
Arm®v8-M Architecture Reference Manual

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
DDI0553B.l ID30062020

Release information

Date Version Changes

30/06/2020 B.l Non-
Confidential-
EAC

• Twelfth release of the v8.0-M manual with integrated v8.1-M material and
Custom Datapath Extension material

31/03/2020 B.k Non-
Confidential-
EAC

• Eleventh release of the v8.0-M manual with integrated v8.1-M material

17/12/2019 B.j Non-
Confidential-
EAC

• Tenth release of the v8.0-M manual with integrated v8.1-M material

02/10/2019 A.m Non-
confidential-
EAC

• Eleventh EAC release

02/10/2019 B.i Non-
Confidential-
EAC

• Ninth release of the v8.0-M manual with integrated v8.1-M material

28/06/2019 A.l Non-
confidential-
EAC

• Tenth EAC release

28/06/2019 B.h Non-
Confidential-
EAC

• Eighth release of the v8.0-M manual with integrated v8.1-M material

29/03/2019 A.k Non-
confidential-
EAC

• Ninth EAC release

29/03/2019 B.g Non-
Confidential-
EAC

• Seventh release of the v8.0-M manual with integrated v8.1-M material

14/02/2019 B.f Non-
Confidential-
EAC

• Sixth release of the v8.0-M manual with integrated v8.1-M material

14/12/2018 A.j Non-
confidential-
EAC

• Eighth EAC release

14/12/2018 B.e
Confidential-
EAC

• Fifth release of the v8.0-M manual with integrated v8.1-M material

29/06/2018 A.i Non-
confidential-
EAC

• Seventh EAC release

29/06/2018 B.d
Confidential-
Beta

• Fourth release of the v8.0-M manual with integrated v8.1-M material

31/03/2018 A.h Non-
confidential-
EAC

• Sixth EAC release

31/03/2018 B.c
Confidential-
Beta

• Third release of the v8.0-M manual with integrated v8.1-M material

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

0-ii

Date Version Changes

15/12/2017 A.g Non-
confidential-
EAC

• Fifth EAC release

15/12/2017 B.b
Confidential-
Beta

• Second release of the v8.0-M manual with integrated v8.1-M material

29/09/2017 A.f Non-
confidential-
EAC

• Fourth EAC release

29/09/2017 B.a
Confidential-
Beta

• First release of the v8.0-M manual with integrated v8.1-M material

02/06/2017 A.e Non-
confidential-
EAC

• Third EAC release

30/11/2016 A.d Non-
confidential-
EAC

• Second EAC release

30/09/2016 A.c Non-
confidential-
EAC

• EAC release

28/07/2016 A.b Non-
confidential-
Beta

• Beta release

29/03/2016 A.a
Confidential-
Beta

• Beta release, limited circulation

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

0-iii

Armv8-M Architecture Reference Manual

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. The copyright statement reflects the fact that some
draft issues of this document have been released, to a limited circulation.

Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained
in this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS,
IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABIL-
ITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT
TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has undertaken no analysis
to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, INCLUD-
ING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL
DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE
OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure
of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof
is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers
is not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document
at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written
agreement covering this document with Arm, then the click through or signed written agreement prevails over and supersedes the
conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree that
if there is any conflict between the English version of this document and any translation, the terms of the English version of the
Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited
(or its subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this
document may be the trademarks of their respective owners. Please follow Arm’s trademark usage guidelines at
http://www.arm.com/company/policies/trademarks.

Copyright © 2015 - 2020 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349

Confidentiality Status

This document is Non-confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

0-iv

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

v

Contents

Arm®v8-M Architecture Reference Manual

Release information . ii
Armv8-M Architecture Reference Manual . iv
Proprietary Notice . iv
Confidentiality Status . iv
Product Status . v
Web Address . v

Preface
About this book .xxxviii
Using this book . xxxix
Conventions . xli

Typographical conventions . xli
Signals . xli
Numbers . xlii
Pseudocode descriptions . xlii
Assembler syntax descriptions . xlii

Additional reading . xliii
Arm publications . xliii
Other publications . xliii

Feedback . xliv
Feedback on this book . xliv

Part A Armv8-M Architecture Introduction and Overview

Chapter A1 Introduction
A1.1 Document layout and terminology . 47

A1.1.1 Structure of the document . 47
A1.1.2 Scope of the document . 48
A1.1.3 Intended audience . 48
A1.1.4 Terminology, phrases . 48
A1.1.5 Terminology, Armv8-M specific terms 49

A1.2 About the Armv8 architecture, and architecture profiles 50
A1.3 The Armv8-M architecture profile . 51

A1.3.1 Security Extension . 51
A1.3.2 MPU model . 51
A1.3.3 Nested Vector Interrupt Controller . 51
A1.3.4 Stack pointers . 51
A1.3.5 The Armv8-M instruction set . 52
A1.3.6 Debug . 52
A1.3.7 Reliability, Availability, and Serviceability 52

A1.4 Armv8-M variants . 53
A1.4.1 Features of Armv8.1-M . 57
A1.4.2 Interaction between MVE and the Floating-point Extension in Armv8.1-M 60
A1.4.3 Debug in Armv8.1-M . 61

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

vi

Contents

Part B Armv8-M Architecture Rules

Chapter B1 Resets
B1.1 Resets, Cold reset, and Warm reset . 64

Chapter B2 Power Management
B2.1 Power management . 66

B2.1.1 The Wait for Event (WFE) instruction 66
B2.1.2 The Event register . 66
B2.1.3 The Wait for Interrupt (WFI) instruction 67

B2.2 Sleep on exit . 68

Chapter B3 Programmers’ Model
B3.1 PE modes, Thread mode and Handler mode 71
B3.2 Privileged and unprivileged execution . 72
B3.3 Registers . 73
B3.4 Special-purpose CONTROL register . 75
B3.5 XPSR, APSR, IPSR, and EPSR . 76

B3.5.1 Interrupt Program Status Register (IPSR) 76
B3.5.2 Execution Program Status Register (EPSR) 77

B3.6 Security states: Secure state, and Non-secure state 78
B3.7 Security states and register banking between Security states 79
B3.8 Stack pointer . 80
B3.9 Exception numbers and exception priority numbers 82
B3.10 Exception enable, pending, and active bits . 85
B3.11 Security states, exception banking . 87
B3.12 Faults . 89
B3.13 Priority model . 94
B3.14 Secure address protection . 98
B3.15 Security state transitions . 99
B3.16 Function calls from Secure state to Non-secure state 101
B3.17 Function returns from Non-secure state . 102
B3.18 Exception handling . 104
B3.19 Exception entry, context stacking . 106
B3.20 Exception entry, register clearing after context stacking 115
B3.21 Stack limit checks . 116
B3.22 Exception return . 119
B3.23 Integrity signature . 123
B3.24 Exceptions during exception entry . 124
B3.25 Exceptions during exception return . 126
B3.26 Tail-chaining . 127
B3.27 Exceptions, instruction resume, or instruction restart 130
B3.28 Low overhead loops . 133
B3.29 Branch future . 138
B3.30 Vector tables . 140
B3.31 Hardware-controlled priority escalation to HardFault 142
B3.32 Special-purpose mask registers, PRIMASK, BASEPRI, FAULTMASK, for con-

figurable priority boosting . 143
B3.33 Lockup . 145

B3.33.1 Instruction-related lockup behavior . 145
B3.33.2 Exception-related lockup behavior . 147
Errors when unstacking state on exception return 149

B3.34 Data independent timing . 151
B3.35 Context Synchronization Event . 154
B3.36 Coprocessor support . 155

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

vii

Contents

B3.37 The Custom Datapath Extension . 157
B3.37.1 Overview of the Custom Datapath Extension 157
B3.37.2 Enabling CDE instructions . 157
B3.37.3 Execution of CDE instructions . 159

Chapter B4 Floating-point Support
B4.1 The optional Floating-point Extension, FPv5 162
B4.2 About the Floating-point Status and Control Registers 164
B4.3 Registers for Floating-point data processing, S0-S31, or D0-D15 165
B4.4 Floating-point standards and terminology . 166
B4.5 Floating-point data representable . 167
B4.6 Floating-point encoding formats, half-precision, single-precision, and double-

precision . 168
B4.7 The IEEE 754 Floating-point exceptions . 170
B4.8 The Flush-to-zero mode . 171

B4.8.1 The Flush to zero mode half-precision calculations 172
B4.9 The Default NaN mode, and NaN handling . 173
B4.10 The Default NaN . 174
B4.11 Combinations of Floating-point exceptions . 175
B4.12 Priority of Floating-point exceptions relative to other Floating-point exceptions 176

Chapter B5 Vector Extension
B5.1 Vector Extension operation . 178
B5.2 Vector register file . 179
B5.3 Lanes . 180
B5.4 Beats . 181
B5.5 Exception state . 183
B5.6 Predication/conditional execution . 187

B5.6.1 Loop tail predication . 187
B5.6.2 VPT predication . 188
B5.6.3 Effects of predication . 191
B5.6.4 IT block . 193

B5.7 MVE interleaving/de-interleaving loads and stores 194

Chapter B6 Memory Model
B6.1 Memory accesses . 197
B6.2 Address space . 198
B6.3 Endianness . 199
B6.4 Alignment behavior . 201
B6.5 Atomicity . 202

B6.5.1 Single-copy atomicity . 202
B6.5.2 Multi-copy atomicity . 202

B6.6 Concurrent modification and execution of instructions 204
B6.7 Access rights . 206
B6.8 Observability of memory accesses . 208
B6.9 Completion of memory accesses . 210
B6.10 Ordering requirements for memory accesses 211
B6.11 Ordering of implicit memory accesses . 212
B6.12 Ordering of explicit memory accesses . 213
B6.13 Memory barriers . 214

B6.13.1 Instruction Synchronization Barrier . 214
B6.13.2 Data Memory Barrier . 214
B6.13.3 Data Synchronization Barrier . 215
B6.13.4 Consumption of Speculative Data Barrier 216
B6.13.5 Physical Speculative Store Bypass Barrier 217

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

viii

Contents

B6.13.6 Speculative Store Bypass Barrier . 217
B6.13.7 Synchronization requirements for System Control Space 218

B6.14 Normal memory . 219
B6.15 Cacheability attributes . 221
B6.16 Device memory . 222
B6.17 Device memory attributes . 224

B6.17.1 Gathering and non-Gathering Device memory attributes 225
B6.17.2 Reordering and non-Reordering Device memory attributes 225
B6.17.3 Early Write Acknowledgement and no Early Write Acknowledgement

Device memory attributes . 226
B6.18 Shareability domains . 227
B6.19 Shareability attributes . 229
B6.20 Memory access restrictions . 230
B6.21 Mismatched memory attributes . 231
B6.22 Load-Exclusive and Store-Exclusive accesses to Normal memory 233
B6.23 Load-Acquire and Store-Release accesses to memory 234
B6.24 Caches . 236
B6.25 Cache identification . 238
B6.26 Cache visibility . 239
B6.27 Cache coherency . 240
B6.28 Cache enabling and disabling . 241
B6.29 Cache behavior at reset . 242
B6.30 Behavior of Preload Data (PLD) and Preload Instruction (PLI) instructions with

caches . 243
B6.31 Branch predictors . 244
B6.32 Cache maintenance operations . 245
B6.33 Ordering of cache maintenance operations . 249
B6.34 Branch predictor maintenance operations . 250

Chapter B7 The System Address Map
B7.1 System address map . 252
B7.2 The System region of the system address map 253
B7.3 The System Control Space (SCS) . 255

Chapter B8 Synchronization and Semaphores
B8.1 Exclusive access instructions . 257
B8.2 The local monitors . 258
B8.3 The global monitor . 260

B8.3.1 Load-Exclusive and Store-Exclusive . 261
B8.3.2 Load-Exclusive and Store-Exclusive in Shareable memory 262

B8.4 Exclusive access instructions and the monitors 264
B8.5 Load-Exclusive and Store-Exclusive instruction constraints 265

Chapter B9 The Armv8-M Protected Memory System Architecture
B9.1 Memory Protection Unit . 268
B9.2 Security attribution . 271
B9.3 Security attribution unit (SAU) . 274
B9.4 IMPLEMENTATION DEFINED Attribution Unit (IDAU) 275

Chapter B10 The System Timer, SysTick
B10.1 The system timer, SysTick . 277

Chapter B11 Nested Vectored Interrupt Controller
B11.1 NVIC definition . 280
B11.2 NVIC operation . 281

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

ix

Contents

Chapter B12 Debug
B12.1 Debug feature overview . 284

B12.1.1 Debug mechanisms . 286
B12.1.2 Debug resources . 287
B12.1.3 Trace . 288

B12.2 Accessing debug features . 290
B12.2.1 ROM table . 290
B12.2.2 Debug System registers . 292
B12.2.3 CoreSight and identification registers 292

B12.3 Debug authentication interface . 294
B12.3.1 Halting debug authentication . 295
B12.3.2 Non-invasive debug authentication . 298
B12.3.3 DebugMonitor exception authentication 299
B12.3.4 DAP access permissions . 301

B12.4 Debug event behavior . 306
B12.4.1 About debug events . 306
B12.4.2 Debug stepping . 311
B12.4.3 Vector catch . 315
B12.4.4 Breakpoint instructions . 318
B12.4.5 External debug request . 319

B12.5 Debug state . 320
B12.6 Exiting Debug state . 323
B12.7 Multiprocessor support . 324

B12.7.1 Cross-halt event . 324
B12.7.2 External restart request . 324

Chapter B13 Debug and Trace Components
B13.1 Instrumentation Trace Macrocell . 326

B13.1.1 About the ITM . 326
B13.1.2 ITM operation . 327
B13.1.3 Timestamp support . 330
B13.1.4 Synchronization support . 333
B13.1.5 Continuation bits . 334

B13.2 Data Watchpoint and Trace unit . 335
B13.2.1 About the DWT . 335
B13.2.2 DWT unit operation . 336
B13.2.3 Constraints on programming DWT comparators 341
B13.2.4 CMPMATCH trigger events . 345
B13.2.5 Matching in detail . 345
B13.2.6 DWT match restrictions and relaxations 349
B13.2.7 DWT trace restrictions and relaxations 351
B13.2.8 CYCCNT cycle counter and related timers 352
B13.2.9 Profiling counter support . 354
B13.2.10 Program Counter sampling support . 356

B13.3 Embedded Trace Macrocell . 358
B13.4 Trace Port Interface Unit . 359
B13.5 Flash Patch and Breakpoint unit . 361

B13.5.1 About the FPB unit . 361
B13.5.2 FPB unit operation . 361
B13.5.3 Cache maintenance . 363

Chapter B14 The Performance Monitoring Extension
B14.1 Counters . 365
B14.2 Accuracy of the performance counters . 366
B14.3 Security, access, and modes . 367

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

x

Contents

B14.4 Attributability . 368
B14.5 Coexistence with the DWT Performance Monitors 369
B14.6 Interrupts and Debug events . 371
B14.7 Performance Monitors and Debug state . 372
B14.8 List of supported architectural and microarchitectural events 373
B14.9 Generic architectural and microarchitectural events 381

B14.9.1 L<n>I_CACHE_REFILL (Level<n> instruction cache refill) 381
B14.9.2 L<n>D_CACHE_REFILL (Level<n> data cache refill) 381
B14.9.3 L<n>D_CACHE_MISS_RD (Level<n> data cache miss on read) 381
B14.9.4 L<n>D_CACHE_WB (Level<n> data cache write-back) 382
B14.9.5 L<n>I_CACHE (Level<n> instruction cache access) 382
B14.9.6 L<n>D_CACHE (Level<n> data cache access) 383
B14.9.7 L<n>D_CACHE_RD (Level<n> data cache access, read) 383

B14.10 Common event descriptions . 384
B14.11 Required PMU events . 405
B14.12 IMPLEMENTATION DEFINED event numbers . 406

Chapter B15 Reliability, Availability, and Serviceability (RAS) Extension
B15.1 Overview . 408
B15.2 Taxonomy of errors . 409

B15.2.1 Architectural error propagation . 409
B15.2.2 Architecturally infected, contained, and uncontained 410
B15.2.3 Architecturally consumed errors . 410
B15.2.4 Other errors . 410

B15.3 Generating error exceptions . 411
B15.3.1 Error correction and deferment . 413

B15.4 Error Synchronization Barrier (ESB) . 414
B15.4.1 ESB and Unrecoverable errors . 414
B15.4.2 ESB and other containable errors . 414
B15.4.3 ESB and other errors . 415

B15.5 Implicit Error Synchronization (IESB) . 416
B15.6 Fault handling . 418
B15.7 RAS error records . 420
B15.8 Multiple BusFault exceptions . 423
B15.9 Error Recovery reset . 424
B15.10 Minimal RAS implementation . 425

Part C Armv8-M Instruction Set

Chapter C1 Instruction Set Overview
C1.1 Instruction set . 428
C1.2 Format of instruction descriptions . 429

C1.2.1 The title . 429
C1.2.2 A short description . 429
C1.2.3 The instruction encoding or encodings 429
C1.2.4 Any alias conditions, if applicable . 431
C1.2.5 Standard assembler syntax fields . 431
C1.2.6 Pseudocode describing how the instruction operates 433
C1.2.7 Use of labels in UAL instruction syntax 433
C1.2.8 Using syntax information . 434

C1.3 Conditional execution . 436
C1.3.1 Conditional instructions . 437
C1.3.2 Pseudocode details of conditional execution 437
C1.3.3 Conditional execution of undefined instructions 437

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xi

Contents

C1.3.4 Interaction of undefined instruction behavior with UNPREDICTABLE or
CONSTRAINED UNPREDICTABLE instruction behavior 438

C1.3.5 ITSTATE . 438
C1.3.6 Pseudocode details of ITSTATE operation 439
C1.3.7 SVC and ITSTATE . 439
C1.3.8 CONSTRAINED UNPREDICTABLE behavior and IT blocks 439

C1.4 Instruction set encoding information . 442
C1.4.1 UNDEFINED and UNPREDICTABLE instruction set space 442
C1.4.2 Pseudocode descriptions of operations on general-purpose registers

and the PC . 442
C1.4.3 Use of 0b1111 as a register specifier 442
C1.4.4 Use of 0b1101 as a register specifier 444
C1.4.5 16-bit T32 instruction support for SP . 445
C1.4.6 Branching . 445
C1.4.7 Instruction set, interworking and interstating support 446

C1.5 Modified immediate constants . 448
C1.5.1 Operation of modified immediate constants 448

C1.6 NOP-compatible hint instructions . 449
C1.7 SBZ or SBO fields in instructions . 450

Chapter C2 Instruction Specification
C2.1 Top level T32 instruction set encoding . 452
C2.2 16-bit T32 instruction encoding . 453

C2.2.1 Shift (immediate), add, subtract, move, and compare 453
C2.2.2 Data-processing (two low registers) . 455
C2.2.3 Special data instructions and branch and exchange 456
C2.2.4 Load/store (register offset) . 457
C2.2.5 Load/store word/byte (immediate offset) 457
C2.2.6 Load/store halfword (immediate offset) 458
C2.2.7 Load/store (SP-relative) . 458
C2.2.8 Add PC/SP (immediate) . 459
C2.2.9 Miscellaneous 16-bit instructions . 459
C2.2.10 Load/store multiple . 462
C2.2.11 Conditional branch, and Supervisor Call 462

C2.3 32-bit T32 instruction encoding . 464
C2.3.1 Coprocessor, floating-point, and vector instructions 464
C2.3.2 Load/store (multiple, dual, exclusive, acquire-release) 480
C2.3.3 Data-processing (shifted register) . 485
C2.3.4 Branches and miscellaneous control . 488
C2.3.5 Data-processing (modified immediate) 491
C2.3.6 Data-processing (plain binary immediate) 492
C2.3.7 Load/store single . 494
C2.3.8 Data-processing (register) . 502
C2.3.9 Multiply, multiply accumulate, and absolute difference 506
C2.3.10 Long multiply and divide . 507

C2.4 Alphabetical list of instructions . 509
C2.4.1 ADC (immediate) . 510
C2.4.2 ADC (register) . 511
C2.4.3 ADD (SP plus immediate) . 513
C2.4.4 ADD (SP plus register) . 515
C2.4.5 ADD (immediate) . 517
C2.4.6 ADD (immediate, to PC) . 520
C2.4.7 ADD (register) . 522
C2.4.8 ADR . 525
C2.4.9 AND (immediate) . 527

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xii

Contents

C2.4.10 AND (register) . 528
C2.4.11 ASR (immediate) . 530
C2.4.12 ASR (register) . 532
C2.4.13 ASRL (immediate) . 534
C2.4.14 ASRL (register) . 535
C2.4.15 ASRS (immediate) . 536
C2.4.16 ASRS (register) . 538
C2.4.17 B . 540
C2.4.18 BF, BFX, BFL, BFLX, BFCSEL . 542
C2.4.19 BFC . 546
C2.4.20 BFI . 547
C2.4.21 BIC (immediate) . 548
C2.4.22 BIC (register) . 549
C2.4.23 BKPT . 551
C2.4.24 BL . 552
C2.4.25 BLX, BLXNS . 553
C2.4.26 BX, BXNS . 555
C2.4.27 CBNZ, CBZ . 556
C2.4.28 CDP, CDP2 . 557
C2.4.29 CINC . 559
C2.4.30 CINV . 560
C2.4.31 CLREX . 561
C2.4.32 CLRM . 562
C2.4.33 CLZ . 563
C2.4.34 CMN (immediate) . 564
C2.4.35 CMN (register) . 565
C2.4.36 CMP (immediate) . 567
C2.4.37 CMP (register) . 568
C2.4.38 CNEG . 570
C2.4.39 CPS . 571
C2.4.40 CSDB . 573
C2.4.41 CSEL . 574
C2.4.42 CSET . 576
C2.4.43 CSETM . 577
C2.4.44 CSINC . 578
C2.4.45 CSINV . 580
C2.4.46 CSNEG . 582
C2.4.47 CX1 . 584
C2.4.48 CX1D . 586
C2.4.49 CX2 . 588
C2.4.50 CX2D . 590
C2.4.51 CX3 . 592
C2.4.52 CX3D . 594
C2.4.53 DBG . 596
C2.4.54 DMB . 597
C2.4.55 DSB . 598
C2.4.56 EOR (immediate) . 599
C2.4.57 EOR (register) . 600
C2.4.58 ESB . 602
C2.4.59 FLDMDBX, FLDMIAX . 603
C2.4.60 FSTMDBX, FSTMIAX . 606
C2.4.61 ISB . 608
C2.4.62 IT . 609
C2.4.63 LCTP . 611
C2.4.64 LDA . 612

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xiii

Contents

C2.4.65 LDAB . 613
C2.4.66 LDAEX . 614
C2.4.67 LDAEXB . 615
C2.4.68 LDAEXH . 616
C2.4.69 LDAH . 617
C2.4.70 LDC, LDC2 (immediate) . 618
C2.4.71 LDC, LDC2 (literal) . 621
C2.4.72 LDM, LDMIA, LDMFD . 623
C2.4.73 LDMDB, LDMEA . 627
C2.4.74 LDR (immediate) . 630
C2.4.75 LDR (literal) . 634
C2.4.76 LDR (register) . 636
C2.4.77 LDRB (immediate) . 638
C2.4.78 LDRB (literal) . 641
C2.4.79 LDRB (register) . 642
C2.4.80 LDRBT . 644
C2.4.81 LDRD (immediate) . 645
C2.4.82 LDRD (literal) . 647
C2.4.83 LDREX . 649
C2.4.84 LDREXB . 650
C2.4.85 LDREXH . 651
C2.4.86 LDRH (immediate) . 652
C2.4.87 LDRH (literal) . 655
C2.4.88 LDRH (register) . 656
C2.4.89 LDRHT . 658
C2.4.90 LDRSB (immediate) . 659
C2.4.91 LDRSB (literal) . 661
C2.4.92 LDRSB (register) . 662
C2.4.93 LDRSBT . 664
C2.4.94 LDRSH (immediate) . 665
C2.4.95 LDRSH (literal) . 667
C2.4.96 LDRSH (register) . 668
C2.4.97 LDRSHT . 670
C2.4.98 LDRT . 671
C2.4.99 LE, LETP . 672
C2.4.100 LSL (immediate) . 674
C2.4.101 LSL (register) . 676
C2.4.102 LSLL (immediate) . 678
C2.4.103 LSLL (register) . 679
C2.4.104 LSLS (immediate) . 680
C2.4.105 LSLS (register) . 682
C2.4.106 LSR (immediate) . 684
C2.4.107 LSR (register) . 686
C2.4.108 LSRL (immediate) . 688
C2.4.109 LSRS (immediate) . 689
C2.4.110 LSRS (register) . 691
C2.4.111 MCR, MCR2 . 693
C2.4.112 MCRR, MCRR2 . 695
C2.4.113 MLA . 697
C2.4.114 MLS . 698
C2.4.115 MOV (immediate) . 699
C2.4.116 MOV (register) . 701
C2.4.117 MOV, MOVS (register-shifted register) 705
C2.4.118 MOVT . 708
C2.4.119 MRC, MRC2 . 709

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xiv

Contents

C2.4.120 MRRC, MRRC2 . 711
C2.4.121 MRS . 713
C2.4.122 MSR (register) . 717
C2.4.123 MUL . 722
C2.4.124 MVN (immediate) . 724
C2.4.125 MVN (register) . 725
C2.4.126 NOP . 727
C2.4.127 ORN (immediate) . 728
C2.4.128 ORN (register) . 729
C2.4.129 ORR (immediate) . 731
C2.4.130 ORR (register) . 732
C2.4.131 PKHBT, PKHTB . 734
C2.4.132 PLD (literal) . 736
C2.4.133 PLD, PLDW (immediate) . 737
C2.4.134 PLD, PLDW (register) . 739
C2.4.135 PLI (immediate, literal) . 740
C2.4.136 PLI (register) . 742
C2.4.137 POP (multiple registers) . 743
C2.4.138 POP (single register) . 745
C2.4.139 PSSBB . 746
C2.4.140 PUSH (multiple registers) . 747
C2.4.141 PUSH (single register) . 749
C2.4.142 QADD . 750
C2.4.143 QADD16 . 751
C2.4.144 QADD8 . 752
C2.4.145 QASX . 753
C2.4.146 QDADD . 754
C2.4.147 QDSUB . 755
C2.4.148 QSAX . 756
C2.4.149 QSUB . 757
C2.4.150 QSUB16 . 758
C2.4.151 QSUB8 . 759
C2.4.152 RBIT . 760
C2.4.153 REV . 761
C2.4.154 REV16 . 763
C2.4.155 REVSH . 765
C2.4.156 ROR (immediate) . 767
C2.4.157 ROR (register) . 768
C2.4.158 RORS (immediate) . 770
C2.4.159 RORS (register) . 771
C2.4.160 RRX . 773
C2.4.161 RRXS . 774
C2.4.162 RSB (immediate) . 775
C2.4.163 RSB (register) . 777
C2.4.164 SADD16 . 779
C2.4.165 SADD8 . 780
C2.4.166 SASX . 781
C2.4.167 SBC (immediate) . 782
C2.4.168 SBC (register) . 783
C2.4.169 SBFX . 785
C2.4.170 SDIV . 786
C2.4.171 SEL . 787
C2.4.172 SEV . 788
C2.4.173 SG . 789
C2.4.174 SHADD16 . 791

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xv

Contents

C2.4.175 SHADD8 . 792
C2.4.176 SHASX . 793
C2.4.177 SHSAX . 794
C2.4.178 SHSUB16 . 795
C2.4.179 SHSUB8 . 796
C2.4.180 SMLABB, SMLABT, SMLATB, SMLATT 797
C2.4.181 SMLAD, SMLADX . 799
C2.4.182 SMLAL . 800
C2.4.183 SMLALBB, SMLALBT, SMLALTB, SMLALTT 801
C2.4.184 SMLALD, SMLALDX . 803
C2.4.185 SMLAWB, SMLAWT . 805
C2.4.186 SMLSD, SMLSDX . 806
C2.4.187 SMLSLD, SMLSLDX . 807
C2.4.188 SMMLA, SMMLAR . 809
C2.4.189 SMMLS, SMMLSR . 810
C2.4.190 SMMUL, SMMULR . 811
C2.4.191 SMUAD, SMUADX . 812
C2.4.192 SMULBB, SMULBT, SMULTB, SMULTT 813
C2.4.193 SMULL . 815
C2.4.194 SMULWB, SMULWT . 816
C2.4.195 SMUSD, SMUSDX . 817
C2.4.196 SQRSHR (register) . 818
C2.4.197 SQRSHRL (register) . 819
C2.4.198 SQSHL (immediate) . 820
C2.4.199 SQSHLL (immediate) . 821
C2.4.200 SRSHR (immediate) . 822
C2.4.201 SRSHRL (immediate) . 823
C2.4.202 SSAT . 824
C2.4.203 SSAT16 . 825
C2.4.204 SSAX . 826
C2.4.205 SSBB . 827
C2.4.206 SSUB16 . 828
C2.4.207 SSUB8 . 829
C2.4.208 STC, STC2 . 830
C2.4.209 STL . 833
C2.4.210 STLB . 834
C2.4.211 STLEX . 835
C2.4.212 STLEXB . 837
C2.4.213 STLEXH . 839
C2.4.214 STLH . 841
C2.4.215 STM, STMIA, STMEA . 842
C2.4.216 STMDB, STMFD . 845
C2.4.217 STR (immediate) . 847
C2.4.218 STR (register) . 850
C2.4.219 STRB (immediate) . 852
C2.4.220 STRB (register) . 855
C2.4.221 STRBT . 857
C2.4.222 STRD (immediate) . 858
C2.4.223 STREX . 860
C2.4.224 STREXB . 862
C2.4.225 STREXH . 864
C2.4.226 STRH (immediate) . 866
C2.4.227 STRH (register) . 869
C2.4.228 STRHT . 871
C2.4.229 STRT . 872

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xvi

Contents

C2.4.230 SUB (SP minus immediate) . 873
C2.4.231 SUB (SP minus register) . 875
C2.4.232 SUB (immediate) . 877
C2.4.233 SUB (immediate, from PC) . 880
C2.4.234 SUB (register) . 881
C2.4.235 SVC . 883
C2.4.236 SXTAB . 884
C2.4.237 SXTAB16 . 885
C2.4.238 SXTAH . 886
C2.4.239 SXTB . 887
C2.4.240 SXTB16 . 889
C2.4.241 SXTH . 890
C2.4.242 TBB, TBH . 892
C2.4.243 TEQ (immediate) . 893
C2.4.244 TEQ (register) . 894
C2.4.245 TST (immediate) . 895
C2.4.246 TST (register) . 896
C2.4.247 TT, TTT, TTA, TTAT . 898
C2.4.248 UADD16 . 900
C2.4.249 UADD8 . 901
C2.4.250 UASX . 902
C2.4.251 UBFX . 903
C2.4.252 UDF . 904
C2.4.253 UDIV . 905
C2.4.254 UHADD16 . 906
C2.4.255 UHADD8 . 907
C2.4.256 UHASX . 908
C2.4.257 UHSAX . 909
C2.4.258 UHSUB16 . 910
C2.4.259 UHSUB8 . 911
C2.4.260 UMAAL . 912
C2.4.261 UMLAL . 913
C2.4.262 UMULL . 914
C2.4.263 UQADD16 . 915
C2.4.264 UQADD8 . 916
C2.4.265 UQASX . 917
C2.4.266 UQRSHL (register) . 918
C2.4.267 UQRSHLL (register) . 919
C2.4.268 UQSAX . 920
C2.4.269 UQSHL (immediate) . 921
C2.4.270 UQSHLL (immediate) . 922
C2.4.271 UQSUB16 . 923
C2.4.272 UQSUB8 . 924
C2.4.273 URSHR (immediate) . 925
C2.4.274 URSHRL (immediate) . 926
C2.4.275 USAD8 . 927
C2.4.276 USADA8 . 928
C2.4.277 USAT . 929
C2.4.278 USAT16 . 930
C2.4.279 USAX . 931
C2.4.280 USUB16 . 932
C2.4.281 USUB8 . 933
C2.4.282 UXTAB . 934
C2.4.283 UXTAB16 . 935
C2.4.284 UXTAH . 936

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xvii

Contents

C2.4.285 UXTB . 937
C2.4.286 UXTB16 . 939
C2.4.287 UXTH . 940
C2.4.288 VABAV . 942
C2.4.289 VABD (floating-point) . 944
C2.4.290 VABD . 946
C2.4.291 VABS (floating-point) . 948
C2.4.292 VABS (vector) . 949
C2.4.293 VABS . 950
C2.4.294 VADC . 952
C2.4.295 VADD (floating-point) . 954
C2.4.296 VADD (vector) . 956
C2.4.297 VADD . 958
C2.4.298 VADDLV . 960
C2.4.299 VADDV . 962
C2.4.300 VAND (immediate) . 964
C2.4.301 VAND . 965
C2.4.302 VBIC (immediate) . 966
C2.4.303 VBIC (register) . 968
C2.4.304 VBRSR . 969
C2.4.305 VCADD (floating-point) . 971
C2.4.306 VCADD . 973
C2.4.307 VCLS . 975
C2.4.308 VCLZ . 976
C2.4.309 VCMLA (floating-point) . 977
C2.4.310 VCMP (floating-point) . 980
C2.4.311 VCMP (vector) . 982
C2.4.312 VCMP . 987
C2.4.313 VCMPE . 989
C2.4.314 VCMUL (floating-point) . 991
C2.4.315 VCTP . 994
C2.4.316 VCVT (between double-precision and single-precision) 995
C2.4.317 VCVT (between floating-point and fixed-point) (vector) 996
C2.4.318 VCVT (between floating-point and fixed-point) 998
C2.4.319 VCVT (between floating-point and integer) 1001
C2.4.320 VCVT (between single and half-precision floating-point)1003
C2.4.321 VCVT (floating-point to integer) .1005
C2.4.322 VCVT (from floating-point to integer) 1007
C2.4.323 VCVT (integer to floating-point) .1009
C2.4.324 VCVTA . 1011
C2.4.325 VCVTB .1013
C2.4.326 VCVTM .1015
C2.4.327 VCVTN . 1017
C2.4.328 VCVTP .1019
C2.4.329 VCVTR . 1021
C2.4.330 VCVTT .1023
C2.4.331 VCX1 (vector) .1025
C2.4.332 VCX1 . 1027
C2.4.333 VCX2 (vector) .1029
C2.4.334 VCX2 . 1031
C2.4.335 VCX3 (vector) .1033
C2.4.336 VCX3 .1035
C2.4.337 VDDUP, VDWDUP . 1037
C2.4.338 VDIV .1040
C2.4.339 VDUP .1042

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xviii

Contents

C2.4.340 VEOR . 1044
C2.4.341 VFMA (vector by scalar plus vector, floating-point)1045
C2.4.342 VFMA . 1047
C2.4.343 VFMA, VFMS (floating-point) .1049
C2.4.344 VFMAS (vector by vector plus scalar, floating-point) 1051
C2.4.345 VFMS .1053
C2.4.346 VFNMA .1055
C2.4.347 VFNMS . 1057
C2.4.348 VHADD .1059
C2.4.349 VHCADD . 1061
C2.4.350 VHSUB .1063
C2.4.351 VIDUP, VIWDUP .1065
C2.4.352 VINS .1068
C2.4.353 VLD2 .1069
C2.4.354 VLD4 . 1071
C2.4.355 VLDM .1073
C2.4.356 VLDR (System Register) .1076
C2.4.357 VLDR .1079
C2.4.358 VLDRB, VLDRH, VLDRW .1082
C2.4.359 VLDRB, VLDRH, VLDRW, VLDRD (vector) 1087
C2.4.360 VLLDM .1093
C2.4.361 VLSTM .1095
C2.4.362 VMAX, VMAXA . 1097
C2.4.363 VMAXNM .1099
C2.4.364 VMAXNM, VMAXNMA (floating-point) 1101
C2.4.365 VMAXNMV, VMAXNMAV (floating-point)1103
C2.4.366 VMAXV, VMAXAV .1105
C2.4.367 VMIN, VMINA . 1107
C2.4.368 VMINNM .1109
C2.4.369 VMINNM, VMINNMA (floating-point) . 1111
C2.4.370 VMINNMV, VMINNMAV (floating-point)1113
C2.4.371 VMINV, VMINAV .1115
C2.4.372 VMLA (vector by scalar plus vector) . 1117
C2.4.373 VMLA .1119
C2.4.374 VMLADAV . 1121
C2.4.375 VMLALDAV . 1124
C2.4.376 VMLALV .1126
C2.4.377 VMLAS (vector by vector plus scalar) 1127
C2.4.378 VMLAV .1129
C2.4.379 VMLS .1130
C2.4.380 VMLSDAV .1132
C2.4.381 VMLSLDAV .1135
C2.4.382 VMOV (between general-purpose register and half-precision register) . 1137
C2.4.383 VMOV (between general-purpose register and single-precision register)1138
C2.4.384 VMOV (between two general-purpose registers and a doubleword register)1139
C2.4.385 VMOV (between two general-purpose registers and two single-precision

registers) . 1141
C2.4.386 VMOV (general-purpose register to vector lane)1143
C2.4.387 VMOV (half of doubleword register to single general-purpose register) . 1144
C2.4.388 VMOV (immediate) (vector) .1145
C2.4.389 VMOV (immediate) . 1147
C2.4.390 VMOV (register) (vector) .1149
C2.4.391 VMOV (register) .1150
C2.4.392 VMOV (single general-purpose register to half of doubleword register) . 1151
C2.4.393 VMOV (two 32-bit vector lanes to two general-purpose registers)1152

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xix

Contents

C2.4.394 VMOV (two general-purpose registers to two 32-bit vector lanes) 1154
C2.4.395 VMOV (vector lane to general-purpose register)1156
C2.4.396 VMOVL .1158
C2.4.397 VMOVN .1160
C2.4.398 VMOVX .1162
C2.4.399 VMRS .1163
C2.4.400 VMSR .1166
C2.4.401 VMUL (floating-point) .1168
C2.4.402 VMUL (vector) .1170
C2.4.403 VMUL .1172
C2.4.404 VMULH, VRMULH . 1174
C2.4.405 VMULL (integer) .1176
C2.4.406 VMULL (polynomial) .1178
C2.4.407 VMVN (immediate) .1180
C2.4.408 VMVN (register) .1182
C2.4.409 VNEG (floating-point) .1183
C2.4.410 VNEG (vector) . 1184
C2.4.411 VNEG .1185
C2.4.412 VNMLA . 1187
C2.4.413 VNMLS .1189
C2.4.414 VNMUL . 1191
C2.4.415 VORN (immediate) .1193
C2.4.416 VORN . 1194
C2.4.417 VORR (immediate) .1195
C2.4.418 VORR . 1197
C2.4.419 VPNOT .1198
C2.4.420 VPOP .1199
C2.4.421 VPSEL . 1201
C2.4.422 VPST .1202
C2.4.423 VPT (floating-point) .1203
C2.4.424 VPT .1206
C2.4.425 VPUSH .1212
C2.4.426 VQABS . 1214
C2.4.427 VQADD .1215
C2.4.428 VQDMLADH, VQRDMLADH . 1217
C2.4.429 VQDMLAH, VQRDMLAH (vector by scalar plus vector)1220
C2.4.430 VQDMLASH, VQRDMLASH (vector by vector plus scalar)1222
C2.4.431 VQDMLSDH, VQRDMLSDH . 1224
C2.4.432 VQDMULH, VQRDMULH . 1227
C2.4.433 VQDMULL .1230
C2.4.434 VQMOVN .1232
C2.4.435 VQMOVUN . 1234
C2.4.436 VQNEG .1236
C2.4.437 VQRSHL . 1237
C2.4.438 VQRSHRN .1239
C2.4.439 VQRSHRUN . 1241
C2.4.440 VQSHL, VQSHLU .1243
C2.4.441 VQSHRN . 1247
C2.4.442 VQSHRUN .1249
C2.4.443 VQSUB . 1251
C2.4.444 VREV16 .1253
C2.4.445 VREV32 .1255
C2.4.446 VREV64 . 1257
C2.4.447 VRHADD .1259
C2.4.448 VRINT (floating-point) . 1261

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xx

Contents

C2.4.449 VRINTA .1263
C2.4.450 VRINTM .1265
C2.4.451 VRINTN . 1267
C2.4.452 VRINTP .1269
C2.4.453 VRINTR . 1271
C2.4.454 VRINTX .1273
C2.4.455 VRINTZ .1275
C2.4.456 VRMLALDAVH . 1277
C2.4.457 VRMLALVH .1279
C2.4.458 VRMLSLDAVH .1280
C2.4.459 VRSHL .1282
C2.4.460 VRSHR . 1284
C2.4.461 VRSHRN .1286
C2.4.462 VSBC .1288
C2.4.463 VSCCLRM .1290
C2.4.464 VSEL .1292
C2.4.465 VSHL .1295
C2.4.466 VSHLC .1298
C2.4.467 VSHLL .1299
C2.4.468 VSHR .1302
C2.4.469 VSHRN . 1304
C2.4.470 VSLI .1306
C2.4.471 VSQRT .1308
C2.4.472 VSRI .1310
C2.4.473 VST2 .1312
C2.4.474 VST4 . 1314
C2.4.475 VSTM .1316
C2.4.476 VSTR (System Register) .1319
C2.4.477 VSTR .1322
C2.4.478 VSTRB, VSTRH, VSTRW . 1324
C2.4.479 VSTRB, VSTRH, VSTRW, VSTRD (vector)1329
C2.4.480 VSUB (floating-point) .1335
C2.4.481 VSUB (vector) . 1337
C2.4.482 VSUB .1339
C2.4.483 WFE . 1341
C2.4.484 WFI .1342
C2.4.485 WLS, DLS, WLSTP, DLSTP .1343
C2.4.486 YIELD .1346

Part D Armv8-M Registers and Payload Specification

Chapter D1 Register and Payload Specification
D1.1 Register index .1349

D1.1.1 Special and general-purpose registers1349
D1.1.2 Payloads .1350
D1.1.3 Instrumentation Macrocell .1350
D1.1.4 Data Watchpoint and Trace .1350
D1.1.5 Flash Patch and Breakpoint . 1351
D1.1.6 Performance Monitoring Unit . 1351
D1.1.7 Reliability, Availability and Serviceability Extension Fault Status Register1352
D1.1.8 Implementation Control Block .1352
D1.1.9 SysTick Timer .1353
D1.1.10 Nested Vectored Interrupt Controller .1353
D1.1.11 System Control Block .1353

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xxi

Contents

D1.1.12 Memory Protection Unit . 1354
D1.1.13 Security Attribution Unit . 1354
D1.1.14 Debug Control Block . 1354
D1.1.15 Software Interrupt Generation .1355
D1.1.16 Reliability, Availability and Serviceability Extension Fault Status Register1355
D1.1.17 Floating-Point Extension .1355
D1.1.18 Cache Maintenance Operations .1355
D1.1.19 Debug Identification Block .1356
D1.1.20 Implementation Control Block (NS alias)1356
D1.1.21 SysTick Timer (NS alias) .1356
D1.1.22 Nested Vectored Interrupt Controller (NS alias)1356
D1.1.23 System Control Block (NS alias) . 1357
D1.1.24 Memory Protection Unit (NS alias) . 1357
D1.1.25 Debug Control Block (NS alias) .1358
D1.1.26 Software Interrupt Generation (NS alias)1358
D1.1.27 Reliability, Availability and Serviceability Extension Fault Status Register

(NS Alias) .1358
D1.1.28 Floating-Point Extension (NS alias) .1358
D1.1.29 Cache Maintenance Operations (NS alias)1358
D1.1.30 Debug Identification Block (NS alias)1359
D1.1.31 Trace Port Interface Unit .1359

D1.2 Alphabetical list of registers . 1361
D1.2.1 ACTLR, Auxiliary Control Register .1362
D1.2.2 AFSR, Auxiliary Fault Status Register1363
D1.2.3 AIRCR, Application Interrupt and Reset Control Register 1364
D1.2.4 APSR, Application Program Status Register1369
D1.2.5 BASEPRI, Base Priority Mask Register 1371
D1.2.6 BFAR, BusFault Address Register .1372
D1.2.7 BFSR, BusFault Status Register .1373
D1.2.8 BPIALL, Branch Predictor Invalidate All1376
D1.2.9 CCR, Configuration and Control Register 1377
D1.2.10 CCSIDR, Current Cache Size ID register 1381
D1.2.11 CFSR, Configurable Fault Status Register1383
D1.2.12 CLIDR, Cache Level ID Register . 1384
D1.2.13 CONTROL, Control Register .1386
D1.2.14 CPACR, Coprocessor Access Control Register1388
D1.2.15 CPPWR, Coprocessor Power Control Register1390
D1.2.16 CPUID, CPUID Base Register .1393
D1.2.17 CSSELR, Cache Size Selection Register1395
D1.2.18 CTR, Cache Type Register . 1397
D1.2.19 DAUTHCTRL, Debug Authentication Control Register1399
D1.2.20 DAUTHSTATUS, Debug Authentication Status Register1402
D1.2.21 DCCIMVAC, Data Cache line Clean and Invalidate by Address to PoC .1405
D1.2.22 DCCISW, Data Cache line Clean and Invalidate by Set/Way1406
D1.2.23 DCCMVAC, Data Cache line Clean by Address to PoC 1407
D1.2.24 DCCMVAU, Data Cache line Clean by address to PoU1408
D1.2.25 DCCSW, Data Cache Clean line by Set/Way1409
D1.2.26 DCIDR0, SCS Component Identification Register 01410
D1.2.27 DCIDR1, SCS Component Identification Register 1 1411
D1.2.28 DCIDR2, SCS Component Identification Register 21412
D1.2.29 DCIDR3, SCS Component Identification Register 31413
D1.2.30 DCIMVAC, Data Cache line Invalidate by Address to PoC 1414
D1.2.31 DCISW, Data Cache line Invalidate by Set/Way1415
D1.2.32 DCRDR, Debug Core Register Data Register1416
D1.2.33 DCRSR, Debug Core Register Select Register 1417

