR.STTNS is clear. If no SysTick timer is
implemented, both aliases of this register behave as RES0.

Field descriptions

The SYST_CALIB bit assignments are:

NOREF, bit [31]

No reference. Indicates whether the IMPLEMENTATION DEFINED reference clock is implemented.

The possible values of this bit are:

0 Reference clock is implemented.

1 Reference clock is not implemented.

When this bit is 1, the CLKSOURCE bit of the SYST_CSR register is forced to 1 and cannot be
cleared to 0.

If only one SysTick timer is implemented and ICSR.STTNS is clear, this bit is RAZ/WI from
Non-secure state.

If no SysTick timer is implemented this bit is RES0.

This bit reads as an IMPLEMENTATION DEFINED value.

SKEW, bit [30]

Skew. Indicates whether the 10ms calibration value is exact.

The possible values of this bit are:

0 TENMS calibration value is exact.

1 TENMS calibration value is inexact.

If only one SysTick timer is implemented and ICSR.STTNS is clear, this bit is RAZ/WI from
Non-secure state.

023

TENMS

2429

RES0

3031

NOREF SKEW
D2-1074 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
If no SysTick timer is implemented this bit is RES0.

This bit reads as an IMPLEMENTATION DEFINED value.

Bits [29:24]

Reserved, RES0.

TENMS, bits [23:0]

Ten milliseconds. Optionally, holds a reload value to be used for 10ms (100Hz) timing, subject to
system clock skew errors. If this field is zero, the calibration value is not known.

If only one SysTick timer is implemented and ICSR.STTNS is clear, this field is RAZ/WI from
Non-secure state.

If no SysTick timer is implemented this field is RES0.

This field reads as an IMPLEMENTATION DEFINED value.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-1075
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.189 SYST_CSR, SysTick Control and Status Register

The SYST_CSR characteristics are:

Purpose Controls the SysTick timer and provides status data for the selected Security state.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations Present only if at least one SysTick timer is implemented.

This register is RES0 if no SysTick timer is implemented.

Attributes 32-bit read/write register located at 0xE000E010.

Secure software can access the Non-secure view of this register via SYST_CSR_NS located
at 0xE002E010. The location 0xE002E010 is RES0 to software executing in Non-secure state and
the debugger.

This register is banked between Security states.

Preface

If the Main Extension is implemented, then two SysTick timers are implemented. If the Main Extension is not
implemented, then it is IMPLEMENTATION DEFINED whether none, one or two SysTick timers are implemented.
Where two SysTick timers are implemented, this register is banked. Where one SysTick timer is implemented, this
register is not banked, and Non-secure accesses behave as RAZ/WI if ICSR.STTNS is clear. If no SysTick timer is
implemented, both aliases of this register behave as RES0.

Field descriptions

The SYST_CSR bit assignments are:

Bits [31:17]

Reserved, RES0.

COUNTFLAG, bit [16]

Count flag. Indicates whether the counter has counted to zero since the last read of this register.

The possible values of this bit are:

0 Timer has not counted to 0.

1 Timer has counted to 0.

COUNTFLAG is set to 1 by a count transition from 1 to 0. COUNTFLAG is cleared to 0 if software
reads this bit as one, and by any write to the SYST_CVR for the selected Security state. Debugger
reads do not clear the COUNTFLAG.

If set this bit clears to zero when read by software. Reads from the debugger do not clear this bit.

If only one SysTick timer is implemented and ICSR.STTNS is clear, this bit is RAZ/WI from
Non-secure state.

If no SysTick timer is implemented this bit is RES0.

This bit resets to zero on a Warm reset.

Bits [15:3]

Reserved, RES0.

012315

RES0

161731

RES0

COUNTFLAG
CLKSOURCE

ENABLE
TICKINT
D2-1076 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
CLKSOURCE, bit [2]

Clock source. Indicates the SysTick clock source.

The possible values of this bit are:

0 Uses the IMPLEMENTATION DEFINED external reference clock.

1 Uses the PE clock.

If no external clock is implemented, this bit reads as 1 and ignores writes.

If only one SysTick timer is implemented and ICSR.STTNS is clear, this bit is RAZ/WI from
Non-secure state.

If no SysTick timer is implemented this bit is RES0.

This bit resets to an IMPLEMENTATION DEFINED value on a Warm reset.

TICKINT, bit [1]

Tick interrupt. Indicates whether counting to 0 causes the status of the SysTick exception to change
to pending.

The possible values of this bit are:

0 Count to 0 does not affect the SysTick exception status.

1 Count to 0 changes the SysTick exception status to pending.

Changing the value of the counter to 0 by writing the SysTick does not change the status of the
SysTick exception.

If only one SysTick timer is implemented and ICSR.STTNS is clear, this bit is RAZ/WI from
Non-secure state.

If no SysTick timer is implemented this bit is RES0.

This bit resets to zero on a Warm reset.

ENABLE, bit [0]

SysTick enable. Indicates the enabled status of the SysTick counter.

The possible values of this bit are:

0 Counter is disabled.

1 Counter is enabled.

If only one SysTick timer is implemented and ICSR.STTNS is clear, this bit is RAZ/WI from
Non-secure state.

If no SysTick timer is implemented this bit is RES0.

This bit resets to zero on a Warm reset.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-1077
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.190 SYST_CVR, SysTick Current Value Register

The SYST_CVR characteristics are:

Purpose Reads or clears the SysTick timer current counter value for the selected Security state.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations Present only if at least one SysTick timer is implemented.

This register is RES0 if no SysTick timer is implemented.

Attributes 32-bit read/write-to-clear register located at 0xE000E018.

Secure software can access the Non-secure view of this register via SYST_CVR_NS
located at 0xE002E018. The location 0xE002E018 is RES0 to software executing in Non-secure
state and the debugger.

This register is banked between Security states.

Preface

If the Main Extension is implemented, then two SysTick timers are implemented. If the Main Extension is not
implemented, then it is IMPLEMENTATION DEFINED whether none, one or two SysTick timers are implemented.
Where two SysTick timers are implemented, this register is banked. Where one SysTick timer is implemented, this
register is not banked, and Non-secure accesses behave as RAZ/WI if ICSR.STTNS is clear. If no SysTick timer is
implemented, both aliases of this register behave as RES0.

Field descriptions

The SYST_CVR bit assignments are:

Bits [31:24]

Reserved, RES0.

CURRENT, bits [23:0], on a read

Current counter value. Provides the value of the SysTick timer counter for the selected Security
state.

It is IMPLEMENTATION DEFINED whether the current counter value decrements if the PE is sleeping
and SCR.SLEEPDEEP is set.

If only one SysTick timer is implemented and ICSR.STTNS is clear, this field is RAZ/WI from
Non-secure state.

If no SysTick timer is implemented this field is RES0.

This field resets to an UNKNOWN value on a Warm reset.

CURRENT, bits [23:0], on a write

Reset counter value. Writing any value clears the SysTick timer counter for the selected Security
state to zero.

023

CURRENT

2431

RES0
D2-1078 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.191 SYST_RVR, SysTick Reload Value Register

The SYST_RVR characteristics are:

Purpose Provides access SysTick timer counter reload value for the selected Security state.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations Present only if at least one SysTick timer is implemented.

This register is RES0 if no SysTick timer is implemented.

Attributes 32-bit read/write register located at 0xE000E014.

Secure software can access the Non-secure view of this register via SYST_RVR_NS located
at 0xE002E014. The location 0xE002E014 is RES0 to software executing in Non-secure state and
the debugger.

This register is banked between Security states.

Preface

If the Main Extension is implemented, then two SysTick timers are implemented. If the Main Extension is not
implemented, then it is IMPLEMENTATION DEFINED whether none, one or two SysTick timers are implemented.
Where two SysTick timers are implemented, this register is banked. Where one SysTick timer is implemented, this
register is not banked, and Non-secure accesses behave as RAZ/WI if ICSR.STTNS is clear. If no SysTick timer is
implemented, both aliases of this register behave as RES0.

Field descriptions

The SYST_RVR bit assignments are:

Bits [31:24]

Reserved, RES0.

RELOAD, bits [23:0]

Counter reload value. The value to load into the SYST_CVR for the selected Security state when
the counter reaches 0.

If only one SysTick timer is implemented and ICSR.STTNS is clear, this field is RAZ/WI from
Non-secure state.

If no SysTick timer is implemented this field is RES0.

This field resets to an UNKNOWN value on a Warm reset.

023

RELOAD

2431

RES0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-1079
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.192 TPIU_ACPR, TPIU Asynchronous Clock Prescaler Register

The TPIU_ACPR characteristics are:

Purpose Defines a prescaler value for the baud rate of the Serial Wire Output (SWO). Writing to the
register automatically updates the prescale counter, immediately affecting the baud rate of
the serial data output.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

If a debugger changes the register value while the TPIU is transmitting data, the effect on
the output stream is UNPREDICTABLE and the required recovery process is IMPLEMENTATION
DEFINED.

Configurations Present only if the TPIU is implemented and supports SWO.

This register is RES0 if the TPIU is not implemented or does not support SWO.

Attributes 32-bit read/write register located at 0xE0040010.

This register is not banked between Security states.

Field descriptions

The TPIU_ACPR bit assignments are:

Bits [31:16]

Reserved, RES0.

SWOSCALER, bits [15:0]

SWO baud rate prescalar. Sets the ratio between an IMPLEMENTATION DEFINED reference clock and
the SWO output clock rates. The supported scaler value range is IMPLEMENTATION DEFINED, to a
maximum scalar value of 0xFFFF. Unused bits of this field are RAZ/WI.

The possible values of this field are:

n SWO output clock = Asynchronous_Reference_Clock/(n + 1).

This field resets to zero on a Cold reset.

015

SWOSCALER

1631

RES0
D2-1080 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.193 TPIU_CIDR0, TPIU Component Identification Register 0

The TPIU_CIDR0 characteristics are:

Purpose Provides CoreSight discovery information for the TPIU.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the TPIU is implemented.

This register is RES0 if the TPIU is not implemented.

Attributes 32-bit read-only register located at 0xE0040FF0.

This register is not banked between Security states.

Field descriptions

The TPIU_CIDR0 bit assignments are:

Bits [31:8]

Reserved, RES0.

PRMBL_0, bits [7:0]

CoreSight component identification preamble. See the ARM® CoreSight™ Architecture
Specification.

This field reads as 0x0D.

07

PRMBL_0

831

RES0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-1081
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.194 TPIU_CIDR1, TPIU Component Identification Register 1

The TPIU_CIDR1 characteristics are:

Purpose Provides CoreSight discovery information for the TPIU.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the TPIU is implemented.

This register is RES0 if the TPIU is not implemented.

Attributes 32-bit read-only register located at 0xE0040FF4.

This register is not banked between Security states.

Field descriptions

The TPIU_CIDR1 bit assignments are:

Bits [31:8]

Reserved, RES0.

CLASS, bits [7:4]

CoreSight component class. See the ARM® CoreSight™ Architecture Specification.

This field reads as 0x9.

PRMBL_1, bits [3:0]

CoreSight component identification preamble. See the ARM® CoreSight™ Architecture
Specification.

This field reads as 0x0.

03

PRMBL_1

47

CLASS

831

RES0
D2-1082 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.195 TPIU_CIDR2, TPIU Component Identification Register 2

The TPIU_CIDR2 characteristics are:

Purpose Provides CoreSight discovery information for the TPIU.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the TPIU is implemented.

This register is RES0 if the TPIU is not implemented.

Attributes 32-bit read-only register located at 0xE0040FF8.

This register is not banked between Security states.

Field descriptions

The TPIU_CIDR2 bit assignments are:

Bits [31:8]

Reserved, RES0.

PRMBL_2, bits [7:0]

CoreSight component identification preamble. See the ARM® CoreSight™ Architecture
Specification.

This field reads as 0x05.

07

PRMBL_2

831

RES0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-1083
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.196 TPIU_CIDR3, TPIU Component Identification Register 3

The TPIU_CIDR3 characteristics are:

Purpose Provides CoreSight discovery information for the TPIU.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the TPIU is implemented.

This register is RES0 if the TPIU is not implemented.

Attributes 32-bit read-only register located at 0xE0040FFC.

This register is not banked between Security states.

Field descriptions

The TPIU_CIDR3 bit assignments are:

Bits [31:8]

Reserved, RES0.

PRMBL_3, bits [7:0]

CoreSight component identification preamble. See the ARM® CoreSight™ Architecture
Specification.

This field reads as 0xB1.

07

PRMBL_3

831

RES0
D2-1084 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.197 TPIU_CSPSR, TPIU Current Parallel Port Sizes Register

The TPIU_CSPSR characteristics are:

Purpose Controls the width of the parallel trace port.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if the TPIU is implemented.

This register is RES0 if the TPIU is not implemented.

Attributes 32-bit read/write register located at 0xE0040004.

This register is not banked between Security states.

Field descriptions

The TPIU_CSPSR bit assignments are:

CWIDTH, bits [31:0]

Current width. CWIDTH[m] represents a parallel trace port width of (m+1).

The possible values of each bit are:

0 Width (N+1) is not the current parallel trace port width.

1 Width (N+1) is the current parallel trace port width.

A debugger must set only one bit is set to 1, and all others must be zero. The effect of writing a value
with more than one bit set to 1 is UNPREDICTABLE. The effect of a write to an unsupported bit is
UNPREDICTABLE.

This register resets to the value for the smallest supported parallel trace port size.

This field resets to an IMPLEMENTATION DEFINED value on a Cold reset.

031

CWIDTH
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-1085
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.198 TPIU_DEVTYPE, TPIU Device Type Register

The TPIU_DEVTYPE characteristics are:

Purpose Provides CoreSight discovery information for the TPIU.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the TPIU is implemented.

This register is RES0 if the TPIU is not implemented.

Attributes 32-bit read/write register located at 0xE0040FCC.

This register is not banked between Security states.

Field descriptions

The TPIU_DEVTYPE bit assignments are:

Bits [31:8]

Reserved, RES0.

SUB, bits [7:4]

Sub-type. Component sub-type.

The possible values of this field are:

0x0 Other. Only permitted if the MAJOR field reads as 0x0.

0x1 Trace port. Only permitted if the MAJOR field reads as 0x1.

This field reads as an IMPLEMENTATION DEFINED value.

MAJOR, bits [3:0]

Major type. Component major type.

The possible values of this field are:

0x0 Miscellaneous.

0x1 Trace sink.

This field reads as an IMPLEMENTATION DEFINED value.

03

MAJOR

47

SUB

831

RES0
D2-1086 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.199 TPIU_FFCR, TPIU Formatter and Flush Control Register

The TPIU_FFCR characteristics are:

Purpose Controls the TPIU formatter. This register might contain other formatter and flush control
fields that are outside the scope of the architecture. Contact ARM for more information.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if the TPIU is implemented.

This register is RES0 if the TPIU is not implemented.

Attributes 32-bit read/write register located at 0xE0040304.

This register is not banked between Security states.

Field descriptions

The TPIU_FFCR bit assignments are:

Bits [31:15,11,7,3:2]

Reserved, RES0.

Bits [14:12]

Reserved for formatter stop controls.

Reserved, RES0.

Bits [10:9]

Reserved for additional trigger mark controls.

Reserved, RES0.

TrigIn, bit [8]

Trigger input asserted. Indicate a trigger on the trace port when an IMPLEMENTATION DEFINED
TRIGIN signal is asserted.

It is IMPLEMENTATION DEFINED whether this bit is R/W or RAO.

This bit resets to zero on a Cold reset.

FOnMan, bit [6]

Flush On Manual. Setting this bit to 1 generates a flush. The TPIU clears the bit to 0 when the flush
completes.

This bit resets to zero on a Cold reset.

Bits [5:4]

Reserved for additional flush controls.

Reserved, RES0.

EnFmt, bits [1:0]

Formatter control. Selects the output formatting mode.

0123

RES0

45

RES0

678910

RES0

111214

RES0

1531

RES0

RES0
TrigIn

RES0

EnFmt
FOnMan
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-1087
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
The possible values of this field are:

0b00 Bypass. Disable formatting. Only supported when SWO mode is selected. Only a single
trace source is supported in bypass mode:

• If only a single trace source is connected to this TPIU, it is selected.

• If multiple sources (including the ITM) are implemented and connected to this
TPIU, then all other trace sources, except for the ITM, must be disabled.
Otherwise, the trace output is UNPREDICTABLE.

All other trace sources are discarded.

0b10 Continuous. Enable formatting and embed triggers and null cycles in the formatted
output.

All other values are reserved.

If no formatter is implemented, this field is RES0. This field must be set to 0b10 when the parallel
trace port is selected, or when using multiple trace sources. Changing the value of this field when
TPIU_FFSR.FtStopped is 0 is UNPREDICTABLE.

This field resets to zero on a Cold reset.

Note
 An optional TRACECTL pin might be implemented as part of the parallel trace port that allows

Bypass mode when using a parallel trace port and a further mode, EnFmt == 0b01. The CoreSight
architecture describes EnFmt[1] as the EnFCont bit and EnFmt[0] as the EnFTC bit.
D2-1088 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.200 TPIU_FFSR, TPIU Formatter and Flush Status Register

The TPIU_FFSR characteristics are:

Purpose Shows the status and capabilities of the TPIU formatter.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if the TPIU is implemented.

This register is RES0 if the TPIU is not implemented.

Attributes 32-bit read-only register located at 0xE0040300.

This register is not banked between Security states.

Field descriptions

The TPIU_FFSR bit assignments are:

Bits [31:4]

Reserved, RES0.

FtNonStop, bit [3]

Non-stop formatter. Indicates the formatter cannot be stopped.

The possible values of this bit are:

0 Formatter can be stopped.

1 Formatter cannot be stopped.

If no formatter is implemented, this bit is RAO.

TCPresent, bit [2]

TRACECTL present. Indicates presence of the TRACECTL pin.

The possible values of this bit are:

0 No TRACECTL pin is available. The data formatter must be used and only in
continuous mode.

1 The optional TRACECTL pin is present.

If a parallel trace port is not implemented, this bit is RAZ.

Note
 If a parallel trace port is implemented, ARM recommends the TRACECTL pin is not implemented.

FtStopped, bit [1]

Formatter stopped. Indicates the formatter is stopped.

The possible values of this bit are:

0 Formatter is enabled.

1 The formatter has received a stop request signal and all trace data and post-amble has
been output. Any further trace data is ignored.

0123431

RES0

FtNonStop
TCPresent

FInProg
FtStopped
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-1089
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
If no formatter is implemented, or the formatter cannot be stopped, this bit is RAZ.

FInProg, bit [0]

Flush in progress. Set to 1 when a flush is initiated and clears to zero when all data received before
the flush is acknowledged has been output on the trace port. That is, the trace has been received at
the sink, formatted, and output on the trace port.
D2-1090 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.201 TPIU_LAR, TPIU Software Lock Access Register

The TPIU_LAR characteristics are:

Purpose Provides CoreSight Software Lock control for the TPIU, see the ARM® CoreSight™
Architecture Specification for details.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

This register is RAZ/WI if accessed via the debugger.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the TPIU is implemented.

This register is RES0 if the TPIU is not implemented.

Present only if the optional Software Lock is implemented.

This register is RAZ/WI if the Software Lock is not implemented.

Attributes 32-bit write-only register located at 0xE0040FB0.

This register is not banked between Security states.

Field descriptions

The TPIU_LAR bit assignments are:

KEY, bits [31:0]

Lock Access control.

Writing the key value 0xC5ACCE55 to this field unlocks the lock, enabling write accesses to this
component's registers through a memory-mapped interface.

Writing any other value to this register locks the lock, disabling write accesses to this component's
registers through a memory mapped interface.

031

KEY
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-1091
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.202 TPIU_LSR, TPIU Software Lock Status Register

The TPIU_LSR characteristics are:

Purpose Provides CoreSight Software Lock status information for the TPIU, see the ARM®
CoreSight™ Architecture Specification for details.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

This register is RAZ/WI if accessed via the debugger.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the TPIU is implemented.

This register is RES0 if the TPIU is not implemented.

Present only if the optional Software Lock is implemented.

This register is RAZ/WI if the Software Lock is not implemented.

Attributes 32-bit read-only register located at 0xE0040FB4.

This register is not banked between Security states.

Field descriptions

The TPIU_LSR bit assignments are:

Bits [31:3]

Reserved, RES0.

nTT, bit [2]

Not thirty-two bit. See the ARM® CoreSight™ Architecture Specification.

This bit reads as zero.

SLK, bit [1]

Software Lock status. See the ARM® CoreSight™ Architecture Specification.

The possible values of this bit are:

0 Lock clear. Software writes are permitted to this component's registers.

1 Lock set. Software writes to this component's registers are ignored, and reads have no
side effects.

For a debugger read of this register, or when the Software Lock is not implemented, this bit is RES0.

This bit resets to one on a Cold reset.

SLI, bit [0]

Software Lock implemented. See the ARM® CoreSight™ Architecture Specification.

The possible values of this bit are:

0 Software Lock not implemented or debugger access.

1 Software Lock is implemented and software access.

012331

RES0

nTT
SLK

SLI
D2-1092 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
For a debugger read of this register, or when the Software Lock is not implemented, this bit is RAZ.

This bit reads as an IMPLEMENTATION DEFINED value.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-1093
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.203 TPIU_PIDR0, TPIU Peripheral Identification Register 0

The TPIU_PIDR0 characteristics are:

Purpose Provides CoreSight discovery information for the TPIU.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the TPIU is implemented.

This register is RES0 if the TPIU is not implemented.

Attributes 32-bit read-only register located at 0xE0040FE0.

This register is not banked between Security states.

Field descriptions

The TPIU_PIDR0 bit assignments are:

Bits [31:8]

Reserved, RES0.

PART_0, bits [7:0]

Part number bits [7:0]. See the ARM® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

07

PART_0

831

RES0
D2-1094 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.204 TPIU_PIDR1, TPIU Peripheral Identification Register 1

The TPIU_PIDR1 characteristics are:

Purpose Provides CoreSight discovery information for the TPIU.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the TPIU is implemented.

This register is RES0 if the TPIU is not implemented.

Attributes 32-bit read-only register located at 0xE0040FE4.

This register is not banked between Security states.

Field descriptions

The TPIU_PIDR1 bit assignments are:

Bits [31:8]

Reserved, RES0.

DES_0, bits [7:4]

JEP106 identification code bits [3:0]. See the ARM® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

PART_1, bits [3:0]

Part number bits [11:8]. See the ARM® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

03

PART_1

47

DES_0

831

RES0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-1095
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.205 TPIU_PIDR2, TPIU Peripheral Identification Register 2

The TPIU_PIDR2 characteristics are:

Purpose Provides CoreSight discovery information for the TPIU.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the TPIU is implemented.

This register is RES0 if the TPIU is not implemented.

Attributes 32-bit read-only register located at 0xE0040FE8.

This register is not banked between Security states.

Field descriptions

The TPIU_PIDR2 bit assignments are:

Bits [31:8]

Reserved, RES0.

REVISION, bits [7:4]

Component revision. See the ARM® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

JEDEC, bit [3]

JEDEC assignee value is used. See the ARM® CoreSight™ Architecture Specification.

This bit reads as one.

DES_1, bits [2:0]

JEP106 identification code bits [6:4]. See the ARM® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

02

DES_1

347

REVISION

831

RES0

JEDEC
D2-1096 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.206 TPIU_PIDR3, TPIU Peripheral Identification Register 3

The TPIU_PIDR3 characteristics are:

Purpose Provides CoreSight discovery information for the TPIU.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the TPIU is implemented.

This register is RES0 if the TPIU is not implemented.

Attributes 32-bit read-only register located at 0xE0040FEC.

This register is not banked between Security states.

Field descriptions

The TPIU_PIDR3 bit assignments are:

Bits [31:8]

Reserved, RES0.

REVAND, bits [7:4]

RevAnd. See the ARM® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

CMOD, bits [3:0]

Customer Modified. See the ARM® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

03

CMOD

47

REVAND

831

RES0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-1097
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.207 TPIU_PIDR4, TPIU Peripheral Identification Register 4

The TPIU_PIDR4 characteristics are:

Purpose Provides CoreSight discovery information for the TPIU.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the TPIU is implemented.

This register is RES0 if the TPIU is not implemented.

Attributes 32-bit read-only register located at 0xE0040FD0.

This register is not banked between Security states.

Field descriptions

The TPIU_PIDR4 bit assignments are:

Bits [31:8]

Reserved, RES0.

SIZE, bits [7:4]

4KB count. See the ARM® CoreSight™ Architecture Specification.

This field reads as zero.

DES_2, bits [3:0]

JEP106 continuation code. See the ARM® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

03

DES_2

47

SIZE

831

RES0
D2-1098 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.208 TPIU_PIDR5, TPIU Peripheral Identification Register 5

The TPIU_PIDR5 characteristics are:

Purpose Provides CoreSight discovery information for the TPIU.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the TPIU is implemented.

This register is RES0 if the TPIU is not implemented.

Attributes 32-bit read-only register located at 0xE0040FD4.

This register is not banked between Security states.

Field descriptions

The TPIU_PIDR5 bit assignments are:

Bits [31:0]

Reserved, RES0.

031

RES0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-1099
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.209 TPIU_PIDR6, TPIU Peripheral Identification Register 6

The TPIU_PIDR6 characteristics are:

Purpose Provides CoreSight discovery information for the TPIU.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the TPIU is implemented.

This register is RES0 if the TPIU is not implemented.

Attributes 32-bit read-only register located at 0xE0040FD8.

This register is not banked between Security states.

Field descriptions

The TPIU_PIDR6 bit assignments are:

Bits [31:0]

Reserved, RES0.

031

RES0
D2-1100 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.210 TPIU_PIDR7, TPIU Peripheral Identification Register 7

The TPIU_PIDR7 characteristics are:

Purpose Provides CoreSight discovery information for the TPIU.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the TPIU is implemented.

This register is RES0 if the TPIU is not implemented.

Attributes 32-bit read-only register located at 0xE0040FDC.

This register is not banked between Security states.

Field descriptions

The TPIU_PIDR7 bit assignments are:

Bits [31:0]

Reserved, RES0.

031

RES0
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-1101
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.211 TPIU_PSCR, TPIU Periodic Synchronization Control Register

The TPIU_PSCR characteristics are:

Purpose Defines the reload value for the Periodic Synchronization Counter register. The Periodic
Synchronization Counter decrements for each byte that is output by the TPIU. If the
formatter is implemented and enabled, the TPIU forces completion of the current frame
when the counter reaches zero. It is IMPLEMENTATION DEFINED whether the TPIU forces all
trace sources to generate synchronization packets when the counter reaches zero. Bytes
generated by the TPIU as part of a Halfword synchronization packet or a Full frame
synchronization packet are not counted.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present if the TPIU is implemented and DWT_CYCCNT is not implemented.

OPTIONAL if both the TPIU and DWT_CYCCNT are implemented.

This register is RES0 if the TPIU is not implemented.

Attributes 32-bit read/write register located at 0xE0040308.

This register is not banked between Security states.

Field descriptions

The TPIU_PSCR bit assignments are:

Bits [31:5]

Reserved, RES0.

PSCount, bits [4:0]

Periodic Synchronization Count. Determines the reload value of the Perioduc Synchronization
Counter. The reload value takes effect the next time the counter reaches zero. Reads from this
register return the reload value programmed into this register.

The possible values of this field are:

00000 Synchronization disabled.

00111 128 bytes.

01000 256 bytes.

... ...

11111 231 bytes.

All other values are reserved.

The Periodic Synchronization Counter might have a maximum value smaller than 231. In this case,
if the programmed reload value is greater than the maximum value, then the Periodic
Synchronization Counter is reloaded with its maximum value and the TPIU will generate
synchronization requests at this interval.

This field resets to 0xA on a Cold reset.

04

PSCount

531

RES0
D2-1102 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
Note
 In the CoreSight TPIU, TPIU_PSCR specifies the number of frames between synchronizations,

each frame being 16 bytes. This definition of TPIU_PSCR specifies a number of bytes and is
encoded as a power-of-two rather than a plain binary number.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-1103
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.212 TPIU_SPPR, TPIU Selected Pin Protocol Register

The TPIU_SPPR characteristics are:

Purpose Selects the protocol used for trace output.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

If a debugger changes the register value while the TPIU is transmitting data, the effect on
the output stream is UNPREDICTABLE and the required recovery process is IMPLEMENTATION
DEFINED.

Configurations Present only if the TPIU is implemented and supports SWO.

This register is RES0 if the TPIU is not implemented or does not support SWO.

Attributes 32-bit read/write register located at 0xE00400F0.

This register is not banked between Security states.

Field descriptions

The TPIU_SPPR bit assignments are:

Bits [31:2]

Reserved, RES0.

TXMODE, bits [1:0]

Transmit mode. Specifies the protocol for trace output from the TPIU.

The possible values of this field are:

00 Parallel trace port mode. This value is reserved if TPIU_TYPE.PTINVALID == '1'.

01 Asynchronous SWO, using Manchester encoding. This value is reserved if
TPIU_TYPE.MANCVALID == '0'.

10 Asynchronous SWO, using NRZ encoding. This value is reserved if
TPIU_TYPE.NRZVALID == '0'.

All other values are reserved.

The effect of selecting a reserved value, or a mode that the implementation does not support, is
UNPREDICTABLE.

This field resets to an IMPLEMENTATION DEFINED value on a Cold reset.

01231

RES0

TXMODE
D2-1104 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.213 TPIU_SSPSR, TPIU Supported Parallel Port Sizes Register

The TPIU_SSPSR characteristics are:

Purpose Indicates the supported parallel trace port sizes.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if the TPIU is implemented.

This register is RES0 if the TPIU is not implemented.

Attributes 32-bit read/write register located at 0xE0040000.

This register is not banked between Security states.

Field descriptions

The TPIU_SSPSR bit assignments are:

SWIDTH, bits [31:0]

Supported width. SWIDTH[m] indicates whether a parallel trace port width of (m+1) is supported.

The possible values of each bit are:

0 Parallel trace port width (m+1) not supported.

1 Parallel trace port width (m+1) supported.

The value of this register is IMPLEMENTATION DEFINED.

This field reads as an IMPLEMENTATION DEFINED value.

031

SWIDTH
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-1105
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.214 TPIU_TYPE, TPIU Device Identifier Register

The TPIU_TYPE characteristics are:

Purpose Describes the TPIU to a debugger.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this
register is accessible only to the debugger and RES0 for software.

Configurations Present only if the TPIU is implemented.

This register is RES0 if the TPIU is not implemented.

Attributes 32-bit read-only register located at 0xE0040FC8.

This register is not banked between Security states.

Field descriptions

The TPIU_TYPE bit assignments are:

Bits [31:16]

Reserved, RES0.

Bits [15:12]

IMPLEMENTATION DEFINED.

NRZVALID, bit [11]

NRZ valid. Indicates support for SWO using UART/NRZ encoding.

The possible values of this bit are:

0 Not supported.

1 Supported.

This bit reads as an IMPLEMENTATION DEFINED value.

MANCVALID, bit [10]

Manchester valid. Indicates support for SWO using Manchester encoding.

The possible values of this bit are:

0 Not supported.

1 Supported.

This bit reads as an IMPLEMENTATION DEFINED value.

PTINVALID, bit [9]

Parallel Trace Interface invalid. Indicates support for parallel trace port operation.

The possible values of this bit are:

0 Supported.

1 Not supported.

This bit reads as an IMPLEMENTATION DEFINED value.

0568

FIFOSZ

9101112151631

RES0

IMPLEMENTATION DEFINED
NRZVALID

MANCVALID

IMPLEMENTATION
PTINVALID
D2-1106 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
FIFOSZ, bits [8:6]

FIFO depth. Indicates the minimum implemented size of the TPIU output FIFO for trace data.

The possible values of this field are:

0 IMPLEMENTATION DEFINED FIFO depth.

Other Minimum FIFO size is 2FIFOSZ.

For example, a value of 0b011 indicates a FIFO size of at least 23 = 8 bytes.

This field reads as an IMPLEMENTATION DEFINED value.

Bits [5:0]

IMPLEMENTATION DEFINED.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-1107
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.215 TT_RESP, Test Target Response Payload

The TT_RESP characteristics are:

Purpose Provides the response information from a TT, TTA, TTT, or TTAT instruction.

Usage constraints None.

Configurations All.

Attributes 32-bit payload.

Field descriptions

The TT_RESP bit assignments are:

IREGION, bits [31:24]

IDAU region number. Indicates the IDAU region number containing the target address.

This field is zero if IRVALID is zero.

IRVALID, bit [23]

IREGION valid flag. For a Secure request, indicates the validity of the IREGION field.

The possible values of this bit are:

0 IREGION content not valid.

1 IREGION content valid.

This bit is always zero if the IDAU cannot provide a region number, the address is exempt from
security attribution, or if the requesting TT instruction was executed from the Non-secure state.

S, bit [22]

Security. For a Secure request, indicates the Security attribute of the target address.

The possible values of this bit are:

0 Target address is Non-secure.

1 Target address is Secure.

This bit is always zero if the requesting TT instruction was executed from the Non-secure state.

NSRW, bit [21]

Non-secure read and writeable. Equal to RW AND NOT S. Can be used in combination with the
LSLS (immediate) instruction to check both the MPU and SAU/IDAU permissions. This field is
only valid if the instruction was executed from Secure state and the RW field is valid.

NSR, bit [20]

Non-secure readable. Equal to R AND NOT S. Can be used in combination with the LSLS
(immediate) instruction to check both the MPU and SAU/IDAU permissions. This field is only valid
if the instruction was executed from Secure state and the R field is valid.

RW, bit [19]

Read and writeable. Set to 1 if the memory location can be read and written according to the
permissions of the selected MPU when operating in the current mode. For TTT and TTAT, this field
returns the permissions for unprivileged access, regardless of whether the current mode is privileged
or unprivileged.

07

MREGION

815

SREGION

161718

R

19202122

S

232431

IREGION

IRVALID
NSRW

NSR

MRVALID
SRVALID
RW
D2-1108 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
R, bit [18]

Readable. Read accessibility. Set to 1 if the memory location can be read according to the
permissions of the selected MPU when operating in the current mode. For TTT and TTAT, this field
returns the permissions for unprivileged access, regardless of whether the current mode is privileged
or unprivileged.

SRVALID, bit [17]

SREGION valid flag. For a Secure request indicates validity of the SREGION field.

The possible values of this bit are:

0 SREGION content not valid.

1 SREGION content valid.

This bit is always zero if the requesting TT instruction was executed from the Non-secure state.

MRVALID, bit [16]

MREGION valid flag. Indicates validity of the MREGION field.

The possible values of this bit are:

0 MREGION content not valid.

1 MREGION content valid.

This bit is only valid for TT and TTA instructions, executed in the Secure state or in privileged mode
in Non-secure state.

SREGION, bits [15:8]

SAU region number. Holds the SAU region that the address maps to.

This field is only valid if the instruction was executed from Secure state. This field is zero if
SRVALID is 0.

MREGION, bits [7:0]

MPU region number. Holds the MPU region that the address maps to.

This field is zero if MRVALID is 0.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-1109
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.216 UFSR, UsageFault Status Register

The UFSR characteristics are:

Purpose Contains the status for some instruction execution faults, and for data access faults.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

If the Main Extension is implemented, this register is word, halfword, and byte accessible.

If the Main Extension is not implemented, this register is word accessible only, halfword
and byte accesses are UNPREDICTABLE.

Configurations Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes 16-bit read/write-one-to-clear register located at 0xE000ED2A.

Secure software can access the Non-secure view of this register via UFSR_NS located at
0xE002ED2A. The location 0xE002ED2A is RES0 to software executing in Non-secure state and
the debugger.

This register is banked between Security states.

This register is part of CFSR.

Field descriptions

The UFSR bit assignments are:

Bits [15:10]

Reserved, RES0.

DIVBYZERO, bit [9]

Divide by zero flag. Sticky flag indicating whether an integer division by zero error has occurred.

The possible values of this bit are:

0 Error has not occurred.

1 Error has occurred.

This bit resets to zero on a Warm reset.

UNALIGNED, bit [8]

Unaligned access flag. Sticky flag indicating whether an unaligned access error has occurred.

The possible values of this bit are:

0 Error has not occurred.

1 Error has occurred.

This bit resets to zero on a Warm reset.

Bits [7:5]

Reserved, RES0.

STKOF, bit [4]

Stack overflow flag. Sticky flag indicating whether a stack overflow error has occurred.

0123457

RES0

891015

RES0

DIVBYZERO
UNALIGNED

STKOF
NOCP

UNDEFINSTR
INVSTATE
INVPC
D2-1110 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
The possible values of this bit are:

0 Error has not occurred.

1 Error has occurred.

This bit resets to zero on a Warm reset.

NOCP, bit [3]

No coprocessor flag. Sticky flag indicating whether a coprocessor disabled or not present error has
occurred.

The possible values of this bit are:

0 Error has not occurred.

1 Error has occurred.

This bit resets to zero on a Warm reset.

INVPC, bit [2]

Invalid PC flag. Sticky flag indicating whether an integrity check error has occurred.

The possible values of this bit are:

0 Error has not occurred.

1 Error has occurred.

This bit resets to zero on a Warm reset.

INVSTATE, bit [1]

Invalid state flag. Sticky flag indicating whether an EPSR.T or EPSR.IT validity error has occurred.

The possible values of this bit are:

0 Error has not occurred.

1 Error has occurred.

This bit resets to zero on a Warm reset.

UNDEFINSTR, bit [0]

Undefined instruction flag. Sticky flag indicating whether an undefined instruction error has
occurred.

The possible values of this bit are:

0 Error has not occurred.

1 Error has occurred.

This includes attempting to execute an undefined instruction associated with an enable coprocessor.

This bit resets to zero on a Warm reset.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-1111
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.217 VTOR, Vector Table Offset Register

The VTOR characteristics are:

Purpose Holds the vector table address for the selected Security state.

Usage constraints Privileged access permitted only. Unprivileged accesses generate a BusFault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations This register is always implemented.

Attributes 32-bit read/write register located at 0xE000ED08.

Secure software can access the Non-secure view of this register via VTOR_NS located at
0xE002ED08. The location 0xE002ED08 is RES0 to software executing in Non-secure state and
the debugger.

This register is banked between Security states.

Field descriptions

The VTOR bit assignments are:

TBLOFF, bits [31:7]

Table offset. Bits [31:7] of the vector table address for the selected Security state.

It is IMPLEMENTATION DEFINED whether any of the TBLOFF bits are WI.

This field resets to an IMPLEMENTATION DEFINED value on a Warm reset.

Bits [6:0]

Reserved, RES0.

06

RES0

731

TBLOFF
D2-1112 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

D2 Register Specification
D2.2 Alphabetical list of registers
D2.2.218 XPSR, Combined Program Status Registers

The XPSR characteristics are:

Purpose Provides access to a combination of the APSR, EPSR and IPSR.

Usage constraints Privileged access only. Unprivileged access is RAZ/WI.

Configurations This register is always implemented.

Attributes 32-bit read/write special-purpose register.

This register is not banked between Security states.

Field descriptions

The XPSR bit assignments are:

When {XPSR[26:25], XPSR[11:10]} != 0:

When {XPSR[26:25], XPSR[11:10]} == 0:

N, bit [31]

Negative flag. Reads or writes the current value of APSR.N.

Z, bit [30]

Zero flag. Reads or writes the current value of APSR.Z.

C, bit [29]

Carry flag. Reads or writes the current value of APSR.C.

V, bit [28]

Overflow flag. Reads or writes the current value of APSR.V.

Q, bit [27]

Saturate flag. Reads or writes the current value of APSR.Q.

T, bit [24]

T32 state. Reads or writes the current value of EPSR.T.

Bits [23:20]

Reserved, RES0.

GE, bits [19:16]

Greater-than or equal flag. Reads or writes the current value of APSR.GE.

IT, bits [15:10,26:25], when {XPSR[26:25], XPSR[11:10]} != 0

If-then flags. Reads or writes the current value of EPSR.IT.

ICI, bits [26:25,15:10], when {XPSR[26:25], XPSR[11:10]} == 0

Interrupt continuation flags. Reads or writes the current value of EPSR.ICI.

08

Exception

9

(0)

1015

IT

1619

GE

2023

RES0

24

T

2526

IT

27

Q

28

V

29

C

30

Z

31

N

08

Exception

9

(0)

1015

ICI

1619

GE

2023

RES0

24

T

2526

ICI

27

Q

28

V

29

C

30

Z

31

N

ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. D2-1113
ID072816 Non-Confidential - Beta

D2 Register Specification
D2.2 Alphabetical list of registers
Bit [9]

Reserved, RES0.

Exception, bits [8:0]

Exception number. Reads or writes the current value of IPSR.Exception.
D2-1114 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

Part E
ARMv8-M Pseudocode

Chapter E1
Pseudocode Overview

This chapter describes the pseudocode descriptions contained in Chapter E3 Pseudocode Specification. It contains
the following sections:
• About the pseudocode on page E1-1118.
• Pseudocode operators and keywords on page E1-1119.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E1-1117
ID072816 Non-Confidential - Beta

E1 Pseudocode Overview
E1.1 About the pseudocode
E1.1 About the pseudocode
The ARMv8-M pseudocode describes the main operation of the instructions and exception model. For a detailed
description of the pseudocode used and of the relationship between the encoding diagram, the encoding-specific
pseudocode and the encoding-independent pseudocode, see Chapter E3 Pseudocode Specification.
E1-1118 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E1 Pseudocode Overview
E1.2 Pseudocode operators and keywords
E1.2 Pseudocode operators and keywords
Table E1-1 shows the pseudocode operators and keywords.

Table E1-1 Pseudocode operators and keywords

Operator Meaning

- Unary minus on integers or reals

- Subtraction of integers, reals and bitstrings

+ Unary plus on integers or reals

+ Addition of integers, reals and bitstrings

. Extract named member from a list

. Extract named bit or field from a register

: Bitstring concatenation

: Integer range in bitstring extraction operator

! Boolean NOT

!= Compare for non-equality (any type)

!= Compare for non-equality (between integers and reals)

(…) Around arguments of procedure

(…) Around arguments of function

[…] Around array index

[…] Around arguments of array-like function

* Multiplication of integers and reals

/ Division of integers and reals (real result)

/*…*/ Comment delimiters

// Introduces comment terminated by end of line

&& Boolean AND

< Less than comparison of integers and reals

<…> Extraction of specified bits of bitstring or integer

<< Multiply integer by power of 2 (with rounding towards -infinity)

<= Less than or equal comparison of integers and reals

= Assignment

== Compare for equality (any type)

== Compare for equality (between integers and reals)

> Greater than comparison of integers and reals

>= Greater than or equal comparison of integers and reals

>> Divide integer by power of 2 (with rounding towards -infinity)
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E1-1119
ID072816 Non-Confidential - Beta

E1 Pseudocode Overview
E1.2 Pseudocode operators and keywords
|| Boolean OR

x^N Nth integer power of integers or reala

AND Bitwise AND of bitstrings

array Keyword introducing array type definition

bit Bitstring type of length 1

bits(N) Bitstring type of length N

boolean Boolean type

case … of … Control structure

DIV Quotient from integer division

enumeration Keyword introducing enumeration type definition

EOR Bitwise EOR of bitstrings

FALSE Boolean constant

for … Control structure

for … downto Counts down

if … then … else … Expression selecting between two values

if … then … else … Control structure

IN Tests membership of a set of values

IMPLEMENTATION_DEFINED Describes IMPLEMENTATION DEFINED behavior

integer Unbounded integer type

MOD Remainder from integer division

OR Bitwise OR of bitstrings

otherwise Introduces default case in case … of … control structure

real Real number type

repeat … until … Control structure

return Procedure or function return

SEE Points to other pseudocode to use instead

TRUE Boolean constant

type Names a type

UNDEFINED Cause Undefined Instruction exception

UNKNOWN Unspecified value

Table E1-1 Pseudocode operators and keywords (continued)

Operator Meaning
E1-1120 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E1 Pseudocode Overview
E1.2 Pseudocode operators and keywords
UNPREDICTABLE Unspecified behavior

when Introduces specific case in case … of … control structure

while … do … Control structure

a. N must be an integer, x can be an integer or a real.

Table E1-1 Pseudocode operators and keywords (continued)

Operator Meaning
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E1-1121
ID072816 Non-Confidential - Beta

E1 Pseudocode Overview
E1.2 Pseudocode operators and keywords
E1-1122 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

Chapter E2
ARM Pseudocode Definition

This appendix provides a definition of the pseudocode that is used in this manual, and defines some built-in
functions that are used by pseudocode. It contains the following sections:
• About the ARM pseudocode on page E2-1124.
• Data types on page E2-1125.
• Operators on page E2-1130.
• Statements and control structures on page E2-1136.
• Built-in functions on page E2-1142.
• ARM pseudocode definition index on page E2-1145.

Note
 This appendix is not a formal language definition for the pseudocode. It is a guide to help understand the use of
ARM pseudocode. This appendix is not complete. Changes are planned for future releases.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E2-1123
ID072816 Non-Confidential - Beta

E2 ARM Pseudocode Definition
E2.1 About the ARM pseudocode
E2.1 About the ARM pseudocode
The ARM pseudocode provides precise descriptions of some areas of the ARM architecture. This includes
description of the decoding and operation of all valid instructions.

The following sections describe the ARM pseudocode in detail:
• Data types on page E2-1125.
• Operators on page E2-1130.
• Statements and control structures on page E2-1136.

Built-in functions on page E2-1142 describes some built-in functions that are used by the pseudocode functions that
are described elsewhere in this manual. ARM pseudocode definition index on page E2-1145 contains the indexes to
the pseudocode.

E2.1.1 General limitations of ARM pseudocode

The pseudocode statements IMPLEMENTATION_DEFINED, SEE, UNDEFINED, and UNPREDICTABLE indicate behavior that
differs from that indicated by the pseudocode being executed. If one of them is encountered:

• Earlier behavior indicated by the pseudocode is only specified as occurring to the extent required to
determine that the statement is executed.

• No subsequent behavior indicated by the pseudocode occurs.

For more information, see Special statements on page E2-1140.
E2-1124 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E2 ARM Pseudocode Definition
E2.2 Data types
E2.2 Data types
This section describes:
• General data type rules.
• Bitstrings.
• Integers on page E2-1126.
• Reals on page E2-1126.
• Booleans on page E2-1126.
• Enumerations on page E2-1127.
• Tuples on page E2-1128.
• Structures on page E2-1127.
• Arrays on page E2-1129.

E2.2.1 General data type rules

ARM architecture pseudocode is a strongly typed language. Every literal and variable is of one of the following
types:
• Bitstring.
• Integer.
• Boolean.
• Real.
• Enumeration.
• Tuple.
• Struct.
• Array.

The type of a literal is determined by its syntax. A variable can be assigned to without an explicit declaration. The
variable implicitly has the type of the assigned value. For example, the following assignments implicitly declare the
variables x, y and z to have types integer, bitstring of length 1, and Boolean, respectively.

x = 1;
y = '1';
z = TRUE;

Variables can also have their types declared explicitly by preceding the variable name with the name of the type.
The following example declares explicitly that a variable named count is an integer.

integer count;

This is most often done in function definitions for the arguments and the result of the function.

The remaining subsections describe each data type in more detail.

E2.2.2 Bitstrings

This section describes the bitstring data type.

Syntax
bits(N) The type name of a bitstring of length N.
bit A synonym of bits(1).

Description

A bitstring is a finite-length string of 0s and 1s. Each length of bitstring is a different type. The minimum permitted
length of a bitstring is 0.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E2-1125
ID072816 Non-Confidential - Beta

E2 ARM Pseudocode Definition
E2.2 Data types
Bitstring constants literals are written as a single quotation mark, followed by the string of 0s and 1s, followed by
another single quotation mark. For example, the two constants literals of type bit are '0' and '1'. Spaces can be
included in bitstrings for clarity.

The bits in a bitstring are numbered from left to right N-1 to 0. This numbering is used when accessing the bitstring
using bitslices. In conversions to and from integers, bit N-1 is the MSByte and bit 0 is the LSByte. This order
matches the order in which bitstrings derived from encoding diagrams are printed.

Every bitstring value has a left-to-right order, with the bits being numbered in standard little-endian order. That is,
the leftmost bit of a bitstring of length N is bit (N–1) and its right-most bit is bit 0. This order is used as the
most-significant-to-least-significant bit order in conversions to and from integers. For bitstring constants and
bitstrings that are derived from encoding diagrams, this order matches the way that they are printed.

Bitstrings are the only concrete data type in pseudocode, corresponding directly to the contents values that are
manipulated in registers, memory locations, and instructions. All other data types are abstract.

E2.2.3 Integers

This section describes the data type for integer numbers.

Syntax

integer The type name for the integer data type.

Description

Pseudocode integers are unbounded in size and can be either positive or negative. That is, they are mathematical
integers rather than what computer languages and architectures commonly call integers. Computer integers are
represented in pseudocode as bitstrings of the appropriate length, and the pseudocode provides functions to interpret
those bitstrings as integers.

Integer literals are normally written in decimal form, such as 0, 15, -1234. They can also be written in C-style
hexadecimal form, such as 0x55 or 0x80000000. Hexadecimal integer literals are treated as positive unless they have
a preceding minus sign. For example, 0x80000000 is the integer +231. If -231 needs to be written in hexadecimal, it
must be written as -0x80000000.

E2.2.4 Reals

This section describes the data type for real numbers.

Syntax

real The type name for the real data type.

Description

Pseudocode reals are unbounded in size and precision. That is, they are mathematical real numbers, not computer
floating-point numbers. Computer floating-point numbers are represented in pseudocode as bitstrings of the
appropriate length, associated with suitable and the pseudocode provides functions to interpret those bitstrings as
reals.

Real constants literals are written in decimal form with a decimal point. This means 0 is an integer constant literal,
but 0.0 is a real constant literal.

E2.2.5 Booleans

This section describes the Boolean data type.
E2-1126 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E2 ARM Pseudocode Definition
E2.2 Data types
Syntax

boolean The type name for the Boolean data type.

TRUE, FALSE The two values a Boolean variable can take.

Description

A Boolean is a logical TRUE or FALSE value.

Note
 This is not the same type as bit, which is a bitstring of length 1. A Boolean can only take on one of two values: TRUE
or FALSE.

E2.2.6 Enumerations

This section describes the enumeration data type.

