ARMvV8-M Architecture
Reference Manual

ARM

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved.
ARM DDI 0553A.c (ID092816)

ARMv8-M Architecture Reference Manual

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved.
Release Information

The following releases of this document have been made.

Change History

Date Issue Confidentiality Change

29 March 2016 Aa Confidential - Beta Beta release, limited circulation
28 July 2016 Ab Non-confidential - Beta Beta release

30 September 2016 Ac Non-confidential - EAC EAC release

The copyright statement reflects the fact that some draft issues of this document have been released, to a limited circulation.
Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained
in this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of ARM Limited (“ARM”). No license,
express or implied, by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR
PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, ARM makes no representation with respect to,
and has undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or
other rights.

This document may include technical inaccuracies or typographical errors.

This document may be translated into other languages for convenience, and you agree that if there is any conflict between the
English version of this document and any translation, the terms of the English version shall prevail.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure
of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof
is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to ARM’s customers
is not intended to create or refer to any partnership relationship with any other company. ARM may make changes to this document
at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any signed written agreement specifically
covering this document with ARM, then the signed written agreement prevails over and supersedes the conflicting provisions of
these terms.

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited or its affiliates in the EU and/or
elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective
owners. You must follow the ARM trademark usage guidelines http://www.arm.com/about/trademarks/guidelines/index.php.

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved.
ARM Limited. Company 02557590 registered in England.
110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20327

In this document, where the term ARM is used to refer to the company it means “ARM or any of its subsidiaries as appropriate”.

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this document to.

Product Status
The information in this document is final, that is for a developed product.
Web Address

http://www.arm.com

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved.
Non-Confidential

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved.
Non-Confidential

ARM DDI 0553A.c
ID092816

Contents

ARMv8-M Architecture Reference Manual

Preface
ADOUL ThiS DOOKeeeiieee et e e e e e e e e e eeaaes Xii
{0 153 o IR 1= oo o PR Xiii
CONVENLIONS ...ttt e e e ettt reeeeeeeeaeaeeeeeeeaesssansssssrsresnnnenes XV
AdditioNal TEAAINGveeiiie e XVii
LY=o | o= Lo SRR Xviii

Part A ARMv8-M Architecture Introduction and Overview
Chapter A1 Introduction
A1.A1 Document layout and terminologyccccuieieiiiiiiiiee e A1-22
A1.2 About the ARMv8 architecture, and architecture profilesccccccoviiiiiiiiinies A1-24
A1.3 The ARMV8-M architecture profile ... A1-25
Al4 ARMVB-M Variantsoooiiiiiiieei ettt A1-27
Part B ARMv8-M Architecture Rules
Chapter B1 Resets
B1.1 Resets, Cold reset and Warm reSetouuueeiiiiiiiieiiieeeee e B1-32
Chapter B2 Power Management
B2.1 POWEr MaNagEemMENToiiiiiiiiiie s B2-34
Chapter B3 Programmers’ Model
B3.1 PE modes, Thread mode and Handler modeccooovvvvivvuieeeeiieeeeeeeeeinn, B3-39
B3.2 Privileged and unprivileged executioncccoceiiiiiiiiiiii e B3-40
ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. v

1D092816

Non-Confidential

Contents

B3.3 REGISTEIS ...t B3-41
B3.4 XPSR, APSR, IPSR, and EPSR ... B3-42
B3.5 Security states, Secure state, and Non-secure stateccoccoveiciienieneicnenee. B3-44
B3.6 Security states, register banking between them ... B3-45
B3.7) = Ted [oo 1 (=Y PSPPSR OPRRRN B3-46
B3.8 Exception numbers and exception priority nUMbersccccccconieiiiiiiiiieenee, B3-47
B3.9 Exception enable, pending, and active bitsccoocviiiiiii B3-50
B3.10 Security states, exception bankingcccceoiiiiiiiiiiiiice e B3-51
3 TR I O - 11| OSSR B3-53
B3.12 EXCepPtion STateS ...t —————— B3-56
B3.13 Priority MOGEI ... B3-57
B3.14 Secure address ProteClioNccooiiiiiiiiiiiiiieeee e B3-60
B3.15 Security state tranSitionsccooiiiiiiiii B3-61
B3.16 Function calls from Secure state to Non-secure stateccoccoeiiiiiiis B3-62
B3.17 Function returns from Non-secure stateccociieiiiiiie e B3-63
B3.18 Exception handlingooiiiiiiiiii e B3-64
B3.19 Exception entry, context Stackingccccoeuiiiiiiiiiiieii e B3-66
B3.20 Exception entry, register clearing after context stackingccocccociiiiiiii. B3-71
B3.21 Stack limit CheCKSeeiiiii e B3-72
B3.22 EXCEPLON FEIUM ...oiiiiiiiiiii et B3-75
B3.23 Integrity SigNature ... e B3-78
B3.24 Exceptions during exception €ntry ..o B3-79
B3.25 Exceptions during exception return ... B3-80
B3.26 Tail-Chainingcoceiiiiiiiiii e e B3-81
B3.27 Exceptions, instruction resume, or instruction restartcccoceiiiiiiiis B3-83
B3.28 VeCtor tables ... B3-85
B3.29 Hardware-controlled priority escalation to HardFaultcccccoiiiiis B3-87
B3.30 Special-purpose mask registers, PRIMASK, BASEPRI, FAULTMASK, for
software-controlled priority boostingcooooiiiiiiiiii B3-88
123 T0C T B e Yo (U o SRRSO P PRSPPI B3-90
B3.32 Exception during a singleword load operationccccovieiiiiiiinii e B3-95
B3.33 Special-purpose CONTROL registerccccoiiiiiiiiiiiiicieecree e B3-96
B3.34 Saving context on process SWItChccoociiiiiiiiiiiie e B3-97
B3.35 Context Synchronization EVENtcccviiiiiiiiieceee e B3-98
B3.36 COProCESSOr SUPPOIT ..ooiiieiiiieeeiiiiie e e e ettt ee e ettt e e e e ettre e e e eeataeeeeeessbeeeaessensaneeaeannnes B3-99
Chapter B4 Floating-point Support
B4.1 The optional Floating-point Extension, FPV5cccccoiiiiiiiiiieeeceee e B4-102
B4.2 About the Floating-point Status and Control Register (FPSCR)ccccc..e. B4-103
B4.3 Registers for floating-point data processing, S0-S31 or DO-D15ccoc... B4-104
B4.4 Floating-point standards and terminologyccccoiiiiiiiiii i B4-105
B4.5 Floating-point data representable ... B4-106
B4.6 Floating-point encoding formats, half-precision, single-precision, and double-precision
B4-107
B4.7 The IEEE 754 floating-point €XCeptionScccvvieeiiiiiiie e B4-109
B4.8 The FIUSh-t0-ZE€ro MOdeooiiiiiiiie e B4-110
B4.9 The Default NaN mode, and NaN handlingccccoooiiiiiiiiiii e, B4-111
B4.10 The Default NaN ...t B4-112
B4.11 Combinations of floating-point exceptionsccccovviiiiiiiiiiie e B4-113
B4.12 Priority of floating-point exceptions relative to other floating-point exceptions .. B4-114
Chapter B5 Memory Model
B5.1 MEMOIY GQCCESSES ..ociiuiiiiieeieiiiee e e e ettt e e e et e e e e ettt e e e e st e e e e e s etbeeaeeseabeeeaaeaanns B5-117
B5.2 AArESS SPACE ..iiiiiiiiiiie ettt e e e e e e s e e e e e e e aaare e e e e aaanaes B5-118
B5.3 ENIANNESS ... a e B5-119
B5.4 AlIGNMENT DENAVIOrcoiiiiiiee e B5-121
1T T AN (o] 1o YRR B5-122
B5.6 Concurrent modification and execution of instructionsccccoccciiiiiiinienne B5-123
B5.7 ACCESS MGNES ..o a e e B5-124
Vi Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

Contents

B5.8 Observability of Memory aCCeSSEScoccviiiiiiiiiiiieii e B5-125
B5.9 Completion of MEMOrY ACCESSESuviiiiiiiiiiieeiit e B5-126
B5.10 Ordering requirements for Memory aCCeSSEScceeeruierriiireriieeeenieeeneeeeneeens B5-127
B5.11 Ordering of implicit MEMOry aCCESSESccuvviiiiieiiiieeee e B5-128
B5.12 Ordering of explicit MemMOry aCCESSESccccuvieeiiiiiiiiieeecieee e B5-129
B5.13 MEMOTY DAITIEISeiiiiiiiiiiie ettt B5-130
B5.14 NOIMAl MEMOTYeeiiiiiiiie ettt nnne s B5-133
B5.15 Cacheability attributescoocuiiiiiiii B5-134
B5.16 DEVICE MEMIOIY ...ttt e ettt e e e s e st e e e e e nnee e e e e e annneeeeeean B5-135
B5.17 Device memory attributescooiiiiiiiiiiiii e B5-136
B5.18 Shareability dOMaiNScoooiiiiiiiie e B5-139
B5.19 Shareability attributesooceiiiiiiiii B5-140
B5.20 Memory access restriCtionscueiiiiiiiiiiiiicee e B5-141
B5.21 Mismatched memory attributesccooioiiiiiiiii B5-142
B5.22 Load-Exclusive and Store-Exclusive accesses to Normal memory B5-144
B5.23 Load-Acquire and Store-Release accesses to memoryc.ccccceeeveeevieeeenenennn B5-145
B5.24 CACNES .ot n B5-147
B5.25 Cache identificationccooiiiiiiiiii i B5-148
B5.26 Cache VISIDIlItYcoceiiiiiiiiiii et s B5-149
B5.27 CaChe CONEIENCYcoiiiiiiiiie et B5-150
B5.28 Cache enabling and diSablingccccceeeiiiiiiiiiecee e B5-151
B5.29 Cache behavior at reSetcccooiiiiiiiree e B5-152
B5.30 Behavior of Preload Data (PLD) and Preload Instruction (PLI) instructions with caches
B5-153
B5.31 Branch prediCtors ... e B5-154
B5.32 Cache maintenance operationsccccociiiiieeiiiiiiie e B5-155
B5.33 Ordering of cache maintenance operationsccoccoeiiiiinieeecce e B5-157
B5.34 Branch predictor maintenance operationscccccccccveieieieei e B5-158
Chapter B6 Synchronization and Semaphores
B6.1 Exclusive access iNStruCtionsc.eeiii i B6-160
B6.2 The 10Cal MONITOISeiiiii e
B6.3 The global MONIOreiiiiiie e
B6.4 Exclusive access instructions and the monitors
B6.5 Load-Exclusive and Store-Exclusive instruction constraintsc..c........ B6-166
Chapter B7 The System Address Map
B7.1 System address Map ... B7-170
B7.2 The System region of the system address mapccccceveeeiiieeeici e B7-171
B7.3 The System Control SPace (SCS) ...oooiiiiiiiieeee e B7-172
Chapter B8 The ARMv8-M Protected Memory System Architecture
B8.1 Memory protection UNit ... B8-174
B8.2 Security attributionoccuiiiie e B8-176
B8.3 Security attribution UNit (SAU)oooiiiiiiieee e B8-178
B8.4 IMPLEMENTATION DEFINED Attribution Unit (IDAU)cccooiieiiiiiceiec B8-179
Chapter B9 The System Timer, SysTick
B9.1 The system timer, SYSTICKccueviiiiiiii e B9-182
Chapter B10 Nested Vectored Interrupt Controller
B10.1 NVIC definitioncc.eoiiiieiieiie ettt B10-184
B10.2 NVIC OPEratioNeoeiiiiiiiie ittt B10-185
Chapter B11 Debug
B11.1 ADOUL AEDUG ..ot B11-188
B11.2 Accessing debug features ... B11-192
B11.3 Debug authentication interfacecccoceiiriienii e B11-195
ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. vii
ID092816 Non-Confidential

Contents

B11.4 Debug event DENAVIOrcooiiiiiiiiii e B11-201
B11.5 Exiting Debug Statecc.eiiiiiie e B11-210
B11.6 MUItiproCeSSOr SUPPOITeiiiiiiiiiie et et e e e ee s B11-211
Chapter B12 Debug and Trace Components
B12.1 Instrumentation Trace Macrocellcccccooiiiiiiiiiiii e B12-214
B12.2 Data Watchpoint and Trace Unitoooiiiiiiiiiiiieeeeee s B12-220
B12.3 Embedded Trace MacrocCellccoocceiiiiiiiiieiiie e B12-234
B12.4 Trace Port Interface UNitccoooiiiiiiiiii e B12-235
B12.5 Flash Patch and Breakpoint unitcccooiiiiiiiiiee e B12-236
Part C ARMv8-M Instruction Set
Chapter C1 Instruction Set Overview
C1.1 INSEIUCHION ST ... C1-244
C1.2 Format of instruction descriptions ... C1-245
C1.3 Pseudocode for instruction descriptionsccccoviiiiiiiiiii e C1-248
c14 Unified Assembler Languagecceeeoiiiiiiieniieeieee e C1-250
C1.5 Standard assembler syntax fieldscccocooveriiiiiiiiniie e C1-252
C1.6 Conditional @XECULIONoeiiiiieiie et e e e C1-253
c1.7 Instruction set encoding informationcccooiiiiiiiiie e C1-256
Cc1.8 Modified immediate CONStaNtScccoiiiiiiiiiii e C1-259
Cc1.9 NOP-compatible hint iNStrUCIONScueiiiiiiiiii e C1-260
C1.10 Instruction set, interworking sUpportcoooiiiii e C1-261
C1.11 Instruction set, interstating SUPPOItcoooiiiiiiiiie e C1-262
Chapter C2 Instruction Specification
C2.1 Top level T32 instruction set eNcodingoooceeiiiieeiiie e C2-264
C2.2 16-bit T32 instruction enNcodingcccceiuieiiiii i C2-265
c2.3 32-bit T32 instruction eNCOAINGccociuiiiiiiiiiii e C2-276
C2.4 Alphabetical list Of INSTrUCHONSoooiiiiiiiii e C2-312
Part D ARMv8-M Registers
Chapter D1 Register Specification
D1.1 ReGISTEr INAEX ... D1-800
D1.2 Alphabetical list Of regiStersc.ccocooiiiiiiiiiiiiie e D1-816
Part E ARMv8-M Pseudocode
Chapter E1 ARM Pseudocode Definition
E1.1 About the ARM pSEUAOCOUEooeiiiiiiiiiiiieeee e E1-1130
E1.2 Data tYPES e e e E1-1131
E1.3 (0] 07=T4= 1 (o] £ O OPURSPPPI E1-1136
E1.4 Statements and control StrUCtUrEScocuiiiiiiiiiiiei e E1-1142
E1.5 BUIlt-in FUNCHONS ...eeiiiiiie e e E1-1148
E1.6 ARM pseudocode definition iNdeXcccoovieiiiiiiniiiee e E1-1151
Chapter E2 Pseudocode Specification
E2.1 Alphabetical pseudocode Listcccoiiiiiiiiiiiiiie e E2-1156
viii Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential ID092816

Contents

Part F Debug Packet Protocols
Chapter F1 ITM and DWT Packet Protocol Specification
F1.1 About the ITM and DWT packetsccccuveiiiieiieeieeic e F1-1304
F1.2 Alphabetical list of DWT and ITM packetscccccoeviieeieiiiiieecccceee e F1-1307
Part G Appendix
Appendix G1 Architectural Constraints on UNPREDICTABLE behaviors
G1.1 CONSTRAINED UNPREDICTABLE behaviorscccccccoevviieiieiiiieec e G1-1332
Glossary
ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ix

1D092816

Non-Confidential

Contents

X Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

Preface

This preface introduces the ARMvS-M Architecture Reference Manual. Tt contains the following sections:

About this book on page Xii.
Using this book on page xiii.
Conventions on page Xv.
Additional reading on page xvii.
Feedback on page xviii.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved.
Non-Confidential

Xi

Preface
About this book

About this book

This manual documents the microcontroller profile of version 8 of the ARM® Architecture, the ARMv8-M
architecture profile. For short definitions of all the ARMv8 profiles see About the ARMVS architecture, and
architecture profiles on page A1-24.

This manual has the following parts:

Part A Provides an introduction to the ARMv8-M architecture.
Part B Describes the architectural rules.

Part C Describes the T32 instruction set.

Part D Describes the registers.

Part E Describes the ARMv8-M pseudocode.

Part F Describes the packet protocols.

Part G, Appendix

Provides additional architectural information.

Xii

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved.
Non-Confidential

ARM DDI 0553A.c
ID092816

Preface
Using this book

Using this book

The information in this manual is organized into parts, as described in this section.

Part A, ARMv8-M Architecture Introduction and Overview

Part A gives an overview of the ARMvS-M architecture profile, including its relationship to the other ARM PE
architectures. It introduces the terminology used to describe the architecture, and gives an overview of the optional
architectural extensions. It contains the following chapter:

Chapter Al Introduction
Read this for an introduction to the ARMv8-M architecture.

Part B, ARMv8-M Architecture Rules

Part B describes the architecture rules. It contains the following chapters:

Chapter B1 Resets

Read this for a description of the reset rules.
Chapter B2 Power Management
Read this for a description of the power management rules.
Chapter B3 Programmers’ Model
Read this for a description of the programmers model rules.
Chapter B4 Floating-point Support
Read this for a description of the floating-point support rules.
Chapter BS Memory Model
Read this for a description of the memory model rules.
Chapter B6 Synchronization and Semaphores
Read this for a description of the rules on non-blocking synchronization of shared memory.
Chapter B7 The System Address Map
Read this for a description of the system address map rules.
Chapter B8 The ARMv8-M Protected Memory System Architecture
Read this for a description of the protected memory system architecture rules.
Chapter B9 The System Timer, SysTick

Read this for a description of the system timer rules.

Chapter B10 Nested Vectored Interrupt Controller
Read this for a description of the Nested Vectored Interrupt Controller (NVIC) rules.

Chapter B11 Debug
Read this for a description of the debug rules.

Chapter B12 Debug and Trace Components

Read this for a description of the debug and trace component rules.

ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. Xiii
1D092816 Non-Confidential

Preface
Using this book

Part C, ARMv8-M Instructions
Part C describes the instructions. It contains the following chapters:

Chapter C1 Instruction Set Overview

Read this for an overview of the instruction set and the instruction set encoding.

Chapter C2 Instruction Specification

Read this for a description of each instruction, arranged by instruction mnemonic.

Part D, ARMv8-M Registers
Part D describes the registers. It contains the following chapter:

Chapter D1 Register Specification

Read this for a description of the registers.

Part E, ARMv8-M Pseudocode

Part E describes the pseudocode. It contains the following chapters:

Chapter E1 ARM Pseudocode Definition

Read this for a definition of the pseudocode that ARM documentation uses.

Chapter E2 Pseudocode Specification

Read this for a description of the pseudocode.

Part F, Packet Protocols
Part F describes the packet protocols. It contains the following chapter:

Chapter F1 ITM and DWT Packet Protocol Specification

Read this for a description of the protocol for packets that are used to send the data generated by the
ITM and DWT to an external debugger.

Part G, Appendix
This manual contains the following appendix:

Appendix G1 Architectural Constraints on UNPREDICTABLE behaviors

Read this for a description of the architecturally-required constraints on UNPREDICTABLE behaviors
in the ARMVS architecture.

Xiv Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

Conventions

Preface
Conventions

The following sections describe conventions that this book can use:

. Typographic conventions.

. Signals.

. Numbers.

. Pseudocode descriptions.

. Assembler syntax descriptions on page Xvi.

Typographic conventions

Signals

Numbers

The typographical conventions are:

italic Introduces special terminology, and denotes citations.
bold Denotes signal names, and is used for terms in descriptive lists, where appropriate.
monospace Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other items appearing in
assembler syntax descriptions, pseudocode, and source code examples.
SMALL CAPITALS

Used for a few terms that have specific technical meanings, and are included in the Glossary.

Colored text Indicates a link. This can be:
. A URL, for example http://infocenter.arm.com.

. A cross-reference, that includes the page number of the referenced information if it is not on
the current page, for example, Standard assembler syntax fields on page C1-252.

. A link, to a chapter or appendix, or to a glossary entry, or to the section of the document that
defines the colored term, for example ADC (immediate).

In general this specification does not define processor signals, but it does include some signal examples and
recommendations.

The signal conventions are:

Signal level The level of an asserted signal depends on whether the signal is active-HIGH or
active-LOW. Asserted means:

. HIGH for active-HIGH signals.
. LOW for active-LOW signals.

Lowercase n At the start or end of a signal name denotes an active-LOW signal.

Numbers are normally written in decimal. Binary numbers are preceded by @b, and hexadecimal numbers by 0x. In
both cases, the prefix and the associated value are written in a monospace font, for example 0xFFFF0000. To improve
readability, long numbers can be written with an underscore separator between every four characters, for example
0xFFFF_0000_0000_0000. Ignore any underscores when interpreting the value of a number.

Pseudocode descriptions

This book uses a form of pseudocode to provide precise descriptions of the specified functionality. This pseudocode
is written in a monospace font, and is described in Part E ARMvS-M Pseudocode.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. XV
Non-Confidential

Preface
Conventions

Assembler syntax descriptions

This book contains numerous syntax descriptions for assembler instructions and for components of assembler
instructions. These are shown in a monospace font, and use the conventions described in 4 list of the assembler
symbols for the instruction on page C1-246.

XVi Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

Preface
Additional reading

Additional reading

This section lists relevant publications from ARM and third parties.

See the Infocenter http://infocenter.arm.com, for access to ARM documentation.

ARM publications

Other publications

Procedure Call Standard for the ARM Architecture (ARM GENC 003534).
Run-time ABI for the ARM Architecture (ARM IHI 0043).

ARM® Debug Interface v5 Architecture Specification (ARM IHI 0031).

ARM* CoreSight™ Architecture Specification (ARM THI 0029).

ARM" CoreSight™ SoC-400 Technical Reference Manual (ARM DDI 0480).
ARM" Embedded Trace Macrocell Architecture Specification (ARM THI 0014).

ARM" Generic Interrupt Controller Architecture Specification, GIC architecture version 3.0 and version 4.0
(ARM IHI 0069).

Introduction to the ARM*v8-M Architecture Version 1.0 (ARM100688 0100 00 en).
Memory Protection Unit (MPU) Version 1.0 (ARM 100699 0100 _00_en).

Real-time Operating System Design Considerations Version 1.0 (ARM 100689 0100 00 en).
TrustZone® technology for ARMv8®-M Architecture Version 1.0 (ARM 100690_0100_00_en).

For information about the ARMv6-M architecture profile, see the ARMv6-M Architecture Reference Manual
(ARM DDI 0419).

For information about the ARMv7-M architecture profile, see the ARMv7-M Architecture Reference Manual
(ARM DDI 0403).

For information about the ARMVS-A architecture profile, see the ARM®™ Architecture Reference Manual, ARMVS,
for ARMvS-A architecture profile (ARM DDI 0487).

The following publications are referred to in this manual, or provide more information:

ANSI/IEEE Std 754-1985 and ANSI/IEEE Std 754-2008, IEEE Standard for Binary Floating-Point
Arithmetic. Unless otherwise indicated, references to IEEE 754 refer to either issue of the standard.

Note

This document does not adopt the terminology defined in the 2008 issue of the standard.

JEP106, Standard Manufacturers Identification Code, JEDEC Solid State Technology Association.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. Xvii
Non-Confidential

Preface
Feedback

Feedback

ARM welcomes feedback on its documentation.

Feedback on this book

If you have comments on the content of this book, send an e-mail to errata@arm.com. Give:

. The title.

. The number, ARM DDI 0553A..c.

. The page numbers to which your comments apply.

. The rule identifiers to which your comments apply, if applicable.
. A concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.

Note

ARM tests PDFs only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the appearance or behavior of
any document when viewed with any other PDF reader.

Xviii Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

Part A

ARMv8-M Architecture Introduction and Overview

Chapter A1
Introduction

This chapter introduces the ARMv8 architecture, the architecture profiles it defines, and the ARMv8-M architecture
profile defined by this manual. It contains the following sections:

. Document layout and terminology on page A1-22.

. About the ARMvS architecture, and architecture profiles on page Al1-24.
. The ARMvS-M architecture profile on page A1-25.

. ARMVS-M variants on page A1-27.

ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. A1-21
1D092816 Non-Confidential

A1 Introduction
A1.1 Document layout and terminology

A11 Document layout and terminology

This section describes the structure and scope of, and the terminology that is used in, this manual. It does not
constitute part of the manual, and must not be interpreted as implementation guidance.

A1.11 Structure of the document
This architecture manual describes the behavior of the processing element as a set of individual rules.

Each rule is clearly identified by the letter R, followed by a random group of subscript letters that do not reflect any
intended order or priority, for example Rgcyr. In the following example, Rgcyr is simply a random rule identifier
that has no significance apart from uniquely identifying a rule in this manual.

Identifier Rule

| |
! !

Recvr The following data accesses are single-copy atomic:

e All byte accesses.
e All halfword accesses to halfword-aligned locations.
e All word accesses to word-aligned locations.

”

Rules must not be read in isolation, and where more than one rule relating to a particular feature exists, individual
rules are grouped into sections and subsections to provide the proper context. Where appropriate, these sections
contain a short introduction to aid the reader.

An implementation that conforms to all the rules described in this specification constitutes an ARMv8-M compliant
implementation. An implementation whose behavior deviates from these rules is not compliant with the ARMv8-M
architecture.

Some sections contain additional information and guidance that do not constitute rules. This information and
guidance is provided purely as an aid to understanding the architecture. Information statements are clearly identified
by the letter I, followed by a random group of subscript letters, for example Iprrp.

Note

ARM strongly recommends that implementers read all chapters and sections of this document to ensure that an
implementation is compliant.

An implementation that conforms to all the rules described in this specification but chooses to ignore any additional
information and guidance is compliant with the ARMv8-M architecture.

In the following parts of this manual, architectural rules are not identified by a specific prefix and a random group
of subscript numbers:

. Part C ARMvS-M Instruction Set.

. Part D ARMvS8-M Registers.

. Part E ARMv8-M Pseudocode.

. Part F Debug Packet Protocols.

. Appendix G1 Architectural Constraints on UNPREDICTABLE behaviors.

A1.1.2 Scope of the document

This manual contains only rules and information that relate specifically to the ARMv8-M architecture. It does not
include any information about other ARM architectures, nor does it describe similarities between ARMv8-M and
other architectures.

A1-22 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

A1 Introduction
A1.1 Document layout and terminology

Readers must not assume that the rules provided in this specification are applicable to an ARMv7-M or ARMv6-M
implementation, nor must they assume that the rules that are applicable to an ARMv7-M or ARMv6-M
implementation are equally applicable to an ARMv8-M implementation.

A113 Intended audience

This manual is written for users who want to design, implement, or program an ARMv8-M PE in a range of
ARM-compliant implementations from simple uniprocessor implementations to complex multiprocessor systems.
It does not assume familiarity with previous versions of the M-profile architecture.

The manual provides a precise, accurate, and correct set of rules that must be followed in order for an ARMv8-M
implementation to be architecturally compliant. It is an explicit reference manual, and not a general introduction to,
or user guide for, the ARMv8-M architecture.

The following quick-reference guides might be of interest to software engineers:
. Introduction to the ARM™v8-M Architecture Version 1.0.

. Memory Protection Unit (MPU) Version 1.0.

. Real-time Operating System Design Considerations Version 1.0.

. TrustZone® technology for ARMvS®-M Architecture Version 1.0.

A1.1.4 Terminology, phrases

This subsection identifies some standard words and phrases that are used in the ARM architecture documentation.
These words and phrases have an ARM-specific definition, which is described in this section.

Architecturally visible
Something that is visible to the controlling agent. The controlling agent might be software.

ARM recommends
A particular usage that ensures consistency and usability. Following all the rules listed in this
manual leads to a predictable outcome that is compliant with the architecture, but might produce an
unexpected output. Adhering to a recommendation ensures that the output is as expected.

ARM strongly recommends
Something that is essentially mandatory, but that it is outside the scope of the architecture described
in this manual. Failing to adhere to a strong recommendation can break the system, although the PE
itself remains compliant with the architecture that is described in this manual.

Finite time
An action will occur at some point in the future. Finite time does not make any statement about the
time involved. However, delaying an action longer than is absolutely necessary might have an
adverse impact on performance.

Permitted

Allowed behavior.
Required

Mandatory behavior.
Support

The implementation has implemented a particular feature.

A1.1.5 Terminology, ARMv8-M specific terms

For definitions of ARMvV8-M specific terms, see the Glossary.

ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. A1-23
1D092816 Non-Confidential

A1 Introduction

A1.2 About the ARMv8 architecture, and architecture profiles

A1.2 About the ARMv8 architecture, and architecture profiles
ARMVS-M is documented as one of a set of architecture profiles. These profiles are defined as follows:
ARM defines three architecture profiles:
A Application profile:

. Supports a Virtual Memory System Architecture (VMSA) based on a Memory Management
Unit (MMU).

. Supports the A64, A32, and T32 instruction sets.

R Real-time profile:

. Supports a Protected Memory System Architecture (PMSA) based on a Memory Protection
Unit (MPU).

. Supports the A32 and T32 instruction sets.

M Microcontroller profile, described in this manual:

. Implements a programmers' model designed for low-latency interrupt processing, with
hardware stacking of registers and support for writing interrupt handlers in high-level
languages.

. Optionally implements a variant of the R-profile PMSA.

. Supports a variant of the T32 instruction set.

This Architecture Reference Manual describes only the ARMvS-M profile.
A1-24 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

A1 Introduction
A1.3 The ARMv8-M architecture profile

A13 The ARMv8-M architecture profile

The M-profile architecture has historically included:

. The opportunity to include simple pipeline designs offering leading edge system performance levels in a
broad range of markets and applications.

. Highly deterministic operation:
— Single or low cycle count execution.
— Minimal interrupt latency, with short pipelines.
— Capable of cacheless operation.

. Excellent targeting of C/C++ code. This aligns with the ARM programming standards in this area:
— Exception handlers are standard C/C++ functions, entered using standard calling conventions.

. Design support for deeply embedded systems:
— Low pincount devices.

. Support for debug and software profiling for event-driven systems.

The simplest ARMv8-M implementation, without any of the optional extensions, is a Baseline implementation, see
ARMvS8-M variants on page A1-27. The ARMvS-M Baseline offers improvements over previous M-profile
architectures in the following areas:

. The optional Security Extension.
. An improved, optional, Memory Protection Unit (MPU) model.
. Alignment with ARMv8-A and ARMv8-R memory types.

. Stack pointer limit checking.
. Improved support for multi-processing.
. Better alignment with C11 and C11++ standards.

. Enhanced debug capabilities.

A1.3.1 Security Extension

The ARMvVS-M architecture introduces a number of new instructions to the M-profile architecture to support asset
protection. These instructions are only available to implementations that support the Security Extension, see
ARMvS-M variants on page A1-27.

Al1.3.2 MPU model

The ARMVS-M architecture provides a default memory map and permits implementations to include an optional
MPU. The optional MPU uses the Protected Memory System Architecture (PMSAvS8) and contains improved
flexibility in the MPU region definition, see Chapter B8 The ARMvS-M Protected Memory System Architecture.

A1.3.3 Nested Vector Interrupt Controller

The Nested Vector Interrupt Controller (NVIC) is used for integrated interrupt and exception handling and
prioritization. ARMv8-M increases the number of interrupts that can potentially be supported by the NVIC to 480
for external sources, and includes automatic vectoring and priority management, and automatic state preservation.
see Chapter B10 Nested Vectored Interrupt Controller.

A1.3.4 Stack pointers

The ARMVS-M architecture introduces stack limit registers that trigger an exception on a stack overflow. The
number of stack limit registers available to an implementation is determined by the ARMv8-M variant that is
implemented, see Stack pointer on page B3-46.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. A1-25
Non-Confidential

A1 Introduction
A1.3 The ARMv8-M architecture profile

A1.3.5 The ARMv8-M instruction set

ARMV8-M only supports execution of T32 instructions. The ARMv8-M architecture adds instructions to support:

. Improved facilitation of execute-only code generation.

. Improved code optimization.

. Exclusive memory access instructions to enhance support for multiprocessor systems.
. Semaphores and atomics (Load-Acquire/Store-Release instructions).

The Floating-point (FP) Extension adds floating-point instructions to the T32 instruction set, see Chapter B4
Floating-point Support.

For more information about the instructions, see Chapter C1 Instruction Set Overview and Chapter C2 Instruction
Specification.

A1.3.6 Debug

The ARMv8-M architecture introduces:

. Enhanced breakpoint and watchpoint functionality.
. Improvements to the Instrumentation Trace Macrocell (ITM).
. Comprehensive trace and self-hosted debug extensions to make embedded software easier to debug and trace.

For more information about debug, see Chapter B11 Debug and Chapter B12 Debug and Trace Components.

A1-26 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

A1 Introduction
A1.4 ARMv8-M variants

Al1.4 ARMv8-M variants

The ARMVS-M architecture has the following optional extensions:

The Main Extension.
The Security Extension.
Note
The ARMVS-M Security Extension can also be referred to as ARM® TrustZone® for ARMvS-M.

The Floating-point Extension.

The Digital Signal Processing (DSP) Extension.
The Debug Extension.

The MPU Extension.

Only a PE that implements the Main Extension can implement the Floating-point Extension or the DSP Extension.

Note

A PE with the Main Extension is also referred to as a Mainline implementation.

A PE without the Main Extension is also referred to as a Baseline implementation. A Baseline
implementation has a subset of the instructions, registers, and features, of a Mainline implementation.

ARMV7-M compatibility requires the Main Extension.

ARMv6-M compatibility is provided by all ARMv8-M implementations.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. A1-27
Non-Confidential

A1 Introduction
A1.4 ARMv8-M variants

A1-28 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

Part B

ARMv8-M Architecture Rules

Chapter B1
Resets

This chapter specifies the ARMvS-M reset rules. It contains the following section:
. Resets, Cold reset and Warm reset on page B1-32.

ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B1-31
1D092816 Non-Confidential

B1 Resets
B1.1 Resets, Cold reset and Warm reset

B1.1 Resets, Cold reset and Warm reset
RgppL There are two resets:
. Cold reset.
. ‘Warm reset.
RENNX On a Cold reset, registers that have a defined reset value contain that value.
Rorxw On a Warm reset, some debug register control fields that have a defined reset value remain unchanged, but otherwise

all registers that have a defined reset value contain that value.

RymuNn On a Warm reset, the PE performs the actions described by the TakeReset() pseudocode.
Rwszn AIRCR.SYSRESETREQ is required to cause a Warm reset.
RHFRS For AIRCR.SYSRESETREQ), the architecture does not guarantee that the reset takes place immediately.
Rpjpp A Warm reset takes the PE out of Debug state.
See also:

. Chapter B11 Debug

B1-32 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

Chapter B2
Power Management

This chapter specifies the ARMv8-M power management rules. It contains the following section:

. Power management on page B2-34.

ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B2-33
1D092816 Non-Confidential

B2 Power Management
B2.1 Power management

B2.1 Power management

Ineyr The following instructions hint to the PE hardware that it can suspend execution and enter a low-power state:
. Wait for Event (WFE).
. Wait For Interrupt (WFI).
. Sleep on exit (STeepOnExit).

B2.1.1 The Wait for Event (WFE) instruction

RpemH When a WFE instruction is executed, then if the state of the Event register is clear, the PE can suspend execution and
enter a low-power state.

Rupxv When a WFE instruction is executed, then if the state of the Event register is set, the instruction clears the register and
completes immediately.

Regzm If the PE enters a low-power state on a WFE instruction, it remains in that low-power state until it receives a WFE
wakeup event. When the PE recognizes a WFE wakeup event, the WFE instruction completes. The following are WFE
wakeup events:

. The execution of a SEV instruction by any PE.
. When SCR.SEVONPEND is 1, any exception entering the pending state.

. Any exception at a priority that would preempt the current execution priority, taking into account any active
exceptions and including the effects of any software-controlled priority booting by AIRCR.PRIS == 1 and
PRIMASK, FAULTMASK, or BASEPRI.

. If debug is enabled, a debug event.

RyrpC The ARMVS-M architecture does not define the exact nature of the low-power state entered on a WFE instruction,
except that it must not cause a loss of memory coherency.

Itzz ARM recommends that software always uses the WFE instruction in a loop.

See also:
. WaitForEvent on page E2-1294.
. SendEvent on page E2-1272.

B2.1.2 The Event register

IrpzM The Event register is a single-bit register for each PE in the system.
RBpBR The Event register for a PE is set by any of the following:
. Any WFE wakeup event.
. Exception entry.
. Exception return.
Immzw When the Event register is set, it is an indication that an event has occurred since the register was last cleared, and

that the event might require some action by the PE.

Rexmr A reset clears the Event register.
TNV Software cannot read, and cannot write to, the Event register directly.
See also:

. SetEventRegister on page E2-1273.
. ClearEventRegister on page E2-1165.
. EventRegistered on page E2-1184.

B2-34 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

B2 Power Management
B2.1 Power management

B2.1.3 The Wait for Interrupt (WFI) instruction

Rurwmy

IcoNL

When a WFI instruction is executed, the PE can suspend execution and enter a low-power state. If it does, it remains
in that state until it receives a WFI wakeup event. When the PE recognizes a WFI wakeup event, the WFI instruction
completes. The following are WFI wakeup events:

. A reset.

. Any asynchronous exception at a priority that, ignoring the effect of PRIMASK (so that behavior is as if
PRIMASK is 0), would preempt any currently active exceptions.

. An IMPLEMENTATION DEFINED WFI wakeup event.

. If debug is enabled, a debug event.

ARM recommends that software always uses the WFI instruction in a loop.

See also:

. WaitForInterrupt on page E2-1294.

B2.1.4 Sleep on exit

Rixew

Remve

Rwwpw

RpLoF

It is IMPLEMENTATION DEFINED whether the STeepOnExit() function causes the PE to enter a low-power state during
the return from the only active exception and the PE returns to thread mode.

The PE enters a low-power state on return from an exception if all of the following are true:
. EXC RETURN.Mode == 1.
. SCR.SLEEPONEXIT == 1.

If the sleep-on-exit function is enabled, it is IMPLEMENTATION DEFINED at which point in the exception return
process the PE enters a low-power state.

The wakeup events for the sleep-on-exit function are identical to the WFI instruction wakeup events.

See also:
. SleepOnExit on page E2-1277.
. Exception return on page B3-75.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B2-35
Non-Confidential

B2 Power Management
B2.1 Power management

B2-36 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

Chapter B3

Programmers’ Model

This chapter specifies the ARMv8-M programmers’ model architecture rules. It contains the following sections:

PE modes, Thread mode and Handler mode on page B3-39.
Privileged and unprivileged execution on page B3-40.

Registers on page B3-41.

XPSR, APSR, IPSR, and EPSR on page B3-42.

Security states, Secure state, and Non-secure state on page B3-44.
Security states, register banking between them on page B3-45.
Stack pointer on page B3-46.

Exception numbers and exception priority numbers on page B3-47.
Exception enable, pending, and active bits on page B3-50.
Security states, exception banking on page B3-51.

Faults on page B3-53.

Exception states on page B3-56.

Priority model on page B3-57.

Secure address protection on page B3-60.

Security state transitions on page B3-61.

Function calls from Secure state to Non-secure state on page B3-62.
Function returns from Non-secure state on page B3-63.

Exception handling on page B3-64.

Exception entry, context stacking on page B3-66.

Exception entry, register clearing after context stacking on page B3-71.
Stack limit checks on page B3-72.

Exception return on page B3-75.

Integrity signature on page B3-78.

Exceptions during exception entry on page B3-79.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved.
Non-Confidential

B3-37

B3 Programmers’ Model

. Exceptions during exception return on page B3-80.

. Tail-chaining on page B3-81.

. Exceptions, instruction resume, or instruction restart on page B3-83.
. Vector tables on page B3-85.

. Hardware-controlled priority escalation to HardFault on page B3-87.

. Special-purpose mask registers, PRIMASK, BASEPRI, FAULTMASK, for software-controlled priority
boosting on page B3-88.

. Lockup on page B3-90.

. Exception during a singleword load operation on page B3-95.
. Special-purpose CONTROL register on page B3-96.

. Saving context on process switch on page B3-97.

. Context Synchronization Event on page B3-98.

. Coprocessor support on page B3-99.

B3-38 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

B3 Programmers’ Model
B3.1 PE modes, Thread mode and Handler mode

B3.1 PE modes, Thread mode and Handler mode

Renms

IrpvT

Rrpkp

Remop

There are two PE modes:
. Thread mode.
. Handler mode.

A common usage model for the PE modes is:
Thread mode
Applications
Handler mode
OS kernel and associated functions. Software that manages system resources.

The PE handles all exceptions in Handler mode.

Thread mode is selected on reset. The IPSR is set to zero on reset.

See also:
. Privileged and unprivileged execution on page B3-40.
. Interrupt Program Status Register (IPSR) on page B3-42.

. Security states, Secure state, and Non-secure state on page B3-44.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B3-39
Non-Confidential

B3 Programmers’ Model
B3.2 Privileged and unprivileged execution

B3.2 Privileged and unprivileged execution

Rwvrk Thread mode
Execution can be privileged or unprivileged.
Handler mode
Execution is always privileged.

IwcFH CONTROL.nPRIV determines whether execution in Thread mode is unprivileged.
RspoF In a PE without the Main Extension, it is IMPLEMENTATION DEFINED whether CONTROL.nPRIV can be set to 1.
RvcFr Privileged execution has access to all resources.

See also:

. PE modes, Thread mode and Handler mode on page B3-39.

B3-40 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

B3.3

RkGsT

IpavL

RpLRrT

RprNs

Rxuuc

B3 Programmers’ Model
B3.3 Registers

Registers

There are the following types of registers:
General-purpose registers, all 32-bit:
. RO-R12 (R<n>).
. R13. This is the Stack Pointer (SP).
. R14. This is the Link Register (LR).
Program Counter, 32-bit:
. R15 is the Program Counter (PC).
Special-purpose registers
. Mask Registers:
— 1-bit exception mask register, PRIMASK.
— 8-bit base priority mask register, BASEPRI.
— 1-bit fault mask register, FAULTMASK.
. A 2-bit, 3-bit, or 4-bit CONTROL register.

. Two 32-bit Stack Pointer Limit registers, MSPLIM and PSPLIM, if the Main Extension is not
implemented the Non-secure versions of these registers are RAZ/WI.

. A combined 32-bit Program Status Register (XPSR), comprising:
— Application Program Status Register (APSR).
— Interrupt Program Status Register (IPSR).
— Execution Program Status Register (EPSR).

. A 32-bit Combined Exception Return Program Status Register, RETPSR.

Memory-mapped registers
All other registers.

Extensions might add more registers to the base register set.

In a PE with the Main Extension, the LR is set to 0xFFFFFFFF on Warm reset. Otherwise, it becomes UNKNOWN on
Cold or Warm resets.

The PC is loaded with the reset handler start address on Cold reset and Warm reset.

Except for writes to the CONTROL register, any change to a special-purpose register by a CPS or MSR instruction is
guaranteed:

. Not to affect that CPS or MSR instruction, or any instruction preceding it in program order.
. To be visible to all instructions that appear in program order after the CPS or MSR.
See also:

. Chapter B7 The System Address Map.

. Special-purpose mask registers, PRIMASK, BASEPRI, FAULTMASK, for sofiware-controlled priority
boosting on page B3-88.

. Special-purpose CONTROL register on page B3-96.
. Stack limit checks on page B3-72.

. XPSR, APSR, IPSR, and EPSR on page B3-42.

. Resets, Cold reset and Warm reset on page B1-32.

. Chapter D1 Register Specification.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B3-41
Non-Confidential

B3 Programmers’ Model

B3.4 XPSR, APSR, IPSR, and EPSR

B3.4 XPSR, APSR, IPSR, and EPSR
RvwrTF The APSR, IPSR, and EPSR combine to form one register, the XPSR:
31 30 29 28 27 26 25 24 23 2019 1615 10 9 8 0
p
APSR|N|Z|C|V|Q GE[3:0]"
XPSR IPSR 0 or Exception Number
EPSR I'%'{ ICITTT
N—
T Reserved if the DSP Extension is not implemented
™ Reserved if the Main Extension is not implemented
All unused bits in any of the APSR, IPSR, or EPSR, or any unused bits in the combined XPSR, are reserved.
RxgTp The MRS and MSR instructions recognize the following mnemonics for accessing the APSR, IPSR, or EPSR, or a
combination of them:
Mnemonic Registers accessed
APSR APSR
IPSR IPSR
EPSR EPSR
IAPSR IPSR and APSR
EAPSR EPSR and APSR
IEPSR IPSR and EPSR
XPSR APSR, TIPSR, and EPSR
See also:
. Registers on page B3-41.
. Application Program Status Register (APSR).
. Interrupt Program Status Register (IPSR).
. Execution Program Status Register (EPSR) on page B3-43.
B3.4.1 Application Program Status Register (APSR)
Rkcm Software can use MRS and MSR instructions to access the APSR.
RrpNB Application-level software can access the APSR, regardless of whether the application-level software is privileged
or unprivileged.
See also:
. XPSR, APSR, IPSR, and EPSR.
. APSR, Application Program Status Register on page D1-822.
B3.4.2 Interrupt Program Status Register (IPSR)
RprR) When the PE is in Thread mode, the IPSR value is zero.
B3-42 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential

ID092816

Rxtce

B3 Programmers’ Model
B3.4 XPSR, APSR, IPSR, and EPSR

When the PE is in Handler mode:
. In the case of a taken exception, the IPSR holds the exception number of the exception being handled.
. When there has been a function call from Secure state to Non-secure state, the IPSR has the value of 1.

The PE updates the IPSR on exception entry and return.

Software can use MRS instructions to read the IPSR. The PE ignores writes to the IPSR by MSR instructions.

See also:
. XPSR, APSR, IPSR, and EPSR on page B3-42.
. Function calls from Secure state to Non-secure state on page B3-62.

. IPSR, Interrupt Program Status Register on page D1-998.
. BLX, BLXNS on page C2-351.

B3.4.3 Execution Program Status Register (EPSR)

Rgscu
Igpin

RsqLx

IxBwx

RiBIQ

A reset sets EPSR.T to the value of bit[0] of the reset vector.
Bit[0] of the reset vector must be 1 if the PE is to execute the code indicated by the reset vector.

When EPSR.T is:
0 Any attempt to execute any instruction generates:
. An INVSTATE UsageFault, in a PE with the Main Extension.
. A HardFault, in a PE without the Main Extension.
1 The Instruction set state is T32 state and all instructions are decoded as T32 instructions.

The intent is that the Instruction set state is always T32 state.

All EPSR fields read as zero using an MRS instruction. The PE ignores writes to the EPSR by an MSR instruction.

See also:
. XPSR, APSR, IPSR, and EPSR on page B3-42.
. EPSR, Execution Program Status Register on page D1-929.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B3-43
Non-Confidential

B3 Programmers’ Model

B3.5 Security states, Secure state, and Non-secure state

B3.5 Security states, Secure state, and Non-secure state

RukkL A PE with the Security Extension has two Security states:

Secure state.

— Secure Thread mode.

— Secure Handler mode.
Non-secure state.

— Non-secure Thread mode.
— Non-secure Handler mode.

Non-secure state Secure state
Thread mode Thread mode
Handler mode Handler mode
Rppgr If the Security Extension is implemented, memory areas and other critical resources that are marked as secure can
only be accessed when the PE is executing in Secure state,
Rywrv A PE with the Security Extension resets into Secure state on both of the ARMv8-M resets, Cold reset and Warm
reset.
RpLGH A PE without the Security Extension behaves as though reset into Non-secure state.
See also:
. PE modes, Thread mode and Handler mode on page B3-39.
. Privileged and unprivileged execution on page B3-40.
. Security states, register banking between them on page B3-45.
. Security states, exception banking on page B3-51.
. Security state transitions on page B3-61.
. Resets, Cold reset and Warm reset on page B1-32.
B3-44 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

B3 Programmers’ Model
B3.6 Security states, register banking between them

B3.6 Security states, register banking between them

IMGRQ

RpupK

IgBwT

IMKKR

In a PE with the Security Extension, some registers are banked between the Security states. When a register is
banked in this way, there is a distinct instance of the register in Secure state and another distinct instance of the
register in Non-secure state.

In a PE with the Security Extension:

The general-purpose registers that are banked are:

— RI13. This is the Stack Pointer (SP).

The special-purpose registers that are banked are:

— The Mask registers, PRIMASK, BASEPRI, and FAULTMASK.

— The CONTROL register.

— The main and process Stack Pointer Limit registers, MSPLIM and PSPLIM.

The System Control Space (SCS) is banked.

For MRS and MSR instructions, SYSm[7] in the instruction encoding specifies whether the Secure or the Non-secure
instance of a banked register is accessed:

SYSm[7]
Accesses from
0 1
Secure state Secure instance Non-secure instance

Non-secure state Non-secure instance ~ RAZ/WI

This specification uses the following naming convention to identify banked registers:

<register name>_S

The Secure instance of the register.

<register name>_NS

The Non-secure instance of the register.

<register name>

The instance that is associated with the current Security state.

See also:

Registers on page B3-41.

Security states, Secure state, and Non-secure state on page B3-44.
Stack pointer on page B3-46.

The System Control Space (SCS) on page B7-172.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B3-45
Non-Confidential

B3 Programmers’ Model
B3.7 Stack pointer

B3.7 Stack pointer
Rmpwv In a PE with the Security Extension, four stacks and four stack pointer registers are implemented:
Stack Stack pointer register
Secure Main MSP_S
Process PSP_S
Non-secure ~ Main MSP_NS
Process PSP_NS
Otherwise, two stacks and two stack pointer registers are implemented:
Stack | Stack pointer register
Main MSP
Process | PSP
Rrxrw In Handler mode, the PE uses the main stack.
IpmLS In Thread mode, CONTROL.SPSEL determines whether the PE uses the main or process stack.
RprpL In a PE with the Security Extension, the Secure main stack, MSP_S, is selected and initialized on reset. Otherwise,
MSP is selected and initialized on reset.
Rxpwm <stack pointer register name>[1:0] is always treated as RESO, so that all stack pointers are always guaranteed to
be word-aligned.
RkorB After the exception entry stacking operation, the stack pointer is doubleword-aligned.
IpwrQ ARM recommends that the Secure stacks be located in Secure memory.
See also:
. Security states, Secure state, and Non-secure state on page B3-44.
. PE modes, Thread mode and Handler mode on page B3-39.
. Exception entry, context stacking on page B3-66.
. Vector tables on page B3-85.
. Registers on page B3-41.
. Stack limit checks on page B3-72.
B3-46 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

B3 Programmers’ Model
B3.8 Exception numbers and exception priority numbers

B3.8 Exception numbers and exception priority numbers
Incs Each exception has an associated exception number and an associated priority number.
Remre In a PE with the Main Extension, the exceptions, their associated numbers, and their associated priority numbers

are as follows:

Exception Exception number Priority number
Reset 1 _4a

Secure HardFault when AIRCR. BFHFNMINS is 1> 3 -3

NMI 2 -2

Secure HardFault when AIRCR.BFHFNMINS is0 3 -1

Non-secure HardFault 3 -1

MemManage fault 4 Software configurable
BusFault 5 Software configurable
UsageFault 6 Software configurable
SecureFault 7¢ Software configurable
Reserved 8-10 -

SVCall 11 Software configurable
DebugMonitor 12 Software configurable
Reserved 13 -

PendSV 14 Software configurable
SysTick 15 Software configurable
External interrupt 0 16 Software configurable
External interrupt N 16+N Software configurable

a. Highest priority.

b. When AIRCR.BFHFNMINS is 1, faults that target Secure state that are escalated to HardFault are still
Secure HardFaults. That is, the value of AIRCR.BFHFNMINS does not affect faults that target Secure
state that are escalated to HardFaults. This table row applies to such faults.

c. Ina PE without the Security Extension, exception number 7 is reserved.

ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B3-47
1D092816 Non-Confidential

B3 Programmers’ Model
B3.8 Exception numbers and exception priority numbers

RyvGNy In a PE without the Main Extension, the exceptions, their associated numbers, and their associated priority numbers

are as follows:
Exception Exception number Priority number
Reset 1 _4a
Secure HardFault when AIRCR. BFHFNMINS is 1> 3 -3
NMI 2 -2
Secure HardFault when AIRCR.BFHFNMINS is 0 3 -1
Non-secure HardFault 3 -1
Reserved 4-10 -
SVCall 11 Software configurable
Reserved 12-13 -
PendSV 14 Software configurable
SysTick 15 Software configurable
External interrupt 0 16 Software configurable
External interrupt N 16+N Software configurable
a. Highest priority.
b. When AIRCR.BFHFNMINS is 1, faults that target Secure state that are escalated to HardFault are still
Secure HardFaults. That is, the value of AIRCR.BFHFNMINS does not affect faults that target Secure
state that are escalated to HardFaults. This table row applies to such faults.

IrpiD The maximum supported number of external interrupts is 496, regardless of whether the Main Extension is
implemented.

Roorr The architecture permits an implementation to omit external configurable interrupts where no external device is
connected to the corresponding interrupt pin. Where an implementation omits such an interrupt, the corresponding
pending, active, enable, and priority registers are RESO.

Iowt™m For exceptions with software configurable priority numbers, software configures the priority numbers by using
registers SHPR1 - SHPR3 in the System Control Block (SCB).

Rnrsm Software configurable priority numbers start at 0, the highest software configurable exception priority number.

B3-48 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

RGaep

RemeH

B3 Programmers’ Model

B3.8 Exception numbers and exception priority numbers

In a PE with the Main Extension, the number of software configurable priority numbers is an IMPLEMENTATION
DEFINED power of two in the range 8-256:

Minimum
Number of priority Number of software priority Maximum priority
bits of SHPRn.PRI_n configurable priority =~ number number
implemented? numbers (highest (lowest priority)
priority)
3 8 0 0b11100000 = 224
4 16 0 0b11110000 = 240
5 32 0 0b11111000 = 248
6 64 0 0b11111100 = 252
7 128 0 0b11111110 = 254
8 256 0 0b11111111 =255

a. All low-order bits of these fields that are not implemented as priority bits are RES0, as shown in the

maximum priority number column.

In a PE without the Main Extension, the number of software configurable priority numbers is 4:

Minimum
Number of priority bits of Number of software priority Maximum
SHPRn.PRI_n configurable priority number priority number
implemented? numbers (highest (lowest priority)
priority)
2 4 0 0b11000000 = 192

a. SHPRn.PRI n[5:0] are RESO, as shown in the maximum priority number column.

See also:

Security states, exception banking on page B3-51.
Faults on page B3-53.
Priority model on page B3-57.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved.

Non-Confidential

B3-49

B3 Programmers’ Model
B3.9 Exception enable, pending, and active bits

B3.9 Exception enable, pending, and active bits

Ioopa The SHCSR, ICSR, DEMCR, NVIC TABR<n>, NVIC ISPR<n>, NVIC ISER<n>, and STIR contain exception
enable, pending, and active fields.

IguGw The following exceptions are always enabled and therefore do not have an exception enable bit:
. HardFault.
. NMIL.
. SVCall.
. PendSV.

I Hsx In a PE without the Security Extension:
. Privileged execution can pend interrupts by writing to the NVIC _ISPR<n>.
. When CCR.USERSETMPEND is 1, unprivileged execution can pend interrupts by writing to the STIR.

Iopkx In a PE with the Security Extension:

. Software can use the STIR to pend any Secure or Non-secure interrupt, as follows:

Secure state

Non-secure state

Privileged Can use STIR to pend any Secure or Can use STIR to pend a Non-secure
execution Non-secure interrupt. interrupt.
Unprivileged ~ When CCR.USERSETMPEND Sis1,can = When CCR.USERSETMPEND NSis I,
execution use STIR to pend any Secure or Non-secure canuse STIR to pend a Non-secure interrupt,
interrupt, otherwise a BusFault is generated. otherwise a BusFault is generated.
. Software can use STIR NS to pend a Non-secure interrupt, as follows:
Secure state Non-secure
state
Privileged Can use STIR_NS to pend a Non-secure interrupt. RESO
execution
Unprivileged When CCR.USERSETMPEND_ NS is 1, can use STIR_NS to pend a BusFault.
execution Non-secure interrupt, otherwise a BusFault is generated.
. Software can use NVIC ISPR<n> to pend any Secure or Non-secure interrupt, as follows:
Secure state Non-secure state
Privileged Can use NVIC_ISPR<n> to pend any Secure ~ Can use NVIC_ISPR<n> to pend a
execution or Non-secure interrupt. Non-secure interrupt.
Unprivileged Fault Fault
execution
. Software can use NVIC_ISPR<n> NS to pend a Non-secure interrupt, as follows:

Secure state

Non-secure state

Privileged execution

Unprivileged execution ~ Fault

Can use NVIC_ISPRN NS to pend a Non-secure interrupt. ~ RESO

Fault

B3-50

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0553A.c
ID092816

B3.10

Rpypy

Rewnn
RnBmv
IppKC
Ingem
Rmown
IwssL

IpoLx

Security states, exception banking

B3 Programmers’ Model
B3.10 Security states, exception banking

In a PE with the Security Extension, some exceptions are banked. A banked exception has all of the following:

. Banked enabled, pending, and active bits.
. A banked SHPRn.PRI field.

. A banked exception vector.

. A state relevant handler.

A banked exception targets the Security state that it is taken from.

Reset always targets Secure state.

Exception Banked
Reset No
HardFault Yes
(conditionally)?
NMI No
MemManage fault® Yes
BusFaultb No
UsageFaultb Yes
SecureFaultb No
SVCall Yes
DebugMonitorb No
PendSV Yes
SysTick Yes
External interrupt 0 No
External interrupt N~ No

a. HardFault only behaves as a banked
exception if AIRCR.BFHFNMINS
is 1, otherwise it behaves as an
unbanked exception targeting

Secure state.

b. Exception type is present only if the
Main Extension is implemented.

NMI can be configured to target either Security state, by using AIRCR.BFHFNMINS.

BusFault can be configured to target either Security state, by using AIRCR.BFHFNMINS.

SecureFault always targets Secure state.

DebugMonitor targets Secure state if the status bit DEMCR.SDME is 1. Otherwise, it targets Non-secure state.

Each external interrupt, 0-N, targets the Security state that its NVIC_ITNS<n>.<bit number> dictates.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved.

Non-Confidential

B3-51

B3 Programmers’ Model
B3.10 Security states, exception banking

Rppx1 In this rule, <exception> is one of:
. NML
. BusFault.
. DebugMonitor.
. External interrupt N.

When <exception> targets Secure state, the Non-secure view of its SHPRn.PRI field, and enabled, pending, and
active bits, are RAZ/WI.

I FHQ Secure software must ensure that when changing the target Security state of an exception, the exception is not
pending or active.

See also:
. Exception numbers and exception priority numbers on page B3-47.
. Vector tables on page B3-85.

B3-52 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

B3 Programmers’ Model
B3.11 Faults

B3.11 Faults

INHTB

RxMRH
Rppyy

Iscmw

RfLDT

Rtsca

Raqpis

RGBiIF

There are the following Fault Status Registers:

. HardFault Status Register (HFSR). Present only if the Main Extension is implemented.

. MemManage Fault Status Register (MMFSR). Present only if the Main Extension is implemented.
. BusFault Status Register (BFSR). Present only if the Main Extension is implemented.

. UsageFault Status Register (UFSR). Present only if the Main Extension is implemented.
. SecureFault Status Register (SFSR). Present only if the Main Extension and Security Extension are
implemented.

. Debug Fault Status Register (DFSR). Present only if Halting debug or the Main Extension is implemented.
. Auxiliary Fault Status Register (AFSR). The contents of this register are IMPLEMENTATION DEFINED.

In a PE with the Main Extension, the MMFSR, BFSR, and UFSR combine to form one register, called the
Configurable Fault Status Register (CFSR).

There are the following Fault Address Registers:

. MemManage Fault Address Register (MMFAR). Present only if the Main Extension is implemented.
. BusFault Address Register (BFAR). Present only if the Main Extension is implemented.

. SecureFault Address Register (SFAR). Present only if the Main Extension is implemented.

MMFAR is updated only for a MemManage fault on a direct data access.
BFAR is updated only for a BusFault on a data access, a precise fault.

ARM strongly recommends that software clears the BFAR, or shared fault address register, when changing
AIRCR.BFHFNMINS so as not to expose the last accessed address to the other Security state.

Each fault address register has an associated valid bit. When the PE updates the fault address register, the PE sets
the valid bit to one.

Fault address register Valid bit

MMFAR MMFSR.MMARVALID
BFAR BFSR.BFARVALID
SFAR SFSR.SFARVALID

If the Security Extension is not implemented, it is IMPLEMENTATION DEFINED whether separate BFAR and MMFAR
are implemented. If one shared fault address register is implemented, then on a fault that would otherwise update
the shared fault address register, if one of the other valid bits is set to one it is IMPLEMENTATION DEFINED whether:

. The shared fault address register is updated, the valid bit for the fault is set, and the other valid bit is cleared.
. The shared fault address register is not updated, and the valid bits are not changed.
If the Security Extension is implemented, it is IMPLEMENTATION DEFINED whether separate BFAR and MMFAR_NS

are implemented. If one shared fault address register is implemented, then on a fault that would otherwise update
the shared fault address register, if one of the other valid bits is set to one, it is IMPLEMENTATION DEFINED whether:

. The shared fault address register is updated, the valid bit for the fault is set, and the other valid bit is cleared.
. The shared fault address register is not updated, and the valid bits are not changed.

If the Security Extension is implemented, it is IMPLEMENTATION DEFINED whether a separate SFAR and MMFAR_S
are implemented. If one secure shared fault address register is implemented, then on a fault that would otherwise

update the secure shared fault address register, if the other valid bit for the secure shared fault address register is set
to one it is IMPLEMENTATION DEFINED whether:

. The shared secure fault address register is updated, the valid bit for the fault is set, and the other valid bit for
the secure shared fault address register is cleared.

. The secure shared fault address register is not updated, and the valid bits for the secure shared fault address
register is not changed.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B3-53
Non-Confidential

B3 Programmers’ Model
B3.11 Faults

Rppcu In a PE with the Main Extension, the faults are:

Exception Exception Fault Fault status bit

number

3 HardFault HardFault on a vector table entry read error HFSR.VECTTBL
HardFault on fault escalation HFSR.FORCED
HardFault on BKPT escalation HFSR.DEBUGEVT

4 MemManage MemManage fault on an instruction fetch MMFSR.IACCVIOL

fault

MemManage fault on a direct data access MMFSR.DACCVIOL
MemManage fault on context unstacking by MMFSR.MUNSTKERR
hardware, because of an MPU access violation
MemManage fault on context stacking by MMFSR.MSTKERR
hardware, because of an MPU access violation
When lazy FP context preservation is active,a ~ MMFSR.MLSPERR
MemManage fault on saving FP context to the
stack

5 BusFault BusFault on an instruction fetch, precise BFSR.IBUSERR
BusFault on a data access, precise BFSR.PRECISERR
BusFault on a data access, imprecise BFSR.IMPRECISERR
BusFault on context unstacking by hardware BFSR.UNSTKERR
BusFault on context stacking by hardware BFSR.STKERR
When lazy FP context preservation is active, a SFSR.LSPERR
BusFault on saving FP context to the stack

6 UsageFault UsageFault, undefined instruction UFSR.UNDEFINSTR
UsageFault, invalid Instruction set state because =~ UFSR.INVSTATE
EPSR.Tis 0
UsageFault, failed integrity check on exception =~ UFSR.INVPC
return
UsageFault, no coprocessor UFSR.NOCP
UsageFault, stack overflow UFSR.STKOF
UsageFault, unaligned access when UFSR.UNALIGNED
CCR.UNALIGN TRP is 1
UsageFault, divide by zero when UFSR.DIVBYZERO
CCR.DIV_0 TRPis 1

B3-54 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential

ID092816

RNxrx

Rrqiv

lcexa

B3 Programmers’ Model
B3.11 Faults

Exception Exception Fault Fault status bit

number

7 SecureFault SecureFault, invalid Secure state entry point SFSR.INVEP
SecureFault, invalid integrity signature when SFSR.INVIS
unstacking
SecureFault, invalid exception return SFSR.INVER
SecureFault, attribution unit violation SFSR.AUVIOL
SecureFault, invalid transition from Secure SFSR.INVTRAN
state

SecureFault, lazy FP context preservation error ~ SFSR.LSPERR

SecureFault, lazy FP context error SFSR.LSERR

In a PE without the Main Extension, the faults remain the same as for a PE with the Main Extension, but the enable,
pending, and active bits for the following faults are RAZ/WI in the SHCSR:

. MemManage fault.
. BusFault.

. UsageFault.

. SecureFault.

In a PE without the Main Extension, the faults are:

Exception number Exception

3 HardFault

Fault conditions that would generate a SecureFault in a PE with the Main Extension instead generate a Secure
HardFault in a PE without the Main Extension.

For the exact circumstances under which each of the ARM v8-M faults is generated, see the appropriate Fault Status
Register description.

See also:
. Exception numbers and exception priority numbers on page B3-47.
. Hardware-controlled priority escalation to HardFault on page B3-87.

. Chapter B11 Debug.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B3-55
Non-Confidential

B3 Programmers’ Model
B3.12 Exception states

B3.12 Exception states

IcTEy An exception, other than reset, has the following possible states:
Active
An exception that either:
. Is being handled.
. Was being handled. The handler was preempted by a handler for a higher priority exception.
Pending
An exception that has been generated, but that is not active.
Inactive
The exception has not been generated.
Active and pending
One instance of the exception is active, and a second instance of the exception is pending.

Only asynchronous exceptions can be active and pending. Synchronous exceptions are either inactive,
pending, or active.

B3-56 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

B3 Programmers’ Model
B3.13 Priority model

B3.13 Priority model

Rcipm

Ryvmkv

RRrkco

Ippsp

Rcgry

Lower priority numbers take precedence.

The current execution priority is:

1. If any exceptions are active, the current execution priority is the priority number of the active exception with
the lowest SHPRn.PRI group priority field value.

2. The current execution priority then includes any effects of any software-controlled priority boosting by
AIRCR.PRIS == 1 and PRIMASK, FAULTMASK, and BASEPRI.

When no exception is active and no priority boosting is active, the instruction stream that is executing has a priority
number of (maximum supported priority number+1).

Execution at a particular priority can only be preempted by an exception with a lower group priority field value.

In a PE with the Main Extension, BASEPRI and each SHPRn.PRI_n and NVICn.PRI_Nn are 8-bit fields that
AIRCR.PRIGROUP splits into two fields, a group priority field and a subpriority field:

BASEPRI, SHPRn.PRI_n [7:0], and NVICn.PRI_Nn[7:0]2

AIRCR.PRIGROUP value Group priority field Subbpriority field
0 [7:1] [0]

1 [7:2] [1:0]

2 [7:3] [2:0]

3 [7:4] [3:0]

4 [7:5] [4:0]

5 [7:6] [5:0]

6 [7] [6:0]

7 - [7:0]

a. All low-order bits of these fields that are not implemented as priority bits are RESO.

In a PE without the Main Extension, AIRCR.PRIGROUP is RESO, therefore each SHPRn.PRI n and
NVICn.PRI Nn is split into two as follows:

SHPRnN.PRI_n [7:0] and NVICn.PRI_Nn[7:0]2

AIRCR.PRIGROUP value Group priority field Subpriority field

RESO [7:1] [0]

a. SHPRn.PRI n[5:0] are RESO.

If there are multiple pending exceptions, the pending exception with the lowest group priority field value takes
precedence.

If multiple pending exceptions have the same group priority field value, the pending exception with the lowest
subpriority field value takes precedence.

If multiple pending exceptions have the same group priority field value and the same subpriority field value, the
pending exception with the lowest exception number takes precedence.

If a pending Secure exception and a pending Non-secure exception both have the same group priority field value,
the same subpriority field value, and the same exception number, the Secure exception takes precedence.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B3-57
Non-Confidential

B3 Programmers’ Model

B3.13 Priority model

INncDs The following is an example of exceptions with different priorities:
Example B3-1
This example considers the following exceptions, that all have software configurable priority numbers:
. A has the highest priority.
. B has medium priority.
. C has lowest priority.
Example sequence of events:
1. No exception is active and no priority boosting is active.
2. B is generated. The PE takes exception B and starts executing the handler for it. Exception B is now active
and the current execution priority is that of B.
3. A is generated. A is higher priority, therefore A preempts B, and the PE starts executing the handler for A.
Exception A is now active and the current execution priority is that of A. Exception B remains active.
4. C is generated. C has the lowest priority, therefore it is pending.
The PE reduces the priority of A to a priority that is lower than C. B is now the highest priority active
exception, therefore the execution priority moves to that of B. The PE continues executing the handler for A
at the priority of B. After completing A, the PE restarts the handler for B. After completing B, the PE takes
exception C and starts executing the handler for it. C is now active and the current execution priority is that
of C.
Rwaowk In a PE with the Security Extension, when AIRCR.PRIS is 1, each Non-secure SHPRn_NS.PRI_n priority field
value [7:0] has the following sequence applied to it:
It
1. Is divided by two.
2. The constant 0x80 is then added to it.
This maps the Non-secure SHPRn_NS.PRI_n group priority field values to the bottom half of the priority range.
When this sequence is applied, any effects of AIRCR.PRIGROUP have already been taken into account, so the
subpriority field is dropped and the sequence is only applied to the group priority field.
The following diagram shows an example. In this example, all 8 bits of SHPRn_NS.PRI n are implemented as
priority bits and AIRCR.PRIGROUP_NS is set to 0.
Non-secure group .
priority field Group priority
range
values
0x00 0x00
A
Increasing OX7E
priority 0x80
OXFE | OxFE
B3-58 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

B3 Programmers’ Model
B3.13 Priority model

In this example, the mapping is:

Non-secure group priority field value Mapped to

0x00 0x80
0x02 0x81
0x04 0x82
0x06 0x83
OxFE OxFE

In this example, Secure exceptions in the range 0x00 - 0x7E have priority over all Non-secure exceptions.

In a PE without the Main Extension but with the Security Extension when AIRCR.PRIS is set to 1 the Non-secure

Iwpcp
exception is mapped to the lower half of the priority range, as shown in the table:
Non-secure group priority field value Mapped to
0x00 0x80
0x40 0xAQ
0x80 0xCo
0xCo OxEQ
See also:
. Exception numbers and exception priority numbers on page B3-47.
. Exception states on page B3-56.
. Special-purpose mask registers, PRIMASK, BASEPRI, FAULTMASK, for sofiware-controlled priority
boosting on page B3-88.
ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B3-59

1D092816 Non-Confidential

B3 Programmers’ Model
B3.14 Secure address protection

B3.14 Secure address protection

Remyx NS-Req defines the Security state that the PE requests that a memory access be performed in.
RmsNyg NS-Attr marks a memory access as Secure or Non-secure.

RvHRL For data accesses, NS-Req is equal to the current Security state.

Rxspq For data accesses, NS-Attr is determined as follows:

NS-Req Security attribute of the location being accessed = NS-Attr

Non-secure X Non-secure
Secure Non-secure Non-secure
Secure Secure
RTDNR For instruction fetches, NS-Req and NS-Attr are equal to the Security attribute of the location being accessed.

NS-Attr also determines the Security state of the PE.

INGxH It is not possible to execute Secure code in Non-secure state, or Non-secure code in Secure state.
See also:
. Security state transitions on page B3-61.
B3-60 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

B3 Programmers’ Model
B3.15 Security state transitions

B3.15 Security state transitions
RpouT For a branch to an address in the other Security state, the following table shows when the PE changes Security state:
Current Security attribute of the branch

Security state

target address Security state change

Secure Non-secure Change to Non-secure state if the branch was an interstating branch
instruction, BXNS or BLXNS, with the least significant bit of its target address
set to 0.
Otherwise:
. In a PE with the Main Extension, an INVTRAN SecureFault is
generated.
. In a PE without the Main Extension, a Secure HardFault is
generated.
Non-secure Secure and Non-secure callable Change to Secure state if both:
. The branch target address contains an SG instruction.
. The whole of the instruction at the branch target address is flagged
as Secure and Non-secure callable.
Otherwise:
. In a PE with the Main Extension, an INVEP SecureFault is
generated.
. In a PE without the Main Extension, a Secure HardFault is
generated.
Non-secure Secure and not Non-secure callable In a PE with the Main Extension, an INVEP SecureFault is generated.
In a PE without the Main Extension, a Secure HardFault is generated.

Ik wmp SG instructions in Secure memory are valid entry points to Secure code. They prevent Non-secure code from being
able to jump to arbitrary addresses in Secure code.

IwirL When an interstating branch is executed in Secure state, the least significant bit of the target address indicates the
target Security state:

1 The target Security state is Secure.
0 The target Security state is Non-secure.
Interstating branches are UNDEFINED in Non-secure state.

Rxnvw If sequential instruction execution crosses from Non-secure memory to Secure memory, then if the Secure memory
entry point contains an SG instruction and the whole of the instruction at the Secure memory entry point is flagged
as Secure and Non-secure callable, it is CONSTRAINED UNPREDICTABLE whether:

. The PE changes to Secure state.
. A fault is generated:
— An INVEP SecureFault in a PE with the Main Extension.
— A Secure HardFault in a PE without the Main Extension.
Rpwxu When an exception is taken to the other Security state, the PE automatically transitions to that other Security state.

See also:

. Instruction set, interstating support on page C1-262.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B3-61

Non-Confidential

B3 Programmers’ Model
B3.16 Function calls from Secure state to Non-secure state

B3.16 Function calls from Secure state to Non-secure state

RGveB If a BLXNS interstating branch generates a change from Secure state to Non-secure state, then before the Security
state change:

. The return address, which is the address of the instruction after the instruction that caused the function call,
the IPSR value and CONTROL.SFPA are stored onto the current stack, as shown in the following figure.
ReturnAddress[0] is set to 1 to indicate a return to the T32 instruction set state. The IPSR is stacked in the
partial RETPSR, and CONTROL.SFPA is stacked in bit [20] of the partial RETPSR.

SP
offset
0x08 <« Original SP?
0x04 Partial RETPSR
0x00 ReturnAddress | «— New SP

. If the PE is in Handler mode, IPSR has the value of 1.
. The FNC_RETURN value is saved in the LR.

Ipkgv Behavior is UNPREDICTABLE when a function call stack frame is not doubleword-aligned.
ITsvp The PE hardware does not ensure doubleword-alignment of function call stack frames.
Ixkwzp ARM recommends that when Secure code calls a Non-secure function, any registers not being used to pass function

arguments are set to zero.

See also:

. Instruction set, interstating support on page C1-262.

B3-62 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

B3 Programmers’ Model
B3.17 Function returns from Non-secure state

B3.17 Function returns from Non-secure state

RuprG

Rpwrtr

Rpcru

Rrpvw

An interstating function return begins with one of the following instructions loads a FNC_RETURN value into the
PC:

. A POP or LDM that includes loading the PC.
. An LDR with the PC as a destination.

. A BX with any register.

. A BXNS with any register.

On detecting a FNC_RETURN value in the PC:
. The FNC_RETURN stack frame is unstacked.
. EPSR.IT is set to 0b0e.

. The following integrity checks on function return are performed:
— A check that IPSR is zero or 1 before the value of it is restored.
— A check that if the return is to Thread mode, the stacked IPSR value is zero.
— A check that if the return is to Handler mode, the stacked IPSR value is nonzero.

. The following UNPREDICTABLE behavior checks are performed:
— Doubleword alignment check.

— A check that the IPSR value is a valid exception number.
The FNC_RETURN value is:

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

11111110111 11111111111111111111]|S

Bits[31:1] This is what identifies the value as a FNC_RETURN value.
Bit[0], S The function return was from:

0 Secure state.

1 Non-secure state.

Any failed integrity check on function return generates:

In a PE with the Main Extension:
A Secure INVPC UsageFault that is synchronous to the instruction that loaded the FNC_RETURN
value into the PC.

Otherwise:

A Secure HardFault that is synchronous to the instruction that loaded the FNC_RETURN value into the
PC.

When the FNC_RETURN stack frame is unstacked on detecting an FNC_RETURN value being loaded into the PC,
if ReturnAddress[0] is 0, the PE generates an INVSTATE UsageFault.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B3-63
Non-Confidential

B3 Programmers’ Model
B3.18 Exception handling

B3.18 Exception handling
RyFHR An exception that does not cause /ockup sets both:

. The pending bit of its handler, or the pending bit of the HardFault handler, to 1.

. The associated fault status information.

RyLps When a pending exception has a lower group priority field value than current execution, including accounting for
any priority adjustment by AIRCR.PRIS, the pending exception preempts current execution.
RwsND Preemption of current execution causes the following basic sequence:

1. RO-R3, R12, R14, RETPSR, and CONTROL.SFPA are stacked.

2. The return address is determined and stacked.

3. Optional stacking of FP context, which might be any one of the following:

. No stacking or preservation of the FP context.
. Stacking the basic FP context.
. Stacking the basic FP context and the additional FP context.
. Lazy FP state preservation.
4. LR is set to EXC_RETURN.
Optional clearing of registers, depending on the Security state transition.
6. The following flags are also cleared:
. IT State is cleared, if the Main Extension is implemented.
. CONTROL.FPCA is cleared, if the Floating point Extension is implemented.
. CONTROL.SFPA is cleared, if the Floating point Extension and the Security Extension are
implemented.

7. A transition to the Security state of the exception being activated.

The exception to be taken is chosen, and IPSR.Exception is set accordingly. The setting of IPSR.Exception
to a nonzero value causes the PE to change to Handler mode.

9. CONTROL.SPSEL is set to 0, to select the main stack, dependent on the Security state being targeted.

10. The pending bit of the exception to be taken is set to 0. The active bit of the exception to be taken is set to 1.

11. The Security state is changed to the Security state of the exception that is being activated.

12. The registers are cleared, depending on the transition of the Security state. The registers are divided between
the caller and callee registers. If the Security state transition is from Secure to Non-secure state all the
registers are cleared to 0. In all other cases, the caller registers are set to an UNKNOWN value and the callee
registers remain unchanged and are not stacked.

13. EPSR.T is set to bit[0] of the exception vector for the exception to be taken.

14. The PC is set to the exception vector for the exception to be taken.

IpsGo The HandleException, ExceptionEntry, PushStack, ExceptionTaken, and ActivateException pseudocode describes
the full exception handling sequence.
RNyvE During exception entry, if it is found that the exception and the exception vector are associated with different

Security states an INVEP or INVTRAN SecureFault is generated, unless the exception is associated with

Non-secure state and is targeting an SG instruction that is located in memory that is Secure and Non-secure callable.

RoruB The return address is one of:

. On return from a synchronous exception, other than an SVCall exception, the address of the instruction that
caused the exception.

. On return from an asynchronous exception, the address of the next instruction in the program order.

. On return from an SVCall exception, the address of the next instruction in the program order.

RxkpD The least significant bit of the return address from an exception (ReturnAddress[0]) is RESO.
B3-64 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

See also:

Priority model on page B3-57.

Exception entry, context stacking on page B3-66.

Exception entry, register clearing after context stacking on page B3-71.
Vector tables on page B3-85.

Stack limit checks on page B3-72.

Exceptions during exception entry on page B3-79.

B3 Programmers’ Model
B3.18 Exception handling

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved.
Non-Confidential

B3-65

B3 Programmers’ Model
B3.19 Exception entry, context stacking

B3.19 Exception entry, context stacking

Rpwwa In a PE without the Security Extension and without the Floating-point Extension (regardless of whether the Main
Extension is implemented), on taking an exception, the PE hardware saves state context onto the stack that the SP
register points to. The state context that is saved is eight 32-bit words:

. RETPSR.
. ReturnAddress.
. R14. This is the Link Register (LR).

. R12.
. R3-RO.
RpTRL In a PE without the Security Extension but with the Floating-point and Main Extensions, on taking an exception,

the PE hardware saves state context onto the stack that the SP register points to. f CONTROL.FPCA is 1 when the
exception is taken, then in addition to the state context being saved, there are the following possible modes for the

FP context:
. Stack the FP context.
. Reserve space on the stack for the FP context. This is called lazy FP context preservation.
Stack the state and Lazy FP context
FP contexts preservation
SP
offset
0x68 <— Original SP" <— Original SP'
0x64 Reserved Reserved
0x60 FPSCR B M
0x5C S15
0x58 S14
0x54 S13
0x50 S12
0x4C S11
0x48 S10
0x44 S9
0x40 S8 FP context Reserved for
FP context
0x3C S7
0x38 S6
0x34 S5
0x30 S4
0x2C S3
0x28 S2
0x24 S1
0x20 S0
0x1C RETPSR R RETPSR B
0x18 ReturnAddress ReturnAddress
0x14 LR (R14) LR (R14)
0x10 R12 R12
State context State context
0x0C R3 R3
0x08 R2 R2
0x04 R1 R1
0x00 RO _)« NewsP RO _)¢ Newsp
"Or at offset 0x6C if at a word-aligned but not doubleword-aligned address.
RpLuM In a PE with the Security Extension but without the Floating-point Extension (regardless of whether the Main
Extension is implemented), on taking an exception, the PE hardware:
1. Saves state context onto the stack that the SP register points to.
B3-66 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

B3 Programmers’ Model
B3.19 Exception entry, context stacking

2. If exception entry is to Non-secure state, regardless of whether a higher priority derived or late-arriving
exception targeting Secure state occurs, the PE hardware extends the stack frame, and also saves additional
state context, as shown below:

SP
offset
0x48 <— Original SP'
ox44 RETPSR B
0x40 ReturnAddress
0x3C LR (R14)
0x38 R12
State context
0x34 R3
0x30 R2
0x2C R1
0x28 RO
0x24 R11 D
0x20 R10
0x1C R9
0x18 R8
0x14 R7 Additional
0x10 R6 state context
0x0C R5
0x08 R4
0x04 Reserved
0x00 Integrity signature) <+— New SP

"Or at offset Ox4C if at a word-aligned but not
doubleword-aligned address.

Rpupd In a PE with the Security Extension, Floating-point Extension, and Main Extension, on taking an exception from:

Non-secure state
Behavior is the same as a PE without the Security Extension but with the Floating-point Extension.

Secure state when CONTROL.FPCA is 0
Behavior is the same as for a PE with the Security Extension but without the Floating-point Extension.

Secure state when CONTROL.FPCA is 1
The PE hardware:
1. Saves state context onto the stack that the SP register points to.
2. If FPCCR_S.TS is 0 when the exception is taken, the PE hardware either stacks the FP context
or reserves space on the stack for the FP context.

If FPPCR_S.TS is 1 when the exception is taken, the PE hardware either stacks both the FP
context and additional FP context, or reserves space on the stack for both the FP context and
additional FP context.

3. If exception entry is to Non-secure state, including when a higher priority derived or late-arriving
exception targeting Secure state occurs, the PE hardware extends the stack frame, and also saves
the additional state context.

ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B3-67
1D092816 Non-Confidential

B3 Programmers’ Model
B3.19 Exception entry, context stacking

The following figure shows PE stacking behavior when CONTROL.FPCA is 1, FPPCR_S.TS is 1 (and both the FP
context and additional FP context is stacked), and exception entry is to Non-secure state:

SP offset
0xCC <— Original SP"
0xCC s31)
0xC8 S30
0xC4 S29
0xCO S28
0xBC S27
0xB8 S26
0xB4 S25
0xBO 524 Additional FP context
OxAC S23
0xA8 S22
0xA4 S21
0xA0 S20
0x9C S19
0x98 S18
0x94 S17
0x90 S16 2
0x8C Reserved
0x88 FPSCR
0x84 S15
0x80 S14
0x7C S13
0x78 S12
0x74 S11
0x70 S10
Ox6C 59 FP context
0x68 S8
0x64 S7
0x60 S6
0x5C S5
0x58 S4
0x54 S3
0x50 S2
0x4C S1
0x48 S0
0x44 RETPSR =
0x40 ReturnAddress
0x3C LR (R14)
0x38 R12 State context
0x34 R3
0x30 R2
0x2C R1
0x28 RO
0x24 RIL =
0x20 R10
0x1C R9
0x18 R8
Ox14 R7 Additional state context
0x10 R6
0x0C R5
0x08 R4
0x04 Reserved
0x00 Integrity signature | | 4— New SP

"Or at offset 0xD4 if at a word-aligned but not doubleword-aligned address.

B3-68 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

Rpkvp

Rqpko

Rpwaw

RGHDI

RmBxL

Rrgns

RkwmBN

B3 Programmers’ Model
B3.19 Exception entry, context stacking

On an exception, the RETPSR value that is stacked is all of the following:

. The APSR, IPSR, and EPSR.

. CONTROL.SFPA, in RETPSR[20].

In addition, on an exception, the PE uses RETPSR.SPREALIGN to indicate whether the PE realigned the stack to
make it doubleword-aligned:

1 The PE realigned the stack.

0 The PE did not realign the stack.

Full descending stacks are used.

In a PE with the Floating-point Extension:

. Because setting FPCCR.ASPEN to one causes the PE to automatically set CONTROL.FPCA to 1 on the
execution of a floating-point instruction, setting FPCCR.ASPEN to one means that the PE hardware
automatically either:

— Stacks FP context on taking an exception.
— Uses lazy FP context preservation on taking an exception.

If CONTROL.FPCA is 1, it is FPCCR.LSPEN that determines which of the above the PE hardware performs:

0 The PE hardware automatically stacks FP context on taking an exception. In a PE that also includes the
Security Extension, if FPCCR_S.TS is 1, the hardware stacks the additional FP context and the FP
context.

1 The PE hardware uses lazy FP context preservation on taking an exception, and sets all of:

. The FPCAR, to point to the reserved SO stack address.

. FPCCR.LSPACT to 1.

. FPCCR.{USER, THREAD, HFREADY, MMRDY, BFRDY, SFRDY, MONRDY, UFRDY}, to
record the permissions and fault possibilities to be applied to any subsequent FP context save.

In a PE that also includes the Security Extension, if FPCCR_S.TS is 1, the hardware reserves space on
the stack for both the FP context and the additional FP context. Otherwise, the hardware only reserves
space on the stack for the FP context.

Execution of a floating-point instruction while FPCCR.LSPACT == 1 indicates that lazy FP context preservation is
active.

If software attempts to execute a floating-point instruction while lazy FP context preservation is active, the access
permissions that CPACR and NSACR define are checked against the context that activated lazy FP context
preservation, as stored in the FPCCR.
. If no permission violation is detected, the PE:

1. Saves FP context to the reserved area on the stack, as identified by the FPCAR.

2. Sets FPCCR.LSPACT to 0 to indicate that lazy FP context preservation is no longer active.

3. Processes the floating-point instruction.

. If a permission violation is detected, the PE generates a NOCP UsageFault and does not save FP context to
the reserved area on the stack.

This check is performed regardless of whether the Security Extension is implemented.

In a PE with the Floating-point Extension, when the following conditions are met on exception entry, the PE
generates a Secure NOCP UsageFault and does not allocate space on the stack for FP context:

. CONTROL.FPCA is 1.
. NSACR.CP10 is 0.
. The Background state is Non-secure state.