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xxii

Contents

D1.2.34 DDEVARCH, SCS Device Architecture Register 1421
D1.2.35 DDEVTYPE, SCS Device Type Register1423
D1.2.36 DEMCR, Debug Exception and Monitor Control Register1425
D1.2.37 DFSR, Debug Fault Status Register .1432
D1.2.38 DHCSR, Debug Halting Control and Status Register 1434
D1.2.39 DLAR, SCS Software Lock Access Register 1441
D1.2.40 DLSR, SCS Software Lock Status Register1442
D1.2.41 DPIDR0, SCS Peripheral Identification Register 0 1444
D1.2.42 DPIDR1, SCS Peripheral Identification Register 11445
D1.2.43 DPIDR2, SCS Peripheral Identification Register 21446
D1.2.44 DPIDR3, SCS Peripheral Identification Register 3 1447
D1.2.45 DPIDR4, SCS Peripheral Identification Register 41448
D1.2.46 DPIDR5, SCS Peripheral Identification Register 51449
D1.2.47 DPIDR6, SCS Peripheral Identification Register 61450
D1.2.48 DPIDR7, SCS Peripheral Identification Register 7 1451
D1.2.49 DSCEMCR, Debug Set Clear Exception and Monitor Control Register .1452
D1.2.50 DSCSR, Debug Security Control and Status Register 1454
D1.2.51 DWT_CIDR0, DWT Component Identification Register 01456
D1.2.52 DWT_CIDR1, DWT Component Identification Register 1 1457
D1.2.53 DWT_CIDR2, DWT Component Identification Register 21458
D1.2.54 DWT_CIDR3, DWT Component Identification Register 31459
D1.2.55 DWT_COMPn, DWT Comparator Register, n = 0 - 141460
D1.2.56 DWT_CPICNT, DWT CPI Count Register1462
D1.2.57 DWT_CTRL, DWT Control Register . 1464
D1.2.58 DWT_CYCCNT, DWT Cycle Count Register1469
D1.2.59 DWT_DEVARCH, DWT Device Architecture Register1470
D1.2.60 DWT_DEVTYPE, DWT Device Type Register1472
D1.2.61 DWT_EXCCNT, DWT Exception Overhead Count Register1473
D1.2.62 DWT_FOLDCNT, DWT Folded Instruction Count Register 1474
D1.2.63 DWT_FUNCTIONn, DWT Comparator Function Register, n = 0 - 14 . .1475
D1.2.64 DWT_LAR, DWT Software Lock Access Register1480
D1.2.65 DWT_LSR, DWT Software Lock Status Register 1481
D1.2.66 DWT_LSUCNT, DWT LSU Count Register1483
D1.2.67 DWT_PCSR, DWT Program Counter Sample Register 1484
D1.2.68 DWT_PIDR0, DWT Peripheral Identification Register 01485
D1.2.69 DWT_PIDR1, DWT Peripheral Identification Register 11486
D1.2.70 DWT_PIDR2, DWT Peripheral Identification Register 2 1487
D1.2.71 DWT_PIDR3, DWT Peripheral Identification Register 31488
D1.2.72 DWT_PIDR4, DWT Peripheral Identification Register 41489
D1.2.73 DWT_PIDR5, DWT Peripheral Identification Register 51490
D1.2.74 DWT_PIDR6, DWT Peripheral Identification Register 6 1491
D1.2.75 DWT_PIDR7, DWT Peripheral Identification Register 71492
D1.2.76 DWT_SLEEPCNT, DWT Sleep Count Register1493
D1.2.77 DWT_VMASKn, DWT Comparator Value Mask Register, n = 0 - 14 . . .1495
D1.2.78 EPSR, Execution Program Status Register 1497
D1.2.79 ERRADDRn, Error Record Address Register, n = 0 - 551499
D1.2.80 ERRADDR2n, Error Record Address 2 Register, n = 0 - 551500
D1.2.81 ERRCTRLn, Error Record Control Register, n = 0 - 551502
D1.2.82 ERRDEVID, Error Record Device ID Register1506
D1.2.83 ERRFRn, Error Record Feature Register, n = 0 - 55 1507
D1.2.84 ERRGSRn, RAS Fault Group Status Register 1511
D1.2.85 ERRIIDR, Error Implementer ID Register1512
D1.2.86 ERRMISC0n, Error Record Miscellaneous 0 Register, n = 0 - 551513
D1.2.87 ERRMISC1n, Error Record Miscellaneous 1 Register, n = 0 - 55 1517
D1.2.88 ERRMISC2n, Error Record Miscellaneous 2 Register, n = 0 - 551518

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xxiii

Contents

D1.2.89 ERRMISC3n, Error Record Miscellaneous 3 Register, n = 0 - 551519
D1.2.90 ERRMISC4n, Error Record Miscellaneous 4 Register, n = 0 - 551520
D1.2.91 ERRMISC5n, Error Record Miscellaneous 5 Register, n = 0 - 55 1521
D1.2.92 ERRMISC6n, Error Record Miscellaneous 6 Register, n = 0 - 551522
D1.2.93 ERRMISC7n, Error Record Miscellaneous 7 Register, n = 0 - 551523
D1.2.94 ERRSTATUSn, Error Record Primary Status Register, n = 0 - 55 1524
D1.2.95 EXC_RETURN, Exception Return Payload 1531
D1.2.96 FAULTMASK, Fault Mask Register .1533
D1.2.97 FNC_RETURN, Function Return Payload 1534
D1.2.98 FPCAR, Floating-Point Context Address Register1535
D1.2.99 FPCCR, Floating-Point Context Control Register1536
D1.2.100 FPCXT, Floating-point context payload1542
D1.2.101 FPDSCR, Floating-Point Default Status Control Register 1544
D1.2.102 FPSCR, Floating-point Status and Control Register1546
D1.2.103 FP_CIDR0, FP Component Identification Register 01552
D1.2.104 FP_CIDR1, FP Component Identification Register 11553
D1.2.105 FP_CIDR2, FP Component Identification Register 2 1554
D1.2.106 FP_CIDR3, FP Component Identification Register 31555
D1.2.107 FP_COMPn, Flash Patch Comparator Register, n = 0 - 1251556
D1.2.108 FP_CTRL, Flash Patch Control Register 1557
D1.2.109 FP_DEVARCH, FPB Device Architecture Register1559
D1.2.110 FP_DEVTYPE, FPB Device Type Register 1561
D1.2.111 FP_LAR, FPB Software Lock Access Register1562
D1.2.112 FP_LSR, FPB Software Lock Status Register1563
D1.2.113 FP_PIDR0, FP Peripheral Identification Register 01565
D1.2.114 FP_PIDR1, FP Peripheral Identification Register 11566
D1.2.115 FP_PIDR2, FP Peripheral Identification Register 2 1567
D1.2.116 FP_PIDR3, FP Peripheral Identification Register 31568
D1.2.117 FP_PIDR4, FP Peripheral Identification Register 41569
D1.2.118 FP_PIDR5, FP Peripheral Identification Register 51570
D1.2.119 FP_PIDR6, FP Peripheral Identification Register 6 1571
D1.2.120 FP_PIDR7, FP Peripheral Identification Register 71572
D1.2.121 FP_REMAP, Flash Patch Remap Register1573
D1.2.122 HFSR, HardFault Status Register . 1574
D1.2.123 ICIALLU, Instruction Cache Invalidate All to PoU1576
D1.2.124 ICIMVAU, Instruction Cache line Invalidate by Address to PoU 1577
D1.2.125 ICSR, Interrupt Control and State Register1578
D1.2.126 ICTR, Interrupt Controller Type Register 1584
D1.2.127 ID_AFR0, Auxiliary Feature Register 01585
D1.2.128 ID_DFR0, Debug Feature Register 01586
D1.2.129 ID_ISAR0, Instruction Set Attribute Register 01588
D1.2.130 ID_ISAR1, Instruction Set Attribute Register 11590
D1.2.131 ID_ISAR2, Instruction Set Attribute Register 21592
D1.2.132 ID_ISAR3, Instruction Set Attribute Register 31595
D1.2.133 ID_ISAR4, Instruction Set Attribute Register 41598
D1.2.134 ID_ISAR5, Instruction Set Attribute Register 51600
D1.2.135 ID_MMFR0, Memory Model Feature Register 0 1601
D1.2.136 ID_MMFR1, Memory Model Feature Register 11603
D1.2.137 ID_MMFR2, Memory Model Feature Register 2 1604
D1.2.138 ID_MMFR3, Memory Model Feature Register 31605
D1.2.139 ID_PFR0, Processor Feature Register 0 1607
D1.2.140 ID_PFR1, Processor Feature Register 11609
D1.2.141 IPSR, Interrupt Program Status Register 1611
D1.2.142 ITM_CIDR0, ITM Component Identification Register 01612
D1.2.143 ITM_CIDR1, ITM Component Identification Register 11613

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xxiv

Contents

D1.2.144 ITM_CIDR2, ITM Component Identification Register 2 1614
D1.2.145 ITM_CIDR3, ITM Component Identification Register 31615
D1.2.146 ITM_DEVARCH, ITM Device Architecture Register1616
D1.2.147 ITM_DEVTYPE, ITM Device Type Register1618
D1.2.148 ITM_LAR, ITM Software Lock Access Register1620
D1.2.149 ITM_LSR, ITM Software Lock Status Register 1621
D1.2.150 ITM_PIDR0, ITM Peripheral Identification Register 01623
D1.2.151 ITM_PIDR1, ITM Peripheral Identification Register 1 1624
D1.2.152 ITM_PIDR2, ITM Peripheral Identification Register 21625
D1.2.153 ITM_PIDR3, ITM Peripheral Identification Register 31626
D1.2.154 ITM_PIDR4, ITM Peripheral Identification Register 4 1627
D1.2.155 ITM_PIDR5, ITM Peripheral Identification Register 51628
D1.2.156 ITM_PIDR6, ITM Peripheral Identification Register 61629
D1.2.157 ITM_PIDR7, ITM Peripheral Identification Register 71630
D1.2.158 ITM_STIMn, ITM Stimulus Port Register, n = 0 - 255 1631
D1.2.159 ITM_TCR, ITM Trace Control Register1633
D1.2.160 ITM_TERn, ITM Trace Enable Register, n = 0 - 7 1637
D1.2.161 ITM_TPR, ITM Trace Privilege Register1638
D1.2.162 LO_BRANCH_INFO, Loop and branch tracking information1639
D1.2.163 LR, Link Register .1640
D1.2.164 MAIR_ATTR, Memory Attribute Indirection Register Attributes 1641
D1.2.165 MMFAR, MemManage Fault Address Register1643
D1.2.166 MMFSR, MemManage Fault Status Register 1644
D1.2.167 MPU_CTRL, MPU Control Register . 1647
D1.2.168 MPU_MAIR0, MPU Memory Attribute Indirection Register 01649
D1.2.169 MPU_MAIR1, MPU Memory Attribute Indirection Register 11650
D1.2.170 MPU_RBAR, MPU Region Base Address Register 1651
D1.2.171 MPU_RBAR_An, MPU Region Base Address Register Alias, n = 1 - 3 .1653
D1.2.172 MPU_RLAR, MPU Region Limit Address Register1655
D1.2.173 MPU_RLAR_An, MPU Region Limit Address Register Alias, n = 1 - 3 . 1657
D1.2.174 MPU_RNR, MPU Region Number Register1659
D1.2.175 MPU_TYPE, MPU Type Register .1660
D1.2.176 MSPLIM, Main Stack Pointer Limit Register 1661
D1.2.177 MVFR0, Media and VFP Feature Register 01662
D1.2.178 MVFR1, Media and VFP Feature Register 1 1664
D1.2.179 MVFR2, Media and VFP Feature Register 2 1667
D1.2.180 NSACR, Non-secure Access Control Register1668
D1.2.181 NVIC_IABRn, Interrupt Active Bit Register, n = 0 - 151670
D1.2.182 NVIC_ICERn, Interrupt Clear Enable Register, n = 0 - 15 1671
D1.2.183 NVIC_ICPRn, Interrupt Clear Pending Register, n = 0 - 151672
D1.2.184 NVIC_IPRn, Interrupt Priority Register, n = 0 - 1231673
D1.2.185 NVIC_ISERn, Interrupt Set Enable Register, n = 0 - 15 1674
D1.2.186 NVIC_ISPRn, Interrupt Set Pending Register, n = 0 - 151675
D1.2.187 NVIC_ITNSn, Interrupt Target Non-secure Register, n = 0 - 15 1677
D1.2.188 PC, Program Counter .1678
D1.2.189 PMU_AUTHSTATUS, Performance Monitoring Unit Authentication Status

Register .1679
D1.2.190 PMU_CCFILTR, Performance Monitoring Unit Cycle Counter Filter Register1682
D1.2.191 PMU_CCNTR, Performance Monitoring Unit Cycle Counter Register . .1683
D1.2.192 PMU_CIDR0, Performance Monitoring Unit Component Identification

Register 0 . 1684
D1.2.193 PMU_CIDR1, Performance Monitoring Unit Component Identification

Register 1 .1685
D1.2.194 PMU_CIDR2, Performance Monitoring Unit Component Identification

Register 2 .1686

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xxv

Contents

D1.2.195 PMU_CIDR3, Performance Monitoring Unit Component Identification
Register 3 . 1687

D1.2.196 PMU_CNTENCLR, Performance Monitoring Unit Count Enable Clear
Register .1688

D1.2.197 PMU_CNTENSET, Performance Monitoring Unit Count Enable Set Reg-
ister .1690

D1.2.198 PMU_CTRL, Performance Monitoring Unit Control Register1692
D1.2.199 PMU_DEVARCH, Performance Monitoring Unit Device Architecture Reg-

ister . 1694
D1.2.200 PMU_DEVTYPE, Performance Monitoring Unit Device Type Register .1696
D1.2.201 PMU_EVCNTRn, Performance Monitoring Unit Event Counter Register 1697
D1.2.202 PMU_EVTYPERn, Performance Monitoring Unit Event Type and Filter

Register .1698
D1.2.203 PMU_INTENCLR, Performance Monitoring Unit Interrupt Enable Clear

Register .1699
D1.2.204 PMU_INTENSET, Performance Monitoring Unit Interrupt Enable Set

Register . 1701
D1.2.205 PMU_OVSCLR, Performance Monitoring Unit Overflow Flag Status Clear

Register .1703
D1.2.206 PMU_OVSSET, Performance Monitoring Unit Overflow Flag Status Set

Register .1705
D1.2.207 PMU_PIDR0, Performance Monitoring Unit Peripheral Identification Reg-

ister 0 . 1707
D1.2.208 PMU_PIDR1, Performance Monitoring Unit Peripheral Identification Reg-

ister 1 .1708
D1.2.209 PMU_PIDR2, Performance Monitoring Unit Peripheral Identification Reg-

ister 2 .1709
D1.2.210 PMU_PIDR3, Performance Monitoring Unit Peripheral Identification Reg-

ister 3 .1710
D1.2.211 PMU_PIDR4, Performance Monitoring Unit Peripheral Identification Reg-

ister 4 . 1711
D1.2.212 PMU_SWINC, Performance Monitoring Unit Software Increment Register1712
D1.2.213 PMU_TYPE, Performance Monitoring Unit Type Register1713
D1.2.214 PRIMASK, Exception Mask Register1715
D1.2.215 PSPLIM, Process Stack Pointer Limit Register1716
D1.2.216 Rn, General-Purpose Register, n = 0 - 12 1717
D1.2.217 RETPSR, Combined Exception Return Program Status Registers . . .1718
D1.2.218 REVIDR, Revision ID Register .1720
D1.2.219 RFSR, RAS Fault Status Register . 1721
D1.2.220 SAU_CTRL, SAU Control Register .1723
D1.2.221 SAU_RBAR, SAU Region Base Address Register1725
D1.2.222 SAU_RLAR, SAU Region Limit Address Register1726
D1.2.223 SAU_RNR, SAU Region Number Register1728
D1.2.224 SAU_TYPE, SAU Type Register .1729
D1.2.225 SCR, System Control Register .1730
D1.2.226 SFAR, Secure Fault Address Register1732
D1.2.227 SFSR, Secure Fault Status Register .1733
D1.2.228 SHCSR, System Handler Control and State Register1736
D1.2.229 SHPR1, System Handler Priority Register 11743
D1.2.230 SHPR2, System Handler Priority Register 21745
D1.2.231 SHPR3, System Handler Priority Register 31746
D1.2.232 SP, Current Stack Pointer Register .1748
D1.2.233 SP_NS, Stack Pointer (Non-secure) .1749
D1.2.234 STIR, Software Triggered Interrupt Register1750
D1.2.235 SYST_CALIB, SysTick Calibration Value Register 1751

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xxvi

Contents

D1.2.236 SYST_CSR, SysTick Control and Status Register1753
D1.2.237 SYST_CVR, SysTick Current Value Register1756
D1.2.238 SYST_RVR, SysTick Reload Value Register1758
D1.2.239 TPIU_ACPR, TPIU Asynchronous Clock Prescaler Register1759
D1.2.240 TPIU_CIDR0, TPIU Component Identification Register 01760
D1.2.241 TPIU_CIDR1, TPIU Component Identification Register 1 1761
D1.2.242 TPIU_CIDR2, TPIU Component Identification Register 21762
D1.2.243 TPIU_CIDR3, TPIU Component Identification Register 31763
D1.2.244 TPIU_CSPSR, TPIU Current Parallel Port Sizes Register 1764
D1.2.245 TPIU_DEVTYPE, TPIU Device Type Register1765
D1.2.246 TPIU_FFCR, TPIU Formatter and Flush Control Register 1767
D1.2.247 TPIU_FFSR, TPIU Formatter and Flush Status Register1769
D1.2.248 TPIU_LAR, TPIU Software Lock Access Register 1771
D1.2.249 TPIU_LSR, TPIU Software Lock Status Register1772
D1.2.250 TPIU_PIDR0, TPIU Peripheral Identification Register 0 1774
D1.2.251 TPIU_PIDR1, TPIU Peripheral Identification Register 11775
D1.2.252 TPIU_PIDR2, TPIU Peripheral Identification Register 21776
D1.2.253 TPIU_PIDR3, TPIU Peripheral Identification Register 3 1777
D1.2.254 TPIU_PIDR4, TPIU Peripheral Identification Register 41778
D1.2.255 TPIU_PIDR5, TPIU Peripheral Identification Register 51779
D1.2.256 TPIU_PIDR6, TPIU Peripheral Identification Register 61780
D1.2.257 TPIU_PIDR7, TPIU Peripheral Identification Register 7 1781
D1.2.258 TPIU_PSCR, TPIU Periodic Synchronization Control Register1782
D1.2.259 TPIU_SPPR, TPIU Selected Pin Protocol Register 1784
D1.2.260 TPIU_SSPSR, TPIU Supported Parallel Port Sizes Register1786
D1.2.261 TPIU_TYPE, TPIU Device Identifier Register 1787
D1.2.262 TT_RESP, Test Target Response Payload1789
D1.2.263 UFSR, UsageFault Status Register .1792
D1.2.264 VPR, Vector Predication Status and Control Register1795
D1.2.265 VTOR, Vector Table Offset Register . 1797
D1.2.266 XPSR, Combined Program Status Registers1798

Part E Armv8-M Pseudocode

Chapter E1 Arm Pseudocode Definition
E1.1 About the Arm pseudocode .1802

E1.1.1 General limitations of Arm pseudocode1802
E1.2 Data types .1803

E1.2.1 General data type rules .1803
E1.2.2 Bitstrings .1803
E1.2.3 Integers . 1804
E1.2.4 Reals . 1804
E1.2.5 Booleans .1805
E1.2.6 Enumerations .1805
E1.2.7 Structures .1806
E1.2.8 Tuples . 1807
E1.2.9 Arrays . 1807

E1.3 Operators .1809
E1.3.1 Relational operators .1809
E1.3.2 Boolean operators .1809
E1.3.3 Bitstring operators .1810
E1.3.4 Arithmetic operators . 1811
E1.3.5 The assignment operator .1812
E1.3.6 Precedence rules .1813

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xxvii

Contents

E1.3.7 Conditional expressions .1813
E1.3.8 Operator polymorphism .1813

E1.4 Statements and control structures .1815
E1.4.1 Statements and Indentation .1815
E1.4.2 Function and procedure calls .1815
E1.4.3 Conditional control structures .1816
E1.4.4 Loop control structures . 1817
E1.4.5 Special statements .1818
E1.4.6 Comments .1819

E1.5 Built-in functions .1820
E1.5.1 Bitstring manipulation functions .1820
E1.5.2 Arithmetic functions . 1821

E1.6 Arm pseudocode definition index .1823
E1.7 Additional functions .1826

E1.7.1 IsSee() .1826
E1.7.2 IsUndefined() .1826

Chapter E2 Pseudocode Specification
E2.1 Alphabetical Pseudocode List .1828

E2.1.1 _AdvanceVPTState .1828
E2.1.2 _ITStateChanged .1828
E2.1.3 _Mem .1828
E2.1.4 _NextInstrAddr .1828
E2.1.5 _NextInstrITState .1828
E2.1.6 _PCChanged .1828
E2.1.7 _PendingReturnOperation .1828
E2.1.8 _RName .1828
E2.1.9 _S .1829
E2.1.10 _SP .1829
E2.1.11 Abs .1829
E2.1.12 AccessAttributes .1830
E2.1.13 AccType .1830
E2.1.14 ActivateException .1830
E2.1.15 ActiveFPState .1830
E2.1.16 AddressDescriptor . 1831
E2.1.17 AddrType . 1831
E2.1.18 AddWithCarry . 1831
E2.1.19 AdvSIMDExpandImm . 1831
E2.1.20 Align .1832
E2.1.21 ArchVersion .1832
E2.1.22 ASR .1832
E2.1.23 ASR_C .1832
E2.1.24 BeatComplete .1833
E2.1.25 BeatSchedule .1833
E2.1.26 BigEndian .1833
E2.1.27 BigEndianReverse . 1834
E2.1.28 BitCount . 1834
E2.1.29 BitReverseShiftRight . 1834
E2.1.30 BranchCall . 1834
E2.1.31 BranchReturn .1835
E2.1.32 BranchTo .1835
E2.1.33 BusFaultBarrier .1836
E2.1.34 CallSupervisor .1836
E2.1.35 CanDebugAccessFP .1836
E2.1.36 CanHaltOnEvent .1836

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xxviii

Contents

E2.1.37 CanPendMonitorOnEvent . 1837
E2.1.38 CdeImpDefValue . 1837
E2.1.39 CheckCPEnabled . 1837
E2.1.40 CheckDecodeFaults .1838
E2.1.41 CheckFPDecodeFaults .1838
E2.1.42 CheckPermission .1838
E2.1.43 ClearEventRegister .1839
E2.1.44 ClearExclusiveByAddress .1839
E2.1.45 ClearExclusiveLocal .1839
E2.1.46 ClearInFlightInstructions .1840
E2.1.47 ComparePriorities .1840
E2.1.48 Cond .1840
E2.1.49 ConditionHolds .1840
E2.1.50 ConditionPassed . 1841
E2.1.51 ConstrainUnpredictable . 1841
E2.1.52 ConstrainUnpredictableBits . 1841
E2.1.53 ConstrainUnpredictableBool .1842
E2.1.54 ConstrainUnpredictableInteger .1842
E2.1.55 ConsumeExcStackFrame .1842
E2.1.56 ConsumptionOfSpeculativeDataBarrier1842
E2.1.57 Coproc_Accepted .1842
E2.1.58 Coproc_DoneLoading .1843
E2.1.59 Coproc_DoneStoring .1843
E2.1.60 Coproc_GetOneWord .1843
E2.1.61 Coproc_GetTwoWords .1843
E2.1.62 Coproc_GetWordToStore .1843
E2.1.63 Coproc_InternalOperation .1843
E2.1.64 Coproc_SendLoadedWord .1843
E2.1.65 Coproc_SendOneWord .1843
E2.1.66 Coproc_SendTwoWords . 1844
E2.1.67 CoprocType . 1844
E2.1.68 CountLeadingSignBits . 1844
E2.1.69 CountLeadingZeroBits . 1844
E2.1.70 CPDef . 1844
E2.1.71 CreateException . 1844
E2.1.72 CurrentCond .1845
E2.1.73 CurrentMode .1845
E2.1.74 CurrentModeIsPrivileged .1846
E2.1.75 CX_op0 .1846
E2.1.76 CX_op1 .1846
E2.1.77 CX_op2 .1846
E2.1.78 CX_op3 .1846
E2.1.79 D . 1847
E2.1.80 DAPCheck . 1847
E2.1.81 DataMemoryBarrier .1848
E2.1.82 DataSynchronizationBarrier .1848
E2.1.83 DeActivate .1848
E2.1.84 Debug_authentication .1849
E2.1.85 DebugCanMaskInts .1849
E2.1.86 DebugRegisterTransfer .1849
E2.1.87 DecodeExecute .1853
E2.1.88 DecodeImmShift .1853
E2.1.89 DecodeRegShift .1853
E2.1.90 DefaultCond .1853
E2.1.91 DefaultExcInfo .1853

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xxix

Contents

E2.1.92 DefaultMemoryAttributes . 1854
E2.1.93 DefaultPermissions .1855
E2.1.94 DerivedLateArrival .1855
E2.1.95 DeviceType .1856
E2.1.96 DWT_AddressCompare . 1857
E2.1.97 DWT_CycCountMatch . 1857
E2.1.98 DWT_DataAddressMatch . 1857
E2.1.99 DWT_DataMatch .1858
E2.1.100 DWT_DataValueMatch .1859
E2.1.101 DWT_InstructionAddressMatch .1860
E2.1.102 DWT_InstructionMatch . 1861
E2.1.103 DWT_ValidMatch . 1861
E2.1.104 Elem .1862
E2.1.105 EndOfInstruction .1862
E2.1.106 EventRegistered .1862
E2.1.107 ExceptionActiveBitCount .1862
E2.1.108 ExceptionDetails .1863
E2.1.109 ExceptionEnabled . 1864
E2.1.110 ExceptionEntry . 1864
E2.1.111 ExceptionPriority . 1864
E2.1.112 ExceptionReturn .1865
E2.1.113 ExceptionTaken . 1867
E2.1.114 ExceptionTargetsSecure .1868
E2.1.115 ExcInfo .1869
E2.1.116 ExclusiveMonitorsPass .1869
E2.1.117 ExecBeats .1870
E2.1.118 ExecuteCPCheck . 1871
E2.1.119 ExecuteFPCheck . 1871
E2.1.120 ExecutionPriority . 1871
E2.1.121 Extend .1872
E2.1.122 ExternalInvasiveDebugEnabled .1872
E2.1.123 ExternalNoninvasiveDebugEnabled .1873
E2.1.124 ExternalSecureInvasiveDebugEnabled1873
E2.1.125 ExternalSecureNoninvasiveDebugEnabled1873
E2.1.126 ExternalSecureSelfHostedDebugEnabled1873
E2.1.127 ExtType .1873
E2.1.128 FaultNumbers . 1874
E2.1.129 FetchInstr . 1874
E2.1.130 FindPriv .1875
E2.1.131 FixedToFP .1875
E2.1.132 FPAbs .1875
E2.1.133 FPAdd .1875
E2.1.134 FPB_CheckBreakPoint .1876
E2.1.135 FPB_CheckMatchAddress .1876
E2.1.136 FPCompare . 1877
E2.1.137 FPConvertNaN . 1877
E2.1.138 FPConvertNaNBase . 1877
E2.1.139 FPDefaultNaN .1878
E2.1.140 FPDiv .1878
E2.1.141 FPDoubleToHalf .1878
E2.1.142 FPDoubleToSingle .1879
E2.1.143 FPExc .1879
E2.1.144 FPHalfToDouble .1879
E2.1.145 FPHalfToSingle .1880
E2.1.146 FPInfinity .1880

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xxx

Contents

E2.1.147 FPMax .1880
E2.1.148 FPMaxNormal . 1881
E2.1.149 FPMaxNum . 1881
E2.1.150 FPMin . 1881
E2.1.151 FPMinNum .1882
E2.1.152 FPMul .1882
E2.1.153 FPMulAdd .1883
E2.1.154 FPNeg . 1884
E2.1.155 FPProcessException . 1884
E2.1.156 FPProcessNaN . 1884
E2.1.157 FPProcessNaNs . 1884
E2.1.158 FPProcessNaNs3 .1885
E2.1.159 FPRound .1885
E2.1.160 FPRoundBase .1886
E2.1.161 FPRoundCV . 1887
E2.1.162 FPRoundInt . 1887
E2.1.163 FPSingleToDouble .1888
E2.1.164 FPSingleToHalf .1889
E2.1.165 FPSqrt .1889
E2.1.166 FPSub .1889
E2.1.167 FPToFixed .1890
E2.1.168 FPToFixedDirected . 1891
E2.1.169 FPType . 1891
E2.1.170 FPUnpack .1892
E2.1.171 FPUnpackBase .1892
E2.1.172 FPUnpackCV .1893
E2.1.173 FPZero .1893
E2.1.174 FunctionReturn . 1894
E2.1.175 GenerateCoprocessorException . 1894
E2.1.176 GenerateDebugEventResponse .1895
E2.1.177 GenerateIntegerZeroDivide .1895
E2.1.178 GetActiveChains .1895
E2.1.179 GetCurInstrBeat .1896
E2.1.180 GetInstrExecState .1896
E2.1.181 Halt .1896
E2.1.182 Halted . 1897
E2.1.183 HaltingDebugAllowed . 1897
E2.1.184 HandleException . 1897
E2.1.185 HandleExceptionTransitions . 1897
E2.1.186 HandleLO .1899
E2.1.187 HasArchVersion .1900
E2.1.188 HaveDebugMonitor .1900
E2.1.189 HaveDSPExt .1900
E2.1.190 HaveDWT .1900
E2.1.191 HaveFPB .1900
E2.1.192 HaveFPExt .1900
E2.1.193 HaveHaltingDebug .1900
E2.1.194 HaveITM . 1901
E2.1.195 HaveLOBExt . 1901
E2.1.196 HaveMainExt . 1901
E2.1.197 HaveMve . 1901
E2.1.198 HaveMveOrFPExt . 1901
E2.1.199 HaveSecurityExt . 1901
E2.1.200 HaveSysTick . 1901
E2.1.201 HaveUDE . 1901

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xxxi

Contents

E2.1.202 HighestPri .1902
E2.1.203 HighestSetBit .1902
E2.1.204 Hint_Debug .1902
E2.1.205 Hint_PreloadData .1902
E2.1.206 Hint_PreloadDataForWrite .1902
E2.1.207 Hint_PreloadInstr .1902
E2.1.208 Hint_Yield .1902
E2.1.209 IDAUCheck .1903
E2.1.210 IgnoreFaultsType .1903
E2.1.211 InITBlock .1903
E2.1.212 InstrCanChain .1903
E2.1.213 InstrExecState . 1904
E2.1.214 InstructionAdvance .1905
E2.1.215 InstructionExecute .1905
E2.1.216 InstructionsInFlight . 1907
E2.1.217 InstructionSynchronizationBarrier . 1907
E2.1.218 InstStateCheck . 1907
E2.1.219 Int .1908
E2.1.220 IntegerZeroDivideTrappingEnabled .1908
E2.1.221 InvalidateFPRegs .1908
E2.1.222 InVPTBlock .1908
E2.1.223 IsAccessible .1908
E2.1.224 IsActiveForState .1909
E2.1.225 IsAligned .1909
E2.1.226 IsBKPTInstruction .1909
E2.1.227 IsCPEnabled .1909
E2.1.228 IsCPInstruction .1910
E2.1.229 IsDebugState .1910
E2.1.230 IsDWTConfigUnpredictable .1910
E2.1.231 IsDWTEnabled .1912
E2.1.232 IsExceptionTargetConfigurable .1912
E2.1.233 IsExclusiveGlobal .1912
E2.1.234 IsExclusiveLocal .1913
E2.1.235 IsFirstBeat .1913
E2.1.236 IsIrqValid .1913
E2.1.237 IsLastBeat .1913
E2.1.238 IsLastLowOverheadLoop .1913
E2.1.239 IsLEInstruction .1913
E2.1.240 IsLoadStoreClearMultInstruction . 1914
E2.1.241 IsOnes . 1914
E2.1.242 IsPPB . 1914
E2.1.243 IsReqExcPriNeg . 1914
E2.1.244 IsReturn .1915
E2.1.245 IsSecure .1915
E2.1.246 IsZero .1915
E2.1.247 IsZeroBit .1915
E2.1.248 ITAdvance .1915
E2.1.249 ITSTATE .1915
E2.1.250 ITSTATEType .1916
E2.1.251 LastInITBlock .1916
E2.1.252 LoadWritePC .1916
E2.1.253 LockedUp .1916
E2.1.254 Lockup .1916
E2.1.255 LookUpRName . 1917
E2.1.256 LookUpSP . 1917

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xxxii

Contents

E2.1.257 LookUpSP_with_security_mode . 1917
E2.1.258 LookUpSPLim .1918
E2.1.259 LowestSetBit .1918
E2.1.260 LR .1918
E2.1.261 LSL .1918
E2.1.262 LSL_C .1918
E2.1.263 LSR .1919
E2.1.264 LSR_C .1919
E2.1.265 LTPSIZE .1919
E2.1.266 MAIRDecode .1919
E2.1.267 MarkExclusiveGlobal . 1921
E2.1.268 MarkExclusiveLocal . 1921
E2.1.269 Max . 1921
E2.1.270 MaxExceptionNum . 1921
E2.1.271 MemA . 1921
E2.1.272 MemA_MVE . 1921
E2.1.273 MemA_with_priv .1922
E2.1.274 MemA_with_priv_security .1922
E2.1.275 MemD_with_priv_security . 1924
E2.1.276 MemI .1925
E2.1.277 MemO .1925
E2.1.278 MemoryAttributes .1926
E2.1.279 MemType .1926
E2.1.280 MemU .1926
E2.1.281 MemU_unpriv .1926
E2.1.282 MemU_with_priv . 1927
E2.1.283 MergeExcInfo . 1927
E2.1.284 Min .1928
E2.1.285 MPUCheck .1928
E2.1.286 NextInstrAddr .1930
E2.1.287 NextInstrITState .1930
E2.1.288 NoninvasiveDebugAllowed .1930
E2.1.289 Ones .1930
E2.1.290 PC .1930
E2.1.291 PEMode .1930
E2.1.292 PendingDebugHalt . 1931
E2.1.293 PendingDebugMonitor . 1931
E2.1.294 PendingExceptionDetails . 1931
E2.1.295 PendReturnOperation . 1931
E2.1.296 Permissions . 1931
E2.1.297 PMU_CounterIncrement . 1931
E2.1.298 PMU_HandleOverflow .1932
E2.1.299 PmuEvent .1933
E2.1.300 PmuEventType . 1937
E2.1.301 PolynomialMult .1939
E2.1.302 PopStack .1940
E2.1.303 PreserveFPState .1942
E2.1.304 ProcessorID .1943
E2.1.305 PushCalleeStack .1943
E2.1.306 PushStack . 1944
E2.1.307 Q .1946
E2.1.308 R .1946
E2.1.309 RaiseAsyncBusFault .1946
E2.1.310 RawExecutionPriority .1946
E2.1.311 Replicate . 1947

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xxxiii

Contents

E2.1.312 ResetRegs . 1947
E2.1.313 RestrictedNSPri . 1947
E2.1.314 RF . 1947
E2.1.315 RFD .1948
E2.1.316 RName .1948
E2.1.317 RNames .1949
E2.1.318 ROR .1949
E2.1.319 ROR_C .1949
E2.1.320 RoundDown .1949
E2.1.321 RoundTowardsZero .1949
E2.1.322 RoundUp .1950
E2.1.323 RRX .1950
E2.1.324 RRX_C .1950
E2.1.325 RSPCheck .1950
E2.1.326 RZ .1950
E2.1.327 S .1950
E2.1.328 Sat . 1951
E2.1.329 SatQ . 1951
E2.1.330 SAttributes . 1951
E2.1.331 SCS_UpdateStatusRegs . 1951
E2.1.332 SecureDebugMonitorAllowed . 1951
E2.1.333 SecureHaltingDebugAllowed . 1951
E2.1.334 SecureNoninvasiveDebugAllowed .1952
E2.1.335 SecurityCheck .1952
E2.1.336 SecurityState .1953
E2.1.337 SendEvent .1953
E2.1.338 SerializeVFP . 1954
E2.1.339 SetActive . 1954
E2.1.340 SetDWTDebugEvent . 1954
E2.1.341 SetEventRegister . 1954
E2.1.342 SetExclusiveMonitors . 1954
E2.1.343 SetITSTATEAndCommit .1955
E2.1.344 SetPending .1955
E2.1.345 SetThisInstrDetails .1955
E2.1.346 SetVPTMask .1956
E2.1.347 Shift .1956
E2.1.348 Shift_C .1956
E2.1.349 SignedSat .1956
E2.1.350 SignedSatQ .1956
E2.1.351 SignExtend . 1957
E2.1.352 Sleeping . 1957
E2.1.353 SleepOnExit . 1957
E2.1.354 SP . 1957
E2.1.355 SP_Main . 1957
E2.1.356 SP_Main_NonSecure .1958
E2.1.357 SP_Main_Secure .1958
E2.1.358 SP_Process .1958
E2.1.359 SP_Process_NonSecure .1958
E2.1.360 SP_Process_Secure .1959
E2.1.361 SpeculativeSynchronizationBarrier .1959
E2.1.362 SRType .1959
E2.1.363 Stack .1959
E2.1.364 StandardFPSCRValue .1960
E2.1.365 SteppingDebug .1960
E2.1.366 SynchronizeBusFault .1960

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xxxiv

Contents

E2.1.367 T32ExpandImm . 1961
E2.1.368 T32ExpandImm_C . 1961
E2.1.369 TailChain . 1961
E2.1.370 TakePreserveFPException .1962
E2.1.371 TakeReset .1963
E2.1.372 ThisInstr . 1964
E2.1.373 ThisInstrAddr . 1964
E2.1.374 ThisInstrITState . 1964
E2.1.375 ThisInstrLength . 1964
E2.1.376 TopLevel . 1964
E2.1.377 TTResp .1966
E2.1.378 UnprivHaltingDebugAllowed .1966
E2.1.379 UnprivHaltingDebugEnabled .1966
E2.1.380 UnsignedSat .1966
E2.1.381 UnsignedSatQ . 1967
E2.1.382 UpdateDebugEnable . 1967
E2.1.383 UpdateFPCCR . 1967
E2.1.384 ValidateAddress .1968
E2.1.385 ValidateExceptionReturn .1970
E2.1.386 VCX_op0 . 1971
E2.1.387 VCX_op1 . 1971
E2.1.388 VCX_op2 . 1971
E2.1.389 VCX_op3 . 1971
E2.1.390 Vector .1972
E2.1.391 VectorCatchDebug .1972
E2.1.392 VFPExcBarrier .1973
E2.1.393 VFPExpandImm .1973
E2.1.394 VFPNegMul .1973
E2.1.395 VFPSmallRegisterBank .1973
E2.1.396 ViolatesSPLim . 1974
E2.1.397 VPTActive . 1974
E2.1.398 VPTAdvance . 1974
E2.1.399 WaitForEvent . 1974
E2.1.400 WaitForInterrupt . 1974
E2.1.401 ZeroExtend .1975
E2.1.402 Zeros .1975

Part F Debug Packet Protocols

Chapter F1 ITM and DWT Packet Protocol Specification
F1.1 About the ITM and DWT packets .1978

F1.1.1 Uses of ITM and DWT packets .1978
F1.1.2 ITM and DWT protocol packet headers1978
F1.1.3 Packet transmission by the trace sink1979

F1.2 Alphabetical list of DWT and ITM packets .1980
F1.2.1 Data Trace Data Address packet .1980
F1.2.2 Data Trace Data Value packet . 1981
F1.2.3 Data Trace Match packet .1983
F1.2.4 Data Trace PC Value packet . 1984
F1.2.5 Event Counter packet .1986
F1.2.6 Exception Trace packet . 1987
F1.2.7 Extension packet .1988
F1.2.8 Global Timestamp 1 packet .1990
F1.2.9 Global Timestamp 2 packet .1992

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xxxv

Contents
Contents

F1.2.10 Instrumentation packet . 1994
F1.2.11 Local Timestamp 1 packet .1995
F1.2.12 Local Timestamp 2 packet . 1997
F1.2.13 Overflow packet .1998
F1.2.14 Periodic PC Sample packet .1999
F1.2.15 PMU overflow packet .2000
F1.2.16 Synchronization packet . 2001

Glossary

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xxxvi

Preface

This preface introduces the Armv8-M Architecture Reference Manual. It contains the following sections:

About this book.

Using this book.

Conventions.

Additional reading.

Feedback.

xxxvii

About this book

This manual documents the microcontroller profile of version 8 of the Arm Architecture, the Armv8-M architecture
profile. For short definitions of all the Armv8 profiles, see A1.2 About the Armv8 architecture, and architecture
profiles.

This manual has the following parts:

Part A Provides an introduction to the Armv8-M architecture.

Part B Describes the architectural rules.

Part C Describes the T32 instruction set.

Part D Describes the registers.

Part E Describes the Armv8-M pseudocode.

Part F Describes the packet protocols.

xxxviii

Using this book

The information in this manual is organized into parts, as described in this section.

Part A, Armv8-M Architecture Introduction and Overview

Part A gives an overview of the Armv8-M architecture profile, including its relationship to the other Arm PE
architectures. It introduces the terminology that describes the architecture, and gives an overview of the optional
architectural extensions. It contains the following chapter:

Chapter A1 Introduction

Read this for an introduction to the Armv8-M architecture.

Part B, Armv8-M Architecture Rules

Part B describes the architecture rules. It contains the following chapters:

Chapter B1 Resets

Read this for a description of the reset rules.

Chapter B2 Power Management

Read this for a description of the power management rules.

Chapter B3 Programmers’ Model

Read this for a description of the programmers model rules.

Chapter B4 Floating-point Support

Read this for a description of the floating-point support rules.

Chapter B5 Vector Extension

Read this for a description of the Vector Extension support rules.

Chapter B6 Memory Model

Read this for a description of the memory model rules.

Chapter B7 The System Address Map

Read this for a description of the system address map rules.

Chapter B8 Synchronization and Semaphores

Read this for a description of the rules on non-blocking synchronization of shared memory.

Chapter B9 The Armv8-M Protected Memory System Architecture

Read this for a description of the protected memory system architecture rules.

Chapter B10 The System Timer, SysTick

Read this for a description of the system timer rules.

Chapter B11 Nested Vectored Interrupt Controller

Read this for a description of the Nested Vectored Interrupt Controller (NVIC) rules.

Chapter B12 Debug
xxxix

Preface
Using this book

Read this for a description of the debug rules.

Chapter B13 Debug and Trace Components

Read this for a description of the debug and trace component rules.

Chapter B14 The Performance Monitoring Extension

Read this for a description of the Performance Monitors Extension.

Chapter B15 Reliability, Availability, and Serviceability (RAS) Extension

Read this for a description of the Reliability, Availability, and Serviceability (RAS) Extension.

Part C, Armv8-M Instructions

Part C describes the instructions. It contains the following chapters:

Chapter C1 Instruction Set Overview

Read this for an overview of the instruction set and the instruction set encoding.

Chapter C2 Instruction Specification

Read this for a description of each instruction, arranged by instruction mnemonic.

Part D, Armv8-M Registers

Part D describes the registers. It contains the following chapter:

Chapter D1 Register and Payload Specification

Read this for a description of the registers.

Part E, Armv8-M Pseudocode

Part E describes the pseudocode. It contains the following chapters:

Chapter E1 Arm Pseudocode Definition

Read this for a definition of the pseudocode that Arm documentation uses.

Chapter E2 Pseudocode Specification

Read this for a description of the pseudocode.

Part F, Packet Protocols

Part F describes the packet protocols. It contains the following chapter:

Chapter F1 ITM and DWT Packet Protocol Specification

Read this for a description of the protocol for packets that are used to send the data generated by the
ITM and DWT to an external debugger.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xl

Conventions

The following sections describe conventions that this book can use:

Typographical conventions.

Signals.

Numbers.

Pseudocode descriptions.

Assembler syntax descriptions.

Typographical conventions

The typographical conventions are:

italic

Introduces special terminology, and denotes citations.

bold

Denotes signal names, and is used for terms in descriptive lists, where appropriate.

monospace

Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other items appearing in assembler
syntax descriptions, pseudocode, and source code examples.

SMALLCAPS

Used for a few terms that have specific technical meanings, and that are included in the Glossary.

Colored text Indicates a link. This can be:

• A URL, for example https://developer.arm.com/.

• A cross-reference, that includes the page number of the referenced information if it is not on the current
page, for example, Chapter B2 Power Management.

• A link, to a chapter or appendix, or to a glossary entry, or to the section of the document that defines the
colored term, for example tail-chaining.

Signals

In general this specification does not define processor signals, but it does include some signal examples and
recommendations.

The signal conventions are:

Signal level The level of an asserted signal depends on whether the signal is active-HIGH or active-LOW. Asserted
means:

• HIGH for active-HIGH signals.

• LOW for active-LOW signals.
xli

https://developer.arm.com/

Preface
Conventions

Lowercase n At the start or end of a signal name denotes an active-LOW signal.

Numbers

Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbers by 0x.
In both cases, the prefix and the associated value are written in a monospace font, for example 0xFFFF0000.

For both binary and hexadecimal numbers, where a bit is represented by the letter x, the value is irrelevant. For
example a value expressed as 0b1x can be either 0b11 or 0b10.