Syntax and examples

enumeration Keyword to defined a new enumeration type.

enumeration Example {Example_One, Example_Two, Example_Three};

A definition of a new enumeration called Example, which can take on the values Example_One,
Example_Two, Example_Three.

Description

An enumeration is a defined set of named values.

An enumeration must contain at least one named value. A named value must not be shared between enumerations.

Enumerations must be defined explicitly, although a variable of an enumeration type can be declared implicitly by
assigning one of the named values to it. By convention, each named value starts with the name of the enumeration
followed by an underscore. The name of the enumeration is its type name, or type, and the named values are its
possible values.

E2.2.7 Structures

This section describes the structure data type.

Syntax and examples

type The keyword used to declare the structure data type.

type ShiftSpec is (bits(2) shift, integer amount)

An example definition for a new structure called ShiftSpec that contains an bitstring member called
shift and a integer member named amount. Structure definitions must not be terminated with a
semicolon.

ShiftSpec abc;

A declaration of a variable named abc of type ShiftSpec.

abc.shift

Syntax to refer to the individual members within the structure variable.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E2-1127
ID072816 Non-Confidential - Beta

E2 ARM Pseudocode Definition
E2.2 Data types
Description

A structure is a compound data type composed of one or more data items. The data items can be of different data
types. This can include compound data types. The data items of a structure are called its members and are named.

In the syntax section, the example defines a structure called ShiftSpec with two members. The first is a bitstring of
length 2 named shift and the second is an integer named amount. After declaring a variable of that type named abc,
the members of this structure are referred to as abc.shift and abc.amount.

Every definition of a structure creates a different type, even if the number and type of their members are identical.
For example:

type ShiftSpec1 is (bits(2) shift, integer amount)
type ShiftSpec2 is (bits(2) shift, integer amount)

ShiftSpec1 and ShiftSpec2 are two different types despite having identical definitions. This means that the value in
a variable of type ShiftSpec1 cannot be assigned to variable of type ShiftSpec2.

E2.2.8 Tuples

This section describes the tuple data type.

Examples

(bits(32) shifter_result, bit shifter_carry_out)

An example of the tuple syntax.

(shift_t, shift_n) = ('00', 0);

An example of assigning values to a tuple.

Description

A tuple is an ordered set of data items, separated by commas and enclosed in parentheses. The items can be of
different types and a tuple must contain at least one data item.

Tuples are often used as the return type for functions that return multiple results. For example, in the syntax section,
the example tuple is the return type of the function Shift_C(), which performs a standard A32/T32 shift or rotation.
Its return type is a tuple containing two data items, with the first of type bits(32) and the second of type bit.

Each tuple is a separate compound data type. The compound data type is represented as a comma-separated list of
ordered data types between parentheses. This means that the example tuple at the start of this section is of type
(bits(32), bit). The general principle that types can be implied by an assignment extends to implying the type of
the elements in the tuple. For example, in the syntax section, the example assignment implicitly declares:
• shift_t to be of type bits(2).
• shift_n to be of type integer.
• (shift_t, shift_n) to be a tuple of type (bits(2), integer).
E2-1128 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E2 ARM Pseudocode Definition
E2.2 Data types
E2.2.9 Arrays

This section describes the array data type.

Syntax

array The type name for the array data type.

array data_type array_name[A..B];

Declaration of an array of type data_type, which might be compound data type. It is named
array_name and is indexed with an integer range from A to B.

Description

An array is an ordered set of fixed size containing items of a single data type. This can include compound data types.
Pseudocode arrays are indexed by either enumerations or integer ranges. An integer range is represented by the
lower inclusive end of the range, then .., then the upper inclusive end of the range.

For example:

The following example declares an array of 31 bitstrings of length 64, indexed from 0 to 30.

array bits(64) _R[0..30];

Arrays are always explicitly declared, and there is no notation for a constant literal array. Arrays always contain at
least one element data item, because:
• Enumerations always contain at least one symbolic constant named value.
• Integer ranges always contain at least one integer.

An array declared with an enumeration type as the index must be accessed using enumeration values of that
enumeration type. An array declared with an integer range type as the index must be accessed using integer values
from that inclusive range. Accessing such an array with an integer value outside of the range is a coding error.

Arrays do not usually appear directly in pseudocode. The items that syntactically look like arrays in pseudocode are
usually array-like functions such as R[i], MemU[address, size] or Elem[vector, i, size]. These functions package
up and abstract additional operations normally performed on accesses to the underlying arrays, such as register
banking, memory protection, endian-dependent byte ordering, exclusive-access housekeeping and Advanced SIMD
element processing. See Function and procedure calls on page E2-1136.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E2-1129
ID072816 Non-Confidential - Beta

E2 ARM Pseudocode Definition
E2.3 Operators
E2.3 Operators
This section describes:
• Relational operators.
• Boolean operators.
• Arithmetic operators on page E2-1131.

E2.3.1 Relational operators

The following operations yield results of type boolean.

Equality and non-equality

If two variables x and y are of the same type, their values can be tested for equality by using the expression x == y
and for non-equality by using the expression x != y. In both cases, the result is of type boolean.

Both x and y must be of type bits(N), real , enumeration, boolean, or integer. Named values from an enumeration
can only be compared if they are both from the same enumeration. An exception is that a bitstring can be tested for
equality with an integer to allow a d==15 test.

A special form of comparison is defined with a bitstring literal that can contain bit values '0' , '1', and 'x'. Any bit
with value 'x' is ignored in determining the result of the comparison. For example, if opcode is a 4-bit bitstring, the
expression opcode == '1x0x' matches the values ‘1000’, ‘1100’, ‘1001’, and ‘1101’. This is known as a bitmask.

Note
 This special form is permitted in the implied equality comparisons in the when parts of case … of … structures.

Comparisons

If x and y are integers or reals, then x < y, x <= y, x > y, and x >= y are less than, less than or equal, greater than,
and greater than or equal comparisons between them, producing Boolean results.

Set membership with IN

<expression> IN {<set>} produces TRUE if <expression> is a member of <set>. Otherwise, it is FALSE. <set> must be
a list of expressions separated by commas.

E2.3.2 Boolean operators

If x is a Boolean expression, then !x is its logical inverse.

If x and y are Boolean expressions, then x && y is the result of ANDing them together. As in the C language, if x is
FALSE, the result is determined to be FALSE without evaluating y.

Note
 This is known as short circuit evaluation.

If x and y are booleans, then x || y is the result of ORing them together. As in the C language, if x is TRUE, the result
is determined to be TRUE without evaluating y.

Note
 If x and y are booleans or Boolean expressions, then the result of x != y is the same as the result of exclusive-ORing
x and y together. The operator EOR only accepts bitstring arguments.
E2-1130 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E2 ARM Pseudocode Definition
E2.3 Operators
E2.3.3 Bitstring operators

The following operations can be applied only to bitstrings.

Logical operations on bitstrings

If x is a bitstring, NOT(x) is the bitstring of the same length obtained by logically inverting every bit of x.

If x and y are bitstrings of the same length, x AND y, x OR y, and x EOR y are the bitstrings of that same length obtained
by logically ANDing, logically ORing, and exclusive-ORing corresponding bits of x and y together.

Bitstring concatenation and slicing

If x and y are bitstrings of lengths N and M respectively, then x:y is the bitstring of length N+M constructed by
concatenating x and y in left-to-right order.

The bitstring slicing operator addresses specific bits in a bitstring. This can be used to create a new bitstring from
extracted bits or to set the value of specific bits. Its syntax is x<integer_list>, where x is the integer or bitstring
being sliced, and <integer_list> is a comma-separated list of integers enclosed in angle brackets. The length of the
resulting bitstring is equal to the number of integers in <integer_list>. In x<integer_list>, each of the integers in
<integer_list> must be:
• >= 0.
• < Len(x) if x is a bitstring.

The definition of x<integer_list> depends on whether integer_list contains more than one integer:

• If integer_list contains more than one integer, x<i, j, k,…, n> is defined to be the concatenation:

x<i> : x<j> : x<k> : … : x<n>.

• If integer_list consists of just one integer i, x<i> is defined to be:

— If x is a bitstring, '0' if bit i of x is a zero and '1' if bit i of x is a one.

— If x is an integer, and y is the unique integer in the range 0 to 2^(i+1)-1 that is congruent to x modulo
2^(i+1). Then x<i> is '0' if y < 2^i and '1' if y >= 2^i.
Loosely, this definition treats an integer as equivalent to a sufficiently long two’s complement
representation of it as a bitstring.

The notation for a range expression is i:j with i >= j is shorthand for the integers in order from i down to j, with
both end values included. For example, instr<31:28> represents instr<31, 30, 29, 28>.

x<integer_list> is assignable provided x is an assignable bitstring and no integer appears more than once in
<integer_list>. In particular, x<i> is assignable if x is an assignable bitstring and 0 <= i < Len(x).

Encoding diagrams for registers frequently show named bits or multi-bit fields. For example, the encoding diagram
for the APSR shows its bit<31> as N. In such cases, the syntax APSR.N is used as a more readable synonym for
APSR<31> as named bits can be referred to with the same syntax as referring to members of a struct. A
comma-separated list of named bits enclosed in angle brackets following the register name allows multiple bits to
be addressed simultaneously. For example, APSR.<N, C, Q> is synonymous with APSR <31, 29, 27>.

E2.3.4 Arithmetic operators

Most pseudocode arithmetic is performed on integer or real values, with operands obtained by conversions from
bitstrings and results converted back to bitstrings. As these data types are the unbounded mathematical types, no
issues arise about overflow or similar errors.

Unary plus and minus

If x is an integer or real, then +x is x unchanged, -x is x with its sign reversed. Both are of the same type as x.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E2-1131
ID072816 Non-Confidential - Beta

E2 ARM Pseudocode Definition
E2.3 Operators
Addition and subtraction

If x and y are integers or reals, x+y and x-y are their sum and difference. Both are of type integer if x and y are both
of type integer, and real otherwise.

There are two cases where the types of x and y can be different. A bitstring and an integer can be added together to
allow the operation PC + 4. An integer can be subtracted from a bitstring to allow the operation PC - 2.

If x and y are bitstrings of the same length N, so that N = Len(x) = Len(y), then x+y and x-y are the least significant
N bits of the results of converting x and y to integers and adding or subtracting them. Signed and unsigned
conversions produce the same result:

x+y = (SInt(x) + SInt(y))<N-1:0>
= (UInt(x) + UInt(y))<N-1:0>

x-y = (SInt(x) - SInt(y))<N-1:0>
= (UInt(x) - UInt(y))<N-1:0>

If x is a bitstring of length N and y is an integer, x+y and x-y are the bitstrings of length N defined by x+y = x + y<N-1:0>
and x-y = x - y<N-1:0>. Similarly, if x is an integer and y is a bitstring of length M, x+y and x-y are the bitstrings of
length M defined by x+y = x<M-1:0> + y and x-y = x<M-1:0> - y.

Multiplication

If x and y are integers or reals, then x * y is the product of x and y. It is of type integer if x and y are both of type
integer, and real otherwise.

Division and modulo

If x and y are reals, then x/y is the result of dividing x by y, and is always of type real.

If x and y are integers, then x DIV y and x MOD y are defined by:

x DIV y = RoundDown(x/y)
x MOD y = x - y * (x DIV y)

It is a pseudocode error to use any of x/y, x MOD y, or x DIV y in any context where y can be zero.

Scaling

If x and n are of type integer, then:
• x << n = RoundDown(x * 2^n).
• x >> n = RoundDown(x * 2^(-n)).

Raising to a power

If x is an integer or a real and n is an integer then x^n is the result of raising x to the power of n, and:
• If x is of type integer then x^n is of type integer.
• If x is of type real then x^n is of type real.

E2.3.5 The assignment operator

The assignment operator is the = character, which assigns the value of the right-hand side to the left-hand side. An
assignment statement takes the form:

<assignable_expression> = <expression>;

This following subsection defines valid expression syntax.

General expression syntax

An expression is one of the following:
• A literal.
E2-1132 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E2 ARM Pseudocode Definition
E2.3 Operators
• A variable, optionally preceded by a data type name to declare its type.
• The word UNKNOWN preceded by a data type name to declare its type.
• The result of applying a language-defined operator to other expressions.
• The result of applying a function to other expressions.

Variable names normally consist of alphanumeric and underscore characters, starting with an alphabetic or
underscore character.

Each register defined in an ARM architecture specification defines a correspondingly named pseudocode bitstring
variable, and that variable has the stated behavior of the register. For example, if a bit of a register is defined as
RAZ/WI, then the corresponding bit of its variable reads as '0' and ignore writes.

An expression like bits(32) UNKNOWN indicates that the result of the expression is a value of the given type, but the
architecture does not specify what value it is and software must not rely on such values. The value produced must
not:

• Return information that cannot be accessed at the current or a lower level of privilege using instructions that
are not UNPREDICTABLE or CONSTRAINED UNPREDICTABLE and do not return UNKNOWN values,

• Be promoted as providing any useful information to software.

Note
 UNKNOWN values are similar to the definition of UNPREDICTABLE, but do not indicate that the entire architectural
state becomes unspecified.

Only the following expressions are assignable. This means that these are the only expressions that can be placed on
the left-hand side of an assignment.

• Variables.

• The results of applying some operators to other expressions.

The description of each language-defined operator that can generate an assignable expression specifies the
circumstances under which it does so. For example, those circumstances might require that one or more of
the expressions the operator operates on is an assignable expression.

• The results of applying array-like functions to other expressions. The description of an array-like function
specifies the circumstances under which it can generate an assignable expression.

Note
 If the right-hand side in an assignment is a function returning a tuple, an item in the assignment destination can be
written as - to indicate that the corresponding item of the assigned tuple value is discarded. For example:

(shifted, -) = LSL_C(operand, amount);

The expression on the right-hand side itself can be a tuple. For example:

(x, y) = (function_1(), function_2());

Every expression has a data type.

• For a literal, this data type is determined by the syntax of the literal.

• For a variable, there are the following possible sources for the data type

— An optional preceding data type name.

— A data type the variable was given earlier in the pseudocode by recursive application of this rule.

— A data type the variable is being given by assignment, either by direct assignment to the variable, or
by assignment to a list of which the variable is a member.

It is a pseudocode error if none of these data type sources exists for a variable, or if more than one of them
exists and they do not agree about the type.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E2-1133
ID072816 Non-Confidential - Beta

E2 ARM Pseudocode Definition
E2.3 Operators
• For a language-defined operator, the definition of the operator determines the data type.

• For a function, the definition of the function determines the data type.

E2.3.6 Precedence rules

The precedence rules for expressions are:

1. Literals, variables and function invocations are evaluated with higher priority than any operators using their
results, but see Boolean operators on page E2-1130.

2. Operators on integers follow the normal operator precedence rules of exponentiation before multiply/divide
before add/subtract, with sequences of multiply/divides or add/subtracts evaluated left-to-right.

3. Other expressions must be parenthesized to indicate operator precedence if ambiguity is possible, but need
not be if all permitted precedence orders under the type rules necessarily lead to the same result. For example,
if i, j and k are integer variables, i > 0 && j > 0 && k > 0 is acceptable, but i > 0 && j > 0 || k > 0 is not.

E2.3.7 Conditional expressions

If x and y are two values of the same type and t is a value of type boolean, then if t then x else y is an expression
of the same type as x and y that produces x if t is TRUE and y if t is FALSE.

E2.3.8 Operator polymorphism

Operators in pseudocode can be polymorphic, with different functionality when applied to different data types. Each
resulting form of an operator has a different prototype definition. For example, the operator + has forms that act on
various combinations of integers, reals and bitstrings.

Table E2-1 summarizes the operand types valid for each unary operator and the result type. Table E2-2 summarizes
the operand types valid for each binary operator and the result type.

Table E2-1 Result and operand types permitted for unary operators

Operator Operand Type Result Type

-
integer integer

real real

NOT bits(N) bits(N)

! boolean boolean

Table E2-2 Result and operand types permitted for binary operators

Operator First operand type Second operand type Result type

==

bits(N)
integer

boolean

bits(N)

integer integer

real real

enumeration enumeration

boolean boolean

!=

bits(N) bits(N)

booleaninteger integer

real real

<, >
<= , >=

integer integer
boolean

real real
E2-1134 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E2 ARM Pseudocode Definition
E2.3 Operators
+, -

integer integer integer

real real real

bits(N)
bits(N)

bits(N)
integer

<<, >> integer integer integer

*

integer integer integer

real real real

bits(N) bits(N) bits(N)

/ real real real

DIV integer integer integer

MOD
integer integer

integer
bits(N) integer

&&, || boolean boolean boolean

AND, OR, EOR bits(N) bits(N) bits(N)

^
integer integer integer

real integer real

Table E2-2 Result and operand types permitted for binary operators (continued)

Operator First operand type Second operand type Result type
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E2-1135
ID072816 Non-Confidential - Beta

E2 ARM Pseudocode Definition
E2.4 Statements and control structures
E2.4 Statements and control structures
This section describes the statements and program structures available in the pseudocode.

E2.4.1 Statements and Indentation

A simple statement is either an assignment, a function call, or a procedure call. Each statement must be terminated
with a semicolon.

Indentation normally indicates the structure in compound statements. The statements contained in structures such
as if … then … else … or procedure and function definitions are indented more deeply than the statement structure
itself. The end of a compound statement structure and their end is indicated by returning to the original indentation
level or less.

Indentation is normally done by four spaces for each level. Standard indentation uses four spaces for each level of
indent.

E2.4.2 Function and procedure calls

This section describes how functions and procedures are defined and called in the pseudocode.
E2-1136 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E2 ARM Pseudocode Definition
E2.4 Statements and control structures
Procedure and function definitions

A procedure definition has the form:

<procedure name>(<argument prototypes>)
<statement 1>;
<statement 2>;
…
<statement n>;

where <argument prototypes> consists of zero or more argument definitions, separated by commas. Each argument
definition consists of a type name followed by the name of the argument.

Note
 This first definition line is not terminated by a semicolon. This distinguishes it from a procedure call.

A function definition is similar, but also declares the return type of the function:

<return type> <function name>(<argument prototypes>)
<statement 1>;
<statement 2>;
…
<statement n>;

Array-like functions are similar, but are written with square brackets and have two forms. These two forms exist
because reading from and writing to an array element require different functions. They are frequently used in
memory operations. An array-like function definition with a return type is equivalent to reading from an array. For
example:

<return type> <function name>[<argument prototypes>]
<statement 1>;
<statement 2>;
…
<statement n>;

Its related function definition with no return type is equivalent to writing to an array. For example:

<function name>[<argument prototypes>] = <value prototype>
<statement 1>;
<statement 2>;
…
<statement n>;

The value prototype determines what data type can be written to the array. The two related functions must share the
same name, but the value prototype and return type can be different.

Procedure calls

A procedure call has the form:

<procedure_name>(<arguments>);

Return statements

A procedure return has the form:

return;

A function return has the form:

return <expression>;

where <expression> is of the type declared in the function prototype line.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E2-1137
ID072816 Non-Confidential - Beta

E2 ARM Pseudocode Definition
E2.4 Statements and control structures
E2.4.3 Conditional control structures

This section describes how conditional control structures are used in the pseudocode.

if … then … else …

In addition to being a ternary operator, a multi-line if … then … else … structure can act as a control structure and
has the form:

if <boolean_expression> then
<statement 1>;
<statement 2>;
…
<statement n>;

elsif <boolean_expression> then
<statement a>;
<statement b>;
…
<statement z>;

else
<statement A>;
<statement B>;
…
<statement Z>;

The block of lines consisting of elsif and its indented statements is optional, and multiple elsif blocks can be used.

The block of lines consisting of else and its indented statements is optional.

Abbreviated one-line forms can be used when the then part, and in the else part if it is present, contain only simple
statements such as:

if <boolean_expression> then <statement 1>;
if <boolean_expression> then <statement 1>; else <statement A>;
if <boolean_expression> then <statement 1>; <statement 2>; else <statement A>;

Note
 In these forms, <statement 1>, <statement 2> and <statement A> must be terminated by semicolons. This and the
fact that the else part is optional distinguish its use as a control structure from its use as a ternary operator.

case … of …

A case … of … structure has the form:

case <expression> of
when <literal values1>

<statement 1>;
<statement 2>;
…
<statement n>;

when <literal values2>
<statement 1>;
<statement 2>;
…
<statement n>;

… more "when" groups if required …

otherwise
<statement A>;
<statement B>;
…
<statement Z>;
E2-1138 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E2 ARM Pseudocode Definition
E2.4 Statements and control structures
In this structure, <literal values1> and <literal values2> consist of literal values of the same type as <expression>,
separated by commas. There can be additional when groups in the structure. Abbreviated one line forms of when and
otherwise parts can be used when they contain only simple statements.

If <expression> has a bitstring type, the literal values can also include bitstring literals containing 'x' bits, known
as bitmasks. For details see Equality and non-equality on page E2-1130.

E2.4.4 Loop control structures

This section describes the three loop control structures used in the pseudocode.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E2-1139
ID072816 Non-Confidential - Beta

E2 ARM Pseudocode Definition
E2.4 Statements and control structures
repeat … until …

A repeat … until … structure has the form:

repeat
<statement 1>;
<statement 2>;
…
<statement n>;

until <boolean_expression>;

It executes the statement block at least once, and the loop repeats until <boolean expression> evaluates to TRUE.
Variables explicitly declared inside the loop body have scope local to that loop and might not be accessed outside
the loop body.

while … do

A while … do structure has the form:

while <boolean_expression> do
<statement 1>;
<statement 2>;
…
<statement n>;

It begins executing the statement block only if the Boolean expression is true. The loop then runs until the
expression is false.

for …

A for … structure has the form:

for <assignable_expression> = <integer_expr1> to <integer_expr2>
<statement 1>;
<statement 2>;
…
<statement n>;

The <assignable_expression> is initialized to <integer_expr1> and compared to <integer_expr2>. If <integer_expr1>
is less than <integer_expr2>, the loop body is executed and the <assignable_expression> incremented by one. This
repeats until <assignable expression> is more than or equal to <integer_expr2>.

There is an alternate form:

for <assignable_expression> = <integer_expr1> downto <integer_expr2>

where <integer_expr1> is decremented after the loop body executes and continues until <assignable expression> is
less than or equal than <integer_expr2>.

E2.4.5 Special statements

This section describes statements with particular architecturally-defined behaviors.

UNDEFINED

This subsection describes the statement:

UNDEFINED;

This statement indicates a special case that replaces the behavior defined by the current pseudocode, apart from
behavior required to determine that the special case applies. The replacement behavior is that the Undefined
Instruction exception is taken.
E2-1140 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E2 ARM Pseudocode Definition
E2.4 Statements and control structures
UNPREDICTABLE

This subsection describes the statement:

UNPREDICTABLE;

This statement indicates a special case that replaces the behavior defined by the current pseudocode, apart from
behavior required to determine that the special case applies. The replacement behavior is UNPREDICTABLE.

SEE…

This subsection describes the statement:

SEE <reference>;

This statement indicates a special case that replaces the behavior defined by the current pseudocode, apart from
behavior required to determine that the special case applies. The replacement behavior is that nothing occurs as a
result of the current pseudocode because some other piece of pseudocode defines the required behavior. The
<reference> indicates where that other pseudocode can be found.

It usually refers to another instruction, but can also refer to another encoding or note of the same instruction.

IMPLEMENTATION_DEFINED

This subsection describes the statement:

IMPLEMENTATION_DEFINED {"<text>"};

This statement indicates a special case that replaces the behavior defined by the current pseudocode, apart from
behavior required to determine that the special case applies. The replacement behavior is IMPLEMENTATION
DEFINED. An optional <text> field can give more information.

E2.4.6 Comments

The pseudocode supports two styles of comments:
• // starts a comment that is terminated by the end of the line.
• /* starts a comment that is terminated by */.

 /**/ statements might not be nested, and the first */ ends the comment.

Note
 Comment lines do not require a terminating semicolon.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E2-1141
ID072816 Non-Confidential - Beta

E2 ARM Pseudocode Definition
E2.5 Built-in functions
E2.5 Built-in functions
This section describes:
• Bitstring manipulation functions.
• Arithmetic functions on page E2-1143.

E2.5.1 Bitstring manipulation functions

The following bitstring manipulation functions are defined:

Bitstring length

If x is a bitstring:
• The bitstring length function Len(x) returns the length of x as an integer.

Bitstring concatenation and replication

If x is a bitstring and n is an integer with n >= 0:
• Replicate(x, n) is the bitstring of length n*Len(x) consisting of n copies of x concatenated together.
• Zeros(n) = Replicate('0', n).
• Ones(n) = Replicate('1', n).

Bitstring count

If x is a bitstring, BitCount(x) is an integer result equal to the number of bits of x that are ones.
E2-1142 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E2 ARM Pseudocode Definition
E2.5 Built-in functions
Testing a bitstring for being all zero or all ones

If x is a bitstring:
• IsZero(x) produces TRUE if all of the bits of x are zeros and FALSE if any of them are ones
• IsZeroBit(x) produces '1' if all of the bits of x are zeros and '0' if any of them are ones.

IsOnes(x) and IsOnesBit(x) work in the corresponding ways. This means:

IsZero(x) = (BitCount(x) == 0)
IsOnes(x) = (BitCount(x) == Len(x))
IsZeroBit(x) = if IsZero(x) then '1' else '0'
IsOnesBit(x) = if IsOnes(x) then '1' else '0'

Lowest and highest set bits of a bitstring

If x is a bitstring, and N = Len(x):

• LowestSetBit(x) is the minimum bit number of any of the bits of x that are ones. If all of its bits are zeros,
LowestSetBit(x) = N.

• HighestSetBit(x) is the maximum bit number of any of the bits of x that are ones. If all of its bits are zeros,
HighestSetBit(x) = -1.

• CountLeadingZeroBits(x) is the number of zero bits at the left end of x, in the range 0 to N. This means:

CountLeadingZeroBits(x) = N - 1 - HighestSetBit(x).

• CountLeadingSignBits(x) is the number of copies of the sign bit of x at the left end of x, excluding the sign
bit itself, and is in the range 0 to N-1. This means:

CountLeadingSignBits(x) = CountLeadingZeroBits(x<N-1:1> EOR x<N-2:0>).

Zero-extension and sign-extension of bitstrings

If x is a bitstring and i is an integer, then ZeroExtend(x, i) is x extended to a length of i bits, by adding sufficient
zero bits to its left. That is, if i == Len(x), then ZeroExtend(x, i) = x, and if i > Len(x), then:

ZeroExtend(x, i) = Replicate('0', i-Len(x)) : x

If x is a bitstring and i is an integer, then SignExtend(x, i) is x extended to a length of i bits, by adding sufficient
copies of its leftmost bit to its left. That is, if i == Len(x), then SignExtend(x, i) = x, and if i > Len(x), then:

SignExtend(x, i) = Replicate(TopBit(x), i-Len(x)) : x

It is a pseudocode error to use either ZeroExtend(x, i) or SignExtend(x, i) in a context where it is possible that
i < Len(x).

Converting bitstrings to integers

If x is a bitstring, SInt() is the integer whose two’s complement representation is x.

UInt() is the integer whose unsigned representation is x.

Int(x, unsigned) returns either SInt(x) or UInt(x) depending on the value of its second argument.

E2.5.2 Arithmetic functions

This section defines built-in arithmetic functions.

Absolute value

If x is either of type real or integer, Abs(x) returns the absolute value of x. The result is the same type as x.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E2-1143
ID072816 Non-Confidential - Beta

E2 ARM Pseudocode Definition
E2.5 Built-in functions
Rounding and aligning

If x is a real:
• RoundDown(x) produces the largest integer n such that n <= x.
• RoundUp(x) produces the smallest integer n such that n >= x.
• RoundTowardsZero(x) produces:

— RoundDown(x) if x > 0.0.
— 0 if x == 0.0.
— RoundUp(x) if x < 0.0.

If x and y are both of type integer, Align(x, y) = y * (x DIV y), and is of type integer.

If x is of type bitstring and y is of type integer, Align(x, y) = (Align(UInt(x), y))<Len(x)-1:0>, and is a bitstring
of the same length as x.

It is a pseudocode error to use either form of Align(x, y) in any context where y can be 0. In practice, Align(x, y)
is only used with y a constant power of two, and the bitstring form used with y = 2^n has the effect of producing its
argument with its n low-order bits forced to zero.

Maximum and minimum

If x and y are integers or reals, then Max(x, y) and Min(x, y) are their maximum and minimum respectively. x and
y must both be of type integer or of type real. The function returns a value of the same type as its operands.
E2-1144 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E2 ARM Pseudocode Definition
E2.6 ARM pseudocode definition index
E2.6 ARM pseudocode definition index
This section contains the following tables:
• Table E2-3 which contains the pseudocode data types.
• Table E2-4 which contains the pseudocode operators.
• Table E2-5 on page E2-1146 which contains the pseudocode keywords and control structures.
• Table E2-6 on page E2-1147 which contains the statements with special behaviors.

Table E2-3 Index of pseudocode data types

Keyword Meaning

array Type name for the array type

bit Keyword equivalent to bits(1)

bits(N) Type name for the bitstring of length N data type

boolean Type name for the Boolean data type

enumeration Keyword to define a new enumeration type

integer Type name for the integer data type

real Type name for the real data type

type Keyword to define a new structure

Table E2-4 Index of pseudocode operators

Operator Meaning

- Unary minus on integers or reals

Subtraction of integers, reals and bitstrings

Used in the left-hand side of an assignment or a tuple to discard
the result

+ Unary plus on integers or reals

Addition of integers, reals and bitstrings

. Extract named member from a list

Extract named bit or field from a register

: Bitstring concatenation

Integer range in bitstring extraction operator

! Boolean NOT

!= Comparison for inequality

(…) Around arguments of procedure or function

[…] Around array index

Around arguments of array-like function

* Multiplication of integers, reals, and bitstrings

/ Division of reals
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E2-1145
ID072816 Non-Confidential - Beta

E2 ARM Pseudocode Definition
E2.6 ARM pseudocode definition index
&& Boolean AND

< Less than comparison of integers and reals

<…> Slicing of specified bits of bitstring or integer

<< Multiply integer by power of 2

<= Less than or equal comparison of integers and reals

= Assignment operator

== Comparison for equality

> Greater than comparison of integers and reals

>= Greater than or equal comparison of integers and reals

>> Divide integer by power of 2

|| Boolean OR

^ Exponential operator

AND Bitwise AND of bitstrings

DIV Quotient from integer division

EOR Bitwise EOR of bitstrings

IN Tests membership of a certain expression in a set of values

MOD Remainder from integer division

NOT Bitwise inversion of bitstrings

OR Bitwise OR of bitstrings

Table E2-5 Index of pseudocode keywords and control structures

Operator Meaning

/*…*/ Comment delimiters

// Introduces comment terminated by end of line

case … of … Control structure for the

FALSE One of two values a Boolean can take (other than TRUE)

for … = …to … Loop control structure, counting up from the initial value to the
upper limit

for … = … downto … Loop control structure, counting down from the initial value to
the lower limit

if … then … else … Condition expression selecting between two values

if … then … else … Conditional control structure

otherwise Introduces default case in case … of … control structure

Table E2-4 Index of pseudocode operators (continued)

Operator Meaning
E2-1146 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E2 ARM Pseudocode Definition
E2.6 ARM pseudocode definition index
repeat … until … Loop control structure that runs at least once until the
termination condition is satisfied

return Procedure or function return

TRUE One of two values a Boolean can take (other than FALSE)

when Introduces specific case in case … of … control structure

while … do … Loop control structure that runs until the termination condition
is satisfied

Table E2-6 Index of special statements

Keyword Meaning

IMPLEMENTATION_DEFINED Describes IMPLEMENTATION DEFINED behavior

SEE Points to other pseudocode to use instead

UNDEFINED Cause Undefined Instruction exception

UNKNOWN Unspecified value

UNPREDICTABLE Unspecified behavior

Table E2-5 Index of pseudocode keywords and control structures (continued)

Operator Meaning
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E2-1147
ID072816 Non-Confidential - Beta

E2 ARM Pseudocode Definition
E2.6 ARM pseudocode definition index
E2-1148 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

Chapter E3
Pseudocode Specification

This chapter specifies the ARMv8-M pseudocode. It contains the following section:
• Alphabetical pseudocode List on page E3-1150.
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E3-1149
ID072816 Non-Confidential - Beta

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1 Alphabetical pseudocode List

E3.1.1 ALUWritePC

// ALUWritePC()
// ============

ALUWritePC(bits(32) address)
 BranchWritePC(address);

E3.1.2 ASR

// ASR()
// =====

bits(N) ASR(bits(N) x, integer shift)
 assert shift >= 0;
 if shift == 0 then
 result = x;
 else
 (result, -) = ASR_C(x, shift);
 return result;

E3.1.3 ASR_C

// ASR_C()
// =======

(bits(N), bit) ASR_C(bits(N) x, integer shift)
 assert shift > 0;
 extended_x = SignExtend(x, shift+N);
 result = extended_x<shift+N-1:shift>;
 carry_out = extended_x<shift-1>;
 return (result, carry_out);

E3.1.4 AccType

// Memory reference access type
enumeration AccType { AccType_NORMAL, // Normal loads and stores
 AccType_ORDERED, // Load-Acquire and Store-Release
 AccType_STACK, // HW generated stacking / unstacking operation
 AccType_LAZYFP, // HW generated stacking due to lazy
 // floating point state preservation
 AccType_IFETCH, // Instruction fetch
 AccType_VECTABLE // Vector table fetch
 };
E3-1150 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.5 AccessAttributes

// Memory access attributes

type AccessAttributes is (
 boolean iswrite, // TRUE for memory stores, FALSE for load accesses
 boolean ispriv, // TRUE if the access is privileged, FALSE if unprivileged
 AccType acctype
)

E3.1.6 ActivateException

// ActivateException()
// ===================

ActivateException(integer exceptionNumber, boolean excIsSecure)
 // If the exception is Secure, directly entry the Secure state.
 CurrentState = if excIsSecure
 then SecurityState_Secure else SecurityState_NonSecure;
 IPSR.Exception = exceptionNumber<8:0>; // Update IPSR to this exception. This also
 // causes a transition to privileged handler
 // mode as IPSR.Exception != 0
 if HaveMainExt() then
 ITSTATE = Zeros(8); // IT/ICI bits cleared
 // PRIMASK, FAULTMASK, BASEPRI unchanged on exception entry
 if HaveFPExt() then
 CONTROL.FPCA = '0'; // Floating-point Extension only
 CONTROL_S.SFPA = '0';
 CONTROL.SPSEL = '0'; // Select the Main stack pointer - SP_main
 // CONTROL.nPRIV unchanged
 // Transition exception from pending to active
 SetPending(exceptionNumber, excIsSecure, FALSE);
 SetActive(exceptionNumber, excIsSecure, TRUE);

E3.1.7 AddWithCarry

// AddWithCarry()
// ==============

(bits(N), bit, bit) AddWithCarry(bits(N) x, bits(N) y, bit carry_in)
 unsigned_sum = UInt(x) + UInt(y) + UInt(carry_in);
 signed_sum = SInt(x) + SInt(y) + UInt(carry_in);
 result = unsigned_sum<N-1:0>; // same value as signed_sum<N-1:0>
 carry_out = if UInt(result) == unsigned_sum then '0' else '1';
 overflow = if SInt(result) == signed_sum then '0' else '1';
 return (result, carry_out, overflow);
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E3-1151
ID072816 Non-Confidential - Beta

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.8 AddressDescriptor

// Descriptor used to access the underlying memory array

type AddressDescriptor is (
 MemoryAttributes memattrs,
 bits(32) paddress, // Physical Address
 AccessAttributes accattrs
)

E3.1.9 BKPTInstrDebugEvent

// BKPTInstrDebugEvent()
// =====================
// Generates a debug event based on BKPT Instruction.

BKPTInstrDebugEvent()
 if !GenerateDebugEventResponse() then
 excInfo = CreateException(HardFault, FALSE, boolean UNKNOWN);
 HandleException(excInfo);

E3.1.10 BLXWritePC

// BLXWritePC()
// ============

BLXWritePC(bits(32) address, boolean allowNonSecure)
 // If in the Secure state and transitions to the Non-secure state are allowed
 // then the target state is specified by the LSB of the target address
 if HaveSecurityExt() && allowNonSecure && IsSecure() then
 BranchToNS(address);
 else
 EPSR.T = address<0>;
 // If EPSR.T == 0 then an exception is taken on the next
 // instruction: UsageFault('Invalid State') if the Main Extension is
 // implemented; HardFault otherwise

 BranchTo(address<31:1>:'0');
E3-1152 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.11 BXWritePC

// BXWritePC()
// ===========

ExcInfo BXWritePC(bits(32) address, boolean allowNonSecure)
 exc = DefaultExcInfo();
 if HaveSecurityExt() && address == '1111 1110 1111 1111 1111 1111 1111 111x' then
 // Unlike exception return, any faults raised during a FNC_RETURN
 // unstacking are raised synchronously with the instruction that triggered
 // the unstacking.
 exc = FunctionReturn();

 elsif CurrentMode() == Mode_Handler && address<31:24> == '11111111' then
 // The actual exception return is performed when the
 // current instruction completes. This is because faults that occur
 // during the exception return are handled differently from faults
 // raised during the instruction execution.
 PendReturnOperation(address);

 elsif HaveSecurityExt() && IsSecure() && allowNonSecure then
 // If in the Secure state and transitions to the Non-secure state are allowed
 // then the target state is specified by the LSB of the target address
 BranchToNS(address);

 else
 EPSR.T = address<0>;
 // If EPSR.T == 0 then an exception is taken on the next
 // instruction: UsageFault('Invalid State') if the Main Extension is
 // implemented; HardFault otherwise
 BranchTo(address<31:1>:'0');

 return exc;

E3.1.12 BigEndian

// BigEndian()
// ===========

boolean BigEndian()
 return (AIRCR.ENDIANNESS == '1');
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E3-1153
ID072816 Non-Confidential - Beta

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.13 BigEndianReverse

// BigEndianReverse()
// ==================

bits(8*N) BigEndianReverse (bits(8*N) value, integer N)
 assert N == 1 || N == 2 || N == 4;
 bits(8*N) result;
 case N of
 when 1
 result<7:0> = value<7:0>;
 when 2
 result<15:8> = value<7:0>;
 result<7:0> = value<15:8>;
 when 4
 result<31:24> = value<7:0>;
 result<23:16> = value<15:8>;
 result<15:8> = value<23:16>;
 result<7:0> = value<31:24>;
 return result;

E3.1.14 BranchTo

// BranchTo()
// ==========

BranchTo(bits(32) address)
 // Sets the address to fetch the next instruction from. NOTE: The current PC
 // is not changed directly as this would modify the result of
 // ThisInstrAddr(), which would cause the wrong return addresses to be used
 // for some types of exception. The actual update of the PC is done in the
 // InstructionAdvance() function after the instruction finishes executing.
 _NextInstrAddr = address;
 _PCChanged = TRUE;
 // Clear any pending exception returns
 _PendingReturnOperation = FALSE;
 return;

E3.1.15 BranchToAndCommit

// BranchToAndCommit()
// ===================

BranchToAndCommit(bits(32) address)
 // This function directly commits the change to the PC, so ThisInstrAddr()
 // and NextInstrAddr() both point to the target address. Used for exception
 // returns and resets so the state is consistent before the next instruction
 // (or exception) is taken.
 _R[RName_PC] = address<31:1>:'0';
 _PCChanged = TRUE;
 _NextInstrAddr = address<31:1>:'0';
 // Clear any pending exception returns
 _PendingReturnOperation = FALSE;
 return;
E3-1154 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.16 BranchToNS

// BranchToNS()
// ============
// Branch to an address with an option to change from Secure to Non-secure
// state, if currently in Secure state and transition to Non-secure state is allowed.
// Transition to Non-secure state is specified by the LSB bit of target
// address (address<0>).

BranchToNS(bits(32) address)
 assert HaveSecurityExt() && IsSecure();
 EPSR.T = '1';
 if address<0> == '0' then
 CurrentState = SecurityState_NonSecure;
 if HaveFPExt() then CONTROL_S.SFPA = '0';
 BranchTo(address<31:1>:'0');

E3.1.17 BranchWritePC

// BranchWritePC()
// ===============

BranchWritePC(bits(32) address)
 BranchTo(address<31:1>:'0');

E3.1.18 CallSupervisor

// CallSupervisor()
// ================

CallSupervisor()
 excInfo = CreateException(SVCall, FALSE, boolean UNKNOWN);
 HandleException(excInfo);

E3.1.19 CanHaltOnEvent

// CanHaltOnEvent()
// ================

boolean CanHaltOnEvent(boolean is_secure)
 if !HaveSecurityExt() then assert !is_secure;
 return (HaltingDebugAllowed() && DHCSR.C_DEBUGEN == '1' && DHCSR.S_HALT == '0'
 && (!is_secure || DHCSR.S_SDE == '1'));
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E3-1155
ID072816 Non-Confidential - Beta

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.20 CanPendMonitorOnEvent

// CanPendMonitorOnEvent()
// =======================

boolean CanPendMonitorOnEvent(boolean is_secure, boolean check_pri)
 if !HaveSecurityExt() then assert !is_secure;
 return (HaveMainExt() && !CanHaltOnEvent(is_secure) && DEMCR.MON_EN == '1'
 && DHCSR.S_HALT == '0' && (!is_secure || DEMCR.SDME == '1')
 && (!check_pri
 || ExceptionPriority(DebugMonitor, is_secure, TRUE) < ExecutionPriority()));

E3.1.21 CheckCPEnabled

// CheckCPEnabled()
// ================

ExcInfo CheckCPEnabled(integer cp, boolean privileged, boolean secure)
 // Check Coprocessor Access Control Register for permission to use coprocessor
 boolean nocpFault;
 boolean forceToSecure = FALSE;

 cpacr = if secure then CPACR_S else CPACR_NS;

 case cpacr<(cp*2)+1:cp*2> of
 when '00'
 nocpFault = TRUE;
 when '01'
 nocpFault = !privileged;
 when '10'
 UNPREDICTABLE;
 when '11' // access permitted by CPACR
 nocpFault = FALSE;

 if !nocpFault && HaveSecurityExt() then
 // Check if access in forbidden by NSACR
 if !secure && NSACR<cp> == '0' then
 nocpFault = TRUE;
 forceToSecure = TRUE;

 // Check if the coprocessor state unknown flag.
 if !nocpFault && CPPWR<cp*2> == '1' then
 nocpFault = TRUE;
 // Check SUS bit to determine fault target domain
 forceToSecure = CPPWR<(cp*2)+1> == '1';

 if nocpFault then
 if secure || forceToSecure then
 UFSR_S.NOCP = '1';
 else
 UFSR_NS.NOCP = '1';
 excInfo = CreateException(UsageFault, TRUE, secure || forceToSecure);
 else
 excInfo = DefaultExcInfo();
 return excInfo;

ExcInfo CheckCPEnabled(integer cp)
 return CheckCPEnabled(cp, CurrentModeIsPrivileged(), IsSecure());
E3-1156 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.22 CheckPermission

// CheckPermission()
// =================

ExcInfo CheckPermission(Permissions perms, bits(32) address, AccType acctype,
 boolean iswrite, boolean ispriv, boolean isSecure)
 if !perms.apValid then
 fault = TRUE;
 elsif (perms.xn == '1') && (acctype == AccType_IFETCH) then
 fault = TRUE;
 else
 case perms.ap of
 when '00' fault = !ispriv;
 when '01' fault = FALSE;
 when '10' fault = !ispriv || iswrite;
 when '11' fault = iswrite;
 otherwise UNPREDICTABLE;

 // If a fault occurred generate the syndrome info and create the exception.
 if fault then
 // Create and write out the syndrome info on implementations with Main Extension.
 if HaveMainExt() then
 MMFSR_Type fsr = Zeros(8);
 case acctype of
 when AccType_IFETCH
 fsr.IACCVIOL = '1';
 when AccType_STACK
 if iswrite then
 fsr.MSTKERR = '1';
 else
 fsr.MUNSTKERR = '1';
 when AccType_LAZYFP
 fsr.MLSPERR = '1';
 when AccType_NORMAL, AccType_ORDERED
 fsr.MMARVALID = '1';
 fsr.DACCVIOL = '1';
 otherwise
 assert(FALSE);

 // Write the syndrome information to the correct instance of banked
 // registers
 if isSecure then
 MMFSR_S = MMFSR_S OR fsr;
 if fsr.MMARVALID == '1' then
 MMFAR_S = address;
 else
 MMFSR_NS = MMFSR_NS OR fsr;
 if fsr.MMARVALID == '1' then
 MMFAR_NS = address;

 // Create the exception. NOTE: If Main Extension is not implemented the fault
 // escalates to a HardFault
 excInfo = CreateException(MemManage, TRUE, isSecure);
 else
 excInfo = DefaultExcInfo();
 return excInfo;
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E3-1157
ID072816 Non-Confidential - Beta

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.23 ClearEventRegister

// ClearEventRegister
// ==================
// Clears the Event register

ClearEventRegister();

E3.1.24 ClearExclusiveByAddress

// ClearExclusiveByAddress
// =======================
// Clear the global exclusive monitor for all PEs, except for the PE specified
// by processorid for which an address region including any of size bytes
// starting from address has had a request for an exclusive access

ClearExclusiveByAddress(bits(32) address, integer exclprocessorid, integer size);

E3.1.25 ClearExclusiveLocal

// ClearExclusiveLocal()
// =====================
// Clear local exclusive monitor records for the PE.

ClearExclusiveLocal(integer processorid);

E3.1.26 ComparePriorities

// ComparePriorities()
// ===================

boolean ComparePriorities(integer exc0Pri, integer exc0Number, boolean exc0IsSecure,
 integer exc1Pri, integer exc1Number, boolean exc1IsSecure)
 if exc0Pri != exc1Pri then
 takeE0 = exc0Pri < exc1Pri;
 elsif exc0Number != exc1Number then
 takeE0 = exc0Number < exc1Number;
 elsif exc0IsSecure != exc1IsSecure then
 takeE0 = exc0IsSecure;
 else
 // The two exceptions have exactly the same priority, so exception 0
 // can't be taken in preference to exception 1.
 takeE0 = FALSE;
 return takeE0;

boolean ComparePriorities(ExcInfo exc0Info, boolean groupPri,
 integer exc1Pri, integer exc1Number, boolean exc1IsSecure)
 exc0Pri = ExceptionPriority(exc0Info.fault, exc0Info.isSecure, groupPri);
 return ComparePriorities(exc0Pri, exc0Info.fault, exc0Info.isSecure,
 exc1Pri, exc1Number, exc1IsSecure);
E3-1158 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.27 ConditionHolds

// ConditionHolds()
// ================

boolean ConditionHolds(bits(4) cond)

 // Evaluate base condition.
 case cond<3:1> of
 when '000' result = (APSR.Z == '1'); // EQ or NE
 when '001' result = (APSR.C == '1'); // CS or CC
 when '010' result = (APSR.N == '1'); // MI or PL
 when '011' result = (APSR.V == '1'); // VS or VC
 when '100' result = (APSR.C == '1') && (APSR.Z == '0'); // HI or LS
 when '101' result = (APSR.N == APSR.V); // GE or LT
 when '110' result = (APSR.N == APSR.V) && (APSR.Z == '0'); // GT or LE
 when '111' result = TRUE; // AL

 // Condition flag values in the set '111x' indicate the instruction is always executed.
 // Otherwise, invert condition if necessary.
 if cond<0> == '1' && cond != '1111' then
 result = !result;

 return result;

E3.1.28 ConditionPassed

// ConditionPassed()
// =================

boolean ConditionPassed()
 return ConditionHolds(CurrentCond());

E3.1.29 ConstrainUnpredictableBool

// ConstrainUnpredictableBool()
// ============================
// This is a wrapper for UNPREDICTABLE cases where the constrained result is
// either TRUE or FALSE.

boolean ConstrainUnpredictableBool(Unpredictable which);
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E3-1159
ID072816 Non-Confidential - Beta

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.30 ConsumeExcStackFrame

// ConsumeExcStackFrame()
// ======================

ConsumeExcStackFrame(bits(24) excReturn, bit fourByteAlign)
 // Calculate the size of the integer part of the stack frame
 toSecure = HaveSecurityExt() && excReturn<6> == '1';
 if toSecure && (excReturn<0> == '0' ||
 excReturn<5> == '0') then
 framesize = 0x48;
 else
 framesize = 0x20;
 // Add on the size of the FP part of the stack frame if present
 if HaveFPExt() && excReturn<4> == '0' then
 if toSecure && FPCCR_S.TS == '1' then
 framesize = framesize + 0x88;
 else
 framesize = framesize + 0x48;

 // Update stack pointer. NOTE: Stack pointer limit not checked on exception
 // return as stack pointer guaranteed to be ascending not descending.
 mode = if excReturn<3> == 1 then Mode_Thread else Mode_Handler;
 spName = LookUpSP_with_security_mode(toSecure, mode);
 _R[spName] = (_SP(spName) + framesize) OR ZeroExtend(fourByteAlign:'00',32);

E3.1.31 Coproc_Accepted

// Coproc_Accepted
// ================
// Check whether a coprocessor accepts an instruction.

boolean Coproc_Accepted(integer cp_num, bits(32) instr);

E3.1.32 Coproc_DoneLoading

// Coproc_DoneLoading
// ==================
// Check whether enough 32-bit words have been loaded for an LDC instruction

boolean Coproc_DoneLoading(integer cp_num, bits(32) instr);

E3.1.33 Coproc_DoneStoring

// Coproc_DoneStoring
// ==================
// Check whether enough 32-bit words have been stored for a STC instruction

boolean Coproc_DoneStoring(integer cp_num, bits(32) instr);
E3-1160 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.34 Coproc_GetOneWord

// Coproc_GetOneWord
// =================
// Gets the 32-bit word for an MRC instruction from the coprocessor

bits(32) Coproc_GetOneWord(integer cp_num, bits(32) instr);

E3.1.35 Coproc_GetTwoWords

// Coproc_GetTwoWords
// ==================
// Get two 32-bit words for an MRRC instruction from the coprocessor

(bits(32), bits(32)) Coproc_GetTwoWords(integer cp_num, bits(32) instr);

E3.1.36 Coproc_GetWordToStore

// Coproc_GetWordToStore
// =====================
// Gets the next 32-bit word to store for an STC instruction from the coprocessor

bits(32) Coproc_GetWordToStore(integer cp_num, bits(32) instr);

E3.1.37 Coproc_InternalOperation

// Coproc_InternalOperation
// ========================
// Instructs a coprocessor to perform the internal operation requested
// by a CDP instruction

Coproc_InternalOperation(integer cp_num, bits(32) instr);

E3.1.38 Coproc_SendLoadedWord

// Coproc_SendLoadedWord
// =====================
// Sends a loaded 32-bit word for an LDC instruction to the coprocessor

Coproc_SendLoadedWord(bits(32) word, integer cp_num, bits(32) instr);
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E3-1161
ID072816 Non-Confidential - Beta

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.39 Coproc_SendOneWord

// Coproc_SendOneWord
// ==================
// Sends the 32-bit word for an MCR instruction to the coprocessor

Coproc_SendOneWord(bits(32) word, integer cp_num, bits(32) instr);

E3.1.40 Coproc_SendTwoWords

// Coproc_SendTwoWords
// ===================
// Send two 32-bit words for an MCRR instruction to the coprocessor.