In a PE with the Security Extension and Floating-point Extension, if lazy FP context preservation is activated when
FPCCR.LSPACT is already set to 1, the PE generates an LSERR SecureFault.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B3-69
Non-Confidential

B3 Programmers’ Model

B3.19 Exception entry, context stacking

RevTL In a PE with the Security Extension and the Floating-point Extension CONTROL.SFPA is set automatically by
hardware on any of the following events:

. An SG instruction fetched from secure memory and executed in Non-secure state clears CONTROL.SFPA to
Zero.

. A BXNS instruction that causes a transition from Secure state to Non-secure state clears CONTROL.SFPA to
Zero.

. A BLXNS instruction that causes a transition from Secure state to Non-secure state preserves the value in
CONTROL.SFPA in the FNC_RETURN stack frame and then clears CONTROL.SFPA to zero.

. A valid instruction that loads FNC_RETURN into the PC sets CONTROL.SFPA to the value retrieved from
the FNC_RETURN payload.

. CONTROL.SFPA is saved and restored on exception entry or return in the RETPSR value in the stack frame.

. Exception entry, including tail chaining, clears CONTROL.SFPA to zero.

. If the value of FPCCR.ASPEN is one, then any floating-point instruction (excluding VLLDM and VLSTM)
executed in Secure state sets the value of CONTROL.SFPA to one. If the value of FPCCR.ASPEN is one and
the value of CONTROL.SFPA is zero when a floating-point instruction is executed in the Secure state, the
FPSCR value is taken from the values set in FPDSCR.

See also:

. Stack pointer on page B3-46.

. Exception entry, register clearing after context stacking on page B3-71.

. Integrity signature on page B3-78.

. PushStack on page E2-1259.

B3-70 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

B3 Programmers’ Model
B3.20 Exception entry, register clearing after context stacking

B3.20 Exception entry, register clearing after context stacking

RprrB

Rpjrx

RsnpB

Rywsk

In a PE without the Security Extension and without the Floating-point Extension, the PE hardware sets R0-R3, R12,
APSR, and EPSR to an UNKNOWN value after it has pushed state context to the stack.

In a PE without the Security Extension but with the Floating-point Extension:
. The PE hardware sets R0-R3, R12, APSR, and EPSR to an UNKNOWN value after it has pushed state context
to the stack.

. The PE hardware sets SO-S15 and the FPSCR to an UNKNOWN value after it has pushed FP context to the
stack.

In a PE with the Security Extension but without the Floating-point Extension, after the PE hardware has pushed state
context to the stack, it sets R0-R3, R12, APSR, and EPSR to:

. An UNKNOWN value if the exception is taken to Secure state.
. Zero if the exception is taken to Non-secure state.
If the PE did not also push additional state context to the stack, as indicated by EXC RETURN.DCRS, the values
of R4-R11 remain unchanged.
If the PE also pushed additional state context to the stack, as indicated by EXC RETURN.DCRS, then afterwards:
. If the Background state is Non-secure, R4-R11 remain unchanged.
. If the Background state is Secure, the PE sets R4-R11 to:
— An UNKNOWN value if the exception is taken to Secure state.
— Zero if the exception is taken to Non-secure state.

In a PE with the Security Extension and Floating-point Extension, register clearing behavior after context stacking
is as follows:
State context and additional state context
Register clearing behavior is the same as for a PE with the Security Extension but without the
Floating-point Extension.
FP context and additional FP context

. If FPCCR_S.TS is 0 when the FP context is pushed to the stack, SO-S15 and the FPSCR are set
to an UNKNOWN value after stacking.

. IfFPCCR_S.TS is 1 when the FP context and additional FP context are both pushed to the stack,
S0-S31 and the FPSCR are set to zero after stacking.
In both cases, CONTROL.FPCA is set to 0 to indicate that the Floating-point Extension is not active.

See also:
. Exception entry, context stacking on page B3-66.
. Tail-chaining on page B3-81.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B3-71
Non-Confidential

B3 Programmers’ Model
B3.21 Stack limit checks

B3.21 Stack limit checks

IxprG In a PE with the Main and Security Extensions, there are four stack limit registers:

Security state Stack Stack limit register

Secure Main MSPLIM_S

Process PSPLIM S

Non-secure Main MSPLIM_NS

Process PSPLIM NS

In a PE with the Main Extension but without the Security Extension, there are two stack limit registers:

Stack Stack limit register

Main MSPLIM

Process PSPLIM

In a PE without the Main Extension but with the Security Extension, there are:

No stack limit registers in Non-secure state.
Two stack limit registers in Secure state.

Security state Stack Stack limit register

Secure Main MSPLIM_S

Process PSPLIM S

In a PE without the Main Extension and without the Security Extension, MSPLIM_S and PSPLIM_S are invisible.

These registers hold stack limit values.

A stack can descend to its stack limit value. Any attempt to descend the stack further than its stack limit value is a
violation of the stack limit.

xSPLIM_x[2:0] are treated as RESO, so that all stack pointer limits are always guaranteed to be doubleword-aligned.
Bits [31:3] of the xSPLIM_x registers are writeable.

Rpksr Stack limit checks are performed during the creation of a stack frame for all of the following:

Exception entry.
Tail-chaining from a Secure to a Non-secure exception.
A function call from Secure code to Non-secure code.

Rz17G On a violation of a stack limit during either exception entry or tail-chaining:

In a PE with the Main Extension, a synchronous STKOF UsageFault is generated. Otherwise, a HardFault is
generated.

The stack pointer is set to the stack limit value.
Push operations to addresses below the stack limit value are not performed.

It is IMPLEMENTATION DEFINED whether push operations to addresses equal to or above the stack limit value
are performed.

Recesc On a violation of a Secure stack limit during a function call:

In a PE with the Main Extension, a synchronous STKOF UsageFault is generated. Otherwise, a Secure
HardFault is generated.

B3-72

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

RGGru

Ryvwr

Igynx

RpesG

B3 Programmers’ Model
B3.21 Stack limit checks

. Push operations to addresses below the stack limit value are not performed.

. It is IMPLEMENTATION DEFINED whether push operations to addresses equal to or above the stack limit value
are performed.

Unstacking operations are not subject to stack limit checking.

Updates to the stack pointer by the following instructions are subjected to stack limit checking:
. ADD (SP plus immediate).
. ADD (SP plus register).

. SUB (SP minus immediate).
. SUB (SP minus register).
. BLX, BLXNS.

. LDC, LDC2 (immediate).

. LDMDB, LDMEA.

. LDR (immediate).

. LDR (Titeral).

. LDR (register).

. LDRB (immediate).

. LDRD (immediate).

. LDRH (immediate).

. LDRSB (immediate).

. LDRSH (immediate).

. MOV (register).

. POP.

. PUSH.
. VPOP.
. VPUSH.

. STC, STC2.

. STM, STMIA, STMEA.
. STR (immediate).

. STRB (immediate).
. STRD (immediate).
. STRH (immediate).
. VLDM.

N VSTM.

Updates to the stack pointer by the MSR instruction targeting SP_NS are subject to stack limit checking. Updates to
the stack pointer and stack pointer limit by any other MSR instruction are not subject to stack limit checking.

LDR instructions write to two registers, the address register and the destination register. The stack limit check only
carried out against the address register. Updates to the stack pointer by the LDR instructions are only subject to stack
limit checking if the stack pointer is the address register.

For all other instructions that can update the stack pointer and stack pointer limit, it is IMPLEMENTATION DEFINED
whether stack limit checking is performed.

When an instruction updates the stack pointer, if it results in a violation of the stack limit, it is the modification of
the stack pointer that generates the exception, rather than an access that uses the out-of-range stack pointer.

On a violation of a stack limit when an instruction updates the stack pointer:

. It is IMPLEMENTATION DEFINED whether accesses to addresses equal to or above the stack limit value are
performed.
. It is IMPLEMENTATION DEFINED whether the destination register or registers of load instructions are updated

as long as the base register, stack pointer, and PC are not modified.

. Accesses below the stack limit are not performed.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved.
Non-Confidential

B3-73

B3 Programmers’ Model
B3.21 Stack limit checks

IRRDX CCR.STKOFHFNMIGN controls whether stack limit violations are IGNORED while executing at a requested
execution priority that is negative.

RxcoL It is UNKNOWN whether a stack limit check is performed on any use of the SP marked as UNPREDICTABLE.

Ryxrp Store operations using the SP as a base register do not perform any stores below the associated stack limit address.

RjsLc It is UNKNOWN whether Load/Store instructions that specify the SP as a base register and attempt a read or write
below the associated stack limit but write back a value greater than the stack limit address generate a STKOF
UsageFault.
See also:

. Stack pointer on page B3-46.
. Tail-chaining on page B3-81.
. Appendix G1 Architectural Constraints on UNPREDICTABLE behaviors.

B3-74 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

B3 Programmers’ Model
B3.22 Exception return

B3.22 Exception return

Rxpss

RprLmo

Rrxpw

The PE begins an exception return when both of the following are true:
. The PE is in Handler mode.
. One of the following instructions loads an EXC RETURN value, 0xFFXXXXXX, into the PC:
— A POP or LDM that includes loading the PC.
— An LDR with the PC as a destination.
— A BX with any register.
— A BXNS with any register.

When both of these are true, then on detecting an EXC_RETURN value in the PC, the PE unstacks the exception
stack frame and resumes execution of the unstacked context.

Ifan EXC_RETURN value is loaded into the PC by an instruction other than those listed, or from the vector table,
the value is treated as an address.

Ifan EXC_RETURN value is loaded into the PC when the PE is in Thread mode, the value is treated as an address.

In an EXC RETURN value:
Bits[31:24] These are 0xFF. This is what identifies the value as an EXC_RETURN value.
Bits[23:7] RESI.
Bit [6], S In a PE with the Security Extension, the exception was taken from:
0 Non-secure state. Restore registers from the Non-secure stack.
1 Secure state. Restore registers from the Secure stack.
In a PE without the Security Extension, RESO.
Bit [5], DCRS
In a PE with the Security Extension:
0 Stacking of the additional state context can be skipped.
1 Do not skip any stacking.
In a PE without the Security Extension, RES1.
Bit[4], FType
In a PE with the Main and Floating-point Extensions:
0 The PE allocated space on the stack for FP context.
1 The PE did not allocate space on the stack for FP context.

In a PE without the Main Extension, or with the Main Extension but without the Floating-point
Extension, RESI.

Bit[3], Mode
Return to:
0 Handler mode.
1 Thread mode.

Bit[2], SPSEL
Restore registers from the:

0 Main stack.
1 Process stack.
Bit[1] RESO.
Bit[0], ES
In a PE with the Security Extension, the exception was taken to:
0 Non-secure state.
1 Secure state.

In a PE without the Security Extension, RESO.

Behavior is UNPREDICTABLE if EXC RETURN.FType is 0 and the Floating-point Extension is not implemented.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B3-75
Non-Confidential

B3 Programmers’ Model

B3.22 Exception return

RGBVH Behavior is UNPREDICTABLE if EXC RETURNJ[23:7] are not all 1.

Rxrcp Behavior is UNPREDICTABLE if any of the following are true and the Security Extension is not implemented:

. EXC RETURN.S is 1.

. EXC RETURN.DCRS is 0.

. EXC RETURN.ES s 1.

Rsksp In a PE without the Main Extension, behavior is UNPREDICTABLE if EXC RETURN[1] is 1.

RsMFL The following integrity checks on exception return are performed on every exception return:

1. In a PE with the Security Extension, the integrity check that is called the EXC RETURN.ES validation check,
as follows:

. If the PE was in Non-secure state when EXC_RETURN was loaded into the PC and either
EXC RETURN.DCRS is 0 or EXC_ RETURN.ES is 1, an INVER SecureFault is generated and the
PE sets EXC_RETURN.ES to 0.

2. A check that the exception number being returned from, as held in the IPSR, is shown as active in the SHCSR
or NVIC_TABR<n>. If this check fails:

. In a PE with the Main Extension, an INVPC UsageFault is generated. If the PE includes the Security
Extension, the INVPC UsageFault targets the Security state that the exception return instruction was
executed in.

. In a PE without the Main Extension, a HardFault is generated. If the PE includes the Security
Extension, the HardFault targets the Security state that EXC_RETURN.S specifies.

3. In a PE with the Main Extension, an INVPC UsageFault is generated if EXC RETURNTJ1] is 1. If the PE
includes the Security Extension, the INVPC UsageFault targets the Security state that the exception return
instruction was executed in.

4. A check that if the return is to Thread mode, the value that is restored to the IPSR from the RETPSR is zero,
or that if the return is to Handler mode, the value that is restored to the IPSR from the RETPSR is non-zero.
If this check fails:

. In a PE with the Main Extension, an INVPC UsageFault is generated. If the PE includes the Security
Extension, the INVPC UsageFault targets the Background state.

. In a PE without the Main Extension, a HardFault is generated. If the PE includes the Security
Extension, the HardFault targets the Security state that EXC_RETURN.S specifies.

Ruxsr When returning from Non-secure state, EXC RETURN.ES is treated as zero for all purposes other than raising the
INVER integrity check.

RpoLL On returning from Non-secure state, if EXC_RETURN.ES causes an INVER integrity check failure, the subsequent
EXC RETURN.DCRS bit that is presented in the LR on entry to the next exception is permitted to be UNKNOWN.

Itixs ARM recommends that the subsequent EXC RETURN.DCRS bit that is presented in the LR on entry to the next
exception is not UNKNOWN.

Rymic In a PE with the Security Extension, after the EXC_RETURN.ES validation check has been performed on an
exception return:

. If EXC_ RETURN.ES is 1, EXC_RETURN.SPSEL is written to CONTROL_S.SPSEL.

. If EXC_RETURNL.ES is 0, EXC_RETURN.SPSEL is written to CONTROL_NS.SPSEL.

RrpgL In a PE with the Security Extension, on an exception return that successfully returns to the Background state, with
no tail-chaining or failed integrity checks, the Security state is set to EXC_RETURN.S.

Ietwr In a PE with the Security Extension, after a successful exception return to the Background state, the PE is in the
correct Security state before the next instruction from the background code is executed. This means that in the case
where the Background state is Secure state, there is no need for an SG instruction at the exception return address.

IrqvB In a PE with the Floating-point Extension, on exception entry:

1. EXC_RETURN.FType is saved as the inverse of CONTROL.FPCA.

2. CONTROL.FPCA is then cleared to 0 if it was 1, or remains unchanged if it was 0.

B3-76 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

ReomL

RxnNG

Rucxx

B3 Programmers’ Model
B3.22 Exception return

On exception return, the inverse of EXC_RETURN][4] is written to CONTROL.FPCA.

In a PE with the Floating-point Extension, when the following conditions are met on exception return, the PE
hardware sets S0-S15 and the FPSCR to zero:

. CONTROL.FPCA is 1.
. FPCCR.CLRONRET is I.
. If the PE implements teh Security Extension FPCCR_S.LSPACT is 0.

If the PE implements the Security Extension and all these fields are 1 on exception return, the PE generates an
LSERR SecureFault instead.

In a PE with the Security Extension and the Floating-point Extension, when the following conditions are met on
exception return, the PE generates an LSERR SecureFault:

« EXC RETURN[4] s 0.

. The stack contains Secure FP context, that would be unstacked on the return. That is, FPCCR_S.LSPACT is
1.

. The return is to Non-secure state.

In a PE with the Floating-point Extension, if the PE abandons unstacking of the floating-point registers to tail-chain
into another exception:

. If the Security Extension is implemented, the PE must clear to zero any floating-point registers that would
have been unstacked.

. If the Security Extension is not implemented, the floating-point registers that would have been unstacked
become UNKNOWN.

See also:

. Exception handling on page B3-64.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B3-77
Non-Confidential

B3 Programmers’ Model
B3.23 Integrity signature

B3.23 Integrity signature

Rpuip In a PE with the Floating-point Extension, the integrity signature value is:

3130292827 26252423222120191817161514131211109 8 7 6 56 4 3 2 1 O

1171111101111 101000010010010110 1[SFTC

Stack Frame Type Check -/

In a PE with the Floating-point Extension, when returning from a Non-secure exception to Secure state, if the
unstacked integrity signature does not match this value, including if SFTC does not match EXC RETURN[4], a
SecureFault is generated.

Rrysp In a PE without the Floating-point Extension, the integrity signature value is:

3130292827 26252423222120191817161514131211109 8 7 6 56 4 3 2 1 0

1111111011111 01000010010010116011

In a PE with the Main Extension, when returning from a Non-secure exception to Secure state, if the unstacked
integrity signature does not match this value, a SecureFault is generated.

In a PE without the Main Extension, when returning from a Non-secure exception to Secure state, if the unstacked
integrity signature does not match this value, a Secure HardFault is generated.

IrrTS The integrity signature is an XN address. When performing a function return from Non-secure code, if the integrity
signature value is restored to the PC as the function return address, a MemManage fault is generated when the PE
attempts execution.

See also:
. Exception entry, context stacking on page B3-66.
. Exception return on page B3-75.
B3-78 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

B3 Programmers’ Model
B3.24 Exceptions during exception entry

B3.24 Exceptions during exception entry

ILBGQ

RMRTR

RGpNT

Rgvav

Inyew

During exception entry exceptions can occur, for example asynchronous exceptions, or the exception entry
sequence itself might cause an exception, for example a MemManage fault on the push to the stack.

Any exception that occurs during exception entry is a late-arriving exception, and:
. The exception that caused the original entry sequence is the original exception.
. The priority of the code stream running at the time of the original exception is the preempted priority.

When the exception entry sequence itself causes an exception, the latter exception is a derived exception.
The following mechanism is called late-arrival preemption:

. The PE takes a late-arriving exception during an exception entry if the late-arriving exception is higher
priority, including accounting for any priority adjustment by AIRCR.PRIS. In this case:

— The late-arriving exception uses the exception entry sequence started by the original exception. The
original exception remains pending.

— The PE takes the original exception after returning from the late-arriving exception.

For:
. Derived exceptions, late-arrival preemption is mandatory.
. Late-arriving asynchronous exceptions, it is IMPLEMENTATION DEFINED whether late-arrival preemption is

used. If the PE does not implement late-arrival preemption for late-arriving asynchronous exceptions,
late-arriving asynchronous exceptions become pending.

If the group priority field value of a derived exception is higher than or equal to the preempted priority:
. If the derived exception is a DebugMonitor exception, it is IGNORED.
. Otherwise, the PE escalates the derived exception to HardFault.

If a higher priority late-arriving Secure exception occurs during entry to a Non-secure exception when the
Background state is Secure, it is IMPLEMENTATION DEFINED whether:

. The stacking of the additional state context is rolled back.
. The stacking of the additional state context is completed and EXC RETURN.DCRS is set to 0.

The architecture does not specify the point during exception entry at which the PE recognizes the arrival of an
asynchronous exception.

See also:

. Exception numbers and exception priority numbers on page B3-47.
. Priority model on page B3-57.

. Exception states on page B3-56.

. Exception handling on page B3-64.

. Tail-chaining on page B3-81.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B3-79
Non-Confidential

B3 Programmers’ Model
B3.25 Exceptions during exception return

B3.25 Exceptions during exception return

Ixkxpy During exception return exceptions can occur, for example asynchronous exceptions, or the exception return might
itself cause an exception.

Any exception that occurs during exception return is a late-arriving exception.
When the exception return sequence itself causes an exception, the latter exception is a derived exception.

RTrREM When a late-arriving exception during exception return is higher priority than the priority being returned to, the PE
takes the late-arriving exception by using tail-chaining.

IMBNG The architecture does not specify the point during exception return at which the PE recognizes the arrival of an
asynchronous exception. If a PE recognizes an asynchronous exception after an exception return has completed,
there is no opportunity to tail-chain the asynchronous exception.

RmipN If the priority of a derived exception during exception return is equal to or lower than the priority being returned to:
. If the derived exception is a DebugMonitor exception, the PE ignores the derived exception.

. Otherwise, the PE escalates the derived exception to HardFault and the escalated exception is tail-chained.

Rpurk If the priority of a derived exception during exception return, after priority escalation if appropriate, is higher
priority than the priority being returned to, the PE uses tail-chaining to take the derived exception.

See also:
. Exception numbers and exception priority numbers on page B3-47.
. Priority model on page B3-57.
. Exception return on page B3-75.
. Tail-chaining on page B3-81.
B3-80 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

B3 Programmers’ Model
B3.26 Tail-chaining

B3.26 Tail-chaining

RupcGr Tail-chaining behavior is as follows:

. On detecting an EXC_RETURN value in the PC, if there is a pending exception that is higher priority than
the priority being returned to, the PE hardware:
1. Does not unstack the stack.
2. Takes the pending exception.

Irrwk Tail-chaining is an optimization. It removes unstacking and stacking operations. In the following example the
second exception is a fail-chained exception:

All in Non-secure state:

1% exception 2" exception
| | |

No exception is active No exception is active

! T

Stacking operation Unstacking operation

Nothing is unstacked

IrRwDT If tail-chaining prevents a derived exception on exception return, the derived exception might instead be generated
on the return from the last tail-chained exception.

RpxvB When the Background state is Secure state, if tail-chaining causes a change of Security state from Secure to
Non-secure, additional context is saved on taking the Non-secure exception:

In a PE without the FP Extension:

1% exception 2" exception
| | |
Secure state Secure state Non-secure state Secure state
State context pushed to stack. Unstacking operation

Nothing is unstacked.
Additional state context pushed to stack.

ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B3-81
1D092816 Non-Confidential

B3 Programmers’ Model

B3.26 Tail-chaining

ITkLM

ItmvE

Icvrp

ILNnPQ

Rymus

When multiple exceptions are tail-chained, EXC_RETURN.DCRS is used to keep track of whether the additional
context is stacked. The following figure is an example:

1% exception 2" exception 3™ exception
| | | |
Secure state Non-secure state Secure state Non-secure state Secure state

T A

State context and additional state Unstacking operation
context pushed to stack®.

Unstacking all additional context is
skipped.
PE sets EXC_RETURN.DCRS to 0.

Stacking all additional context is skipped.
PE sets EXC_RETURN.DCRS to 1.

a In a PE with the FP Extension, FP context and additional FP context is also stacked if CONTROL.FPCAis 1.

‘When multiple exceptions are tail-chained, a Secure tail-chained exception after a Non-secure exception cannot rely
on any registers containing the values they had when no exception was active.

ARM recommends that Secure exception handlers clear the FP context registers to zero before they return.

If software has set FPCCR.CLRONRET to 1, hardware automatically clears the FP context registers to zero on
exception return.

If the PE recognizes a new asynchronous exception while it is tail-chaining, and the new asynchronous exception
has a higher priority than the next tailed-chained exception, the PE can, instead, take the new asynchronous
exception, using late-arrival preemption.

This rule is true even if the next tail-chained exception is a derived exception on exception return. The PE can,
instead, take the new asynchronous exception. If it does, the derived exception becomes pending.

See also:
. Exception entry, context stacking on page B3-66.

. Exceptions during exception return on page B3-80.

B3-82

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

B3 Programmers’ Model
B3.27 Exceptions, instruction resume, or instruction restart

B3.27 Exceptions, instruction resume, or instruction restart

RpGre

RgrLL

INDQT

Rryve

RvrBx

Rowww

Rovrc

RxrGN

RearL

RyxkqQ

Inox

Rnkng

The PE can take an exception during execution of a Load Multiple or Store Multiple instruction, effectively halting
the instruction, and resume execution of the instruction after returning from the exception. This is called instruction
resume. Instruction resume is supported only when the Main Extension is implemented.

The PE can abandon execution of a Load Multiple or Store Multiple instruction to take an exception, and after
returning from the exception, restart the Load Multiple or Store Multiple instruction again from the start of the
instruction. This is called instruction restart. Instruction restart is supported regardless of whether the Main
Extension is implemented.

Instructions that the PE can halt to use instruction resume are called exception-continuable instructions.

The exception-continuable instructions are LDM, LDMDB, STM, STMDB, POP, and PUSH. In a PE with the Floating-point
Extension, the floating-point exception-continuable instructions are VLDM, VLLDM, VLSTM, VSTM, VPOP, and VPUSH.

Where a fault is taken during the execution of a VLLDM instruction the PE must abandon the stacking of the Secure
floating-point register contents and save the state so that on return from the fault the instruction can be restarted.

It is IMPLEMENTATION DEFINED whether a VLLDM or VLSTM instruction aborts or completes when an interrupt occurs.

When the PE is using instruction resume, EPSR.ICI is set to a non-zero value that is the continuation state of the
exception-continuable instruction:

. For LDM, LDMDB, STM, STMDB, POP, and PUSH instructions, ICI contains the number of the first register in the
register list that must be loaded or stored after instruction resume.

. For the floating-point instructions VLDM, VSTM, VPOP, and VPUSH, ICI contains the number of the lowest
numbered doubleword Floating-point Extension register that was not loaded or stored before the PE took the
exception.

The ICI values shown in the following table are valid EPSR.ICI values:

EPSR[26:25] EPSR[15:12] EPSR[11:10]

ICI[7:6] =0b00 ICI[5:2] =reg num ICI[1:0] = 0bo0

ICI[7:6] =0bo0 ICI[5:2] =0b0000 ICI[1:0] = 0b0o

Behavior is UNPREDICTABLE if EPSR.ICI contains a valid EPSR.ICI non-zero value and the register number that it
contains is either:

. Not in the register list of the exception-continuable Load Multiple or Store Multiple instruction.
. The first register in the register list of the exception-continuable Load Multiple or Store Multiple instruction.

The PE generates an INVSTATE UsageFault if EPSR.ICI contains a valid EPSR.ICI non-zero value and the
instruction being executed is not a Load Multiple or Store Multiple instruction.

If the PE uses instruction resume during a Load Multiple instruction, then after the exception return, the values of
all registers in the register list are UNKNOWN, except for the following:

. Registers that are marked by EPSR.ICI as already loaded.
. The base register.
. The PC.

If the PE is using instruction restart, ARM recommends that software does not use Load Multiple or Store Multiple
instructions with data in volatile memory.

When a Load Multiple instruction has the PC in its register list, if the PE uses instruction resume or instruction
restart during the instruction:

. If the PC is loaded before generation of the exception, the PE must restore the PC before taking the exception,
so that after the exception the PE returns to either:
— Continue execution of the Load Multiple instruction, if the PE used instruction resume.
— Restart the Load Multiple instruction, if the PE used instruction restart.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B3-83
Non-Confidential

B3 Programmers’ Model
B3.27 Exceptions, instruction resume, or instruction restart

Rrscq In a PE without the Main Extension, if the PE takes any exception during any Load Multiple or Store Multiple
instruction, including PUSH and POP, the PE uses instruction restart and the base register is restored to the original
value.

RrrGr In a PE with the Main Extension, if the PE takes an exception during any Load Multiple or Store Multiple
instruction, including PUSH and POP:

. If the instruction is not in an IT block and the exception is an asynchronous exception, the PE uses instruction
resume and EPSR.ICI holds the continuation state. The base register is restored to the original value except
in the following cases:

Interrupt of an instruction that is using SP as the base register
The SP that is presented to the exception entry sequence is lower than any element pushed by an
STM, or not yet popped by an LDM.
For Decrement Before (DB) variants of the instruction, the SP is set to the final value. This is the
lowest value in the list.
For Increment After (IA) variants of the instruction, the SP is restored to the initial value. This is
the lowest value in the list.

Interrupt of an instruction that is not using SP as the base register
The base register is set to the final value, whether the instruction is a Decrement Before (DB)
variant or an Increment After (IA) variant.

. For all other cases:

— The PE uses instruction restart and the base register is restored to the original value. If the instruction
is not in an IT block, EPSR.ICI is cleared to zero.

Rsgws When a Load Multiple instruction includes its base register in its register list, if the PE takes an exception during
the instruction:

. The base register is restored to the original value, and:

— If'the instruction is in an IT block, the PE uses instruction restart.

— If'the instruction is not in an IT block, and the PE takes the exception after it loads the base register,
EPSR.ICI can be set to an IMPLEMENTATION DEFINED value that will load at least the base register and
subsequent locations again after returning from the interrupt.

See also:

. Exception during a singleword load operation on page B3-95.

B3-84 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

B3 Programmers’ Model
B3.28 Vector tables

B3.28 Vector tables

RNwFF

RaT1i0

IwrGx

Rwprt

RprpL

Rxppr

Igvsc

Rvppp

In a PE with the Security Extension, two vector tables are implemented, the Secure Vector table and the Non-secure
Vector table, and it is IMPLEMENTATION DEFINED which of the following is true:

. The PE supports configurability of each vector table base, and two Vector Table Offset Registers, VTOR_S
and VTOR_NS, are provided for this purpose.

. The PE does not support configurability of either vector table base, and VTOR_S and VTOR NS are
RAZ/WL.

If the PE supports configurability of each vector table base:

. Exceptions that target Secure state use VTOR _S to determine the base address of the Secure vector table.
. Exceptions that target Non-secure state use VTOR_NS to determine the base address of the Non-secure
vector table.

In a PE without the Security Extension, a single vector table is implemented, and it is IMPLEMENTATION DEFINED
which of the following is true:

. The PE supports configurability of the vector table base, and a single Vector Table Offset Register, VTOR,
is provided for this purpose.

. The PE does not support configurability of the vector table base, and VTOR is RAZ/WI.
ARM recommends that VTOR_S points to memory that is Secure and not Non-secure callable.

A vector table contains both:
. The initialization value for the main stack pointer on reset.
. The start address of each exception handler.

The exception number defines the order of entries.

Word offset in vector table Value held at offset

0 Initial value for the main stack pointer on reset

Exception number Start address for the handler for the exception with that number
Exception number Start address for the handler for the exception with that number
Exception number Start address for the handler for the exception with that number

In a PE with a configurable vector table base, the vector table must be naturally aligned to a power of two, with an
alignment value that is:

. A minimum of 128 bytes.
. Greater than or equal to (Number of Exceptions supported x4).

For all vector table entries other than the entry at offset 0, if bit[0] is not set to 1, the first instruction in the exception
results in an INVSTATE UsageFault.

For all vector table entries other than the entry at offset 0, bit[0] defines EPSR.T on exception entry. Setting bit[0]
to 1 indicates that the exception handler is in the T32 instruction set state.

Vector fetches for entries beyond the natural alignment of the associated VTOR occur from an UNKNOWN entry
within the vector table.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B3-85
Non-Confidential

B3 Programmers’ Model

B3.28 Vector tables

IpLsB ARM recommends that software ensures that the vector table and VTOR are aligned so that the entry for the highest
taken exception falls within the natural alignment of the table, and at a minimum that the vector table is 128 byte
aligned. A PE might impose further restrictions on the VTOR.

Rugss If a vector fetch causes a Security attribution unit (SAU) on page B8-178 or IMPLEMENTATION DEFINED
Attribution Unit (IDAU) on page B8-179 violation, a secure VECTTBL HardFault is raised. If the exception priority
prevents any secure VECTTBL HardFault pre-empting, one of the following occurs:

. The PE enters lockup at the priority of the original exception.
. The original exception transitions from the pending to the active state.
. If the original exception and the VECTTBL HardFault are different, or target different security states, the
VECTTBL HardFault becomes pending.
See also:
. Exception numbers and exception priority numbers on page B3-47.
. Execution Program Status Register (EPSR) on page B3-43.
B3-86 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

B3 Programmers’ Model
B3.29 Hardware-controlled priority escalation to HardFault

B3.29 Hardware-controlled priority escalation to HardFault

Rgnvs When current execution has a priority number >0:

. If a synchronous exception with an equal or lower priority is pending, the PE hardware escalates it to become
a HardFault. This rule applies to all synchronous exceptions and DebugMonitor exceptions that are caused
by the BKPT instruction. This rule does not apply to asynchronous exceptions and all other DebugMonitor

exceptions.
RpBIQ When current execution has a priority number >= 0, if a disabled software configurable priority exception occurs:
. If it is a synchronous exception, the PE hardware escalates the exception to become a HardFault.
. If it is an interrupt, the PE does not escalate the interrupt. The interrupt remains pending.
See also:
. Exception numbers and exception priority numbers on page B3-47.
ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B3-87

1D092816 Non-Confidential

B3 Programmers’ Model
B3.30 Special-purpose mask registers, PRIMASK, BASEPRI, FAULTMASK, for software-controlled priority boosting

B3.30 Special-purpose mask registers, PRIMASK, BASEPRI, FAULTMASK, for
software-controlled priority boosting

IBNIG In a PE with the Main Extension, software can use the PRIMASK, FAULTMASK, and BASEPRI registers as
follows. A PE without the Main Extension implements PRIMASK, but does not implement FAULTMASK and
BASEPRI

PRIMASK

In a PE without the Security Extension:

. Setting this bit to one boosts the current execution priority to 0, masking all exceptions with a
lower priority.

In a PE with the Security Extension:

. Setting PRIMASK S to one boosts the current execution priority to 0.

. If AIRCR.PRIS is:
0 Setting PRIMASK NS to one boosts the current execution priority to 0.

1 Setting PRIMASK NS to one boosts the current execution priority to 0x80.

In a PE with the Security Extension, when the current execution priority is boosted to a particular value,

all exceptions with a lower priority are masked.

FAULTMASK

In a PE without the Security Extension:

. Setting this bit to one boosts the current execution priority to -1, masking all exceptions with a
lower priority.

In a PE with the Security Extension, if AIRCR.BFHFNMINS is:

0 Setting FAULTMASK S to one boosts the current execution priority to -1.

If AIRCR.PRIS is:

0 Setting FAULTMASK NS to one boosts the current execution priority to 0.

1 Setting FAULTMASK NS to one boosts the current execution priority to 0x80.
1 Setting FAULTMASK S to one boosts the current execution priority to -3.

Setting FAULTMASK NS to one boosts the current execution priority to -1.
In a PE with the Security Extension, when the current execution priority is boosted to a particular value,
all exceptions with a lower priority are masked.
BASEPRI

In a PE without the Security Extension:

. Software can set this field to a priority number between 1 and the maximum supported priority
number. This boosts the current execution priority to that number, masking all exceptions with a
lower priority.

In a PE with the Security Extension:

. Software can set BASEPRI_S to a priority number between 1 and the maximum supported
priority number.

. If AIRCR.PRIS is:

0 Software can set BASEPRI_NS to a priority number between 1 and the maximum
supported priority number.

1 Software can set BASEPRI NS to a priority number between 1 and the maximum
supported priority number. The value in BASEPRI NS is then mapped to the bottom
half of the priority range, so that the current execution priority is boosted to the
mapped-to value in the bottom half of the priority range.

In a PE with the Security Extension, when the current execution priority is boosted to a particular value,
all exceptions with a lower priority are masked.

Rrumc The PRIMASK, FAULTMASK, and BASEPRI priority boosting mechanisms only boost the group priority, not the
subpriority.
B3-88 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

RkBNFE

IpLkD

IgBvL

B3 Programmers’ Model
B3.30 Special-purpose mask registers, PRIMASK, BASEPRI, FAULTMASK, for software-controlled priority boosting

Without the Security Extension:

. An exception return other than from an NMI sets FAULTMASK to 0.

With the Security Extension:

. An exception return other than from an NMI sets FAULTMASK to 0 if the raw execution priority is greater
than or equal to 0. EXC_RETURN.ES indicates which banked instance of FAULTMASK is set to 0.

The raw execution priority is:

. The execution priority minus the effects of AIRCR.PRIS == 1, and minus any software-controlled

PRIMASK, FAULTMASK, or BASEPRI priority boosting.

The requested execution priority is negative when any of the following are true:

. The banked FAULTMASK bit for the current Security state is 1, including when AIRCR.PRIS is also 1.
. HardFault for the current Security state is active.

. AIRCR.BFHFNMINS.

See also:
. Priority model on page B3-57.

. Exception numbers and exception priority numbers on page B3-47.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B3-89
Non-Confidential

B3 Programmers’ Model
B3.31 Lockup

B3.31 Lockup

IrRkIB Lockup is a PE state where the PE stops executing instructions in response to an error for which escalation to an
appropriate HardFault handler is not possible because of the current execution priority. An example is a synchronous
exception that would escalate to a Secure HardFault, but that cannot escalate to a Secure HardFault because Secure
HardFault is already active.

IESFR ARM recommends that an implementation provides a LOCKUP signal that, when the PE is in lockup, signals to
the external system that the PE is in lockup.

RMBTM When the PE is in lockup:
. DHCSR.S LOCKUP reads as 1.
. The PC reads as 0xEFFFFFFE. This is an XN address.
. The PE stops fetching and executing instructions.
. If the implementation provides an external LOCKUP signal, LOCKUP is asserted HIGH.

Riric Exit from lockup is by any of the following:
. A Cold reset.
. A Warm reset.

. Entry to Debug state.

. Preemption by a higher priority exception.

Ryne Exit from lockup causes both DHCSR.S LOCKUP and, if implemented, the external LOCKUP signal, to be
deasserted.

RsppN On an exit from lockup by entry to Debug state, or by preemption by a higher priority exception, the return address

iS OXEFFFFFFE.

Icrus After exit from lockup by entry to Debug state, or by preemption by a higher priority exception, a subsequent return
from Debug state or that exception without modifying the return address attempts to execute from @xEFFFFFFE.
Execution from this address is guaranteed to generate an [ACCVIOL MemManage fault, causing the PE to reenter
lockup if the execution priority has not been modified. Modification of the return address would enable execution
to be resumed, however ARM recommends treating entry to lockup as fatal and requiring the PE to be reset.

See also:

. Instruction execution

. Floating-point lazy FP context preservation on page B3-91.

. Vector or stack pointer error on reset on page B3-92.

. Errors on preemption and stacking for exception entry on page B3-92.
. Vector read error on NMI or HardFault entry on page B3-93.

. Integrity checks on exception return on page B3-93.

. Errors when unstacking state on exception return on page B3-94.

. Chapter B11 Debug
B3.31.1 Instruction-related lockup behavior

Instruction execution

RvGMR A synchronous exception results in lockup when:

. The synchronous exception would escalate to a Secure HardFault and any of the following is true:
— Secure HardFault is already active.
— NMIis active and AIRCR.BFHFNMINS is 0.
— FAULTMASK S.FMis 1.
— Non-secure HardFault is active and AIRCR.BFHFNMINS is 0.

B3-90 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

B3 Programmers’ Model
B3.31 Lockup

. The synchronous exception would escalate to a Non-secure HardFault and any of the following is true:
— Non-secure HardFault or Secure HardFault is already active.
— NMIis active.
— FAULTMASK NS.FM or FAULTMASK S.FMis 1.

RommB If the Security Extension is not implemented and the Main Extension is implemented, a synchronous exception
results in lockup when:
. The synchronous exception would escalate to HardFault and any of the following is true:
— HardFault is already active.
— NMI s active.
— FAULTMASK.FMis 1.
RvxxH If the Main Extension and Security Extension are not implemented a synchronous exception results in lockup when:
. The synchronous exception would escalate to HardFault and any of the following is true:
— HardFault is already active.
— NMI s active.
RyGNw Entry to lockup from an exception causes:
. Any Fault Status Registers associated with the exception to be updated.
. No update to the exception state, pending or active.
. The PC to be set to OxEFFFFFFE.
. EPSR.IT to be become UNKNOWN.
In addition, HFSR.FORCED is not set to 1.
Rpwkp Asynchronous BusFaults never cause lockup. The standard rules for asynchronous BusFaults are applied.
Ixxxw When a BusFault does not cause lockup, the value that is read or written to the location that generated the BusFault
1S UNKNOWN.
Floating-point lazy FP context preservation
RRNKB When FPCCR.LSPACT is 1, a NOCP UsageFault, AU violation, MPU violation, or synchronous bus error during
lazy FP context preservation causes lockup if any of the following is true:
. FPCCR.HFRDY is 0.
. The exception would escalate to a Secure HardFault and any of the following is true:
— Secure HardFault is already active.
— NMIis active and AIRCR.BFHFNMINS is 0.
— FAULTMASK S.FMis 1.
— Non-secure HardFault is active and AIRCR.BFHFNMINS is 0.
. The exception would escalate to a Non-secure HardFault and any of the following is true:
— Non-secure HardFault or Secure HardFault is already active.
— NMI s active.
— FAULTMASK NS.FM or FAULTMASK S.FM is 1.
RwmmBs When FPCCR.LSPEN is 0, any faults that are caused by floating-point register reads or writes during exception
entry or exception return are handled as faults on stacking or unstacking respectively.
RxrQs When FPCCR.LSPEN is 1 and a NOCP UsageFault, AU violation, MPU violation, or synchronous bus error during
FP context stacking causes lockup, that entry to lockup causes:
. Any Fault Status Registers associated with the exception to be updated.
. No update to the exception state, pending or active.
. The PC to be set to OxEFFFFFFE.
. EPSR.IT to be become UNKNOWN.
ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B3-91

1D092816

Non-Confidential

B3 Programmers’ Model

B3.31 Lockup

In addition, HFSR.FORCED is not set to 1.

B3.31.2 Exception-related lockup behavior
Vector or stack pointer error on reset

Rguva On reset, if reading the vector table to obtain either the vector for the reset handler or the initialization value for the
main stack pointer causes a bus error, the PE enters lockup in HardFault with the following behavior:

. HFSR.VECTTBL is set to 1.

. In a PE with the Security Extension, Secure HardFault is made active. That is, SHCSR _S.HARDFAULTACT
is set to 1.

. In a PE without the Security Extension, HardFault is made active. That is, SHCSR.HARDFAULTACT is set
to 1.

. An UNKNOWN value is loaded into the main stack pointer.

. The IPSR is set to 0.

. EPSR.T is UNKNOWN.

. EPSR.IT is set to zero.

. The PC is set to OxEFFFFFFE.

IxpNL Because the PE always resets into Secure state and the highest privilege, SAU and MPU violations are not possible
on accesses to the reset vector.

Errors on preemption and stacking for exception entry

RvkTx An AU violation, MPU violation, NOCP UsageFault, STKOF UsageFault, LSERR SecureFault, or synchronous
bus error during context stacking causes lockup when:

. The exception would escalate to a Secure HardFault and any of the following is true:
— Secure HardFault is already active.
— NMIl s active and AIRCR.BFHFNMINS is 0.
— FAULTMASK S.FMis 1.
. The exception would escalate to a Non-secure HardFault and any of the following is true:
— Non-secure HardFault or Secure HardFault is already active.
— NMl s active.
— FAULTMASK NS.FM or FAULTMASK S.FMis 1.
In these cases, the point of PE lockup is when, after the exception to be taken has been chosen, the handler for that
exception is entered. These cases do not in themselves cause any additional exception to become pending.

Rosss When an AU violation, MPU violation, NOCP UsageFault, STKOF UsageFault, LSERR SecureFault, or
synchronous bus error occurs during context stacking, it is IMPLEMENTATION DEFINED whether the PE continues to
stack any of the remaining context.

Raiig At the point of encountering an AU violation, MPU violation, NOCP UsageFault, STKOF UsageFault, LSERR
SecureFault, or synchronous bus error during context stacking, the PE:

. Updates any Fault Status Registers associated with the error.

. Does not set HFSR.FORCED to 1.

At the point of lockup:

. All state, including the LR, IPSR, and active and pending bits, is modified as though the fault on context
stacking had never occurred, other than the following:
— EPSR.T becomes UNKNOWN.
— EPSR.IT is set to zero.
— The PC is set to OxEFFFFFFE.

B3-92 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

Retke

INMRW

R1RrE)

Rwavc

Rprkp

B3 Programmers’ Model
B3.31 Lockup

Vector read error on NMI or HardFault entry

On entry to an NMI or HardFault, if reading the vector table to obtain the vector for the NMI or HardFault handler
causes a bus error, the PE enters lockup with the following behavior:

. HFSR.VECTTBL is set to 1.

. The IPSR is updated to hold the exception number of the exception taken.
. The active bit of the exception that is taken is set to 1.

. The pending bit of the exception that is taken is cleared to 0.

. EPSR.T is UNKNOWN.

. EPSR.IT is set to zero.
. The LR is set to the EXC_RETURN value that would have been used had the fault not occurred.
. The PC is set to OxEFFFFFFE.

Because AU violations on vector reads are required to be treated as late-arriving, they cannot cause lockup, instead
resulting in a higher priority exception being taken. Vector reads always use the default memory map and cannot
generate MPU violations.

Integrity checks on exception return

A fault that is generated by a failed integrity check on exception return is generated after either the active bit for the
returning exception, or the active bit for NMI or HardFault, has been cleared to 0, and if applicable, after
FAULTMASK has also been cleared to 0. A fault that is generated by a failed integrity check on exception return
causes lockup when:

. The exception would escalate to a Secure HardFault and any of the following is true:
— Secure HardFault is already active.
— NMI s active and AIRCR.BFHFNMINS is 0.
— FAULTMASK S.FMis 1.
— Non-secure HardFault is active and AIRCR.BFHFNMINS is 0.

. The exception would escalate to a Non-secure HardFault and any of the following is true:
— Non-secure HardFault or Secure HardFault is already active.
— NMI s active.
— FAULTMASK NS.FM or FAULTMASK S.FMis 1.

The target Security state of an INVPC UsageFault generated because of a failed integrity check on exception return

is either the Security state the exception return was executed in or the Background state dependent on when the

INVPC UsageFault was generated.

When the PE enters lockup because of a fault that is generated by a failed integrity check, the PE:

. Updates any Fault Status Registers associated with the error.

. Sets IPSR to 0, if EXC_RETURN for the returning exception indicated a return to Thread mode.

. Sets IPSR to 3, if EXC_RETURN for the returning exception indicated a return to Handler mode.

. Sets the stack pointer that is used for unstacking to the value it would have had if the fault had not occurred.
— Ifthe XPSR load faults, the SP is 64-bit aligned.

. Updates CONTROL.FPCA, based on EXC_RETURN.FType.

. Sets the PC to OxEFFFFFFE.

In addition, the APSR, EPSR, FPSCR, R0-R12, LR, and S0-S31 are UNKNOWN.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B3-93
Non-Confidential

B3 Programmers’ Model

B3.31 Lockup

Errors when unstacking state on exception return

Rwks) Context unstacking is performed after any clearing of exception active bits or FAULTMASK, that is required by the
exception return, has been made visible. An AU violation, MPU violation, or synchronous bus error during context
unstacking causes lockup when:

. The exception would escalate to a Secure HardFault and any of the following is true:
— Secure HardFault is already active.
— FAULTMASK S.FMis 1.
— Non-secure HardFault is active and AIRCR.BFHFNMINS is 0.
. The exception would escalate to a Non-secure HardFault and any of the following is true:
— Non-secure HardFault or Secure HardFault is already active.
— NMI s active.
— FAULTMASK NS.FM or FAULTMASK S.FMis 1.

Rxrcq When an AU violation, MPU violation, or synchronous bus error during context unstacking causes lockup, the PE:

. Updates any Fault Status Registers associated with the error.

. Sets IPSR to 0, if EXC_RETURN for the returning exception indicated a return to Thread mode.

. Sets IPSR to 3, if EXC_RETURN for the returning exception indicated a return to Handler mode.

. Sets the stack pointer that is used for unstacking to the value it would have had if the fault had not occurred.
— Ifthe XPSR load faults, the SP is 64-bit aligned.

. Updates CONTROL.FPCA, based on EXC_RETURN.FType.

. Sets the PC to OXEFFFFFFE.

In addition, the APSR, EPSR, FPSCR, R0-R12, LR, and S0-S31 are UNKNOWN.

Lockup on breakpoint instructions

Ripcu A BKPT instruction executed when the PE cannot halt or generate a DebugMonitor exception will result in lockup.

See also:
. Breakpoint instructions on page B11-208.
. FPB unit operation on page B12-236.
B3-94 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

B3 Programmers’ Model
B3.32 Exception during a singleword load operation

B3.32 Exception during a singleword load operation

Rxemp To support instruction restart, singleword load instructions must not update the destination register when the PE
takes an exception during execution.

See also:

. Exceptions, instruction resume, or instruction restart on page B3-83.

ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B3-95
1D092816 Non-Confidential

B3 Programmers’ Model
B3.33 Special-purpose CONTROL register

B3.33 Special-purpose CONTROL register

Rcspp Software can use MRS and MSR instructions to access the CONTROL register.

Rckvo Privileged execution can write to the CONTROL register. The PE ignores unprivileged writes to the CONTROL
register. All reads of the CONTROL register, regardless of privilege, are allowed.

IrRimp The architecture requires a Context synchronization event to guarantee visibility of a change to the CONTROL
register.

RuvGs The PE automatically updates CONTROL.SPSEL on exception entry and exception return.

INMBL CONTROL.SPSEL selects the stack pointer when the PE is in Thread mode.
See also:
. Context Synchronization Event on page B3-98.

. CONTROL, Control Register on page D1-837.

B3-96 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

B3 Programmers’ Model
B3.34 Saving context on process switch

B3.34 Saving context on process switch

IwnGQ When switching between different processes, software must save all context for the old process, including its
associated EXC_RETURN value, before switching to the new process, and restore that context before returning to
the old process.

ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B3-97
1D092816 Non-Confidential

B3 Programmers’ Model
B3.35 Context Synchronization Event

B3.35 Context Synchronization Event

Roxwp The architecture requires a Context synchronization event to guarantee visibility of any change to any
memory-mapped register described in the architecture. Following a Context synchronization event a completed
write to a memory-mapped register must be visible to an indirect read by an instruction appearing in program order
after the context synchronization event.

Rrvhx Between any change to aa memory-mapped register and a subsequent Context synchronization event, it is
UNPREDICTABLE whether an indirect read of the register by the PE uses the old or new values.

B3-98 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

B3 Programmers’ Model
B3.36 Coprocessor support

B3.36 Coprocessor support

IorrRH
IiBmG
Rxsqn
RupH

RxprQ

Rosre
RcrmbD
RxxpG

RrmLv

If the Main Extension is implemented, coprocessor support is OPTIONAL.
When coprocessors are not supported, CPACR and NSACR are RAZ/WI.
The architecture supports 0-16 coprocessors, CP0 to CP15.

CPO to CP7 are IMPLEMENTATION DEFINED.

It is IMPLEMENTATION DEFINED whether CP0 to CP7 can be used from both Secure and Non-secure states or whether
the coprocessor is enabled for only Secure or Non-secure state.

ARM reserves CP8 to CP15.
CP10 to CP11 are reserved to support the Floating-point Extension.
Instructions issued to unimplemented or disabled coprocessors result in a NOCP UsageFault.

If a coprocessor cannot complete an instruction, an UNDEFINSTR UsageFault is generated.

See also:

. Chapter B4 Floating-point Support.

. CPACR, Coprocessor Access Control Register on page D1-839.
. CPPWR, Coprocessor Power Control Register on page D1-841.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B3-99
Non-Confidential

B3 Programmers’ Model
B3.36 Coprocessor support

B3-100 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

Chapter B4
Floating-point Support

This chapter specifies the ARMv8-M floating-point support rules. It contains the following sections:
. The optional Floating-point Extension, FPv5 on page B4-102.

. About the Floating-point Status and Control Register (FPSCR) on page B4-103.

. Registers for floating-point data processing, S0-S31 or DO-D15 on page B4-104.

. Floating-point standards and terminology on page B4-105.

. Floating-point data representable on page B4-106.

. Floating-point encoding formats, half-precision, single-precision, and double-precision on page B4-107.
. The IEEE 754 floating-point exceptions on page B4-109.

. The Flush-to-zero mode on page B4-110.

. The Default NaN mode, and NaN handling on page B4-111.

. The Default NaN on page B4-112.

. Combinations of floating-point exceptions on page B4-113.
. Priority of floating-point exceptions relative to other floating-point exceptions on page B4-114.
ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B4-101

1D092816 Non-Confidential

B4 Floating-point Support
B4.1 The optional Floating-point Extension, FPv5

B4.1 The optional Floating-point Extension, FPv5

IvBNH The optional Floating-point Extension defines a Floating Point Unit (FPU). Coprocessors 10 and 11 support the
Extension.
IrxQx Floating-point is sometimes abbreviated to FP.
RGoBMm The version of Floating-point Extension that is supported is FPv5.
IrGsG FPv5 provides all of the following:
. Single-precision arithmetic operations.
. Optional double-precision arithmetic operations.
. Conversions between integer, double-precision, single-precision, and half-precision formats.
. Registers for floating-point processing, S0-S31 or D0O-D15.
. Data transfers, between ARM general-purpose registers and FPv5 Extension registers S0-S31 or DO-D15, of
single-precision and double-precision values.
. A Flush-to-zero mode that software can enable or disable.
. A Default NaN mode that software can enable or disable.
. An optional alternative half-precision interpretation of the IEEE 754 half-precision encoding format.
FPv5 adds the following system registers:
. The FPSCR, to the CP10 and CP11 system register space.
. The FPCAR, FPCCR, FPDSCR, MVFR0O, MVFR1, and MVFR2, to the System Control Block (SCB).
IpvBQ When the Floating-point Extension is implemented, some software tools might require the following information:
Extension Single-precision arithmetic operations only Single and double-precision arithmetic operations
FPv5 FPv5-SP-D16-M FPv5-D16-M
IrTDS When the Floating-point Extension is implemented, software can interrogate MVFR0, MVFR1, and MVFR2 to
discover the floating-point features that are implemented.
Iipig To use the Floating-point Extension, software must enable access to CP10, by programming CPACR.CP10.
Rppmv The value of CPACR.CP11 is UNKNOWN if it is not programmed to the same value as CPACR.CP10.
See also:
. ARMVS-M variants on page Al1-27.
. The System Control Space (SCS) on page B7-172.
. About the Floating-point Status and Control Register (FPSCR) on page B4-103.
. Registers for floating-point data processing, S0-S31 or DO-D15 on page B4-104.
. The Flush-to-zero mode on page B4-110.
. The Default NaN mode, and NaN handling on page B4-111.
. Floating-point encoding formats, half-precision, single-precision, and double-precision on page B4-107.
B4-102 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

B4 Floating-point Support
B4.2 About the Floating-point Status and Control Register (FPSCR)

B4.2 About the Floating-point Status and Control Register (FPSCR)

Ixxzs CP10 and CP11 are used for floating-point control, and many coprocessor instruction encodings targeting CP10 and
CP11 are used as floating-point instruction encodings.

Rypry The register map of the CP10 and CP11 system register space shows the location of the FPSCR:
Location Register Information
0b0000 Reserved All accesses are UNPREDICTABLE
0b0oo1 FPSCR -

0b0010-0b1111 Reserved All accesses are UNPREDICTABLE

Igywp Software can use VMRS and VMSR instructions to access the FPSCR. The FPSCR holds configurable control fields to
control the Floating-point Extension, and also status information fields.

RrxBj Execution of floating-point instructions that generate floating-point exceptions update the appropriate status fields
of FPSCR.
See also:

. The optional Floating-point Extension, FPv5 on page B4-102.
. FPSCR, Floating-point Status and Control Register on page D1-941.

ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B4-103
1D092816 Non-Confidential

B4 Floating-point Support
B4.3 Registers for floating-point data processing, S0-S31 or D0-D15

B4.3 Registers for floating-point data processing, S0-S31 or D0-D15

Rrwes The registers that FPv5 adds for floating-point processing are visible as either:
. 32 single-precision registers, S0-S31.
. 16 double-precision registers, DO-D15.

These map as follows:

S0-S31 D0-D15
s S —
s— - D1 —
s - D2
= - D3 —]
A
22(1) 777777 —— D15 —
Rxwiq After a reset, the values of S0-S31 or DO-D15 are UNKNOWN.

See also:
. The optional Floating-point Extension, FPv5 on page B4-102.
. Exception handling on page B3-64.

B4-104 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

B4 Floating-point Support

B4.4 Floating-point standards and terminology

B4.4 Floating-point standards and terminology

IxnmN

ImqFs

IgGPN

There are two editions of the IEEE 754 standard:
. IEEE 754-1985.
. 1IEEE 754-2008.

In this manual, references to IEEE 754 that do not include the year apply to either edition.

The floating-point terminology that this manual uses differs from that used in IEEE 754-2008 as follows:

This manual IEEE 754-2008
Normalized Normal

Denormal, or denormalized Subnormal

Round towards Minus Infinity (RM) roundTowardsNegative
Round towards Plus Infinity (RP) roundTowardsPositive
Round towards Zero (RZ) roundTowardZero
Round to Nearest (RN) roundTiesToEven
Round to Nearest with Ties to Away roundTiesToAway

Rounding mode

Rounding-direction attribute

The following is called ARM standard floating-point operation:
. IEEE 754-2008 plus the following FPSCR configuration:

See also:

. 1IEEE 754-2008, IEEE Standard for Floating-point Arithmetic, August 2008.

Flush-to-zero mode enabled.

Default NaN mode enabled.

Round to Nearest mode selected.

Alternative half-precision interpretation not selected.

. The Flush-to-zero mode on page B4-110.
. The Default NaN mode, and NaN handling on page B4-111.

. Floating-point encoding formats, half-precision, single-precision, and double-precision on page B4-107.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved.
Non-Confidential

B4-105

B4 Floating-point Support
B4.5 Floating-point data representable

B4.5 Floating-point data representable

Rrwxc FPv5 supports the following, as defined by IEEE 754:
. Normalized numbers.
. Denormalized numbers.
. Zeros, +0 and -0.
. Infinities, +o0 and -oo.

. NaNs, signaling NaN and quiet NaN.

See also:
. Floating-point standards and terminology on page B4-105.
. IEEE 754-2008, IEEE Standard for Floating-point Arithmetic, August 2008.

. Floating-point encoding formats, half-precision, single-precision, and double-precision on page B4-107.

B4-106 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

B4 Floating-point Support

B4.6 Floating-point encoding formats, half-precision, single-precision, and double-precision

B4.6 Floating-point encoding formats, half-precision, single-precision, and

double-precision
RpHRC The half-precision, single-precision, and double-precision encoding formats are those defined by IEEE 754-2008.
IigTy The half-precision encoding format defined by IEEE 754-2008 is:
1514 10 9 0
E (biased " R)
S exponent) T (trailing significand field)
L sign bit
Icwap The single-precision encoding format defined by IEEE 754-2008 is:
3130 23 22 0
S| E (biased exponent) T (trailing significand field)
L sign bit
Irvwy The double-precision encoding format defined by IEEE 754-2008 is:
63 62 . 5251 . 32 31 . 0
E - A)
S (biased exponent) T (trailing significand field)
L sign bit
Rrwrw The interpretations of the IEEE 754-2008 half-precision, single-precision, and double-precision encoding formats

are as follows.

Half-precision

The interpretation depends on the setting of FPSCR.AHP. It is either:
. The interpretation defined by IEEE 754-2008.
. An alternative half-precision interpretation.

Single-precision

The interpretation defined by IEEE 754-2008.

Double-precision

The interpretation defined by IEEE 754-2008.

See the following table:

E (biased exponent)

T (trailing significand) S (Sign bit) MSB of T2

Value

Zero, for all formats.

Non-zero - - A denormalized number
Zero 0 - Zero, +0
1 - Zero, -0

Zero < E <0x1F, if half-precision format. - - -

Zero < E < 0xFF, if single-precision format.

Zero < E < Ox7FF, if double-precision format.

A normalized number

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved.
Non-Confidential

B4-107

B4 Floating-point Support
B4.6 Floating-point encoding formats, half-precision, single-precision, and double-precision

E (biased exponent) T (trailing significand) S (Sign bit) MSB of T2 Value
Ox1F, if half-precision format, IEEE Non-zero - 0 A signaling NaN
interpretation.

- 1 A quiet Nan

OxFF, if single-precision format.

Ox7FF, if double-precision format. Zero 0

Infinity, +oo

Infinity, -co

Ox1F, if half-precision, alternative - -
half-precision interpretation.

A normalized number

a. MSB = most significant bit.

Rppun

IMuvP

IGBBI

The value of a normalized number is equal to:
Half-precision IEEE 754-2008 interpretation

(=1)8 x 2(E-15) x (1.T)
Half-precision alternative half-precision interpretation

(=1)S x 216 x (1.T)
Single-precision

(=1)8 x 2(E-127) x (1.T)
Double-precision

(=1)S x 2(E-1023) x (1.T)
The value of a denormalized number is equal to:
Half-precision

(=1)S x 2-14 x (0.T)
Single-precision

(=1)8 x 2-126 x (0.T)
Double-precision

(=1)8 x 2-1022 x (0.T)

Denormalized numbers can be flushed to zero. FPv5 provides a Flush-to-zero mode that software can enable.

See also:

. IEEE 754-2008, IEEE Standard for Floating-point Arithmetic, August 2008.

. Floating-point data representable on page B4-106.

B4-108

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0553A.c
ID092816

B4 Floating-point Support
B4.7 The IEEE 754 floating-point exceptions

B4.7 The IEEE 754 floating-point exceptions

RpccL

Iijcws

INFHK

The IEEE 754 floating-point exceptions are:

Invalid Operation
This exception is as IEEE 754-2008 (7.2) describes.
Division by zero
This exception is as IEEE 754-2008 (7.3) describes, with the following assumption:

. For the reciprocal and reciprocal square root estimate functions the dividend is assumed to be
+1.0.

Overflow
This exception is as IEEE 754-2008 (7.4) describes.

Underflow
This exception is as IEEE 754-2008 (7.5) describes, with the additional clarification that:

. Assessing whether a result is tiny and non-zero is done before rounding.

Inexact
This exception is as IEEE 754-2008 (7.6) describes.

The criteria for the Underflow exception to be generated are different in Flush-to-zero mode.

The corresponding status flags for the IEEE 754 floating-point exceptions are FPSCR.{IOC, DZC, OFC, UFC,
IXC}.

See also:
. 1IEEE 754-2008, IEEE Standard for Floating-point Arithmetic, August 2008.
. The Flush-to-zero mode on page B4-110.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B4-109
Non-Confidential

B4 Floating-point Support
B4.8 The Flush-to-zero mode

B4.8 The Flush-to-zero mode
IxGrp Software can enable Flush-to-zero mode by setting FPSCR.FZ to 1.
TwMKJ Using Flush-to-zero mode is a deviation from IEEE 754.
Rjqnux Half-precision floating-point numbers are exempt from Flush-to-zero mode.
Ryisr When Flush-to-zero mode is enabled, all single-precision denormalized inputs and double-precision denormalized
inputs to floating-point operations are treated as though they are zero, that is they are flushed to zero.
Rkgy) When an input to a floating-point operation is flushed to zero, the PE generates an Input Denormal exception.
RsBck Input Denormal exceptions are only generated in Flush-to-zero mode.
Rwipm When Flush-to-zero mode is enabled, the sequence of events for an input to a floating-point operation is:
1. Flush to zero processing takes place. If appropriate, the input is flushed to zero and the PE generates an Input
Denormal exception.
2. Tests for the generation of any other floating-point exceptions are done after flush to zero processing.
Rpgpr When Flush-to-zero mode is enabled, the result of a floating-point operation is treated as if it is zero if, before
rounding, it satisfies the condition:
0 < Abs(result) < MinNorm, where:
. MinNorm is 2-126 for single-precision.
. MinNorm is 2-1022 for double-precision.
The result is said to be flushed to zero.
Raopor When the result of a floating-point operation is flushed to zero, the PE generates an Underflow exception.
RrpvD In Flush-to-zero mode, the PE generates Underflow exceptions only when a result is flushed to zero. The is different
criteria than when Flush-to-zero mode is disabled.
RRTPH When a floating-point number is flushed to zero, the sign is preserved. That is, the sign bit of the zero matches the
sign bit of the number being flushed to zero.
RRWRT The PE does not generate an Inexact exception when a floating-point number is flushed to zero.
Isqcy The corresponding status flag for the Input Denormal exception is FPSCR.IDC.
See also:
. The IEEE 754 floating-point exceptions on page B4-109.
B4-110 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

B4 Floating-point Support
B4.9 The Default NaN mode, and NaN handling

B4.9 The Default NaN mode, and NaN handling

IrGpN
IpjvH

Romoc

RNprL

Rycss

ILxLF

Software can enable Default NaN mode by setting FPSCR.DN to 1.
Using Default NaN mode is a deviation from IEEE 754.

When Default NaN mode is enabled, the Default NaN is the result of both:

. All floating-point operations that produce an untrapped Invalid Operation exception.

. All floating-point operations whose inputs include at least one quiet NaN but no signaling NaNs.
IEEE 754 specifies that:

. An operation that produces an untrapped Invalid Operation exception returns a quiet NaN as its result.

When Default NaN mode is disabled, behavior complies with this and adds:

. If the Invalid Operation exception was generated because one of the inputs to the operation was a signaling
NaN, the quiet NaN result is equal to the first signaling NaN input with its most significant bit set to 1.

. The quiet NaN result is the Default NaN otherwise.

The first signaling NaN input means the first argument, in the left-to-right ordering of arguments, that is passed to
the pseudocode function describing the operation.

IEEE 754 specifies that:

. An operation using a quiet NaN as an input, but no signaling NaNs as inputs, returns one of its quiet NaN
inputs as its result.

When Default NaN mode is disabled, behavior complies with this and adds:
. The quiet NaN result is the first quiet NaN input.
The first quiet NaN input means the first argument, in the left-to-right ordering of arguments, that is passed to the

pseudocode function describing the operation.

Depending on the floating-point operation, the exact value of a quiet NaN result might differ in both sign and the
number of T bits from its source.

See also:
. The Default NaN on page B4-112.
. Floating-point encoding formats, half-precision, single-precision, and double-precision on page B4-107.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B4-111
Non-Confidential

B4 Floating-point Support
B4.10 The Default NaN

B4.10 The Default NaN

RrqorG The Default NaN is:
Field Half-precision, IEEE 754-2008 interpretation Single-precision Double-precision
S 0 0 0
E 0x1F OxFF Ox7FF
T Bit[9] == 1, bits[8:0] = bit[22] == 1, bits[21:0] ==0 bit[51] == 1, bits[50:0] ==
See also:
. Floating-point encoding formats, half-precision, single-precision, and double-precision on page B4-107.

. The Default NaN mode, and NaN handling on page B4-111.

B4-112 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

B4 Floating-point Support
B4.11 Combinations of floating-point exceptions

B4.11 Combinations of floating-point exceptions

IgTTH

RrrvH

In compliance with IEEE 754:
. An Inexact floating-point exception can occur with an Overflow floating-point exception.

. An Inexact floating-point exception can occur with an Underflow floating-point exception.

An Input Denormal exception can occur with other floating-point exceptions.

See also:
. The IEEE 754 floating-point exceptions on page B4-109.
. The Flush-to-zero mode on page B4-110.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B4-113
Non-Confidential

B4 Floating-point Support
B4.12 Priority of floating-point exceptions relative to other floating-point exceptions

B4.12 Priority of floating-point exceptions relative to other floating-point exceptions

Rprmy Some floating-point instructions specify more than one floating-point operation. In these cases, an exception on one
operation is higher priority than an exception on another operation when generation of the second exception depends
on the result of the first operation. Otherwise, it is UNPREDICTABLE which exception is higher priority.

See also:
. The IEEE 754 floating-point exceptions on page B4-109.

B4-114 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

Chapter BS
Memory Model

This chapter specifies the ARMv8-M memory model architecture rules. It contains the following sections:
. Memory accesses on page B5-117.

. Address space on page B5-118.

. Endianness on page B5-119.

. Alignment behavior on page B5-121.

. Atomicity on page B5-122.

. Concurrent modification and execution of instructions on page B5-123.

. Access rights on page B5-124.

. Observability of memory accesses on page B5-125.

. Completion of memory accesses on page B5-126.

. Ordering requirements for memory accesses on page B5-127.
. Ordering of implicit memory accesses on page B5-128.

. Ordering of explicit memory accesses on page B5-129.

. Memory barriers on page B5-130.

. Normal memory on page B5-133.

. Cacheability attributes on page B5-134.

. Device memory on page B5-135.

. Device memory attributes on page B5-136.
. Shareability domains on page B5-139.

. Shareability attributes on page B5-140.

. Memory access restrictions on page B5-141.

. Mismatched memory attributes on page B5-142.

. Load-Exclusive and Store-Exclusive accesses to Normal memory on page B5-144.
. Load-Acquire and Store-Release accesses to memory on page B5-145.

. Caches on page B5-147.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B5-115
Non-Confidential

B5 Memory Model

. Cache identification on page B5-148.

. Cache visibility on page B5-149.

. Cache coherency on page B5-150

. Cache enabling and disabling on page B5-151.

. Cache behavior at reset on page B5-152.

. Behavior of Preload Data (PLD) and Preload Instruction (PLI) instructions with caches on page B5-153.
. Branch predictors on page B5-154.

. Cache maintenance operations on page B5-155.
. Ordering of cache maintenance operations on page B5-157.
. Branch predictor maintenance operations on page B5-158.
B5-116 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

B5 Memory Model
B5.1 Memory accesses

B5.1 Memory accesses

IxrDS The memory accesses that are referred to in describing the memory model are instruction fetches from memory and
load or store data accesses.

Rikon The instruction operation uses the MemA[] or MemU[] helper functions. If the Main Extension is not implemented
unaligned accesses using the MemU[] helper functions generate an alignment fault.

RBENF A memory access is governed by whether the access is a read or write, its address alignment, data endianness, and
memory attributes.

See also:

. Ordering of implicit memory accesses on page B5-128.
. Ordering of explicit memory accesses on page B5-129.
. Normal memory on page B5-133.

. Device memory on page B5-135.

. Memory access restrictions on page B5-141.

ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B5-117
1D092816 Non-Confidential

B5 Memory Model
B5.2 Address space

B5.2 Address space

RrrmK The address space is a single, flat address space of 232 bytes.

Rsnpy In the address space, byte addresses are unsigned numbers in the range 0-232-1.

RRrGBT If an address calculation overflows or underflows the address space, it wraps around. Address calculations are
modulo 232,

[yTkm Normal sequential execution cannot overflow the top of the address space, because the top of memory always has

the Execute Never (XN) memory attribute.

Repmp LDC, LDM, LDRD, POP, PUSH, STC, STRD, STM, VLDM, VPOP, VPUSH, VSTM, VLDR.64, and VSTR.64 instructions access a sequence
of words at increasing memory addresses, effectively incrementing the address by 4 for each load or store. If this
calculation overflows the top of the address space, the result is UNPREDICTABLE.

See also:
. In Chapter B7 The System Address Map:
— System address map on page B7-170.

B5-118 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

B5 Memory Model

B5.3 Endianness
B5.3 Endianness
Ietvy In memory:
. The following figures show the relationship between:
— The word at address A.
— The halfwords at addresses A and A+2.
— The bytes at addresses A, A+1, A+2, and A+3.
Data arranged in a little-endian format
31 24 23 16 15 8 0
Word at address A
Halfword at address A+2 Halfword at address A
Byte at address A+3 Byte at address A+2 Byte at address A+1 Byte at address A
{
Most significant byte T Least significant byte
Most significant bit
Least significant bit

Data arranged in a big-endian format

31 24 23 16 15 8 0
Word at address A
Halfword at address A Halfword at address A+2
Byte at address A Byte at address A+ Byte at address A+2 Byte at address A+3
Most significant byte T Least significant byte
Most significant bit
Least significant bit
Instruction alignment and byte ordering
15 8 7 015 8 7 0
T32 instruction, hw1® T32 instruction, hw2°
Byte at address A+1 Byte at address A Byte at address A+3 Byte at address A+2
a) Bits[15:0]: this is hw 1 for a T32 instruction with a 16-bit encoding
b) Bits[31:0]: this is hw1 and hw2 for a T32 instruction with a 32-bit encoding
RyqL Instruction fetches are always little-endian, which means that the PE assumes a little-endian arrangement of
instructions in memory.
RyvNsB All accesses to the Private Peripheral Bus (PPB) are always little-endian, which means that the PE assumes a
little-endian arrangement of the PPB registers.
RTrKG The endianness of data accesses is IMPLEMENTATION DEFINED, as indicated by AIRCR.ENDIANNESS.
Rkpcr AIRCR.ENDIANNESS is either:
. Implemented with a static value.
ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B5-119

1D092816

Non-Confidential

B5 Memory Model

B5.3 Endianness
. Configured by a hardware input on reset.
Ronwc For data accesses, the following table shows the data element size that endianness applies to, for endianness
conversion purposes.
Instruction class Instructions Element size
Load or store byte LDR{S}B{T}, LDAB, LDAEXB, STLB, STLEXB, STRB{T}, TBB, LDREXB, STREXB Byte
Load or store halfword LDR{S}H{T}, LDAH, LDAEXH, STLH, STLEXH, and STRH{T}, TBH, LDREXH, Halfword
STREXH
Load or store word LDR{T}, LDA, LDAEX, STL, STLEX, and STR{T}, LDREX, STREX, VLDR.F32, Word
VSTR.F32
Load or store two words LDRD, STRD, VLDR.F64, VSTR.F64 Word

Load or store multiple words ~ LDM{IA,DB}, STM{IA,DB}, PUSH, POP, LDC, STC, VLDM, VSTM, VPUSH, VPOP, Word
BLX, BLXNS, BX, BXNS, VLLDM, VLSTM.

Rxnvs The following instructions change the endianness of data that is loaded or stored:
REV Reverse word (four bytes) register, for transforming 32-bit representations.
REVSH Reverse halfword and sign extend, for transforming signed 16-bit representations.
REV16 Reverse packed halfwords in a register for transforming unsigned 16-bit representations.
B5-120 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

B5 Memory Model
Bb5.4 Alignment behavior

B5.4 Alignment behavior

Rrkagv

RgHrx

Rmucem

RTRNR

Rwcvx

RrnDS

All instruction fetches are halfword-aligned.

The following are unaligned data accesses that always generate an alignment fault:

. Non halfword-aligned LDREXH, LDAEXH, STLEXH, and STREXH.

. Non word-aligned LDREX, LDAEX, STLEX, and STREX.

. Non word-aligned LDR (Titeral), LDRD, LDMIA, LDMDB, POP, LDC, VLDR, VLDM, and VPOP.
. Non word-aligned STMIA, STMDB, PUSH, STC, VSTR, VSTM, VPUSH, VLLDM, and VLSTM.

If CCR.UNALIGN_TRP is set to 1, the following are unaligned data accesses that generate an alignment fault:
. Non halfword-aligned LDR{S}H{T}, LDAH, STLH, and STRH{T}.

. Non halfword-aligned TBH.

. Non word-aligned LDR{T}, LDA, STL, and STR{T}.

Unaligned accesses are only supported if the Main Extension is implemented. If the Main Extension is not
implemented unaligned access generate an alignment fault.

Accesses to Device memory are always aligned.

Alignment faults are synchronous and generate an UNALIGNED UsageFault.

See also:
. Normal memory on page B5-133.
. Device memory on page B5-135.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B5-121
Non-Confidential

B5 Memory Model

B5.5 Atomicity
B5.5 Atomicity
There are two types of atomicity:
. Single-copy atomicity.
. Multi-copy atomicity.
B5.5.1 Single-copy atomicity
Inwvk Store operations are single-copy atomic if, when they overlap bytes in memory:
1. All of the writes from one of the stores are inserted into the coherence order of each overlapping byte.
2. All of the writes from another of the stores are inserted into the coherence order of each overlapping byte.
3. Step 2 repeats, for each single-copy store atomic operation that overlaps.
RBsHI The following data accesses are single-copy atomic:
. All byte accesses.
. All halfword accesses to halfword-aligned locations.
. All word accesses to word-aligned locations.
Raonex Instruction fetches are single-copy atomic at halfword granularity.
Rvxwe For instructions that access a sequence of word-aligned words, each word access is single-copy atomic.
RikpMm For instructions that access a sequence of word-aligned words, the architecture does not require two or more
subsequent word accesses to be single-copy atomic.
B5.5.2 Multi-copy atomicity
IBcHK In a multiprocessing environment, writes to memory are multi-copy atomic if all of the following are true:
. All writes to the same location are observed in the same order by all observers, although some of the
observers might not observe all of the writes.
. A read of a location does not return the value of a write to that location until all observers have observed that
write.
Ragigp Writes to Normal memory are not required to be multi-copy atomic.
RiBGB Writes to Device memory with the Gathering attribute are not required to be multi-copy atomic.
Rwir Writes to Device memory with the non-Gathering attribute that are single-copy atomic are also multi-copy atomic.
See also:
. Device memory on page B5-135.
. Normal memory on page B5-133.
. Load-Acquire and Store-Release accesses to memory on page B5-145.
B5-122 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

B5 Memory Model
B5.6 Concurrent modification and execution of instructions

B5.6 Concurrent modification and execution of instructions

ItrGe

RxmzG

Rukap

RFGBT

RNTVD

Remzx

The ARMVS architecture limits the set of instructions that can be executed by one thread of execution as they are
being modified by another thread of execution without requiring explicit synchronization.

The hw1 of a 32-bit BL immediate instruction can be concurrently modified to the most significant halfword of
another BL immediate instruction.

The hw1 of a 32-bit BL immediate or BLX immediate instruction can be concurrently modified to a 16-bit B, BL, BLX,
BKPT, or SVC instruction. This modification also works in reverse.

The hw2 of a 32-bit BL immediate instruction can be concurrently modified to the least significant halfword of
another BL instruction with a different immediate.

The hw2 of a 32-bit B immediate instruction with a condition field can be concurrently modified to the least
significant halfword of another 32-bit B immediate instruction with a condition field with a different immediate.

The hw2 of a 32-bit B immediate instruction without a condition field can be concurrently modified to the least
significant halfword of another 32-bit B immediate instruction without a condition field.

See also:

. Endianness on page B5-119.

. B on page C2-342.

. BL on page C2-350.

. BLX, BLXNS on page C2-351.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B5-123
Non-Confidential

B5 Memory Model
Bb5.7 Access rights

B5.7 Access rights

IjuGH An instruction fetch or memory access is subject to the following checks in the following order:
1. Alignment.
2. SAU.
3. MPU.
4 BusFault (IBUSERR).
Rrqis An exception is generated, instead of normal execution of the fetching and decoding process, if one of the following
occurs.
Priority Fault type Cause
Highest One of the following Secure faults: AU violation
. INVEP
. INVTRAN
J The following MemManage fault: MPU violation
. IACCVIOL
2 The following BusFault: System fault
. IBUSERR
J One of the following: FPB hit
. DebugMonitor
. Halted Debug Entry
2 The following SecureFault: SG check
. INVEP
2 The following UsageFault: T32 state check
. INVSTATE
Lowest One of the following UsageFaults: Undefined
. UNDEFINSTR instruction
. NOCP
Rxpno If a memory access fails its alignment check, the fetch is not presented to the SAU.
Rspmo If an instruction fetch or memory access fails its AU check, the fetch is not presented to the relevant MPU for
comparison.
RrLIN If an instruction fetch or memory access fails its MPU check, it is not issued to the memory system.
See also:
. Exception numbers and exception priority numbers on page B3-47.

. Chapter B8 The ARMvS-M Protected Memory System Architecture.

B5-124 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

B5 Memory Model
B5.8 Observability of memory accesses

B5.8 Observability of memory accesses

RpnDH

Rpvrw

Ivsck

Rvccs

Rxqpr

Rrspx

RpGrr

Rpvyr

For a PE, the following mechanisms are treated as independent observers:

. The mechanism that performs reads from or writes to memory.

. The mechanism that causes an instruction cache to be filled from memory or that fetches instructions to be
executed directly from memory. These accesses are treated as reads.

The set of observers that can observe a memory access is defined by the system.

In the context of observability, subsequent means whichever of the following descriptions is appropriate:
. After the point in time where the location is observed by the observer.

. After the point in time where the location is globally observed.

A write to a location in memory is observed by an observer when:

. A subsequent read of the location by the same observer returns the value that was written by the observed
write or written by a write to that location by any observer that is sequenced in the coherence order of the
location after the observed write.

. A subsequent write of the location by the same observer is sequenced in the coherence order of the location
after the observed write.
A write to a location in memory is globally observed for a Shareability domain or set of observers when:

. A subsequent read of the location by any observer in that Shareability domain that is capable of observing
the write returns the value that is written by the globally observed write or by a write to that location by any
observer that is sequenced in the coherence order of the location after the globally observed write.

. A subsequent write to the location by any observer in that Shareability domain is sequenced in the coherence
order of the location after the globally observed write.

For Device-nGnRnE memory, a read or write of a memory-mapped location in a peripheral is observed, and globally
observed, only when the read or write:

. Meets the general observability conditions.
. Can begin to affect the state of the memory-mapped peripheral.
. Can trigger all associated side-effects, whether they affect other peripheral devices, PEs, or memory.

A read of a location in memory is observed by an observer when a subsequent write to the location by the same
observer has no effect on the value that is returned by the read.

A read of a location in memory is globally observed for a Shareability domain when a subsequent write to the
location by any observer in that Shareability domain that is capable of observing the write has no effect on the value
that is returned by the read.

See also:
. Device memory on page B5-135.
. Device memory attributes on page B5-136.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B5-125
Non-Confidential

B5 Memory Model
B5.9 Completion of memory accesses

B5.9 Completion of memory accesses

Rxcre A read or write is complete for a Shareability domain when the following conditions are true:

. The read or write is globally observed for that Shareability domain.

. All instruction fetches by observers within the Shareability domain have observed the read or write.
Rwemo A cache or branch predictor maintenance instruction is complete for a Shareability domain when the effects of the

instruction are globally observed for that Shareability domain.

RsrLm The completion of a memory access to Device memory other than Device-nGnRnE does not guarantee the visibility
of the side-effects of the access to all observers.

Rmwsk The mechanism that ensures the visibility of the side-effects of the access to all observers is IMPLEMENTATION
DEFINED.

See also:

. Shareability domains on page B5-139.

. Device memory on page B5-135.

. Device memory attributes on page B5-136.

B5-126 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

B5 Memory Model
Bb5.10 Ordering requirements for memory accesses

B5.10 Ordering requirements for memory accesses

RrepL

RGipH

RrxpL

RxwrG

Rvmuc

Rwacr

Rrymk

ARMVS-M defines access restrictions in the permitted ordering of memory accesses. These restrictions depend on
the memory attributes of the accesses involved.

For all accesses to all memory types, the only stores by an observer that can be observed by another observer are
those stores that have been architecturally executed.

Reads and writes can be observed in any order provided that, if an address dependency exists between two reads or
between a read and a write, then those memory accesses are observed in program order by all observers within the
common Shareability domain of the memory addresses being accessed.

Speculative writes by an observer cannot be observed by another observer.

For Device memory with the non-Reordering attribute, memory accesses arrive at a single peripheral in program
order.

Memory accesses caused by instruction fetches are not required to be observed in program order, unless they are
separated by a Context synchronization event.

A register data dependency between the value that is returned by a load instruction and the address that is used by
a subsequent memory transaction creates order between that load instruction and the subsequent memory
transaction.

See also:
. Ordering of implicit memory accesses on page B5-128.
. Ordering of explicit memory accesses on page B5-129.

. Normal memory on page B5-133.
. Device memory on page B5-135.
. Shareability domains on page B5-139.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B5-127
Non-Confidential

B5 Memory Model
B5.11 Ordering of implicit memory accesses

B5.11 Ordering of implicit memory accesses

Rkprc There are no ordering requirements for implicit accesses to any type of memory.

See also:

. Memory accesses on page B5-117.

B5-128 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

B5 Memory Model
Bb5.12 Ordering of explicit memory accesses

B5.12 Ordering of explicit memory accesses

Rpnvnm

RwTtrp

Rxagnp

RyvBNw

For all memory types, for accesses from a single observer, the requirements of uniprocessor semantics are
maintained.

For all types of memory, if there is a control dependency between a direct read and a subsequent direct write, the
two accesses are observed in program order by any observer in the common Shareability domain of the two
accesses.

For all types of memory, if the value returned by a direct read computes data that is written by a subsequent direct
write, the two accesses are observed in program order by any observer in the common Shareability domain of the
two accesses.

It is impossible for an observer to observe a write from a store that both:

. Has not been executed.
. Will not be executed.
See also:

. Memory accesses on page B5-117.

. Normal memory on page B5-133.

. Device memory on page B5-135.

. Device memory attributes on page B5-136.
. Shareability domains on page B5-139.

. Shareability attributes on page B5-140.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B5-129
Non-Confidential

B5 Memory Model

B5.13 Memory barriers

B5.13 Memory barriers

RwreT The ARM architecture supports out-of-order completion of instructions.
RGKDW ARMVS supports the following memory barriers:

. Instruction Synchronization Barrier (ISB).

. Data Memory Barrier (DMB).

. Data Synchronization Barrier (DSB).

RroxF The DMB and DSB memory barriers affect reads and writes to the memory system that are generated by Load/Store
instructions and data or unified cache maintenance instructions that are executed by the PE. Instruction fetches are
not explicit accesses.

B5.13.1 Instruction Synchronization Barrier

RTRIR An ISB instruction flushes the pipeline in the PE, so that all instructions that come after the ISB instruction in

program order are fetched from the cache or memory only after the ISB instruction has completed.

See also:
. InstructionSynchronizationBarrier().
. Context Synchronization Event on page B3-98.

B5.13.2 Data Memory Barrier

RmpsG

RGvpL

Rurrx

RwmRT

The required Shareability for a DMB is Full system, and applies to all observers in the Shareability domain.

A DMB only affects memory accesses and the operation of data cache and unified cache maintenance instructions,
and has no effect on the ordering of any other instructions.

A DMB that ensures the completion of cache maintenance instructions has an access type of both loads and stores.

A DMB instruction creates two groups of memory accesses, Group A and Group B, and does not affect memory
accesses that are in not in Group A or Group B:

Group A Contains:

. All explicit memory accesses of the required access types from observers in the same
Shareability domain as PEe that are observed by PEe before the DVMB instruction.

. All loads of required access types from an observer PEx in the same required Shareability domain
as PEe that have been observed by any given different observer, PEy, in the same required
Shareability domain as PEe before PEy has performed a memory access that is a member of
Group A.

Group B Contains:

. All explicit memory accesses of the required access types by PEe that occur in program order
after the DMB instruction.

. All explicit memory accesses of the required access types by any given observer PEx in the same
required Shareability domain as PEe that can only occur after a load by PEx has returned the
result of a store that is a member of Group B.

Any observer with the same required Shareability domain as PEe observes all members of Group A before it
observes any member of Group B to the extent that those group members are required to be observed, as determined
by the Shareability and Cacheability of the memory addresses accessed by the group members.

If members of Group A and members of Group B access the same memory-mapped peripheral of arbitrary

system-defined size, then members of Group A that are accessing Device or Normal Non-cacheable memory arrive
at that peripheral before members of Group B that are accessing Device or Normal Non-cacheable memory. Where
the members of Group A and Group B that must be ordered are from the same PE, a DMB provides for this guarantee.

B5-130

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

B5 Memory Model
B5.13 Memory barriers

See also:
. DataMemoryBarrier().
. Shareability domains on page B5-139.

B5.13.3 Data Synchronization Barrier

IenEG The DSB is a memory barrier that synchronizes the execution stream with memory accesses.
Rnkws The required Shareability for a DSB is Full system and applies to all observers in the Shareability domain.
RvLBF A DSB instruction creates two groups of memory accesses, Group A and Group B, and does not affect memory

accesses that are in not in Group A or Group B:
Group A Contains:

. All explicit memory accesses of the required access types from observers in the same
Shareability domain as PEe that are observed by PEe before the DSB instruction.

. All loads of required access types from an observer PEx in the same required Shareability domain
as PEe that have been observed by any given different observer, PEy, in the same required
Shareability domain as PEe before PEy has performed a memory access that is a member of
Group A.