To improve readability, long numbers can be written with an underscore separator between every four characters,
for example 0xFFFF_0000_0000_0000. Ignore any underscores when interpreting the value of a number.

Pseudocode descriptions

This book uses a form of pseudocode to provide precise descriptions of the specified functionality. This pseudocode
is written in a monospace font, and is described in Chapter E1 Arm Pseudocode Definition.

Assembler syntax descriptions

This book contains numerous syntax descriptions for assembler instructions and for components of assembler
instructions. These are shown in a monospace font, and use the conventions described in C1.2.5 Standard
assembler syntax fields .

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xlii

Additional reading

This section lists relevant publications from Arm and third parties.

See https://developer.arm.com, for access to Arm documentation.

Arm publications

• Arm® Debug Interface Architecture Specification ADIv5.0 to ADIv5.2 (ARM IHI 0031).

• Arm® Debug Interface Architecture Specification ADIv6.0 (ARM IHI 0074).

• Arm® CoreSight™ Architecture Specification (ARM IHI 0029).

• Arm® Embedded Trace Macrocell Architecture Specification ETMv4.0 to ETMv4.4 (ARM IHI 0064).

• Embedded Trace Macrocell® ETMv1.0 to ETMv3.5 Architecture Specification (ARM IHI 0014).

• Arm®v6-M Architecture Reference Manual (ARM DDI 0419).

• Arm®v7-M Architecture Reference Manual (ARM DDI 0403).

• Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile (ARM DDI 0487).

• Arm® Reliability, Availability, and Serviceability (RAS) Specification, Armv8, for the Armv8-A architecture
profile (ARM DDI587).

Other publications

The following publications are referred to in this manual, or provide more information:

• ANSI/IEEE Std 754-1985 and ANSI/IEEE Std 754-2008, IEEE Standard for Binary Floating-Point Arith-
metic. Unless otherwise indicated, references to IEEE 754 refer to either issue of the standard.

Note

This document does not adopt the terminology defined in the 2008 issue of the standard.

• JEP106, Standard Manufacturers Identification Code, JEDEC Solid State Technology Association.

xliii

https://developer.arm.com

Feedback

Arm welcomes feedback on its documentation.

Feedback on this book

If you have comments on the content of this book, send an e-mail to errata@arm.com. Give:

• The title.

• The number, DDI0553B.l

• The page numbers to which your comments apply.

• The rule identifiers to which your comments apply, if applicable.

• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Note

Arm tests PDFs only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the appearance or
behavior of any document when viewed with any other PDF reader.

xliv

Part A
Armv8-M Architecture Introduction and Overview

Chapter A1
Introduction

This chapter introduces the Armv8 architecture, the architecture profiles it defines, and the Armv8-M architecture
profile defined by this manual. It contains the following sections:

A1.1 Document layout and terminology on page 47.

A1.2 About the Armv8 architecture, and architecture profiles on page 50.

A1.3 The Armv8-M architecture profile on page 51.

A1.4 Armv8-M variants on page 53.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

46

Chapter A1. Introduction
A1.1. Document layout and terminology

A1.1 Document layout and terminology

This section describes the structure and scope of this manual. This section also describes the terminology that this
manual uses. It does not constitute part of the manual, and must not be interpreted as implementation guidance.

A1.1.1 Structure of the document

This architecture manual describes the behavior of the processing element as a set of individual rules.

Each rule is clearly identified by the letter R, followed by a random group of subscript letters that do not reflect any
intended order or priority, for example RBSHJ. In the following example, RBSHJ is simply a random rule identifier
that has no significance apart from uniquely identifying a rule in this manual.

RBSHJ The following data accesses are single-copy atomic:

All byte accesses.

All halfword accesses to halfword-aligned locations.

All word accesses to word-aligned locations.

Identifier Rule

Applies to an implementation of the architecture from Armv8.0-M onwards

Additional Information

Rules must not be read in isolation, and where more than one rule relating to a particular feature exists, individual
rules are grouped into sections and subsections to provide the proper context. Where appropriate, these sections
contain a short introduction to aid the reader.

An implementation that conforms to all the rules described in this specification constitutes an Armv8-M compliant
implementation. An implementation whose behavior deviates from these rules is not compliant with the Armv8-M
architecture.

Some sections contain additional information and guidance that do not constitute rules. This information and
guidance is provided purely as an aid to understanding the architecture. Information statements are clearly
identified by the letter I, followed by a random group of subscript letters, for example IPRTD.

A line below each rule or information statement gives additional information indicating the architecture version, the
extensions that are required for the rule or information statement to apply, and any other notes. Some extensions
depend on the implementation of other extensions, for example FP.

Note

Arm strongly recommends that implementers read all chapters and sections of this document to ensure
that an implementation is compliant.

An implementation that conforms to all the rules described in this specification but chooses to ignore any additional
information and guidance is compliant with the Armv8-M architecture.

In the following parts of this manual, architectural rules are not identified by a specific prefix and a random group
of subscript letters:

• Parts of Chapter B14 The Performance Monitoring Extension on page 364.

Applies to an implementation of the architecture from Armv8.1-M onwards.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

47

Chapter A1. Introduction
A1.1. Document layout and terminology

• Parts of Part C Armv8-M Instruction Set.

• Part D Armv8-M Register and Payload Specification.

• Part E Armv8-M Pseudocode.

• Part F Armv8-M Debug Packet Protocols.

A1.1.2 Scope of the document

This manual contains only rules and information that relate specifically to the Armv8-M architecture. It does not
include any information about other Arm architectures, nor does it describe similarities between Armv8-M and
other architectures.

Readers must not assume that the rules provided in this specification are applicable to an Armv7-M or Armv6-M im-
plementation, nor must they assume that the rules that are applicable to an Armv7-M or Armv6-M implementation
are equally applicable to an Armv8-M implementation.

A1.1.3 Intended audience

This manual is written for users who want to design, implement, or program an Armv8-M PE in a range of
Arm-compliant implementations from simple uniprocessor implementations to complex multiprocessor systems. It
does not assume familiarity with previous versions of the M-Profile architecture.

The manual provides a precise, accurate, and correct set of rules that must be followed in order for an Armv8-M
implementation to be architecturally compliant. It is an explicit reference manual, and not a general introduction
to, or user guide for, the Armv8-M architecture.

A1.1.4 Terminology, phrases

This subsection identifies some standard words and phrases that are used in the Arm architecture documentation.
These words and phrases have an Arm-specific definition, which is described in this section.

Architecturally visible

Something that is visible to the controlling agent. The controlling agent might be software.

Arm recommends

A particular usage that ensures consistency and usability. Following all the rules listed in this manual leads to a
predictable outcome that is compliant with the architecture, but might produce an unexpected output. Adhering to
a recommendation ensures that the output is as expected.

Arm strongly recommends

Something that is essentially mandatory, but that is outside the scope of the architecture described in this manual.
Failing to adhere to a strong recommendation can break the system, although the PE itself remains compliant with
the architecture that is described in this manual.

Finite time

An action will occur at some point in the future. Finite time does not make any statement about the time involved.
However, delaying an action longer than is absolutely necessary might have an adverse impact on performance.

Permitted

Allowed behavior.

Required

Mandatory behavior.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

48

Chapter A1. Introduction
A1.1. Document layout and terminology

Support

The implementation has implemented a particular feature.

A1.1.5 Terminology, Armv8-M specific terms

For definitions of Armv8-M specific terms, see the Glossary.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

49

Chapter A1. Introduction
A1.2. About the Armv8 architecture, and architecture profiles

A1.2 About the Armv8 architecture, and architecture profiles

Armv8-M is documented as one of a set of architecture profiles.

Arm defines three architecture profiles:

A Application profile:

• Supports a Virtual Memory System Architecture (VMSA) based on a Memory Management Unit (MMU).
• Supports the A64, A32, and T32 instruction sets.

R Real-time profile:

• Supports a Protected Memory System Architecture (PMSA) based on a Memory Protection Unit (MPU).
• Supports the A32 and T32 instruction sets.

M Microcontroller profile, described in this manual:

• Implements a programmers’ model designed for low-latency interrupt processing, with hardware stacking of
registers and support for writing interrupt handlers in high-level languages.

• Optionally implements a variant of the R-profile PMSA.
• Supports a variant of the T32 instruction set.

This Architecture Reference Manual describes only the Armv8-M profile.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

50

Chapter A1. Introduction
A1.3. The Armv8-M architecture profile

A1.3 The Armv8-M architecture profile

The M-Profile architecture includes:

• The opportunity to include simple pipeline designs offering leading edge system performance levels in a
broad range of markets and applications.

• Highly deterministic operation:
– Single or low cycle count execution.
– Minimal interrupt latency, with short pipelines.
– Capable of cacheless operation.

• Excellent targeting of C/C++ code. This aligns with the Arm programming standards in this area:
– Exception handlers are standard C/C++ functions, entered using standard calling conventions.

• Design support for deeply embedded systems:
– Low pincount devices.

• Support for debug and software profiling for event-driven systems.

The simplest Armv8.0-M implementation, without any of the optional extensions, is a Baseline implementation,
see A1.4 Armv8-M variants on page 53. The Armv8.0-M Baseline offers improvements over previous M-Profile
architectures in the following areas:

• The optional Security Extension.
• An improved, optional, Memory Protection Unit (MPU) model.
• Alignment with Armv8-A and Armv8-R memory types.
• Stack pointer limit checking.
• Improved support for multi-processing.
• Better alignment with C11 and C11++ standards.
• Enhanced debug capabilities.

A1.3.1 Security Extension

The Armv8-M architecture introduces a number of new instructions to the M-Profile architecture to support asset
protection. These instructions are only available to implementations that support the Security Extension, see A1.4
Armv8-M variants on page 53.

A1.3.2 MPU model

The Armv8-M architecture provides a default memory map and permits implementations to include an optional
MPU. The optional MPU uses the Protected Memory System Architecture (PMSAv8) and contains improved
flexibility in the MPU region definition, see Chapter B9 The Armv8-M Protected Memory System Architecture on
page 267.

A1.3.3 Nested Vector Interrupt Controller

The Nested Vector Interrupt Controller (NVIC) is used for integrated interrupt and exception handling and
prioritization. Armv8-M increases the number of interrupts that can potentially be supported by the NVIC 480 for
external sources, and includes automatic vectoring and priority management, and automatic state preservation. See
Chapter B11 Nested Vectored Interrupt Controller on page 279.

A1.3.4 Stack pointers

The Armv8-M architecture introduces stack limit registers that trigger an exception on a stack overflow. The
number of stack limit registers available to an implementation is determined by the Armv8-M variant that is

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

51

Chapter A1. Introduction
A1.3. The Armv8-M architecture profile

implemented, see B3.8 Stack pointer on page 80.

A1.3.5 The Armv8-M instruction set

Armv8-M only supports execution of T32 instructions. The Armv8-M architecture adds instructions to support:

• Improved facilitation of execute-only code generation.
• Improved code optimization.
• Exclusive memory access instructions to enhance support for multiprocessor systems.
• Semaphores and atomics (Load-Acquire/Store-Release instructions).

The optional Floating-point Extension adds floating-point instructions to the T32 instruction set, see Chapter B4
Floating-point Support on page 161.

In an Armv8.1-M implementation a number of non-vector instructions are added to the T32 instruction set, and an
implementation might also contain the optional Vector Extensions, see Chapter B5 Vector Extension on page 177.

Applies to an implementation of the architecture from Armv8.1-M onwards.

For more information about the instructions, see Chapter C1 Instruction Set Overview on page 427 and Chapter
C2, Instruction Specification.

A1.3.6 Debug

The Armv8-M architecture introduces:

• Enhanced breakpoint and watchpoint functionality.
• Improvements to the Instrumentation Trace Macrocell (ITM).
• Comprehensive trace and self-hosted debug extensions to make embedded software easier to debug and trace.

In an Armv8.1-M implementation, the optional Unprivileged Debug Extension adds support for unprivileged
debug.

Applies to an implementation of the architecture from Armv8.1-M onwards.

For more information about debug, see Chapter B12 Debug on page 283 and Chapter B13 Debug and Trace
Components on page 325.

In an Armv8.1-M implementation, the optional Performance Monitors Extension adds support for a Performance
Monitor Unit (PMU), see Chapter B14 The Performance Monitoring Extension on page 364.

Applies to an implementation of the architecture from Armv8.1-M onwards.

A1.3.7 Reliability, Availability, and Serviceability

In an Armv8.1-M implementation, the Reliability, Availability, and Serviceability (RAS) Extension adds additional
debug support, see Chapter B15 Reliability, Availability, and Serviceability (RAS) Extension on page 407. The
minimum RAS Extension is mandatory in an Armv8.1-M implementation.

Applies to an implementation of the architecture from Armv8.1-M onwards.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

52

Chapter A1. Introduction
A1.4. Armv8-M variants

A1.4 Armv8-M variants

Each of the following extensions lists all of the features that are required to be present in an implementation for it
to be compliant with the architecture.

For example, an implementation that includes DIT, Data Independent Timing, must include:

• The Main Extension.
• FPCXT.
• LOB.
• (PXN).
• A minimal implementation of RAS.

All of the optional features described list all of the requirements of that feature.

Applies to an implementation of the architecture from Armv8.1-M onwards.

The Armv8-M architecture has the following optional extensions, which are abbreviated as follows:

Applies to an implementation of the architecture from Armv8.0-M onwards.

CDE - The Custom Datapath Extension

The Custom Datapath Extension is an OPTIONAL feature available from the Armv8-M architecture. An implemen-
tation that includes the Custom Datapath Extension must implement all of the features that are required by the
Main Extension (M), and might implement the following OPTIONAL features:

• The features that are provided by the Floating-point Extension (FP).
• The features that are provided by the Armv8.1 M-Profile Vector Extension (MVE).

Instructions that operate on the S or D register file require either FP or MVE. Instructions that operate on the Q
register file require MVE.

For more information see B3.37 The Custom Datapath Extension on page 157.

Note

The Custom Datapath Extension can also be referred to as Arm Custom Instructions for Armv8-M.

Applies to an implementation of the architecture from Armv8.0-M onwards.

DB - The Debug Extension

Note

For details about the individual features that constitute the Debug Extension, see B12.1 Debug feature
overview on page 284.

Applies to an implementation of the architecture from Armv8.0-M onwards.

DIT - Data Independent Timing

A PE that implements the DIT Extension includes:

• The features that are provided by the Main Extension (M)
• FPCXT access instructions.
• Low Overhead loops and Branch future (LOB).
• Privileged Execute-Never (PXN).
• Reliability, Availability, and Serviceability Extension (RAS).

Applies to an implementation of the architecture from Armv8.1-M onwards.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

53

Chapter A1. Introduction
A1.4. Armv8-M variants

DSP - The Digital Signal Processing Extension.

A PE that implements the DSP Extension must implement the Main Extension (M).

Applies to an implementation of the architecture from Armv8.0-M onwards.

DSPDE - The DSP Debug Extension

A PE that implements the DSP Debug Extension includes:

• The features that are provided by the Main Extension (M)
• FPCXT access instructions.
• Low Overhead loops and Branch future (LOB).
• Privileged execute-never (PXN).
• Reliability, Availability, and Serviceability Extension (RAS).
• Data Independent Timing (DIT).
• The Debug Extension (DB).

Applies to an implementation of the architecture from Armv8.1-M onwards.

FP - The Floating-point Extension

A PE that implements the Floating-point Extension must implement the Main Extension (M).
The Floating-point Extension supports either single-precision floating-point instructions or both single-precision
and double-precision floating-point instructions.
Applies to an implementation of the architecture from Armv8.0-M onwards.

FPCXT - FPCXT access instructions

A PE that implements the FPCXT access includes:

• The features that are provided by the Main Extension (M).
• Data Independent Timing (DIT).
• Low Overhead loops and Branch future (LOB).
• Privileged execute-never (PXN).
• Reliability, Availability, and Serviceability Extension (RAS).

Applies to an implementation of the architecture from Armv8.1-M onwards.

HP - Half-precision floating-point instructions

A PE that implements the HP Extension includes:

• The features that are provided by the Main Extension (M).
• Low Overhead loops and Branch future (LOB).
• The Floating-point Extension (FP).
• Reliability, Availability, and Serviceability Extension (RAS).

Applies to an implementation of the architecture from Armv8.1-M onwards.

LOB - Low Overhead loops and Branch future

A PE that implements the LOB Extension includes:

• The features that are provided by the Main Extension (M).
• Data Independent Timing (DIT).
• FPCXT access instructions.
• Privileged execute-never (PXN).
• Reliability, Availability, and Serviceability Extension (RAS).

Applies to an implementation of the architecture from Armv8.1-M onwards.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

54

Chapter A1. Introduction
A1.4. Armv8-M variants

M - The Main Extension

A PE that implements the Main Extension implements the System Timer Extension.

Note

• A PE with the Main Extension is also referred to as a Mainline implementation.
• A PE without the Main Extension is also referred to as a Baseline implementation. A Baseline im-

plementation has a subset of the instructions, registers, and features, of a Mainline implementation.
• Armv7-M compatibility requires the Main Extension.
• Armv6-M compatibility is provided by all Armv8-M implementations.

Applies to an implementation of the architecture from Armv8.0-M onwards.

A PE that is compliant with the Armv8.1-M architecture implements the Main Extension.

Applies to an implementation of the architecture from Armv8.1-M onwards.

MPU - The Memory Protection Unit Extension

Applies to an implementation of the architecture from Armv8.0-M onwards.

MVE - M-Profile Vector Extension

Note

The Armv8-M MVE can also be referred to as Arm Helium™ for Armv8-M.

This extension provides operations on various SIMD data types.
It consists of MVE-I (integer) and MVE-F (floating-point).
A PE that implements MVE-F includes:

• Half-precision floating-point instructions (HP).
• The Floating-point Extension (FP).
• MVE-I.

A PE that implements MVE-I includes:

• The features that are provided by the Main Extension (M).
• Data Independent Timing (DIT).
• (FPCXT) access instructions.
• Low Overhead loops and Branch future (LOB).
• Privileged execute-never (PXN).
• Reliability, Availability, and Serviceability Extension (RAS).
• The DSP Extension (DSP).

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

55

Chapter A1. Introduction
A1.4. Armv8-M variants

Main

Extension

Half-precison +

single-precision FP

Double-precision FP

MVE-IMVE-F DSP

LOB

DIT

PXN

FPCXT

Applies to an implementation of the architecture from Armv8.1-M onwards.

PMU - Performance Monitoring Unit

A PE that implements the PMU Extension includes:

• The features that are provided by the Main Extension (M).

• Data Independent Timing (DIT).

• FPCXT access instructions.

• Low Overhead loops and Branch future (LOB).

• Privileged execute-never (PXN).

• Reliability, Availability, and Serviceability Extension (RAS).

Some events that are counted by the PMU require additional extensions.

Applies to an implementation of the architecture from Armv8.1-M onwards.

PXN - Privileged eXecute-Never

A PE that implements the PXN Extension includes:

• The features that are provided by the Main Extension (M).
• Data Independent Timing (DIT).
• FPCXT access instructions.
• Low Overhead loops and Branch future (LOB).
• Reliability, Availability, and Serviceability Extension (RAS).

Applies to an implementation of the architecture from Armv8.1-M onwards.

RAS - Reliability, Serviceability, and Availability

A PE that implements the RAS Extension includes:

• The features that are provided by the Main Extension (M).

• Data Independent Timing (DIT).

• FPCXT access instructions.

• Low Overhead loops and Branch future (LOB).

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

56

Chapter A1. Introduction
A1.4. Armv8-M variants

• Privileged execute-never (PXN).

• Reliability, Availability, and Serviceability Extension (RAS).

The minimum RAS Extension is mandatory in an Armv8.1-M implementation.

Applies to an implementation of the architecture from Armv8.1-M onwards.

S - The Security Extension

Note

The Armv8-M Security Extension can also be referred to as Arm TrustZone for Armv8-M.

Applies to an implementation of the architecture from Armv8.0-M onwards.

ST - The System Timer Extension

Applies to an implementation of the architecture from Armv8.0-M onwards.

UDE - Unprivileged Debug Extension

A PE that includes the Unprivileged Debug Extension includes:

• The features that are provided by the Main Extension (M).
• Data Independent Timing (DIT).
• FPCXT access instructions.
• Low Overhead loops and Branch future (LOB).
• Privileged execute-never (PXN).
• Reliability, Availability, and Serviceability Extension (RAS).
• The Debug Extension (DB).
• The Memory Protection Unit (MPU).

The Unprivileged Debug Extension is optional in an Armv8.1-M implementation.

Applies to an implementation of the architecture from Armv8.1-M onwards.

A line below each rule or information statement indicates the architecture version, the extensions that are required
for the rule or information statement to apply, and any other notes. Some extensions depend on the implementation
of other extensions, for example FP.

Applies to an implementation of the architecture from Armv8.1-M onwards.

A1.4.1 Features of Armv8.1-M

The following new features are introduced by Armv8.1-M:

• Registers:
– DSCEMCR.
– ERRADDRn.
– ERRADDR2n.
– ERRCTRLn.
– ERRDEVID.
– ERRFRn.
– ERRGSRn.
– ERRIIDR.
– ERRMISC0n.
– ERRMISC1n.
– ERRMISC2n.
– ERRMISC3n.
– ERRMISC4n.
– ERRMISC5n.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

57

Chapter A1. Introduction
A1.4. Armv8-M variants

– ERRMISC6n.
– ERRMISC7n.
– ERRSTATUSn.
– FPCXT (payload).
– LO_BRANCH_INFO (cache).
– PMU_AUTHSTATUS.
– PMU_CCFILTR.
– PMU_CCNTR.
– PMU_CIDR0.
– PMU_CIDR1.
– PMU_CIDR2.
– PMU_CIDR3.
– PMU_CNTENCLR.
– PMU_CNTENSET.
– PMU_CTRL.
– PMU_DEVARCH.
– PMU_DEVTYPE.
– PMU_EVCNTRn.
– PMU_EVTYPERn.
– PMU_INTENCLR.
– PMU_INTENSET.
– PMU_OVSCLR.
– PMU_OVSSET.
– PMU_PIDR0.
– PMU_PIDR1.
– PMU_PIDR2.
– PMU_PIDR3.
– PMU_PIDR4.
– PMU_SWINC.
– PMU_TYPE.
– RFSR.
– VPR.

• MVE instructions:
– The individual instructions are listed in Chapter C2, Instruction Specification.

• Exception model:
– New entry to the Stack frame, VPR.
– Handling of partially executed MVE instructions.

The following Armv8.0-M features are changed by the introduction of the Armv8.1-M architecture:

• The modified registers are:

– AIRCR.
– BFSR.
– CCR.
– CONTROL.
– CPACR.
– CPPWR.
– DAUTHCTRL.
– DAUTHSTATUS.
– DHCSR.
– DCRSR.
– DFSR.
– DWT_CYCCNT.
– EPSR.
– FPCAR.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

58

Chapter A1. Introduction
A1.4. Armv8-M variants

– FPCCR.
– FPDSCR.
– FPSCR.
– ICSR.
– ID_DFR0.
– ID_ISAR0.
– ID_PFR0.
– ID_PFR1.
– MPU_RLAR.
– MPU_RLAR_An.
– MVFR0.
– MVFR1.
– MVFR2.
– NSACR.
– RETPSR (payload).
– XPSR.

In addition, the restrictions on access to a number of registers is relaxed to allow a debugger to write to the
register when the PE is not in Debug state.

• The Armv8.0-M Floating-point Extension is extended to include half-precision floating-point instructions.
These half-precision floating-point instructions are a mandatory part of the Floating-point Extension. These
instructions are:

– VABS.
– VADD.
– VCMPE.
– VCMP.
– VCVT (between floating-point and fixed-point).
– VCVT (floating-point to integer).
– VCVT (integer to floating-point).
– VCVTA.
– VCVTM.
– VCVTN.
– VCVTP.
– VCVTR.
– VDIV.
– VFMA.
– VFMS.
– VFNMA.
– VFNMS.
– VLDR.
– VMAXNM.
– VMINNM.
– VMLA.
– VMLS.
– VMOV (immediate).
– VMUL.
– VNEG.
– VNMLA.
– VNMLS.
– VNMUL.
– VRINTA.
– VRINTM.
– VRINTN.
– VRINTP.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

59

Chapter A1. Introduction
A1.4. Armv8-M variants

– VRINTR.
– VRINTX.
– VRINTZ.
– VSEL.
– VSQRT.
– VSTR.
– VSUB.

• Other modified instructions are:

– MOV (register).
– ORR (register).
– SG.
– VMOV (half of doubleword register to single general-purpose register)

is an alias of VMOV (vector lane to general-purpose register).
– VMOV (single general-purpose register to half doubleword register) is

an alias of VMOV (general-purpose register to vector lane).
– VMRS.
– VMSR.

Applies to an implementation of the architecture from Armv8.1-M onwards.

A1.4.2 Interaction between MVE and the Floating-point Extension in Armv8.1-M

The following architecture features are present in an Armv8.1-M implementation if either or both of MVE and the
Floating-point Extension are implemented:

• Registers:

– S0-S31.
– CONTROL.{FPCA, SFPA}.
– FPCCR.
– FPCAR.
– FPSCR.
– MVFR1.

• New and updated instructions:

– VMOV (register).
– VINS.
– VMOVX.
– VMOV (between general-purpose register and half-precision register).
– VMOV (between general-purpose registers and single-precision register).
– VMOV (between two general-purpose register and a doubleword register).
– VMOV (between two general-purpose registers and two single-precision
registers).

– VMSR, VMRS.
– VLDM, VSTM, VPUSH, VPOP.
– VSTR, VLDR.
– VLSTM, VLLDM.

• Exception model:

– Lazy and non-lazy stacking of the Floating-point context.

– Faults that are related to the handling of state in the Floating-point Extension register file, including their
corresponding fault status register fields, which are:

* NOCP UsageFault.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

60

Chapter A1. Introduction
A1.4. Armv8-M variants

* MLSPERR MemManage Fault.
* LSPERR BusFault.
* LSERR SecureFault, if the Security Extension is implemented.
* LSPERR Secure Fault, if the Security Extension is implemented.

A1.4.3 Debug in Armv8.1-M

The restrictions on access to a number of registers is relaxed to allow a debugger to write to the register when the
PE is not in Debug state.

Applies to an implementation of the architecture from Armv8.1-M onwards.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

61

Part B
Armv8-M Architecture Rules

Chapter B1
Resets

This chapter specifies the Armv8-M reset rules. It contains the following section:

B1.1 Resets, Cold reset, and Warm reset on page 64.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

63

Chapter B1. Resets
B1.1. Resets, Cold reset, and Warm reset

B1.1 Resets, Cold reset, and Warm reset

RBDPL There are two resets:

• Cold reset.
• Warm reset.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RCTPC It is not possible to have a Cold reset without also having a Warm reset.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RFNNX On a Cold reset, registers that have a defined reset value contain that value.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RGTXW On a Warm reset, some debug register control fields that have a defined reset value remain unchanged, but otherwise
all registers that have a defined reset value contain that value.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RYMHN On a Warm reset, the PE performs the actions that are described by the TakeReset() pseudocode.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RWSZN AIRCR.SYSRESETREQ is used to request a Warm reset.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RHFRS For AIRCR.SYSRESETREQ, the architecture does not guarantee that the reset takes place immediately.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

Chapter B12 Debug on page 283.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

64

Chapter B2
Power Management

This chapter specifies the Armv8-M power management rules. It contains the following section:

B2.1 Power management on page 66.

B2.2 Sleep on exit on page 68.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

65

Chapter B2. Power Management
B2.1. Power management

B2.1 Power management

IHCYL The following instructions and pseudocode functions hint to the PE hardware that it can suspend execution and
enter a low-power state:

• WaitForEvent().
• WaitForInterrupt().
• SleepOnExit().

Applies to an implementation of the architecture from Armv8.0-M onwards.

B2.1.1 The Wait for Event (WFE) instruction

RDCMH When a WFE instruction is executed, if the state of the Event register is clear, the PE can suspend execution and
enter a low-power state.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RHDXV When a WFE instruction is executed, if the state of the Event register is set, the instruction clears the register and
completes immediately.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RKDND If the PE enters a low-power state on a WFE instruction, it remains in that low-power state until it receives a WFE
wakeup event. When the PE recognizes a WFE wakeup event, the WFE instruction completes. The following are
WFE wakeup events:

• The execution of a SEV() instruction by any PE.
• When SCR.SEVONPEND is 1, any exception entering the pending state.
• Any exception at a priority that would preempt the current execution priority, taking into account any active

exceptions and including the effects of any software-controlled priority boosting by AIRCR.PRIS == 1 and
PRIMASK, FAULTMASK, or BASEPRI.

• If debug is enabled, a debug event.
• Any IMPLEMENTATION DEFINED event.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RYRDC The Armv8-M architecture does not define the exact nature of the low-power state that is entered on a instruction,
except that it does not cause a loss of memory coherency.

Applies to an implementation of the architecture from Armv8.0-M onwards.

ITZJZ Arm recommends that software always uses the instruction in a loop.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B3.13 Priority model on page 94.

WaitForEvent().

SendEvent().

B2.1.2 The Event register

IRPZM The Event register is a single-bit register for each PE in the system.

Applies to an implementation of the architecture from Armv8.0-M onwards.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

66

Chapter B2. Power Management
B2.1. Power management

RBPBR The Event register for a PE is set by any of the following:

• Any WFE wakeup event.
• Exception entry.
• Exception return.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IMMZW When the Event register is set, it is an indication that an event has occurred since the register was last cleared, and
that the event might require some action by the PE.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RCXMT A reset clears the Event register.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IJFKL The execution of a WFE instruction will clear the Event Register.

Applies to an implementation of the architecture from Armv8.0-M onwards.

ILNFV Software cannot read, and cannot write to, the Event register directly.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

SetEventRegister()

ClearEventRegister()

EventRegistered()

B2.1.3 The Wait for Interrupt (WFI) instruction

RHRMJ When a WFI instruction is executed, the PE can suspend execution and enter a low-power state. If it does, it
remains in that state until it receives a WFI wakeup event. When the PE recognizes a WFI wakeup event, the WFI
instruction completes. The following are WFI wakeup events:

• A reset.
• Any asynchronous exception at a priority that, ignoring the effect of PRIMASK (so that behavior is as if

PRIMASK is 0), would preempt any currently active exceptions.
• An IMPLEMENTATION DEFINED WFI wakeup event.
• If debug is enabled, a debug event.

Applies to an implementation of the architecture from Armv8.0-M onwards.

ICGNL Arm recommends that software always uses the WFI instruction in a loop.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B3.13 Priority model on page 94.

WaitForInterrupt()

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

67

Chapter B2. Power Management
B2.2. Sleep on exit

B2.2 Sleep on exit

RJXGW It is IMPLEMENTATION DEFINED whether the SleepOnExit() function causes the PE to enter a low-power
state during the return from the only active exception and the PE returns to Thread mode.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RCMVG The PE enters a low-power state on return from an exception when all the following are true:

• EXC_RETURN.Mode == 1.
• SCR.SLEEPONEXIT== 1.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RWWDW If the sleep-on-exit function is enabled, it is IMPLEMENTATION DEFINED at which point in the exception return
process the PE enters a low-power state.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RLLQF The wakeup events for the sleep-on-exit function are identical to the WFI instruction wakeup events.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B3.13 Priority model on page 94.

SleepOnExit()

B3.22 Exception return on page 119.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

68

Chapter B3
Programmers’ Model

This chapter specifies the Armv8-M programmers’ model architecture rules. It contains the following sections:

B3.1 PE modes, Thread mode and Handler mode on page 71.

B3.2 Privileged and unprivileged execution on page 72.

B3.3 Registers on page 73.

B3.4 Special-purpose CONTROL register on page 75.

B3.5 XPSR, APSR, IPSR, and EPSR on page 76.

B3.6 Security states: Secure state, and Non-secure state on page 78.

B3.7 Security states and register banking between Security states on page 79.

B3.8 Stack pointer on page 80.

B3.9 Exception numbers and exception priority numbers on page 82.

B3.10 Exception enable, pending, and active bits on page 85.

B3.11 Security states, exception banking on page 87.

B3.12 Faults on page 89.

B3.13 Priority model on page 94.

B3.14 Secure address protection on page 98.

B3.15 Security state transitions on page 99.

B3.16 Function calls from Secure state to Non-secure state on page 101.

B3.17 Function returns from Non-secure state on page 102.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

69

Chapter B3. Programmers’ Model

B3.18 Exception handling on page 104.

B3.19 Exception entry, context stacking on page 106.

B3.20 Exception entry, register clearing after context stacking on page 115.

B3.21 Stack limit checks on page 116.

B3.22 Exception return on page 119.

B3.23 Integrity signature on page 123.

B3.24 Exceptions during exception entry on page 124.

B3.25 Exceptions during exception return on page 126.

B3.26 Tail-chaining on page 127.

B3.27 Exceptions, instruction resume, or instruction restart on page 130.

B3.28 Low overhead loops on page 133.

B3.29 Branch future on page 138.

Applies to an implementation of the architecture from Armv8.1-M onwards.

B3.30 Vector tables on page 140.

B3.31 Hardware-controlled priority escalation to HardFault on page 142.

B3.32 Special-purpose mask registers, PRIMASK, BASEPRI, FAULTMASK, for configurable priority boosting on
page 143.

B3.33 Lockup on page 145.

B3.34 Data independent timing on page 151.

Applies to an implementation of the architecture from Armv8.1-M onwards.

B3.35 Context Synchronization Event on page 154.

B3.36 Coprocessor support on page 155.

B3.37 The Custom Datapath Extension on page 157.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

70

Chapter B3. Programmers’ Model
B3.1. PE modes, Thread mode and Handler mode

B3.1 PE modes, Thread mode and Handler mode

RCNMS There are two PE modes:

• Thread mode.
• Handler mode.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IFDVT A common usage model for the PE modes is:

• Thread mode: Applications.
• Handler mode: OS kernel and associated functions, that manage system resources.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RRPKP The PE handles all exceptions in Handler mode.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RCMQP Thread mode is selected on reset.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B3.2 Privileged and unprivileged execution on page 72.

B3.5.1 Interrupt Program Status Register (IPSR) on page 76.

B3.6 Security states: Secure state, and Non-secure state on page 78.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

71

Chapter B3. Programmers’ Model
B3.2. Privileged and unprivileged execution

B3.2 Privileged and unprivileged execution

RWVRK Thread mode

Execution can be privileged or unprivileged.

Handler mode

Execution is always privileged.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IWCFH CONTROL.nPRIV determines whether execution in Thread mode is unprivileged.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RSBQF In a PE without the Main Extension, it is IMPLEMENTATION DEFINED whether CONTROL.nPRIV can be set to 1.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RJSSW Execution privilege can determine whether a resource is accessible.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IGNSC Privileged execution typically has access to more resources than unprivileged execution.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B3.1 PE modes, Thread mode and Handler mode on page 71.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

72

Chapter B3. Programmers’ Model
B3.3. Registers

B3.3 Registers

RKGST There are the following types of registers:

General-purpose registers, all 32-bit:

• R0-R12 (Rn).
• R13. This is the stack pointer (SP).
• R14. This is the Link Register (LR).

Program Counter, 32-bit:

• R15 is the Program Counter (PC).

Special-purpose registers:

• Mask Registers:

– 1-bit exception mask register, PRIMASK.
– 8-bit base priority mask register, BASEPRI.
– 1-bit fault mask register, FAULTMASK.

• A 2-bit, 3-bit, or 4-bit CONTROL register.

• Two 32-bit stack pointer limit registers, MSPLIM and PSPLIM, if the Main Extension is not implemented
the Non-secure versions of these registers are RAZ/WI.

• A combined 32-bit Program Status Register (XPSR), comprising:

– Application Program Status Register (APSR).
– Interrupt Program Status Register (IPSR).
– Execution Program Status Register (EPSR).

Memory-mapped registers:

All other registers.

Applies to an implementation of the architecture from Armv8.0-M onwards.

ICJWV A 32-bit combined exception return Program Status Register, RETPSR, contains a payload of the saved state
derived from the XPSR.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IDHVL Extensions might add more registers to the base register set.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IBLXF SP refers to the active stack pointer, the Main stack pointer or the Process stack pointer.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RPLRT If the Main Extension is implemented, the LR is set to 0xFFFFFFFF on Warm reset.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

RQHMH If the Main Extension is not implemented, the LR becomes UNKNOWN on a Warm reset.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - !M.

RPLNS The PC is loaded with the reset handler start address on Warm reset.

Applies to an implementation of the architecture from Armv8.0-M onwards.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

73

Chapter B3. Programmers’ Model
B3.3. Registers

RJPCB The PC contains the instruction address of the instruction currently being executed. If an instruction reads the
value of the PC, the value returned will increase by 4.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RXHHC Except for writes to the CONTROL register, any change to a special-purpose register by a CPS or MSR instruction
is guaranteed:

• Not to affect that CPS or MSR instruction, or any instruction preceding it in program order.
• To be visible to all instructions that appear in program order after the CPS or MSR.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RXPTQ All unallocated or reserved values of fields with allocated values within the memory-mapped registers that are
described in this reference manual behave, unless otherwise stated in the register description, in one of the following
ways:

• The encoding maps onto any of the allocated values, but otherwise does not cause CONSTRAINED UNPRE-
DICTABLE behavior.

• The encoding causes effects that could be achieved by a combination of more than one of the allocated
encodings.

• The encoding causes the field to have no functional effect.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RPDJC Reads of registers described as write-only (WO) behave as RES0.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RXKXP Writes to a register described as read-only (RO) do not cause modification of the read-only register.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

Chapter B7 The System Address Map on page 251.

B3.32 Special-purpose mask registers, PRIMASK, BASEPRI, FAULTMASK, for configurable priority boosting on
page 143.

B3.4 Special-purpose CONTROL register on page 75.

B3.21 Stack limit checks on page 116.

B3.5 XPSR, APSR, IPSR, and EPSR on page 76.

B1.1 Resets, Cold reset, and Warm reset on page 64.

Part D Register and Payload Specification.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

74

Chapter B3. Programmers’ Model
B3.4. Special-purpose CONTROL register

B3.4 Special-purpose CONTROL register

RCSPP MRS and MSR instructions can be used to access the CONTROL register.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RGKVQ Privileged execution can write to the CONTROL register. The PE ignores unprivileged writes to the CONTROL
register. All reads of the CONTROL register, regardless of privilege, are allowed.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RRJMP The architecture requires a Context synchronization event to guarantee visibility of a change to the CONTROL
register.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RHVGB The PE automatically updates CONTROL.SPSEL on exception entry and exception return.

Applies to an implementation of the architecture from Armv8.0-M onwards.

INMBL CONTROL.SPSEL selects the stack pointer when the PE is in Thread mode.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B3.35 Context Synchronization Event on page 154.

CONTROL, Control Register.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

75

Chapter B3. Programmers’ Model
B3.5. XPSR, APSR, IPSR, and EPSR

B3.5 XPSR, APSR, IPSR, and EPSR

RZFHH The APSR, IPSR, and EPSR combine to form one register, the XPSR:

N Z

31 30 29 28 27 26 25 24 23 20 19 16 15 10 9 8 0

C V Q GE[3:0]†

0 or

 Exception Number
 0 or Exception Number

ICI/IT/
ECI†† T ICI/IT/ECI††

† Reserved if the DSP Extension is not implemented
†† Reserved if the Main Extension is not implemented. ECI requires implementing the MVE Extension.

EPSR

IPSR

APSR

XPSR

All unused bits in any of the APSR, IPSR, or EPSR, or any unused bits in the combined XPSR, are reserved.

Applies to an implementation of the architecture from Armv8.0-M. Note, ECI functionality only available in an Armv8.1-M
implementation.

RXGTP The MRS and MSR instructions recognize the following mnemonics for accessing the APSR, IPSR or EPSR, or a
combination of them:

Mnemonic Registers accessed
APSR APSR
IPSR IPSR
EPSR EPSR
IAPSR IPSR and APSR
EAPSR EPSR and APSR
IEPSR IPSR and EPSR
XPSR APSR, IPSR, and EPSR

Applies to an implementation of the architecture from Armv8.0-M onwards.

RWLFR Arm deprecates using MSR APSR without a _<bits> qualifier as an alias for MSR APSR-_nzcvq.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B3.3 Registers on page 73.

APSR, Application Program Status Register.

B3.5.1 Interrupt Program Status Register (IPSR) .

B3.5.2 Execution Program Status Register (EPSR) on page 77.

B3.5.1 Interrupt Program Status Register (IPSR)

RDTBJ When the PE is in Thread mode, the IPSR value is zero.

When the PE is in Handler mode:

• In the case of a taken exception, the IPSR holds the exception number of the exception being handled.
• When there has been a function call from Secure state to Non-secure state, the IPSR has the value of 1.

The PE updates the IPSR on exception entry and return.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

76

Chapter B3. Programmers’ Model
B3.5. XPSR, APSR, IPSR, and EPSR

Applies to an implementation of the architecture from Armv8.0-M. Note, Secure state requires S.

RXTCC The PE ignores writes to the IPSR by MSR instructions.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RRDRX If DCRDR is used to change the value of IPSR, then the value of IPSR becomes UNKNOWN. If DCRDR attempts
to set IPSR to an illegal value, then the UNKNOWN value is set to one of the known legal values.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B3.5 XPSR, APSR, IPSR, and EPSR on page 76.

B3.16 Function calls from Secure state to Non-secure state on page 101.

IPSR, Interrupt Program Status Register

BX, BXNS

B3.5.2 Execution Program Status Register (EPSR)

RKSCH A reset sets EPSR.T to the value of bit[0] of the reset vector.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RSQLX When EPSR.T is:

0: Any attempt to execute any instruction generates:

• An INVSTATE UsageFault, in a PE with the Main Extension.
• A HardFault, in a PE without the Main Extension.

1: The Instruction set state is T32 state and all instructions are decoded as T32 instructions.

Applies to an implementation of the architecture from Armv8.0-M. Note, UsageFault requires M.

IXBWX The intent is that the Instruction set state is always T32 state.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RLBJQ All EPSR fields read as zero using an MRS instruction. The PE ignores writes to the EPSR by an MSR instruction.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B3.5 XPSR, APSR, IPSR, and EPSR on page 76.

B3.5.2 Execution Program Status Register (EPSR) .

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

77

Chapter B3. Programmers’ Model
B3.6. Security states: Secure state, and Non-secure state

B3.6 Security states: Secure state, and Non-secure state

RHKKL A PE with the Security Extension has two Security states:

• Secure state.
– Secure Thread mode.
– Secure Handler mode.

• Non-secure state.
– Non-secure Thread mode.
– Non-secure Handler mode.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

RPBGT If the Security Extension is implemented, memory areas and other critical resources that are marked as secure can
only be accessed when the PE is executing in Secure state.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

RHWFV A PE with the Security Extension resets into Secure state on both of the Armv8-M resets, Cold reset and Warm
reset.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

RPLGH A PE without the Security Extension resets into Non-secure state on both of the Armv8-M resets, Cold reset and
Warm reset.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - !S.

See also:

B3.1 PE modes, Thread mode and Handler mode on page 71.

B3.2 Privileged and unprivileged execution on page 72.

B3.7 Security states and register banking between Security states on page 79.

B3.11 Security states, exception banking on page 87.

B3.15 Security state transitions on page 99.

Chapter B5 Vector Extension on page 177.

Applies to an implementation of the architecture from Armv8.1-M onwards.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

78

Chapter B3. Programmers’ Model
B3.7. Security states and register banking between Security states

B3.7 Security states and register banking between Security states

IMGRQ In a PE with the Security Extension, some registers are banked between the Security states. When a register is
banked in this way, there is a distinct instance of the register in Secure state and another distinct instance of the
register in Non-secure state.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

RBHDK In a PE with the Security Extension:

• The general-purpose registers that are banked are:

– R13. This is the stack pointer (SP).

• The special-purpose registers that are banked are:

– The Mask registers, PRIMASK, BASEPRI, and FAULTMASK.
– Some bits in the CONTROL register.
– The Main and Process stack pointer Limit registers, MSPLIM and PSPLIM.

• The System Control Space (SCS) is banked.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

IGBWT For MRS and MSR (register) instructions, SYSm[7] in the instruction encoding specifies whether the Secure
or the Non-secure instance of a Banked register is accessed:

Access from SYSm[7]
0 1

Secure state Secure instance Non-secure instance
Non-secure state Non-secure instance RAZ/WI

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

RZJKL This specification uses the following naming convention to identify a Banked register:

• <register name>_S: The Secure instance of the register.
• <register name>_NS: The Non-secure instance of the register.
• <register name>: The instance that is associated with the current Security state.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

See also:

B3.3 Registers on page 73.

B3.6 Security states: Secure state, and Non-secure state on page 78.

B3.8 Stack pointer on page 80.

B7.3 The System Control Space (SCS) on page 255.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

79

Chapter B3. Programmers’ Model
B3.8. Stack pointer

B3.8 Stack pointer

RRDLR In a PE with the Security Extension, four stacks and four stack pointer registers are implemented:

Stack Stack pointer register
Secure Main MSP_S

Process PSP_S
Non-secure Main MSP_NS

Process PSP_NS

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

RTGHV In a PE without the Security Extension, two stacks and two stack pointer registers are implemented:

Stack Stack pointer register
Main MSP
Process PSP

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - !S.

RLDGJ On exception return the Armv8-M architecture only supports doubleword aligned stack pointers.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RXKZV If, on exception return, the stack pointers are not doubleword aligned, the CONSTRAINED UNPREDICTABLE
behavior is either:

• Treating the stack pointer as the actual value.
• Treating the stack pointer as if it were aligned.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RTXRW In Handler mode, the PE uses the main stack.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IDMLS In Thread mode, CONTROL.SPSEL determines whether the PE uses the main or process stack.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RBTVD In a PE without the Security Extension, MSP is selected and initialized on reset.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - !S.