Coproc_SendTwoWords(bits(32) word2, bits(32) word1, integer cp_num, bits(32) instr);
E3-1162 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.41 CreateException

// CreateException()
// =================

ExcInfo CreateException(integer exception, boolean forceSecurity,
 boolean isSecure, boolean isSynchronous)

 // Work out the effective target state of the exception
 if HaveSecurityExt() then
 if !forceSecurity then
 isSecure = ExceptionTargetsSecure(exception, IsSecure());
 else
 isSecure = FALSE;

 // An implementation without Security Extensions cannot cause a fault targetting
 // Secure state
 assert HaveSecurityExt() || !isSecure;

 // Get the remaining exception details
 (escalateToHf, termInst) = ExceptionDetails(exception, isSecure, isSynchronous);

 // Fill in the default exception info
 info = DefaultExcInfo();
 info.fault = exception;
 info.termInst = termInst;
 info.origFault = exception;
 info.origFaultIsSecure = isSecure;

 // Check for HardFault escalation
 if escalateToHf && info.fault != HardFault then
 // Update the exception info with the escalation details, including
 // whether there's a change in destination Security state.
 info.fault = HardFault;
 isSecure = ExceptionTargetsSecure(HardFault, isSecure);
 (escalateToHf, -) = ExceptionDetails(HardFault, isSecure, isSynchronous);

 // If the requested exception was already a HardFault then we can't escalate
 // to a HardFault, so lockup. NOTE: Asynchronous BusFaults never cause
 // lockups, if the BusFault is disabled it escalates to a HardFault that is
 // pended.
 if escalateToHf && isSynchronous && info.fault == HardFault then
 info.lockup = TRUE;

 // Fill in the remaining exception info
 info.isSecure = isSecure;
 return info;

ExcInfo CreateException(integer exception, boolean forceSecurity, boolean isSecure)
 return CreateException(exception, forceSecurity, isSecure, TRUE);

E3.1.42 CurrentCond

// CurrentCond()
// =============
// Returns condition specifier of current instruction.

bits(4) CurrentCond();
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E3-1163
ID072816 Non-Confidential - Beta

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.43 CurrentMode

// CurrentMode()
// =============

Mode CurrentMode()
 return if IPSR == NoFault then Mode_Thread else Mode_Handler;

E3.1.44 CurrentModeIsPrivileged

// CurrentModeIsPrivileged()
// =========================

boolean CurrentModeIsPrivileged()
 return CurrentModeIsPrivileged(IsSecure());

boolean CurrentModeIsPrivileged(boolean isSecure)
 nPriv = if isSecure then CONTROL_S.nPRIV else CONTROL_NS.nPRIV;
 return (CurrentMode() == Mode_Handler || nPriv == '0');

E3.1.45 D

// D[] - assignment form
// =====================

D[integer n] = bits(64) value
 assert n >= 0 && n <= 31;
 if n >= 16 && VFPSmallRegisterBank() then UNDEFINED;
 _D[n] = value;
 return;

// D[] - non-assignment form
// =========================

bits(64) D[integer n]
 assert n >= 0 && n <= 31;
 if n >= 16 && VFPSmallRegisterBank() then UNDEFINED;
 return _D[n];
E3-1164 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.46 DWT_AddressCompare

// DWT_AddressCompare()
// ====================
// Returns a pair of values. The first result is whether the (masked) addresses are equal,
// where the access address (addr) is masked according to DWT_FUNCTION.DATAVSIZE and the
// comparator address (compaddr) is masked according to the access size. The second result
// is whether the (unmasked) addr is greater than the (unmasked) compaddr.

(boolean,boolean) DWT_AddressCompare(bits(32) addr, bits(32) compaddr, integer size,
 integer compsize)
 // addr must be a multiple of size. Unaligned accesses are split into smaller accesses.
 assert Align(addr, size) == addr;

 // compaddr must be a multiple of compsize
 if Align(compaddr, compsize) != compaddr then UNPREDICTABLE;

 addrmatch = (Align(addr, compsize) == Align(compaddr, size));
 addrgreater = (UInt(addr) > UInt(compaddr));
 return (addrmatch,addrgreater);

E3.1.47 DWT_CycCountMatch

// DWT_CycCountMatch
// =================
// Check for DWT cycle count match. This is called for each increment of
// DWT_CYCCNT.

DWT_CycCountMatch()
 boolean trigger_debug_event = FALSE;
 boolean debug_event = FALSE;
 N = UInt(DWT_CTRL.NUMCOMP);
 if N == 0 then return; // No comparator support
 secure_match = IsSecure() && DWT_CTRL.CYCDISS == '1';
 for i = 0 to N-1
 if IsDWTConfigUnpredictable(i) then UNPREDICTABLE;
 if DWT_FUNCTION[i].MATCH == '0001' && DWT_ValidMatch(i, secure_match)
 && DWT_CYCCNT == DWT_COMP[i] then
 DWT_FUNCTION[i].MATCHED = '1';
 debug_event = DWT_FUNCTION[i].ACTION == '01';
 trigger_debug_event = trigger_debug_event || debug_event;

 // Setting the debug event if atleast one comparator matches
 if trigger_debug_event then
 debug_event = SetDWTDebugEvent(secure_match);
 return;
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E3-1165
ID072816 Non-Confidential - Beta

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.48 DWT_DataAddressMatch

// DWT_DataAddressMatch()
// ======================
// Check for match of access at "daddr". "dsize", "read" and "NSreq" are the attributes
// for the access. Note that for a load or store instruction, "NSreq" is the current
// Security state of the PE, but this is not necessarily true for a hardware stack
// push/pop or vector table access. "NSreq" might not be the same as the "NSattr"
// attribute the PE finally uses to make the access.
// If comparators 'm' and 'm+1' form an Data Address Range comparator, then this function
// returns the range match result when N=m+1.

boolean DWT_DataAddressMatch(integer N, bits(32) daddr, integer dsize, boolean read,
 boolean NSreq)
 assert N < UInt(DWT_CTRL.NUMCOMP) && dsize IN {1,2,4} && Align(daddr, dsize) == daddr;

 valid_match = DWT_ValidMatch(N, !NSreq);
 valid_addr = DWT_FUNCTION[N].MATCH == 'x1xx';

 if valid_match && valid_addr then
 if DWT_FUNCTION[N].ID<3> == '0' || DWT_FUNCTION[N].DATAVSIZE == '11' then
 UNPREDICTABLE;

 if N != UInt(DWT_CTRL.NUMCOMP)-1 then
 if DWT_FUNCTION[N+1].MATCH == '0011' then UNPREDICTABLE;
 linked_to_addr = DWT_FUNCTION[N+1].MATCH == '0111'; // Data Address Limit
 linked_to_data = DWT_FUNCTION[N+1].MATCH == '1011'; // Linked Data Value
 else
 linked_to_addr = FALSE; linked_to_data = FALSE;

 case DWT_FUNCTION[N].MATCH<1:0> of
 when '00' match_lsc = TRUE; linked = FALSE;
 when '01' match_lsc = !read; linked = FALSE;
 when '10' match_lsc = read; linked = FALSE;
 when '11'
 // Data Address Limit: check for UNPREDICTABLE cases
 if (linked_to_addr || linked_to_data || N == 0 ||
 DWT_FUNCTION[N].ID<4> == '0' || DWT_FUNCTION[N].MATCH == '1111' ||
 DWT_FUNCTION[N-1].MATCH IN {'x0xx','x111'} ||
 DWT_FUNCTION[N].DATAVSIZE != '00' ||
 DWT_FUNCTION[N-1].DATAVSIZE != '00' ||
 UInt(DWT_COMP[N-1]) >= UInt(DWT_COMP[N])) then
 UNPREDICTABLE;

 case DWT_FUNCTION[N-1].MATCH<1:0> of
 when '00' match_lsc = TRUE; linked = TRUE;
 when '01' match_lsc = !read; linked = TRUE;
 when '10' match_lsc = read; linked = TRUE;

 if !linked_to_addr then
 vsize = 2^UInt(DWT_FUNCTION[N].DATAVSIZE);
 (match_eq,match_gt) = DWT_AddressCompare(daddr, DWT_COMP[N], dsize, vsize);

 if linked then
 valid_match = DWT_ValidMatch(N-1, !NSreq);
 (lower_eq,lower_gt) = DWT_AddressCompare(daddr, DWT_COMP[N-1], dsize, 1);
 match_addr = valid_match && (lower_eq || lower_gt) && !match_gt;
 else
 match_addr = match_eq;
 else
 match_addr = FALSE;

 match = match_addr && match_lsc;
 else
 match = FALSE;

 return match;
E3-1166 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.49 DWT_DataValueMatch

// DWT_DataValueMatch()
// ====================
// Check for match of access of "dvalue" at "daddr". "dsize", "read" and "NSreq"
// are the attributes for the access. Note that for a load or store instruction,
// "NSreq" is the current Security state of the PE, but this is not necessarily
// true for a hardware stack push/pop or vector table access. "NSreq" might not
// be the same as the "NSattr" attribute the PE finally uses to make the access.

boolean DWT_DataValueMatch(integer N, bits(32) daddr, bits(32) dvalue, integer dsize,
 boolean read, boolean NSreq)
 assert N < UInt(DWT_CTRL.NUMCOMP) && dsize IN {1,2,4} && Align(daddr,dsize) == daddr;

 if !HaveMainExt() then return FALSE;
 valid_match = DWT_ValidMatch(N, !NSreq);
 valid_data = DWT_FUNCTION[N].MATCH<3:2> == '10';

 if valid_match && valid_data then
 if DWT_FUNCTION[N].ID<2> == '0' || DWT_FUNCTION[N].DATAVSIZE == '11' then
 UNPREDICTABLE;

 case DWT_FUNCTION[N].MATCH<1:0> of
 when '00' match_lsc = TRUE; linked = FALSE;
 when '01' match_lsc = !read; linked = FALSE;
 when '10' match_lsc = read; linked = FALSE;
 when '11'
 // Linked data value: check for UNPREDICTABLE cases
 if (N == 0 || DWT_FUNCTION[N].ID<4> == '0' ||
 DWT_FUNCTION[N-1].MATCH IN {'x0xx','x111'} ||
 DWT_FUNCTION[N].DATAVSIZE != DWT_FUNCTION[N-1].DATAVSIZE) then
 UNPREDICTABLE;

 case DWT_FUNCTION[N-1].MATCH<1:0> of
 when '00' match_lsc = TRUE; linked = TRUE;
 when '01' match_lsc = !read; linked = TRUE;
 when '10' match_lsc = read; linked = TRUE;

 vsize = 2^UInt(DWT_FUNCTION[N].DATAVSIZE);

 // Determine which bytes of dvalue to look at in the comparison.
 if linked then
 dmask = '0000'; // Filled in below if there is
 // an address match
 if DWT_DataAddressMatch(N-1, daddr, dsize, read, NSreq) then
 case (vsize,dsize) of
 when (1,1) dmask<0> = '1';
 when (1,2) dmask<UInt(DWT_COMP[N-1]<0>)> = '1';
 when (1,4) dmask<UInt(DWT_COMP[N-1]<1:0>)> = '1';
 when (2,2) dmask<1:0> = '11';
 when (2,4)
 dmask<UInt(DWT_COMP[N-1]<1:0>)+1:UInt(DWT_COMP[N-1]<1:0>)> = '11';
 when (4,4) dmask = '1111';
 otherwise dmask = '0000'; // vsize > dsize: no match
 else
 case dsize of
 when 1 dmask = '0001';
 when 2 dmask = '0011';
 when 4 dmask = '1111';

 // Split both values into byte lanes: DCBA and dcba
 D = dvalue<31:24>; C = dvalue<23:16>; B = dvalue<15:8>; A = dvalue<7:0>;
 d = DWT_COMP[N]<31:24>; c = DWT_COMP[N]<23:16>;
 b = DWT_COMP[N]<15:8>; a = DWT_COMP[N]<7:0>;

 // This function relies on the values being correctly replicated across DWT_COMP[N].
 if ((vsize == 1 && (d != a || c != a || b != a)) || (vsize == 2 && (d:c != b:a))) then
 UNPREDICTABLE;
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E3-1167
ID072816 Non-Confidential - Beta

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List

 // Partial results
 D_d = dmask<3> == '1' && D == d;
 C_c = dmask<2> == '1' && C == c;
 B_b = dmask<1> == '1' && B == b;
 A_a = dmask<0> == '1' && A == a;

 // Combined partial results
 BA_ba = B_b && A_a;
 DC_dc = D_d && C_c;
 DCBA_dcba = D_d && C_c && B_b && A_a;

 // Generate full results
 case (vsize,dsize) of
 when (1,-) match_data = D_d || C_c || B_b || A_a;
 when (2,2), (2,4) match_data = DC_dc || BA_ba;
 when (4,4) match_data = DCBA_dcba;
 otherwise match_data = FALSE;

 match = match_data && match_lsc;
 else
 match = FALSE;

 return match;
E3-1168 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.50 DWT_InstructionAddressMatch

// DWT_InstructionAddressMatch()
// =============================
// Check for match of instruction access at "Iaddr".
// If comparators 'm' and 'm+1' form an Instruction Address Range comparator, then this
// function returns the range match when N=m+1.

boolean DWT_InstructionAddressMatch(integer N, bits(32) Iaddr)
 assert N < UInt(DWT_CTRL.NUMCOMP) && Align(Iaddr, 2) == Iaddr;

 secure_match = IsSecure();
 valid_match = DWT_ValidMatch(N, secure_match);
 valid_instr = DWT_FUNCTION[N].MATCH == '001x';

 if valid_match && valid_instr then
 if DWT_FUNCTION[N].ID<1> == '0' || DWT_FUNCTION[N].DATAVSIZE != '01' then
 UNPREDICTABLE;

 if N != UInt(DWT_CTRL.NUMCOMP)-1 then
 if DWT_FUNCTION[N+1].MATCH IN {'0111','1011'} then UNPREDICTABLE;
 linked_to_instr = DWT_FUNCTION[N+1].MATCH == '0011';
 else
 linked_to_instr = FALSE;

 if DWT_FUNCTION[N].MATCH == '0011' then
 // Linked instruction address: check for UNPREDICTABLE cases
 if (linked_to_instr || N == 0 || DWT_FUNCTION[N].ID<4> == '0' ||
 DWT_FUNCTION[N-1].MATCH != '0010') then
 UNPREDICTABLE;
 linked = TRUE;
 else
 linked = FALSE;

 if !linked_to_instr then
 (match_eq,match_gt) = DWT_AddressCompare(Iaddr, DWT_COMP[N], 2, 2);
 if linked then
 valid_match = DWT_ValidMatch(N-1, secure_match);
 (lower_eq,lower_gt) = DWT_AddressCompare(Iaddr, DWT_COMP[N-1], 2, 2);
 match_addr = valid_match && (lower_eq || lower_gt) && !match_gt;
 else
 match_addr = match_eq;
 else
 match_addr = FALSE;
 match = match_addr;
 else
 match = FALSE;

 return match;
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E3-1169
ID072816 Non-Confidential - Beta

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.51 DWT_ValidMatch

// DWT_ValidMatch ()
// =================
// Returns TRUE if this match is permitted by the current authentication controls.
// Returns FALSE otherwise. That is, if TRCENA is 0 or Noninvasive debug is
// disabled, if a debug event when halting is not allowed, or other event for a
// "Secure match" when Secure Noninvasive debug is not allowed.
// See DWT behavior when debug is disabled or prohibited.

boolean DWT_ValidMatch(integer N, boolean secure_match)
 if !HaveSecurityExt() then assert !secure_match;
 if !NoninvasiveDebugAllowed() || DEMCR.TRCENA == '0' then return FALSE;

 // Check for Debug event
 if DWT_FUNCTION[N].ACTION == '01' then
 hlt_en = CanHaltOnEvent(secure_match);
 // Ignore priority when checking whether DebugMonitor activates DWT matches
 mon_en = HaveMainExt() && CanPendMonitorOnEvent(secure_match, FALSE);
 return (hlt_en || mon_en);
 else
 // Otherwise trace or trigger event
 return !secure_match || SecureNoninvasiveDebugAllowed();

E3.1.52 DataMemoryBarrier

// DataMemoryBarrier()
// ===================
// Perform a Data Memory Barrier operation

DataMemoryBarrier(bits(4) option);

E3.1.53 DataSynchronizationBarrier

// DataSynchronizationBarrier
// ==========================
// Perform a data synchronization barrier operation

DataSynchronizationBarrier(bits(4) option);
E3-1170 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.54 Deactivate

// DeActivate()
// ============

DeActivate(integer returningExceptionNumber, boolean targetDomainSecure)
 // To prevent the execution priority remaining negative (and therefore
 // masking HardFault) when returning from NMI / HardFault with a corrupted
 // IPSR value, the active bits corresponding to the execution priority are
 // cleared if the raw execution priority (ie the priority before FAULTMASK
 // and other priority boosting is considered) is negative.
 rawPri = RawExecutionPriority();
 if rawPri == -1 then
 SetActive(HardFault, AIRCR.BFHFNMINS == '0', FALSE);
 elsif rawPri == -2 then
 SetActive(NMI, AIRCR.BFHFNMINS == '0', FALSE);
 elsif rawPri == -3 then
 SetActive(HardFault, TRUE, FALSE);
 else
 secure = HaveSecurityExt() && targetDomainSecure;
 SetActive(returningExceptionNumber, secure, FALSE);

 /* PRIMASK and BASEPRI unchanged on exception exit */
 if HaveMainExt() && rawPri >= 0 then
 // clear FAULTMASK for exception security domain on any return except
 // NMI and HardFault
 if HaveSecurityExt() && targetDomainSecure then
 FAULTMASK_S<0> = '0';
 else
 FAULTMASK_NS<0> = '0';
 return;

E3.1.55 DecodeExecute

// DecodeExecute
// =============
// Decode instruction and execute

DecodeExecute(bits(32) instr, bits(32) pc, boolean isT16);
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E3-1171
ID072816 Non-Confidential - Beta

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.56 DecodeImmShift

// DecodeImmShift()
// ================

(SRType, integer) DecodeImmShift(bits(2) sr_type, bits(5) imm5)

 case sr_type of
 when '00'
 shift_t = SRType_LSL; shift_n = UInt(imm5);
 when '01'
 shift_t = SRType_LSR; shift_n = if imm5 == '00000' then 32 else UInt(imm5);
 when '10'
 shift_t = SRType_ASR; shift_n = if imm5 == '00000' then 32 else UInt(imm5);
 when '11'
 if imm5 == '00000' then
 shift_t = SRType_RRX; shift_n = 1;
 else
 shift_t = SRType_ROR; shift_n = UInt(imm5);

 return (shift_t, shift_n);

E3.1.57 DecodeRegShift

// DecodeRegShift()
// ================

SRType DecodeRegShift(bits(2) sr_type)
 case sr_type of
 when '00' shift_t = SRType_LSL;
 when '01' shift_t = SRType_LSR;
 when '10' shift_t = SRType_ASR;
 when '11' shift_t = SRType_ROR;
 return shift_t;

E3.1.58 DefaultExcInfo

// DefaultExcInfo()
// ================

ExcInfo DefaultExcInfo()
 ExcInfo exc;

 exc.fault = NoFault;
 exc.origFault = NoFault;
 exc.isSecure = TRUE;
 exc.isTerminal = FALSE;
 exc.inExcTaken = FALSE;
 exc.lockup = FALSE;
 exc.termInst = TRUE;
 return exc;
E3-1172 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.59 DefaultMemoryAttributes

// DefaultMemoryAttributes()
// =========================

MemoryAttributes DefaultMemoryAttributes(bits(32) address)

 MemoryAttributes memattrs;

 case address<31:29> of
 when '000'
 memattrs.memtype = MemType_Normal;
 memattrs.device = DeviceType UNKNOWN;
 memattrs.innerattrs = '10';
 memattrs.shareable = FALSE;
 when '001'
 memattrs.memtype = MemType_Normal;
 memattrs.device = DeviceType UNKNOWN;
 memattrs.innerattrs = '01';
 memattrs.shareable = FALSE;
 when '010'
 memattrs.memtype = MemType_Device;
 memattrs.device = DeviceType_nGnRE;
 memattrs.innerattrs = '00';
 memattrs.shareable = TRUE;
 when '011'
 memattrs.memtype = MemType_Normal;
 memattrs.device = DeviceType UNKNOWN;
 memattrs.innerattrs = '01';
 memattrs.shareable = FALSE;
 when '100'
 memattrs.memtype = MemType_Normal;
 memattrs.device = DeviceType UNKNOWN;
 memattrs.innerattrs = '10';
 memattrs.shareable = FALSE;
 when '101'
 memattrs.memtype = MemType_Device;
 memattrs.device = DeviceType_nGnRE;
 memattrs.innerattrs = '00';
 memattrs.shareable = TRUE;
 when '110'
 memattrs.memtype = MemType_Device;
 memattrs.device = DeviceType_nGnRE;
 memattrs.innerattrs = '00';
 memattrs.shareable = TRUE;
 when '111'
 if address<28:20> == '000000000' then
 memattrs.memtype = MemType_Device;
 memattrs.device = DeviceType_nGnRnE;
 memattrs.innerattrs = '00';
 memattrs.shareable = TRUE;
 else
 memattrs.memtype = MemType_Device;
 memattrs.device = DeviceType_nGnRE;
 memattrs.innerattrs = '00';
 memattrs.shareable = TRUE;

 // Outer attributes are the same as the inner attributes in all cases.
 memattrs.outerattrs = memattrs.innerattrs;
 memattrs.outershareable = memattrs.shareable;

 // Setting as UNKNOWN by default. This flag will be overwritten based on
 // SAU/IDAU checking in SecurityCheck()
 memattrs.NS = boolean UNKNOWN;
 return memattrs;
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E3-1173
ID072816 Non-Confidential - Beta

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.60 DefaultPermissions

// DefaultPermissions()
// ====================

Permissions DefaultPermissions(bits(32) address)

 Permissions perms;

 perms.ap = '01';
 perms.apValid = TRUE;
 perms.region = Zeros(8);
 perms.regionValid = FALSE;

 case address<31:29> of
 when '000'
 perms.xn = '0';
 when '001'
 perms.xn = '0';
 when '010'
 perms.xn = '1';
 when '011'
 perms.xn = '0';
 when '100'
 perms.xn = '0';
 when '101'
 perms.xn = '1';
 when '110'
 perms.xn = '1';
 when '111'
 perms.xn = '1';

 return perms;
E3-1174 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.61 DerivedLateArrival

// DerivedLateArrival()
// ====================

DerivedLateArrival(integer pePriority, integer peNumber, boolean peIsSecure, ExcInfo deInfo,
 integer oeNumber, boolean oeIsSecure)
 // PE: the pre-empted exception - before exception entry
 // OE: the original exception - exception entry
 // DE: the derived exception - fault on exception entry

 // Get the priorities of the exceptions
 // xePriority: the lower the value, the higher the priority
 oePriority = ExceptionPriority(oeNumber, oeIsSecure, FALSE);
 // NOTE: Comparison of dePriority against PE priority and possible
 // escalation to HardFault has already occurred. See CreateException().

 // Is the derived exception a DebugMonitor
 if HaveMainExt() then
 deIsDbgMonFault = (deInfo.origFault == DebugMonitor);
 else
 deIsDbgMonFault = FALSE;

 // Work out which fault to take, and what the target domain is
 if deInfo.isTerminal then
 // Derived exception is terminal and prevents the original exception
 // being taken (eg fault on vector fetch). As a result the derived
 // exception is treated as a HardFault.
 targetIsSecure = deInfo.isSecure;
 targetFault = deInfo.fault;
 // If the derived fault doesn't have sufficient priority to pre-empt
 // lockup instead of taking it.
 if !ComparePriorities(deInfo, FALSE, oePriority, oeNumber, oeIsSecure) then
 ActivateException(oeNumber, oeIsSecure);
 // Since execution of original exception cannot be started, lockup
 // at the current priority level. That is the priority of the original
 // exception.
 Lockup(TRUE);
 elsif deIsDbgMonFault && !ComparePriorities(deInfo, TRUE, pePriority, peNumber, peIsSecure) then
 // Ignore the DebugMonitorFault and take original exception
 SetPending(DebugMonitor, deInfo.isSecure, FALSE);
 targetFault = oeNumber;
 targetIsSecure = oeIsSecure;
 elsif ComparePriorities(deInfo, FALSE, oePriority, oeNumber, oeIsSecure) then
 // Derive exception has a higher priority (ie lower value) than the
 // original exception, so the derived exception first. Tail-chaining
 // IMPLEMENTATION DEFINED
 targetFault = deInfo.fault;
 targetIsSecure = deInfo.isSecure;
 else
 // If the derived exception caused a lockup then this must be handled
 // now as the lockup cannot be pended until the original exception
 // returns
 if deInfo.lockup then
 // Lockup at the priority of the original exception being entered.
 ActivateException(oeNumber, oeIsSecure);
 Lockup(TRUE);
 else
 // DE will be pended below, start execution of the OE
 targetFault = oeNumber;
 targetIsSecure = oeIsSecure;

 // If not of the tests above have triggered a lockup (which would have
 // terminated execution of the pseudocode) then the derived exception
 // must be pended and any escalation syndrome info generated
 if HaveMainExt() &&
 (deInfo.fault == HardFault) &&
 (deInfo.origFault != HardFault) then
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E3-1175
ID072816 Non-Confidential - Beta

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
 HFSR.FORCED = '1';
 SetPending(deInfo.fault, deInfo.isSecure, TRUE);

 // Take the target exception. NOTE: None terminal faults are ignored when
 // handling the derived exception, allowing forward progress to be made.
 excInfo = ExceptionTaken(targetFault, deInfo.inExcTaken, targetIsSecure, TRUE);
 // If trying to take the resulting exception results in another fault, then handle
 // the derived derived fault.
 if excInfo.fault != NoFault then
 DerivedLateArrival(pePriority, peNumber, peIsSecure, excInfo, targetFault, targetIsSecure);

E3.1.62 DeviceType

// Types of memory

enumeration DeviceType {DeviceType_GRE, DeviceType_nGRE, DeviceType_nGnRE, DeviceType_nGnRnE};

E3.1.63 EndOfInstruction

// EndOfInstruction
// ================
// Terminates the processing of current instruction.

EndOfInstruction();

E3.1.64 EventRegistered

// EventRegistered
// ===============
// Returns TRUE if PE Event Register is set to 1 and FALSE otherwise.

boolean EventRegistered();
E3-1176 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.65 ExcInfo

// Exception information

type ExcInfo is (
 integer fault, // The ID of the resulting fault, or NoFault (ie 0)
 // if no fault occurred
 integer origFault, // The ID if the original fault raised before
 // escalation is considered.
 boolean isSecure, // TRUE if the fault targets the Secure state.
 boolean origFaultIsSecure, // TRUE if the original fault raised targeted
 // Secure state
 boolean isTerminal, // Set to TRUE for derived faults (eg exception on
 // exception entry) that prevent the original
 // exception being entered (eg a BusFault whilst
 // fetching the exception vector address).
 boolean inExcTaken, // TRUE if the exception occurred during ExceptionTaken()
 // This is used to determine if the LR update and the
 // callee stacking operations have been performed, and
 // therefore whether the derived exception should be
 // treated as a tail chain.
 boolean lockup, // Set to TRUE if the exception should cause a lockup.
 boolean termInst // Set to TRUE if the exception should cause the
 // instruction to be terminated.
)

E3.1.66 ExceptionActiveBitCount

// ExceptionActiveBitCount()
// =========================

integer ExceptionActiveBitCount()
 integer count = 0;
 for i = 0 to MaxExceptionNum
 for j = 0 to 1
 if IsActiveForState(i, j == 0) then
 count = count + 1;
 return count;
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E3-1177
ID072816 Non-Confidential - Beta

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.67 ExceptionDetails

// ExceptionDetails()
// ==================

(boolean, boolean) ExceptionDetails(integer exception, boolean isSecure, boolean isSynchronous)
 // Is the exception subject to escalation
 case exception of
 when HardFault
 termInst = TRUE;
 enabled = TRUE;
 canEscalate = TRUE;
 when MemManage
 termInst = TRUE;
 if HaveMainExt() then
 val = if isSecure then SHCSR_S else SHCSR_NS;
 enabled = val.MEMFAULTENA == '1';
 else
 enabled = FALSE;
 canEscalate = TRUE;
 when BusFault
 termInst = isSynchronous;
 enabled = if HaveMainExt()
 then SHCSR_S.BUSFAULTENA == '1' else FALSE;
 // Async BusFaults only escalate if they are disabled
 canEscalate = termInst || !enabled;
 when UsageFault
 termInst = TRUE;
 if HaveMainExt() then
 val = if isSecure then SHCSR_S else SHCSR_NS;
 enabled = val.USGFAULTENA == '1';
 else
 enabled = FALSE;
 canEscalate = TRUE;
 when SecureFault
 termInst = TRUE;
 enabled = if HaveMainExt()
 then SHCSR_S.SECUREFAULTENA == '1' else FALSE;
 canEscalate = TRUE;
 when SVCall
 termInst = FALSE;
 enabled = TRUE;
 canEscalate = TRUE;
 when DebugMonitor
 termInst = TRUE;
 enabled = if HaveMainExt()
 then DEMCR.MON_EN == '1' else FALSE;
 canEscalate = FALSE; // TRUE if fault caused by BKPT instruction
 otherwise
 termInst = FALSE;
 canEscalate = FALSE;

 // If the fault can escalate then check if exception can be taken
 // immediately, or whether it should escalate
 escalateToHf = FALSE;
 if canEscalate then
 execPri = ExecutionPriority();
 excePri = ExceptionPriority(exception, isSecure, TRUE);
 if (excePri >= execPri) || !enabled then
 escalateToHf = TRUE;

 return (escalateToHf, termInst);
E3-1178 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.68 ExceptionEnabled

// ExceptionEnabled()
// ==================
// Checks whether the given exception is enabled.

boolean ExceptionEnabled(integer exception, boolean secure);

E3.1.69 ExceptionEntry

// ExceptionEntry()
// ================
// Exception entry is modified according to the behavior of a derived
// exception, see DerivedLateArrival() also.

ExcInfo ExceptionEntry(integer exceptionType, boolean toSecure, boolean instExecOk)

 // PushStack() can abandon memory accesses if a fault occurs during the stacking
 // sequence.
 exc = PushStack(toSecure, instExecOk);
 if exc.fault == NoFault then
 exc = ExceptionTaken(exceptionType, FALSE, toSecure, FALSE);
 return exc;
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E3-1179
ID072816 Non-Confidential - Beta

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.70 ExceptionPriority

// ExceptionPriority()
// ===================

integer ExceptionPriority(integer n, boolean isSecure, boolean groupPri)
 if HaveMainExt() then
 assert n >= 1 && n <= 511;
 else
 assert n >= 1 && n <= 48;

 if n == Reset then // Reset
 result = -4;
 elsif n == NMI then // NMI
 result = -2;
 elsif n == HardFault then // HardFault
 if isSecure && AIRCR.BFHFNMINS == '1' then
 result = -3;
 else
 result = -1;
 elsif HaveMainExt() && n == MemManage then // MemManage
 result = UInt(if isSecure then SHPR1_S.PRI_4 else SHPR1_NS.PRI_4);
 elsif HaveMainExt() && n == BusFault then // BusFault
 result = UInt(SHPR1_S.PRI_5);
 elsif HaveMainExt() && n == UsageFault then // UsageFault
 result = UInt(if isSecure then SHPR1_S.PRI_6 else SHPR1_NS.PRI_6);
 elsif HaveMainExt() && n == SecureFault then // SecureFault
 result = UInt(SHPR1_S.PRI_7);
 elsif n == SVCall then // SVCall
 result = UInt(if isSecure then SHPR2_S.PRI_11 else SHPR2_NS.PRI_11);
 elsif HaveMainExt() && n == DebugMonitor then // DebugMonitor
 result = UInt(SHPR3_S.PRI_12);
 elsif n == PendSV then // PendSV
 result = UInt(if isSecure then SHPR3_S.PRI_14 else SHPR3_NS.PRI_14);
 elsif n == SysTick then // SysTick
 if ((HaveSysTick() == 2) ||
 (HaveSysTick() == 1 && ((ICSR_S.STTNS == '0') == isSecure))) then
 result = UInt(if isSecure then SHPR3_S.PRI_15 else SHPR3_NS.PRI_15);
 elsif n >= 16 then // External interrupt (n-16)
 r = (n - 16) DIV 4;
 v = n MOD 4;
 result = UInt(NVIC_IPR[r]<v*8+7:v*8>);
 else // Reserved exceptions
 result = 256;

 // Negative priorities (ie Reset, NMI, and HardFault) aren't effected by
 // PRIGROUP or PRIS
 if result >= 0 then
 // Include the PRIGROUP effect
 if HaveMainExt() && groupPri then
 integer subgroupshift;
 if isSecure then
 subgroupshift = UInt(AIRCR_S.PRIGROUP);
 else
 subgroupshift = UInt(AIRCR_NS.PRIGROUP);
 integer groupvalue = 2 << subgroupshift;
 integer subgroupvalue = result MOD groupvalue;
 result = result - subgroupvalue;

 // If the Main Extension is not implemented, only 2 bits of priority are present and
 // a different scheme to scale down the Non-secure priority is used if PRIS is set.
 if HaveMainExt() then
 if (AIRCR_S.PRIS == '1') && !isSecure then
 result = (result >> 1) + PriSNsPri;
 else
 // Only use the top 2 bits
 result = result >> 6;
 if (AIRCR_S.PRIS == '1') && !isSecure then
E3-1180 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
 result = result + PriSNsPri;
 else
 result = result << 1;

 return result;
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E3-1181
ID072816 Non-Confidential - Beta

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.71 ExceptionReturn

// ExceptionReturn()
// =================

ExcInfo ExceptionReturn(bits(24) excReturn)
 integer returningExceptionNumber = UInt(IPSR.Exception);

 exc = ValidateExceptionReturn(excReturn, returningExceptionNumber);
 if exc.fault != NoFault then
 return exc;

 if HaveSecurityExt() then
 excSecure = excReturn<0> == '1';
 retToSecure = excReturn<6> == '1';
 else
 excSecure = FALSE;
 retToSecure = FALSE;

 // Restore SPSEL for the Security state we are returning from.
 if excSecure then
 CONTROL_S.SPSEL = excReturn<2>;
 else
 CONTROL_NS.SPSEL = excReturn<2>;

 targetDomainSecure = excReturn<0> == '1';
 DeActivate(returningExceptionNumber, targetDomainSecure);

 // If requested, clear the scratch FP values left in the caller saved
 // registers before returning/tail chaining.
 if HaveFPExt() && FPCCR.CLRONRET == '1' && CONTROL.FPCA == '1' then
 if FPCCR_S.LSPACT == '1' then
 SFSR.LSERR = '1';
 return CreateException(SecureFault, TRUE, TRUE);
 else
 for i = 0 to 15
 S[i] = Zeros();
 FPSCR = Zeros();

 // If TailChaining is supported, check if there is a pending exception with
 // sufficient priority to be taken now. This check is done after the
 // previous exception is deactivated so the priority of the previous
 // exception doesn't mask any pending exceptions.
 // The position of TailChain() within this function is the earliest point
 // at which an tailchain is architecturally visible. Tail-chaining from a
 // later point is permissible.
 if boolean IMPLEMENTATION_DEFINED "Tail chaining supported" then
 (takeException, exception, excIsSecure) = PendingExceptionDetails();
 if takeException then
 return TailChain(exception, excIsSecure, excReturn);

 // Check for illegal excReturn value
 if excReturn<1> != '0' then
 if HaveMainExt() then
 UFSR.INVPC = '1';
 // NOTE: This exception is raised before the Security state is
 // changed, so the UsageFault targets the state the processor was in
 // when the original exception returned.
 return CreateException(UsageFault, FALSE, boolean UNKNOWN);
 else
 UNPREDICTABLE;

 // Return to the background Security state
 if HaveSecurityExt() then
 CurrentState = if retToSecure
 then SecurityState_Secure else SecurityState_NonSecure;

 // Sleep-on-exit performs equivalent behaviour to the WFI instruction.
E3-1182 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
 // The position of SleepOnExit() within this function is the earliest point
 // at which it can be performed. Performing SleepOnExit from a later point
 // is permissible.
 if (excReturn<3> == '1' && SCR.SLEEPONEXIT == '1' &&
 ExceptionActiveBitCount() == 0) then
 SleepOnExit(); // IMPLEMENTATION DEFINED

 // Pop the stack and raise any exceptions that are generated
 exc = PopStack(excReturn);
 if exc.fault == NoFault then
 ClearExclusiveLocal(ProcessorID());
 SetEventRegister(); // See WFE instruction for more details
 InstructionSynchronizationBarrier('1111');

 return exc;
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E3-1183
ID072816 Non-Confidential - Beta

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.72 ExceptionTaken

// ExceptionTaken()
// ================

ExcInfo ExceptionTaken(integer exceptionNumber, boolean doTailChain,
 boolean excIsSecure, boolean ignStackFaults)
 assert(HaveSecurityExt() || !excIsSecure);

 // If the background code was running in the Secure state that are some
 // additional steps that might need to be taken to protect the callee saved
 // registers
 exc = DefaultExcInfo();
 if HaveSecurityExt() && LR<6> == '1' then
 if excIsSecure then // Transitioning to Secure
 // If tail chaining is from Non-secure to Secure, then the callee registers
 // are already on stack. Set excReturn.DCRS accordingly
 if doTailChain && LR<0> == '0' then
 LR<5> = '0';
 else // Transitioning to Non-secure
 // If the callee registers aren't already on the stack push them now
 if LR<5> == '1' && !(doTailChain && LR<0> == '0') then
 exc = PushCalleeStack(doTailChain);
 // Going to Non-secure exception. Set excReturn.DCRS to default
 // value
 LR<5> = '1';

 // Finalise excReturn value
 if excIsSecure then
 LR<2> = CONTROL_S.SPSEL;
 LR<0> = '1';
 else
 LR<2> = CONTROL_NS.SPSEL;
 LR<0> = '0';

 // Register clearing
 // Caller saved registers: These registers are cleared if exception targets
 // the Non-secure state, otherwise they are UNKNOWN. NOTE: The original
 // values were pushed to the stack.
 callerRegValue = if !HaveSecurityExt() || excIsSecure then bits(32) UNKNOWN else Zeros(32);
 for n = 0 to 3
 R[n] = callerRegValue;
 R[12] = callerRegValue;
 EAPSR = callerRegValue;
 // Callee saved registers: If the background code was in the Secure state
 // these registers are cleared if the excepton targets the Non-secure state,
 // and UNKNOWN if it targets the Secure state and the registers have been
 // pushed to the stack (as indicated by EXC_RETURN.DCRS).
 //
 // NOTE: Callee saved registers are preserved if the background code is
 // Non-secure, of when the exception is Secure and the values haven't
 // been pushed to the stack.
 if HaveSecurityExt() && LR<6> == '1' then
 if excIsSecure then
 if LR<5> == '0' then
 for n = 4 to 11
 R[n] = bits(32) UNKNOWN;
 else
 for n = 4 to 11
 R[n] = Zeros();

 // If no errors so far (or errors that can be ignored) load the vector address
 if exc.fault == NoFault || ignStackFaults then
 (exc, start) = Vector[exceptionNumber, excIsSecure];

 // The state / mode of processor isn't updated if an exception is raised
 // during the entry sequency.
 if exc.fault == NoFault then
E3-1184 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
 ActivateException(exceptionNumber, excIsSecure);
 SCS_UpdateStatusRegs();
 ClearExclusiveLocal(ProcessorID());
 SetEventRegister(); // See WFE instruction for details
 InstructionSynchronizationBarrier('1111');
 // Start execution of handler
 EPSR.T = start<0>;
 // If EPSR.T == 0 then an exception is taken on the next
 // instruction: UsageFault('Invalid State') if the Main Extension is
 // implemented; HardFault otherwise
 BranchTo(start<31:1>:'0');
 else
 exc.inExcTaken = TRUE;
 return exc;
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E3-1185
ID072816 Non-Confidential - Beta

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.73 ExceptionTargetsSecure

// ExceptionTargetsSecure()
// ========================

// Determine the default Security state an exception should target if the
// exception isn't force to a specific domain

boolean ExceptionTargetsSecure(integer exceptionNumber, boolean isSecure)
 if !HaveSecurityExt() then
 return FALSE;

 boolean targetSecure = FALSE;
 case exceptionNumber of
 when NMI
 targetSecure = AIRCR.BFHFNMINS == '0';

 when HardFault
 targetSecure = AIRCR.BFHFNMINS == '0' || isSecure;

 when MemManage
 targetSecure = isSecure;

 when BusFault
 targetSecure = AIRCR.BFHFNMINS == '0';

 when UsageFault
 targetSecure = isSecure;

 when SecureFault
 // SecureFault always targets Secure state
 targetSecure = TRUE;

 when SVCall
 targetSecure = isSecure;

 when DebugMonitor
 targetSecure = DEMCR.SDME == '1';

 when PendSV
 targetSecure = isSecure;

 when SysTick
 if HaveSysTick() == 2 then
 // If there is a SysTick for each domain, then the exception
 // targets the domain associated with the SysTick instance that
 // raised the exception
 // targetSecure = <SysTick instance raising exception>
 elsif HaveSysTick() == 1 then
 // SysTick target state is configurable
 targetSecure = ICSR_S.STTNS == '0';

 otherwise
 if exceptionNumber >= 16 then
 // Interrupts target the state defined by the NVIC_ITNS register
 targetSecure = NVIC_ITNS<exceptionNumber - 16> == '0';

 return targetSecure;
E3-1186 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.74 ExclusiveMonitorsPass

// ExclusiveMonitorsPass()
// =======================

boolean ExclusiveMonitorsPass(bits(32) address, integer size)

 // It is IMPLEMENTATION DEFINED whether the detection of memory aborts happens
 // before or after the check on the local Exclusive Monitor. As a result a failure
 // of the local monitor can occur on some implementations even if the memory
 // access would give a memory abort.

 if address != Align(address, size) then
 UFSR.UNALIGNED = '1';
 excInfo = CreateException(UsageFault, FALSE, boolean UNKNOWN);
 else
 (excInfo, memaddrdesc) = ValidateAddress(address, AccType_NORMAL,
 FindPriv(), IsSecure(), TRUE);
 HandleException(excInfo);

 passed = IsExclusiveLocal(memaddrdesc.paddress, ProcessorID(), size);
 if memaddrdesc.memattrs.shareable then
 passed = passed && IsExclusiveGlobal(memaddrdesc.paddress, ProcessorID(), size);
 if passed then
 ClearExclusiveLocal(ProcessorID());
 return passed;

E3.1.75 ExecuteCPCheck

// ExecuteCPCheck()
// ================

ExecuteCPCheck(integer cp)
 // Check access to coprocessor is enabled
 excInfo = CheckCPEnabled(cp);
 HandleException(excInfo);
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E3-1187
ID072816 Non-Confidential - Beta

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.76 ExecuteFPCheck

// ExecuteFPCheck()
// ================

ExecuteFPCheck()
 // Check access to FP coprocessor is enabled
 excInfo = CheckCPEnabled(10);
 HandleException(excInfo);

 // If FP lazy context save is enabled then save state
 if FPCCR_S.S == '1' then
 lspact = FPCCR_S.LSPACT;
 else
 lspact = FPCCR_NS.LSPACT;
 if lspact == '1' then
 PreserveFPState();

 // Update the ownership of the FP context
 FPCCR_S.S = if IsSecure() then '1' else '0';

 // Update CONTROL.FPCA, and create new FP context
 // if this has been enabled by setting FPCCR.ASPEN to 1
 if FPCCR.ASPEN == '1' &&
 (CONTROL.FPCA == '0' || (IsSecure() && CONTROL_S.SFPA == '0')) then
 FPSCR = FPDSCR<31:0>;
 CONTROL.FPCA = '1';
 if IsSecure() then
 CONTROL_S.SFPA = '1';
 return;
E3-1188 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.77 ExecutionPriority

// ExecutionPriority()
// ===================
// Determine the current execution priority

integer ExecutionPriority()

 boostedpri = HighestPri; // Priority influence of BASEPRI, PRIMASK and FAULTMASK

 // Calculate boosted priority effect due to BASEPRI for both Security states
 if HaveMainExt() then
 if UInt(BASEPRI_NS<7:0>) != 0 then
 basepri = UInt(BASEPRI_NS<7:0>);
 // Include the PRIGROUP effect
 subgroupshift = UInt(AIRCR_NS.PRIGROUP);
 groupvalue = 2 << subgroupshift;
 subgroupvalue = basepri MOD groupvalue;
 boostedpri = basepri - subgroupvalue;
 if AIRCR_S.PRIS == '1' then
 boostedpri = (boostedpri >> 1) + PriSNsPri;

 if UInt(BASEPRI_S<7:0>) != 0 then
 basepri = UInt(BASEPRI_S<7:0>);
 // Include the PRIGROUP effect
 subgroupshift = UInt(AIRCR_S.PRIGROUP);
 groupvalue = 2 << subgroupshift;
 subgroupvalue = basepri MOD groupvalue;
 basepri = basepri - subgroupvalue;
 if boostedpri > basepri then
 boostedpri = basepri;

 // Calculate boosted priority effect due to PRIMASK for both Security states
 if PRIMASK_NS.PM == '1' then
 if AIRCR_S.PRIS == '0' then
 boostedpri = 0;
 else
 if boostedpri > PriSNsPri then
 boostedpri = PriSNsPri;

 if PRIMASK_S.PM == '1' then
 boostedpri = 0;

 // Calculate boosted priority effect due to FAULTMASK for both Security states
 if HaveMainExt() then
 if FAULTMASK_NS.FM == '1' then
 if AIRCR.BFHFNMINS == '0' then
 if AIRCR_S.PRIS == '0' then
 boostedpri = 0;
 else
 if boostedpri > PriSNsPri then
 boostedpri = PriSNsPri;
 else
 boostedpri = -1;

 if FAULTMASK_S.FM == '1' then
 boostedpri = if AIRCR.BFHFNMINS == '0' then -1 else -3;

 // Finally calculate the resultant priority after boosting
 rawExecPri = RawExecutionPriority();
 if boostedpri < rawExecPri then
 priority = boostedpri;
 else
 priority = rawExecPri;

 return priority;
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E3-1189
ID072816 Non-Confidential - Beta

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.78 FPAbs

// FPAbs()
// =======

bits(N) FPAbs(bits(N) operand)
 assert N IN {32,64};
 return '0' : operand<N-2:0>;

E3.1.79 FPAdd

// FPAdd()
// =======

bits(N) FPAdd(bits(N) op1, bits(N) op2, boolean fpscr_controlled)
 assert N IN {32,64};
 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
 (type1,sign1,value1) = FPUnpack(op1, fpscr_val);
 (type2,sign2,value2) = FPUnpack(op2, fpscr_val);
 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpscr_val);
 if !done then
 inf1 = (type1 == FPType_Infinity); inf2 = (type2 == FPType_Infinity);
 zero1 = (type1 == FPType_Zero); zero2 = (type2 == FPType_Zero);
 if inf1 && inf2 && sign1 == NOT(sign2) then
 result = FPDefaultNaN(N);
 FPProcessException(FPExc_InvalidOp, fpscr_val);
 elsif (inf1 && sign1 == '0') || (inf2 && sign2 == '0') then
 result = FPInfinity('0', N);
 elsif (inf1 && sign1 == '1') || (inf2 && sign2 == '1') then
 result = FPInfinity('1', N);
 elsif zero1 && zero2 && sign1 == sign2 then
 result = FPZero(sign1, N);
 else
 result_value = value1 + value2;
 if result_value == 0.0 then // Sign of exact zero result depends on rounding mode
 result_sign = if fpscr_val<23:22> == '10' then '1' else '0';
 result = FPZero(result_sign, N);
 else
 result = FPRound(result_value, N, fpscr_val);
 return result;

E3.1.80 FPB_BreakpointMatch

// FPB_BreakpointMatch()
// =====================
// Generates a debug event based on FP Breakpoint Match

FPB_BreakpointMatch()
 i = GenerateDebugEventResponse();
E3-1190 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.81 FPB_CheckBreakPoint

// FPB_CheckBreakPoint
// ===================
// Check for Flash Patch Break point

boolean FPB_CheckBreakPoint(bits(32) iaddr, integer size, boolean is_ifetch, boolean is_secure)

 match = FPB_CheckMatchAddress(iaddr);
 if !match && size == 4 && FPB_CheckMatchAddress(iaddr + 2) then
 match = ConstrainUnpredictableBool(Unpredictable_FPBreakpoint);
 return match;

E3.1.82 FPB_CheckMatchAddress

// FPB_CheckMatchAddress
// =====================
// Flash Patch breakpoint instruction address comparison

boolean FPB_CheckMatchAddress(bits(32) iaddr)

 if FP_CTRL.ENABLE == '0' then return FALSE; // FP not enabled

 // Instruction Comparator.
 num_addr_cmp = UInt(FP_CTRL.NUM_CODE);
 for N = 0 to (num_addr_cmp - 1)
 if FP_COMP[N].BE == '1' then // Breakpoint enabled
 if iaddr<31:1> == FP_COMP[N].BPADDR then
 return TRUE;
 return FALSE;