Group B Contains:

. All explicit memory accesses of the required access types by PEe that occur in program order
after the DSB instruction.

. All explicit memory accesses of the required access types by any given observer PEx in the same
required Shareability domain as PEe that can only occur after a load by PEx has returned the
result of a store that is a member of Group B.

Any observer with the same required Shareability domain as PEe observes all members of Group A before it
observes any member of Group B to the extent that those group members are required to be observed, as determined
by the Shareability and Cacheability of the memory addresses accessed by the group members.

If members of Group A and members of Group B access the same memory-mapped peripheral of arbitrary

system-defined size, then members of Group A that are accessing Device or Normal Non-cacheable memory arrive
at that peripheral before members of Group B that are accessing Device or Normal Non-cacheable memory. Where
the members of Group A and Group B that must be ordered are from the same PE, a DSB provides for this guarantee.

RxMGH A DSB completes when all of the following conditions apply:

. All explicit memory accesses that are observed by PEe before the DSB is executed and are of the required
access types, and are from observers in the same required Shareability domain as PEe, are complete for the
set of observers in the required Shareability domain.

. If the required access types of the DSB is reads and writes, then all cache and branch predictor maintenance
instructions that are issued by PEe before the DSB are complete for the required Shareability domain.

. All explicit accesses to the System Control Space that result in a context altering operation issued by PEe
before the DSB are complete.

RxMBX No instruction that appears in program order after the DSB instruction can execute until the DSB completes.

See also:
. DataSynchronizationBarrier().

. Shareability domains on page B5-139.

B5.13.4 Synchronization requirements for System Control Space

Rsjqs A DSB guarantees that all writes to the System Control Space have been completed.
RnpD) A DSB does not guarantee that the side-effects of writes to the System Control Space are visible.
ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B5-131

1D092816 Non-Confidential

B5 Memory Model
B5.13 Memory barriers

Rymnm An ISB that follows a DSB guarantees that the side-effects of any completed writes to the System Control Space will
be visible,

See also:

. The System Control Space (SCS) on page B7-172.

B5-132 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

B5 Memory Model
B5.14 Normal memory

B5.14 Normal memory

INVRF

RryTG

Reaix

Recpy
RpkxL
Rwrvr

Rwrcv

Rmywr

RNHFQ

Rcruv

Memory locations that are idempotent have the following properties:

. Read accesses can be repeated with no side-effects.

. Repeated read accesses return the last value that is written to the resource being read.

. Read accesses can fetch additional memory locations with no side-effects.

. Write accesses can be repeated with no side-effects, if the contents of the location that is accessed are
unchanged between the repeated writes or as the result of an exception.

. Unaligned accesses can be supported.

. Accesses can be merged before accessing the target memory system.

Normal memory is a memory type that is assigned to regions of memory that are idempotent.

Normal memory can be marked as Cacheable or Non-cacheable. Normal memory must be assigned Cacheability
attributes.

Normal Non-cacheable memory is always treated as shareable.
Speculative data accesses to Normal memory are permitted.
A write to Normal memory completes in finite time.

A write to a Non-cacheable Normal memory location must reach the endpoint for that location in the memory
system in finite time.

A completed write to Normal memory is globally observed for the Shareability domain in finite time without the
requirement for cache maintenance instructions or memory barriers.

For multi-register Load/Store instructions that access Normal memory, the architecture does not define the order in
which the registers are accessed.

There is no requirement for the memory system beyond the PE to be able to identify the size of the elements
accessed.

See also:

. Memory accesses on page B5-117.

. Shareability domains on page B5-139.

. Cacheability attributes on page B5-134.

. Load-Exclusive and Store-Exclusive accesses to Normal memory on page B5-144.
. MAIR _ATTR, Memory Attribute Indirection Register Attributes on page D1-1024.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B5-133
Non-Confidential

B5 Memory Model
B5.15 Cacheability attributes

B5.15 Cacheability attributes

Rixv The architecture provides Cacheability attributes that are defined independently for each of two conceptual levels
of cache:

. The Inner cache.

. The Outer cache.

Rxrws The Cacheability attributes are:
. Non-cacheable.
. Write-Through Cacheable.
. Write-Back Cacheable.

Rxoxw It is IMPLEMENTATION DEFINED whether Write-Through Cacheable and Write-Back Cacheable can have the
additional attribute Transient or Non-transient.

I pxp The Transient attribute is a memory hint that indicates that the benefit of caching is for a short period. The
architecture does not define what is meant by a short period.

RcrkN Cacheability attributes other than Non-cacheable can be complemented by the following cache allocation hints,
which are independent for read and write accesses:

. Read-Allocate, Transient Read-Allocate, or No Read-Allocate.
. Write-Allocate, Transient Write-Allocate, or No Write-Allocate.

RprTR The architecture does not require an implementation to make any use of cache allocation hints.

Rrqss Any cacheable Normal memory region is treated as Read-Allocate, No Write-Allocate unless it is explicitly
assigned other cache allocation hints.

IFRVE A Cacheable location with no Read-Allocate and no Write-Allocate hints is not the same as a Non-cacheable
location. A Non-cacheable location has coherency guarantees for all observers within the system that do not apply
to a location that is Cacheable, no Read-Allocate, no Write-Allocate.

Rerkw All data accesses to Non-cacheable Normal memory locations are data coherent to all observers,

See also:

. Normal memory on page B5-133.

B5-134 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

B5.16

IgxHus
RwrzL
RLpDN

Rpoxs

RnLHC
Reska
Rymrk
RrLFTG
Rrscp

Rgr10

RxmcH

RkiHG

Rpryx

Rgvur

Rsrpx

B5 Memory Model
Bb5.16 Device memory

Device memory

Device memory is a memory type that is assigned to regions of memory where accesses can have side-effects.
Device memory is not cacheable.
Device memory is always treated as shareable.

Speculative data accesses cannot be made to Device memory. However, for instructions that access a sequence of
word-aligned words, the accesses might occur multiple times.

Speculative instruction fetches can be made to Device memory, unless the location is marked as Execute-never.
Any unaligned access to Device memory generates an UNALIGNED UsageFault exception.

Device memory is assigned a combination of Device memory attributes.

A write to Device memory completes in finite time.

A write to a Device memory location reaches the endpoint for that location in the memory system in finite time.

A completed write to a Device memory location is globally observed for the Shareability domain in finite time
without the requirement for cache maintenance instructions or barriers.

If the content of a Device memory location changes without a direct write to the location, the change must be
observed for the Shareability domain in finite time.

For an instruction fetch from Device memory, if a branch causes the program counter to point to an area of memory
that is not marked as Execute-never, the implementation can either:

. Treat the fetch as if it is to a location in Normal Non-cacheable memory.
. Take an IACCVIOLL MemManage fault.

There is no requirement for the memory system beyond the PE to be able to identify the size of the elements that
are accessed, for instructions that load the following from Device memory:

. More than one general-purpose register.
. One or more registers from the floating-point register file.

For an LDM, STM, LDRD, or STRD instruction with a register list that includes the PC, the architecture does not define
the order in which the registers are accessed.

For a LDM, STM, VLDM, or VSTM instruction with a register list that does not include the PC, all registers are accessed in
the order that they appear in the register list, for Device memory with the non-Reordering attribute.

See also:

. Memory accesses on page B5-117.

. Shareability attributes on page B5-140.

. Device memory attributes on page B5-136.
. Shareability domains on page B5-139.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B5-135
Non-Confidential

B5 Memory Model

B5.17 Device memory attributes

B5.17 Device memory attributes
Rynsy Each Device memory region is assigned a combination of Device memory attributes. The attributes are:
Gathering, G and nG
The Gathering and non-Gathering attributes.
Reordering, R and nR
The Reordering and non-Reordering attributes.
Early Write Acknowledgement, E and nE
The Early Write Acknowledgement and no Early Write Acknowledgement attributes.
Rcrre Each Device memory region is assigned one of the combinations in the following table:
Name nG nR nE G R E
Device-nGnRnE Y Y Y - - -
Device-nGnRE Y Y - - - Y
Device-nGRE Y - - - Y
Device-GRE - - - Y Y
IsiBD Device-nGnRnE is the most constrained, so it is the strongest. Device-GRE is the least constrained, so it is the
weakest. Going down the table, the combinations are described as getting weaker.
Rpjkp Weaker memory can be accessed according to the rules specified for stronger memory:
. Memory with the:
— G attribute can be accessed according to the rules specified for the nG attribute.
— G attribute cannot be accessed according to the rules specified for the G attribute.
. Memory with the:
— R attribute can be accessed according to the rules specified for the nR attribute.
— nR attribute cannot be accessed according to the rules specified for the R attribute.
Because the nE attribute is a hint:
. An implementation is permitted to perform an access with the E attribute in a manner consistent with the
requirements specified by the nE attribute.
. An implementation is permitted to perform an access with the nE attribute in a manner consistent with the
relaxations allowed by the E attribute.
Rejxx For Device-GRE and Device-nGRE memory, the use of barriers is required to order accesses.
See also:
. Gathering and non-Gathering Device memory attributes.
. Reordering and non-Reordering Device memory attributes on page B5-137.
. Early Write Acknowledgement and no Early Write Acknowledgement Device memory attributes on
page B5-138.
. Device memory on page B5-135.
B5.17.1 Gathering and non-Gathering Device memory attributes
B5-136 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

Rppsx

Riemx
RysrD

Rmexy

Isrps

Rgvrr

RprwpD

B5 Memory Model
Bb5.17 Device memory attributes

G attribute

If multiple accesses of the same type, read or write, are to:
. The same location, with the G attribute, they can be merged into a single transaction.
. Different locations, all with the G attribute, they can be merged into a single transaction.

Gathering of accesses that are separated by a memory barrier is not permitted.
Gathering of accesses that are generated by a Load-Acquire/Store-Release is not permitted.

A read can come from intermediate buffering of a previous write if:
. The accesses are not separated by a DMB or DSB barrier.

. The accesses are not separated by any other ordering construction that requires that the accesses are in order,
for example a combination of Load-Acquire and Store-Release.

. The accesses are not generated by a Store-Release instruction.

The architecture only defines programmer visible behavior. Therefore, if a programmer cannot tell whether
gathering has occurred, gathering can be performed.

nG attribute
Multiple accesses to a memory location with the nG attribute cannot be merged into a single transaction.

A read of a memory location with the nG attribute cannot come from a cache or a buffer, but must come from the
endpoint for that address in the memory system.

See also:

. Load-Acquire and Store-Release accesses to memory on page B5-145.

B5.17.2 Reordering and non-Reordering Device memory attributes

RrprB

RprxL

IspwB

RnpHC

R attribute

This attribute imposes no restrictions or relaxations.

nR attribute

If the access is to a:

. Peripheral, it must arrive at the peripheral in program order. If there is a mixture of accesses to Device nGnRE
and Device-nGnRnE in the same peripheral, these accesses must occur in program order.

. Non-peripheral, this attribute imposes no restrictions or relaxations.

The IMPLEMENTATION DEFINED size of the single peripheral is the same as applies for the ordering guarantee that is
provided by the DMB instruction.

The non-Reordering attribute does not require any additional ordering, other than the ordering that applies to
Normal memory, between:

. Accesses with the non-Reordering attribute and accesses with the Reordering attribute.
. Accesses with the non-Reordering attribute and accesses to Normal memory.
. Accesses with the non-Reordering attribute and accesses to different peripherals of IMPLEMENTATION

DEFINED size.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B5-137
Non-Confidential

B5 Memory Model
B5.17 Device memory attributes

B5.17.3 Early Write Acknowledgement and no Early Write Acknowledgement Device memory
attributes

E attribute

Rpysu This attribute imposes no restrictions or relaxations.

nE attribute

Rrwrr Assigning the nE attribute recommends that only the endpoint of the write access returns a write acknowledgement
of the access, and that no earlier point in the memory system returns a write acknowledgement.

IrQwo The E attribute is treated as a hint. ARM strongly recommends that this hint is not ignored by a PE, but is made
available for use by the system.

B5-138 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

B5 Memory Model
Bb5.18 Shareability domains

B5.18 Shareability domains

RyMHL There are two conceptual Shareability domains:
. The Inner Shareability domain.

. The Outer Shareability domain.

Ixowm The following diagram shows the Shareability domains:

1r
iinner Shareable

1
1
1 1
1 1
: : 1 1 :
1 1 1
o 11 [Observer2] ! l
1 1
L ¥ | |
1 U _____ VL ______ 1 h
R i
1 1
H :Outer Shareable 1: i
____________ 1
i} iinner Shareable ! ! !
o ! 1
. | : ;
: : : |Observer 6| : |Observer 8| : |Observer 9 1
b 1 H
1 ! _Observer 7 ! !
I i | ! !
Y U 1 1
—————————————————————————————————————— 4
Rmcps All observers in an Inner Shareability domain are data coherent for data accesses to memory that has the
Inner-shareable Shareability attribute.
Rsver All observers in an Outer Shareability domain are data coherent for data accesses to memory that has the
Outer-shareable Shareability attribute.
Rymrs Each observer is a member of only a single Inner Shareability domain.
ReNwWH Each observer is a member of only a single Outer Shareability domain.
RrvBG All members of the same Inner Shareability domain are always members of the same Outer Shareability domain.
Rwrmv Accesses to a shareable memory location are coherent within the Shareability domain of that location.
Ipnyr An Inner Shareability domain is a subset of an Outer Shareability domain, although it is not required to be a proper
subset.
Rxui Hardware is required to ensure coherency and ordering within the Shareability domain if all of the following apply:
. Before writing to a location not using the Write-Back attribute, a location in the caches that might have been
written with the Write-Back attribute by an agent has been invalidated or cleaned.
. After writing the location with the Write-Back attribute, the location has been cleaned from the caches to
make the write visible to external memory.
. Before reading the location with a cacheable attribute, the location has been invalidated from the caches, to

ensure that any value that is held in the caches reflects the last value made visible in external memory.

. A DMB barrier instruction has been executed, with a scope that applies to the common Shareability of the
accesses, between any accesses to the same memory location that use different attributes.

See also:
. Observability of memory accesses on page B5-125.
. Shareability attributes on page B5-140.

ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B5-139
1D092816 Non-Confidential

B5 Memory Model

Bb5.19 Shareability attributes

B5.19 Shareability attributes

Rejrr Each Normal cacheable memory region is assigned one of the following Shareability attributes:

. Non-shareable.
. Inner-shareable.
. Outer-shareable.

Rppyy For Non-shareable memory, hardware is not required to make data accesses by different observers coherent. If a
number of observers share the memory, cache maintenance instructions, in addition to the barrier operations that are
required to ensure memory ordering, can ensure that the presence of caches does not lead to coherency issues.

Rxtvp Non-cacheable Normal memory locations are always treated as Outer Shareable.

See also:
. Memory accesses on page B5-117.
. Normal memory on page B5-133.
. Device memory on page B5-135.
. Shareability domains on page B5-139.
. Cache maintenance operations on page B5-155.
B5-140 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

B5 Memory Model
B5.20 Memory access restrictions

B5.20 Memory access restrictions

RgsxT

IwRBT

RprKs

For accesses to any two bytes that are accessed by the same instruction, the two bytes must have the same memory
type and Shareability attributes, otherwise the behavior is a CONSTRAINED UNPREDICTABLE choice of the following:

All memory accesses that were generated by the instruction use the memory type and Shareability attributes
that are associated with the first address that is accessed by the instruction.

All memory accesses that were generated by the instruction use the memory type and Shareability attributes
that are associated with the last address that is accessed by the instruction.

Each memory access that is generated by the instruction uses the memory type and Shareability attribute that
is associated with its own address.

The instruction executes as a NOP.

The instruction generates an alignment fault caused by the memory type.

Except for possible differences in cache allocation hints, ARM deprecates having different Cacheability attributes
for accesses to any two bytes that are generated by the same instruction.

If the accesses of an instruction that cause multiple accesses to any type of Device memory cross the boundary of a
memory region then the behavior is a CONSTRAINED UNPREDICTABLE choice of the following:

All memory accesses that are generated by the instruction are performed as if the presence of the boundary
had no effect on memory accesses.

All memory accesses that are generated by the instruction are performed as if the presence of the boundary
had no effect on memory accesses, except that there is no guarantee of ordering between memory accesses,

The instruction executes as a NOP.

The instruction generates an alignment fault caused by the memory type.

See also:

Memory accesses on page B5-117.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B5-141
Non-Confidential

B5 Memory Model

B5.21 Mismatched memory attributes

B5.21 Mismatched memory attributes

Rxurtk Memory locations are accessed with mismatched attributes if all accesses to the location do not use a common
definition of all the following memory attributes of that location:

. Memory type - Device or Normal.

. Shareability.

. Cacheability, for the same level of the Inner or Outer cache, but excluding any cache allocation hints.

RykHy When a memory location is accessed with mismatched attributes, the only permitted effects are one or more of the
following:

. Uniprocessor semantics for reads and writes to that memory location might be lost. This means:

— Aread of the memory location by one agent might not return the value that was most recently written
to that memory location by the same agent.

— Multiple writes to the memory location by one agent with different memory attributes might not be
ordered in program order.

. There might be a loss of coherency when multiple agents attempt to access a memory location.

. There might be a loss of the properties that are derived from the memory type.

. If all Load-Exclusive/Store-Exclusive instructions that are executed across all threads to access a given
memory location do not use consistent memory attributes, the exclusive monitor state becomes UNKNOWN.

. Bytes that are written without the Write-Back cacheable attribute and that are within the same Write-Back
granule as bytes that are written with the Write-Back cacheable attribute might have their values reverted to
the old values as a result of cache Write-Back.

Ry The loss of the properties that are associated with mismatched memory type attributes refers only to the following
properties of Device memory that are additional to the properties of Normal memory:

. Prohibition of speculative read accesses.

. Prohibition on Gathering.

. Prohibition on Re-ordering.

Rockk If the only memory type mismatch that is associated with a memory location across all users of the memory location
is between different types of Device memory, then all accesses might take the properties of the weakest Device
memory type.

Rucep Any agent that reads a memory location with mismatched attributes using the same common definition of the
Shareability and Cacheability attributes is guaranteed to access it coherently, to the extent required by that common
definition of the memory attributes, only if all the following conditions are met:

. All aliases to the memory location with write permission both use a common definition of the Shareability
and Cacheability attributes for the memory location, and have the Inner Cacheability attribute the same as the
Outer Cacheability attribute.

. All aliases to a memory location use a definition of the Shareability attributes that encompasses all the agents
with permission to access the location.

RGBKH The possible permitted effects that are caused by mismatched attributes for a memory location are defined more
precisely if all the mismatched attributes define the memory location as one of:

. Any Device memory type.

. Normal Inner Non-cacheable, Outer Non-cacheable memory.

In these cases, the only permitted software-visible effects of the mismatched attributes are one or more of the

following:

. Possible loss of properties that are derived from the memory type when multiple agents attempt to access the
memory location.

. Possible reordering of memory transactions to the same memory location with different memory attributes,
potentially leading to a loss of coherency or uniprocessor semantics. Any possible loss of coherency or
uniprocessor semantics can be avoided by inserting DMB barrier instructions between accesses to the same
memory location that might use different attributes.

B5-142 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

Ryvas

Rycxw

Itpwe

B5 Memory Model
B5.21 Mismatched memory attributes

If the mismatched attributes for a location mean that multiple cacheable accesses to the location might be made with
different Shareability attributes, then ordering and coherency are guaranteed only if:

Each PE that accesses the location with a cacheable attribute performs a clean and invalidate of the location
before and after accessing that location.

A DMB barrier with scope that covers the full Shareability of the accesses is placed between any accesses to
the same memory location that use different attributes.

If multiple agents attempt to use Load-Exclusive or Store-Exclusive instructions to access a location, and the
accesses from the different agents have different memory attributes associated with the location, the exclusive
monitor state becomes UNKNOWN.

ARM strongly recommends that software does not use mismatched attributes for aliases of the same location. An
implementation might not optimize the performance of a system that uses mismatched aliases.

See also:

Chapter B8 The ARMvS-M Protected Memory System Architecture.
Shareability domains on page B5-139.

Cacheability attributes on page B5-134.

Device memory on page B5-135.

Normal memory on page B5-133.

Load-Exclusive and Store-Exclusive accesses to Normal memory on page B5-144.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B5-143
Non-Confidential

B5 Memory Model
B5.22 Load-Exclusive and Store-Exclusive accesses to Normal memory

B5.22 Load-Exclusive and Store-Exclusive accesses to Normal memory

Rxpwc For Normal memory that is:

. Non-shareable, it is IMPLEMENTATION DEFINED whether Load-Exclusive and Store-Exclusive instructions
take account of the possibility of accesses by more than one observer.

. Shareable, Load-Exclusive, and Store-Exclusive instructions take account of the possibility of accesses by
more than one observer.

See also:
. Normal memory on page B5-133.
. Memory accesses on page B5-117.

B5-144 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

B5 Memory Model
B5.23 Load-Acquire and Store-Release accesses to memory

B5.23 Load-Acquire and Store-Release accesses to memory

Ivvrx

The following table summarizes the Load-Acquire/Store-Release instructions.

Data type

Load-Acquire Store-Release Load-Acquire Exclusive Store-Release Exclusive

32-bit word

LDA STL LDAEX STLEX

16-bit halfword LDAH STLH LDAEXH STLEXH

8-bit byte

LDAB STLB LDAEXB STLEXB

RxBrM

RRrrFK

Rwrwt

Ruckce

Rpexr

Rckre

Raink

RwrLc
Rkern

Rpxrp

A Store-Release followed by a Load-Acquire is observed in program order by each observer within the Shareability
domain of the memory address being accessed by the Store-Release and the memory address being accessed by the
Load-Acquire.

For a Load-Acquire, observers in the Shareability domain of the address that is accessed by the Load-Acquire
observe accesses in the following order:
1. The read caused by the Load-Acquire.

2. Reads and writes caused by loads and stores that appear in program order after the Load-Acquire for which
the Shareability of the address that is accessed by the load or store requires that the observer observes the
access.

There are no other ordering requirements on loads or stores that appear before the Load-Acquire.
For a Store-Release, observers in the Shareability domain of the address that is accessed by the Store-Release
observe accesses in the following order:

1. All of the following for which the Shareability of the address that is accessed requires that the observer
observes the access:

. Reads and writes caused by loads and stores that appear in program order before the Store-Release.
. Writes that were observed by the PE executing the Store-Release before it executed the Store-Release.
2. The write caused by the Store-Release.

There are no other ordering requirements on loads or stores that appear in program order after the Store-Release.
All Store-Release instructions must be multi-copy atomic when they are observed with Load-Acquire instructions.

A Load-Acquire to an address in a memory-mapped peripheral of an arbitrary system-defined size that is defined
as any type of Device memory access ensures that all memory accesses using Device memory types to the same
memory-mapped peripheral that are architecturally required to be observed after the Load-Acquire will arrive at the
memory-mapped peripheral after the memory access of the Load-Acquire.

A Store-Release to an address in a memory-mapped peripheral of an arbitrary system-defined size that is defined as
any type of Device memory access ensures that all memory accesses using Device memory types to the same
memory-mapped peripheral that are architecturally required to be observed before the Store-Release will arrive at
the memory-mapped peripheral before the memory access of the Store-Release.

If a Load-Acquire to a memory address in a memory-mapped peripheral of an arbitrary system-defined size that is
defined as any type of Device memory access has observed the value that is stored to that address by a
Store-Release, then any memory access to the memory-mapped peripheral that is architecturally required to be
ordered before the memory access of the Store-Release will arrive at the memory-mapped peripheral before any
memory access to the same peripheral that is architecturally required to be ordered after the memory access of the
Load-Acquire.

Load-Acquire and Store-Release access only a single data element.
Load-Acquire and Store-Release accesses are single-copy atomic.

If a Load-Acquire or Store-Release instruction accesses an address that is not aligned to the size of the data element
being accessed, the access generates an alignment fault.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B5-145
Non-Confidential

B5 Memory Model
B5.23 Load-Acquire and Store-Release accesses to memory

RNvRI A Store-Release Exclusive instruction only has the release semantics if the store is successful.

See also:
. Shareability domains on page B5-139.
. Device memory on page B5-135.

B5-146 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

B5 Memory Model
B5.24 Caches

B5.24 Caches

Iysp

RqaGso

IsTrRv

Rpcsr
RiGBL
Rspai

RxxBw

RjviN

Rpawm

RyjoB

RqrLs

RxxvH

RsckoQ
Rroxn

Rwpgp

When a memory location is marked with a Normal Cacheable memory attribute, determining whether a copy of the
memory location is held in a cache can depend on many aspects of the implementation, such as the following
factors:

. The size, line length, and associativity of the cache.

. The cache allocation algorithm.

. Activity by other elements of the system that can access the memory.
. Speculative instruction fetching algorithms.

. Speculative data fetching algorithms.

. Interrupt behaviors.

An implementation can include multiple levels of cache, up to a maximum of seven levels, in a hierarchical memory
system.

The lower the cache level, the closer the cache is to the PE.

Entries for addresses with a Normal cacheable attribute can be allocated to an enabled cache at any time.
The allocation of a memory address to a cache location is IMPLEMENTATION DEFINED.

A cache entry covers at least 16 bytes and no more than 2KB of contiguous address space, aligned to its size.

Where a breakdown in coherency can occur, data coherency of the caches is controlled in an IMPLEMENTATION
DEFINED manner.

The architecture cannot guarantee whether:
. A memory location that is present in the cache remains in the cache.
. A memory location that is not present in the cache is brought into the cache.

If the cache is disabled, no new allocation of memory locations into the cache occurs.

The allocation of a memory location into a cache cannot cause the most recent value of that memory location to
become invisible to an observer, if it had previously been visible to that observer.

If the cache is enabled, it is guaranteed that no memory location that does not have a cacheable attribute is allocated
into the cache.

If the cache is enabled, it is guaranteed that no memory location is allocated to the cache if the access permissions
for that location are so that the location cannot be accessed by reads and cannot be accessed by writes.

Any cached memory location is not guaranteed to remain incoherent with the rest of memory.
It is IMPLEMENTATION DEFINED whether an access can generate a cache hit when the cache is disabled.

It is UNPREDICTABLE whether the location is returned from cache or from memory when:

. The location is not marked as cacheable but is contained in the cache. This situation can occur if a location
is marked as Non-cacheable after it has been allocated into the cache.

. The location is marked as cacheable and might be contained in the cache, but the cache is disabled.

See also:

. Cache identification on page B5-148.

. Cache enabling and disabling on page B5-151.

. Cacheability attributes on page B5-134.

. Cache behavior at reset on page B5-152.

. Ordering of cache maintenance operations on page B5-157.
. Mismatched memory attributes on page B5-142.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B5-147
Non-Confidential

B5 Memory Model
B5.25 Cache identification

B5.25 Cache identification

RwgGH A PE controls the implemented caches using:
. A single Cache Type Register, CTR.
. A single Cache Level ID Register, CLIDR.
. A single Cache Size Selection Register, CSSELR.

. For each implemented cache, across all levels of caching, a Cache Size Identification Register, CCSIDR.
RxyTL The number of levels of cache is IMPLEMENTATION DEFINED and can be determined from the Cache Level ID
Register.
IppsB Cache sets and Cache ways are numbered from 0. Usually the set number is an IMPLEMENTATION DEFINED function

of an address.

B5-148 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

B5 Memory Model
B5.26 Cache visibility

B5.26 Cache visibility

Rorvs

RrcHe

A completed write to a memory location that is Non-cacheable or Write-Through Cacheable for a level of cache
made by an observer accessing the memory system inside the level of cache is visible to all observers accessing the
memory system outside the level of cache without the need of explicit cache maintenance.

A completed write to a memory location that is Non-cacheable for a level of cache made by an observer accessing
the memory system outside the level of cache is visible to all observers accessing the memory system inside the
level of cache without the need of explicit cache maintenance.

See also:
. Cacheability attributes on page B5-134.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B5-149
Non-Confidential

B5 Memory Model
B5.27 Cache coherency

B5.27 Cache coherency

RNND Data coherency of caches is ensured:
. When caches are not used.
. As a result of cache maintenance operations.
. By the use of hardware coherency mechanisms to ensure coherency of data accesses to memory for cacheable

locations by observers in different Shareability domains.

Rcepaw Hardware is not required to ensure coherency between instruction caches and memory, even for regions of memory
with the Shareability attribute.

Ioxxc An ISB and a DSB can ensure coherency where this is required.

See also:

. Cache maintenance operations on page B5-155.
. Memory barriers on page B5-130.

. Shareability attributes on page B5-140.

B5-150 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

B5 Memory Model
Bb5.28 Cache enabling and disabling

B5.28 Cache enabling and disabling

IppLL The Configuration and Control Register, CCR, enables and disables caches across all levels of cache that are visible
to the PE.
RuTtLD It is IMPLEMENTATION DEFINED whether the CCR.DC and CCR.IC bits affect the memory attributes that are

generated by an enabled MPU.

ITnHX An implementation can use control bits in the Auxiliary Control Register, ACTLR, for finer-grained control of
cache enabling.

Rpsto If the MPU is disabled, MPU_CTRL.ENABLE == 0, the CCR.DC and CCR.IC bits determine the cache state for
cacheable regions of the default address map.

See also:

. Cache identification on page B5-148.

. Caches on page B5-147.

. Cache behavior at reset on page B5-152.

ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B5-151
1D092816 Non-Confidential

B5 Memory Model
B5.29 Cache behavior at reset

B5.29 Cache behavior at reset

Rkcrk All caches are disabled at reset.
RymBT An implementation can require the use of a specific cache initialization routine to invalidate its storage array before
it is enabled:
. The exact form of any required cache initialization routine is IMPLEMENTATION DEFINED.
. If a required initialization routine is not performed, the state of an enabled cache is UNPREDICTABLE.
RrvkQ If an implementation permits cache hits when the cache is disabled, the cache initialization routine provides a

mechanism to ensure the correct initialization of the caches.

Rejgy If an implementation permits cache hits when the cache is disabled and the cache contents are not invalidated at
reset, the initialization routine avoids any possibility of running from an uninitialized cache.

I1500 An initialization routine can require a fixed instruction sequence to be placed in a restricted range of memory.

lictp ARM recommends that whenever an invalidation routine is required, it is based on the ARMv8-M cache
maintenance operations.

See also:
. Caches on page B5-147.
. Cache enabling and disabling on page B5-151.

. Cache maintenance operations on page B5-155.

B5-152 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

B5 Memory Model
B5.30 Behavior of Preload Data (PLD) and Preload Instruction (PLI) instructions with caches

B5.30 Behavior of Preload Data (PLD) and Preload Instruction (PLI) instructions with

caches

IcQLr

Irppk

Ronas

RseNk

RunLN

RMRFG

The instructions are memory system hints and their effect is IMPLEMENTATION DEFINED.

The instructions do not generate exceptions but the memory system operations might generate an imprecise fault
(asynchronous exception) because of the memory access.

A PLD instruction does not cause any effect to the caches or memory other than the effects that, for permission or
other reasons, can be caused by the equivalent load from the same location with the same context and at the same
privilege level and Security state.

A PLD instruction does not access Device-nGnRnE or Device-nGnRE memory.

A PLI instruction does not cause any effect to the caches or memory other than the effects that, for permission or
other reasons, can be caused by the fetch resulting from changing the PC to the location specified by the PLI
instruction with the same context and at the same privilege level and Security state.

A PLI instruction cannot access memory that has the Device-nGnRnE or Device-nGnRE attribute.

See also:

. PLD (immediate).

. PLD (literal).

. PLD (register).

. PLI (immediate, literal).
. PLI (register).

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B5-153
Non-Confidential

B5 Memory Model
B5.31 Branch predictors

B5.31 Branch predictors

IGTeB Branch predictor hardware typically uses a form of cache to hold branch information.
RMmTBD Branch predictors are not architecturally visible.
Ievev The BPIALL operation is provided for timing and determinism
See also:
. Branch predictor maintenance operations on page B5-158.
B5-154 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

B5.32

IMRMG

Ry

Ryrep

Rsirs

Rpgxk

RrksD

Ryrxx

Rspvp

Rvksn

Rgrxs

Rkvsm

RyTwr

Rxrux
RokMmF
RrsvL

RnsHH

Rpwmr

Rucrc

B5 Memory Model
B5.32 Cache maintenance operations

Cache maintenance operations

Cache maintenance operations act on particular memory locations.

Following a Clean operation, updates made by an observer that controls the cache are made visible to other
observers that can access memory at the point to which the operation is performed.

The cleaning of a cache entry from a cache can overwrite memory that has been written by another observer only if
the entry contains a location that has been written to by an observer in the Shareability domain of that memory
location.

Following an invalidate operation, updates made visible by observers that access memory at the point to which the
invalidate is defined are made visible to an observer that controls the cache.

An invalidate operation might result in the loss of updates to the locations affected by the operation that have been
written by observers that access the cache.

If the address of an entry on which the invalidate operates does not have a Normal cacheable attribute, or if the cache
is disabled, then an invalidate operation ensures that this address is not present in the cache.

If the address of an entry on which the invalidate operates has the Normal cacheable attribute, the cache invalidate
operation cannot ensure that the address is not present in an enabled cache.

A clean and invalidate operation behaves as the execution of a clean operation followed immediately by an
invalidate operation. Both operations are performed to the same location.

The clean operation cleans from the level of cache that is specified through at least the next level of cache away
from the PE.

The invalidate operation invalidates only at the level specified.

For set/way operations and for All (entire cache) operations, the cache maintenance operation is to the next level of
caching.

For address operations, the cache maintenance operation is to the point of coherency (PoC) or to the point of
unification (PoU) depending on the settings in CLIDR.LoC and CLIDR.LOUU.

Data cache maintenance operations affect data caches and unified caches.
Instruction cache maintenance operations only affect instruction caches.
Cache maintenance operations are memory mapped, 32-bit write-only operations.

Cache maintenance operations can have one of the following side-effects:
. Any location in the cache might be cleaned.
. Any unlocked location in the cache might be cleaned and invalidated.

The ICIMVAU, DCIMVAC, DCCMVAU, DCCMVAC, and DCCIMVAC operations require the physical address in the memory map but
it does not have to be cache-line aligned.

For DCISW, DCCSW, and DCCISW, the STR operation identifies the cache line to which it applies by specifying the
following:

. The cache set the line belongs to.
. The way number of the line in the set.
. The cache level.

The format of the register data for a set/way operation is:

31-A B—1 L—1
31 32-A| B | L | 43210
Way SBzZ Set SBzZ Level |0
ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B5-155

1D092816

Non-Confidential

B5 Memory Model

B5.32 Cache maintenance operations

Where:

A = Log2(ASSOCIATIVITY), rounded up to the next integer if necessary.

B =(L+S).

L = Log2(LINELEN).

S =Log2(NSETS), rounded up to the next integer if necessary. ASSOCIATIVITY, LINELEN (line length,
in bytes), and NSETS (number of sets) have their usual meanings and are the values for the cache level
being operated on.

The values of A and S are rounded up to the next integer.

Level ((Cache level to operate on)—1). For example, this field is O for operations on an L1 cache, or 1 for
operations on an L2 cache.

Set The number of the set to operate on.

Way The number of the way to operate on.

. If L == 4 then there is no SBZ field between the set and level fields in the register.

. If A == 0 there is no way field in the register, and register bits[31:B] are SBZ.

. If the level, set, or way field in the register is larger than the size implemented in the cache, then the effect of
the operation is UNPREDICTABLE.

RRrsx After the completion of an instruction cache maintenance operation, a Context synchronization event guarantees
that the effects of the cache maintenance operation are visible to all instruction fetches that follow the Context
synchronization event.

IpHIQ ARM recommends that, wherever possible, all caches that require maintenance to ensure coherency are included in
the caches affected by the architecturally-defined cache maintenance operations.

RirGs When the Security Extension is implemented, it is IMPLEMENTATION DEFINED whether the DCIMVAC and DCISW
operations, when performed from Non-secure state either:

. Clean any data that might be Secure data before invalidating it.
. Do not invalidate Secure data.

RvkDE When the Security Extension is implemented, ICTALLU, ICIMVAU, DCCMVAU, DCCMVAC, DCCSW, DCCIMVAC, DCCISW, and
BPIALL operations on Secure data might be ignored if the operation was performed from Non-secure state.

ImLLC The following is the sequence of cache cleaning operations for a line of self-modifying code.

; Enter this code with <Rx> containing the new 32-bit instruction and <Ry>;
containing the address of the instruction.

; Use STRH in the first 1ine instead of STR for a 16-bit instruction.

STR <Rx>, [<Ry>] ; Write instruction to memory

DSB ; Ensure write is visible

MOV <Rt>, OXEQQQEQQQ ; Create pointer to base of System Control Space

STR <Ry>, [<Rt>,#0xF64] ; Clean data cache by address to point of unification
DSB ; Ensure visibility of the data cleaned from the cache

STR <Ry>, [<Rt>,#0xF58] ; Invalidate instruction cache by address to PoU
STR <Ry>, [<Rt>,#0xF78] ; Invalidate branch predictor

DSB ; Ensure completion of the invalidations

ISB ; Synchronize fetched instruction stream

Ryxmm In a PE with the Security Extension, if the Security attribution of memory is changed, it is IMPLEMENTATION

DEFINED whether cache maintenance operations are required to keep the system state valid.

See also:

. Cache Maintenance Operations on page D1-8009.

. Cache Maintenance Operations (NS alias) on page D1-814.

. Observability of memory accesses on page B5-125.

. Cacheability attributes on page B5-134.

. Out of range values of the Set/Way/Index fields in cache maintenance instructions on page G1-1337.

B5-156 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

B5 Memory Model
Bb5.33 Ordering of cache maintenance operations

B5.33 Ordering of cache maintenance operations

RGens

Rgxne

RrriG

Rmypp

lvxxz

Rswag

700z

All cache and branch predictor maintenance operations that do not specify an address execute, relative to each other,
in program order.

All cache maintenance operations that specify an address:

. Execute in program order relative to all cache operations that do not specify an address.
. Execute in program order relative to all cache maintenance operations that specify the same address.
. Can execute in any order relative to cache maintenance operations that specify a different address.

There is no restriction on the ordering of data or unified cache maintenance operation by address relative to any
explicit load or store.

There is no restriction on the ordering of a data or unified cache maintenance operation by set/way relative to any
explicit load or store.

A DSB instruction can be inserted to enforce ordering as required.

For the ICIALLU operation, the value in the register specified by the STR instruction that performs the operation is
ignored.

In a PE with the Security Extension, if cache maintenance operations are required when the security attribution of
memory is changed, the following sequence of steps can be followed:

1. If the attribution of the address range is changing from Secure to Non-secure, ensure that memory does not
contain any data that must remain secure.

2. Execute a DSB instruction.
3. Clean the affected lines in data or unified caches using the DCC* instruction.
4. Execute a DSB instruction.
5. Change the security attribution of the address range.
6. Execute a DSB instruction.
7. Invalidate the affected lines in all caches using the DCI* and ICI* instructions.
8. Execute a Context synchronization event.
See also:
. Data Synchronization Barrier on page B5-131.
. Security attribution on page B8-176.
. Cache maintenance operations on page B5-155.
. Security attribution on page B§-176.
ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B5-157

1D092816

Non-Confidential

B5 Memory Model
B5.34 Branch predictor maintenance operations

B5.34 Branch predictor maintenance operations
Rpvxx Branch predictor maintenance operations are independent of cache maintenance operations.

RNSRK A Context synchronization event that follows a branch predictor maintenance operation guarantees that the effects
of the branch predictor maintenance operation are visible to all instructions after the context synchronization event.

Ryrxr For the BPIALL operation, the value in the register specified by the STR instruction that performs the operation is
ignored.

Rixnx As a side-effect of a branch predictor maintenance operation, any entry in the branch predictor might be invalidated.
See also:
. Cache Maintenance Operations on page D1-809.

. Cache Maintenance Operations (NS alias) on page D1-814.
. BPIALL, Branch Predictor Invalidate All on page D1-828.
. Memory barriers on page B5-130.

. DSB on page C2-371.

B5-158 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

Chapter B6

Synchronization and Semaphores

This chapter specifies the ARMv8-M architecture rulesfor exclusive access instructions and non-blocking
synchronization of shared memory. It contains the following sections:

Exclusive access instructions on page B6-160.

The local monitors on page B6-161.

The global monitor on page B6-162.

Exclusive access instructions and the monitors on page B6-165

Load-Exclusive and Store-Exclusive instruction constraints on page B6-166.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved.
Non-Confidential

B6-159

B6 Synchronization and Semaphores
B6.1 Exclusive access instructions

B6.1 Exclusive access instructions

Rigpx ARMVS provides non-blocking synchronization of shared memory, using synchronization primitives for accesses
to both Normal and Device memory.

Rrgep The synchronization primitives and associated instructions are as follows:

Function T32 instruction

Load-Exclusive

Byte LDREXB, LDAEXB

Halfword LDREXH, LDAEXH

Word LDREX, LDAEX

Store-Exclusive

Byte STREXB, STLEXB

Halfword STREXH, STLEXH

Word STREX, STLEX

Clear-Exclusive ~ CLREX

RMmwEp A Load-Exclusive instruction performs a load from memory, and:
. The executing PE marks the memory address for exclusive access.
. The local monitor of the executing PE transitions to the Exclusive Access state.
Rjumu The size of the marked memory block is called the Exclusives reservation granule (ERG), and is an

IMPLEMENTATION DEFINED value that is of a power of 2 size, in the range 4 - 512 words.

RMTTN A marked block of the ERG is created by ignoring the least significant bits of the memory address. A marked
address is any address within this marked block.

ReMxk In some implementations the CTR identifies the Exclusives reservation granule. Where this is not the case, the
Exclusives reservation granule is treated as having the maximum of 512 words.

See also:
. The local monitors on page B6-161.
. The global monitor on page B6-162.
. Exclusive access instructions and the monitors on page B6-165.
. Load-Exclusive and Store-Exclusive instruction constraints on page B6-166.
B6-160 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

B6 Synchronization and Semaphores
B6.2 The local monitors

B6.2 The local monitors

Rorrp

Ryywe

R[’H—"[‘

Rgxnm

Any non-aborted attempt by the same PE to use a Store-Exclusive instruction to modify any address is guaranteed
to clear the marking.
When a PE writes using any instruction other than a Store-Exclusive instruction:

. If the write is to a physical address that is not marked as Exclusive Access by its local monitor and that local
monitor is in the Exclusive Access state, it is IMPLEMENTATION DEFINED whether the write affects the state
of the local monitor.

. If the write is to a physical address that is marked as Exclusive Access by its local monitor, it is
IMPLEMENTATION DEFINED whether the write affects the state of the local monitor.

It is IMPLEMENTATION DEFINED whether a store to a marked physical address causes a mark in the local monitor to
be cleared if that store is by an observer other than the one that caused the physical address to be marked.

The state machine for the local monitor is shown here.

Speculation or other cause LoadExc1(x) LoadExc1(x)

v v IJ
Open Exclusive

|—> Access Access
T sl

StoreExc1(x) Store(Marked_address)* Store(Marked_address)*
Store(x) Store(!Marked_address)* Store(!Marked_address)*
CLREX StoreExcl(Marked_address)
StoreExc1(!Marked_address)
CLREX

Operations marked * are possible alternative IMPLEMENTATION DEFINED options.

In the diagram: LoadExc1 represents any Load-Exclusive instruction
StoreExc] represents any Store-Exclusive instruction
Store represents any other store instruction.

Any LoadExc1 operation updates the marked address to the most significant bits of the address x used for the operation.

RwrHs

Rywas

Rxjow

RxmmL

RmRsp

RyrHC

The local monitor only transitions to the Exclusive Access state as the result of the architectural execution of one
of the operations shown in the diagram.

Any transition of the local monitor to the Open Access state that is not caused by the architectural execution of an
operation shown here does not indefinitely delay forward progress of execution.

The local monitor does not hold any physical address, but instead treats any access as matching the address of the
previous Load-Exclusive instruction.

A local monitor implementation can be unaware of Load-Exclusive and Store-Exclusive instructions from other
PEs.

The architecture does not require a load instruction by another PE that is not a Load-Exclusive instruction to have
any affect on the local monitor.

It is IMPLEMENTATION DEFINED whether the transition from Exclusive Access to Open Access state occurs when the
Store or StoreExcl is from another observer.

The architecture permits a local monitor to transition to the Open Access state as a result of speculation, or from
some other cause.

An exception return clears the local monitor.

See also:

. Exclusive access instructions and the monitors on page B6-165.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B6-161
Non-Confidential

B6 Synchronization and Semaphores
B6.3 The global monitor

B6.3

RrkFB

RypLp

INSNe

IxTLH

Ikpwm

Tome

Rugky

RBTRF

REQRrT

RukqQr

RrxvB

The global monitor

For each PE in the system, the global monitor:
. Can hold at least one marked block.
. Maintains a state machine for each marked block it can hold.

For each PE, the architecture only requires global monitor support for a single marked address. Any situation that
might benefit from the use of multiple marked addresses on a single PE is CONSTRAINED UNPREDICTABLE.

The global monitor can either reside in a block that is part of the hardware on which the PE executes or exist as a
secondary monitor at the memory interfaces.

The IMPLEMENTATION DEFINED aspects of the monitors mean that the global monitor and the local monitor can be
combined into a single unit, provided that the unit performs the global monitor and the local monitor functions
defined in this manual.

For shareable memory locations, in some implementations and for some memory types, the properties of the global
monitor require functionality outside the PE. Some system implementations might not implement this functionality
for all locations of memory. In particular, this can apply to:

. Any type of memory in the system implementation that does not support hardware cache coherency.

. Non-cacheable memory, or memory treated as Non-cacheable, in an implementation that does support
hardware cache coherency.

In such a system, it is defined by the system:

. Whether the global monitor is implemented.

. If the global monitor is implemented, which address ranges or memory types it monitors.

The only memory types for which it is architecturally guaranteed that a global exclusive monitor is implemented
are:

. Inner Shareable, Inner Write-Back, Outer Write-Back Normal memory with Read allocation hint and Write
allocation hint and not transient.

. Outer Shareable, Inner Write-Back, Outer Write-Back Normal memory with Read allocation hint and Write
allocation hints and not transient.

The set of memory types that support atomic instructions includes all of the memory types for which a global
monitor is implemented.

If the global monitor is not implemented for an address range or memory type, then performing a
Load-Exclusive/Store-Exclusive instruction to such a location has one or more of the following effects:

. The instruction generates BusFault.
. The instruction generates a DACCVIOL MemManage fault.
. The instruction is treated as a NOP.

. The Load-Exclusive instruction is treated as if it were accessing a Non-shareable location, but the state of the
local monitor becomes UNKNOWN.

. The Store-Exclusive instruction is treated as if it were accessing a Non-shareable location, but the state of the
local monitor becomes UNKNOWN.

. The value held in the result register of the Store-Exclusive instruction becomes UNKNOWN.

For write transactions generated by non-PE observers that do not implement exclusive accesses or other atomic
access mechanisms, the effect that writes have on the global monitor and the local monitor that are used by an ARM
PE is IMPLEMENTATION DEFINED. The writes might not clear the global monitors of other PEs for:

. Some address ranges.
. Some memory types.

A Load-Exclusive instruction from shareable memory performs a load from memory, and causes the physical
address of the access to be marked as exclusive access for the requesting PE. This access can also cause the
exclusive access mark to be removed from any other physical address that has been marked by the requesting PE.

The global monitor only supports a single outstanding exclusive access to shareable memory for each PE.

B6-162

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

B6 Synchronization and Semaphores
B6.3 The global monitor

Rviprm A Load-Exclusive instruction by one PE has no effect on the global monitor state for any other PE.
RmrGe A Store-Exclusive instruction performs a conditional store to memory:
. The store is guaranteed to succeed only if the physical address accessed is marked as exclusive access for the

requesting PE and both the local monitor and the global monitor state machines for the requesting PE are in
the Exclusive Access state. In this case:

— A status value of 0 is returned to a register to acknowledge the successful store.
— The final state of the global monitor state machine for the requesting PE is IMPLEMENTATION DEFINED.

— Ifthe address accessed is marked for exclusive access in the global monitor state machine for any other
PE then that state machine transitions to Open Access state.
. If no address is marked as exclusive access for the requesting PE, the store does not succeed:
— A status value of 1 is returned to a register to indicate that the store failed.
— The global monitor is not affected and remains in Open Access state for the requesting PE.

. If a different physical address is marked as exclusive access for the requesting PE, it is IMPLEMENTATION
DEFINED whether the store succeeds or not:

— If'the store succeeds a status value of 0 is returned to a register, otherwise a value of 1 is returned.

— If the global monitor state machine for the PE was in the Exclusive Access state before the
Store-Exclusive instruction it is IMPLEMENTATION DEFINED whether that state machine transitions to
the Open Access state.

RanMG In a shared memory system, the global monitor implements a separate state machine for each PE in the system. The
state machine for accesses to shareable memory by PE(n) can respond to all the shareable memory accesses visible
to it.

Rwkp) In a shared memory system, the global monitor implements a separate state machine for each observer that can

generate a Load-Exclusive or a Store-Exclusive instruction in the system.

RnwwH Whenever the global monitor state for a PE changes from Exclusive access to Open access, an event is generated
and held in the Event register for that PE. This register is used by the Wait for Event mechanism.

RGpmp The state machine for PE(n) in a global monitor is as follows.

LoadExc1(x,n) LoadExc1(x,n)

| b [
Open Exclusive

|—> Access Access
Tt il

CLREX(n) StoreExcl(Marked_address, 'n)t StoreExcl(Marked_address, In)t
CLREX(!n) Store(Marked_address, !'n) Store(!Marked_address,n)
LoadExc1(x, !'n) StoreExcl(Marked_address,n)* StoreExcl(Marked_address,n)*
StoreExcl(x,n) StoreExcl(!Marked_address,n)* StoreExc1(!Marked_address,n)*

StoreExcl(x, !'n) Store(Marked_address,n)* Store(Marked_address,n)*
Store(x,n) CLREX(n)* CLREX(n)*
Store(x, !'n) StoreExcl1(!Marked_address, I'n)
Store(!Marked_address, !n)
CLREX(!'n)

$StoreExc1(Marked_address,!n) clears the monitor only if the StoreExc1 updates memory
Operations marked * are possible alternative IMPLEMENTATION DEFINED options.
In the diagram: LoadExc]1 represents any Load-Exclusive instruction
StoreExc] represents any Store-Exclusive instruction
Store represents any other store instruction.

Any LoadExc1 operation updates the marked address to the most significant bits of the address x used for the operation.

RgxLF The architecture does not require a load instruction by another PE, that is not a Load-Exclusive instruction, to have
any effect on the global monitor.

ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B6-163
1D092816 Non-Confidential

B6 Synchronization and Semaphores
B6.3 The global monitor

RRrGrK Whether a Store-Exclusive instruction successfully updates memory or not depends on whether the address
accessed matches the marked shareable memory address for the PE issuing the Store-Exclusive instruction, and
whether the local monitor and the global monitor are in the exclusive state.

Rprmp A Load-Exclusive instruction can only update the marked shareable memory address for the PE issuing the
Load-Exclusive instruction.

Rovwr When the global monitor is in the Exclusive Access state, it is IMPLEMENTATION DEFINED whether a CLREX
instruction causes the global monitor to transition from Exclusive Access to Open Access state.
RBsGB It is IMPLEMENTATION DEFINED:

. Whether a modification to a Non-shareable memory location can cause a global monitor to transition from
Exclusive Access to Open Access state.

. Whether a Load-Exclusive instruction to a Non-shareable memory location can cause a global monitor to
transition from Open Access to Exclusive Access state.

See also:
. Appendix G1 Architectural Constraints on UNPREDICTABLE behaviors.
. Exclusive access instructions and the monitors on page B6-165.
B6-164 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

B6 Synchronization and Semaphores
B6.4 Exclusive access instructions and the monitors

B6.4 Exclusive access instructions and the monitors

RvxwnN The Store-Exclusive instruction defines the register to which the status value of the monitors is returned.
RpDTRN A Store-Exclusive instruction performs a conditional store to memory that depends on the state of the local monitor
monitor:

If the local monitor is in the Exclusive Access state

. If the address of the Store-Exclusive instruction is the same as the address that has been marked
in the monitor by an earlier Load-Exclusive instruction, then the store occurs. Otherwise, it is
IMPLEMENTATION DEFINED whether the store occurs.

. A status value is returned to a register:
— If'the store took place the status value is 0.
— Otherwise, the status value is 1.

. The local monitor of the executing PE transitions to the Open Access state.

If the local monitor is in the Open Access state

. No store takes place.
. A status value of 1 is returned to a register.
. The local monitor remains in the Open Access state.
RpeNB A Store-Exclusive instruction performs a store to Shareable memory that depends on the state of both the local

monitor and the global monitor:
If both the local monitor and the global monitor are in the Exclusive Access state

. If the address of the Store-Exclusive instruction is the same as the address that has been marked
in the monitor by an earlier Load-Exclusive instruction, then the store occurs. Otherwise, it is
IMPLEMENTATION DEFINED whether the store occurs.

. A status value is returned to a register:
— If'the store took place the status value is 0.
— Otherwise, the status value is 1.

. The local monitor of the executing PE transitions to the Open Access state.

If either the local monitor or the global monitor is in the Open Access state

. No store takes place.

. A status value of 1 is returned to a register.

. The local monitor of the executing PE transitions to the Open Access state.

. The global monitor that is associated with the executing PE transitions to the Open Access state.
See also:
. The local monitors on page B6-161.

. The global monitor on page B6-162.

ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B6-165
1D092816 Non-Confidential

B6 Synchronization and Semaphores
B6.5 Load-Exclusive and Store-Exclusive instruction constraints

B6.5

IrRTHW

RpupN

RruLG

Rpvro

Rixxs

Rgvwn

Rxrsk

IRFXR

RpkqF

IpGGN

RxppN

RFcrN

Rpmyw

Load-Exclusive and Store-Exclusive instruction constraints

The Load-Exclusive and Store-Exclusive instructions are intended to work together as a pair, for example a
LDREX/STREX pair or a LDREXB/STREXB pair.

The architecture does not require an address or size check as part of the IsExclusivelocal() function.

If two StoreExcl instructions are executed without an intervening LoadExc] instruction the second StoreExcl
instruction returns a status value of 1.

The architecture does not require every LoadExc1 instruction to have a subsequent StoreExc1 instruction.

If the transaction size of a StoreExc] instruction is different from the preceding LoadExc] instruction in the same
thread of execution, behavior is a CONSTRAINED UNPREDICTABLE choice of:

. The StoreExc] either passes or fails, and the status value returned by the StoreExcl is UNKNOWN.

. The block of data of the size of the larger of the transaction sizes used by the LoadExc1/StoreExc] pair at the
address accessed by the LoadExc1/StoreExc] pair, is UNKNOWN.

The hardware only ensures that a LoadExc1/StoreExc] pair succeeds if the LoadExcl and the StoreExc1 have the same
transaction size.

Forward progress can only be made using LoadExc1/StoreExc] loops if, for any LoadExc1/StoreExc] loop within a
single thread of execution if both of the following are true:

. There are no explicit memory accesses, pre-loads, direct or indirect register writes, cache maintenance
instructions, SVC instructions, or exception returns between the Load-Exclusive and the Store-Exclusive.

. The following conditions apply between the Store-Exclusive having returned a fail result and the retry of the
Load-Exclusive:

— There are no stores to any location within the same Exclusives reservation granule that the
Store-Exclusive is accessing.

— There are no direct or indirect register writes, other than changes to the flag fields in APSR or FPSCR,
caused by data processing or comparison instructions.

— There are no direct or indirect cache maintenance instructions, SVC instructions, or exception returns.

The exclusive monitor can be cleared at any time without an application-related cause, provided that such
clearing is not systematically repeated so as to prevent the forward progress in finite time of at least one of
the threads that is accessing the exclusive monitor.

Keeping the LoadExc1 and the StoreExc] operations close together in a single thread of execution minimizes the
chance of the exclusive monitor state being cleared between the LoadExc1 instruction and the StoreExc] instruction.
Therefore, for best performance, ARM strongly recommends a limit of 128 bytes between LoadExc1 and StoreExc]
instructions in a single thread of execution.

The architecture sets an upper limit of 2048 bytes on the Exclusives reservation granule that can be marked as
exclusive.

For performance reasons, ARM recommends that objects that are accessed by exclusive accesses are separated by
the size of the exclusive reservations granule.

After taking a BusFault or a MemManage fault, the state of the exclusive monitors is UNKNOWN.

For the memory location accessed by a LoadExc1/StoreExc]1 pair, if the memory attributes for a StoreExc] instruction
are different from the memory attributes for the preceding LoadExc1 instruction in the same thread of execution,
behavior is CONSTRAINED UNPREDICTABLE.

The effect of a data or unified cache invalidate, clean, or clean and invalidate instruction on a local exclusive
monitor or a global exclusive monitor that is in the Exclusive Access state is CONSTRAINED UNPREDICTABLE, and
the instruction might clear the monitor, or it might leave it in the Exclusive Access state. For address-based
maintenance instructions, this also applies to the monitors of other PEs in the same Shareability domain as the PE
executing the cache maintenance instruction, as determined by the Shareability domain of the address being
maintained.

B6-166

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

IMDHL

RRrrrI

B6 Synchronization and Semaphores
B6.5 Load-Exclusive and Store-Exclusive instruction constraints

ARM strongly recommends that implementations ensure that the use of such maintenance instructions by a PE in
the Non-secure state cannot cause a denial of service on a PE in the Secure state.

In the event of repeatedly-contending LoadExc1/StoreExcl instruction sequences from multiple PEs, an
implementation must ensure that forward progress is made by at least one PE.

See also:

. Load-Exclusive/Store-Exclusive pairs on page G1-1336.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B6-167
Non-Confidential

B6 Synchronization and Semaphores
B6.5 Load-Exclusive and Store-Exclusive instruction constraints

B6-168 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

Chapter B7
The System Address Map

This chapter specifies the ARMvVS8-M system address map rules. It contains the following sections:
. System address map on page B7-170.

. The System region of the system address map on page B7-171.

. The System Control Space (SCS) on page B7-172.

ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B7-169
1D092816 Non-Confidential

B7 The System Address Map
B7.1 System address map

B7.1 System address map

Rrqsp The address space is divided into the following regions:
Address Region Memory type XN? Cache Shareability Example usage
0x00000000- Code Normal - WT2RAD Non-shareable Typically ROM or flash
Ox1FFFFFFF memory.
0x20000000- SRAM Normal - WBWACRA Non-shareable = SRAM region typically
Ox3FFFFFFF used for on-chip RAM.
0x40000000- Peripheral Device, nGnRE XNd - Shareable On-chip peripheral address
OX5FFFFFFF space.
0x60000000- RAM Normal - WBWARA Non-shareable =~ Memory with write-back,
Ox7FFFFFFF write allocate cache
attribute for L2/L3 cache
support.
0x80000000- RAM Normal - WTRA Non-shareable =~ Memory with
OX9IFFFFFFF write-through cache
attribute.
0xA0000000- Device Device, nGnRE XN - Shareable Peripherals accessible to all
OXBFFFFFFF masters.
0xC0000000- Device Device, nGnRE XN - Shareable Peripherals accessible only
OXDFFFFFFF to this PE.
0xE0000000- System PPB Device, nGnRnE XN - Shareable 1 MB region reserved as
OXEQOFFFFF the PPB. This supports key
resources, including the
System Control Space, and
debug features.
0xEQ100000- System Vendor SYS Device, nGnRE XN - Shareable Vendor System Region.
OXFFFFFFFF
a. Write-through.
b. Read-allocate.
c. Write-back, write allocate.
d. Memory with the Execute Never (XN) memory attribute.
RMBRB An access that crosses a boundary is UNPREDICTABLE. This rule also applies to the 0xFFFFFFFF - 0x00000000
boundary.
See also:
. The System region of the system address map on page B7-171.
. In Chapter B5 Memory Model:
— Address space on page B5-118.
— Memory accesses on page B5-117.
— Caches on page B5-147.
B7-170 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential

ID092816

B7 The System Address Map
B7.2 The System region of the system address map

B7.2 The System region of the system address map

RyGn

[rwLMm

Rpqos

In a PE with the Security Extension, the system region of the system address map is as follows:

0x00000000
0xE0000000
0xEOOOEO00
0xEOOOEDOO

Secure SCS'T
OxEOOOEDSF

%]
9]
o]
c
=
®
(92}
@]
©
-

OXEOOOEFFF
PPBIT

0xE002E000 System region of

0xE002EDOO the address map
Non-secure SCBT > Non-secure SCS™
OxEOO2ED8F

OxEOQ02EFFF

OXEOOFFFFF
0xE0100000
OXFFFFFFFF

%IMPLEMENTATION DEFINED vendor system region, Vendor_SYS

______________________________________ —

T System Control Block (SCB).
T System Control Space (SCS).
T Private Peripheral Bus (PPB).

In a PE without the Security Extension, the Non-secure SCS is RAZ/WI.

ARM recommends that Vendor_SYS is divided as follows:

0xE0100000-0XEFFFFFFF is reserved.
Vendor resources start at 0xF0000000.

Unprivileged access to the PPB causes BusFault errors unless otherwise stated. Unprivileged accesses can be
enabled to the Software Trigger Interrupt Register in the System Control Space by programming a control bit in the
Configuration and Control Register.

See also:

System address map on page B7-170.

The System Control Space (SCS) on page B7-172.

STIR, Software Triggered Interrupt Register on page D1-1084.
CCR, Configuration and Control Register on page D1-829.
Debug resources on page B11-188.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B7-171
Non-Confidential

B7 The System Address Map

B7.3 The System Control Space (SCS)

B7.3 The System Control Space (SCS)
Rcovk The System Control Space (SCS) provides registers for control, configuration, and status reporting.
RcEpK The Secure view of the NS alias is identical to the Non-secure view of normal addresses unless otherwise stated.
RGLNG Privileged accesses to unimplemented registers are RESO.
RNDML Unprivileged accesses to unimplemented registers will generate a BusFault unless otherwise stated.
See also:
. The System region of the system address map on page B7-171.
. In Chapter D1 Register Specification:
— System Control Block on page D1-806.
— System Control Block (NS alias) on page D1-811.
— Debug Control Block on page D1-808.
— Debug Control Block (NS alias) on page D1-813.
— STIR, Sofiware Triggered Interrupt Register on page D1-1084.
— SYST CSR, SysTick Control and Status Register on page D1-1087.
. Chapter B10 Nested Vectored Interrupt Controller.
. Chapter B8 The ARMvS-M Protected Memory System Architecture.
B7-172 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential

ID092816

Chapter B8
The ARMv8-M Protected Memory System
Architecture

This chapter specifies the ARMv8-M Protected Memory System Architecture (PMSAv-8) rules, and in particular the
rules for the optional Memory Protection Unit (MPU) and the optional Security Attribution Unit (SAU). It contains
the following sections:

. Memory protection unit on page B8-174.

. Security attribution on page B8-176.

. Security attribution unit (SAU) on page B8-178.

. IMPLEMENTATION DEFINED Attribution Unit (IDAU) on page B8-179.

ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B8-173
1D092816 Non-Confidential

B8 The ARMv8-M Protected Memory System Architecture
B8.1 Memory protection unit

B8.1 Memory protection unit

Rupnk In an implementation that includes the Protected Memory System Architecture (PMSA), system address space is
protected by a memory protection unit (MPU).

Rrpps PMSAvVS-M only supports a unified memory model. All enabled regions support instruction and data accesses.

RUBNG Memory attributes are determined from the default system address map or by using an MPU.

Rmccr The default memory map can be configured to provide a background region for privileged accesses.

Rexcn MPU support in ARMv8-M is optional.

Rpgp) When the MPU is enabled, the PE can be configured to use the default system map when it processes NMI and
HardFault exceptions.

Ryvic When the MPU is disabled or not present, accesses use memory attributes from the default system address map.

RpeBM The MPU divides the memory into regions.

Ryven An individual MPU region is defined by:

Address >= MPU_RBAR.BASE: ‘00000’ && Address <= MPU_RLAR.LIMIT:‘11111’

RMNDS The number of supported MPU regions is IMPLEMENTATION DEFINED.

IwrtcL Because the MPU_TYPE register is banked, an implementation can have a different number of MPU regions,
including no MPU regions, for each Security state.

RxGrk All MPU regions are aligned to a multiple of 32 bytes.

RepGB The PE can fetch and execute instructions from each MPU region according to the value of MPU RBAR.XN. The
value of MPU RBAR.XN can be used by privileged software.

RyNsk Accesses to the Private Peripheral Bus (PPB) always use memory attributes from the default system address map.

RrpwB Exception vector reads from the Vector Address Table always use the default system address map.

Repmw The MPU is restricted in how it can change the default memory map attributes associated with System space, that
is, for addresses 0xE0000000 and higher, in the following ways:

. System space is always XN.
. The MPU can map system space regions that default to Device-nGnRE to Device-nGnRnE.
. The effect of remapping a System space region that defaults to Device memory as Normal memory is
UNPREDICTABLE.
Rpcup The following accesses generate a MemManage fault:
. An access to an address that matches in more than one region.
. An access that does not match all access conditions for that region.
. An access that matches a background region or default memory map if the MPU is enabled.
However, privileged accesses are permitted if either:
. MPU_CTRL PRIVDEFENA ==1.
. Executing at a priority less than zero when MPU CTRLHFNMIENA is set.

RGing A memory access to an address that matches in more than one region, or does not match all access conditions of a
region address match, with the MPU enabled, or a background or default memory map match, generates a precise
fault.

RKMTF For data accesses, the MPU memory attribution and privilege checking uses the configuration registers that
correspond to the current executing Security state of the PE.

B8-174 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

RriBR

RpLig

B8 The ARMv8-M Protected Memory System Architecture
B8.1 Memory protection unit

For instruction fetches, the MPU memory attribution and privilege checking uses the configuration registers
associated with the address that is fetched.

Setting MPU CTRL.HFNMIENA to zero disables the MPU if the requested priority for the handler of the
HardFault, NMI and exceptions that the MPU is associated with is negative.

See also:
. System address map on page B7-170.
. MPU CTRL, MPU Control Register on page D1-1029.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B8-175
Non-Confidential

B8 The ARMv8-M Protected Memory System Architecture

B8.2 Security attribution

B8.2 Security attribution

RjGus The Security Extension defines three levels of memory security attribution. In ascending order of security, these are:
1. Non-secure.

2. Secure and Non-secure callable.
3. Secure and not Non-secure callable.
RRPKG The following units can provide security attribution information:
. A security attribution unit (SAU) inside the PE.
. An implementation defined attribution unit IDAU) external to the PE. The presence of such a unit is
IMPLEMENTATION DEFINED.

Rmcexn The attribution information from the SAU is used unless the IDAU specifies attributes with a higher security, in
which case the IDAU attributes override the SAU attributes. This rule does not apply to architecturally defined
ranges exempt from memory attribution.

RNiGR An attribution unit (AU) violation is defined as being a violation raised by either the SAU or the IDAU.

Rogvs All boundaries between address ranges with different security attributes must be aligned to 32-byte boundaries.

RpLiT The behavior of the following address ranges is fixed, so they are exempt from memory attribution by both the SAU
and IDAU:
0xF0000000 - OXFFFFFFFF

If the PE implements the Security Extension, this memory range is always marked as Secure and not
Non-secure callable for instruction fetches.
If the Security Extension is not present, this range is marked as Non-secure.
Ranges exempt from checking security violation
The following address ranges are marked with the Security state indicated by NS-Req, that is, the
current state of the PE for non-debug accesses. This marking sets the NS-Attr to NS-Req:
0xE0000000 - 0xEQ002FFF: ITM, DWT, FPB.
0xEQ0QE00Q - OXEQQOEFFF: SCS range.
0XEQ02E000 - 0XE0Q2EFFF: SCS NS alias range.
0xE0040000 - 0xEQQ41FFF: TPIU, ETM.
0XEQOFF000 - 0XEOOFFFFF: ROM table.
0xEQ000000 - OXEFFFFFFF for instruction fetch only.
Additional address ranges specified by the IDAU.
B8-176 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

B8 The ARMv8-M Protected Memory System Architecture
B8.2 Security attribution

The Security attribution and MPU check sequence is shown in the following diagram.

No Yes
NS-Req = s'\ej‘::iiq of
CurrentState ¥
address

NS-Req == Non-secure
and secure address?

Yes

NS-Req == Secure?

Secure
MPU access violation?

Non-secure

. . Yes
MPU access violation?

Yes

Non-secure Secure
SecureFault MemManage Do Access MemManage
fault fault
See also:

. Security attribution unit (SAU) on page B8-178.
. IMPLEMENTATION DEFINED Attribution Unit (IDAU) on page B8-179.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved.
Non-Confidential

B8-177

B8 The ARMv8-M Protected Memory System Architecture
B8.3 Security attribution unit (SAU)

B8.3 Security attribution unit (SAU)
RvFLr The SAU configuration defines an IMPLEMENTATION DEFINED number of memory regions. The number of regions
is indicated by SAU_TYPE.SREGION,
IppLK The memory regions defined by the SAU configuration are referred to as SAU_REGIONn, where n is a number
from 0 - (SAU_TYPE.SREGION-1).
Rryrp The SAU region configuration fields can only be accessed indirectly using the window registers shown in the
following table.
SAU region configuration field Associated window register field
SAU_REGIONn.Enable SAU RLAR.ENABLE
SAU_REGIONn.NSC SAU RLAR.NSC
SAU REGIONn.BADDR SAU RBAR.BADDR
SAU REGIONn.LADDR SAU RLAR.LADDR
RNBFD When the SAU is enabled, an address is defined as matching a region in the SAU if the following is true:
SAU_REGIONn.BADDR <= Address <= SAU_REGIONn.LADDR.
Rmpic Memory is marked as Secure by default. However, if the address matches a region with SAU_REGIONn.ENABLE
set to 1 and SAU_REGIONn_NSC set to 0, then memory is marked as Non-secure.
RwGpk An address that matches multiple SAU regions is marked as Secure and not Not-secure callable regardless of the
attributes specified by the regions that matched the address.
RGvrQ ‘When the SAU is not enabled:
. Addresses are not checked against the SAU regions.
. The attribution of the address space is determined by the SAU CTRL.ALLNS field.
Ruvein To permit lockdown of the SAU configuration, it is IMPLEMENTATION DEFINED whether the SAU registers are
writeable.
B8-178 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

B8 The ARMv8-M Protected Memory System Architecture
B8.4 IMPLEMENTATION DEFINED Attribution Unit (IDAU)

B8.4 IMPLEMENTATION DEFINED Attribution Unit (IDAU)

Ryvem

RMBHQ

The IDAU can provide the following security attribution information for an address:

. Security attribution exempt. This specifies that the address is exempt from security attribution. This
information is combined with the address ranges that are architecturally required to be exempt from
attribution,

. Non-secure. This specifies if the address is Secure or Non-secure.

. Non-secure callable. This specifies if code at the address can be called from Non-secure state. This attribute
is only valid if the address is marked as Secure.

. Region number. This is the region number that matches the address, and is only used by the TT instruction.

. Region number valid. This specifies that the region number is valid. This field has no effect on the attribution

of the address, and is only used by the TT instruction.

The Non-secure and the Non-secure callable attributes from the IDAU are combined with the results from the SAU.
The resulting attribution is the most restrictive of the two.

See also:
. TT, TTT, TTA, TTAT on page C2-649.
. Security attribution on page B8-176.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B8-179
Non-Confidential

B8 The ARMv8-M Protected Memory System Architecture
B8.4 IMPLEMENTATION DEFINED Attribution Unit (IDAU)

B8-180 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

Chapter B9
The System Timer, SysTick

This chapter specifies the ARMv8-M system timer rules. It contains the following section:

The system timer, SysTick on page B9-182.

ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B9-181
1D092816 Non-Confidential

B9 The System Timer, SysTick
B9.1 The system timer, SysTick

B9.1

RBQrG

RpppL

Rente

Rxpcw

IpxsQ

IvuDT

RrLck

Rrrer
Ivpig

IppGv

IMMRQ

Roskv

IRWFQ

The system timer, SysTick

In a PE without the Main and Security Extensions, either:
. No system timers are implemented.

. One system timer, SysTick, is implemented.

In a PE without the Main Extension but with the Security Extension, one of the following is true:

. No system timers are implemented.

. One system timer, SysTick, is implemented. ICSR.STTNS determines which Security state owns the
SysTick.

. Two system timers are implemented:
— SysTick, Secure instance.
— SysTick, Non-secure instance.

In a PE with the Main Extension but without the Security Extension, one system timer, SysTick, is implemented.

In a PE with the Main and Security Extensions, two system timers are implemented:
. SysTick, Secure instance.
. SysTick, Non-secure instance.

There are the following SysTick registers:

. SysTick Control and Status Register (SYST CSR).

. SysTick Reload Value Register (SYST RVR).

. SysTick Current Value Register (SYST _CVR).

. SysTick Calibration Value Register (SYST_CALIB).

In a PE with the Security Extension and a SysTick instance dedicated to each Security state, these registers are
banked.

Each implemented SysTick is a 24-bit decrementing, wrap-on-zero, clear-on-write counter:

. When enabled, the counter counts down from the value in SYST _CVR. When it reaches zero, SYST _CVR
is reloaded with the value held in SYST RVR on the next clock edge.

. Reading SYST_CVR returns the value of the counter at the time of the read access.

. When the counter reaches zero, it sets SYST CSR.COUNTFLAG to 1. Reading SYST CSR.COUNTFLAG
clears it to 0.

. A write to SYST_CVR clears both SYST CVR and SYST _CSR.COUNTFLAG to 0. SYST _CVR is then
reloaded with the value held in SYST _RVR on the next clock edge.

Writing the value zero to SYST RVR disables the SysTick on the next wrap-on-zero. The value zero is held by the
counter after the wrap. This is true even when SYST CSR.ENABLE is 1.

A write to SYST _CVR does not cause a SysTick exception.
Setting SYST_CSR.TICKINT to 1 causes the SysTick exception to become pending on the SysTick reaching zero.

ARM recommends that before enabling a SysTick by SYST CSR.ENABLE, software writes the required counter
value to the SYST RVR, and then writes to the SYST CVR to clear the SYST _CVR to zero.

Software can optionally use SYST CALIB.TENMS to scale the counter to other clock rates within the dynamic
range of the counter.

When the PE is halted in Debug state, any implemented SysTicks do not decrement.

Each implemented SysTick is clocked by a reference clock, either the PE clock or an external system clock. It is
IMPLEMENTATION DEFINED which clock is used as the external reference clock. ARM recommends that if an
external system clock is used, the relationship between the PE clock and the external clock is documented, so that
system timings can be calculated taking into account metastability, clock skew, jitter.

B9-182

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

Chapter B10
Nested Vectored Interrupt Controller

This chapter specifies the ARMv8-M Nested Vectored Interrupt Controller (NVIC) rules. It contains the following
sections:

. NVIC definition on page B10-184.
NVIC operation on page B10-185.

ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B10-183
ID092816 Non-Confidential

B10 Nested Vectored Interrupt Controller
B10.1 NVIC definition

B10.1 NVIC definition

Rxiq An ARMv8-M PE includes an integral interrupt controller.

RrsGp The NVIC behavior aligns with the behavior that is described in the ARM®™ Generic Interrupt Controller
Architecture Specification, GIC architecture version 3.0 and version 4.0.

Rwone The Interrupt Controller Type Register (ICTR) defines the number of external interrupt lines that are supported.
See also:

. ICTR, Interrupt Controller Type Register on page D1-977.

B10-184 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

B10 Nested Vectored Interrupt Controller
B10.2 NVIC operation

B10.2 NVIC operation

Rsnvk
Rscer
Rwrrs

Ruvoo

Rrrcx

Rrkrc
Rpppg
Rrwsw

Rxvwm

Robpk

Rgnoo
Rokrw

Rxnow

Reevy

RxcLs

IwGpy
Irspy

RNryv

It is IMPLEMENTATION DEFINED which NVIC interrupts are implemented.
When a particular NVIC interrupt line is not implemented, its associated registers are reserved.
ARMV8-M supports level-sensitive and pulse-sensitive interrupts.

Pulse interrupt sources must be held long enough so that the PE clock can sample them reliably to ensure they are
latched and become pending.

A subsequent pulse can add the pending state to an active interrupt, making the status of the interrupt active and
pending.

Multiple pulses that occur during the active period only register as a single event for interrupt scheduling.
Pulses held for a clock period act like edge-sensitive interrupts.
Edge-sensitive interrupts can become pending again while the interrupt is active.

A pulse must be cleared before the assertion of AIRCR.VECTCLRACTIVE or the associated exception return.
Otherwise the interrupt signal behaves as a level-sensitive input and the pending bit is asserted again.

Level-based interrupts first become pending then make the interrupt active. The Interrupt Service Routine (ISR)
then accesses the peripheral to cause it to deassert the interrupt.

If the interrupt is still asserted on return from the ISR, it becomes pending again.
All NVIC interrupts have a programmable priority value and an associated exception number.

NVIC interrupts can be enabled and disabled by writing to their corresponding Interrupt Set-Enable or Interrupt
Clear-Enable register bit field.

When an interrupt is disabled, interrupt assertion causes the interrupt to become pending but the interrupt cannot
become active.

If an interrupt is active when it is disabled, it remains in the active state until this is cleared by a reset or an exception
return.

An implementation can hard-wire interrupt enable bits to zero if the associated interrupt line does not exist.
An implementation can hard-wire interrupt enable bits to one if the associated interrupt line cannot be disabled

It is IMPLEMENTATION DEFINED for each NVIC interrupt line supported whether an NVIC interrupt supports either
or both setting and clearing of the associated pending state under software control.

See also:

. Exception numbers and exception priority numbers on page B3-47.
. Exception states on page B3-56.

. Priority model on page B3-57.

. Nested Vectored Interrupt Controller on page D1-806.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B10-185
Non-Confidential

B10 Nested Vectored Interrupt Controller
B10.2 NVIC operation

B10-186 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

Chapter B11

Debug

This chapter specifies the ARMv8-M debug rules. It contains the following sections:

About debug on page B11-188.

Accessing debug features on page B11-192.
Debug authentication interface on page B11-195.
Debug event behavior on page B11-201.

Exiting Debug state on page B11-210.
Multiprocessor support on page B11-211.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved.
Non-Confidential

B11-187

B11 Debug
B11.1 About debug

B11.1 About debug

B11.1.1 Debug feature overview

IknwoQ

The debug architecture supports the following features:
. High-level trace using the ITM.
. Profiling various system events, including associated timing information.

. PC sampling and event counts associated with load and store operations, instruction folding, and
performance statistics that are based on cycles-per-instruction (CPI) counts.

. Instruction trace, using an Embedded Trace Macrocell (ETM).
. Warm reset functionality to reset the PE and support debug of reset events.

. A control register that a debugger can write to halt the PE.

. An external signal to asynchronously halt the PE, which might be connected to a Cross Trigger Interface
(CTD).

. Step functionality, with or without interrupt masking.

. Run functionality, with or without interrupt masking.

. For register access, reading and writing PE registers when software execution is halted.

. Access to exception-related information through the System Control Space (SCS) resources.

. The BKPT instruction to provide software breakpoints.

. Hardware breakpoints, and remapping of code memory locations.

. Hardware watchpoints.

. Access to all memory through the Debug Access Port (DAP).
. The ability to add other system debug features such as a bus monitor or cross-trigger facility.

. Application and data trace, typically through either a low pin-count Serial Wire Viewer (SWV) or a parallel
trace port.

B11.1.2 Debug mechanisms

RywcH

ILBLF

Isxvr

ARMV8-M supports a range of invasive and non-invasive debug mechanisms.

The invasive debug mechanisms are:

. The ability to halt the PE. This provides a run-stop debug model.

. Debugging code using the DebugMonitor exception. This provides less intrusive debug than halting the PE.
The non-invasive debug techniques are:

. Generating application trace by writing to the Instrumentation Trace Macrocell (ITM), causing a low level
of intrusion.

. Non-intrusive program trace and profiling.
When the PE is halted, it is in Debug state.

When the PE is not halted, it is in Non-debug state.

See also:
. Accessing debug features on page B11-192.

B11.1.3 Debug resources

Rtzvg

In the system address map, debug resources are in the Private Peripheral Bus (PPB) region.

B11-188

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

B11Debug
B11.1 About debug

ReBHD Except for the resources in the SCS, each debug component occupies a fixed 4KB address region.

RwxTk The debug resources in the SCS are:
. The Debug Control Block (DCB).
. Debug controls in the System Control Block (SCB).

Rswts The ARMvVS-M debug components are:
. The Instrumentation Trace Macrocell on page B12-214, only available if the Main Extension is
implemented.

. The Data Watchpoint and Trace unit on page B12-220.
. The Flash Patch and Breakpoint unit on page B12-236.
. The Embedded Trace Macrocell on page B12-234.

. The Trace Port Interface Unit on page B12-235.

. The ROM table.

REHRN The following debug components are not part of the ARMv8-M architecture:
. The Cross-Trigger Interface (CTI).
. The CoreSight basic trace router (MTB).

RwxRrJ The debug configuration of an implementation is IMPLEMENTATION DEFINED. Support for Halting debug is optional.
All debug components are optional.

IkKBT If the Main Extension is implemented then support for DebugMonitor must be implemented. If the Main Extension
is not implemented DebugMonitor is not supported.

RyvMmGD ROM table entries identify which optional debug components are implemented.
RqcrL The addresses of the optional debug resources are:
Address range Debug resource

0XE0000000-0XEQ0QOFFF Instrumentation Trace Macrocell (ITM)

0XEQ001000-0XEQQQIFFF Data Watchpoint and Trace (DWT) unit

0XEQ002000-0XEQ0Q2FFF Flash Patch and Breakpoint (FPB) unit

0XEQOQEDQ0-OXEQQQEFFF SCS

OXEQOOEDOO-OXEQOOEDSF System Control Block (SCB)

OXEQQOEDFO-OXEQQOEEFF Debug Control Block (DCB)

0XE0040000-0xEQQ4OFFF Trace Port Interface Unit (TPIU), when not implemented
as a shared resource, otherwise reserved

0XEQ041000-0XEQ041FFF Embedded Trace Macrocell (ETM)

0xE0042000-0XEQQFEFFF IMPLEMENTATION DEFINED

0xE0QQFF000-0XEQOFFFFF ROM table

See also:

. Instrumentation Trace Macrocell on page B12-214.
. Data Watchpoint and Trace unit on page B12-220.

. Flash Patch and Breakpoint unit on page B12-236.
. Chapter B7 The System Address Map.

ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B11-189
1D092816 Non-Confidential

B11 Debug
B11.1 About debug

. Debug System registers on page B11-193.

. Trace Port Interface Unit on page B12-235.

. Embedded Trace Macrocell on page B12-234.
. ROM table on page B11-192.

. Accessing debug features on page B11-192.

B11.1.4 Trace

Ryjve Trace can be generated by using the:

. Embedded Trace Macrocell (ETM).

. Instrumentation Trace Macrocell (ITM), only available if the Main Extension is implemented.

. Data Watchpoint and Trace (DWT) unit, trace is only available if the Main Extension is implemented.
RNEVB A debug implementation that generates trace must include a trace sink, such as a TPIU, which exports the trace data

from the device.

A TPIU can be either the ARMv8-M TPIU implementation, or an external system resource.

See also:
. Chapter F1 ITM and DWT Packet Protocol Specification.
. The applicable ETM Architecture Specification.

B11-190 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

B11Debug
B11.1 About debug

B11.1.5 Levels of debug
IsFsG The recommended debug implementation levels are:
Level With Main Extension Without Main Extension
Minimum Support for the DebugMonitor exception, including: No debug support.
. The BKPT instruction. DFSR, DHCSR, DCRSR, DCRDR, and DEMCR are
. DEMCR monitor debug features. RESO. ID_DFRO is RAZ.
. Monitor entry from External debug requests.
. DFSR.
DHCSR, DCRSR, DCRDR, and the Halting debug
features in DFSR and DEMCR are RESO. ID_DFRO is
RAZ.
Basic Adds support for Halting debug with: Adds support for Halting debug with:
. Debug Access Port and ROM table. . Debug Access Port and ROM table.
. DHCSR, DCRSR, DCRDR, and the Halting . SHCSR, DFSR, DHCSR, DCRSR, DCRDR, and
debug features in DEMCR are implemented. DEMCR are implemented. Access from the PE is
. FPB with at least two breakpoints. IMPLEMENTATION DEFINED.
Remap is optional if the Security Extensionisnot ~ * FPB with at least two breakpoints.
implemented. Remap is not implemented.
. DWT with at least: . DWT with at least:
— One watchpoint, that supports instruction, — One watchpoint, that supports instruction
data address, and data value matching. and data address matching.
— DWT_PCSR. — DWT _PCSR.
. Optional support for a CTI in a multiprocessor . Optional support for a CTI in a multiprocessor
system. system.
This support is identified in ID_DFRO. This support is identified in ID_DFRO.
Comprehensive Adds basic trace support with: Not applicable without the Main Extension.
. ITM.
. DWT with:
— Trace support.
— Profiling support.
— Cycle counter.
. TPIU.
Program trace Adds ETM. Adds ETM and TPIU.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved.

Non-Confidential

B11-191

B11 Debug

B11.2 Accessing debug features

B11.2 Accessing debug features

Rwvsz The mechanism by which an external debugger accesses the PE and system is IMPLEMENTATION DEFINED.

IopHR A debugger can use a Debug Access Port (DAP) interface, such as that provided by the ARM®™ Debug Interface v5
Architecture Specification (ADIvV5), to interrogate a system for memory access ports (MEM-APs). The base register
in a memory access port provides the address of the ROM table, or the first of a series of ROM tables in a ROM
table hierarchy. The memory access port can then be used to fetch the ROM table entries. ARM recommends
implementation of an ADIv5 DAP for compatibility with tools.

Rwpaq Writes from a DAP are complete when the DAP reports them as complete.

Rwcok For SCS registers, a write from a DAP is complete when the write has completed and the SCS register has been
updated.

Rjrus Software configures and controls the debug model through memory-mapped registers.

See also:

. ROM table.

. DAP access permissions on page B11-198.

. The ARM" Debug Interface v5 Architecture Specification.

B11.2.1 ROM table

IxFvN The ROM table is a table of entries providing a mechanism to identify the debug infrastructure that is supported by
the implementation.

IrwpG The ROM table indicates the implemented debug components, and the position of those components in the memory
map. See the ARM® Debug Interface v5 Architecture Specification for the format of a ROM table entry.

IpHyy For an ARMv8-M ROM table, all address offsets are negative.

IRGVM The entry 0x00000000 is the end-of-table marker.

RGppx The ROM table must be implemented if any other debug component is implemented or a Debug Access Port is
implemented.

Rpqsp Bit[0] of the ROM table entries indicates whether the corresponding debug component is implemented and is
accessible through the PPB at the indicated address. If the corresponding debug component is not implemented, this
bit has a value of 0.

Rnpow If a debug component is implemented, debug registers can provide additional information about the implemented
features of that debug component.