RMDXK In a PE with the Security Extension, the Secure main stack, MSP_S, is selected and initialized on reset.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

ILVWN On Warm reset, the selected Stack Pointer either the MSP or MSP_S, is set to the value contained in the Vector
table, as described in TakeReset().

Applies to an implementation of the architecture from Armv8.0-M. Note, S is required for MSP_S.

RXPWM Bits [1:0] of the MSP or PSP, in either Security state, are RES0H, so that all stack pointers are always guaranteed to
be word-aligned.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

RMQVJ Where an instruction states that the SP is UNPREDICTABLE and SP is used:

• The value that is read or written from or to the SP is UNKNOWN.
• The instruction is permitted to be treated as UNDEFINED.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

80

Chapter B3. Programmers’ Model
B3.8. Stack pointer

• If the SP is being written, it is UNKNOWN whether a stack-limit check is applied.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RJXJM After the successful completion of an exception entry stacking operation, the stack pointer of the stack pushed
because of the exception entry is doubleword-aligned.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IPWRQ Arm recommends that the Secure stacks be located in Secure memory.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

See also:

B3.6 Security states: Secure state, and Non-secure state on page 78.

B3.1 PE modes, Thread mode and Handler mode on page 71.

B3.19 Exception entry, context stacking on page 106.

B3.30 Vector tables on page 140.

B3.3 Registers on page 73.

B3.21 Stack limit checks on page 116.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

81

Chapter B3. Programmers’ Model
B3.9. Exception numbers and exception priority numbers

B3.9 Exception numbers and exception priority numbers

IDCJS Each exception has an associated exception number and an associated priority number.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RCMTC In a PE with the Main Extension, the exceptions, their associated numbers, and their associated priority numbers
are as follows:

Exception Exception Number Priority Number
Reset 1 -4 (Highest Priority)
Secure HardFault when AIRCR.BFHFNMINS is 1 3 -3
NMI 2 -2
Secure HardFault when AIRCR.BFHFNMINS is 0 3 -1
Non-Secure HardFault 3 -1
MemManage fault 4 Configurable
BusFault 5 Configurable
UsageFault 6 Configurable
SecureFault 7 Configurable
Reserved 8-10 -
SVCall 11 Configurable
DebugMonitor 12 Configurable
Reserved 13 -
PendSV 14 Configurable
SysTick 15 Configurable
External Interrupt 0 16 Configurable
- - -
- - -
- - -
External interrupt N 16+N Configurable

When AIRCR.BFHFNMINS is 1, faults that target Secure state that are escalated to HardFault are still Secure
HardFaults. That is, the value of AIRCR.BFHFNMINS does not affect faults that target Secure state that are
escalated to HardFaults. This table row applies to such faults.
If the Security Extension is not implemented exception 7 is reserved.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M. Note, S is
required for Secure faults.

RMGNV In a PE without the Main Extension, the exceptions, their associated numbers, and their associated priority numbers
are as follows:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

82

Chapter B3. Programmers’ Model
B3.9. Exception numbers and exception priority numbers

Exception Exception Number Priority Number
Reset 1 -4 (Highest Priority)
Secure HardFault when AIRCR.BFHFNMINS is 1 3 -3
NMI 2 -2
Secure HardFault when AIRCR.BFHFNMINS is 0 3 -1
Non-Secure HardFault 3 -1
Reserved 4-10 -
SVCall 11 Configurable
Reserved 12-13 -
PendSV 14 Configurable
SysTick 15 Configurable
External Interrupt 0 16 Configurable
- - -
- - -
- - -
External interrupt N 16+N Configurable

When AIRCR.BFHFNMINS is 1, faults that target Secure state that are escalated to HardFault are still Secure
HardFaults. That is, the value of AIRCR.BFHFNMINS does not affect faults that target Secure state that are
escalated to HardFaults. This table row applies to such faults.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - !M. Note, S is
required for Secure faults. ST is required for SysTick fault.

IFPJD The maximum supported number of external interrupts is 496, regardless of whether the Main Extension is
implemented.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RQQTT The architecture permits an implementation to omit external configurable interrupts where no external device is
connected to the corresponding interrupt pin. Where an implementation omits such an interrupt, the corresponding
pending, active, enable, and priority registers are RES0.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IQWTM In a PE with the Main Extension, the following exceptions with configurable priority numbers can be configured
with SHPR1- SHPR3 in the System Control Block (SCB):

• MemManage Fault.
• BusFault.
• UsageFault.
• SecureFault (if the Security Extension is implemented).
• SVCall.
• DebugMonitor exception.
• PendSV.
• SysTick.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

ISGBC In a PE without the Main Extension the following exceptions with configurable priority numbers can be configured
with SHPR2 and SHPR3 in the System Control Block (SCB):

• SVCall.
• PendSV.
• SysTick.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - !M.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

83

Chapter B3. Programmers’ Model
B3.9. Exception numbers and exception priority numbers

IJQPH All other configurable exceptions can be configured using the NVIC_IPRn.PRI_<n> register fields.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RNFSM Configurable priority numbers start at 0, the highest configurable exception priority number.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RGGCP In a PE with the Main Extension, the number of configurable priority numbers is an IMPLEMENTATION DEFINED
power of two in the range 8-256:

Number of priority Number of Minimum Priority Maximum Priority
bits of SHPRIn.PRI_n configurable Number Number
implemented Priority numbers (highest prioirty) (lowest priority)
3 8 0 0b11100000 = 224
4 16 0 0b11110000 = 240
5 32 0 0b11111000 = 248
6 64 0 0b11111100 = 252
7 128 0 0b11111110 = 254
8 256 0 0b11111111 = 255

All low-order bits of of SHPRIn.PRI_n that are not implemented as priority bits are RES0, as shown in the
maximum priority number column.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

RCMGH In a PE without the Main Extension, the number of configurable priority numbers is 4:

Number of priority Number of Minimum Priority Maximum Priority
bits of SHPRIn.PRI_n configurable Number Number
implemented Priority numbers (highest prioirty) (lowest priority)
2 4 0 0b11000000 = 192

SHPRn.PRI_n[5:0] are RES0, as shown in the maximum priority number column.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - !M.

See also:

B3.11 Security states, exception banking on page 87.

B3.12 Faults on page 89.

B3.13 Priority model on page 94.

SHPR1, SHPR2, SHPR3.

NVIC_IPRn.

ExecutionPriority()

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

84

Chapter B3. Programmers’ Model
B3.10. Exception enable, pending, and active bits

B3.10 Exception enable, pending, and active bits

IQQDG The SHCSR, ICSR, DEMCR, NVIC_IABRn, NVIC_ISPRn contain exception enable, pending, and active fields.
STIR can be used to pend exceptions.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IGHGW The following exceptions are always enabled and therefore do not have an exception enable bit:

• HardFault.
• NMI.
• SVCall.
• PendSV.

Applies to an implementation of the architecture from Armv8.0-M onwards.

ILHSX In a PE without the Security Extension:

• Privileged execution can pend interrupts by writing to the NVIC_ISPRn.
• When CCR.USERSETMPEND is 1, unprivileged execution can pend interrupts by writing to the STIR.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - !S.

IQDKX In a PE with the Security Extension:

• The STIR can pend any Secure or Non-secure interrupt, as follows:

Secure state Non-secure state
Privileged Can use STIR to pend Can use STIR to pend
execution any Secure or Non- a Non-Secure interrupt.

secure interrupt.
Unprivileged When CCR_S.USERSETMPEND is 1, When CCR_NS.USERSETMPEND is 1
execution can use STIR to pend any Secure or can use STIR to pend any

Non-secure interrupt, otherwise Non-secure interrupt, otherwise
when CCR_S.USERSETMPEND is 0 when CCR_NS.USERSETMPEND is 0
a BusFault is generated. a BusFault is generated.

• The STIR_NS can pend a Non-secure interrupt, as follows:

Secure state Non-secure state
Privileged Can use STIR_NS. to pend a RES0

Non-secure interrupt.
Unprivileged When CCR_NS.USERSETMPEND is 1, can use BusFault

STIR_NS to pend a Non-secure interrupt,
otherwise when CCR_NS.USERSETMPEND is 0
a BusFault is generated.

• The NVIC_ISPRn can pend any Secure or Non-secure interrupt, as follows:

Secure state Non-secure state
Privileged Can use NVIC_ISPRn to pend Can use NVIC_ISPRn to pend
execution any Secure or Non-secure a Non-secure interrupt

interrupt
Unprivileged BusFault BusFault
execution

• The NVIC_ISPRn_NS can pend a Non-secure interrupt, as follows:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

85

Chapter B3. Programmers’ Model
B3.10. Exception enable, pending, and active bits

Secure state Non-secure state
Privileged Can useNVIC_ISPRn_NS to pend a RES0
execution Non-secure interrupt
Unprivileged BusFault BusFault
execution

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

ITRJJ The following table identifies the fault enable, status and active bits:

Fault, Enable Status bit Pending bit Active bit
(SHCSR) and Trap Bits SHCSR, ICSR SHCSR
Secure HardFault HFSR.VECTTBL HARDFAULTPENDED HARDFAULTACT

HFSR.FORCED
HFSR.DEBUGEVT

NMI - PENDNMISET NMIACT
HardFault HFSR.VECTTBL HARDFAULTPENDED HARDFAULTACT

HFSR.FORCED
HFSR.DEBUGEVT

MemanageFault MMFSR.IACCVIOL MEMFAULTPENDED MEMFAULTACT
MEMFAULTENA MMFSR.DACCVIOL

MMFSR.MUNSTKERR
MMFSR.MSTKERR
MMFSR.MLSPERR

BusFault BFSR.IBUSERR BUSFAULTPENDED BUSFAULTACT
BUSFAULTENA BFSR.PRECISERR

BFSR.IMPRECISERR
BFSR.UNSTKERR
BFSR.STKERR
BFSR.LSPERR

UsageFault UFSR.UNDEFINSTR USGFAULTPENDED USGFAULTACT
UFSR.INVSTATE
UFSR.INVPC
UFSR.NOCP
UFSR.STKOF

CCR.UNALIGN_TRP UFSR.UNALIGNED - -
CCR.DIV_0_TRP UFSR.DIVBYZERO - -
SecureFault SFSR.INVEP SECUREFAULTPENDED SECUREFAULTACT
SECUREFAULTENA SFSR.INVIS

SFSR.INVER
SFSR.AUVIOL
SFSR.INVTRAN
SFSR.LSPERR
SFSR.LSERR

SVCall - SVCALLPENDED SVCALLACT
DebugMonitor - DEMCR.MON_PEND MONITORACT
DEMCR.MON_EN
PendSV - PENDSVSET PENDSVACT
SysTick - PENDSTSET SYSTICKACT
SYST_CSR.ENABLE and
SYST_CSR.TICKINT
External Interrupt - NVIC_ISPRn NVIC_ICPRn NVIC_IABRn
NVIC_ICERn

Applies to an implementation of the architecture from Armv8.0-M onwards.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

86

Chapter B3. Programmers’ Model
B3.11. Security states, exception banking

B3.11 Security states, exception banking

RPJHV Some exceptions are banked. A banked exception has all the following:

• Banked enabled, pending, and active bits.
• A banked SHPRn.PRI field.
• A banked exception vector.
• A state relevant handler.

Exception Banked
Reset No
HardFault Yes (conditionally)
NMI No
MemManage fault Yes
BusFault No
UsageFault Yes
SecureFault No
SVCall Yes
DebugMonitor No
PendSV Yes
SysTick Yes
External interrupt 0 No
- -
- -
- -
External interrupt N No

MemManage Fault, UsageFault, BusFault and the DebugMonitor exception require the Main Extension to be
implemented. SecureFault requires the Security Extension to be implemented.
The SysTick exception is banked if the Main Extension is implemented. If the Main Extension is not implemented,
it is IMPLEMENTATION DEFINED if the exception is banked or if there is a single instance that has a configurable
target Security state.

Applies to an implementation of the architecture from Armv8.0-M. Note, some exceptions require M, S, DebugMonitor exception
or ST.

RLNWV A banked synchronous exception targets the Security state that it is taken from, except for the following cases:

• When accessing a coprocessor that is disabled only by the NSACR, any NOCP UsageFault that is generated
as a result of that access will target Secure state, even though the PE was executing in Non-secure state.

• When accessing a coprocessor that is disabled only by the CPPWR, any NOCP UsageFault that is generated
as a result of that access will target the Secure state if the corresponding CPPWR.SUSm bit is set to 1,
otherwise the NOCP UsageFault will target the current Security state.

• If an instruction triggers lazy floating-point state preservation, then the banked exception will be raised as if
the current Security state was the same as that of the floating-point state, as indicated by FPCCR.S.

• Banked faults and exceptions which arise from instruction fetch will target the Security state associated with
the instruction address instead of the current Security state.

• Where Non-secure HardFault is enabled, because AIRCR.BFHFNMINS is set to 1, the following applies:

– HardFault exceptions generated through escalation will target the Security state of the original exception
before its escalation to HardFault.

– A HardFault generated as a result of a failed vector fetch will target the Security state of the exception
raised during the failed vector fetch and not the current Security state.

• Faults triggered by the stacking of callee registers always target the Secure state.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

87

Chapter B3. Programmers’ Model
B3.11. Security states, exception banking

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S. Note, a
UsageFault requires M, Floating-point state requires FP.

RGVPG If AIRCR.BFHFNMINS == 0, then all Non-secure HardFaults are escalated to Secure HardFaults, and Non-secure
pending bits behave as zero for everything except explicit reads and writes.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RWLGH Where an implementation has two SysTick timers, one in each Security state, each timer targets its owning Security
state and not the current Execution state of the PE.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S && ST.

IDDKC NMI can be configured to target either Security state, by using AIRCR.BFHFNMINS.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IHGFM BusFault can be configured to target either Security state, by using AIRCR.BFHFNMINS.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RMQWN SecureFault always targets Secure state.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

IWSSL The DebugMonitor exception targets Secure state if the status bit DEMCR.SDME is 1. Otherwise, it targets
Non-secure state.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IDQLX Each external interrupt, 0-N, targets the Security state that its NVIC_ITNSn[bit number] dictates.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RHXRW When <exception> targets Secure state, the Non-secure view of its priority field, any enabled, pending, and active
bits, are RAZ/WI.

<exception> is one of:

• NMI.
• BusFault.
• DebugMonitor.
• External interrupt N.
• In a PE without the Main Extension, and a single instance of the SysTick Timer, SysTick.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S. Note, a
BusFault exception requires M, a DebugMonitor exception requires DebugMonitor exception.

IQRDM Secure software must ensure that when changing the target Security state of an exception, the exception is not
pending or active. A change to the Security state of an exception when the exception is pending or active might
lead to UNPREDICTABLE behavior.

Applies to an implementation of the architecture from Armv8.0-M. Note, S.

See also:

B3.9 Exception numbers and exception priority numbers on page 82.

B3.30 Vector tables on page 140.

SHCSR, System Handler Control and State Register.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

88

Chapter B3. Programmers’ Model
B3.12. Faults

B3.12 Faults

INHTB There are the following Fault Status Registers:

• HardFault Status Register HFSR. Present only if the Main Extension is implemented.
• MemManage Fault Status Register MMFSR. Present only if the Main Extension is implemented.
• BusFault Status Register BFSR. Present only if the Main Extension is implemented.
• UsageFault Status Register UFSR. Present only if the Main Extension is implemented.
• SecureFault Status Register SFSR. Present only if the Main Extension is implemented.
• Debug Fault Status Register DFSR. Present only if Halting debug or the Main Extension is implemented.
• Auxiliary Fault Status Register AFSR. The contents of this register are IMPLEMENTATION DEFINED.
• RAS Fault Status Register RFSR.

In a PE with the Main Extension, the BFSR, MMFSR, and UFSR combine to form one register, called the
Configurable Fault Status Register (CFSR).

There are the following Fault Address Registers:

• MemManage Fault Address Register (MMFAR). Present only if the Main Extension is implemented.
• BusFault Address Register (BFAR). Present only if the Main Extension is implemented.
• SecureFault Address Register (SFAR). Present only if the Main Extension is implemented.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M && RAS.
Note, RAS is present only in the Armv8.1-M architecture.

RXMRH Unless otherwise stated, MMFAR is updated only for a MemManage fault on a direct data access.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

RDDJJ Unless otherwise stated, BFAR is updated only for a BusFault on a data access, a precise fault.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

RBFFR Unless otherwise stated, SFAR is updated only for a SecureFault on a memory access that caused a Security
Attribution Unit violation.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M && S.

RFLDT Each fault address register has an associated valid bit. When the PE updates the fault address register, the PE sets
the valid bit to 1.

Fault address register Valid bit
MMFAR MMFSR.MMARVALID
BFAR BFSR.BFARVALID
SFAR SFSR.SFARVALID

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

RTSCP If a fault occurs that would otherwise set a FAR valid bit to 1, which has already been set by an earlier fault it is
IMPLEMENTATION DEFINED whether:

• The FAR register is updated with the new syndrome.
• The FAR register retains the syndrome of the original fault.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RTSCG If the Security Extension is not implemented, it is IMPLEMENTATION DEFINED whether separate BFAR and
MMFAR are implemented. If one shared fault address register is implemented, then on a fault that would otherwise
update the shared fault address register, if one of the other valid bits is set to 1, it is IMPLEMENTATION DEFINED
whether:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

89

Chapter B3. Programmers’ Model
B3.12. Faults

• The shared fault address register is updated, the valid bit for the fault is set, and the other valid bit is cleared.
• The shared fault address register is not updated, and the valid bits are not changed.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M && !S.

RXPWN If the Security Extension is implemented, it is IMPLEMENTATION DEFINED whether separate fault address registers
for each fault are implemented. If one shared fault address register per Security state is implemented, then on a
fault that would otherwise update the shared fault address register, if one of the other FAR valid bits for the same
Security state is set to 1, it is IMPLEMENTATION DEFINED whether:

• The shared fault address register is updated, the valid bit for the fault is set, and the other valid bit is cleared.
• The shared fault address register is not updated, and the valid bits are not changed.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M && S.

ILQFZ AIRCR.BFHFNMINS dictates which shared fault registers are used depending on the Security state:

• In Secure state, the fault registers that might be shared are SFAR and MMFAR_S, and when
AIRCR.BFHFNMINS is 0, BFAR.

• In Non-secure state, the fault registers that might be shared are MMFAR_NS and when AIRCR.BFHFNMINS
is 1, BFAR.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M && S.

IDGDG For example in an implementation that contains a shared Fault Address Register, the shared fault register
might be written to with the address of the memory location being accessed that caused a BusFault fault, and
BFSR.BFARVALID is set to 1. If the BFSR.BFARVALID is still set when a MemManage fault subsequently
occurs that might update the shared fault address register it is an IMPLEMENTATION DEFINED choice between:

• The shared fault address register being updated with the syndrome that caused the MemManage fault, the
BFSR.BFARVALID being cleared and MMFSR.MMARVALID for the MemMange fault being set.

• The address of the memory location that caused the BusFault is retained and the fault address informa-
tion generated by the MemManage fault is discarded without clearing BFSR.BFARVALID or updating
MMFSR.MMARVALID for the MemManage fault.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M && !S.

INSSB If a Secure MemMange fault occurs that targets Secure state, as described by ExceptionTargetsSecure(),
the Secure shared fault register is written to with the address of the memory location that caused the MemManage
fault, and MMFSR_S.MMARVALID is set to 1. If the MMFSR_S.MMARVALIDis still set when a SecureFault
subsequently occurs it is an IMPLEMENTATION DEFINED choice between:

• The shared fault address register being updated with the address of the memory location that that caused the
SecureFault, MMFSR_S.MMARVALID being cleared and SFSR.SFARVALID being set.

• The address of the memory location that caused the MemManageFault is retained and the fault address
information generated by the SecureFault is discarded without out clearing MMFSR_S.MMARVALID or
updating SFSR.SFARVALID.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M && S.

ISMVQ Arm strongly recommends that if a separate BFAR is implemented, the associated BFAR and BFSR.BFARVALID
bit is cleared when changing AIRCR.BFHFNMINS so as not to expose the last accessed address to Non-secure
state.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M && S.

ILRNV When the Security extension is implemented:

• If AIRCR.BFHFNMINS is 0 a read of BFAR_NS will return 0.
• If AIRCR.BFHFNMINS is 1 a read of BFAR_NS and BFAR_S might return the same value. This behavior

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

90

Chapter B3. Programmers’ Model
B3.12. Faults

cannot be relied on if there is a change to AIRCR.BFHFNMINS between the reads of BFAR in different
Security states.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M && S.

RKJPM In a PE with the Main Extension, the faults are:

Exception Exception Fault Status Bit
Number
3 HardFault HardFault on Vector table entry read error HFSR.VECTTBL

HardFault on fault escalation HFSR.FORCED
HardFault on BKPT escalation HFSR.DEBUGEVT

4 MemManage MemManage fault on an instruction fetch MMFSR.IACCVIOL
Fault MemManage Fault on direct data access MMFSR.DACCVIOL

MemManage Fault on context unstacking MMFSR.MUNSTKERR
by hardware.
MemManage Fault on context stacking MMFSR.MSTKERR
by hardware, becauase of a
MPU access violation.
When lazy Floating-point context MMFSR.MLSPERR
preservation is active, a MemManage
fault on saving Floating-point
context to the stack

5 BusFault BusFault on an instruction fetch, BFSR.IBUSERR
precise
BusFault on a data access, precise BFSR.PRECISERR
BusFault on a data access, imprecise BFSR.IMPRECISERR
BusFault on a context unstacking by BFSR.UNSTKERR
hardware
BusFault on context stacking by BFSR.STKERR
hardware
When lazy Floating-point context BFSR.LSPERR
preservation is active, a BusFault
on saving Floating-point context to
the stack

6 UsageFault UsageFault, undefined instruction UFSR.UNDEFINSTR
UsageFault, invalid Instruction UFSR.INVSTATE
set state because EPSR.T
is 0 or because of an exception
return with a valid ICI value
where the return address does not
target either a load/store/clear
multiple instruction or a breakpoint
instruction
UsageFault, failed integrity check UFSR.INVPC
on exception return or a function
return with a transition from
Non-secure state to Secure state
UsageFault, no coprocessor UFSR.NOCP
UsageFault, stack overflow UFSR.STKOF
UsageFault, unaligned access UFSR.UNALIGNED
UsageFault, divide by zero when UFSR.DIVBYZERO
CCR.DIV_0_TRP is 1

7 SecureFault SecureFault, invalid Secure state SFSR.INVEP

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

91

Chapter B3. Programmers’ Model
B3.12. Faults

entry point
SecureFault, invalid integrity SFSR.INVIS
signature when unstacking
SecureFault, invalid exception return SFSR.INVER
SecureFault, attribution unit SFSR.AUVIOL
violation
SecureFault, invalid transition from SFSR.INVTRAN
Secure state
SecureFault, lazy Floating-point SFSR.LSPERR
context preservation error
SecureFault, lazy Floating-point SFSR.LSERR
context error

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M. Note, Secure
Faults require S, EPSR.ECI requires MVE && Armv8.1-M.

RXVNN Exception vector reads use the default system address map.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RLLRP In an Armv8.1-M implementation when a HardFault is generated as a result of a read of the Vector table
HFSR.FORCED is not set. In an Armv8.0-M implementation it is IMPLEMENTATION DEFINED whether a
HardFault generated as a result of Vector table read sets HFSR.FORCED.

Applies to an implementation of the architecture from Armv8.1-M onwards.

IXJQC RAS faults can generate BusFaults, and these are recorded in RFSR.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

INKHG In a PE without the Main Extension, the enable, pending, and active bits in SHCSR are RES0 for those faults that
are only included in a PE with the Main Extension.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

RWHBK In a PE without the Main Extension, the faults are:

Exception number Exception
3 HardFault

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - !M.

RFQJV Fault conditions that would generate a SecureFault in a PE with the Main Extension instead generate a Secure
HardFault in a PE without the Main Extension.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

ICCXG For the exact circumstances under which each of the Armv8-M faults is generated, see the appropriate Fault Status
Register description.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

See also:

B3.9 Exception numbers and exception priority numbers on page 82.

B3.31 Hardware-controlled priority escalation to HardFault on page 142.

Chapter B12 Debug on page 283.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

92

Chapter B3. Programmers’ Model
B3.12. Faults

Part D Register and Payload Specification.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

93

Chapter B3. Programmers’ Model
B3.13. Priority model

B3.13 Priority model

ICTFJ An exception, other than reset, has the following possible states:

Active:
An exception that either:

• Is being handled.
• Was being handled. The handler was preempted by a handler for a higher priority exception.

Pending:
An exception that has been generated, but that is not active.

Inactive:
The exception has not been generated.

Active and pending:
One instance of the exception is active, and a second instance of the exception is pending. Only asynchronous

exceptions can be active and pending. Synchronous exceptions are either inactive, pending, or active.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RCJDM Lower priority numbers take precedence over higher priority numbers.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RHLJC When no exception is active and no priority boosting is active, the instruction stream that is executing has a priority
number of (maximum supported priority number+1). The instruction stream that is executing can be interrupted by
an exception with sufficient priority.

If any exceptions are active the current execution priority is determined by:

1. In a PE with the Main Extension, the calculation of the effect of AIRCR.PRIGROUP on the comparison of
BASEPRI to the SHPRn.PRI and NVIC_IPRn values.

2. In a PE with or without the Main Extension applying the effects of PRIMASK.PM and AIRCR.PRIS.

3. In a PE with the Main Extension applying the effects of FAULTMASK.FM.

4. The execution priority is the either:

• The exception with the lowest priority number.
• The exception with the lowest priority group value.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RRKCQ Execution at a particular priority can only be preempted by an exception with a lower group priority value.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RLLCX In thread mode, when there are no active exceptions and no priority boosting is enabled, the execution priority is
256.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IDPSP In a PE with the Main Extension, BASEPRI and each SHPRn.PRI_n and NVIC_IPRn.PRI_Nn are 8-bit fields that
AIRCR.PRIGROUP splits into two fields, a group priority field and a subpriority field:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

94

Chapter B3. Programmers’ Model
B3.13. Priority model

BASEPRI, SHPRn.PRI_n [7:0], and NVIC_IPRn.PRI_Nn [7:0]
AIRCR.PRIGROUP value Group priority field Subpriority field
0 [7:1] [0]
1 [7:2] [1:0]
2 [7:3] [2:0]
3 [7:4] [3:0]
4 [7:5] [4:0]
5 [7:6] [5:0]
6 [7] [6:0]
7 - [7:0]

In a PE without the Main Extension, AIRCR.PRIGROUP is RES0, therefore each SHPR.PRI_n and
NVIC_IPRn.PRI_Nn is split into two as follows:

AIRCR.PRIGROUP SHPRn.PRI_n [7:0], and NVIC_IPRn.PRI_Nn [7:0]
Group priority field Subpriority field

RES0 [7:1] [0]

SHPRn.PRIn[5:0] are RES0 in a PE without the Main Extension.

All low order bits of BASEPRI, SHPRn.PRI, and NVIC_IPRn are not implemented as priority bits are RES0.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RWQWK When AIRCR.PRIS is 1, each Non-secure SHPRn_NS.PRI_n priority field value [7:0] has the following sequence
applied to it, it:

1. Is divided by two.
2. The constant 0x80 is then added to it.

This is equivalent to the priority field value output_pri = ‘1’:input_pri[7:1] and the priority comparisons are done
on the effective field value after the division by 2 + 0x80 has been performed.

This maps the Non-secure SHPRn_NS.PRI_n group priority field values to the bottom half of the priority range.
When this sequence is applied, any effects of AIRCR.PRIGROUP have already been taken into account, so the
subpriority field is dropped and the sequence is only applied to the group priority field.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S. Note,
Subpriority requires M.

RCQRV After applying AIRCR.PRIS:

• If there are multiple pending exceptions, the pending exception with the lowest group priority field value
takes precedence.

• If multiple pending exceptions have the same group priority field value, the pending exception with the
lowest subpriority field value takes precedence.

• If multiple pending exceptions have the same group priority field value and the same subpriority field value,
the pending exception with the lowest exception number takes precedence.

• If a pending Secure exception and a pending Non-secure exception both have the same group priority
field value, the same subpriority field value, and the same exception number, the Secure exception takes
precedence.

Applies to an implementation of the architecture from Armv8.0-M. Note, a Secure exception requires S.

RKNHG If there are multiple pending exceptions it is IMPLEMENTATION DEFINED whether the AIRCR.PRIGROUP mask
is applied to:

• The active tree only.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

95

Chapter B3. Programmers’ Model
B3.13. Priority model

• The active tree and the pending tree.

Applies to an implementation of the architecture from Armv8.0-M onwards.

INCDS The following is an example of exceptions with different priorities:

This example considers the following exceptions, that all have configurable priority numbers:

• A has the highest priority.
• B has medium priority.
• C has lowest priority.

Example sequence of events:

1. No exception is active and no priority boosting is active.
2. B is generated. The PE takes exception B and starts executing the handler for it. Exception B is now active

and the current execution priority is that of B.
3. A is generated. A is higher priority, therefore A preempts B, and the PE starts executing the handler for A.

Exception A is now active and the current execution priority is that of A. Exception B remains active.
4. C is generated. C has the lowest priority, therefore it is pending.
5. The PE reduces the priority of A to a priority that is lower than C. B is now the highest priority active

exception, therefore the execution priority moves to that of B. The PE continues executing the handler for A
at the priority of B. After completing A, the PE restarts the handler for B. After completing B, the PE takes
exception C and starts executing the handler for it. C is now active and the current execution priority is that
of C.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IXFVH The following diagram shows an example. In this example, all 8 bits of SHPRn_NS.PRI_n are implemented as
priority bits and AIRCR.PRIGROUP_NS is set to 0.

Non-secure group
priority field

values

0x00

0xFF

0x00

0xFF

0x00

0xFF

0x00

0xFF

0x80

0x7E

Priority range

Increasing
priority

In this example, the mapping is:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

96

Chapter B3. Programmers’ Model
B3.13. Priority model

SHPRn_NS.PRI_n value Mapped to
0x00 0x80
0x02 0x81
0x04 0x82
0x06 0x83
. .
. .
. .
0xFE 0xFF

In this example, Secure exceptions in the range 0x00-0x7F have priority over all Non-secure exceptions.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M && S.

IWPCP In a PE without the Main Extension but with the Security Extension, when AIRCR.PRIS is set to 1 the Non-secure
exception is mapped to the lower half of the priority range, as shown in the table:

Non-secure group priority value Mapped to
0x00 0x80
0x40 0xA0
0x80 0xC0
0xC0 0xE0

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S && !M.

See also:

B3.9 Exception numbers and exception priority numbers on page 82.

B3.32 Special-purpose mask registers, PRIMASK, BASEPRI, FAULTMASK, for configurable priority boosting on
page 143.

B3.31 Hardware-controlled priority escalation to HardFault on page 142.

ExceptionPriority().

ExecutionPriority().

ComparePriorities().

RawExecutionPriority().

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

97

Chapter B3. Programmers’ Model
B3.14. Secure address protection

B3.14 Secure address protection

RCHJX NS-Req defines the Security state that the PE or DAP requests that a memory access is performed in.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

RMSNJ NS-Attr marks a memory access as Secure or Non-secure.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

RVHRL For PE data accesses, NS-Req is equal to the current Security state.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

RXSPQ For PE and DAP data accesses, NS-Attr is determined as follows:

NS-Req Security attribute of the location being accessed NS-Attr
Non-secure Non-secure Non-secure

Secure N/a
Secure Non-secure Non-secure

Secure Secure

If the NS-Req is Non-secure and the Security attribute of the location being accessed is Secure NS-Attr is not
generated and an AUVIOL or INVEP exception is generated.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

RTDNR For instruction fetches, NS-Req and NS-Attr are equal to the Security attribute of the location being accessed.
NS-Attr also determines the Security state of the PE.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

INGXH It is not possible to execute Secure code in Non-secure state, or Non-secure code in Secure state.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

See also:

B3.15 Security state transitions on page 99.

B12.3.4 DAP access permissions on page 301.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

98

Chapter B3. Programmers’ Model
B3.15. Security state transitions

B3.15 Security state transitions

RPQHT For a transition to an address in the other Security state, the following table shows when the PE changes Security
state:

Current Security state Security attribute Conditions for a change in Security state
of the branch target address

Secure X Change to Non-secure state if the branch was an
interstating branch instruction,
BXNS or BLXNS, with the least
significant bit of its target address set to 0.

Non-secure Secure and Non-secure callable Change to the Secure state if both:
- The branch target address contains an SG
instruction which is fetched and executed.
- The whole of the instruction at the branch target
address is flagged as Secure
and Non-secure callable.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

RHPPQ The PE will transition from Non-secure to Secure state when all of the following apply:

• The security attribute of the branch target address is Secure and Non-secure callable.
• The branch target address contains an SG which is fetched and executed.
• The whole of the instruction at the branch target address is flagged as Secure and Non-secure callable.
• The execution of the SG instruction does not raise a fault.

Applies to an implementation of the architecture from Armv8.1-M onwards.

IKWMP SG instructions in Secure memory are valid entry points to Secure code. They prevent Non-secure code from being
able to jump to arbitrary addresses in Secure code.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

IWJRL When an interstating branch is executed in Secure state, the least significant bit of the target address indicates the
target Security state:

1: The target Security state is Secure.

0: The target Security state is Non-secure.

Interstating branches are UNDEFINED in Non-secure state.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

RWKXR On transition from Secure to Non-secure state, if the least significant bit of an interstating branch is set to one, the
execution of the next instruction will generate either an INVTRAN SecureFault or Secure HardFault.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S. Note, an
INVTRAN SecureFault requires M.

RJKJD On transition from Non-secure to Secure state, if there is no SG instruction or the whole instruction at the branch
target address is not flagged as Secure and Non-secure callable the execution of the next instruction will generate
either an INVEP SecureFault or Secure HardFault.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S. Note, an
INVTRAN SecureFault requires M.

RXNVW If sequential instruction execution crosses from Non-secure memory to Secure memory, then if the Secure memory

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

99

Chapter B3. Programmers’ Model
B3.15. Security state transitions

entry point contains an SG instruction and the whole of the instruction at the Secure memory entry point is flagged
as Secure and Non-secure callable, it is CONSTRAINED UNPREDICTABLE whether:

• The PE changes to Secure state.
• Either an INVTRAN SecureFault or Secure HardFault is generated:

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S. Note, an
INVTRAN SecureFault requires M.

RDWXH When an exception is taken to the other Security state, the PE automatically transitions to that other Security state.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

RQVPC When the following conditions are met, the value indicated by the current Secure stack pointer is loaded from
memory:

• The SG instruction is executed in Non-secure state.
• Either the SAU or IDAU, or both, indicate that the SG instruction was fetched from Secure memory.
• The PE is executing in Thread mode.

The load of the value indicated by the current Secure stack pointer is performed with the privilege level indicated
by CONTROL_S.nPriv and NS-req set to Secure.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - S.

RXCXC An INVEP SecureFault is raised if the all of the following are true:

• CCR_S.TRD is set to 1.

• Either, or both, of the following conditions are met:

– CONTROL_S.SPSEL is 0.
– The top 31 bits of the value indicated by the current Secure stack pointer loaded from memory matches

the top 31 bits of 0xFEFA125A.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - S.

See also:

C1.4.7 Instruction set, interworking and interstating support on page 446.

Chapter B9 The Armv8-M Protected Memory System Architecture on page 267.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

100

Chapter B3. Programmers’ Model
B3.16. Function calls from Secure state to Non-secure state

B3.16 Function calls from Secure state to Non-secure state

RGVBB If a BLXNS interstating branch generates a change from Secure state to Non-secure state, then before the Security
state change:

• The return address, which is the address of the instruction after the instruction that caused the function call,
the IPSR value and CONTROL.SFPA are stored onto the current stack, as shown in the following figure.
ReturnAddress[0] is set to 1 to indicate a return to the T32 instruction set state. The IPSR is stacked in the
partial RETPSR, and CONTROL.SFPA is stacked in bit [20] of the partial RETPSR.

0x08

0x04

0x00

a

• If the PE is in Handler mode, IPSR has the value of 1.
• The FNC_RETURN value is saved in the LR.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S. Note,
CONTROL.SFPA requires FP.

RMNQV Behavior is CONSTRAINED UNPREDICTABLE when a function call stack frame is not doubleword-aligned, and
one of the following behaviors must occur:

• The instruction uses the current value of the stack pointer.
• The instruction behaves as though bits [2:0] of the stack pointer are 0b000.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

IKWZD Arm recommends that when Secure code calls a Non-secure function, any registers not passing function arguments
are set to 0.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

See also:

C1.4.7 Instruction set, interworking and interstating support on page 446.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

101

Chapter B3. Programmers’ Model
B3.17. Function returns from Non-secure state

B3.17 Function returns from Non-secure state

RHPFG An interstating function return begins when one of the following instructions loads a FNC_RETURN value into
the PC:

• A POP (mulitple registers) or LDM that includes loading the PC.
• An LDR with the PC as a destination.
• A BX with any register.
• A BXNS with any register.

On detecting a FNC_RETURN value in the PC:

• The FNC_RETURN stack frame is unstacked.
• EPSR.IT is set to 0x00.
• The following integrity checks on function return are performed:

– A check that IPSR is zero or 1 before the value of it is restored.
– A check that if the stacked IPSR value is zero the return is in Thread mode.
– A check that if the stacked IPSR value is nonzero the return is to Handler mode.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

IQBJN Behavior is CONSTRAINED UNPREDICTABLE when a function call stack frame is not doubleword-aligned.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

RDWTF The FNC_RETURN value is:

1 1 1 1 0 1 S

31 30 29 28 27 26 25 24 23 20 19 16 15 10 9 8 0

1 1 1

22 21 18 17 14 13 12 11 7 6 5 4 3 2 1

Bits[31:1]

This is what identifies the value as an FNC_RETURN value.

Bit[0], S: The function return was from:

0: Secure state.

1: Non-secure state.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

RQLJT Any failed integrity check on function return generates a Secure INVPC UsageFault that is synchronous to the
instruction that loaded the FNC_RETURN value into the PC.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M && S.

RNTNW Any failed integrity check on function return generates a Secure HardFault that is synchronous to the instruction
that loaded the FNC_RETURN value into the PC.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S && !M.

RFGNB If FNC_RETURN does not fail the integrity checks then the PE behaves as follows:

• ReturnAddress bits [31:1] is written to the PC.
• ReturnAddress bit [0] is written to EPSR.T.
• The partial RETPSR is written to IPSR Exception and CONTROL.SFPA.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

102

Chapter B3. Programmers’ Model
B3.17. Function returns from Non-secure state

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S. Note,
CONTROL.SFPA requires FP.

RLNFB If the IPSR retrieved from RETPSR is not supported by the PE the value is UNKNOWN.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

IKBXQ Any Secure INVPC UsageFault, Secure HardFault, or INVSTATE UsageFault generated on FNC_RETURN are
subject to the rules in respect of escalation of faults and potentially Lockup.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

See also:

B3.16 Function calls from Secure state to Non-secure state on page 101.

B3.31 Hardware-controlled priority escalation to HardFault on page 142.

B3.33 Lockup on page 145.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

103

Chapter B3. Programmers’ Model
B3.18. Exception handling

B3.18 Exception handling

RXGKT In the absence of a specific requirement to take an exception, the architecture requires that pending exceptions are
taken within finite time.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RKFRF If an exception was pending but is changed to not pending before it is taken, then the architecture permits the
exception to be taken but does not require that the exception is taken. If the exception is taken it must be taken
before the first Context synchronization event after the exception was changed to not pending.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RYFHR An exception that does not cause lockup sets both:

• The pending bit of its handler, or the pending bit of the HardFault handler, to 1.
• The associated fault status information.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RVLDB When a pending exception has a lower group priority value than current execution, including accounting for any
priority adjustment by AIRCR.PRIS, the pending exception preempts current execution.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RWBND Preemption of current execution causes the following basic sequence:

1. R0-R3, R12, LR, RETPSR, including CONTROL.SFPA, are stacked.

2. The return address is determined and stacked.

3. Optional stacking of Floating-point context, which might be any one of the following:

• No stacking or preservation of the Floating-point context.
• Stacking the basic Floating-point context.
• Stacking the basic Floating-point context and the additional Floating-point context.
• Activation of Lazy Floating-point state preservation.

4. LR is set to EXC_RETURN.

5. Optional clearing of Floating-point registers, depending on the Security state transition.

6. The following flags are also cleared:

• IT State is cleared, if the Main Extension is implemented.
• CONTROL.FPCA is cleared, if the Floating-point Extension is implemented.
• CONTROL.SFPA is cleared, if the Floating-point Extension and the Security Extension are implemented.

7. The exception to be taken is chosen, and IPSR Exception is set accordingly. The setting of IPSR Exception
to a nonzero value causes the PE to change to Handler mode.

8. CONTROL.SPSEL is set to 0, to indicate the selection of the main stack, dependent on the Security state
being targeted.

9. The pending bit of the exception to be taken is set to 0. The active bit of the exception to be taken is set to 1.

10. The Security state is changed to the Security state of the exception that is being activated.

11. The registers are cleared, depending on the transition of the Security state. The registers are divided between
the caller and callee registers. If the Security state transition is from Secure to Non-secure state, all the
registers are cleared to 0. In all other cases, the caller registers are set to an UNKNOWN value and the callee
registers remain unchanged and are not stacked.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

104

Chapter B3. Programmers’ Model
B3.18. Exception handling

12. EPSR.T is set to bit[0] of the exception vector for the exception to be taken.

13. The PC is set to the exception vector for the exception to be taken.

Applies to an implementation of the architecture from Armv8.0-M. Note, some steps might require additional extensions.

RNJVF When, during exception entry, the target Security state of an exception differs from the Security state of the
memory the exception vector targets:

• An INVEP SecureFault is generated if the exception is Non-secure and the exception vector targets Secure
memory.

– The INVEP SecureFault can be avoided if the exception is associated with Non-secure state and is
targeting an SG instruction that is located in memory that is Secure and Non-secure callable.

• An INVTRAN SecureFault is generated if the exception is Secure and the exception vector targets Non-secure
memory.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S. Note, an
INVEP or INVTRAN SecureFault requires M.

RQLHB The return address is one of the following:

• For a synchronous exception, other than an SVCall exception and a SVC instruction that escalates to
HardFault, the address of the instruction that caused the exception.

• For an asynchronous exception, the address of the next instruction in the program order.
• For an SVCall exception and a SVC instruction that escalates to HardFault, the address of the next instruction

in the program order.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RXKDD The least significant bit of the return address from an exception is RES0.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B3.10 Exception enable, pending, and active bits on page 85.

B3.13 Priority model on page 94.

B3.19 Exception entry, context stacking on page 106.

B3.20 Exception entry, register clearing after context stacking on page 115.

B3.30 Vector tables on page 140.

B3.21 Stack limit checks on page 116.

B3.24 Exceptions during exception entry on page 124.

Chapter B5 Vector Extension on page 177

Applies to an implementation of the architecture from Armv8.1-M onwards.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

105

Chapter B3. Programmers’ Model
B3.19. Exception entry, context stacking

B3.19 Exception entry, context stacking

RPWWG On taking an exception, the PE hardware saves state context onto the stack that the SP register points to. The state
context that is saved is eight 32-bit words:

• RETPSR.
• ReturnAddress.
• LR.
• R12.
• R3-R0.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RPTRL In a PE without the Security Extension but with the Floating-point Extension, on taking an exception, the PE
hardware saves state context onto the stack that the SP register points to. If CONTROL.FPCA is 1 when the
exception is taken, then in addition to the state context being saved, there are the following possible modes for the
Floating-point context:

• Stack the Floating-point context.
• Reserve space on the stack for the Floating-point context. This is called lazy Floating-point context

preservation.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

106

Chapter B3. Programmers’ Model
B3.19. Exception entry, context stacking

Reserved

FPSCR

S15

S14

S13

S12

S11

S10

S9

S8

S7

S6

S5

S4

S3

S2

S1

S0

xPSR

ReturnAddress

LR (R14)

R12

R3

R2

R1

R0

0x68

0x64

0x60

0x5C

0x58

0x54

0x50

0x4C

0x48

0x44

0x40

0x3C

0x38

0x34

0x30

0x2C

0x28

0x24

0x20

0x1C

0x18

0x14

0x10

0x0C

0x08

0x04

0x00

xPSR

ReturnAddress

LR (R14)

R12

R3

R2

R1

R0

xPSR

ReturnAddress

LR (R14)

R12

R3

R2

R1

R0

Stack the state

and FP contexts

SP

offset

Lazy FP context save
Do not stack the FP

context or reserve any

space for it. Stack only the

state context.

State context

FP context
Reserved for

FP context

State context

Reserved

Original SP

New SP New SP

New SP

Original SP Original SP

Extended stack

frame
Basic stack frame

Extended stack

frame

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - !S. Note, FP ||
MVE is required for the extended stack frame. MVE is only available in an Armv8.1-M implementation.

RPLHM In a PE with the Security Extension, on taking an exception, the PE hardware:

1. Saves state context onto the stack that the SP register points to.
2. If exception entry requires a transition from Secure state to Non-secure state, the PE hardware extends the

stack frame and also saves additional state context.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

107

Chapter B3. Programmers’ Model
B3.19. Exception entry, context stacking

0x48

0x44

0x40

0x3C

0x38

0x34

0x30

0x2C

0x28

0x24

0x20

0x1C

0x18

0x14

0x10

0x0C

0x08

0x04

0x00

R11

R10

R9

R8

R7

R6

R5

R4

Reserved
Integrity

signature

Exception taken from Secure
state with Stacking of

additional state context

State context

Additional
state context

New SP

Original SP

xPSR

ReturnAddress

LR (R14)

R12

R3

R2

R1

R0

SP
offset

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

RBLQS If a Secure exception is taken from a Secure context of execution, it is IMPLEMENTATION DEFINED whether:

• The additional state context is not stacked, and EXC_RETURN.DCRS is set to 1.
• The additional state context is stacked and EXC_RETURN.DCRS is set to 0.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

IKJRL If a higher priority Secure exception occurs during exception entry after the PE has begun stacking the additional
state context, but before any exception handler has started execution, in preparation to take a Non-secure exception
the PE might:

• Discard the stacking of the additional state context.
• Complete the stacking of the additional state context and the EXC_RETURN.DCRS is set to 0.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

RDHPD In a PE with the Security Extension and the Floating-point Extension, on taking an exception from:

Non-secure state

Behavior is the same as a PE without the Security Extension but with the Floating-point Extension.