E3.1.83 FPCompare

// FPCompare()
// ===========

(bit, bit, bit, bit) FPCompare(bits(N) op1, bits(N) op2, boolean quiet_nan_exc,
 boolean fpscr_controlled)
 assert N IN {32,64};
 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
 (type1,-,value1) = FPUnpack(op1, fpscr_val);
 (type2,-,value2) = FPUnpack(op2, fpscr_val);
 if type1==FPType_SNaN || type1==FPType_QNaN || type2==FPType_SNaN || type2==FPType_QNaN then
 result = ('0','0','1','1');
 if type1==FPType_SNaN || type2==FPType_SNaN || quiet_nan_exc then
 FPProcessException(FPExc_InvalidOp, fpscr_val);
 else
 // All non-NaN cases can be evaluated on the values produced by FPUnpack()
 if value1 == value2 then
 result = ('0','1','1','0');
 elsif value1 < value2 then
 result = ('1','0','0','0');
 else // value1 > value2
 result = ('0','0','1','0');
 return result;
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E3-1191
ID072816 Non-Confidential - Beta

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.84 FPDefaultNaN

// FPDefaultNaN()
// ==============

bits(N) FPDefaultNaN(integer N)
 assert N IN {16,32,64};
 if N == 16 then E = 5; elsif N == 32 then E = 8; else E = 11;
 constant integer F = N - E - 1;
 sign = '0';
 exp = Ones(E);
 frac = '1':Zeros(F-1);
 return sign : exp : frac;

E3.1.85 FPDiv

// FPDiv()
// =======

bits(N) FPDiv(bits(N) op1, bits(N) op2, boolean fpscr_controlled)
 assert N IN {32,64};
 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
 (fp_type1,sign1,value1) = FPUnpack(op1, fpscr_val);
 (fp_type2,sign2,value2) = FPUnpack(op2, fpscr_val);
 (done,result) = FPProcessNaNs(fp_type1, fp_type2, op1, op2, fpscr_val);
 if !done then
 inf1 = (fp_type1 == FPType_Infinity); inf2 = (fp_type2 == FPType_Infinity);
 zero1 = (fp_type1 == FPType_Zero); zero2 = (fp_type2 == FPType_Zero);
 if (inf1 && inf2) || (zero1 && zero2) then
 result = FPDefaultNaN(N);
 FPProcessException(FPExc_InvalidOp, fpscr_val);
 elsif inf1 || zero2 then
 result_sign = if sign1 == sign2 then '0' else '1';
 result = FPInfinity(result_sign, N);
 if !inf1 then FPProcessException(FPExc_DivideByZero, fpscr_val);
 elsif zero1 || inf2 then
 result_sign = if sign1 == sign2 then '0' else '1';
 result = FPZero(result_sign, N);
 else
 result = FPRound(value1/value2, N, fpscr_val);
 return result;
E3-1192 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.86 FPDoubleToHalf

// FPDoubleToHalf()
// ================
bits(16) FPDoubleToHalf(bits(64) operand, boolean fpscr_controlled)
 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
 (fp_type,sign,value) = FPUnpack(operand, fpscr_val);
 if fp_type == FPType_SNaN || fp_type == FPType_QNaN then
 if fpscr_val<26> == '1' then // AH bit set
 result = FPZero(sign, 16);
 elsif fpscr_val<25> == '1' then // DN bit set
 result = FPDefaultNaN(16);
 else
 result = sign : '11111 1' : operand<50:42>;
 if fp_type == FPType_SNaN || fpscr_val<26> == '1' then
 FPProcessException(FPExc_InvalidOp, fpscr_val);
 elsif fp_type == FPType_Infinity then
 if fpscr_val<26> == '1' then // AH bit set
 result = sign : Ones(15);
 FPProcessException(FPExc_InvalidOp, fpscr_val);
 else
 result = FPInfinity(sign, 16);
 elsif fp_type == FPType_Zero then
 result = FPZero(sign, 16);
 else
 result = FPRound(value, 16, fpscr_val);
 return result;

E3.1.87 FPDoubleToSingle

// FPDoubleToSingle()
// ==================

bits(32) FPDoubleToSingle(bits(64) operand, boolean fpscr_controlled)
 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
 (fp_type,sign,value) = FPUnpack(operand, fpscr_val);
 if fp_type == FPType_SNaN || fp_type == FPType_QNaN then
 if fpscr_val<25> == '1' then // DN bit set
 result = FPDefaultNaN(32);
 else
 result = sign : '11111111 1' : operand<50:29>;
 if fp_type == FPType_SNaN then
 FPProcessException(FPExc_InvalidOp, fpscr_val);
 elsif fp_type == FPType_Infinity then
 result = FPInfinity(sign, 32);
 elsif fp_type == FPType_Zero then
 result = FPZero(sign, 32);
 else
 result = FPRound(value, 32, fpscr_val);
 return result;
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E3-1193
ID072816 Non-Confidential - Beta

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.88 FPExc

// Floating point exceptions

enumeration FPExc {FPExc_InvalidOp, FPExc_DivideByZero, FPExc_Overflow,
 FPExc_Underflow, FPExc_Inexact, FPExc_InputDenorm};

E3.1.89 FPHalfToDouble

// FPHalfToDouble()
// ================

bits(64) FPHalfToDouble(bits(16) operand, boolean fpscr_controlled)
 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
 (fp_type,sign,value) = FPUnpack(operand, fpscr_val);
 if fp_type == FPType_SNaN || fp_type == FPType_QNaN then
 if fpscr_val<25> == '1' then // DN bit set
 result = FPDefaultNaN(64);
 else
 result = sign : '11111111111 1' : operand<8:0> : Zeros(42);
 if fp_type == FPType_SNaN then
 FPProcessException(FPExc_InvalidOp, fpscr_val);
 elsif fp_type == FPType_Infinity then
 result = FPInfinity(sign, 64);
 elsif fp_type == FPType_Zero then
 result = FPZero(sign, 64);
 else
 result = FPRound(value, 64, fpscr_val); // Rounding will be exact
 return result;

E3.1.90 FPHalfToSingle

// FPHalfToSingle()
// ================

bits(32) FPHalfToSingle(bits(16) operand, boolean fpscr_controlled)
 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
 (fp_type,sign,value) = FPUnpack(operand, fpscr_val);
 if fp_type == FPType_SNaN || fp_type == FPType_QNaN then
 if fpscr_val<25> == '1' then // DN bit set
 result = FPDefaultNaN(32);
 else
 result = sign : '11111111 1' : operand<8:0> : Zeros(13);
 if fp_type == FPType_SNaN then
 FPProcessException(FPExc_InvalidOp, fpscr_val);
 elsif fp_type == FPType_Infinity then
 result = FPInfinity(sign, 32);
 elsif fp_type == FPType_Zero then
 result = FPZero(sign, 32);
 else
 result = FPRound(value, 32, fpscr_val); // Rounding will be exact
 return result;
E3-1194 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.91 FPInfinity

// FPInfinity()
// ============

bits(N) FPInfinity(bit sign, integer N)
 assert N IN {16,32,64};
 if N == 16 then E = 5; elsif N == 32 then E = 8; else E = 11;
 constant integer F = N - E - 1;
 exp = Ones(E);
 frac = Zeros(F);
 return sign : exp : frac;

E3.1.92 FPMax

// FPMax()
// =======

bits(N) FPMax(bits(N) op1, bits(N) op2, boolean fpscr_controlled)
 assert N IN {32,64};
 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
 (fp_type1,sign1,value1) = FPUnpack(op1, fpscr_val);
 (fp_type2,sign2,value2) = FPUnpack(op2, fpscr_val);
 (done,result) = FPProcessNaNs(fp_type1, fp_type2, op1, op2, fpscr_val);
 if !done then
 if value1 > value2 then
 (fp_type,sign,value) = (fp_type1,sign1,value1);
 else
 (fp_type,sign,value) = (fp_type2,sign2,value2);
 if fp_type == FPType_Infinity then
 result = FPInfinity(sign, N);
 elsif fp_type == FPType_Zero then
 sign = sign1 AND sign2; // Use most positive sign
 result = FPZero(sign, N);
 else
 result = FPRound(value, N, fpscr_val);
 return result;

E3.1.93 FPMaxNormal

// FPMaxNormal()
// =============

bits(N) FPMaxNormal(bit sign, integer N)
 assert N IN {16,32,64};
 if N == 16 then E = 5; elsif N == 32 then E = 8; else E = 11;
 constant integer F = N - E - 1;
 exp = Ones(E-1):'0';
 frac = Ones(F);
 return sign : exp : frac;
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E3-1195
ID072816 Non-Confidential - Beta

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.94 FPMaxNum

// FPMaxNum()
// ==========

bits(N) FPMaxNum(bits(N) op1, bits(N) op2)
 assert N IN {32,64};

 (type1,-,-) = FPUnpack(op1, FPSCR);
 (type2,-,-) = FPUnpack(op2, FPSCR);

 // treat a single quiet-NaN as -Infinity
 if type1 == FPType_QNaN && type2 != FPType_QNaN then
 op1 = FPInfinity('1', N);
 elsif type1 != FPType_QNaN && type2 == FPType_QNaN then
 op2 = FPInfinity('1', N);

 return FPMax(op1, op2, TRUE);

E3.1.95 FPMin

// FPMin()
// =======

bits(N) FPMin(bits(N) op1, bits(N) op2, boolean fpscr_controlled)
 assert N IN {32,64};
 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
 (fp_type1,sign1,value1) = FPUnpack(op1, fpscr_val);
 (fp_type2,sign2,value2) = FPUnpack(op2, fpscr_val);
 (done,result) = FPProcessNaNs(fp_type1, fp_type2, op1, op2, fpscr_val);
 if !done then
 if value1 < value2 then
 (fp_type,sign,value) = (fp_type1,sign1,value1);
 else
 (fp_type,sign,value) = (fp_type2,sign2,value2);
 if fp_type == FPType_Infinity then
 result = FPInfinity(sign, N);
 elsif fp_type == FPType_Zero then
 sign = sign1 OR sign2; // Use most negative sign
 result = FPZero(sign, N);
 else
 result = FPRound(value, N, fpscr_val);
 return result;
E3-1196 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.96 FPMinNum

// FPMinNum()
// ==========

bits(N) FPMinNum(bits(N) op1, bits(N) op2)
 assert N IN {32,64};

 (fp_type1,-,-) = FPUnpack(op1, FPSCR);
 (fp_type2,-,-) = FPUnpack(op2, FPSCR);

 // Treat a single quiet-NaN as +Infinity
 if fp_type1 == FPType_QNaN && fp_type2 != FPType_QNaN then
 op1 = FPInfinity('0', N);
 elsif fp_type1 != FPType_QNaN && fp_type2 == FPType_QNaN then
 op2 = FPInfinity('0', N);

 return FPMin(op1, op2, TRUE);

E3.1.97 FPMul

// FPMul()
// =======

bits(N) FPMul(bits(N) op1, bits(N) op2, boolean fpscr_controlled)
 assert N IN {32,64};
 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
 (type1,sign1,value1) = FPUnpack(op1, fpscr_val);
 (type2,sign2,value2) = FPUnpack(op2, fpscr_val);
 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpscr_val);
 if !done then
 inf1 = (type1 == FPType_Infinity); inf2 = (type2 == FPType_Infinity);
 zero1 = (type1 == FPType_Zero); zero2 = (type2 == FPType_Zero);
 if (inf1 && zero2) || (zero1 && inf2) then
 result = FPDefaultNaN(N);
 FPProcessException(FPExc_InvalidOp, fpscr_val);
 elsif inf1 || inf2 then
 result_sign = if sign1 == sign2 then '0' else '1';
 result = FPInfinity(result_sign, N);
 elsif zero1 || zero2 then
 result_sign = if sign1 == sign2 then '0' else '1';
 result = FPZero(result_sign, N);
 else
 result = FPRound(value1*value2, N, fpscr_val);
 return result;
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E3-1197
ID072816 Non-Confidential - Beta

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.98 FPMulAdd

// FPMulAdd()
// ==========
// Calculates addend + op1*op2 with a single rounding.

bits(N) FPMulAdd(bits(N) addend, bits(N) op1, bits(N) op2,
 boolean fpscr_controlled)
 assert N IN {32,64};
 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
 (typeA,signA,valueA) = FPUnpack(addend, fpscr_val);
 (type1,sign1,value1) = FPUnpack(op1, fpscr_val);
 (type2,sign2,value2) = FPUnpack(op2, fpscr_val);
 inf1 = (type1 == FPType_Infinity); zero1 = (type1 == FPType_Zero);
 inf2 = (type2 == FPType_Infinity); zero2 = (type2 == FPType_Zero);
 (done,result) = FPProcessNaNs3(typeA, type1, type2, addend, op1, op2, fpscr_val);

 if typeA == FPType_QNaN && ((inf1 && zero2) || (zero1 && inf2)) then
 result = FPDefaultNaN(N);
 FPProcessException(FPExc_InvalidOp, fpscr_val);

 if !done then
 infA = (typeA == FPType_Infinity); zeroA = (typeA == FPType_Zero);

 // Determine sign and type product will have if it does not cause an Invalid
 // Operation.
 signP = if sign1 == sign2 then '0' else '1';
 infP = inf1 || inf2;
 zeroP = zero1 || zero2;

 // Non SNaN-generated Invalid Operation cases are multiplies of zero by infinity and
 // additions of opposite-signed infinities.
 if (inf1 && zero2) || (zero1 && inf2) || (infA && infP && signA == NOT(signP)) then
 result = FPDefaultNaN(N);
 FPProcessException(FPExc_InvalidOp, fpscr_val);

 // Other cases involving infinities produce an infinity of the same sign.
 elsif (infA && signA == '0') || (infP && signP == '0') then
 result = FPInfinity('0', N);
 elsif (infA && signA == '1') || (infP && signP == '1') then
 result = FPInfinity('1', N);

 // Cases where the result is exactly zero and its sign is not determined by the
 // rounding mode are additions of same-signed zeros.
 elsif zeroA && zeroP && signA == signP then
 result = FPZero(signA, N);

 // Otherwise calculate numerical result and round it.
 else
 result_value = valueA + (value1 * value2);
 if result_value == 0.0 then // Sign of exact zero result depends on rounding mode
 result_sign = if fpscr_val<23:22> == '10' then '1' else '0';
 result = FPZero(result_sign, N);
 else
 result = FPRound(result_value, N, fpscr_val);

 return result;
E3-1198 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.99 FPNeg

// FPNeg()
// =======

bits(N) FPNeg(bits(N) operand)
 assert N IN {32,64};
 return NOT(operand<N-1>) : operand<N-2:0>;

E3.1.100 FPProcessException

// FPProcessException()
// ====================
// The 'fpscr_val' argument supplies FPSCR control bits. Status information is
// updated directly in the FPSCR where appropriate.

FPProcessException(FPExc exception, bits(32) fpscr_val)
 // Get appropriate FPSCR bit numbers
 case exception of
 when FPExc_InvalidOp enable = 8; cumul = 0;
 when FPExc_DivideByZero enable = 9; cumul = 1;
 when FPExc_Overflow enable = 10; cumul = 2;
 when FPExc_Underflow enable = 11; cumul = 3;
 when FPExc_Inexact enable = 12; cumul = 4;
 when FPExc_InputDenorm enable = 15; cumul = 7;
 if fpscr_val<enable> == '1' then
 IMPLEMENTATION_DEFINED "floating-point trap handling";
 else
 FPSCR<cumul> = '1';
 return;

E3.1.101 FPProcessNaN

// FPProcessNaN()
// ==============
// The 'fpscr_val' argument supplies FPSCR control bits. Status information is
// updated directly in the FPSCR where appropriate.

bits(N) FPProcessNaN(FPType fp_type, bits(N) operand, bits(32) fpscr_val)
 assert N IN {32,64};
 topfrac = if N == 32 then 22 else 51;
 result = operand;
 if fp_type == FPType_SNaN then
 result<topfrac> = '1';
 FPProcessException(FPExc_InvalidOp, fpscr_val);
 if fpscr_val<25> == '1' then // DefaultNaN requested
 result = FPDefaultNaN(N);
 return result;
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E3-1199
ID072816 Non-Confidential - Beta

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.102 FPProcessNaNs

// FPProcessNaNs()
// ===============
// The boolean part of the return value says whether a NaN has been found and
// processed. The bits(N) part is only relevant if it has and supplies the
// result of the operation.
//
// The 'fpscr_val' argument supplies FPSCR control bits. Status information is
// updated directly in the FPSCR where appropriate.

(boolean, bits(N)) FPProcessNaNs(FPType type1, FPType type2,
 bits(N) op1, bits(N) op2,
 bits(32) fpscr_val)
 assert N IN {32,64};
 if type1 == FPType_SNaN then
 done = TRUE; result = FPProcessNaN(type1, op1, fpscr_val);
 elsif type2 == FPType_SNaN then
 done = TRUE; result = FPProcessNaN(type2, op2, fpscr_val);
 elsif type1 == FPType_QNaN then
 done = TRUE; result = FPProcessNaN(type1, op1, fpscr_val);
 elsif type2 == FPType_QNaN then
 done = TRUE; result = FPProcessNaN(type2, op2, fpscr_val);
 else
 done = FALSE; result = Zeros(N); // 'Don't care' result
 return (done, result);

E3.1.103 FPProcessNaNs3

// FPProcessNaNs3()
// ================
// The boolean part of the return value says whether a NaN has been found and
// processed. The bits(N) part is only relevant if it has and supplies the
// result of the operation.
//
// The 'fpscr_val' argument supplies FPSCR control bits. Status information is
// updated directly in the FPSCR where appropriate.

(boolean, bits(N)) FPProcessNaNs3(FPType type1, FPType type2, FPType type3,
 bits(N) op1, bits(N) op2, bits(N) op3,
 bits(32) fpscr_val)
 assert N IN {32,64};
 if type1 == FPType_SNaN then
 done = TRUE; result = FPProcessNaN(type1, op1, fpscr_val);
 elsif type2 == FPType_SNaN then
 done = TRUE; result = FPProcessNaN(type2, op2, fpscr_val);
 elsif type3 == FPType_SNaN then
 done = TRUE; result = FPProcessNaN(type3, op3, fpscr_val);
 elsif type1 == FPType_QNaN then
 done = TRUE; result = FPProcessNaN(type1, op1, fpscr_val);
 elsif type2 == FPType_QNaN then
 done = TRUE; result = FPProcessNaN(type2, op2, fpscr_val);
 elsif type3 == FPType_QNaN then
 done = TRUE; result = FPProcessNaN(type3, op3, fpscr_val);
 else
 done = FALSE; result = Zeros(N); // 'Don't care' result
 return (done, result);
E3-1200 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.104 FPRound

// FPRound()
// =========
// The 'fpscr_val' argument supplies FPSCR control bits. Status information is
// updated directly in the FPSCR where appropriate.

bits(N) FPRound(real value, integer N, bits(32) fpscr_val)
 assert N IN {16,32,64};
 assert value != 0.0;

 // Obtain format parameters - minimum exponent, numbers of exponent and fraction bits.
 if N == 16 then E = 5; elsif N == 32 then E = 8; else E = 11;
 minimum_exp = 2 - 2^(E-1);
 constant integer F = N - E - 1;

 // Split value into sign, unrounded mantissa and exponent.
 if value < 0.0 then
 sign = '1'; mantissa = -value;
 else
 sign = '0'; mantissa = value;
 exponent = 0;
 while mantissa < 1.0 do
 mantissa = mantissa * 2.0; exponent = exponent - 1;
 while mantissa >= 2.0 do
 mantissa = mantissa / 2.0; exponent = exponent + 1;

 // Deal with flush-to-zero.
 if fpscr_val<24> == '1' && N != 16 && exponent < minimum_exp then
 result = FPZero(sign, N);
 FPSCR.UFC = '1'; // Flush-to-zero never generates a trapped exception
 else

 // Start creating the exponent value for the result. Start by biasing the actual exponent
 // so that the minimum exponent becomes 1, lower values 0 (indicating possible underflow).
 biased_exp = Max(exponent - minimum_exp + 1, 0);
 if biased_exp == 0 then mantissa = mantissa / 2.0^(minimum_exp - exponent);

 // Get the unrounded mantissa as an integer, and the "units in last place" rounding error.
 int_mant = RoundDown(mantissa * 2.0^F); // < 2.0^F if biased_exp == 0, >= 2.0^F if not
 error = mantissa * 2.0^F - Real(int_mant);

 // Underflow occurs if exponent is too small before rounding, and result is inexact or
 // the Underflow exception is trapped.
 if biased_exp == 0 && (error != 0.0 || fpscr_val<11> == '1') then
 FPProcessException(FPExc_Underflow, fpscr_val);

 // Round result according to rounding mode.
 case fpscr_val<23:22> of
 when '00' // Round to Nearest (rounding to even if exactly halfway)
 round_up = (error > 0.5 || (error == 0.5 && int_mant<0> == '1'));
 overflow_to_inf = TRUE;
 when '01' // Round towards Plus Infinity
 round_up = (error != 0.0 && sign == '0');
 overflow_to_inf = (sign == '0');
 when '10' // Round towards Minus Infinity
 round_up = (error != 0.0 && sign == '1');
 overflow_to_inf = (sign == '1');
 when '11' // Round towards Zero
 round_up = FALSE;
 overflow_to_inf = FALSE;
 if round_up then
 int_mant = int_mant + 1;
 if int_mant == 2^F then // Rounded up from denormalized to normalized
 biased_exp = 1;
 if int_mant == 2^(F+1) then // Rounded up to next exponent
 biased_exp = biased_exp + 1; int_mant = int_mant DIV 2;

ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E3-1201
ID072816 Non-Confidential - Beta

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
 // Deal with overflow and generate result.
 if N != 16 || fpscr_val<26> == '0' then // Single, double or IEEE half precision
 if biased_exp >= 2^E - 1 then
 result = if overflow_to_inf then FPInfinity(sign, N) else FPMaxNormal(sign, N);
 FPProcessException(FPExc_Overflow, fpscr_val);
 error = 1.0; // Ensure that an Inexact exception occurs
 else
 result = sign : biased_exp<E-1:0> : int_mant<F-1:0>;
 else // Alternative half precision
 if biased_exp >= 2^E then
 result = sign : Ones(N-1);
 FPProcessException(FPExc_InvalidOp, fpscr_val);
 error = 0.0; // Ensure that an Inexact exception does not occur
 else
 result = sign : biased_exp<E-1:0> : int_mant<F-1:0>;

 // Deal with Inexact exception.
 if error != 0.0 then
 FPProcessException(FPExc_Inexact, fpscr_val);

 return result;
E3-1202 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.105 FPRoundInt

// FPRoundInt()
// ============
// Round floating-point value to nearest integral floating point value
// using given rounding mode. If exact is TRUE, set inexact flag if result
// is not numerically equal to given value.

bits(N) FPRoundInt(bits(N) op, bits(2) rmode, boolean away, boolean exact)
 assert N IN {32,64};

 // Unpack using FPSCR to determine if subnormals are flushed-to-zero
 (fp_type,sign,value) = FPUnpack(op, FPSCR);

 if fp_type == FPType_SNaN || fp_type == FPType_QNaN then
 result = FPProcessNaN(fp_type, op, FPSCR);
 elsif fp_type == FPType_Infinity then
 result = FPInfinity(sign, N);
 elsif fp_type == FPType_Zero then
 result = FPZero(sign, N);
 else
 // extract integer component
 int_result = RoundDown(value);
 error = value - Real(int_result);

 // Determine whether supplied rounding mode requires an increment
 case rmode of
 when '00' // Round to nearest, ties to even
 round_up = (error > 0.5 || (error == 0.5 && int_result<0> == '1'));
 when '01' // Round towards Plus Infinity
 round_up = (error != 0.0);
 when '10' // Round towards Minus Infinity
 round_up = FALSE;
 when '11' // Round towards Zero
 round_up = (error != 0.0 && int_result < 0);

 if away then // Round towards Zero, ties away
 round_up = (error > 0.5 || (error == 0.5 && int_result >= 0));

 if round_up then int_result = int_result + 1;

 // Convert integer value into an equivalent real value
 real_result = Real(int_result);

 // Re-encode as a floating-point value, result is always exact
 if real_result == 0.0 then
 result = FPZero(sign, N);
 else
 result = FPRound(real_result, N, FPSCR);

 // Generate inexact exceptions
 if error != 0.0 && exact then
 FPProcessException(FPExc_Inexact, FPSCR);

 return result;
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E3-1203
ID072816 Non-Confidential - Beta

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.106 FPSingleToDouble

// FPSingleToDouble()
// ==================

bits(64) FPSingleToDouble(bits(32) operand, boolean fpscr_controlled)
 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
 (fp_type,sign,value) = FPUnpack(operand, fpscr_val);
 if fp_type == FPType_SNaN || fp_type == FPType_QNaN then
 if fpscr_val<25> == '1' then // DN bit set
 result = FPDefaultNaN(64);
 else
 result = sign : '11111111111 1' : operand<21:0> : Zeros(29);
 if fp_type == FPType_SNaN then
 FPProcessException(FPExc_InvalidOp, fpscr_val);
 elsif fp_type == FPType_Infinity then
 result = FPInfinity(sign, 64);
 elsif fp_type == FPType_Zero then
 result = FPZero(sign, 64);
 else
 result = FPRound(value, 64, fpscr_val); // Rounding will be exact
 return result;

E3.1.107 FPSingleToHalf

// FPSingleToHalf()
// ================

bits(16) FPSingleToHalf(bits(32) operand, boolean fpscr_controlled)
 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
 (fp_type,sign,value) = FPUnpack(operand, fpscr_val);
 if fp_type == FPType_SNaN || fp_type == FPType_QNaN then
 if fpscr_val<26> == '1' then // AH bit set
 result = FPZero(sign, 16);
 elsif fpscr_val<25> == '1' then // DN bit set
 result = FPDefaultNaN(16);
 else
 result = sign : '11111 1' : operand<21:13>;
 if fp_type == FPType_SNaN || fpscr_val<26> == '1' then
 FPProcessException(FPExc_InvalidOp, fpscr_val);
 elsif fp_type == FPType_Infinity then
 if fpscr_val<26> == '1' then // AH bit set
 result = sign : Ones(15);
 FPProcessException(FPExc_InvalidOp, fpscr_val);
 else
 result = FPInfinity(sign, 16);
 elsif fp_type == FPType_Zero then
 result = FPZero(sign, 16);
 else
 result = FPRound(value, 16, fpscr_val);
 return result;
E3-1204 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.108 FPSqrt

// FPSqrt()
// ========

bits(N) FPSqrt(bits(N) operand)
 assert N IN {32,64};
 (fp_type,sign,value) = FPUnpack(operand, FPSCR);
 if fp_type == FPType_SNaN || fp_type == FPType_QNaN then
 result = FPProcessNaN(fp_type, operand, FPSCR);
 elsif fp_type == FPType_Zero then
 result = FPZero(sign, N);
 elsif fp_type == FPType_Infinity && sign == '0' then
 result = FPInfinity(sign, N);
 elsif sign == '1' then
 result = FPDefaultNaN(N);
 FPProcessException(FPExc_InvalidOp, FPSCR);
 else
 result = FPRound(Sqrt(value), N, FPSCR);
 return result;

E3.1.109 FPSub

// FPSub()
// =======

bits(N) FPSub(bits(N) op1, bits(N) op2, boolean fpscr_controlled)
 assert N IN {32,64};
 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
 (fp_type1,sign1,value1) = FPUnpack(op1, fpscr_val);
 (fp_type2,sign2,value2) = FPUnpack(op2, fpscr_val);
 (done,result) = FPProcessNaNs(fp_type1, fp_type2, op1, op2, fpscr_val);
 if !done then
 inf1 = (fp_type1 == FPType_Infinity); inf2 = (fp_type2 == FPType_Infinity);
 zero1 = (fp_type1 == FPType_Zero); zero2 = (fp_type2 == FPType_Zero);
 if inf1 && inf2 && sign1 == sign2 then
 result = FPDefaultNaN(N);
 FPProcessException(FPExc_InvalidOp, fpscr_val);
 elsif (inf1 && sign1 == '0') || (inf2 && sign2 == '1') then
 result = FPInfinity('0', N);
 elsif (inf1 && sign1 == '1') || (inf2 && sign2 == '0') then
 result = FPInfinity('1', N);
 elsif zero1 && zero2 && sign1 == NOT(sign2) then
 result = FPZero(sign1, N);
 else
 result_value = value1 - value2;
 if result_value == 0.0 then // Sign of exact zero result depends on rounding mode
 result_sign = if fpscr_val<23:22> == '10' then '1' else '0';
 result = FPZero(result_sign, N);
 else
 result = FPRound(result_value, N, fpscr_val);
 return result;
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E3-1205
ID072816 Non-Confidential - Beta

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.110 FPToFixed

// FPToFixed()
// ===========

bits(M) FPToFixed(bits(N) operand, integer M, integer fraction_bits, boolean unsigned,
 boolean round_towards_zero, boolean fpscr_controlled)
 assert N IN {32,64};
 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
 if round_towards_zero then fpscr_val<23:22> = '11';
 (fp_type,-,value) = FPUnpack(operand, fpscr_val);

 // For NaNs and infinities, FPUnpack() has produced a value that will round to the
 // required result of the conversion. Also, the value produced for infinities will
 // cause the conversion to overflow and signal an Invalid Operation floating-point
 // exception as required. NaNs must also generate such a floating-point exception.
 if fp_type == FPType_SNaN || fp_type == FPType_QNaN then
 FPProcessException(FPExc_InvalidOp, fpscr_val);

 // Scale value by specified number of fraction bits, then start rounding to an integer
 // and determine the rounding error.
 value = value * 2.0^fraction_bits;
 int_result = RoundDown(value);
 error = value - Real(int_result);

 // Apply the specified rounding mode.
 case fpscr_val<23:22> of
 when '00' // Round to Nearest (rounding to even if exactly halfway)
 round_up = (error > 0.5 || (error == 0.5 && int_result<0> == '1'));
 when '01' // Round towards Plus Infinity
 round_up = (error != 0.0);
 when '10' // Round towards Minus Infinity
 round_up = FALSE;
 when '11' // Round towards Zero
 round_up = (error != 0.0 && int_result < 0);
 if round_up then int_result = int_result + 1;

 // Bitstring result is the integer result saturated to the destination size, with
 // saturation indicating overflow of the conversion (signaled as an Invalid
 // Operation floating-point exception).
 (result, overflow) = SatQ(int_result, M, unsigned);
 if overflow then
 FPProcessException(FPExc_InvalidOp, fpscr_val);
 elsif error != 0.0 then
 FPProcessException(FPExc_Inexact, fpscr_val);

 return result;
E3-1206 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.111 FPToFixedDirected

// FPToFixedDirected()
// ===================

bits(M) FPToFixedDirected(bits(N) op, integer fbits, boolean unsigned,
 bits(2) round_mode, boolean fpscr_controlled)
 assert N IN {32,64};

 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();

 // Unpack using FPSCR to determine if subnormals are flushed-to-zero
 (fp_type,-,value) = FPUnpack(op, fpscr_val);

 // If NaN, set cumulative flag or take exception
 if fp_type == FPType_SNaN || fp_type == FPType_QNaN then
 FPProcessException(FPExc_InvalidOp, FPSCR);

 // Scale by fractional bits and produce integer rounded towards
 // minus-infinity
 value = value * 2.0^fbits;
 int_result = RoundDown(value);
 error = value - Real(int_result);

 // Determine whether supplied rounding mode requires an increment
 case round_mode of
 when '00' // ties away
 round_up = (error > 0.5 || (error == 0.5 && int_result >= 0));
 when '01' // nearest even
 round_up = (error > 0.5 || (error == 0.5 && int_result<0> == '1'));
 when '10' // plus infinity
 round_up = (error != 0.0);
 when '11' // neg infinity
 round_up = FALSE;

 if round_up then int_result = int_result + 1;

 // Generate saturated result and exceptions
 (result, overflow) = SatQ(int_result, M, unsigned);

 if overflow then
 FPProcessException(FPExc_InvalidOp, fpscr_val);
 elsif error != 0.0 then
 FPProcessException(FPExc_Inexact, fpscr_val);
 return result;

E3.1.112 FPType

// Type of floating-point value. Floating-point values are categorized into one
// of the following type during unpacking.

enumeration FPType {FPType_Nonzero, FPType_Zero, FPType_Infinity, FPType_QNaN, FPType_SNaN};
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E3-1207
ID072816 Non-Confidential - Beta

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.113 FPUnpack

// FPUnpack()
// ==========
//
// Unpack a floating-point number into its type, sign bit and the real number
// that it represents. The real number result has the correct sign for numbers
// and infinities, is very large in magnitude for infinities, and is 0.0 for
// NaNs. (These values are chosen to simplify the description of comparisons
// and conversions.)
//
// The 'fpscr_val' argument supplies FPSCR control bits. Status information is
// updated directly in the FPSCR where appropriate.

(FPType, bit, real) FPUnpack(bits(N) fpval, bits(32) fpscr_val)
 assert N IN {16,32,64};

 if N == 16 then
 sign = fpval<15>;
 exp16 = fpval<14:10>;
 frac16 = fpval<9:0>;
 if IsZero(exp16) then
 // Produce zero if value is zero
 if IsZero(frac16) then
 fp_type = FPType_Zero; value = 0.0;
 else
 fp_type = FPType_Nonzero; value = 2.0^-14 * (Real(UInt(frac16)) * 2.0^-10);
 elsif IsOnes(exp16) && fpscr_val<26> == '0' then // Infinity or NaN in IEEE format
 if IsZero(frac16) then
 fp_type = FPType_Infinity; value = 2.0^1000000;
 else
 fp_type = if frac16<9> == '1' then FPType_QNaN else FPType_SNaN;
 value = 0.0;
 else
 fp_type = FPType_Nonzero;
 value = 2.0^(UInt(exp16)-15) * (1.0 + Real(UInt(frac16)) * 2.0^-10);

 elsif N == 32 then

 sign = fpval<31>;
 exp32 = fpval<30:23>;
 frac32 = fpval<22:0>;
 if IsZero(exp32) then
 // Produce zero if value is zero or flush-to-zero is selected.
 if IsZero(frac32) || fpscr_val<24> == '1' then
 fp_type = FPType_Zero; value = 0.0;
 if !IsZero(frac32) then // Denormalized input flushed to zero
 FPProcessException(FPExc_InputDenorm, fpscr_val);
 else
 fp_type = FPType_Nonzero; value = 2.0^-126 * (Real(UInt(frac32)) * 2.0^-23);
 elsif IsOnes(exp32) then
 if IsZero(frac32) then
 fp_type = FPType_Infinity; value = 2.0^1000000;
 else
 fp_type = if frac32<22> == '1' then FPType_QNaN else FPType_SNaN;
 value = 0.0;
 else
 fp_type = FPType_Nonzero;
 value = 2.0^(UInt(exp32)-127) * (1.0 + Real(UInt(frac32)) * 2.0^-23);

 else // N == 64

 sign = fpval<63>;
 exp64 = fpval<62:52>;
 frac64 = fpval<51:0>;
 if IsZero(exp64) then
 // Produce zero if value is zero or flush-to-zero is selected.
 if IsZero(frac64) || fpscr_val<24> == '1' then
E3-1208 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
 fp_type = FPType_Zero; value = 0.0;
 if !IsZero(frac64) then // Denormalized input flushed to zero
 FPProcessException(FPExc_InputDenorm, fpscr_val);
 else
 fp_type = FPType_Nonzero; value = 2.0^-1022 * (Real(UInt(frac64)) * 2.0^-52);
 elsif IsOnes(exp64) then
 if IsZero(frac64) then
 fp_type = FPType_Infinity; value = 2.0^1000000;
 else
 fp_type = if frac64<51> == '1' then FPType_QNaN else FPType_SNaN;
 value = 0.0;
 else
 fp_type = FPType_Nonzero;
 value = 2.0^(UInt(exp64)-1023) * (1.0 + Real(UInt(frac64)) * 2.0^-52);

 if sign == '1' then value = -value;
 return (fp_type, sign, value);

E3.1.114 FPZero

// FPZero()
// ========

bits(N) FPZero(bit sign, integer N)
 assert N IN {16,32,64};
 if N == 16 then E = 5; elsif N == 32 then E = 8; else E = 11;
 constant integer F = N - E - 1;
 exp = Zeros(E);
 frac = Zeros(F);
 return sign : exp : frac;
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E3-1209
ID072816 Non-Confidential - Beta

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.115 FetchInstr

// FetchInstr()
// ============

(bits(32), boolean) FetchInstr(bits(32) addr)
 // NOTE: It is CONSTRAINED UNPREDICTABLE whether otherwise valid sequential
 // instruction fetches that cross from Non-secure to Secure memory
 // generate a INVEP SecureFault, or transition normally.
 sgOpcode = 0xE97FE97F<31:0>;

 // Fetch the a T16 instruction, or the first half of a T32.
 hw1Instr = MemI[addr];
 hw1Attr = SecurityCheck(addr, TRUE, IsSecure());

 // If the T bit is clear then the instruction can't be decoded
 if EPSR.T == '0' then
 // Attempted NS->S domain crossings with the T bit clear raise an INVEP
 // SecureFault
 if !IsSecure() && !hw1Attr.ns then
 SFSR.INVEP = '1';
 excInfo = CreateException(SecureFault, TRUE, TRUE);
 else
 UFSR.INVSTATE = '1';
 excInfo = CreateException(UsageFault, FALSE, boolean UNKNOWN);
 HandleException(excInfo);

 // Implementations are permitted to terminate the fetch process early if a
 // domain crossing is being attempted and the first 16bits of the opcode
 // isn't the first part of the SG instruction.
 if boolean IMPLEMENTATION_DEFINED "Early SG check" then
 if !IsSecure() && !hw1Attr.ns && (hw1Instr != sgOpcode<31:16>) then
 SFSR.INVEP = '1';
 excInfo = CreateException(SecureFault, TRUE, TRUE);
 HandleException(excInfo);

 // NOTE: Implementations are also permitted to terminate the fetch process
 // at this point with an UNDEFINSTR UsageFault if the first 16bit is
 // an undefined T32 prefix.

 // If the data fetched is the top half of a T32 instruction fetch the bottom
 // 16 bits
 isT16 = UInt(hw1Instr<15:11>) < UInt('11101');
 if isT16 then
 instr = Zeros(16) : hw1Instr;
 else
 instr = hw1Instr : MemI[addr+2];
 hw2Attr = SecurityCheck(addr+2, TRUE, IsSecure());

 // The following test covers 2 possible fault conditions:-
 // 1) NS code branching to a T32 instruction where the first half is in
 // NS memory, and the second half is in S memory.
 // 2) NS code branching to a T32 instruction in S & NSC memory, but
 // where the second half of the instruction is in NS memory.
 if !IsSecure() && (hw1Attr.ns != hw2Attr.ns) then
 SFSR.INVEP = '1';
 excInfo = CreateException(SecureFault, TRUE, TRUE);
 HandleException(excInfo);

 // Raise a fault if an otherwise valid NS->S transition that doesn't land on
 // an SG instruction.
 if !IsSecure() && !hw1Attr.ns && (instr != sgOpcode) then
 SFSR.INVEP = '1';
 excInfo = CreateException(SecureFault, TRUE, TRUE);
 HandleException(excInfo);
 return (instr, isT16);
E3-1210 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.116 FindPriv

// FindPriv()
// ==========

boolean FindPriv()
 return CurrentModeIsPrivileged();

E3.1.117 FixedToFP

// FixedToFP()
// ===========

bits(N) FixedToFP(bits(M) operand, integer N, integer fraction_bits, boolean unsigned,
 boolean round_to_nearest, boolean fpscr_controlled)
 assert N IN {32,64};
 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
 if round_to_nearest then fpscr_val<23:22> = '00';
 int_operand = if unsigned then UInt(operand) else SInt(operand);
 real_operand = Real(int_operand) / 2.0^fraction_bits;
 if real_operand == 0.0 then
 result = FPZero('0', N);
 else
 result = FPRound(real_operand, N, fpscr_val);
 return result;
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E3-1211
ID072816 Non-Confidential - Beta

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.118 FunctionReturn

// FunctionReturn()
// ================

ExcInfo FunctionReturn()
 exc = DefaultExcInfo();

 // Pull the return address and IPSR off the Secure stack
 mode = CurrentMode();
 spName = LookUpSP_with_security_mode(TRUE, mode);
 framePtr = _SP(spName);
 if !IsAligned(framePtr, 8) then UNPREDICTABLE;
 // Only stack locations, not the load order are architected
 RETPSR_Type newPSR;
 if exc.fault == NoFault then (exc, newPSR) = Stack(framePtr, 4, spName, mode);
 if exc.fault == NoFault then (exc, newPC) = Stack(framePtr, 0, spName, mode);

 // Check the IPSR value that's been unstacked is consistent with the current
 // mode, and being originally called from the Secure state.
 // NOTE: It is IMPLEMENTATION DEFINED whether this check is performed before
 // or after the load of the return address above.
 if (exc.fault == NoFault) &&
 !(((IPSR.Exception == 0<8:0>) && (newPSR.Exception == 0<8:0>)) ||
 ((IPSR.Exception == 1<8:0>) && (newPSR.Exception != 0<8:0>))) then
 if HaveMainExt() then
 UFSR_S.INVPC = '1';
 // Create the exception. NOTE: If Main Extension not implemented then the fault
 // always escalates to a HardFault
 exc = CreateException(UsageFault, TRUE, TRUE);
 // The behaviour is UNPREDICTABLE if the IPSR values isn't supported by the PE
 excNum = UInt(newPSR.Exception);
 validIPSR = excNum IN {0, 1, NMI, HardFault, SVCall, PendSV, SysTick};
 if !validIPSR && HaveMainExt() then
 validIPSR = excNum IN {MemManage, BusFault, UsageFault, SecureFault, DebugMonitor};
 if !validIPSR && !IsIrqValid(excNum) then UNPREDICTABLE;

 // Only consume the function return stack frame and update the XPSR/PC if no
 // faults occured.
 if exc.fault == NoFault then
 // Transition to the Secure state
 CurrentState = SecurityState_Secure;
 // Update stack pointer. NOTE: Stack pointer limit not checked on function
 // return as stack pointer guaranteed to be ascending not descending.
 _R[spName] = framePtr + 8;
 IPSR.Exception = newPSR.Exception;
 CONTROL_S.SFPA = newPSR.SFPA;
 // IT/ICI bits cleared to prevent Non-secure code interfering with
 // Secure execution
 if HaveMainExt() then
 ITSTATE.IT = Zeros(8);
 // if EPSR.T == 0, a UsageFault('Invalid State') or a HardFault is taken
 // on the next instruction depending on whether the Main Extension is
 // is implemented or not.
 EPSR.T = newPC<0>;
 BranchTo(newPC<31:1>:'0');
 return exc;
E3-1212 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.119 GenerateCoprocessorException

// GenerateCoprocessorException()
// ==============================

GenerateCoprocessorException()
 UFSR.UNDEFINSTR = '1';
 excInfo = CreateException(UsageFault, FALSE, boolean UNKNOWN);
 HandleException(excInfo);

E3.1.120 GenerateDebugEventResponse

// GenerateDebugEventResponse()
// ============================
// Generate a debug event response based on the PE configuration.

boolean GenerateDebugEventResponse()
 if CanHaltOnEvent(IsSecure()) then
 DFSR.BKPT = '1';
 DHCSR.C_HALT = '1';
 return TRUE;
 elsif HaveMainExt() && CanPendMonitorOnEvent(IsSecure(), TRUE) then
 DFSR.BKPT = '1';
 DEMCR.MON_PEND = '1';
 excInfo = CreateException(DebugMonitor, FALSE, boolean UNKNOWN);
 HandleException(excInfo);
 return TRUE;
 else
 return FALSE;

E3.1.121 GenerateIntegerZeroDivide

// GenerateIntegerZeroDivide()
// ===========================

GenerateIntegerZeroDivide()
 UFSR.DIVBYZERO = '1';
 excInfo = CreateException(UsageFault, FALSE, boolean UNKNOWN);
 HandleException(excInfo);

E3.1.122 Halted

// Halted()
// ========

boolean Halted()
 return DHCSR.S_HALT == '1';
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E3-1213
ID072816 Non-Confidential - Beta

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.123 HaltingDebugAllowed

// HaltingDebugAllowed()
// =====================

boolean HaltingDebugAllowed()
 return DBGEN == HIGH || Halted();

E3.1.124 HandleException

// HandleException()
// =================

HandleException(ExcInfo excInfo)
 if excInfo.fault != NoFault then
 if excInfo.lockup then
 Lockup(excInfo.termInst);
 else
 // If the fault escalated to a HardFault update the syndrome info
 if HaveMainExt() &&
 (excInfo.fault == HardFault) &&
 (excInfo.origFault != HardFault) then
 HFSR.FORCED = '1';
 // If the exception doesn't cause a lockup set the exception pending
 // and potentially terminate execution of the current instruction
 SetPending(excInfo.fault, excInfo.isSecure, TRUE);
 if excInfo.termInst then
 EndOfInstruction();

E3.1.125 HaveDSPExt

// HaveDSPExt()
// ===========
// Check whether DSP Extension is implemented.

boolean HaveDSPExt();

E3.1.126 HaveDebugMonitor

// HaveDebugMonitor()
//===================

boolean HaveDebugMonitor()
 return HaveMainExt();
E3-1214 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.127 HaveFPExt

// HaveFPExt()
// ===========
// Check whether Floating Point Extension is implemented.

boolean HaveFPExt();

E3.1.128 HaveMainExt

// HaveMainExt()
// =============
// Check whether Main Extension is implemented.

boolean HaveMainExt();

E3.1.129 HaveSPFPOnly

// HaveSPFPOnly()
// ===========
// Check whether Floating Point Extension only implementes single-precision.

boolean HaveSPFPOnly();

E3.1.130 HaveSecurityExt

// HaveSecurityExt()
// =================
// Check whether the implementation have Security Extensions.

boolean HaveSecurityExt();

E3.1.131 HaveSysTick

// HaveSysTick()
// =============
// Returns the number of SysTick instances (0, 1 or 2).

integer HaveSysTick();

E3.1.132 Hint_Debug

// Hint_Debug
// ==========
// Generate a hint to the debug system.