Rppva The format of the ROM table is:

Table B11-1 ARMv8-M DAP accessible ROM table
Offset Value Name Description
0x000 OxFFFOF003 ROMSCS Points to the SCS at 0xE000E000.
0x004 0xFFF02002or ROMDWT Points to the Data Watchpoint and Trace unit at 0xE0001000.
0xFFF02003
0x008 0xFFF03002 or ROMFPB Points to the Flash Patch and Breakpoint unit at 9xE0002000.
0xFFF03003
0x00C 0xFFFO1002 or ROMITM2 Points to the Instrumentation Trace unit at 0xE0000000.
0xFFF01003
B11-192 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

B11Debug
B11.2 Accessing debug features

Table B11-1 ARMv8-M DAP accessible ROM table (continued)

Offset Value Name Description
0x010 OxFFF41002 or ROMTPIUP Points to the Trace Port Interface Unit.
OxFFF41003
0x014 OxFFF42002 or ROMETMP Points to the Embedded Trace Macrocell unit.
OxFFF42003

0x018 0x00000000 End End-of-table marker. It is IMPLEMENTATION DEFINED whether the table is extended with
pointers to other system debug resources. The table entries always terminate with a null
entry.

0x020- - Not Used Reserved for additional ROM table entries.

OxXEFC

0xF00- - Reserved Reserved, must not be used for ROM table entries.

OxFC8

OxFCC 0x00000001 MEMTYPE Bit[0] is set to 1 to indicate that resources other than those listed in the ROM table are
accessible in the same 32-bit address space, using the DAP. Bits[31:1] of the MEMTYPE
entry are RESO.

0xFDO IMP DEF PIDR4 CIDRx values are fully defined for the ROM table, and are CoreSight compliant.
PIDR 1 igh li RAZ.

OxED4 0 PIDRS x values must be CoreSight compliant or

0xFD8 0 PIDR6

0xFDC 0 PIDR7

OxFEQ IMP DEF PIDRO

OxFE4 IMP DEF PIDR1

OxFE8 IMP DEF PIDR2

OXFEC IMP DEF PIDR3

OxFFQ 0x0000000D CIDRO

OxFF4 0x00000010 CIDR1

OxFF8 0x00000005 CIDR2

OxFFC 0x000000B1 CIDR3

a. Accesses cannot cause a non-existent memory exception.

b. It is IMPLEMENTATION DEFINED whether a shared resource is managed by the local PE or a different resource.

See also:

CoreSight and identification registers on page B11-194.

B11.2.2 Debug System registers

Rrupw The debug provision in the System Control Block (SCB) comprises:
. Two handler-related flag bits, [CSR.ISRPREEMPT and ICSR.ISRPENDING.
. The DFSR.
ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B11-193

1D092816

Non-Confidential

B11 Debug
B11.2 Accessing debug features

B11.2.3

Iemen

Repem

See also:
. Chapter D1 Register Specification.
. Debug Control Block on page D1-808.

CoreSight and identification registers

ARM recommends that CoreSight-compliant ID registers are implemented to allow identification and discovery of
the components to a debugger.

The address spaces that are reserved in each of the debug components for IMPLEMENTATION DEFINED ID registers

and CoreSight compliance are:

Debug component

Space reserved for ID registers

Space reserved for CoreSight compliance

IT™ 0xE0000FDO-0XEQQQOFFC 0OxE0000FAQ-0xEQ0QQFCC
DWT 0xEQ001FDO-0XEQQQ1FFC 0OxEQ001FAQ-0xEQ0Q1FCC
FPB 0xE0002FD0-0XEQ002FFC 0xE0002FA0-0xEQ002FCC
SCS OXEQOOEFDO-OXEQQQEFFC OxE0OOEFAQ-0XEQQQEFCC
TPIU 0xE0040FDO-0XEQQ40FFC 0xE0040FA0-0xEQ04QFCC
ETM OxE0041FDO-0xEQQ41FFC OxE0041FAQ-0xEQQ41FCC
ROM table OXEQOFFFDO-OXEQQFFFFC OXEQOFFFAQ-0XEQQFFFCC
Rywsx For the ROM table, the ID register space must be used for a set of CoreSight-compliant ID registers.
Ruxpk For all components other than the ROM table, if the registers in the ID register space are not used for ID registers
they must be RAZ.
Rvopm If CoreSight-compliant ID registers are implemented, the Class field in Component ID Register 1 must be:
. 0x1 for the ROM table.
. 0x9 for other components.
IHQsR The Part number in the PIDR registers should be assigned a unique value for each implementation, as with all other
CoreSight components.
CoreSight permits that two or more functionally different components are permitted to share the same Part number,
so long as they have different values of the DEVTYPE or DEVARCH registers.
lcTBF The Part number in the PIDR registers do not need to be unique for different implementation options of the same
part.
B11-194 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

B11Debug
B11.3 Debug authentication interface

B11.3 Debug authentication interface

IgwrN

Iswwt

Ryvon

Rywcs

Rxcmp

Rrchu

IMSrRG

Rorwm

The following pseudocode functions provide an abstracted description of the authentication interface:

. ExternalInvasiveDebugEnabled().

. ExternalSecureInvasiveDebugEnabled().

. ExternalNoninvasiveDebugEnabTed().

. ExternalSecureNoninvasiveDebugEnabTed().

For an implementation using the CoreSight signals DBGEN, NIDEN, SPIDEN, and SPNIDEN:
. ExternalInvasiveDebugEnabled() returns TRUE if DBGEN is asserted.
. ExternalSecureInvasiveDebugEnabled() returns TRUE if both DBGEN and SPIDEN are asserted.
. ExternalNoninvasiveDebugEnabled() returns TRUE if either NIDEN or DBGEN is asserted.
. ExternalSecureNoninvasiveDebugEnabled() returns TRUE if both of the following conditions apply:
— Either NIDEN or DBGEN is asserted.
— Either SPNIDEN or SPIDEN is asserted.

For any implementation of the authentication interface, if ExternalInvasiveDebugEnabled() is FALSE, then
ExternalSecureInvasiveDebugEnabled() must be FALSE.

For any implementation of the authentication interface, if ExternalNoninvasiveDebugEnabled() is FALSE, then
ExternalSecureNoninvasiveDebugEnabled() must be FALSE.

For any implementation of the authentication interface, if ExternalInvasiveDebugEnabled() is TRUE, then
ExternalNoninvasiveDebugEnabled() must be TRUE.

For any implementation of the authentication interface, if ExternalSecureInvasiveDebugEnabled() is TRUE, then
ExternalSecureNoninvasiveDebugEnabled() must be TRUE.

Secure self-hosted debug is controlled by the authentication interface. The pseudocode function
ExternalSecureSelfHostedDebugEnabled() provides an abstracted description of this authentication interface.

Between a change to the debug authentication interface and a following Context synchronization event, it is
UNPREDICTABLE whether the PE uses the old or the new values.

See also:

. Halting debug authentication.

. DebugMonitor authentication on page B11-196.

. Non-invasive debug authentication on page B11-197.
. DAP access permissions on page B11-198.

B11.3.1 Halting debug authentication

IpMFG

Rk

RyxTx

Halting debug authentication is controlled by the IMPLEMENTATION DEFINED authentication interface function
ExternalInvasiveDebugEnabled(), and if the Security Extension is implemented, the IMPLEMENTATION DEFINED
authentication interface function ExternalSecureInvasiveDebugEnabled().

Halting is prohibited in all states if the function ExternalInvasiveDebugEnabled() returns FALSE.

When the PE is halted, the PE behaves as if ExternalInvasiveDebugEnabled() is TRUE. The pseudocode function
HaltingDebugAllowed() describes this.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B11-195
Non-Confidential

B11 Debug

B11.3 Debug authentication interface

Igczm

RpMmRy

Rkczr

Rrwim

[LDTR

RrxcB

RriBK

B11.3.2
Rmxt™

Rrgen

If the Security Extension is not implemented, there are two Halting debug authentication modes:

ExternalInvasiveDebugEnabled() DHCSR.S_HALT Halting debug authentication mode

FALSE 0 Halting is prohibited

1 Halting is allowed
TRUE X

If the Security Extension is implemented, halting is prohibited in Secure state if any of:

. ExternalInvasiveDebugEnabled() returns FALSE.

. DAUTHCTRL.SPIDENSEL is set to 1 and DAUTHCTRL.INTSPIDEN is set to 0.

. DAUTHCTRL.SPIDENSEL is set to 0 and ExternalSecureInvasiveDebugEnabled() returns FALSE.
The pseudocode function SecureHaltingDebugAllowed() describes this.

If the Security Extension is implemented, DHCSR.S_SDE has a value of 0 if one or more of the following
conditions are true:

. The PE is halted and the PE entered Debug state from Non-secure state when SecureHaltingDebugAlTowed()
was FALSE.

. The PE is not halted and SecureHaltingDebugAllowed() returns FALSE.
If the Security Extension is implemented, DHCSR.S_SDE has a value of 1 if any of the following conditions are
true:
. The PE is halted and the PE entered Debug state from either:
— Secure state.
— Non-secure state when SecureHaltingDebugAllowed() was TRUE.
. The PE is not halted and SecureHaltingDebugAllowed() returns TRUE.

If the Security Extension is implemented, there are three Halting debug authentication modes:

HaltingDebugAllowed() DHCSR.S_SDE Halting debug authentication mode

FALSE X Halting is prohibited.
TRUE 0 Halting is allowed in Non-secure state.

Halting is prohibited in Secure state.

1 Halting is allowed.

When DHCSR.C_DEBUGEN ==0 or the PE is in a state in which halting is prohibited, the PE must not enter Debug
state.

When the PE is in a state in which halting is prohibited, if DHCSR.C_HALT == 1 and DHCSR.C_DEBUGEN ==
1, then DHCSR.C_HALT remains set unless it is cleared by a direct write to DHCSR. If the PE enters a state in
which halting is allowed while DHCSR.C_HALT is set to 1, then the PE enters Debug state.

See also:

. CanHaltOnEvent().

DebugMonitor authentication

DebugMonitor authentication is only available if the Main Extension is implemented.

If the Security Extension is implemented, DebugMonitor authentication is controlled by the IMPLEMENTATION
DEFINED authentication interface function ExternalSecureSelfHostedDebugEnabled().

B11-196

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

Rqion

Rgeve

RRrTRD

IrzxJ

B11Debug
B11.3 Debug authentication interface

If the Security Extension is implemented, DebugMonitor exceptions are never generated for secure operations if
any of:

. DAUTHCTRL.SPIDENSEL is set to 1 and DAUTHCTRL.INTSPIDEN is set to 0.
. DAUTHCTRL.SPIDENSEL is set to 0 and ExternalSecureSelfHostedDebugEnabled() returns FALSE.

The pseudocode function SecureDebugMonitorAlTlowed() describes this.

If the Security Extension is implemented DEMCR.SDME is set to zero if any of:

. DebugMonitor is pending or active and SecureDebugMonitorAllowed() returned FALSE when DebugMonitor
became pending or active.

. DebugMonitor is not pending and not active and SecureDebugMonitorAllowed() returns FALSE.

If the Security Extension is implemented DEMCR.SDME is set to one if any of:

. DebugMonitor is pending or active and SecureDebugMonitorAlTowed() returned TRUE when DebugMonitor
became pending or active.

. DebugMonitor is not pending and not active and SecureDebugMonitorAlTowed() returns TRUE.

If the Security Extension is implemented, there are two DebugMonitor authentication modes, which are controlled
by DEMCR.SDME:

DEMCR.SDME Target state for DebugMonitor exception = DebugMonitor authentication mode

0

1

Non-secure Non-secure DebugMonitor

Secure Secure DebugMonitor

Ryrpk

Ryvsc

Rwoms

RxpBN

Ruxrx

If the Security Extension is implemented and DEMCR.SDME == 1, SHPR3.PRI 12 behaves as RESO when
accessed from Non-secure state.

A direct write to DEMCR can set DEMCR.MON_PEND to 1 at any time to make the DebugMonitor exception
pending or can set DEMCR.MON_PEND to 0 to remove a pending DebugMonitor exception.

If the DebugMonitor group priority is greater than the current execution priority and DEMCR.MON_EN == 1, an
External debug request that does not generate an entry to Debug state sets DEMCR.MON_PEND to 1.

When DEMCR.MON_PEND == 1, the PE takes the DebugMonitor exception according to the exception
prioritization rules, regardless of the value of DEMCR.SDME and DEMCR.MON_EN.

When set to 1, DEMCR.MON_PEND remains set to 1 until either the DebugMonitor exception is taken or a write
sets the field to 0.

See also:

. CanPendMonitorOnEvent().

B11.3.3 Non-invasive debug authentication

Rowex

Rcrng

RoMmRF

Non-invasive authentication is controlled by the IMPLEMENTATION DEFINED function
ExternalNoninvasiveDebugEnabled(), and if the Security Extension is implemented, the IMPLEMENTATION DEFINED
function ExternalSecureNoninvasiveDebugEnabled().

When HaltingDebugAllowed() is TRUE, the PE behaves as if ExternalNoninvasiveDebugEnabled() returns TRUE.
The pseudocode function NoninvasiveDebugAllowed() describes this.

Non-invasive debug is prohibited if the function NoninvasiveDebugAllowed() returns FALSE.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B11-197
Non-Confidential

B11 Debug
B11.3 Debug authentication interface

IpHPR If the Security Extension is not implemented, there are two non-invasive debug authentication modes:

ExternalNoninvasiveDebugEnabTed() HaltingDebugAllowed() Non-invasive debug authentication mode

FALSE FALSE Non-invasive debug prohibited
TRUE Non-invasive debug allowed
TRUE X
RmLps If the Security Extension is implemented, non-invasive debug of Secure operations is prohibited if any of:

. NoninvasiveDebugAlTowed() returns FALSE.

. DCHSR.S_SDE is set to 0, DAUTHCTRL.SPNIDENSEL is set to 1 and DAUTHCTRL.INTSPNIDEN is
set to 0.

. DCHSR.S_SDE is set to 0, DAUTHCTRL.SPNIDENSEL is set to 0 and
ExternalSecureNoninvasiveDebugEnabled() returns FALSE.

The pseudocode function SecureNoninvasiveDebugAllowed() shows this.

IpNRC If the Security Extension is implemented, there are three non-invasive debug authentication modes:
NoninvasiveDebugAlTowed() SecureNoninvasiveDebugAllowed() Non-invasive debug authentication mode
FALSE FALSE Non-invasive debug prohibited
TRUE FALSE Non-invasive debug of only Non-secure operations allowed.
Non-invasive debug of Secure operations prohibited.
TRUE Non-invasive debug allowed.
Rpxrk The PE must not generate any trace or profiling data when non-invasive debug is prohibited in all states.
Ryvgr If the Security Extension is implemented and non-invasive debug of Secure operations is prohibited, the PE must

not generate any trace or profiling data that contains secure information.

RrwpH If non-invasive debug is prohibited in the current Security state, an ETM must behave as if it is disabled.

See also:

. NoninvasiveDebugAllowed().

. SecureNoninvasiveDebugAllowed().

. DWT unit operation on page B12-220.

B11.3.4 DAP access permissions

RyzkT When HaltingDebugAlTowed() returns TRUE, regardless of the value of DHCSR.S_SDE, the external debugger can
access the whole physical address space.

B11-198 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

Rpvsn

B11Debug

B11.3 Debug authentication interface

If HaltingDebugAllowed() = FALSE the DAP access permissions are:

Address range

Region or registers

NoninvasiveDebugAlTowed()

FALSE TRUE
0x00000000-0xDFFFFFFF Rest of memory No access No access
0XE0000000-0XEQOFFFFF PPB

0xE00xxFBO-0xE0Q0xxFB72 CoreSight Software Lock No access RW
registers

OXEQOXxXFDO-OXEQOxXFFFb Al ID registers RO RO

0xE0000000-0xE000QFCF IT™ No access RW

0xE0001000-0xEQ0Q1FCF DWT No access RW

0xE0040000-0xEQQ4QFFF TPIU RW RW

0xE0041000-0xEQ041FFF ET™M RW RW

0xE0042000-0xEQQFEFFF

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED

OxE0OFF000-0XEQQFFFFF ROM table RO RO
All other PPB regions and registers No access No access
0XEQ100000-0XFFFFFFFF Vendor_SYS No access RW

a. For each debug component implementing the CoreSight Software Lock registers. These registers are optional.

b. For each debug component implementing the CoreSight ID registers. These registers are optional.

RrppN

II’QSV

IppHD

Ryusc

Rrveg

If the Security Extension is implemented, the DAP must be capable of requesting Secure and Non-secure accesses.

The architecture does not describe how a DAP requests Secure or Non-secure memory accesses. In the

recommended ADIvS Memory Access Port (MEM-AP), ARM recommends that:

. CSW[30], CSW.Prot[6], selects a Secure or Non-secure access:

0
1

Request a Secure access.

Request a Non-secure access.

. CSW/[23], CSW.SPIDEN, is Read-As-One. This is because the DAP can always request a Secure access.

In a CoreSight DAP, the SPIDEN input to the ARMv8-M MEM-AP is independent of the SPIDEN input of the PE,
and should be tied HIGH.

If the Security Extension is implemented, DHCSR.S_SDE == 1, and the DAP requests a Secure access, NS-Req is
set to Secure.

If the Security Extension is implemented and either DHCSR.S SDE == 0 or the DAP requests a Non-secure access,

NS-Req se

t to Non-secure.

ARM DDI 0553A.c

1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved.

Non-Confidential

B11-199

B11 Debug
B11.3 Debug authentication interface

RwMRR If the Security Extension is implemented, DAP accesses are checked by the IDAU and the SAU, if applicable. That
is, if NS-Req on a DAP access specifies Non-secure access, and the IDAU or SAU prohibits Non-secure access to
the address, an error response is returned to the DAP.

DHCSR.S_SDE ==

Yesj

DAP requests Secure

“ No access? Yes
A 4
NS_Req = NS-Req =
Non-secure Secure
Yes Secure address? No >
Y
Return error to
DAP Do Access
RyTTN DAP accesses are not checked by the MPU.
RssvN If the Security Extension is implemented, permitted DAP accesses to banked SCS registers in the range

0XEQ0OE000-0XEQOQEFFF are affected by the values of DHCSR.S SDE, DSCSR.SBRSELEN, and DSCSR.SBRSEL,
as well as by the current Security state of the PE. The following table shows the effect of these factors on the banked
register that is accessed.

DHCSR.S_SDE DSCSR.SBRSELEN DSCSRSBRSEL CurrentSecurity Banked register

state of the PE accessed
0 X X X Non-secure
1 1 0 X Non-secure
1 X Secure
0 X Non-secure Non-secure
Secure Secure
Ruxma Permitted DAP accesses to the region 0xEQ02E000-0xEQ02EFFF are RAZ/WT if the access is privileged and return an
error if the access is unprivileged.
B11-200 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

B11Debug
B11.4 Debug event behavior

B11.4 Debug event behavior

B11.4.1 About debug events
IcBwT An event that is triggered for debug reasons is known as a debug event.

RvHvp A debug event that is not ignored causes one of the following to occur:

. If Halting debug is implemented, entry to Debug state.

. If the Main Extension is implemented, a DebugMonitor exception.
. A HardFault exception.
. An unrecoverable error.
Rynkp The HardFault exceptions or unrecoverable errors that are caused by debug events are generated by:
. A BKPT instruction that is executed when the PE can neither halt nor generate a DebugMonitor exception.
. In some circumstances, the FPB.
Rwcpw The debug events are:

Table B11-2 Debug events

Debug event Actions

Step Halt or DebugMonitor
Halt request Halt
Breakpoint Halt, DebugMonitor, or HardFault
Watchpoint Halt or DebugMonitor
Vector catch Halt only
External Halt or DebugMonitor
RiprZ The DFSR contains status bits for each debug event. These bits are set to 1 when a debug event causes the PE to

halt or generate a DebugMonitor exception, and are then write-one-to-clear.

The following table shows which bit is set for each debug event.

Table B11-3 Debug events

Event cause DFSR bit
Step HALTED
Halt request HALTED
Breakpoint BKPT
Watchpoint DWTTRAP
Vector catch VCATCH
External EXTERNAL
RUNRY It is IMPLEMENTATION DEFINED whether the DFSR debug event bits are updated when an event is ignored.
InsMV Debug events are either synchronous or asynchronous.
ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B11-201

1D092816 Non-Confidential

B11 Debug

B11.4 Debug event behavior

RvsvN The synchronous debug events are:
. Breakpoint debug events, caused by execution of a BKPT instruction or by a match in the FPB.
. Vector catch debug events, caused when one or more DEMCR.VC_* bits are set to 1, and the PE takes the
corresponding exception.
. Step debug events, caused by DHCSR.C_STEP or DEMCR.MON_STEP.

RpvgMm A single instruction can generate several synchronous debug events.

RwirB Synchronous debug events are associated with the instruction that generated them and are taken instead of executing
the instruction. The PE does not generate any other synchronous exception or debug event that might have occurred
as a result of executing the instruction.

RRNRD The Step debug event is taken on the instruction following the instruction being stepped. This means that
prioritization of the event applies relative to any other exception or debug event for the following instruction, not
for the instruction being stepped.

Rjsps If multiple synchronous debug events and exceptions are generated on the same instruction, they are prioritized as
follows:

1. Halt request (halting only), including where DHCSR.C_HALT is set by DHCSR.C_STEP of the previous
instruction.

2. Highest-priority pending exception that is eligible to be taken. If the Main Extension is implemented, this
might be a DebugMonitor exception, if DEMCR.MON_ PEND == 1. This includes where
DEMCR.MON_PEND is set by DEMCR.MON_STEP of the previous instruction.

3. Vector catch.

4. Fault from an instruction fetch, including synchronous BusFault error.

5. Breakpoint that is signaled by an FPB unit.

6. BKPT instruction or other exception that results from decoding the instructions. This includes the cases where
exceptions from the instruction are UNDEFINED, an unimplemented or disabled coprocessor is targeted, or the
EPSR.T bit has a value of 1.

7. Other synchronous exception that is generated by executing the instruction, including an exception that is
generated by a memory access that is generated by the instruction.

Rpqvr The highest-priority synchronous debug event is reported in the DFSR.

Rrwaqo It is UNPREDICTABLE whether synchronous debug events that occur on the same instruction as a debug event with a
higher priority are reported in the DFSR.

RTkRS The asynchronous debug events are:

. Watchpoint debug events caused by a match in the DWT, including instruction address match watchpoints.

. Halt request debug events, where either
— A debugger write that has set DHCSR.C_HALT to 1 and C DEBUGEN set to 1.

— A software write that sets DHCSR.C_HALT to 1 when C_ DEBUGEN was set to 1.

. External debug request debug events caused by assertion of an IMPLEMENTATION DEFINED external debug
request.

RmrmMc When DHCSR.C_DEBUGEN == 0 or the PE is in a state in which halting is prohibited, DHCSR.C_HALT and
DHCSR.C_STEP are ignored, and the PE behaves as if these bits are zero.

See also:

. Halting debug on page B11-203.

. DebugMonitor exception on page B11-204.

. Vector catch on page B11-208.

. BKPTInstrDebugEvent().

B11-202 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

RwLcr

RrzrG

RrHLS
Rrkws

Rrcew

Rxsry

Ryxqr

Rrxws

RErjc
Rvikx

IinGH

RpTBI

RyLNF

Rrkxn
RxsHF

RpvLN

RpBBK

B11Debug
B11.4 Debug event behavior

Halting debug
Setting the DHCSR.C_ DEBUGEN bit to 1 enables Halting debug.

A debug event sets DHCSR.C _HALT to 1 if all of the following conditions apply:
. The debug event supports generating entry to Debug state and DHCSR.C_DEBUGEN == 1.

. Unless otherwise stated, halting is allowed.
If DHCSR.C_HALT has a value of 1 and halting is allowed, the PE halts and enters Debug state.
A debug event that sets DHCSR.C_HALT to 1 pends entry to Debug state.

If the Security Extension is implemented, a debug event might set DHCSR.C_HALT and remain pending through
execution in Secure state, which might not be a finite time. If halting is prohibited in Secure state and allowed in
Non-secure state, then on transition from Secure to Non-secure state by an exception entry, exception return,
Non-secure function call or function return, if DHCSR.C_HALT has a value of 1, the PE must halt and enter Debug
state before the first instruction executed in Non-secure state completes its execution.

If DHCSR.C_HALT has a value of 1 or EDBGRQ is asserted before a context synchronization event, and halting
is allowed after the Context synchronization event, then the PE must halt and enter Debug state before the first
instruction following the Context synchronization event completes its execution.

DFSR is updated at the same time as the PE sets DHCSR.C_HALT to 1.

If an instruction that is being stepped or an instruction that generates a debug event reads DFSR or DHCSR, the
value that is read for the relevant DFSR bit or for DHCSR.C_HALT is UNKNOWN.

For asynchronous debug events, if halting is allowed, the PE must enter Debug state in finite time.
Entering Debug state has no architecturally defined effect on the Event Register and exclusive monitors.

DHCSR.C_SNAPSTALL allows imprecise entry into the Debug state, for example by forcing any stalled load or
store instructions to be abandoned.

If DHCSR.C_DEBUGEN == 0 or HaltingDebugAllowed() == FALSE, DHCSR.C_SNAPSTALL is ignored and the
PE behaves as if this bit is zero.

If the Security extension is implemented and if DHCSR.S_SDE ==0, DHCSR.C_SNAPSTALL ignores writes from
the debugger.

Before leaving Debug state caused by an imprecise entry the system must be reset.

The PE is not permitted to report the PC (R15) as either EXC_ RETURN or FNC_RETURN when in Debug state.
To transfer a word to a general-purpose register, to a Special-purpose register, or to a Floating-point Extension
register, a debugger:

1. Writes the required word to DCRDR.

2. Writes to the DCRSR, with the REGSEL value indicating the required register, and the REGWnR bit set to
one to indicate a write access. This clears the DHCSR.S_REGRDY bit to zero.

3. If required, polls DHCSR until DHCSR.S REGRDY reads-as-one. This shows that the PE has transferred
the DCRDR value to the selected register.

To transfer a word from a general-purpose register, Special-purpose register, or Floating-point Extension register, a

debugger:

1. Writes to DCRSR, with the REGSEL value indicating the required register, and the REGWnR bit as zero to
indicate a read access. This clears the DHCSR.S REGRDY bit to zero.

2. Polls DHCSR until DHCSR.S REGRDY reads-as-one. This shows that the PE has transferred the value of
the selected register to DCRDR.

3. Reads the required value from DCRDR.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B11-203
Non-Confidential

B11 Debug

B11.4 Debug event behavior

Robpep

RykBB

Irx0B

RoLrN

IRRFN

RxrrQ

RRrsT

RGamy

Rxccs

Rvivs

Rpxnx

Ippcc
RzBs;

RppLr

In Debug state, writing to DCRDR clears the DHCSR.S REGRDY bit to zero, and the PE then sets the bit to 1 when
the transfer between the DCRDR and RO to R12, special-purpose register, or Floating-point Extension register
completes.

When using this mechanism to write all bits of the XPSR registers are fully accessible. The effect of writing an
illegal value is UNPREDICTABLE.

This mechanism differs from the behavior of MSR or MRS instruction accesses to the XPSR, where some bits are
ignored on writes.

The debugger can write to the EPSR.IT/ICI bits. If the debugger does this, it must write a value consistent with the
instruction to be executed on exiting Debug state, otherwise instruction execution will be UNPREDICTABLE.

The debugger can always set FAULTMASK to one, but doing so might cause unexpected behavior on exit from
Debug state. An MSR instruction cannot set FAULTMASK to 1 when the execution priority is -1 or higher.

The debugger can write to the ESPR.ICI bits, and on exiting Debug state any interrupted LDM or STM instruction will
use these new values. Clearing the ICI bits to zero will cause the interrupted LDM or STM instruction to restart or
continue.

The Debugger can write to the DebugReturnAddress, and on exiting Debug state the PE starts executing from the
updated address. The Debugger must ensure the EPSR.IT bits and the EPSR.ICI bits are consistent with the new
DebugReturnAddress.

DebugReturnAddress is the address of the first instruction to be executed on exit from Debug state. This address
indicates the point in the execution stream where the debug event was invoked. For a breakpoint this is the address
of the breakpointed instruction. For all other debug events DebugReturnAddress is the address of the first
instruction that both:

. In a simple sequential execution of the program, executes after the instruction that caused the debug event.
. Has not been executed, where the PE has executed all instructions that are earlier in a simple sequential

execution of the program than the instruction indicated by DebugReturnAddress.

Bit[0] of a DebugReturnAddress value is RAZ/SBZ. When writing a DebugReturnAddress, writing bit [0] of the
address does not affect the EPSR.T bit.

When the PE is in Debug state, an indirect write to a Special-purpose register caused by an access by the debugger
to a register within the System Control Block on page D1-806 is guaranteed to be visible to a subsequent read of the
Special-purpose register through DCRDR, if the corresponding write to DCRSR was made after the access to the

register within the System Control Block completed.

A first write to a Special-purpose register made by the debugger through the DCRDR is guaranteed to be visible to
a second read or write of any Special-purpose register through DCRDR, if the corresponding second write to
DCRSR was made after the first write is observed to be completed in DHCSR.S REGRDY.

See also:

. DHCSR, Debug Halting Control and Status Register on page D1-876.
. Debug stepping on page B11-205.

. DCRDR, Debug Core Register Data Register on page D1-863.

. DCRSR, Debug Core Register Select Register on page D1-864.

DebugMonitor exception
The DebugMonitor exception is only available if the Main Extension is implemented.

The DebugMonitor exception is enabled when the DEMCR.MON_EN bit is set to 1.

A debug event sets DEMCR.MON_PEND to 1 if all of the following conditions apply:

. The debug event supports generating DebugMonitor exceptions and does not generate an entry to Debug
state.

B11-204

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

Rx1kQ

RcuxQ

Rvspx

RprxT

Rpknp

RvrLo

B11Debug
B11.4 Debug event behavior

. DEMCR.MON _EN == 1.

. The DebugMonitor group priority is greater than the current execution priority.

If a Debug event does not generate an entry to Debug state, DEMCR.MON_EN is set to 1 and the DebugMonitor
group priority is less than or equal to the current execution priority:

. The PE escalates a breakpoint debug event that is generated by executing a BKPT instruction to a HardFault.
. There are UNPREDICTABLE circumstances in which the breakpoint generated by the FPB can be escalated to
a HardFault.

. The PE might set DEMCR.MON_PEND to 1 for a watchpoint debug event.
. The PE ignores the other debug events.

A debug event that sets DEMCR.MON_PEND to 1 pends a DebugMonitor exception.

DEMCR.MON_PEND is cleared to 0 when the PE takes a DebugMonitor exception. This means that a value of 1
for DEMCR.MON_PEND might never be observed for a synchronous DebugMonitor exception.

DFSR is updated at the same time as the PE sets DEMCR.MON_PEND to 1.

If an instruction that is being stepped or that generates a debug event reads DFSR or DEMCR, the value that is read
for the relevant DFSR bit or for DEMCR.MON_PEND is UNKNOWN.

For asynchronous debug events, if taken as a DebugMonitor exception, and if the current priority is lower than the
DebugMonitor group priority, a DebugMonitor exception must be taken in finite time.

See also:
. DWT unit operation on page B12-220.
. FPB unit operation on page B12-236.

B11.4.2 Debug stepping

Rumen

RruTG

Rrrve

lomxc

Rswkc

The ARMVS-M architecture supports debug stepping in both Halting debug and monitor debug.

It is IMPLEMENTATION DEFINED whether stepping a WFE or WFI instruction causes the WFE or WFI instruction to:
. Retire and take the debug event.
. Go into a sleep state and take the debug event only when another wake up event occurs.

If a debug event wakes a WFE or WFI instruction, then on taking the debug event, the instruction has retired.

See also:
. Halting debug stepping.
. Debug monitor stepping on page B11-207.

Halting debug stepping

A debugger can use Halting debug stepping to exit from Debug state, execute a single instruction, and then reenter
Debug state.

Halting debug stepping is active when all of the following apply:

. DHCSR.C_DEBUGEN is set to 1, Halting debug is enabled, and halting is allowed.

. DHCSR.C_STEP is set to 1, halting stepping is enabled.

. The PE is in Non-debug state.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B11-205
Non-Confidential

B11 Debug

B11.4 Debug event behavior

Rzvks When the PE exits Debug state and Halting debug stepping becomes active, the PE performs a Halting debug step
as follows:
1. Performs one of the following:
. Completes the next instruction without generating any exception.
. Takes any pending exception entry of sufficient priority, without completing the next instruction. The
PE performs an exception entry sequence that stacks the next instruction context. This context might
include instruction continuation bits if the next instruction was partly executed and supports
instruction resume. The exception might be a pending exception, or an exception generated by the
execution of the next instruction.
. Completes the execution of the next instruction, and then takes any pending exception of sufficient
priority. The PE performs an exception entry sequence that stacks the following instruction context.
. If the next instruction is an exception return instruction, completes the next instruction, tail-chaining
to enter a new exception handler.
In each case where the PE performs an exception entry sequence it does so according to the exception priority
and late-arrival rules, meaning derived and late-arriving exceptions might preempt the exception entry
sequence.
The exception behavior is not recursive. Only a single PushStack () update can occur in a step sequence.
2. Sets DFSR.HALTED and DHCSR.C_HALT to 1. A read of the DFSR.HALTED or the DHCSR.C_HALT
bit performed by the stepped instruction returns an UNKNOWN value.
3. After the Halting debug step, before executing the following instruction, because DHCSR.C_HALT is set the
PE will halt and enter Debug state if halting is still allowed. However, if halting is prohibited after the Halting
debug step then the PE does not enter Debug state and DHCSR.C_HALT remains set.

ILTRX The debugger can optionally set the DHCSR.C_MASKINTS bit to 1 to prevent PendSV, SysTick, and external
configurable interrupts from being taken. When DHCSR.C_MASKINTS is set to 1, if a permitted exception
becomes active, the PE steps into the exception handler and halts before executing the first instruction of the
associated exception handler.

Rzpyr If DHCSR.C_DEBUGEN == 0 or HaltingDebugAllowed() == FALSE, DHCSR.C_MASKINTS is ignored and the
PE behaves as if this bit is zero.

RrwsN If the Security Extension is implemented and if DHCSR.S SDE ==0, DHCSR.C_MASKINTS is ignored for
exceptions targeting Secure state.

RmBeB DHCSR.{C HALT, C_STEP, C_ MASKINTS} can be written in a single write to DHCSR, as follows:

Table B11-4 Debug stepping control using the DHCSR
DHCSR write?
Effect
C_HALT C_STEP C_MASKINTS
0 0 0 Exit Debug state and start instruction execution.
Exceptions can become activeb.
0 0 1 Exit Debug state and start instruction execution.
PendSV, SysTick and, external configurable interrupts are disabled,
otherwise exceptions can become activeb.
0 1 0 Exit Debug state, step an instruction and halt.
Exceptions can become activeb.
0 1 1 Exit Debug state, step an instruction and halt.
PendSV, SysTick and, external configurable interrupts are disabled,
otherwise exceptions can become activeb.
1 X X Remain in Debug state
B11-206 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

B11Debug
B11.4 Debug event behavior

a. Assumes DHCSR.C_DEBUGEN and DHCSR.S_HALT are both set to 1 when the write occurs, meaning the PE is halted.

b. That is, exceptions become active, based on their configuration, according to the exception priority rules.

Rerwk

RprhY

Ipxcr

RmLrM

RmukQ

When DHCSR.C_DEBUGEN is 1 and DHCSR.S HALT is 0, meaning the PE is in Non-debug state with Halting
debug enabled, the effect of modifying DHCSR.C_STEP or DHCSR.C_MASKINTS is UNPREDICTABLE.

When DHCSR.C_DEBUGEN is 0, the PE ignores the values of DHCSR.C_HALT, DHCSR.C_STEP and
DHCSR.C_MASKINTS, and these values are UNKNOWN on DHCSR reads.

Debug monitor stepping

A debugger can use debug monitor stepping to return from the DebugMonitor exception handler, execute a single
instruction, and then reenter the DebugMonitor exception handler.

Debug monitor stepping is active when all of the following apply:

. DHCSR.C_DEBUGEN is set to 0 or the PE is in a state in which halting is prohibited.

. DEMCR.MON_EN is set to 1, that is monitor debug is enabled.

. DEMCR.MON_STEP is set to 1, that is monitor stepping is enabled.

. DEMCR.SDME == 1 or the instruction was executed in Non-secure state or the exception was taken from
Non-secure state.

. Execution priority is below the priority of the DebugMonitor exception when the instruction was executed
or below the exception taken.

When the PE returns from an exception and debug monitor stepping becomes active, the PE performs a debug

monitor step by one of the following:

. Completing the next instruction.

. Taking an exception without completing the next instruction.

If the PE completes the next instruction, it performs the debug monitor step as follows:

1. If the PE executes the next instruction the PE performs one of the following:
. Executes the next instruction without generating any exception.
. Executes a SVC instruction generating an SVCall exception.
. Executes an exception return instruction, tail-chaining to enter a new exception handler according to

the normal exception priority and late-arrival rules.

2. If the PE performs an exception entry as part of the execution of the next instruction, it stacks the following
instruction context.

3. Sets DEMCR.MON_PEND and DFSR.HALTED bits to one. A read of DEMCR.MON_PEND or
DFSR.HALTED bit by the stepped instruction returns an UNKNOWN value.

If the PE takes an exception without completing the next instruction it performs the debug monitor step as follows:
1. If the PE takes an exception without completing the next instruction the PE performs one of the following:
. Takes a pending exception with sufficient priority without executing the next instruction.
. Starts execution of the next instruction, generating a synchronous exception other than an SVCall
exception.

2. The PE performs an exception entry sequence that stacks the next instruction context. This context might
include instruction continuation bits if the next instruction was partly executed and supports instruction
resume.

3. If the execution priority is below the priority of the DebugMonitor exception after taking the exception, sets
DEMCR.MON_PEND and DFSR.HALTED bits to one.

After the debug monitor step, before executing the following instruction, the PE takes any pending exception with
sufficient priority. If the debug monitor step sets DEMCR.MON_PEND to one, this might be the DebugMonitor
exception. However, if any exceptions other than the DebugMonitor exception are pending, the normal rules for
exception prioritization apply. This means that another exception with a higher priority than the DebugMonitor
exception might preempt execution.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B11-207
Non-Confidential

B11 Debug

B11.4 Debug event behavior

Igpsx In all other cases, the DebugMonitor exception preempting execution returns control to the DebugMonitor handler.
Unless that handler clears DEMCR.MON_STEP to 0, returning from the handler performs the next debug monitor
step.

Ixprx If, after the debug monitor stepping process, the taking of an exception means that the execution priority is no longer
below that of the DebugMonitor exception, the values of DEMCR.MON_STEP and DEMCR.MON_PEND mean
that debug monitor stepping process continues when execution priority falls back below the priority of the
DebugMonitor exception.

B11.4.3 Vector catch

ITvrX Vector catch is the mechanism for generating a debug event and entering Debug state on entry to a particular
exception handler or reset.

Rjcxr Vector catching is only supported by Halting debug.

Rgpru The conditions for a vector catch, other than reset vector catch, are:

. DHCSR.C_DEBUGEN == 1 and halting is allowed.

. The associated vector catch enable bit, one of DEMCR[11:4] in the Main Extension or DEMCR[10] without
the Main Extension, is set to 1.

. An exception is taken to the relevant exception handler. The associated fault status register status bit is set to
1.

When these conditions are met, the PE sets DHCSR.C_HALT to 1 and enters Debug state before executing the first

instruction of the exception handler.

IopwL Late arrival and derived exceptions might occur, postponing when the PE halts.

RygnNL If the Security Extension is implemented, then when DHCSR.C_DEBUGEN == 0 or the PE is in a state in which
halting is prohibited, all DEMCR.VC_* bits, other than DEMCR.VC_CORERESET, are ignored.

RwrmoQ If debug is enabled, DHCSR.C_DEBUGEN == 1, and DEMCR.VC_CORERESET == 1 when the PE resets, the
PE pends a Vector Catch debug event, even if the Security Extension is implemented, debug is prohibited in Secure
state, and the PE has reset into Secure state. The PE does not halt until either it enters Non-secure state or debug is
allowed in Secure state.

See also:

. Exception numbers and exception priority numbers on page B3-47.
. Exceptions during exception entry on page B3-79.

. Exceptions during exception return on page B3-80.

. Resets, Cold reset and Warm reset on page B1-32.

B11.4.4 Breakpoint instructions

RcriG If the Security Extension is implemented, then is when DHCSR.C_DEBUGEN == 0 or when the PE is in a state in
which halting is prohibited, the BKPT instruction does not generate an entry to Debug state. If no DebugMonitor
exception is generated, the BKPT instruction generates a HardFault exception or enters Lockup state.

RMFEEN A BKPT instruction halts the PE if all of the following conditions apply:

. HaltingDebugAllowed() == TRUE.

. DHCSR.C_DEBUGEN == 1.

. The Security Extension is not implemented, the instruction is executed in Non-secure state, or
DHCSR.S _SDE == 1.

Rrrkk A BKPT instruction generates a DebugMonitor exception if it does not halt the PE and all of the following conditions
apply:

. DEMCR.MON_EN == 1.
B11-208 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

B11Debug
B11.4 Debug event behavior

. The DebugMonitor group priority is greater than the current execution priority.
. The Security Extension is not implemented, the instruction is executed in Non-secure state, or
DEMCR.SDME == 1.

B11.4.5 External debug request

Rxzcp

Rarex

Rrgev

RpxrD

When the PE is in Non-debug state, an external agent can signal an external debug request.

An external debug request can cause a debug event, that causes either:
. Entry to Debug state.
. If the Main Extension is implemented, a DebugMonitor exception.

The PE ignores external debug requests when it is in Debug state.

If the Security Extension is implemented, then when DHCSR.C_DEBUGEN == 0 or the PE is in a state in which
halting is prohibited, an External debug request does not generate an entry to Debug state and is ignored if no
DebugMonitor exception is generated.

See also:
. Debug event behavior on page B11-201.
. DFSR.EXTERNAL.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B11-209
Non-Confidential

B11 Debug
B11.5 Exiting Debug state

B11.5 Exiting Debug state

Rmowr The PE exits Debug state:

. When the debugger writes 0 to DHCSR.C_HALT.

. On receipt of an external restart request.
Runks Exiting Debug state has no architecturally defined effect on the Event Register and exclusive monitors.
Rwksp If software clears DHCSR.C_HALT to 0 when the PE is in Debug state, a subsequent read of the DHCSR that

returns 1 for both DHCSR.C_HALT and DHCSR.S_HALT indicates that the PE has reentered Debug state because
it has detected a new debug event.

B11-210 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

B11Debug
B11.6 Multiprocessor support

B11.6 Multiprocessor support

Roxrs

Systems that support debug of more than one PE, either within a single device or as heterogeneous PEs in a more
complex system, require each PE to support all of the following to enable cross-triggering of debug events between
PEs:

. An external debug request.
. A cross-halt event.
. An external restart request.

Support for these features is OPTIONAL in other systems.

B11.6.1 Cross-halt event

Rprey

When the PE enters Debug state, it signals to an external agent that it is entering Debug state.

B11.6.2 External restart request

Rzxvw

Rwist

RnjoN

When the PE is in Debug state, an external agent can signal an external restart request that causes the PE to exit
Debug state.

An external restart request is not ordered with respect to accesses to memory-mapped registers. It is UNPREDICTABLE
whether an access to a memory-mapped register from a DAP completes before an external restart request.
Therefore, a debugger must ensure that any read or write of a memory-mapped register by the DAP completes
before issuing an external restart request.

The PE ignores external restart requests when it is in Non-debug state.

See also:

. Exiting Debug state on page B11-210.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B11-211
Non-Confidential

B11 Debug
B11.6 Multiprocessor support

B11-212 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

Chapter B12
Debug and Trace Components

This chapter specifies the ARMv8-M debug and trace component rules. It contains the following sections:
. Instrumentation Trace Macrocell on page B12-214.

. Data Watchpoint and Trace unit on page B12-220.

. Embedded Trace Macrocell on page B12-234.

. Trace Port Interface Unit on page B12-235.

. Flash Patch and Breakpoint unit on page B12-236.

ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B12-213
1D092816 Non-Confidential

B12 Debug and Trace Components
B12.1 Instrumentation Trace Macrocell

B12.1 Instrumentation Trace Macrocell
See also:

. Data Watchpoint and Trace unit on page B12-220.

B12.1.1 About the ITM

RGpnG The Instrumentation Trace Macrocell (ITM) provides a memory-mapped register interface that applications can use
to generate Instrumentation packets.

Igxwy The ITM is only available if the Main Extension is implemented.
Rimxs The ITM generates Instrumentation packets, Synchronization packets, and the following protocol packets:

. Overflow packets.

. Local timestamp packets.

. Global timestamp packets.

. Extension packets.
Rxqrx The ITM combines the following packets into a single trace stream:

. Instrumentation packets.

. Synchronization packets.

. Protocol packets.

. Hardware source packets that are generated by the DWT.
IrQLR The following figure shows how the ITM relates to other debug components.

ETM
|—> —» Synchronous parallel
Global timestamps | 1 TPIU £ Trace
7Y output
— Serial Wire
DWT > IT™ j
|—> Synchronization Overflow
Global timestamps | Local timestamps
Global 4

timestamp clock 1 Or alternative trace sink

Rewij When multiple sources are generating data at the same time, the ITM arbitrates using the following priorities:

Synchronization, when required
Priority level -1, highest.

Instrumentation Priority level 0.
Hardware source Priority level 1.
Local timestamps Priority level 2.
Global timestamp 1 Priority level 3.
Global timestamp 2 Priority level 4.

See also:

. Global timestamping on page B12-217.

. Data Watchpoint and Trace unit on page B12-220.

. Chapter F1 ITM and DWT Packet Protocol Specification.

B12-214 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

B12 Debug and Trace Components
B12.1 Instrumentation Trace Macrocell

B12.1.2 ITM operation

RNKsC The ITM consists of:

. Up to 256 stimulus port registers, [TM_STIM<n>.
. Up to eight enable registers, [TM_TER<n>.

. An access control register, [TM_TPR.

. A general control register, ITM_TCR.

RMEDY The number of ITM_STIM<n> registers is an IMPLEMENTATION DEFINED multiple of eight. Software can discover
the number of supported stimulus ports by writing all ones to the ITM_TPR, and then reading how many bits are
setto 1.

RcGgvp If the ITM is disabled or not implemented, any Secure or Non-secure write to ITM_STIM<n> is ignored.

Rpixr Unprivileged and privileged software can always read all ITM registers. If the ITM is not implemented, these
registers are RAZ/WI.

Resrv The ITM_TPR defines whether each group of eight ITM_STIM<n> registers, and their corresponding
ITM_TER<n> bits, can be written by an unprivileged access.

Rprxv ITM_STIM<n> registers are 32-bit registers that support the following word-aligned accesses:

. Byte accesses, to access register bits[7:0].
. Halfword accesses, to access register bits[15:0].
. Word accesses, to access register bits[31:0].

RiNnMwW Non-word-aligned accesses are UNPREDICTABLE.

Rnovk ITM_TCR.ITMENA is a global enable bit for the ITM. A Cold reset clears this bit to 0, disabling the ITM.

Ryragp The ITM_TER<n> registers provide an enable bit for each stimulus port.

RNTCR When software writes to an enabled ITM_STIM<n> register, the ITM combines the identity of the port, the size of
the write access, and the data that is written, into an Instrumentation packet that it writes to a stimulus port output
buffer. The ITM transmits packets from the output buffer to a trace sink.

RreTH If DEMCR.TRCENA == 0 or NoninvasiveDebugAllowed() == FALSE, the ITM does not generate trace.

Rgram The size of the stimulus port output buffer is IMPLEMENTATION DEFINED, but must have at least one entry. The
stimulus port output buffer is shared by all ITM_STIM<n> registers.

Rsxnk When the stimulus port output buffer is full, if software writes to any ITM_STIM<n> register, the ITM discards the
write data, and generates an Overflow packet.

Rsrpp Reading the ITM_STIM<n> register of any enabled stimulus port returns a value indicating the output buffer status
and that the port is enabled.

Rxvve Reading an ITM_STIM<n> register when the ITM is disabled, or when the individual stimulus port is disabled in
the corresponding ITM_TER<n> register, returns the value indicating that the output buffer cannot accept data
because the port is disabled.

RFxsL Hardware source packets that are generated by the DWT unit use a separate output buffer. The output buffer status
that is obtained by reading an ITM_STIM<n> register is not affected by trace that is generated by the DWT unit.

Remxw Stalling is supported through an optional control, ITM_TCR.STALLENA. When implemented and set to 1, the ITM
can stall the PE to guarantee delivery of data trace packets.

RNEN Stalling does not affect the DWT counters.

RrNDP The ITM might generate an Overflow packet while the PE is stalled, if the DWT generates:

. A Hardware source packet other than a Data trace packet.
. A Data trace PC value packet or Data trace match packet from a Cycle Counter comparator.
ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B12-215

1D092816

Non-Confidential

B12 Debug and Trace Components
B12.1 Instrumentation Trace Macrocell

RcrkK The ITM must not stall the PE in Secure state if SecureHaltingDebugAllowed() == FALSE.

RGruw The ITM must not stall the PE if HaltingDebugAllowed() == FALSE.

Rpgep The ITM must not stall the PE in such a way as to deadlock the system.

ReryG The ITM must not stall the PE if the trace output is disabled.

RxrvL The ITM must not stall for writes to the [ITM_STIM<n> registers.

RupLu Instrumentation trace packets must appear in the trace output in the order in which writes arrive at the
ITM_STIM<n> registers.

RxNux It is IMPLEMENTATION DEFINED whether an ITM requires flushing of trace data to guarantee that data is output.

Rrsxr If periodic flushing is required, the ITM must flush trace data:

. When a Synchronization packet is generated.

. When trace is disabled, meaning that either DEMCR.TRCENA is cleared to 0 or one or more of
ITM_TCR.{TXENA, SYNCENA, TSENA, SYNCENA} is cleared to 0, and the buffered trace includes at
least one corresponding packet type.

. In response to other IMPLEMENTATION DEFINED flush requests from the system.

RMKFs If a system supports multiple trace streams, the debugger must write a unique nonzero trace ID value to the
ITM_TCR.TraceBusID field. The system uses this value to identify the ITM and DWT trace stream. To avoid trace
stream corruption, before modifying the ITM_TCR.TraceBusID a debugger must:

. Clear the ITM_TCR.ITMENA bit to zero, to disable the ITM.

. Poll the ITM_TCR.BUSY bit until it returns to zero, indicating that the ITM is inactive.

B12.1.3 Timestamp support

Rryrr Timestamps provide information on the timing of event generation regarding their visibility at a trace output port.

RTEDG An ARMvS8-M PE can implement either or both of the following types of timestamp:

. Local timestamps.

. Global timestamps.

Local timestamping

RrmxMm Local timestamps provide delta timestamp values, meaning each local timestamp indicates the elapsed time since
generating the previous local timestamp.

RwagBa The ITM generates the local timestamps from the timestamp counter in the ITM unit.

Rx1BH The timestamp counter size is an IMPLEMENTATION DEFINED value that must be less than or equal to 28 bits.

RGpxT It is IMPLEMENTATION DEFINED whether the ITM supports synchronous clocking of the timestamp counter mode.

Rsrin It is IMPLEMENTATION DEFINED whether the ITM and TPIU support asynchronous clocking of the timestamp
counter mode.

RGups ITM_TCR.TSENA enables Local timestamp packet generation.

ReswG When local timestamping is enabled and the DWT or ITM transfers a Hardware source or instrumentation trace
packet to the appropriate output FIFO, and the timestamp counter is non-zero, the ITM:

. Generates a Local timestamp packet.

. Resets the timestamp counter to zero.

B12-216 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

RBRRL

RxFrRH

RouB

Rnpek

Rremx

Rpstg

Repws

[iQip

RiprD

RnGpw

RrmTN

Rskcp

RjyGer

Ipksp

B12 Debug and Trace Components
B12.1 Instrumentation Trace Macrocell

If the timestamp counter overflows, it continues counting from zero and the ITM generates an Overflow packet and
transmits an associated Local timestamp packet at the earliest opportunity. If higher priority trace packets delay
transmission of this Local timestamp packet, the timestamp packet has the appropriate non-zero local timestamp
value.

The ITM can generate a Local timestamp packet relating to a single event packet, or to a stream of back-to-back
packets if multiple events generate a packet stream without any idle time.

Local timestamp packets include status information that indicates any delay in one or both of:
. Transmission of the timestamp packet relative to the corresponding event packet.
. Transmission of the corresponding event packet relative to the event itself.

If the ITM cannot generate a Local timestamp packet synchronously with the corresponding event packet, the
timestamp count continues to increment until the ITM can generate a Local timestamp packet.

The ITM compresses the count value in the timestamp packet by removing leading zeroes, and transmits the
smallest packet that can hold the required count value.

See also:

. Local timestamp clocking options.

Local timestamp clocking options

If the implementation supports both synchronous and asynchronous clocking of the local timestamp counter,
ITM_TCR.SWOENA selects the clocking mode.

When software selects synchronous clocking, when local timestamping is enabled, the PE clock drives the
timestamp counter, and the counter increments on each PE clock cycle.

When software selects synchronous clocking, whether local timestamps are generated in Debug state is
IMPLEMENTATION DEFINED. ARM recommends that entering Debug state must disable local timestamping,
regardless of the value of the ITM_TCR.TSENA bit.

When software selects asynchronous clocking, and enables local timestamping, the TPIU output interface clock
drives the timestamp counter, through a configurable prescaler. The rate of asynchronous clocking depends on the
output encoding scheme. This clock might be asynchronous to the PE clock.

When asynchronous clocking is implemented, whether the incoming clock signal can be divided before driving the
local timestamping counter is IMPLEMENTATION DEFINED.

If the implementation supports division of the incoming asynchronous clock signal, ITM_TCR.TSPrescale sets the
prescaler divide value.

Software must only select asynchronous clocking when the TPIU is configured to use an output mode that supports
asynchronous clocking.

When software selects asynchronous clocking and the TPIU asynchronous interface is idle, the ITM holds the
timestamp counter at zero. This means that the ITM does not generate a local timestamp on the first packet after an
idle on the asynchronous interface.

See also:

. Trace Port Interface Unit on page B12-235.

Global timestamping

Global timestamps provide absolute timestamp values, which are based on a system global timestamp clock. They
provide synchronization between different trace sources in the system.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B12-217
Non-Confidential

B12 Debug and Trace Components
B12.1 Instrumentation Trace Macrocell

Ruswp If an implementation includes global timestamping, the ITM generates Global timestamp (GTS) packets, which are
based on a global timestamp clock.

Rxwaqs The size of the global timestamp is either 48 bits or 64 bits. The choice between these two options is
IMPLEMENTATION DEFINED.

RSrDF To transfer the global timestamp, two formats of Global timestamp packets are defined:

. The first packet format, Global timestamp 1 packet, holds the value of the least significant timestamp
bits[25:0], and wrap and clock change indicators.

. The second packet format, Global timestamp 2 packet, holds the value of the high-order timestamp bits:
— Bits[47:26], if a 48-bit global timestamp is supported.

— Bits[63:26], if a 64-bit global timestamp is supported.

RvGBT The global timestamp that is generated by the ITM must be a full global timestamp:

. When software first enables global timestamps, by changing the value of the ITM_TCR.GTSFREQ field
from zero to a nonzero value.

. When the system asserts the clock ratio change signal in the external ITM timestamp interface.

. In response to a Synchronization packet request, even if ITM_TCR.SYNCENA == 0 meaning it does not
generate a Synchronization packet.

. If, when it has to generate a global timestamp, it detects that the values of the high-order bits of the global
timestamp have changed.

RGamk If the global timestamp generated by the ITM does not have to be a full global timestamp, the ITM generates only
a single Global timestamp 1 packet. The ITM might compress the packet by omitting significant bits, if they are
unchanged from the previous timestamp value.

Rwpex When the ITM must generate a full global timestamp:

1. The ITM first generates the Global timestamp 1 packet with timestamp bits[25:0], with the applicable bit of
the Wrap and ClockCh bits in that packet set to 1 to indicate that the high-order bits of the timestamp will
also be output. This is the packet that the ITM outputs immediately after a non-delayed trace packet.

2. Because of packet prioritization, the ITM might have to transmit other trace packets before it can output the
Global timestamp 2 packet that contains the high-order bits of the timestamp. It might also have to transmit
another Global timestamp packet. If so, it outputs the Global timestamp 1 packet with timestamp bits[25:0]
and the Wrap bit set to 1.

3. The ITM later generates the Global timestamp 2 packet with the high-order timestamp bits for the most
recently transmitted Global timestamp 1 packet.

See also:

. Synchronization support.

. Continuation bits on page B12-219.

. Chapter F1 ITM and DWT Packet Protocol Specification.

B12.1.4 Synchronization support

ILryT An external debugger uses Synchronization packets to recover bit-to-byte alignment information in a serial data
stream.

IivGp Synchronization packets are independent of timestamp packets.

INgv ARM recommends that software disables Synchronization packets when using an asynchronous serial trace port, to
reduce the data stream bandwidth.

RrroN If ITM_TCR.SYNCENA == 1, the ITM outputs a Synchronization packet:

. When it is first enabled.

B12-218 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

B12 Debug and Trace Components
B12.1 Instrumentation Trace Macrocell

. If DWT_CYCCNT is implemented and DWT_CTRL.SYNCTAP is nonzero, in response to a
Synchronization packet request from the DWT unit.

. If TPIU_PSCR is implemented, in response to a Synchronization packet request from the TPIU:
— IfDWT_CYCCNT is not implemented, TPIU_PSCR must be implemented.

— IfDWT _CYCCNT is implemented, it is IMPLEMENTATION DEFINED whether TPIU PSCR is
implemented.

. In response to other IMPLEMENTATION DEFINED Synchronization packet requests from the system.

See also:

. DWT_CTRL.SYNCTAP.

B12.1.5 Continuation bits

IgrMx A Synchronization packet consists of a bit stream of at least 47 zero bits followed by a one bit. The final bit is the
byte alignment marker, and therefore bit [7] of the last byte of a Synchronization packet is always one.

RinvH The longest Extension packet is always 5 bytes. In an Extension packet, bit [7] of each byte, including the header
byte, but not including the last byte of a 5-byte packet, is a continuation bit, C. Bit [7] of the last byte of a 5-byte
Extension packet is part of the extension field. Bit [7] of the last byte of a fewer-than-5-byte Extension packet is
always zero.

RxFTL For all other protocol packets, bit [7] of each byte, including the header byte, but not including the last byte of a
7-byte packet, is a continuation bit, C. Bit [7] of the last byte of a packet is always zero.

Rppsr Each packet type defines its maximum packet length. Except for Global timestamp 2 and Synchronization packets,
the longest defined packet is 5 bytes.

RppiG The continuation bit, C, is defined as:
0 This is the last byte of the packet.
1 This is not the last byte of the packet.
ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B12-219

1D092816 Non-Confidential

B12 Debug and Trace Components
B12.2 Data Watchpoint and Trace unit

B12.2

B12.2.1

Raaqra

Rksmx

Rpviv

Repxy
Rrkrp
RBKGF

RuprT

RwaoLx

Rsswr

Rcrux

B12.2.2

IwTss

Rspiq

Data Watchpoint and Trace unit

About the DWT

The Data Watchpoint and Trace (DWT) unit provides the following features:
. Comparators that support:

— Use as a single comparator for instruction address matching or data address matching.

— Use in linked pairs for instruction address range matching or data address range matching.
. Generation, on a comparator match, of:

— A debug event that causes the PE either to enter Debug state or, if the Main Extension is implemented,
to take a DebugMonitor exception.

— Signaling a match to an ETM, if implemented.
— Signaling a match to another external resource.

. External PC sampling using a PC sample register.

If the Main Extension is implemented, the DWT provides the following features:

. An optional cycle counter.

. Comparators that support:
— Use as a single comparator for cycle counter matching, if the cycle counter is implemented.
— Use as a single comparator for data value matching.

— Use in linked pairs for data value matching at a specific data address.

If the Main Extension and the ITM are implemented, the DWT provides the following trace generation features:
. Generating one or more trace packets on a comparator match.

. Generating periodic trace packets for software profiling.

. Exception trace.

. Performance profiling counters that generate trace.

If DWT_CTRL.NOTRCPKT is 1, there is no DWT trace support.

If DWT_CTRL.NOCYCCNT is 1, there is no cycle counter support.

If DWT_CTRL.NOPRFCNT is 1, there is no profiling counter support.

The DWT_CTRL.NUMCOMP field indicates the number of implemented DWT comparators, which must be in the
range 0-15.

If the Main Extension is not implemented, Cycle counter, Data value, Linked data value, and Data address with
value comparators and all trace features are not supported.

Data trace packets are only generated for comparators 0-3.

When a DWT implementation includes one or more comparators, which comparator features are supported, and by
which comparators, is IMPLEMENTATION DEFINED.

DWT unit operation

For each implemented comparator, a set of registers defines the comparator operation. For comparator n:
. DWT_COMP<n> holds a value for the comparison.
. DWT_FUNCTION<n> defines the operation of the comparator.

A Secure match is a match that is generated by:

. Vector fetches where NS-Req has a value of Secure for the operation.

B12-220

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

RmaGaot

RGrLN

Rucrp

Rmvrk

Rvrny

Rpkrk

RGpmN

Rruwyv

Rwsrr

B12 Debug and Trace Components
B12.2 Data Watchpoint and Trace unit

. The hardware stacking or unstacking of registers, where NS-Req has a value of Secure for the operation, on
any of:

— Exception entry.

— Exception exit.

— Function call entry.

— Function return.

— Lazy state preservation.

. When the Main Extension is implemented, a cycle counter match in Secure state if DWT _CTRL.CYCDISS
=1.

. An operation that is generated by an instruction that is executed in Secure state, including:
— An Instruction address match for an instruction that is executed in Secure state.
— A Data address or Data value match for a load or store that is generated by an instruction that is
executed in Secure state.
For a comparator <n>, all matches are prohibited if one or more of the following conditions apply:
. DEMCR.TRCENA == 0 or NoninvasiveDebugAllowed() == FALSE.
. DWT_FUNCTION.ACTION specifies a debug event and all the following conditions apply:
— HaltingDebugAllowed() == FALSE or DHCSR.C DEBUGEN == 0.
— The Main Extension is not implemented or DEMCR.MON_EN == 0.
If the Security Extension is implemented, Secure matches are prohibited for a comparator if one of the following
conditions applies:

. DWT_FUNCTION.ACTION specifies a trace or trigger event and SecureNoninvasiveDebugAllowed() ==
FALSE.

. DWT_FUNCTION.ACTION specifies a debug event and all of the following conditions apply:
— DHCSR.S_SDE ==0.
— The Main Extension is not implemented or DEMCR.SDME ==0.

For address and value comparisons, the control register values and the current execution priority and Security state
relate to the state of the PE when it generated the transaction that is being matched against.

Between a change to the debug authentication interface, DHCSR or DEMCR, that disables debug and a following
Context synchronization event, it is UNPREDICTABLE whether the DWT uses the old values or the new values.

Where the DWT operation rules prohibit a match being generated, a match must not be generated, even if the
programmer’s model defines it as being UNPREDICTABLE whether a comparator generates a match as the result of
the way in which the DWT is programmed.

If DEMCR.TRCENA == 0 or NoninvasiveDebugAllowed() == FALSE, DWT CTRL.FOLDEVTENA,
DWT_CTRL.LSUEVTENA, DWT_CTRL.SLEEPEVTENA, DWT_CTRL.EXCEVTENA, and
DWT_CTRL.CPIEVTENA are ignored, and the PE behaves as if they have a value of 0.

If DEMCR.TRCENA == 0 or NoninvasiveDebugAllowed() == FALSE, the DWT does not generate any trace packets.

If the Security Extension is implemented and SecureNoninvasiveDebugAllowed() == FALSE,
DWT_CTRL.FOLDEVTENA, DWT_CTRL.LSUEVTENA, DWT_CTRL.SLEEPEVTENA,

DWT CTRL.EXCEVTENA, and DWT CTRL.CPIEVTENA are ignored and the PE behaves as if they have a
value of zero in Secure state.

If the Security Extension is implemented and SecureNoninvasiveDebugAllowed() == FALSE, Exception trace packets
are not generated if the exception number in the packet represents a Secure exception:

. Exception entry packets are not generated for exceptions that are taken to Secure state.
. Exception exit packets are not generated for exits from Secure state.
. Exception return packets are not generated for returns to Secure state.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B12-221
Non-Confidential

B12 Debug and Trace Components
B12.2 Data Watchpoint and Trace unit

Rprwr

Rxpvs

Rrrir

RBRrsr

RNrGV

Rpjgw

RrTBG

RrnDw

RpGiB

B12.2.3

Rumsps

Exception trace packets must appear in the same order as for a simple sequential execution of the exception
handling.

The cycle counter, DWT_CYCCNT, and the POSTCNT counter are disabled when DEMCR.TRCENA == 0, but
are not otherwise affected by debug authentication.

If the Security Extension is implemented, the cycle counter does not count in Secure state when
DWT_CTRL.CYCDISS is set to 1. This is independent of Secure debug authentication.

When the DWT generates a match, DWT FUNCTION.MATCHED is set to 1, unless the comparator is a Data
address limit or Instruction address limit comparator, in which case DWT_FUNCTION.MATCHED is UNKNOWN.

When the DWT generates a match, then if DWT FUNCTION.ACTION specifies a debug event, then
DHCSR.C_HALT is set to 1 if all of the following conditions are true:

. HaltingDebugAllowed() == TRUE.

. DHCSR.C_DEBUGEN == 1.

« DHCSR.S HALT ==0.

. Either the match is not a Secure match or DHCSR.S SDE == 1.

When the DWT generates a match, then if DWT _FUNCTION.ACTION specifies a debug event, and the Main
Extension is implemented, then DEMCR.MON_PEND is set to 1 if all of the following conditions apply:

. HaltingDebugAllowed() == FALSE, DHCSR.C_DEBUGEN == 0, or the match is a Secure match and
DHCSR.S_SDE ==0.

. DEMCR.MON_EN == 1.

. Either the DebugMonitor group priority is greater than the current execution priority and the watchpoint was
not generated by a lazy state preservation access, or FPCCR.MONRDY has a value of 1 and the watchpoint
was generated by lazy state preservation.

When the DWT generates a match, then if the Main Extension is implemented, a Data trace match packet is
generated, if all of the following conditions apply:
. The Security Extension is implemented.
. SecureNoninvasiveDebugAllowed() == FALSE.
. DWT_FUNCTION.ACTION specifies generating a Data trace PC value packet.
. The PC value that would be included in the packet refers to an instruction that was executed in Secure state.
Otherwise, the type of trace packet that is specified by DWT _FUNCTION.ACTION is generated.
An access that results in a MemManage fault or SecureFault exception because of the alignment, SAU, IDAU, or
MPU checks, is not observed by the DWT, and cannot generate a match.
The DWT treats hardware accesses to the stack as data accesses:
. For registers pushed to the stack by hardware as part of an exception entry or lazy state preservation.
. For registers popped from the stack by hardware as part of an exception return.
. If the Security Extension is implemented:
— For registers pushed to the stack by hardware as part of a Non-secure function call.

— For registers popped from the stack by hardware as part of a Non-secure function.

Constraints on programming DWT comparators

If a DWT comparator, <n>, or pair of comparators, <n> and <n+1>, is programmed with a reserved combination of
DWT_FUNCTION.MATCH and DWT_FUNCTION.ACTION, then it is UNPREDICTABLE whether any
comparator:

. Behaves as if disabled.

B12-222

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

B12 Debug and Trace Components
B12.2 Data Watchpoint and Trace unit

. Generates a match, setting DWT FUNCTION.MATCHED bit to an UNKNOWN value, and any of the
following:

— Asserts CMPMATCH.
— Generates a debug event.

— Generates one or more trace packets.

RerLo Combinations of DWT _FUNCTION.MATCH and DWT _FUNCTION.ACTION that are not specified as valid
combinations are reserved.

ReNaN The valid combinations of DWT FUNCTION.MATCH and DWT FUNCTION.ACTION for a single comparator,
and the events and Data trace packets that the comparator can generate from matching a single access, are identified
in the following table.

In the table:
- means that the packet or event is not generated.
Yes means that the packet or event is generated on a comparator match.
X means that the Action is ignored.
Comparator Debu Data trace Data trace dDaatt: trace Data trace
P MATCH ACTION 9 match PC value data value
type event acket acket address acket
P P packet P
Disabled 0b0000 Obxx - - - - -
0b00 - - - - -
0bo1 Yes - - - -
Cycle counter2 0b0001
0b10 - Yes - - -
0b1l - - Yes - -
0boo - - - - -
Instruction
0b0010 0b01 Yes - - - -
address
0bl02 - Yes - - -
Data address 0b0@1xx 0boo - - - - -
(not
ebelll) 0b01 Yes - - - -
0b102 - Yes - - -
0bl12 - - Yes - -
0b00o - - - - -
0b10xx
Data valuea (not 0bo1 Yes - - - -
0b1011)
0b10 - Yes - - -
Data address 0b11xx 0b10 - - - - Yes
. a (not
with value 0b1111) 0b1l - - Yes - Yes
a. Only if the Main Extension is implemented.
ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B12-223

1D092816

Non-Confidential

B12 Debug and Trace Components
B12.2 Data Watchpoint and Trace unit

Rpkue

RingD

Instruction address range

To match an instruction that is in an instruction address range, the following conditions must be met:

. The first comparator, <n-1>, must be programmed for Instruction address.

. The second comparator, <n>, must be programmed for Instruction address limit.

The valid combinations of DWT FUNCTION.MATCH and DWT FUNCTION.ACTION for an instruction

address range, and the events and data trace packets that matching a single access can generate, are specified in the
following table.

In the table:
- means that the packet or event is not generated.
First means that the packet or event is generated by the first comparator match.

Second means that the packet or event is generated by the second comparator match.

MATCH ACTION Data trace

<n-1>

Datatrace Datatrace Data trace
Debug data
match PC value data value
event address
<n> <n-1> <n> packet packet packet
packet

0b0000

0b0011 0bxx 0Obxx - - - - -

0b0010

0b00 0b00 - - - - -

0b00 obl12a - - Second - -

0b0011
0bol 0b00 First - - - -

0b102 0b00 - First - - _

RLDGR

Rpspy

a. Only if the Main Extension is implemented.

Data address range

To match a data access in a data address range, the following conditions must be met:

. The first comparator, <n-/>, must be programmed for either Data address or Data address with value.

. The second comparator, <n>, must be programmed for Data address limit.

The valid combinations of DWT_FUNCTION.MATCH and DWT_FUNCTION.ACTION for a data address range,
and the events and data trace packets that matching a single access can generate, are specified in the following table.
In the table:

- means that the packet or event is not generated.

First means that the packet or event is generated by the first comparator match.

Second means that the packet or event is generated by the second comparator match.

MATCH

<n-1>

<n>

ACTION
Debug Data trace Data trace PC Data trace data Data trace
match data value
event value packet address packet
<n-1> <n> packet packet

0b0000

0b0111

0bxx Qbxx - - - - -

B12-224

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

B12 Debug and Trace Components
B12.2 Data Watchpoint and Trace unit

MATCH ACTION
Debug Data trace Data trace PC Data trace data Data trace
match data value
event value packet address packet
<n-1> <n> <n-1> <n> packet packet
0b0o 0b0o - - - - -
0b00 Obl112 - - - Second -
0b01xx 0b01 0boo First - - - -
(not 0b0111 .
0b0111) 0b102 0b0o - First - - -
0b11a 0b00 - - First - -
0b112 Obll - - First Second -
0b10 0b0o - - - First
0b11lxx2 0b10 0b11 - - - Second First
(not 0b0111
0b1111) 0b11l 0h0o - - First First
0b11 0b11l - - First Second First

a. Only if the Main Extension is implemented.

Rirav

RNNxD

Rykas

RnTSD

Data value at specific address
Matching data values at specific data addresses is possible only if the Main Extension is implemented.

To match a data value at a specific data address, the following conditions must be met:
. The first comparator, <n-/>, must be programmed for either Data address or Data address with value.
. The second comparator, <#>, must be programmed for Linked data value.

The first comparator matches any access that matches the address. The second matches only accesses that match the
address and the data value.

The valid combinations of DWT _FUNCTION.MATCH and DWT FUNCTION.ACTION for a linked data value,
and the events and data trace packets that matching a single access can generate, are specified in the following table.
In the table:

- means that the packet or event is not generated.

1D092816

First means that the packet or event is generated by the first comparator match.

Second means that the packet or event is generated by the second comparator match.

Both means that a first packet is generated by a first comparator match, even if the Linked data value
comparator does not match, and a second packet is generated by the second comparator match, if both
comparators match.

MATCH ACTION Datatrace Datatrace Data trace Data trace
Debug data
match PC value data value
event address
<n-1> <n> <n-1> <n> packet packet packet
packet
0b0000 0b1011 0bxx 0bxx - - - - -
ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B12-225

Non-Confidential

B12 Debug and Trace Components
B12.2 Data Watchpoint and Trace unit

MATCH ACTION Data trace Data trace Data trace Data trace
Debug data
match PC value data value
event address
<n-1> <n> <n-1> <n> packet packet packet
packet
0b00 0b00 - - - - -
0b00 0b01 Second - - - -
0b00 0b10 - Second - - -
0b01 0b0o First - - - -
0bol 0b10 First Second - - -
0bQ1xx
(not 0b1011 0b10 0b00 - First - - -
0b0111) :
0bl0 0b0o1 Second First - - -
0b10 0b10 - Both - -
0bll 0b00 - - First - -
0b11 0b01 Second - First -
0b11l 0b10 - Second First - -
0b10 0b00 - - - - First
0b10 0bo1 Second - - - First
0b11xx 0b10 0b10 - Second - - First
(not 0b1011
(0b1111) 0b11 0b0o - - First - First
0b11 0b01 Second - First - First
0b11l 0b10 - Second First - First
B12.2.4 CMPMATCH trigger events
Iynce The CMPMATCH events signal watchpoint matches.
Rprig The implementation of CMPMATCH is IMPLEMENTATION DEFINED.
Rrrwe If an ETM is implemented, CMPMATCH events are output to the ETM.
Rrmzx If an ETM is not implemented, the effect of CMPMATCH is IMPLEMENTATION DEFINED, including whether the
trigger event has any observable effect or whether observable effects are visible to other components in the system.
Rxxkm For all enabled watchpoints, if DWT FUNCTION<n> is not programmed as an Instruction address limit
comparator and is not programmed as a Data address limit comparator, CMPMATCH]|n] is triggered on a
comparator match.
RGvas For all enabled watchpoints, if DWT FUNCTION<n> is programmed as an Instruction address limit or Data
address limit comparator, it is UNPREDICTABLE whether CMPMATCH][n] is triggered on a comparator match.
B12-226 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential ID092816

B12.2.5

RenvB

RNnQGR

Rxuic

Rpspr

Rirxwm

RrLkw

RpNkD

RpsGt

RmLmo

IvuHw

Rumnx

Repwce
RasLx
RwwsH
Rvirs

Remre

RKHRF

Rkkry

B12 Debug and Trace Components
B12.2 Data Watchpoint and Trace unit

Matching in detail

Instruction address matching in detail

The DWT checks all instructions that are executed by a simple sequential execution of the program and do not
generate any exception for an instruction address match, including conditional instructions that fail their condition
code check.

An instruction might be checked by the DWT for an instruction address match if it either:

. Is executed by a simple sequential execution of the program and generates a synchronous exception.
. Would be executed by the sequential execution of the program but is abandoned because of an asynchronous
exception.

Speculative instruction prefetches, other than those that would be executed by the sequential execution of the
program but that are abandoned because of asynchronous exceptions, must not generate matches.

For all instruction address matches, if bit[0] of the comparator address has a value of 1, it is UNPREDICTABLE
whether a match is generated when the other address bits match.

For single instruction address matches, an instruction matches if the address of the first byte of the instruction
matches the comparator address.

For single address matches, if the instruction is a 4-byte T32 instruction, and the address of the first byte of the upper
halfword matches but the address of the first byte of the lower halfword does not match, it is UNPREDICTABLE
whether a match is generated.

For instruction address range matches, an instruction matches if the address of the first byte of the instruction lies
between the lower comparator address, which is specified by comparator <n-/>, and the limit comparator address,
which is specified by comparator <n>. Both addresses are inclusive to the range.

For instruction address range matches, if the instruction is a 4-byte T32 instruction, and the address of the first byte
of the upper halfword lies in the range but the address of the first byte of the lower halfword does not lie in the range,
it is UNPREDICTABLE whether a match is generated.

For instruction address range matches, if so configured, a Data trace PC value packet or Data trace match packet is
generated for the first instruction that is executed in the range.

For instruction address range matches, if so configured, a branch or sequential execution that stays within the range
does not necessarily generate a new packet.

For instruction address range matches, if so configured, CMPMATCH|[n-1] is triggered for each instruction that is
executed inside the range, where n-1 is the lower of the two comparators that configure the range.

Data address matching in detail

For all Data Address matches, all bits of the comparator address are considered.

Speculative reads might generate data address matches.

Speculative writes must not generate data address matches.

Prefetches into a cache must not generate data address matches.

For single data address matches, an access matches if any accessed byte lies between the comparator address and a
limit that is defined by DWT FUNCTION.DATAVSIZE.

For single data address matches, the comparator address must be naturally aligned to
DWT_ FUNCTION.DATAVSIZE otherwise generation of watchpoint events is UNPREDICTABLE.

For data address range matches, an access matches if any accessed byte lies between the lower comparator address,
which is specified by comparator <n-/>, and the limit comparator address, which is specified by comparator <n>.
Both addresses are inclusive to the range.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B12-227

Non-Confidential

B12 Debug and Trace Components
B12.2 Data Watchpoint and Trace unit

RcrMR For data address range matches, DWT FUNCTION.DATAVSIZE must be set to 0b00 for both the lower comparator
address and the limit comparator address otherwise it is UNPREDICTABLE whether or not a match is generated.
Data value matching in detail

RemMmsm Data value matching is only possible if the Main Extension is implemented.

RFVFQ Speculative reads might generate data value matches.

RvaGIF Speculative writes must not generate data value matches.

RMLFK Prefetches into a cache must not generate data value matches.

RrMDB For data value matches, if the access size is smaller than DWT FUNCTION.DATAVSIZE, there is no match.

RzppMm For unlinked data value matches, an access matches if all bytes of any naturally-aligned subset of the access of the
size that is specified by DWT_FUNCTION.DATAVSIZE match the data value in DWT_COMP<n>. The data value
in DWT_COMP<n> is in little-endian order with respect to memory.

Iimms If the access is unaligned then this might generate a higher priority alignment fault, depending on the instruction
type, profile, and configuration. In these cases no match is generated.

Rsqks For unlinked data value matches, if an access is unaligned, it is IMPLEMENTATION DEFINED whether it either treated
as:

. A sequence of byte accesses.
. A sequence of naturally-aligned accesses covering the accessed bytes. For a read, this access might access
more bytes than the original access.

Rorpw For linked data value matching, if an access is larger than DWT FUNCTION.DATAVSIZE, then only the
naturally-aligned subset of the access of size DWT FUNCTION.DATAVSIZE at the matching address is compared
for a match.

Rqvri For linked data value matching, the data address comparator address must be naturally aligned to
DWT_ FUNCTION.DATAVSIZE, and the DWT FUNCTION.DATAVSIZE values for both comparators must be
the same.

RkRrev A Data value comparator that is linked to a Data address comparator does not change the behavior of the address
comparator.

See also:

. DWT_AddressCompare().

. DWT_ValidMatch().

. DWT_InstructionAddressMatch().
. DWT_DataAddressMatch().

. DWT_DataValueMatch().

B12.2.6 DWT match restrictions and relaxations

Rxsam It is IMPLEMENTATION DEFINED whether the DWT treats a fetch from the exception vector table as part of an
exception entry as a data access or ignores these accesses, for the purposes of DWT comparator matches.

Rpraw A fetch by the DWT from the exception vector table as part of an exception entry must never be treated as an
instruction fetch.

RepkL If the Main Extension and the Flash Patch function of the FPB are implemented, and if an FPB comparator remaps
one word-aligned address onto another, then if an instruction fetch is remapped by the FPB comparator, the PE
might check for an instruction address match for any or none of the two addresses.

B12-228 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

Roppr

Ryouw

Ryvitk

RmNBX

RsLpx

RNHLN

Rcsso

RyExT

Rwinr

RociL

RovHL

Rkrrc

Rrqcr

Rprup

RrHuR

Rupcu

B12 Debug and Trace Components
B12.2 Data Watchpoint and Trace unit

If the Main Extension and Flash Patch function of the FPB are implemented, and if an FPB comparator remaps one
word-aligned address onto another, then if a literal load is remapped by the FPB comparator, the PE might check
for a data address match for any or none of the two addresses.

If a return is tail-chained, it is IMPLEMENTATION DEFINED whether hardware accesses the stack and therefore
IMPLEMENTATION DEFINED whether the DWT can generate events or trace.

The DWT does not match accesses from the DAP.

Any executed NOP or IT that matches an appropriately configured instruction address watchpoint must cause a
match.

For the Main Extension only, it is IMPLEMENTATION DEFINED whether a failed STREX instruction can generate a data
access match.

If an instruction or operation makes multiple or unaligned data accesses, then it is UNPREDICTABLE whether any
nonmatching access generated by an instruction that generated a matching access is treated as a matching access.

If an instruction or operation makes multiple or unaligned data accesses, then CMPMATCH is triggered for each
matching access.

If the Main Extension is implemented and an instruction or operation makes multiple or unaligned data accesses,
then, if so configured, only a data value match of at least a part of the value that is guaranteed to be single-copy
atomic can generate a match.

If an instruction or operation makes multiple or unaligned data accesses, then, if so configured, for a matching data
access that generates a debug event, if permitted, DHCSR.C_HALT or DEMCR.MON_PEND, as applicable, is set
to 1.

A pending DebugMonitor exception does not interrupt the multiple accesses, but another interrupt might, which
means that the debug event might be taken before the multiple operations complete.

The DWT can match on the address of an access that generates a BusFault.

In the Main Extension, it is IMPLEMENTATION DEFINED whether a stored value for an access that generates a
BusFault:

. Can generate a data value match.

. Can be traced.

In the Main Extension, for a load access that returns a BusFault, any data that is returned by the memory system is
invalid, and the DWT must not:

. Generate a data value match.
. Generate a Data trace data value packet.

A data access that generates any fault other than a BusFault does not generate a data address or data value match at
the DWT and is not traced.

DWT matches are generated asynchronously.

A DSB barrier guarantees that the effect of a DWT match is visible to a subsequent read of
DWT _FUNCTION.MATCHED, DHCSR, or DEMCR. In the absence of a DSB barrier, the effect is only guaranteed
to be visible in finite time.

The effects of a DWT match never affect instructions appearing in program order before the operation that generates
the match.

See also:

. Tail-chaining on page B3-81.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B12-229
Non-Confidential

B12 Debug and Trace Components
B12.2 Data Watchpoint and Trace unit

B12.2.7

Rupkk

Rwskk

Rxcns

RxvBT

Roscr

RgxBL

Rowaos

Repxw

Roxse

RRHNF

Imyxc

Rpkmv

RenBw

B12.2.8

Rsvpw

Rkrrp

DWT trace restrictions and relaxations

Where a single instruction or operation, or multiple instructions, generate multiple accesses that each one or more
trace packets, then if the architecture guarantees the order in which a pair of these accesses is observed by the PE,
the first trace packets that are generated for each of those accesses must appear in the trace output in the same order.

Where a single instruction or operation, or multiple instructions, generate multiple accesses that each generate one
or more trace packets, then if the architecture does not guarantee the order of the accesses, the order of trace packets
in the trace output is not defined.

If a single instruction or operation makes multiple or unaligned data accesses, then, if so configured, only the first
access is guaranteed to generate a Data trace PC value packet, Data trace data address packet, or Data trace match
packet. If the architecture does not guarantee the order of the accesses, the first access might be any of the accesses.

If a single instruction or operation makes multiple or unaligned data accesses, then, if so configured, a Data trace
data value packet is generated for each matching access.

If a single instruction or operation makes multiple or unaligned data accesses, then, if so configured, it is
UNPREDICTABLE how many Data trace data value packets are generated for each unaligned matching access. An
implementation might over-read, meaning that more data outside the access might be traced.

If a single instruction or operation makes multiple or unaligned data accesses, then, if so configured, for a matching
data access that generates a Data trace data value packet, at least that part of the value that is guaranteed to be
single-copy atomic is traced.

Duplicate Data trace PC value packets, Data trace data address packets, and Data trace data value packets from a
single access are not generated for a single access.

Where a comparator or linked pair of comparators generates multiple packet types for a single access, the packets
must appear in the trace output in the following order:

1. Data trace PC value packet.

Data trace match packet, generated by a Data address or Data address with value comparator match.

Data trace data address packet.

Data trace match packet, generated by a Data value comparator match.

nok »D

Data trace data value packet.

Where a comparator or linked pair of comparators generates multiple packet types for a single access, packets must
not be interleaved with packets that are generated by other accesses by the same comparator or linked pair of
comparators.

Where a comparator or linked pair of comparators generates a trace packet for a single access, if a comparator other
than this comparator or this linked pair of comparators generates a trace packet of the same type for the same access,
then only one of these packets is output. It is IMPLEMENTATION DEFINED which comparator is chosen.

ARM recommends that the packet from the lowest-numbered comparator is output.

Where a comparator or linked pair of comparators generates multiple packet types for a single access, if any of the
packets cannot be output and an Overflow packet is generated, then the remaining packets for that access are not
generated.

Where a comparator or linked pair of comparators generates multiple packet types for a single access, packets might
be interleaved with packets that are generated for the same access by comparators other than this comparator or this
linked pair of comparators.

CYCCNT cycle counter and related timers

CYCCNT is an optional free-running 32-bit cycle counter. If the DWT unit implements CYCCNT then
DWT_CTRL.NOCYCCNT is RAZ.

When implemented and enabled, CYCCNT increments on each cycle of the PE clock.

B12-230

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

RNEsw
Raxik

Rpkce

Rpker

RrNTY

Rsxxk

RxrrM

Ipnns

LirRvv

RxnNuF

RrMHN

B12 Debug and Trace Components
B12.2 Data Watchpoint and Trace unit

When the counter overflows it transparently wraps to zero.
DWT CTRL.CYCCNTENA enables the CYCCNT counter.

POSTCNT is a 4-bit countdown counter derived from CYCCNT, that acts as a timer for the periodic generation of
Periodic PC sample packets or Event counter packets, when these packets are enabled.

Periodic PC sample packets are not the same as the Data trace PC value packets that are generated by the DWT
comparators.

The DWT does not support the generation of Periodic PC sample packets or Event packets if it does not implement
the CYCCNT timer and DWT _CTRL.NOTRCPKT is RAO.