Secure state when CONTROL.FPCA is 0

Behavior is the same as for a PE with the Security Extension but without the Floating-point Extension.

Secure state when CONTROL.FPCA is 1

The PE hardware:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

108

Chapter B3. Programmers’ Model
B3.19. Exception entry, context stacking

1. Saves state context onto the stack that the SP register points to.

2. If FPCCR_S.TS is 0 or the background state is Non-secure when the exception is taken, the PE hardware
either stacks the Floating-point context or when lazy state preservation is active reserves space on the stack
for the Floating-point context.

If FPCCR_S.TS is 1 and the background state is Secure state when the exception is taken, the PE hardware
either stacks both the Floating-point context and additional Floating-point context, or when lazy state
preservation is active reserves space on the stack for both the Floating-point context and additional Floating-
point context.

3. If exception entry is to Non-secure state, including when a higher priority derived or late-arriving exception
targeting Secure state occurs, the PE hardware extends the stack frame, and also saves the additional state
context. The PE also performs the exception handling steps common to exception entry.

The following figure shows PE stacking behavior when CONTROL.FPCA is 1, FPCCR_S.TS is 1 (and both the
Floating-point context and additional Floating-point context is stacked), and exception entry is to Non-secure state
and the background state is Secure state:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

109

Chapter B3. Programmers’ Model
B3.19. Exception entry, context stacking

S31

S30

S29

S28

S27

S26

S25

S24

S23

S22

S21

S20

S19

S18

S17

S16

0xA4

0xA0

0x9C

0x98

0x94

0x90

0x8C

0x88

0x84

0x80

0x7C

0x78

0x74

0x70

0x6C

0x68

SP offset

Additional FP context

Original SP
†

Reserved

FPSCR

S15

S14

S13

S12

S11

S10

S9

S8

S7

S6

S5

S4

S3

S2

S1

S0

0x64

0x60

0x5C

0x58

0x54

0x50

0x4C

0x48

0x44

0x40

0x3C

0x38

0x34

0x30

0x2C

0x28

0xCC

0xC8

FP context

RETPSR

ReturnAddress

LR (R14)

R12

R3

R2

R1

R0

State context

0xC4

0xC0

0xBC

0xB8

0xB4

0xB0

0xAC

0xA8

0x24

0x20

0x1C

0x18

0x14

0x10

0x0C

0x08

0x04

0x00

R11

R10

R9

R8

R7

R6

R5

R4

Reserved

Integrity signature

Additional state context

New SP

†
Or at offset 0xD4 if at a word-aligned but not doubleword-aligned address.

0xD0

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

110

Chapter B3. Programmers’ Model
B3.19. Exception entry, context stacking

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S && FP.

RBKVD On an exception, the RETPSR value that is stacked is all the following:

• The APSR, IPSR, and EPSR.
• CONTROL.SFPA, in RETPSR[20] if the background state is Secure state.

In addition, on an exception, the PE uses RETPSR.SPREALIGN to indicate whether the PE realigned the stack to
make it doubleword-aligned:

0: The PE did not realign the stack.

1: The PE realigned the stack.

Applies to an implementation of the architecture from Armv8.0-M. Note, CONTROL.SFPA requires S && FP || MVE. MVE is
only available in an Armv8.1-M implementation.

RQDKQ When stacking the context on exception entry, full descending stacks are used.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RPWBW In a PE with the Floating-point Extension:

• Because setting FPCCR.ASPEN to one causes the PE to automatically set CONTROL.FPCA to 1 on
the execution of a floating-point instruction, setting FPCCR.ASPEN to 1 means that the PE hardware
automatically either:

– Stacks Floating-point context on taking an exception.
– Uses lazy Floating-point context preservation on taking an exception.

If CONTROL.FPCA == 1, it is FPCCR.LSPEN that determines whether the PE hardware performs stacking or
lazy Floating-point preservation:

0 : The PE hardware automatically stacks Floating-point context on taking an exception. In a PE that also includes
the Security Extension, if FPCCR_S.TS == 1 and the background state is Secure state, the hardware stacks the
additional Floating-point context and the Floating-point context.

1: The PE hardware uses lazy Floating-point context preservation on taking an exception, and sets all of:

• The FPCAR, to point to the reserved S0 stack address.

• FPCCR.LSPACT to 1.

• FPCCR.{USER, THREAD, HFREADY, MMRDY, BFRDY, SFRDY, MONRDY, UFRDY}, to record the
permissions and fault possibilities to be applied to any subsequent Floating-point context save.

In a PE that also includes the Security Extension, if FPCCR_S.TS is 1 and the background state is Secure state,
the hardware reserves space on the stack for both the Floating-point context and the additional Floating-point
context. Otherwise, the hardware only reserves space on the stack for the Floating-point context.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP. Note, space is
reserved for both the Floating-point context and the additional Floating-point context if the Security Extension is implemented.
MVE is only available in an Armv8.1-M implementation.

RGHDJ Execution of a floating-point instruction while FPCCR.LSPACT == 1 indicates that lazy Floating-point context
preservation is active.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP || MVE. Note,
MVE is only available in an Armv8.1-M implementation.

RFTZK If an attempt is made to execute a floating-point instruction while lazy Floating-point context preservation is

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

111

Chapter B3. Programmers’ Model
B3.19. Exception entry, context stacking

active, the access permissions that CPACR and NSACR define are checked against the context that activated lazy
Floating-point context preservation, in addition to the checks defined in FPCCR.

• If no permission violation is detected, the PE:

1. Saves Floating-point context to the reserved area on the stack, as identified by the FPCAR.
2. Saves the additional Floating-point context if FPCCR.TS and FPCCR.S == 1.
3. Sets FPCCR.LSPACT to 0 to indicate that lazy Floating-point context preservation is no longer active.
4. If the instruction targets Non-secure state the registers are set to an UNKNOWN value. If the instruction

targets Secure state the registers are cleared.
5. Processes the floating-point instruction.

• If a permission violation is detected, the PE generates a NOCP UsageFault and does not save Floating-point
context to the reserved area on the stack.

• If there is a Security violation or other exception on context stacking the PE will take that exception if the
priority of the exception is lower than the execution priority.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP || MVE. Note,
MVE is only available in an Armv8.1-M implementation.

RLGNS When the following conditions are met on exception entry, the PE generates a Secure NOCP UsageFault, skips all
Floating-point register saving, clearing or lazy-state preservation activation and does not allocate space on the
stack for Floating-point context:

• CONTROL.FPCA == 1.
• NSACR.CP10 is 0.
• The Background state is Non-secure state.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP || MVE &&
S. Note, MVE is only available in an Armv8.1-M implementation.

RQLGM A NOCP UsageFault takes precedence over UNDEFINSTR faults for all instructions that fall into the range
described by the IsCPInstruction() function, except for the following instructions:

• VLLDM.
• VLSTM.

Applies to an implementation of the architecture from Armv8.1-M. Note, For further information see the instruction descriptions.

IGGMG Arm recommends that a NOCP UsageFault takes precedence over UNDEFINSTR faults for all instructions that
fall into the range described by the IsCPInstruction() function, except for the following instructions:

• VLLDM.
• VLSTM.

This behavior is not mandatory in an Armv8.0-M implementation.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RPRTT An UNDEFINSTR fault will take precedence over an NOCP UsageFault when executing a VSCCLRM instruction.

Applies to an implementation of the architecture from Armv8.1-M onwards.

RRXDG On taking a NOCP UsageFault any state context and additional state context must be saved.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RTLGR A PE is permitted not to save state context and additional state context to the stack if a derived exception is taken
on pushing the state context or additional context to the stack.

Applies to an implementation of the architecture from Armv8.0-M onwards.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

112

Chapter B3. Programmers’ Model
B3.19. Exception entry, context stacking

IHGGX If CP10 is not implemented or disabled, executing an MVE vector instruction generates a NOCP UsageFault.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - FP || MVE.

RNPLD The instruction encoding space 111x 1111 xxxx xxxx xxxx xxxx xxxx xxxx is part of CP10 and
therefore NOCP UsageFaults are prioritized over UNDEFINSTR UsageFaults in the same way as for other
co-processor instructions.

Applies to an implementation of the architecture from Armv8.1-M onwards.

RKMBN If lazy Floating-point context preservation or floating-point context stacking is activated, as indicated by
FPCCR_S.S when FPCCR.LSPACT is already set to 1, the PE generates an LSERR SecureFault. The
floating-point context, and the additional context, are not stacked and the floating-point registers are not cleared.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - (FP || MVE) &&
S. Note, MVE is only available in an Armv8.1-M implementation.

RFVTL The value in CONTROL.SFPA is set automatically by hardware on any of the following events:

• An SG instruction fetched from secure memory and executed in Non-secure state clears CONTROL.SFPA to
0.

• A BXNS instruction that causes a transition from Secure state to Non-secure state clears CONTROL.SFPA to
0.

• A BLXNS instruction that causes a transition from Secure state to Non-secure state preserves the value in
CONTROL.SFPA in the FNC_RETURN stack frame and then clears CONTROL.SFPA to 0.

• A valid instruction that loads FNC_RETURN into the PC sets CONTROL.SFPA to the value retrieved from
the FNC_RETURN payload.

• CONTROL.SFPA is saved and restored on exception entry or return in the RETPSR value in the stack frame.
• Exception entry, including tail chaining, clears CONTROL.SFPA to 0.
• If the value of FPCCR.ASPEN is one, then any floating-point instruction (excluding VLLDM and VLSTM)

executed in Secure state sets the value of CONTROL.SFPA to one. If the value of FPCCR.ASPEN is one and
the value of CONTROL.SFPA is zero when a floating-point instruction is executed in the Secure state, the
FPSCR value is taken from the values set in FPDSCR.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - (FP || MVE) &&
S. Note, MVE is only available in an Armv8.1-M implementation.

RLDPT In an Armv8.1-M implementation, saving Secure Floating-point context to a general-purpose register using VMRS
or VSTR (System Register) clears CONTROL.SFPA to 0.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - FP && S.

IGJGL To ensure future compatibility Arm recommends that the value used to seal the top of the stack is 0xFEF5EDA5.
This value has the following properties:

• It is not a valid FNC_RETURN or EXC_RETURN value.
• It is not the integrity signature used to secure the bottom of the stack frame and cannot be used to inadvertently

mark the stack as containing a valid exception stack frame.
• The value starts with 0xF and is therefore not a valid instruction address and will result in a fault if interpreted

as a FNC_RETURN stack frame.

Applies to an implementation of the architecture from Armv8.0-M onwards.

ICNTN The order in which registers are saved to the stack during exception entry or during lazy state preservation is not
architected.

Applies to an implementation of the architecture from Armv8.0-M. Note, FP required of lazy state preservation.

See also:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

113

Chapter B3. Programmers’ Model
B3.19. Exception entry, context stacking

B3.8 Stack pointer on page 80.

B3.20 Exception entry, register clearing after context stacking on page 115.

B3.23 Integrity signature on page 123.

PushStack().

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

114

Chapter B3. Programmers’ Model
B3.20. Exception entry, register clearing after context stacking

B3.20 Exception entry, register clearing after context stacking

RDJRX On exception entry:

• The PE hardware sets R0-R3, R12, APSR, and EPSR to an UNKNOWN value after it has pushed state context
to the stack.

• The PE hardware sets S0-S15 and the FPSCR to an UNKNOWN value after it has pushed Floating-point
context to the stack.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - !S. Note, FP is
required for S0-S15 and FPSCR.

RSNDB On exception entry, including tail-chainging, the PE sets:

• R0-R3, R12, APSR, and EPSR to:

– Unless otherwise stated, an UNKNOWN value if the exception is taken to Secure state.
– Zeros.

• If the background state was Secure and the exception targets the Secure state and EXC_RETURN.DCRS ==
0 then R4 to R11 become UNKNOWN.

• If the background state was Secure and the exception targets Non-secure state then R4 to R11 are set to zeros.

Otherwise the register values are not changed.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

RKPZV On exception entry the PE sets R0-R3, R12, APSR, and EPSR to zero regardless of the Security state the exception
targets.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - S.

RJWBK Register clearing behavior after context stacking is as follows:

• If FPCCR_S.TS is 0 when the Floating-point context is pushed to the stack, S0-S15 and the FPSCR are set to
an UNKNOWN value after stacking.

• If FPCCR_S.TS is 1 when the Floating-point context and additional Floating-point context are both pushed
to the stack, S0-S31 and the FPSCR are set to zero after stacking.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP && S.

See also:

B3.19 Exception entry, context stacking on page 106.

B3.26 Tail-chaining on page 127.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

115

Chapter B3. Programmers’ Model
B3.21. Stack limit checks

B3.21 Stack limit checks

RPCRT A PE that does not implement the Main Extension, and does not implement the Security Extension does not
implement stack-limit checking.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - !M && !S.

RNHBX In a PE without the Main Extension but with the Security Extension, there are two stack limit registers in Secure
state for the purposes of stack-limit checking.

Security state Stack Stack limit registers
Secure Main MSPLIM_S

Process PSPLIM_S

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S && !M.

RJPFX In a PE with the Main Extension but without the Security Extension, there are two stack limit registers:

Stack Stack limit registers
Main MSPLIM
Process PSPLIM

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M && !S.

RXQDS In a PE with the Main Extension and the Security Extension, there are four stack limit registers:

Security state Stack Stack limit registers
Secure Main MSPLIM_S

Process PSPLIM_S
Non-secure Main MSPLIM_NS

Process PSPLIM_NS

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M && S.

IKDPG A stack can descend to its stack limit value. Any attempt to descend the stack further than its stack limit value is a
violation of the stack limit.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RTCXN xSPLIM_x[2:0] are treated as RES0, so that all stack pointer limits are always guaranteed to be doubleword-aligned.
Bits [31:3] of the xSPLIM_x registers are writable.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RDKSR Stack limit checks are performed during the creation of a stack frame for all of the following:

• Exception entry.
• Tail-chaining from a Secure to a Non-secure exception.
• A function call from Secure code to Non-secure code.

Applies to an implementation of the architecture from Armv8.0-M. Note, Secure exceptions and secure code require S.

RZLZG On a violation of a stack limit during either exception entry or tail-chaining:

• In a PE with the Main Extension, a synchronous STKOF UsageFault is generated. Otherwise, a HardFault is
generated.

• The stack pointer is set to the stack limit value.
• Push operations to addresses below the stack limit value are not performed.
• It is IMPLEMENTATION DEFINED whether push operations to addresses equal to or above the stack limit

value are performed.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

116

Chapter B3. Programmers’ Model
B3.21. Stack limit checks

Applies to an implementation of the architecture from Armv8.0-M. Note, A UsageFault requires M.

RCCSC On a violation of a Secure stack limit during a function call:

• In a PE with the Main Extension, a synchronous STKOF UsageFault is generated. Otherwise, a Secure
HardFault is generated.

• Push operations to addresses below the stack limit value are not performed.
• It is IMPLEMENTATION DEFINED whether push operations to addresses equal to or above the stack limit

value are performed.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S. Note, A
UsageFault requires M.

RGGRH Unstacking operations are not subject to stack limit checking.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RYVWT Updates to the stack pointer by the following instructions are subject to stack limit checking:

• ADD (SP plus immediate).
• ADD (SP plus register).
• SUB (SP minus immediate).
• SUB (SP minus register).
• BLX,BLXNS.
• LDC, LDC2 (immediate).
• LDM, LDMIA, LDMFD.
• LDMDB, LDMEA.
• LDR (immediate).
• LDR (literal).
• LDR (register).
• LDRB (immediate).
• LDRD (immediate).
• LDRH (immediate).
• LDRSB (immediate).
• LDRSH (immediate).
• MOV (register)
• POP (multiple registers).
• PUSH (multiple registers).
• VPOP.
• VPUSH.
• STC, STC2
• STM, STMIA, STMEA.
• STMDB, STMFD.
• STR (immediate).
• STRB (immediate).
• STRD (immediate).
• STRH (immediate).
• VLDM.
• VSTM.

Updates to the stack pointer by the MSR instruction targeting SP_NS are subject to stack limit checking. Updates
to the stack pointer and stack pointer limit by any other MSR instruction are not subject to stack limit checking.

LDR instructions write to two registers, the address register and the destination register. The stack limit check is
only carried out against the address register. Updates to the stack pointer by the LDR instructions are only subject
to stack limit checking if the stack pointer is the address register.

For all other instructions that can update the stack pointer and stack pointer limit, it is IMPLEMENTATION DEFINED

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

117

Chapter B3. Programmers’ Model
B3.21. Stack limit checks

whether stack limit checking is performed.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RJCCR Updates to the stack pointer by the following instructions are subject to stack limit checking:

• VLDR (System Register).
• VSTR (System Register).

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - FP || MVE.

RHRDG If a STKOF UsageFault is generated when the Non-secure stack pointer is accessed through a MSR{SP_NS}
instruction in Secure state, the STKOF UsageFault can target either the Secure or Non-secure state.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

IJSPJ Arm recommends that a STKOF UsageFault generated by a MSR instruction in Secure state accessing the Non-
secure stack pointer should target the Non-secure state.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

IBJHX When an instruction updates the stack pointer, if it results in a violation of the stack limit, it is the modification of
the stack pointer that generates the exception, rather than an access that uses the out-of-range stack pointer.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IRRDX CCR.STKOFHFNMIGN controls whether stack limit violations are IGNORED while executing at a requested
execution priority that is negative.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RXCQL It is UNKNOWN whether a stack limit check is performed on any use of the SP marked as UNPREDICTABLE.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RQFPF A write to the current stack pointer by an instruction subject to stack limit checking with a value less than the stack
limit will generate a STKOF UsageFault.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IDSJN There is no architectural requirement for stack limit checking to be carried out on exception return as the current
stack pointer will only increment and will not decrement.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RQMRP If an instruction attempts to make an access below the stack limit, it is UNKNOWN whether a store performing a
writeback to the current Stack Pointer will generate a STKOF UsageFault where the value written to the current
stack pointer is greater than the stack limit.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M || S.

RCMBW When a STKOF UsageFault is generated:

• No accesses below the stack limit will be performed.
• It is UNKNOWN whether an access above the stack limit will be performed.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B3.8 Stack pointer on page 80.

B3.26 Tail-chaining on page 127.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

118

Chapter B3. Programmers’ Model
B3.22. Exception return

B3.22 Exception return

RKPSS The PE begins an exception return when both of the following are true:

• The PE is in Handler mode.

• One of the following instructions loads an EXC_RETURN value, 0xFFXXXXXX, into the PC:

– A POP (multiple registers) or LDM that includes loading the PC.
– An LDR with the PC as a destination.
– A BX with any register.
– A BXNS with any register.

When both of these are true, then on detecting an EXC_RETURN value in the PC, the PE unstacks the exception
stack frame and resumes execution of the unstacked context.

If an EXC_RETURN value is loaded into the PC by an instruction other than those listed, or from the vector table,
the value is treated as an address.

If an EXC_RETURN value is loaded into the PC when the PE is in Thread mode, the value is treated as an address.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RTXDW Behavior is UNPREDICTABLE if EXC_RETURN.FType is 0 and the Floating-point Extension register file is not
implemented.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RTNSK Behavior is UNPREDICTABLE if EXC_RETURN[23:7] are not all 1 or if bit[1] is not 0.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RLLBT The following integrity checks on exception return are performed on every exception return:

1. In a PE with the Security Extension, the integrity check that is called the EXC_RETURN.ES validation check,
as follows:

• If the PE was in Non-secure state when EXC_RETURN was loaded into the PC and either
EXC_RETURN.DCRS is 0 or EXC_RETURN.ES is 1, an INVER SecureFault is generated and the PE
sets EXC_RETURN.ES to 0. In a PE without the Main Extension a Secure HardFault is generated.

2. A check that the exception number being returned from, as held in the IPSR, is shown as active in the SHCSR
or NVIC_IABRn. If this check fails:

• In a PE with the Main Extension, an INVPC UsageFault is generated. If the PE includes the Security
Extension, the INVPC UsageFault targets the Security state that the exception return instruction was
executed in.

• In a PE without the Main Extension, a HardFault is generated.

3. A check that if the return is to Thread mode, the value that is restored to the IPSR from the RETPSR is zero,
or that if the return is to Handler mode, the value that is restored to the IPSR from the RETPSR is nonzero. If
this check fails:

• In a PE with the Main Extension, an INVPC UsageFault is generated. If the PE includes the Security
Extension, the INVPC UsageFault targets the Background state.

• In a PE without the Main Extension, a HardFault is generated.

4. If the PE includes the Security Extension, the HardFault targets the Security state that EXC_RETURN.S
specifies. If AIRCR.BFHFNMINS is 0 the HardFault targets Secure state, if AIRCR.BFHFNMINS is 1 the
exception targets the Security state the exception was returned from.

Applies to an implementation of the architecture from Armv8.0-M. Note, some steps require additional extensions, as listed in
the rule.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

119

Chapter B3. Programmers’ Model
B3.22. Exception return

RHXSR When returning from Non-secure state, EXC_RETURN.ES is treated as zero for all purposes other than raising the
INVER integrity check.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

RDQLL On returning from Non-secure state, if EXC_RETURN.ES causes an INVER integrity check failure, the subsequent
EXC_RETURN.DCRS bit that is presented in the LR on entry to the next exception is permitted to be UNKNOWN.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

ITLXJ Arm recommends that the subsequent EXC_RETURN.DCRS bit that is presented in the LR on entry to the next
exception is not UNKNOWN.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RJMJC After the EXC_RETURN.ES validation check has been performed on an exception return:

• If EXC_RETURN.ES is 1, EXC_RETURN.SPSEL is written to CONTROL_S.SPSEL.
• If EXC_RETURN.ES is 0, EXC_RETURN.SPSEL is written to CONTROL_NS.SPSEL.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

RRPGL On an exception return that successfully returns to the Background state, with no tail-chaining or failed integrity
checks, the Security state is set to EXC_RETURN.S.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

ICTWL In a PE with the Security Extension, after a successful exception return to the Background state, the PE is in the
correct Security state before the next instruction from the background code is executed. This means that in the case
where the Background state is Secure state, there is no need for an SG instruction at the exception return address.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

IRQVB In a PE with the Floating-point Extension register file, on exception entry:

1. EXC_RETURN.FType is saved as the inverse of CONTROL.FPCA.
2. CONTROL.FPCA is then cleared to 0 if it was 1.

On exception return, the inverse of EXC_RETURN.FType is written to CONTROL.FPCA.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

RCGML When the following conditions are met on exception return, the PE hardware sets S0-S15 and the FPSCR to 0:

• CONTROL.FPCA is 1.
• FPCCR.CLRONRET is 1.
• If the PE implements the Security Extension FPCCR_S.LSPACT is 0.

If the PE implements the Security Extension and all these fields are 1 on exception return, the PE generates an
LSERR SecureFault instead.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP. Note, a
SecureFault requires S.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

120

Chapter B3. Programmers’ Model
B3.22. Exception return

RZXTR In an Armv8.1-M implementation, the PE hardware also sets VPR to 0 when:

• CONTROL.FPCA is 1.
• FPCCR.CLRONRET is 1.
• If the PE implements the Security Extension FPCCR_S.LSPACT is 0.

If the PE implements the Security Extension and all these fields are 1 on exception return, the PE generates an
LSERR SecureFault instead.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

IBVMJ The register clearing described in RCGML and RZXTR only applies if a NOCP UsageFault is not generated due to
RXLTP.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - FP || MVE.

RXLTP When the following conditions are met on exception return, a NOCP UsageFault is generated:

• CONTROL.FPCA == 1.
• FPCCR.LSPACT == 0.
• FPCCR.CLRONRET == 1.
• Access to CP10 from the Security state of the returning exception, as indicated by EXC_RETURN.ES, is

disabled by NSACR, CPACR, or CPPWR.

The target Security state of the NOCP UsageFault is as follows:

• Secure state, if blocked by NSACR.
• The same Security state as the returning exception as indicated by EXC_RETURN.ES, if blocked by CPACR.
• If the access is blocked by CPPWR, the NOCP Usage fault targets Secure state, if CPPWR.SUS10 ==1.

Otherwise, the NOCP UsageFault targets the same Security state as the returning exception as indicated by
EXC_RETURN.ES.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - FP || MVE. Note,
Secure state requires S.

IRHNB IsCPEnabled() indicates the prioritization if the access is blocked by multiple registers.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RXNNG When the following conditions are met on exception return, the PE generates an LSERR SecureFault:

• EXC_RETURN.FType is 0.
• The stack might contain Secure Floating-point context or Secure lazy floating-point context, that would be

unstacked on return. That is, FPCCR_S.LSPACT is 1.
• The return is to Non-secure state.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP && S.

RVGGF A check of FPCCR_S.LSPACT, CPACR.CP10, and the relevant fields in NSACR and CPPWR is undertaken prior
to unstacking of the floating-point registers.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

RGDVT The floating-point registers are not modified if the checks prior to unstacking fail.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

RHNNW If the PE abandons unstacking of the floating-point registers to tail-chain into another exception, then if the Security
Extension is implemented, the PE clears to zero any floating-point registers that would have been unstacked.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP && S.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

121

Chapter B3. Programmers’ Model
B3.22. Exception return

RLMNG If the PE abandons unstacking of the floating-point registers to tail-chain into another exception, then if the Security
Extension is not implemented, the floating-point registers that would have been unstacked become UNKNOWN.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP && !S.

RHRJH Following completion of the requirements of the EXC_RETURN the PE returns to execution and the following
occurs:

• The registers pushed to the stack as part of the exception entry are restored from the stack frame (in accordance
with the EXC_RETURN flags).

• APSR, EPSR, and IPSR are restored from RETPSR.
• The PC is set to ReturnAddress [31:1]: ‘0’.
• Bit[0] of the ReturnAddress is discarded.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IGTDP The order in which registers, including floating-point registers, are restored from the stack is not architected.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B3.18 Exception handling on page 104.

Chapter B5 Vector Extension on page 177.

Applies to an implementation of the architecture from Armv8.1-M onwards.

ExceptionReturn()

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

122

Chapter B3. Programmers’ Model
B3.23. Integrity signature

B3.23 Integrity signature

RPHBP In a PE with the Floating-point Extension register file, the integrity signature value is:

1 1 1 1 0 1 1 1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 1 0 1 1 0 1 SFTC

31 30 29 28 27 26 25 24 23 20 19 16 15 10 9 8 0

1 1 1

22 21 18 17 14 13 12 11 7 6 5 4 3 2 1

Stack Frame Type Check

In a PE with the Floating-point Extension, when returning from a Non-secure exception to Secure state, if the
unstacked integrity signature does not match this value, including if SFTC does not match EXC_RETURN.FType,
a SecureFault is generated.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S && FP.

RMVKS In a PE without the Floating-point Extension register file, the integrity signature value is:

1 1 1 1 0 1 1 1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 1 0 1 1 0 1 1

31 30 29 28 27 26 25 24 23 20 19 16 15 10 9 8 0

1 1 1

22 21 18 17 14 13 12 11 7 6 5 4 3 2 1

• In a PE with the Main Extension, when returning from a Non-secure exception to Secure state, if the
unstacked integrity signature does not match this value, a SecureFault is generated.

• In a PE without the Main Extension, when returning from a Non-secure exception to Secure state, if the
unstacked integrity signature does not match this value, a Secure HardFault is generated.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S && !FP. Note,
a SecureFault requires M.

IFFTS The integrity signature is an XN address. When performing a function return from Non-secure code, if the integrity
signature value is restored to the PC as the function return address, a MemManage fault, if the Main Extension
is implemented, or a HardFault, in an implementation without the Main Extension, is generated when the PE
attempts execution.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

See also:

B3.19 Exception entry, context stacking on page 106.

B3.22 Exception return on page 119.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

123

Chapter B3. Programmers’ Model
B3.24. Exceptions during exception entry

B3.24 Exceptions during exception entry

ILBGQ During exception entry exceptions can occur, for example asynchronous exceptions, or the exception entry sequence
itself might cause an exception, for example a MemManage fault on the push to the stack.

Any exception that occurs during exception entry is a late-arriving exception, and:

• The exception that caused the original entry sequence is the original exception.
• The priority of the code stream running at the time of the original exception is the preempted priority.

When the exception entry sequence itself causes an exception, the latter exception is a derived exception.

The following mechanism is called late-arrival preemption. The PE takes a late-arriving exception during an
exception entry if the late-arriving exception is higher priority, including accounting for any priority adjustment by
AIRCR.PRIS.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RNMTT In late-arrival preemption:

• The late-arriving exception uses the exception entry sequence started by the original exception. The original
exception remains pending.

• The PE takes the original exception after returning from the late-arriving exception.
• The PE ignores non-terminal faults on taking a derived exception on late-arrival preemption.

The pseudocode DerivedlateArrival() describes this.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RMRTR For Derived exceptions, late-arrival preemption is mandatory.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RBXTB For late-arriving asynchronous exceptions, it is IMPLEMENTATION DEFINED whether late-arrival preemption is
used. If the PE does not implement late-arrival preemption for late-arriving asynchronous exceptions, late-arriving
asynchronous exceptions become pending.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RGVHV If a higher priority late-arriving Secure exception occurs during entry to a Non-secure exception when the
Background state is Secure, it is IMPLEMENTATION DEFINED whether:

• The stacking of the additional state context is rolled back.
• The stacking of the additional state context is completed and EXC_RETURN is set to 0.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

RGDNT If the group priority value of a derived exception is higher than or equal to the preempted priority:

• If the derived exception is a DebugMonitor exception, it is IGNORED.
• Otherwise, the PE escalates the derived exception to HardFault or Lockup if the HardFault cannot be taken

due to the current priority.

Applies to an implementation of the architecture from Armv8.0-M. Note, a DebugMonitor Exception requires the DebugMonitor
exception.

INJCW The architecture does not specify the point during exception entry at which the PE recognizes the arrival of an
asynchronous exception.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

124

Chapter B3. Programmers’ Model
B3.24. Exceptions during exception entry

B3.9 Exception numbers and exception priority numbers on page 82.

B3.13 Priority model on page 94.

B3.18 Exception handling on page 104.

B3.26 Tail-chaining on page 127.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

125

Chapter B3. Programmers’ Model
B3.25. Exceptions during exception return

B3.25 Exceptions during exception return

IKXPV During exception return exceptions can occur, for example asynchronous exceptions, or the exception return might
itself cause an exception.

Any exception that occurs during exception return is a late-arriving exception.

When the exception return sequence itself causes an exception, the latter exception is a derived exception.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RTRFM When a late-arriving exception during exception return has a lower priority value than the priority being returned
to, the PE takes the late-arriving exception by using tail-chaining.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IMBNG The architecture does not specify the point during exception return at which the PE recognizes the arrival of an
asynchronous exception. If a PE recognizes an asynchronous exception after an exception return has completed,
there is no opportunity to tail-chain the asynchronous exception.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RMJDN If the priority value of a derived exception during exception return is equal to or higher than the priority being
returned to:

• If the derived exception is a DebugMonitor exception, the PE ignores the derived exception.
• Otherwise, the PE escalates the derived exception to HardFault and the escalated exception is tail-chained.

Applies to an implementation of the architecture from Armv8.0-M. Note, a DebugMonitor Exception requires the DebugMonitor
exception.

RDHFK If the priority value of a derived exception during exception return, after priority escalation if appropriate, is a
lower priority value than the execution priority being returned to, the PE uses tail-chaining to take the derived
exception.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IPXRQ If the PE cannot escalate a derived exception to HardFault because the current execution priority cannot be
preempted the PE will enter Lockup. Arm recommends that entry into Lockup is treated as fatal and requiring the
PE to be reset. On reset any saved context or additional context is discarded.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B3.9 Exception numbers and exception priority numbers on page 82.

B3.13 Priority model on page 94.

B3.22 Exception return on page 119.

B3.26 Tail-chaining on page 127.

B3.33 Lockup on page 145

DebugMonitor exception.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

126

Chapter B3. Programmers’ Model
B3.26. Tail-chaining

B3.26 Tail-chaining

RFKXX Tail-chaining behavior is as follows:

On detecting an EXC_RETURN value in the PC, if there is a pending exception or a derived exception is raised
that has a lower prioirty value than the execution priority being returned to, the PE hardware:

1. Does not unstack the stack.

2. Takes the pending exception or derived exception.

• The PE will tail-chain any pending exception or derived exception on exception return if the pending or
derived exception has a lower priority value than the execution priority being returned to.

If the pending or derived exception is escalated to HardFault and the execution priority is higher than
that of the HardFault the PE will enter Lockup.

• The PE will tail-chain any synchronous fault on exception return if the synchronous exception has higher
priority than the execution priority being returned to.

3. When tail-chaining the PE will not execute any instructions from the background state that has been preempted
by the exception.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IFJWK Tail-chaining is an optimization. It removes unstacking and stacking operations. In the following example the
second exception is a tail-chained exception:

No exception is active

1
st

exception 2
nd

exception

No exception is active

Stacking operation Unstacking operation

Nothing is unstacked

All in Non-secure state:

Applies to an implementation of the architecture from Armv8.0-M onwards.

IRWDT If tail-chaining prevents a derived exception on exception return, the derived exception might instead be generated
on the return from the last tail-chained exception.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RPXVB When the Background state is Secure state, if tail-chaining causes a change of Security state from Secure to
Non-secure, additional context is saved on taking the Non-secure exception if it has not already been saved as
indicated by EXC_RETURN.DCRS:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

127

Chapter B3. Programmers’ Model
B3.26. Tail-chaining

Secure state

1
st

exception 2
nd

exception

Secure state

State context pushed to stack. Unstacking operation

Nothing is unstacked.

Additional state context pushed to stack.

Secure state Non-secure state

In a PE without the FP Extension:

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

ITKLM When multiple exceptions are tail-chained, EXC_RETURN.DCRS keeps track of whether the additional context is
stacked. The following figure is an example:

Secure state

1
st

exception 2
nd

exception

Non-secure state

State context and additional state

context pushed to stack
a
.

Unstacking operation

Unstacking all additional context is

skipped.

PE sets EXC_RETURN.DCRS to 0.

Non-secure state Secure state

a In a PE with the FP Extension, FP context and additional FP context is also stacked if CONTROL.FPCA is 1.

3
rd

exception

Secure state

Stacking all additional context is skipped.

PE sets EXC_RETURN.DCRS to 1.

Applies to an implementation of the architecture from Armv8.0-M onwards.

ITMVF When multiple exceptions are tail-chaining, a Secure tail-chained exception after a Non-secure exception cannot
rely on any registers containing the values they had when no exception was active.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

ILNPQ Arm recommends that FPCCR.CLRONRET is set to 1, to ensure hardware automatically clears the Floating-point
context registers to zero on exception return.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

RJMHS If the PE recognizes a new asynchronous exception while it is tail-chaining, and the new asynchronous exception
has a higher priority than the next tailed-chained exception, the PE can, instead, take the new asynchronous
exception, using late-arrival preemption.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

128

Chapter B3. Programmers’ Model
B3.26. Tail-chaining

This rule is true even if the next tail-chained exception is a derived exception on exception return. The PE can,
instead, take the new asynchronous exception. If it does, the derived exception becomes pending.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B3.19 Exception entry, context stacking on page 106.

B3.25 Exceptions during exception return on page 126.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

129

Chapter B3. Programmers’ Model
B3.27. Exceptions, instruction resume, or instruction restart

B3.27 Exceptions, instruction resume, or instruction restart

RPGRC The PE can take an exception during execution of a Load Multiple or Store Multiple instruction, effectively halting
the instruction, and resume execution of the instruction after returning from the exception. This is called instruction
resume.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

RKRLL The PE can abandon execution of a Load Multiple or Store Multiple instruction to take an exception, and after
returning from the exception, restart the Load Multiple or Store Multiple instruction again from the start of the
instruction. This is called instruction restart.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RKCMD To support instruction restart, singleword load instructions do not update the destination register when the PE
takes an exception during execution.

Applies to an implementation of the architecture from Armv8.0-M onwards.

INDQT Instructions that the PE can halt to use instruction resume are called interrupt-continuable instructions.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RLGPQ The interrupt-continuable instructions are LDM, LDMDB, STM, STMDB, POP (multiple registers), and
Push (multiple registers).

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

RRDHK In a PE with the Floating-point Extension, the floating-point interrupt-continuable instructions are VLDM, VLLDM,
VLSTM, VSTM, VPOP, and VPUSH.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

RVFBX Where a fault is taken during the execution of a VLLDM instruction the PE abandons the stacking of the Secure
floating-point register contents and save the state so that on return from the fault the instruction can be restarted.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S && FP.

RQWWW It is IMPLEMENTATION DEFINED whether a VLLDM and VLSTM or instruction aborts or completes when an
interrupt occurs.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

RQVFC When the PE is using instruction resume, EPSR.ICI is set to a nonzero value that is the continuation state of the
interrupt-continuable instruction:

• For LDM, LDMDB, STM, STMDB, POP (multiple registers), and PUSH (multiple
registers) instructions, EPSR.ICI contains the number of the first register in the register list
that is to be loaded or stored after instruction resume.

• For the floating-point instructions VLDM, VSTM, VPOP, and VPUSH, EPSR.ICI contains the number of the
lowest numbered doubleword Floating-point Extension register that was not loaded or stored before the PE
took the exception.

The EPSR.ICI values shown in the following table are valid EPSR.ICI values:

EPSR[26:25] EPSR[15:12] EPSR[11:10]
ICI[7:6] = 0b00 ICI[5:2] = reg_num ICI[1:0] = 0b00
ICI[7:6] = 0b00 ICI[5:2] = 0b0000 ICI[1:0] = 0b00

Applies to an implementation of the architecture from Armv8.0-M. Note, some instructions listed require FP.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

130

Chapter B3. Programmers’ Model
B3.27. Exceptions, instruction resume, or instruction restart

RPCZR If EPSR.ICI contains a valid ICI nonzero value and the register number that it contains is either:

• Not in the register list of the interrupt-continuable instructions.
• The first register in the register list of the interrupt-continuable instructions.

Then behavior is a CONSTRAINED UNPREDICTABLE choice between one of the following:

• The instruction generates an INVSTATE UsageFault.
• The instruction completes execution.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

RLRGK The PE generates an INVSTATE UsageFault if EPSR.ICI contains a valid nonzero value and the instruction being
executed is not an instruction which supports interrupt-continuation. A fault is not generated if the instruction is a
BKPT instruction.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

IZMHH The instructions CLRM and VSCCLRM support interrupt-continuation.

Applies to an implementation of the architecture from Armv8.1-M onwards.

RSNRJ In an implementation that includes MVE, the PE does not generate an INVSTATE UsageFault if EPSR.ECI
contains a valid ECI value and the instruction is a beat-wise MVE instruction.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

RJXKQ If the PE uses instruction resume during a interrupt-continuable instruction, other than a store multiple instruction,
then after the exception return, the values of all registers in the register list are UNKNOWN, except for the following:

• Registers that are marked by EPSR.ICI as already loaded.
• The base register.
• The PC.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

IJJQX If the PE is using instruction restart, Arm recommends that Load Multiple or Store Multiple instructions are not
used with data in volatile memory.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RNKNQ When a Load Multiple instruction has the PC in its register list, if the PE uses instruction resume or instruction
restart during the instruction:

• If the PC is loaded before generation of the exception, the PE restores the PC before taking the exception, so
that after the exception the PE returns to either:

– Continue execution of the Load Multiple instruction, if the PE used instruction resume.
– Restart the Load Multiple instruction, if the PE used instruction restart.

Applies to an implementation of the architecture from Armv8.0-M. Note, Instruction resume requires M.

RLSCQ In a PE without the Main Extension, if the PE takes any exception during any Load Multiple or Store Multiple
instruction, including PUSH (multiple registers) and POP (multiple registers), the PE uses
instruction restart and the Base register is restored to the original value.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - !M.

RRFGF In a PE with the Main Extension, if the PE takes an exception during any Load Multiple or Store Multiple
instruction, including PUSH (multiple registers) and POP (multiple registers):

• If the instruction is not in an IT block and the exception is an asynchronous exception, the PE uses instruction

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

131

Chapter B3. Programmers’ Model
B3.27. Exceptions, instruction resume, or instruction restart

resume and EPSR.ICI holds the continuation state. The base register is restored to the original value except
in the following cases:

Interrupt of an instruction that is using SP as the base register

The SP that is presented to the exception entry sequence is lower than any element pushed by an STM, or not
yet popped by an LDM.

For Decrement Before (DB) variants of the instruction, the SP is set to the final value. This is the lowest
value in the list.

For Increment After (IA) variants of the instruction, the SP is restored to the initial value. This is the lowest
value in the list.

Interrupt of an instruction that is not using SP as the base register

The base register is set to the final value, whether the instruction is a Decrement Before (DB) variant or an
Increment After (IA) variant.

• For all other cases:

– The PE uses instruction restart and the base register is restored to the original value. If the instruction is
not in an IT block, EPSR.ICI is cleared to zero.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

RSGWB When a Load Multiple instruction includes its Base register in its register list, if the PE takes an exception during
the instruction:

• The Base register is restored to the original value, and:

– If the instruction is in an IT block, the PE uses instruction restart.
– If the instruction is not in an IT block, and the PE takes the exception after it loads the Base register,

EPSR.IT/ICI can be set to an IMPLEMENTATION DEFINED value that will load at least the Base register
and subsequent locations again after returning from the interrupt.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

132

Chapter B3. Programmers’ Model
B3.28. Low overhead loops

B3.28 Low overhead loops

IJRNR The LOB Extension is a mandatory feature of the Armv8.1-M architecture.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB.

RBJZM If MVE nor the Floating-point extension are implemented LTPSIZE is a fixed integer value of four. The pseudocode
function LTPSIZE() describes this.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB && !MVE
&& !FP.

RBCPH If Floating-point extension is implemented LTPSIZE is a fixed value of four and the value of LTPSIZE is held in
FPSCR.LTPSIZE.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB && FP.

RRXNJ If MVE is implemented LTPSIZE is not fixed and the value of LTPSIZE is held in FPSCR.LTPSIZE, which might
not reads a four when LOB tail predication is in progress.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB && MVE.

RFTZN The Armv8.1-M architecture supports low overhead loops using:

• WLS - While Loop Start.
• DLS - Do Loop Start.
• LE - Loop End.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB.

RWGGG An implementation that includes MVE has the following additional instructions that can be used in or in the
creation of low overhead loops:

• WLSTP - While Loop Start with Tail Predication.
• DLSTP - Do Loop Start with Tail Predication.
• LCTP - Loop Clear with Tail Predication.
• LETP - Loop End with Tail Predication.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB && MVE.

RFDVJ Instructions within the loop can read and write the loop iteration count, which is in the LR.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB.

IGXDN The following is a trivial memcpy example which uses the T1 variant of the LE instruction. The T1 variant uses
LR:

memcpy:
PUSH {R0, LR}
WLS LR, R2, loopEnd //R2=size

loopStart:
LDRSB R3, [R1], #1 // R1 = srcPtr, R3 = temp reg
STRB R3, [R0], #1 // R0 = destPtr
LE LR, loopStart

loopEnd:
POP {R0, PC}

The WLS and LE instructions cause the loop body to be executed n times, where n is specified by the value of R2.
In this example, the low overhead loop instructions operate as follows:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

133

Chapter B3. Programmers’ Model
B3.28. Low overhead loops

• If the iteration count that is passed to the WLS instruction is nonzero, the loop iteration count is copied to LR.
If the iteration count is zero, the WLS instruction jumps to the end of the loop.

• If additional iterations of the loop are required when the LE instruction is executed (as indicated by the value
in LR), the iteration count decrements LR and branches back to the start of the loop. The LE instruction also
caches the loop branch information in LO_BRANCH_INFO. Subsequent iterations might not be required to
re-execute the LE instruction.

• If LR indicates that no further iterations are required, the PE branches over the LE instruction when execution
reaches the last instruction in the body of the loop.

The LE T2 variant of the LE instruction does not include LR as an argument and can be used where the number of
iterations is not known in advance.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

134

Chapter B3. Programmers’ Model
B3.28. Low overhead loops

ICRKM The T3 variant of the LE instruction is LETP, which is a tail predicated loop. Tail predicated loops can be used if
the iteration count is not known in advance. A trivial memcpy example of the LETP instruction is shown here:

memcpy:
PUSH {R0, LR}
WLSTP.8 LR, R2, vectLoopEnd //R2 = element / byte count

vectLoopStart:
VLDRB.8 Q0, [R1], #16 // R1 = srcPtr
VSTRB.8 Q0, [R0], #16 // R0 = destPtr
LETP LR, vectLoopStart

vectLoopEnd:
POP {R0, PC}

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB && MVE.

RFZXN The LE, LETP instruction caches the loop branch information in LO_BRANCH_INFO.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB.

RNMGH When executing a LE instruction, LR decrements by one on each iteration of the loop.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB.

RHSNB An INVSTATE UsageFault is raised if a LE instruction is executed and FPSCR.LTPSIZE does not read as four.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB && (MVE
|| FP).

RXNXM An INVSTATE UsageFault is raised if a LE instruction is executed and LTPSIZE does not read is not four.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB !MVE &&
!FP.

RVRQV For low overhead loop instructions, LR stores the loop iteration count. For a tail predicated low overhead loop
instruction, LR stores the number of vector elements to be processed.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB. Note, MVE
required for tail predication.