Hint_Debug(bits(4) option);
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E3-1215
ID072816 Non-Confidential - Beta

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.133 Hint_PreloadData

// Hint_PreloadData
// ================
// Performs a preload data hint

Hint_PreloadData(bits(32) address);

E3.1.134 Hint_PreloadInstr

// Hint_PreloadInstr
// =================
// Performs a preload instructions hint

Hint_PreloadInstr(bits(32) address);

E3.1.135 Hint_Yield

// Hint_Yield
// ==========
// Performs a Yield hint

Hint_Yield();

E3.1.136 IDAUCheck

// IDAUCheck
// =========
// Query IDAU(Implementation Defined Attribution Unit) for attribution information

(boolean, boolean, boolean, bits(8), boolean) IDAUCheck(bits(32) address);

E3.1.137 ITAdvance

// ITAdvance()
// ===========

ITAdvance()
 if ITSTATE<2:0> == '000' then
 ITSTATE.IT = '00000000';
 else
 ITSTATE.IT<4:0> = LSL(ITSTATE.IT<4:0>, 1);
E3-1216 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.138 ITSTATE

// ITSTATE
// =======

ITSTATEType ITSTATE
 return ThisInstrITState();

ITSTATE = ITSTATEType value
 // Writes to ITSTATE don't take effect immediately, instead they change the
 // value returned by NextInstrITState().
 _NextInstrITState = value.IT;
 _ITStateChanged = TRUE;

E3.1.139 InITBlock

// InITBlock()
// ===========

boolean InITBlock()
 return (ITSTATE.IT<3:0> != '0000');
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E3-1217
ID072816 Non-Confidential - Beta

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.140 InstructionAdvance

// InstructionAdvance()
// ====================

InstructionAdvance(boolean instExecOk)
 // Check for, and process any exception returns that were requested. This
 // must be done after the instruction has completed so any exceptions
 // raised during the exception return do not interfere with the execution of
 // the instruction that cause the exception return (eg a POP causing an
 // excReturn value to be written to the PC must adjust SP even if the
 // exception return caused by the POP raises a fault).
 excRetFault = FALSE;
 if _PendingReturnOperation then
 _PendingReturnOperation = FALSE;
 nextAddr = NextInstrAddr();
 excInfo = ExceptionReturn(nextAddr<23:0>);
 // Handle any faults raised during exception return
 if excInfo.fault != NoFault then
 excRetFault = TRUE;
 // Either lockup, or pend the fault if it can be taken
 if excInfo.lockup then
 // Check if the fault occured on exception return, or whether it
 // occured during a tail chained exception entry. This is
 // because Lockups on exception return have to be handled
 // differently.
 if !excInfo.inExcTaken then
 // If the fault occured during exception return then the
 // register state is UNKNOWN. This is due to the fact that
 // an unknown amount of the exception stack frame might have
 // been restored.
 for n = 0 to 12
 R[n] = bits(32) UNKNOWN;
 LR = bits(32) UNKNOWN;
 XPSR = bits(32) UNKNOWN;
 if HaveFPExt() then
 for n = 0 to 31
 S[n] = bits(32) UNKNOWN;
 FPSCR = bits(32) UNKNOWN;
 // If lockup is entered as a result of an exception return
 // fault the original exception is deactivated. Therefore
 // the stack pointer must be updated to consume the
 // exception stack frame to keep the stack depth consistent
 // with the number of active exceptions. NOTE: The xPSR SP
 // alignment flag is UNKNOWN, assume is was zero.
 ConsumeExcStackFrame(nextAddr<23:0>, '0');
 // IPSR from stack is UNKNOWN, set IPSR based on mode
 // specified in EXC_RETURN.
 IPSR.Exception = (if nextAddr<3> == 1 then NoFault else HardFault)<8:0>;
 if HaveFPExt() then
 CONTROL.FPCA = NOT(nextAddr<4>);
 Lockup(FALSE);
 else
 // Set syndrome if fault escalated to a HardFault
 if HaveMainExt() &&
 (excInfo.fault == HardFault) &&
 (excInfo.origFault != HardFault) then
 HFSR.FORCED = '1';
 SetPending(excInfo.fault, excInfo.isSecure, TRUE);

 // If there's a pending exception with sufficient priority take it now. This
 // is done before we commit PC and ITSTATE changes caused by the previous
 // instruction so that calls to ThisInstrAddr(), NextInstrAddr(),
 // ThisInstrITState(), NextInstrITState() represent the context the
 // instruction was executed in. IE so the correct context is pushed to the
 // stack
 (takeException, exception, excIsSecure) = PendingExceptionDetails();
 if takeException then
E3-1218 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
 // If a fault occurred during an exception return then the exception
 // stack frame will already be on the stack, as a result entry to the
 // next exception is treated as if it were a tail chain.
 pePriority = ExecutionPriority();
 peException = UInt(IPSR.Exception);
 peIsSecure = IsSecure();
 if excRetFault then
 // If the fault occurred during ExceptionTaken() then LR will have
 // been updated with the new exception return value. To excReturn
 // consistent with the state of the exception stack frame we need to
 // use the updated version in this case. If no updates have occurred
 // then the excReturn value from the previous exception return is
 // used.
 excRet = if excInfo.inExcTaken then LR else nextAddr;
 excInfo = TailChain(exception, excIsSecure, excRet<23:0>);
 else
 excInfo = ExceptionEntry(exception, excIsSecure, instExecOk);
 // Handle any derived faults that have occurred
 if excInfo.fault != NoFault then
 DerivedLateArrival(pePriority, peException, peIsSecure, excInfo,
 exception, excIsSecure);

 // If the PC has moved away from the lockup address (eg because an NMI
 // has been taken) leave the lockup state.
 if DHCSR.S_LOCKUP == '1' && NextInstrAddr() != 0xEFFFFFFE<31:0> then
 DHCSR.S_LOCKUP = '0';
 // Only advance the PC and ITSTATE if not locked up.
 if DHCSR.S_LOCKUP != '1' then
 // Commit PC and ITSTATE changes ready for the next instruction.
 _R[RName_PC] = NextInstrAddr();
 _PCChanged = FALSE;
 if HaveMainExt() then
 EPSR.IT = NextInstrITState();
 _ITStateChanged = FALSE;

E3.1.141 InstructionSynchronizationBarrier

// InstructionSynchronizationBarrier
// =================================
// Perform an instruction synchronization barrier operation

InstructionSynchronizationBarrier(bits(4) option);

E3.1.142 Int

// Int()
// =====

integer Int(bits(N) x, boolean unsigned)
 result = if unsigned then UInt(x) else SInt(x);
 return result;
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E3-1219
ID072816 Non-Confidential - Beta

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.143 IntegerZeroDivideTrappingEnabled

// IntegerZeroDivideTrappingEnabled()
// ==================================

boolean IntegerZeroDivideTrappingEnabled()
 // DIV_0_TRP bit in CCR is RAZ/WI if Main Extension is not implemented
 return CCR.DIV_0_TRP == '1';

E3.1.144 IsAccessible

// IsAccessible()
// ==============

(bit, bit, bits(8), boolean) IsAccessible(bits(32) address, boolean forceunpriv,
 boolean isSecure)
 bit write;
 bit read;

 // Work out which privilege level the current mode in the Non-secure state
 // is subject to
 if forceunpriv then
 isPrivileged = FALSE;
 else
 isPrivileged = (CurrentMode() == Mode_Handler) || (if isSecure then
 CONTROL_S.nPRIV == '0' else CONTROL_NS.nPRIV == '0');
 (-, perms) = MPUCheck(address, AccType_NORMAL, isPrivileged, isSecure);
 if !perms.apValid then
 write = '0';
 read = '0';
 else
 case perms.ap of
 when '00' (write, read) = if isPrivileged then ('1','1') else ('0','0');
 when '01' (write, read) = ('1','1') ;
 when '10' (write, read) = if isPrivileged then ('0','1') else ('0','0');
 when '11' (write, read) = ('0','1');
 return (write, read, perms.region, perms.regionValid);

E3.1.145 IsActiveForState

// IsActiveForState()
// ==================

boolean IsActiveForState(integer exception, boolean isSecure)
 if !HaveSecurityExt() then
 isSecure = FALSE;
 // If the exception is configurable then we need to check which domain it
 // currently targets. If its not configurable then the active flags can be
 // used directly.
 if IsExceptionTargetConfigurable(exception) then
 active = ((ExceptionActive[exception] != '00') &&
 (ExceptionTargetsSecure(exception, isSecure) == isSecure));
 else
 idx = if isSecure then 0 else 1;
 active = ExceptionActive[exception]<idx> == '1';
 return active;
E3-1220 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.146 IsAligned

// IsAligned()
// ===========

boolean IsAligned(bits(32) address, integer size)
 assert size IN {1,2,4,8};
 mask = (size-1)<31:0>; // integer to bit string conversion
 return IsZero(address AND mask);

E3.1.147 IsExceptionTargetConfigurable

// IsExceptionTargetConfigurable()
// ===============================

boolean IsExceptionTargetConfigurable(integer e)
 if HaveSecurityExt() then
 case e of
 when NMI
 configurable = TRUE;
 when BusFault
 configurable = TRUE;
 when DebugMonitor
 configurable = TRUE;
 when SysTick
 // If there is only 1 SysTick instance then the target domain is
 // configurable.
 configurable = HaveSysTick() == 1;
 otherwise
 // Interrupts are configurable, exceptions less than 16 that
 // aren't listed above aren't.
 configurable = e >= 16;
 else
 configurable = FALSE;
 return configurable;

E3.1.148 IsExclusiveGlobal

// IsExclusiveGlobal
// =================
// Checks if PE has marked in a global record an address range as "exclusive access
// requested" that covers at least the size bytes from address

boolean IsExclusiveGlobal(bits(32) address, integer processorid, integer size);

E3.1.149 IsExclusiveLocal

// IsExclusiveLocal
// ================
// Checks if PE has marked in a local record an address range as "exclusive access
// requested" that covers at least the size bytes from address

boolean IsExclusiveLocal(bits(32) address, integer processorid, integer size);
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E3-1221
ID072816 Non-Confidential - Beta

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.150 IsIrqValid

// IsIrqValid()
// ============
// Check whether given exception number denotes a valid external interrupt
// implemented by PE.

boolean IsIrqValid(integer e);

E3.1.151 IsReqExcPriNeg

// IsReqExcPriNeg()
// ================

boolean IsReqExcPriNeg(boolean secure)
 // This function checks if the requested execution priority is negative for
 // the specified security domain. That is, NMI or HardFault is active, or
 // FAULTMASK is set. It does not take account of AIRCR.PRIS so returns TRUE
 // if FAULTMASK_NS is set even if PRIS is set to restrict Non-secure priorities
 // to the range 0x80-0x7E

 neg = (IsActiveForState(NMI, secure) || IsActiveForState(HardFault, secure));
 if HaveMainExt() then
 faultmask = if secure then FAULTMASK_S else FAULTMASK_NS;
 if faultmask.FM == '1' then
 neg = TRUE;
 return neg;

E3.1.152 IsSecure

// IsSecure()
// ==========

boolean IsSecure()
 return HaveSecurityExt() && CurrentState == SecurityState_Secure;

E3.1.153 LR

// LR - assignment form
// ====================
LR = bits(32) value
 R[14] = value;

// LR - non-assignment form
// ========================
bits(32) LR
 return R[14];
E3-1222 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.154 LSL

// LSL()
// =====

bits(N) LSL(bits(N) x, integer shift)
 assert shift >= 0;
 if shift == 0 then
 result = x;
 else
 (result, -) = LSL_C(x, shift);
 return result;

E3.1.155 LSL_C

// LSL_C()
// =======

(bits(N), bit) LSL_C(bits(N) x, integer shift)
 assert shift > 0;
 extended_x = x : Zeros(shift);
 result = extended_x<N-1:0>;
 carry_out = extended_x<N>;
 return (result, carry_out);

E3.1.156 LSR

// LSR()
// =====

bits(N) LSR(bits(N) x, integer shift)
 assert shift >= 0;
 if shift == 0 then
 result = x;
 else
 (result, -) = LSR_C(x, shift);
 return result;

E3.1.157 LSR_C

// LSR_C()
// =======

(bits(N), bit) LSR_C(bits(N) x, integer shift)
 assert shift > 0;
 extended_x = ZeroExtend(x, shift+N);
 result = extended_x<shift+N-1:shift>;
 carry_out = extended_x<shift-1>;
 return (result, carry_out);
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E3-1223
ID072816 Non-Confidential - Beta

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.158 LastInITBlock

// LastInITBlock()
// ===============

boolean LastInITBlock()
 return (ITSTATE.IT<3:0> == '1000');

E3.1.159 LoadWritePC

// LoadWritePC()
// =============

LoadWritePC(bits(32) address, integer baseReg, bits(32) baseRegVal, boolean baseRegUpdate,
 boolean spLimCheck)

 if baseRegUpdate then
 regName = LookUpRName(baseReg);
 oldBaseVal = R[baseReg];
 if spLimCheck then
 RSPCheck[baseReg] = baseRegVal;
 else
 R[baseReg] = baseRegVal;

 // Attempt to update the PC, which may result in a fault
 excInfo = BXWritePC(address, FALSE);

 if baseRegUpdate && excInfo.fault != NoFault then
 // Restore the previous base reg value, SP limit checking is not performed
 _R[regName] = oldBaseVal;

 HandleException(excInfo);

E3.1.160 Lockup

// Lockup()
// ========

Lockup(boolean termInst)
 DHCSR.S_LOCKUP = '1';
 // Branch to the lockup address.
 BranchToAndCommit(0xEFFFFFFE<31:0>);
 if termInst then
 EndOfInstruction();
E3-1224 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.161 LookUpRName

// LookUpRName()
// =============

RName LookUpRName(integer n)
 assert n >= 0 && n <= 15;
 case n of
 when 0 result = RName0;
 when 1 result = RName1;
 when 2 result = RName2;
 when 3 result = RName3;
 when 4 result = RName4;
 when 5 result = RName5;
 when 6 result = RName6;
 when 7 result = RName7;
 when 8 result = RName8;
 when 9 result = RName9;
 when 10 result = RName10;
 when 11 result = RName11;
 when 12 result = RName12;
 when 13 result = LookUpSP();
 when 14 result = RName_LR;
 when 15 result = RName_PC;
 return result;

E3.1.162 LookUpSP

// LookUpSP()
// ==========

RName LookUpSP()
 return LookUpSP_with_security_mode(IsSecure(), CurrentMode());
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E3-1225
ID072816 Non-Confidential - Beta

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.163 LookUpSPLim

// LookUpSPLim()
// =============

(bits(32), boolean) LookUpSPLim(RName spreg)
 case spreg of
 when RNameSP_Main_Secure limit = MSPLIM_S.LIMIT:'000';
 when RNameSP_Process_Secure limit = PSPLIM_S.LIMIT:'000';
 when RNameSP_Main_NonSecure
 limit = if HaveMainExt() then MSPLIM_NS.LIMIT:'000' else Zeros(32);
 when RNameSP_Process_NonSecure
 limit = if HaveMainExt() then PSPLIM_NS.LIMIT:'000' else Zeros(32);
 otherwise
 assert (FALSE);

 // Check CCR.STKOFHFNMIGN to determine if the limit should actually be
 // applied. When checking if CCR.STKOFHFNMIGN should apply the requested
 // execution priority is considered, and AIRCR.PRIS is ignored.
 secure = ((spreg == RNameSP_Main_Secure) ||
 (spreg == RNameSP_Process_Secure));
 assert (!secure || HaveSecurityExt());
 if HaveMainExt() && IsReqExcPriNeg(secure) then
 ignLimit = if secure then CCR_S.STKOFHFNMIGN else CCR_NS.STKOFHFNMIGN;
 applylimit = (ignLimit == '0');
 else
 applylimit = TRUE;

 return (limit, applylimit);

E3.1.164 LookUpSP_with_security_mode

// LookUpSP_with_security_mode()
// =============================

RName LookUpSP_with_security_mode(boolean isSecure, Mode mode)
 RName sp;
 bit spSel;

 // Get the SPSEL bit corresponding to the Security state requested
 if isSecure then
 spSel = CONTROL_S.SPSEL;
 else
 spSel = CONTROL_NS.SPSEL;

 // Should we be using the process or main stack pointers
 if spSel == '1' && mode==Mode_Thread then
 if isSecure then
 sp = RNameSP_Process_Secure;
 else
 sp = RNameSP_Process_NonSecure;
 else
 if isSecure then
 sp = RNameSP_Main_Secure;
 else
 sp = RNameSP_Main_NonSecure;
 return sp;
E3-1226 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.165 MAIRDecode

// MAIRDecode()
// ============

MemoryAttributes MAIRDecode(bits(8) attrfield, bits(2) sh)
 // Converts the MAIR attributes to orthogonal attribute and
 // hint fields.
 MemoryAttributes memattrs;
 // Decoding MAIR0/MAIR1 Registers
 if attrfield<7:4> == '0000' then
 unpackinner = FALSE;
 memattrs.memtype = MemType_Device;
 memattrs.shareable = TRUE;
 memattrs.outershareable = TRUE;
 memattrs.innerattrs = bits(2) UNKNOWN;
 memattrs.outerattrs = bits(2) UNKNOWN;
 memattrs.innerhints = bits(2) UNKNOWN;
 memattrs.outerhints = bits(2) UNKNOWN;
 memattrs.innertransient = boolean UNKNOWN;
 memattrs.outertransient = boolean UNKNOWN;
 case attrfield<3:0> of
 when '0000' memattrs.device = DeviceType_nGnRnE;
 when '0100' memattrs.device = DeviceType_nGnRE;
 when '1000' memattrs.device = DeviceType_nGRE;
 when '1100' memattrs.device = DeviceType_GRE;
 if attrfield<1:0> != '00' then UNPREDICTABLE;
 else
 unpackinner = TRUE;
 memattrs.memtype = MemType_Normal;
 memattrs.device = DeviceType UNKNOWN;
 memattrs.outerhints = attrfield<5:4>;
 memattrs.shareable = sh<1> == '1';
 memattrs.outershareable = sh == '10';
 if sh == '01' then UNPREDICTABLE;

 if attrfield<7:6> =='00' then
 memattrs.outerattrs = '10';
 memattrs.outertransient = TRUE;
 elsif attrfield<7:6> =='01' then
 if attrfield<5:4> == '00' then
 memattrs.outerattrs = '00';
 memattrs.outertransient = FALSE;
 else
 memattrs.outerattrs = '11';
 memattrs.outertransient = TRUE;
 else
 memattrs.outerattrs = attrfield<7:6>;
 memattrs.outertransient = FALSE;
 if unpackinner then
 if attrfield<3:0> == '0000' then UNPREDICTABLE;
 else
 if attrfield<3:2> =='00' then
 memattrs.innerattrs = '10';
 memattrs.innerhints = attrfield<1:0>;
 memattrs.innertransient = TRUE;
 elsif attrfield<3:2> =='01' then
 memattrs.innerhints = attrfield<1:0>;
 if attrfield<1:0> == '00' then
 memattrs.innerattrs = '00';
 memattrs.innertransient = FALSE;
 else
 memattrs.innerattrs = '11';
 memattrs.innertransient = TRUE;
 elsif attrfield<3:2> =='10' then
 memattrs.innerhints = attrfield<1:0>;
 memattrs.innerattrs = '10';
 memattrs.innertransient = FALSE;
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E3-1227
ID072816 Non-Confidential - Beta

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
 elsif attrfield<3:2> =='11' then
 memattrs.innerhints = attrfield<1:0>;
 memattrs.innerattrs = '11';
 memattrs.innertransient = FALSE;
 else UNPREDICTABLE;
 return memattrs;
E3-1228 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.166 MPUCheck

// MPUCheck()
// ==========

(MemoryAttributes, Permissions) MPUCheck(bits(32) address, AccType acctype,
 boolean ispriv, boolean secure)

 assert(HaveSecurityExt() || !secure);
 MemoryAttributes attributes;
 Permissions perms;
 attributes = DefaultMemoryAttributes(address);
 perms = DefaultPermissions(address);
 // assume no valid MPU region and not using default memory map
 hit = FALSE;
 isPPBaccess = (address<31:20> == '111000000000');

 // Get the MPU registers for the correct security domain
 if secure then
 mpu_ctrl = MPU_CTRL_S;
 mpu_type = MPU_TYPE_S;
 mair = MPU_MAIR1_S:MPU_MAIR0_S;
 else
 mpu_ctrl = MPU_CTRL_NS;
 mpu_type = MPU_TYPE_NS;
 mair = MPU_MAIR1_NS:MPU_MAIR0_NS;

 // Pre-compute if the execution priority is negative, as this can affect the
 // MPU permissions used. NOTE: If Non-secure FAULTMASK is set this is also
 // considered to be a negative priority for the purpose of the Non-secure
 // MPU permissions regardless of how Non-secure exceptions are prioritised
 // with respect to the Secure state.
 // If the access is due to lazy FP state preservation the FPCCR flag
 // indicating whether a HardFault could be taken is used to determine if the
 // priority should be considered to be negative rather than the current
 // execution priority.
 if acctype == AccType_LAZYFP then
 negativePri = FPCCR_S.HFRDY == '0';
 else
 negativePri = IsReqExcPriNeg(secure);

 // Determine what MPU permissions should apply based on access type and MPU
 // configuration
 if (acctype == AccType_VECTABLE) || isPPBaccess then
 hit = TRUE; // use default map for PPB and vector table lookups
 elsif mpu_ctrl.ENABLE == '0' then
 if mpu_ctrl.HFNMIENA == '1' then UNPREDICTABLE;
 else hit = TRUE; // always use default map if MPU disabled
 elsif mpu_ctrl.HFNMIENA == '0' && negativePri then
 hit = TRUE; // optionally use default for HardFault, NMI and FAULTMASK.
 else // MPU is enabled so check each individual region
 if (mpu_ctrl.PRIVDEFENA == '1') && ispriv then
 hit = TRUE; // optional default as background for Privileged accesses

 regionMatched = FALSE;
 for r = 0 to (UInt(mpu_type.DREGION) - 1)

 if secure then
 rbar = __MPU_RBAR_S[r];
 rlar = __MPU_RLAR_S[r];
 else
 rbar = __MPU_RBAR_NS[r];
 rlar = __MPU_RLAR_NS[r];

 // MPU region enabled so perform checks
 if rlar.EN == '1' then
 if ((UInt(address) >= UInt(rbar.BASE : '00000')) &&
 (UInt(address) <= UInt(rlar.LIMIT : '11111'))) then
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E3-1229
ID072816 Non-Confidential - Beta

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List

 // flag error if multiple regions match
 if regionMatched then
 perms.regionValid = FALSE;
 perms.region = Zeros(8);
 hit = FALSE;
 else
 regionMatched = TRUE;
 perms.ap = rbar.AP;
 perms.xn = rbar.XN;
 perms.region = r<7:0>;
 perms.regionValid = TRUE;
 hit = TRUE;
 sh = rbar.SH;

 // parsing MAIR0/1 Register fields
 index = UInt(rlar.AttrIndx);
 attrfield = mair<8*index+7:8*index>;
 // decoding MAIR0/1 field and populating memory attributes
 attributes = MAIRDecode(attrfield, sh);

 if address<31:29> == '111' then // enforce System space execute never
 perms.xn = '1';
 if !hit then // Access not allowed if no MPU match and use of default not enabled
 perms.apValid = FALSE;
 return (attributes, perms);

E3.1.167 MarkExclusiveGlobal

// MarkExclusiveGlobal
// ===================
// Records in a global record that PE has requested "exclusive access" covering
// at least size bytes from the address

MarkExclusiveGlobal(bits(32) address, integer processorid, integer size);

E3.1.168 MarkExclusiveLocal

// MarkExclusiveLocal
// ==================
// Records in a local record that PE has requested "exclusive access" covering
// at least size bytes from the address.

MarkExclusiveLocal(bits(32) address, integer processorid, integer size);
E3-1230 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.169 MemA

// MemA[]
// ======

bits(8*size) MemA[bits(32) address, integer size]
 return MemA_with_priv[address, size, FindPriv()];

MemA[bits(32) address, integer size] = bits(8*size) value
 MemA_with_priv[address, size, FindPriv()] = value;
 return;

E3.1.170 MemA_with_priv

// MemA_with_priv[]
// ================

// Non-assignment form

bits(8*size) MemA_with_priv[bits(32) address, integer size, boolean privileged]
 (excInfo, value) = MemA_with_priv_security(address, size, AccType_NORMAL,
 privileged, IsSecure());
 HandleException(excInfo);
 return value;

// Assignment form

MemA_with_priv[bits(32) address, integer size, boolean privileged] = bits(8*size) value
 excInfo = MemA_with_priv_security(address, size, AccType_NORMAL, privileged,
 IsSecure(), value);
 HandleException(excInfo);
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E3-1231
ID072816 Non-Confidential - Beta

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.171 MemA_with_priv_security

// MemA_with_priv_security()
// =========================

// Non-assignment form

(ExcInfo, bits(8*size)) MemA_with_priv_security(bits(32) address, integer size,
 AccType acctype, boolean privileged,
 boolean secure)
 // Check alignment
 excInfo = DefaultExcInfo();
 if !IsAligned(address, size) then
 if HaveMainExt() then
 UFSR.UNALIGNED = '1';
 // Create the exception. NOTE: If Main Extension is not implemented the fault
 // always escalates to a HardFault
 excInfo = CreateException(UsageFault, TRUE, secure);

 // Check permissions and get attributes
 if excInfo.fault == NoFault then
 (excInfo, memaddrdesc) = ValidateAddress(address, acctype, privileged, secure, FALSE);

 if excInfo.fault == NoFault then
 // Memory array access, and sort out endianness
 (error, value) = _Mem(memaddrdesc, size);

 // Check if a synchronous BusFault occurred, async BusFaults are handled
 // in RaiseAsyncBusFault()
 if error then
 value = bits(8*size) UNKNOWN;
 if HaveMainExt() then
 if acctype == AccType_STACK then
 BFSR.UNSTKERR = '1';
 elsif acctype IN {AccType_NORMAL, AccType_ORDERED} then
 BFAR.ADDRESS = address;
 BFSR.BFARVALID = '1';
 BFSR.PRECISERR = '1';

 // Generate BusFault exception if it cannot be ignored.
 if !IsReqExcPriNeg(secure) || (CCR.BFHFNMIGN == '0') then
 // Create the exception. NOTE: If Main Extension is not implemented
 // the fault always escalates to a HardFault
 excInfo = CreateException(BusFault, FALSE, boolean UNKNOWN);
 // PPB (0xE0000000 to 0xE0100000) is always little endian
 elsif AIRCR.ENDIANNESS == '1' && UInt(address<31:20>) != 0xE00 then
 value = BigEndianReverse(value, size);

 // Check for Watch Point Match
 if IsDWTEnabled() then
 bits(32) dvalue = ZeroExtend(value);
 DWT_DataMatch(address, size, dvalue, TRUE, secure);

 return (excInfo, value);

// Assignment form

ExcInfo MemA_with_priv_security(bits(32) address, integer size, AccType acctype,
 boolean privileged, boolean secure, bits(8*size) value)
 // Check alignment
 excInfo = DefaultExcInfo();
 if !IsAligned(address, size) then
 if HaveMainExt() then
 UFSR.UNALIGNED = '1';
 // Create the exception. NOTE: If Main Extension is not implemented the fault
 // always escalates to a HardFault
 excInfo = CreateException(UsageFault, TRUE, secure);

E3-1232 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
 // Check permissions and get attributes
 if excInfo.fault == NoFault then
 (excInfo, memaddrdesc) = ValidateAddress(address, acctype, privileged, secure, TRUE);

 if excInfo.fault == NoFault then
 // Effect on exclusives
 if memaddrdesc.memattrs.shareable then
 ClearExclusiveByAddress(memaddrdesc.paddress,
 ProcessorID(), size); // see Note

 // Check for Watch Point Match
 if IsDWTEnabled() then
 bits(32) dvalue = ZeroExtend(value);
 DWT_DataMatch(address, size, dvalue, FALSE, secure);

 // Sort out endianness, then memory array access
 // PPB (0xE0000000 to 0xE0100000) is always little endian
 if AIRCR.ENDIANNESS == '1' && UInt(address<31:20>) != 0xE00 then
 value = BigEndianReverse(value, size);

 if _Mem(memaddrdesc, size, value) then
 // Synchronous BusFault occurred. NOTE: async BusFaults are handled
 // in RaiseAsyncBusFault()

 // Check whether the execution priority is negative.
 // If the access is due to lazy FP state preservation the FPCCR flag
 // indicating whether a HardFault could be taken is used to determine if the
 // priority should be considered to be negative rather than the current
 // execution priority.
 if acctype == AccType_LAZYFP then
 negativePri = FPCCR_S.HFRDY == '0';
 else
 negativePri = IsReqExcPriNeg(secure);

 if HaveMainExt() then
 if acctype == AccType_STACK then
 BFSR.STKERR = '1';
 elsif acctype == AccType_LAZYFP then
 BFSR.LSPERR = '1';
 elsif acctype IN {AccType_NORMAL, AccType_ORDERED} then
 BFAR.ADDRESS = address;
 BFSR.BFARVALID = '1';
 BFSR.PRECISERR = '1';

 // Generate BusFault exception if it cannot be ignored.
 if !negativePri || (CCR.BFHFNMIGN == '0') then
 // Create the exception. NOTE: If Main Extension is not implemented
 // the fault always escalates to a HardFault
 excInfo = CreateException(BusFault, FALSE, boolean UNKNOWN);
 return excInfo;
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E3-1233
ID072816 Non-Confidential - Beta

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.172 MemI

// MemI()
// ======

bits(16) MemI[bits(32) address]
 // Check permissions and get attributes
 // NOTE: The privilige flag passed to ValidateAddress may be overriden if
 // the security of the memory is different from the current security
 // state, eg when performing a Non-secure to Secure function call.
 (excInfo, memaddrdesc) = ValidateAddress(address, AccType_IFETCH, FindPriv(), IsSecure(), FALSE);
 if excInfo.fault == NoFault then
 (error, value) = _Mem(memaddrdesc, 2);
 if error then
 value = bits(16) UNKNOWN;
 BFSR.IBUSERR = '1';
 // Create the exception. NOTE: If Main Extension is not implemented the fault
 // always escalates to a HardFault
 excInfo = CreateException(BusFault, FALSE, boolean UNKNOWN);
 HandleException(excInfo);
 if IsDWTEnabled() then DWT_InstructionMatch(address);
 return value;

E3.1.173 MemO

// MemO[] - non-assignment form
// ============================

bits(8*size) MemO[bits(32) address, integer size]
 (excInfo, value) = MemA_with_priv_security(address, size, AccType_ORDERED,
 FindPriv(), IsSecure());
 HandleException(excInfo);
 return value;

// MemO[] - assignment form
// ========================

MemO[bits(32) address, integer size] = bits(8*size) value
 excInfo = MemA_with_priv_security(address, size, AccType_ORDERED, FindPriv(),
 IsSecure(), value);
 HandleException(excInfo);

E3.1.174 MemType

// Types of memory

enumeration MemType {MemType_Normal, MemType_Device};
E3-1234 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.175 MemU

// MemU[]
// ======

// Non-assignment form, used for memory reads
// ==

bits(8*size) MemU[bits(32) address, integer size]
 if HaveMainExt() then
 return MemU_with_priv[address, size, FindPriv()];
 else
 return MemA[address, size];

// Assignment form, used for memory writes
// =======================================

MemU[bits(32) address, integer size] = bits(8*size) value
 if HaveMainExt() then
 MemU_with_priv[address, size, FindPriv()] = value;
 else
 MemA[address, size] = value;
 return;

E3.1.176 MemU_unpriv

// MemU_unpriv[]
// =============

bits(8*size) MemU_unpriv[bits(32) address, integer size]
 return MemU_with_priv[address, size, FALSE];

MemU_unpriv[bits(32) address, integer size] = bits(8*size) value
 MemU_with_priv[address, size, FALSE] = value;
 return;
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E3-1235
ID072816 Non-Confidential - Beta

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.177 MemU_with_priv

// MemU_with_priv[]
// ================
// Due to single-copy atomicity constraints, the aligned accesses are distinguished from
// the unaligned accesses:
// * aligned accesses are performed at their size
// * unaligned accesses are expressed as a set of bytes.

// Non-assignment form

bits(8*size) MemU_with_priv[bits(32) address, integer size, boolean privileged]

 bits(8*size) value;
 // Do aligned access, take alignment fault, or do sequence of bytes
 if address == Align(address, size) then
 value = MemA_with_priv[address, size, privileged];
 elsif CCR.UNALIGN_TRP == '1' then
 UFSR.UNALIGNED = '1';
 excInfo = CreateException(UsageFault, FALSE, boolean UNKNOWN);
 HandleException(excInfo);
 else // if unaligned access
 for i = 0 to size-1
 value<8*i+7:8*i> = MemA_with_priv[address+i, 1, privileged];
 // PPB (0xE0000000 to 0xE0100000) is always little endian
 if AIRCR.ENDIANNESS == '1' && UInt(address<31:20>) != 0xE00 then
 value = BigEndianReverse(value, size);

 return value;

// Assignment form

MemU_with_priv[bits(32) address, integer size, boolean privileged] = bits(8*size) value

 // Do aligned access, take alignment fault, or do sequence of bytes
 if address == Align(address, size) then
 MemA_with_priv[address, size, privileged] = value;
 elsif CCR.UNALIGN_TRP == '1' then
 UFSR.UNALIGNED = '1';
 excInfo = CreateException(UsageFault, FALSE, boolean UNKNOWN);
 HandleException(excInfo);
 else // if unaligned access
 // PPB (0xE0000000 to 0xE0100000) is always little endian
 if AIRCR.ENDIANNESS == '1' && UInt(address<31:20>) != 0xE00 then
 value = BigEndianReverse(value, size);
 for i = 0 to size-1
 MemA_with_priv[address+i, 1, privileged] = value<8*i+7:8*i>;

 return;
E3-1236 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.178 MemoryAttributes

// v8-M Memory Attributes
type MemoryAttributes is (
 MemType memtype,
 DeviceType device, // For Device memory
 bits(2) innerattrs, // The possible encodings for each attributes field are as follows:
 bits(2) outerattrs, // '00' = Non-cacheable; '10' = Write-Through
 // '11' = Write-Back; '01' = RESERVED
 bits(2) innerhints, // The possible encodings for the hints are as follows
 bits(2) outerhints, // '00' = No-Allocate; '01' = Write-Allocate
 // '10' = Read-Allocate; ;'11' = Read-Allocate and Write-Allocate
 boolean NS, // TRUE if Non-secure, else FALSE
 boolean innertransient,
 boolean outertransient,
 boolean shareable,
 boolean outershareable
)

E3.1.179 MergeExcInfo

// MergeExcInfo()
// ==============

ExcInfo MergeExcInfo(ExcInfo a, ExcInfo b)
 // The ExcInfo structure is used to determine which exception should be
 // taken, and how it should be handled (mainly in the case of derived
 // exceptions). As such when multiple ExcInfo structures are present it is
 // sufficient to pick the most serious fault.
 if (b.fault == NoFault) || (a.isTerminal && !b.isTerminal) then
 exc = a;
 elsif (a.fault == NoFault) || (b.isTerminal && !a.isTerminal) then
 exc = b;
 else
 // Propagate the fault with the highest priority (lowest numerical
 // value).
 aPri = ExceptionPriority(a.fault, a.isSecure, FALSE);
 bPri = ExceptionPriority(b.fault, b.isSecure, FALSE);
 exc = if aPri < bPri then a else b;
 return exc;

E3.1.180 Mode_M

// The M-profile execution modes.

enumeration Mode {Mode_Thread, Mode_Handler};
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E3-1237
ID072816 Non-Confidential - Beta

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.181 NextInstrAddr

// NextInstrAddr()
// ===============

bits(32) NextInstrAddr()
 if _PCChanged then
 return _NextInstrAddr;
 else
 return ThisInstrAddr() + ThisInstrLength();

E3.1.182 NextInstrITState

// NextInstrITState()
// ==================

ITSTATEType NextInstrITState()
 if HaveMainExt() then
 // If the IT state has been directly modified return that value as the
 // next state, otherwise advance the IT state normally.
 if _ITStateChanged then
 nextState = _NextInstrITState;
 else
 nextState = ThisInstrITState();
 if nextState<2:0> == '000' then
 nextState = '00000000';
 else
 nextState<4:0> = LSL(nextState<4:0>, 1);
 else
 nextState = Zeros(8);
 return nextState;

E3.1.183 NoninvasiveDebugAllowed

// NoninvasiveDebugAllowed()
// =========================

boolean NoninvasiveDebugAllowed()
 return NIDEN == HIGH || HaltingDebugAllowed();

E3.1.184 PC

// PC - non-assignment form
// ========================
bits(32) PC
 return R[15];
E3-1238 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.185 PendReturnOperation

// PendReturnOperation()
// =====================

PendReturnOperation(bits(32) returnValue)
 _NextInstrAddr = returnValue;
 _PCChanged = TRUE;
 _PendingReturnOperation = TRUE;
 return;

E3.1.186 PendingExceptionDetails

// PendingExceptionDetails
// =======================
// Determines whether to take a pending exception or not. This is done based
// on current execution priority and the priority of pending exceptions that
// are not masked by DHCSR.C_MASKINTS.
// Returns whether any pending exception is to be taken, and, if so, the
// exception number for the highest priority unmasked exception, and
// whether this exception is Secure.

(boolean, integer, boolean) PendingExceptionDetails();

E3.1.187 Permissions

// Access permissions descriptor

type Permissions is (
 boolean apValid, // TRUE when ap is valid, else FALSE
 bits(2) ap, // Access Permission bits, if valid
 bit xn, // Execute Never bit
 boolean regionValid, // TRUE if the region number is valid, else FALSE
 bits(8) region // The MPU region number, if valid
)

ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E3-1239
ID072816 Non-Confidential - Beta

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.188 PopStack

// PopStack()
// ==========

ExcInfo PopStack(bits(24) excReturn)
 // NOTE: All stack accesses are performed as Unprivileged accesses if
 // returning to thread mode and CONTROL.nPRIV is 1 for the destination
 // Security state.
 mode = if excReturn<3> == '1' then Mode_Thread else Mode_Handler;
 toSecure = HaveSecurityExt() && excReturn<6> == '1';
 spName = LookUpSP_with_security_mode(toSecure, mode);
 frameptr = _SP(spName);
 if !IsAligned(frameptr, 8) then UNPREDICTABLE;

 // only stack locations, not the load order, are architected

 // Pop the callee saved registers, when returning from a Non-secure exception
 // or a Secure one that followed a Non-secure one and therefore still has
 // the callee register state on the stack.
 if toSecure && (excReturn<0> == '0' ||
 excReturn<5> == '0') then
 // Check the integrity signature, and if so is it correct
 expectedSig = 0xFEFA125B<31:0>;
 if HaveFPExt() then
 expectedSig<0> = excReturn<4>;
 (exc, integritySig) = Stack(frameptr, 0x0, spName, mode);
 if exc.fault == NoFault && integritySig != expectedSig then
 if HaveMainExt() then
 SFSR.INVIS = '1';
 // Create the exception. NOTE: If Main Extension is not implemented the fault
 // always escalates to a HardFault
 return CreateException(SecureFault, TRUE, TRUE);

 if exc.fault == NoFault then (exc, R[4]) = Stack(frameptr, 0x8, spName, mode);
 if exc.fault == NoFault then (exc, R[5]) = Stack(frameptr, 0xC, spName, mode);
 if exc.fault == NoFault then (exc, R[6]) = Stack(frameptr, 0x10, spName, mode);
 if exc.fault == NoFault then (exc, R[7]) = Stack(frameptr, 0x14, spName, mode);
 if exc.fault == NoFault then (exc, R[8]) = Stack(frameptr, 0x18, spName, mode);
 if exc.fault == NoFault then (exc, R[9]) = Stack(frameptr, 0x1C, spName, mode);
 if exc.fault == NoFault then (exc, R[10]) = Stack(frameptr, 0x20, spName, mode);
 if exc.fault == NoFault then (exc, R[11]) = Stack(frameptr, 0x24, spName, mode);
 frameptr = frameptr + 0x28;

 // Unstack the caller saved regs, possibly including the FP regs
 RETPSR_Type psr;
 if exc.fault == NoFault then (exc, R[0]) = Stack(frameptr, 0x0, spName, mode);
 if exc.fault == NoFault then (exc, R[1]) = Stack(frameptr, 0x4, spName, mode);
 if exc.fault == NoFault then (exc, R[2]) = Stack(frameptr, 0x8, spName, mode);
 if exc.fault == NoFault then (exc, R[3]) = Stack(frameptr, 0xC, spName, mode);
 if exc.fault == NoFault then (exc, R[12]) = Stack(frameptr, 0x10, spName, mode);
 if exc.fault == NoFault then (exc, LR) = Stack(frameptr, 0x14, spName, mode);
 if exc.fault == NoFault then (exc, pc) = Stack(frameptr, 0x18, spName, mode);
 if exc.fault == NoFault then (exc, psr) = Stack(frameptr, 0x1C, spName, mode);
 BranchToAndCommit(pc);

 // Check the xpsr value that's been unstacked is consistent with the mode
 // being returned to
 excNum = UInt(psr.Exception);
 if (exc.fault == NoFault) &&
 ((mode == Mode_Handler) == (excNum == 0)) then
 if HaveMainExt() then
 UFSR.INVPC = '1';
 // Create the exception. NOTE: If Main Extension is not implemented the fault
 // always escalates to a HardFault
 return CreateException(UsageFault, FALSE, boolean UNKNOWN);
 // The behaviour is UNPREDICTABLE if the IPSR values isn't supported by the PE
 validIPSR = excNum IN {0, 1, NMI, HardFault, SVCall, PendSV, SysTick};
E3-1240 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
 if !validIPSR && HaveMainExt() then
 validIPSR = excNum IN {MemManage, BusFault, UsageFault, SecureFault, DebugMonitor};

 // Check also whether excNum is an external interupt supported by PE
 if !validIPSR && !IsIrqValid(excNum) then UNPREDICTABLE;

 if HaveFPExt() then
 if excReturn<4> == '0' then
 // Raise a fault and skip FP operations if requested to expose
 // Secure FP state to the Non-secure code.
 if !toSecure && FPCCR_S.LSPACT == '1' then
 SFSR.LSERR = '1';
 exc = CreateException(SecureFault, TRUE, TRUE);
 else
 lspact = if toSecure then FPCCR_S.LSPACT else FPCCR_NS.LSPACT;
 if lspact == '1' then // state in FP is still valid
 if toSecure then
 FPCCR_S.LSPACT = '0';
 else
 FPCCR_NS.LSPACT = '0';
 else
 if exc.fault == NoFault then
 nPriv = if toSecure then CONTROL_S.nPRIV else CONTROL_NS.nPRIV;
 isPriv = mode == Mode_Handler || nPriv == '0';
 exc = CheckCPEnabled(10, isPriv, toSecure);

 // If an implementation abandons the unstacking of the FP
 // registers and to tail chain into a fault or late arriving
 // interrupt it must clear any floating point registers that
 // would have been unstacked.
 // NOTE: The requirment to clear the registers only applies
 // to implementations that include the Security Extensions.
 // The FP registers that would have been unstack become
 // UNKNOWN in implementations that don't include the
 // Security Extensions.
 if exc.fault == NoFault then
 for i = 0 to 15
 if exc.fault == NoFault then
 offset = 0x20+(4*i);
 (exc, S[i]) = Stack(frameptr, offset, spName, mode);
 if exc.fault == NoFault then
 (exc, FPSCR) = Stack(frameptr, 0x60, spName, mode);
 if toSecure && FPCCR_S.TS == '1' then
 for i = 0 to 15
 if exc.fault == NoFault then
 offset = 0x68+(4*i);
 (exc, S[i+16]) = Stack(frameptr, offset, spName, mode);
 if exc.fault != NoFault then
 for i = 16 to 31
 S[i] = if HaveSecurityExt() then Zeros(32) else bits(32) UNKNOWN;
 if exc.fault != NoFault then
 for i = 0 to 15
 S[i] = if HaveSecurityExt() then Zeros(32) else bits(32) UNKNOWN;
 FPSCR = if HaveSecurityExt() then Zeros(32) else bits(32) UNKNOWN;

 CONTROL.FPCA = NOT(excReturn<4>);

 // If there wasn't a fault then move the stack pointer to consume the
 // exception stack frame. NOTE: If a exception return fault occurs and
 // results in a lockup the stack pointer is updated. This special case is
 // handled at the point lockup is entered and not here.
 if exc.fault == NoFault then
 ConsumeExcStackFrame(excReturn, psr.SPREALIGN);

 if HaveDSPExt() then
 APSR.GE = psr.GE;

 if IsSecure() then
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E3-1241
ID072816 Non-Confidential - Beta

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
 CONTROL_S.SFPA = psr.SFPA;

 IPSR.Exception = psr.Exception; // Load valid IPSR bits from memory
 EPSR.T = psr.T; // Load valid EPSR bits from memory
 if HaveMainExt() then
 APSR<31:27> = psr<31:27>; // Load valid APSR bits from memory
 SetITSTATEAndCommit(psr.IT); // Load valid ITSTATE from memory
 else
 APSR<31:28> = psr<31:28>; // Load valid APSR bits from memory
 return exc;
E3-1242 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.189 PreserveFPState

// PreserveFPState()
// =================

PreserveFPState()
 // Preserve FP state using address, privilege and relative
 // priorities recorded during original stacking. Derived
 // exceptions are handled by TakePreserveFPException().

 // The checks usually performed for stacking using ValidateAddress()
 // are performed, with the value of ExecutionPriority()
 // overridden by -1 if FPCCR.HFRDY == '0'.

 isSecure = FPCCR_S.S == '1';
 if isSecure then
 ispriv = FPCCR_S.USER == '0';
 splimviol = FPCCR_S.SPLIMVIOL == '1';
 fpcar = FPCAR_S;
 else
 ispriv = FPCCR_NS.USER == '0';
 splimviol = FPCCR_NS.SPLIMVIOL == '1';
 fpcar = FPCAR_NS;

 // Check if the background context had access to the FPU
 excInfo = CheckCPEnabled(10, ispriv, isSecure);

 // Only perform the memory accesses if the stack limit hasn't been violated
 if !splimviol then

 // Whether these stores are interruptible is IMPLEMENTATION DEFINED.
 for i = 0 to 15
 if excInfo.fault == NoFault then
 addr = fpcar + (4*i);
 excInfo = MemA_with_priv_security(addr,4,AccType_LAZYFP,ispriv,isSecure,S[i]);

 if excInfo.fault == NoFault then
 addr = fpcar + 0x40;
 excInfo = MemA_with_priv_security(addr,4,AccType_LAZYFP,ispriv,isSecure,FPSCR);

 if isSecure && FPCCR_S.TS == '1' then
 for i = 0 to 15
 if excInfo.fault == NoFault then
 addr = fpcar + (4*i) + 0x48;
 excInfo = MemA_with_priv_security(addr,4,AccType_LAZYFP,ispriv,TRUE,S[i+16]);

 // If a fault was raised handle it now. This function may call
 // EndOfInstruction(), as a result any code after this call may not execute.
 if excInfo.fault != NoFault then
 TakePreserveFPException(excInfo);

 // If the stores are interrupted, the register content and LSPACT remain unchanged.

 // If exception with sufficient priority to pre-empt current instruction execution
 // is raised during FP state preserve, then TakePreserveFPException() will terminate
 // the current instruction by calling EndOfInstruction().
 // If the exception results in a lockup state, then TakePreserveFPException() will
 // enter the lockup state by calling Lockup().
 // In both above cases where execution of current instruction is not completed, either
 // by taking exception straight away or by entering lockup state, below code is not
 // executed and LSPACT is not cleared.
 // In case of NoFault or, on successful return from TakePreserveFPException(), the current
 // instruction execution continues and FPCCR.LSPACT will be cleared.

 if isSecure then
 FPCCR_S.LSPACT = '0';
 else
 FPCCR_NS.LSPACT = '0';
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E3-1243
ID072816 Non-Confidential - Beta

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List

 // If the FP state is being treated as Secure then the registers are zeroed
 if isSecure && FPCCR_S.TS == '1' then
 for i = 0 to 31
 S[i] = Zeros(32);
 FPSCR = Zeros(32);
 else
 for i = 0 to 15
 S[i] = bits(32) UNKNOWN;
 FPSCR = bits(32) UNKNOWN;

 return;

E3.1.190 ProcessorID

// ProcessorID
// ===========
// Returns an integer that uniquely identifies the executing PE in the system.

integer ProcessorID();
E3-1244 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.191 PushCalleeStack

// PushCalleeStack()
// =================

ExcInfo PushCalleeStack(boolean doTailChain)
 // allocate space of the correct stack. NOTE: If we are tail chaining we
 // look at LR instead of CONTROL.SPSEL to work out which stack to use, as
 // SPSEL can report the wrong stack in tail chaining cases
 if doTailChain then
 if LR<3> == '0' then
 mode = Mode_Handler;
 spName = RNameSP_Main_Secure;
 else
 mode = Mode_Thread;
 spName = if LR<2> == '1' then RNameSP_Process_Secure else RNameSP_Main_Secure;
 else
 spName = LookUpSP();
 mode = CurrentMode();

 // Calculate the address of the base of the callee frame
 bits(32) frameptr = _SP(spName) - 0x28;

 /* only the stack locations, not the store order, are architected */
 // Write out integrity signature
 integritySig = if HaveFPExt() then 0xFEFA125A<31:1> : LR<4> else 0xFEFA125B<31:0>;
 exc = Stack(frameptr, 0x0, spName, mode, integritySig);
 // Stack callee registers
 if exc.fault == NoFault then exc = Stack(frameptr, 0x8, spName, mode, R[4]);
 if exc.fault == NoFault then exc = Stack(frameptr, 0xC, spName, mode, R[5]);
 if exc.fault == NoFault then exc = Stack(frameptr, 0x10, spName, mode, R[6]);
 if exc.fault == NoFault then exc = Stack(frameptr, 0x14, spName, mode, R[7]);
 if exc.fault == NoFault then exc = Stack(frameptr, 0x18, spName, mode, R[8]);
 if exc.fault == NoFault then exc = Stack(frameptr, 0x1C, spName, mode, R[9]);
 if exc.fault == NoFault then exc = Stack(frameptr, 0x20, spName, mode, R[10]);
 if exc.fault == NoFault then exc = Stack(frameptr, 0x24, spName, mode, R[11]);

 // Update the stack pointer
 spExc = _SP(spName, TRUE, frameptr);
 return MergeExcInfo(exc, spExc);
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E3-1245
ID072816 Non-Confidential - Beta

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.192 PushStack

// PushStack()
// ===========

ExcInfo PushStack(boolean secureException, boolean instExecOk)
 integer framesize;
 if HaveFPExt() && CONTROL.FPCA == '1' && (IsSecure() || NSACR.CP10 == '1') then
 if IsSecure() && FPCCR_S.TS == '1' then
 framesize = 0xA8;
 else
 framesize = 0x68;
 else
 framesize = 0x20;

 /* allocate space on the correct stack */
 bits(1) frameptralign;
 frameptralign = SP<2>;
 frameptr = (SP - framesize) AND NOT(ZeroExtend('100',32));
 spName = LookUpSP();

 /* only the stack locations, not the store order, are architected */
 (retaddr, itstate) = ReturnState(instExecOk);
 RETPSR_Type retpsr = XPSR<31:0>;
 retpsr.IT = itstate.IT; // see ReturnState() in-line note for information on xPSR.IT bits
 retpsr.SPREALIGN = frameptralign;
 retpsr.SFPA = if IsSecure() then CONTROL_S.SFPA else '0';

 mode = CurrentMode();
 exc = Stack(frameptr, 0x0, spName, mode, R[0]);
 if exc.fault == NoFault then exc = Stack(frameptr, 0x4, spName, mode, R[1]);
 if exc.fault == NoFault then exc = Stack(frameptr, 0x8, spName, mode, R[2]);
 if exc.fault == NoFault then exc = Stack(frameptr, 0xC, spName, mode, R[3]);
 if exc.fault == NoFault then exc = Stack(frameptr, 0x10, spName, mode, R[12]);
 if exc.fault == NoFault then exc = Stack(frameptr, 0x14, spName, mode, LR);
 if exc.fault == NoFault then exc = Stack(frameptr, 0x18, spName, mode, retaddr);
 if exc.fault == NoFault then exc = Stack(frameptr, 0x1C, spName, mode, retpsr);

 if HaveFPExt() && CONTROL.FPCA == '1' then
 // LSPACT should not be active at the same time as CONTROL.FPCA. This
 // is a possible attack senario so raise a SecureFault.
 lspact = if FPCCR_S.S == '1' then FPCCR_S.LSPACT else FPCCR_NS.LSPACT;
 if HaveSecurityExt() && lspact == '1' then
 SFSR.LSERR = '1';
 exc = CreateException(SecureFault, TRUE, TRUE);
 elsif !IsSecure() && NSACR.CP10 == '0' then
 UFSR_S.NOCP = '1';
 exc = CreateException(UsageFault, TRUE, TRUE);
 else
 if FPCCR.LSPEN == '0' then
 if exc.fault == NoFault then
 exc = CheckCPEnabled(10);
 for i = 0 to 15
 if exc.fault == NoFault then
 exc = Stack(frameptr, 0x20+(4*i), spName, mode, S[i]);
 if exc.fault == NoFault then
 exc = Stack(frameptr, 0x60, spName, mode, FPSCR);
 if framesize == 0xA8 then
 for i = 0 to 15
 if exc.fault == NoFault then
 exc = Stack(frameptr, 0x68+(4*i), spName, mode, S[i+16]);
 S[i+16] = Zeros(32);
 S[i] = Zeros(32);
 FPSCR = Zeros(32);
 else
 for i = 0 to 15
 S[i] = bits(32) UNKNOWN;
 FPSCR = bits(32) UNKNOWN;
E3-1246 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
 else
 UpdateFPCCR(frameptr + 0x20, TRUE);

 // Set the stack pointer to be at the bottom of the new stack frame
 spExc = _SP(spName, TRUE, frameptr);
 exc = MergeExcInfo(exc, spExc);

 bit isSecure = if IsSecure() then '1' else '0';
 bit isThread = if mode==Mode_Thread then '1' else '0';
 // Some excReturn bits (eg ES, SPSEL) are set by ExceptionTaken
 if HaveFPExt() then
 LR = Ones(25):isSecure:'1':NOT(CONTROL.FPCA):isThread:'000';
 else
 LR = Ones(25):isSecure:'11':isThread:'000';
 return exc;
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E3-1247
ID072816 Non-Confidential - Beta

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.193 R

// R[] - assignment form
// =====================

R[integer n] = bits(32) value
 assert n >= 0 && n <= 14;
 RName regName;
 case n of
 when 0 _R[RName0] = value;
 when 1 _R[RName1] = value;
 when 2 _R[RName2] = value;
 when 3 _R[RName3] = value;
 when 4 _R[RName4] = value;
 when 5 _R[RName5] = value;
 when 6 _R[RName6] = value;
 when 7 _R[RName7] = value;
 when 8 _R[RName8] = value;
 when 9 _R[RName9] = value;
 when 10 _R[RName10] = value;
 when 11 _R[RName11] = value;
 when 12 _R[RName12] = value;
 when 13
 // It is IMPLEMENTATION DEFINED whether stack pointer limit checking
 // is performed for instructions that were previously UNPREDICTABLE
 // when modifying the stack pointer.
 if boolean IMPLEMENTATION_DEFINED "SPLim check UNPRED instructions" then
 - = _SP(LookUpSP(), FALSE, value);
 else
 _R[LookUpSP()] = value<31:2>:'00';
 when 14 _R[RName_LR] = value;
 return;

// R[] - non-assignment form
// =========================

bits(32) R[integer n]
 assert n >= 0 && n <= 15;
 bits(32) result;
 case n of
 when 0 result = _R[RName0];
 when 1 result = _R[RName1];
 when 2 result = _R[RName2];
 when 3 result = _R[RName3];
 when 4 result = _R[RName4];
 when 5 result = _R[RName5];
 when 6 result = _R[RName6];
 when 7 result = _R[RName7];
 when 8 result = _R[RName8];
 when 9 result = _R[RName9];
 when 10 result = _R[RName10];
 when 11 result = _R[RName11];
 when 12 result = _R[RName12];
 when 13 result = _R[LookUpSP()]<31:2>:'00';
 when 14 result = _R[RName_LR];
 when 15 result = _R[RName_PC] + 4;
 return result;
E3-1248 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.194 RName

// The names of the core registers. SP is a Banked register.

enumeration RName {RName0, RName1, RName2, RName3, RName4, RName5, RName6,
 RName7, RName8, RName9, RName10, RName11, RName12,
 RNameSP_Main_NonSecure, RNameSP_Process_NonSecure, RName_LR, RName_PC,
 RNameSP_Main_Secure, RNameSP_Process_Secure};

E3.1.195 ROR

// ROR()
// =====

bits(N) ROR(bits(N) x, integer shift)
 if shift == 0 then
 result = x;
 else
 (result, -) = ROR_C(x, shift);
 return result;

E3.1.196 ROR_C

// ROR_C()
// =======

(bits(N), bit) ROR_C(bits(N) x, integer shift)
 assert shift != 0;
 m = shift MOD N;
 result = LSR(x,m) OR LSL(x,N-m);
 carry_out = result<N-1>;
 return (result, carry_out);

E3.1.197 RRX

// RRX()
// =====

bits(N) RRX(bits(N) x, bit carry_in)
 (result, -) = RRX_C(x, carry_in);
 return result;
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E3-1249
ID072816 Non-Confidential - Beta

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.198 RRX_C

// RRX_C()
// =======

(bits(N), bit) RRX_C(bits(N) x, bit carry_in)
 result = carry_in : x<N-1:1>;
 carry_out = x<0>;
 return (result, carry_out);

E3.1.199 RSPCheck

// RSPCheck[] - assignment form
// ============================

RSPCheck[integer n] = bits(32) value
 if n == 13 then
 - = _SP(LookUpSP(), FALSE, value);
 else
 R[n] = value;
 return;

E3.1.200 RaiseAsyncBusFault

RaiseAsyncBusFault()
 if HaveMainExt() then
 BFSR.IMPRECISERR = '1';

 excInfo = CreateException(BusFault, FALSE, boolean UNKNOWN, FALSE);
 HandleException(excInfo);

E3.1.201 RawExecutionPriority

// RawExecutionPriority()
// ======================

// Determine the current execution priority without the effect of priority boosting

integer RawExecutionPriority()
 execPri = HighestPri;
 for i = 2 to MaxExceptionNum // IPSR values of the exception handlers
 for j = 0 to 1 // Check both Non-secure and Secure exceptions
 secure = (j == 0);
 if IsActiveForState(i, secure) then
 // PRIGROUP effect applied in ExceptionPriority
 effectivePriority = ExceptionPriority(i, secure, TRUE);
 if effectivePriority < execPri then
 execPri = effectivePriority;
 return execPri;
E3-1250 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.202 ReturnState

// ReturnState()
// =============

(bits(32), ITSTATEType) ReturnState(boolean instExecOk)

 // Whether the return address (and associated IT state) point to the current
 // instruction or the next instruction only depends on whether the
 // instruction executed correctly, and not the type of exception.
 //
 // For trivial cases this behaviour matches the following expectation:-
 // * Faults (eg MemManage, UsageFault, etc) result in the return address
 // pointing to the instruction that caused the fault.
 // * Interrupts and SVC's result in the return address pointing to the next
 // instruction.
 //
 // However it is important to realise that the behaviour can differ from the
 // expectation above in complex cases. The following examples illustrate how
 // and why the behaviour can be different:-
 // 1) A MemManage fault occurring at the same time as a higher priority
 // interrupt. The interrupt is taken first due to its priority, but the
 // return address is set to the current instruction because it didn't
 // execute successfully. This ensures the return state is correct for
 // when the pending MemManage fault is taken (which may occur by tail
 // chaining after the interrupt handler returns).
 // 2) The architecture states:-
 // "A fault that is escalated to the priority of a HardFault
 // retains the return address value of the original fault."
 // So a SVC that escalates to a HardFault has the return address of the
 // instruction after SVC (because the SVC succeeded is setting an
 // exception pending).
 // 3) The BusFault exception is disabled when a BusFault occurs during
 // lazy FP state preservation. The fault remains pending until a store
 // instruction re-enables the BusFault by writing to the SHCSR
 // register, at which point the exception can be taken. However because
 // the store instruction didn't cause the fault, it just allowed it to
 // be taken the return address points to the instruction after the
 // store.
 //
 // NOTE: Asynchronous faults (eg async BusFault) deviate from this rule and
 // have a return address set to the next instruction. Due to their
 // asynchronous nature the address of the actual instruction that
 // caused the fault is not known.