The DWT_CTRL.CYCTAP bit selects the CYCCNT tap bit for POSTCNT. Table B12-1 shows the effect of this bit:

Table B12-1 CYCCNT tap bit for POSTCNT timer

CYCTAP bit CYCCNT tap at POSTCNT clock rate

0 Bit[6] (PE clock)/64

1 Bit[10] (PE clock)/1024

A write to DWT_CTRL will initialize POSTCNT to the previous value of DWT CTRL.POSTINIT if all of:
. DWT_CTRL.PCSAMEPLEENA was set to 0 prior to the write.

. DWT _CTRL.CYCEVTENA was set to 0 prior to the write.

. The write sets either DWT CTRL.PCSAMPLEENA or DWT CTRL.CYCEVTENA to 1.

It is UNPREDICTABLE whether any other write to DWT_CTRL that alters the value of either
DWT_CTRL.PCSAMPLEENA and DWT_CTRL.CYCEVTENA sets POSTCNT to DWT_CTRL.POSTINIT or
leaves POSTCNT unchanged.

When either DWT _CTRL.CYCEVTENA or DWT_CTRL.PCSAMPLENA is set to 1, and the CYCCNT tap bit
transitions, either from 0 to 1 or from 1 to 0:
. I[f POSTCNT is nonzero, POSTCNT decrements by 1.
. If POSTCNT is zero, the DWT:

— Reloads POSTCNT from DWT_CTRL.POSTRESET.

— Generates a Periodic PC Sample packets if DWT_CTRL.PCSAMPLENA is set to 1.

— Generates an Event Counter packet with the Cyc bitsetto 1 if DWT _CTRL.CYCEVTENA is set to 1.
The enable bit for the POSTCNT counter underflow event is DWT _CTRL.CYCENTENA. There is no overflow
event for the CYCCNT counter. When CYCCNT overflows it wraps to zero transparently. Software cannot access
the POSTCNT value directly, or change this value.
This means that, to initialize POSTCNT, software must:

1. Ensure that DWT CTRL.CYCCNTENA and DWT _PCSAMPLEENA are set to 0. This can be achieved
with a single write to DWT_CTRL. This is also the reset value of these bits.

2. Write the required initial value of POSTCNT to the DWT_CTRL.POSTINIT field, leaving
DWT_CTRL.CYCCNTENA and DWT_CTRL.PCSAMPLEENA set to 0.

3. Set either DWT_CTRL.CYCEVTENA or DWT_CTRL.PCSAMPLEENA to 1 to enable the POSTCNT
counter.

Each of these must be separate writes to DWT_CTRL.
Disabling CYCCNT stops POSTCNT.

Writes to DWT_CTRL.POSTINIT are ignored if either DWT CTRL.PCSAMPLEENA was set to 1 or
DWT_CTRL.CYCEVTENA was set to 1 prior to the write.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B12-231
Non-Confidential

B12 Debug and Trace Components
B12.2 Data Watchpoint and Trace unit

B12.2.9
Iuxpv

Rwnwr

RpJrk

RNsry

Rpxvn

Rmvep

RossL

RxBoD

Roomy

Rpmpk

Rrums

IQRPG

Profiling counter support

Profiling counter support is an optional debug feature.

If Profiling counter support is implemented the DWT provides five 8-bit Event counters for software profiling:
. DWT FOLDCNT.

- DWT _LSUCNT.

. DWT _EXCCNT.

. DWT SLEEPCNT.

. DWT _CPICNT.

The DWT_CPICNT is a general counter for instruction cycle count estimation.

The DWT_CPICNT counter increments on each additional cycle to execute a multicycle instruction, including each
cycle of any instruction fetch stall, but does not increment for those instructions recorded by DWT LSUNCT.

The DWT_EXCCNT is the exception overhead counter. DWT_EXCCNT increments on each cycle associated with
entry stacking, return unstacking, preemption, and other exception-related processes.

The DWT_SLEEPCNT is the sleep overhead counter. DWT SLEEPCNT increments on each cycle associated with
power saving, whether initiated by a WFI or WFE instruction or sleep-on-exit functionality. It is IMPLEMENTATION
DEFINED whether the counter advances in SLEEPDEEP.

The DWT _LSUCNT is the load-store counter. DWT LSUCNT increments on each additional cycle required to
execute a multicycle load-store instruction. It does not count the first cycle required to execute any instruction.

The DWT_FOLDCNT is the folded instruction counter. DWT_FOLDCNT increments on any instruction that
executes in zero cycles.

Counters do not increment when the PE is halted. In Debug state the overhead associated with STEP and RUN
commands from and to the halt condition is IMPLEMENTATION DEFINED.

A counter overflows on every 256th cycle counted and then wraps to 0.If the appropriate counter overflow event is
enabled in DWT_CTRL the DWT outputs an Event counter packet with the appropriate counter flag set to 1.

Setting one of the enable bits to one clears the corresponding counter to zero.

If the Main extension is implemented the following equation must hold:
ICNT = CNTeycres + CNTrowp - (CNTisy + CNTexc + CNTsieep + CNTepr)

Where:
ICNT is the total number of instructions architecturally executed.

CNTcycLes
is the number of cycles counted by DWT CYCCNT.

CNTroLp is the number of instructions counted by DWT FOLDCNT.
CNTLsy is the number of cycles counted by DWT LSUCNT.
CNTgxc is the number of cycles counted by DWT EXCCNT.
CNTsLggp is the number of cycles counted by DWT _SLEEPCNT.
CNTcpr is the number of cycles counted by DWT CPICNT.

See also:

. Trace Port Interface Unit on page B12-235.

B12-232

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

RkwpH

RukrL

Rvpxk

RsFrL

B12 Debug and Trace Components
B12.2 Data Watchpoint and Trace unit

Generating overflow packets from event counters

If a counter value wraps round to zero and the previous Event Counter packet has been delayed and has not yet been
output, then it is IMPLEMENTATION DEFINED whether:

. The DWT attempts to generate a second Event counter packet.

. The DWT updates the delayed Event counter packet to include the new wrap event.

If a counter value wraps round to zero and the previous Event counter packet has been delayed and has not yet been
output but has the bit for the counter value set, the DWT must attempt to generate a second Event counter packet.

If the DWT unit attempts to generate a packet when its output buffer is full, an Overflow packet is output.

The size of the DWT output buffer is IMPLEMENTATION DEFINED.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B12-233
Non-Confidential

B12 Debug and Trace Components
B12.3 Embedded Trace Macrocell

B12.3 Embedded Trace Macrocell

I cex An Embedded Trace Macrocell (ETM) is an optional feature of an ARMv8-M implementation.

RNGTT An ETM implementation must comply with one of the following versions of the ETM architecture:

Security Extension
Data trace
Implemented Not implemented

Implemented ETMv3 not permitted ETMv3 not permitted

ETMv4, version 4.2 or later ETMv4, version 4.0 or later

Not implemented ~ETMv3, version 3.5 or later ETMv3, version 3.5 or later

ETMv4, version 4.2 or later ETMv4, version 4.0 or later

RipiMm If an ETM is implemented a trace sink must also be implemented. If the trace sink implemented is the TPIU it must
be CoreSight compliant, and must comply with the TPIU architecture for compatibility with ARM and other
CoreSight-compatible debug solutions.

RNLNS When an ARMv8-M implementation includes an ETM, the CMPMATCH|N] signals from the DWT unit are
available as control inputs to the ETM unit.

RNniDK If the Main Extension is not implemented, it is IMPLEMENTATION DEFINED whether the ETM is accessible only to
the debugger and is RESO to software.

RwpBN If the ETM is implemented the debugger must program the TRC_TRACEIDR with a unique nonzero Trace ID for
the ETM trace stream.

See also:
. ARM® CoreSight™ Architecture Specification.
. CMPMATCH trigger events on page B12-226.

B12-234 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

B12 Debug and Trace Components
B12.4 Trace Port Interface Unit

B12.4 Trace Port Interface Unit

Ipwxp

Rcrro

RGrre

Rrkor

Isppk

Ruyxx

RiBky

RsTLv

RjLco

Rpmrp

RRryp

Rpcpr

The Trace Port Interface Unit (TPIU) support for ARMv8-M provides an output path for trace data from the DWT,
ITM, and ETM. The TPIU is a trace sink.

It is IMPLEMENTATION DEFINED whether the TPIU supports a parallel trace port output.

It is IMPLEMENTATION DEFINED whether the TPIU supports low-speed asynchronous serial port output using NRZ
encoding. This operates as a traditional UART.

It is IMPLEMENTATION DEFINED whether the TPIU supports medium-speed asynchronous serial port output using
Manchester encoding.

ARM recommends that the TPIU provides both parallel and asynchronous serial ports, for maximum flexibility with
external capture devices.

Whether the trace port clock is synchronous to the PE clock is IMPLEMENTATION DEFINED.

Software must ensure that all trace is output and flushed to the trace sink before setting the DEMCR.TRCENA bit
to 0.

The TPIU is not directly affected by DEMCR.TRCENA being set to 0 or NoninvasiveDebugAllowed() being FALSE.

The output formatting modes that are supported by the TPIU are IMPLEMENTATION DEFINED. They are:
. Bypass.

. Continuous.
Bypass mode is only supported if a serial port output is supported.

Continuous mode must be supported if the parallel trace port is implemented. Software must select Continuous
mode when the parallel trace port is used.

Continuous mode must be supported if the ETM is implemented. Software must select Continuous mode when the
ETM is used.

See also:
. TPIU FFCR, TPIU Formatter and Flush Control Register on page D1-1098.
. Instrumentation Trace Macrocell on page B12-214.

. Embedded Trace Macrocell on page B12-234.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B12-235
Non-Confidential

B12 Debug and Trace Components
B12.5 Flash Patch and Breakpoint unit

B12.5 Flash Patch and Breakpoint unit

B12.5.1 About the FPB unit

RETWL The Flash Patch and Breakpoint (FPB) unit supports setting breakpoints on instruction fetches.

RoLvr In the Main Extension, if the Security Extension is not implemented, it is IMPLEMENTATION DEFINED whether the
FPB unit supports:
. Remapping data accesses from specific locations from the Code region of system memory to addresses in the

SRAM region. This is referred to as literal remapping.
. Remapping instruction fetches from specific addresses from the Code region of system memory to addresses
in the SRAM region. This is referred to as instruction remapping.

Rgpww The number of implemented instruction address comparators is IMPLEMENTATION DEFINED. Software can discover
the number of implemented instruction address comparators from FP_. CTRL.NUM CODE.

Rokcr If literal remapping is supported, the number of implemented literal address comparators is IMPLEMENTATION
DEFINED. Software can discover the number of implemented literal address comparators from
FP CTRL.NUM LIT.

Rutwv If the Main Extension is not implemented or the Security Extension is implemented, the FPB unit does not support
remapping functions.

RrprC If the FPB does not support remapping functions, the FP. REMAP.RMPSPT and FP_ CTRL.NUM_LIT fields have
a value of 0.
See also:
. Chapter B7 The System Address Map.
. DWT trace restrictions and relaxations on page B12-230.
. Chapter D1 Register Specification.

B12.5.2 FPB unit operation

RrkrD The FPB contains the following register types:
. A general control register, FP_ CTRL.
. A remap address register, FP. REMAP, if instruction or literal remapping is supported.
. Comparator registers.

ReTrH The FPB uses separate comparators for instruction address comparison and for literal address comparison.

Rekkw Each implemented instruction address comparator must support breakpoint generation.

RsrLam If instruction remapping is supported, each implemented instruction address comparator must support instruction
remapping.

RengF The FP_CTRL register provides a global enable bit for the FPB, and ID fields that indicate the numbers of
instruction address comparison and literal comparison registers implemented.

Roxrp If instruction or literal remapping is supported, FP_ REMAP provides the base address for the remapped accesses.

Rocpen If remapping is supported, software can configure an instruction address comparator to remap the instruction, or to
generate a breakpoint.

RvprLL If literal remapping is supported, each implemented literal address comparator must support literal remapping.
RxmTK The literal address comparators only support remapping of data read accesses. Each comparator has its own enable
bit that enables operation of the comparator only when the global enable bit is also set to 1.

B12-236 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

ReksL

Ruprm

Rxpxs
IenBw

Rekng

RwruG

RrvNG

Rkwwe

RprNz

Rurtks

RmuvVE

Rrgvx

Rypwn

Reykk

Rwsxn

Rxxrw

Ryxmp

Rprpk

B12 Debug and Trace Components
B12.5 Flash Patch and Breakpoint unit

When configured for breakpoint generation, instruction address comparators can be configured to match any
halfword-aligned addresses in the whole address map.

When configured for instruction remapping, instruction address comparators can be configured to match any
word-aligned address in the Code memory region, by ignoring bits[1:0] of each instruction fetch.

Instruction address comparators match only on instruction fetches.
Bit[0] of each instruction fetch address is always zero.

Literal address comparators can be configured to match any word-aligned address in the Code memory region, by
ignoring bits[1:0] of each access.

Literal address comparators match only on data reads and ignore data writes. Data writes always access the original
location.

When configured for remapping, a match causes the instruction or data to be read from the remapped location.

Comparator n remaps to address (FP_ REMAP.REMAP:'00000' + 4r) when it is configured for remapping and a
match occurs.

If a remapped instruction reads the PC, then the value that is returned is calculated from the original instruction
address and not the remapped address.

Literal address matching can remap word, halfword, or byte data accesses. A match fetches the appropriate-sized
data item from the remapped location.

It is IMPLEMENTATION DEFINED how remapping affects unaligned literal accesses.

When an MPU is enabled, it performs its checks on the original address, and applies the attributes for that address
to the remapped location. The MPU does not check the remapped address.

The FPB can remap a Load exclusive accesses, but whether the remapped access is performed as an exclusive access
iS UNPREDICTABLE.

When an Instruction address matching comparator is configured for breakpoint generation, a match on the address
of a 32-bit instruction must be configured to match the first halfword or both halfwords of the instruction.

If a Breakpoint debug event is generated by the FPB on the second halfword of a 32-bit T32 instruction, it is
UNPREDICTABLE whether the breakpoint generates a debug event.

An FPB match specifying a Breakpoint debug event generates a Breakpoint debug event that halts the PE if all of

the following conditions are true:

. HaltingDebugAllowed() == TRUE.

. DHCSR.C_DEBUGEN == 1.

. DHCSR.S HALT ==0.

. The Security Extension is not implemented, the matching instruction is executed in Non-secure state, or
DHCSR.S_SDE == 1.

If the Main Extension is implemented, an FPB match specifying a Breakpoint debug event generates a

DebugMonitor exception if it does not halt the PE and all of the following conditions are true:

. DEMCR.MON_EN == 1.

. DHCSR.S_ HALT == 0.

. The DebugMonitor group priority is greater than the current execution priority.
. The Security Extension is not implemented, the matching instruction is executed in Non-secure state, or
DEMCR.SDME == 1.

An FPB match that specifies a Breakpoint debug event is ignored if it does not meet the conditions for generating
either:

. A Breakpoint debug event that halts the PE.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B12-237
Non-Confidential

B12 Debug and Trace Components
B12.5 Flash Patch and Breakpoint unit

Rerny

Rwsxm

Rxars

Rsmpc

Rokns

RTpHG

RoGkT

ILynm

Rpcrg

Rruas

RRrkqs

Rrsgv

RRrruav

. A DebugMonitor exception.
Between a change to the debug authentication interface, DHCSR or DEMCR, that disables debug, and a following
context synchronization event, it is UNPREDICTABLE whether any breakpoints generated by the FPB:
. Generate a Breakpoint debug event based on the old values and either:
— Ifthe Main Extension is implemented, generate a DebugMonitor exception.
— Halts the PE.
. Are escalated to HardFault.
. Are ignored.

The FPB treats hardware accesses to the stack as data accesses for registers that are pushed to the stack by hardware
as part of an exception entry or lazy state preservation.

The FPB treats hardware accesses to the stack as data accesses for registers popped from the stack by hardware as
part of an exception return.

If the Security Extension is implemented, the FPB treats hardware accesses to the stack as data accesses for registers
that are pushed to the stack by hardware as part of a Non-secure function return.

If the Security Extension is implemented, the FPB treats hardware accesses to the stack as data accesses for registers
popped from the stack by hardware as part of a Non-secure function call.

It is IMPLEMENTATION DEFINED whether the FPB treats a fetch from the exception vector table as part of an
exception entry as a data access, or ignores these accesses, for the purposes of FPB address comparator matches.
The fetch must never be treated as an instruction fetch.

The FPB does not match access from the DAP.

See also:

. Halting debug authentication on page B11-195.
. About debug events on page B11-201.

. BKPTInstrDebugEvent().

. FPB_BreakpointMatch().

Multiple FPB comparators
In this section, A, B, and C are word-aligned addresses and comparators n and m are different FPB comparators.

If instruction address comparator 7 remaps A to B, and instruction address comparator m specifies a breakpoint on
A, then, for an instruction that is executed from A, the PE generates a breakpoint.

If instruction address comparator # remaps A to B, and instruction address comparator m specifies a breakpoint on
A+2 , then, for an instruction that is executed from A+2, the PE generates a breakpoint.

If instruction address comparator n remaps A to B, and instruction address comparator m specifies a breakpoint on
A, then, for an instruction that is to be executed from A+2, the PE does one of the following:

. Executes the instruction from A+2.

. Executes the instruction from B+2.

If instruction address comparator n remaps A to B, and instruction address comparator m specifies a breakpoint on
A+2, then, for an instruction to be executed from A, the PE does one of the following:

. Executes the instruction from A.

. Executes the instruction from B.

If instruction address comparator n remaps A to B, and instruction address comparator m specifies a breakpoint on
either B, then, for an instruction that is to be executed from A, the PE does one of the following:

. Executes the instruction from A.

B12-238

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

RppRrr

RrgsL

Recrr

IxnxD

RNHHEW

B12 Debug and Trace Components
B12.5 Flash Patch and Breakpoint unit

. Executes the instruction from B.

. Generates a breakpoint.

If instruction address comparator # remaps A to B, and instruction address comparator m specifies a breakpoint at
B+2, then, for an instruction that is to be executed from A+2, the PE does one of the following:

. Executes the instruction from A+2.
. Executes the instruction from B+2.
. Generates a breakpoint.

If instruction address comparator n remaps A to B, and instruction address comparator m remaps A to C, then, for
an instruction that is executed from A or A+2, the PE does one of the following:

. Executes the instruction from A.
. Executes the instruction from A+2.
. Executes the instruction from B.
. Executes the instruction from B+2.
. Executes the instruction from C.
. Executes the instruction from C+2.

If instruction address comparator n specifies a breakpoint on A or A+2, and instruction address comparator m also
has a breakpoint on A or A+2 then, for all combinations of A and A+2 in comparators n and m, for an instruction
that is executed from either A or A+2, the PE does one of the following:

. Executes the instruction from A.
. Executes the instruction from A+2.
. Generates a breakpoint.

The following table shows multiple instruction address comparator cases on instruction fetches. In this table, an
outcome of A, B, or C means the instruction from A, B, or C, respectively, is executed.

Comparator n Comparator m Instruction executed from Permitted outcomes
Remap Ato B Breakpoint at A A Breakpoint

Remap Ato B Breakpoint at A A+2 A+2, B+2

Remap A to B Breakpoint at A+2 A A, B

Remap A to B Breakpoint at A+2 A+2 Breakpoint

Remap A to B Breakpoint at B A A, B, Breakpoint
Remap Ato B Breakpoint at B A+2 A+2, B+2

Remap Ato B Breakpoint at B+2 A A, B

Remap Ato B Breakpoint at B+2 A+2 A+2, B+2, Breakpoint
Remap A to B Remap A to C A+x where x is either 0 or 2 A+x, B+x, C+x
Breakpoint at A or A+2 Breakpoint at A or A+2 A+x where x is either 0 or 2 A+x, Breakpoint

If literal address comparator n remaps A to B and literal address comparator m remaps A to C, then, for a literal
access from A, A+1, A+2, or A+3, the PE does one of the following:

. Uses data from A, A+1, A+2, or A+3, respectively.
. Uses data from B, B+1, B+2, or B+3, respectively.
. Uses data from C, C+1, C+2, or C+3, respectively.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. B12-239
Non-Confidential

B12 Debug and Trace Components
B12.5 Flash Patch and Breakpoint unit

The following table shows multiple comparator cases on literal fetches.

Comparator n Comparator m Literal fetched from Permitted outcomes

Remap A to B Remap A to C A+x, wherexis 0, 1,2,0or3 A+x, B+x, C+x

Cache maintenance

Rgvtvy Instruction and data caches are permitted to cache the results of the Flash Patch remap function. This means that
software must perform cache maintenance operations when enabling, disabling, or modifying a Flash Patch remap.

Rewsw Instruction caches are not permitted to cache breakpoints that are generated by a Flash Patch and Breakpoint unit.

B12-240 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

Part C

ARMv8-M Instruction Set

Chapter C1

Instruction Set Overview

This chapter provides a definition of the instruction descriptions contained in Chapter C2 Instruction Specification.
It contains the following sections:

Instruction set on page C1-244.
Format of instruction descriptions on page C1-245.

Pseudocode for instruction descriptions on page C1-248.

Unified Assembler Language on page C1-250.
Standard assembler syntax fields on page C1-252.
Conditional execution on page C1-253.

Instruction set encoding information on page C1-256.
Modified immediate constants on page C1-259.
NOP-compatible hint instructions on page C1-260.
Instruction set, interworking support on page C1-261.

Instruction set, interstating support on page C1-262.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved.

Non-Confidential

C1-243

C1 Instruction Set Overview
C1.1 Instruction set

C11 Instruction set
There is one instruction set, called T32.

For more information about the T32 instruction set encoding, see Top level T32 instruction set encoding on
page C2-264.

See also:
. Instruction set encoding information on page C1-256.

. Chapter C2 Instruction Specification. See this for descriptions of each T32 instruction.

C1-244 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

C1 Instruction Set Overview
C1.2 Format of instruction descriptions

C1.2 Format of instruction descriptions

Each instruction description in Chapter C2 has the following content:
A title.

A short description.

The instruction encoding or encodings.

Any alias conditions, if applicable.

A list of the assembler symbols for the instruction.
Pseudocode describing how the instruction operates.

NS, h WD~

Notes, if applicable.

C1.21 The title

The title of an instruction description includes the base mnemonic or mnemonics for the instruction. This is part of
the assembler syntax, for example SUB.

If different forms of an instruction use the same base mnemonic, each form has its own description. In this case, the
title is the mnemonic followed by a short description of the instruction form in parentheses. This is most often used
when an operand is an immediate value in one instruction form, but is a register in another form.

For example, in Chapter C2 there are the following titles for different forms of the ADD instruction:
. ADD (SP plus immediate) on page C2-316.

. ADD (SP plus register) on page C2-318.

. ADD (immediate) on page C2-321.

. ADD (immediate, to PC) on page C2-324.

. ADD (register) on page C2-326.

Where an instruction has more than one variant, the descriptions might be combined, for example for CDP and CDP2.

C1.2.2 A short description

This briefly describes the function of the instruction. The description is not a complete description of the instruction
and must be read in conjunction with the rest of the instruction description.

C1.2.3 The instruction encoding or encodings

This shows the instruction encoding diagram, or, if the instruction has multiple encodings, shows all of the encoding
diagrams. The heading for each encoding is the letter 7 followed by an arbitrary number, usually between 1 and 5.

The instruction alignment and byte ordering figure in Endianness on page B5-119 shows the alignment for both
16-bit encodings and 32-bit encodings. The left-hand halfword in the diagram is called hw1 for a 16-bit encoding.
The left-hand halfword in the diagram is called hw1 and the right-hand halfword is called hw?2 for a 32-bit encoding.

Between each encoding diagram and its T<n> heading, there is an italicized statement that describes which
ARMv8-M variant the encoding is present in. For example, “4ARMvS8-M Main Extension only.”

Below each encoding diagram is the assembler syntax prototype for that encoding, written in typewriter font. The
assembler syntax prototype describes the syntax that can be used in the assembler to select this encoding, and also
the syntax that is used when disassembling this encoding.

In some cases an encoding has multiple variants of assembler syntax prototype, when the prototype differs
depending on the value in one or more of the encoding fields. In these cases, the correct variant to use can be
identified by either:

. Its subheading.

. An annotation to the syntax.

Each encoding diagram, and its associated assembler syntax prototypes, is followed by encoding-specific
pseudocode that translates the fields of that encoding into inputs for the encoding-independent pseudocode that
describes the operation of the instruction. See Pseudocode describing how the instruction operates on page C1-246.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C1-245
Non-Confidential

C1 Instruction Set Overview
C1.2 Format of instruction descriptions

In the assembler syntax prototypes, the following conventions are used:

<> Angle brackets. Any symbol enclosed by these is mandatory. For each symbol, there is a description
of what the symbol represents. The description usually also specifies which encoding field or fields
encodes the symbol.

{1} Brace brackets. Any symbol enclosed by these is optional. For each optional symbol, there is a
description of what the symbol represents and how its presence or absence is encoded.

C1.24 Any alias conditions, if applicable

This is an optional part of an instruction description. If included, it describes the set of conditions for which an
alternative mnemonic and its associated assembler syntax prototypes are preferred for disassembly by a
disassembler. It includes a link to the alias instruction description that defines the alternative syntax. The alias
syntax and the original syntax can be used interchangeably in the assembler source code.

ARM recommends that if a disassembler outputs the alias syntax, it consistently outputs the alias syntax.

C1.2.5 A list of the assembler symbols for the instruction

The Assembler symbols subsection of an instruction description contains a list of the symbols that the assembler
syntax prototype or prototypes use.

The following conventions are used:

{1} In some assembler syntax prototypes, some brace brackets are mandatory, for example if they
surround a register list. When the use of brace brackets is mandatory, they are separated from other
syntax items by one or more spaces.

{1} Brace brackets. Any symbol enclosed by these is optional. For each optional symbol, there is a
description of what the symbol represents and how its presence or absence is encoded.

In some assembler syntax prototypes, some brace brackets are mandatory, for example if they
surround a register list. When the use of brace brackets is mandatory, they are separated from other
syntax items by one or more spaces.

Usually precedes a numeric constant. All uses of # are optional in assembler source code. ARM
recommends that disassemblers output the # where the assembler syntax prototype includes it.

+/- Indicates an optional + or - sign. If neither is coded, + is assumed.
! Indicates that the result address is written back to the base register.

Single spaces are used for clarity, to separate syntax items. Where a space is mandatory, the assembler syntax
prototype shows two or more consecutive spaces.

Any characters not shown in this conventions list must be coded exactly as shown in the assembler syntax prototype.
Apart from brace brackets, these characters are used as part of a meta-language to define the architectural assembler
syntax prototype for an instruction encoding, but have no architecturally defined significance in the input to an
assembler or in the output from a disassembler.

Some assembler syntax prototype fields are standardized across all or most instructions.
See also:

. Standard assembler syntax fields on page C1-252.

C1.2.6 Pseudocode describing how the instruction operates
The Operation subsection of the instruction description contains this pseudocode.

It is encoding-independent pseudocode that provides a precise description of what the instruction does.

C1-246 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

C1 Instruction Set Overview
C1.2 Format of instruction descriptions

Note
For a description of ARM pseudocode, see Chapter E1 ARM Pseudocode Definition.

c1.2.7 Exceptions

The Exceptions subsection contains a list of the exceptional conditions that can be caused by execution of the
instruction. For a list of the possible exceptions, see:

. Exception numbers and exception priority numbers on page B3-47.
. The IEEE 754 floating-point exceptions on page B4-109.

C1.2.8 Notes

Where appropriate, additional notes about the instruction appear under further subheadings.

ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C1-247
1D092816 Non-Confidential

C1 Instruction Set Overview
C1.3 Pseudocode for instruction descriptions

C1.3 Pseudocode for instruction descriptions

Each instruction description includes pseudocode that provides a precise description of what the instruction does,
subject to the limitations described in General limitations of ARM pseudocode on page E1-1130 and Limitations of
the instruction pseudocode.

In the instruction pseudocode, instruction fields are referred to by the names shown in the encoding diagram for the
instruction. /nstruction encoding diagrams and instruction pseudocode gives more information about the
pseudocode provided for each instruction.

C1.31 Instruction encoding diagrams and instruction pseudocode

Instruction descriptions in this manual contain:

. An encoding section, containing one or more encoding diagrams, each followed by some decode pseudocode
that:
1. Picks out any encoding-specific special cases.
2. Translates the fields of the encoding into inputs for the common pseudocode of the instruction

. An operation section, containing common pseudocode that applies to all of the encodings being described.

The Operation section pseudocode contains a call to the EncodingSpecificOperations() function, either at its
start or only after a condition code check performed by if ConditionPassed() then.

An encoding diagram specifies each bit of the instruction as one of the following:

. A mandatory 0 or 1, represented in the diagram as 0 or 1. If this bit does not have this value, the encoding
corresponds to a different instruction.

. A should be 0 or 1, represented in the diagram as (0) or (1). If this bit does not have this value, the instruction
iS CONSTRAINED UNPREDICTABLE. For more information, see the ARM® Architecture Reference Manual,
ARMVS, for ARMVS-A architecture profile.

. A named single bit or a bit in a named multi-bit field.

An encoding diagram matches an instruction if all mandatory bits are identical in the encoding diagram and the
instruction,

C1.3.2 Pseudocode descriptions of operations on general-purpose registers and PC

In pseudocode, the uses of the R[] function are:
. Reading or writing RO-R12, SP, and LR, using n = 0-12, 13, and 14 respectively.
. Reading the PC, using n = 15.

R on page E2-1261 shows the function prototypes.

C1.3.3 Limitations of the instruction pseudocode
The pseudocode descriptions of instruction functionality have a number of limitations.
These limitations include:

. Pseudocode does not describe the ordering requirements when an instruction generates multiple memory
accesses. For a description of the ordering requirements on memory accesses see Ordering requirements for
memory accesses on page B5-127.

. Pseudocode does not describe the exact rules when an UNDEFINED instruction fails its condition code check.
In such cases, the UNDEFINED pseudocode statement lies inside the if ConditionPassed() then .. structure,
either directly or in the EncodingSpecificOperations() function call, and so the pseudocode indicates that the
instruction executes as a NOP. Conditional execution of undefined instructions on page C1-254 describes the
exact rules.

C1-248 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

C1 Instruction Set Overview
C1.3 Pseudocode for instruction descriptions

Pseudocode does not describe the exact ordering requirements when a single floating-point instruction
generates more than one floating-point exception and one or more of those floating-point exceptions is
trapped. Priority of floating-point exceptions relative to other floating-point exceptions on page B4-114
describes the exact rules.

An exception can be taken during execution of the pseudocode for an instruction, either explicitly as a result
of the execution of a pseudocode function, or implicitly, for example if an interrupt is taken during execution
of an LDM instruction. If this happens, the pseudocode does not describe the extent to which the normal
behavior of the instruction occurs. To determine that, see the descriptions of the exceptions in Exception
handling on page B3-64 and Exception return on page B3-75.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C1-249
Non-Confidential

C1 Instruction Set Overview
C1.4 Unified Assembler Language

C14 Unified Assembler Language

This manual uses the ARM Unified Assembler Language (UAL). This assembly language syntax provides a
canonical form for all T32 instructions.

UAL describes the syntax for the mnemonic and the operands of each instruction. For example:
BX {<c>}{<g>}<Rm>

In this example, BX is the mnemonic, and {<c>}{<g>}<Rm> are the operands.

Note

Operands can also be referred to as assembler symbols.

In addition, UAL assumes that instructions and data items can be given labels. It does not specify the syntax to be
used for labels, see your assembler documentation for these details.

UAL includes instruction selection rules that specify which instruction encoding is selected when more than one
can provide the required functionality, see the definition of <c> in Standard assembler syntax fields on page C1-252.

Syntax options exist to override the normal instruction selection rules and ensure that a particular encoding is
selected. These are useful when disassembling code, to ensure that subsequent assembly produces the original code,
and in some other situations.

C1.4.1 Conditional instructions

The instructions that are made conditional by an IT instruction must be written with a condition after the mnemonic.
These conditions must match the conditions imposed by the IT instruction.

For example:

ITTEE EQ

ADDEQ R0, R1
SUBEQ R2, R3
ADDNE R4, R5
SUBNE R6, R7

Some instructions cannot be made conditional by an IT instruction. Some instructions can be conditional if they are
the last instruction in the IT block, but not otherwise, see the individual instruction descriptions for details.

If the assembler syntax indicates a conditional branch that correctly matches a preceding IT instruction, it is
assembled using a branch instruction encoding that does not include a condition field.

For more information, see /7 on page C2-380.

C1.4.2 Use of labels in UAL instruction syntax

The UAL syntax for some instructions includes the label of an instruction or a literal data item that is at a fixed offset
from the instruction being specified. The assembler must:

1. Calculate the PC or ATign(PC,4) value of the instruction. The PC value of an instruction is its address plus 4
for a T32 instruction. The Align(PC,4) value of an instruction is its PC value ANDed with 0xFFFFFFFC to force
it to be word-aligned.

2. Calculate the offset from the PC or Align(PC,4) value of the instruction to the address of the labeled instruction
or literal data item.

3. Assemble a PC-relative encoding of the instruction, that is, one that reads its PC or A1ign(PC,4) value and adds
the calculated offset to form the required address.

C1-250 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

C1 Instruction Set Overview
C1.4 Unified Assembler Language

Note
For instructions that encode a subtraction operation, if the instruction cannot encode the calculated offset, but
can encode minus the calculated offset, the instruction encoding specifies a subtraction of minus the
calculated offset.

The following instructions include a label:

B and BL.

(BNZ and CBZ.

LDC, LDC2, LDR, LDRB, LDRD, LDRH, LDRSB, LDRSH, PLD, PLI, and VLDR:

— When the assembler calculates an offset of 0 for the normal syntax of these instructions, it must
assemble an encoding that adds O to the ATign(PC,4) value of the instruction. Encodings that subtract
0 from the Align(PC,4) value cannot be specified by the normal syntax.

There is an alternative syntax for these instructions that specifies the addition or subtraction and the

immediate offset explicitly. In this syntax, the label is replaced by [PC, #+/-<imm>], where:

+/- Is + or omitted to specify that the immediate offset is to be added to the A1ign(PC,4) value,
or - if it is to be subtracted.

<imm> Is the immediate offset.

This alternative syntax makes it possible to assemble the encodings that subtract 0 from the

Align(PC,4) value, and to disassemble them to a syntax that can be re-assembled correctly.

ADR:

— When the assembler calculates an offset of 0 for the normal syntax of this instruction, it must assemble
the encoding that adds 0 to the A1ign(PC, 4) value of the instruction. The encoding that subtracts 0 from
the ATign(PC,4) value cannot be specified by the normal syntax.

There is an alternative syntax for this instruction that specifies the addition or subtraction and the
immediate value explicitly, by writing them as additions ADD <Rd>,PC,#<imm> or subtractions

SUB <Rd>,PC,#<imm>. This alternative syntax makes it possible to assemble the encoding that subtracts
0 from the Align(PC,4) value, and to disassemble it to a syntax that can be re-assembled correctly.

Note

ARM recommends that where possible, the alias is used.

C1.43 Using syntax information

For a particular encoding:

There is usually more than one assembler syntax prototype variant that assembles to it.

The exact set of prototype variants that assemble to it usually depends on the operands to the instruction, for
example the register numbers or immediate constants. As an example, for the AND (register) instruction, the
syntax AND RO, RO, R8 selects a 32-bit encoding, but AND RO, RO, R1 selects a 16-bit encoding.

For each instruction encoding that belongs to a target instruction set, an assembler can use the information in the
encoding to determine whether it can use that particular encoding to encode the instruction requested by the UAL
source. If multiple encodings can encode the instruction, then:

If both a 16-bit encoding and a 32-bit encoding can encode the instruction, the architecturally preferred
encoding is the 16-bit encoding. This means that the assembler must use the 16-bit encoding instead of the
32-bit encoding.

If multiple encodings of the same width can encode the instruction, the assembler syntax indicates the
preferred encoding, and how software can select other encodings if required. Each encoding also documents
UAL syntax that selects it in preference to any other encoding. If no encodings of the target instruction set
can encode the instruction requested by the UAL source, the assembler normally generates an error that
indicates that the instruction is not available in that instruction set.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C1-251
Non-Confidential

C1 Instruction Set Overview
C1.5 Standard assembler syntax fields

C1.5 Standard assembler syntax fields
The following assembler syntax prototype fields are standard across all or most instructions:

<c> Specifies the condition under which the instruction is executed. If <c> is omitted, it defaults to
always (AL). For details see Conditional instructions on page C1-250.

<q> Specifies one of the following optional assembler qualifiers on the instruction:

N Meaning narrow. The assembler must select a 16-bit encoding for the instruction. If this
is not possible, an assembler error is produced.

W Meaning wide. The assembler must select a 32-bit encoding for the instruction. If this
is not possible, an assembler error is produced.

If neither .W nor .N is specified, the assembler can select either a 16-bit or 32-bit encoding. If both
encoding lengths are available, it must select a 16-bit encoding. In the few cases where more than
one encoding of the same length is available for an instruction, the rules for selecting between them
are instruction-specific and are part of the instruction description.

C1-252 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

C1.6

Conditional execution

C1 Instruction Set Overview

C1.6 Conditional execution

Conditionally executed means that the instruction only has its normal effect on the programmers’ model operation,
memory and coprocessors if the N, Z, C, and V flags in the APSR satisfy a condition specified in the instruction. If
the flags do not satisfy this condition, the instruction acts as a NOP, that is, execution advances to the next instruction
as normal, including any relevant checks for exceptions being taken, but has no other effect.

Most T32 instructions are unconditional. Conditional execution in T32 code can be achieved using any of the

following instructions:

A 16-bit conditional branch instruction, with a branch range of —256 to +254 bytes. See B on page C2-342

for details.

A 32-bit conditional branch instruction, with a branch range of approximately + 1MB. See B on page C2-342

for details.

16-bit Compare and Branch on Zero and Compare and Branch on Nonzero instructions, with a branch range
of +4 to +130 bytes. See CBNZ, CBZ on page C2-355 for details.

A 16-bit If-Then instruction that makes up to four following instructions conditional. See /7 on page C2-380
for details. The instructions that are made conditional by an IT instruction are called its /7 block. Instructions
in an IT block must either all have the same condition, or some can have one condition, and others can have
the inverse condition.

In T32 instructions, the condition (if it is not AL) is encoded in a preceding IT instruction, other than B, CBZ, and CBNZ.
Some conditional branch instructions do not require a preceding IT instruction, and include a condition code in their
encoding.

Table C1-1 shows the conditions that are available for conditionally executed instructions.

Table C1-1 Condition codes

cond Mnemc?nic M(Ieaning_, integer M?aning', floating-point APSR condition

extension arithmetic arithmetica flags
0000 EQ Equal Equal Z==
0001 NE Not equal Not equal, or unordered 7Z==
0010 ¢csb Carry set Greater than, equal, or unordered C==
0011 cce Carry clear Less than C==0
0100 MI Minus, negative Less than N==
0101 PL Plus, positive or zero Greater than, equal, or unordered N ==
0110 VS Overflow Unordered ==
0111 VC No overflow Not unordered V=
1000 HI Unsigned higher Greater than, or unordered C=landZ==0
1001 LS Unsigned lower or same Less than or equal C=0o0orzZ=—=
1010 GE Signed greater than or equal ~ Greater than or equal N=V
1011 LT Signed less than Less than, or unordered N!I=V
1100 GT Signed greater than Greater than Z==0and N ==
1101 LE Signed less than or equal Less than, equal, or unordered Z==1orN!=V
1110 None (AL) 4 Always (unconditional) Always (unconditional) Any

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved.

Non-Confidential

C1-253

C1 Instruction Set Overview
C1.6 Conditional execution

a. Unordered means at least one NaN operand.
b. HS (unsigned higher or same) is a synonym for CS.
c. LO (unsigned lower) is a synonym for CC.
d. AL is an optional mnemonic extension for always, except in IT instructions. See /7" on page C2-380 for details.
C1.6.1 Pseudocode details of conditional execution
The CurrentCond() pseudocode function prototype returns a 4-bit condition specifier as follows:
. For the T1 and T3 encodings of the Branch instruction shown in B on page C2-342, it returns the 4-bit cond
field of the encoding.
. For all other T32 instructions:
— If ITSTATE.IT<3:0> != '0000' it returns ITSTATE.IT<7:4>
— If ITSTATE.IT<7:0> == '00000000" it returns '1110'
— Otherwise, execution of the instruction is UNPREDICTABLE.
For more information, see ITSTATE.
The ConditionPassed() function uses this condition specifier and the APSR condition flags to determine whether
the instruction must be executed.
C1.6.2 Conditional execution of undefined instructions
If an undefined instruction fails a condition check in ARMv8-M, the instruction behaves as a NOP and does not
cause an exception.
C1.6.3 ITSTATE
ITSTATE is held in EPSR, see Execution Program Status Register (EPSR) on page B3-43.
The bit assignments of the ITSTATE register are:
76543210
IT[7:0]
This register holds the If-Then Execution state bits for the T32 IT instruction. See /7 on page C2-380 for a
description of the IT instruction and the associated IT block.
ITSTATE divides into two subfields:
IT[7:5] Holds the base condition for the current IT block. The base condition is the top 3 bits of the
condition specified by the IT instruction.
This subfield is 0b000 when no IT block is active.
1T[4:0] Encodes:

. The size of the IT block. This is the number of instructions that are to be conditionally
executed. The size of the block is indicated by the position of the least significant 1 in this
field which is bit[4-size of the block].

. The value of the least significant bit, bit[0], of the condition code for each instruction in the
block.

Note
Changing the value of the least significant bit of a condition code from 0 to 1 inverts the
condition code. For example cond 0000 is EQ, and cond 0001 is NE.

This subfield is 0b00000 when no IT block is active.

C1-254 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

C1 Instruction Set Overview
C1.6 Conditional execution

When an IT instruction is executed, IT bits[7:0] are set according to the condition in the instruction, and the Then
and Else (T and E) parameters in the instruction. See /7 on page C2-380 for more information.

An instruction in an IT block is conditional. See Conditional instructions on page C1-250. The condition used is the
current value of IT[7:4]. When an instruction in an IT block completes its execution normally, ITSTATE is advanced
by shifting IT bits[4:0] left by 1 bit.

For example:

IT[7:5] IT[4:0]
ITTEE EQ 000 00111
ADDEQ RO, R1 000 01110
SUBEQ R2, R3 000 11100
ADDNE R4, RS 000 11000
SUBNE R6, R7 000 10000

Note

Instructions that can complete their normal execution by branching are only permitted in an IT block as its last
instruction, and so always result in ITSTATE advancing to normal execution.

In Table C1-2, P represents the base condition or the inverse of the base condition.

Table C1-2 Effect of IT Execution state bits

IT bits 2

[7:5] [4 [31 [2 [11 [0]

cond base P1 P2 P3 P4 1 Entry point for 4-instruction IT block

cond base Pl P2 P3 1 0 Entry point for 3-instruction IT block

cond base Pl P2 1 0 0 Entry point for 2-instruction IT block

cond base Pl 1 0 0 0 Entry point for 1-instruction IT block

000 0 0 0 0 0 Normal execution, not in an IT block

a. Combinations of the IT bits not shown in this table are reserved.

Pseudocode details of ITSTATE operation
ITAdvance() describes how ITSTATE advances after normal execution.

InITBlock and LastInITBlock test whether the current instruction is in an IT block, and whether it is the last
instruction of an IT block.

C1.64 Branching into and out of an IT block

Execution of an instruction outside of an IT block with ITSTATE set to a non-zero IT value is UNPREDICTABLE.

Execution of an instruction inside an IT block with ITSTATE set to zero, an ICI value, or a value that is inconsistent
with the IT block is UNPREDICTABLE.

See also:

. Instructions in IT blocks and EPSR.IT on page G1-1334.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C1-255
Non-Confidential

C1 Instruction Set Overview
C1.7 Instruction set encoding information

C1.7 Instruction set encoding information
C1.71 UNDEFINED and UNPREDICTABLE instruction set space

An attempt to execute an unallocated instruction results in either:

. Unpredictable behavior. The instruction is described as UNPREDICTABLE.

. An UNDEFINSTR Usage Fault. The instruction is described as UNDEFINED.

An instruction is UNDEFINED if it is declared as UNDEFINED in an instruction description in Chapter C2.

An instruction is UNPREDICTABLE if:

. A bit marked (0) or (1) in the encoding diagram of an instruction is not 0 or 1, respectively, and the
pseudocode for that encoding does not indicate that a different special case applies

. It is declared as UNPREDICTABLE in an instruction description in Chapter C2.

Unless otherwise specified, a T32 instruction that is provided by one or more of the architecture extensions is either

UNPREDICTABLE or UNDEFINED in an implementation that does not include those extensions. See the individual

instruction descriptions for details.

For information about the CONSTRAINED UNPREDICTABLE behavior that can be generated by an instruction, see

Appendix G1 Architectural Constraints on UNPREDICTABLE behaviors.

C1.7.2 Use of 0b1111 as a register specifier

The use of @b1111 as a register specifier is not normally permitted in T32 instructions. When a value of 9b1111 is

permitted, as indicated in the individual instruction descriptions, a variety of meanings is possible. For register

reads, these meanings are:

. Read the PC value, that is, the address of the current instruction + 4. The base register of the table branch
instructions TBB and TBH can be the PC. This enables branch tables to be placed in memory immediately after
the instruction. (Some instructions read the PC value implicitly, without the use of a register specifier, for
example the conditional branch instruction B<cond>.)

. Read the word-aligned PC value, that is, the address of the current instruction + 4, with bits [1:0] forced to
zero. The base register of LDC, LDR, LDRB, LDRD (pre-indexed, no write-back), LDRH, LDRSB, and LDRSH instructions
can be the word-aligned PC. This enables PC-relative data addressing. In addition, some encodings of the ADD
and SUB instructions permit their source registers to be 0b1111 for the same purpose.

. Read zero. This is done in some cases when one instruction is a special case of another, more general
instruction, but with one operand zero. In these cases, the instructions are listed on separate pages, with a
special case in the pseudocode for the more general instruction cross-referencing the other page. An example
of this is the descriptions of MOV (register) and ORR (register).

For register writes, these meanings are:

. The PC can be specified as the destination register of an LDR instruction. This is done by encoding Rt as
0b1111. The loaded value is treated as an address, and the effect of execution is a branch to that address. bit [0]
of the loaded value selects the Execution state after the branch and must have the value 1.

. Discard the result of a calculation. This is done in some cases when one instruction is a special case of
another, more general instruction, but with the result discarded. In these cases, the instructions are listed on
separate pages, with a special case in the pseudocode for the more general instruction cross-referencing the
other page. An example of this is the descriptions of TST (register) and AND (register).

. If the destination register specifier of an LDRB, LDRH, LDRSB, or LDRSH instruction is 0b1111, the instruction is a
memory hint instead of a load operation.

. If the destination register specifier of an MRC instruction is @b1111, bits [31:28] of the value transferred from
the coprocessor are written to the N, Z, C, and V flags in the APSR, and bits [27:0] are discarded.

C1-256 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

C1 Instruction Set Overview
C1.7 Instruction set encoding information

C1.73 Use of 0b1101 as a register specifier

R13 is defined in the T32 instruction set so that its use is primarily as a stack pointer, and R13 is normally identified
as SP in T32 instructions.

The following subsections describe the restrictions that apply to using SP:
. SP[1:0] definition.

. 32-bit T32 instruction support for SP.

. 16-bit T32 instruction support for SP.

SP[1:0] definition
Bits [1:0] of SP must be treated as SBZP (Should Be Zero or Preserved). Writing a non-zero value to bits [1:0] results

in UNPREDICTABLE behavior. Reading bits[1:0] returns zero.

32-bit T32 instruction support for SP

32-bit T32 instruction support for SP is restricted to the following cases:

. SP as the source or destination register of a MOV instruction. Only register to register transfers without shifts
are supported, with no flag setting:
MoV SP,Rm
MoV Rn,SP
. Adjusting SP up or down by a multiple of its alignment:
ADD{W} SP,SP,#N ; For N a multiple of 4
SUB{wW} SP,SP,#N ; For N a multiple of 4

ADD SP,SP,Rm,LSL #shft ; For shft=0,1,2,3
SuB SP,SP,Rm,LSL #shft ; For shft=0,1,2,3

. SP as a base register, Rn, of any load or store instruction. This supports SP-based addressing for load, store,
or memory hint instructions, with positive or negative offsets, with and without write-back.

. SP as the first operand, Rn, in any ADD{S}, CMN, CMP, or SUB{S} instruction. The add and subtract instructions
support SP-based address generation, with the address going into a general-purpose register. CMN and CMP can
check the stack pointer.

. SP as the transferred register, Rt, in any LDR or STR instruction.
. SP as the address in a POP or PUSH instruction.

Use of the SP as a general-purpose register in any other case is UNPREDICTABLE.

16-bit T32 instruction support for SP

For 16-bit data processing instructions that affect general-purpose registers R8-R15, SP can only be used as
described in 32-bit T32 instruction support for SP. ARM deprecates any other use. This affects the high register
forms of CMP and ADD, where ARM deprecates the use of SP as Rm.

C1.74 Branching

Writing an address to the PC causes either a simple branch to that address or an interworking branch.
A simple branch is performed by BranchWritePC.

An interworking branch is performed by BXWritePC.

Branching can occur in cases where 0b1111 is not a register specifier.

In these cases, instructions write the PC either:

. Implicitly, for example, B<cond>.
. By using a register mask rather than a register specifier, for example LDM.
ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C1-257

1D092816

Non-Confidential

C1 Instruction Set Overview
C1.7 Instruction set encoding information

The address to branch to can be:

. A loaded value, for example LDM.
. A register value, for example BX.
. The result of a calculation, for example TBB or TBH.

Table C1-3 summarizes the branch instructions in the T32 instruction set. In addition to providing for changes in
the flow of execution, some branch instructions can change the Security state.

Table C1-3 Branch instructions

Instruction See Range, T32
Branch to target address B on page C2-342 +16MB
Compare and Branch on Nonzero, CBNZ, CBZ on page C2-355 0-126 bytes

Compare and Branch on Zero

Call a subroutine BL on page C2-350 +16MB

Call a subroutine, optionally change Security state BLX, BLXNS on page C2-351 Any

Branch to target address, change to Non-secure state ~ BX, BXNS on page C2-353 Any
Table Branch (byte offsets) TBB, TBH on page C2-641 0-510 bytes
Table Branch (halfword offsets) 0-131070 bytes

Branches to loaded and calculated addresses can be performed by LDR, LDM and data-processing instructions. For
details, see Chapter C2 Instruction Specification.

In addition to the branch instructions shown in Table C1-3, a load instruction that targets the PC behaves as a branch
instruction.

C1-258

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

C1 Instruction Set Overview
C1.8 Modified immediate constants

C1.8 Modified immediate constants

The encoding of modified immediate constants in T32 instructions is:

1514131211109 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2
abocdef

0
[i] | imm3 | | h

1
9

Table C1-4 shows the range of modified immediate constants available in T32 data processing instructions, and how
they are encoded in the a, b, ¢, d, e, f, g, h, i, and imm?3 fields in the instruction.

Table C1-4 Encoding of modified immediates in T32 data-processing instructions

i:imm3:a <const>a Carry flag set®
0000x 00 abcdefgh No
0001x 00000000 abcdefgh 00000000 abcdefgh © No
0010x abcdefgh 00000000 abcdefgh 00000000 © No
0011x abcdefgh abcdefgh abcdefgh abcdefgh © No
01000 1bcdefgh 00000000 00000000 00000000 Yes, to 1
01001 01bcdefg h0000000 00000000 00000000 Yes, to 0
01010 001bcdef gh000000 00000000 00000000 Yes, to 0
01011 0001bcde fgh00o00 00000000 00000000 Yes, to 0
Yes, to 0

8-bit values shifted to other positions

11101 00000000 00000000 000001bc defgh000 Yes, to 0
11110 00 1b cdefgh0o Yes, to 0
11111 00 1 bcdefgho Yes, to 0

a. This table shows the immediate constant value in binary form, to relate abcdefgh
to the encoding diagram. In assembly syntax, the immediate value is specified as
a decimal integer by default.

b. Applies only if a logical operation with a modified immediate constant can set the
flags.

c. UNPREDICTABLE if abedefgh == 00000000.

c1.8.1 Operation of modified immediate constants

T32ExpandImm on page E2-1279 and T32ExpandIimm_C on page E2-1280 show the operation of modified
immediate constants.

ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C1-259
1D092816 Non-Confidential

C1 Instruction Set Overview
C1.9 NOP-compatible hint instructions

C1.9 NOP-compatible hint instructions

A hint instruction only provides an indication to the PE. It is not required that the PE perform an operation on a hint
instruction.

A NOP-compatible hint instruction either:
. Acts as a NOP (No Operation) instruction.
. Performs some IMPLEMENTATION DEFINED behavior.

A PE without the Main Extension only supports the 16-bit encodings of the ARMv8-M NOP-compatible hint
instructions. A PE with the Main Extension supports both the 16-bit and the 32-bit encodings of the ARMvS-M
NOP-compatible hint instructions.

. For information on the 16-bit encodings see Hints on page C2-273.
. For information on the 32-bit encodings see Hints on page C2-288.
C1-260 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

C1 Instruction Set Overview
C1.10 Instruction set, interworking support

C1.10 Instruction set, interworking support

In the A profile version of the ARMvVS architecture, ARMVS-A, the A4rch32 Execution state supports two
instruction sets, T32 and A32, and software can use interworking branches to select which of these to execute.
In ARMv8-M, the following instructions are interworking branches:

. BX and BLX.

. POP and all forms of LDM, when the register list includes the PC.

. LDR (immediate), LDR (literal), and LDR (register), with <Rt>equal to the PC.

This means that the value of bit[0] for these instructions is not stored in the PC. Instead, it selects the instruction set
that is executed after the branch.

In ARMvV8-M, if bit [0] of an interworking address is:

0 EPSR.T is assigned the value 0b0, causing the PE to take an INVSTATE UsageFault on the next
instruction it attempts to execute.

1 EPSR.T is assigned the value 0b1. The instruction set state is T32 state and all instructions are
decoded as T32 instructions.

Bit[0] of the PC is always 0.

See also:
. Instruction set on page C1-244.
. BXWritePC on page E2-1159.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C1-261
Non-Confidential

C1 Instruction Set Overview
C1.11 Instruction set, interstating support

C1.11 Instruction set, interstating support

In ARMv8-M, the following instructions are interstating branches:
. BXNS and BLXNS.

This means that the value of bit[0] for these instructions is not stored in the PC. Instead, it selects the target Security
state.

When an interstating branch is executed in Secure state, bit[0] of the target address indicates the target Security

state:
0 The target Security state is Non-secure state.
1 The target Security state is Secure state.

Bit[0] of the PC is always 0.

Interstating branches are UNDEFINED when executing in Non-secure state.

See also:
. In Chapter B3 Programmers’ Model:
— Security state transitions on page B3-61.

C1-262 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

Chapter C2
Instruction Specification

This chapter specifies the ARMv8-M instruction set. It contains the following sections:
. Top level T32 instruction set encoding on page C2-264.

. 16-bit T32 instruction encoding on page C2-265.

. 32-bit T32 instruction encoding on page C2-276.

. Alphabetical list of instructions on page C2-312.

In this chapter:

. In the decode tables, an entry of - for a field value means that the value of the field does not affect the
decoding.
. In the decode diagrams, a shaded field indicates that the bits in that field are not used in that level of decode.
ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-263

1D092816 Non-Confidential

C2 Instruction Specification
C2.1 Top level T32 instruction set encoding

Cc21 Top level T32 instruction set encoding
The T32 instruction stream is a sequence of halfword-aligned halfwords. Each T32 instruction is either a single
16-bit halfword in that stream, or a 32-bit instruction consisting of two consecutive halfwords in that stream.
If the value of bits[15:11] of the halfword being decoded is one of the following, the halfword is the first halfword
of a 32-bit instruction:
. 0b11101.
. 0b11110.
. 0b11111.
Otherwise, the halfword is a 16-bit instruction.
15 1312[11 10 | 0115 0]
[op0 Jopt] |
Table C2-1 Main encoding table for the T32 instruction set
Decode fields
Decode group or instruction page
op0 op1
=111 - 16-bit T32 instruction encoding on page C2-265
111 00 B - T2 variant
111 1= 00 32-bit T32 instruction encoding on page C2-276
C2-264 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

C2 Instruction Specification
C2.2 16-bit T32 instruction encoding

C2.2 16-bit T32 instruction encoding

This section describes the encoding of the 16-bit T32 instruction encoding group. This section is decoded from 7op
level T32 instruction set encoding on page C2-264.

Note
In the decode tables in this section, an entry of - for a field value means the value of the field does not affect the
decoding.
[15 | 109 | 0|
[o0 | |
Table C2-2 Encoding table for the 16-bit group

Decode fields

Decode group or instruction page
op0
00OXXXX Shift (immediate), add, subtract, move, and compare
010000 Data-processing (two low registers) on page C2-267
010001 Special data instructions and branch and exchange on page C2-268
01001x LDR (literal) - T1 variant
0101xx Load/store (register offset) on page C2-269
011xxx Load/store word/byte (immediate offset) on page C2-269
1000xx Load/store halfword (immediate offset) on page C2-270
1001xx Load/store (SP-relative) on page C2-270
1010xx Add PC/SP (immediate) on page C2-271
1011xx Miscellaneous 16-bit instructions on page C2-271
1100xx Load/store multiple on page C2-274
1101xx Conditional branch, and Supervisor Call on page C2-274

Cc2.21 Shift (immediate), add, subtract, move, and compare

This section describes the encoding of the Shift (immediate), add, subtract, move, and compare group. This section
is decoded from 16-bit T32 instruction encoding.

ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-265
1D092816 Non-Confidential

C2 Instruction Specification
C2.2 16-bit T32 instruction encoding

15 13121110 9 | 0]
[00] [opt] | |

op0 J
op2

Table C2-3 Encoding table for the Shift (immediate), add, subtract, move, and compare group

Decode fields
Decode group or instruction page
op0 op1 op2

0 11 0 Add, subtract (three low registers)

0 11 1 Add, subtract (two low registers and immediate)

0 =11 - MOV (register) - 72 variant on page C2-464

1 - - Add, subtract, compare, move (one low register and immediate) on page C2-267

Add, subtract (three low registers)
This section describes the encoding of the Add, subtract (three low registers) instruction class. This section is

decoded from Shift (immediate), add, subtract, move, and compare on page C2-265.

[15141312/1110 9 8| 6 5 |3 2 0]
[000110[s] Rm | Rn | Rd |

Decode fields
Instruction page

S
0 ADD (register)
1 SUB (register)

Add, subtract (two low registers and immediate)

This section describes the encoding of the Add, subtract (two low registers and immediate) instruction class. This
section is decoded from Shift (immediate), add, subtract, move, and compare on page C2-265.

[15141312/11109 8| 6 5 |3 2 0]

[0001 1 1[s[imm3]| Rn | Rd |
Decode fields
Instruction page
S
0 ADD (immediate)
1 SUB (immediate)
C2-266 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

C2 Instruction Specification
C2.2 16-bit T32 instruction encoding

Add, subtract, compare, move (one low register and immediate)

This section describes the encoding of the Add, subtract, compare, move (one low register and immediate)
instruction class. This section is decoded from Shift (immediate), add, subtract, move, and compare on

page C2-265.

[15141312/1110 8|7 | 0]

|001|op| Rd | imm8 |
Decode fields

Instruction page
op
00 MOV (immediate)
01 CMP (immediate)
10 ADD (immediate)
11 SUB (immediate)
C2.2.2 Data-processing (two low registers)

This section describes the encoding of the Data-processing (two low registers) instruction class. This section is
decoded from 16-bit T32 instruction encoding on page C2-265.

115 14 13 12[11 10 9

| 65 |32 0

[0 1000 0]

Decode fields

Instruction page

op
0000 AND (register)
0001 EOR (register)
0010 MOV, MOVS (register-shifted register) - Logical shift left variant on page C2-468
0011 MOV, MOVS (register-shifted register) - Logical shift right variant on page C2-468
0100 MOV, MOVS (register-shifted register) - Arithmetic shift right variant on page C2-468
0101 ADC (register)
0110 SBC (register)
0111 MOV, MOVS (register-shifted register) - Rotate right variant on page C2-468
1000 TST (register)
1001 RSB (immediate)
1010 CMP (register)
1011 CMN (register)
ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-267

1D092816

Non-Confidential

C2 Instruction Specification
C2.2 16-bit T32 instruction encoding

Decode fields
Instruction page

op
1100 ORR (register)
1101 MUL
1110 BIC (register)
1111 MVN (register)
C2.2.3 Special data instructions and branch and exchange

This section describes the encoding of the Special data instructions and branch and exchange group. This section is
decoded from 16-bit T32 instruction encoding on page C2-265.

|15 \ 9 87 \ 0|
[010001 [opo | |

Table C2-4 Encoding table for the Special data instructions and branch and exchange group

Decode fields
Decode group or instruction page
op0

11 Branch and exchange

=11 Add, subtract, compare, move (two high registers)

Branch and exchange
This section describes the encoding of the Branch and exchange instruction class. This section is decoded from

Special data instructions and branch and exchange.

1514 1312/1110 9 8|7 6 1321 0]
[01 00011 1[L] RrRm NJO)o)

Decode fields
Instruction page

L
0 BX, BXNS
1 BLX, BLXNS

Add, subtract, compare, move (two high registers)

This section describes the encoding of the Add, subtract, compare, move (two high registers) instruction class. This
section is decoded from Special data instructions and branch and exchange.

C2-268 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

C2 Instruction Specification
C2.2 16-bit T32 instruction encoding

1514 1312/1110 9 8|7 6 32 o0
[01 000 1[=11]D] Rs | Rd |
op

Decode fields
Instruction page
op D:Rd Rs

00 = 1101 != 1101 ADD (register)
00 - 1101 ADD (SP plus register) - 71 variant on page C2-318
00 1101 1= 1101 ADD (SP plus register) - 72 variant on page C2-318
01 - - CMP (register)
10 - - MOV (register)

C2.24 Load/store (register offset)

This section describes the encoding of the Load/store (register offset) instruction class. This section is decoded from
16-bit T32 instruction encoding on page C2-265.

15141312/1110 9 8| 6 5 [3 2 0]

[0 1 0 1]L[B[H] Rm | Rn | Rt |
Decode fields
Instruction page
L B H
0 0 0 STR (register)
0 0 1 STRH (register)
0 1 0 STRB (register)
0 1 1 LDRSB (register)
1 0 0 LDR (register)
1 0 1 LDRH (register)
1 1 0 LDRB (register)
1 1 1 LDRSH (register)
C2.2.5 Load/store word/byte (immediate offset)

This section describes the encoding of the Load/store word/byte (immediate offset) instruction class. This section
is decoded from /6-bit T32 instruction encoding on page C2-265.

ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-269
1D092816 Non-Confidential

C2 Instruction Specification
C2.2 16-bit T32 instruction encoding

11514 13 12/11 10 | 65 [32 o0
[0 1 1]BJ]L] imm5 | Rn | Rt |

Decode fields
Instruction page

B L

0 0 STR (immediate)

0 1 LDR (immediate)
1 0 STRB (immediate)
1 1 LDRB (immediate)

C2.2.6 Load/store halfword (immediate offset)

This section describes the encoding of the Load/store halfword (immediate offset) instruction class. This section is
decoded from 16-bit T32 instruction encoding on page C2-265.

[15 14 13 12/11 10 | 65 [3 2 0]
[10o0o0fL] imms | Rn | Rt |

Decode fields
Instruction page

L
0 STRH (immediate)
1 LDRH (immediate)

C2.27 Load/store (SP-relative)

This section describes the encoding of the Load/store (SP-relative) instruction class. This section is decoded from
16-bit T32 instruction encoding on page C2-265.

|15 14 13 12/11 10 8|7 | 0]
[1 00 1]L] Rt | imm8 |
Decode fields
Instruction page
L
0 STR (immediate)
1 LDR (immediate)
C2-270 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

C2 Instruction Specification
C2.2 16-bit T32 instruction encoding

C2.238 Add PC/SP (immediate)

This section describes the encoding of the Add PC/SP (immediate) instruction class. This section is decoded from
16-bit T32 instruction encoding on page C2-265.

[15141312[1110 817 | 0]
[1 01 0[sPf Rd | imm8 |
Decode fields
Instruction page
SP
0 ADR
1 ADD (SP plus immediate)
C2.2.9 Miscellaneous 16-bit instructions

This section describes the encoding of the Miscellaneous 16-bit instructions group. This section is decoded from
16-bit T32 instruction encoding on page C2-265.

15 11 817 6 5 4|3 0
[1011 | opo [opt| [| op3 |

I— op2

Table C2-5 Encoding table for the Miscellaneous 16-bit instructions group

Decode fields
Decode group or instruction page
op0 op1 op2 op3

0000 - - - Adjust SP (immediate) on page C2-272
0010 - - - Extend on page C2-272
0110 00 - - Unallocated.
0110 o1 0 - Unallocated.
0110 o1 1 - CPS
0110 1x - - Unallocated.
0111 - - - Unallocated.
1000 - - - Unallocated.
1010 10 - - Unallocated.
l010 !'=10 - - Reverse bytes on page C2-272
1110 - - - BKPT
111 - - 0000 Hints on page C2-273
ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-271

1D092816 Non-Confidential

C2 Instruction Specification
C2.2 16-bit T32 instruction encoding

Table C2-5 Encoding table for the Miscellaneous 16-bit instructions group (continued)

Decode fields
Decode group or instruction page
op0 op1 op2 op3

111 - - = 0000 IT
x0x1 - - - CBNZ, CBZ
x10x - - - Push and Pop on page C2-273

Adjust SP (immediate)

This section describes the encoding of the Adjust SP (immediate) instruction class. This section is decoded from
Miscellaneous 16-bit instructions on page C2-271.

[15141312/1110 9 8|7 6 | 0]
[1 011000 0[s] imm?7 |
Decode fields
Instruction page
S
0 ADD (SP plus immediate)
1 SUB (SP minus immediate)
Extend

This section describes the encoding of the Extend instruction class. This section is decoded from Miscellaneous
16-bit instructions on page C2-271.

[15141312/1110 9 8|7 6 5 |3 2 0]
[10110010[u[B] Rm | Rd |

Decode fields
Instruction page

V) B

0 0 SXTH
0 1 SXTB
1 0 UXTH
1 1 UXTB

Reverse bytes

This section describes the encoding of the Reverse bytes instruction class. This section is decoded from
Miscellaneous 16-bit instructions on page C2-271.

C2-272 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

C2 Instruction Specification
C2.2 16-bit T32 instruction encoding

15141312/1110 9 8/7 6 5 [3 2 0]

[1 0111 010[=10] Rm | Rd |
op
Decode fields
Instruction page

op
00 REV
01 REV16
11 REVSH

Hints

This section describes the encoding of the Hints instruction class. This section is decoded from Miscellaneous 16-bit
instructions on page C2-271.

151413 12[1110 9 817 41321 0]
[1 0111111 nhint Jooo0o0f

Decode fields
Instruction page

hint

0000 NOP

0001 YIELD

0010 WFE

0011 WFI

0100 SEV

0101 Reserved hint, behaves as NOP.
011x Reserved hint, behaves as NOP.
1xxx Reserved hint, behaves as NOP.

Push and Pop

This section describes the encoding of the Push and Pop instruction class. This section is decoded from
Miscellaneous 16-bit instructions on page C2-271.

ARM DDI 0553A.c

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-273
Non-Confidential

C2 Instruction Specification
C2.2 16-bit T32 instruction encoding

1514 1312/1110 9 8|7 \ 0
[1 01 1]L]1 o]P] register_list |

Decode fields
Instruction page

L
0 STMDB, STMFD
1 LDM, LDMIA, LDMFD

C2.2.10 Load/store multiple

This section describes the encoding of the Load/store multiple instruction class. This section is decoded from /6-bit
132 instruction encoding on page C2-265.

1514131211110 8|7 \ 0|
[1 1 0 0]L] Rn | register_list |

Decode fields
Instruction page

L
0 STM, STMIA, STMEA
1 LDM, LDMIA, LDMFD

cC2.2.11 Conditional branch, and Supervisor Call
This section describes the encoding of the Conditional branch, and Supervisor Call group. This section is decoded

from 16-bit T32 instruction encoding on page C2-265.

|15 |11 87 \ 0|
[1101 | opo | |

Table C2-6 Encoding table for the Conditional branch, and Supervisor Call group

Decode fields
Decode group or instruction page

op0
111x Exception generation
1= 111x B - T'I variant on page C2-342

Exception generation

This section describes the encoding of the Exception generation instruction class. This section is decoded from
Conditional branch, and Supervisor Call.

C2-274 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

C2 Instruction Specification
C2.2 16-bit T32 instruction encoding

[15141312/1110 9 8|7 | 0]

[1 10111 1]s] imm8 |
Decode fields

Instruction page
S
0 UDF
1 SvC
ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-275

1D092816 Non-Confidential

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding

C2.3 32-bit T32 instruction encoding

This section describes the encoding of the 32-bit T32 instruction encoding group. This section is decoded from 7op
level T32 instruction set encoding on page C2-264.

Note
In the decode tables in this section, an entry of - for a field value means the value of the field does not affect the
decoding.
|15 12] 9 8| 4|3 011514 | 0]
[111 | opo | op1 | [] |

op3

Table C2-7 Encoding table for the 32-bit group

Decode fields
Decode group or instruction page

op0 op1 op3
x11x - - Coprocessor and floating-point instructions on page C2-302
0100 - - Load/store (multiple, dual, exclusive, acquire-release), table branch
0101 - - Data-processing (shifted register) on page C2-282
10xx - 1 Branches and miscellaneous control on page C2-287
10x0 - 0 Data-processing (modified immediate) on page C2-284
10x1 - 0 Data-processing (plain binary immediate) on page C2-285
1100 1xxx@ - Unallocated.
1100 != 1xxx@ - Load/store single on page C2-290
1101 @xxxx - Data-processing (register) on page C2-295
1101 10xxx - Multiply, multiply accumulate, and absolute difference on page C2-299
1101 1lxxx - Long multiply and divide on page C2-301
C2.31 Load/store (multiple, dual, exclusive, acquire-release), table branch

This section describes the encoding of the Load/store (multiple, dual, exclusive, acquire-release), table branch
group. This section is decoded from 32-bit T32 instruction encoding.

C2-276 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding

|15 | 817 6 5 4] 015 0]
| 1110100 [| Jop1] |

op0

Table C2-8 Encoding table for the Load/store (multiple, dual, exclusive, acquire-release), table
branch group

Decode fields
Decode group or instruction page

op0 op1

- 0x Load/store multiple

0 10 Load/store exclusive, load-acquire/store-release, table branch
0 11 Load/store dual (post-indexed) on page C2-280

1 10 Load/store dual (literal and immediate) on page C2-280

1 11 Load/store dual (pre-indexed), secure gateway on page C2-281

Load/store multiple

This section describes the encoding of the Load/store multiple instruction class. This section is decoded from
Load/store (multiple, dual, exclusive, acquire-release), table branch on page C2-276.

[15141312(1110 9 8|7 6 5 43 011514 13 12| | | 0]
[1 11010 0[opclo]w|[L] RrRn [P]m]0) register_list |

Decode fields
Instruction page

opc L

00 - Unallocated.

01 0 STM, STMIA, STMEA
01 1 LDM, LDMIA, LDMFD
10 0 STMDB, STMFD

10 1 LDMDB, LDMEA

11 - Unallocated.

Load/store exclusive, load-acquire/store-release, table branch

This section describes the encoding of the Load/store exclusive, load-acquire/store-release, table branch group. This
section is decoded from Load/store (multiple, dual, exclusive, acquire-release), table branch on page C2-276.

ARM DDI 0553A.c

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-277
Non-Confidential

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding

|15 | |7 6 4] 015 12]11 817 5 4| 0]
| 11101000 [| 10] op1 | | op2 | |

op0

Table C2-9 Encoding table for the Load/store exclusive, load-acquire/store-release, table branch
group

Decode fields
Decode group or instruction page

op0 op1 op2

0 Oxxxx1111 - TT, TTT, TTA, TTAT

0 = Oxxxx1111 - Load/store exclusive

1 DXXXXXXXX 000 Unallocated.

1 IXXXXXXXX 000 TBB, TBH

1 - 01x Load/store exclusive byte/half/dual

1 - 1xx Load-acquire / Store-release on page C2-279

Load/store exclusive
This section describes the encoding of the Load/store exclusive instruction class. This section is decoded from

Load/store exclusive, load-acquire/store-release, table branch on page C2-277.

[15141312(1110 9 8|7 6 5 43 0115 12]11 817 | 0]
[1t1101000010[t] R\ | R [R | imm8 |

Decode fields
Instruction page

L Rt
0 1= 1111 STREX
1 - LDREX

Load/store exclusive byte/half/dual

This section describes the encoding of the Load/store exclusive byte/half/dual instruction class. This section is
decoded from Load/store exclusive, load-acquire/store-release, table branch on page C2-277.

C2-278 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding

1151413121110 9 8|7 6 5 4|3 015 12[11 8|7 6 5 43 0|
[1t1101000110[t] Rn [R | R2 Jo1]sz|] Rd |

Decode fields
Instruction page

L sz

0 00 STREXB

0 01 STREXH

0 10 Unallocated.
0 11 Unallocated.
1 00 LDREXB

1 01 LDREXH

1 10 Unallocated.
1 11 Unallocated.

Load-acquire / Store-release
This section describes the encoding of the Load-acquire / Store-release instruction class. This section is decoded

from Load/store exclusive, load-acquire/store-release, table branch on page C2-277.

[15141312(1110 9 8|7 6 5 43 0115 12]11 8|7 6 5 4|3 0]
[t1101000110[t] rRn | R | R2 [1fp sz| Rd |

Decode fields
Instruction page
op L sz

0 0 00 STLB

0 0 01 STLH

0 0 10 STL

0 0 11 Unallocated.

0 1 00 LDAB

0 1 01 LDAH

0 1 10 LDA

0 1 11 Unallocated.

1 0 00 STLEXB

1 0 01 STLEXH

1 0 10 STLEX

1 0 11 Unallocated.

ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-279
1D092816 Non-Confidential

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding

Decode fields
Instruction page
op L sz

1 1 00 LDAEXB

1 1 01 LDAEXH

1 1 10 LDAEX

1 1 11 Unallocated.

Load/store dual (post-indexed)
This section describes the encoding of the Load/store dual (post-indexed) group. This section is decoded from

Load/store (multiple, dual, exclusive, acquire-release), table branch on page C2-276.

|15 | |7 6 4|3 0115 | | | 0|
| 11101000 [1]] opo | |

Table C2-10 Encoding table for the Load/store dual (post-indexed) group

Decode fields
Decode group or instruction page

op0
1111 UNPREDICTABLE
1= 1111 Load/store dual (immediate, post-indexed)

Load/store dual (immediate, post-indexed)

This section describes the encoding of the Load/store dual (immediate, post-indexed) instruction class. This section
is decoded from Load/store dual (post-indexed).

15141312(1110 9 8/7 6 5 4|3 015 12[11 8|7 \ 0]
[1 1101 000[uf1 4[] =111] R [RrR2 | imm8 |
Rn

Decode fields
Instruction page

L
0 STRD (immediate)
1 LDRD (immediate)

Load/store dual (literal and immediate)

This section describes the encoding of the Load/store dual (literal and immediate) group. This section is decoded
from Load/store (multiple, dual, exclusive, acquire-release), table branch on page C2-276.

C2-280 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding

|15 | |7 6 4|3 0115 0|
| 11101001 [J10]] opo | |

Table C2-11 Encoding table for the Load/store dual (literal and immediate) group

Decode fields
Decode group or instruction page

op0
1111 LDRD (literal)
1= 1111 Load/store dual (immediate)

Load/store dual (immediate)

This section describes the encoding of the Load/store dual (immediate) instruction class. This section is decoded
from Load/store dual (literal and immediate) on page C2-280.

15141312(1110 9 8/7 6 5 4|3 015 12[11 8|7 \ 0]
[1 110100 1[uf1ofc] =111 | R [RrR2 | imm8 |
Rn

Decode fields
Instruction page

L
0 STRD (immediate)
1 LDRD (immediate)

Load/store dual (pre-indexed), secure gateway

This section describes the encoding of the Load/store dual (pre-indexed), secure gateway group. This section is
decoded from Load/store (multiple, dual, exclusive, acquire-release), table branch on page C2-276.

|15 | |7 6 4|3 0115 | | | 0]
| 11101001 [1]] op2 | op3 |

op0
op1

Table C2-12 Encoding table for the Load/store dual (pre-indexed), secure gateway group

Decode fields
Decode group or instruction page
op0 opl1 op2 op3

0 0 1111 - UNPREDICTABLE
0 1 1111 1110100101111111 SG
0 1 1111 = 1110100101111111 UNPREDICTABLE
ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-281

1D092816 Non-Confidential

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding

C2.3.2

Table C2-12 Encoding table for the Load/store dual (pre-indexed), secure gateway group

Decode fields
Decode group or instruction page
op0 op1 op2 op3

1 0 1111 - UNPREDICTABLE
1 1 1111 - UNPREDICTABLE
- - 1= 1111 - Load/store dual (immediate, pre-indexed)

Load/store dual (immediate, pre-indexed)

This section describes the encoding of the Load/store dual (immediate, pre-indexed) instruction class. This section
is decoded from Load/store dual (pre-indexed), secure gateway on page C2-281.

15141312(1110 9 8/7 6 5 4|3 015 12[11 8|7 \ 0|
[t 110100 1Juf1 1] =111 [R | R2 | imm8 |
Rn

Decode fields
Instruction page

L
0 STRD (immediate)
1 LDRD (immediate)

Data-processing (shifted register)
This section describes the encoding of the Data-processing (shifted register) instruction class. This section is

decoded from 32-bit T32 instruction encoding on page C2-276.

[1514 13 12(1110 9 8| 5 4|3 01514 12|11 8|7 6 5 4|3 0]
[1110101] opt [s] Rn foOf imm3 | Rd [imm2[type] Rm |

Decode fields

Instruction page

op1 Rn Rd imm3:imm2:type

0000 - - AND (register) - AND, rotate right with extend variant on page C2-332

0000 = 1111 != 0000011 AND (register) - ANDS, shift or rotate by value variant on page C2-332

0000 = 1111 0000011 AND (register) - ANDS, rotate right with extend variant on page C2-332

0000 1111 = 0000011 TST (register) - Shift or rotate by value variant on page C2-647

0000 1111 0000011 TST (register) - Rotate right with extend variant on page C2-647

0001 - - BIC (register)

0010 ! - - ORR (register) - ORR, rotate right with extend variant on page C2-494
1111

0010 1111 - - MOV (register) - MOV, rotate right with extend variant on page C2-464

C2-282 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding

Decode fields

Instruction page

op1 Rn Rd imm3:imm2:type

0010 I= - - ORR (register) - ORRS, rotate right with extend variant on page C2-494
1111

0010 1111 - - MOV (register) - MOVS, rotate right with extend variant on page C2-465

0011 I= - - ORN (register) - ORN, rotate right with extend variant on page C2-491
1111

0011 1111 - - MVN (register) - MVN, rotate right with extend variant on page C2-487

0011 I= - - ORN (register) - ORNS, rotate right with extend variant on page C2-491
1111

0011 1111 - - MVN (register) - MVNS, rotate right with extend variant on page C2-487

0100 - - - EOR (register) - EOR, rotate right with extend variant on page C2-373

0100 - = 1111 != 0000011 EOR (register) - EORS, shift or rotate by value variant on page C2-373

0100 - = 1111 0000011 EOR (register) - EORS, rotate right with extend variant on page C2-373

0100 - 1111 = 0000011 TEQ (register) - Shift or rotate by value variant on page C2-644

0100 - 1111 0000011 TEQ (register) - Rotate right with extend variant on page C2-644

0101 - - - Unallocated.

0110 - - XXXXX00 PKHBT, PKHTB - PKHBT variant on page C2-496

0110 - - XXXXX01 Unallocated.

0110 - - XXXxx10 PKHBT, PKHTB - PKHTB variant on page C2-496

0110 - - XXXxx11 Unallocated.

0111 - - - Unallocated.

1000 I= - - ADD (register) - ADD, rotate right with extend variant on page C2-326
1101

1000 1101 - - ADD (SP plus register) - ADD, rotate right with extend variant on

page C2-318

1000 I= = 1111 - ADD (register) - ADDS, rotate right with extend variant on page C2-327
1101

1000 1101 = 1111 - ADD (SP plus register) - ADDS, rotate right with extend variant on

page C2-319

1000 - 1111 - CMN (register)

1001 - - - Unallocated.

1010 - - - ADC (register)

1011 - - - SBC (register)

1100 - - - Unallocated.

1101 I= - - SUB (register) - SUB, rotate right with extend variant on page C2-630
1101

ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-283

1D092816

Non-Confidential

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding

Decode fields

Instruction page

op1 Rn Rd imm3:imm2:type
1101 1101 - - SUB (SP minus register) - SUB, rotate right with extend variant on
page C2-624
1101 I= = 1111 - SUB (register) - SUBS, rotate right with extend variant on page C2-630
1101
1101 1101 I= 1111 - SUB (SP minus register) - SUBS, rotate right with extend variant on
page C2-624
1101 - 1111 - CMP (register)
1110 - - - RSB (register)
1111 - - - Unallocated.
C2.3.3 Data-processing (modified immediate)
This section describes the encoding of the Data-processing (modified immediate) instruction class. This section is
decoded from 32-bit T32 instruction encoding on page C2-276.
[1514 13 12/11 10 9 8| 5 4|3 01514 12|11 8|7 \ 0|
[1 111 0f]i]o] opt [s] Rn Jo[imm3 | Rd | imm8 |
Decode fields
Instruction page
opl1 S Rn Rd
0000 0 - - AND (immediate) - AND variant on page C2-331
0000 1 - = 1111 AND (immediate) - ANDS variant on page C2-331
0000 1 - 1111 TST (immediate)
0001 - - - BIC (immediate)
0010 o !=1111 - ORR (immediate) - ORR variant on page C2-493
0010 o0 1111 - MOV (immediate) - MOV variant on page C2-462
gole 1 !=1111 - ORR (immediate) - ORRS variant on page C2-493
gol0 1 1111 - MOV (immediate) - MOVS variant on page C2-462
0011 o !=1111 - ORN (immediate) - Not flag setting variant on page C2-490
0011 o 1111 - MVN (immediate) - MVN variant on page C2-486
011 1 !=1111 - ORN (immediate) - Flag setting variant on page C2-490
0011 1 1111 - MVN (immediate) - MVNS variant on page C2-486
0100 0 - - EOR (immediate) - EOR variant on page C2-372
0100 1 - = 1111 EOR (immediate) - EORS variant on page C2-372
0100 1 - 1111 TEQ (immediate)
C2-284 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding

Decode fields
Instruction page

op1 S Rn Rd

0101 - - - Unallocated.

01lx - - - Unallocated.

le00 @ !=1101 - ADD (immediate) - ADD variant on page C2-321

le00 0 1101 - ADD (SP plus immediate) - ADD variant on page C2-316
lee0 1 !=1101 != 1111 ADD (immediate) - ADDS variant on page C2-322

loe0 1 1101 = 1111 ADD (SP plus immediate) - ADDS variant on page C2-316
lee0 1 - 1111 CMN (immediate)

1001 - - - Unallocated.

1010 - - - ADC (immediate)

1011 - - - SBC (immediate)

1100 - - - Unallocated.

1101 @ !=1101 - SUB (immediate) - SUB variant on page C2-626

1101 @ 1101 - SUB (SP minus immediate) - SUB variant on page C2-622
1101 1 !=1101 != 1111 SUB (immediate) - SUBS variant on page C2-627

1101 1 1101 = 1111 SUB (SP minus immediate) - SUBS variant on page C2-622
1101 1 - 1111 CMP (immediate)

1110 - - - RSB (immediate)

111 - - - Unallocated.

C2.34 Data-processing (plain binary immediate)

This section describes the encoding of the Data-processing (plain binary immediate) group. This section is decoded
from 32-bit T32 instruction encoding on page C2-276.

115 | 109 8|7 6 5 43 015 14 \ 0]
L1110 [[1] [[opt]of [o] |

op0

Table C2-13 Encoding table for the Data-processing (plain binary immediate) group

Decode fields
Decode group or instruction page

op0 op1
0 0x Data-processing (simple immediate) on
page C2-286
ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-285

1D092816

Non-Confidential

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding

Table C2-13 Encoding table for the Data-processing (plain binary immediate) group (continued)

Decode fields
Decode group or instruction page

op0 op1

0 10 Move Wide (16-bit immediate)

0 11 Unallocated.

1 - Saturate, Bitfield on page C2-287

Data-processing (simple immediate)
This section describes the encoding of the Data-processing (simple immediate) instruction class. This section is

decoded from Data-processing (plain binary immediate) on page C2-285.

1151413121110 9 8|7 6 5 4|3 0[1514 12[11 8|7 \ 0|
[1 111 0]i]1 ofo1foo2]o] Rn Jo[imm3 | Rd | imm8 |

Decode fields
Instruction page

o1 02 Rn

0 0 = 11x1 ADD (immediate)

0 0 1101 ADD (SP plus immediate)

0 0 1111 ADR - T3 variant on page C2-329
0 1 - Unallocated.

1 0 - Unallocated.

1 1 = 11x1 SUB (immediate)

1 1 1101 SUB (SP minus immediate)

1 1 1111 ADR - T2 variant on page C2-329

Move Wide (16-bit immediate)
This section describes the encoding of the Move Wide (16-bit immediate) instruction class. This section is decoded

from Data-processing (plain binary immediate) on page C2-285.

15141312[1110 9 8/7 6 5 4|3 01514 12[11 8|7 \ 0]
[1 111 0f]i[1 0fo1[1 0 o] imma Jof imm3 [Rd | imm8 |

Decode fields
Instruction page

o1
0 MOV (immediate)
1 MOVT
C2-286 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding

Saturate, Bitfield

This section describes the encoding of the Saturate, Bitfield instruction class. This section is decoded from
Data-processing (plain binary immediate) on page C2-285.

[15141312/1110 9 8|7 5 4|3 01514 12|11 817 6 5 4] 0]
[1 11 1 0fof1 1] opt o] Rn Jo] imm3 | Rd [imm2[0)] widthm1 |

Decode fields
Instruction page

opl Rn imm3:imm2
000 - - SSAT - Logical shift left variant on page C2-580
001 - = 00000 SSAT - Arithmetic shift right variant on page C2-580
001 - 00000 SSAT16
010 - - SBFX
011 1= 1111 - BFI
011 1111 - BFC
100 - - USAT - Logical shift left variant on page C2-675
101 - = 00000 USAT - Arithmetic shift right variant on page C2-675
101 - 00000 USAT16
10 - - UBFX
111 - - Unallocated.
C23.5 Branches and miscellaneous control

This section describes the encoding of the Branches and miscellaneous control group. This section is decoded from
32-bit T32 instruction encoding on page C2-276.

|15 | 109 | 6 5 4|3 0/15141312|1110 8|7 0]
L1110 [[opt [op2] [1] [][] op5 | |
opOQ | op4

op3

Table C2-14 Encoding table for the Branches and miscellaneous control group

Decode fields
Decode group or instruction page
op0 op1 op2 op3 op4d op5

0 1110 0x 0 0 - MSR (register)

0 1110 10 0 0 000 Hints on page C2-288

0 1110 10 0 0 1= 000 Unallocated.