RHNLF When executing a LETP instruction, LR decrements by the element width indicated in FPSCR.LTPSIZE. When
FPSCR.LTPSIZE is not set to four tail predication is applied according to the value in LR. The number of elements
is calculated by dividing the vector width, 128, by the element width in FPSCR.LTPSIZE.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB && MVE.

RZWFJ The following events update the low overhead loop flags, as indicated by LO_BRANCH_INFO.VALID bit.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

135

Chapter B3. Programmers’ Model
B3.28. Low overhead loops

Event LO_BRANCH_INFO
Reset Cleared
LE, LETP instruction Conditionally set
Execution reaches LO_BRANCH_INFO.END_ADDR Conditionally cleared
BF, BFX, BFL, BFLX, BFCSEL instruction Set
Context synchronization event Cleared
BXNS or BLXNS instruction that cause a Security State transition Cleared
SG instuction that causes a transition from Non-secure to Secure state Cleared
Unstacking a FNC_RETURN stack frame Cleared
Any instruction that modifies the PC when LO_BRANCH_INFO.BF is set Cleared
IMPLEMENTATION DEFINED events Cleared

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB. Note, some
rows require S.

ISWHC If the debugger expects predictable control flow, then Arm recommends that the implicit branches are disabled and
that the associated cache is cleared.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

136

Chapter B3. Programmers’ Model
B3.28. Low overhead loops

RGHQJ For implementations that include MVE, the architecture permits the architecturally overlapping execution of a
vector instruction at the end of the loop with an instruction at the start of the next iteration of the loop, except
when:

• The vector instructions at the end of the loop write to LR.
• The instruction at the start of the loop reads or writes to LR.
• Data dependencies between vector instructions are violated.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB && MVE.

RXZJF When a new floating-point context is created and FPCCR.ASPEN is set to one the PE automatically initializes
FPSCR.LTPSIZE to four.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB && (MVE
|| FP).

IJLJL When a new floating-point context is created and FPCCR.ASPEN is set to zero it is the responsibility of software
to correctly initialize FPSCR.LTPSIZE.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB && (MVE
|| FP).

IRRPL When a WLSTP or a DLSTP instruction is used to initialize a loop, the loop end instruction must be an LETP
instruction. If an LE instruction is used in this scenario, the predication applied might be incorrect.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB && MVE.

ITPKG When a WLS or a DLS instruction is used to initialize a loop, the loop end instruction must be an LE instruction.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB.

RRKZN The execution of an implicit or explicit LE, LETP instruction is CONSTRAINED UNPREDICTABLE anywhere
within an IT block. When the instruction is committed for execution, one of the following occurs:

• An UNDEFINED exception is taken.
• ITSTATE is cleared to 0.
• The instructions are executed as if they had passed the condition code check and the ITSTATE is advanced.
• The instructions execute as NOPs, as if they had failed the condition code check and the ITSTATE is not

advanced.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB.

See also:

B5.6.1 Loop tail predication on page 187.

WLS, DLS, WLSTP, DLSTP.

LE, LETP.

LTPSIZE.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

137

Chapter B3. Programmers’ Model
B3.29. Branch future

B3.29 Branch future

ITBQH The Armv8.1-M architecture supports branch future instructions (BF instructions). The BF instruction and its
variants are requests to the PE to perform a branch in the future. The variants of the branch future instruction are
BF, BFX, BFL, BFLX, and BFCSEL.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB.

IVCGC An example of a BF branch point is as follows:

start:
BFX b_label, LR // Set up BF at b_label
ADD r0, r0, r1
ADD r0, r0, r2
ADD r0, r0, r3
// This is the BF branch point

b_label:
BX LR // Executed if LO_BRANCH_INFO invalid

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB.

RSVXL If the last instruction immediately before the BF branch point writes to LR, and a BFL or BFLX set up the BF
branch point, then LR is set to the return address, and not to the value that is generated by the instruction at the BF
branch point.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB.

RFZVC BF initializes the LO_BRANCH_INFO register to cause a low overhead branch just before execution reaches the
specified label, that is the branch point.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB.

RJTGY When BF causes a branch, this branch occurs at the branch point. The instruction after the branch point is not
executed if the branch is taken.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB.

RJVJF Inserting the BF branch point in the middle of a T32 instruction results in one of the following CONSTRAINED
UNPREDICTABLE behaviors:

• It executes as a NOP.
• It raises an UNDEFINED instruction fault.
• It executes normally and the branch that is associated with the BF instruction is taken.
• It executes normally and the branch that is associated with the BF instruction is not taken.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB.

RVGJR If the BF branch point is in an IT block, and it does not immediately precede the last instruction in the IT block,
then the following CONSTRAINED UNPREDICTABLE behaviors can result:

• The instruction executes normally and the branch that is associated with the BF instruction is not taken. The
BF instruction can be treated as a NOP.

• The instruction before the BF branch point raises an UNDEFINED instruction fault.
• ITSTATE is cleared to 0.
• Taking the branch that is associated with the BF instruction causes ITSTATE to become UNKNOWN.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB.

RHLVZ If a BF branch point is within an IT block, the branch that was created by the BF instruction is not affected by the

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

138

Chapter B3. Programmers’ Model
B3.29. Branch future

IT condition.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB.

RJFHP When executing in Handler mode, BF instructions that attempt to cause a branch to EXC_RETURN behave as
NOPs.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB.

RBGSF In an implementation that includes the Security Extension, BF instructions that attempt to cause a branch to
FNC_RETURN behave as NOPs.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB && S.

RMCKJ Taking a branch that is created by the BF instruction clears ITSTATE to 0.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB.

See also:

Chapter C1 Instruction Set Overview on page 427.

B3.28 Low overhead loops on page 133.

C1.3.5 ITSTATE on page 438.

BF, BFX, BFL, BFLX, and BFCSEL.

Applies to an implementation of the architecture from Armv8.1-M onwards.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

139

Chapter B3. Programmers’ Model
B3.30. Vector tables

B3.30 Vector tables

RNWFF In a PE with the Security Extension, two vector tables are implemented, the Secure Vector table and the Non-secure
Vector table, and it is IMPLEMENTATION DEFINED which of the following is true:

• The PE supports configurability of each vector table base, and two Vector Table Offset Registers, VTOR_S
and VTOR_NS, are provided for this purpose.

• The PE does not support configurability of either vector table base, and VTOR_S and VTOR_NS are WI.

If the PE supports configurability of each vector table base:

• Exceptions that target Secure state use VTOR_S to determine the base address of the Secure vector table.
• Exceptions that target Non-secure state use VTOR_NS to determine the base address of the Non-secure

vector table.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

RGTJQ In a PE without the Security Extension, a single vector table is implemented, and it is IMPLEMENTATION DEFINED
which of the following is true:

• The PE supports configurability of the vector table base, and a single Vector Table Offset Register, VTOR, is
provided for this purpose.

• The PE does not support configurability of the vector table base, and VTOR is WI.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - !S.

IWFGX Arm recommends that VTOR_S points to memory that is Secure and not Non-secure callable.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

RWPRT A vector table contains both:

• The initialization value for the main stack pointer on reset.
• The start address of each exception handler.

The exception number defines the order of entries.

Word offset in vector table Value that is held at offset
0 Initial value for the main stack pointer on reset.
1 Start address for the reset handler.
Exception number Start address for the handler for the exception with that number
. .
. .
. .
Exception number Start address for the handler for the exception with that number

Applies to an implementation of the architecture from Armv8.0-M onwards.

RLFDL In a PE with a configurable vector table base, the vector table is naturally aligned to a power of two, with an
alignment value that is:

• A minimum of 128 bytes.
• Greater than or equal to (Number of Exceptions supported x4).

Applies to an implementation of the architecture from Armv8.0-M onwards.

RVDPD Vector fetches for entries beyond the natural alignment of the associated VTOR occur from an UNKNOWN entry
within the vector table.

Applies to an implementation of the architecture from Armv8.0-M onwards.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

140

Chapter B3. Programmers’ Model
B3.30. Vector tables

IPLSB Arm recommends that it is ensured that the vector table and VTOR are aligned so that the entry for the highest
taken exception falls within the natural alignment of the table, and at a minimum that the vector table is 128 byte
aligned. A PE might impose further restrictions on the VTOR.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RZVWS If a vector fetch causes a Security attribution unit violation or an implementation defined attribution unit violation
or a BusFault, a secure VECTTBL HardFault is raised. If the exception priority prevents any secure VECTTBL
HardFault preempting, one of the following occurs:

• The PE enters Lockup at the priority of the original exception.
• The original exception transitions from the pending to the active state.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S. Note, SAU and
IDAU require M.

RXPPT For all vector table entries other than the entry at offset 0, if bit[0] is not set to 1, the first instruction in the
exception results in an INVSTATE UsageFault or a HardFault.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IBVSC For all vector table entries other than the entry at offset 0, bit[0] defines EPSR.T on exception entry. Setting bit[0]
to 1 indicates that the exception handler is in the T32 instruction set state.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RWRJW A vector fetch may be performed using the instruction interface, and avoid DWT matches and watchpoints being
generated.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B9.4 IMPLEMENTATION DEFINED Attribution Unit (IDAU) on page 275.

B9.3 Security attribution unit (SAU) on page 274.

B3.9 Exception numbers and exception priority numbers on page 82.

B3.5.2 Execution Program Status Register (EPSR) on page 77.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

141

Chapter B3. Programmers’ Model
B3.31. Hardware-controlled priority escalation to HardFault

B3.31 Hardware-controlled priority escalation to HardFault

RGNVS If a synchronous exception with an equal or lower priority to execution is pending, the PE hardware escalates it
to become a HardFault. This rule applies to all synchronous exceptions and DebugMonitor exceptions that are
caused by the BKPT instruction. This rule does not apply to asynchronous exceptions and all other DebugMonitor
exceptions. If the HardFault cannot be taken the PE enters Lockup

Applies to an implementation of the architecture from Armv8.0-M. Note, DebugMonitor exception requires M.

RHPLM FPCCR.*RDY (not the current execution priority) determines the escalation of synchronous exceptions generated
because of lazy floating-point state preservation. This means that an asynchronous exception might be pended.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RPBJQ When current execution has a priority value less than or equal to the configurable priority exceptions, if a disabled
configurable priority exception occurs:

• If it is a synchronous exception, the PE hardware escalates the exception to become a HardFault.
• If it is an asynchronous exception, the PE does not escalate the interrupt. The interrupt remains pending.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RDQRR A fault that has been escalated to a HardFault, and not pended, retains the return address behavior of the original
fault and sets HFSR.FORCED to 1.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B3.9 Exception numbers and exception priority numbers on page 82.

DebugMonitor exception.

B3.33 Lockup on page 145.

B3.11 Security states, exception banking on page 87.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

142

Chapter B3. Programmers’ Model
B3.32. Special-purpose mask registers, PRIMASK, BASEPRI, FAULTMASK, for configurable priority boosting

B3.32 Special-purpose mask registers, PRIMASK, BASEPRI, FAULTMASK, for
configurable priority boosting

IBNJG In a PE with the Main Extension, the PRIMASK, FAULTMASK, and BASEPRI registers can be used as follows.
A PE without the Main Extension implements PRIMASK, but does not implement FAULTMASK and BASEPRI.

PRIMASK

In a PE without the Security Extension:

• Setting this bit to one boosts the current execution priority to 0, masking all exceptions with an equal or
lower priority.

In a PE with the Security Extension:

• Setting PRIMASK_S to one boosts the current execution priority to 0.

• If AIRCR.PRIS is:

0:

Setting PRIMASK_NS to one boosts the current execution priority to 0.

1:

Setting PRIMASK_NS to one boosts the current execution priority to 0x80.

In a PE with the Security Extension, when the current execution priority is boosted to a particular value, all
exceptions with an equal or lower priority are masked.

FAULTMASK

In a PE without the Security Extension:

• Setting this bit to one boosts the current execution priority to -1, masking all exceptions with an equal or
lower priority.

In a PE with the Security Extension, if AIRCR.BFHFNMINS is:

0:

Setting FAULTMASK_S to one boosts the current execution priority to -1.

If AIRCR.PRIS is:

0: Setting FAULTMASK_NS to one boosts the current execution priority to 0.

1: Setting FAULTMASK_NS to one boosts the current execution priority to 0x80.

1:

Setting FAULTMASK_S to one boosts the current execution priority to -3.

Setting FAULTMASK_NS to one boosts the current execution priority to -1.

In a PE with the Security Extension, when the current execution priority is boosted to a particular value, all
exceptions with an equal or lower priority are masked.

BASEPRI

In a PE without the Security Extension:

• This field can be set to a priority number between 1 and the maximum supported priority number. This boosts
the current execution priority to that number, masking all exceptions with an equal or lower priority.

In a PE with the Security Extension:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

143

Chapter B3. Programmers’ Model
B3.32. Special-purpose mask registers, PRIMASK, BASEPRI, FAULTMASK, for configurable priority boosting

• BASEPRI_S can be set to a priority number between 1 and the maximum supported priority number.

• If AIRCR.PRIS is:

0: BASEPRI_NS can be set to a priority number between 1 and the maximum supported priority number.

1: BASEPRI_NS can be set to a priority number between 1 and the maximum supported priority number.
The value in BASEPRI_NS is then mapped to the bottom half of the priority range, so that the current
execution priority is boosted to the mapped-to value in the bottom half of the priority range, that is from
0x80 to the supported maximum.

In a PE with the Security Extension, when the current execution priority is boosted to a particular value, all
exceptions with an equal or lower priority are masked.

Applies to an implementation of the architecture from Armv8.0-M. Note, FAULTMASK and BASEPRI require M.

RFHMC The PRIMASK, FAULTMASK, and BASEPRI priority boosting mechanisms only boost the group priority, not the
subpriority.

Applies to an implementation of the architecture from Armv8.0-M. Note, FAULTMASK and BASEPRI require M.

RSKBJ Without the Security Extension:

• An exception return sets FAULTMASK to 0.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - !S && M.

RHRTM With the Security Extension:

• An exception return sets FAULTMASK to 0 if the raw execution priority is greater than or equal to 0.
EXC_RETURN.ES indicates which banked instance of FAULTMASK is set to 0.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S && M.

ILSXJ The raw execution priority is:

• The execution priority minus the effects of any configurable PRIMASK, FAULTMASK, or BASEPRI priority
boosting.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

IGBVL The requested execution priority for a Security state is negative when any of the following are true:

• The banked FAULTMASK bit is 1, including when AIRCR.PRIS is also 1.
• A HardFault is active.
• An NMI is active and targets the Security state for which the requested execution priority is being calculated .

Applies to an implementation of the architecture from Armv8.0-M. Note, FAULTMASK requires M.

See also:

B3.13 Priority model on page 94.

B3.9 Exception numbers and exception priority numbers on page 82.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

144

Chapter B3. Programmers’ Model
B3.33. Lockup

B3.33 Lockup

IRKJB Lockup is a PE state where the PE stops executing instructions in response to an error for which escalation to
an appropriate HardFault handler is not possible because of the current execution priority. An example is a
synchronous exception that escalates to a Secure HardFault, but cannot escalate to a Secure HardFault because a
Secure HardFault is already active.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IFSFR Arm recommends that an implementation provides a LOCKUP signal that, when the PE is in lockup, signals to
the external system that the PE is in lockup.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RMBTM When the PE is in lockup:

• DHCSR.S_LOCKUP reads as 1.
• The PC reads as 0xEFFFFFFE. This is an XN address.
• The PE stops fetching and executing instructions.
• If the implementation provides an external LOCKUP signal, LOCKUP is asserted HIGH.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RJRJC Exit from lockup is only by one of the following:

• A Cold reset.
• A Warm reset.
• Entry to Debug state.
• Preemption by another exception.

Applies to an implementation of the architecture from Armv8.0-M. Note, entry to Debug state requites Halting debug.

RHJNP Exit from lockup causes both DHCSR.S_LOCKUP and, if implemented, the external LOCKUP signal, to be
deasserted.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RSPPN On an exit from lockup by entry to Debug state, or by preemption by another exception, the return address is
0xEFFFFFFE.

Applies to an implementation of the architecture from Armv8.0-M. Note, entry to Debug state requires Halting debug.

ICRHJ After exit from lockup by entry to Debug state, or by preemption by another exception, a subsequent return
from Debug state or that exception without modifying the return address attempts to execute from 0xEFFFFFFE.
Execution from this address is guaranteed to generate an IACCVIOL MemManage fault, causing the PE to reenter
lockup if the execution priority has not been modified. Modification of the return address would enable execution
to be resumed, however Arm recommends treating entry to lockup as fatal and requiring the PE to be reset.

Applies to an implementation of the architecture from Armv8.0-M. Note, entry to Debug state requires Halting debug.

See also:

B3.13 Priority model on page 94.

Chapter B12 Debug on page 283.

B3.33.1 Instruction-related lockup behavior

Instruction execution

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

145

Chapter B3. Programmers’ Model
B3.33. Lockup

RVGMR A synchronous exception results in lockup when:

• The synchronous exception would otherwise escalate to a Secure HardFault and any of the following is true:

– Secure HardFault is already active.
– NMI is active and AIRCR.BFHFNMINS is 0.
– FAULTMASK_S.FM is 1.
– Non-secure HardFault is active and AIRCR.BFHFNMINS is 0.

• The synchronous exception would otherwise escalate to a Non-secure HardFault and any of the following is
true:

– Non-secure HardFault or Secure HardFault is already active.
– NMI is active.
– FAULTMASK_NS.FM or FAULTMASK_S.FM is 1.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S. Note,
FAULTMASK requires M.

RQMMB If the Security Extension is not implemented, a synchronous exception results in lockup when:

• The synchronous exception would otherwise escalate to HardFault and any of the following is true:

– HardFault is already active.
– NMI is active.
– FAULTMASK is always 1.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - !S.

RVGNW Entry to lockup from an exception causes:

• Any Fault Status Registers associated with the exception to be updated.
• No update to the pending exception state or to the active exception state.
• The PC to be set to 0xEFFFFFFE.
• EPSR.IT to be become UNKNOWN.

In addition, HFSR.FORCED is not changed.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RDWKP Asynchronous BusFaults do not cause lockup.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RKTQM When a BusFault does not cause lockup, the value that is read or written to the location that generated the BusFault
is UNKNOWN.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RHTVD ITSTATE does not advance when the PE is in lockup.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Floating-point lazy Floating-point context preservation

RRNKB When FPCCR.LSPACT is 1, a NOCP UsageFault, AU violation, MPU violation, or synchronous BusFault during
lazy Floating-point context preservation causes lockup if any of the following is true:

• FPCCR.HFRDY is 0, the *RDY bit associated with the original exception is 0, and the current execution
priority is high enough to prevent preemption.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP. Note, an
MPU violation requires MPU, an SAU violation requires S.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

146

Chapter B3. Programmers’ Model
B3.33. Lockup

RMMBJ When FPCCR.LSPEN is 0, any faults that are caused by floating-point register reads or writes during exception
entry or exception return are handled as faults on stacking or unstacking respectively.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

B3.33.2 Exception-related lockup behavior

Vector or stack pointer error on reset

RBHVG On reset, if reading the vector table to obtain either the vector for the reset handler or the initialization value for the
main stack pointer causes a BusFault, the PE enters lockup in HardFault with the following behavior:

• HFSR.VECTTBL is set to 1.
• In a PE with the Security Extension, Secure HardFault is made active. That is, SHCSR_S.HARDFAULTACT

is set to 1.
• In a PE without the Security Extension, HardFault is made active. That is, SHCSR.HARDFAULTACT is set

to 1.
• An UNKNOWN value is loaded into the main stack pointer.
• The IPSR is set to 0.
• EPSR.T is UNKNOWN.
• EPSR.IT is set to zero.
• The PC is set to 0xEFFFFFFE.

Applies to an implementation of the architecture from Armv8.0-M. Note, a Secure HardFault requires S.

Errors on preemption and stacking for exception entry

RVKTX An AU violation, MPU violation, NOCP UsageFault, STKOF UsageFault, LSERR SecureFault, or synchronous
BusFault during context stacking causes lockup when:

• The exception would escalate to a Secure HardFault if any of the following is true:

– Secure HardFault is already active.
– NMI is active and AIRCR.BFHFNMINS is 0.
– FAULTMASK_S.FM is 1.
– Non-secure HardFault is active and AIRCR.BFHFNMINS is 0.

• The exception would escalate to a Non-secure HardFault if any of the following is true:

– Non-secure HardFault or Secure HardFault is already active.
– NMI is active.
– FAULTMASK_NS.FM or FAULTMASK_S.FM is 1.

In these cases, the point of PE lockup is when, after the exception to be taken has been chosen, the handler for that
exception is entered. These cases do not in themselves cause any additional exception to become pending.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S. Note, an AU
violation requires S, an MPU violation requires MPU, a UsageFault requires M, a SecureFault requires S.

RQSSB When an AU violation, MPU violation, NOCP UsageFault, STKOF UsageFault, LSERR SecureFault, or syn-
chronous BusFault occurs during context stacking, it is IMPLEMENTATION DEFINED whether the PE continues to
stack any of the remaining context.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S. Note, an AU
violation requires S, an MPU violation requires MPU, a UsageFault requires M, a SecureFault requires S, LSERR requires FP.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

147

Chapter B3. Programmers’ Model
B3.33. Lockup

RGJJG At the point of encountering an AU violation, MPU violation, NOCP UsageFault, STKOF UsageFault, LSERR
SecureFault, or synchronous bus error during context stacking, the PE:

• Updates any Fault Status Registers associated with the error.
• Does not change HFSR.FORCED.

At the point of lockup:

• All state, including the LR, IPSR, and active and pending bits, is modified as though the fault on context
stacking had never occurred, other than the following:

– EPSR.T becomes UNKNOWN.
– EPSR.IT is set to zero.
– The PC is set to 0xEFFFFFFE.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S. Note, an AU
violation requires S, an MPU violation requires MPU, a UsageFault requires M, a SecureFault requires S, LSERR requires FP.

Vector read error on NMI or HardFault entry

RCTKP On entry to an NMI or HardFault, if reading the vector table to obtain the vector for the NMI or HardFault handler
causes a bus error, the PE enters lockup with the following behavior:

• HFSR.VECTTBL is set to 1.
• The IPSR is updated to hold the exception number of the exception taken.
• The active bit of the exception that is taken is set to 1.
• The pending bit of the exception that is taken is cleared to 0.
• EPSR.T is UNKNOWN.
• EPSR.IT is set to zero.
• The LR is set to the EXC_RETURN value that would have been used had the fault not occurred.
• The PC is set to 0xEFFFFFFE.

Applies to an implementation of the architecture from Armv8.0-M onwards.

INMRW Because AU violations on vector reads are required to be treated as late-arriving, they cannot cause lockup, and
instead result in a higher priority exception being taken. Vector reads always use the default memory map and
cannot generate MPU violations.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Integrity checks on exception return

RTRFJ A fault that is generated by a failed integrity check on exception return is generated after either the active bit for
the returning exception, or the active bit for NMI or HardFault, has been cleared to 0, and if applicable, after
FAULTMASK has also been cleared to 0. A fault that is generated by a failed integrity check on exception return
causes lockup when:

• The exception would escalate to a Secure HardFault and any of the following is true:

– Secure HardFault is already active.
– NMI is active and AIRCR.BFHFNMINS is 0.
– FAULTMASK_S.FM is 1.
– Non-secure HardFault is active and AIRCR.BFHFNMINS is 0.

• The exception would escalate to a Non-secure HardFault and any of the following is true:

– Non-secure HardFault or Secure HardFault is already active.
– NMI is active.
– FAULTMASK_NS.FM or FAULTMASK_S.FM is 1.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

148

Chapter B3. Programmers’ Model
B3.33. Lockup

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

RDFKP When the PE enters lockup because of a fault that is generated by a failed integrity check, the PE:

• Updates any Fault Status Registers associated with the error.

• Sets IPSR to 0, if EXC_RETURN for the returning exception indicated a return to Thread mode.

• Sets IPSR to 3, if EXC_RETURN for the returning exception indicated a return to Handler mode.

• Sets the stack pointer that is used for unstacking to the value it would have had if the fault had not occurred.

– If the XPSR load faults, the SP is 64-bit aligned.

• Updates CONTROL.FPCA, based on EXC_RETURN.FType.

• CONTROL.SFPA becomes UNKNOWN.

• Sets the PC to 0xEFFFFFFE.

In addition, the APSR, EPSR, FPSCR, R0-R12, LR, and S0-S31 are UNKNOWN.

Applies to an implementation of the architecture from Armv8.0-M. Note, CONTROL.FPCA and SFPA, FPSCR and S0-S31
require FP || MVE. MVE is only available in an Armv8.1-M implementation.

RXNZJ When the PE enters lockup because of a fault that is generated by a failed integrity check, and MVE is implemented,
VPR is UNKNOWN.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

Errors when unstacking state on exception return

RWKSJ Context unstacking is performed after any clearing of exception active bits or FAULTMASK, that is required by
the exception return, has been made visible. A synchronous exception during context unstacking causes lockup
when:

• The exception would escalate to a Secure HardFault and any of the following is true:

– Secure HardFault is already active.
– FAULTMASK_S.FM is 1.
– Non-secure HardFault is active and AIRCR.BFHFNMINS is 0.

• The exception would escalate to a Non-secure HardFault and any of the following is true:

– Non-secure HardFault or Secure HardFault is already active.
– NMI is active.
– FAULTMASK_NS.FM or FAULTMASK_S.FM is 1.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

RXFCQ When a synchronous exception during context unstacking causes lockup, the PE:

• Updates any Fault Status Registers associated with the error.
• Sets IPSR to 0, if EXC_RETURN for the returning exception indicated a return to Thread mode.
• Sets IPSR to 3, if EXC_RETURN for the returning exception indicated a return to Handler mode.
• Sets the stack pointer that is used for unstacking to the value it would have had if the fault had not occurred.

– If the XPSR load faults, the SP is 64-bit aligned.
• Updates CONTROL.FPCA, based on EXC_RETURN.
• Sets the PC to 0xEFFFFFFE.

In addition, the APSR, EPSR, FPSCR, R0-R12, LR, and S0-S31 are UNKNOWN.

Applies to an implementation of the architecture from Armv8.0-M onwards.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

149

Chapter B3. Programmers’ Model
B3.33. Lockup

RWZFG When the PE enters lockup because of an AU violation, MPU violation, or synchronous BusFault during context
unstacking, and MVE is implemented, VPR is UNKNOWN.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

See also:

B3.22 Exception return on page 119.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

150

Chapter B3. Programmers’ Model
B3.34. Data independent timing

B3.34 Data independent timing

IJFVR The Armv8.1-M architecture supports Data independent timing operations.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - DIT.

RDNPM DIT behavior only applies if the instruction passes its Condition code check. The instruction remains subject to the
rules of the architecture but is permitted to have a different execution time when compared to the same instruction
that had passed the Condition code check.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - DIT.

RNXXV When AIRCR.DIT is set to 1, unless otherwise specified, the time required for Data independent timing operations
is independent of all values that are accessed by operations from the following registers:

• FPCSR.{N,Z,C,V}.
• APSR.
• General-purpose registers.
• Floating-point Extension registers (S0-S31, D0-D15, and Q0-Q7).
• In a limited number of cases, VPR.P0.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - DIT. Note,
Floating-point registers require FP or MVE, and VPR requires MVE.

RCWVH When AIRCR.DIT is set to 1, this affects the following features:

• Exception handling. In addition to the standard set of registers, the following operations also exhibit Data
independent timing for accesses to VPR.P0:

– Exception entry.
– Tail-chaining.
– Lazy floating-point state preservation.
– Exception return.

• EPSR.ICI. Whether a PE uses ICI for load/store multiple instructions is not dependent on the data values that
are loaded or saved. This excludes the address that is being targeted.

• Beat wise execution. Whether a Data independent timing vector instruction overlaps with another vector
instruction is not dependent on the data values being processed by the data independent timing vector
instruction.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - DIT. Note, VPR
and vector instructions requires MVE.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

151

Chapter B3. Programmers’ Model
B3.34. Data independent timing

RWGVH The DIT non-MVE instructions, including flag setting variants of the instruction are:

• Comparison and selection:

– CMP (immediate), CMP (register), TEQ (immediate), TEQ (register), TST
(immediate), TST (register).

– CSEL, CSINC, CSINV, CSNEG.

• Arithmetic:

– ADC (immediate), ADC (register), SBC (immediate), SBC (register).
– ADD (SP plus immediate), ADD (SP plus register), ADD (immediate), ADD
(immediate, to PC), ADD (register), SUB (SP minus immediate), SUB
(SP minus register), SUB (immediate), SUB (immediate, from PC), SUB
(register), RSB (immediate), RSB (register)

– UMLAL, UMLAL.

• Bitwise:

– AND (immediate), AND (register), BIC (immediate), BIC (register), EOR
(immediate), EOR (register), MVN (immediate), MVN (register), ORN (immediate),
ORN (register), ORR (immediate), ORR (register)

– UBFX.

• Shifts, Bit Reversal:

– ASR (immediate), ASR (register), LSL (immediate), LSL (register), LSL
(immediate), LSR (register), ROR (immediate), ROR (register), RRX

– RBIT, REV, REV16.

• Moves:

– MOV (immediate), MOV (register).
– MRS, MSR (register). Data independent timing is only required to be guaranteed for accesses to

APSR.

• Load/store instructions. Data independent timing does not apply to the addresses that are being accessed, or
to sign extending variants.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - DIT.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

152

Chapter B3. Programmers’ Model
B3.34. Data independent timing

RRFVV The DIT MVE instructions are:

• Comparison and selection:

– VCMP (floating-point),VCMP (vector), and VPSEL. VPSEL also exhibits Data indepen-
dent timing with respect to the value of VPR.P0.

• Arithmetic:

– VADC, VSBC, VADD (vector), VSUB (vector).
– VMULL (integer) and VMULL (polynomial).

• Bitwise:

– VAND.
– VBIC (immediate) and VBIC (register).
– VEOR.
– VMVN (immediate) and VMVN (register).
– VORN.
– VORR.

• Shifts, Bit Reversal:

– VBRSR, VSHR, VSHL, VSHLC.

• Moves:

– All vector VMOV instructions.
– VMSR, VMRS. Data independent timing is only required to be guaranteed for accesses to FP-

SCR.{N,Z,C,V,QC} and VPR.P0.
– VREV16, VREV32, VREV64.

• Load/store instructions. Data independent timing does not apply to the address that is being accessed, or to
sign-extending variants.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - DIT && MVE.

RRWJW For non-architected accesses, all instructions, including instructions that are not listed as Data independent timing
instructions, exhibit Data independent timing with respect to data that is held in specified DIT registers that are not
architecturally accessed by the instruction.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - DIT.

See also:

B5.4 Beats on page 181.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

153

Chapter B3. Programmers’ Model
B3.35. Context Synchronization Event

B3.35 Context Synchronization Event

RQXWD The architecture requires a Context synchronization event to guarantee visibility of any change to any memory-
mapped register described in the architecture. Following a Content synchronization event a completed write to
a memory-mapped register is visible to an indirect read by an instruction appearing in program order after the
context synchronization event.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RTVHX Between any change to a memory-mapped register and a subsequent Content synchronization event, it is UNPRE-
DICTABLE whether an indirect read of the register by the PE uses the old or new values.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RRMMM Where multiple changes are made to memory-mapped registers before a Content synchronization event, each value
might independently be the old or new value.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RNSLQ Where unsynchronized values apply to different areas of architectural functionality, or IMPLEMENTATION DEFINED
functionality, those areas might independently treat the values as being either the old or new value.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RBKSX The choice between the behaviors is IMPLEMENTATION DEFINED and might vary for each use of the unsynchro-
nized value.

Applies to an implementation of the architecture from Armv8.0-M onwards.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

154

Chapter B3. Programmers’ Model
B3.36. Coprocessor support

B3.36 Coprocessor support

RBSLX Coprocessor support is OPTIONAL.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

IJBMG When coprocessors are not supported, the fields in CPACR, NSACR, and CPPWR that are associated with the
unsupported coprocessor are RAZ/WI.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

IWTFG In an implementation with the Security Extension, out of reset access to the Floating-point Extension is disabled in
both Secure and Non-secure state. Use by Non-secure software requires correct configuration of permissions by
Secure software.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M && S.

RXSQH The architecture supports 0-16 coprocessors, CP0 to CP15.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

RHJDH CP0 to CP7 are IMPLEMENTATION DEFINED.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

RXPRQ It is IMPLEMENTATION DEFINED whether CP0 to CP7 can be used from both Secure and Non-secure states or
whether the coprocessor is enabled for only Secure or Non-secure state.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M. Note, Secure
state requires S.

RQSRC Arm reserves CP8 to CP15.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

RLKZM CP10 to CP11 are reserved to support the Floating-point Extension, and CP10 controls the CP11 Floating-point
instructions.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

RCSQD From version 8.1-M of the architecture, access control for CP10 also controls CP8, CP9, CP14, and CP15.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - FP || MVE.

RLPMK The state that is associated with Floating-point unit described in CPPWR.SU10 applies to S registers, D registers,
and FPSCR.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

RVLNJ From version 8.1-M of the architecture, the state that is associated with the Floating-point unit described in
CPPWR.SU10 also applies to the Q registers and VPR.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

RXXDG Instructions that are issued to unimplemented or disabled coprocessors result in a NOCP UsageFault.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

RRMLV If a coprocessor cannot complete an instruction, an UNDEFINSTR UsageFault is generated.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

155

Chapter B3. Programmers’ Model
B3.36. Coprocessor support

See also:

Chapter B4 Floating-point Support on page 161.

CPACR, Coprocessor Access Control Register

CPPWR, Coprocessor Power Control Register

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

156

Chapter B3. Programmers’ Model
B3.37. The Custom Datapath Extension

B3.37 The Custom Datapath Extension

B3.37.1 Overview of the Custom Datapath Extension

IQNBG CDE introduces three classes of two instructions in the co-processor instruction space:

• Three classes operate on the general-purpose register file, including the condition code flags APSR_nzcv.
• Three classes operate on the Floating-point or SIMD register file only.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE. Note, (FP
|| MVE) required for Floating-point register file. MVE is only available in an Armv8.1-M implementation.

IJWBF A Custom Datapath instruction operating on the Floating-point or SIMD register files uses one of:

• 32-bit S registers.
• 64-bit D registers.
• 128-bit Q registers.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE && (FP ||
MVE). Note, Q registers require MVE, MVE is only available in an Armv8.1-M implementation.

IRBLJ The three classes of CDE instructions are defined by the following patterns:

• <operation code> <destination register>.
• <operation code> <destination register>, <source register>.
• <operation code> <destination register>, <source register 1>, <source register 2>.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE.

IFZRZ The destination register of a Custom Datapath instruction might be optionally read, as well as written.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE.

IBXBG The operation code can be split between a true operation code in the custom datapath and an immediate value used
in the custom datapath. The architecture does not prescribe any split.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE.

INFMB Immediate consequences of the above are:

• No operations on the Floating-point or SIMD registers can set condition codes.
• There are no instructions that support the use of all of, or any combination of the following:

– S registers.
– D registers.
– Q registers.
– The general-purpose register file.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE. Note, Q
registers require MVE, MVE is only available in an Armv8.1-M implementation.

ITVRP Operations on the general-purpose register file operate on 32-bit registers, or a dual-register consisting of a 64-bit
value constructed from an even numbered general-purpose register and its immediately following odd numbered
pair.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE.

B3.37.2 Enabling CDE instructions

ICXBC Custom Datapath instructions can be found within, and are associated with, the existing coprocessor encoding and

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

157

Chapter B3. Programmers’ Model
B3.37. The Custom Datapath Extension

numbering spaces.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE.

RXLTS Custom Datapath instructions fall into encoding spaces associated with a coprocessor number in the range 0 to 7
inclusive.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE.

IWWNQ Enabling the coprocessor space in which the Custom Datapath Extension is implemented is the same as other
IMPLEMENTATION DEFINED coprocessors. The function IsCPEnabled() describes this.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE. Note, S
required for Secure state.

RVSVW If a coprocessor is associated with the Custom Datapath Extension, that coprocessor cannot execute the following
instructions:

• CDP, CDP2.
• LDC, LDC2 (immediate).
• LDC, LDC2 (literal).
• MCR, MCR2.
• MCRR, MCRR2.
• MRC, MRC2.
• MRRC, MRRC2.
• STC, STC2.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE.

RSKRX Execution of a Custom Datapath instruction that accesses the Floating-point or SIMD register file causes Lazy
Floating-point stacking as specified by the architecture.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE && (FP ||
MVE). Note, MVE is only available in an Armv8.1-M implementation.

RLQTN When executing a CDE instruction the PE checks that the coprocessor associated with CDE is enabled. If access
to another coprocessor is required, for example the Floating-point Extension or MVE, a second coprocessor check
is carried out.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE && (FP ||
MVE). Note, MVE is only available in an Armv8.1-M implementation.

IZCCK If the execution of a CDE instruction requires access to the Floating-point or MVE register file the Floating-point
Extension or MVE must be enabled using CPACR or NSACR dependent on Security state. Before the execution of
a CDE instruction that requires access to the Floating-point Extension or MVE register file, the following registers
are checked to ensure that CP10 is enabled:

• CPACR.
• NSACR.
• CPPWR.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE && (FP ||
MVE). Note, MVE is only available in an Armv8.1-M implementation.

IMVXW Armv8-M double-precision Floating-point Extension implements 16 “D” registers, D0 to D15. The instructions
defined by the Custom Datapath Extension are capable of indexing registers D0 to D31.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE && (FP ||
MVE). Note, MVE is only available in an Armv8.1-M implementation.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

158

Chapter B3. Programmers’ Model
B3.37. The Custom Datapath Extension

ILPPY Armv8.1-M MVE implements eight “Q” registers, Q0 to Q7. The instructions defined by the Custom Datapath
Extension are capable of indexing registers Q0 to Q15.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - CDE && MVE.
Note, MVE is only available in an Armv8.1-M implementation.

RLBNN Execution of a Custom Datapath instruction that attempts to access an unimplemented Floating-point or SIMD
register, is CONSTRAINED UNPREDICTABLE and either of the following behaviors can occur:

• The instruction is UNDEFINED.
• The instruction is treated as a NOP.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE && (FP ||
MVE). Note, MVE is only available in an Armv8.1-M implementation.

See also:

B3.36 Coprocessor support on page 155

CPACR, Coprocessor Access Control Register

CPPWR, Coprocessor Power Control Register

NSACR, Non-secure Access Control Register

B3.37.3 Execution of CDE instructions

RQGNK The source and destination registers for any Custom Datapath instruction are restricted to those that are specified
by the instruction pseudocode.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE.

RGPLC The operation of a Custom Datapath instruction cannot be stateful, and cannot operate directly on memory.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE.

RXFCV It is IMPLEMENTATION DEFINED which Custom Datapath instructions are implemented.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE.

RSVBN An unimplemented Custom Datapath instruction whose associated coprocessor is not disabled is UNDEFINED.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE.

RJKXH The execution of an unimplemented immediate value in the encoding of a Custom Datapath instruction is
CONSTRAINED UNPREDICTABLE and either of the following behaviors can occur:

• The instruction is UNDEFINED.
• The instruction is treated as a NOP.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE.

RSGPM Which coprocessors adhere to the Custom Datapath Extension or the Arm architecture coprocessor instruction set
is IMPLEMENTATION DEFINED.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE.

ILCVM Arm strongly recommends that CDE instructions must conform with data independent timing.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - CDE && DIT.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

159

Chapter B3. Programmers’ Model
B3.37. The Custom Datapath Extension

RDVDG If the Performance Monitors Extension is implemented only the instruction counter, Cycle counter and, IMPLE-
MENTATION DEFINED counters increment on execution of Custom Datapath Extension instructions. There are no
architected PMU events for Custom Datapath Extension instructions.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - CDE && PMU.

RVPLL When executing a CDE scalar dual instruction the CDE enabled coprocessor must process general-purpose register
pairs according to the PE’s current endianness.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE.

IRRTS All of the rules required for the M-Profile Vector Extension and the Low Overhead Loop and Branch Future
Extension apply to all CDE beat-wise compatible instructions.

This includes the following, but is not limited to:

• Exception continuable behavior.
• Overlapping of beat-wise instructions.
• VPT predication.
• Tail predicated low overhead loops.

The CDE instructions are as follows:

• VCX1 (vector).
• VCX2 (vector).
• VCX3 (vector).

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - CDE && MVE
&& LOB.

See also:

Chapter C1 Instruction Specification

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

160

Chapter B4
Floating-point Support

This chapter specifies the Armv8-M Floating-point support rules. It contains the following sections:

B4.1 The optional Floating-point Extension, FPv5 on page 162.

B4.2 About the Floating-point Status and Control Registers on page 164.

B4.3 Registers for Floating-point data processing, S0-S31, or D0-D15 on page 165.

B4.4 Floating-point standards and terminology on page 166.

B4.5 Floating-point data representable on page 167.

B4.6 Floating-point encoding formats, half-precision, single-precision, and double-precision on page 168.

B4.7 The IEEE 754 Floating-point exceptions on page 170.

B4.8 The Flush-to-zero mode on page 171.

B4.9 The Default NaN mode, and NaN handling on page 173.

B4.10 The Default NaN on page 174.

B4.11 Combinations of Floating-point exceptions on page 175.

B4.12 Priority of Floating-point exceptions relative to other Floating-point exceptions on page 176.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

161

Chapter B4. Floating-point Support
B4.1. The optional Floating-point Extension, FPv5

B4.1 The optional Floating-point Extension, FPv5

IVBNH The optional Floating-point Extension defines a Floating Point Unit (FPU). Coprocessors 10 and 11 support the
Extension.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

IWPHK The scalar Floating-point Extension can be implemented with or without MVE-F.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - FP.

IRXQX Floating-point is sometimes abbreviated to FP.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

RGQBM The version of Floating-point Extension that is supported is FPv5.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

IFGSG FPv5 provides all of the following:

• Single-precision arithmetic operations.
• Optional double-precision arithmetic operations.
• Conversions between integer, double-precision, single-precision, and half-precision formats.
• Registers for Floating-point processing S0-S31, or D0-D15.
• Data transfers, between Arm general-purpose registers and FPv5 Extension registers S0-S31, or D0-D15, of

single-precision and double-precision values.
• A Flush-to-zero mode that software can enable or disable.
• An optional alternative half-precision interpretation of the IEEE 754 half-precision encoding format.

FPv5 adds the following System registers:

• The FPSCR, to the CP10 and CP11 System register space.
• The FPCAR, FPCCR, FPDSCR, MVFR0, MVFR1, and MVFR2, to the System Control Block (SCB).

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP || MVE. Note,
MVE only available in an Armv8.1-M implementation.

ITVZF From Armv8.1-M onwards, FPv5 provides Half-precision arithmetic operations.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - FP.

IPVBQ When the Floating-point Extension is implemented, some software tools might require the following information:

Extension Single-precision arithmetic Single and double-precision
operations only arithmetic operations

FPv5 FPv5-SP-D16-M FPv5-D16-M

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

IFTDS When the Floating-point Extension is implemented, software can interrogate MVFR0, MVFR1, and MVFR2 to
discover the Floating-point features that are implemented.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

IJDJQ To use the Floating-point Extension, software must enable access to CP10, by writing to CPACR.CP10.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

RPDMV The value of CPACR.CP11 is UNKNOWN if it is not programmed to the same value as CPACR.CP10.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

162

Chapter B4. Floating-point Support
B4.1. The optional Floating-point Extension, FPv5

See also:

B7.1 System address map on page 252.

B4.2 About the Floating-point Status and Control Registers on page 164.

B4.3 Registers for Floating-point data processing, S0-S31, or D0-D15 on page 165.

B4.8 The Flush-to-zero mode on page 171.

B4.9 The Default NaN mode, and NaN handling on page 173.

B4.6 Floating-point encoding formats, half-precision, single-precision, and double-precision on page 168.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

163

Chapter B4. Floating-point Support
B4.2. About the Floating-point Status and Control Registers

B4.2 About the Floating-point Status and Control Registers

IFQTM For implementations of the Armv8.1-M architecture, FPCXT and VPR provide additional controls.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - FP.

RHCJS The register map of the coprocessor System register space is as follows.

Location Register Information
0b0001 FPSCR.{N,Z,C,V} Access to flags

All locations that are not explicitly listed in this table are reserved, and accesses to these locations result in
UNPREDICTABLE behavior.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

RKHDZ The register map of the coprocessor System register space is as follows.

Location Register Information
0b0001 FPSCR.{N,Z,C,V} Access to flags
0b0010 FPSCR.{N,Z,C,V,QC} Access to flags, including MVE saturation flag
0b1100 VPR Privileged access to this register only
0b1101 VPR.PR0 Access to P0 field
0b1110 FPCXT_NS Saves and restores the Non-secure FP context
0b1111 FPCXT_S Saves and restores the Secure FP context

All locations that are not explicitly listed in this table are reserved, and accesses to these locations result in
UNPREDICTABLE behavior.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - FP || MVE.

IGJWP Software can use VMRS and VMSR instructions to access the Floating-point Status and Control registers.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

IDSSS Software can use VMRS, VMSR VLDR(System Register), and VSTR(System Register) instructions
to access FPCXT, VPR, and the Floating-point Status and Control registers.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - FP || MVE.

RRRTZ Accesses to the FPCXT will behave as NOPs unless both MVE and Floating-point extension are implemented.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - FP || MVE.

RWXZV Accesses to the FPCXT are UNDEFINED from the Non-secure state.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - FP && MVE
&& S.

RFXBJ Execution of Floating-point instructions that generate Floating-point exceptions update the appropriate status fields
of FPSCR.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

See also:

B3.36 Coprocessor support on page 155.

B4.1 The optional Floating-point Extension, FPv5 on page 162.