 // Returns the following values based on the exception cause
 // NOTE: ReturnAddress() is always halfword aligned, meaning bit<0> is always zero
 // If present the xPSR.IT bits saved to the stack are consistent with
 // ReturnAddress()
 if instExecOk then
 return (NextInstrAddr(), NextInstrITState());
 else
 return (ThisInstrAddr(), ThisInstrITState());
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E3-1251
ID072816 Non-Confidential - Beta

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.203 S

// S[] - assignment form
// =====================

S[integer n] = bits(32) value
 assert n >= 0 && n <= 31;
 if (n MOD 2) == 0 then
 D[n DIV 2]<31:0> = value;
 else
 D[n DIV 2]<63:32> = value;
 return;

// S[] - non-assignment form
// =========================

bits(32) S[integer n]
 assert n >= 0 && n <= 31;
 if (n MOD 2) == 0 then
 result = D[n DIV 2]<31:0>;
 else
 result = D[n DIV 2]<63:32>;
 return result;

E3.1.204 SAttributes

// Security attributes associated with an address

type SAttributes is (
 boolean nsc, // Non-secure callability of an address. FALSE = not
 // callable from the Non-secure state
 boolean ns, // Security of an address FALSE = Secure, TRUE = Non-secure
 bits(8) sregion, // The SAU region number
 boolean srvalid, // Set to 1 if the SAU region number is valid
 bits(8) iregion, // The IDAU region number
 boolean irvalid // Set to 1 if the IDAU region number is valid
)

E3.1.205 SCS_UpdateStatusRegs

// SCS_UpdateStatusRegs()
// ======================
// Update status registers in the System Control Space (SCS)

SCS_UpdateStatusRegs();
E3-1252 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.206 SP

// SP - assignment form
// ====================
SP = bits(32) value
 RSPCheck[13] = value;

// SP - non-assignment form
// ========================
bits(32) SP
 return R[13];

E3.1.207 SP_Main

// SP_Main - assignment form
// =========================
SP_Main = bits(32) value
 if IsSecure() then
 SP_Main_Secure = value;
 else
 SP_Main_NonSecure = value;

// SP_Main - non-assignment form
// =============================
bits(32) SP_Main
 value = if IsSecure() then SP_Main_Secure else SP_Main_NonSecure;
 return value;

E3.1.208 SP_Main_NonSecure

// SP_Main_NonSecure - assignment form
// ===================================
SP_Main_NonSecure = bits(32) value
 - = _SP(RNameSP_Main_NonSecure, FALSE, value);

// SP_Main_NonSecure - non-assignment form
// =======================================
bits(32) SP_Main_NonSecure
 return _SP(RNameSP_Main_NonSecure);
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E3-1253
ID072816 Non-Confidential - Beta

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.209 SP_Main_Secure

// SP_Main_Secure - assignment form
// ================================
SP_Main_Secure = bits(32) value
 - = _SP(RNameSP_Main_Secure, FALSE, value);

// SP_Main_Secure - non-assignment form
// ====================================
bits(32) SP_Main_Secure
 return _SP(RNameSP_Main_Secure);

E3.1.210 SP_Process

// SP_Process - assignment form
// ============================
SP_Process = bits(32) value
 if IsSecure() then
 SP_Process_Secure = value;
 else
 SP_Process_NonSecure = value;

// SP_Process - non-assignment form
// ================================
bits(32) SP_Process
 value = if IsSecure()
 then SP_Process_Secure else SP_Process_NonSecure;
 return value;

E3.1.211 SP_Process_NonSecure

// SP_Process_NonSecure - assignment form
// ======================================
SP_Process_NonSecure = bits(32) value
 - = _SP(RNameSP_Process_NonSecure, FALSE, value);

// SP_Process_NonSecure - non-assignment form
// ==
bits(32) SP_Process_NonSecure
 return _SP(RNameSP_Process_NonSecure);
E3-1254 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.212 SP_Process_Secure

// SP_Process_Secure - assignment form
// ===================================
SP_Process_Secure = bits(32) value
 - = _SP(RNameSP_Process_Secure, FALSE, value);

// SP_Process_Secure - non-assignment form
// =======================================
bits(32) SP_Process_Secure
 return _SP(RNameSP_Process_Secure);

E3.1.213 SRType

// Different types of shift and rotate operations
enumeration SRType {SRType_LSL, SRType_LSR, SRType_ASR, SRType_ROR, SRType_RRX};

E3.1.214 Sat

// Sat()
// =====

bits(N) Sat(integer i, integer N, boolean unsigned)
 result = if unsigned then UnsignedSat(i, N) else SignedSat(i, N);
 return result;

E3.1.215 SatQ

// SatQ()
// ======

(bits(N), boolean) SatQ(integer i, integer N, boolean unsigned)
 (result, sat) = if unsigned then UnsignedSatQ(i, N) else SignedSatQ(i, N);
 return (result, sat);

E3.1.216 SecureDebugMonitorAllowed

// SecureDebugMonitorAllowed()
// ===========================

boolean SecureDebugMonitorAllowed()
 if DAUTHCTRL.SPIDENSEL == '1' then
 return DAUTHCTRL.INTSPIDEN == '1';
 else
 return SPIDEN == HIGH;
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E3-1255
ID072816 Non-Confidential - Beta

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.217 SecureHaltingDebugAllowed

// SecureHaltingDebugAllowed()
// ===========================

boolean SecureHaltingDebugAllowed()
 if HaltingDebugAllowed() == FALSE then
 return FALSE;
 elsif DAUTHCTRL.SPIDENSEL == '1' then
 return DAUTHCTRL.INTSPIDEN == '1';
 else
 return SPIDEN == HIGH;

E3.1.218 SecureNoninvasiveDebugAllowed

// SecureNoninvasiveDebugAllowed()
// ===============================

boolean SecureNoninvasiveDebugAllowed()
 if !NoninvasiveDebugAllowed() then
 return FALSE;
 elsif DHCSR.S_SDE == '1' then
 return TRUE;
 elsif DAUTHCTRL.SPNIDENSEL == '1' then
 return DAUTHCTRL.INTSPNIDEN == '1';
 else
 return SPNIDEN == HIGH;
E3-1256 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.219 SecurityCheck

// SecurityCheck()
// ===============

SAttributes SecurityCheck(bits(32) address, boolean isinstrfetch, boolean isSecure)
 SAttributes result;
 addr = UInt(address);

 // Setup default attributes
 result.ns = FALSE;
 result.nsc = FALSE;
 result.sregion = Zeros(8);
 result.srvalid = FALSE;
 result.iregion = Zeros(8);
 result.irvalid = FALSE;
 idauExempt = FALSE;
 idauNs = TRUE;
 idauNsc = TRUE;

 // If an IMPLEMENTATION DEFINED memory security attribution unit is present
 // query it and override defaults set above. The IDAU is subject to the same
 // 32byte minimum region granularity as the SAU/MPU.
 // NOTE: The defaults above are set such that the IDAU has no effect on the
 // SAU.
 if boolean IMPLEMENTATION_DEFINED "IDAU present" then
 (idauExempt,
 idauNs,
 idauNsc,
 result.iregion,
 result.irvalid) = IDAUCheck(address<31:5>:'00000');

 // The 0xF0000000 -> 0xFFFFFFFF is always Secure for instruction fetches
 if isinstrfetch && (address<31:28> == '1111') then
 // Use default attributes defined above

 // Check if the address is exempt from SAU/IDAU checking.
 elsif idauExempt || // IDAU specified exemption
 (isinstrfetch && (address<31:28> == '1110')) || // Whole 0xExxxxxxx range exempt for IFetch
 ((addr >= 0xE0000000) && (addr <= 0xE0002FFF)) || // ITM, DWT, FPB
 ((addr >= 0xE000E000) && (addr <= 0xE000EFFF)) || // SCS
 ((addr >= 0xE002E000) && (addr <= 0xE002EFFF)) || // SCS NS alias
 ((addr >= 0xE0040000) && (addr <= 0xE0041FFF)) || // TPIU, ETM
 ((addr >= 0xE00FF000) && (addr <= 0xE00FFFFF)) then // ROM table
 // memory security reported as NS-Req, and no region information is supplied.
 result.ns = !isSecure;
 result.irvalid = FALSE;

 else
 // If the SAU is enabled check its regions
 if SAU_CTRL.ENABLE == '1' then
 boolean multiRegionHit = FALSE;
 for r = 0 to (UInt(SAU_TYPE.SREGION) - 1)
 if SAU_REGION[r].ENABLE == '1' then
 // SAU region enabled so perform checks
 bits(32) base_address = SAU_REGION[r].BADDR:'00000';
 bits(32) limit_address = SAU_REGION[r].LADDR:'11111';
 if ((UInt(base_address) <= addr) &&
 (UInt(limit_address) >= addr)) then
 if result.srvalid then
 multiRegionHit = TRUE;
 else
 result.ns = SAU_REGION[r].NSC == '0';
 result.nsc = SAU_REGION[r].NSC == '1';
 result.srvalid = TRUE;
 result.sregion = r<7:0>;

 // If multiple regions are hit then report memory as Secure and not
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E3-1257
ID072816 Non-Confidential - Beta

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
 // Non-secure callable. Also don't report any region number
 // information.
 if multiRegionHit then
 result.ns = FALSE;
 result.nsc = FALSE;
 result.sregion = Zeros(8);
 result.srvalid = FALSE;

 // SAU disabled, check if whole address space should be marked as
 // Non-secure
 elsif SAU_CTRL.ALLNS == '1' then
 result.ns = TRUE;

 // Override the internal setting if the external attribution unit
 // reports more restrictive attributes.
 if !idauNs then
 if result.ns || (!idauNsc && result.nsc) then
 result.ns = FALSE;
 result.nsc = idauNsc;

 return result;

E3.1.220 SecurityState

// Type and definition of the current Security state of PE

enumeration SecurityState {SecurityState_NonSecure, SecurityState_Secure};
SecurityState CurrentState;

E3.1.221 SendEvent

// SendEvent
// =========
// Performs a send event by setting the Event Register of every PE in multiprocessor system

SendEvent();

E3.1.222 SerializeVFP

// SerializeVFP
// ============
// Ensures that any exceptional conditions in previous floating-point
// instructions have been detected

SerializeVFP();
E3-1258 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.223 SetActive

// SetActive()
// ===========

SetActive(integer exception, boolean isSecure, boolean setNotClear)
 if !HaveSecurityExt() then
 isSecure = FALSE;
 // If the exception target state is configurable there is only one active
 // bit. To represent this the Non-secure and Secure instances of the active
 // flags in the array are always set to the same value.
 if IsExceptionTargetConfigurable(exception) then
 if ExceptionTargetsSecure(exception, boolean UNKNOWN) == isSecure then
 ExceptionActive[exception] = if setNotClear then '11' else '00';
 else
 idx = if isSecure then 0 else 1;
 ExceptionActive[exception]<idx> = if setNotClear then '1' else '0';

E3.1.224 SetEventRegister

// SetEventRegister()
// ==================
// Set the Event Register of the current PE

SetEventRegister();

E3.1.225 SetExclusiveMonitors

// SetExclusiveMonitors()
// ======================

SetExclusiveMonitors(bits(32) address, integer size)
 boolean isSecure = CurrentState == SecurityState_Secure;
 (excInfo, memaddrdesc) = ValidateAddress(address, AccType_NORMAL, FindPriv(),
 isSecure, FALSE);
 HandleException(excInfo);

 if memaddrdesc.memattrs.shareable then
 MarkExclusiveGlobal(memaddrdesc.paddress, ProcessorID(), size);

 MarkExclusiveLocal(memaddrdesc.paddress, ProcessorID(), size);
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E3-1259
ID072816 Non-Confidential - Beta

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.226 SetITSTATEAndCommit

// SetITSTATEAndCommit()
// =====================

SetITSTATEAndCommit(ITSTATEType it)
 // This function directly commits the change to the ITSTATE, so ThisInstrITSTATE()
 // and NextInstrITSTATE() both point to the target address.
 _NextInstrITState = it;
 _ITStateChanged = TRUE;
 EPSR.IT = it;
 return;

E3.1.227 SetPending

// SetPending()
// ============

SetPending(integer exception, boolean isSecure, boolean setNotClear)
 if !HaveSecurityExt() then
 isSecure = FALSE;
 // If the exception target state is configurable there is only one pending
 // bit. To represent this, the Non-secure and Secure instances of the pending
 // flags in the array are always set to the same value.
 if IsExceptionTargetConfigurable(exception) then
 ExceptionPending[exception] = if setNotClear then '11' else '00';
 else
 idx = if isSecure then 0 else 1;
 ExceptionPending[exception]<idx> = if setNotClear then '1' else '0';

E3.1.228 SetThisInstrDetails

// SetThisInstrDetails
// ===================
// Set the details of current instruction

SetThisInstrDetails(bits(32) opcode, integer len, bits(4) defaultCond);

E3.1.229 Shift

// Shift()
// =======

bits(N) Shift(bits(N) value, SRType sr_type, integer amount, bit carry_in)
 (result, -) = Shift_C(value, sr_type, amount, carry_in);
 return result;
E3-1260 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.230 Shift_C

// Shift_C()
// =========

(bits(N), bit) Shift_C(bits(N) value, SRType sr_type, integer amount, bit carry_in)
 assert !(sr_type == SRType_RRX && amount != 1);

 if amount == 0 then
 (result, carry_out) = (value, carry_in);
 else
 case sr_type of
 when SRType_LSL
 (result, carry_out) = LSL_C(value, amount);
 when SRType_LSR
 (result, carry_out) = LSR_C(value, amount);
 when SRType_ASR
 (result, carry_out) = ASR_C(value, amount);
 when SRType_ROR
 (result, carry_out) = ROR_C(value, amount);
 when SRType_RRX
 (result, carry_out) = RRX_C(value, carry_in);

 return (result, carry_out);

E3.1.231 SignedSat

// SignedSat()
// ===========

bits(N) SignedSat(integer i, integer N)
 (result, -) = SignedSatQ(i, N);
 return result;

E3.1.232 SignedSatQ

// SignedSatQ()
// ============

(bits(N), boolean) SignedSatQ(integer i, integer N)
 if i > 2^(N-1) - 1 then
 result = 2^(N-1) - 1; saturated = TRUE;
 elsif i < -(2^(N-1)) then
 result = -(2^(N-1)); saturated = TRUE;
 else
 result = i; saturated = FALSE;
 return (result<N-1:0>, saturated);
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E3-1261
ID072816 Non-Confidential - Beta

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.233 SleepOnExit

// SleepOnExit()
// =============
// Optionally returns PE to a power-saving mode on return from the only
// active exception

SleepOnExit();
E3-1262 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.234 Stack

// Stack
// =====

// Assignment form

ExcInfo Stack(bits(32) frameptr, integer offset, RName spreg, Mode mode, bits(32) value)
 // This function is used to perform register stacking operations that are
 // done around exception handling. If the stack pointer is below the stack
 // pointer limit but the access itself is above the limit it is
 // IMPLEMENTATION DEFINED whether the write is performed. If the
 // address of access is below the limit the access is not performed
 // regardless of the stack pointer value.
 (limit, applylimit) = LookUpSPLim(spreg);
 if !applylimit || (UInt(frameptr) >= UInt(limit)) then
 doAccess = TRUE;
 else
 doAccess = boolean IMPLEMENTATION_DEFINED "Push non-violating locations";

 address = frameptr + offset;
 if doAccess && (!applylimit || ((UInt(address) >= UInt(limit)))) then
 secure = ((spreg == RNameSP_Main_Secure) ||
 (spreg == RNameSP_Process_Secure));
 // Work out if the stack operations should be privileged or not
 if secure then
 isPriv = CONTROL_S.nPRIV == '0';
 else
 isPriv = CONTROL_NS.nPRIV == '0';
 isPriv = isPriv || (mode == Mode_Handler);
 // Finally perform the memory operations
 excInfo = MemA_with_priv_security(address,4,AccType_STACK,isPriv,secure,value);
 else
 excInfo = DefaultExcInfo();
 return excInfo;

// Non-assignment form

(ExcInfo, bits(32)) Stack(bits(32) frameptr, integer offset, RName spreg, Mode mode)
 secure = ((spreg == RNameSP_Main_Secure) ||
 (spreg == RNameSP_Process_Secure));
 // Work out if the stack operations should be privileged or not
 if secure then
 isPriv = CONTROL_S.nPRIV == '0';
 else
 isPriv = CONTROL_NS.nPRIV == '0';
 isPriv = isPriv || (mode == Mode_Handler);
 // Finally perform the memory operations
 address = frameptr + offset;
 (excInfo, value) = MemA_with_priv_security(address,4,AccType_STACK,isPriv,secure);
 return (excInfo, value);

E3.1.235 StandardFPSCRValue

// StandardFPSCRValue()
// ====================

bits(32) StandardFPSCRValue()
 return '00000' : FPSCR<26> : '11000000000000000000000000';
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E3-1263
ID072816 Non-Confidential - Beta

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.236 T32ExpandImm

// T32ExpandImm()
// ==============

bits(32) T32ExpandImm(bits(12) imm12)

 // APSR.C argument to following function call does not affect the imm32 result.
 (imm32, -) = T32ExpandImm_C(imm12, APSR.C);

 return imm32;

E3.1.237 T32ExpandImm_C

// T32ExpandImm_C()
// ================

(bits(32), bit) T32ExpandImm_C(bits(12) imm12, bit carry_in)

 if imm12<11:10> == '00' then

 case imm12<9:8> of
 when '00'
 imm32 = ZeroExtend(imm12<7:0>, 32);
 when '01'
 if imm12<7:0> == '00000000' then UNPREDICTABLE;
 imm32 = '00000000' : imm12<7:0> : '00000000' : imm12<7:0>;
 when '10'
 if imm12<7:0> == '00000000' then UNPREDICTABLE;
 imm32 = imm12<7:0> : '00000000' : imm12<7:0> : '00000000';
 when '11'
 if imm12<7:0> == '00000000' then UNPREDICTABLE;
 imm32 = imm12<7:0> : imm12<7:0> : imm12<7:0> : imm12<7:0>;
 carry_out = carry_in;

 else

 unrotated_value = ZeroExtend('1':imm12<6:0>, 32);
 (imm32, carry_out) = ROR_C(unrotated_value, UInt(imm12<11:7>));

 return (imm32, carry_out);
E3-1264 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.238 TTResp

// TTResp()
// ========

bits(32) TTResp(bits(32) address, boolean alt, boolean forceunpriv)
 TT_RESP_Type resp = Zeros();

 // Only allow security checks if currently in Secure state
 if IsSecure() then
 sAttributes = SecurityCheck(address, FALSE, IsSecure());
 if sAttributes.srvalid then
 resp.SREGION = sAttributes.sregion;
 resp.SRVALID = '1';
 if sAttributes.irvalid then
 resp.IREGION = sAttributes.iregion;
 resp.IRVALID = '1';
 addrSecure = if sAttributes.ns then '0' else '1';
 resp.S = addrSecure;

 // MPU region information only available when privileged or when
 // inspecting the other MPU state.
 other_domain = (alt != IsSecure());
 if CurrentModeIsPrivileged() || alt then
 (write, read, region, hit) = IsAccessible(address, forceunpriv, other_domain);
 if hit then
 resp.MREGION = region;
 resp.MRVALID = '1';
 resp.R = read;
 resp.RW = write;
 if IsSecure() then
 resp.NSR = read AND NOT addrSecure;
 resp.NSRW = write AND NOT addrSecure;

 return resp;

E3.1.239 TailChain

// TailChain()
// ===========

ExcInfo TailChain(integer exceptionNumber, boolean excIsSecure, bits(24) excReturn)
 // Refresh LR with the excReturn value, ready for the next exception
 LR = Ones(8):excReturn;
 if !HaveFPExt() then
 LR<4> = '1';

 return ExceptionTaken(exceptionNumber, TRUE, excIsSecure, FALSE);
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E3-1265
ID072816 Non-Confidential - Beta

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.240 TakePreserveFPException

// TakePreserveFPException()
// =========================

TakePreserveFPException(ExcInfo excInfo)
 assert HaveFPExt();
 assert excInfo.origFault IN {DebugMonitor, SecureFault, MemManage, BusFault, UsageFault};

 exception = excInfo.origFault;
 isSecure = excInfo.origFaultIsSecure;
 fpccr = if isSecure then FPCCR_S else FPCCR_NS;

 if FPCCR_S.MONRDY == '1' && FPCCR_S.HFRDY == '0' then UNPREDICTABLE;
 if FPCCR_S.BFRDY == '1' && FPCCR_S.HFRDY == '0' then UNPREDICTABLE;
 if FPCCR_S.SFRDY == '1' && FPCCR_S.HFRDY == '0' then UNPREDICTABLE;
 if fpccr.UFRDY == '1' && FPCCR_S.HFRDY == '0' then UNPREDICTABLE;
 if fpccr.MMRDY == '1' && FPCCR_S.HFRDY == '0' then UNPREDICTABLE;
 if exception == DebugMonitor && FPCCR_S.MONRDY == '0' then
 // ignore DebugMonitor exception
 return;

 // Handle exception specific details like escalation and syndrome information
 case exception of
 when MemManage
 escalate = fpccr.MMRDY == '0';
 when UsageFault
 escalate = fpccr.UFRDY == '0';
 when BusFault
 escalate = FPCCR_S.BFRDY == '0';
 when SecureFault
 escalate = FPCCR_S.SFRDY == '0';
 otherwise
 escalate = FALSE;
 if escalate then
 exception = HardFault;
 // Faults that originally targeted the Secure domain still target the
 // Secure domain even if HardFault normally targets Non-secure.
 isSecure = isSecure || ExceptionTargetsSecure(HardFault, isSecure);

 // Check if the exception is enabled and has sufficient priority to
 // pre-empt and be taken straight away.
 if (ExceptionPriority(exception, isSecure, TRUE) < ExecutionPriority()) &&
 ExceptionEnabled(exception, isSecure) then
 if escalate then
 HFSR.FORCED = '1';
 // Set the exception pending and terminate the current instruction. This
 // leaves FP disabled (i.e. CONTROL.FPCA set to 0) and prevents the
 // pre-empting exception entry reserving space for a redundant FP state.
 SetPending(exception, isSecure, TRUE);
 EndOfInstruction();
 else
 // If the reason the exception can't pre-empt is due to the fact that
 // HardFault couldn't be entered by the context the FP state belongs to
 // then enter the lockup state.
 if FPCCR_S.HFRDY == '0' then
 Lockup(TRUE); // Lockup at current priority, lock-up address = 0xEFFFFFFE
 else
 if escalate then
 HFSR.FORCED = '1';
 // Set the exception pending so it will be taken after the current
 // handler returns.
 SetPending(exception, isSecure, TRUE);
 return;
E3-1266 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.241 TakeReset

// TakeReset()
// ===========

TakeReset()
 // If the Security Extension is implemented the PE resets into Secure state.
 // If the Security Extension is not implemented the PE resets into Non-secure state.
 CurrentState = if HaveSecurityExt() then SecurityState_Secure else SecurityState_NonSecure;

 ResetSCSRegs(); // Catch-all function for System Control Space reset
 APSR = bits(32) UNKNOWN; // Flags UNPREDICTABLE from reset
 IPSR.Exception = Zeros(9); // Exception number cleared at reset
 if HaveMainExt() then
 LR = Ones(32); // Preset to an illegal exception return value
 SetITSTATEAndCommit(Zeros(8)); // IT/ICI bits cleared
 else
 LR = bits(32) UNKNOWN; // Value must be initialised by software

 // Reset priority boosting
 PRIMASK_NS<0> = '0'; // priority mask cleared at reset
 if HaveSecurityExt() then
 PRIMASK_S<0> = '0';
 if HaveMainExt() then
 FAULTMASK_NS<0> = '0'; // Fault mask cleared at reset
 BASEPRI_NS<7:0> = Zeros(8); // Base priority disabled at reset
 if HaveSecurityExt() then
 FAULTMASK_S<0> = '0';
 BASEPRI_S<7:0> = Zeros(8);

 // Initialize the Floating Point Extn
 if HaveFPExt() then
 CONTROL.FPCA = '0'; // FP inactive
 FPDSCR_NS.AHP = '0';
 FPDSCR_NS.DN = '0';
 FPDSCR_NS.FZ = '0';
 FPDSCR_NS.RMode = '00';
 FPCCR.LSPEN = '1';
 FPCCR_NS.ASPEN = '1';
 FPCCR_NS.LSPACT = '0';
 FPCAR_NS = bits(32) UNKNOWN;
 if HaveSecurityExt() then
 CONTROL_S.SFPA = '0';
 FPDSCR_S.AHP = '0';
 FPDSCR_S.DN = '0';
 FPDSCR_S.FZ = '0';
 FPDSCR_S.RMode = '00';
 FPCCR.LSPENS = '0';
 FPCCR_S.ASPEN = '1';
 FPCCR_S.LSPACT = '0';
 FPCAR_S = bits(32) UNKNOWN;
 for i = 0 to 31
 S[i] = bits(32) UNKNOWN;

 // Thread is privileged, current stack is Main
 CONTROL_NS.SPSEL = '0';
 CONTROL_NS.nPRIV = '0';
 if HaveSecurityExt() then
 CONTROL_S.SPSEL = '0';
 CONTROL_S.nPRIV = '0';

 for i = 0 to MaxExceptionNum // All exceptions Inactive
 ExceptionActive[i] = '00';
 ClearExclusiveLocal(ProcessorID()); // Synchronization (LDREX* / STREX*) monitor support
 ClearEventRegister(); // See WFE instruction for more information
 for i = 0 to 12
 R[i] = bits(32) UNKNOWN;

ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E3-1267
ID072816 Non-Confidential - Beta

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
 // Stack limit registers. It is IMPLEMENTATION DEFINED how many bits of
 // these registers are writable. The following writes only affect the
 // bits that an implementation defines as writable
 if HaveMainExt() then
 MSPLIM_NS = Zeros(32);
 PSPLIM_NS = Zeros(32);
 if HaveSecurityExt() then
 MSPLIM_S = Zeros(32);
 PSPLIM_S = Zeros(32);

 // Load the initial value of the stack pointer and the reset value from the
 // vector table. The order of the loads is IMPLEMENTATION DEFINED
 (excSp, sp) = Vector[0, HaveSecurityExt()];
 (excRst, start) = Vector[Reset, HaveSecurityExt()];
 if excSp.fault != NoFault || excRst.fault != NoFault then
 Lockup(TRUE);

 // Initialize the stack pointers and start execution at the reset vector
 if HaveSecurityExt() then
 SP_Main_Secure = sp;
 SP_Main_NonSecure = ((bits(30) UNKNOWN):'00');
 SP_Process_Secure = ((bits(30) UNKNOWN):'00');
 else
 SP_Main_NonSecure = sp;
 SP_Process_NonSecure = ((bits(30) UNKNOWN):'00');
 EPSR.T = start<0>;
 BranchToAndCommit(start<31:1>:'0');

E3.1.242 ThisInstr

// ThisInstr
// =========
// Returns a 32-bit value which contain the bitstring encoding of current instruction.
// In case of 16-bit instructions, the instruction is packed into the bottom 16-bits
// with upper 16-bits zeroed. In case of 32-bit instructions, the instruction is
// treated as two halfwords, with the first halfword of the instruction in the
// top 16-bits and second halfword in bottom 16-bits.

bits(32) ThisInstr();

E3.1.243 ThisInstrAddr

// ThisInstrAddr()
// ===============

bits(32) ThisInstrAddr()
 return _R[RName_PC];
E3-1268 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.244 ThisInstrITState

// ThisInstrITState()
// ==================

ITSTATEType ThisInstrITState()
 if HaveMainExt() then
 value = EPSR.IT;
 else
 value = Zeros(8);
 return value;

E3.1.245 ThisInstrLength

// ThisInstrLength
// ===============
// Returns the length of the current instruction in bytes

integer ThisInstrLength();
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E3-1269
ID072816 Non-Confidential - Beta

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.246 TopLevel

// TopLevel()
// ==========

// This function is called once per tick if the processor isn't in a sleep
// state. It handles all instruction processing, including fetching the opcode,
// decode and execute. It also handles pausing execution when in the lockup
// state.
TopLevel()
 // If we're locked up then abort execution of this instruction. We also set
 // the length of the current instruction to 0 so NextInstrAddr() reports the
 // correct lockup address.
 ok = DHCSR.S_LOCKUP != '1';
 if !ok then
 SetThisInstrDetails(Zeros(32), 0, Ones(4));
 else
 // Check for stepping debug for current instruction fetch.
 mon_step_active = SteppingDebug();
 UpdateSecureDebugEnable();
 pc = ThisInstrAddr();

 try
 // Not locked up, so attempt to fetch the instruction
 (instr, is16bit) = FetchInstr(pc);

 // Setup the details of the instruction. NOTE: The default condition
 // is based on the ITSTATE, however this is overridden in the decode
 // stage by instructions that have explicit condition codes.
 len = if is16bit then 2 else 4;

 defaultCond = if ITSTATE<3:0> == 0 then 0xE<3:0> else ITSTATE<7:4>;
 SetThisInstrDetails(instr, len, defaultCond);

 // Checking for FP Break point on Instructions
 if FPB_CheckBreakPoint(pc, len, TRUE, IsSecure()) then
 FPB_BreakpointMatch();

 // Finally try and execute the instruction
 DecodeExecute(instr, pc, is16bit);

 // Check for Monitor Step
 SetMonStep(mon_step_active);

 // Check for DWT match.
 if IsDWTEnabled() then DWT_InstructionMatch(pc);

 catch exn
 when IsSEE(exn) || IsUNDEFINED(exn)
 if ConditionHolds(CurrentCond()) then
 ok = FALSE;
 if HaveMainExt() then
 UFSR.UNDEFINSTR = '1';
 // If Main Extension is not implemented the fault will escalate to a
 // HardFault.
 excInfo = CreateException(UsageFault, FALSE, boolean UNKNOWN);
 // Prevent EndOfInstruction() being called in
 // HandleException() as the instruction has already been
 // terminated so there is no need to throw the exception
 // again.
 excInfo.termInst = FALSE;
 HandleException(excInfo);
 when IsExceptionTaken(exn)
 ok = FALSE;
 // Do not catch UNPREDICTABLE or internal errors

 // If there is a reset pending do that, otherwise process the normal
 // instruction advance.
E3-1270 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
 try
 if ExceptionPending[Reset] != '00' then
 ExceptionPending[Reset] = '00';
 TakeReset();
 else
 // Call instruction advance for exception handling and PC/ITSTATE
 // advance.
 InstructionAdvance(ok);
 catch exn
 // Do not catch UNPREDICTABLE or internal errors
 when IsExceptionTaken(exn)
 // The correct architectural behaviour for any exceptions is
 // performed inside TakeReset() and InstructionAdvance(). So no
 // additional actions are required in this catch block.

E3.1.247 UnsignedSat

// UnsignedSat()
// =============

bits(N) UnsignedSat(integer i, integer N)
 (result, -) = UnsignedSatQ(i, N);
 return result;

E3.1.248 UnsignedSatQ

// UnsignedSatQ()
// ==============

(bits(N), boolean) UnsignedSatQ(integer i, integer N)
 if i > 2^N - 1 then
 result = 2^N - 1; saturated = TRUE;
 elsif i < 0 then
 result = 0; saturated = TRUE;
 else
 result = i; saturated = FALSE;
 return (result<N-1:0>, saturated);
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E3-1271
ID072816 Non-Confidential - Beta

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.249 UpdateFPCCR

// UpdateFPCCR()
// =============

UpdateFPCCR(bits(32) frameptr, boolean applySpLim)
 assert(HaveFPExt());

 FPCAR.ADDRESS = frameptr<31:3>;
 // Flag if the context address violates the stack pointer limit. If the
 // limit has been violated PreserveFPState() will zero the registers if
 // required, but will not save the context to the stack.
 (limit, limitValid) = LookUpSPLim(LookUpSP());
 if applySpLim && limitValid && (UInt(frameptr) < UInt(limit)) then
 FPCCR.SPLIMVIOL = '1';
 else
 FPCCR.SPLIMVIOL = '0';
 FPCCR.LSPACT = '1';

 execPri = ExecutionPriority();
 isSecure = IsSecure();
 FPCCR_S.S = if isSecure then '1' else '0';
 if CurrentModeIsPrivileged() then
 FPCCR.USER = '0';
 else
 FPCCR.USER = '1';
 if CurrentMode() == Mode_Thread then
 FPCCR.THREAD = '1';
 else
 FPCCR.THREAD = '0';
 if execPri > -1 then
 FPCCR_S.HFRDY = '1';
 else
 FPCCR_S.HFRDY = '0';
 busfaultpri = ExceptionPriority(BusFault, isSecure, FALSE);
 if SHCSR_S.BUSFAULTENA == '1' && execPri > busfaultpri then
 FPCCR_S.BFRDY = '1';
 else
 FPCCR_S.BFRDY = '0';
 memfaultpri = ExceptionPriority(MemManage, isSecure, FALSE);
 if SHCSR.MEMFAULTENA == '1' && execPri > memfaultpri then
 FPCCR.MMRDY = '1';
 else
 FPCCR.MMRDY = '0';
 usagefaultpri = ExceptionPriority(UsageFault, FALSE, FALSE);
 if SHCSR_NS.USGFAULTENA == '1' && execPri > usagefaultpri then
 FPCCR_NS.UFRDY = '1';
 else
 FPCCR_NS.UFRDY = '0';
 usagefaultpri = ExceptionPriority(UsageFault, TRUE, FALSE);
 if SHCSR_S.USGFAULTENA == '1' && execPri > usagefaultpri then
 FPCCR_S.UFRDY = '1';
 else
 FPCCR_S.UFRDY = '0';
 if HaveSecurityExt() then
 securefaultpri = ExceptionPriority(SecureFault, isSecure, FALSE);
 if SHCSR_S.SECUREFAULTENA == '1' && execPri > securefaultpri then
 FPCCR_S.SFRDY = '1';
 else
 FPCCR_S.SFRDY = '0';
 monpri = ExceptionPriority(DebugMonitor, DEMCR.SDME == '1', FALSE);
 if DEMCR.MON_EN == '1' && execPri > monpri then
 FPCCR_S.MONRDY = '1';
 else
 FPCCR_S.MONRDY = '0';
 return;
E3-1272 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.250 UpdateSecureDebugEnable

// UpdateSecureDebugEnable()
// ========================

UpdateSecureDebugEnable()
 if DHCSR.S_HALT == '0' then
 sde = (DBGEN == HIGH && SecureHaltingDebugAllowed());
 DHCSR.S_SDE = if sde then '1' else '0';
 if HaveDebugMonitor() && ExceptionActive[DebugMonitor] == '00' && DEMCR.MON_PEND == '0'
 then DEMCR.SDME = if SecureDebugMonitorAllowed() then '1' else '0';

E3.1.251 VFPExcBarrier

// VFPExcBarrier
// =============
// Ensures that all floating-point exception processing has completed

VFPExcBarrier();

E3.1.252 VFPExpandImm

// VFPExpandImm()
// ==============

bits(N) VFPExpandImm(bits(8) imm8, integer N)
 assert N IN {32,64};
 if N == 32 then E = 8; else E = 11;
 constant integer F = N - E - 1;
 sign = imm8<7>;
 exp = NOT(imm8<6>):Replicate(imm8<6>,E-3);
 frac = imm8<5:0>:Zeros(F-4);
 return sign : exp : frac;

E3.1.253 VFPNegMul

// Different types of floating-point multiply and negate operations

enumeration VFPNegMul {VFPNegMul_VNMLA, VFPNegMul_VNMLS, VFPNegMul_VNMUL};
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E3-1273
ID072816 Non-Confidential - Beta

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.254 VFPSmallRegisterBank

// VFPSmallRegisterBank
// ====================
// Returns TRUE if Floating Point implementation provides access only to
// 16 double-precision registers

boolean VFPSmallRegisterBank();
E3-1274 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.255 ValidateAddress

// ValidateAddress()
// =================

(ExcInfo, AddressDescriptor) ValidateAddress(bits(32) address, AccType acctype,
 boolean ispriv, boolean secure,
 boolean iswrite)
 AddressDescriptor result;
 Permissions perms;
 ns = boolean UNKNOWN;
 excInfo = DefaultExcInfo();

 // Security checking and MPU bank selection if Security Extensions are
 // present
 if HaveSecurityExt() then
 // Before we check the MPU, check the SAU/IDAU.
 isinstrfetch = acctype == AccType_IFETCH;
 sAttrib = SecurityCheck(address, isinstrfetch, secure);

 // Now we have the attributes details of the address, check if the access is
 // valid
 if isinstrfetch then
 ns = sAttrib.ns;
 secureMpu = !sAttrib.ns;

 // NOTE: Override the privilege flag supplied with the a value based
 // on the privilege associated with the current mode and the
 // Security state of the MPU being queried. This can be
 // different from value this function is called with because
 // CONTROL.nPRIV is banked between the Security states.
 ispriv = CurrentModeIsPrivileged(secureMpu);

 // Check for possible fetch faults, eg fetching Non-secure
 // instructions when in Secure state.
 if secure then
 if sAttrib.ns then
 // Invalid exit from the Secure state
 SFSR.INVTRAN = '1';
 excInfo = CreateException(SecureFault, TRUE, TRUE);
 else
 if !sAttrib.ns && !sAttrib.nsc then
 // Invalid entry to the Secure state
 SFSR.INVEP = '1';
 excInfo = CreateException(SecureFault, TRUE, TRUE);
 else
 ns = !secure || sAttrib.ns;
 secureMpu = secure;
 // Check if there is a SAU/IDAU violation and raise a fault if there is
 if !secure && !sAttrib.ns then
 // NOTE: Vector table faults don't generate SFAR/SFSR syndrome
 // info. They are reported via HFSR.VECTTBL which is set elsewhere.
 if HaveMainExt() && acctype != AccType_VECTABLE then
 if acctype == AccType_LAZYFP then
 SFSR.LSPERR = '1';
 else
 SFSR.AUVIOL = '1';
 SFSR.SFARVALID = '1';
 SFAR = address;
 // Create the exception. NOTE: If Main Extension is not implemented the
 // fault always escalates to a HardFault
 excInfo = CreateException(SecureFault, TRUE, TRUE);
 else
 ns = TRUE;
 secureMpu = FALSE;

 // setup the remaining access attributes
 result.paddress = address;
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E3-1275
ID072816 Non-Confidential - Beta

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
 result.accattrs.iswrite = iswrite;
 result.accattrs.ispriv = ispriv;
 result.accattrs.acctype = acctype;

 // Finally do the MPU lookup and permissions check
 if excInfo.fault == NoFault then
 // Getting memory attribute information from MPU. Note that NS information
 // in the memory attribute is set by SAU/IDAU and is updated after
 // getting attribute values from MPU.
 (result.memattrs, perms) = MPUCheck(address, acctype, ispriv, secureMpu);
 // Updating NS information got from SAU/IDAU in memory attributes
 result.memattrs.NS = ns;

 excInfo = CheckPermission(perms, address, acctype, iswrite, ispriv, secureMpu);

 return (excInfo, result);
E3-1276 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.256 ValidateExceptionReturn

// ValidateExceptionReturn()
// =========================

ExcInfo ValidateExceptionReturn(bits(24) excReturn, integer returningExceptionNumber)
 boolean error = FALSE;

 assert CurrentMode() == Mode_Handler;
 if !IsOnes(excReturn<23:7>) then
 UNPREDICTABLE;
 if !HaveFPExt() && excReturn<4> == '0' then
 UNPREDICTABLE;

 // Security specific validation
 targetDomainSecure = excReturn<0> == '1';
 if HaveSecurityExt() then
 // The state of the exception is considered to be Non-secure if
 // returning from the Non-secure state (returns from Secure exceptions
 // whilst in the Non-secure state are not permitted), or if
 // excReturn.ES == 0. This is to deal with Non-secure exceptions that
 // function chain to a Secure function when returning (that is, pass
 // excReturn in LR to a Secure function).
 excStateNonSecure = CurrentState == SecurityState_NonSecure || !targetDomainSecure;

 // Check DCRS bit not used in Non-secure state, also check that this
 // isn't an attempt to retire a Secure exception from the Non-secure
 // state
 if excStateNonSecure && (excReturn<5> == '0' || targetDomainSecure) then
 // excReturn.ES is used below to control which exception to
 // deactivate, and which CONTROL.SPSEL to update. Force it to the
 // correct value so the code below functions correctly even if the
 // Non-secure state returned an invalid excReturn value.
 targetDomainSecure = FALSE;
 error = TRUE;
 if HaveMainExt() then
 SFSR.INVER = '1';
 exceptionNumber = SecureFault;
 else
 excStateNonSecure = TRUE;

 // check returning from an inactive handler
 if !error then
 if !IsActiveForState(returningExceptionNumber, targetDomainSecure) then
 error = TRUE;
 if HaveMainExt() then
 UFSR.INVPC = '1';
 exceptionNumber = UsageFault;
 else
 exceptionNumber = HardFault;

 if error then
 DeActivate(returningExceptionNumber, targetDomainSecure);
 if HaveSecurityExt() && targetDomainSecure then
 CONTROL_S.SPSEL = excReturn<2>;
 else
 CONTROL_NS.SPSEL = excReturn<2>;
 // Escalates to HardFault if requested fault is disabled, or has
 // insufficient priority, or if Main Extension is not implemented
 excInfo = CreateException(exceptionNumber, FALSE, boolean UNKNOWN);
 else
 excInfo = DefaultExcInfo();
 return excInfo;
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E3-1277
ID072816 Non-Confidential - Beta

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.257 Vector

// Vector[]
// ========

(ExcInfo, bits(32)) Vector[integer exceptionNumber, boolean isSecure]
 // Calculate the address of the entry in the vector table
 vtor = if isSecure then VTOR_S else VTOR_NS;
 addr = (vtor.TBLOFF:'0000000') + 4 * exceptionNumber;
 // Fetch the vector with the correct privilege and security
 (exc, vector) = MemA_with_priv_security(addr,4,AccType_VECTABLE,TRUE,isSecure);
 // Faults that prevent the vector being fetched are terminal and prevent
 // the exception being entered. They are therefore treated as HardFaults
 if exc.fault != NoFault then
 exc.isTerminal = TRUE;
 exc.fault = HardFault;
 exc.isSecure = exc.isSecure || AIRCR.BFHFNMINS == '0';
 HFSR.VECTTBL = '1';
 return (exc, vector);

E3.1.258 WaitForEvent

// WaitForEvent
// ============
// Optionally suspends execution until a WFE wakeup event or reset occurs,
// or until some earlier time if the implementation chooses

WaitForEvent();

E3.1.259 WaitForInterrupt

// WaitForInterrupt
// ================
// Optionally suspends execution until a WFI wakeup event or reset occurs, or
// until some earlier time if the implementation chooses

WaitForInterrupt();

E3.1.260 _D

// The 32-bit extension register bank for the FP extension.

array bits(64) _D[0..15];

E3.1.261 _ITStateChanged

// Indicates a write to ITSTATE

boolean _ITStateChanged;
E3-1278 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.262 _Mem

// _Mem[] - non-assignment (read) form
// ===================================
// Perform single-copy atomic, aligned, little-endian read from physical memory

(boolean, bits(8*size)) _Mem(AddressDescriptor memaddrdesc, integer size)
 assert size == 1 || size == 2 || size == 4;

// _Mem[] - assignment (write) form
// ================================
// Perform single-copy atomic, aligned, little-endian write to physical memory

boolean _Mem(AddressDescriptor memaddrdesc, integer size, bits(8*size) value)
 assert size == 1 || size == 2 || size == 4;

E3.1.263 _NextInstrAddr

// Address of next instruction to be fetched in case of branch type operation

bits(32) _NextInstrAddr;

E3.1.264 _NextInstrITState

// Updated ITSTATE for next instruction

ITSTATEType _NextInstrITState;

E3.1.265 _PCChanged

// Indicates a change in instruction fetch address due to branch type operations

boolean _PCChanged;

E3.1.266 _PendingReturnOperation

// Indicate any pending exception returns

boolean _PendingReturnOperation;

E3.1.267 _R

// The physical array of core registers.
// _R[RName_PC] is defined to be the address of the current instruction.
// The offset of 4 bytes is applied to it by the register access functions.

array bits(32) _R[RName];
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E3-1279
ID072816 Non-Confidential - Beta

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.268 _SP

// _SP() - assignment form
// =======================

ExcInfo _SP(RName spreg, boolean excEntry, bits(32) value)
 excInfo = DefaultExcInfo();
 (limit, applylimit) = LookUpSPLim(spreg);
 if applylimit && (UInt(value) < UInt(limit)) then
 // If the stack limit is violated during exception entry then the stack
 // pointer is set to the limit value. This both prevents violations and
 // ensures that the stack pointer is 8 byte aligned.
 if excEntry then
 _R[spreg] = limit;

 // Raise the appropriate exception and syndrome information
 if HaveMainExt() then
 UFSR.STKOF = '1';
 // Create the exception. NOTE: If Main Extension is not implemented the fault always
 // escalates to HardFault.
 excInfo = CreateException(UsageFault, FALSE, boolean UNKNOWN);
 if !excEntry then
 HandleException(excInfo);
 else
 // Stack pointer only updated normally if limit not violated
 _R[spreg] = value<31:2>:'00';
 return excInfo;

// _SP() - non-assignment form
// ===========================

bits(32) _SP(RName spreg)
 assert ((spreg == RNameSP_Main_NonSecure) ||
 ((spreg == RNameSP_Main_Secure) && HaveSecurityExt()) ||
 (spreg == RNameSP_Process_NonSecure) ||
 ((spreg == RNameSP_Process_Secure) && HaveSecurityExt()));

 return _R[spreg]<31:2>:'00';
E3-1280 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3.1.269 common

// Abs()
// =====

__overloaded integer Abs(integer x)
 return if x >= 0 then x else -x;

__overloaded real Abs(real x)
 return if x >= 0.0 then x else -x;

// Align()
// =======

integer Align(integer x, integer y)
 return y * (x DIV y);

bits(N) Align(bits(N) x, integer y)
 return Align(UInt(x), y)<N-1:0>;

// BitCount()
// ==========

integer BitCount(bits(N) x)
 integer result = 0;
 for i = 0 to N-1
 if x<i> == '1' then
 result = result + 1;
 return result;

// CountLeadingSignBits()
// ======================

integer CountLeadingSignBits(bits(N) x)
 return CountLeadingZeroBits(x<N-1:1> EOR x<N-2:0>);

// CountLeadingZeroBits()
// ======================

integer CountLeadingZeroBits(bits(N) x)
 return N - 1 - HighestSetBit(x);

// HighestSetBit()
// ===============

integer HighestSetBit(bits(N) x)
 for i = N-1 downto 0
 if x<i> == '1' then return i;
 return -1;

// IsOnes()
// ========

boolean IsOnes(bits(N) x)
 return x == Ones(N);
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E3-1281
ID072816 Non-Confidential - Beta

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
// IsZero()
// ========

boolean IsZero(bits(N) x)
 return x == Zeros(N);

// IsZeroBit()
// ===========

bit IsZeroBit(bits(N) x)
 return if IsZero(x) then '1' else '0';

// LowestSetBit()
// ==============

integer LowestSetBit(bits(N) x)
 for i = 0 to N-1
 if x<i> == '1' then return i;
 return N;

// Max()
// =====

__overloaded integer Max(integer a, integer b)
 return if a >= b then a else b;

__overloaded real Max(real a, real b)
 return if a >= b then a else b;

// Min()
// =====

__overloaded integer Min(integer a, integer b)
 return if a <= b then a else b;

__overloaded real Min(real a, real b)
 return if a <= b then a else b;

// Ones()
// ======

bits(N) Ones(integer N)
 return Replicate('1',N);

bits(N) Ones()
 return Ones(N);

// Replicate()
// ===========

bits(M*N) Replicate(bits(M) x, integer N);

bits(N) Replicate(bits(M) x)
 assert N MOD M == 0;
 return Replicate(x, N DIV M);
E3-1282 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
// RoundDown()
// ===========

integer RoundDown(real x);

// RoundTowardsZero()
// ==================

integer RoundTowardsZero(real x)
 return if x == 0.0 then 0 else if x > 0.0 then RoundDown(x) else RoundUp(x);

// RoundUp()
// =========

integer RoundUp(real x);

// SignExtend()
// ============

bits(N) SignExtend(bits(M) x, integer N)
 assert N >= M;
 return Replicate(x<M-1>, N-M) : x;

bits(N) SignExtend(bits(M) x)
 return SignExtend(x, N);

// ZeroExtend()
// ============

bits(N) ZeroExtend(bits(M) x, integer N)
 assert N >= M;
 return Zeros(N-M) : x;

bits(N) ZeroExtend(bits(M) x)
 return ZeroExtend(x, N);

// Zeros()
// =======

bits(N) Zeros(integer N)
 return Replicate('0',N);

bits(N) Zeros()
 return Zeros(N);
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. E3-1283
ID072816 Non-Confidential - Beta

E3 Pseudocode Specification
E3.1 Alphabetical pseudocode List
E3-1284 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

Part F
Debug Packet Protocols

Chapter F1
ITM and DWT Packet Protocol Specification

This chapter describes the protocol for packets used to send the data generated by the ITM and DWT to an external
debugger. It contains the following sections:
• About the ITM and DWT packets on page F1-1288.
• Alphabetical list of DWT and ITM packets on page F1-1291.

ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. F1-1287
ID072816 Non-Confidential - Beta

F1 ITM and DWT Packet Protocol Specification
F1.1 About the ITM and DWT packets
F1.1 About the ITM and DWT packets
The following sections give an overview of the ITM and DWT packets and how the TPIU transmits them:
• Uses of ITM and DWT packets
• ITM and DWT protocol packet headers on page F1-1289
• Packet transmission by the trace sink on page F1-1289

Note
 This chapter describes packet transmission by a trace sink such as a TPIU. The ITM can send packets to any suitable
trace sink. Regardless of the actual trace sink used, the ITM formats the packets as described in this chapter.

F1.1.1 Uses of ITM and DWT packets

The ITM sends a packet to the trace sink when:
• Software writes to a stimulus register. This generates a Instrumentation packet.
• The hardware generates a Protocol packet. Protocol packets include timestamps and synchronization packets.
• It receives a packet from the DWT, for forwarding to the trace sink.

The DWT sends a packet to the ITM for forwarding to the trace sink when:
• A DWT comparator matches and generates one or more Data Trace packets.
• It samples the PC.
• One of the performance profile counters wraps.

This chapter describes the packet protocol used.
F1-1288 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

F1 ITM and DWT Packet Protocol Specification
F1.1 About the ITM and DWT packets
F1.1.2 ITM and DWT protocol packet headers

F1.1.3 Packet transmission by the trace sink

The trace sink either:
• Forms the packets into frames, as required by the ARM® CoreSight™ Architecture Specification.
• Transmits the packets over a serial port.

For each packet, the trace sink transmits:
• The header byte first, followed by any payload bytes.
• Each byte of the packet least significant bit (LSB) first.

Figures in this chapter show each packet as a sequence of bytes, with the LSB of each byte to the right and the most
significant bit (MSB) to the left. Figure F1-1 on page F1-1290 shows this convention, and how it relates to data
transmission for a packet with a header byte and two payload bytes.

Table F1-1 8-bit header encodings

[7] [6] [5] [4] [3] [2] [1] [0] Description

0 0 0 0 0 0 0 0 Synchronization packet on page F1-1311

0 1 1 1 0 0 0 0 Overflow packet on page F1-1309

0 ≠ 0b000 && ≠ 0b111 0 0 0 0 Local Timestamp 2 packet on page F1-1308

1 0 0 1 0 1 0 0 Global Timestamp 1 packet on page F1-1300

1 0 1 1 0 1 0 0 Global Timestamp 2 packet on page F1-1303

1 1 x x 0 0 0 0 Local Timestamp 1 packet on page F1-1306

x x x x 1 x 0 0 Extension packet on page F1-1298

0 0 0 0 0 1 0 1 Event Counter packet on page F1-1296

0 1 x x 0 1 0 1 Data Trace Match packet on page F1-1294

0 0 0 0 1 1 1 0 Exception Trace packet on page F1-1297

0 1 x x 0 1 ≠ 0b00 Data Trace PC Value packet on page F1-1294

0 1 x x 1 1 ≠ 0b00 Data Trace Data Address packet on page F1-1291

1 0 x x x 1 ≠ 0b00 Data Trace Data Value packet on page F1-1292

x x x x x 0 ≠ 0b00 Instrumentation packet on page F1-1305

0 0 0 1 0 1 x 1 Periodic PC Sample packet on page F1-1310
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. F1-1289
ID072816 Non-Confidential - Beta

F1 ITM and DWT Packet Protocol Specification
F1.1 About the ITM and DWT packets
Figure F1-1 Convention for packet descriptions

In some sections, the figures are split into separate figures for the header byte and payload bytes. For instance, where
the number of payload bytes varies according to a field in the header.

The ITM merges the packets from the ITM and DWT with the Local and Global timestamp, Synchronization, and
other Protocol packets, and forwards them to the trace sink as a single data stream. The trace sink then merges this
data stream with the data from the ETM, if implemented.

01234567

LSBMSB Byte 0

Transmitted first

LSBMSB Byte 1

LSBMSB Byte 2

Transmitted last
F1-1290 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

F1 ITM and DWT Packet Protocol Specification
F1.2 Alphabetical list of DWT and ITM packets
F1.2 Alphabetical list of DWT and ITM packets

F1.2.1 Data Trace Data Address packet

The Data Trace Data Address packet characteristics are:

Purpose Indicates a DWT comparator generated a match, and the address that matched. Data
Address packets are only generated for Data Address range comparator pairs. The address
might be compressed. However, it is not required that Short and Medium packets are
generated when the address bits match.

Attributes Multi-part Hardware source packet comprising:

• 8-bit header.

• 8, 16, or 32-bit payload.

Data Trace Data Address packet header

The Data Trace Data Address packet header bit assignments are:

ID[4:3,0], byte 0 bits [7:6,3]

Hardware Source packet type. Bits [7:3] discriminate between Hardware Source packet types. The
possible values of this field are:

01xx1 Data Trace Data Address packet.

This field reads as 0b011.

CMPN, byte 0 bits [5:4]

DWT comparator index. Defines which comparator generated a match. Data Trace Data Address
packets can be compressed relative to the value in DWT_COMP<n><CMPN>. The number of
traced bits is indicated by the SS field. The remainder of the address bits comes from
DWT_COMP<n><CMPN>. Either comparator in a Data Address range comparator pair can be
used.

SH, byte 0 bit [2]

Source. The possible values of this bit are:

1 Hardware source packet.

This bit reads as 0b1.

SS, byte 0 bits [1:0]

Size. The possible values of this field are:

01 Short Data Address packet.

10 Medium Data Address packet.

11 Long Data Address packet.

The value 0b00 encodes a Protocol packet.

01234567

≠ 0b0011CMPN0 1 Byte 0

SSSHID[0]ID[4:3]
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. F1-1291
ID072816 Non-Confidential - Beta

F1 ITM and DWT Packet Protocol Specification
F1.2 Alphabetical list of DWT and ITM packets
Data Trace Data Address packet payload

When Long Data Address packet, SS == 0b11, the Data Trace Data Address packet payload bit assignments are:

When Medium Data Address packet, SS == 0b10, the Data Trace Data Address packet payload bit assignments are:

When Short Data Address packet, SS == 0b01, the Data Trace Data Address packet payload bit assignments are:

DADDR[31:0], bytes <4:1>, when Long Data Address packet, SS == 0b11

Data address.

DADDR[15:0], bytes <2:1>, when Medium Data Address packet, SS == 0b10

Data address. DADDR[31:16] == DWT_COMP<n><CMPN>[31:16].

DADDR[7:0], byte <1>, when Short Data Address packet, SS == 0b01

Data address. DADDR[31:8] == DWT_COMP<n><CMPN>[31:8].

F1.2.2 Data Trace Data Value packet

The Data Trace Data Value packet characteristics are:

Purpose Indicates a DWT comparator generated a match, and the value that matched.

Attributes Multi-part Hardware source packet comprising:

• 8-bit header.

• 8, 16, or 32-bit payload.

Data Trace Data Value packet header

The Data Trace Data Value packet header bit assignments are:

ID[4:3], byte 0 bits [7:6]

Hardware Source packet type. Bits [7:3] discriminate between Hardware Source packet types. The
possible values of this field are:

10xxx Data Trace Data Value packet.

This field reads as 0b10.

01234567

DADDR[7:0] Byte 1

DADDR[15:8] Byte 2

DADDR[23:16] Byte 3

DADDR[31:24] Byte 4

01234567

DADDR[7:0] Byte 1

DADDR[15:8] Byte 2

01234567

DADDR[7:0] Byte 1

01234567

≠ 0b001WnRCMPN1 0 Byte 0

SSSHID[4:3]
F1-1292 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

F1 ITM and DWT Packet Protocol Specification
F1.2 Alphabetical list of DWT and ITM packets
CMPN, byte 0 bits [5:4]

DWT comparator index. Defines which comparator generated a match.

WnR, byte 0 bit [3]

Write-not-read. The possible values of this bit are:

0 Read.

1 Write.

SH, byte 0 bit [2]

Source. The possible values of this bit are:

1 Hardware source packet.

This bit reads as 0b1.

SS, byte 0 bits [1:0]

Size. The possible values of this field are:

01 Byte Data Value packet.

10 Halfword Data Value packet.

11 Word Data Value packet.

The value 0b00 encodes a Protocol packet.

Data Trace Data Value packet payload

When Byte Data Value packet, SS == 0b01, the Data Trace Data Value packet payload bit assignments are:

When Halfword Data Value packet, SS == 0b10, the Data Trace Data Value packet payload bit assignments are:

When Word Data Value packet, SS == 0b11, the Data Trace Data Value packet payload bit assignments are:

DVALUE[31:0], bytes <4:1>, when Word Data Value packet, SS == 0b11

Data value.

DVALUE[15:0], byte 1 bits [15:0], when Halfword Data Value packet, SS == 0b10

Data value.

DVALUE[7:0], byte <1>, when Byte Data Value packet, SS == 0b01

Data value.

01234567

DVALUE[7:0] Byte 1

01234567

DVALUE[7:0] Byte 1

DVALUE[15:8] Byte 2

01234567

DVALUE[7:0] Byte 1

DVALUE[15:8] Byte 2

DVALUE[23:16] Byte 3

DVALUE[31:24] Byte 4
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. F1-1293
ID072816 Non-Confidential - Beta

F1 ITM and DWT Packet Protocol Specification
F1.2 Alphabetical list of DWT and ITM packets
F1.2.3 Data Trace Match packet

The Data Trace Match packet characteristics are:

Purpose Indicates a DWT comparator generated a match.

Attributes 16-bit Hardware source packet.

The Data Trace Match packet bit assignments are:

Byte 1 bits [7:1]

This field reads as 0b0000000.

MATCH, byte 1 bit [0]

Data Trace Match packet. Discriminates between the Data Trace PC Value packet and the Data
Trace Match packet. The possible values of this bit are:

1 Data Trace Match packet.

This bit reads as one.

ID[4:3,0], byte 0 bits [7:6,3]

Hardware Source packet type. Bits [7:3] discriminate between Hardware Source packet types. The
possible values of this field are:

01xx0 Data Trace PC Value packet or Data Trace Match packet.
Bit [0] of byte 1 discriminates between the Data Trace PC Value packet and the Data
Trace Match packet.

This field reads as 0b010.

CMPN, byte 0 bits [5:4]

DWT comparator index. Defines which comparator generated a match.

SH, byte 0 bit [2]

Source. The possible values of this bit are:

1 Hardware source packet.

This bit reads as 0b1.

SS, byte 0 bits [1:0]

Size. The possible values of this field are:

01 Source packet, 1-byte payload, 2-byte packet.

The value 0b00 encodes a Protocol packet. All other values are reserved. This field reads as 0b01.

F1.2.4 Data Trace PC Value packet

The Data Trace PC Value packet characteristics are:

Purpose Indicates a DWT comparator generated a match, and the address of the instruction that
matched. The address might be compressed. However, it is not required that Short and
Medium packets are generated when the address bits match.

01234567

0 110CMPN0 1 Byte 0

SSSHID[0]ID[4:3]

10 0 0 0 0 0 0 Byte 1

MATCH
F1-1294 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

F1 ITM and DWT Packet Protocol Specification
F1.2 Alphabetical list of DWT and ITM packets
Attributes Multi-part Hardware source packet comprising:

• 8-bit header.

• 8, 16, or 32-bit payload.

Data Trace PC Value packet header

The Data Trace PC Value packet header bit assignments are:

ID[4:3,0], byte 0 bits [7:6,3]

Hardware Source packet type. Bits [7:3] discriminate between Hardware Source packet types. The
possible values of this field are:

01xx0 Data Trace PC Value packet or Data Trace Match packet.
Bit [0] of byte 1 discriminates between the Data Trace PC Value packet and the Data
Trace Match packet.

This field reads as 0b010.

CMPN, byte 0 bits [5:4]

DWT comparator index. Defines which comparator generated a match. Data Trace PC Value
packets can be compressed relative to the value in DWT_COMP<n><CMPN>. The number of
traced bits is indicated by the SS field. The remainder of the address bits comes from
DWT_COMP<n><CMPN>. Either comparator in an Instruction Address range comparator pair can
be used.

Byte 0 bit [3]

This bit reads as 0b0.

SH, byte 0 bit [2]

Source. The possible values of this bit are:

1 Hardware source packet.

This bit reads as 0b1.

SS, byte 0 bits [1:0]

Size. The possible values of this field are:

01 Short PC Value packet.

10 Medium PC Value packet.

11 Long PC Value packet.

The value 0b00 encodes a Protocol packet.

Data Trace PC Value packet payload

When Long PC Value packet, SS == 0b11, the Data Trace PC Value packet payload bit assignments are:

01234567

≠ 0b0010CMPN0 1 Byte 0

SSSHID[0]ID[4:3]

01234567

0PC[7:1] Byte 1

PC[15:8] Byte 2

PC[23:16] Byte 3

PC[31:24] Byte 4
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. F1-1295
ID072816 Non-Confidential - Beta

F1 ITM and DWT Packet Protocol Specification
F1.2 Alphabetical list of DWT and ITM packets
When Medium PC Value packet, SS == 0b10, the Data Trace PC Value packet payload bit assignments are:

When Short PC Value packet, SS == 0b01, the Data Trace PC Value packet payload bit assignments are:

PC[31:1], bytes <4:2>, byte 1 bits [7:1], when Long PC Value packet, SS == 0b11

Instruction address.

PC[15:1], byte <2>, byte 1 bits [7:1], when Medium PC Value packet, SS == 0b10

Instruction address. PC[31:16] == DWT_COMP<n><CMPN>[31:16].

PC[7:1], byte 1 bits [7:1], when Short PC Value packet, SS == 0b01

Instruction address. PC[31:8] == DWT_COMP<n><CMPN>[31:8].

MATCH, byte 1 bit [0]

Data Trace Match packet. Discriminates between the Data Trace PC Value packet and the Data
Trace Match packet. The possible values of this bit are:

0 Data Trace PC Value packet.

This bit reads as zero.

F1.2.5 Event Counter packet

The Event Counter packet characteristics are:

Purpose Indicates one or more DWT counters wraps through zero.

Attributes 16-bit Hardware source packet.

The Event Counter packet bit assignments are:

Byte 1 bits [7:6]

Reserved. This field is RES0.

Cyc, byte 1 bit [5]

POSTCNT timer decremented to zero. See DWT_CTRL for more information on the POSTCNT
timer.

Fold, byte 1 bit [4]

DWT_FOLDCNT counter wrapped from 0xFF to zero.

LSU, byte 1 bit [3]

DWT_LSUCNT counter wrapped from 0xFF to zero.

01234567

0PC[7:1] Byte 1

PC[15:8] Byte 2

01234567

0PC[7:1] Byte 1

MATCH

01234567

0 110 0 0 0 0 Byte 0

SSSHID

CPIExcSleepLSUFoldCycRES0 Byte 1
F1-1296 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

F1 ITM and DWT Packet Protocol Specification
F1.2 Alphabetical list of DWT and ITM packets
Sleep, byte 1 bit [2]

DWT_SLEEPCNT counter wrapped from 0xFF to zero.

Exc, byte 1 bit [1]

DWT_EXCCNT counter wrapped from 0xFF to zero.

CPI, byte 1 bit [0]

DWT_CPICNT counter wrapped from 0xFF to zero.

ID, byte 0 bits [7:3]

Hardware Source packet type. Bits [7:3] discriminate between Hardware Source packet types. The
possible values of this field are:

0b00000 Event Counter packet.

This field reads as 0b00000.

SH, byte 0 bit [2]

Source. The possible values of this bit are:

1 Hardware source packet.

This bit reads as 0b1.

SS, byte 0 bits [1:0]

Size. The possible values of this field are:

01 Source packet, 1-byte payload, 2-byte packet.

The value 0b00 encodes a Protocol packet. All other values are reserved. This field reads as 0b01.

F1.2.6 Exception Trace packet

The Exception Trace packet characteristics are:

Purpose Indicates the PE has entered, exited or returned to an exception.

Attributes 24-bit Hardware source packet.

The Exception Trace packet bit assignments are:

Byte 2 bits [7:6,3:1]

Reserved. This field is RES0.

FN, byte 2 bits [5:4]

Function. The possible values of this field are:

0b01 Entered exception indicated by ExceptionNumber.

0b10 Exited exception indicated by ExceptionNumber.

0b11 Returned to exception indicated by ExceptionNumber.

All other values are reserved.

01234567

1 010 0 0 0 1 Byte 0

SSSHID

ExceptionNumber[7:0] Byte 1

RES0FNRES0 Byte 2

ExceptionNumber[8]
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. F1-1297
ID072816 Non-Confidential - Beta

F1 ITM and DWT Packet Protocol Specification
F1.2 Alphabetical list of DWT and ITM packets
ExceptionNumber, byte 2 bit [0], byte <1>

The exception number.

ID, byte 0 bits [7:3]

Hardware Source packet type. Bits [7:3] discriminate between Hardware Source packet types. The
possible values of this field are:

0b00001 Exception Trace packet.

This field reads as 0b00001.

SH, byte 0 bit [2]

Source. The possible values of this bit are:

1 Hardware source packet.

This bit reads as 0b1.

SS, byte 0 bits [1:0]

Size. The possible values of this field are:

10 Source packet, 2-byte payload, 3-byte packet.

The value 0b00 encodes a Protocol packet. All other values are reserved. This field reads as 0b10.

F1.2.7 Extension packet

The Extension packet characteristics are:

Purpose An Extension packet provides additional information about the identified source. The
amount of information required determines the number of payload bytes, 0-4. The
architecture only defines one use of the Extension packet, to provide a Stimulus port page
number. For this use, SH == 0, and a single byte Extension packet is emitted.

Attributes 8, 16, 24, 32, or 40-bit Protocol packet.

When 1-byte packet, the Extension packet bit assignments are:

When 2-byte packet, the Extension packet bit assignments are:

01234567

0 0SH1EX[2:0]0 Byte 0

SSID[1]C

01234567

0 0SH1EX[2:0]1 Byte 0

SSID[1]

EX[9:3]0 Byte 1

C

F1-1298 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

F1 ITM and DWT Packet Protocol Specification
F1.2 Alphabetical list of DWT and ITM packets
When 3-byte packet, the Extension packet bit assignments are:

When 4-byte packet, the Extension packet bit assignments are:

When 5-byte packet, the Extension packet bit assignments are:

C, byte 4 bit [7]

Continuation bit. This bit reads as zero.

EX[31:3], byte <4>, byte 3 bits [6:0], byte 2 bits [6:0], byte 1 bits [6:0], when 5-byte packet

Extension information.

C, byte 3 bit [7]

Continuation bit. The possible values of this bit are:

0 4-byte packet.

1 5-byte packet.

EX[23:3], byte 3 bits [6:0], byte 2 bits [6:0], byte 1 bits [6:0], when 4-byte packet

Extension information.

01234567

0 0SH1EX[2:0]1 Byte 0

SSID[1]

EX[9:3]1 Byte 1

EX[16:10]0 Byte 2

C

01234567

0 0SH1EX[2:0]1 Byte 0

SSID[1]

EX[9:3]1 Byte 1

EX[16:10]1 Byte 2

EX[23:17]0 Byte 3

C

01234567

0 0SH1EX[2:0]1 Byte 0

SSID[1]

EX[9:3]1 Byte 1

EX[16:10]1 Byte 2

EX[23:17]1 Byte 3

EX[31:24]0 Byte 4

C

ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. F1-1299
ID072816 Non-Confidential - Beta

F1 ITM and DWT Packet Protocol Specification
F1.2 Alphabetical list of DWT and ITM packets
C, byte 2 bit [7]

Continuation bit. The possible values of this bit are:

0 3-byte packet.

1 At least 4-byte packet.

EX[17:3], byte 2 bits [6:0], byte 1 bits [6:0], when 3-byte packet

Extension information.

C, byte 1 bit [7]

Continuation bit. The possible values of this bit are:

0 2-byte packet.

1 At least 3-byte packet.

EX[9:3], byte 1 bits [6:0], when 2-byte packet

Extension information.

C, byte 0 bit [7]

Continuation bit. The possible values of this bit are:

0 1-byte packet.

1 At least 2-byte packet.

EX[2:0], byte 0 bits [6:4]

Extension information.

Note
 If SH == 1, then EX defines PAGE, the Stimulus port page number.

ID[1], byte 0 bit [3]

Protocol packet type. Bits [6:2] discriminate between Protocol packet types. The possible values of
this bit are:

xxx1x Extension packet.

This bit reads as one.

SH, byte 0 bit [2]

Source. The possible values of this bit are:

0 Extension packet for Instrumentation packet.

1 Extension packet for Hardware source packet.

SS, byte 0 bits [1:0]

Packet type. The possible values of this field are:

00 Protocol packet.

Other values encode different sizes of Hardware and Software source packets. This field reads as
0b00.

F1.2.8 Global Timestamp 1 packet

The Global Timestamp 1 packet characteristics are:

Purpose Contains the least significant bits of the global timestamp value. The ITM might compress
this value if it is not generating a full timestamp by omitting significant bits if they are
unchanged from the previous timestamp value.
F1-1300 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

F1 ITM and DWT Packet Protocol Specification
F1.2 Alphabetical list of DWT and ITM packets
Attributes Multi-part Protocol packet comprising:

• 8-bit header.

• 8, 16, 24, or 32-bit payload.

Global Timestamp 1 packet header

The Global Timestamp 1 packet header bit assignments are:

C, byte 0 bit [7]

Continuation bit. This bit reads as one.

ID[4,2:0], byte 0 bits [6,4:2]

Protocol packet type. Bits [6:2] discriminate between Protocol packet types. The possible values of
this field are:

0101 Global Timestamp packet.

This field reads as 0b0101.

T, byte 0 bit [5]

Global Timestamp packet type. The possible values of this bit are:

0 Global Timestamp 1 packet.

This bit reads as 0b0.

SS, byte 0 bits [1:0]

Packet type. The possible values of this field are:

00 Protocol packet.

Other values encode different sizes of Hardware and Software source packets. This field reads as
0b00.

Global Timestamp 1 packet payload

When 7-bit timestamp, the Global Timestamp 1 packet payload bit assignments are:

When 14-bit timestamp, the Global Timestamp 1 packet payload bit assignments are:

01234567

0 01 0 1001 Byte 0

SSID[2:0]TID[4]C

01234567

TS[6:0]0 Byte 1

C

01234567

TS[6:0]1 Byte 1

TS[13:7]0 Byte 2

C

ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. F1-1301
ID072816 Non-Confidential - Beta

F1 ITM and DWT Packet Protocol Specification
F1.2 Alphabetical list of DWT and ITM packets
When 21-bit timestamp, the Global Timestamp 1 packet payload bit assignments are:

When 26-bit or full timestamp, the Global Timestamp 1 packet payload bit assignments are:

C, byte 4 bit [7]

Continuation bit. This bit reads as zero.

Wrap, byte 4 bit [6], when 26-bit or full timestamp

Wrapped. The possible values of this bit are:

0 The value of global timestamp bits TS[47:26] or TS[63:26] have not changed since the
last Global Timestamp 2 packet output by the ITM.

1 The value of global timestamp bits TS[47:26] or TS[63:26] have changed since the last
Global Timestamp 2 packet output by the ITM.

ClkCh, byte 4 bit [5], when 26-bit or full timestamp

Clock change. The possible values of this bit are:

0 The system has not asserted the clock change input to the processor since the last time
the ITM generated a Global Timestamp packet.

1 The system has asserted the clock change input to the processor since the last time the
ITM generated a Global Timestamp packet.

Note
 When the clock change input to the processor is asserted, the ITM must output a full 48-bit or 64-bit

global timestamp value.

TS[25:0], byte 4 bits [4:0], byte 3 bits [6:0], byte 2 bits [6:0], byte 1 bits [6:0], when 26-bit or full timestamp

Global Timestamp.

C, byte 3 bit [7]

Continuation bit. The possible values of this bit are:

0 21-bit timestamp.

1 26-bit or full timestamp.

TS[20:0], byte 3 bits [6:0], byte 2 bits [6:0], byte 1 bits [6:0], when 21-bit timestamp

Global Timestamp. TS[47:21] or TS[63:21] are unchanged.

01234567

TS[6:0]1 Byte 1

TS[13:7]1 Byte 2

TS[20:14]0 Byte 3

C

01234567

TS[6:0]1 Byte 1

TS[13:7]1 Byte 2

TS[20:14]1 Byte 3

TS[25:21]ClkChWrap0 Byte 4

C

F1-1302 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

F1 ITM and DWT Packet Protocol Specification
F1.2 Alphabetical list of DWT and ITM packets
C, byte 2 bit [7]

Continuation bit. The possible values of this bit are:

0 14-bit timestamp.

1 At least 21-bit timestamp.

TS[13:0], byte 2 bits [6:0], byte 1 bits [6:0], when 14-bit timestamp

Global Timestamp. TS[47:14] or TS[63:14] are unchanged.

C, byte 1 bit [7]

Continuation bit. The possible values of this bit are:

0 7-bit timestamp.

1 At least 14-bit timestamp.

TS[6:0], byte 1 bits [6:0], when 7-bit timestamp

Global Timestamp. TS[47:7] or TS[63:7] are unchanged.

F1.2.9 Global Timestamp 2 packet

The Global Timestamp 2 packet characteristics are:

Purpose Provides the most significant bits of a full 48 or 64-bit timestamp.

Attributes Multi-part Protocol packet comprising:

• 8-bit header.

• 32 or 48-bit payload.

Global Timestamp 2 packet header

The Global Timestamp 2 packet header bit assignments are:

C, byte 0 bit [7]

Continuation bit. This bit reads as one.

ID[4,2:0], byte 0 bits [6,4:2]

Protocol packet type. Bits [6:2] discriminate between Protocol packet types. The possible values of
this field are:

0x101 Global Timestamp packet.

This field reads as 0b0101.

T, byte 0 bit [5]

Global Timestamp packet type. The possible values of this bit are:

1 Global Timestamp 2 packet.

This bit reads as 0b1.

SS, byte 0 bits [1:0]

Packet type. The possible values of this field are:

00 Protocol packet.

Other values encode different sizes of Hardware and Software source packets. This field reads as
0b00.

01234567

0 01 0 1101 Byte 0

SSID[2:0]TID[4]C
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. F1-1303
ID072816 Non-Confidential - Beta

F1 ITM and DWT Packet Protocol Specification
F1.2 Alphabetical list of DWT and ITM packets
Global Timestamp 2 packet payload

When 48-bit Global Timestamp 2 packet, the Global Timestamp 2 packet payload bit assignments are:

When 64-bit Global Timestamp 2 packet, the Global Timestamp 2 packet payload bit assignments are:

C, byte 6 bit [7]

Continuation bit. This bit reads as zero.

Byte 6 bits [6:3], when 64-bit Global Timestamp 2 packet

Reserved. This field is RES0.

TS[63:26], byte 6 bits [2:0], byte 5 bits [6:0], byte 4 bits [6:0], byte 3 bits [6:0], byte 2 bits [6:0], byte 1 bits
[6:0], when 64-bit Global Timestamp 2 packet

Most significant bits of the Global Timestamp.

Byte 5 bit [7], byte 3 bit [7], byte 2 bit [7], byte 1 bit [7]

Continuation bits. This field is RAO.

C, byte 4 bit [7]

Continuation bit. The possible values of this bit are:

0 The packet is 5 bytes long. 48-bit timestamp is implemented.

1 The packet is 7 bytes long. 64-bit timestamp is implemented.

Byte 4 bits [6:1], when 48-bit Global Timestamp 2 packet

Reserved. This field is RES0.

TS[47:26], byte 4 bit [0], byte 3 bits [6:0], byte 2 bits [6:0], byte 1 bits [6:0], when 48-bit Global Timestamp 2
packet

Most significant bits of the Global Timestamp.

01234567

TS[32:26]1 Byte 1

TS[39:33]1 Byte 2

TS[46:40]1 Byte 3

TS[47]RES00 Byte 4

C

01234567

TS[32:26]1 Byte 1

TS[39:33]1 Byte 2

TS[46:40]1 Byte 3

TS[53:47]1 Byte 4

TS[60:54]1 Byte 5

TS[63:61]RES00 Byte 6

C

F1-1304 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

F1 ITM and DWT Packet Protocol Specification
F1.2 Alphabetical list of DWT and ITM packets
F1.2.10 Instrumentation packet

The Instrumentation packet characteristics are:

Purpose A software write to an ITM stimulus port generates an Instrumentation packet.

Attributes Multi-part Software source packet comprising:

• 8-bit header.

• 8, 16, or 32-bit payload.

Instrumentation packet header

The Instrumentation packet header bit assignments are:

A, byte 0 bits [7:3]

Port number, 0-31.

SH, byte 0 bit [2]

Source. The possible values of this bit are:

0 Instrumentation packet (Software source).

This bit reads as 0b0.

SS, byte 0 bits [1:0]

Size. The possible values of this field are:

01 Byte Instrumentation packet.

10 Halfword Instrumentation packet.

11 Word Instrumentation packet.

The value 0b00 encodes a Protocol packet.

Instrumentation packet payload

When Byte Instrumentation packet, SS == 0b01, the Instrumentation packet payload bit assignments are:

When Halfword Instrumentation packet, SS == 0b10, the Instrumentation packet payload bit assignments are:

01234567

≠ 0b000A Byte 0

SSSH

01234567

Payload[7:0] Byte 1

01234567

Payload[7:0] Byte 1

Payload[15:8] Byte 2
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. F1-1305
ID072816 Non-Confidential - Beta

F1 ITM and DWT Packet Protocol Specification
F1.2 Alphabetical list of DWT and ITM packets
When Word Instrumentation packet, SS == 0b11, the Instrumentation packet payload bit assignments are:

Payload[31:0], bytes <4:1>, when Word Instrumentation packet, SS == 0b11

Payload value.

Payload[15:0], byte 1 bits [15:0], when Halfword Instrumentation packet, SS == 0b10

Payload value.

Payload[7:0], byte <1>, when Byte Instrumentation packet, SS == 0b01

Payload value.

F1.2.11 Local Timestamp 1 packet

The Local Timestamp 1 packet characteristics are:

Purpose A Local Timestamp 1 packet encodes timestamp information, for generic control and
synchronization, based on a timestamp counter in the ITM. To reduce the trace bandwidth:

• The local timestamping scheme uses delta timestamps, meaning each local
timestamp value gives the interval since the generation of the previous Local
timestamp packet.

• The Local timestamp packet length, 1-5 bytes, depends on the required timestamp
value.

Whenever the ITM outputs a Local timestamp packet, it clears its timestamp counter to
zero.Provides the most significant bits of a full 48 or 64-bit timestamp. If the ITM outputs
the Local Timestamp synchronously to the corresponding ITM or DWT data, and the
required timestamp value is in the range 1-6, it uses the Local Timestamp 2 packet.

Attributes Multi-part Protocol packet comprising:

• 8-bit header.

• 8, 16, 24, or 32-bit payload.

Local Timestamp 1 packet header

The Local Timestamp 1 packet header bit assignments are:

C, byte 0 bit [7]

Continuation bit. This bit reads as one.

ID[4,1:0], byte 0 bits [6,3:2]

Protocol packet type. Bits [6:2] discriminate between Protocol packet types. The possible values of
this field are:

1xx00 Local Timestamp 1 packet.

This field reads as 0b100.

01234567

Payload[7:0] Byte 1

Payload[15:8] Byte 2

Payload[23:16] Byte 3

Payload[31:24] Byte 4

01234567

0 00 0TC11 Byte 0

SSID[1:0]ID[4]C
F1-1306 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

F1 ITM and DWT Packet Protocol Specification
F1.2 Alphabetical list of DWT and ITM packets
TC, byte 0 bits [5:4]

Indicates the relationship between the generation of the Local timestamp packet and the
corresponding ITM or DWT data packet. The possible values of this field are:

00 The local timestamp value is synchronous to the corresponding ITM or DWT data. The
value in the TS field is the timestamp counter value when the ITM or DWT packet is
generated.

01 The local timestamp value is delayed relative to the ITM or DWT data. The value in the
TS field is the timestamp counter value when the Local timestamp packet is generated.

Note
 The local timestamp value corresponding to the previous ITM or DWT packet is

UNKNOWN, but must be between the previous and current local timestamp values.

10 Output of the ITM or DWT packet corresponding to this Local timestamp packet is
delayed relative to the associated event. The value in the TS field is the timestamp
counter value when the ITM or DWT packets is generated.
This encoding indicates that the ITM or DWT packet was delayed relative to other trace
output packets.

11 Output of the ITM or DWT packet corresponding to this Local timestamp packet is
delayed relative to the associated event, and this Local timestamp packet is delayed
relative to the ITM or DWT data. This is a combination of the conditions indicated by
values 0b01 and 0b10.

SS, byte 0 bits [1:0]

Packet type. The possible values of this field are:

00 Protocol packet.

Other values encode different sizes of Hardware and Software source packets. This field reads as
0b00.

Local Timestamp 1 packet payload

When 7-bit timestamp, the Local Timestamp 1 packet payload bit assignments are:

When 14-bit timestamp, the Local Timestamp 1 packet payload bit assignments are:

When 21-bit timestamp, the Local Timestamp 1 packet payload bit assignments are:

01234567

TS[6:0]0 Byte 1

C

01234567

TS[6:0]1 Byte 1

TS[13:7]0 Byte 2

C

01234567

TS[6:0]1 Byte 1

TS[13:7]1 Byte 2

TS[20:14]0 Byte 3

C

ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. F1-1307
ID072816 Non-Confidential - Beta

F1 ITM and DWT Packet Protocol Specification
F1.2 Alphabetical list of DWT and ITM packets
When 28-bit timestamp, the Local Timestamp 1 packet payload bit assignments are:

C, byte 4 bit [7]

Continuation bit. This bit reads as zero.

TS[27:0], byte 4 bits [6:0], byte 3 bits [6:0], byte 2 bits [6:0], byte 1 bits [6:0], when 28-bit timestamp

Local Timestamp.

C, byte 3 bit [7]

Continuation bit. The possible values of this bit are:

0 21-bit timestamp.

1 28-bit timestamp.

TS[20:0], byte 3 bits [6:0], byte 2 bits [6:0], byte 1 bits [6:0], when 21-bit timestamp

Local Timestamp. TS[27:21] are zero.

C, byte 2 bit [7]

Continuation bit. The possible values of this bit are:

0 14-bit timestamp.

1 At least 21-bit timestamp.

TS[13:0], byte 2 bits [6:0], byte 1 bits [6:0], when 14-bit timestamp

Local Timestamp. TS[27:14] are zero.

C, byte 1 bit [7]

Continuation bit. The possible values of this bit are:

0 7-bit timestamp.

1 At least 14-bit timestamp.

TS[6:0], byte 1 bits [6:0], when 7-bit timestamp

Local Timestamp. TS[27:7] are zero.

F1.2.12 Local Timestamp 2 packet

The Local Timestamp 2 packet characteristics are:

Purpose If the ITM outputs the Local Timestamp synchronously to the corresponding ITM or DWT
data, and the required timestamp value is in the range 1-6, it uses the Local Timestamp 2
packet. For more information, see Local Timestamp 1 packet.

Attributes 8-bit Protocol packet.

01234567

TS[6:0]1 Byte 1

TS[13:7]1 Byte 2

TS[20:14]1 Byte 3

TS[27:21]0 Byte 4

C

F1-1308 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

F1 ITM and DWT Packet Protocol Specification
F1.2 Alphabetical list of DWT and ITM packets
The Local Timestamp 2 packet bit assignments are:

C, byte 0 bit [7]

Continuation bit. This bit reads as zero.

TS, byte 0 bits [6:4]

Local timestamp value, in the range 0b001 to 0b110. The value 0b000 encodes a Synchronization
packet and the value 0b111 encodes an Overflow packet.

ID[1:0], byte 0 bits [3:2]

Protocol packet type. Bits [6:2] discriminate between Protocol packet types. The possible values of
this field are:

xxx00 Local Timestamp 2 packet.

This field reads as 0b00.

SS, byte 0 bits [1:0]

Packet type. The possible values of this field are:

00 Protocol packet.

Other values encode different sizes of Hardware and Software source packets. This field reads as
0b00.

F1.2.13 Overflow packet

The Overflow packet characteristics are:

Purpose The ITM outputs an Overflow packet if:

• Software writes to a Stimulus Port register when the stimulus port output buffer is
full.

• The DWT attempts to generate a Hardware source packet when the DWT output
buffer is full.

• The Local timestamp counter overflows.

The Overflow packet comprises a header with no payload.

Attributes 8-bit Protocol packet.

The Overflow packet bit assignments are:

C, byte 0 bit [7]

Continuation bit. This bit reads as zero.

ID, byte 0 bits [6:2]

Protocol packet type. Bits [6:2] discriminate between Protocol packet types. The possible values of
this field are:

11100 Overflow packet.

This field reads as 0b11100.

01234567

0 00 0≠ 0b000 && ≠ 0b1110 Byte 0

SSID[1:0]TSC

01234567

0 01 1 1 0 00 Byte 0

SSIDC
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. F1-1309
ID072816 Non-Confidential - Beta

F1 ITM and DWT Packet Protocol Specification
F1.2 Alphabetical list of DWT and ITM packets
SS, byte 0 bits [1:0]

Packet type. The possible values of this field are:

00 Protocol packet.

Other values encode different sizes of Hardware and Software source packets. This field reads as
0b00.

F1.2.14 Periodic PC Sample packet

The Periodic PC Sample packet characteristics are:

Purpose The DWT unit generates PC samples at fixed time intervals, with an accuracy of one clock
cycle. The POSTCNT counter period determines the PC sampling interval. Software
configures the DWT_CTRL.CYCTAP and DWT_CTRL.POSTINIT fields to determine
how POSTCNT relates to DWT_CYCCNT. The DWT_CTRL.PCSAMPLENA bit enables
PC sampling.

Attributes Multi-part Hardware source packet comprising:

• 8-bit header.

• 8 or 32-bit payload.

Periodic PC Sample packet header

The Periodic PC Sample packet header bit assignments are:

ID, byte 0 bits [7:3]

Discriminator ID. The possible values of this field are:

0b00010 Periodic PC Sample packet.

This field reads as 0b00010.

SH, byte 0 bit [2]

Source. The possible values of this bit are:

1 Hardware source packet.

This bit reads as 0b1.

SS, byte 0 bits [1:0]

Size. The possible values of this field are:

01 Source packet, 1-byte payload, 2-byte packet.

11 Source packet, 4-byte payload, 5-byte packet.

SS == 0b10 is invalid for a Periodic PC Sample packet.

The value 0b00 encodes a Protocol packet.

This field reads as 0bx1.

01234567

110 0 0 1 0 Byte 0

SSSHID
F1-1310 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

F1 ITM and DWT Packet Protocol Specification
F1.2 Alphabetical list of DWT and ITM packets
Periodic PC Sample packet payload

When Allowed and not sleeping, SS == 0b11, the Periodic PC Sample packet payload bit assignments are:

When Allowed and sleeping, SS == 0b01, the Periodic PC Sample packet payload bit assignments are:

When Prohibited, SS == 0b01, the Periodic PC Sample packet payload bit assignments are:

PC, bytes <4:1>, when Allowed and not sleeping, SS == 0b11

Periodic PC sample value.

Byte <1>, when Allowed and sleeping, SS == 0b01

This field reads as 0b00000000.

Byte <1>, when Prohibited, SS == 0b01

This field reads as 0b11111111.

F1.2.15 Synchronization packet

The Synchronization packet characteristics are:

Purpose A Synchronization packet provides a unique pattern in the bit stream. Trace capture
hardware can identify this pattern and use it to identify the alignment of packet bytes in the
bitstream.

Attributes 48-bit Protocol packet.

A Synchronization packet is at least forty-seven 0 bits followed by single 1 bit. This section
describes the smallest possible Synchronization packet.

The Synchronization packet bit assignments are:

Byte 5 bit [7]

Indicates the end of the Synchronization packet. This bit reads as one.

01234567

PC[7:0] Byte 1

PC[15:8] Byte 2

PC[23:16] Byte 3

PC[31:24] Byte 4

01234567

0 0 0 0 0 0 0 0 Byte 1

01234567

1 1 1 1 1 1 1 1 Byte 1

01234567

0 0 0 0 0 0 0 0 Byte 0

RAZ Byte 1

RAZ Byte 2

RAZ Byte 3

RAZ Byte 4

RAZ1 Byte 5
ARM DDI 0553A.b Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. F1-1311
ID072816 Non-Confidential - Beta

F1 ITM and DWT Packet Protocol Specification
F1.2 Alphabetical list of DWT and ITM packets
Byte 5 bits [6:0], bytes <4:1>

This field is RAZ.