0 1110 11 0 0 - Miscellaneous system on page C2-289
ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-287

1D092816

Non-Confidential

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding

Table C2-14 Encoding table for the Branches and miscellaneous control group (continued)

Decode fields
Decode group or instruction page
op0 op1 op2 op3 opd4d op5

0 1111 0x 0 0 - Unallocated.

0 1111 1x 0 0 - MRS

1 1110 - 0 0 - Unallocated.

1 1111 0x 0 0 - Unallocated.

1 1111 1x 0 0 - Exception generation on page C2-289
- I= 111x - 0 0 - B - T3 variant on page C2-342

- - - 0 1 - B - T4 variant on page C2-343

- - - 1 0 - Unallocated.

- - - 1 1 - BL

Hints

This section describes the encoding of the Hints instruction class. This section is decoded from Branches and
miscellaneous control on page C2-287.

151413121110 9 8|7 6 5 4|3 2 1 0[15141312[1110 9 8|7 413 0|
[1 1110011101 o]mnl1 oloooJo o of hint [option |

Decode fields
Instruction page

hint option

0000 0000 NOP

0000 0001 YIELD

0000 0010 WFE

0000 0011 WFI

0000 0100 SEV

0000 0101 Reserved hint, behaves as NOP.

0000 011x Reserved hint, behaves as NOP.

0000 1xxx Reserved hint, behaves as NOP.

0001 - Reserved hint, behaves as NOP.

001x - Reserved hint, behaves as NOP.

0lxx - Reserved hint, behaves as NOP.

10xx - Reserved hint, behaves as NOP.
C2-288 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding

Decode fields
Instruction page

hint option

110x - Reserved hint, behaves as NOP.
1110 - Reserved hint, behaves as NOP.
1111 - DBG

Miscellaneous system
This section describes the encoding of the Miscellaneous system instruction class. This section is decoded from

Branches and miscellaneous control on page C2-287.

[15141312/1110 9 8|7 6 5 4|3 2 1 0/15141312/1110 9 8|7 413 0|
[t 111001110 1 tfOlmf[1 ofolofmld] opc] option]

Decode fields
Instruction page

opc

000x Unallocated.
0010 CLREX
0011 Unallocated.
0100 DSB

0101 DMB

0110 ISB

0111 Unallocated.
1xxx Unallocated.

Exception generation
This section describes the encoding of the Exception generation instruction class. This section is decoded from

Branches and miscellaneous control on page C2-287.

1151413121110 9 8|7 6 5 4|3 0115 14 13 12|11 \ 0|
[1 111011111101 immsa [1 0o2]0] imm12 |

Decode fields
Instruction page

o1 02
0 0 Unallocated.
ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-289

1D092816 Non-Confidential

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding

Decode fields
Instruction page

o1 o2

0 1 Unallocated.
1 0 Unallocated.
1 1 UDF

C2.3.6 Load/store single

This section describes the encoding of the Load/store single group. This section is decoded from 32-bit 732
instruction encoding on page C2-276.

115 \ 8| '3 0115 12]11 | 65 | 0|
| 1111100 [1=10ox0 | op0 | | op1 | |

Table C2-15 Encoding table for the Load/store single group

Decode fields
Decode group or instruction page
op0 op1

1= 1111 000000 Load/store (register offset)

1= 1111 10x0xx Unallocated.

1= 1111 10x1xx Load/store (immediate, post-indexed) on page C2-291

1= 1111 1100xx Load/store (negative immediate) on page C2-292

1= 1111 1110xx Load/store (unprivileged) on page C2-292

1= 1111 1lxI1xx Load/store (immediate, pre-indexed) on page C2-293

1= 1111 - Load/store (positive immediate) on page C2-294

1111 - Load literal on page C2-294

Load/store (register offset)

This section describes the encoding of the Load/store (register offset) instruction class. This section is decoded from
Load/store single.

C2-290 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding

15141312[1110 9 8]7 6 5 4|3 015 12(1110 9 8/7 6 5 4|3 0]
[1 11110 o0[s[ofsize[t] =111 | Rt [0 0000 0fmm2[Rm |
Rn

Decode fields
Instruction page
S size L Rt

0 00 0 - STRB (register)

0 00 1 = 1111 LDRB (register)

0 00 1 1111 PLD (register)

0 o1 0 - STRH (register)

0 o1 1 !=1111 LDRH (register)

0 01 1 1111 Reserved hint, behaves as NOP.
0 10 0 - STR (register)

0 10 1 - LDR (register)

0 11 - - Unallocated.

1 00 1 = 1111 LDRSB (register)

1 00 1 1111 PLI (register)

1 o1 1 1=1111 LDRSH (register)

1 01 1 1111 Reserved hint, behaves as NOP.
1 Ix 1 - Unallocated.

Load/store (immediate, post-indexed)

This section describes the encoding of the Load/store (immediate, post-indexed) instruction class. This section is
decoded from Load/store single on page C2-290.

15141312(1110 9 8/7 6 5 4|3 015 121110 9 8|7 \ 0|
[1 1111 0o0[s]ofsize|[L] =111 [Rt [1 ofu[1] imm8 |
Rn

Decode fields
Instruction page

S size L

0 00 0 STRB (immediate)

0 00 1 LDRB (immediate)

0 01 0 STRH (immediate)

0 01 1 LDRH (immediate)

0 10 0 STR (immediate)
ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-291

1D092816 Non-Confidential

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding

Decode fields
Instruction page
S size L

0 10 1 LDR (immediate)

0 11 - Unallocated.

1 00 1 LDRSB (immediate)
1 o 1 LDRSH (immediate)
1 Ix 1 Unallocated.

Load/store (negative immediate)

This section describes the encoding of the Load/store (negative immediate) instruction class. This section is decoded
from Load/store single on page C2-290.

15141312[1110 9 8/7 6 5 4|3 015 12/1110 9 8|7 \ 0|
[1 11110 o0f[s|o]size[L] =1111 | Rt [1 1 0 0] imm8 |
Rn

Decode fields
Instruction page
S size L Rt

0 00 0 - STRB (immediate)

0 00 1 = 1111 LDRB (immediate)

0 00 1 1111 PLD (immediate)

0 o1 0 - STRH (immediate)

0 o1 1 !=1111 LDRH (immediate)

0 01 1 1111 Reserved hint, behaves as NOP.
0 10 0 - STR (immediate)

0 10 1 - LDR (immediate)

0 11 - - Unallocated.

1 00 1 - LDRSB (immediate)

1 00 1 1111 PLI (immediate, literal)

1 o1 1 !=1111 LDRSH (immediate)

1 01 1 1111 Reserved hint, behaves as NOP.
1 1Ix 1 - Unallocated.

Load/store (unprivileged)

This section describes the encoding of the Load/store (unprivileged) instruction class. This section is decoded from
Load]store single on page C2-290.

C2-292 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

15141312/1110 9 8|7 6 5 4|3 015

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding

121110 9 8|7

0]

[1 1111 0 o0f[s|o]size[L] 1=1111]

Rt

[1 1 1 0] imm8 |

Rn

Load/store (immediate, pre-indexed)

Decode fields

Instruction page

S size L

0 00 0 STRBT

0 00 1 LDRBT

0 o1 0 STRHT

0 o1 1 LDRHT

0 10 0 STRT

0 10 1 LDRT

0 1 - Unallocated.
1 00 1 LDRSBT

1 o1 1 LDRSHT

1 1x 1 Unallocated.

This section describes the encoding of the Load/store (immediate, pre-indexed) instruction class. This section is

decoded from Load/store single on page C2-290.

[15141312/1110 9 8|7 6 5 4|3 0115

12]1110 9 817

0]

[1 1111 0 o0[s|o]size[L] 1=1111]

Rt

[1 1]ul1] imm8 |

Rn

Decode fields

Instruction page

S size L
0 00 0 STRB (immediate)
0 00 1 LDRB (immediate)
0 01 0 STRH (immediate)
0 01 1 LDRH (immediate)
0 10 0 STR (immediate)
0 10 1 LDR (immediate)
0 11 - Unallocated.
ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-293

1D092816

Non-Confidential

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding

Load/store (positive immediate)

Decode fields

Instruction page

S size L

1 00 1 LDRSB (immediate)
1 o 1 LDRSH (immediate)
1 Ix 1 Unallocated.

This section describes the encoding of the Load/store (positive immediate) instruction class. This section is decoded

from Load/store single on page C2-290.

[15141312/1110 9 8|7 6 5 4|3 0115

[1 1111 0 o0[s[1]size[L] 1=1111]

Rt

imm12 |

Rn

Decode fields

Instruction page

S size Rt

0 00 - STRB (immediate)

0 00 = 1111 LDRB (immediate)

0 00 1111 PLD (immediate)

0 o1 - STRH (immediate)

0 01 = 1111 LDRH (immediate)

0 01 1111 Reserved hint, behaves as NOP.
0 10 - STR (immediate)

0 10 - LDR (immediate)

1 00 I= 1111 LDRSB (immediate)

1 00 1111 PLI (immediate, literal)

1 01 = 1111 LDRSH (immediate)

1 o1 1111 Reserved hint, behaves as NOP.

Load literal

This section describes the encoding of the Load literal instruction class. This section is decoded from Load/store

single on page C2-290.

C2-294

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential

ID092816

15141312/1110 9 8/7 6 5 4]3 2 1 015

12[11

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding

[1 1111 00[s|ulsize[L]1 1 1 1] Rt

imm12 |

C2.3.7 Data-processing (register)

Decode fields

Instruction page

S size L Rt

0 00 1 !=1111 LDRB (literal)

0 00 1 1111 PLD (literal)

0 o1 1 1=1111 LDRH (literal)

0 10 1 - LDR (literal)

0 11 - - Unallocated.

1 00 1 I= 1111 LDRSB (literal)

1 00 1 1111 PLI (immediate, literal)
1 o1 1 1=1111 LDRSH (literal)

1 o1 1 1111 Reserved hint, behaves as NOP.
1 1Ix 1 - Unallocated.

This section describes the encoding of the Data-processing (register) group. This section is decoded from 32-bit T32
instruction encoding on page C2-276.

[15 | |7 6 | 0115 |11 87 413 0
| 11111010 | | [1111] op1 | |
op0 |
Table C2-16 Encoding table for the Data-processing (register) group
Decode fields
Decode group or instruction page
op0 op1
0 0000 MOV, MOVS (register-shifted register) - Flag setting variant on page C2-468
0 0001 Unallocated.
0 001x Unallocated.
0 01xx Unallocated.
0 Ixxx Register extends on page C2-296
1 OXXX Parallel add-subtract on page C2-296
1 10xx Data-processing (two source registers) on page C2-298
1 11xx Unallocated.
ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-295

1D092816

Non-Confidential

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding

Register extends

This section describes the encoding of the Register extends instruction class. This section is decoded from

Data-processing (register) on page C2-295.

15141312/1110 9 8|7 6 5 4|3 0115 14 13 12/11

8/7 6 5 4|3

0

[1 111 10100[opt|[u] Rn 111 1]

Rd | 1 |(O)|rotate|

Rm |

Decode fields

Instruction page

opi1 U Rn

00 0 1= 1111 SXTAH
00 0 1111 SXTH

00 1 1= 1111 UXTAH
00 1 1111 UXTH

01 0 1= 1111 SXTABI6
01 0 1111 SXTB16
01 1 1= 1111 UXTABI6
01 1 1111 UXTBI16
10 0 1= 1111 SXTAB
10 0 1111 SXTB

10 1 1= 1111 UXTAB
10 1 1111 UXTB

11 - - Unallocated.

Parallel add-subtract

This section describes the encoding of the Parallel add-subtract instruction class. This section is decoded from

Data-processing (register) on page C2-295.

[15141312/1110 9 8|7 6 43 0 15 14 13 12/ 11

817 6 5 4|3

0|

[111110101] opt | Rn [1 1 1 1]

Rd [oJulH]|s]

Rm |

Decode fields

Instruction page

op1 U H S

000 0 0 0 SADDS

@0 © 0 1 QADDS

000 0 1 o SHADDS
000 0 1 1 Unallocated.

C2-296

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0553A.c
ID092816

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding

Decode fields
Instruction page
op1 U H S

000 1 o o UADDS

000 1 o 1 UQADDS

000 1 1 o UHADDS

000 1 1 1 Unallocated.

001 0 © o SADDI6

01 o0 o 1 QADDI6

001 e 1 o SHADDI6

001 0 1 1 Unallocated.

001 1 o o UADDI6

001 1 0 1 UQADDI6

001 1 1 o UHADDIé6

001 1 1 1 Unallocated.

010 0 0 0 SASX

010 0 0 1 QASX

010 6 1 o SHASX

010 0 1 1 Unallocated.

010 1 o o UASX

010 1 0 1 UQASX

010 1 1 @ UHASX

010 1 1 1 Unallocated.

100 06 © © SSUB8

100 0 0 1 QSUBS

100 0 1 © SHSUBS

100 0 1 1 Unallocated.
100 1 0 0 USUBS8

100 1 0 1 UQSUB8

100 1 1 o UHSUBS

100 1 1 1 Unallocated.

101 0 o o SSUBI6

1 o 0 1 QSUBI6
01 © 1 @ SHSUBI6

101 0 1 1 Unallocated.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-297

Non-Confidential

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding

Data-processing (two source registers)

Decode fields

Instruction page

op1 H

101 0 USUBI16
101 0 UQSUBI16
101 1 UHSUBI16
101 1 Unallocated.
110 0 SSAX

110 0 QSAX

110 1 SHSAX

110 1 Unallocated.
110 0 USAX

110 0 UQSAX

110 1 UHSAX

110 1 Unallocated.
111 - Unallocated.

This section describes the encoding of the Data-processing (two source registers) instruction class. This section is

decoded from Data-processing (register) on page C2-295.

[15141312/1110 9 8|7 6 43 0 15 14 13 12|11

817 6 5 4|3

0|

[1t1 1110101 opt [Rn [1111]

Rd

[1 0fop2]

Rm |

Decode fields

Instruction page

op1 op2

000 00 QADD
000 01 QDADD
000 10 QSUB
000 11 QDSUB
001 00 REV

001 01 REV16
001 10 RBIT
001 11 REVSH
010 00 SEL

010 01 Unallocated.

C2-298

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0553A.c
ID092816

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding

Decode fields
Instruction page

op1 op2

010 1x Unallocated.
011 00 CLZ

011 01 Unallocated.
011 1x Unallocated.
1xx - Unallocated.

C2.3.8 Multiply, multiply accumulate, and absolute difference
This section describes the encoding of the Multiply, multiply accumulate, and absolute difference group. This

section is decoded from 32-bit T32 instruction encoding on page C2-276.

15 \ - \ 0l15 \ 817 6 5 | 0l
| 111110110 | | opo | |

Table C2-17 Encoding table for the Multiply, multiply accumulate, and absolute difference group

Decode fields
Decode group or instruction page

op0

00 Multiply and absolute difference
01 Unallocated.

1x Unallocated.

Multiply and absolute difference
This section describes the encoding of the Multiply and absolute difference instruction class. This section is decoded

from Multiply, multiply accumulate, and absolute difference.

[15141312[1110 9 8|7 6 4|3 0115 12]11 8|7 6 5 4|3 0]
[t 11110110 ot | RR | Ra | R4 [0 o0]op2] Rm |

Decode fields
Instruction page
opl op2 Ra

000 00 1= 1111 MLA

000 00 1111 MUL

000 01 - MLS

000 1x - Unallocated.

001 00 1= 1111 SMLABB, SMLABT, SMLATB, SMLATT - SMLABB variant on page C2-556
ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-299

1D092816 Non-Confidential

C2 Instruction Specification

C2.3 32-bit T32 instruction encoding

Decode fields

Instruction page

op1 op2 Ra

001 00 1111 SMULBB, SMULBT, SMULTB, SMULTT - SMULBB variant on page C2-575
001 01 = 1111 SMLABB, SMLABT, SMLATB, SMLATT - SMLABT variant on page C2-556
001 01 1111 SMULBB, SMULBT, SMULTB, SMULTT - SMULBT variant on page C2-575
001 10 = 1111 SMLABB, SMLABT, SMLATB, SMLATT - SMLATB variant on page C2-556
001 10 1111 SMULBB, SMULBT, SMULTB, SMULTT - SMULTB variant on page C2-575
001 1 = 1111 SMLABB, SMLABT, SMLATB, SMLATT - SMLATT variant on page C2-556
001 1 1111 SMULBB, SMULBT, SMULTB, SMULTT - SMULTT variant on page C2-575
010 00 1= 1111 SMLAD, SMLADX - SMLAD variant on page C2-558

010 00 1111 SMUAD, SMUADX - SMUAD variant on page C2-574

010 01 I= 1111 SMLAD, SMLADX - SMLADX variant on page C2-558

010 01 1111 SMUAD, SMUADX - SMUADX variant on page C2-574

010 1x - Unallocated.

011 00 = 1111 SMLAWB, SMLAWT - SMLAWB variant on page C2-565

011 00 1111 SMULWB, SMULWT - SMULWB variant on page C2-578

011 01 1= 1111 SMLAWB, SMLAWT - SMLAWT variant on page C2-565

011 o1 1111 SMULWB, SMULWT - SMULWT variant on page C2-578

011 1x - Unallocated.

100 00 1= 1111 SMLSD, SMLSDX - SMLSD variant on page C2-567

100 00 1111 SMUSD, SMUSDX - SMUSD variant on page C2-579

100 01 1= 1111 SMLSD, SMLSDX - SMLSDX variant on page C2-567

100 01 1111 SMUSD, SMUSDX - SMUSDX variant on page C2-579

100 1x - Unallocated.

101 00 1= 1111 SMMLA, SMMLAR - SMMLA variant on page C2-571

101 00 1111 SMMUL, SMMULR - SMMUL variant on page C2-573

101 01 1= 1111 SMMLA, SMMLAR - SMMLAR variant on page C2-571

101 01 1111 SMMUL, SMMULR - SMMULR variant on page C2-573

101 1x - Unallocated.

110 00 - SMMLS, SMMLSR - SMMLS variant on page C2-572

110 01 - SMMLS, SMMLSR - SMMLSR variant on page C2-572

110 1x - Unallocated.

111 00 I= 1111 USADAS

C2-300

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0553A.c
ID092816

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding

Decode fields
Instruction page
op1 op2 Ra

111 00 1111 USADS
111 01 - Unallocated.
111 1x - Unallocated.

C2.3.9 Long multiply and divide
This section describes the encoding of the Long multiply and divide instruction class. This section is decoded from

32-bit T32 instruction encoding on page C2-276.

151413121110 9 8|7 6 4|3 0115 12]11 8|7 413 0|
[111110111 opt | Rn [Rdo | RaHi | op2 [Rm |

Decode fields
Instruction page

op1 op2
000 = 0000 Unallocated.
000 0000 SMULL
001 = 1111 Unallocated.
001 1111 SDIV
010 1= 0000 Unallocated.
010 0000 UMULL
011 = 1111 Unallocated.
011 1111 UDIV
100 0000 SMLAL
100 0001 Unallocated.
100 001x Unallocated.
100 01xx Unallocated.
100 1000 SMLALBB, SMLALBT, SMLALTB, SMLALTT - SMLALBB variant on page C2-561
100 1001 SMLALBB, SMLALBT, SMLALTB, SMLALTT - SMLALBT variant on page C2-561
100 1010 SMLALBB, SMLALBT, SMLALTB, SMLALTT - SMLALTB variant on page C2-561
100 1011 SMLALBB, SMLALBT, SMLALTB, SMLALTT - SMLALTT variant on page C2-561
100 1100 SMLALD, SMLALDX - SMLALD variant on page C2-563
100 1101 SMLALD, SMLALDX - SMLALDX variant on page C2-563
100 111x Unallocated.
101 0xxx Unallocated.
ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-301

1D092816 Non-Confidential

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding

Decode fields
Instruction page

op1 op2

101 10xx Unallocated.

101 1100 SMLSLD, SMLSLDX - SMLSLD variant on page C2-569
101 1101 SMLSLD, SMLSLDX - SMLSLDX variant on page C2-569
101 111x Unallocated.

110 0000 UMLAL

110 0001 Unallocated.

110 001x Unallocated.

110 010x Unallocated.

110 0110 UMAAL

110 0111 Unallocated.

110 1xxx Unallocated.

111 - Unallocated.

C2.3.10 Coprocessor and floating-point instructions
This section describes the encoding of the Coprocessor and floating-point instructions group. This section is
decoded from 32-bit T32 instruction encoding on page C2-276.
[15 1211 9 8|7 | 0115 12111 9 8] 5 4|3 0
L 111 [[11 [opo] | opt | | | |
I— op2
Table C2-18 Encoding table for the Coprocessor and floating-point instructions group
Decode fields
Decode group or instruction page
op0 op1 op2
0x 101 - Floating-point load/store and 64-bit register moves
10 101 0 Floating-point data-processing on page C2-304
10 101 1 Floating-point 32-bit register moves on page C2-308
11 - - Unallocated.
=11 =101 - Coprocessor on page C2-309
Floating-point load/store and 64-bit register moves
This section describes the encoding of the Floating-point load/store and 64-bit register moves group. This section
is decoded from Coprocessor and floating-point instructions.
C2-302 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding

|15 | 8| 5 4| 015 12]11 8| 0]
| 1110110 [op0 | [101 | |

Table C2-19 Encoding table for the Floating-point load/store and 64-bit register moves group

Decode fields
Decode group or instruction page

op0

0000 Unallocated.

0010 Floating-point 64-bit move
1= 00x0 Floating-point load/store

Floating-point 64-bit move
This section describes the encoding of the Floating-point 64-bit move instruction class. This section is decoded from

Floating-point load/store and 64-bit register moves on page C2-302.

151413121110 9 8|7 6 5 4|3 0115 121110 9 8/7 6 5 43 0|
[11101100010fp R2 [R [10 1]otfopc2[M[o3] vm |

Decode fields
Instruction page
op o1 opc2 o3

- - =00 - Unallocated.

_ - - 0 Unallocated.

0 0 00 1 VMOV (between two general-purpose registers and two single-precision registers)
0 1 00 1 VMOV (between two general-purpose registers and a doubleword register)
1 0 00 1 VMOV (between two general-purpose registers and two single-precision registers)
1 1 00 1 VMOV (between two general-purpose registers and a doubleword register)

Floating-point load/store

This section describes the encoding of the Floating-point load/store instruction class. This section is decoded from
Floating-point load/store and 64-bit register moves on page C2-302.

ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-303
1D092816 Non-Confidential

C2 Instruction Specification

C2.3 32-bit T32 instruction encoding

[15141312/1110 9 8|7 6 5 4|3 015 121110 9 8|7 | 0]
[1 1101 1 o[P[ulp]w[L] R | vda [1 0 1]s] imm8 |
Decode fields
Instruction page
P L sz imm8 w
0 0 0 - 1 VLSTM
0 1 0 - 1 VLLDM
0 -1 - 1 Unallocated.
0 0 0 - - VSTM
0 0 1 XXXXXXX0 - VSTM
0 0 1 XXXXXXX1 - FSTMDBX, FSTMIAX - Increment After variant on page C2-377
0 1 0 - - VLDM
0 1 1 XXXXXXXQ - VLDM
0 1 1 XXXXXXX1 - FLDMDBX, FLDMIAX - Increment After variant on page C2-375
1 0 - - 0 VSTR
1 0o 0 - 1 VSTM
1 0 1 XXXXXXx0 1 VSTM
1 0 1 XXXxxxx1 1 FSTMDBX, FSTMIAX - Decrement Before variant on page C2-377
1 1 0 - 1 VLDM
1 1 1 XXXXXXX0 1 VLDM
1 1 1 xxxxxxx1l 1 FLDMDBX, FLDMIAX - Decrement Before variant on page C2-375
1 1 - - 0 VLDR
1 - - - 1 Unallocated.

Floating-point data-processing

This section describes the encoding of the Floating-point data-processing group. This section is decoded from
Coprocessor and floating-point instructions on page C2-302.

C2-304

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved.
Non-Confidential

ARM DDI 0553A.c
ID092816

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding

|15 12]11 | 7 413 2 015 12]11 8|7 6 5 4|3 0]
Lt [| 110 [opt [] [100 [[[o] |
opOJ |—op3
op2

Table C2-20 Encoding table for the Floating-point data-processing group

Decode fields
Decode group or instruction page
op0 op1 op2 op3

0 1x11 - 1 Floating-point data-processing (two registers)

0 1x11 - 0 VMOV (immediate)

0 I= 1x11 - - Floating-point data-processing (three registers) on page C2-306
1 OXXX - 0 VSEL

1 0xxx - 1 Unallocated.

1 1x00 - - Floating-point minNum / maxNum on page C2-307

1 1x01 - - Unallocated.

1 1x10 - - Unallocated.

1 1x11 0 - Unallocated.

1 1x11 1 0 Unallocated.

1 1x11 1 1 Floating-point directed convert to integer on page C2-307

Floating-point data-processing (two registers)
This section describes the encoding of the Floating-point data-processing (two registers) instruction class. This

section is decoded from Floating-point data-processing on page C2-304.

151413121110 9 8|7 6 5 4|3 2 015 121110 9 8/7 6 5 43 0|
[1 1101110 1[D]1 1]o1] opc2 [vd [1 0 1]szfo3[1][mM[o] vm]

Decode fields
Instruction page
ol opc2 o3

0 000 0 VMOV (register)

0 000 1 VABS

0 001 0 VNEG

0 001 1 VSQRT

0 010 0 VCVTB

0 010 1 VCVTT

0 011 0 VCVTB

ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-305
1D092816 Non-Confidential

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding

Decode fields
Instruction page
ol opc2 o3

0 011 1 VCVTT

0 100 0 VCMP - Double-precision scalar variant on page C2-692

0 100 1 VCMPE - Double-precision scalar variant on page C2-694

0 101 0 VCMP - Double-precision scalar variant on page C2-692

0 101 1 VCMPE - Double-precision scalar variant on page C2-694

0 110 0 VRINTR

0 110 1 VRINTZ

0 111 0 VRINTX

0 111 1 VCVT (between double-precision and single-precision)

1 000 - VCVT (integer to floating-point)
1 001 - Unallocated.
1 01x - VCVT (between floating-point and fixed-point)

1 100 0 VCVTR

1 100 1 VCVT (floating-point to integer)

1 101 0 VCVTR

1 101 1 VCVT (floating-point to integer)

1 11x - VCVT (between floating-point and fixed-point)

Floating-point data-processing (three registers)
This section describes the encoding of the Floating-point data-processing (three registers) instruction class. This

section is decoded from Floating-point data-processing on page C2-304.

1514 1312|1110 9 8|7 6 5 4|3 0115 121110 9 8/7 6 5 43 0|
[1 11011 100D]ot] wvn [wvd [10 1]szIN[o2[mM[o] vm]

Decode fields
Instruction page
o0 o1 o2

0 00 0 VMLA

0 00 1 VMLS

0 01 0 VNMLS

0 01 1 VNMLA

0 10 0 VMUL

0 10 1 VNMUL

C2-306 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding

Decode fields
Instruction page

o0 o1 o2

0 11 0 VADD

0 11 1 VSUB

1 00 0 VDIV

1 01 0 VENMS
1 01 1 VFNMA
1 10 0 VFMA

1 10 1 VFMS

Floating-point minNum / maxNum
This section describes the encoding of the Floating-point minNum / maxNum instruction class. This section is

decoded from Floating-point data-processing on page C2-304.

[15141312(1110 9 8|7 6 5 4|3 0115
[1t11111101[pJoo] wvw | wd

121110 9 8|7 6 5 4|3 0|
[1 0 1]sz[NJop|M[0] vm |

Decode fields
Instruction page

op
0 VMAXNM
1 VMINNM

Floating-point directed convert to integer
This section describes the encoding of the Floating-point directed convert to integer instruction class. This section

is decoded from Floating-point data-processing on page C2-304.

151413121110 9 8|7 6 5 4|3 2 1 015
[1 1111110 1D][1 1 1]Jop|m][] vd

121110 9 8/7 6 5 43 0|
[1 0 1]szlpu[1][mM[o] vm]

Decode fields
Instruction page

op rm
0 00 VRINTA
0 01 VRINTN
0 10 VRINTP
0 11 VRINTM
1 00 VCVTA

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved.
Non-Confidential

C2-307

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding

Decode fields
Instruction page

op rm
1 01 VCVTN
1 10 VCVTP

1 11 VCVTM

Floating-point 32-bit register moves
This section describes the encoding of the Floating-point 32-bit register moves group. This section is decoded from

Coprocessor and floating-point instructions on page C2-302.

|15 | |7 6 5 | 015 12]11 8|7 6 5 4|3 0]
| 11101110 [opo | [101 | | Jop2[1] |

op1

Table C2-21 Encoding table for the Floating-point 32-bit register moves group

Decode fields
Decode group or instruction page
op0 op1 op2

00 1 00 Floating-point 32-bit move doubleword
00 1 =00 Unallocated.

=00 1 - Unallocated.

- 0 - Floating-point 32-bit move

Floating-point 32-bit move doubleword
This section describes the encoding of the Floating-point 32-bit move doubleword instruction class. This section is

decoded from Floating-point 32-bit register moves.

[15141312/1110 9 8|7 6 5 4|3 015 12/1110 9 8]7 6 5 4|3 2 1 0]
[1t110111000[H[L] wvw | R 101 1]n[o 0o 1]00]0)0)

Decode fields
Instruction page

L
0 VMOV (single general-purpose register to half of doubleword register)
1 VMOV (half of doubleword register to single general-purpose register)

Floating-point 32-bit move

This section describes the encoding of the Floating-point 32-bit move instruction class. This section is decoded from
Floating-point 32-bit register moves.

C2-308 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding

[15141312/1110 9 8|7 5 4|3 0115 121110 9 8|7 6 5 4|3 2 1 0]
[1 1101110 opct [L] wvn] Rt |1 0 1 o[n[@©)]1]0l0l0)0)

Decode fields
Instruction page

opci L

000 - VMOV (between general-purpose register and single-precision register)
001 - Unallocated.

01x - Unallocated.

10x - Unallocated.

110 - Unallocated.

11 0 VMSR

111 1 VMRS

Coprocessor
This section describes the encoding of the Coprocessor group. This section is decoded from Coprocessor and

floating-point instructions on page C2-302.

115 12111 9 8| 5 4| 015 12|11 |7 5 43 0|
Lt [l [opt | | t=101x | | | |

op0 —I I— op2

Table C2-22 Encoding table for the Coprocessor group

Decode fields
Decode group or instruction page
op0 op1 op2

0 00x0 - Coprocessor 64-bit move

0 = 00x0 - Coprocessor load/store registers on page C2-310
1 OXXX 0 CDP, CDP2

1 0xxx 1 Coprocessor 32-bit move on page C2-311

Coprocessor 64-bit move

This section describes the encoding of the Coprocessor 64-bit move instruction class. This section is decoded from
Coprocessor.

ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-309
1D092816 Non-Confidential

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding

15141312/1110 9 8|7 6 5 4|3

0115

12|11 8|7 43 0|

[1 1 1]oo]1 1 0 0 o[D]o[L] Rt

| Rt

| coproc | opc1

Decode fields

Instruction page

o0 D

0 0 Unallocated.

0 1 MCRR, MCRR?2 - T'I variant on page C2-458
0 1 MRRC, MRRC2 - T1 variant on page C2-474
1 0 Unallocated.

1 1 MCRR, MCRR?2 - 72 variant on page C2-458
1 1 MRRC, MRRC2 - 72 variant on page C2-474

Coprocessor load/store registers

This section describes the encoding of the Coprocessor load/store registers instruction class. This section is decoded

from Coprocessor on page C2-309.

[15141312/1110 9 8|7 6 5 4|3 0115 12]11 8|7 | 0]
[1 1 1]oo]1 1 ofP|u[Dp]w[L] Rn | CRd [coproc | imm8 |
Decode fields
Instruction page
o0 P:UUW L Rn
0 = 000 1 111 LDC, LDC2 (literal) - 71 variant on page C2-391
0 ox1 0 - STC, STC2
0 ox1 1 !=1111 LDC, LDC2 (immediate)
0 010 0 - STC, STC2
0 010 1 !=1111 LDC, LDC2 (immediate)
0 1x0 0 - STC, STC2
0 1x0 1 !=1111 LDC, LDC2 (immediate)
0 1x1 0 - STC, STC2
0 1x1 1 !=1111 LDC, LDC2 (immediate)
1 = 000 1 1111 LDC, LDC2 (literal) - 72 variant on page C2-391
1 ox1 0 - STC, STC2
1 ox1 1 !=1111 LDC, LDC2 (immediate)
1 010 0 - STC, STC2
1 010 1 !=1111 LDC, LDC2 (immediate)

C2-310

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0553A.c
ID092816

C2 Instruction Specification
C2.3 32-bit T32 instruction encoding

Decode fields

o0 P:UW L Rn

Instruction page

1 1x0 0 - STC, STC2
1 1x0 1 !=1111 LDC, LDC2 (immediate)
1 1x1 0 - STC, STC2
1 1x1 1 !=1111 LDC, LDC2 (immediate)

Coprocessor 32-bit move

This section describes the encoding of the Coprocessor 32-bit move instruction class. This section is decoded from

Coprocessor on page C2-309.

[15141312/1110 9 8|7 5 43

015

12|11 8|7 5 4|3 0|

[1 1 1]Joo1 1 1 0] opct [L]

CRn | Rt

| coproc | opc2 |1| CRm |

Decode fields

Instruction page

o0 L

0 0 MCR, MCR2 - T'] variant on page C2-456

0 1 MRC, MRC2 - T'1 variant on page C2-472

1 0 MCR, MCR2 - T2 variant on page C2-456

1 1 MRC, MRC2 - T2 variant on page C2-472
ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-311

1D092816

Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C24 Alphabetical list of instructions

Every ARMv8-M instruction is listed in this section. See Chapter C1 Instruction Set Overview for the format of the
instruction descriptions.

C2-312 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C241 ADC (immediate)

Add with Carry (immediate) adds an immediate value and the carry flag value to a register value, and writes the
result to the destination register. It can optionally update the condition flags based on the result.

T1

ARMvVS-M Main Extension only

1151413121110 9 8|7 6 5 4|3 0[1514 12[11 8|7 \ 0|
[1 111 0f[i]o[1 01 0[s] R Jo[imm3 | Rd | imm8 |
ADC variant

Applies when S == 0.

ADC{<c>}{<g>} {<Rd>,} <Rn>, #<const>
ADCS variant

Applies when S == 1.

ADCS{<c>}{<g>} {<Rd>,} <Rn>, #<const>
Decode for all variants of this encoding
if !HaveMainExt() then UNDEFINED;

d = UInt(Rd); n = UInt(Rn); setflags = (S == '1"); imm32 = T32ExpandImm(i:imm3:imm8);
if d IN {13,15} || n IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-252.
<q> See Standard assembler syntax fields on page C1-252.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the

same as <Rn>.

<Rn> Is the general-purpose source register, encoded in the "Rn" field.
<const> An immediate value. See Modified immediate constants on page C1-259 for the range of values.
Operation

if ConditionPassed() then
EncodingSpecificOperations();
(result, carry, overflow) = AddwithCarry(R[n], imm32, APSR.C);
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
APSR.V = overflow;

Exceptions

None.

ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-313
1D092816 Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C24.2 ADC (register)
Add with Carry (register) adds a register value, the carry flag value, and an optionally-shifted register value, and
writes the result to the destination register. It can optionally update the condition flags based on the result.
T
ARMVSE-M
[15141312/1110 9 8|7 6 5 |3 2 0]
[0 10000J0o101] Rm [Rdn |
T1 variant
ADC<c>{<g>} {<Rdn>,} <Rdn>, <Rm> // Inside IT block
ADCS{<g>} {<Rdn>,} <Rdn>, <Rm> // Outside IT block
Decode for this encoding
d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();
(shift_t, shift_n) = (SRType_LSL, 0);
T2
ARMVS-M Main Extension only
[15141312/1110 9 8|7 6 5 4|3 0]1514 12|11 8|7 6 5 4|3 0]
[1110101[1010[s] Rn fof imm3 | Rd [imm2[type] Rm |
ADGC, rotate right with extend variant
Applies when S == 0 && imm3 == 000 && imm2 == 00 & type == 11.
ADC{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, RRX
ADC, shift or rotate by value variant
Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && type == 11).
ADC<c>.W {<Rd>,} <Rn>, <Rm> // Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1
ADC{<c>}{<g>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}
ADCS, rotate right with extend variant
Applies when S == 1 && inm3 == 000 && imm2 == 00 && type == 11.
ADCS{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, RRX
ADCS, shift or rotate by value variant
Applies when S == 1 & !(imm3 == 000 && imm2 == 00 && type == 11).
ADCS.W {<Rd>,} <Rn>, <Rm> // Outside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1
ADCS{<c>}{<g>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}
C2-314 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

C2 Instruction Specification
C2.4 Alphabetical list of instructions

Decode for all variants of this encoding

if !HaveMainExt() then UNDEFINED;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1");
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);

if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<Cc> See Standard assembler syntax fields on page C1-252.
<> See Standard assembler syntax fields on page C1-252.
<Rdn> Is the first general-purpose source register and the destination register, encoded in the "Rdn" field.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the

same as <Rn>.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
<shift> Is the type of shift to be applied to the second source register, encoded in the "type" field. It can have
the following values:
LSL when type = 00
LSR when type = 01
ASR when type = 10
ROR when type = 11
<amount> Is the shift amount, in the range 1 to 31 (when <shift>= LSL or ROR) or 1 to 32 (when <shift> =

LSR or ASR) encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings

if ConditionPassed() then
EncodingSpecificOperations();
shifted = Shift(R[m], shift_t, shift_n, APSR.C);
(result, carry, overflow) = AddwithCarry(R[n], shifted, APSR.C);
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
APSR.V = overflow;

Exceptions

None.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-315
Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C243 ADD (SP plus immediate)

ADD (SP plus immediate) adds an immediate value to the SP value, and writes the result to the destination register.

™

ARMVS-M

151413 12/1110 8|7 | 0]
[1 01 0[1] Rd | imm8 |

T1 variant
ADD{<c>}{<g>} <Rd>, SP, #<imm8>
Decode for this encoding

d = UInt(Rd); setflags = FALSE; 1imm32 = ZeroExtend(imm8:'00', 32);

T2

ARMVS-M

[15141312/1110 9 8|7 6 | 0]
[1 011000 0]0] imm7

T2 variant

ADD{<c>}{<g>} {SP,} SP, #<imm7>

Decode for this encoding

d = 13; setflags = FALSE; 1imm32 = ZeroExtend(imm7:'00', 32);

T3

ARMVS-M Main Extension only

[15141312/1110 9 8|7 6 5 4|3 2 1 0[1514 12|11 817 |

[1 111 0f]ilo[1 00 0[s][1 10 1]o] imm3 | Rd | imm8

ADD variant
Applies when S == 0.

ADD{<c>}.W {<Rd>,} SP, #<const> // <Rd>, <const> can be represented in T1 or T2
ADD{<c>}{<g>} {<Rd>,} SP, #<const>

ADDS variant
Applies when S == 1 & Rd != 1111.

ADDS{<c>}{<g>} {<Rd>,} SP, #<const>

C2-316 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved.
Non-Confidential

ARM DDI 0553A.c

C2 Instruction Specification
C2.4 Alphabetical list of instructions

Decode for all variants of this encoding

if Rd == '1111" && S == '1' then SEE "CMN (immediate)";

if !HaveMainExt() then UNDEFINED;

d = UInt(Rd); setflags = (S == '1"); imm32 = T32ExpandImm(i:imm3:imm8);
if d == 15 & S == '0' then UNPREDICTABLE;

T4

ARMvS-M Main Extension only

15141312(1110 9 8(7 6 5 4[3 2 1 0[1514 12[11 8|7 \ 0]
[1 111 0f]i[1 ofofo]ofo]1 1 0 1]of imm3 | Rd | imm8 |
T4 variant

ADD{<c>}{<g>} {<Rd>,} SP, #<imml2> // <imml2> cannot be represented in T1, T2, or T3
ADDW{<c>}{<q>} {<Rd>,} SP, #<imml2> // <imml2> can be represented in T1, T2, or T3

Decode for this encoding
if !HaveMainExt() then UNDEFINED;

d = UInt(Rd); setflags = FALSE; 1imm32 = ZeroExtend(i:imm3:imm8, 32);
if d == 15 then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-252.

<q> See Standard assembler syntax fields on page C1-252.

<imm7> Is an unsigned immediate, a multiple of 4 in the range 0 to 508, encoded in the "imm7" field as
<imm?7>/4.

<Rd> For encoding T1: is the general-purpose destination register, encoded in the "Rd" field.

For encoding T3 and T4: is the general-purpose destination register, encoded in the "Rd" field. If
omitted, this register is the SP.

<imm8> Is an unsigned immediate, a multiple of 4, in the range 0 to 1020, encoded in the "imm8" field as
<imm8&>/4.

<imm12> Is a 12-bit unsigned immediate, in the range 0 to 4095, encoded in the "i:imm3:imm§" field.

<const> An immediate value. See Modified immediate constants on page C1-259 for the range of values.

Operation for all encodings

if ConditionPassed() then
EncodingSpecificOperations();
(result, carry, overflow) = AddwithCarry(SP, imm32, '0");
RSPCheck[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
APSR.V = overflow;

Exceptions

UsageFault.

ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-317
1D092816 Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C244

ADD (SP plus register)

ADD (SP plus register) adds an optionally-shifted register value to the SP value, and writes the result to the
destination register.

T
ARMvS-M

[15141312/1110 9 8|7 6 5 4|3 2 0]
[0 1000 1]o0] [110 1] Rdm |

| DM

T1 variant

ADD{<c>}{<g>} {<Rdm>,} SP, <Rdm>

Decode for this encoding

d = UInt(DM:Rdm); m = UInt(DM:Rdm); setflags = FALSE;

if d == 15 && InITBlock() && !LastInITBTock() then UNPREDICTABLE;
(shift_t, shift_n) = (SRType_LSL, 0);

T2

ARMvS-M
1514 1312/1110 9 8|7 6 |3 21 0]

[0 1000 1]o of1] =1101 [1 0 1]
Rm

T2 variant

ADD{<c>}{<g>} {SP,} SP, <Rm>

Decode for this encoding

if Rm == '1101' then SEE "encoding T1";
d = 13; m = UInt(Rm); setflags = FALSE;
(shift_t, shift_n) = (SRType_LSL, 0);
T3

ARMVS-M Main Extension only

[15141312/1110 9 8|7 6 5 4|3 2 1 0[1514 12|11 8|7 6 5 4|3 0]
[1 11010 1[1000[s][1 10 1[0 imm3 | Rd [imm2[type] Rm |

ADD, rotate right with extend variant
Applies when S == 0 && imm3 == 000 &% imm2 == 00 && type == 11.

ADD{<c>}{<g>} {<Rd>,} SP, <Rm>, RRX

ADD, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && type == 11).

C2-318

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential ID092816

C2 Instruction Specification
C2.4 Alphabetical list of instructions

ADD{<c>}.W {<Rd>,} SP, <Rm> // <Rd>, <Rm> can be represented in Tl or T2
ADD{<c>}{<g>} {<Rd>,} SP, <Rm> {, <shift> #<amount>}

ADDS, rotate right with extend variant
Applies when S == 1 && inm3 == 000 && Rd != 1111 && inm2 == 00 && type == 11.

ADDS{<c>}{<g>} {<Rd>,} SP, <Rm>, RRX

ADDS, shift or rotate by value variant
Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && type == 11) && Rd != 1111.

ADDS{<c>}{<g>} {<Rd>,} SP, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

if Rd == '1111' && S == '1' then SEE "CMN (register)";

if !HaveMainExt() then UNDEFINED;

d = UInt(Rd); m = UInt(Rm); setflags = (S == '1");

(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);

if d == 13 && (shift_t != SRType_LSL || shift_n > 3) then UNPREDICTABLE;
if (d ==158& S =="0") || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<Cc> See Standard assembler syntax fields on page C1-252.
<q> See Standard assembler syntax fields on page C1-252.
<Rdm> Is the general-purpose destination and second source register, encoded in the "Rdm" field. If

omitted, this register is the SP. ARM deprecates using the PC as the destination register, but if the
PC is used, the instruction is a simple branch to the address calculated by the operation.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the
SP.
<Rm> For encoding T2: is the second general-purpose source register, encoded in the "Rm" field. The PC

can be used, but this is deprecated.

For encoding T3: is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in the "type" field. It can have
the following values:
LSL when type = 00
LSR when type = 01
ASR when type = 10
ROR when type = 11
<amount> Is the shift amount, in the range 1 to 31 (when <shift>= LSL or ROR) or 1 to 32 (when <shift> =

LSR or ASR) encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings

if ConditionPassed() then
EncodingSpecificOperations();
shifted = Shift(R[m], shift_t, shift_n, APSR.C);
(result, carry, overflow) = AddwithCarry(SP, shifted, '0');
if d == 15 then
ALUWritePC(result); // setflags is always FALSE here
else
RSPCheck[d] = result;
if setflags then
APSR.N = result<31l>;

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-319
Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

APSR.Z = IsZeroBit(result);

APSR.C = carry;
APSR.V = overflow;
Exceptions
UsageFault.
C2-320 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C245 ADD (immediate)

Add (immediate) adds an immediate value to a register value, and writes the result to the destination register. It can
optionally update the condition flags based on the result.

T
ARMvS-M

[15141312/1110 9 8| 6 5 |3 2 0]
[000 11 1]o[imm3] Rn [Rd |

T1 variant

ADD<c>{<g>} <Rd>, <Rn>, #<imm3> // Inside IT block
ADDS{<g>} <Rd>, <Rn>, #<imm3> // Outside IT block

Decode for this encoding

d = UInt(Rd); n = UInt(Rn); setflags = !InITBlock(); 1imm32 = ZeroExtend(imm3, 32);

T2

ARMVS-M

1514131211110 8|7 \ 0|
[0 0 1]1 0] Rdn | imm8 |

T2 variant
ADD<c>{<q>} <Rdn>, #<imm8> // Inside IT block, and <Rdn>, <imm8> can be represented in T1
ADD<c>{<g>} {<Rdn>,} <Rdn>, #<imm8> // Inside IT block, and <Rdn>, <imm8> cannot be represented in T1

ADDS{<g>} <Rdn>, #<imm8> // Outside IT block, and <Rdn>, <imm8> can be represented in T1
ADDS{<g>} {<Rdn>,} <Rdn>, #<imm8> // Outside IT block, and <Rdn>, <imm8> cannot be represented in T1

Decode for this encoding

d = UInt(Rdn); n = UInt(Rdn); setflags = !InITBlock(); 1imm32 = ZeroExtend(imm8, 32);

T3
ARMvS-M Main Extension only
11514 1312(1110 9 8|7 6 5 4|3 01514 12|11 8|7 \ 0]

[1 111 0fi]o[1 0 0 ofs] =1101 Jo[imm3 | Rd | imm8 |
Rn

ADD variant
Applies when S == 0.
ADD<c>.W {<Rd>,} <Rn>, #<const> // Inside IT block, and <Rd>, <Rn>, <const> can be represented in T1 or

T2
ADD{<c>}{<g>} {<Rd>,} <Rn>, #<const>

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-321
Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

ADDS variant
Applies when S == 1 & Rd != 1111.

ADDS.W {<Rd>,} <Rn>, #<const> // Outside IT block, and <Rd>, <Rn>, <const> can be represented in T1 or T2
ADDS{<c>}{<g>} {<Rd>,} <Rn>, #<const>

Decode for all variants of this encoding

if Rd == '1111' && S == '1' then SEE "CMN (immediate)";

if Rn == '1101' then SEE "ADD (SP plus immediate)";

if !HaveMainExt() then UNDEFINED;

d = UInt(Rd); n = UInt(Rn); setflags = (S == '1"); imm32 = T32ExpandImm(i:imm3:imm8);
if d==13 || (d==158 S == "0") || n == 15 then UNPREDICTABLE;

T4

ARMvS-M Main Extension only

15141312(1110 9 8/7 6 5 4|3 01514 12[11 8|7 \ 0|

[1 111 0fi[1 ofofoJo]Jo[t=11x1 [o] imm3 | Rd | imm8 |
Rn

T4 variant

ADD{<c>}{<g>} {<Rd>,} <Rn>, #<imml2> // <imml2> cannot be represented in T1l, T2, or T3
ADDW{<c>}{<g>} {<Rd>,} <Rn>, #<imml2> // <imml2> can be represented in T1, T2, or T3

Decode for this encoding

if Rn == '1111' then SEE ADR;

if Rn == '1101' then SEE "ADD (SP plus immediate)";

if !HaveMainExt() then UNDEFINED;

d = UInt(Rd); n = UInt(Rn); setflags = FALSE; 1imm32 = ZeroExtend(i:imm3:imm8, 32);
if d IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-252.

<q> See Standard assembler syntax fields on page C1-252.

<Rdn> Is the general-purpose source and destination register, encoded in the "Rdn" field.

<imm8> Is an 8-bit unsigned immediate, in the range 0 to 255, encoded in the "imm8" field.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the

same as <Rn>.

<Rn> For encoding T1: is the general-purpose source register, encoded in the "Rn" field.

For encoding T3: is the general-purpose source register, encoded in the "Rn" field. If the SP is used,
see ADD (SP plus immediate).

For encoding T4: is the general-purpose source register, encoded in the "Rn" field. If the SP is used,
see ADD (SP plus immediate). If the PC is used, see ADR.

<imm3> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "imm3" field.

<imm12> Is a 12-bit unsigned immediate, in the range 0 to 4095, encoded in the "i:imm3:imm8" field.

<const> An immediate value. See Modified immediate constants on page C1-259 for the range of values.
C2-322 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

C2 Instruction Specification
C2.4 Alphabetical list of instructions

Operation for all encodings

if ConditionPassed() then
EncodingSpecificOperations();
(result, carry, overflow) = AddwithCarry(R[n], imm32, '0");
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
APSR.V = overflow;

Exceptions

None.

ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-323
1D092816 Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.6 ADD (immediate, to PC)

Add to PC adds an immediate value to the Align(PC, 4) value to form a PC-relative address, and writes the result

to the destination register. ARM recommends that, where possible, software avoids using this alias.

This instruction is a pseudo-instruction of the ADR instruction. This means that:

. The encodings in this description are named to match the encodings of ADR.
. The assembler syntax is used only for assembly, and is not used on disassembly.
. The description of ADR gives the operational pseudocode for this instruction.
T
ARMVE-M

1514 1312/1110 8|7 | 0]

[1 01 0[0] Rd | imm8 |
T1 variant

ADD{<c>}{<g>} <Rd>, PC, #<imm8>
is equivalent to
ADR{<c>}{<g>} <Rd>, <label>

and is never the preferred disassembly.

T3

ARMvS-M Main Extension only

151413121110 9 8|7 6 5 4|3 2 1 0[1514 12|11 8|7 \ 0|
[1 111 0fi]1 o]ofo]Jofo]1 1 1 1]o[imm3 | Rd | imm8 |
T3 variant

ADDW{<c>}{<g>} <Rd>, PC, #<imml2> // <Rd>, <imml2> can be represented in T1
is equivalent to

ADR{<c>}{<g>} <Rd>, <Tabel>

and is never the preferred disassembly.

ADD{<c>}{<g>} <Rd>, PC, #<imml2>

is equivalent to

ADR{<c>}{<g>} <Rd>, <label>

and is never the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields on page C1-252.
<q> See Standard assembler syntax fields on page C1-252.
C2-324 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential

ID092816

<Rd>

<label>

<imm8>

<imml2>

C2 Instruction Specification
C2.4 Alphabetical list of instructions

Is the general-purpose destination register, encoded in the "Rd" field.

For encoding T1: the label of an instruction or literal data item whose address is to be loaded into

<Rd>. The assembler calculates the required value of the offset from the ATign(PC, 4) value of the

ADR instruction to this label. Permitted values of the size of the offset are multiples of 4 in the range
0 to 1020.

For encoding T2 and T3: the label of an instruction or literal data item whose address is to be loaded
into <Rd>. The assembler calculates the required value of the offset from the A1ign(PC, 4) value of
the ADR instruction to this label. If the offset is zero or positive, encoding T3 is used, with imm32 equal
to the offset. If the offset is negative, encoding T2 is used, with imm32 equal to the size of the offset.
That is, the use of encoding T2 indicates that the required offset is minus the value of imm32.
Permitted values of the size of the offset are 0-4095.

Is an unsigned immediate, a multiple of 4, in the range 0 to 1020, encoded in the "imm8" field as
<imm8&>/4.

Is a 12-bit unsigned immediate, in the range 0 to 4095, encoded in the "i:imm3:imm§" field.

Operation for all encodings

The description of ADR gives the operational pseudocode for this instruction.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-325

Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C24.7 ADD (register)
ADD (register) adds a register value and an optionally-shifted register value, and writes the result to the destination
register. It can optionally update the condition flags based on the result.
T
ARMvS-M
[15141312/1110 9 8| 6 5 |3 2 0]
[000110[/o] Rm | R\ | Rd |
T1 variant
ADD<c>{<g>} <Rd>, <Rn>, <Rm> // Inside IT block
ADDS{<g>} {<Rd>,} <Rn>, <Rm> // Outside IT block
Decode for this encoding
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = !InITBlock();
(shift_t, shift_n) = (SRType_LSL, 0);
T2
ARMvS-M
[15141312/1110 9 8|7 6 |13 2 o0
[01 000 1[0 of [=1101 | Rdn |
| Rm
DN
T2 variant
Applies when ! (DN == 1 & Rdn == 101).
ADD<c>{<g>} <Rdn>, <Rm> // Preferred syntax, Inside IT block
ADD{<c>}{<g>} {<Rdn>,} <Rdn>, <Rm>
Decode for this encoding
if (DN:Rdn) == '1101' || Rm == '1101' then SEE "ADD (SP plus register)";
d = UInt(DN:Rdn); n =d; m = UInt(Rm); setflags = FALSE; (shift_t, shift_n) = (SRType_LSL, 0);
if n == 15 & m == 15 then UNPREDICTABLE;
if d == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;
T3
ARMvS-M Main Extension only
[15141312/1110 9 8|7 6 5 4|3 01514 12|11 8|7 6 5 4|3 0]
[1 11010 1[1 00 0[s] =1101 [0 imm3 | Rd [imm2[type] Rm |
Rn
ADD, rotate right with extend variant
Applies when S == 0 && inm3 == 000 && imm2 == 00 && type == 11.
ADD{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, RRX
C2-326 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

C2 Instruction Specification
C2.4 Alphabetical list of instructions

ADD, shift or rotate by value variant
Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && type == 11).

ADD<c>.W {<Rd>,} <Rn>, <Rm> // Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1 or T2
ADD{<c>}{<g>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

ADDS, rotate right with extend variant
Applies when S == 1 && inm3 == 000 && Rd != 1111 && imm2 == 00 && type == 11.

ADDS{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, RRX

ADDS, shift or rotate by value variant
Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && type == 11) && Rd != 1111.

ADDS.W {<Rd>,} <Rn>, <Rm> // Outside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1 or T2
ADDS{<c>}{<g>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

if Rd == '1111" && S == '1' then SEE "CMN (register)";

if Rn == '1101' then SEE "ADD (SP plus register)";

if !HaveMainExt() then UNDEFINED;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1");

(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);

ifd==13]| (d==158 S =="0") || n==15 || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-252.
<q> See Standard assembler syntax fields on page C1-252.
<Rdn> Is the general-purpose source and destination register, encoded in the "DN:Rdn" field. If the PC is

used, the instruction is a branch to the address calculated by the operation. This is a simple branch.

The assembler language allows <Rdn> to be specified once or twice in the assembler syntax. When
used inside an IT block, and <Rdn> and <Rm> are in the range RO to R7, <Rdn> must be specified once
so that encoding T2 is preferred to encoding T1. In all other cases there is no difference in behavior
when <Rdn> is specified once or twice.

<Rd> For encoding T1: is the general-purpose destination register, encoded in the "Rd" field. When used
inside an IT block, <Rd> must be specified. When used outside an IT block, <Rd> is optional, and:
. If omitted, this register is the same as <Rn>.

. If present, encoding T1 is preferred to encoding T2.

For encoding T3: is the general-purpose destination register, encoded in the "Rd" field. If omitted,
this register is the same as <Rn>.
<Rn> For encoding T1: is the first general-purpose source register, encoded in the "Rn" field.

For encoding T3: is the first general-purpose source register, encoded in the "Rn" field. If the SP is
used, see ADD (SP plus register).

<Rm> For encoding T1 and T3: is the second general-purpose source register, encoded in the "Rm" field.
For encoding T2: is the second general-purpose source register, encoded in the "Rm" field. The PC
can be used.
<shift> Is the type of shift to be applied to the second source register, encoded in the "type" field. It can have
the following values:
LSL when type = 00
ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-327

1D092816 Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

<amount>

LSR
ASR
ROR

when type
when type

when type

01
10
11

Is the shift amount, in the range 1 to 31 (when <shift>= LSL or ROR) or 1 to 32 (when <shift> =

LSR or ASR) encoded in the "imm3:imm?2" field as <amount> modulo 32.

Operation for all encodings

if ConditionPassed() then
EncodingSpecificOperations();

shifted = Shift(R[m], shift_t, shift_n, APSR.C);

(result, carry, overflow) = AddwithCarry(R[n], shifted, '0');
if d == 15 then
ALUWritePC(result);

else

R[d] = result;
if setflags then

APSR.N
APSR.Z
APSR.C
APSR.V

Exceptions

None.

result<3l>;

// setflags is always FALSE here

IsZeroBit(result);

carry;
overflow;

C2-328

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0553A.c
ID092816

C2.438 ADR

C2 Instruction Specification
C2.4 Alphabetical list of instructions

Address to Register adds an immediate value to the PC value, and writes the result to the destination register.

This instruction is used by the pseudo-instructions ADD (immediate, to PC) and SUB (immediate, from PC). The

pseudo-instruction is never the preferred disassembly.

T
ARMvS-M

151413 12/1110 8|7 | 0]
[1 0 1 0]o] Rd | imm8 |

T1 variant

ADR{<c>}{<g>} <Rd>, <label>

Decode for this encoding

d = UInt(Rd); 1imm32 = ZeroExtend(imm8:'00', 32); add = TRUE;

T2

ARMVS-M Main Extension only

11514 1312(1110 9 8|7 6 5 43 2 1 01514 12|11 8|7

[1 11 1 ofi]1 of1]o]1]o]1 1 1 1]o[imm3 | Rd |

imm8

T2 variant

ADR{<c>}{<g>} <Rd>, <label>

Decode for this encoding

if !HaveMainExt() then UNDEFINED;

d = UInt(Rd); imm32 = ZeroExtend(i:imm3:imm8, 32); add = FALSE;
if d IN {13,15} then UNPREDICTABLE;

T3

ARMvS-M Main Extension only

[15141312/1110 9 8|7 6 5 4]3 2 1 0]1514 12|11 87

[1 11 1 0f]i[1 ofofo]ofo]1 1 1 1]of imm3 | Rd |

imm8

T3 variant

ADR{<c>}.W <Rd>, <label> // <Rd>, <label> can be presented in T1
ADR{<c>}{<g>} <Rd>, <label>

Decode for this encoding

if !HaveMainExt() then UNDEFINED;
d = UInt(Rd); 1imm32 = ZeroExtend(i:imm3:imm8, 32); add = TRUE;
if d IN {13,15} then UNPREDICTABLE;

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved.

Non-Confidential

C2-329

C2 Instruction Specification
C2.4 Alphabetical list of instructions

Alias conditions

Alias or pseudo-instruction is preferred when

ADD (immediate, to PC) Never
SUB (immediate, from PC) i:imm3:imm8 == '000000000000"
Assembler symbols
<Cc> See Standard assembler syntax fields on page C1-252.
<q> See Standard assembler syntax fields on page C1-252.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<label> For encoding T1: the label of an instruction or literal data item whose address is to be loaded into

<Rd>. The assembler calculates the required value of the offset from the Align(PC, 4) value of the
ADR instruction to this label. Permitted values of the size of the offset are multiples of 4 in the range
0 to 1020.

For encoding T2 and T3: the label of an instruction or literal data item whose address is to be loaded
into <Rd>. The assembler calculates the required value of the offset from the Al1ign(PC, 4) value of
the ADR instruction to this label. If the offset is zero or positive, encoding T3 is used, with imm32 equal
to the offset. If the offset is negative, encoding T2 is used, with imm32 equal to the size of the offset.
That is, the use of encoding T2 indicates that the required offset is minus the value of imm32.
Permitted values of the size of the offset are 0-4095.

Operation for all encodings

if ConditionPassed() then
EncodingSpecificOperations();
result = if add then (ATign(PC,4) + imm32) else (Align(PC,4) - imm32);
R[d] = result;

Exceptions

None.

C2-330 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

C2 Instruction Specification

C2.4 Alphabetical list of instructions

C249 AND (immediate)

AND (immediate) performs a bitwise AND of a register value and an immediate value, and writes the result to the

destination register.

T1

ARMvVS-M Main Extension only

[15141312/1110 9 8|7 6 5 43 01514 12|11 8|7 \ 0|
[1 111 0f[i]oJo oo o[s] R Jo[imm3 | Rd | imm8 |

AND variant

Applies when S == 0.

AND{<c>}{<g>} {<Rd>,} <Rn>, #<const>

ANDS variant

Applies when S == 1 & Rd != 1111.

ANDS{<c>}{<g>} {<Rd>,} <Rn>, #<const>

Decode for all variants of this encoding

if Rd == '1111' && S == '1' then SEE "TST (immediate)";

if !HaveMainExt() then UNDEFINED;

d = UInt(Rd); n = UInt(Rn); setflags = (S == '1");

(imm32, carry) = T32ExpandImm_C(i:imm3:imm8, APSR.C);

if d==13 || (d==158 S =="0") || n IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-252.

<q> See Standard assembler syntax fields on page C1-252.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the

same as <Rn>.

<Rn> Is the general-purpose source register, encoded in the "Rn" field.

<const> An immediate value. See Modified immediate constants on page C1-259 for the range of values.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
result = R[n] AND imm32;
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged

Exceptions

None.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved.
Non-Confidential

C2-331

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.10 AND (register)
AND (register) performs a bitwise AND of a register value and an optionally-shifted register value, and writes the
result to the destination register. It can optionally update the condition flags based on the result.
T
ARMvVS-M
[15141312/1110 9 8|7 6 5 |3 2 0]
[010000[0000] Rm | Rdn |
T1 variant
AND<c>{<g>} {<Rdn>,} <Rdn>, <Rm> // Inside IT block
ANDS{<g>} {<Rdn>,} <Rdn>, <Rm> // Outside IT block
Decode for this encoding
d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();
(shift_t, shift_n) = (SRType_LSL, 0);
T2
ARMVS-M Main Extension only
[15141312/1110 9 8|7 6 5 4|3 01514 12|11 8|7 6 5 4|3 0]
[1 11010 1[0000[s] Rn [0 imm3 | Rd [imm2[type] Rm |
AND, rotate right with extend variant
Applies when S == 0 && imm3 == 000 && imm2 == 00 & type == 11.
AND{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, RRX
AND, shift or rotate by value variant
Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && type == 11).
AND<c>.W {<Rd>,} <Rn>, <Rm> // Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1
AND{<c>}{<g>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}
ANDS, rotate right with extend variant
Applies when S == 1 && inm3 == 000 && Rd != 1111 && imm2 == 00 && type == 11.
ANDS{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, RRX
ANDS, shift or rotate by value variant
Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && type == 11) && Rd != 1111.
ANDS.W {<Rd>,} <Rn>, <Rm> // Outside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1
ANDS{<c>}{<g>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}
C2-332 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

C2 Instruction Specification
C2.4 Alphabetical list of instructions

Decode for all variants of this encoding

if Rd == '1111' && S == '1' then SEE "TST (register)";

if !HaveMainExt() then UNDEFINED;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1");

(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);

if d==13 || (d ==15&& S == '0") || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<Cc> See Standard assembler syntax fields on page C1-252.
<q> See Standard assembler syntax fields on page C1-252.
<Rdn> Is the first general-purpose source register and the destination register, encoded in the "Rdn" field.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the

same as <Rn>.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
<shift> Is the type of shift to be applied to the second source register, encoded in the "type" field. It can have
the following values:
LSL when type = 00
LSR when type = 01
ASR when type = 10
ROR when type = 11
<amount> Is the shift amount, in the range 1 to 31 (when <shift>= LSL or ROR) or 1 to 32 (when <shift> =

LSR or ASR) encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings

if ConditionPassed() then
EncodingSpecificOperations();
(shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
result = R[n] AND shifted;
R[d] = result;
if setflags then
APSR.N = result<3l>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged

Exceptions

None.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-333
Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.11 ASR (immediate)
Arithmetic Shift Right (immediate) shifts a register value right by an immediate number of bits, shifting in copies
of its sign bit, and writes the result to the destination register.
This instruction is an alias of the MOV (register) instruction. This means that:
. The encodings in this description are named to match the encodings of MOV (register).
. The description of MOV (register) gives the operational pseudocode for this instruction.
T2
ARMVS-M Main Extension only
|15 14 13 12/11 10 | 65 |32 0]
[0 0 o]t 0] imms | Rm | Rd |
op
T2 variant
ASR<c>{<gq>} {<Rd>,} <Rm>, #<imm> // Inside IT block
is equivalent to
MOV<c>{<g>} <Rd>, <Rm>, ASR #<imm>
and is the preferred disassembly when InITBlock().
T3
ARMvS-M Main Extension only
[15141312/1110 9 8|7 6 5 4|3 2 1 0]1514 12|11 8/7 6 5 4|3 0|
[1 11010 1]oo0 1 0fof[1 11 1]©0 imm3 | Rd [imm2[1 o] Rm |
S type
MOV, shift or rotate by value variant
ASR<c>.W {<Rd>,} <Rm>, #<imm> // Inside IT block, and <Rd>, <Rm>, <imm> can be represented in T2
is equivalent to
MOV{<c>}{<g>} <Rd>, <Rm>, ASR #<imm>
and is always the preferred disassembly.
ASR{<c>}{<g>} {<Rd>,} <Rm>, #<imm>
is equivalent to
MOV{<c>}{<g>} <Rd>, <Rm>, ASR #<imm>
and is always the preferred disassembly.
Assembler symbols
<c> See Standard assembler syntax fields on page C1-252.
<q> See Standard assembler syntax fields on page C1-252.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
C2-334 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

C2 Instruction Specification
C2.4 Alphabetical list of instructions

<Rm> Is the general-purpose source register, encoded in the "Rm" field.
<imm> For encoding T2: is the shift amount, in the range 1 to 32, encoded in the "immS5" field as <imm>
modulo 32.

For encoding T3: is the shift amount, in the range 1 to 32, encoded in the "imm3:imm2" field as
<imm> modulo 32.

Operation for all encodings

The description of MOV (register) gives the operational pseudocode for this instruction.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-335
Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.12

ASR (register)

Arithmetic Shift Right (register) shifts a register value right by a variable number of bits, shifting in copies of its
sign bit, and writes the result to the destination registers. The variable number of bits is read from the bottom byte
of a register.

This instruction is an alias of the MOV, MOVS (register-shifted register) instruction. This means that:

. The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted
register).

. The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this
instruction.
T
ARMvS-M Main Extension only
[15141312/11109 | 6 5 |3 2 0]

[0 100000100 Rs | Rdm |
op

Arithmetic shift right variant

ASR<c>{<g>} {<Rdm>,} <Rdm>, <Rs> // Inside IT block
is equivalent to

MOV<c>{<g>} <Rdm>, <Rdm>, ASR <Rs>

and is the preferred disassembly when InITBTock().

T2
ARMvS-M Main Extension only

[15141312/1110 9 8|7 6 5 4|3 01514 13 12[11 8|7 6 5 43 0|

[111110100[10[/o] Rm [1 111 Rd Jooo0oo[] Rs |
type S

Not flag setting variant

ASR<c>.W {<Rd>,} <Rm>, <Rs> // Inside IT block, and <Rd>, <Rm>, <type>, <Rs> can be represented in T1
is equivalent to

MOV{<c>}{<g>} <Rd>, <Rm>, ASR <Rs>

and is always the preferred disassembly.

ASR{<c>}{<g>} {<Rd>,} <Rm>, <Rs>

is equivalent to

MOV{<c>}{<g>} <Rd>, <Rm>, ASR <Rs>

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields on page C1-252.

C2-336

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

<g>

<Rdm>

<Rd>

<Rm>

<Rs>

C2 Instruction Specification
C2.4 Alphabetical list of instructions

See Standard assembler syntax fields on page C1-252.

Is the first general-purpose source register and the destination register, encoded in the "Rdm" field.
Is the general-purpose destination register, encoded in the "Rd" field.

Is the first general-purpose source register, encoded in the "Rm" field.

Is the second general-purpose source register holding a shift amount in its bottom 8 bits, encoded in
the "Rs" field.

Operation for all encodings

The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-337
Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.13 ASRS (immediate)
Arithmetic Shift Right, Setting flags (immediate) shifts a register value right by an immediate number of bits,
shifting in copies of its sign bit, writes the result to the destination register, and updates the condition flags based on
the result.
This instruction is an alias of the MOV (register) instruction. This means that:
. The encodings in this description are named to match the encodings of MOV (register).
. The description of MOV (register) gives the operational pseudocode for this instruction.
T2
ARMVE-M
[15 14 13 12[11 10 | 65 |32 0]
[0 0 o]t 0] imm5 | Rm | Rd |
op
T2 variant
ASRS{<g>} {<Rd>,} <Rm>, #<imm> // Outside IT block
is equivalent to
MOVS{<g>} <Rd>, <Rm>, ASR #<imm>
and is the preferred disassembly when !InITBlock().
T3
ARMvS-M Main Extension only
[15141312/1110 9 8|7 6 5 4|3 2 1 0[1514 12|11 8/7 6 5 4|3 0]
[1 11010 1[00 1 0[1]1 11 10 imm3 | Rd [imm2[1 o] Rm |
S type
MOVS, shift or rotate by value variant
ASRS.W {<Rd>,} <Rm>, #<imm> // Outside IT block, and <Rd>, <Rm>, <imm> can be represented in T2
is equivalent to
MOVS{<c>}{<g>} <Rd>, <Rm>, ASR #<imm>
and is always the preferred disassembly.
ASRS{<c>}{<g>} {<Rd>,} <Rm>, #<imm>
is equivalent to
MOVS{<c>}{<gq>} <Rd>, <Rm>, ASR #<imm>
and is always the preferred disassembly.
Assembler symbols
<c> See Standard assembler syntax fields on page C1-252.
<q> See Standard assembler syntax fields on page C1-252.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
C2-338 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential

ID092816

C2 Instruction Specification
C2.4 Alphabetical list of instructions

<Rm> Is the general-purpose source register, encoded in the "Rm" field.
<imm> For encoding T2: is the shift amount, in the range 1 to 32, encoded in the "immS5" field as <imm>
modulo 32.

For encoding T3: is the shift amount, in the range 1 to 32, encoded in the "imm3:imm2" field as
<imm> modulo 32.

Operation for all encodings

The description of MOV (register) gives the operational pseudocode for this instruction.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-339
Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.14 ASRS (register)
Arithmetic Shift Right, Setting flags (register) shifts a register value right by a variable number of bits, shifting in
copies of its sign bit, writes the result to the destination register, and updates the condition flags based on the result.
The variable number of bits is read from the bottom byte of a register.
This instruction is an alias of the MOV, MOVS (register-shifted register) instruction. This means that:
. The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted
register).
. The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this
instruction.
T
ARMvS-M
[15141312/11109 | 6 5 |3 2 0]
[0 100000100 Rs | Rdm |
op
Arithmetic shift right variant
ASRS{<g>} {<Rdm>,} <Rdm>, <Rs> // Outside IT block
is equivalent to
MOVS{<q>} <Rdm>, <Rdm>, ASR <Rs>
and is the preferred disassembly when ! InITBlock().
T2
ARMvS-M Main Extension only
[15141312(1110 9 8|7 6 5 43 0115 14 13 12|11 8|7 6 5 4|3 0]
[111110100[10[1] Rm [1 111 Rd Jooo0oo0o] Rs |
type S
Flag setting variant
ASRS.W {<Rd>,} <Rm>, <Rs> // Outside IT block, and <Rd>, <Rm>, <type>, <Rs> can be represented in T1
is equivalent to
MOVS{<c>}{<g>} <Rd>, <Rm>, ASR <Rs>
and is always the preferred disassembly.
ASRS{<c>}{<q>} {<Rd>,} <Rm>, <Rs>
is equivalent to
MOVS{<c>}{<g>} <Rd>, <Rm>, ASR <Rs>
and is always the preferred disassembly.
Assembler symbols
<c> See Standard assembler syntax fields on page C1-252.
C2-340 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

<g>

<Rdm>

<Rd>

<Rm>

<Rs>

C2 Instruction Specification
C2.4 Alphabetical list of instructions

See Standard assembler syntax fields on page C1-252.

Is the first general-purpose source register and the destination register, encoded in the "Rdm" field.
Is the general-purpose destination register, encoded in the "Rd" field.

Is the first general-purpose source register, encoded in the "Rm" field.

Is the second general-purpose source register holding a shift amount in its bottom 8 bits, encoded in
the "Rs" field.

Operation for all encodings

The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-341
Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.15

B

Branch causes a branch to a target address.

T
ARMvS-M
[15 14 13 12[11 8|7 0]

[1 10 1] 1=111x | imm8 |
cond

T1 variant

B<c>{<g>} <label> // Not permitted in IT block

Decode for this encoding

if cond == '1110' then SEE UDF;
if cond == '1111' then SEE SVC;
imm32 = SignExtend(imm8:'0', 32);
if InITBlock() then UNPREDICTABLE;

T2
ARMvS-M

115 14 13 12/11 10 | | 0]
[1 110 0] imm11 |

T2 variant

B{<c>}{<g>} <label> // Outside or Tast in IT block

Decode for this encoding
imm32 = SignExtend(immll:'Q', 32);
if InITBlock() && !LastInITBlock() then UNPREDICTABLE;
T3
ARMVS-M Main Extension only
1514131211109 | 6 5 | 01514 13 12/11 10 | | 0|

[1 11 1 0of[s] =111x] imm6 [1 ofu1]o]u2] imm11 |
cond

T3 variant

B<c>.W <label> // Not permitted in IT block, and <label> can be represented in T1
B<c>{<q>} <label> // Not permitted in IT block

Decode for this encoding

if cond<3:1> == '111' then SEE "Related encodings";
if !HaveMainExt() then UNDEFINED;

imm32 = SignExtend(S:J2:J1:imm6:immll:'Q", 32);

if InITBlock() then UNPREDICTABLE;

C2-342

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

C2 Instruction Specification
C2.4 Alphabetical list of instructions

T4

ARMvS-M

1151413 12[1110 9 | \ 011514 13 1211 10 \ \ 0]
[1 111 0]s] imm10 [1 ofu1]1]02] imm11 |
T4 variant

B{<c>}.W <Tabel> // <label> can be represented in T2
B{<c>}{<o>} <label>

Decode for this encoding

I1 = NOT(J1 EOR S); I2 = NOT(J2 EOR S); 1imm32 = SignExtend(S:I1:I2:imm1@:imm11l:'0", 32);
if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Notes for all encodings

Related encodings: Branches and miscellaneous control on page C2-287.

Assembler symbols

<Cc>

<q>

<label>

For encoding T1: see Standard assembler syntax fields on page C1-252. Must not be AL or omitted.
For encoding T2 and T4: see Standard assembler syntax fields on page C1-252.

For encoding T3: see Standard assembler syntax fields on page C1-252. <c> must not be AL or
omitted.

See Standard assembler syntax fields on page C1-252.

For encoding T1: the label of the instruction that is to be branched to. The assembler calculates the
required value of the offset from the PC value of the B instruction to this label, then selects an
encoding that sets imm32 to that offset. Permitted offsets are even numbers in the range —256 to 254.

For encoding T2: the label of the instruction that is to be branched to. The assembler calculates the
required value of the offset from the PC value of the B instruction to this label, then selects an
encoding that sets imm32 to that offset. Permitted offsets are even numbers in the range —2048 to
2046.

For encoding T3: the label of the instruction that is to be branched to. The assembler calculates the
required value of the offset from the PC value of the B instruction to this label, then selects an
encoding that sets imm32 to that offset. Permitted offsets are even numbers in the range —1048576 to
1048574.

For encoding T4: the label of the instruction that is to be branched to. The assembler calculates the
required value of the offset from the PC value of the B instruction to this label, then selects an
encoding that sets imm32 to that offset. Permitted offsets are even numbers in the range 16777216
to 16777214.

Operation for all encodings

if ConditionPassed() then
EncodingSpecificOperations();
BranchWritePC(PC + imm32);

Exceptions

None.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-343

Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.16 BFC

Bit Field Clear clears any number of adjacent bits at any position in a register, without affecting the other bits in the
register.

™

ARMvVS-M Main Extension only

151413121110 9 8|7 6 5 4|3 2 1 0[1514 1211 8|7 6 5 4] 0|
[1 11 1 ofof1 1]o 1]1]o]1 1 1 1]o[imm3 | Rd [imm2J0) msb |
T1 variant

BFC{<c>}{<g>} <Rd>, #<1sb>, #<width>

Decode for this encoding

if !HaveMainExt() then UNDEFINED;

d = UInt(Rd); msbit = UInt(msb); Tsbit = UInt(imm3:imm2);
if msbit < Tsbit then UNPREDICTABLE;

if d IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-252.

<q> See Standard assembler syntax fields on page C1-252.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Isb> Is the least significant bit that is to be cleared, in the range 0 to 31, encoded in the "imm3:imm2"
field.

<width> Is the number of bits to be cleared, in the range 1 to 32-<Isb>, encoded in the "msb" field as

<lIsb>+<width>-1.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
if msbit >= 1sbit then
R[d]<msbit:1sbit> = Replicate('0', msbit-Tsbit+l);
// Other bits of R[d] are unchanged
else
R[d] = bits(32) UNKNOWN;

Exceptions

None.

C2-344 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.17 BFI

Bit Field Insert copies any number of low order bits from a register into the same number of adjacent bits at any
position in the destination register.

™

ARMvVS-M Main Extension only

1151413121110 9 8|7 6 5 4|3 0[1514 12[11 8|7 6 5 4| 0]

[1 11 1 ofof1 1]o 1]1]o] =111 Jo[imm3 | Rd [imm2J0) msb |
Rn

T1 variant

BFI{<c>}{<g>} <Rd>, <Rn>, #<1Isb>, #<width>

Decode for this encoding

if Rn == '1111' then SEE BF(;

if !HaveMainExt() then UNDEFINED;

d = UInt(Rd); n = UInt(Rn); msbit = UInt(msb); Tsbit = UInt(imm3:imm2);
if msbit < Tsbit then UNPREDICTABLE;

if d IN {13,15} || n == 13 then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-252.

<q> See Standard assembler syntax fields on page C1-252.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the general-purpose source register, encoded in the "Rn" field.

<1sb> Is the least significant destination bit, in the range 0 to 31, encoded in the "imm3:imm?2" field.
<width> Is the number of bits to be copied, in the range 1 to 32-<Isb>, encoded in the "msb" field as

<lsb>+<width>-1.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
if msbit >= 1sbit then
R[d]<msbit:1sbit> = R[n]<(mshit-Tsbit):0>;
// Other bits of R[d] are unchanged
else
R[d] = bits(32) UNKNOWN;

Exceptions

None.

ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-345
1D092816 Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.18 BIC (immediate)

Bit Clear (immediate) performs a bitwise AND of a register value and the complement of an immediate value, and
writes the result to the destination register. It can optionally update the condition flags based on the result.

T1

ARMvVS-M Main Extension only

[15141312/1110 9 8|7 6 5 4|3 01514 12|11 8|7 0]
[1 111 0filoJo oo 1]s] RrRn [o] mm3 | Rd | |

BIC variant

Applies when S == 0.

BIC{<c>}{<g>} {<Rd>,} <Rn>, #<const>

BICS variant

Applies when S == 1.

BICS{<c>}{<g>} {<Rd>,} <Rn>, #<const>

Decode for all variants of this encoding

if !HaveMainExt() then UNDEFINED;

d = UInt(Rd); n = UInt(Rn); setflags = (S == '1");

(imm32, carry) = T32ExpandImm_C(i:imm3:imm8, APSR.C);

if d IN {13,15} || n IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-252.

<q> See Standard assembler syntax fields on page C1-252.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the

same as <Rn>.

<Rn> Is the general-purpose source register, encoded in the "Rn" field.

<const> An immediate value. See Modified immediate constants on page C1-259 for the range of values.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
result = R[n] AND NOT(imm32);
R[d] = result;
if setflags then
APSR.N = result<3l>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged

Exceptions

None.

C2-346 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0553A.c
ID092816

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.19 BIC (register)

Bit Clear (register) performs a bitwise AND of a register value and the complement of an optionally-shifted register
value, and writes the result to the destination register. It can optionally update the condition flags based on the result.

T
ARMvS-M

[15141312/1110 9 8|7 6 5 |3 2 0]
[010000[1110] Rm [Rdn |

T1 variant

BIC<c>{<g>} {<Rdn>,} <Rdn>, <Rm> // Inside IT block
BICS{<g>} {<Rdn>,} <Rdn>, <Rm> // Outside IT block

Decode for this encoding

d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();
(shift_t, shift_n) = (SRType_LSL, 0);

T2

ARMVS-M Main Extension only

11514 1312|1110 9 8|7 6 5 4|3 0[1514 12[11 817 6 5 4|3 0|
[1110101[0001][s] Rn [0 imm3 | Rd [imm2[type] Rm |

BIC, rotate right with extend variant
Applies when S == 0 && imm3 == 000 && imm2 == 00 & type == 11.

BIC{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, RRX

BIC, shift or rotate by value variant
Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && type == 11).

BIC<c>.W {<Rd>,} <Rn>, <Rm> // Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in Tl
BIC{<c>}{<g>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

BICS, rotate right with extend variant
Applies when S == 1 && inm3 == 000 && imm2 == 00 && type == 11.

BICS{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, RRX

BICS, shift or rotate by value variant
Applies when S == 1 & !(imm3 == 000 && imm2 == 00 && type == 11).

BICS.W {<Rd>,} <Rn>, <Rm> // Outside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1
BICS{<c>}{<g>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-347
1D092816 Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

Decode for all variants of this encoding

if !HaveMainExt() then UNDEFINED;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1");
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);

if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<Cc> See Standard assembler syntax fields on page C1-252.
<> See Standard assembler syntax fields on page C1-252.
<Rdn> Is the first general-purpose source register and the destination register, encoded in the "Rdn" field.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the

same as <Rn>.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
<shift> Is the type of shift to be applied to the second source register, encoded in the "type" field. It can have
the following values:
LSL when type = 00
LSR when type = 01
ASR when type = 10
ROR when type = 11
<amount> Is the shift amount, in the range 1 to 31 (when <shift>= LSL or ROR) or 1 to 32 (when <shift> =

LSR or ASR) encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings

if ConditionPassed() then
EncodingSpecificOperations();
(shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.(C);
result = R[n] AND NOT(shifted);
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged

Exceptions

None.

C2-348 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.20 BKPT

Breakpoint causes a DebugMonitor exception or a debug halt to occur depending on the configuration of the debug
support.

Note

BKPT is an unconditional instruction and executes as such both inside and outside an IT instruction block.

T

ARMvS-M
[15141312/1110 9 8|7 | 0]
[10111110] imm8

T1 variant

BKPT{<g>} {#}<imm>

Decode for this encoding

imm32 = ZeroExtend(imm8, 32);

// imm32 1is for assembly/disassembly only and is ignored by hardware.

Assembler symbols

<q> See Standard assembler syntax fields on page C1-252. A BKPT instruction must be unconditional.

<imm> Is an 8-bit unsigned immediate, in the range 0 to 255, encoded in the "imm8" field. The PE ignores
this value, but a debugger might use it to store additional information about the breakpoint.

Operation

EncodingSpecificOperations();
BKPTInstrDebugEvent();

Exceptions

DebugMonitor.

ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-349
1D092816 Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.21 BL
Branch with Link (immediate) calls a subroutine at a PC-relative address.
T
ARMVSE-M
1514 1312/1110 9 | | 0115 14 13 12|11 10 | | 0|
[1 111 0]s] imm10 [1 1]u1]1]92] imm11 |
T1 variant
BL{<c>}{<g>} <label>
Decode for this encoding
I1 = NOT(J1 EOR S); I2 = NOT(J2 EOR S); 1imm32 = SignExtend(S:I1:12:imm1Q:imm11:'Q", 32);
if InITBlock() && !LastInITBlock() then UNPREDICTABLE;
Assembler symbols
<c> See Standard assembler syntax fields on page C1-252.
<q> See Standard assembler syntax fields on page C1-252.
<label> The label of the instruction that is to be branched to. The assembler calculates the required value of
the offset from the PC value of the BL instruction to this label, then selects an encoding with imm32
set to that offset. Permitted offsets are even numbers in the range —16777216 to 16777214.
Operation
if ConditionPassed() then
EncodingSpecificOperations();
next_instr_addr = PC;
LR = next_instr_addr<31:1> : '1';
BranchWritePC(PC + imm32);
Exceptions
None.
C2-350 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

C2.4.22 BLX, BLXNS

C2 Instruction Specification
C2.4 Alphabetical list of instructions

Branch with Link and Exchange calls a subroutine at an address, with the address and instruction set specified by a
register. Bit[0] complies with the ARM architecture interworking rules for switching between the A32 and T32
instruction sets. However, ARMv8-M only supports the T32 instruction set, so bit[0] must be 1. If bit[0] is O the PE
takes an INVSTATE UsageFault exception on the instruction at the target address.

Branch with Link and Exchange Non-secure calls a subroutine at an address specified by a register, and if bit[0] of
the target address is 0 then the instruction causes a transition from Secure to Non-secure state. This variant of the
instruction must only be used when the additional steps required to make such a transition safe have been taken.

BLXNS is UNDEFINED if executed in Non-secure state, and is only implemented if the Security Extensions have

been implemented.

See GVBB for further details of register and stack changes as a result of BLXNS causing a transition from Secure

to Non-secure state.

™

ARMvS-M

[15141312(1110 9 8|7 6 |32 1 0]
[01 00011 1]1] Rm INgo)o)

BLX variant
Applies when NS == 0.
BLX{<c>}{<g>} <Rm>
BLXNS variant
Applies when NS == 1.

BLXNS{<c>}{<g>} <Rm>

Decode for all variants of this encoding

m = UInt(Rm); allowNonSecure = NS == '1';
if 1IsSecure() && allowNonSecure then UNDEFINED;

if m IN {13,15} then UNPREDICTABLE;

if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-252.
<q> See Standard assembler syntax fields on page C1-252.
<Rm> Is the general-purpose register holding the address to be branched to, encoded in the "Rm" field. The

SP can be used, but this is deprecated.