FPSCR, Floating Point Status and Control Register.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

164

Chapter B4. Floating-point Support
B4.3. Registers for Floating-point data processing, S0-S31, or D0-D15

B4.3 Registers for Floating-point data processing, S0-S31, or D0-D15

RTWCB The registers that FPv5 adds for Floating-point processing are visible as either:

• 32 single-precision registers, S0-S31.
• 16 double-precision registers, D0-D15.

These map as follows:

D0-D15

S0

S1

S2

S3

S4

S5

S6

S7

S28

S29

S30

S31

S0-S31

D0

D1

D2

D3

D14

D15

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP || MVE. Note,
MVE only available in an Armv8.1-M implementation.

RXWJQ After a Warm reset, the values of S0-S31 or D0-D15 are UNKNOWN.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP || MVE. Note,
MVE only available in an Armv8.1-M implementation.

See also:

B4.1 The optional Floating-point Extension, FPv5 on page 162.

B3.18 Exception handling on page 104.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

165

Chapter B4. Floating-point Support
B4.4. Floating-point standards and terminology

B4.4 Floating-point standards and terminology

IXNMN There are two editions of the IEEE 754 standard:

• IEEE 754-1985.
• IEEE 754-2008.

In this manual, references to IEEE 754 that do not include the year apply to either edition.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

IMQFS The Floating-point terminology that this manual uses differs from that used in IEEE 754-2008 as follows:

This manual IEEE 754-2008
Normalized Normal
Denormal, or denormalized Subnormal
Round towards Minus Infinity (RM) roundTowardsNegative
Round towards Plus Infinity (RP) roundTowardsPositive
Round towards Zero (RZ) roundTowardZero
Round to Nearest (RN) roundTiesToEven
Round to Nearest with Ties to Away roundTiesToAway
Rounding mode Rounding-direction attribute

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

IBGPN The following is called Arm standard Floating-point operation:

• IEEE 754-2008 plus the following configuration:

– Flush-to-zero mode enabled.
– Default NaN mode enabled.
– Round to Nearest mode selected.
– Alternative half-precision interpretation not selected.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

See also:

IEEE 754-2008, IEEE Standard for Floating-point Arithmetic, August 2008.

B4.8 The Flush-to-zero mode on page 171.

B4.9 The Default NaN mode, and NaN handling on page 173.

B4.6 Floating-point encoding formats, half-precision, single-precision, and double-precision on page 168.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

166

Chapter B4. Floating-point Support
B4.5. Floating-point data representable

B4.5 Floating-point data representable

RFWXC FPv5 supports the following, as defined by IEEE 754:

• Normalized numbers.
• Denormalized numbers.
• Zeros, +0 and -0.
• Infinities, +∞ and −∞.
• NaNs, signaling NaNs and quiet NaN.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

See also:

B4.4 Floating-point standards and terminology on page 166.

IEEE 754-2008, IEEE Standard for Floating-point Arithmetic, August 2008.

B4.6 Floating-point encoding formats, half-precision, single-precision, and double-precision on page 168.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

167

Chapter B4. Floating-point Support
B4.6. Floating-point encoding formats, half-precision, single-precision, and double-precision

B4.6 Floating-point encoding formats, half-precision, single-precision, and
double-precision

RRHKS The half-precision, single-precision, and double-precision encoding formats are those defined by IEEE 754-2008,
in addition to an alternative half-precision format.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

ILGTJ The half-precision encoding format is:

15 14 10 9 0

S exponent fraction

Sign bit

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

ICWBP The single-precision encoding format is:

fractionS

31 30 23 22 0

exponent

Sign bit

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

IFVWV The double-precision encoding format is:

S

63 62 52 51 32 31 0

exponent fraction

Sign bit

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

RRWRW The interpretations of the half-precision, single-precision, and double-precision encoding formats are as follows.

Half-precision

There are two interpretations of the half-precision encoding formats:

• The interpretation that is defined by IEEE 754-2008.
• An alternative half-precision interpretation, indicated by FPSCR.AHP.

Single-precision

The interpretation that is defined by IEEE 754-2008.

Double-precision

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

168

Chapter B4. Floating-point Support
B4.6. Floating-point encoding formats, half-precision, single-precision, and double-precision

The interpretation that is defined by IEEE 754-2008. See the following table:

E T S T Value
(biased (trailing (sign bit) [51]
exponent) significand)
Zero for all formats. Nonzero - - A denormalized

number.
- Zero 0 - Zero, +0
- - 1 - Zero, -0
Zero < E < 0x1F, if one of - - - A normalized
the half precision formats. number.
Zero < E < 0xFF, if single-precision format. - - - -
Zero < E < 0x7FF, if double-precision format. - - - -
0x1F, if half-precision format, Nonzero - 0 A signaling
IEEE interpretation. NaN
0xFF, if single-precision format. - - 1 A quiet NaN
0x7FF, if double-precision format. Zero 0 - Infinity,+∞
- Zero 1 - Infinity,−∞
0x1F, if half-precision, - - - A normalized
alternative half-precision number.
interpretation.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

RDPHH The value of a normalized number is equal to:

Half-precision: (−1)S × 2(E−15) × (1.T)

Single-precision: (−1)S × 2(E−127) × (1.T)

Double-precision: (−1)S × 2(E−1023) × (1.T)

The value of a denormalized number is equal to:

Half-precision: (−1)S × 2−14 × (0.T)

Single-precision: (−1)S × 2−126 × (0.T)

Double-precision: (−1)S × 2−1022 × (0.T)

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

RPKXD Denormalized numbers can be flushed to zero. FPv5 provides a Flush-to-zero mode.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

See also:

IEEE 754-2008, IEEE Standard for Floating-point Arithmetic, August 2008.

B4.5 Floating-point data representable on page 167.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

169

Chapter B4. Floating-point Support
B4.7. The IEEE 754 Floating-point exceptions

B4.7 The IEEE 754 Floating-point exceptions

RBCCL The IEEE 754 Floating-point exceptions are:

Invalid Operation: This exception is as IEEE 754-2008 (7.2) describes.

Division by zero: This exception is as IEEE 754-2008 (7.3) describes, with the following assumption:

• For the reciprocal and reciprocal square root estimate functions the dividend is assumed to be +1.0.

Overflow: This exception is as IEEE 754-2008 (7.4) describes.

Underflow: This exception is as IEEE 754-2008 (7.5) describes, with the additional clarification that:

• Assessing whether a result is tiny and nonzero is done before rounding.

Inexact: This exception is as IEEE 754-2008 (7.6) describes.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

IJCWS The criteria for the Underflow exception to be generated are different in Flush-to-zero mode.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

INFHK The corresponding status flags for the IEEE 754 Floating-point exceptions are FPSCR.{IOC, DZC, OFC, UFC,
IXC}.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

See also:

IEEE 754-2008, IEEE Standard for Floating-point Arithmetic, August 2008.

B4.8 The Flush-to-zero mode on page 171.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

170

Chapter B4. Floating-point Support
B4.8. The Flush-to-zero mode

B4.8 The Flush-to-zero mode

IXGFP Software can enable Flush-to-zero mode by setting FPSCR.FZ to 1.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

IWMKJ Using Flush-to-zero mode is a deviation from IEEE 754.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

RJQHX Half-precision Floating-point numbers are exempt from Flush-to-zero mode.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

RLVCG In an Armv8.1-M implementation Half-precision Floating-point numbers are subject to Flush-to-zero mode.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - FP.

RVJSF When Flush-to-zero mode is enabled, all single-precision denormalized inputs and double-precision denormalized
inputs to Floating-point operations are treated as though they are zero, that is they are flushed to zero.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

RGGQW In an Armv8.1-M implementation when Flush-to-zero mode is enabled, all half-precision denormalized inputs to
Floating-point operations are treated as though they are zero, that is they are flushed to zero.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - FP.

RKBJJ When an input to a Floating-point operation is flushed to zero, the PE generates an Input Denormal exception.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

RSBCK Input Denormal exceptions are only generated in Flush-to-zero mode.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

RWJDM When Flush-to-zero mode is enabled, the sequence of events for an input to a Floating-point operation is:

1. Flush to Zero processing takes place. If appropriate, the input is flushed to zero and the PE generates an Input
Denormal exception.

2. Tests for the generation of any other Floating-point exceptions are done after Flush to Zero processing.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

RPHPT When Flush-to-zero mode is enabled, the result of a Floating-point operation is treated as if it is zero if, before
rounding, it satisfies the condition:

0 < Abs(result) < MinNorm, where:

• MinNorm is 2−126 for single-precision.
• MinNorm is 2−1022 for double-precision.

The result is said to be flushed to zero.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

RQPQF When the result of a Floating-point operation is flushed to zero, the PE generates an Underflow exception.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

RTPVD In Flush-to-zero mode, the PE generates Underflow exceptions only when a result is flushed to zero. This uses
different criteria than when Flush-to-zero mode is disabled.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

171

Chapter B4. Floating-point Support
B4.8. The Flush-to-zero mode

RRTPH When a Floating-point number is flushed to zero, the sign is preserved. That is, the sign bit of the zero matches the
sign bit of the number being flushed to zero.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M && FP.

RRWRT The PE does not generate an Inexact exception when a Floating-point number is flushed to zero.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

ISQCJ The corresponding status flag for the Input Denormal exception is FPSCR.IDC.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

B4.8.1 The Flush to zero mode half-precision calculations

Applies to an implementation of the architecture from Armv8.1-M onwards.

IMMKS In an Armv8.1-M implementation Flush-to-zero mode mode is extended to include half-precision calculations.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - FP. Note, !8.0.

INPCG Software can enable Flush-to-zero mode for half-precision calculations by setting FPSCR.FZ16 to 1.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - FP. Note, !8.0.

RKZFH When Flush-to-zero mode is enabled, the result of a Floating-point operation is treated as if it is zero if, before
rounding, it satisfies the condition:

0 < Abs(result) < MinNorm, where:

• MinNorm is 2−14 for half-precision.
• MinNorm is 2−126 for single-precision.
• MinNorm is 2−1022 for double-precision.

The result is said to be flushed to zero.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - FP. Note, !8.0.

RHJZZ The Effective value of FPSCR.FZ16 is zero when converting real values and integers from one Floating-point
format to another.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - FP. Note, !8.0.

RLCDV When Flush-to-zero mode is enabled for half-precision Floating-point and a half-precision Floating-point number
is flushed to zero an Input Denormal Floating-point exception will not be generated.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - FP. Note, !8.0.

See also:

B4.7 The IEEE 754 Floating-point exceptions on page 170.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

172

Chapter B4. Floating-point Support
B4.9. The Default NaN mode, and NaN handling

B4.9 The Default NaN mode, and NaN handling

IFGPN Software can enable Default NaN mode by setting FPSCR.DN to 1.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

IDJVH Using Default NaN mode is a deviation from IEEE 754.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

RQMQC When Default NaN mode is enabled, the Default NaN is the result of both:

• All Floating-point operations that produce an untrapped Invalid Operation exception.
• All Floating-point operations whose inputs include at least one quiet NaN but no signaling NaNs.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

RNPRL IEEE 754 specifies that:

• An operation that produces an untrapped Invalid Operation exception returns a quiet NaN as its result.

When Default NaN mode is disabled, behavior complies with this and adds:

• If the Invalid Operation exception was generated because one of the inputs to the operation was a signaling
NaN, the quiet NaN result is equal to the first signaling NaN input with its most significant bit set to 1.

• The quiet NaN result is the Default NaN otherwise.

The first signaling NaN input means the first argument, in the left-to-right ordering of arguments, that is passed to
the pseudocode function describing the operation.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

RVCSB IEEE 754 specifies that:

• An operation using a Quiet NaN as an input, but no signaling NaNs as inputs, returns one of its quiet NaN
inputs as its result.

When Default NaN mode is disabled, behavior complies with this and adds:

• The Quiet NaN result is the first Quiet NaN input.

The first quiet NaN input means the first argument, in the left-to-right ordering of arguments, that is passed to the
pseudocode function describing the operation.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

ILXLF Depending on the Floating-point operation, the exact value of a Quiet NaN result might differ in both sign and the
number of T bits from its source.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

See also:

B4.10 The Default NaN on page 174.

B4.6 Floating-point encoding formats, half-precision, single-precision, and double-precision on page 168.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

173

Chapter B4. Floating-point Support
B4.10. The Default NaN

B4.10 The Default NaN

RFQFG The Default NaN is:

Field Half-precision, Single-precision Double-precision
IEEE 754-2008 interpretation

S 0 0 0
E 0x1F 0xFF 0x7FF
T bit[9] == 1, bits[8:0] == 0 bit[22] == 1, bits[21:0] == 0 bit[51] == 1, bits[50:0] == 0

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

See also:

B4.6 Floating-point encoding formats, half-precision, single-precision, and double-precision on page 168.

B4.9 The Default NaN mode, and NaN handling on page 173.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

174

Chapter B4. Floating-point Support
B4.11. Combinations of Floating-point exceptions

B4.11 Combinations of Floating-point exceptions

IBTTH In compliance with IEEE 754:

• An Inexact Floating-point exception can occur with an Overflow Floating-point exception.
• An Inexact Floating-point exception can occur with an Underflow Floating-point exception.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

RLFVH An Input Denormal exception can occur with other Floating-point exceptions.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

See also:

B4.7 The IEEE 754 Floating-point exceptions on page 170.

B4.8 The Flush-to-zero mode on page 171.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

175

Chapter B4. Floating-point Support
B4.12. Priority of Floating-point exceptions relative to other Floating-point exceptions

B4.12 Priority of Floating-point exceptions relative to other Floating-point ex-
ceptions

RPLHJ Some Floating-point instructions specify more than one Floating-point operation. In these cases, an exception on
one operation is higher priority than an exception on another operation when generation of the second exception
depends on the result of the first operation. Otherwise, it is UNPREDICTABLE which exception is higher priority.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

See also:

B4.7 The IEEE 754 Floating-point exceptions on page 170.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

176

Chapter B5
Vector Extension

This chapter specifies the optional Armv8.1-M Vector Extension rules. It contains the following sections:

B5.1 Vector Extension operation on page 178.

B5.2 Vector register file on page 179.

B5.3 Lanes on page 180.

B5.4 Beats on page 181.

B5.5 Exception state on page 183.

B5.6 Predication/conditional execution on page 187.

B5.7 MVE interleaving/de-interleaving loads and stores on page 194.

Applies to an implementation of the architecture from Armv8.1-M onwards.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

177

Chapter B5. Vector Extension
B5.1. Vector Extension operation

B5.1 Vector Extension operation

ILRKM MVE-I operates on 32-bit, 16-bit, and 8-bit data types, including Q7, Q15, Q31 integer values.
MVE-F operates on half-precision and single-precision floating-point values.

Applies to an implementation of the architecture from Armv8.1-M onwards.

RJYRS Vector instructions operate on a fixed vector width of 128 bits.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

RMSHF Integer MVE instructions can be implemented with or without the scalar Floating-point Extension.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE-I.

ILXMG An implementation that includes MVE also includes the DSP Extension.

Applies to an implementation of the architecture from Armv8.1-M onwards.

RQRWY Vector operations are divided in two orthogonal ways:

• Lanes.
• Beats.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

IFNYX The word Element is used in this specification to refer to the data that is put into a lane.

Applies to an implementation of the architecture from Armv8.1-M onwards.

RVXBF Multiple lanes can be executed per beat. There are four beats per vector instruction.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

RBDHN The pseudocode for each vector instruction is executed four times, one time for each beat. The
GetCurInstrBeat() function returns the current beat number and predication details. These deter-
mine which of the lanes are operated on during the current execution of the code.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

RLFDY Multiple Element writes that are generated by the same vector store instruction by the same observer can be
observed in any order, with the exception that writes to the same location by different Elements are observed in
order of increasing vector element number.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

RPLFG Some instructions permit the use of a zero register (ZR) as a scalar source operand, as indicated in the individual
instruction descriptions. ZR is encoded as the value 0b1111 when a 4-bit register specifier is used. ZR is RAZ/WI.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

See also:

B3.28 Low overhead loops on page 133.

B3.18 Exception handling on page 104.

B5.2 Vector register file on page 179.

B5.3 Lanes on page 180.

B5.4 Beats on page 181.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

178

Chapter B5. Vector Extension
B5.2. Vector register file

B5.2 Vector register file

RBBYH MVE defines eight vector registers that alias onto the Floating-point Extension register file.

Q[0][127:96] = S3, Q[0][95:64] = S2, Q[0][63:32] = S1, Q[0][31:0] = S0
Q[1][127:96] = S7, Q[1][95:64] = S6, Q[1][63:32] = S5, Q[1][31:0] = S4
...
Q[7][127:96] = S31, Q[7][95:64] = S30, Q[7][63:32] = S29, Q[7][31:0] = S28

These registers map as follows:

D0

D1

D2

D3

D14

D15

Q0

Q1

Q7

D0-D15 Q0-Q7

S0

S1

S2

S3

S4

S5

S6

S7

S28

S29

S30

S31

S0-S31

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

RPPPV If CP10 is enabled, access to vector register 0-7 is permitted, unless otherwise stated in the individual instruction
descriptions.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

IMFLD To reduce pressure on the vector register file, many vector instructions can use scalar arguments from the general-
purpose register file.

Applies to an implementation of the architecture from Armv8.1-M onwards.

IWWPZ After a Warm reset, the values of Q0-Q7 are UNKNOWN.

Applies to an implementation of the architecture from Armv8.1-M onwards.

See also:

C1.4 Instruction set encoding information on page 442.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

179

Chapter B5. Vector Extension
B5.3. Lanes

B5.3 Lanes

RDWVD The lane width of the operation to be performed is specified by the instruction that is being executed.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

RQSBC The permitted lane widths, and lane operations per beat, are:

• For a 64-bit lane size, a beat performs half of the lane operation.
• For a 32-bit lane size, a beat performs a one lane operation.
• For a 16-bit lane size, a beat performs a two lane operations.
• For an 8-bit lane size, a beat performs a four lane operations.

127 96 95 64 63 32 031

15 14 13 1112 10 9 8 7 6 5 34 2 1 0

7 6 5 4 3 2 1 0

0123

1 0

Bit

positions

A)

B)

C)

D)

A) 8-bit lane numbers

B) 16-bit lane numbers

C) 32-bit lane numbers

D) 64-bit lane numbers

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

See also:

Chapter C2, Instruction specification

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

180

Chapter B5. Vector Extension
B5.4. Beats

B5.4 Beats

IYYZD A vector instruction executes beats sequentially, from beat 0-3.

Bit position 127

0123

96 95 64 63 32 31 0

Beat number

Applies to an implementation of the architecture from Armv8.1-M onwards.

IPCBB The number of beats for each tick describes how much of the architectural state is updated for each Architecture
tick in the common case. In a trivial implementation, an Architecture tick might be one clock cycle:

• In a single-beat system, one beat might occur for each tick.
• In a dual-beat system, two beats might occur for each tick.
• In a quad-beat system, four beats might complete for each tick.

Applies to an implementation of the architecture from Armv8.1-M onwards.

RXTZH It is IMPLEMENTATION DEFINED how many beats are executed for each Architecture tick.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

IMWSJ The number of beats per tick might change at runtime and is not required to be constant.

Applies to an implementation of the architecture from Armv8.1-M onwards.

RJSHB Multiple faults might occur within a single Architecture tick. In this case, only one fault is raised. The fault that is
generated is determined using the following priorities:

• The fault from the oldest instruction takes priority.
• If multiple faults are associated with the oldest faulting instruction, the fault that was generated by the lowest

numbered Element takes priority.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

ILHXJ An exception can be taken on any beat of a vector instruction. RETPSR.ECI in the exception stack frame stores
information about how many beats of the instruction at the return address and how many beats of the subsequent
instruction have been executed.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

IZBKX A dual-beat overlap system implies that the last two beats of a vector instruction can overlap with the first two
beats of the next vector instruction.

Applies to an implementation of the architecture from Armv8.1-M onwards.

IGNLS The following is an example of a dual-beat system where two beats are executed per Architecture tick. The figure
labels are:

Tick Architecture tick.

A0-A3 Beats of the VLDRW instruction.

B0-B3 Beats of the VMUL instruction.

C0-C3 Beats of the VSHR instruction.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

181

Chapter B5. Vector Extension
B5.4. Beats

VLDRW.U32 Q1, [R0],#16

VMUL.I32 Q0, Q1, Q2

VSHR.U32 Q0, Q0, #1

VLDRW.U32 Q1, [R0],#16

VMUL.I32 Q0, Q1, Q2

VSHR.U32 Q0, Q0, #1

Vector instructions not overlapping

Vector instructions overlapping

0 1 2 3 4 5Tick

A0 A1 A2 A3

B0 B1 B2 B3

C0 C1 C2 C3

A0 A1 A2 A3

B0 B1 B2 B3

C0 C1 C2 C3

EPSR.ECI explains how beats are captured in the ECI field.

Applies to an implementation of the architecture from Armv8.1-M onwards.

RVWBD The PE can resume execution of an exception continuable instruction from any valid ECI value, even if the PE
cannot generate all the ECI values.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

RKRNF Instructions that are subject to beat-wise execution can only overlap if they are consecutive in the execution order.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

RFKCG The architecturally visible overlap of instructions is only permitted for instructions subject to beat-wise execution
if:

• The overlap does not violate data dependencies between instruction beats.
• The overlap is not between two instructions subject to beat-wise execution that both access memory.
• In a low overhead loop, the overlap does not violate LR hazard.
• The overlap is not between an instruction before a BF branch point and the instruction at the target of the BF.
• An implicit LE, LETP instruction is executed at the end of a loop body when LO_BRANCH_INFO is

valid and the instruction after the implicit LE, LETP instruction in execution order is subject to beat-wise
execution.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

INQKF Vector instructions are permitted to overlap if the data dependency is at beat granularity and not at instruction
granularity.

Applies to an implementation of the architecture from Armv8.1-M onwards.

RPRSG After each Architecture tick, the architectural instruction overlap is representable by a valid EPSR.ECI value.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

See also:

B5.6.1 Loop tail predication on page 187.

B3.29 Branch future on page 138.

B5.5 Exception state on page 183.

Chapter C2, Instruction specification.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

182

Chapter B5. Vector Extension
B5.5. Exception state

B5.5 Exception state

RGFXK The architecture supports taking exceptions in the middle of multiple partially executed exception continuable
instructions.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

RTTZB LR is updated when LOB handling causes the PC to return to the start of the loop. The PC is only updated when
all beats of an instruction have completed.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

RNTYR For exceptions that occur in the middle of a beat-wise vector exception continuable instruction that is executing:

• The exception return address points to the oldest incomplete instruction.
• RETPSR.ECI in the exception stack frame stores information about how many beats of the instruction at the

return address, and how many beats of the subsequent instruction, have already been executed.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

RTHNH When returning from an exception, valid RETPSR.ECI values indicate the completed instruction beats.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

RXXRL The existing exception stack frame format is modified to store the VPR register in the previously reserved location
above FPSCR.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

183

Chapter B5. Vector Extension
B5.5. Exception state

S23

S22

S21

S20

S19

S18

S17

S16

VPR

FPSCR

S15

S14

S13

S12

S11

S10

S9

S8

S7

S6

S5

S4

S3

S2

S1

S0

SP offset

Without

callee

registers

Floating-point

caller saved

Floating-point

callee saved

S31

S30

S29

S28

S27

S26

S25

0x88

0x84

0x80

0x7C

0x78

0x74

0x70

0x6C

0x68

0x64

0x60

0x5C

0x58

0x54

0x50

0x4C

0x48

0x44

0x40

0x3C

0x38

0x34

0x3D

0x2C

0x28

0x24

0x20

0xA4

0xA0

0x9C

0x98

0x94

0x90

0x8C

0xB0

0xAC

0xA8

0xA4

0xA0

0x9C

0x98

0x94

0x90

0x8C

0x88

0x84

0x80

0x7C

0x78

0x74

0x70

0x6C

0x68

0x64

0x60

0x5C

0x58

0x54

0x50

0x4C

0x48

0xCC

0xC8

0xC4

0xC0

0xBC

0xB8

0xB4

With

callee

registers

S24

Original SP, 8 byte aligned

Applies to an implementation of the architecture from Armv8.1-M onwards.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

184

Chapter B5. Vector Extension
B5.5. Exception state

New SP

no caller registers

8 byte aligned

R11

R10

R9

R8

R7

R6

R5

R4

Reserved

Integrity sig

Integer callee

saved

Integer caller

saved

RETSPR

ReturnAddress

LR (R14)

R12

R3

R2

R1

R0

New SP

with callee registers

8 byte aligned

SP offset

Without

callee

registers

0x00

0x1C

0x18

0x14

0x10

0x0C

0x08

0x04

0x28

0x24

0x20

0x1C

0x18

0x14

0x10

0x0C

0x08

0x04

0x00

0x44

0x40

0x3C

0x38

0x34

0x30

0x2C

With

callee

registers

Applies to an implementation of the architecture from Armv8.1-M onwards.

IZPTT In EPSR, XPSR, and RETPSR, the ECI and ICI fields, and ITSTATE overlap.

Applies to an implementation of the architecture from Armv8.1-M onwards.

RKFZJ The PE does not generate an INVSTATE Usage fault if a nonzero value in EPSR.ICI corresponds to a valid value
in EPSR.ECI, and the instruction that is being executed is:

• A vector instruction that is subject to beat-wise execution.
• An LE, LETP instruction.
• An FPB generated breakpoint or a BKPT instruction.

The execution of the breakpoint or LE instruction does not advance any of the register fields that are used for
instruction beat execution tracking.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE. Note, FPB
requires FPB.

IGRFW The architecture tracks the completion of beats within vector instructions. Because the Element size can be smaller
than the beat size, it is possible that an exception might be generated for a beat that has only partially completed.

Applies to an implementation of the architecture from Armv8.1-M onwards.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

185

Chapter B5. Vector Extension
B5.5. Exception state

RSXTM If execution of a beat is abandoned, then:

• RETPSR.ECI only indicates that a beat is completed if all the Elements that are associated with the beat have
been completed.

• If the destination register is not the same as the source register for an abandoned instruction, the parts of
a vector destination register that are associated with an abandoned beat, and all subsequent beats of the
abandoned instruction, are set to an UNKNOWN value.

• Any scalar destination registers, the VPR state, and the FPSCR.QC flag record all the architecture state
updates that are associated with the fully completed beats. Updates that are associated with the abandoned
beat and all subsequent beats of the instruction are not recorded.

Partial stores to locations that might be accessed by the abandoned beat and all subsequent beats might be observed.
Loads to locations of the abandoned beats and all subsequent beats might be observed.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

RDDNC The return address for the instruction fetch fault, an UNDEFINSTR Fault, or a NOCP Usage fault is always
the address of the instruction that triggered the fault. The fault is taken after all the preceding instructions have
completed.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

RZLFY If an exception is taken during the execution of overlapping beat-wise executable instructions, this might become
architecturally visible.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

RKDNH Architecture state updates that are associated with an Architecture tick are observed as one of the following:

• All updates to the architecture state are observable.
• Partial updates to the architecture states (both to the registers and to memory) are permitted for instructions

that can be restarted without data corruption.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

IGRDV Vector load or store instructions, that might be abandoned and subsequently restart the execution of a beat, might
cause multiple accesses to the same memory location to be performed.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

186

Chapter B5. Vector Extension
B5.6. Predication/conditional execution

B5.6 Predication/conditional execution

RRSLP MVE includes predication that enables the independent masking of each lane within a vector operation. It supports
the following predication mechanisms:

• Loop tail predication. This eliminates the requirement for special vector tail handling code after loops where
the number of Elements to be processed is not a multiple of the number of Elements in the vector.

• VPT predication. This enables data-dependent conditions that are based on data value comparisons to mask
each vector lane separately.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

RQGLY Loop tail predication and VPT predication operate separately. The resulting predication flags from each mechanism
are ANDed together so that a lane of a vector operation is only active if both the loop tail predication and the VPT
predication conditions are true.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

See also:

B5.6.1 Loop tail predication .

B5.6.2 VPT predication on page 188.

B5.6.3 Effects of predication on page 191.

B5.6.1 Loop tail predication

RDCZN Low overhead loops can be used with vector instructions, for example with a word-based memory copy instruction.
The number of words to copy might not be a multiple of the vector length, therefore loop tail predication can
eliminate any additional tail handling steps.

MVE includes special loop tail predication instructions, WLSTP, DLSTP, LETP, and LCTP, that operate as follows:

• The source register of the loop start instruction contains the number of vector Elements that are to be
processed, instead of the iteration count.

• The loop start instruction sets FPSCR.LTPSIZE to the requested Element size. This alters the amount by
which the Element count in LR is decremented at the end of each loop iteration.

• On the last iteration of the loop, the values in LR and FPSCR.LTPSIZE determines the number of vector
lanes that are to be masked.

• After the last instruction of the last loop iteration has been executed, tail predication is disabled by setting
FPSCR.LTPSIZE to 0b100.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

IRBPP The active floating-point state is defined by ActiveFPState().

Applies to an implementation of the architecture from Armv8.1-M onwards.

RGQSH To prevent the inadvertent creation of floating-point contexts and the predication of vector operation outside of a
loop, FPSCR.LTPSIZE behaves as follows:

• FPSCR.LTPSIZE reads as 0b100 if there is no active floating-point state.
• FPSCR.LTPSIZE is set to 0b100 if any of the following events occur:

– On the last iteration of a loop by either the execution of an LETP instruction, or by execution reaching
the end of the loop body when LO_BRANCH_INFO is valid and the floating-point context is active.

– An LCTP instruction is executed.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

187

Chapter B5. Vector Extension
B5.6. Predication/conditional execution

INRTL Arm recommends that tail predicated loop start instructions are only used with a tail predicated loop end instruction.

Applies to an implementation of the architecture from Armv8.1-M onwards.

RBDJB FPDSCR.LTPSIZE always reads as 0b100, and therefore the floating-point contexts that are automatically
initialized are created with predication disabled.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

RJHLP The behavior of a beat-wise capable instruction that modifies LR and is within a tail predicated low overhead loop
is CONSTRAINED UNPREDICTABLE, the permitted behaviors are either of:

• An UNDEFINSTR UsageFault is generated.
• The instruction, and any adjacent instructions that are permitted to overlap, are subject to UNKNOWN

predication.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

B5.6.2 VPT predication

RZFLV Comparison-based predication is supported by vector predication blocks.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

RCVTC A vector predication block is called a VPT block. A VPT block is defined as the n instructions following a VPT or
VPST instruction, where n is the number of instructions that the VPT or VPST instruction defines as being subject
to predication conditions. The predication conditions are stored in the VPR register. n is less than or equal to 4.

Applies to an implementation of the architecture from Armv8.1-M onwards.

RBVPG The instructions in a VPT block can be subject to either the condition or to the inverse of the condition.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

IRVJJ A VCMP (vector) or a VCMP (floating-point) instruction can be placed inside a VPT block. VCMP
instructions update the predication flag on completion, therefore affecting the subsequent instructions in the VPT
block. The subsequent instructions in the VPT block are subject to the predicates of the VPT block and the updates
caused by the VCMP instructions. The execution of successive VCMP instructions permits the creation of complex
predication conditions.

Applies to an implementation of the architecture from Armv8.1-M onwards.

IPHJP Allowing instructions to be subject to either the condition or the inverse of the condition enables the instructions in
both the THEN (T decorator) and the ELSE (E decorator) parts of an IF statement to be predicated with a single
VPT instruction.

Applies to an implementation of the architecture from Armv8.1-M onwards.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

188

Chapter B5. Vector Extension
B5.6. Predication/conditional execution

RVWGT The following table shows the VPT instruction variants, mask field encodings, and the associated decorators that
are placed on the subsequent instructions.

Instruction name Mask Number of subsequent instructions <v> instruction decorator
value to be predicated First Second Third Fourth

VPT 0b1000 1 T - - -
VPTT 0b0100 2 T T - -
VPTE 0b1100 2 T E - -
VPTTT 0b0010 3 T T T -
VPTTE 0b0110 3 T T E -
VPTEE 0b1010 3 T E E -
VPTET 0b1110 3 T E T -
VPTTTT 0b0001 4 T T T T
VPTTTE 0b0011 4 T T T E
VPTTEE 0b0101 4 T T E E
VPTTET 0b0111 4 T T E T
VPTEEE 0b1001 4 T E E E
VPTEET 0b1011 4 T E E T
VPTETT 0b1101 4 T E T T
VPTETE 0b1111 4 T E T E

The same encoding format is used for VPST.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

RLKXQ VPR contains a MASK field for each pair of beats of a vector instruction. This permits beat-wise overlapping of
the VPT or VPST instructions with the surrounding vector instructions.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

RKHCV The state of VPR is UNKNOWN when use of a VPT block results in CONSTRAINED UNPREDICTABLE behavior.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

RXHQR The following conditions result in CONSTRAINED UNPREDICTABLE behavior when they apply to a VPT block:

• The presence of a non-VPT compatible instruction in a VPT block. This includes:

– All instructions that are not part of MVE, with the exception of BKPT.
– MVE instructions that are marked as not being VPT compatible.

• A BF branch point within a VPT block.

• Branching into a VPT block.

• Exception return or returns from Debug state if VPR.{MASK23, MASK01} is not consistent with the position
returned to in the VPT block.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE. Note,
Debug state requires Halting Debug.

RDZWZ The CONSTRAINED UNPREDICTABLE behavior for a VPT block is one of the following:

• The VPT or VPST instruction generates an UNDEFINED Instruction fault.

• The instruction that causes the CONSTRAINED UNPREDICTABLE behavior does one of the following:

– It raises an UNDEFINED Instruction fault.
– It executes normally.
– It has UNKNOWN predication applied.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

189

Chapter B5. Vector Extension
B5.6. Predication/conditional execution

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

RXXKG The CONSTRAINED UNPREDICTABLE behavior for a VPT compatible instruction executed outside a VPT block
when the VPR mask is nonzero is one of the following:

• It raises an UNDEFINED Instruction fault.
• It executes normally.
• It has UNKNOWN predication applied.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

RLQDR If VPR.{MASK32, MASK01} is nonzero, the execution of a non-VPT compatible instruction outside of a VPT
block is not UNPREDICTABLE and does not advance VPT state. The VPR state is only advanced after the
completion of a pair of beats within a vector instruction that is subject to beat-wise execution.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

RXMHZ In the case of an exception return or a return from Debug state, the instruction that exhibits the CONSTRAINED
UNPREDICTABLE behavior is defined as the instruction that is being returned to.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE. Note,
Debug state requires Halting debug.

RMBQX For a BF branch point within a VPT block, the instruction that exhibits the CONSTRAINED UNPREDICTABLE
behavior can be one of the following:

• The instruction before the BF branch point.
• The instruction after the BF branch point.
• The instruction at the BF branch target address.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

RSZQK For the purposes of the CONSTRAINED UNPREDICTABLE behavior described in this section, a memory location is
considered to be in VPT block until:

• The VPT or VPST instruction has been removed.
• All the addresses that are covered by the VPT block have been invalidated in the instruction cache (if

implemented).
• A subsequent Context synchronization event has occurred.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

IKKNH There are similarities between VPT/VPR and IT/ITSTATE, but there are also some important differences as
follows:

• Unlike IT, the VPT instruction performs the actual comparison in addition to applying the result to the
subsequent instructions. As such, VPT can be considered as the vectorized combination of CMP and IT.

• There are multiple MASK fields in VPR that handle partial instruction execution caused by exceptions during
the overlapping of instructions.

• The MASK fields are similar to ITSTATE[3:0] and encode both the number of instructions outstanding in the
current VPT block, and whether these instructions are subject to the THEN or the ELSE condition.

Applies to an implementation of the architecture from Armv8.1-M onwards.

RHJGT VPR.P0 contains one predication bit per 8-bit lane. The VPR mask bits cause the VPR predication bits to be
inverted if the corresponding mask bit is set to 1. The mask bits that are shifted out toggle the current predication
condition and are not part of the predication condition. The value of VPR.MASK01 affects bits[7:0] of VPR.P0
and the value of VPR.MASK23 affects bits [15:8] of VPR.P0.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

190

Chapter B5. Vector Extension
B5.6. Predication/conditional execution

RPXMY The VPR predication bits are not inverted after executing the last instruction in a VPT block.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

ILRVJ The state in the VPR register can be accessed directly using VMRS, VMSR, VLDR (System Register), and
VSTR (System Register) instructions. Setting VPR using a VMSR or VLDR (System Register)
instruction does not make the instructions that follow VMSR or VLDR (System Register) part of a VPT
block.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

RMPTV Execution of a VPT compatible instruction outside of a VPT block with a nonzero value in VPR.{MASK23,
MASK01} results in CONSTRAINED UNPREDICTABLE behavior and does one of the following:

• It raises an UNDEFINED Instruction fault.
• It executes normally.
• It has UNKNOWN predication applied.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

See also:

Chapter C1 Instruction Set Overview on page 427.

B5.6.3 Effects of predication

ITZPD The exact effects of a false predication value are defined in the instruction pseudocode.

Applies to an implementation of the architecture from Armv8.1-M onwards.

RSYDC Vector predication has no effect on scalar instructions.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

RZLSJ For non-load instructions for vector register file writes, predication is always performed at byte level granularity,
regardless of the Element size that is specified by the vector instruction.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

RVHSN For non-load instructions, the predicate flags determine if the destination register byte is updated with the new value
or if the previous value is preserved. For load instructions, where lanes are predicated false, the corresponding
parts of the destination register are set to 0.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

RLYPK For base pointer write-back, vector predication does not affect address write-back in load and store instructions.
This applies both when the address is in a scalar register, and when it is in a vector register.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

RLNDR The predication flag determines whether a lane operation is performed. For Element sizes of more than 8 bits for
the types of instruction listed here, the LSB of the corresponding group of predicate flags determines:

• For vector operations that perform reduction across the vector and produce a scalar result, whether the value
is accumulated or not.

• For vector store instructions, whether the store occurs or not.
• For vector load instructions, whether the value that is loaded or whether zeros are written to that element of

the destination register.
• The setting of the FPSCR.QC saturation flags.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

191

Chapter B5. Vector Extension
B5.6. Predication/conditional execution

For predication, 64-bit vector memory load/store operations are treated as if they were a pair of 32-bit operations.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

192

Chapter B5. Vector Extension
B5.6. Predication/conditional execution

ICJRK The relation between lane width and bits in VPR.P0 is as follows:

Lane width Bits in VPR.P0

32 bits [12, 8, 4, 0]
16 bits [14, 12, 10, 8, 6, 4, 2, 0]
8 bits [15:0]

Applies to an implementation of the architecture from Armv8.1-M onwards.

See also:

B5.6.1 Loop tail predication on page 187.

B5.6.2 VPT predication on page 188.

B5.6.4 IT block

RPZDX Instructions that are subject to beat-wise execution are not permitted in IT blocks. For the exceptions to this
rule, see the decode pseudocode in the individual instruction descriptions. In these exceptional cases, beat-wise
execution is not performed and the instruction does not overlap with other instructions.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

193

Chapter B5. Vector Extension
B5.7. MVE interleaving/de-interleaving loads and stores

B5.7 MVE interleaving/de-interleaving loads and stores

IVWWN For implementations that include MVE, data streams can be interleaved and de-interleaved with strides of 2 and 4,
using VLD2/VLD4 and VST2/VST4.

Applies to an implementation of the architecture from Armv8.1-M onwards.

RCMZP The interleaving and de-interleaving instructions always operate on 128 bits of data at a time.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

IXGTN When using VLD4, each of the four instructions loads 128 bits of data, and partially updates the four destination
vector registers. The memory offsets and destination register sections that are accessed are arranged so that when
all four instructions have been executed, the de-interleaving operation has been performed.

S15=Mem[60]

S11=Mem[56]

S7=Mem[52]

S3=Mem[48]

S14=Mem[44]

S10=Mem[40]

S6=Mem[36]

S2=Mem[32]

S13=Mem[28]

S9=Mem[24]

S5=Mem[20]

S1=Mem[16]

S12=Mem[12]

S8=Mem[8]

S4=Mem[4]

S0=Mem[0]

Q3

Q2

Q1

Q0

VLD40.32 {Q0-Q3}, [Rn]

VLD41.32 {Q0-Q3}, [Rn]

VLD42.32 {Q0-Q3}, [Rn]

VLD43.32 {Q0-Q3}, [Rn]!

Applies to an implementation of the architecture from Armv8.1-M onwards.

RNSFK The assembly syntax for VLD2/VLD4 and VST2/VST4 lists the range of vector registers to be accessed. Only the
lowest numbered register is encoded in the opcode. If this register number plus the number of registers to be
accessed is greater than 7 (the highest numbered vector register) behavior is a CONSTRAINED UNPREDICTABLE
choice of the following:

• The instruction is UNDEFINED.
• The instruction is treated as a NOP.
• One or more of the vector registers become UNKNOWN. If the instruction specifies write-back, the base

register becomes UNKNOWN. No other general-purpose registers are affected.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

194

Chapter B6
Memory Model

This chapter specifies the Armv8-M memory model architecture rules. It contains the following sections:

B6.1 Memory accesses on page 197.

B6.2 Address space on page 198.

B6.3 Endianness on page 199.

B6.4 Alignment behavior on page 201.

B6.5 Atomicity on page 202.

B6.6 Concurrent modification and execution of instructions on page 204.

B6.7 Access rights on page 206.

B6.8 Observability of memory accesses on page 208.

B6.9 Completion of memory accesses on page 210.

B6.10 Ordering requirements for memory accesses on page 211.

B6.11 Ordering of implicit memory accesses on page 212.

B6.12 Ordering of explicit memory accesses on page 213.

B6.13 Memory barriers on page 214.

B6.14 Normal memory on page 219.

B6.15 Cacheability attributes on page 221.

B6.16 Device memory on page 222.

B6.17 Device memory attributes on page 224.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

195

Chapter B6. Memory Model

B6.18 Shareability domains on page 227.

B6.19 Shareability attributes on page 229.

B6.20 Memory access restrictions on page 230.

B6.21 Mismatched memory attributes on page 231.

B6.22 Load-Exclusive and Store-Exclusive accesses to Normal memory on page 233.

B6.23 Load-Acquire and Store-Release accesses to memory on page 234.

B6.24 Caches on page 236.

B6.25 Cache identification on page 238.

B6.26 Cache visibility on page 239.

B6.27 Cache coherency on page 240.

B6.28 Cache enabling and disabling on page 241.

B6.29 Cache behavior at reset on page 242.

B6.30 Behavior of Preload Data (PLD) and Preload Instruction (PLI) instructions with caches on page 243.

B6.31 Branch predictors on page 244.

B6.32 Cache maintenance operations on page 245.

B6.33 Ordering of cache maintenance operations on page 249.

B6.34 Branch predictor maintenance operations on page 250.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

196

Chapter B6. Memory Model
B6.1. Memory accesses

B6.1 Memory accesses

IXRDS The memory accesses that are referred to in describing the memory model are instruction fetches from memory
and load or store data accesses.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RLKQN The instruction operation uses the MemA() or MemU() helper functions. If the Main Extension is not implemented
unaligned accesses using the MemU() helper functions generate an alignment fault.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RBFNF A memory access is governed by:

• Whether the access is a read or a write.

• The address alignment.

• Data endianness.

• Memory attributes.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RFLFQ Memory reads that are generated by MVE instructions using MemA_MVE() are allowed to access bytes that are
not explicitly accessed by the instruction if the bytes that are accessed are in a 32-byte window that is aligned to 32
bytes, and if that window contains at least one byte that is explicitly accessed by the instruction.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

ISKLB Arm recommends that software does not use vector load/store instructions with data in volatile memory.

Applies to an implementation of the architecture from Armv8.1-M onwards.

RLMBL If an MVE load or store operation results in an access to the Private Peripheral Bus (PPB) address space, within
the System region of the system address map, the behavior of the accesses is CONSTRAINED UNPREDICTABLE
and is one of the following:

• It generates a Bus Fault.
• The specified access to the PPB address space is performed.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

See also:

B6.11 Ordering of implicit memory accesses on page 212.

B6.12 Ordering of explicit memory accesses on page 213.

B6.14 Normal memory on page 219.

B6.16 Device memory on page 222.

B6.20 Memory access restrictions on page 230.

B7.2 The System region of the system address map on page 253.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

197

Chapter B6. Memory Model
B6.2. Address space

B6.2 Address space

RFFMK The address space is a single, flat address space of 232 bytes.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RSNPV In the address space, byte addresses are unsigned numbers in the range 0-232-1.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RRGBT If an address calculation overflows or underflows the address space, it wraps around. Address calculations are
modulo 232.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IJTKM Normal sequential execution cannot overflow the top of the address space, because the top of memory always has
the Execute Never (XN) memory attribute.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RBPMP One or more accesses that target or wrap around the top or bottom bytes of memory, access a sequence of words at
increasing memory addresses, effectively incrementing the address by four for each load or store. If this calculation
overflows the top of the address space, the result is UNPREDICTABLE.

Applies to an implementation of the architecture from Armv8.0-M. Note, The encodings of some instructions require M, the
encodings of some instructions require FP.

RZXDN Where an exception entry or tail-chaining accesses bytes on the stack that span the top or bottom of the 32-bit
memory address space, it is IMPLEMENTATION DEFINED whether stack limit checking is applied.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

Chapter B7 The System Address Map on page 251.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

198

Chapter B6. Memory Model
B6.3. Endianness

B6.3 Endianness

ICTVV In memory:

The following figures show the relationship between:

• The word at address A.
• The halfwords at addresses A and A+2.
• The bytes at addresses A, A+1, A+2, and A+3.