Byte <0>

This field reads as 0b00000000.
F1-1312 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.b
Non-Confidential - Beta ID072816

	ARMv8-M Architecture Reference Manual
	Contents
	Preface
	About this book
	Using this book
	Part A, ARMv8-M Architecture Introduction and Overview
	Part B, ARMv8-M Architecture Rules
	Part C, ARMv8-M Instructions
	Part D, ARMv8-M Registers
	Part E, ARMv8-M Pseudocode
	Part F, Packet Protocols

	Conventions
	Typographic conventions
	Signals
	Numbers
	Pseudocode descriptions
	Assembler syntax descriptions

	Additional reading
	ARM publications
	Other publications

	Feedback
	Feedback on this book

	Part A: ARMv8-M Architecture Introduction and Overview
	A1: Introduction
	A1.1 About the ARMv8 architecture, and architecture profiles
	A1.2 The ARMv8-M architecture profile
	A1.2.1 The ARMv8-M instruction set

	A1.3 ARMv8-M variants

	Part B: ARMv8-M Architecture Rules
	B1: Rules Overview
	B2: Resets
	B2.1 Resets, Cold reset and Warm reset

	B3: Power Management
	B3.1 Power management
	B3.1.1 The Wait for Event (WFE) instruction
	B3.1.2 The Event register
	B3.1.3 The Wait for Interrupt (WFI) instruction

	B4: Programmers’ Model
	B4.1 PE modes, Thread mode and Handler mode
	B4.2 Privileged and unprivileged execution
	B4.3 Registers
	B4.4 XPSR, APSR, IPSR, and EPSR
	B4.4.1 Application Program Status Register (APSR)
	B4.4.2 Interrupt Program Status Register (IPSR)
	B4.4.3 Execution Program Status Register (EPSR)

	B4.5 Special-purpose register updates and the memory order model
	B4.6 Security states, Secure state and Non-secure state
	B4.7 Security states, register banking between them
	B4.8 Stack pointer
	B4.9 Exception numbers and exception priority numbers
	B4.10 Exception enable, pending, and active bits
	B4.11 Security states, exception banking
	B4.12 Faults
	B4.13 Exception states
	B4.14 Priority model
	B4.15 Secure address protection
	B4.16 Security state transitions
	B4.17 Function calls from Secure state to Non-secure state
	B4.18 Function returns from Non-secure state
	B4.19 Exception handling
	B4.20 Exception entry, context stacking
	B4.21 Exception entry, register clearing after context stacking
	B4.22 Stack limit checks
	B4.23 Exception return
	B4.24 Integrity signature
	B4.25 Exceptions during exception entry
	B4.26 Exceptions during exception return
	B4.27 Tail-chaining
	B4.28 Exceptions, instruction resume or instruction restart
	B4.29 Vector tables
	B4.30 Hardware-controlled priority escalation to HardFault
	B4.31 Special-purpose mask registers, PRIMASK, BASEPRI, FAULTMASK, for software-controlled priority boosting
	B4.32 Lockup
	B4.32.1 Instruction-related lockup behavior
	B4.32.2 Exception-related lockup behavior

	B4.33 Exception during a singleword load operation
	B4.34 Special-purpose CONTROL register
	B4.35 Saving context on process switch
	B4.36 Context Synchronization Operation
	B4.37 Coprocessor support

	B5: Floating-point Support
	B5.1 The optional Floating-point Extension, FPv5
	B5.2 About the Floating-point Status and Control Register (FPSCR)
	B5.3 Registers for floating-point data processing, S0-S31 or D0-D15
	B5.4 Floating-point standards and terminology
	B5.5 Floating-point data representable
	B5.6 Floating-point encoding formats, half-precision, single-precision, and double-precision
	B5.7 The IEEE 754 floating-point exceptions
	B5.8 The Flush-to-zero mode
	B5.9 The Default NaN mode, and NaN handling
	B5.10 The Default NaN
	B5.11 Combinations of floating-point exceptions
	B5.12 Priority of floating-point exceptions relative to other floating-point exceptions

	B6: Memory Model
	B6.1 Memory accesses
	B6.2 Address space
	B6.3 Endianness
	B6.4 Alignment behavior
	B6.5 Atomicity
	B6.5.1 Single-copy atomicity
	B6.5.2 Multi-copy atomicity

	B6.6 Concurrent modification and execution of instructions
	B6.7 Observability and completion of memory accesses
	B6.8 Ordering requirements for memory accesses
	B6.9 Ordering of implicit memory accesses
	B6.10 Ordering of explicit memory accesses
	B6.11 Memory barriers
	B6.11.1 Instruction Synchronization Barrier
	B6.11.2 Data Memory Barrier
	B6.11.3 Data Synchronization Barrier

	B6.12 Shareability domains
	B6.13 Shareability attributes
	B6.14 Normal memory
	B6.15 Device memory
	B6.16 Device memory attributes
	B6.16.1 Gathering and non-Gathering Device memory attributes
	B6.16.2 Reordering and non-Reordering Device memory attributes
	B6.16.3 Early Write Acknowledgement and no Early Write Acknowledgement Device memory attributes

	B6.17 Memory access restrictions
	B6.18 Mismatched memory attributes
	B6.19 Load-Exclusive and Store-Exclusive accesses to Normal memory
	B6.20 Load-Acquire and Store-Release accesses to memory
	B6.21 Caches
	B6.21.1 Cache identification
	B6.21.2 Cache enabling and disabling
	B6.21.3 General cache behavior
	B6.21.4 Cache behavior at reset

	B6.22 Behavior of Preload Data (PLD) and Preload Instruction (PLI) instructions with caches
	B6.23 Branch predictors
	B6.24 Cache maintenance operations
	B6.25 Branch predictor maintenance operations

	B7: Synchronization and Semaphores
	B7.1 Exclusive access instructions
	B7.2 Exclusive access instructions and Non-shareable memory locations
	B7.3 Local monitors
	B7.4 Exclusive access instructions and shareable memory locations
	B7.5 The global monitor
	B7.6 Load-Exclusive and Store-Exclusive instruction usage restrictions
	B7.7 Use of WFE and SEV instructions by spinlocks

	B8: The System Address Map
	B8.1 System address map
	B8.2 The System region of the system address map
	B8.3 The System Control Space (SCS)

	B9: The ARMv8-M Protected Memory System Architecture
	B9.1 MPU definition
	B9.2 MPU operation

	B10: The System Timer, SysTick
	B10.1 The system timer, SysTick

	B11: Nested Vectored Interrupt Controller
	B11.1 NVIC definition
	B11.2 NVIC operation

	B12: Debug
	B12.1 About debug
	B12.1.1 Debug feature overview
	B12.1.2 Debug mechanisms
	B12.1.3 Debug resources
	B12.1.4 Trace
	B12.1.5 Levels of debug

	B12.2 Accessing debug features
	B12.2.1 ROM table

	B12.3 Debug authentication interface
	B12.3.1 Halting debug authentication
	B12.3.2 DebugMonitor authentication
	B12.3.3 Non-invasive debug authentication
	B12.3.4 DAP access permissions

	B12.4 Multiprocessor support
	B12.4.1 External debug request
	B12.4.2 Cross-halt event
	B12.4.3 External restart request

	B12.5 CoreSight and identification registers
	B12.6 Debug event behavior
	B12.6.1 About debug events
	B12.6.2 Debug stepping
	B12.6.3 Vector catch
	B12.6.4 Breakpoint instructions

	B12.7 Exiting Debug state
	B12.8 Debug System registers

	B13: Debug and trace components
	B13.1 Instrumentation Trace Macrocell
	B13.1.1 About the ITM
	B13.1.2 ITM operation
	B13.1.3 ITM_STIM<n> register access permissions
	B13.1.4 Timestamp support
	B13.1.5 Synchronization support
	B13.1.6 Continuation bits

	B13.2 Data Watchpoint and Trace unit
	B13.2.1 About the DWT
	B13.2.2 DWT unit operation
	B13.2.3 Constraints on programming DWT comparators
	B13.2.4 CMPMATCH[N] trigger events
	B13.2.5 Matching in detail
	B13.2.6 DWT match restrictions and relaxations
	B13.2.7 DWT trace restrictions and relaxations
	B13.2.8 DWT counter definitions
	B13.2.9 CYCCNT cycle counter and related timers
	B13.2.10 Profiling counter support
	B13.2.11 Generating overflow packets from event counters

	B13.3 Embedded Trace Macrocell
	B13.4 Trace Port Interface Unit
	B13.5 Flash Patch and Breakpoint unit
	B13.5.1 About the FPB unit
	B13.5.2 FPB unit operation

	Part C: ARMv8-M Instruction Set
	C1: Instruction Set Overview
	C1.1 Instruction set
	C1.2 Instruction set, interworking support
	C1.3 Instruction set, interstating support
	C1.4 Format of instruction descriptions
	C1.4.1 The title
	C1.4.2 An introduction to the instruction
	C1.4.3 The instruction encoding or encodings
	C1.4.4 Any alias conditions, if applicable
	C1.4.5 A list of the assembler symbols for the instruction
	C1.4.6 Pseudocode describing how the instruction operates
	C1.4.7 Notes, if applicable

	C1.5 Standard assembler syntax fields
	C1.6 Conditional execution
	C1.6.1 Pseudocode details of conditional execution
	C1.6.2 Conditional execution of undefined instructions
	C1.6.3 ITSTATE
	C1.6.4 Unified Assembler Language

	C1.7 Instruction set, encoding
	C1.7.1 UNDEFINED and UNPREDICTABLE instruction set space
	C1.7.2 Use of 0b1111 as a register specifier
	C1.7.3 Use of 0b1101 as a register specifier

	C1.8 Modified immediate constants
	C1.8.1 Carry out
	C1.8.2 Operation of modified immediate constants

	C1.9 Pseudocode descriptions of operations on general-purpose registers and PC
	C1.10 NOP-compatible hint instructions

	C2: Instruction Specification
	C2.1 Top level T32 instruction set encoding
	C2.2 16-bit T32 instruction encoding
	C2.2.1 Shift (immediate), add, subtract, move, and compare
	C2.2.2 Data-processing (two low registers)
	C2.2.3 Special data instructions and branch and exchange
	C2.2.4 Load/store (register offset)
	C2.2.5 Load/store word/byte (immediate offset)
	C2.2.6 Load/store halfword (immediate offset)
	C2.2.7 Load/store (SP-relative)
	C2.2.8 Add PC/SP (immediate)
	C2.2.9 Miscellaneous 16-bit instructions
	C2.2.10 Load/store multiple
	C2.2.11 Conditional branch, and Supervisor Call

	C2.3 32-bit T32 instruction encoding
	C2.3.1 Load/store (multiple, dual, exclusive, acquire-release), table branch
	C2.3.2 Data-processing (shifted register)
	C2.3.3 Data-processing (modified immediate)
	C2.3.4 Data-processing (plain binary immediate)
	C2.3.5 Branches and miscellaneous control
	C2.3.6 Load/store single
	C2.3.7 Data-processing (register)
	C2.3.8 Multiply, multiply accumulate, and absolute difference
	C2.3.9 Long multiply and divide
	C2.3.10 Coprocessor and floating-point instructions

	C2.4 Alphabetical list of instructions
	C2.4.1 ADC (immediate)
	C2.4.2 ADC (register)
	C2.4.3 ADD (SP plus immediate)
	C2.4.4 ADD (SP plus register)
	C2.4.5 ADD (immediate)
	C2.4.6 ADD (immediate, to PC)
	C2.4.7 ADD (register)
	C2.4.8 ADR
	C2.4.9 AND (immediate)
	C2.4.10 AND (register)
	C2.4.11 ASR (immediate)
	C2.4.12 ASR (register)
	C2.4.13 ASRS (immediate)
	C2.4.14 ASRS (register)
	C2.4.15 B
	C2.4.16 BFC
	C2.4.17 BFI
	C2.4.18 BIC (immediate)
	C2.4.19 BIC (register)
	C2.4.20 BKPT
	C2.4.21 BL
	C2.4.22 BLX, BLXNS
	C2.4.23 BX, BXNS
	C2.4.24 CBNZ, CBZ
	C2.4.25 CDP, CDP2
	C2.4.26 CLREX
	C2.4.27 CLZ
	C2.4.28 CMN (immediate)
	C2.4.29 CMN (register)
	C2.4.30 CMP (immediate)
	C2.4.31 CMP (register)
	C2.4.32 CPS
	C2.4.33 DBG
	C2.4.34 DMB
	C2.4.35 DSB
	C2.4.36 EOR (immediate)
	C2.4.37 EOR (register)
	C2.4.38 FLDMDBX, FLDMIAX
	C2.4.39 FSTMDBX, FSTMIAX
	C2.4.40 ISB
	C2.4.41 IT
	C2.4.42 LDA
	C2.4.43 LDAB
	C2.4.44 LDAEX
	C2.4.45 LDAEXB
	C2.4.46 LDAEXH
	C2.4.47 LDAH
	C2.4.48 LDC, LDC2 (immediate)
	C2.4.49 LDC, LDC2 (literal)
	C2.4.50 LDM, LDMIA, LDMFD
	C2.4.51 LDMDB, LDMEA
	C2.4.52 LDR (immediate)
	C2.4.53 LDR (literal)
	C2.4.54 LDR (register)
	C2.4.55 LDRB (immediate)
	C2.4.56 LDRB (literal)
	C2.4.57 LDRB (register)
	C2.4.58 LDRBT
	C2.4.59 LDRD (immediate)
	C2.4.60 LDRD (literal)
	C2.4.61 LDREX
	C2.4.62 LDREXB
	C2.4.63 LDREXH
	C2.4.64 LDRH (immediate)
	C2.4.65 LDRH (literal)
	C2.4.66 LDRH (register)
	C2.4.67 LDRHT
	C2.4.68 LDRSB (immediate)
	C2.4.69 LDRSB (literal)
	C2.4.70 LDRSB (register)
	C2.4.71 LDRSBT
	C2.4.72 LDRSH (immediate)
	C2.4.73 LDRSH (literal)
	C2.4.74 LDRSH (register)
	C2.4.75 LDRSHT
	C2.4.76 LDRT
	C2.4.77 LSL (immediate)
	C2.4.78 LSL (register)
	C2.4.79 LSLS (immediate)
	C2.4.80 LSLS (register)
	C2.4.81 LSR (immediate)
	C2.4.82 LSR (register)
	C2.4.83 LSRS (immediate)
	C2.4.84 LSRS (register)
	C2.4.85 MCR, MCR2
	C2.4.86 MCRR, MCRR2
	C2.4.87 MLA
	C2.4.88 MLS
	C2.4.89 MOV (immediate)
	C2.4.90 MOV (register)
	C2.4.91 MOV, MOVS (register-shifted register)
	C2.4.92 MOVT
	C2.4.93 MRC, MRC2
	C2.4.94 MRRC, MRRC2
	C2.4.95 MRS
	C2.4.96 MSR (register)
	C2.4.97 MUL
	C2.4.98 MVN (immediate)
	C2.4.99 MVN (register)
	C2.4.100 NOP
	C2.4.101 ORN (immediate)
	C2.4.102 ORN (register)
	C2.4.103 ORR (immediate)
	C2.4.104 ORR (register)
	C2.4.105 PKHBT, PKHTB
	C2.4.106 PLD (immediate)
	C2.4.107 PLD (literal)
	C2.4.108 PLD (register)
	C2.4.109 PLI (immediate, literal)
	C2.4.110 PLI (register)
	C2.4.111 POP
	C2.4.112 PUSH
	C2.4.113 QADD
	C2.4.114 QADD16
	C2.4.115 QADD8
	C2.4.116 QASX
	C2.4.117 QDADD
	C2.4.118 QDSUB
	C2.4.119 QSAX
	C2.4.120 QSUB
	C2.4.121 QSUB16
	C2.4.122 QSUB8
	C2.4.123 RBIT
	C2.4.124 REV
	C2.4.125 REV16
	C2.4.126 REVSH
	C2.4.127 ROR (immediate)
	C2.4.128 ROR (register)
	C2.4.129 RORS (immediate)
	C2.4.130 RORS (register)
	C2.4.131 RRX
	C2.4.132 RRXS
	C2.4.133 RSB (immediate)
	C2.4.134 RSB (register)
	C2.4.135 SADD16
	C2.4.136 SADD8
	C2.4.137 SASX
	C2.4.138 SBC (immediate)
	C2.4.139 SBC (register)
	C2.4.140 SBFX
	C2.4.141 SDIV
	C2.4.142 SEL
	C2.4.143 SEV
	C2.4.144 SG
	C2.4.145 SHADD16
	C2.4.146 SHADD8
	C2.4.147 SHASX
	C2.4.148 SHSAX
	C2.4.149 SHSUB16
	C2.4.150 SHSUB8
	C2.4.151 SMLABB, SMLABT, SMLATB, SMLATT
	C2.4.152 SMLAD, SMLADX
	C2.4.153 SMLAL
	C2.4.154 SMLALBB, SMLALBT, SMLALTB, SMLALTT
	C2.4.155 SMLALD, SMLALDX
	C2.4.156 SMLAWB, SMLAWT
	C2.4.157 SMLSD, SMLSDX
	C2.4.158 SMLSLD, SMLSLDX
	C2.4.159 SMMLA, SMMLAR
	C2.4.160 SMMLS, SMMLSR
	C2.4.161 SMMUL, SMMULR
	C2.4.162 SMUAD, SMUADX
	C2.4.163 SMULBB, SMULBT, SMULTB, SMULTT
	C2.4.164 SMULL
	C2.4.165 SMULWB, SMULWT
	C2.4.166 SMUSD, SMUSDX
	C2.4.167 SSAT
	C2.4.168 SSAT16
	C2.4.169 SSAX
	C2.4.170 SSUB16
	C2.4.171 SSUB8
	C2.4.172 STC, STC2
	C2.4.173 STL
	C2.4.174 STLB
	C2.4.175 STLEX
	C2.4.176 STLEXB
	C2.4.177 STLEXH
	C2.4.178 STLH
	C2.4.179 STM, STMIA, STMEA
	C2.4.180 STMDB, STMFD
	C2.4.181 STR (immediate)
	C2.4.182 STR (register)
	C2.4.183 STRB (immediate)
	C2.4.184 STRB (register)
	C2.4.185 STRBT
	C2.4.186 STRD (immediate)
	C2.4.187 STREX
	C2.4.188 STREXB
	C2.4.189 STREXH
	C2.4.190 STRH (immediate)
	C2.4.191 STRH (register)
	C2.4.192 STRHT
	C2.4.193 STRT
	C2.4.194 SUB (SP minus immediate)
	C2.4.195 SUB (SP minus register)
	C2.4.196 SUB (immediate)
	C2.4.197 SUB (immediate, from PC)
	C2.4.198 SUB (register)
	C2.4.199 SVC
	C2.4.200 SXTAB
	C2.4.201 SXTAB16
	C2.4.202 SXTAH
	C2.4.203 SXTB
	C2.4.204 SXTB16
	C2.4.205 SXTH
	C2.4.206 TBB, TBH
	C2.4.207 TEQ (immediate)
	C2.4.208 TEQ (register)
	C2.4.209 TST (immediate)
	C2.4.210 TST (register)
	C2.4.211 TT, TTT, TTA, TTAT
	C2.4.212 UADD16
	C2.4.213 UADD8
	C2.4.214 UASX
	C2.4.215 UBFX
	C2.4.216 UDF
	C2.4.217 UDIV
	C2.4.218 UHADD16
	C2.4.219 UHADD8
	C2.4.220 UHASX
	C2.4.221 UHSAX
	C2.4.222 UHSUB16
	C2.4.223 UHSUB8
	C2.4.224 UMAAL
	C2.4.225 UMLAL
	C2.4.226 UMULL
	C2.4.227 UQADD16
	C2.4.228 UQADD8
	C2.4.229 UQASX
	C2.4.230 UQSAX
	C2.4.231 UQSUB16
	C2.4.232 UQSUB8
	C2.4.233 USAD8
	C2.4.234 USADA8
	C2.4.235 USAT
	C2.4.236 USAT16
	C2.4.237 USAX
	C2.4.238 USUB16
	C2.4.239 USUB8
	C2.4.240 UXTAB
	C2.4.241 UXTAB16
	C2.4.242 UXTAH
	C2.4.243 UXTB
	C2.4.244 UXTB16
	C2.4.245 UXTH
	C2.4.246 VABS
	C2.4.247 VADD
	C2.4.248 VCMP
	C2.4.249 VCMPE
	C2.4.250 VCVT (between double-precision and single-precision)
	C2.4.251 VCVT (between floating-point and fixed-point)
	C2.4.252 VCVT (floating-point to integer)
	C2.4.253 VCVT (integer to floating-point)
	C2.4.254 VCVTA
	C2.4.255 VCVTB
	C2.4.256 VCVTM
	C2.4.257 VCVTN
	C2.4.258 VCVTP
	C2.4.259 VCVTR
	C2.4.260 VCVTT
	C2.4.261 VDIV
	C2.4.262 VFMA
	C2.4.263 VFMS
	C2.4.264 VFNMA
	C2.4.265 VFNMS
	C2.4.266 VLDM
	C2.4.267 VLDR
	C2.4.268 VLLDM
	C2.4.269 VLSTM
	C2.4.270 VMAXNM
	C2.4.271 VMINNM
	C2.4.272 VMLA
	C2.4.273 VMLS
	C2.4.274 VMOV (between general-purpose register and single-precision register)
	C2.4.275 VMOV (between two general-purpose registers and a doubleword register)
	C2.4.276 VMOV (between two general-purpose registers and two single-precision registers)
	C2.4.277 VMOV (half of doubleword register to single general-purpose register)
	C2.4.278 VMOV (immediate)
	C2.4.279 VMOV (register)
	C2.4.280 VMOV (single general-purpose register to half of doubleword register)
	C2.4.281 VMRS
	C2.4.282 VMSR
	C2.4.283 VMUL
	C2.4.284 VNEG
	C2.4.285 VNMLA
	C2.4.286 VNMLS
	C2.4.287 VNMUL
	C2.4.288 VPOP
	C2.4.289 VPUSH
	C2.4.290 VRINTA
	C2.4.291 VRINTM
	C2.4.292 VRINTN
	C2.4.293 VRINTP
	C2.4.294 VRINTR
	C2.4.295 VRINTX
	C2.4.296 VRINTZ
	C2.4.297 VSEL
	C2.4.298 VSQRT
	C2.4.299 VSTM
	C2.4.300 VSTR
	C2.4.301 VSUB
	C2.4.302 WFE
	C2.4.303 WFI
	C2.4.304 YIELD

	Part D: ARMv8-M Registers
	D1: Register Overview
	D1.1 Understanding the register descriptions in the register specification
	D1.1.1 Characteristics

	D2: Register Specification
	D2.1 Register index
	D2.1.1 Special and general-purpose registers
	D2.1.2 Payloads
	D2.1.3 Instrumentation Macrocell
	D2.1.4 Data Watchpoint and Trace
	D2.1.5 Flash Patch and Breakpoint
	D2.1.6 Implementation Control Block
	D2.1.7 SysTick Timer
	D2.1.8 Nested Vectored Interrupt Controller
	D2.1.9 System Control Block
	D2.1.10 Memory Protection Unit
	D2.1.11 Security Attribution Unit
	D2.1.12 Debug Control Block
	D2.1.13 Software Interrupt Generation
	D2.1.14 Floating-Point Extension
	D2.1.15 Cache Maintenance Operations
	D2.1.16 Debug Identification Block
	D2.1.17 Implementation Control Block (NS alias)
	D2.1.18 SysTick Timer (NS alias)
	D2.1.19 Nested Vectored Interrupt Controller (NS alias)
	D2.1.20 System Control Block (NS alias)
	D2.1.21 Memory Protection Unit (NS alias)
	D2.1.22 Debug Control Block (NS alias)
	D2.1.23 Software Interrupt Generation (NS alias)
	D2.1.24 Floating-Point Extension (NS alias)
	D2.1.25 Cache Maintenance Operations (NS alias)
	D2.1.26 Debug Identification Block (NS alias)
	D2.1.27 Trace Port Interface Unit

	D2.2 Alphabetical list of registers
	D2.2.1 ACTLR, Auxiliary Control Register
	D2.2.2 AFSR, Auxiliary Fault Status Register
	D2.2.3 AIRCR, Application Interrupt and Reset Control Register
	D2.2.4 APSR, Application Program Status Register
	D2.2.5 BASEPRI, Base Priority Mask Register
	D2.2.6 BFAR, BusFault Address Register
	D2.2.7 BFSR, BusFault Status Register
	D2.2.8 BPIALL, Branch Predictor Invalidate All
	D2.2.9 CCR, Configuration and Control Register
	D2.2.10 CCSIDR, Current Cache Size ID register
	D2.2.11 CFSR, Configurable Fault Status Register
	D2.2.12 CLIDR, Cache Level ID Register
	D2.2.13 CONTROL, Control Register
	D2.2.14 CPACR, Coprocessor Access Control Register
	D2.2.15 CPPWR, Coprocessor Power Control Register
	D2.2.16 CPUID, CPUID Base Register
	D2.2.17 CSSELR, Cache Size Selection Register
	D2.2.18 CTR, Cache Type Register
	D2.2.19 DAUTHCTRL, Debug Authentication Control Register
	D2.2.20 DAUTHSTATUS, Debug Authentication Status Register
	D2.2.21 DCCIMVAC, Data Cache line Clean and Invalidate by Address to PoC
	D2.2.22 DCCISW, Data Cache line Clean and Invalidate by Set/Way
	D2.2.23 DCCMVAC, Data Cache line Clean by Address to PoC
	D2.2.24 DCCMVAU, Data Cache line Clean by address to PoU
	D2.2.25 DCCSW, Data Cache Clean line by Set/Way
	D2.2.26 DCIDR0, SCS Component Identification Register 0
	D2.2.27 DCIDR1, SCS Component Identification Register 1
	D2.2.28 DCIDR2, SCS Component Identification Register 2
	D2.2.29 DCIDR3, SCS Component Identification Register 3
	D2.2.30 DCIMVAC, Data Cache line Invalidate by Address to PoC
	D2.2.31 DCISW, Data Cache line Invalidate by Set/Way
	D2.2.32 DCRDR, Debug Core Register Data Register
	D2.2.33 DCRSR, Debug Core Register Select Register
	D2.2.34 DDEVARCH, SCS Device Architecture Register
	D2.2.35 DDEVTYPE, SCS Device Type Register
	D2.2.36 DEMCR, Debug Exception and Monitor Control Register
	D2.2.37 DFSR, Debug Fault Status Register
	D2.2.38 DHCSR, Debug Halting Control and Status Register
	D2.2.39 DLAR, SCS Software Lock Access Register
	D2.2.40 DLSR, SCS Software Lock Status Register
	D2.2.41 DPIDR0, SCS Peripheral Identification Register 0
	D2.2.42 DPIDR1, SCS Peripheral Identification Register 1
	D2.2.43 DPIDR2, SCS Peripheral Identification Register 2
	D2.2.44 DPIDR3, SCS Peripheral Identification Register 3
	D2.2.45 DPIDR4, SCS Peripheral Identification Register 4
	D2.2.46 DPIDR5, SCS Peripheral Identification Register 5
	D2.2.47 DPIDR6, SCS Peripheral Identification Register 6
	D2.2.48 DPIDR7, SCS Peripheral Identification Register 7
	D2.2.49 DSCSR, Debug Security Control and Status Register
	D2.2.50 DWT_CIDR0, DWT Component Identification Register 0
	D2.2.51 DWT_CIDR1, DWT Component Identification Register 1
	D2.2.52 DWT_CIDR2, DWT Component Identification Register 2
	D2.2.53 DWT_CIDR3, DWT Component Identification Register 3
	D2.2.54 DWT_COMP<n>, DWT Comparator Register, n = 0 - 15
	D2.2.55 DWT_CPICNT, DWT CPI Count Register
	D2.2.56 DWT_CTRL, DWT Control Register
	D2.2.57 DWT_CYCCNT, DWT Cycle Count Register
	D2.2.58 DWT_DEVARCH, DWT Device Architecture Register
	D2.2.59 DWT_DEVTYPE, DWT Device Type Register
	D2.2.60 DWT_EXCCNT, DWT Exception Overhead Count Register
	D2.2.61 DWT_FOLDCNT, DWT Folded Instruction Count Register
	D2.2.62 DWT_FUNCTION<n>, DWT Comparator Function Register, n = 0 - 15
	D2.2.63 DWT_LAR, DWT Software Lock Access Register
	D2.2.64 DWT_LSR, DWT Software Lock Status Register
	D2.2.65 DWT_LSUCNT, DWT LSU Count Register
	D2.2.66 DWT_PCSR, DWT Program Counter Sample Register
	D2.2.67 DWT_PIDR0, DWT Peripheral Identification Register 0
	D2.2.68 DWT_PIDR1, DWT Peripheral Identification Register 1
	D2.2.69 DWT_PIDR2, DWT Peripheral Identification Register 2
	D2.2.70 DWT_PIDR3, DWT Peripheral Identification Register 3
	D2.2.71 DWT_PIDR4, DWT Peripheral Identification Register 4
	D2.2.72 DWT_PIDR5, DWT Peripheral Identification Register 5
	D2.2.73 DWT_PIDR6, DWT Peripheral Identification Register 6
	D2.2.74 DWT_PIDR7, DWT Peripheral Identification Register 7
	D2.2.75 DWT_SLEEPCNT, DWT Sleep Count Register
	D2.2.76 EPSR, Execution Program Status Register
	D2.2.77 EXC_RETURN, Exception Return Payload
	D2.2.78 FAULTMASK, Fault Mask Register
	D2.2.79 FNC_RETURN, Function Return Payload
	D2.2.80 FPCAR, Floating-Point Context Address Register
	D2.2.81 FPCCR, Floating-Point Context Control Register
	D2.2.82 FPDSCR, Floating-Point Default Status Control Register
	D2.2.83 FPSCR, Floating-point Status and Control Register
	D2.2.84 FP_CIDR0, FP Component Identification Register 0
	D2.2.85 FP_CIDR1, FP Component Identification Register 1
	D2.2.86 FP_CIDR2, FP Component Identification Register 2
	D2.2.87 FP_CIDR3, FP Component Identification Register 3
	D2.2.88 FP_COMP<n>, Flash Patch Comparator Register, n = 0 - 127
	D2.2.89 FP_CTRL, Flash Patch Control Register
	D2.2.90 FP_DEVARCH, FPB Device Architecture Register
	D2.2.91 FPB_DEVTYPE, FPB Device Type Register
	D2.2.92 FP_LAR, FPB Software Lock Access Register
	D2.2.93 FP_LSR, FPB Software Lock Status Register
	D2.2.94 FP_PIDR0, FP Peripheral Identification Register 0
	D2.2.95 FP_PIDR1, FP Peripheral Identification Register 1
	D2.2.96 FP_PIDR2, FP Peripheral Identification Register 2
	D2.2.97 FP_PIDR3, FP Peripheral Identification Register 3
	D2.2.98 FP_PIDR4, FP Peripheral Identification Register 4
	D2.2.99 FP_PIDR5, FP Peripheral Identification Register 5
	D2.2.100 FP_PIDR6, FP Peripheral Identification Register 6
	D2.2.101 FP_PIDR7, FP Peripheral Identification Register 7
	D2.2.102 FP_REMAP, Flash Patch Remap Register
	D2.2.103 HFSR, HardFault Status Register
	D2.2.104 ICIALLU, Instruction Cache Invalidate All to PoU
	D2.2.105 ICIMVAU, Instruction Cache line Invalidate by Address to PoU
	D2.2.106 ICSR, Interrupt Control and State Register
	D2.2.107 ICTR, Interrupt Controller Type Register
	D2.2.108 ID_AFR0, Auxiliary Feature Register 0
	D2.2.109 ID_DFR0, Debug Feature Register 0
	D2.2.110 ID_ISAR0, Instruction Set Attribute Register 0
	D2.2.111 ID_ISAR1, Instruction Set Attribute Register 1
	D2.2.112 ID_ISAR2, Instruction Set Attribute Register 2
	D2.2.113 ID_ISAR3, Instruction Set Attribute Register 3
	D2.2.114 ID_ISAR4, Instruction Set Attribute Register 4
	D2.2.115 ID_ISAR5, Instruction Set Attribute Register 5
	D2.2.116 ID_MMFR0, Memory Model Feature Register 0
	D2.2.117 ID_MMFR1, Memory Model Feature Register 1
	D2.2.118 ID_MMFR2, Memory Model Feature Register 2
	D2.2.119 ID_MMFR3, Memory Model Feature Register 3
	D2.2.120 ID_PFR0, Processor Feature Register 0
	D2.2.121 ID_PFR1, Processor Feature Register 1
	D2.2.122 IPSR, Interrupt Program Status Register
	D2.2.123 ITM_CIDR0, ITM Component Identification Register 0
	D2.2.124 ITM_CIDR1, ITM Component Identification Register 1
	D2.2.125 ITM_CIDR2, ITM Component Identification Register 2
	D2.2.126 ITM_CIDR3, ITM Component Identification Register 3
	D2.2.127 ITM_DEVARCH, ITM Device Architecture Register
	D2.2.128 ITM_DEVTYPE, ITM Device Type Register
	D2.2.129 ITM_LAR, ITM Software Lock Access Register
	D2.2.130 ITM_LSR, ITM Software Lock Status Register
	D2.2.131 ITM_PIDR0, ITM Peripheral Identification Register 0
	D2.2.132 ITM_PIDR1, ITM Peripheral Identification Register 1
	D2.2.133 ITM_PIDR2, ITM Peripheral Identification Register 2
	D2.2.134 ITM_PIDR3, ITM Peripheral Identification Register 3
	D2.2.135 ITM_PIDR4, ITM Peripheral Identification Register 4
	D2.2.136 ITM_PIDR5, ITM Peripheral Identification Register 5
	D2.2.137 ITM_PIDR6, ITM Peripheral Identification Register 6
	D2.2.138 ITM_PIDR7, ITM Peripheral Identification Register 7
	D2.2.139 ITM_STIM<n>, ITM Stimulus Port Register, n = 0 - 255
	D2.2.140 ITM_TCR, ITM Trace Control Register
	D2.2.141 ITM_TER<n>, ITM Trace Enable Register, n = 0 - 7
	D2.2.142 ITM_TPR, ITM Trace Privilege Register
	D2.2.143 LR, Link Register
	D2.2.144 MAIR_ATTR, Memory Attribute Indirection Register Attributes
	D2.2.145 MMFAR, MemManage Fault Address Register
	D2.2.146 MMFSR, MemManage Fault Status Register
	D2.2.147 MPU_CTRL, MPU Control Register
	D2.2.148 MPU_MAIR0, MPU Memory Attribute Indirection Register 0
	D2.2.149 MPU_MAIR1, MPU Memory Attribute Indirection Register 1
	D2.2.150 MPU_RBAR, MPU Region Base Address Register
	D2.2.151 MPU_RBAR_A<n>, MPU Region Base Address Register Alias, n = 1 - 3
	D2.2.152 MPU_RLAR, MPU Region Limit Address Register
	D2.2.153 MPU_RLAR_A<n>, MPU Region Limit Address Register Alias, n = 1 - 3
	D2.2.154 MPU_RNR, MPU Region Number Register
	D2.2.155 MPU_TYPE, MPU Type Register
	D2.2.156 MSPLIM, Main Stack Pointer Limit Register
	D2.2.157 MVFR0, Media and VFP Feature Register 0
	D2.2.158 MVFR1, Media and VFP Feature Register 1
	D2.2.159 MVFR2, Media and VFP Feature Register 2
	D2.2.160 NSACR, Non-secure Access Control Register
	D2.2.161 NVIC_IABR<n>, Interrupt Active Bit Register, n = 0 - 15
	D2.2.162 NVIC_ICER<n>, Interrupt Clear Enable Register, n = 0 - 15
	D2.2.163 NVIC_ICPR<n>, Interrupt Clear Pending Register, n = 0 - 15
	D2.2.164 NVIC_IPR<n>, Interrupt Priority Register, n = 0 - 123
	D2.2.165 NVIC_ISER<n>, Interrupt Set Enable Register, n = 0 - 15
	D2.2.166 NVIC_ISPR<n>, Interrupt Set Pending Register, n = 0 - 15
	D2.2.167 NVIC_ITNS<n>, Interrupt Target Non-secure Register, n = 0 - 15
	D2.2.168 PC, Program Counter
	D2.2.169 PRIMASK, Exception Mask Register
	D2.2.170 PSPLIM, Process Stack Pointer Limit Register
	D2.2.171 R<n>, General-Purpose Register, n = 0 - 12
	D2.2.172 RETPSR, Combined Exception Return Program Status Registers
	D2.2.173 SAU_CTRL, SAU Control Register
	D2.2.174 SAU_RBAR, SAU Region Base Address Register
	D2.2.175 SAU_RLAR, SAU Region Limit Address Register
	D2.2.176 SAU_RNR, SAU Region Number Register
	D2.2.177 SAU_TYPE, SAU Type Register
	D2.2.178 SCR, System Control Register
	D2.2.179 SFAR, Secure Fault Address Register
	D2.2.180 SFSR, Secure Fault Status Register
	D2.2.181 SHCSR, System Handler Control and State Register
	D2.2.182 SHPR1, System Handler Priority Register 1
	D2.2.183 SHPR2, System Handler Priority Register 2
	D2.2.184 SHPR3, System Handler Priority Register 3
	D2.2.185 SP, Current Stack Pointer Register
	D2.2.186 SP_NS, Stack Pointer (Non-secure)
	D2.2.187 STIR, Software Triggered Interrupt Register
	D2.2.188 SYST_CALIB, SysTick Calibration Value Register
	D2.2.189 SYST_CSR, SysTick Control and Status Register
	D2.2.190 SYST_CVR, SysTick Current Value Register
	D2.2.191 SYST_RVR, SysTick Reload Value Register
	D2.2.192 TPIU_ACPR, TPIU Asynchronous Clock Prescaler Register
	D2.2.193 TPIU_CIDR0, TPIU Component Identification Register 0
	D2.2.194 TPIU_CIDR1, TPIU Component Identification Register 1
	D2.2.195 TPIU_CIDR2, TPIU Component Identification Register 2
	D2.2.196 TPIU_CIDR3, TPIU Component Identification Register 3
	D2.2.197 TPIU_CSPSR, TPIU Current Parallel Port Sizes Register
	D2.2.198 TPIU_DEVTYPE, TPIU Device Type Register
	D2.2.199 TPIU_FFCR, TPIU Formatter and Flush Control Register
	D2.2.200 TPIU_FFSR, TPIU Formatter and Flush Status Register
	D2.2.201 TPIU_LAR, TPIU Software Lock Access Register
	D2.2.202 TPIU_LSR, TPIU Software Lock Status Register
	D2.2.203 TPIU_PIDR0, TPIU Peripheral Identification Register 0
	D2.2.204 TPIU_PIDR1, TPIU Peripheral Identification Register 1
	D2.2.205 TPIU_PIDR2, TPIU Peripheral Identification Register 2
	D2.2.206 TPIU_PIDR3, TPIU Peripheral Identification Register 3
	D2.2.207 TPIU_PIDR4, TPIU Peripheral Identification Register 4
	D2.2.208 TPIU_PIDR5, TPIU Peripheral Identification Register 5
	D2.2.209 TPIU_PIDR6, TPIU Peripheral Identification Register 6
	D2.2.210 TPIU_PIDR7, TPIU Peripheral Identification Register 7
	D2.2.211 TPIU_PSCR, TPIU Periodic Synchronization Control Register
	D2.2.212 TPIU_SPPR, TPIU Selected Pin Protocol Register
	D2.2.213 TPIU_SSPSR, TPIU Supported Parallel Port Sizes Register
	D2.2.214 TPIU_TYPE, TPIU Device Identifier Register
	D2.2.215 TT_RESP, Test Target Response Payload
	D2.2.216 UFSR, UsageFault Status Register
	D2.2.217 VTOR, Vector Table Offset Register
	D2.2.218 XPSR, Combined Program Status Registers

	Part E: ARMv8-M Pseudocode
	E1: Pseudocode Overview
	E1.1 About the pseudocode
	E1.2 Pseudocode operators and keywords

	E2: ARM Pseudocode Definition
	E2.1 About the ARM pseudocode
	E2.1.1 General limitations of ARM pseudocode

	E2.2 Data types
	E2.2.1 General data type rules
	E2.2.2 Bitstrings
	Syntax
	Description

	E2.2.3 Integers
	Syntax
	Description

	E2.2.4 Reals
	Syntax
	Description

	E2.2.5 Booleans
	Syntax
	Description

	E2.2.6 Enumerations
	Syntax and examples
	Description

	E2.2.7 Structures
	Syntax and examples
	Description

	E2.2.8 Tuples
	Examples
	Description

	E2.2.9 Arrays
	Syntax
	Description

	E2.3 Operators
	E2.3.1 Relational operators
	Equality and non-equality
	Comparisons
	Set membership with IN

	E2.3.2 Boolean operators
	E2.3.3 Bitstring operators
	Logical operations on bitstrings
	Bitstring concatenation and slicing

	E2.3.4 Arithmetic operators
	Unary plus and minus
	Addition and subtraction
	Multiplication
	Division and modulo
	Scaling
	Raising to a power

	E2.3.5 The assignment operator
	General expression syntax

	E2.3.6 Precedence rules
	E2.3.7 Conditional expressions
	E2.3.8 Operator polymorphism

	E2.4 Statements and control structures
	E2.4.1 Statements and Indentation
	E2.4.2 Function and procedure calls
	Procedure and function definitions
	Procedure calls
	Return statements

	E2.4.3 Conditional control structures
	if … then … else …
	case … of …

	E2.4.4 Loop control structures
	repeat … until …
	while … do
	for …

	E2.4.5 Special statements
	UNDEFINED
	UNPREDICTABLE
	SEE…
	IMPLEMENTATION_DEFINED

	E2.4.6 Comments

	E2.5 Built-in functions
	E2.5.1 Bitstring manipulation functions
	Bitstring length
	Bitstring concatenation and replication
	Bitstring count
	Testing a bitstring for being all zero or all ones
	Lowest and highest set bits of a bitstring
	Zero-extension and sign-extension of bitstrings
	Converting bitstrings to integers

	E2.5.2 Arithmetic functions
	Absolute value
	Rounding and aligning
	Maximum and minimum

	E2.6 ARM pseudocode definition index

	E3: Pseudocode Specification
	E3.1 Alphabetical pseudocode List
	E3.1.1 ALUWritePC
	E3.1.2 ASR
	E3.1.3 ASR_C
	E3.1.4 AccType
	E3.1.5 AccessAttributes
	E3.1.6 ActivateException
	E3.1.7 AddWithCarry
	E3.1.8 AddressDescriptor
	E3.1.9 BKPTInstrDebugEvent
	E3.1.10 BLXWritePC
	E3.1.11 BXWritePC
	E3.1.12 BigEndian
	E3.1.13 BigEndianReverse
	E3.1.14 BranchTo
	E3.1.15 BranchToAndCommit
	E3.1.16 BranchToNS
	E3.1.17 BranchWritePC
	E3.1.18 CallSupervisor
	E3.1.19 CanHaltOnEvent
	E3.1.20 CanPendMonitorOnEvent
	E3.1.21 CheckCPEnabled
	E3.1.22 CheckPermission
	E3.1.23 ClearEventRegister
	E3.1.24 ClearExclusiveByAddress
	E3.1.25 ClearExclusiveLocal
	E3.1.26 ComparePriorities
	E3.1.27 ConditionHolds
	E3.1.28 ConditionPassed
	E3.1.29 ConstrainUnpredictableBool
	E3.1.30 ConsumeExcStackFrame
	E3.1.31 Coproc_Accepted
	E3.1.32 Coproc_DoneLoading
	E3.1.33 Coproc_DoneStoring
	E3.1.34 Coproc_GetOneWord
	E3.1.35 Coproc_GetTwoWords
	E3.1.36 Coproc_GetWordToStore
	E3.1.37 Coproc_InternalOperation
	E3.1.38 Coproc_SendLoadedWord
	E3.1.39 Coproc_SendOneWord
	E3.1.40 Coproc_SendTwoWords
	E3.1.41 CreateException
	E3.1.42 CurrentCond
	E3.1.43 CurrentMode
	E3.1.44 CurrentModeIsPrivileged
	E3.1.45 D
	E3.1.46 DWT_AddressCompare
	E3.1.47 DWT_CycCountMatch
	E3.1.48 DWT_DataAddressMatch
	E3.1.49 DWT_DataValueMatch
	E3.1.50 DWT_InstructionAddressMatch
	E3.1.51 DWT_ValidMatch
	E3.1.52 DataMemoryBarrier
	E3.1.53 DataSynchronizationBarrier
	E3.1.54 Deactivate
	E3.1.55 DecodeExecute
	E3.1.56 DecodeImmShift
	E3.1.57 DecodeRegShift
	E3.1.58 DefaultExcInfo
	E3.1.59 DefaultMemoryAttributes
	E3.1.60 DefaultPermissions
	E3.1.61 DerivedLateArrival
	E3.1.62 DeviceType
	E3.1.63 EndOfInstruction
	E3.1.64 EventRegistered
	E3.1.65 ExcInfo
	E3.1.66 ExceptionActiveBitCount
	E3.1.67 ExceptionDetails
	E3.1.68 ExceptionEnabled
	E3.1.69 ExceptionEntry
	E3.1.70 ExceptionPriority
	E3.1.71 ExceptionReturn
	E3.1.72 ExceptionTaken
	E3.1.73 ExceptionTargetsSecure
	E3.1.74 ExclusiveMonitorsPass
	E3.1.75 ExecuteCPCheck
	E3.1.76 ExecuteFPCheck
	E3.1.77 ExecutionPriority
	E3.1.78 FPAbs
	E3.1.79 FPAdd
	E3.1.80 FPB_BreakpointMatch
	E3.1.81 FPB_CheckBreakPoint
	E3.1.82 FPB_CheckMatchAddress
	E3.1.83 FPCompare
	E3.1.84 FPDefaultNaN
	E3.1.85 FPDiv
	E3.1.86 FPDoubleToHalf
	E3.1.87 FPDoubleToSingle
	E3.1.88 FPExc
	E3.1.89 FPHalfToDouble
	E3.1.90 FPHalfToSingle
	E3.1.91 FPInfinity
	E3.1.92 FPMax
	E3.1.93 FPMaxNormal
	E3.1.94 FPMaxNum
	E3.1.95 FPMin
	E3.1.96 FPMinNum
	E3.1.97 FPMul
	E3.1.98 FPMulAdd
	E3.1.99 FPNeg
	E3.1.100 FPProcessException
	E3.1.101 FPProcessNaN
	E3.1.102 FPProcessNaNs
	E3.1.103 FPProcessNaNs3
	E3.1.104 FPRound
	E3.1.105 FPRoundInt
	E3.1.106 FPSingleToDouble
	E3.1.107 FPSingleToHalf
	E3.1.108 FPSqrt
	E3.1.109 FPSub
	E3.1.110 FPToFixed
	E3.1.111 FPToFixedDirected
	E3.1.112 FPType
	E3.1.113 FPUnpack
	E3.1.114 FPZero
	E3.1.115 FetchInstr
	E3.1.116 FindPriv
	E3.1.117 FixedToFP
	E3.1.118 FunctionReturn
	E3.1.119 GenerateCoprocessorException
	E3.1.120 GenerateDebugEventResponse
	E3.1.121 GenerateIntegerZeroDivide
	E3.1.122 Halted
	E3.1.123 HaltingDebugAllowed
	E3.1.124 HandleException
	E3.1.125 HaveDSPExt
	E3.1.126 HaveDebugMonitor
	E3.1.127 HaveFPExt
	E3.1.128 HaveMainExt
	E3.1.129 HaveSPFPOnly
	E3.1.130 HaveSecurityExt
	E3.1.131 HaveSysTick
	E3.1.132 Hint_Debug
	E3.1.133 Hint_PreloadData
	E3.1.134 Hint_PreloadInstr
	E3.1.135 Hint_Yield
	E3.1.136 IDAUCheck
	E3.1.137 ITAdvance
	E3.1.138 ITSTATE
	E3.1.139 InITBlock
	E3.1.140 InstructionAdvance
	E3.1.141 InstructionSynchronizationBarrier
	E3.1.142 Int
	E3.1.143 IntegerZeroDivideTrappingEnabled
	E3.1.144 IsAccessible
	E3.1.145 IsActiveForState
	E3.1.146 IsAligned
	E3.1.147 IsExceptionTargetConfigurable
	E3.1.148 IsExclusiveGlobal
	E3.1.149 IsExclusiveLocal
	E3.1.150 IsIrqValid
	E3.1.151 IsReqExcPriNeg
	E3.1.152 IsSecure
	E3.1.153 LR
	E3.1.154 LSL
	E3.1.155 LSL_C
	E3.1.156 LSR
	E3.1.157 LSR_C
	E3.1.158 LastInITBlock
	E3.1.159 LoadWritePC
	E3.1.160 Lockup
	E3.1.161 LookUpRName
	E3.1.162 LookUpSP
	E3.1.163 LookUpSPLim
	E3.1.164 LookUpSP_with_security_mode
	E3.1.165 MAIRDecode
	E3.1.166 MPUCheck
	E3.1.167 MarkExclusiveGlobal
	E3.1.168 MarkExclusiveLocal
	E3.1.169 MemA
	E3.1.170 MemA_with_priv
	E3.1.171 MemA_with_priv_security
	E3.1.172 MemI
	E3.1.173 MemO
	E3.1.174 MemType
	E3.1.175 MemU
	E3.1.176 MemU_unpriv
	E3.1.177 MemU_with_priv
	E3.1.178 MemoryAttributes
	E3.1.179 MergeExcInfo
	E3.1.180 Mode_M
	E3.1.181 NextInstrAddr
	E3.1.182 NextInstrITState
	E3.1.183 NoninvasiveDebugAllowed
	E3.1.184 PC
	E3.1.185 PendReturnOperation
	E3.1.186 PendingExceptionDetails
	E3.1.187 Permissions
	E3.1.188 PopStack
	E3.1.189 PreserveFPState
	E3.1.190 ProcessorID
	E3.1.191 PushCalleeStack
	E3.1.192 PushStack
	E3.1.193 R
	E3.1.194 RName
	E3.1.195 ROR
	E3.1.196 ROR_C
	E3.1.197 RRX
	E3.1.198 RRX_C
	E3.1.199 RSPCheck
	E3.1.200 RaiseAsyncBusFault
	E3.1.201 RawExecutionPriority
	E3.1.202 ReturnState
	E3.1.203 S
	E3.1.204 SAttributes
	E3.1.205 SCS_UpdateStatusRegs
	E3.1.206 SP
	E3.1.207 SP_Main
	E3.1.208 SP_Main_NonSecure
	E3.1.209 SP_Main_Secure
	E3.1.210 SP_Process
	E3.1.211 SP_Process_NonSecure
	E3.1.212 SP_Process_Secure
	E3.1.213 SRType
	E3.1.214 Sat
	E3.1.215 SatQ
	E3.1.216 SecureDebugMonitorAllowed
	E3.1.217 SecureHaltingDebugAllowed
	E3.1.218 SecureNoninvasiveDebugAllowed
	E3.1.219 SecurityCheck
	E3.1.220 SecurityState
	E3.1.221 SendEvent
	E3.1.222 SerializeVFP
	E3.1.223 SetActive
	E3.1.224 SetEventRegister
	E3.1.225 SetExclusiveMonitors
	E3.1.226 SetITSTATEAndCommit
	E3.1.227 SetPending
	E3.1.228 SetThisInstrDetails
	E3.1.229 Shift
	E3.1.230 Shift_C
	E3.1.231 SignedSat
	E3.1.232 SignedSatQ
	E3.1.233 SleepOnExit
	E3.1.234 Stack
	E3.1.235 StandardFPSCRValue
	E3.1.236 T32ExpandImm
	E3.1.237 T32ExpandImm_C
	E3.1.238 TTResp
	E3.1.239 TailChain
	E3.1.240 TakePreserveFPException
	E3.1.241 TakeReset
	E3.1.242 ThisInstr
	E3.1.243 ThisInstrAddr
	E3.1.244 ThisInstrITState
	E3.1.245 ThisInstrLength
	E3.1.246 TopLevel
	E3.1.247 UnsignedSat
	E3.1.248 UnsignedSatQ
	E3.1.249 UpdateFPCCR
	E3.1.250 UpdateSecureDebugEnable
	E3.1.251 VFPExcBarrier
	E3.1.252 VFPExpandImm
	E3.1.253 VFPNegMul
	E3.1.254 VFPSmallRegisterBank
	E3.1.255 ValidateAddress
	E3.1.256 ValidateExceptionReturn
	E3.1.257 Vector
	E3.1.258 WaitForEvent
	E3.1.259 WaitForInterrupt
	E3.1.260 _D
	E3.1.261 _ITStateChanged
	E3.1.262 _Mem
	E3.1.263 _NextInstrAddr
	E3.1.264 _NextInstrITState
	E3.1.265 _PCChanged
	E3.1.266 _PendingReturnOperation
	E3.1.267 _R
	E3.1.268 _SP
	E3.1.269 common

	Part F: Debug Packet Protocols
	F1: ITM and DWT Packet Protocol Specification
	F1.1 About the ITM and DWT packets
	F1.1.1 Uses of ITM and DWT packets
	F1.1.2 ITM and DWT protocol packet headers
	F1.1.3 Packet transmission by the trace sink

	F1.2 Alphabetical list of DWT and ITM packets
	F1.2.1 Data Trace Data Address packet
	F1.2.2 Data Trace Data Value packet
	F1.2.3 Data Trace Match packet
	F1.2.4 Data Trace PC Value packet
	F1.2.5 Event Counter packet
	F1.2.6 Exception Trace packet
	F1.2.7 Extension packet
	F1.2.8 Global Timestamp 1 packet
	F1.2.9 Global Timestamp 2 packet
	F1.2.10 Instrumentation packet
	F1.2.11 Local Timestamp 1 packet
	F1.2.12 Local Timestamp 2 packet
	F1.2.13 Overflow packet
	F1.2.14 Periodic PC Sample packet
	F1.2.15 Synchronization packet