Operation

if ConditionPassed() then
EncodingSpecificOperations();

target = R[m];
nextInstrAddr = PC - 2;

nextInstrAddr = nextInstrAddr<31:1> :

1

if allowNonSecure && (target<@> == '0') then

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-351

Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

if 1IsAligned(SP, 8) then UNPREDICTABLE;

address = SP - 8;

RETPSR_Type savedPSR = Zeros();

savedPSR.Exception IPSR.Exception;

savedPSR.SFPA CONTROL_S.SFPA;

// Only the stack Tocations, not the store order, are architected
spName = LookUpSP();

mode = CurrentMode();

exc = Stack(address, @, spName, mode, nextInstrAddr);
if exc.fault == NoFault then exc = Stack(address, 4, spName, mode, savedPSR);
HandTeException(exc);

// Stack pointer update will raise a fault if limit violated

SP = address;

LR = OXFEFFFFFF<31:0>;
// If in handler mode, IPSR must be non-zero. To prevent revealing which
// Secure handler is calling Non-secure code, IPSR is set to an invalid but
// non-zero value(ie the reset exception number).
if mode == Mode_Handler then
IPSR = 0x1<31:0>;
else
LR = nextInstrAddr;

BLXWritePC(target, allowNonSecure);

Exceptions

BusFault, UsageFault, MemManage, and SecureFault.

C2-352 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.23 BX, BXNS

Branch and Exchange causes a branch to an address, with the address and instruction set specified by a register.
Bit[0] complies with the ARM architecture interworking rules for switching between the A32 and T32 instruction
sets. However, ARMv8-M only supports the T32 instruction set, so bit[0] must be 1. If bit[0] is O the PE takes an
INVSTATE UsageFault exception on the instruction at the target address.

Branch and Exchange Non-secure causes a branch to an address specified by a register. If bit[0] of the target address
is 0, and the target address is not FNC_RETURN or EXC_RETURN, then the instruction causes a transition from
Secure to Non-secure state. This variant of the instruction must only be used when the additional steps required to
make such a transition safe have been taken.

BX can also be used for an exception return.

BXNS is UNDEFINED if executed in Non-secure state, and is only implemented if the Security Extensions have been
implemented.

T
ARMvE-M

[15141312(1110 9 8|7 6 |32 1 0]
[01 00011 1]o] Rm Ngo)o)

BX variant
Applies when NS == 0.

BX{<c>}{<q>} <Rm>

BXNS variant
Applies when NS == 1.

BXNS{<c>}{<g>} <Rm>

Decode for all variants of this encoding

m = UInt(Rm); allowNonSecure = NS == '1';

if 1IsSecure() && allowNonSecure then UNDEFINED;

if m IN {13,15} then UNPREDICTABLE;

if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Assembler symbols
<c> See Standard assembler syntax fields on page C1-252.
<q> See Standard assembler syntax fields on page C1-252.

<Rm> Is the general-purpose register holding the address to be branched to, encoded in the "Rm" field. The
SP can be used, but this is deprecated. The PC can be used, but:
. BX PC causes a UsageFault on the following instruction, because bit<0> of the PC is 0.
. BXNS PC in Non-secure state is UNDEFINED.

. BXNS PC in Secure state causes a transition to Non-secure state, but if the next instruction
is in Secure memory then fetching it causes a SecureFault.

ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-353
1D092816 Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

Operation

if ConditionPassed() then
EncodingSpecificOperations();
exc = BXWritePC(R[m], allowNonSecure);
HandleException(exc);

Exceptions

UsageFault, BusFault, MemManage, and SecureFault.

C2-354 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0553A.c
ID092816

C2.4.24 CBNZ, CBZ

C2 Instruction Specification
C2.4 Alphabetical list of instructions

Compare and Branch on Nonzero and Compare and Branch on Zero compare the value in a register with zero, and
conditionally branch forward a constant value. They do not affect the condition flags.

T1

ARMvS-M

[15141312/1110 9 8|7 |3 2 0]
[1 0 1 1]oplo]i[1] imm5 | Rn |
CBNZ variant

Applies when op == 1.

CBNZ{<g>} <Rn>, <label>

CBZ variant
Applies when op ==

CBZ{<g>} <Rn>, <label>

Decode for all variants of this encoding

n = UInt(Rn); imm32 = ZeroExtend(i:imm5:'0', 32); nonzero = (op == '1');

if InITBlock() then UNPREDICTABLE;

Assembler symbols

<q> See Standard assembler syntax fields on page C1-252.

<Rn> Is the general-purpose register to be tested, encoded in the "Rn" field.

<label> The label of the instruction that is to be conditionally branched to. Its offset from the PC, a multiple

of 2 in the range 0 to 126, is encoded as "i:immS5" times 4.

Operation
EncodingSpecificOperations();

if nonzero != IsZero(R[n]) then
BranchWritePC(PC + imm32);

Exceptions

None.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-355

Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.25 CDP, CDP2
Coprocessor Data Processing tells a coprocessor to perform an operation.
If no coprocessor can execute the instruction, a UsageFault exception is generated.
™
ARMVS-M Main Extension only
[15141312/1110 9 8|7 413 0115 12|11 8|7 5 413 0|
[1 1 1]JoJ1 1 1 0] opct | CRn [CRd | 1=101x | opc2 [0] CRm |
coproc
T1 variant
C(DP{<c>}{<g>} <coproc>, {#}<opcl>, <CRd>, <CRn>, <CRm> {, {#}<opc2>}
Decode for this encoding
if coproc IN '101x' then SEE "Floating-point";
if !HaveMainExt() then UNDEFINED;
cp = UInt(coproc);
T2
ARMvS-M Main Extension only
[15141312/1110 9 8|7 4|3 0115 12|11 8|7 5 4|3 0]
[1 1 1]1]1 1 1 0] opct | CRn | CRd | 1=101x | opc2 [0] CRm |
coproc
T2 variant
(DP2{<c>}{<g>} <coproc>, {#}<opcl>, <CRd>, <CRn>, <CRm> {, {#}<opc2>}
Decode for this encoding
if coproc IN '101x' then SEE "Floating-point";
if !HaveMainExt() then UNDEFINED;
cp = UInt(coproc);
Notes for all encodings
Floating-point: Floating-point data-processing on page C2-304.
Assembler symbols
<c> See Standard assembler syntax fields on page C1-252.
<q> See Standard assembler syntax fields on page C1-252.
<coproc> Is the name of the coprocessor, encoded in the "coproc" field. The valid coprocessor names are p0
to p7, p10, and p11.
<opcl> Is a coprocessor-specific opcode, in the range 0 to 15, encoded in the "opc1" field.
<CRd> Is the destination coprocessor register, encoded in the "CRd" field.
<CRn> Is the coprocessor register that contains the first operand, encoded in the "CRn" field.
C2-356 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

C2 Instruction Specification
C2.4 Alphabetical list of instructions

<CRm> Is the coprocessor register that contains the second operand, encoded in the "CRm" field.

<opc2> Is a coprocessor-specific opcode in the range 0 to 7, defaulting to 0 and encoded in the "opc2" field.

Operation for all encodings

if ConditionPassed() then
EncodingSpecificOperations();
ExecuteCPCheck(cp);
if !Coproc_Accepted(cp, ThisInstr()) then
GenerateCoprocessorException();
else
Coproc_InternalOperation(cp, ThisInstr());

Exceptions

UsageFault.

ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-357
1D092816 Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.26 CLREX

Clear Exclusive clears the local record of the executing PE that an address has had a request for an exclusive access.

™

ARMVS-M

[15141312/1110 9 8|7 6 5 4|3 2 1 0[15141312[1110 9 8|7 6 5 4|3 2 1 0]
[1 111001110 1 1fmM1 ofofofnimimlmio o 1 of)@)))

T1 variant

CLREX{<c>}{<q>}

Decode for this encoding

// No additional decoding required

Assembler symbols

<c> See Standard assembler syntax fields on page C1-252.
<q> See Standard assembler syntax fields on page C1-252.
Operation

if ConditionPassed() then
EncodingSpecificOperations();
ClearExclusivelocal(ProcessorID());

Exceptions

None.

C2-358 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

C2.4.27 CLz

C2 Instruction Specification
C2.4 Alphabetical list of instructions

Count Leading Zeros returns the number of binary zero bits before the first binary one bit in a value.

™

ARMVS-M Main Extension only

[15141312(1110 9 8|7 6 5 43 0115 14 13 12|11 8|7 6 5 4|3 0]
[1t11110101/011] Rm [1 11 1] Rd [1 0[0o0] Rm |

T1 variant

CLZ{<c>}{<g>} <Rd>, <Rm>

Decode for this encoding

if !HaveMainExt() then UNDEFINED;

if !Consistent(Rm) then UNPREDICTABLE;

d = UInt(Rd); m = UInt(Rm);

if d IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-252.

<q> See Standard assembler syntax fields on page C1-252.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the general-purpose source register, encoded in the "Rm" field. Its number must be encoded twice.
Operation

if ConditionPassed() then
EncodingSpecificOperations();
result = CountLeadingZeroBits(R[m]);
R[d] = result<31:0>;

Exceptions

None.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-359
Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.28

CMN (immediate)

Compare Negative (immediate) adds a register value and an immediate value. It updates the condition flags based

on the result, and discards the result.

T1

ARMvVS-M Main Extension only

11514 1312(1110 9 8|7 6 5 4|3 011514 12/1110 9 817

[1 111 0fi]o[1 00 0[1] Rn Jo[imm3 [1 1 1 1]

imm8 |

T1 variant

CMN{<c>}{<g>} <Rn>, #<const>

Decode for this encoding

if !HaveMainExt() then UNDEFINED;

n = UInt(Rn); imm32 = T32ExpandImm(i:imm3:imm8);

if n == 15 then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-252.
<q> See Standard assembler syntax fields on page C1-252.

<Rn> Is the general-purpose source register, encoded in the "Rn" field.

<const> An immediate value. See Modified immediate constants on page C1-259 for the range of values.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
(result, carry, overflow) = AddwWithCarry(R[n], imm32, '0");
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
APSR.V = overflow;

Exceptions

None.

C2-360

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved.
Non-Confidential

ARM DDI 0553A.c
ID092816

C2.4.29 CMN (register)

C2 Instruction Specification
C2.4 Alphabetical list of instructions

Compare Negative (register) adds a register value and an optionally-shifted register value. It updates the condition

flags based on the result, and discards the result.

T
ARMvS-M

[15141312/1110 9 8|7 6 5 |3 2

0]

[0 10000[101 1 Rm [Rn

T1 variant

CMN{<c>}{<g>} <Rn>, <Rm>

Decode for this encoding

n = UInt(Rn); m = UInt(Rm);
(shift_t, shift_n) = (SRType_LSL, 0);

T2

ARMVS-M Main Extension only

15141312/1110 9 8|7 6 5 4|3

011514

1211109 8/7 6 5 4|3 0]

[1110101[1000[1] Rn

[0 imm3 [1 1 1 1[imm2]type] Rm |

Rotate right with extend variant

Applies when imm3 == 000 &% imm2 == 00 & type == 11.

CMN{<c>}{<g>} <Rn>, <Rm>, RRX

Shift or rotate by value variant

Applies when ! (imm3 == 000 && imm2 == 00 &% type == 11).

CMN{<c>}.W <Rn>, <Rm> // <Rn>, <Rm> can be represented in T1

CMN{<c>}{<g>} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

if !HaveMainExt() then UNDEFINED;
n = UInt(Rn); m = UInt(Rm);

(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);

if n == 15 || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-252.
<q> See Standard assembler syntax fields on page C1-252.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-361

1D092816

Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

<shift> Is the type of shift to be applied to the second source register, encoded in the "type" field. It can have
the following values:
LSL when type = 00
LSR when type = 01
ASR when type = 10
ROR when type = 11
<amount> Is the shift amount, in the range 1 to 31 (when <shift>= LSL or ROR) or 1 to 32 (when <shift> =

LSR or ASR) encoded in the "imm3:imm?2" field as <amount> modulo 32.

Operation for all encodings

if ConditionPassed() then
EncodingSpecificOperations();
shifted = Shift(R[m], shift_t, shift_n, APSR.C);
(result, carry, overflow) = AddwithCarry(R[n], shifted, '0');
APSR.N = result<3l>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
APSR.V = overflow;

Exceptions

None.

C2-362 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

C2 Instruction Specification

C2.4 Alphabetical list of instructions

C2.4.30 CMP (immediate)

Compare (immediate) subtracts an immediate value from a register value. It updates the condition flags based on

the result, and discards the result.

T
ARMvS-M

[15141312/1110 8|7 | 0]
[0 0 1]o 1] Rn | imm8 |

T1 variant

MP{<c>}{<g>} <Rn>, #<imm8>

Decode for this encoding

n = UInt(Rn); 1imm32 = ZeroExtend(imm8, 32);

T2

ARMVS-M Main Extension only

11514 1312(1110 9 8|7 6 5 4|3 01514 12/1110 9 817

[1 11 1 0fiJo[1 10 1[1] Rn Jo[imm3 [1 1 1 1]

imm8 |

T2 variant

CMP{<c>}.W <Rn>, #<const> // <Rn>, <const> can be represented in T1
CMP{<c>}{<g>} <Rn>, #<const>

Decode for this encoding

if !HaveMainExt() then UNDEFINED;

n = UInt(Rn); imm32 = T32ExpandImm(i:imm3:imm8);

if n == 15 then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-252.

<q> See Standard assembler syntax fields on page C1-252.

<Rn> For encoding T1: is a general-purpose source register, encoded in the "Rn" field.

For encoding T2: is the general-purpose source register, encoded in the "Rn" field.

<imm8> Is an 8-bit unsigned immediate, in the range 0 to 255, encoded in the "imm8" field.

<const> An immediate value. See Modified immediate constants on page C1-259 for the range of values.

Operation for all encodings

if ConditionPassed() then
EncodingSpecificOperations();
(result, carry, overflow) = AddwithCarry(R[n], NOT(imm32), '1');
APSR.N = result<31>;

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved.

Non-Confidential

C2-363

C2 Instruction Specification
C2.4 Alphabetical list of instructions

APSR.Z = IsZeroBit(result);
APSR.C = carry;
APSR.V = overflow;

Exceptions

None.

C2-364 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.31 CMP (register)

Compare (register) subtracts an optionally-shifted register value from a register value. It updates the condition flags
based on the result, and discards the result.

T
ARMvS-M

[15141312/1110 9 8|7 6 5 |3 2 0]
[0 10000[1010] Rm [Rn |

T1 variant

(MP{<c>}{<g>} <Rn>, <Rm> // <Rn> and <Rm> both from RO-R7

Decode for this encoding

n = UInt(Rn); m = UInt(Rm);
(shift_t, shift_n) = (SRType_LSL, 0);
T2

ARMvS-M

1514 1312/1110 9 8|7 6 32 o0
[01 000 1[0 1[N Rm | Rn |

T2 variant

(MP{<c>}{<g>} <Rn>, <Rm> // <Rn> and <Rm> not both from RO-R7

Decode for this encoding

n = UInt(N:Rn); m = UInt(Rm);

(shift_t, shift_n) = (SRType_LSL, 0);

if n < 8 & m < 8 then UNPREDICTABLE;

if n == 15 || m == 15 then UNPREDICTABLE;

T3

ARMvS-M Main Extension only

[15141312/1110 9 8|7 6 5 4|3 0[1514 121110 9 8|7 6 5 4|3 0|
[1t110101[1101[1] Rn_ Jof imm3 [1 1 1 1]imm2[type] Rm |

Rotate right with extend variant
Applies when imm3 == 000 && imm2 == 00 && type == 11.

(MP{<c>}{<g>} <Rn>, <Rm>, RRX

Shift or rotate by value variant

Applies when ! (imm3 == 000 && imm2 == 00 &% type == 11).

ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-365
ID092816 Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

(MP{<c>}.W <Rn>, <Rm> // <Rn>, <Rm> can be represented in Tl or T2
(MP{<c>}{<g>} <Rn>, <Rm>, <shift> #<amount>

Decode for all variants of this encoding

if !HaveMainExt() then UNDEFINED;

n = UInt(Rn); m = UInt(Rm);

(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
if n == 15 || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-252.
<q> See Standard assembler syntax fields on page C1-252.
<Rn> For encoding T1 and T3: is the first general-purpose source register, encoded in the "Rn" field.

For encoding T2: is the first general-purpose source register, encoded in the "N:Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
<shift> Is the type of shift to be applied to the second source register, encoded in the "type" field. It can have
the following values:
LSL when type = 00
LSR when type = 01
ASR when type = 10
ROR when type = 11
<amount> Is the shift amount, in the range 1 to 31 (when <shift>= LSL or ROR) or 1 to 32 (when <shift> =

LSR or ASR) encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings

if ConditionPassed() then
EncodingSpecificOperations();
shifted = Shift(R[m], shift_t, shift_n, APSR.C);
(result, carry, overflow) = AddwithCarry(R[n], NOT(shifted), '1');
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
APSR.V = overflow;

Exceptions

None.

C2-366 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.32 CPS

Change PE State. The instruction modifies the PRIMASK and FAULTMASK special-purpose register values.

T1

ARMVS-M

[15141312/1110 9 8|7 6 5 4]/3 2 1 0]
[101101 1001 1][mlo)o)I]F]

CPSID variant
Applies when im ==

CPSID{<g>} <iflags>

CPSIE variant
Applies when im ==

CPSIE{<g>} <iflags>

Decode for all variants of this encoding

enable = (im == '0'); disable = (im == '1");
if InITBlock() then UNPREDICTABLE;
if (I =="'0' & F =='0") then UNPREDICTABLE;
affectPRI = (I == '1'); affectFAULT = (F == '1");
if !HaveMainExt() then

if (I == '0") then UNPREDICTABLE;

if (F == '1") then UNPREDICTABLE;

Assembler symbols

<q> See Standard assembler syntax fields on page C1-252.
<iflags> Is a sequence of one or more of the following, specifying which interrupt mask bits are affected:
i PRIMASK. When set to 1, raises the execution priority to 0. This is a 1-bit register, that

can be updated only by privileged software.

f FAULTMASK. When set to 1, raises the execution priority to -1, the same priority as
HardFault. This is a 1-bit register, that can be updated only by privileged software. The
register clears to 0 on return from any exception other than NMI.

Operation

EncodingSpecificOperations();
if CurrentModeIsPrivileged() then
if enable then
if affectPRI then
PRIMASK.PM = 'Q';
if affectFAULT then
FAULTMASK.FM = 'Q";
if disable then
if affectPRI then
PRIMASK.PM = '1';
if affectFAULT && ExecutionPriority() > -1 then
FAULTMASK.FM = '1";

ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-367
1D092816 Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

Exceptions

None.

C2-368 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

C2.4.33 DBG

C2 Instruction Specification
C2.4 Alphabetical list of instructions

Debug Hint provides a hint to debug trace support and related debug systems. See debug architecture documentation

for what use (if any) is made of this instruction.

DBG is a NOP-compatible hint. For more information about NOP-compatible hints, see NOP-compatible hint

instructions on page C1-260.

T1

ARMvS-M Main Extension only

1514 1312|1110 9 8|7 6 5 4|3 2 1 0/15141312[1110 9 8|7 6 5 4|3 0|
[t 1110011101 ofmmlmln[1 ofofo]ofo o of1 1 1 1] option |

T1 variant

DBG{<c>}{<q>} #<option>

Decode for this encoding

if !HaveMainExt() then UNDEFINED;
// Any decoding of 'option' is specified by the debug system

Assembler symbols

<c> See Standard assembler syntax fields on page C1-252.

<q> See Standard assembler syntax fields on page C1-252.

<option> Is a 4-bit unsigned immediate, in the range 0 to 15, encoded in the "option" field.
Operation

if ConditionPassed() then
EncodingSpecificOperations();
Hint_Debug(option);

Exceptions

None.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved.
Non-Confidential

C2-369

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.34 DMB

Data Memory Barrier acts as a memory barrier. It ensures that all explicit memory accesses that appear in program
order before the DMB instruction are observed before any explicit memory accesses that appear in program order after
the DMB instruction. It does not affect the ordering of any other instructions executing on the PE.

T
ARMvS-M

[15141312/1110 9 8|7 6 5 4|3 2 1 0|15141312/1110 9 8|7 6 5 4|3 0|
[t 111001110 1 tfnmlaff1 ofolofmlddlmfo 1 0 1] option]

T1 variant

DMB{<c>}{<g>} {<option>}

Decode for this encoding

// No additional decoding required

Assembler symbols

<c> See Standard assembler syntax fields on page C1-252.
<q> See Standard assembler syntax fields on page C1-252.
<option> Specifies an optional limitation on the barrier operation. Values are:
Sy Full system barrier operation, encoded as option = 0b1111. Can be omitted.

All other encodings of option are reserved. The corresponding instructions execute as full system
barrier operations, but must not be relied upon by software.
Operation
if ConditionPassed() then
EncodingSpecificOperations();
DataMemoryBarrier(option);
Exceptions

None.

C2-370 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

C2.4.35 DSB

C2 Instruction Specification
C2.4 Alphabetical list of instructions

Data Synchronization Barrier acts as a special kind of memory barrier. No instruction in program order after this

instruction can execute until this instruction completes. This instruction completes only when both:
. Any explicit memory access made before this instruction is complete.

. The side-effects of any SCS access that performs a context-altering operation are visible.

T
ARMVS-M

[15141312/1110 9 8|7 6 5 43 2 1 0[15141312|1110 9 8|7 6 5 4|3 0]
[1 1110011101 1t ofofoffmfnidio 1 o of option |

T1 variant

DSB{<c>}{<g>} {<option>}

Decode for this encoding

// No additional decoding required

Assembler symbols

<c> See Standard assembler syntax fields on page C1-252.
<q> See Standard assembler syntax fields on page C1-252.
<option> Specifies an optional limitation on the barrier operation. Values are:
SY Full system barrier operation, encoded as option = 0b1111. Can be omitted.

All other encodings of option are reserved. The corresponding instructions execute as full system

barrier operations, but must not be relied upon by software.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
DataSynchronizationBarrier(option);

Exceptions

None.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved.
Non-Confidential

C2-371

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.36 EOR (immediate)
Exclusive OR (immediate) performs a bitwise Exclusive OR of a register value and an immediate value, and writes
the result to the destination register. It can optionally update the condition flags based on the result.
™
ARMvVS-M Main Extension only
[15141312/1110 9 8|7 6 5 43 01514 12|11 8|7 \ 0|
[1 111 0f[i]oJo 1 00[s] Rn Jo[imm3 | Rd | imm8 |
EOR variant
Applies when S == 0.
EOR{<c>}{<g>} {<Rd>,} <Rn>, #<const>
EORS variant
Applies when S == 1 & Rd != 1111.
EORS{<c>}{<g>} {<Rd>,} <Rn>, #<const>
Decode for all variants of this encoding
if Rd == '1111' && S == '1' then SEE "TEQ (immediate)";
if !HaveMainExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); setflags = (S == '1");
(imm32, carry) = T32ExpandImm_C(i:imm3:imm8, APSR.C);
if d==13 || (d==158 S =="0") || n IN {13,15} then UNPREDICTABLE;
Assembler symbols
<c> See Standard assembler syntax fields on page C1-252.
<q> See Standard assembler syntax fields on page C1-252.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the
same as <Rn>.
<Rn> Is the general-purpose source register, encoded in the "Rn" field.
<const> An immediate value. See Modified immediate constants on page C1-259 for the range of values.
Operation
if ConditionPassed() then
EncodingSpecificOperations();
result = R[n] EOR imm32;
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged
Exceptions
None.
C2-372 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential

ID092816

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.37 EOR (register)

Exclusive OR (register) performs a bitwise Exclusive OR of a register value and an optionally-shifted register value,
and writes the result to the destination register. It can optionally update the condition flags based on the result.

T
ARMvS-M

[15141312/1110 9 8|7 6 5 |3 2 0]
[0 10000J0o00 1 Rm [Rdn |

T1 variant

EOR<c>{<g>} {<Rdn>,} <Rdn>, <Rm> // Inside IT block
EORS{<g>} {<Rdn>,} <Rdn>, <Rm> // Outside IT block

Decode for this encoding

d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();
(shift_t, shift_n) = (SRType_LSL, 0);

T2

ARMVS-M Main Extension only

11514 1312|1110 9 8|7 6 5 4|3 0[1514 12[11 817 6 5 4|3 0|
[1 11010 1[0 100[s] Rn [0 imm3 | Rd [imm2[type] Rm |

EOR, rotate right with extend variant
Applies when S == 0 && imm3 == 000 &% imm2 == 00 && type == 11.

EOR{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, RRX

EOR, shift or rotate by value variant
Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && type == 11).

EOR<c>.W {<Rd>,} <Rn>, <Rm> // Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in Tl
EOR{<c>}{<g>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

EORS, rotate right with extend variant
Applies when S == 1 && inm3 == 000 && Rd != 1111 && imm2 == 00 && type == 11.

EORS{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, RRX

EORS, shift or rotate by value variant
Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && type == 11) && Rd != 1111.

EORS.W {<Rd>,} <Rn>, <Rm> // Outside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1
EORS{<c>}{<g>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-373
1D092816 Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

Decode for all variants of this encoding

if Rd == '1111

' && S == "'1" then SEE "TEQ (register)";

if !HaveMainExt() then UNDEFINED;

d = UInt(Rd);

n = UInt(Rn); m = UInt(Rm); setflags = (S == '1");

(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
if d==13 || (d ==15&& S == '0") || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<C>

<>

<Rdn>

<Rd>

<Rn>

<Rm>

<shift>

<amount>

See Standard assembler syntax fields on page C1-252.
See Standard assembler syntax fields on page C1-252.
Is the first general-purpose source register and the destination register, encoded in the "Rdn" field.

Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the
same as <Rn>.

Is the first general-purpose source register, encoded in the "Rn" field.
Is the second general-purpose source register, encoded in the "Rm" field.

Is the type of shift to be applied to the second source register, encoded in the "type" field. It can have
the following values:

LSL when type = 00
LSR when type = 01
ASR when type = 10
ROR when type = 11

Is the shift amount, in the range 1 to 31 (when <shift>= LSL or ROR) or 1 to 32 (when <shift> =
LSR or ASR) encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings

if ConditionPassed() then
EncodingSpecificOperations();
(shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
result = R[n] EOR shifted;
R[d] = result;
if setflags then

APSR.N
APSR.Z
APSR.C

= result<3l>;
IsZeroBit(result);
= carry;

// APSR.V unchanged

Exceptions

None.

C2-374

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.38 FLDMDBX, FLDMIAX

FLDMX (Decrement Before, Increment After) loads multiple extension registers from consecutive memory
locations using an address from a general-purpose register.

ARM deprecates use of FLDMDBX and FLDMIAX, except for disassembly purposes, and reassembly of
disassembled code.

™

ARMvVS-M Floating-point Extension only

15141312(1110 9 8/7 6 5 4|3 015 121110 9 8|7 \ 10|
[1 1101 10[P[ulp]w[1] Rn | vd 1 0 1[1] imm8<7:1> [1]
imm8<0

Decrement Before variant
Applies when P == 1 & U == 0 & W == 1.

FLDMDBX{<c>}{<g>} <Rn>{!}, <dreglist>

Increment After variant
Applies when P == 0 && U == 1.

FLDMIAX{<c>}{<g>} <Rn>{!}, <dreglist>

Decode for all variants of this encoding

if P=="0"& U=="0" & W == '0' then SEE "Related encodings";
if P == '1' & W == '0' then SEE VLDR;

if P == U & W == '1"' then UNDEFINED;

if !HaveFPExt() then UNDEFINED;

// Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
single_regs = FALSE; add = (U == '1"); wback = (W=="1");

d = UInt(D:Vd); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
regs = UInt(imm8) DIV 2;

if n == 15 then UNPREDICTABLE;

if regs == 0 || regs > 16 || (d+regs) > 32 then UNPREDICTABLE;

if VFPSmallRegisterBank() && (d+regs) > 16 then UNPREDICTABLE;

Notes for all encodings

Related encodings: Floating-point load/store and 64-bit register moves on page C2-302.

Assembler symbols

<c> See Standard assembler syntax fields on page C1-252.
<q> See Standard assembler syntax fields on page C1-252.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.

! Specifies base register writeback. Encoded in the "W" field as 1 if present, otherwise 0.

<dreglist> Is the list of consecutively numbered 64-bit floating-point registers to be transferred. The first
register in the list is encoded in "D:Vd", and "imm8" is set to twice the number of registers in the
list plus one. The list must contain at least one register, all registers must be in the range D0-D15,
and must not contain more than 16 registers.

ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-375
1D092816 Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

Operation

if ConditionPassed() then
EncodingSpecificOperations();
ExecuteFPCheck();
address = if add then R[n] else R[n]-imm32;
regval = if add then R[n]+imm32 else R[n]-imm32;

// Determine if the stack pointer 1limit should be checked
if n == 13 & wback then

(Timit, applylimit) = LookUpSPLim(LookUpSP());
else

applylimit = FALSE;

// Memory operation only performed if Timit not violated
if lapplylimit || (UInt(regval) >= UInt(Timit)) then
for r = 0 to regs-1
if single_regs then
S[d+r] = MemA[address,4];
address = address+4;
else
wordl = MemA[address,4]; word2 = MemA[address+4,4];
address = address+8;
// Combine the word-aligned words in the correct order for
// current endianness.
D[d+r] = if BigEndian() then wordl:word2 else word2:wordl;

// If the stack pointer is being updated update a fault will be raised if
// the Timit is violated
if wback then RSPCheck[n] = regval;

Exceptions

UsageFault, BusFault, MemManage, and SecureFault.

C2-376 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.39 FSTMDBX, FSTMIAX

FSTMX (Decrement Before, Increment After) stores multiple extension registers to consecutive memory locations
using an address from a general-purpose register.

ARM deprecates use of FSTMDBX and FSTMIAX, except for disassembly purposes, and reassembly of
disassembled code.

T1

ARMvVS-M Floating-point Extension only

15141312(1110 9 8/7 6 5 4|3 015 121110 9 8|7 \ 10|
[1 1101 10[P[ulp]w]o] Rn | vd 1 0 1[1] imm8<7:1> [1]
imm8<0

Decrement Before variant
Applies when P == 1 & U == 0 & W == 1.

FSTMDBX{<c>}{<g>} <Rn>{!}, <dreglist>

Increment After variant
Applies when P == 0 && U == 1.

FSTMIAX{<c>}{<gq>} <Rn>{!}, <dreglist>

Decode for all variants of this encoding

if P=="0"& U=="0" & W == '0' then SEE "Related encodings";
if P == "'1' & W == '0' then SEE VSTR;

if P == U & W == '1"' then UNDEFINED;

if !HaveFPExt() then UNDEFINED;

// Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
single_regs = FALSE; add = (U == '1"); wback = (W=="1");

d = UInt(D:Vd); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
regs = UInt(imm8) DIV 2;

if n == 15 then UNPREDICTABLE;

if regs == 0 || regs > 16 || (d+regs) > 32 then UNPREDICTABLE;

if VFPSmallRegisterBank() && (d+regs) > 16 then UNPREDICTABLE;

Notes for all encodings

Related encodings: Floating-point load/store and 64-bit register moves on page C2-302.

Assembler symbols

<c> See Standard assembler syntax fields on page C1-252.
<q> See Standard assembler syntax fields on page C1-252.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.

! Specifies base register writeback. Encoded in the "W" field as 1 if present, otherwise 0.

<dreglist> Is the list of consecutively numbered 64-bit floating-point registers to be transferred. The first
register in the list is encoded in "D:Vd", and "imm8" is set to twice the number of registers in the
list plus one. The list must contain at least one register, all registers must be in the range D0-D15,
and must not contain more than 16 registers.

ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-377
1D092816 Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

Operation

if ConditionPassed() then
EncodingSpecificOperations();
ExecuteFPCheck();
address = if add then R[n] else R[n]-imm32;
regval = if add then R[n]+imm32 else R[n]-imm32;

// Determine if the stack pointer 1limit should be checked
if n == 13 & wback then

(Timit, applylimit) = LookUpSPLim(LookUpSP());
else

applylimit = FALSE;

// Memory operation only performed if Timit not violated
if lapplylimit || (UInt(regval) >= UInt(Timit)) then
for r = 0 to regs-1
if single_regs then
MemA[address,4] = S[d+r];
address address+4;
else

// Store as two word-aligned words in the correct order for current endianness.

MemA[address,4] = if BigEndian() then D[d+r]<63:32> else D[d+r]<31:0>;
MemA[address+4,4] = if BigEndian() then D[d+r]<31:0> else D[d+r]<63:32>;
address = address+8;

// If the stack pointer is being updated update a fault will be raised if

// the Timit is violated
if wback then RSPCheck[n] = regval;

Exceptions

UsageFault, BusFault, MemManage, and SecureFault.

C2-378 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential

ID092816

C2.4.40 ISB

C2 Instruction Specification
C2.4 Alphabetical list of instructions

Instruction Synchronization Barrier flushes the pipeline in the PE and is a context synchronization event. For more
information, see /nstruction Synchronization Barrier on page B5-130.

T
ARMvS-M

[15141312/1110 9 8|7 6 5 4|3 2 1 0[15141312/1110 9 8|7 6 5 43 0]
[1t1 110011101 1]l ofefo]mlmlmlnio 1 1 of option |

T1 variant

ISB{<c>}{<g>} {<option>}

Decode for this encoding

// No additional decoding required

Assembler symbols

<c> See Standard assembler syntax fields on page C1-252.
<q> See Standard assembler syntax fields on page C1-252.
<option> Specifies an optional limitation on the barrier operation. Values are:
SY Full system barrier operation, encoded as option = 0b1111. Can be omitted.

All other encodings of option are reserved. The corresponding instructions execute as full system
barrier operations, but must not be relied upon by software.
Operation
if ConditionPassed() then
EncodingSpecificOperations();
InstructionSynchronizationBarrier(option);
Exceptions

None.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-379
Non-Confidential

C2 Instruction Specification

C2.4 Alphabetical list of instructions

C2.4.41 IT

If Then makes up to four following instructions (the IT block) conditional. The conditions for the instructions in the

IT block can be the same, or some of them can be the inverse of others.

IT does not affect the condition code flags. Branches to any instruction in the IT block are not permitted, apart from

those performed by exception returns.

16-bit instructions in the IT block, other than CMP, CMN, and TST, do not set the condition code flags. The AL condition

can be specified to get this changed behavior without conditional execution.

™

ARMvS-M Main Extension only

[15141312/1110 9 8|7 4|3 0]
[1 0111 11 1] firstcond | 1=0000 |
mask

T1 variant

IT{<x>{<y>{<z>}}}{<g>} <cond>

Decode for this encoding

if mask == '0000' then SEE "Related encodings";

if !HaveMainExt() then UNDEFINED;

if firstcond == '1111' || (firstcond == '1110' && BitCount(mask) !'= 1) then UNPREDICTABLE;

if InITBlock() then UNPREDICTABLE;

Notes for all encodings

Related encodings: Hints on page C2-288.

Assembler symbols

<X> The condition for the second instruction in the IT block. If omitted, the "mask" field is set to 0b1000.
If present it is encoded in the "mask[3]" field:
T firstcond[0]
E NOT firstcond[0]

<y> The condition for the third instruction in the IT block. If omitted and <x> is present, the "mask[2:0]"
field is set to 0b100. If <y> is present it is encoded in the "mask[2]" field:
T firstcond[0]
E NOT firstcond[0]

<z> The condition for the fourth instruction in the IT block. If omitted and <y> is present, the "mask[1:0]"
field is set to @b10. If <z> is present, the "mask[0]" field is set to 1, and it is encoded in the "mask[1]"
field:
T firstcond[0]
E NOT firstcond[0]

<q> See Standard assembler syntax fields on page C1-252.

C2-380 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

C2 Instruction Specification
C2.4 Alphabetical list of instructions

<cond> The condition for the first instruction in the IT block, encoded in the "firstcond" field. See
Conditional execution on page C1-253 for the range of conditions available, and the encodings.
Operation

EncodingSpecificOperations();
ITSTATE.IT<7:0> = firstcond:mask;

Exceptions

None.

ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-381
1D092816 Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.42 LDA

Load-Acquire Word loads a word from memory and writes it to a register. The instruction also has memory ordering

semantics.

T

ARMvS-M

[15141312(1110 9 8|7 6 5 43 0115 121110 9 8|7 6 5 4|3 2 1 0]
[1t1 1010001 10[1] R | R Joymmmi1lo]1 ofna @)@
T1 variant

LDA{<c>}{<g>} <Rt>, [<Rn>]

Decode for this encoding

t = UInt(Rt); n = UInt(Rn);
if t IN {13,15} || n == 15 then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-252.

<q> See Standard assembler syntax fields on page C1-252.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = R[n];
R[t] = MemO[address, 4];

Exceptions

BusFault, UsageFault, MemManage, and SecureFault.

C2-382 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.43 LDAB

Load-Acquire Byte loads a byte from memory, zero-extends it to form a 32-bit word and writes it to a register. The
instruction also has memory ordering semantics.

T

ARMvS-M

[15141312(1110 9 8|7 6 5 43 0115 121110 9 8|7 6 5 4|3 2 1 0]
[1t1 10100011 0[1] R | R Jymmmi1fo]o ofm@) @) @)
T1 variant

LDAB{<c>}{<g>} <Rt>, [<Rn>]

Decode for this encoding

t = UInt(Rt); n = UInt(Rn);
if t IN {13,15} || n == 15 then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-252.

<q> See Standard assembler syntax fields on page C1-252.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = R[n];
R[t] = ZeroExtend(MemO[address, 1], 32);

Exceptions

BusFault, UsageFault, MemManage, and SecureFault.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-383
Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.44 LDAEX

Load-Acquire Exclusive Word loads a word from memory, writes it to a register, and:

. If the address has the Shareable memory attribute, marks the physical address as exclusive access for the

executing PE in a global monitor.
. Causes the executing PE to indicate an active exclusive access in the local monitor.

The instruction also has memory ordering semantics.

T

ARMv8-M

[15141312(1110 9 8|7 6 5 43 0115 121110 9 8|7 6 5 4|3 2 1 0]
[1t1101000110[1] Rn [R [o@omi1[1]1 olnmma)
T1 variant

LDAEX{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding

t = UInt(Rt); n = UInt(Rn);
if t IN {13,15} || n == 15 then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-252.

<q> See Standard assembler syntax fields on page C1-252.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = R[n];
SetExclusiveMonitors(address, 4);
R[t] = MemO[address, 4];

Exceptions

MemManage, SecureFault, BusFault, and UsageFault.

C2-384 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved.
Non-Confidential

ARM DDI 0553A.c
ID092816

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.45 LDAEXB

Load-Acquire Exclusive Byte loads a byte from memory, zero-extends it to form a 32-bit word, writes it to a register,

and:

. If the address has the Shareable memory attribute, marks the physical address as exclusive access for the
executing PE in a global monitor.

. Causes the executing PE to indicate an active exclusive access in the local monitor.

The instruction also has memory ordering semantics.

T

ARMVS-M

[15141312(1110 9 8|7 6 5 43 0115 121110 9 8|7 6 5 4|3 2 1 0
[1t1101000110[1] Rn [R [momi1[1]o ofnmm)
T1 variant

LDAEXB{<c>}{<g>} <Rt>, [<Rn>]

Decode for this encoding

t = UInt(Rt); n = UInt(Rn);
if t IN {13,15} || n == 15 then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-252.

<q> See Standard assembler syntax fields on page C1-252.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = R[n];
SetExclusiveMonitors(address, 1);
R[t] = ZeroExtend(MemO[address, 1], 32);

Exceptions

MemManage, SecureFault, BusFault, and UsageFault.

ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-385
1D092816 Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.46 LDAEXH

Load-Acquire Exclusive Halfword loads a halfword from memory, zero-extends it to form a 32-bit word, writes it
to a register, and:

. If the address has the Shareable memory attribute, marks the physical address as exclusive access for the
executing PE in a global monitor.

. Causes the executing PE to indicate an active exclusive access in the local monitor.

The instruction also has memory ordering semantics.

T

ARMVS-M

[15141312(1110 9 8|7 6 5 43 0115 121110 9 8|7 6 5 4|3 2 1 0
[1t1101000110[1] Rn [R [momi1[1]o 1fnmma)
T1 variant

LDAEXH{<c>}{<g>} <Rt>, [<Rn>]

Decode for this encoding

t = UInt(Rt); n = UInt(Rn);
if t IN {13,15} || n == 15 then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-252.

<q> See Standard assembler syntax fields on page C1-252.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = R[n];
SetExclusiveMonitors(address, 2);
R[t] = ZeroExtend(MemO[address, 2], 32);

Exceptions

MemManage, SecureFault, BusFault, and UsageFault.

C2-386 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.47 LDAH

Load-Acquire Halfword loads a halfword from memory, zero-extends it to form a 32-bit word and writes it to a
register. The instruction also has memory ordering semantics.

T

ARMvS-M

[15141312(1110 9 8|7 6 5 43 0115 121110 9 8|7 6 5 4|3 2 1 0]
[1t1 10100011 0[1] R | R Joymmmi1lo]o 1{m@) @) @)
T1 variant

LDAH{<c>}{<g>} <Rt>, [<Rn>]

Decode for this encoding

t = UInt(Rt); n = UInt(Rn);
if t IN {13,15} || n == 15 then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-252.

<q> See Standard assembler syntax fields on page C1-252.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = R[n];
R[t] = ZeroExtend(MemO[address, 2], 32);

Exceptions

BusFault, UsageFault, MemManage, and SecureFault.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-387
Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.48 LDC, LDC2 (immediate)

Load Coprocessor loads memory data from a sequence of consecutive memory addresses to a coprocessor. If no
coprocessor can execute the instruction, a UsageFault exception is generated.
This is a generic coprocessor instruction. Some of the fields have no functionality defined by the architecture and
are free for use by the coprocessor instruction set designer. These fields are the D bit, the CRd field, and in the
Unindexed addressing mode only, the immS§ field.
T
ARMvS-M Main Extension only

[15141312/1110 9 8|7 6 5 4|3 0115 12]11 8|7 | 0]

[1 1 1]o]1 1 ofP[ulD]w[1] 1=1111 | cCcrRd [1=101x | imm8 |

Rn coproc

Offset variant
Applies when P == 1 & W == 0.
LDC{L}{<c>}{<g>} <coproc>, <CRd>, [<Rn>{, #{+/-}<imm>}]
Post-indexed variant
Applies when P == 0 & W == 1.
LDC{L}{<c>}{<g>} <coproc>, <CRd>, [<Rn>], #{+/-}<imm>
Pre-indexed variant
Applies when P == 1 && W == 1.
LDC{L}{<c>}{<g>} <coproc>, <CRd>, [<Rn>, #{+/-}<imm>]!
Unindexed variant
Applies when P == 0 & U == 1 & W == 0.
LDC{L}{<c>}{<q>} <coproc>, <CRd>, [<Rn>], <option>
Decode for all variants of this encoding
if Rn == "1111' then SEE "LDC (literal)";
if P=="0"8 U=="0" & D == '0' & W == '0"' then UNDEFINED;
if P=="0"8 U=="0" & D == '1l' & W == '0" then SEE "MRRC, MRRC2";
if coproc IN '101x' then SEE "Floating-point";
if !HaveMainExt() then UNDEFINED;
n = UInt(Rn); cp = UInt(coproc); 1imm32 = ZeroExtend(imm8:'00', 32);
index = (P == "1"); add = (U=="1"); wback = (W=="1");
T2
ARMvS-M Main Extension only

[15141312/1110 9 8|7 6 5 4|3 0115 12]11 8|7 | 0|

[1 1 1]1]1 1 of[P[ulD]w[1] 1=1111 | cCrRd [1=101x | imm8 |

Rn coproc
Offset variant
Applies when P == 1 & W == 0.
C2-388 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential

ID092816

C2 Instruction Specification
C2.4 Alphabetical list of instructions

LDC2{L}{<c>}{<g>} <coproc>, <CRd>, [<Rn>{, #{+/-}<imm>}]

Post-indexed variant
Applies when P == 0 & W == 1.

LDC2{L}{<c>}{<g>} <coproc>, <CRd>, [<Rn>], #{+/-}<imm>

Pre-indexed variant
Applies when P == 1 && W == 1.

LDC2{L}{<c>}{<g>} <coproc>, <CRd>, [<Rn>, #{+/-}<imm>]!

Unindexed variant
Applies when P == 0 && U == 1 & W == 0.

LDC2{L}{<c>}{<g>} <coproc>, <CRd>, [<Rn>], <option>

Decode for all variants of this encoding

if Rn == '1111' then SEE "LDC (literal)";

if P=="0"8 U=="0"8 D == "'0" & W == '0"' then UNDEFINED;

if P=="0"8 U=="0"8 D == "1" & W == '0' then SEE "MRRC, MRRC2";
if coproc IN '101x' then SEE "Floating-point";

if !HaveMainExt() then UNDEFINED;

n = UInt(Rn); cp = UInt(coproc); imm32 = ZeroExtend(imm8:'00', 32);
index = (P == "'1"); add = (U=="1"); wback = (W=="1");

Notes for all encodings

Floating-point: Floating-point load/store on page C2-303.

Assembler symbols

L If specified, selects the D == 1 form of the encoding. If omitted, selects the D == 0 form.

<Cc> See Standard assembler syntax fields on page C1-252.

<q> See Standard assembler syntax fields on page C1-252.

<coproc> Is the name of the coprocessor, encoded in the "coproc" field. The valid coprocessor names are p10,

pll, pl4, and p15.

<CRd> Is the coprocessor register to be transferred, encoded in the "CRd" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field. If the PC is used, see LDC, LDC2
(literal).

<option> Is a coprocessor option, in the range 0 to 255 enclosed in { }, encoded in the "imm8" field.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:
- whenU = 0
+ whenU = 1

<imm> Is the immediate offset used for forming the address, a multiple of 4 in the range 0-1020, defaulting

to 0 and encoded in the "imm8&" field, as <imm>/4.

ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-389
1D092816 Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

Operation for all encodings

if ConditionPassed() then

EncodingSpecificOperations();

ExecuteCPCheck(cp);

if !Coproc_Accepted(cp, ThisInstr()) then
GenerateCoprocessorException();

else
offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
address = if index then offset_addr else R[n];

// Determine if the stack pointer 1limit check should be performed
if wback && n == 13 then

(Timit, applylimit) = LookUpSPLim(LookUpSP());
else

applylimit = FALSE;

// Memory operation only performed if Timit not violated
if lapplylimit || (UInt(offset_addr) >= UInt(Timit)) then
repeat
Coproc_SendLoadedWord(MemA[address,4], cp, ThisInstr());
address = address + 4;
until Coproc_Doneloading(cp, ThisInstr());

// If the stack pointer is being updated update a fault will be raised

// if the Timit is violated
if wback then RSPCheck[n] = offset_addr;

Exceptions

UsageFault, BusFault, MemManage, and SecureFault.

C2-390 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

C2 Instruction Specification

C2.4 Alphabetical list of instructions

C2.4.49 LDC, LDC2 (literal)

Load Coprocessor loads memory data from a sequence of consecutive memory addresses to a coprocessor. If no

coprocessor can execute the instruction, a UsageFault exception is generated.

This is a generic coprocessor instruction. The D bit and the CRd field have no functionality defined by the

architecture and are free for use by the coprocessor instruction set designer.

™

ARMvS-M Main Extension only

[15141312/1110 9 8|7 6 5 4]3 2 1 0]15 12|11 8|7

[1 1 1]o]1 1 o|PJu[D]w]1][1 1 1 1] crd | 1=101x |

imm8 |

coproc

T1 variant
Applies when ! (P == 0 & U == 0 & W == 0).

LDC{L}{<c>}{<g>} <coproc>, <CRd>, <label>
LDC{L}{<c>}{<g>} <coproc>, <CRd>, [PC, #{+/-}<imm>]

Decode for this encoding

if P=="0"8& U=="0"8& D == '0" & W == '0' then UNDEFINED;

if P=="0"8& U=="0" & D == '1' & W == '0' then SEE "MRRC, MRRC2";
if coproc IN '101x' then SEE "Floating-point";

if !HaveMainExt() then UNDEFINED;

index = (P == '1"); // Always TRUE in the T32 instruction set

add = (U=="1"); cp = UInt(coproc); imm32 = ZeroExtend(imm8:'00', 32);
if W=="1" || P =="'0" then UNPREDICTABLE;

T2

ARMVS-M Main Extension only

[15141312/1110 9 8|7 6 5 4]3 2 1 0]15 12|11 87

[1 1 1]1]1 1 o[P[ulD]w[1]1 1 1 1] Ccrd [1=101x |

imm8 |

coproc

T2 variant
Applies when (P == 0 && U == 0 & W == 0).

LDC2{L}{<c>}{<q>} <coproc>, <CRd>, <label>
LDC2{L}{<c>}{<g>} <coproc>, <CRd>, [PC, #{+/-}<imm>]

Decode for this encoding

if P=="0"8 U=="0" 8 D == "0" & W == '0' then UNDEFINED;
ifP=="0"8 U=="0"8 D == "1" & W == '0" then SEE "MRRC, MRRC2";
if coproc IN '101x' then UNDEFINED;

if !HaveMainExt() then UNDEFINED;

index = (P == "1"); // Always TRUE in the T32 instruction set

add = (U=="1"); cp = UInt(coproc); imm32 = ZeroExtend(imm8:'00', 32);
if W=="1" || P=="0" then UNPREDICTABLE;

Notes for all encodings

Floating-point: Floating-point load/store on page C2-303.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved.

Non-Confidential

C2-391

C2 Instruction Specification
C2.4 Alphabetical list of instructions

Assembler symbols

L
<c>
<q>

<coproc>

<CRd>

<label>

+/-

<imm>

If specified, selects the D == 1 form of the encoding. If omitted, selects the D == 0 form.
See Standard assembler syntax fields on page C1-252.
See Standard assembler syntax fields on page C1-252.

Is the name of the coprocessor, encoded in the "coproc" field. The valid coprocessor names are p10,
pll, pl4, and p15.

Is the coprocessor register to be transferred, encoded in the "CRd" field.

The label of the literal data item that is to be loaded into <Rt>. The assembler calculates the required
value of the offset from the Align(PC, 4) value of the instruction to this label. Permitted values of
the offset are multiples of 4 in the range -1020 to 1020. If the offset is zero or positive, imm32 is equal
to the offset and add == TRUE (encoded as U == 1). If the offset is negative, imm32 is equal to minus
the offset and add == FALSE (encoded as U == 0).

Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- whenU = 0

+ whenU = 1

Is the immediate offset used for forming the address, a multiple of 4 in the range 0-1020, defaulting
to 0 and encoded in the "imm8&" field, as <imm>/4.

Operation for all encodings

if ConditionPassed() then
EncodingSpecificOperations();
ExecuteCPCheck(cp);
if !Coproc_Accepted(cp, ThisInstr()) then
GenerateCoprocessorException();

else

offset_addr = if add then (Align(PC,4) + imm32) else (Align(PC,4) - imm32);
address = if index then offset_addr else Align(PC,4);

repeat

Coproc_SendLoadedWord(MemA[address,4], cp, ThisInstr()); address = address + 4;
until Coproc_Doneloading(cp, ThisInstr());

Exceptions

UsageFault, BusFault, MemManage, and SecureFault.

C2-392

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.50 LDM, LDMIA, LDMFD

Load Multiple loads multiple registers from consecutive memory locations using an address from a base register.
The sequential memory locations start at this address, and the address just above the last of those locations can
optionally be written back to the base register.

The registers loaded can include the PC. If they do, the word loaded for the PC is treated as a branch address, a
function return value, or an exception return value. Bit[0] of the address in the PC complies with the ARM
architecture interworking rules for switching between the A32 and T32 instruction sets. However, ARMv8-M only
supports the T32 instruction set, so bit[0] must be 1. If bit[0] of the target address is 0, and the target address is not
FNC_RETURN or EXC_RETURN, the PE takes an INVSTATE UsageFault exception on the instruction at the
target address.

This instruction is used by the alias POP. The alias is always the preferred disassembly.

T
ARMvE-M

151413 12/1110 8|7 | 0]
[1 1 00[1] Rn | register_list |

T1 variant

LDM{IA}{<c>}{<g>} <Rn>{!}, <registers> // Preferred syntax
LDMFD{<c>}{<g>} <Rn>{!}, <registers> // Alternate syntax, Full Descending stack

Decode for this encoding

n = UInt(Rn); registers = '00000000':register_list; whback = (registers<n> == '0');
if BitCount(registers) < 1 then UNPREDICTABLE;

T2

ARMVS-M Main Extension only

[15141312(1110 9 8|7 6 5 43 011514 13 12| | | 0]
[1 1101 00[o0 1]o]w[1] RrRn [P[m]o0) register_list |
T2 variant
LDM{IA}{<c>}.W <Rn>{!}, <registers> // Preferred syntax, if <Rn>, '!' and <registers> can be represented
in T1
LDMFD{<c>}.W <Rn>{!}, <registers> // Alternate syntax, Full Descending stack, if <Rn>, '!' and

<registers> can be represented in T1
LDM{IA}{<c>}{<g>} <Rn>{!}, <registers> // Preferred syntax
LDMFD{<c>}{<g>} <Rn>{!}, <registers> // Alternate syntax, Full Descending stack

Decode for this encoding

if !HaveMainExt() then UNDEFINED;

n = UInt(Rn); registers = P:M:'0':register_list; wback = (W == "1");

if n == 15 || BitCount(registers) < 2 || (P == 'l' & M == '1") then UNPREDICTABLE;
if registers<15> == '1' && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

if whack && registers<n> == '1' then UNPREDICTABLE;

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-393
Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

T3

ARMvS-M

11514 1312[1110 9 8|7 \ 0|
[1 01 1]1]1 o]P] register_list |
T3 variant

LDM{<c>}{<g>} SP!, <registers>

Decode for this encoding

n = 13; wback = TRUE;

registers = P:'0000000':register_list;

if BitCount(registers) < 1 then UNPREDICTABLE;

if registers<15> == '1' & InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Assembler symbols

IA Is an optional suffix for the Increment After form.

<c> See Standard assembler syntax fields on page C1-252.

<q> See Standard assembler syntax fields on page C1-252.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

! For encoding T1: the address adjusted by the size of the data loaded is written back to the base
register. It is omitted if <Rn> is included in <registers>, otherwise it must be present.

For encoding T2: the address adjusted by the size of the data loaded is written back to the base
register. If specified, it is encoded in the "W" field as 1, otherwise this field defaults to 0.

<registers> Forencoding T1: is a list of one or more registers to be loaded, separated by commas and surrounded
by { and }. The registers in the list must be in the range R0-R7, encoded in the "register_list" field.

For encoding T2: is a list of one or more registers to be loaded, separated by commas and surrounded
by { and }. The registers in the list must be in the range R0-R12, encoded in the "register list" field,
and can optionally contain one of the LR or the PC. If the LR is in the list, the "M" field is set to 1,
otherwise it defaults to 0. If the PC is in the list, the "P" field is set to 1, otherwise it defaults to 0.
If the PC is in the list:

. The LR must not be in the list.

. The instruction must be either outside any IT block, or the last instruction in an IT block.

For encoding T3: is a list of one or more registers to be loaded, separated by commas and surrounded
by { and }. The registers in the list must be in the range R0-R7, encoded in the "register list" field,
and can optionally include the PC. If the PC is in the list, the "P" field is set to 1, otherwise this field
defaults to 0. If the PC is in the list, the instruction must be either outside any IT block, or the last
instruction in an IT block.

Operation for all encodings

if ConditionPassed() then
EncodingSpecificOperations();
address = R[n];
if n == 13 && wback then
(Timit, applylimit) = LookUpSPLim(LookUpSP());
else
applylimit = FALSE;

C2-394

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

C2 Instruction Specification
C2.4 Alphabetical list of instructions

// If memory operation is not performed as a result of a stack Timit violation,
// and the write-back of the SP itself does not raise a stack 1limit violation, it
// 1s UNKNOWN whether a SPLIM exception is raised.
// ARM recommends that any instruction which discards a memory access as
// a result of a stack Timit violation, and where the write-back of the SP itself
// does not raise a stack limit violation, generates an SPLIM exception.
for i =0 to 14
// If R[n] is the SP, memory operation only performed if 1imit not violated
if registers<i> == '1' & (!applylimit || (UInt(address) >= UInt(1imit))) then
if i !=n then
R[] = MemA[address,4];
else
newBaseVal = MemA[address,4];
address = address + 4;
if registers<15> == '1' & (lapplylimit || (UInt(address) >= UInt(1imit))) then
newPCVal = MemA[address,4];

// If the register Tist contains the register that holds the base address it
// must be updated after all memory reads have been performed. This prevents
// the base address being overwritten if one of the memory reads generates a

// fault.

if registers<n> == '1' then
whack = TRUE;

else

newBaseVal = R[n] + 4xBitCount(registers);
// If the PC is in the register list update that now, which may raise a fault
// Likewise if R[n] is the SP writing back may raise a fault due to SP Timit violation
if registers<15> == 'l' then
LoadWritePC(newPCVal, n, newBaseVal, wback, FALSE);
elsif wback then
RSPCheck[n] = newBaseVal;

Exceptions

BusFault, UsageFault, MemManage, and SecureFault.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-395
Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.51

LDMDB, LDMEA

Load Multiple Decrement Before (Load Multiple Empty Ascending) loads multiple registers from sequential
memory locations using an address from a base register. The sequential memory locations end just below this
address, and the address of the first of those locations can optionally be written back to the base register.

The registers loaded can include the PC. If they do, the word loaded for the PC is treated as a branch address or an
exception return value. Bit[0] complies with the ARM architecture interworking rules for switching between the
A32 and T32 instruction sets. However, ARMv8-M only supports the T32 instruction set, so bit[0] must be 1. If
bit[0] is O the PE takes an INVSTATE UsageFault exception on the instruction at the target address.

™

ARMVS-M Main Extension only

[15141312(1110 9 8|7 6 5 43 011514 13 12| | | 0]
[1 1101 00[10flo]w[1] RrRn [P[m]o0) register_list |

T1 variant

LDMDB{<c>}{<g>} <Rn>{!}, <registers> // Preferred syntax
LDMEA{<c>}{<g>} <Rn>{!}, <registers> // Alternate syntax, Empty Ascending stack

Decode for this encoding

if !HaveMainExt() then UNDEFINED;

n = UInt(Rn); registers = P:M:'0':register_Tist; whack = (W == "1");

if n == 15 || BitCount(registers) < 2 || (P == 'l' & M == '1") then UNPREDICTABLE;
if registers<15> == '1' && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

if whack && registers<n> == '1' then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-252.

<q> See Standard assembler syntax fields on page C1-252.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

! The address adjusted by the size of the data loaded is written back to the base register. If specified,
it is encoded in the "W" field as 1, otherwise this field defaults to 0.

<registers> Isalist of one or more registers to be loaded, separated by commas and surrounded by { and }. The
registers in the list must be in the range R0-R12, encoded in the "register list" field, and can
optionally contain one of the LR or the PC. If the LR is in the list, the "M" field is set to 1, otherwise
it defaults to 0. If the PC is in the list, the "P" field is set to 1, otherwise it defaults to 0. If the PC is
in the list:

. The LR must not be in the list.

. The instruction must be either outside any IT block, or the last instruction in an IT block.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = R[n] - 4xBitCount(registers);

// Determine if the stack pointer 1limit should be checked
if n == 13 && whback && registers<n> == '0' then

C2-396

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

C2 Instruction Specification
C2.4 Alphabetical list of instructions

(Timit, applylimit) = LookUpSPLim(LookUpSP());

doOperation = (lapplyTimit || (UInt(address) >= UInt(1limit)));
else
doOperation = TRUE;
for i =0 to 15
// Memory operation only performed if Timit not violated
if registers<i> == '1' && doOperation then
data = MemA[address,4];
address = address + 4;
if i == 15 then
newPCVal = data;
elsif i == n then
newBaseVal = data;
else
R[] = data;

// If the register list contains the register that holds the base address it
// must be updated after all memory reads have been performed. This prevents
// the base address being overwritten if one of the memory reads generates a

// fault.

if registers<n> == '1' then
wback = TRUE;

else

newBaseVal = R[n] - 4«BitCount(registers);
// If the PC is in the register list update that now, which may raise a fault
if registers<15> == '1' then

LoadWritePC(newPCVal, n, newBaseVal, wback, TRUE);
elsif wback then

RSPCheck[n] = newBaseVal;

Exceptions

BusFault, UsageFault, MemManage, and SecureFault.

ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-397
1D092816 Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.52

LDR (immediate)

Load Register (immediate) calculates an address from a base register value and an immediate offset, loads a word
from memory, and writes it to a register. It can use offset, post-indexed, or pre-indexed addressing.

The register loaded can be the PC. If it is, the word loaded for the PC is treated as a branch address or an exception
return value. Bit[0] complies with the ARM architecture interworking rules for switching between the A32 and T32
instruction sets. However, ARMv8-M only supports the T32 instruction set, so bit[0] must be 1. If bit[0] is O the PE
takes an INVSTATE UsageFault exception on the instruction at the target address.

This instruction is used by the alias POP. See Alias conditions on page C2-399 for details of when each alias is
preferred.

T
ARMVS-M

|15 14 13 12[11 10 | 65 |32 0]
[0 1 1]oJ1] imm5s | Rn | Rt |

T1 variant
LDR{<c>}{<g>} <Rt>, [<Rn> {, #{+}<imm>}]
Decode for this encoding

t = UInt(Rt); n = UInt(Rn); dimm32 = ZeroExtend(imm5:'00', 32);
index = TRUE; add = TRUE; wback = FALSE;

T2
ARMvS-M

1514131211110 8|7 \ 0|
[1 00 1[1] Rt | imm8 |

T2 variant

LDR{<c>}{<g>} <Rt>, [SP{, #{+}<imm>}]

Decode for this encoding

t = UInt(Rt); n = 13; 1imm32 = ZeroExtend(imm8:'00", 32);
index = TRUE; add = TRUE; wback = FALSE;

T3
ARMvS-M Main Extension only
[15141312/1110 9 8|7 6 5 4|3 0115 12|11 | | 0|

[1 1111 00fof1[1 of1] =111 | Rt | imm12 |
Rn

T3 variant

LDR{<c>}.W <Rt>, [<Rn> {, #{+}<imm>}] // <Rt>, <Rn>, <imm> can be represented in Tl or T2
LDR{<c>}{<g>} <Rt>, [<Rn> {, #{+}<imm>}]

C2-398

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

C2 Instruction Specification
C2.4 Alphabetical list of instructions

Decode for this encoding

if Rn == '1111' then SEE "LDR (literal)";

if !HaveMainExt() then UNDEFINED;

t = UInt(Rt); n = UInt(Rn); 1imm32 = ZeroExtend(imml2, 32); index = TRUE; add = TRUE;
wback = FALSE; if t == 15 && InITBlock() && !'LastInITBlock() then UNPREDICTABLE;

T4
ARMvS-M Main Extension only
[15141312(1110 9 8|7 6 5 43 0115 121110 9 8|7 | 0]

[1 111 1 0o0fofof[1 of1] =111 | Rt [1]P]u]w] imm8 |
Rn

Offset variant
Applies when P == 1 & U == 0 & W == 0.

LDR{<c>}{<g>} <Rt>, [<Rn> {, #-<imm>}]

Post-indexed variant
Applies when P == 0 & W == 1.

LDR{<c>}{<g>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed variant
Applies when P == 1 & W == 1.

LDR{<c>}{<g>} <Rt>, [<Rn>, #{+/-}<imm>]!

Decode for all variants of this encoding

if Rn == '1111' then SEE "LDR (literal)";

if P=="1"8 U =="1" & W == '0' then SEE LDRT;

if P == '0' & W == '0' then UNDEFINED;

if !HaveMainExt() then UNDEFINED;

t = UInt(Rt); n = UInt(Rn);

imm32 = ZeroExtend(imm8, 32); index = (P == '1"); add = (U == "1"); wbhack = (W=="1");
if (wback && n == t) || (t == 15 && InITBlock() && !'LastInITBlock()) then UNPREDICTABLE;

Alias conditions

Alias is preferred when
POP Rn == '1101' && U == '1' && imm8 == '00000100'
Assembler symbols
<c> See Standard assembler syntax fields on page C1-252.
<q> See Standard assembler syntax fields on page C1-252.
<Rt> For encoding T1 and T2: is the general-purpose register to be transferred, encoded in the "Rt" field.

For encoding T3: is the general-purpose register to be transferred, encoded in the "Rt" field. The SP
can be used. The PC can be used, provided the instruction is either outside an IT block or the last
instruction of an IT block. If the PC is used, the instruction branches to the address (data) loaded to
the PC.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-399
Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

<Rn>

+/-

<imm>

For encoding T4: is the general-purpose register to be transferred, encoded in the "Rt" field. The PC
can be used, provided the instruction is either outside an IT block or the last instruction of an IT
block. If the PC is used, the instruction branches to the address (data) loaded to the PC.

For encoding T1: is the general-purpose base register, encoded in the "Rn" field.

For encoding T3 and T4: is the general-purpose base register, encoded in the "Rn" field. For PC use
see LDR (literal).

Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ whenU = 1

Specifies the offset is added to the base register.

For the post-indexed or pre-indexed variant: is an 8-bit unsigned immediate byte offset, in the range
0 to 255, encoded in the "imm8" field.

For encoding T1: is the optional positive unsigned immediate byte offset, a multiple of 4 in the range
0 to 124, defaulting to 0 and encoded in the "imm5" field as <imm>/4.

For encoding T2: is the optional positive unsigned immediate byte offset, a multiple of 4, in the
range 0 to 1020, defaulting to 0 and encoded in the "imm8" field as <imm>/4.

For encoding T3: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095,
defaulting to 0 and encoded in the "imm12" field.

For encoding T4: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255,
defaulting to 0 and encoded in the "immg8" field.

Operation for all encodings

if ConditionPassed() then
EncodingSpecificOperations();
offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
address = if index then offset_addr else R[n];

// Determine if the stack pointer 1limit should be checked
if n == 13 & wback then
(Timit, applylimit) = LookUpSPLim(LookUpSP());

else

applylimit = FALSE;
// Memory operation only performed if limit not violated
if lapplylimit || (UInt(offset_addr) >= UInt(Timit)) then
data = MemU[address,4];

// If the stack pointer is being updated update a fault will be raised if
// the Timit is violated
if t == 15 then
if address<1:0> == '00' then
LoadWritePC(data, n, offset_addr, wback, TRUE);

else

UNPREDICTABLE;

else

if wback then RSPCheck[n] = offset_addr;

R[t] =

Exceptions

data;

BusFault, UsageFault, MemManage, and SecureFault.

C2-400

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

C2.4.53 LDR (literal)

C2 Instruction Specification
C2.4 Alphabetical list of instructions

Load Register (literal) calculates an address from the PC value and an immediate offset, loads a word from memory,

and writes

it to a register.

The register loaded can be the PC. If it is, the word loaded for the PC is treated as a branch address or an exception
return value. Bit[0] complies with the ARM architecture interworking rules for switching between the A32 and T32

instruction

sets. However, ARMv8-M only supports the T32 instruction set, so bit[0] must be 1. If bit[0] is O the PE

takes an INVSTATE UsageFault exception on the instruction at the target address.

T
ARMVS-M

1514 1312/1110 8|7 \ 0|

[0 10

0 1] Rt | imm8 |

T1 variant

LDR{<c>}{<g>} <Rt>, <label> // Normal form

Decode for this encoding

t = UInt(Rt); 1imm32 = ZeroExtend(imm8:'00', 32); add = TRUE;

T2
ARMvS-M

Main Extension only

[15141312/1110 9 8|7 6 5 4]3 2 1 0]15 12|11 \ 0|

[1 11

11 0 ofoful1 of1]1 1 1 1] Rt] imm12 |

T2 variant

LDR{<c>}.W <Rt>, <label> // Preferred syntax, and <Rt>, <label> can be represented in T1
LDR{<c>}{<g>} <Rt>, <label> // Preferred syntax
LDR{<c>}{<g>} <Rt>, [PC, #{+/-}<imm>] // Alternative syntax

Decode for this encoding

if !HaveMainExt() then UNDEFINED;
t = UInt(Rt); 1imm32 = ZeroExtend(imml2, 32); add = (U == '1');
if t == 15 & InITBlock() && !LastInITBTock() then UNPREDICTABLE;

Assembler symbols

<C>

<q>

<Rt>

See Standard assembler syntax fields on page C1-252.
See Standard assembler syntax fields on page C1-252.

For encoding T1: is the general-purpose register to be transferred, encoded in the "Rt" field.

For encoding T2: is the general-purpose register to be transferred, encoded in the "Rt" field. The SP
can be used. The PC can be used, provided the instruction is either outside an IT block or the last
instruction of an IT block. If the PC is used, the instruction branches to the address (data) loaded to
the PC.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-401
Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

<Tabel>

+/-

<imm>

For encoding T1: the label of the literal data item that is to be loaded into <Rt>. The assembler
calculates the required value of the offset from the A1ign(PC, 4) value of the instruction to this label.
Permitted values of the offset are Multiples of four in the range 0 to 1020.

For encoding T2: the label of the literal data item that is to be loaded into <Rt>. The assembler
calculates the required value of the offset from the ATign(PC, 4) value of the instruction to this label.
Permitted values of the offset are -4095 to 4095. If the offset is zero or positive, imm32 is equal to the
offset and add == TRUE, encoded as U == 1. If the offset is negative, imm32 is equal to minus the offset
and add == FALSE, encoded as U == 0.

Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:
- whenU = 0

+ whenU = 1

Is a 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded in the "imm12" field.

Operation for all encodings

if ConditionPassed() then
EncodingSpecificOperations();
base = Align(PC,4);
address = if add then (base + imm32) else (base - imm32);
data = MemU[address,4];
if t == 15 then
if address<1:0> == '00' then
LoadWritePC(data, @, Zeros(32), FALSE, FALSE);

else

UNPREDICTABLE;

else

R[t] =

Exceptions

data;

BusFault, UsageFault, MemManage, and SecureFault.

C2-402

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.54 LDR (register)

Load Register (register) calculates an address from a base register value and an offset register value, loads a word
from memory, and writes it to a register. The offset register value can be shifted left by 0, 1, 2, or 3 bits.

The register loaded can be the PC. If it is, the word loaded for the PC is treated as a branch address or an exception
return value. Bit[0] complies with the ARM architecture interworking rules for switching between the A32 and T32
instruction sets. However, ARMv8-M only supports the T32 instruction set, so bit[0] must be 1. If bit[0] is 0 the PE
takes an INVSTATE UsageFault exception on the instruction at the target address.

™

ARMVS-M

[15141312/1110 9 8| 6 5 |3 2 0]

[0 1 0 1]1]ofo] Rm | Rn | Rt |

T1 variant

LDR{<c>}{<g>} <Rt>, [<Rn>, {+}<Rm>]

Decode for this encoding

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, 0);

T2

ARMvS-M Main Extension only

[15141312(1110 9 8|7 6 5 43 0115 121110 9 8|7 6 5 4|3 0|

[1 1111 00fofof[1 of1] =111 | Rt Joo0o0o0o0oOJmm2 Rm |
Rn

T2 variant

LDR{<c>}.W <Rt>, [<Rn>, {+}<Rm>] // <Rt>, <Rn>, <Rm> can be represented in T1
LDR{<c>}{<g>} <Rt>, [<Rn>, {+}<Rm>{, LSL #<imm>}]

Decode for this encoding

if Rn == '1111' then SEE "LDR (literal)";

if !HaveMainExt() then UNDEFINED;

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);

index = TRUE; add = TRUE; wback = FALSE;

(shift_t, shift_n) = (SRType_LSL, UInt(imm2));

if m IN {13,15} then UNPREDICTABLE;

if t == 15 && InITBlock() && !LastInITBTock() then UNPREDICTABLE;

Assembler symbols

<C>

<q>

<Rt>

See Standard assembler syntax fields on page C1-252.
See Standard assembler syntax fields on page C1-252.

For encoding T1: is the general-purpose register to be transferred, encoded in the "Rt" field.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-403
Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

<Rn>

<Rm>

<imm>

For encoding T2: is the general-purpose register to be transferred, encoded in the "Rt" field. The SP
can be used. The PC can be used, provided the instruction is either outside an IT block or the last
instruction of an IT block. If the PC is used, the instruction branches to the address (data) loaded to
the PC.

Is the general-purpose base register, encoded in the "Rn" field.
Specifies the index register is added to the base register.
Is the general-purpose index register, encoded in the "Rm" field.

If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. <imm> is encoded
in imm2. If absent, no shift is specified and imm?2 is encoded as 0b@0.

Operation for all encodings

if ConditionPassed() then
EncodingSpecificOperations();
offset = Shift(R[m], shift_t, shift_n, APSR.C);
offset_addr = if add then (R[n] + offset) else (R[n] - offset);
address = if index then offset_addr else R[n];

// Determine if the stack pointer limit should be checked
if n == 13 && wback then
(Timit, applylimit) = LookUpSPLim(LookUpSP());

else

applylimit = FALSE;
// Memory operation only performed if Timit not violated
if lapplylimit || (UInt(offset_addr) >= UInt(Timit)) then
data = MemU[address,4];

// If the stack pointer is being updated update a fault will be raised if
// the Timit is violated
if t == 15 then
if address<1:0> == '00' then
LoadWritePC(data, n, offset_addr, whack, TRUE);

else

UNPREDICTABLE;

else

if wback then RSPCheck[n] = offset_addr;

R[t] =

Exceptions

data;

BusFault, UsageFault, MemManage, and SecureFault.

C2-404

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.455 LDRB (immediate)

Load Register Byte (immediate) calculates an address from a base register value and an immediate offset, loads a
byte from memory, zero-extends it to form a 32-bit word, and writes it to a register. It can use offset, post-indexed,

or pre-indexed addressing.

T
ARMvS-M

115 14 13 12/11 10 | 65 32 o0
[0 1 1[1]1] imms | Rn | Rt |

T1 variant
LDRB{<c>}{<g>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding

t = UInt(Rt); n = UInt(Rn); 1imm32 = ZeroExtend(imm5, 32);
index = TRUE; add = TRUE; wback = FALSE;

T2

ARMVS-M Main Extension only

[15141312(1110 9 8|7 6 5 43 0115 12]11 | | 0]
[1 1111 00fof1]o of1] =111 | 1=1111 | imm12 |
Rn Rt

T2 variant

LDRB{<c>}.W <Rt>, [<Rn> {, #{+}<imm>}] // <Rt>, <Rn>, <imm> can be represented in T1

LDRB{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding

if Rt == '1111' then SEE "PLD (immediate)”;

if Rn == '1111' then SEE "LDRB (literal)";

if !HaveMainExt() then UNDEFINED;

t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imml2, 32);

index = TRUE; add = TRUE; wback = FALSE;

if t == 13 then UNPREDICTABLE;

T3

ARMVS-M Main Extension only
[15141312/1110 9 8|7 6 5 4|3 0115 121110 9 817 | 0]
[1 1111 00fofofo of1] =111 | Rt [1][P]u]w] imm8 |

Rn

Offset variant
Applies when Rt != 1111 & P == 1 & U == 0 & W == 0.

LDRB{<c>}{<q>} <Rt>, [<Rn> {, #-<imm>}]

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved.
Non-Confidential

C2-405

C2 Instruction Specification
C2.4 Alphabetical list of instructions

Post-indexed variant
Applies when P == 0 & W == 1.

LDRB{<c>}{<g>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed variant
Applies when P == 1 & W == 1.

LDRB{<c>}{<g>} <Rt>, [<Rn>, #{+/-}<imm>]!

Decode for all variants of this encoding

if Rt == '1111"' && P == '1' & U == '0' && W == 'Q' then SEE "PLD (immediate)";
if Rn == '1111' then SEE "LDRB (literal)";

if P=="1"8 U=="1" & W == '0" then SEE LDRBT;

if P == "'0" & W == '0"' then UNDEFINED;

if !HaveMainExt() then UNDEFINED;

t = UInt(Rt); n = UInt(Rn); 1imm32 = ZeroExtend(imm8, 32);

index = (P == "1"); add = (U=="1"); wback = (W=="1");

if t == 13 || (wback & n == t) then UNPREDICTABLE;

if t =158 (P=="0" || U=="1" || W=="1") then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-252.

<q> See Standard assembler syntax fields on page C1-252.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> For encoding T1: is the general-purpose base register, encoded in the "Rn" field.

For encoding T2 and T3: is the general-purpose base register, encoded in the "Rn" field. For PC use
see LDRB (literal).

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:
- whenU = 0
+ whenU = 1

+ Specifies the offset is added to the base register.

<imm> For the post-indexed or pre-indexed variant: is an 8-bit unsigned immediate byte offset, in the range

0 to 255, encoded in the "imm8" field.

For encoding T1: is an optional 5-bit unsigned immediate byte offset, in the range 0 to 31, defaulting
to 0 and encoded in the "imm5" field.

For encoding T2: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095,
defaulting to 0 and encoded in the "imm12" field.

For encoding T3: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255,
defaulting to 0 and encoded in the "immg8" field.

Operation for all encodings

if ConditionPassed() then
EncodingSpecificOperations();
offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
address = if index then offset_addr else R[n];

// Determine if the stack pointer 1limit should be checked
if n == 13 && wback then
(Timit, applylimit) = LookUpSPLim(LookUpSP());

C2-406

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

C2 Instruction Specification
C2.4 Alphabetical list of instructions

else
applylimit = FALSE;
// Memory operation only performed if Timit not violated
if lapplylimit || (UInt(offset_addr) >= UInt(Timit)) then
R[t] = ZeroExtend(MemU[address,1], 32);

// If the stack pointer is being updated update a fault will be raised if

// the Timit is violated
if wback then RSPCheck[n] = offset_addr;

Exceptions

BusFault, UsageFault, MemManage, and SecureFault.

ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-407
1D092816 Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.56

LDRB (literal)

Load Register Byte (literal) calculates an address from the PC value and an immediate offset, loads a byte from
memory, zero-extends it to form a 32-bit word, and writes it to a register.
T
ARMvVS-M Main Extension only
[15141312/1110 9 8|7 6 5 4]3 2 1 0]15 12|11 \ \ 0|

[1 1111 00foJufo of1]1 1 1 1] =111 | imm12 |
Rt

T1 variant

LDRB{<c>}{<g>} <Rt>, <label> // Preferred syntax
LDRB{<c>}{<g>} <Rt>, [PC, #{+/-}<imm>] // Alternative syntax

Decode for this encoding

if Rt == '1111' then SEE “PLD (literal)”;

if !HaveMainExt() then UNDEFINED;

t = UInt(Rt); 1imm32 = ZeroExtend(imml2, 32); add = (U == '1");
if t == 13 then UNPREDICTABLE;

Assembler symbols
<c> See Standard assembler syntax fields on page C1-252.
<q> See Standard assembler syntax fields on page C1-252.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<label> The label of the literal data item that is to be loaded into <Rt>. The assembler calculates the required
value of the offset from the Align(PC, 4) value of the instruction to this label. Permitted values of
the offset are -4095 to 4095. If the offset is zero or positive, imm32 is equal to the offset and add ==
TRUE, encoded as U == 1. If the offset is negative, imm32 is equal to minus the offset and add == FALSE,
encoded as U ==0.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:
- whenU = 0

+ whenU = 1

<imm> Is a 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded in the "imm12" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
base = Align(PC,4);
address = if add then (base + imm32) else (base - imm32);
R[t] = ZeroExtend(MemU[address,1], 32);

Exceptions

BusFault, UsageFault, MemManage, and SecureFault.

C2-408

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.57 LDRB (register)

Load Register Byte (register) calculates an address from a base register value and an offset register value, loads a
byte from memory, zero-extends it to form a 32-bit word, and writes it to a register. The offset register value can be

shifted left by 0, 1, 2, or 3 bits.

T
ARMvS-M

15141312[11109 8| 6 5 [3 2 0]
[0 1 0 1]1[1]o] Rm | Rn | Rt |

T1 variant

LDRB{<c>}{<g>} <Rt>, [<Rn>, {+}<Rm>]
Decode for this encoding

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, 0);

T2

ARMVS-M Main Extension only

[15141312(1110 9 8|7 6 5 43 0115 121110 9 8|7 6 5 4|3 0|
[1 1111 0o0fofoflo of1] 1=1111 [1=1111 Jo o 0 0 0 ofimm2] Rm |
Rn Rt

T2 variant

LDRB{<c>}.W <Rt>, [<Rn>, {+}<Rm>] // <Rt>, <Rn>, <Rm> can be represented in T1
LDRB{<c>}{<g>} <Rt>, [<Rn>, {+}<Rm>{, LSL #<imm>}]

Decode for this encoding

if Rt == '1111' then SEE “PLD (register)”;

if Rn == '1111' then SEE "LDRB (literal)";

if !HaveMainExt() then UNDEFINED;

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; whback = FALSE;
(shift_t, shift_n) = (SRType_LSL, UInt(imm2));
if t == 13 || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-252.

<q> See Standard assembler syntax fields on page C1-252.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+ Specifies the index register is added to the base register.

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved.
Non-Confidential

C2-409

C2 Instruction Specification
C2.4 Alphabetical list of instructions

<imm> If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. <imm> is encoded

in imm?2. If absent, no shift is specified and imm?2 is encoded as 0b00.

Operation for all encodings

if ConditionPassed() then
EncodingSpecificOperations();
offset = Shift(R[m], shift_t, shift_n, APSR.(C);
offset_addr = if add then (R[n] + offset) else (R[n] - offset);
address = if index then offset_addr else R[n];
R[t] = ZeroExtend(MemU[address,1],32);

Exceptions

BusFault, UsageFault, MemManage, and SecureFault.

C2-410

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved.
Non-Confidential

ARM DDI 0553A.c
ID092816

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.58 LDRBT

Load Register Byte Unprivileged calculates an address from a base register value and an immediate offset, loads a
byte from memory, zero-extends it to form a 32-bit word, and writes it to a register.

When privileged software uses an LDRBT instruction, the memory access is restricted as if the software was
unprivileged.
T

ARMvS-M Main Extension only

15141312(1110 9 8/7 6 5 4|3 015 121110 9 8|7 \ 0]

[1 1111 00]ofJofoof1] =111 [Rt [11 1 0] imm8 |
Rn

T1 variant

LDRBT{<c>}{<g>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding

if Rn == '1111' then SEE "LDRB (literal)";

if !HaveMainExt() then UNDEFINED;

t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
register_form = FALSE; 1imm32 = ZeroExtend(imm8, 32);

if t IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-252.

<q> See Standard assembler syntax fields on page C1-252.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+ Specifies the offset is added to the base register.

<imm> Is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 and

encoded in the "imm38" field.

Operation
if ConditionPassed() then
EncodingSpecificOperations();
address = R[n] + imm32;
R[t] = ZeroExtend(MemU_unpriv[address,1],32);
Exceptions

UsageFault, BusFault, MemManage, and SecureFault.

ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-411
1D092816 Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.59 LDRD (immediate)
Load Register Dual (immediate) calculates an address from a base register value and an immediate offset, loads two
words from memory, and writes them to two registers. It can use offset, post-indexed, or pre-indexed addressing.
™
ARMvVS-M Main Extension only
[15141312/1110 9 8|7 6 5 4|3 0115 12|11 8|7 0|
[1 1101 0 ofP[u[1]w][1] =111 | R | R2 | |
Rn
Offset variant
Applies when P == 1 & W == 0.
LDRD{<c>}{<g>} <Rt>, <Rt2>, [<Rn> {, #{+/-}<imm>}]
Post-indexed variant
Applies when P == 0 & W == 1.
LDRD{<c>}{<g>} <Rt>, <Rt2>, [<Rn>], #{+/-}<imm>
Pre-indexed variant
Applies when P == 1 & W == 1.
LDRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>, #{+/-}<imm>]!
Decode for all variants of this encoding
if P == '0' & W == '0Q' then SEE "Related encodings";
if Rn == '1111' then SEE "LDRD (literal)";
if !HaveMainExt() then UNDEFINED;
t = UInt(Rt); t2 = UInt(Rt2); n = UInt(Rn); 1imm32 = ZeroExtend(imm8:'00', 32);
index = (P == '1"); add = (U=="1"); wback = (W=="1");
if wback & (n ==t [| n == t2) then UNPREDICTABLE;
if t IN {13,15} || t2 IN {13,15} || t == t2 then UNPREDICTABLE;
Notes for all encodings
Related encodings: Load/store (multiple, dual, exclusive, acquire-release), table branch on page C2-276.
Assembler symbols
<c> See Standard assembler syntax fields on page C1-252.
<q> See Standard assembler syntax fields on page C1-252.
<Rt> Is the first general-purpose register to be transferred, encoded in the "Rt" field.
<Rt2> Is the second general-purpose register to be transferred, encoded in the "Rt2" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field. For PC use see LDRD (literal).
+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:
- whenU = 0
+ whenU = 1
C2-412 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential

ID092816

C2 Instruction Specification
C2.4 Alphabetical list of instructions

<imm> For the offset variant: is the optional unsigned immediate byte offset, a multiple of 4, in the range 0

to 1020, defaulting to 0 and encoded in the "imm8" field as <imm>/4.

For the post-indexed and pre-indexed variant: is the unsigned immediate byte offset, a multiple of
4, in the range 0 to 1020, encoded in the "imm8" field as <imm>/4.

Operation

if ConditionPassed() then

EncodingSpecificOperations();
offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
address = if index then offset_addr else R[n];

// Determine if the stack pointer 1limit should be checked
if n == 13 & wback then
(Timit, applylimit) = LookUpSPLim(LookUpSP());
else
applylimit = FALSE;
// Memory operation only performed if Timit not violated
if lapplylimit || (UInt(offset_addr) >= UInt(Timit)) then
R[t] = MemA[address,4];
R[t2] = MemA[address+4,4];

// If the stack pointer is being updated update a fault will be raised if
// the Timit is violated
if wback then RSPCheck[n] = offset_addr;

Exceptions

BusFault, UsageFault, MemManage, and SecureFault.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-413
Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.60

LDRD (literal)

Load Register Dual (literal) calculates an address from the PC value and an immediate offset, loads two words from
memory, and writes them to two registers.

Note

For the M profile, the PC value must be word-aligned, otherwise the behavior of the instruction is UNPREDICTABLE.

T1

ARMvVS-M Main Extension only

11514 1312(1110 9 8|7 6 5 43 2 1 015 12]11 8|7

0]

[1 1101 0o0f[1]u[1]of1]1 11 1] RrR | R2 | imm8 |

P w

T1 variant

LDRD{<c>}{<g>} <Rt>, <Rt2>, <label> // Normal form
LDRD{<c>}{<g>} <Rt>, <Rt2>, [PC, #{+/-}<imm>] // Alternative form

Decode for this encoding

if P=="0" & W=="0' then SEE "Related encodings";
if P=="1"8 W=="1"8& U == "0" then SEE SG;

if !HaveMainExt() then UNDEFINED;

t = UInt(Rt); t2 = UInt(Rt2);

imm32 = ZeroExtend(imm8:'00', 32); add = (U == "1");

if t IN {13,15} || t2 IN {13,15} || t == t2 then UNPREDICTABLE;
if W == '1' then UNPREDICTABLE;

Notes for all encodings

Related encodings: Load/store (multiple, dual, exclusive, acquire-release), table branch on page C2-276.

Assembler symbols

<c>
<q>
<Rt>
<Rt2>

<label>

+/-

<imm>

See Standard assembler syntax fields on page C1-252.

See Standard assembler syntax fields on page C1-252.

Is the first general-purpose register to be transferred, encoded in the "Rt" field.

Is the second general-purpose register to be transferred, encoded in the "Rt2" field.

The label of the literal data item that is to be loaded into <Rt>. The assembler calculates the required
value of the offset from the Align(PC, 4) value of the instruction to this label. Permitted values of
the offset are multiples of 4 in the range -1020 to 1020. If the offset is zero or positive, imm32 is equal
to the offset and add == TRUE, encoded as U == 1. If the offset is negative, imm32 is equal to minus
the offset and add == FALSE, encoded as U == 0.

Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:

- when U = 0

+ whenU = 1

Is the optional 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 and
encoded in the "imm8" field.

C2-414

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

C2 Instruction Specification
C2.4 Alphabetical list of instructions

Operation

if ConditionPassed() then
EncodingSpecificOperations();
if PC<1:0> !'= '00' then UNPREDICTABLE;
address = if add then (PC + imm32) else (PC - imm32);
R[t] = MemA[address,4];
R[t2] = MemA[address+4,4];

Exceptions

BusFault, UsageFault, MemManage, and SecureFault.

ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-415
1D092816 Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.61 LDREX
Load Register Exclusive calculates an address from a base register value and an immediate offset, loads a word from
memory, writes it to a register, and:
. If the address has the Shareable memory attribute, marks the physical address as exclusive access for the
executing PE in a global monitor.
. Causes the executing PE to indicate an active exclusive access in the local monitor.
™
ARMvS-M
[15141312(1110 9 8|7 6 5 43 0115 121110 9 8|7 | 0]
[1t1101000010[1] Rn | R [nhmma) imm8 |
T1 variant
LDREX{<c>}{<g>} <Rt>, [<Rn> {, #<imm>}]
Decode for this encoding
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
if t IN {13,15} || n == 15 then UNPREDICTABLE;
Assembler symbols
<c> See Standard assembler syntax fields on page C1-252.
<q> See Standard assembler syntax fields on page C1-252.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
<imm> The immediate offset added to the value of <Rn> to calculate the address. <imm> can be omitted,
meaning an offset of 0. Values are multiples of 4 in the range 0-1020.
Operation
if ConditionPassed() then
EncodingSpecificOperations();
address = R[n] + imm32;
SetExclusiveMonitors(address,4);
R[t] = MemA[address,4];
Exceptions
MemManage, SecureFault, BusFault, and UsageFault.
C2-416 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential

ID092816

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.62 LDREXB

Load Register Exclusive Byte derives an address from a base register value, loads a byte from memory, zero-extends
it to form a 32-bit word, writes it to a register, and:

. If the address has the Shareable memory attribute, marks the physical address as exclusive access for the
executing PE in a global monitor.

. Causes the executing PE to indicate an active exclusive access in the local monitor.
T
ARMVS-M
[15141312(1110 9 8|7 6 5 43 0115 121110 9 8|7 6 5 4|3 2 1 0
[1t1101000110[1] Rn [R [n@m@mmlio 1]o ofnmma)
T1 variant

LDREXB{<c>}{<g>} <Rt>, [<Rn>]

Decode for this encoding

t = UInt(Rt); n = UInt(Rn);
if t IN {13,15} || n == 15 then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-252.

<q> See Standard assembler syntax fields on page C1-252.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = R[n];
SetExclusiveMonitors(address,1);
R[t] = ZeroExtend(MemA[address,1], 32);

Exceptions

MemManage, SecureFault, BusFault, and UsageFault.

ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-417
1D092816 Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.63 LDREXH

Load Register Exclusive Halfword derives an address from a base register value, loads a halfword from memory,
zero-extends it to form a 32-bit word, writes it to a register, and:

. If the address has the Shareable memory attribute, marks the physical address as exclusive access for the
executing PE in a global monitor.

. Causes the executing PE to indicate an active exclusive access in the local monitor.
T
ARMVS-M
[15141312(1110 9 8|7 6 5 43 0115 121110 9 8|7 6 5 4|3 2 1 0
[1t1101000110[1] Rn [R [n@m@mmlio 1]o 1fnmma)
T1 variant

LDREXH{<c>}{<g>} <Rt>, [<Rn>]

Decode for this encoding

t = UInt(Rt); n = UInt(Rn);
if t IN {13,15} || n == 15 then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-252.

<q> See Standard assembler syntax fields on page C1-252.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = R[n];
SetExclusiveMonitors(address,2);
R[t] = ZeroExtend(MemA[address,2], 32);

Exceptions

MemManage, SecureFault, BusFault, and UsageFault.

C2-418 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.64 LDRH (immediate)

Load Register Halfword (immediate) calculates an address from a base register value and an immediate offset, loads

a halfword from memory, zero-extends it to form a 32-bit word, and writes it to a register. It can use offset,

post-indexed, or pre-indexed addressing.

T
ARMvS-M

11514 13 12/11 10 | 65 |32 o0
[1 00o0f1] imms | Rn | Rt |

T1 variant

LDRH{<c>}{<g>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding

t = UInt(Rt); n = UInt(Rn); dimm32 = ZeroExtend(imm5:'0', 32);
index = TRUE; add = TRUE; wback = FALSE;

T2

ARMVS-M Main Extension only

[15141312/1110 9 8|7 6 5 43 015 12|11 \ \

[1 1111 00fof1]o 1[1] =111 | 1=1111 | imm12

Rn Rt

T2 variant

LDRH{<c>}.W <Rt>, [<Rn> {, #{+}<imm>}] // <Rt>, <Rn>, <imm> can be represented in T1
LDRH{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding

if Rt == '1111' then SEE "Related encodings";

if Rn == '1111' then SEE "LDRH (literal)";

if !HaveMainExt() then UNDEFINED;

t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imml2, 32);
index = TRUE; add = TRUE; wback = FALSE;

if t == 13 then UNPREDICTABLE;

T3

ARMVS-M Main Extension only

[15141312/1110 9 8|7 6 5 43 015 12/1110 9 817 \

0|

[1 1111 00fofofo 1[1] =111 | Rt [1]P]u]w] imma

Rn

Offset variant
Applies when Rt != 1111 & P == 1 & U == 0 & W == 0.

LDRH{<c>}{<q>} <Rt>, [<Rn> {, #-<imm>}]

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved.
Non-Confidential

C2-419

C2 Instruction Specification
C2.4 Alphabetical list of instructions

Post-indexed variant
Applies when P == 0 & W == 1.

LDRH{<c>}{<g>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed variant
Applies when P == 1 & W == 1.

LDRH{<c>}{<g>} <Rt>, [<Rn>, #{+/-}<imm>]!

Decode for all variants of this encoding

if Rn == '1111' then SEE "LDRH (literal)";

if Rt == '1111' @& P == '1' && U == '0' & W == 'Q' then SEE “Related encodings”;
if P=="1"8 U=="1" & W == '0" then SEE LDRHT;

if P == "'0" & W == '0"' then UNDEFINED;

if !HaveMainExt() then UNDEFINED;

t = UInt(Rt); n = UInt(Rn); 1imm32 = ZeroExtend(imm8, 32);

index = (P == "1"); add = (U=="1"); wback = (W=="1");

if t==13 1] (t==158& W=="1") || (wback & n == t) then UNPREDICTABLE;

Notes for all encodings

Related encodings: For encoding T2, see Load/store (positive immediate) on page C2-294. For encoding T3, see
Load/store (negative immediate) on page C2-292.

Assembler symbols

<c> See Standard assembler syntax fields on page C1-252.

<q> See Standard assembler syntax fields on page C1-252.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> For encoding T1: is the general-purpose base register, encoded in the "Rn" field.
For encoding T2 and T3: is the general-purpose base register, encoded in the "Rn" field. For PC use
see LDRH (literal).

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:
- whenU = 0
+ whenU = 1

+ Specifies the offset is added to the base register.

<imm> For the post-indexed or pre-indexed variant: is an 8-bit unsigned immediate byte offset, in the range

0 to 255, encoded in the "imm8" field.

For encoding T1: is the optional positive unsigned immediate byte offset, a multiple of 2 in the range
0 to 62, defaulting to 0 and encoded in the "imm5" field as <imm>/2.

For encoding T2: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095,
defaulting to 0 and encoded in the "imm12" field.

For encoding T3: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255,
defaulting to 0 and encoded in the "imm§8" field.

Operation for all encodings
if ConditionPassed() then

EncodingSpecificOperations();
offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);

C2-420 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

C2 Instruction Specification
C2.4 Alphabetical list of instructions

address = if index then offset_addr else R[n];

// Determine if the stack pointer 1limit should be checked
if n == 13 && wback then
(Timit, applylimit) = LookUpSPLim(LookUpSP());
else
applylimit = FALSE;
// Memory operation only performed if Timit not violated
if lapplylimit || (UInt(offset_addr) >= UInt(Timit)) then
R[t] = ZeroExtend(MemU[address,2], 32);

// If the stack pointer is being updated update a fault will be raised if

// the Timit is violated
if wback then RSPCheck[n] = offset_addr;

Exceptions

BusFault, UsageFault, MemManage, and SecureFault.

ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-421
1D092816 Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.65

LDRH (literal)

Load Register Halfword (literal) calculates an address from the PC value and an immediate offset, loads a halfword
from memory, zero-extends it to form a 32-bit word, and writes it to a register.
T
ARMvVS-M Main Extension only
[15141312/1110 9 8|7 6 5 4]3 2 1 0]15 12|11 \ \ 0|

[1 1111 00foJufo 1[1]1 1 1 1] =111 | imm12 |
Rt

T1 variant

LDRH{<c>}{<g>} <Rt>, <label> // Preferred syntax
LDRH{<c>}{<g>} <Rt>, [PC, #{+/-}<imm>] // Alternative syntax

Decode for this encoding

if Rt == '1111' then SEE "PLD (literal)";

if !HaveMainExt() then UNDEFINED;

t = UInt(Rt); 1imm32 = ZeroExtend(imml2, 32); add = (U == '1");
if t == 13 then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-252.

<q> See Standard assembler syntax fields on page C1-252.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<label> The label of the literal data item that is to be loaded into <Rt>. The assembler calculates the required
value of the offset from the Align(PC, 4) value of the instruction to this label. Permitted values of
the offset are -4095 to 4095. If the offset is zero or positive, imm32 is equal to the offset and add ==
TRUE, encoded as U == 1. If the offset is negative, imm32 is equal to minus the offset and add == FALSE,
encoded as U ==0.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:
- whenU = 0

+ whenU = 1

<imm> Is a 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded in the "imm12" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
base = Align(PC,4);
address = if add then (base + imm32) else (base - imm32);
data = MemU[address,2];
R[t] = ZeroExtend(data, 32);

Exceptions

BusFault, UsageFault, MemManage, and SecureFault.

C2-422

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

C2.4.66 LDRH (register)

C2 Instruction Specification
C2.4 Alphabetical list of instructions

Load Register Halfword (register) calculates an address from a base register value and an offset register value, loads
a halfword from memory, zero-extends it to form a 32-bit word, and writes it to a register. The offset register value

can be shifted left by 0, 1, 2, or 3 bits.

T
ARMvS-M

[15141312/1110 9 8| 6 5 [3 2

[0 1 0 1]1]of[1] Rm | Rn | Rt

T1 variant

LDRH{<c>}{<g>} <Rt>, [<Rn>, {+}<Rm>]

Decode for this encoding

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, 0);

T2

ARMVS-M Main Extension only

[15141312(1110 9 8|7 6 5 43

121110 9 8|7 6 5 4|3 0|

[1 1111 0o0fofofo 1][1] 1=1111

[00000Ofimm2] Rm |

Rn

T2 variant

LDRH{<c>}.W <Rt>, [<Rn>, {+}<Rm>] // <Rt>, <Rn>, <Rm> can be represented in T1

LDRH{<c>}{<g>} <Rt>, [<Rn>, {+}<Rm>{, LSL #<imm>}]

Decode for this encoding

if Rn == '1111' then SEE "LDRH (literal)";

if Rt == '1111' then SEE "Related encodings";
if !HaveMainExt() then UNDEFINED;

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; whback = FALSE;
(shift_t, shift_n) = (SRType_LSL, UInt(imm2));
if t == 13 || m IN {13,15} then UNPREDICTABLE;

Notes for all encodings

Related encodings: Load/store (register offset) on page C2-290.

Assembler symbols

<c> See Standard assembler syntax fields on page C1-252.
<q> See Standard assembler syntax fields on page C1-252.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-423

1D092816

Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

+ Specifies the index register is added to the base register.
<Rm> Is the general-purpose index register, encoded in the "Rm" field.
<imm> If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. <imm> is encoded

in imm2. If absent, no shift is specified and imm?2 is encoded as 0b@0.

Operation for all encodings

if ConditionPassed() then
EncodingSpecificOperations();
offset = Shift(R[m], shift_t, shift_n, APSR.C);
offset_addr = if add then (R[n] + offset) else (R[n] - offset);
address = if index then offset_addr else R[n];
data = MemU[address,2];
if wback then R[n] = offset_addr;
R[t] = ZeroExtend(data, 32);

Exceptions

BusFault, UsageFault, MemManage, and SecureFault.

C2-424 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.67 LDRHT

Load Register Halfword Unprivileged calculates an address from a base register value and an immediate offset,
loads a halfword from memory, zero-extends it to form a 32-bit word, and writes it to a register.

When privileged software uses an LDRHT instruction, the memory access is restricted as if the software was
unprivileged.

T1

ARMvS-M Main Extension only

15141312(1110 9 8/7 6 5 4|3 015 121110 9 8|7 \ 0]

[1 1111 00]ofJofo 1]1] =111 [Rt |11 1 0] imm8 |
Rn

T1 variant

LDRHT{<c>}{<g>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding

if Rn == '1111' then SEE "LDRH (literal)";

if !HaveMainExt() then UNDEFINED;

t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
register_form = FALSE; 1imm32 = ZeroExtend(imm8, 32);

if t IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-252.

<q> See Standard assembler syntax fields on page C1-252.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+ Specifies the offset is added to the base register.

<imm> Is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 and

encoded in the "imm38" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = R[n] + imm32;
data = MemU_unpriv[address,2];
R[t] = ZeroExtend(data, 32);

Exceptions

UsageFault, BusFault, MemManage, and SecureFault.

ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-425
1D092816 Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.68

LDRSB (immediate)

Load Register Signed Byte (immediate) calculates an address from a base register value and an immediate offset,
loads a byte from memory, sign-extends it to form a 32-bit word, and writes it to a register. It can use offset,

post-indexed, or pre-indexed addressing.

T
ARMvVS-M Main Extension only
[15141312/1110 9 8|7 6 5 43 015 12|11 \ 0|

[1 1111 00[1]1]o of1] =111 | =111 | imm12 |
Rn Rt

T1 variant

LDRSB{<c>}{<g>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding

if Rt == '1111' then SEE “PLI (immediate, literal)”;

if Rn == '1111' then SEE "LDRSB (Tliteral)";

if !HaveMainExt() then UNDEFINED;

t = UInt(Rt); n = UInt(Rn); dimm32 = ZeroExtend(imml2, 32);
index = TRUE; add = TRUE; wback = FALSE;

if t == 13 then UNPREDICTABLE;

T2
ARMvVS-M Main Extension only
[15141312/1110 9 8|7 6 5 4|3 0115 12]1110 9 817 | 0|

[1 1111 00[1]ofo of1] =111 | Rt [1[PJulw] imm8 |
Rn

Offset variant
Applies when P == 1 && U == 0 & W == 0.

LDRSB{<c>}{<g>} <Rt>, [<Rn> {, #-<imm>}]

Post-indexed variant
Applies when P == 0 & W == 1.

LDRSB{<c>}{<g>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed variant
Applies when P == 1 & W == 1.

LDRSB{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

Decode for all variants of this encoding

if Rt == '1111" @& P == '"1' & U == '0' & W == 'Q' then SEE “PLI (immediate, 1iteral)”;
if Rn == '1111' then SEE "LDRSB (literal)";

if P=="1"8 U =="1" & W == '0" then SEE LDRSBT;

if P == '0' & W == '0' then UNDEFINED;

if !HaveMainExt() then UNDEFINED;

C2-426

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential

ID092816

C2 Instruction Specification
C2.4 Alphabetical list of instructions

t = UInt(Rt); n = UInt(Rn); dimm32 = ZeroExtend(imm8, 32);
index = (P == '1"); add = (U=="1"); wback = (W=="1");
if t =13 || (t ==15& W =="1") || (wback & n == t) then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-252.
<q> See Standard assembler syntax fields on page C1-252.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field. For PC use see LDRSB (literal).
+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:
- whenU = 0
+ whenU =1
+ Specifies the offset is added to the base register.
<imm> For the post-indexed or pre-indexed variant: is an 8-bit unsigned immediate byte offset, in the range

0 to 255, encoded in the "imm8" field.

For encoding T1: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095,
defaulting to 0 and encoded in the "imm12" field.

For encoding T2: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255,
defaulting to 0 and encoded in the "imm38" field.

Operation for all encodings

if ConditionPassed() then
EncodingSpecificOperations();
offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
address = if index then offset_addr else R[n];

// Determine if the stack pointer 1limit should be checked
if n == 13 && wback then
(Timit, applylimit) = LookUpSPLim(LookUpSP());
else
applylimit = FALSE;
// Memory operation only performed if Timit not violated
if lapplylimit || (UInt(offset_addr) >= UInt(Timit)) then
R[t] = SignExtend(MemU[address,1], 32);

// If the stack pointer is being updated update a fault will be raised if

// the Timit is violated
if wback then RSPCheck[n] = offset_addr;

Exceptions

BusFault, UsageFault, MemManage, and SecureFault.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-427
Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.69

LDRSB (literal)

Load Register Signed Byte (literal) calculates an address from the PC value and an immediate offset, loads a byte
from memory, sign-extends it to form a 32-bit word, and writes it to a register.
T
ARMvVS-M Main Extension only
11514 1312(1110 9 8|7 6 5 4[3 2 1 0]15 12|11 \ \ 0|

[1 1111 00[1]ufo of1]1 1 1 1] =111 | imm12 |
Rt

T1 variant

LDRSB{<c>}{<g>} <Rt>, <label> // Preferred syntax
LDRSB{<c>}{<g>} <Rt>, [PC, #{+/-}<imm>] // Alternative syntax

Decode for this encoding

if Rt == '1111' then SEE “PLI (immediate, Titeral)”;

if !HaveMainExt() then UNDEFINED;

t = UInt(Rt); 1imm32 = ZeroExtend(imml2, 32); add = (U == '1");
if t == 13 then UNPREDICTABLE;

Assembler symbols
<c> See Standard assembler syntax fields on page C1-252.
<q> See Standard assembler syntax fields on page C1-252.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<label> The label of the literal data item that is to be loaded into <Rt>. The assembler calculates the required
value of the offset from the Align(PC, 4) value of the instruction to this label. Permitted values of
the offset are -4095 to 4095. If the offset is zero or positive, imm32 is equal to the offset and add ==
TRUE, encoded as U == 1. If the offset is negative, imm32 is equal to minus the offset and add == FALSE,
encoded as U ==0.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:
- whenU = 0

+ whenU = 1

<imm> Is a 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded in the "imm12" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
base = Align(PC,4);
address = if add then (base + imm32) else (base - imm32);
R[t] = SignExtend(MemU[address,1], 32);

Exceptions

BusFault, UsageFault, MemManage, and SecureFault.

C2-428

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

C2.470 LDRSB (register)

C2 Instruction Specification

C2.4 Alphabetical list of instructions

Load Register Signed Byte (register) calculates an address from a base register value and an offset register value,
loads a byte from memory, sign-extends it to form a 32-bit word, and writes it to a register. The offset register value
can be shifted left by 0, 1, 2, or 3 bits.

T
ARMvS-M

1514 1312/1110 9 8|

65 |32 o0

[0 1 0 1Jo[1][1] Rm | Rn | Rt |

T1 variant

LDRSB{<c>}{<g>} <Rt>, [<Rn>, {+}<Rm>]

Decode for this encoding

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);

index = TRUE; add = TRUE; wback = FALSE;

(shift_t, shift_n) = (SRType_LSL, 0);

T2

ARMVS-M Main Extension only
[15141312(1110 9 8|7 6 5 43 0115 121110 9 8|7 6 5 4|3 0|
[1 1111 00[1][ofo of1] =111 [1=1111 Jo o 0o 0 0 ofimm2] Rm |

Rn Rt

T2 variant

LDRSB{<c>}.W <Rt>, [<Rn>, {+}<Rm>] // <Rt>, <Rn>, <Rm> can be represented in T1

LDRSB{<c>}{<g>} <Rt>, [<Rn>,

Decode for this encoding

{+}<Rm>{, LSL #<imm>}]

if Rt == '1111' then SEE “PLI (register)”;
if Rn == '1111' then SEE "LDRSB (literal)";
if !HaveMainExt() then UNDEFINED;

t = UInt(Rt); n = UInt(Rn);
index = TRUE; add = TRUE;

m = UInt(Rm);
wback = FALSE;

(shift_t, shift_n) = (SRType_LSL, UInt(imm2));
if t == 13 || m IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-252.

<q> See Standard assembler syntax fields on page C1-252.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+ Specifies the index register is added to the base register.

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved.

Non-Confidential

C2-429

C2 Instruction Specification
C2.4 Alphabetical list of instructions

<imm> If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. <imm> is encoded

in imm?2. If absent, no shift is specified and imm?2 is encoded as 0b00.

Operation for all encodings

if ConditionPassed() then
EncodingSpecificOperations();
offset = Shift(R[m], shift_t, shift_n, APSR.(C);
offset_addr = if add then (R[n] + offset) else (R[n] - offset);
address = if index then offset_addr else R[n];
R[t] = SignExtend(MemU[address,1], 32);

Exceptions

BusFault, UsageFault, MemManage, and SecureFault.

C2-430

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved.
Non-Confidential

ARM DDI 0553A.c
ID092816

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C24.7 LDRSBT

Load Register Signed Byte Unprivileged calculates an address from a base register value and an immediate offset,
loads a byte from memory, sign-extends it to form a 32-bit word, and writes it to a register.

When privileged software uses an LDRSBT instruction, the memory access is restricted as if the software was
unprivileged.
T

ARMvS-M Main Extension only

15141312(1110 9 8/7 6 5 4|3 015 121110 9 8|7 \ 0]

[1 1111 00[1]ofo of1] =111 [Rt [11 1 0] imm8 |
Rn

T1 variant

LDRSBT{<c>}{<g>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding

if Rn == '1111' then SEE "LDRSB (literal)";

if !HaveMainExt() then UNDEFINED;

t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
register_form = FALSE; 1imm32 = ZeroExtend(imm8, 32);

if t IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-252.

<q> See Standard assembler syntax fields on page C1-252.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+ Specifies the offset is added to the base register.

<imm> Is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 and

encoded in the "imm38" field.

Operation
if ConditionPassed() then
EncodingSpecificOperations();
address = R[n] + imm32;
R[t] = SignExtend(MemU_unpriv[address,1], 32);
Exceptions

UsageFault, BusFault, MemManage, and SecureFault.

ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-431
1D092816 Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.72

LDRSH (immediate)

Load Register Signed Halfword (immediate) calculates an address from a base register value and an immediate
offset, loads a halfword from memory, sign-extends it to form a 32-bit word, and writes it to a register. It can use

offset, post-indexed, or pre-indexed addressing.

T
ARMvVS-M Main Extension only
[15141312/1110 9 8|7 6 5 43 015 12|11 \ 0|

[1 1111 00[1]1]o 1]1] =111 | =111] imm12 |
Rn Rt

T1 variant

LDRSH{<c>}{<g>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding

if Rn == '1111' then SEE "LDRSH (literal)";

if Rt == '1111' then SEE "Related encodings";

if !HaveMainExt() then UNDEFINED;

t = UInt(Rt); n = UInt(Rn); dimm32 = ZeroExtend(imml2, 32);
index = TRUE; add = TRUE; wback = FALSE;

if t == 13 then UNPREDICTABLE;

T2
ARMvVS-M Main Extension only
[15141312/1110 9 8|7 6 5 4|3 0115 12]1110 9 817 | 0|

[1 1111 00[1]ofo 1[1] =111 | Rt [1[PJulw] imm8 |
Rn

Offset variant
Applies when Rt != 1111 & P == 1 && U == 0 & W == 0.

LDRSH{<c>}{<g>} <Rt>, [<Rn> {, #-<imm>}]

Post-indexed variant
Applies when P == 0 & W == 1.

LDRSH{<c>}{<g>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed variant
Applies when P == 1 & W == 1.

LDRSH{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

Decode for all variants of this encoding

if Rn == '1111' then SEE "LDRSH (Titeral)";

if Rt == '1111"' @& P == '1' & U == '0' & W == '0' then SEE "Related encodings";
if P=="1"8 U=="1" & W == '0" then SEE LDRSHT;

if P == '0' & W == '0' then UNDEFINED;

if !HaveMainExt() then UNDEFINED;

C2-432

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential

ID092816

C2 Instruction Specification
C2.4 Alphabetical list of instructions

t = UInt(Rt); n = UInt(Rn); dimm32 = ZeroExtend(imm8, 32);
index = (P == '1"); add = (U=="1"); wback = (W=="1");
if t =13 || (t ==15& W =="1") || (wback & n == t) then UNPREDICTABLE;

Notes for all encodings

Related encodings: For encoding T1, see Load/store (positive immediate) on page C2-294. For encoding T2, see
Load/store (negative immediate) on page C2-292.

Assembler symbols

<Cc> See Standard assembler syntax fields on page C1-252.
<q> See Standard assembler syntax fields on page C1-252.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field. For PC use see LDRSH (literal).
+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:
- whenU = 0
+ whenU = 1
+ Specifies the offset is added to the base register.
<imm> For the post-indexed or pre-indexed variant: is an 8-bit unsigned immediate byte offset, in the range

0 to 255, encoded in the "imm8" field.

For encoding T1: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095,
defaulting to 0 and encoded in the "imm12" field.

For encoding T2: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255,
defaulting to 0 and encoded in the "immg8" field.

Operation for all encodings

if ConditionPassed() then
EncodingSpecificOperations();
offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
address = if index then offset_addr else R[n];
// Determine if the stack pointer 1limit should be checked
if n == 13 && wback then
(Timit, applylimit) = LookUpSPLim(LookUpSP());
else
applylimit = FALSE;
// Memory operation only performed if Timit not violated
if lapplylimit || (UInt(offset_addr) >= UInt(Timit)) then
R[t] = SignExtend(MemU[address,2], 32);

// If the stack pointer is being updated update a fault will be raised if

// the Timit is violated
if wback then RSPCheck[n] = offset_addr;

Exceptions

BusFault, UsageFault, MemManage, and SecureFault.

ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-433
1D092816 Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.73 LDRSH (literal)
Load Register Signed Halfword (literal) calculates an address from the PC value and an immediate offset, loads a
halfword from memory, sign-extends it to form a 32-bit word, and writes it to a register.
™
ARMvVS-M Main Extension only
[15141312/1110 9 8|7 6 5 4]3 2 1 0]15 12|11 \ \ 0|
[1 1111 00f[1]ufo 1[1]1 1 1 1] =111 | imm12 |
Rt
T1 variant
LDRSH{<c>}{<q>} <Rt>, <label> // Preferred syntax
LDRSH{<c>}{<g>} <Rt>, [PC, #{+/-}<imm>] // Alternative syntax
Decode for this encoding
if Rt == '1111' then SEE "Related encodings";
if !HaveMainExt() then UNDEFINED;
t = UInt(Rt); 1imm32 = ZeroExtend(imml2, 32); add = (U == '1");
if t == 13 then UNPREDICTABLE;
Notes for all encodings
Related encodings: Load literal on page C2-294
Assembler symbols
<c> See Standard assembler syntax fields on page C1-252.
<q> See Standard assembler syntax fields on page C1-252.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<label> The label of the literal data item that is to be loaded into <Rt>. The assembler calculates the required
value of the offset from the Align(PC, 4) value of the instruction to this label. Permitted values of
the offset are -4095 to 4095. If the offset is zero or positive, imm32 is equal to the offset and add ==
TRUE, encoded as U == 1. If the offset is negative, imm32 is equal to minus the offset and add == FALSE,
encoded as U==0.
+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in the "U" field. It can have the following values:
- whenU = 0
+ whenU =1
<imm> Is a 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded in the "imm12" field.
Operation
if ConditionPassed() then
EncodingSpecificOperations();
base = Align(PC,4);
address = if add then (base + imm32) else (base - imm32);
data = MemU[address,2];
R[t] = SignExtend(data, 32);
C2-434 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

C2 Instruction Specification
C2.4 Alphabetical list of instructions

Exceptions

BusFault, UsageFault, MemManage, and SecureFault.

ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-435
1D092816 Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C24.74

LDRSH (register)

Load Register Signed Halfword (register) calculates an address from a base register value and an offset register
value, loads a halfword from memory, sign-extends it to form a 32-bit word, and writes it to a register. The offset

register value can be shifted left by 0, 1, 2, or 3 bits.

T
ARMvS-M

[15141312/1110 9 8| 6 5 [3 2

[0 1 0 1]1[1][1] Rm | Rn | Rt

T1 variant

LDRSH{<c>}{<g>} <Rt>, [<Rn>, {+}<Rm>]
Decode for this encoding

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, 0);

T2

ARMVS-M Main Extension only

[15141312(1110 9 8|7 6 5 43

121110 9 8|7 6 5 4|3

0]

[1 1111 00[1]ofo 1][1] 1=1111

[0 0 0 00 0fimm2]

Rm |

Rn

T2 variant

LDRSH{<c>}.W <Rt>, [<Rn>, {+}<Rm>] // <Rt>, <Rn>, <Rm> can be represented in T1
LDRSH{<c>}{<g>} <Rt>, [<Rn>, {+}<Rm>{, LSL #<imm>}]

Decode for this encoding

if Rn == '1111' then SEE "LDRSH (Titeral)";

if Rt == '1111' then SEE "Related encodings";

if !HaveMainExt() then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; whback = FALSE;

(shift_t, shift_n) = (SRType_LSL, UInt(imm2));
if t == 13 || m IN {13,15} then UNPREDICTABLE;

Notes for all encodings

Related encodings: Load/store (register offset) on page C2-290.

Assembler symbols

<c> See Standard assembler syntax fields on page C1-252.
<q> See Standard assembler syntax fields on page C1-252.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

C2-436

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved.
Non-Confidential

ARM DDI 0553A.c
ID092816

C2 Instruction Specification
C2.4 Alphabetical list of instructions

+ Specifies the index register is added to the base register.
<Rm> Is the general-purpose index register, encoded in the "Rm" field.
<imm> If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. <imm> is encoded

in imm2. If absent, no shift is specified and imm?2 is encoded as 0b@0.

Operation for all encodings

if ConditionPassed() then
EncodingSpecificOperations();
offset = Shift(R[m], shift_t, shift_n, APSR.C);
offset_addr = if add then (R[n] + offset) else (R[n] - offset);
address = if index then offset_addr else R[n];
data = MemU[address,2];
if wback then R[n] = offset_addr;
R[t] = SignExtend(data, 32);

Exceptions

BusFault, UsageFault, MemManage, and SecureFault.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-437
Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.75 LDRSHT
Load Register Signed Halfword Unprivileged calculates an address from a base register value and an immediate
offset, loads a halfword from memory, sign-extends it to form a 32-bit word, and writes it to a register.
When privileged software uses an LDRSHT instruction, the memory access is restricted as if the software was
unprivileged.
T
ARMvS-M Main Extension only
[15141312/1110 9 8|7 6 5 4|3 0115 1211110 9 817 \ 0]
[1 1111 00[1]ofo 1J1] =111 [Rt [11 1 0] imm8 |
Rn
T1 variant
LDRSHT{<c>}{<g>} <Rt>, [<Rn> {, #{+}<imm>}]
Decode for this encoding
if Rn == '1111' then SEE "LDRSH (literal)";
if !HaveMainExt() then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
register_form = FALSE; 1imm32 = ZeroExtend(imm8, 32);
if t IN {13,15} then UNPREDICTABLE;
Assembler symbols
<c> See Standard assembler syntax fields on page C1-252.
<q> See Standard assembler syntax fields on page C1-252.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
+ Specifies the offset is added to the base register.
<imm> Is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 and
encoded in the "imm8" field.
Operation
if ConditionPassed() then
EncodingSpecificOperations();
address = R[n] + imm32;
data = MemU_unpriv[address,2];
R[t] = SignExtend(data, 32);
Exceptions
UsageFault, BusFault, MemManage, and SecureFault.
C2-438 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential

ID092816

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.76 LDRT

Load Register Unprivileged calculates an address from a base register value and an immediate offset, loads a word
from memory, and writes it to a register.

When privileged software uses an LDRT instruction, the memory access is restricted as if the software was
unprivileged.
T

ARMvS-M Main Extension only

15141312(1110 9 8/7 6 5 4|3 015 121110 9 8|7 \ 0]

[1 1111 00]ofJof1 of1] =111 [Rt [111 0] imm8 |
Rn

T1 variant

LDRT{<c>}{<g>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding

if Rn == '1111' then SEE "LDR (literal)";

if !HaveMainExt() then UNDEFINED;

t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
register_form = FALSE; 1imm32 = ZeroExtend(imm8, 32);

if t IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-252.

<q> See Standard assembler syntax fields on page C1-252.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+ Specifies the offset is added to the base register.

<imm> Is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 and

encoded in the "imm38" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = R[n] + imm32;
data = MemU_unpriv[address,4];
R[t] = data;

Exceptions

UsageFault, BusFault, MemManage, and SecureFault.

ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-439
1D092816 Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.77

LSL (immediate)

Logical Shift Left (immediate) shifts a register value left by an immediate number of bits, shifting in zeros, and
writes the result to the destination register.

This instruction is an alias of the MOV (register) instruction. This means that:
. The encodings in this description are named to match the encodings of MOV (register).

. The description of MOV (register) gives the operational pseudocode for this instruction.

T2
ARMVS-M Main Extension only
|15 14 13 12/11 10 | 65 |32 0]

[0 0 o]Jo of 1=00000 | Rm | Rd |
op imm5

T2 variant

LSL<c>{<g>} {<Rd>,} <Rm>, #<imm> // Inside IT block
is equivalent to

MOV<c>{<g>} <Rd>, <Rm>, LSL #<imm>

and is the preferred disassembly when InITBlock().

T3
ARMvS-M Main Extension only
[15141312/1110 9 8|7 6 5 4]3 2 1 0]1514 12|11 87 6 5 4|3 0|

[1 11010 1]oo0 1 0fof[1 11 1]©0 imm3 | Rd [imm2[o o] Rm |
S type

MOV, shift or rotate by value variant

LSL<c>.W {<Rd>,} <Rm>, #<imm> // Inside IT block, and <Rd>, <Rm>, <imm> can be represented in T2
is equivalent to

MOV{<c>}{<g>} <Rd>, <Rm>, LSL #<imm>

and is always the preferred disassembly.

LSL{<c>}{<g>} {<Rd>,} <Rm>, #<imm>

is equivalent to

MOV{<c>}{<g>} <Rd>, <Rm>, LSL #<imm>

and is always the preferred disassembly.

Assembler symbols
<c> See Standard assembler syntax fields on page C1-252.
<q> See Standard assembler syntax fields on page C1-252.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

C2-440

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

C2 Instruction Specification
C2.4 Alphabetical list of instructions

<Rm> Is the general-purpose source register, encoded in the "Rm" field.

<imm> For encoding T2: is the shift amount, in the range 1 to 31, encoded in the "imm5" field.

For encoding T3: is the shift amount, in the range 1 to 31, encoded in the "imm3:imm2" field.

Operation for all encodings

The description of MOV (register) gives the operational pseudocode for this instruction.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-441
Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.78

LSL (register)

Logical Shift Left (register) shifts a register value left by a variable number of bits, shifting in zeros, and writes the
result to the destination register. The variable number of bits is read from the bottom byte of a register.

This instruction is an alias of the MOV, MOVS (register-shifted register) instruction. This means that:

. The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted
register).

. The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this
instruction.
™
ARMvVS-M Main Extension only
1514131211109 | 6 5 |3 2 0]

[010000[/0010] R | Rdm |
op

Logical shift left variant

LSL<c>{<g>} {<Rdm>,} <Rdm>, <Rs> // Inside IT block
is equivalent to

MOV<c>{<g>} <Rdm>, <Rdm>, LSL <Rs>

and is the preferred disassembly when InITBTock().

T2
ARMVS-M Main Extension only

[15141312/1110 9 8|7 6 5 43 015 14 13 12|11 817 6 5 4|3 0|

[111110100[00[o] Rm [1 111 Rd Joooo] Rs |
type S

Not flag setting variant

LSL<c>.W {<Rd>,} <Rm>, <Rs> // Inside IT block, and <Rd>, <Rm>, <type>, <Rs> can be represented in T1
is equivalent to

MOV{<c>}{<g>} <Rd>, <Rm>, LSL <Rs>

and is always the preferred disassembly.

LSL{<c>}{<g>} {<Rd>,} <Rm>, <Rs>

is equivalent to

MOV{<c>}{<g>} <Rd>, <Rm>, LSL <Rs>

and is always the preferred disassembly.

Assembler symbols
<c> See Standard assembler syntax fields on page C1-252.

<q> See Standard assembler syntax fields on page C1-252.

C2-442

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

C2 Instruction Specification
C2.4 Alphabetical list of instructions

<Rdm> Is the first general-purpose source register and the destination register, encoded in the "Rdm" field.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the first general-purpose source register, encoded in the "Rm" field.

<Rs> Is the second general-purpose source register holding a shift amount in its bottom 8 bits, encoded in

the "Rs" field.

Operation for all encodings

The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-443
Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.79 LSLS (immediate)
Logical Shift Left, Setting flags (immediate) shifts a register value left by an immediate number of bits, shifting in
zeros, writes the result to the destination register, and updates the condition flags based on the result.
This instruction is an alias of the MOV (register) instruction. This means that:
. The encodings in this description are named to match the encodings of MOV (register).
. The description of MOV (register) gives the operational pseudocode for this instruction.
T2
ARMVE-M
|15 14 13 12/11 10 | 65 |32 0]
[0 0 o]Jo of 1=00000 | Rm | Rd |
op imm5
T2 variant
LSLS{<g>} {<Rd>,} <Rm>, #<imm> // Outside IT block
is equivalent to
MOVS{<g>} <Rd>, <Rm>, LSL #<imm>
and is the preferred disassembly when ! InITBTock().
T3
ARMvS-M Main Extension only
[15141312/1110 9 8|7 6 5 4|3 2 1 0]1514 12|11 8/7 6 5 4|3 0]
[1 110101001 0f1][1 11 1]©0] imm3 | Rd [imm2[o o] Rm |
S type
MOVS, shift or rotate by value variant
LSLS.W {<Rd>,} <Rm>, #<imm> // Outside IT block, and <Rd>, <Rm>, <imm> can be represented in T2
is equivalent to
MOVS{<c>}{<q>} <Rd>, <Rm>, LSL #<imm>
and is always the preferred disassembly.
LSLS{<c>}{<g>} {<Rd>,} <Rm>, #<imm>
is equivalent to
MOVS{<c>}{<q>} <Rd>, <Rm>, LSL #<imm>
and is always the preferred disassembly.
Assembler symbols
<c> See Standard assembler syntax fields on page C1-252.
<q> See Standard assembler syntax fields on page C1-252.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
C2-444 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

<Rm> Is the general-purpose source register, encoded in the "Rm" field.

<imm> For encoding T2: is the shift amount, in the range 1 to 31, encoded in the "imm5" field.

For encoding T3: is the shift amount, in the range 1 to 31, encoded in the "imm3:imm2" field.

Operation for all encodings

The description of MOV (register) gives the operational pseudocode for this instruction.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-445
Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.80 LSLS (register)
Logical Shift Left, Setting flags (register) shifts a register value left by a variable number of bits, shifting in zeros,
writes the result to the destination register, and updates the condition flags based on the result. The variable number
of bits is read from the bottom byte of a register.
This instruction is an alias of the MOV, MOVS (register-shifted register) instruction. This means that:
. The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted
register).
. The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this
instruction.
T1
ARMvS-M
[15141312/11109 | 6 5 |3 2 0]
[0 1 0000[0o010] Rs | Rdm |
op
Logical shift left variant
LSLS{<g>} {<Rdm>,} <Rdm>, <Rs> // Outside IT block
is equivalent to
MOVS{<q>} <Rdm>, <Rdm>, LSL <Rs>
and is the preferred disassembly when ! InITBlock().
T2
ARMvS-M Main Extension only
[15141312(1110 9 8|7 6 5 43 0115 14 13 12|11 8|7 6 5 4|3 0]
[111110100[00[1] Rm [1 111 Rd Jooo0oo0o] Rs |
type S
Flag setting variant
LSLS.W {<Rd>,} <Rm>, <Rs> // Outside IT block, and <Rd>, <Rm>, <type>, <Rs> can be represented in T1
is equivalent to
MOVS{<c>}{<g>} <Rd>, <Rm>, LSL <Rs>
and is always the preferred disassembly.
LSLS{<c>}{<q>} {<Rd>,} <Rm>, <Rs>
is equivalent to
MOVS{<c>}{<g>} <Rd>, <Rm>, LSL <Rs>
and is always the preferred disassembly.
Assembler symbols
<c> See Standard assembler syntax fields on page C1-252.
C2-446 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

<g>

<Rdm>

<Rd>

<Rm>

<Rs>

C2 Instruction Specification
C2.4 Alphabetical list of instructions

See Standard assembler syntax fields on page C1-252.

Is the first general-purpose source register and the destination register, encoded in the "Rdm" field.
Is the general-purpose destination register, encoded in the "Rd" field.

Is the first general-purpose source register, encoded in the "Rm" field.

Is the second general-purpose source register holding a shift amount in its bottom 8 bits, encoded in
the "Rs" field.

Operation for all encodings

The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-447
Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.81

LSR (immediate)

Logical Shift Right (immediate) shifts a register value right by an immediate number of bits, shifting in zeros, and
writes the result to the destination register.

This instruction is an alias of the MOV (register) instruction. This means that:
. The encodings in this description are named to match the encodings of MOV (register).

. The description of MOV (register) gives the operational pseudocode for this instruction.

T2
ARMVS-M Main Extension only
|15 14 13 12/11 10 | 65 |32 0]

[0 0 oJo 1] imm5 | Rm | Rd |
op

T2 variant

LSR<c>{<g>} {<Rd>,} <Rm>, #<imm> // Inside IT block
is equivalent to

MOV<c>{<g>} <Rd>, <Rm>, LSR #<imm>

and is the preferred disassembly when InITBlock().

T3
ARMvS-M Main Extension only
[15141312/1110 9 8|7 6 5 4]3 2 1 0]1514 12|11 87 6 5 4|3 0|

[1 11010 1]oo0 1 0fof[1 11 1]©0 imm3 | Rd [imm2[o 1] Rm |
S type

MOV, shift or rotate by value variant

LSR<c>.W {<Rd>,} <Rm>, #<imm> // Inside IT block, and <Rd>, <Rm>, <imm> can be represented in T2
is equivalent to

MOV{<c>}{<g>} <Rd>, <Rm>, LSR #<imm>

and is always the preferred disassembly.

LSR{<c>}{<g>} {<Rd>,} <Rm>, #<imm>

is equivalent to

MOV{<c>}{<g>} <Rd>, <Rm>, LSR #<imm>

and is always the preferred disassembly.

Assembler symbols
<c> See Standard assembler syntax fields on page C1-252.
<q> See Standard assembler syntax fields on page C1-252.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

C2-448

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

C2 Instruction Specification
C2.4 Alphabetical list of instructions

<Rm> Is the general-purpose source register, encoded in the "Rm" field.
<imm> For encoding T2: is the shift amount, in the range 1 to 32, encoded in the "immS5" field as <imm>
modulo 32.

For encoding T3: is the shift amount, in the range 1 to 32, encoded in the "imm3:imm2" field as
<imm> modulo 32.

Operation for all encodings

The description of MOV (register) gives the operational pseudocode for this instruction.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-449
Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.82

LSR (register)

Logical Shift Right (register) shifts a register value right by a variable number of bits, shifting in zeros, and writes
the result to the destination register. The variable number of bits is read from the bottom byte of a register.

This instruction is an alias of the MOV, MOVS (register-shifted register) instruction. This means that:

. The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted
register).

. The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this
instruction.
™
ARMvVS-M Main Extension only
1514131211109 | 6 5 |3 2 0]

[0 10000J001 1] Rs [Rdm |
op

Logical shift right variant

LSR<c>{<g>} {<Rdm>,} <Rdm>, <Rs> // Inside IT block
is equivalent to

MOV<c>{<g>} <Rdm>, <Rdm>, LSR <Rs>

and is the preferred disassembly when InITBTock().

T2
ARMVS-M Main Extension only

[15141312/1110 9 8|7 6 5 43 015 14 13 12|11 817 6 5 4|3 0|

[111110100[01]o] Rm [1 111 R Joooo] Rs |
type S

Not flag setting variant

LSR<c>.W {<Rd>,} <Rm>, <Rs> // Inside IT block, and <Rd>, <Rm>, <type>, <Rs> can be represented in T1
is equivalent to

MOV{<c>}{<g>} <Rd>, <Rm>, LSR <Rs>

and is always the preferred disassembly.

LSR{<c>}{<g>} {<Rd>,} <Rm>, <Rs>

is equivalent to

MOV{<c>}{<g>} <Rd>, <Rm>, LSR <Rs>

and is always the preferred disassembly.

Assembler symbols
<c> See Standard assembler syntax fields on page C1-252.

<q> See Standard assembler syntax fields on page C1-252.

C2-450

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

C2 Instruction Specification
C2.4 Alphabetical list of instructions

<Rdm> Is the first general-purpose source register and the destination register, encoded in the "Rdm" field.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the first general-purpose source register, encoded in the "Rm" field.

<Rs> Is the second general-purpose source register holding a shift amount in its bottom 8 bits, encoded in

the "Rs" field.

Operation for all encodings

The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-451
Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.83 LSRS (immediate)
Logical Shift Right, Setting flags (immediate) shifts a register value right by an immediate number of bits, shifting
in zeros, writes the result to the destination register, and updates the condition flags based on the result.
This instruction is an alias of the MOV (register) instruction. This means that:
. The encodings in this description are named to match the encodings of MOV (register).
. The description of MOV (register) gives the operational pseudocode for this instruction.
T2
ARMVE-M
|15 14 13 12/11 10 | 65 |32 0]
[0 0 oJo 1] imm5 | Rm | Rd |
op
T2 variant
LSRS{<g>} {<Rd>,} <Rm>, #<imm> // Outside IT block
is equivalent to
MOVS{<g>} <Rd>, <Rm>, LSR #<imm>
and is the preferred disassembly when ! InITBTock().
T3
ARMvS-M Main Extension only
[15141312/1110 9 8|7 6 5 4|3 2 1 0]1514 12|11 8/7 6 5 4|3 0]
[1 110101001 0f1][1 11 1]0] imm3 | Rd [imm2[o 1] Rm |
S type
MOVS, shift or rotate by value variant
LSRS.W {<Rd>,} <Rm>, #<imm> // Outside IT block, and <Rd>, <Rm>, <imm> can be represented in T2
is equivalent to
MOVS{<c>}{<gq>} <Rd>, <Rm>, LSR #<imm>
and is always the preferred disassembly.
LSRS{<c>}{<g>} {<Rd>,} <Rm>, #<imm>
is equivalent to
MOVS{<c>}{<gq>} <Rd>, <Rm>, LSR #<imm>
and is always the preferred disassembly.
Assembler symbols
<c> See Standard assembler syntax fields on page C1-252.
<q> See Standard assembler syntax fields on page C1-252.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
C2-452 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

<Rm> Is the general-purpose source register, encoded in the "Rm" field.
<imm> For encoding T2: is the shift amount, in the range 1 to 32, encoded in the "immS5" field as <imm>
modulo 32.

For encoding T3: is the shift amount, in the range 1 to 32, encoded in the "imm3:imm2" field as
<imm> modulo 32.

Operation for all encodings

The description of MOV (register) gives the operational pseudocode for this instruction.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-453
Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.84 LSRS (register)
Logical Shift Right, Setting flags (register) shifts a register value right by an immediate number of bits, shifting in
zeros, writes the result to the destination register, and updates the condition flags based on the result. The variable
number of bits is read from the bottom byte of a register.
This instruction is an alias of the MOV, MOVS (register-shifted register) instruction. This means that:
. The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted
register).
. The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this
instruction.
T
ARMvS-M
[15141312/11109 | 6 5 |3 2 0]
[010000[0011] Rs | Rdm |
op
Logical shift right variant
LSRS{<g>} {<Rdm>,} <Rdm>, <Rs> // Outside IT block
is equivalent to
MOVS{<q>} <Rdm>, <Rdm>, LSR <Rs>
and is the preferred disassembly when ! InITBlock().
T2
ARMvS-M Main Extension only
[15141312(1110 9 8|7 6 5 43 0115 14 13 12|11 8|7 6 5 4|3 0]
[111110100[011] Rm [1 111 Rd Jooo0oo] Rs |
type S
Flag setting variant
LSRS.W {<Rd>,} <Rm>, <Rs> // Outside IT block, and <Rd>, <Rm>, <type>, <Rs> can be represented in T1
is equivalent to
MOVS{<c>}{<g>} <Rd>, <Rm>, LSR <Rs>
and is always the preferred disassembly.
LSRS{<c>}{<q>} {<Rd>,} <Rm>, <Rs>
is equivalent to
MOVS{<c>}{<g>} <Rd>, <Rm>, LSR <Rs>
and is always the preferred disassembly.
Assembler symbols
<c> See Standard assembler syntax fields on page C1-252.
C2-454 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

<g>

<Rdm>

<Rd>

<Rm>

<Rs>

C2 Instruction Specification
C2.4 Alphabetical list of instructions

See Standard assembler syntax fields on page C1-252.

Is the first general-purpose source register and the destination register, encoded in the "Rdm" field.
Is the general-purpose destination register, encoded in the "Rd" field.

Is the first general-purpose source register, encoded in the "Rm" field.

Is the second general-purpose source register holding a shift amount in its bottom 8 bits, encoded in
the "Rs" field.

Operation for all encodings

The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-455
Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.85

MCR, MCR2

Move to Coprocessor from Register passes the value of a general-purpose register to a coprocessor.

If no coprocessor can execute the instruction, a UsageFault exception is generated.

™

ARMVS-M Main Extension only

[15141312/1110 9 8|7 5 413 0115 12|11 8|7 5 413 0]

[1 1 1]JoJ1 1 1 0] opct J[o] crRn [Rt | 1=101x | opc2 [1] CRm |

coproc

T1 variant

MCR{<c>}{<g>} <coproc>, {#}<opcl>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

Decode for this encoding

if coproc IN '101x' then SEE "Floating-point";
if !HaveMainExt() then UNDEFINED;

t = UInt(Rt); cp = UInt(coproc);

if t == 15 || t == 13 then UNPREDICTABLE;

T2

ARMvS-M Main Extension only

[15141312/1110 9 8|7 5 43 015 12|11 8|7 5 4|3 0|

[1 1 1]1]1 1 1 0] opct o] cRn | Rt | 1=101x | opc2 [1] CRm |

coproc

T2 variant

MCR2{<c>}{<q>} <coproc>, {#}<opcl>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

Decode for this encoding

if coproc IN '101x' then UNDEFINED;

if !HaveMainExt() then UNDEFINED;

t = UInt(Rt); cp = UInt(coproc);

if t == 15 || t == 13 then UNPREDICTABLE;

Notes for all encodings

Floating-point: Floating-point 32-bit move on page C2-308.

Assembler symbols

<c>
<>

<coproc>

<opcl>

<Rt>

See Standard assembler syntax fields on page C1-252.
See Standard assembler syntax fields on page C1-252.

Is the name of the coprocessor, encoded in the "coproc" field. The valid coprocessor names are p10,
pll, pl4, and p15.

Is a coprocessor-specific opcode in the range 0 to 7, encoded in the "opcl" field.

Is the general-purpose register to be transferred, encoded in the "Rt" field.

C2-456

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

C2 Instruction Specification
C2.4 Alphabetical list of instructions

<CRn> Is the first coprocessor register, encoded in the "CRn" field.
<CRm> Is the second coprocessor register, encoded in the "CRm" field.
<opc2> Is a coprocessor-specific opcode in the range 0 to 7, defaulting to 0 and encoded in the "opc2" field.

Operation for all encodings

if ConditionPassed() then
EncodingSpecificOperations();
ExecuteCPCheck(cp);
if !Coproc_Accepted(cp, ThisInstr()) then
GenerateCoprocessorException();
else
Coproc_SendOneWord(R[t], cp, ThisInstr());

Exceptions

UsageFault.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-457
Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.86

MCRR, MCRR2
Move to Coprocessor from two Registers passes the values of two general-purpose registers to a coprocessor.

If no coprocessor can execute the instruction, a UsageFault exception is generated.

T1
ARMVS-M Main Extension only
[15141312(1110 9 8|7 6 5 43 0115 12]11 817 4|3 0]

[1 1 1]Jo]1 1 0 0 of[1]oJo] R2 [Rt | 1=101x | opct | CRm |
coproc

T1 variant

MCRR{<c>}{<q>} <coproc>, {#}<opcl>, <Rt>, <Rt2>, <CRm>

Decode for this encoding

if coproc IN '101x' then SEE "Floating-point";

if !HaveMainExt() then UNDEFINED;

t = UInt(Rt); t2 = UInt(Rt2); cp = UInt(coproc);
if t == 15 || t2 == 15 then UNPREDICTABLE;

if t == 13 || t2 == 13 then UNPREDICTABLE;

T2
ARMVS-M Main Extension only
[15141312(1110 9 8|7 6 5 43 0115 12]11 817 4|3 0]

[1 1 1]1]1 1 0 0 of1]oJo] RrR2 | Rt | 1=101x | opct | CRm |
coproc

T2 variant

MCRR2{<c>}{<q>} <coproc>, {#}<opcl>, <Rt>, <Rt2>, <CRm>

Decode for this encoding

if coproc IN '101x' then UNDEFINED;

if !HaveMainExt() then UNDEFINED;

t = UInt(Rt); t2 = UInt(Rt2); cp = UInt(coproc);
if t == 15 || t2 == 15 then UNPREDICTABLE;

if t == 13 || t2 == 13 then UNPREDICTABLE;
Notes for all encodings

Floating-point: Floating-point 64-bit move on page C2-303.

Assembler symbols
<c> See Standard assembler syntax fields on page C1-252.
<q> See Standard assembler syntax fields on page C1-252.

<coproc> Is the name of the coprocessor, encoded in the "coproc" field. The valid coprocessor names are p10,
pll, pl4, and p15.

<opcl> Is a coprocessor-specific opcode in the range 0 to 15, encoded in the "opc1" field.

C2-458

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

C2 Instruction Specification
C2.4 Alphabetical list of instructions

<Rt> Is the first general-purpose register to be transferred, encoded in the "Rt" field.
<Rt2> Is the second general-purpose register to be transferred, encoded in the "Rt2" field.
<CRm> Is a coprocessor register, encoded in the "CRm" field.

Operation for all encodings

if ConditionPassed() then
EncodingSpecificOperations();
ExecuteCPCheck(cp);
if !Coproc_Accepted(cp, ThisInstr()) then
GenerateCoprocessorException();
else
Coproc_SendTwoWords(R[t2], R[t], cp, ThisInstr());

Exceptions

UsageFault.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-459
Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.87 MLA
Multiply Accumulate multiplies two register values, and adds a third register value. The least significant 32 bits of
the result are written to the destination register. These 32 bits do not depend on whether signed or unsigned
calculations are performed.
T
ARMvVS-M Main Extension only
1514 1312/1110 9 8|7 6 5 4|3 0115 12]11 8|7 6 5 4|3 0]
[111110110/000] R [=111 | Rd Jo ofo o] Rm |
Ra
T1 variant
MLA{<c>}{<g>} <Rd>, <Rn>, <Rm>, <Ra>
Decode for this encoding
if Ra == '1111' then SEE MUL;
if !HaveMainExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); setflags = FALSE;
if d IN {13,15} || n IN {13,15} || m IN {13,15} || a == 13 then UNPREDICTABLE;
Assembler symbols
<c> See Standard assembler syntax fields on page C1-252.
<q> See Standard assembler syntax fields on page C1-252.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm" field.
<Ra> Is the third general-purpose source register holding the addend, encoded in the "Ra" field.
Operation
if ConditionPassed() then
EncodingSpecificOperations();
operandl = SInt(R[n]); // operandl = UInt(R[n]) produces the same final results
operand2 = SInt(R[m]); // operand2 = UInt(R[m]) produces the same final results
addend = SInt(R[a]); // addend = UInt(R[a]) produces the same final results
result = operandl = operand2 + addend;
R[d] = result<31:0>;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result<31:0>);
// APSR.C unchanged
// APSR.V unchanged
Exceptions
None.
C2-460 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

C2.4.88 MLS

C2 Instruction Specification
C2.4 Alphabetical list of instructions

Multiply and Subtract multiplies two register values, and subtracts the least significant 32 bits of the result from a
third register value. These 32 bits do not depend on whether signed or unsigned calculations are performed. The
result is written to the destination register.

™

ARMvVS-M Main Extension only

1151413121110 9 8|7 6 5 4|3 0115 12]11 817 6 5 4|3 0|
[t11110110/000][RA | Ra | Rd JooJo 1] Rm |
T1 variant

MLS{<c>}{<g>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for this encoding
if !HaveMainExt() then UNDEFINED;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra);
if d IN {13,15} || n IN {13,215} || m IN {13,15} || a IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-252.

<q> See Standard assembler syntax fields on page C1-252.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm" field.
<Ra> Is the third general-purpose source register holding the minuend, encoded in the "Ra" field.
Operation

if ConditionPassed() then
EncodingSpecificOperations();
operandl = SInt(R[n]); // operandl = UInt(R[n]) produces the same final results
operand2 = SInt(R[m]); // operand2 = UInt(R[m]) produces the same final results
addend = SInt(R[a]); // addend = UInt(R[a]) produces the same final results
result = addend - operandl : operand2;
R[d] = result<31:0>;

Exceptions

None.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-461
Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.89

MOV (immediate)

Move (immediate) writes an immediate value to the destination register. It can optionally update the condition flags

based on the value.

T
ARMvS-M

[15141312/1110 8|7 | 0]
[0 0 1]o o] Rd | imm8 |

T1 variant

MOV<c>{<g>} <Rd>, #<imm8> // Inside IT block
MOVS{<g>} <Rd>, #<imm8> // Outside IT block

Decode for this encoding

d = UInt(Rd); setflags = !InITBlock(); 1imm32 = ZeroExtend(imm8, 32); «carry = APSR.C;

T2

ARMVS-M Main Extension only

151413121110 9 8|7 6 5 4|3 2 1 0[1514 12|11 8|7 \ 0|
[1 111 0f]iloJo o 1 0fs]1 1 1 1]o] imm3 [Rd | imm8 |

MOV variant
Applies when S == 0.

MOV<c>.W <Rd>, #<const> // Inside IT block, and <Rd>, <const> can be represented in T1
MOV{<c>}{<g>} <Rd>, #<const>

MOVS variant
Applies when S == 1.

MOVS.W <Rd>, #<const> // Outside IT block, and <Rd>, <const> can be represented in T1
MOVS{<c>}{<q>} <Rd>, #<const>

Decode for all variants of this encoding

if !HaveMainExt() then UNDEFINED;

d = UInt(Rd); setflags = (S == "'1"); (imm32, carry) = T32ExpandImm_C(i:imm3:imm8, APSR.C);
if d IN {13,15} then UNPREDICTABLE;

T3

ARMVS-M

1514 1312|1110 9 8|7 6 5 4|3 0[1514 12[11 8|7 \ 0|
[1 111 0f]i[1 ofo[1 0 o] imma4 Jof imm3 [Rd | imm8 |

C2-462

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential

ID092816

C2 Instruction Specification
C2.4 Alphabetical list of instructions

T3 variant

MOV{<c>}{<g>} <Rd>, #<imml6> // <imml6> cannot be represented in Tl or T2
MOVW{<c>}{<q>} <Rd>, #<imml6> // <imml6> can be represented in Tl or T2

Decode for this encoding

d = UInt(Rd); setflags = FALSE; 1imm32 = ZeroExtend(imm4:i:imm3:imm8, 32);
if d IN {13,15} then UNPREDICTABLE;

Assembler symbols

<Cc> See Standard assembler syntax fields on page C1-252.

<> See Standard assembler syntax fields on page C1-252.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<imm8> Is an 8-bit unsigned immediate, in the range 0 to 255, encoded in the "imm8" field.

<imm16> Is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm4:i:imm3:imm§8" field.
<const> An immediate value. See Modified immediate constants on page C1-259 for the range of values.

Operation for all encodings

if ConditionPassed() then
EncodingSpecificOperations();
result = imm32;
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged

Exceptions

None.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-463
Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.90 MOV (register)
Move (register) copies a value from a register to the destination register. It can optionally update the condition flags
based on the value.
This instruction is used by the aliases ASRS (immediate), ASR (immediate), LSLS (immediate), LSL (immediate),
LSRS (immediate), LSR (immediate), RORS (immediate), ROR (immediate), RRXS, and RRX. See Alias
conditions on page C2-465 for details of when each alias is preferred.
T
ARMvS-M
1514 1312/1110 9 8|7 6 |13 2 o0
[01 000 1[10[p] Rm | Rd |
T1 variant
MOV{<c>}{<g>} <Rd>, <Rm>
Decode for this encoding
d = UInt(D:Rd); m = UInt(Rm); setflags = FALSE;
(shift_t, shift_n) = (SRType_LSL, 0);
if HaveMainExt() then
if d == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;
T2
ARMVS-M
115 14 13 12/11 10 | 65 [32 0]
[0 0 of]t=t1] imm5 | Rm | Rd |
op
T2 variant
MOV<c>{<g>} <Rd>, <Rm> {, <shift> #<amount>} // Inside IT block
MOVS{<g>} <Rd>, <Rm> {, <shift> #<amount>} // Outside IT block
Decode for this encoding
if op == '11' then SEE "Related encodings";
d = UInt(Rd); m = UInt(Rm); setflags = !InITBlock();
(shift_t, shift_n) = DecodeImmShift(op, imm5);
if op == '00' && imm5 == '00000' &% InITBlock() then UNPREDICTABLE;
T3
ARMVS-M Main Extension only
[15141312/1110 9 8|7 6 5 4|3 2 1 0[1514 12|11 8|7 6 5 4|3 0|
[1 11010 1[00 1 0[s]1 11 1[0 imm3 | Rd [imm2[type] Rm |
MOV, rotate right with extend variant
Applies when S == 0 && imm3 == 000 && imm2 == 00 && type == 11.
C2-464 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

C2 Instruction Specification
C2.4 Alphabetical list of instructions

MOV{<c>}{<g>} <Rd>, <Rm>, RRX

MOV, shift or rotate by value variant
Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && type == 11).

MOV<c>.W <Rd>, <Rm> {, <shift> #<amount>} // Inside IT block, and <Rd>, <Rm>, <shift>, <amount> can be
represented in Tl or T2
MOV{<c>}{<g>} <Rd>, <Rm> {, <shift> #<amount>}

MOVS, rotate right with extend variant
Applies when S == 1 && imm3 == 000 &% imm2 == 00 && type == 11.

MOVS{<c>}{<gq>} <Rd>, <Rm>, RRX

MOVS, shift or rotate by value variant
Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && type == 11).

MOVS.W <Rd>, <Rm> {, <shift> #<amount>} // Outside IT block, and <Rd>, <Rm>, <shift>, <amount> can be
represented in T1 or T2
MOVS{<c>}{<g>} <Rd>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

if !HaveMainExt() then UNDEFINED;
d = UInt(Rd); m = UInt(Rm); setflags = (S == '1");
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
if Isetflags && (imm3:imm2:type == '0000000') then
if (d==15 || m==15 || (d == 13 & m == 13)) then UNPREDICTABLE;
else
if (d IN {13,15} || m IN {13,15}) then UNPREDICTABLE;

Notes for all encodings

Related encodings: In encoding T2, for op == 11, see Add, subtract (three low registers) on page C2-266 and Add,
subtract (two low registers and immediate).

Alias conditions

Alias

of variant is preferred when

ASRS (immediate)

T3 (MOVS, shift or rotate by value)

S =="1" & type == '10'

ASRS (immediate)

T2

op == '10" && !InITBlock()

ASR (immediate)

T3 (MOV, shift or rotate by value)

S =="0" & type == '10'

ASR (immediate)

T2

op == '10" && InITBTock()

LSLS (immediate)

T3 (MOVS, shift or rotate by value)

== '1" & imm3:Rd:imm2 != '000xxxx00' & type == '00'

LSLS (immediate)

LSL (immediate)

T2

T3 (MOV, shift or rotate by value)

op == '00' & imm5 != '00000' & 'InITBlock()

== "0" && imm3:Rd:imm2 != '000xxxx00' && type == '00'

LSL (immediate)

T2

op == '00" & imm5 != '00000' &% InITBlock()

LSRS (immediate)

T3 (MOVS, shift or rotate by value)

S=="1" & type == '01'

LSRS (immediate)

T2

op == '01' && !InITBlock()

LSR (immediate)

T3 (MOV, shift or rotate by value)

S=="0"&& type == '01'

ARM DDI 0553A.c

1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved.

C2-465

Non-Confidential

C2 Instruction Specification

C2.4 Alphabetical list of instructions

Alias

of variant is preferred when

LSR (immediate)

op == '01' & InITBlock()

RORS (immediate)

S =="1" & imm3:Rd:imm2 != '000xxxx00' && type == '11'

ROR (immediate) S =="0" & imm3:Rd:imm2 != '000xxxx00' && type == '11'
RRXS S=="1"&& imm3 == '000' && imm2 == '00' && type == '11'
RRX S=="0" & imm3 == '000' && imm2 == '00' && type == '11'

Assembler symbols

<C>

<g>

<Rd>

<Rm>

<shift>

<amount>

See Standard assembler syntax fields on page C1-252.
See Standard assembler syntax fields on page C1-252.

For encoding T1: is the general-purpose destination register, encoded in the "D:Rd" field. If the PC
is used:
. The instruction causes a simple branch to the address moved to the PC.

. The instruction must either be outside an IT block or the last instruction of an IT block.

For encoding T2 and T3: is the general-purpose destination register, encoded in the "Rd" field.

For encoding T1: is the general-purpose source register, encoded in the "Rm" field. The PC can be
used.
For encoding T2 and T3: is the general-purpose source register, encoded in the "Rm" field.

For encoding T2: is the type of shift to be applied to the source register, encoded in the "op" field.
It can have the following values:

LSL when op = 00
LSR when op = 01
ASR when op = 10

For encoding T3: is the type of shift to be applied to the source register, encoded in the "type" field.
It can have the following values:

LSL when type = 00
LSR when type = 01
ASR when type = 10
ROR when type = 11

For encoding T2: is the shift amount, in the range 1 to 31 (when <shift>= LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR) encoded in the "imm5" field as <amount> modulo 32.

For encoding T3: is the shift amount, in the range 1 to 31 (when <shift>= LSL or ROR) or 1 to 32
(when <shift>= LSR or ASR) encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings

if ConditionPassed() then
EncodingSpecificOperations();
(result, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
if d == 15 then
ALUWritePC(result); // setflags is always FALSE here

else

RSPCheck[d] = result;
if setflags then

C2-466

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

C2 Instruction Specification
C2.4 Alphabetical list of instructions

APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;

// APSR.V unchanged

Exceptions

UsageFault.

ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-467
1D092816 Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.91

MOV, MOVS (register-shifted register)

Move (register-shifted register) copies a register-shifted register value to the destination register. It can optionally
update the condition flags based on the value.

This instruction is used by the aliases ASRS (register), ASR (register), LSLS (register), LSL (register), LSRS
(register), LSR (register), RORS (register), and ROR (register). See Alias conditions on page C2-469 for details of
when each alias is preferred.

T
ARMvS-M
1514131211109 | 6 5 |3 2 0]

[01 00000 x x x| Rs | Rdm |
op

Arithmetic shift right variant
Applies when op == 0100.

MOV<c>{<g>} <Rdm>, <Rdm>, ASR <Rs> // Inside IT block
MOVS{<g>} <Rdm>, <Rdm>, ASR <Rs> // Outside IT block

Logical shift left variant
Applies when op == 0010.

MOV<c>{<g>} <Rdm>, <Rdm>, LSL <Rs> // Inside IT block
MOVS{<q>} <Rdm>, <Rdm>, LSL <Rs> // Outside IT block

Logical shift right variant
Applies when op == 0011.

MOV<c>{<g>} <Rdm>, <Rdm>, LSR <Rs> // Inside IT block
MOVS{<g>} <Rdm>, <Rdm>, LSR <Rs> // Outside IT block

Rotate right variant
Applies when op == 0111.

MOV<c>{<g>} <Rdm>, <Rdm>, ROR <Rs> // Inside IT block
MOVS{<g>} <Rdm>, <Rdm>, ROR <Rs> // Outside IT block

Decode for all variants of this encoding

if !(op IN {'0010', '0011', '0100', '0111'}) then SEE "Related encodings";
d = UInt(Rdm); m = UInt(Rdm); s = UInt(Rs);

setflags = !'InITBlock(); shift_t = DecodeRegShift(op<2>:0p<0>);

T2

ARMvS-M Main Extension only

151413121110 9 8|7 6 5 4|3 011514 13 12|11 817 6 5 4|3 0|
[111110100[type|[s] Rm [1 11 1] Rd Joooo] Rs |

Flag setting variant

Applies when S == 1.

C2-468

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

C2 Instruction Specification

C2.4 Alphabetical list of instructions

MOVS.W <Rd>, <Rm>, <type> <Rs> // Outside IT block, and <Rd>, <Rm>, <type>, <Rs> can be represented in T1
MOVS{<c>}{<g>} <Rd>, <Rm>, <type> <Rs>

Not flag setting variant

Applies when S == 0.

MOV<c>.W <Rd>, <Rm>, <type> <Rs> // Inside IT block, and <Rd>, <Rm>, <type>, <Rs> can be represented in

T1

MOV{<c>}{<g>} <Rd>, <Rm>, <type> <Rs>

Decode for all variants of this encoding

if !HaveMainExt() then UNDEFINED;

d = UInt(Rd); m = UInt(Rm);
setflags = (S == '1");

s = UInt(Rs);
shift_t = DecodeRegShift(type);

if d IN {13,15} || m IN {13,15} || s IN {13,15} then UNPREDICTABLE;

Notes for all encodings

Related encodings: In encoding T1, for an op field value that is not listed, see Data-processing (two low registers)

on page C2-267.

Alias conditions

Alias

of variant

is preferred when

ASRS (register)
ASRS (register)

ASR (register)

T1 (arithmetic shift right)

T2 (flag setting)

T1 (arithmetic shift right)

op == '0100' && !InITBlock()
type == '10' && S == '1'

op == '0100' && InITBlock()

ASR (register)

T2 (not flag setting)

type == '10' & S == '0'

LSLS (register)

T1 (logical shift left)

op == '0010' & !'InITBlock()

LSLS (register)

T2 (flag setting)

type == '00' && S == '1'

LSL (register)
LSL (register)

LSRS (register)

T1 (logical shift left)
T2 (not flag setting)

T1 (logical shift right)

op == '0010' && InITBlock()
type == '00' && S == '0Q'

op == '0011" && !'InITBlock()

LSRS (register)

T2 (flag setting)

type == '01' & S == "1’

LSR (register)

T1 (logical shift right)

op == '0011"' && InITBlock()

LSR (register)

T2 (not flag setting)

type == '01' & S == "0’

RORS (register)

RORS (register)

T1 (rotate right)

T2 (flag setting)

op == '0111"' && !InITBlock()

type == '11' & S == '1'

ROR (register) T1 (rotate right) op == '0111"' &% InITBlock()
ROR (register) T2 (not flag setting) type == '11' && S == '0'
Assembler symbols
<c> See Standard assembler syntax fields on page C1-252.
<q> See Standard assembler syntax fields on page C1-252.

ARM DDI 0553A.c

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved.

Non-Confidential

C2-469

C2 Instruction Specification
C2.4 Alphabetical list of instructions

<Rdm> Is the general-purpose source register and the destination register, encoded in the "Rdm" field.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> Is the general-purpose source register, encoded in the "Rm" field.
<type> Is the type of shift to be applied to the second source register, encoded in the "type" field. It can have
the following values:
LSL when type = 00
LSR when type = 01
ASR when type = 10
ROR when type = 11
<Rs> Is the general-purpose source register holding a shift amount in its bottom 8 bits, encoded in the "Rs"
field.

Operation for all encodings

if ConditionPassed() then
EncodingSpecificOperations();
shift_n = UInt(R[s]<7:0>);
(result, carry) = Shift_C(R[m], shift_t, shift_n, APSR.(C);
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged

Exceptions

None.

C2-470 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.92 MOVT

Move Top writes an immediate value to the top halfword of the destination register. It does not affect the contents
of the bottom halfword.

T

ARMVS-M

1151413121110 9 8|7 6 5 4|3 0[1514 12[11 8|7 \ 0|
[1 11 1 0fi]1 of]1[1 0 o] imm4 Jo[imm3 | Rd | imm8 |
T1 variant

MOVT{<c>}{<q>} <Rd>, #<imml6>

Decode for this encoding

d = UInt(Rd); imml6 = imm4:i:imm3:imm8;
if d IN {13,15} then UNPREDICTABLE;

Assembler symbols

<c> See Standard assembler syntax fields on page C1-252.

<q> See Standard assembler syntax fields on page C1-252.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<imm16> Is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm4:i:imm3:imm§" field.
Operation

if ConditionPassed() then
EncodingSpecificOperations();
R[d]<31:16> = imml6;
// R[d]<15:0> unchanged

Exceptions

None.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-471
Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.93

MRC, MRC2

Move to Register from Coprocessor causes a coprocessor to transfer a value to a general-purpose register or to the
condition flags.

™

ARMvVS-M Main Extension only

[15141312/1110 9 8|7 5 413 0115 12|11 8|7 5 413 0]

[1 1 1]o]1 11 0] opct [1] crRn | Rt | 1=101x | opc2 [1] CRm |

coproc

T1 variant

MRC{<c>}{<g>} <coproc>, {#}<opcl>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

Decode for this encoding

if coproc IN '101x' then SEE "Floating-point";
if !HaveMainExt() then UNDEFINED;

t = UInt(Rt); cp = UInt(coproc);

if t == 13 then UNPREDICTABLE;

T2

ARMvS-M Main Extension only

[15141312/1110 9 8|7 5 43 015 12|11 8|7 5 4|3 0|

[1 1 1]1]1 1 1 0 opct [1] crRn [Rt | 1=101x | opc2 [1] CRm |

coproc

T2 variant

MRC2{<c>}{<g>} <coproc>, {#}<opcl>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

Decode for this encoding

if coproc IN '101x' then UNDEFINED;
if !HaveMainExt() then UNDEFINED;
t = UInt(Rt); cp = UInt(coproc);
if t == 13 then UNPREDICTABLE;

Notes for all encodings

Floating-point: Floating-point 32-bit move on page C2-308.

Assembler symbols

<c>
<>

<coproc>

<opcl>

See Standard assembler syntax fields on page C1-252.
See Standard assembler syntax fields on page C1-252.

Is the name of the coprocessor, encoded in the "coproc" field. The valid coprocessor names are p10,
pll, pl4, and p15.

Is a coprocessor-specific opcode in the range 0 to 7, encoded in the "opcl" field.

C2-472

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c
Non-Confidential 1D092816

C2 Instruction Specification
C2.4 Alphabetical list of instructions

<Rt> Is the general-purpose register to be transferred or APSR_nzcv (encoded as 0b1111), encoded in the
"Rt" field. If APSR_nzcv is used, bits [31:28] of the transferred value are written to the APSR
condition flags.

<CRn> Is the first coprocessor register, encoded in the "CRn" field.
<CRm> Is the second coprocessor register, encoded in the "CRm" field.
<opc2> Is a coprocessor-specific opcode in the range 0 to 7, defaulting to 0 and encoded in the "opc2" field.

Operation for all encodings

if ConditionPassed() then

EncodingSpecificOperations();

ExecuteCPCheck(cp);

if !Coproc_Accepted(cp, ThisInstr()) then
GenerateCoprocessorException();

else
value = Coproc_GetOneWord(cp, ThisInstr());
if t != 15 then

R[t] = value;

else
APSR.N = value<31l>;
APSR.Z = value<30>;

APSR.C = value<29>;
APSR.V = value<28>;
// value<27:0> are not used.

Exceptions

UsageFault.

ARM DDI 0553A.c Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-473
1D092816 Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.94 MRRC, MRRC2
Move to two Registers from Coprocessor causes a coprocessor to transfer values to two general-purpose registers.
If no coprocessor can execute the instruction, a UsageFault exception is generated.
T
ARMVS-M Main Extension only
[15141312(1110 9 8|7 6 5 43 0115 12]11 817 4|3 0]
[1 1 1]Jo]1 1 0 0 of1]o[1] R2 [Rt | 1=101x | opct | CRm |
coproc
T1 variant
MRRC{<c>}{<q>} <coproc>, {#}<opcl>, <Rt>, <Rt2>, <CRm>
Decode for this encoding
if coproc IN '101x' then SEE "Floating-point";
if !HaveMainExt() then UNDEFINED;
t = UInt(Rt); t2 = UInt(Rt2); cp = UInt(coproc);
if t == 15 || t2 == 15 || t == t2 then UNPREDICTABLE;
if t == 13 || t2 == 13 then UNPREDICTABLE;
T2
ARMVS-M Main Extension only
[15141312(1110 9 8|7 6 5 43 0115 12]11 817 4|3 0]
[1 1 1]1]1 1 00 of1]of1] r2 | R | 1=101x | opct | CRm |
coproc
T2 variant
MRRC2{<c>}{<q>} <coproc>, {#}<opcl>, <Rt>, <Rt2>, <CRm>
Decode for this encoding
if coproc IN '101x' then UNDEFINED;
if !HaveMainExt() then UNDEFINED;
t = UInt(Rt); t2 = UInt(Rt2); cp = UInt(coproc);
if t == 15 || t2 == 15 || t == t2 then UNPREDICTABLE;
if t == 13 || t2 == 13 then UNPREDICTABLE;
Notes for all encodings
Floating-point: Floating-point 64-bit move on page C2-303.
Assembler symbols
<c> See Standard assembler syntax fields on page C1-252.
<q> See Standard assembler syntax fields on page C1-252.
<coproc> Is the name of the coprocessor, encoded in the "coproc" field. The valid coprocessor names are p10,
pll, pl4, and p15.
<opcl> Is a coprocessor-specific opcode in the range 0 to 15, encoded in the "opc1" field.
C2-474 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential 1D092816

C2 Instruction Specification
C2.4 Alphabetical list of instructions

<Rt> Is the first general-purpose register to be transferred, encoded in the "Rt" field.
<Rt2> Is the second general-purpose register to be transferred, encoded in the "Rt2" field.
<CRm> Is a coprocessor register, encoded in the "CRm" field.

Operation for all encodings

if ConditionPassed() then
EncodingSpecificOperations();
ExecuteCPCheck(cp);
if !Coproc_Accepted(cp, ThisInstr()) then
GenerateCoprocessorException();
else
(R[t2], R[t]) = Coproc_GetTwoWords(cp, ThisInstr());

Exceptions

UsageFault.

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-475
Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

C2.4.95 MRS
Move to Register from Special register moves the value from the selected special-purpose register into a
general-purpose register.
T
ARMvS-M
[15141312/1110 9 8|7 6 5 4]3 2 1 0]1514 13 12|11 8|7 \ 0|
[1 111001111 1Jommmlml1 ofofo] RrRd | SYSm |
T1 variant
MRS{<c>}{<g>} <Rd>, <spec_reg>
Decode for this encoding
d = UInt(Rd);
if d IN {13,15} then UNPREDICTABLE;
Assembler symbols
<c> See Standard assembler syntax fields on page C1-252.
<q> See Standard assembler syntax fields on page C1-252.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<spec_reg> Is the special register to be accessed, encoded in the "SYSm" field. It can have the following values:
APSR when SYSm = 00000000
IAPSR when SYSm = 00000001
EAPSR when SYSm = 00000010
XPSR when SYSm = 00000011
IPSR when SYSm = 00000101
EPSR when SYSm = 00000110
TEPSR when SYSm = 00000111
MSP when SYSm = 00001000
PSP when SYSm = 00001001
MSPLIM when SYSm = 00001010
PSPLIM when SYSm = 00001011
PRIMASK when SYSm = 00010000
BASEPRI when SYSm = 00010001
BASEPRI_MAX when SYSm = 00010010
FAULTMASK when SYSm = 00010011
CONTROL when SYSm = 00010100
MSP_NS when SYSm = 10001000
PSP_NS when SYSm = 10001001
MSPLIM_NS when SYSm = 10001010
PSPLIM_NS when SYSm = 10001011
PRIMASK_NS when SYSm = 10010000
C2-476 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. ARM DDI 0553A.c

Non-Confidential

ID092816

C2 Instruction Specification
C2.4 Alphabetical list of instructions

BASEPRI_NS when SYSm = 10010001
FAULTMASK_NS when SYSm = 10010011
CONTROL_NS when SYSm = 10010100
SP_NS when SYSm = 10011000

The following encodings are UNPREDICTABLE:
. SYSm = 00000100.
. SYSm = 000011xx.
. SYSm = 00010101.
. SYSm = 0001011x.
. SYSm = 00011xxx.
. SYSm = @@1xxxxx.
. SYSm = @LxXXXXX.
. SYSm = 10000xxx.
. SYSm = 100011xx.
. SYSm = 10010010.
. SYSm = 10010101.
. SYSm = 1001011x.
. SYSm = 10011001.
. SYSm = 1001101x.
. SYSm = 100111xx.
. SYSm = 1@1xxxxX.
. SYSm = L1IXXXXXX.

An access to a register not ending in _ NS returns the register associated with the current Security
state. Access to a register ending in _NS in Secure state returns the Non-secure register. Access to
aregister ending in _ NS in Non-secure state is RAZ/WI. Access to BASEPRI MAX returns the
contents of BASEPRI.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
R[d] = Zeros(32);

// NOTE: the MSB of SYSm is used to select between either the current
// domains view of the registers and other domains view of the register.
// This 1is required to that the Secure state can access the Non-secure
// versions of banked registers. For security reasons the Secure versions of
// the registers are not accessible from the Non-secure state.
case SYSm<7:3> of
when '00000' /# XPSR accesses x/
if UInt(SYSm) == 4 then UNPREDICTABLE;
if CurrentModeIsPrivileged() && SYSm<@> == '1' then
R[d]<8:0> = IPSR.Exception;
if SYSm<1> == '1' then
R[d]<26:24> = '000'; /# EPSR reads as zero #/
R[d]<15:10> = '000000"';
if SYSm<2> == 'Q' then
R[d]<31:27> = APSR<31:27>;
if HaveDSPExt() then
R[d]<19:16> = APSR<19:16>;
when '00001' /* SP access #/
if CurrentModeIsPrivileged() then
case SYSm<2:0> of
when '000'

ARM DDI 0553A.c
1D092816

Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved. C2-477
Non-Confidential

C2 Instruction Specification
C2.4 Alphabetical list of instructions

R[d] = SP_Main;
when '001'
R[d] = SP_Process;
when '010'
if IsSecure() then
R[d] = MSPLIM_S.LIMIT:'000';
else
if HaveMainExt() then
R[d] = MSPLIM_NS.LIMIT:'000';
else
UNPREDICTABLE;
when '011'
if IsSecure() then
R[d] = PSPLIM_S.LIMIT:'000';
else
if HaveMainExt() then
R[d] = PSPLIM_NS.LIMIT:'000';
else
UNPREDICTABLE;
otherwise
UNPREDICTABLE;

when '10001' /# SP access - alt domain =/

if !HaveSecurityExt() then UNPREDICTABLE;

if CurrentModeIsPrivileged() && CurrentState == SecurityState_Secure then

case SYSm<2:0> of
when '000'
R[d] = SP_Main_NonSecure;
when '001'
R[d] = SP_Process_NonSecure;
when '010'
if HaveMainExt() then
R[d] = MSPLIM_NS.LIMIT:'000';
else
UNPREDICTABLE;
when '011'
if HaveMainExt() then
R[d] = PSPLIM_NS.LIMIT:'000';
else
UNPREDICTABLE;
otherwise
UNPREDICTABLE;

when '00010' /# Priority mask or CONTROL access #/

case SYSm<2:0> of
when '000'
if CurrentModeIsPrivileged() then
R[d]<@> = PRIMASK.PM;
when '001'
if HaveMainExt() then
if CurrentModeIsPrivileged() then
R[d]<7:0> = BASEPRI<7:0>;
else
UNPREDICTABLE;
when '010'
if HaveMainExt() then
if CurrentModeIsPrivileged() then
R[d]<7:0> = BASEPRI<7:0>;
else
UNPREDICTABLE;
when '011'
if HaveMainExt() then
if CurrentModeIsPrivileged() then
R[d]<@> = FAULTMASK.FM;
else
UNPREDICTABLE;
when '100'
if HaveFPExt() && IsSecure() then
R[d]<3:0> = CONTROL<3:0>;
elsif HaveFPExt() then

C2-478 Copyright © 2015, 2016 ARM Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0553A.c
ID092816

C2 Instruction Specification
C2.4 Alphabetical list of instructions

R[d]<2:0> = CONTROL<2:0>;
else
R[d]<1:0> = CONTROL<1:0>;
otherwise
UNPREDICTABLE;
when '10010' /# Priority mask or CONTROL access - alt domain =/
if !HaveSecurityExt() then UNPREDICTABLE;
if CurrentState == SecurityState_Secure then
case SYSm<2:0> of
when '000'
if CurrentModeIsPrivileged() then
R[d]<0> = PRIMASK_NS.PM;
when '001'
if HaveMainExt() then
if CurrentModeIsPrivileged() then
R[d]<7:0> = BASEPRI_NS<7:0>;

else
UNPREDICTABLE;
when '011'
if HaveMainExt() then
if CurrentModeIsPrivileged() then
R[d]<@> = FAULTMASK_NS.FM;
else
UNPREDICTABLE;
when '100'
if HaveFPExt() then
R[d]<2:0> = CONTROL_NS<2:0>;

else
R[d]<1:0> = CONTROL_NS<1:0>;
otherwise
UNPREDICTABLE;
when '10011' /% SP_NS - Non-secure stack pointer :/

if !HaveSecurityExt() then UNPREDICTABLE;
if CurrentState == SecurityState_Secure then
case SYSm<2:0> of

when '000'
R[d] = _SP(LookUpSP_with_security_mode(FALSE, CurrentMode()));
otherwise
UNPREDICTABLE;