Data arranged in a big-endian format

Data arranged in a little-endian format

Byte at address A Byte at address A+1 Byte at address A+2 Byte at address A+3

Halfword at address A Halfword at address A+2

Word at address A

Byte at address AByte at address A+1Byte at address A+2Byte at address A+3

Halfword at address AHalfword at address A+2

Word at address A

Most significant byte Least significant byte

Most significant byte Least significant byte

Most significant bit

Least significant bit

Most significant bit

Least significant bit

31 24 23 16 15 8 7 0

31 24 23 16 15 8 7 0

Byte at address A+2Byte at address A+3Byte at address AByte at address A+1

T32 instruction, hw2
b

T32 instruction, hw1
ab

15 8 7 0 15 8 7 0

Instruction alignment and byte ordering

a) Bits[15:0]: this is hw 1 for a T32 instruction with a 16-bit encoding

b) Bits[31:0]: this is hw1 and hw2 for a T32 instruction with a 32-bit encoding

Applies to an implementation of the architecture from Armv8.0-M onwards.

RJJQL Instruction fetches are always little-endian, which means that the PE assumes a little-endian arrangement of
instructions in memory.

Applies to an implementation of the architecture from Armv8.0-M onwards.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

199

Chapter B6. Memory Model
B6.3. Endianness

RMNSB All accesses to the Private Peripheral Bus (PPB) are always little-endian, which means that the PE assumes a
little-endian arrangement of the PPB registers.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RTFKG The endianness of data accesses is IMPLEMENTATION DEFINED, as indicated by AIRCR.ENDIANNESS.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RKPCF AIRCR.ENDIANNESS is either:

• Implemented with a static value.

• Configured by a hardware input on reset.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RXDJV Instructions that cause a memory access that crosses the PPB boundary are CONSTRAINED UNPREDICTABLE if
AIRCR.ENDIANNESS is set to 1. The permitted behavior is one of the following:

• The instruction behaves as a NOP.
• The instruction raises an UNALIGNED UsageFault.
• If the instruction that crossed the PPB boundary was a load, the value of the destination register becomes

UNKNOWN.
• If the instruction that crossed the PPB boundary was a store, the value of the memory locations accessed

becomes UNKNOWN.

Applies to an implementation of the architecture from Armv8.0-M. Note, a UsageFault requires M.

RQHWC For data accesses, the following table shows the data element size that endianness applies to, for endianness
conversion purposes.

Instruction class Instructions Element size
Load or store byte LDR{S}B{T}, LDAB, LDAEXB, STLB, STLEXB, Byte

STRB{T}, TBB, LDREXB, STREXB
Load or store halfword LDR{S}H{T}, LDAH, LDAEXH, STLH, STLEXH, Halfword

and STRH{T}, TBH, LDREXH, STREXH
Load or store word LDR{T}, LDA, LDAEX, STL, STLEX, Word

and STR{T}, LDREX, STREX, VLDR.F32, VSTR.F32
Load or store two words LDRD, STRD, VLDR.F64, VSTR.F64 Word
Load or store multiple words LDM{IA, DB}, STM{IA, DB} Word

PUSH (multiple registers)
POP (multiple registers), LDC, STC, VLDM
VSTM, VPUSH, VPOP, BLX, BLXNS, BX, BXNS
VLLDM, VLSTM

Applies to an implementation of the architecture from Armv8.0-M onwards.

RXNVS The following instructions change the endianness of data that is loaded or stored:

• REV
Reverse word (four bytes) register, for transforming 32-bit representations.

• REVSH
Reverse halfword and sign extend, for transforming signed 16-bit representations.

• REV16
Reverse packed halfwords in a register for transforming unsigned 16-bit representations.

Applies to an implementation of the architecture from Armv8.0-M onwards.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

200

Chapter B6. Memory Model
B6.4. Alignment behavior

B6.4 Alignment behavior

RLKGV All instruction fetches are halfword-aligned.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RRQGG The following are unaligned data accesses that always generate an alignment fault:

• Non halfword-aligned LDAH, LDREXH, LDAEXH, STLH, STLEXH, and STREXH.
• Non word-aligned LDREX, LDAEX, STLEX, STREX, LDRD, LDMIA, LDMDB, POP (multiple
registers), LDC, VLDR, VLDM, VPOP, LDA, STL, STMIA, STMDB, PUSH (mulitple
registers), STC, VSTR, VSTM, VPUSG, VLLDM, and VLSTM.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RMHCM If CCR.UNALIGN_TRP is set to 1, the following are unaligned data accesses that generate an alignment fault:

• Non halfword-aligned LDR{S}H{T}, and STRH{T}.
• Non halfword-aligned TBH.
• Non word-aligned LDR{T}, and STR{T}.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RJLGS Unaligned accesses are only supported if the Main Extension is implemented.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

RWCVX Accesses to Device memory are always aligned.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RPZTT If the Main Extension is not implemented, unaligned accesses generate an alignment HardFault.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - !M.

RRNDS Alignment faults are synchronous and generate an UNALIGNED UsageFault.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

RBNBX The CONSTRAINED UNPREDICTABLE behavior of unaligned loads and stores is one of the following:

• Generate an UNALIGNED UsageFault.
• Perform the specified load or store to the unaligned memory location.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

RLPVP Unaligned loads and stores perform the specified load and store to the unaligned memory location.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B6.14 Normal memory on page 219.

B6.16 Device memory on page 222.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

201

Chapter B6. Memory Model
B6.5. Atomicity

B6.5 Atomicity

B6.5.1 Single-copy atomicity

INWVK Store operations are single-copy atomic if, when they overlap bytes in memory:

1. All of the writes from one of the stores are inserted into the coherence order of each overlapping byte.

2. All of the writes from another of the stores are inserted into the coherence order of each overlapping byte.

3. Step 2 repeats, for each single-copy store atomic operation that overlaps.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RBSHJ The following data accesses are single-copy atomic:

• All byte accesses.
• All halfword accesses to halfword-aligned locations.
• All word accesses to word-aligned locations.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RQNPX Instruction fetches are single-copy atomic at halfword granularity.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RMXWC For instructions that access a sequence of word-aligned words, each word access is single-copy atomic.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RLKPM For instructions that access a sequence of word-aligned words, the architecture does not require two or more
subsequent word accesses to be single-copy atomic.

Applies to an implementation of the architecture from Armv8.0-M onwards.

B6.5.2 Multi-copy atomicity

IBCHK In a multiprocessing environment, writes to memory are multi-copy atomic if all of the following are true:

• All writes to the same location are observed in the same order by all observers, although some of the observers
might not observe all of the writes.

• A read of a location does not return the value of a write to that location until all observers have observed that
write.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RGJGP Writes to Normal memory are not required to be multi-copy atomic.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RLBGB Writes to Device memory with the Gathering attribute are not required to be multi-copy atomic.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RWHJR Writes to Device memory with the non-Gathering attribute that is single-copy atomic are also multi-copy atomic.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B6.16 Device memory on page 222.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

202

Chapter B6. Memory Model
B6.5. Atomicity

B6.14 Normal memory on page 219.

B6.23 Load-Acquire and Store-Release accesses to memory on page 234.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

203

Chapter B6. Memory Model
B6.6. Concurrent modification and execution of instructions

B6.6 Concurrent modification and execution of instructions

ITFGC The Armv8 architecture limits the set of instructions that can be executed by one thread of execution as they are
being modified by another thread of execution without requiring explicit synchronization.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RXWVK Unless otherwise stated, concurrent modification and execution of instructions results in a CONSTRAINED UNPRE-
DICTABLE choice of any behavior that can be achieved by executing any sequence of instructions from the same
Security state or the same Privilege level.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RBFPB For instructions that can be concurrently modified, the PE executes either:

• The original instruction.
• The modified instruction.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RNNQK A 16-bit instruction can be concurrently modified, where the 16-bit instruction before modification and the 16-bit
modification is any of the following:

• B.
• BX.
• BLX.
• BKPT.
• NOP.
• SVC.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RKMZG The hw1 of a 32-bit BL immediate instruction can be concurrently modified to the most significant halfword of
another BL immediate instruction.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RHKGP The hw1 of a 32-bit BL immediate instruction can be concurrently modified to a 16-bit B, BLX, BKPT, or SVC
instruction. This modification also works in reverse.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RFGBT The hw2 of a 32-bit BL immediate instruction can be concurrently modified to the hw2 of another BL instruction
with a different immediate.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RNTVD The hw2, of a 32-bit B immediate instruction with a condition field can be concurrently modified to the hw2 of
another 32-bit B immediate instruction with a condition field with a different immediate.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RCMZX The hw2 of a 32-bit B immediate instruction without a condition field can be concurrently modified to the hw2 of
another 32-bit B immediate instruction without a condition field.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B6.3 Endianness on page 199.

B.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

204

Chapter B6. Memory Model
B6.6. Concurrent modification and execution of instructions

BL.

BLX, BLXNS.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

205

Chapter B6. Memory Model
B6.7. Access rights

B6.7 Access rights

RKIHH An instruction fetch or memory access is subject to the following checks in the following order:

1. Alignment.
2. SAU or IDAU, or both.
3. MPU.
4. BusFault (IBUSERR).

Applies to an implementation of the architecture from Armv8.0-M onwards.

RTQJS An exception is generated, instead of normal execution of the fetching and decoding process, if one of the following
occurs.

Priority Fault type Cause

Highest One of the following SecureFaults:
• INVEP
• INVTRAN

AU violation

↓ The following MemManage fault:
• IACCVIOL

MPU violation

↓ The following BusFault:
• IBUSERR

System fault

↓ One of the following:
• DebugMonitor exception
• Halted Debug Entry

FPB hit

↓ The following SecureFault:
• INVEP

SG check

↓ The following UsageFault:
• INVSTATE

T32 state check

Lowest One of the following UsageFaults:
• UNDEFINSTR
• NOCP

Undefined instruction

Applies to an implementation of the architecture from Armv8.0-M. Note, a Secure fault requires S, a MemManage fault requires
M && MPU, a Halted Debug Entry fault can only occur if Halting Debug is implemented, a DebugMonitor exception require
DebugMonitor, UsageFault and BusFault require M, HardFault when !M.

RKPNQ If a memory access fails its alignment check, the fetch is not presented to the SAU.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

RSDMQ If an instruction fetch or memory access fails its AU check, the fetch is not presented to the relevant MPU for
comparison.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S && MPU.

RFLLN If an instruction fetch or memory access fails its MPU check, it is not issued to the memory system.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - MPU.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

206

Chapter B6. Memory Model
B6.7. Access rights

See also:

B3.9 Exception numbers and exception priority numbers on page 82.

Chapter B9 The Armv8-M Protected Memory System Architecture on page 267.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

207

Chapter B6. Memory Model
B6.8. Observability of memory accesses

B6.8 Observability of memory accesses

RPNDH For a PE, the following mechanisms are treated as independent observers:

• The mechanism that performs reads from or writes to memory.
• The mechanism that causes an instruction cache to be filled from memory or that fetches instructions to be

executed directly from memory. These accesses are treated as reads.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RDVFW The set of observers that can observe a memory access is not defined by the PE architecture, unless otherwise
specified.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IVSCK In the context of observability, subsequent means whichever of the following descriptions is appropriate:

• After the point in time where the location is observed by the observer.
• After the point in time where the location is globally observed.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RVCCS A write to a location in memory is observed by an observer when:

• A subsequent read of the location by the same observer would return the value that was written by the
observed write or written by a write to that location by any observer that is sequenced in the coherence order
of the location after the observed write.

• A subsequent write of the location by the same observer would be sequenced in the coherence order of the
location after the observed write.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RXQPT A write to a location in memory is globally observed for a Shareability domain or set of observers when:

• A subsequent read of the location by any observer in that Shareability domain that is capable of observing
the write would return the value that is written by the globally observed write or by a write to that location by
any observer that is sequenced in the coherence order of the location after the globally observed write.

• A subsequent write to the location by any observer in that Shareability domain would be sequenced in the
coherence order of the location after the globally observed write.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RRSPX For Device-nGnRnE memory, a read or write of a memory-mapped location in a peripheral is observed, and
globally observed, only when the read or write:

• Meets the general observability conditions.
• Can begin to affect the state of the memory-mapped peripheral.
• Can trigger all associated side-effects, whether they affect other peripheral devices, PEs, or memory.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RDGRR A read of a location in memory is observed by an observer when a subsequent write to the location by the same
observer would have no effect on the value that is returned by the read.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RBVJF A read of a location in memory is globally observed for a Shareability domain when a subsequent write to the
location by any observer in that Shareability domain that is capable of observing the write would have no effect on
the value that is returned by the read.

Applies to an implementation of the architecture from Armv8.0-M onwards.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

208

Chapter B6. Memory Model
B6.8. Observability of memory accesses

RQRKX Multiple writes to the same register will be observed in the same order by all observers. The architecture does not
guarantee that all observers will observe all of the writes.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RHMHZ Explicit synchronization is not required on an external read or write by an external agent to be observable to a
following external read or write by that agent to the same register using the same address.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RTXSK Explicit synchronization is not required for serial external accesses, either reads or writes, by a single external
agent for any registers that are accessible as external system control registers.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B6.16 Device memory on page 222.

B6.17 Device memory attributes on page 224.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

209

Chapter B6. Memory Model
B6.9. Completion of memory accesses

B6.9 Completion of memory accesses

RXCTL A read or write is complete for a Shareability domain when the following conditions are true:

• The read or write is globally observed for that Shareability domain.
• All instruction fetches by observers within the Shareability domain have observed the read or write.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RWCMQ A cache or branch predictor maintenance instruction is complete for a Shareability domain when the effects of the
instruction are globally observed for that Shareability domain.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RSFLM The completion of a memory access to Device memory other than Device-nGnRnE does not guarantee the visibility
of the side-effects of the access to all observers.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RMWBK The mechanism that ensures the visibility of the side-effects of the access to all observers is IMPLEMENTATION
DEFINED.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B6.18 Shareability domains on page 227.

B6.16 Device memory on page 222.

B6.17 Device memory attributes on page 224.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

210

Chapter B6. Memory Model
B6.10. Ordering requirements for memory accesses

B6.10 Ordering requirements for memory accesses

RRBDL Armv8-M defines access restrictions in the permitted ordering of memory accesses. These restrictions depend on
the memory attributes of the accesses involved.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RGJDH For all accesses to all memory types, the only stores by an observer that can be observed by another observer are
those stores that have been architecturally executed.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RRXPL Reads and writes can be observed in any order provided that, if an address dependency exists between two reads or
between a read and a write, then those memory accesses are observed in program order by all observers within the
common Shareability domain of the memory addresses being accessed.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RKWFG Speculative writes by an observer cannot be observed by another observer.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RVMHG For Device memory with the non-Reordering attribute, memory accesses arrive at a single peripheral in program
order.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RWGCF Memory accesses caused by instruction fetches are not required to be observed in program order, unless they are
separated by a context synchronization event.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RRJMK A register data dependency between the value that is returned by a load instruction and the address that is used
by a subsequent memory transaction enforces an order between that load instruction and the subsequent memory
transaction.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B6.11 Ordering of implicit memory accesses on page 212.

B6.12 Ordering of explicit memory accesses on page 213.

B6.14 Normal memory on page 219.

B6.16 Device memory on page 222.

B6.18 Shareability domains on page 227.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

211

Chapter B6. Memory Model
B6.11. Ordering of implicit memory accesses

B6.11 Ordering of implicit memory accesses

RKPFC There are no ordering requirements for implicit accesses to any type of memory.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B6.1 Memory accesses on page 197.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

212

Chapter B6. Memory Model
B6.12. Ordering of explicit memory accesses

B6.12 Ordering of explicit memory accesses

RBMNM For all memory types, for accesses from a single observer, the requirements of uniprocessor semantics are
maintained.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RWTRP For all types of memory, if there is a control dependency between a direct read and a subsequent direct write,
the two accesses are observed in program order by any observer in the common Shareability domain of the two
accesses.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RXGNP For all types of memory, if the value returned by a direct read computes data that is written by a subsequent direct
write, the two accesses are observed in program order by any observer in the common Shareability domain of the
two accesses.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RMBNW It is impossible for an observer to observe a write from an aligned store that both:

• Has not been executed.
• Will not be executed.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RWNRM For an unaligned store, an observer might observe part of a store that would have completed had an exception not
been taken. The store is not guaranteed to be single-copy atomic except at the byte access level.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

See also:

B6.1 Memory accesses on page 197.

B6.14 Normal memory on page 219.

B6.16 Device memory on page 222.

B6.17 Device memory attributes on page 224.

B6.18 Shareability domains on page 227.

B6.19 Shareability attributes on page 229.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

213

Chapter B6. Memory Model
B6.13. Memory barriers

B6.13 Memory barriers

RWRCT The Arm architecture supports out-of-order completion of instructions.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RNBQC Armv8 supports the following memory barriers:

• Instruction Synchronization Barrier (ISB).
• Data Memory Barrier (DMB).
• Data Synchronization Barrier (DSB).
• Consumption of Speculative Data Barrier (CSDB).
• Physical Speculative Store Bypass Barrier (PSSBB).
• Speculative Store Bypass Barrier (SSBB).

Applies to an implementation of the architecture from Armv8.0-M onwards.

RLQXF The DMB and DSB memory barriers affect reads and writes to the memory system that are generated by Load/Store
instructions and data or unified cache maintenance instructions that are executed by the PE. Instruction fetches are
not explicit accesses.

Applies to an implementation of the architecture from Armv8.0-M onwards.

B6.13.1 Instruction Synchronization Barrier

RSTMG An ISB ensures that all instructions that come after the ISB instruction in program order are fetched from the
cache or memory after the ISB instruction has completed.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

InstructionSynchronizationBarrier().

Context synchronization event

B6.13.2 Data Memory Barrier

RMPSG The required Shareability for a DMB is Full system, and applies to all observers in the Shareability domain.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RGVDL A DMB only affects memory accesses and the operation of data cache and unified cache maintenance instructions,
and has no effect on the ordering of any other instructions.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RHFTX A DMB that ensures the completion of cache maintenance instructions has an access type of both loads and stores.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RWMRT A DMB instruction creates two groups of memory accesses, Group A and Group B, and does not affect memory
accesses that are in not in Group A or Group B:

Group A contains:

• All explicit memory accesses of the required access types from observers in the same Shareability domain as

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

214

Chapter B6. Memory Model
B6.13. Memory barriers

PEe that are observed by PEe before the DMB instruction.
• All loads of required access types from an observer PEx in the same required Shareability domain as PEe

that have been observed by any given different observer, PEy, in the same required Shareability domain as
PEe before PEy has performed a memory access that is a member of Group A.

Group B contains:

• All explicit memory accesses of the required access types by PEe that occur in program order after the DMB
instruction.

• All explicit memory accesses of the required access types by any given observer PEx in the same required
Shareability domain as PEe that can only occur after a load by PEx has returned the result of a store that is a
member of Group B.

Any observer with the same required Shareability domain as PEe observes all members of Group A before it
observes any member of Group B to the extent that those group members are required to be observed, as determined
by the Shareability and Cacheability of the memory addresses accessed by the group members.

If members of Group A and members of Group B access the same memory-mapped peripheral of arbitrary
system-defined size, then members of Group A that are accessing Device or Normal Non-cacheable memory
arrive at that peripheral before members of Group B that are accessing Device or Normal Non-cacheable memory.
Where the members of Group A and Group B that are to be ordered are from the same PE, a DMB provides for this
guarantee.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

DataMemoryBarrier().

B6.18 Shareability domains on page 227.

B6.13.3 Data Synchronization Barrier

ICNFG The DSB is a memory barrier that synchronizes the execution stream with memory accesses.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RNKWJ The required Shareability for a DSB is Full system and applies to all observers in the Shareability domain.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RVLBF A DSB instruction creates two groups of memory accesses, Group A and Group B, and does not affect memory
accesses that are in not in Group A or Group B:

Group A contains:

• All explicit memory accesses of the required access types from observers in the same Shareability domain as
PEe that are observed by PEe before the DSB instruction.

• All loads of required access types from an observer PEx in the same required Shareability domain as PEe
that have been observed by any given different observer, PEy, in the same required Shareability domain as
PEe before PEy has performed a memory access that is a member of Group A.

Group B contains:

• All explicit memory accesses of the required access types by PEe that occur in program order after the DSB
instruction.

• All explicit memory accesses of the required access types by any given observer PEx in the same required
Shareability domain as PEe that can only occur after a load by PEx has returned the result of a store that is a
member of Group B.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

215

Chapter B6. Memory Model
B6.13. Memory barriers

Any observer with the same required Shareability domain as PEe observes all members of Group A before it
observes any member of Group B to the extent that those group members are required to be observed, as determined
by the Shareability and Cacheability of the memory addresses accessed by the group members.

If members of Group A and members of Group B access the same memory-mapped peripheral of arbitrary
system-defined size, then members of Group A that are accessing Device or Normal Non-cacheable memory
arrive at that peripheral before members of Group B that are accessing Device or Normal Non-cacheable memory.
Where the members of Group A and Group B that are to be ordered are from the same PE, a DSB provides for this
guarantee.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RKMGH A DSB completes when all of the following conditions apply:

• All explicit memory accesses that are observed by PEe before the DSB is executed and are of the required
access types, and are from observers in the same required Shareability domain as PEe, are complete for the
set of observers in the required Shareability domain.

• If the required access types of the DSB is reads and writes, then all cache and branch predictor maintenance
instructions that are issued by PEe before the DSB are complete for the required Shareability domain.

• All explicit accesses to the System Control Space that result in a context altering operation issued by PEe
before the DSB are complete.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RKMBX No instruction that appears in program order after the DSB instruction can execute until the DSB completes.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

DataSynchronizationBarrier().

B6.18 Shareability domains on page 227.

B6.13.4 Consumption of Speculative Data Barrier

RCTSR The CSDB is a memory barrier that prevents instructions that appear in program order after the barrier completes
from determining any part of the value of data derived from speculatively-executed load instructions that appeared
in program order before completion of the CSDB memory barrier.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

ILZDK When a CSDB instruction is executed but before the CSDB completes and there are three instructions:

1. A load instruction speculatively executed in program order before the barrier that might or might not be
architecturally executed.

2. A Conditional Move instruction that has passed its condition code check and does not have an address
dependency for an input register on the speculatively-executed load.

3. A load, store, data or instruction preload appearing in program order after the barrier, which has an address
dependency on the Conditional Move instruction.

The speculative execution of the load, store, data or instruction preload does not influence the allocation of cache
entries to determine any part of the value of the speculatively executed load instruction by an evaluation of the
cache entries which have been allocated or evicted.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

216

Chapter B6. Memory Model
B6.13. Memory barriers

IDDTH When a CSDB instruction is executed but before the CSDB completes and there are three instructions:

1. A load instruction speculatively executed in program order before the barrier that might or might not be
architecturally executed.

2. A Conditional Move instruction that has no dependency to pass the condition tests or for an input register on
the speculatively executed load.

3. An indirect branch instruction, appearing in program order after the barrier, that is dependent on the
Conditional Move instruction for the target address of the indirect branch.

The speculative execution of the indirect branch does not influence the allocation of cache entries to determine any
part of the value of the speculatively executed load instruction by an evaluation of the cache entries which have
been allocated or evicted.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

RJWCV A CSDB instruction cannot be executed speculatively.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

IQZKB A CSDB can be inserted speculatively and completed when it is known not to be speculative.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

RWGCX The CSDB instruction is not available in an implementation without the Main Extension.

Applies to an implementation of the architecture from Armv8.0-M. Note, !M.

IPCSF Arm recommends that a combination of DSB SYS and an ISB is inserted to prevent consumption of speculative
data.

Applies to an implementation of the architecture from Armv8.0-M. Note, !M.

B6.13.5 Physical Speculative Store Bypass Barrier

ICCNK The PSSBB prevents speculative loads from:

• Returning data older than the most recent store to the same physical address appearing in program order
before the load.

• Returning data from stores using the same physical address appearing in program order after the load.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

RMDLZ The PSSBB is not available in an implementation without the Main Extension.

Applies to an implementation of the architecture from Armv8.0-M. Note, !M.

B6.13.6 Speculative Store Bypass Barrier

IHWND The SSBB prevents speculative loads from:

• Returning data older than the most recent store to the same address appearing in program order before the
load.

• Returning data from stores using the same address appearing in program order after the load.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

RMGLH The SSBB is not available in an implementation without the Main Extension.

Applies to an implementation of the architecture from Armv8.0-M. Note, !M.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

217

Chapter B6. Memory Model
B6.13. Memory barriers

B6.13.7 Synchronization requirements for System Control Space

RSJQJ A DSB guarantees that all writes to the System Control Space have been completed.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RNPDJ The execution of a DSB alone does not guarantee that the side effects of writes to the System Control Space are
visible. A Context synchronization event is required for side effects of a write to the System Control Space to be
visible.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RHMNM A Context synchronization event guarantees that the side effects of any completed writes to the System Control
Space are visible after the Context synchronization event.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B7.3 The System Control Space (SCS) on page 255.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

218

Chapter B6. Memory Model
B6.14. Normal memory

B6.14 Normal memory

INVRF Memory locations that are idempotent have the following properties:

• Read accesses can be repeated with no side-effects.
• Repeated read accesses return the last value that is written to the resource being read.
• Read accesses can fetch additional memory locations with no side-effects.
• Write accesses can be repeated with no side-effects, if the contents of the location that is accessed are

unchanged between the repeated writes or as the result of an exception.
• Unaligned accesses can be supported.
• Accesses can be merged before accessing the target memory system.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RQGCF The PE is permitted to treat regions of memory assigned the memory type Normal memory as idempotent.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RCGJX Normal memory can be marked as Cacheable or Non-cacheable. Normal memory is assigned Cacheability
attributes.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RLCPJ Normal Non-cacheable memory is always treated as shareable.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RPKXL Speculative data accesses to Normal memory are permitted.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RWLVR A write to Normal memory completes in finite time.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RWLCV A write to a Non-cacheable Normal memory location reaches the endpoint for that location in the memory system
in finite time.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RMJWF A completed write to Normal memory is globally observed for the Shareability domain in finite time without the
requirement for cache maintenance instructions or memory barriers.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RNHFQ For multi-register Load/Store instructions that access Normal memory, the architecture does not define the order in
which the registers are accessed.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RCFHV There is no requirement for the memory system beyond the PE to be able to identify the size of the elements
accessed.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B6.1 Memory accesses on page 197.

B6.18 Shareability domains on page 227.

B6.15 Cacheability attributes on page 221.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

219

Chapter B6. Memory Model
B6.14. Normal memory

B6.22 Load-Exclusive and Store-Exclusive accesses to Normal memory on page 233.

MAIR_ATTR, Memory Attributes Indirection Register Attributes.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

220

Chapter B6. Memory Model
B6.15. Cacheability attributes

B6.15 Cacheability attributes

RKXJV The architecture provides Cacheability attributes that are defined independently for each of two conceptual levels
of cache:

• The Inner cache.
• The Outer cache.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RXRWS The Cacheability attributes are:

• Non-cacheable.
• Write-Through Cacheable.
• Write-Back Cacheable.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RXQXW It is IMPLEMENTATION DEFINED whether Write-Through Cacheable and Write-Back Cacheable can have the
additional attribute Transient or Non-transient.

Applies to an implementation of the architecture from Armv8.0-M onwards.

ILDXP The Transient attribute is a memory hint that indicates that the benefit of caching is for a short period. The
architecture does not define what is meant by a short period.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RCFKN Cacheability attributes other than Non-cacheable can be complemented by the following cache allocation hints,
which are independent for read and write accesses:

• Read-Allocate, Transient Read-Allocate, or No Read-Allocate.
• Write-Allocate, Transient Write-Allocate, or No Write-Allocate.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RDRTR The architecture does not require an implementation to make any use of cache allocation hints.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RFQSS Any cacheable Normal memory region is treated as Read-Allocate, No Write-Allocate unless it is explicitly
assigned other cache allocation hints.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IFRVF A Cacheable location with no Read-Allocate and no Write-Allocate hints is not the same as a Non-cacheable
location. A Non-cacheable location has coherency guarantees for all observers within the system that do not apply
to a location that is Cacheable, no Read-Allocate, no Write-Allocate.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RFTKW All data accesses to Non-cacheable Normal memory locations are data coherent to all observers.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B6.14 Normal memory on page 219.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

221

Chapter B6. Memory Model
B6.16. Device memory

B6.16 Device memory

IBXHS Device memory is a memory type that is assigned to regions of memory where accesses can have side-effects.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RWTZL Device memory is not cacheable.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RLDDN Device memory is always treated as shareable.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RPQXS Speculative data accesses cannot be made to Device memory. However, for instructions that access a sequence of
word-aligned words, the accesses might occur multiple times.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RNLHC Speculative instruction fetches can be made to Device memory, unless the location is marked as execute-never.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RCSKG Any unaligned access to Device memory generates an UNALIGNED UsageFault exception.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RYMTK Device memory is assigned a combination of Device memory attributes.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RLFTG A write to Device memory completes in finite time.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RFSCD A write to a Device memory location reaches the endpoint for that location in the memory system in finite time.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RGTTQ A completed write to a Device memory location is globally observed for the Shareability domain in finite time
without the requirement for cache maintenance instructions or barriers.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RXMCH If the content of a Device memory location changes without a direct write to the location, the change is observed
for the Shareability domain in finite time.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RKJHG For an instruction fetch from Device memory, if a branch causes the Program Counter (PC) to point to an area of
memory that is not marked as Execute-never, the implementation can either:

• Treat the fetch as if it is to a location in Normal Non-cacheable memory.
• Take an IACCVIOL MemManage fault.

Applies to an implementation of the architecture from Armv8.0-M. Note, a MemManage fault requires M.

RDFJX There is no requirement for the memory system beyond the PE to be able to identify the size of the elements that
are accessed, for instructions that load the following from Device memory:

• More than one general-purpose register.
• One or more registers from the floating-point register file.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

222

Chapter B6. Memory Model
B6.16. Device memory

Applies to an implementation of the architecture from Armv8.0-M onwards.

RKVHT For an LDM, STM, LDRD, or STRD instruction with a register list that includes the PC, the architecture does not
define the order in which the registers are accessed.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RSFPK For an LDM, STM, VLDM, VSTM, VPOP or VPUSH instruction with a register list that does not include the PC, all
registers are accessed in the order that they appear in the register list, for Device memory with the non-Reordering
attribute.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B6.1 Memory accesses on page 197.

B6.19 Shareability attributes on page 229.

B6.17 Device memory attributes on page 224.

B6.18 Shareability domains on page 227.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

223

Chapter B6. Memory Model
B6.17. Device memory attributes

B6.17 Device memory attributes

RVNSJ Each Device memory region is assigned a combination of Device memory attributes. The attributes are:

Gathering, G and nG: The Gathering and non-Gathering attributes.

Reordering, R and nR: The Reordering and non-Reordering attributes.

Early Write Acknowledgement, E and nE: The Early Write Acknowledgement and no Early Write Acknowl-
edgement attributes.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RCFFC Each Device memory region is assigned one of the combinations in the following table:

Memory Ordering Name nG nR nE G R E

Strong Device-nGnRnE Y Y Y - - -
↓ Device-nGnRE Y Y - - - Y
↓ Device-nGRE Y - - - Y Y
Weak Device-GRE - - - Y Y Y

Applies to an implementation of the architecture from Armv8.0-M onwards.

RLJKD Weaker memory can be accessed according to the rules specified for stronger memory:

• Memory with the:
– G attribute can be accessed according to the rules specified for the nG attribute.
– nG attribute cannot be accessed according to the rules specified for the G attribute.

• Memory with the:
– R attribute can be accessed according to the rules specified for the nR attribute.
– nR attribute cannot be accessed according to the rules specified for the R attribute.

Because the nE attribute is a hint:

• An implementation is permitted to perform an access with the E attribute in a manner consistent with the
requirements specified by the nE attribute.

• An implementation is permitted to perform an access with the nE attribute in a manner consistent with the
relaxations allowed by the E attribute.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RFJXX For Device-GRE and Device-nGRE memory, the use of barriers is required to order accesses.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RPVCY Memory accesses that are generated by vector instructions that target any type of Device memory operate as if the
access had targeted a Device-GRE region.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

See also:

B6.17.1 Gathering and non-Gathering Device memory attributes on page 225.

B6.17.2 Reordering and non-Reordering Device memory attributes on page 225.

B6.17.3 Early Write Acknowledgement and no Early Write Acknowledgement Device memory attributes on
page 226.

B6.16 Device memory on page 222.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

224

Chapter B6. Memory Model
B6.17. Device memory attributes

B6.17.1 Gathering and non-Gathering Device memory attributes

G attribute

RDBSX If multiple accesses of the same type, read or write, are to:

• The same location, with the G attribute, they can be merged into a single transaction.
• Different locations, all with the G attribute, they can be merged into a single transaction.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RKCMX Gathering of accesses that are separated by a memory barrier is not permitted.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RJSRD Gathering of accesses that are generated by a Load-Acquire/Store-Release is not permitted.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RMGKJ A read can come from intermediate buffering of a previous write if:

• The accesses are not separated by a DMB or DSB barrier.
• The accesses are not separated by any other ordering construction that requires that the accesses are in order,

for example a combination of Load-Acquire and Store-Release.
• The accesses are not generated by a Store-Release instruction.

Applies to an implementation of the architecture from Armv8.0-M onwards.

ISRDS The architecture only defines programmer visible behavior. Therefore, if a programmer cannot tell whether
Gathering has occurred, Gathering can be performed.

Applies to an implementation of the architecture from Armv8.0-M onwards.

nG attribute

RGVTF Multiple accesses to a memory location with the nG attribute cannot be merged into a single transaction.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RBTWD A read of a memory location with the nG attribute cannot come from a cache or a buffer, but comes from the
endpoint for that address in the memory system.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B6.23 Load-Acquire and Store-Release accesses to memory on page 234.

B6.17.2 Reordering and non-Reordering Device memory attributes

R attribute

RRPTB This attribute imposes no restrictions or relaxations.

Applies to an implementation of the architecture from Armv8.0-M onwards.

nR attribute

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

225

Chapter B6. Memory Model
B6.17. Device memory attributes

RDFXL If the access is to a:

• Peripheral, it arrives at the peripheral in program order. If there is a mixture of accesses to Device nGnRE
and Device-nGnRnE in the same peripheral, these accesses occur in program order.

• Non-peripheral, this attribute imposes no restrictions or relaxations.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IBDWB The IMPLEMENTATION DEFINED size of the single peripheral is the same as applies for the ordering guarantee that
is provided by the DMB instruction.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RNDHC The non-Reordering attribute does not require any additional ordering, other than the ordering that applies to
Normal memory, between:

• Accesses with the non-Reordering attribute and accesses with the Reordering attribute.
• Accesses with the non-Reordering attribute and accesses to Normal memory.
• Accesses with the non-Reordering attribute and accesses to different peripherals of IMPLEMENTATION

DEFINED size.

Applies to an implementation of the architecture from Armv8.0-M onwards.

B6.17.3 Early Write Acknowledgement and no Early Write Acknowledgement Device memory
attributes

E attribute

RPVSH The E attribute imposes no restrictions or relaxations.

Applies to an implementation of the architecture from Armv8.0-M onwards.

nE attribute

RFWFR Assigning the nE attribute recommends that only the endpoint of the write access returns a write acknowledgement
of the access, and that no earlier point in the memory system returns a write acknowledgement.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IFQWQ The E attribute is treated as a hint. Arm strongly recommends that this hint is not ignored by a PE, but is made
available for use by the system.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B6.13 Memory barriers on page 214.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

226

Chapter B6. Memory Model
B6.18. Shareability domains

B6.18 Shareability domains

RJMHL There are two conceptual Shareability domains:

• The Inner Shareability domain.
• The Outer Shareability domain.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IXQWM The following diagram shows the Shareability domains:

Observer 8 Observer 9

Observer 4Observer 0

Observer 1

Inner Shareable

Outer Shareable

Observer 2

Observer 3

Inner Shareable

Observer 7

Observer 5

Observer 6

Inner Shareable

Outer Shareable

System

Applies to an implementation of the architecture from Armv8.0-M onwards.

RMCPS All observers in an Inner Shareability domain are data coherent for data accesses to memory that has the Inner-
shareable Shareability attribute.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RSVCR All observers in an Outer Shareability domain are data coherent for data accesses to memory that has the Outer-
shareable Shareability attribute.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RJMFS Each observer is a member of only a single Inner Shareability domain.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RBNWH Each observer is a member of only a single Outer Shareability domain.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RFVBG All members of the same Inner Shareability domain are always members of the same Outer Shareability domain.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RWFMV Accesses to a shareable memory location are coherent within the Shareability domain of that location.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IDHJF An Inner Shareability domain is a subset of an Outer Shareability domain, although it is not required to be a proper

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

227

Chapter B6. Memory Model
B6.18. Shareability domains

subset.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RXHJL Hardware is required to ensure coherency and ordering within the Shareability domain if all of the following apply:

• Before writing to a location not using the Write-Back attribute, a location in the caches that might have been
written with the Write-Back attribute by an agent has been invalidated or cleaned.

• After writing the location with the Write-Back attribute, the location has been cleaned from the caches to
make the write visible to external memory.

• Before reading the location with a cacheable attribute, the cache location has been invalidated, or cleaned
and invalidated.

• A DMB barrier instruction has been executed, with a scope that applies to the common Shareability of the
accesses, between any accesses to the same memory location that use different attributes.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B6.8 Observability of memory accesses on page 208.

B6.19 Shareability attributes on page 229.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

228

Chapter B6. Memory Model
B6.19. Shareability attributes

B6.19 Shareability attributes

RCJRF Each Normal cacheable memory region is assigned one of the following Shareability attributes:

• Non-shareable.
• Inner-shareable.
• Outer-shareable.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RPDVV For Non-shareable memory, hardware is not required to make data accesses by different observers, other than the
Debug Access Port, coherent. If a number of observers share the memory, cache maintenance instructions, in
addition to the barrier operations that are required to ensure memory ordering, can ensure that the presence of
caches does not lead to coherency issues.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B6.1 Memory accesses on page 197.

B6.14 Normal memory on page 219.

B6.16 Device memory on page 222.

B6.18 Shareability domains on page 227.

B6.32 Cache maintenance operations on page 245.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

229

Chapter B6. Memory Model
B6.20. Memory access restrictions

B6.20 Memory access restrictions

RQQCP For accesses to any two bytes that are accessed by the same instruction, the two bytes have the same memory type
and Shareability attributes, otherwise behavior is a CONSTRAINED UNPREDICTABLE choice of the following:

• Each memory access that is generated by the instruction uses the memory type and Shareability attribute that
is associated with its own address.

• The instruction executes as a NOP.
• The instruction generates an alignment fault caused by the memory type.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IWRBT Except for possible differences in cache allocation hints, Arm deprecates having different Cacheability attributes
for accesses to any two bytes that are generated by the same instruction.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RBFKS If the accesses of an instruction that cause multiple accesses to any type of Device memory cross the boundary of a
memory region then the behavior is a CONSTRAINED UNPREDICTABLE choice of the following:

• All memory accesses that are generated by the instruction are performed as if the presence of the boundary
had no effect on memory accesses.

• All memory accesses that are generated by the instruction are performed as if the presence of the boundary
had no effect on memory accesses, except that there is no guarantee of ordering between memory accesses,

• The instruction executes as a NOP.
• The instruction generates an alignment fault caused by the memory type.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B6.1 Memory accesses on page 197.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

230

Chapter B6. Memory Model
B6.21. Mismatched memory attributes

B6.21 Mismatched memory attributes

RXHTK Memory locations are accessed with mismatched attributes if all accesses to the location do not use a common
definition of all the following memory attributes of that location:

• Memory type - Device or Normal.
• Shareability.
• Cacheability, for the same level of the Inner or Outer cache, but excluding any cache allocation hints.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RVKHJ When a memory location is accessed with mismatched attributes, the only permitted effects are one or more of the
following:

• Uniprocessor semantics for reads and writes to that memory location might be lost. This means:

– A read of the memory location by one agent might not return the value that was most recently written to
that memory location by the same agent.

– Multiple writes to the memory location by one agent with different memory attributes might not be
ordered in program order.

• There might be a loss of coherency when multiple agents attempt to access a memory location.

• There might be a loss of the properties that are derived from the memory type.

• If all Load-Exclusive/Store-Exclusive instructions that are executed across all threads to access a given
memory location do not use consistent memory attributes, the exclusive monitor state becomes UNKNOWN.

• Bytes that are written without the Write-Back cacheable attribute and that are within the same Write-Back
granule as bytes that are written with the Write-Back cacheable attribute might have their values reverted to
the old values as a result of cache Write-Back.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RNJLB The loss of the properties that are associated with mismatched memory type attributes refers only to the following
properties of Device memory that are additional to the properties of Normal memory:

• Prohibition of speculative read accesses.
• Prohibition on Gathering.
• Prohibition on Reordering.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RQCKK If the only memory type mismatch that is associated with a memory location across all users of the memory
location is between different types of Device memory, then all accesses might take the properties of the weakest
Device memory type.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RHCCD Any agent that reads a memory location with mismatched attributes using the same common definition of the
Shareability and Cacheability attributes is guaranteed to access it coherently, to the extent required by that common
definition of the memory attributes, only if all the following conditions are met:

• All aliases to the memory location with write permission both use a common definition of the Shareability
and Cacheability attributes for the memory location, and have the Inner Cacheability attribute the same as the
Outer Cacheability attribute.

• All aliases to a memory location use a definition of the Shareability attributes that encompasses all the agents
with permission to access the location.

Applies to an implementation of the architecture from Armv8.0-M onwards.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

231

Chapter B6. Memory Model
B6.21. Mismatched memory attributes

RGBKH The possible permitted effects that are caused by mismatched attributes for a memory location are defined more
precisely if all the mismatched attributes define the memory location as one of:

• Any Device memory type.
• Normal Inner Non-cacheable, Outer Non-cacheable memory.

In these cases, the only permitted software-visible effects of the mismatched attributes are one or more of the
following:

• Possible loss of properties that are derived from the memory type when multiple agents attempt to access the
memory location.

• Possible reordering of memory transactions to the same memory location with different memory attributes,
potentially leading to a loss of coherency or uniprocessor semantics. Any possible loss of coherency or
uniprocessor semantics can be avoided by inserting DMB barrier instructions between accesses to the same
memory location that might use different attributes.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RVVBS If the mismatched attributes for a location mean that multiple cacheable accesses to the location might be made
with different Shareability attributes, then ordering and coherency are guaranteed only if:

• Each PE that accesses the location with a cacheable attribute performs a clean and invalidate of the location
before and after accessing that location.

• A DMB barrier with scope that covers the full Shareability of the accesses is placed between any accesses to
the same memory location that use different attributes.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RVCXW If multiple agents attempt to use Load-Exclusive or Store-Exclusive instructions to access a location, and the
accesses from the different agents have different memory attributes associated with the location, the exclusive
monitor state becomes UNKNOWN.

Applies to an implementation of the architecture from Armv8.0-M onwards.

ITPWG Arm strongly recommends that software does not use mismatched attributes for aliases of the same location. An
implementation might not optimize the performance of a system that uses mismatched aliases.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

Chapter B9 The Armv8-M Protected Memory System Architecture on page 267.

B6.18 Shareability domains on page 227.

B6.15 Cacheability attributes on page 221.

B6.16 Device memory on page 222.

B6.14 Normal memory on page 219.

B6.22 Load-Exclusive and Store-Exclusive accesses to Normal memory on page 233.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

232

Chapter B6. Memory Model
B6.22. Load-Exclusive and Store-Exclusive accesses to Normal memory

B6.22 Load-Exclusive and Store-Exclusive accesses to Normal memory

RKDWC For Normal memory that is:

• Non-shareable, it is IMPLEMENTATION DEFINED whether Load-Exclusive and Store-Exclusive instructions
take account of the possibility of accesses by more than one observer.

• Shareable, Load-Exclusive, and Store-Exclusive instructions take account of the possibility of accesses by
more than one observer.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B6.14 Normal memory on page 219.

B6.1 Memory accesses on page 197.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

233

Chapter B6. Memory Model
B6.23. Load-Acquire and Store-Release accesses to memory

B6.23 Load-Acquire and Store-Release accesses to memory

IVVTX The following table summarizes the Load-Acquire/Store-Release instructions.

Data type Load- Acquire Store- Release
Load-Acquire
Exclusive

Store-Release
Exclusive

32-bit word LDA STL LDAEX STLEX

16-bit halfword LDAH STLH LDAEXH STLEXH

8-bit byte LDAB STLB LDAEXB STLEXB

Applies to an implementation of the architecture from Armv8.0-M onwards.

RXBRM A Store-Release followed by a Load-Acquire is observed in program order by each observer within the Shareability
domain of the memory address being accessed by the Store-Release and the memory address being accessed by
the Load-Acquire.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RRRFK For a Load-Acquire, observers in the Shareability domain of the address that is accessed by the Load-Acquire
observe accesses in the following order:

1. The read caused by the Load-Acquire.

2. Reads and writes caused by loads and stores that appear in program order after the Load-Acquire for which
the Shareability of the address that is accessed by the load or store requires that the observer observes the
access.

There are no other ordering requirements on loads or stores that appear before the Load-Acquire.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RWLWT For a Store-Release, observers in the Shareability domain of the address that is accessed by the Store-Release
observe accesses in the following order:

1. All of the following for which the Shareability of the address that is accessed requires that the observer
observes the access:

• Reads and writes caused by loads and stores that appear in program order before the Store-Release.
• Writes that were observed by the PE executing the Store-Release before it executed the Store-Release.

2. The write caused by the Store-Release.

There are no other ordering requirements on loads or stores that appear in program order after the Store-Release.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RHCKC All Store-Release instructions are multi-copy atomic when they are observed with Load-Acquire instructions.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RDGXR A Load-Acquire to an address in a memory-mapped peripheral of an arbitrary system-defined size that is defined
as any type of Device memory access ensures that all memory accesses using Device memory types to the same
memory-mapped peripheral that are architecturally required to be observed after the Load-Acquire will arrive at
the memory-mapped peripheral after the memory access of the Load-Acquire.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RCKRC A Store-Release to an address in a memory-mapped peripheral of an arbitrary system-defined size that is defined

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

234

Chapter B6. Memory Model
B6.23. Load-Acquire and Store-Release accesses to memory

as any type of Device memory access ensures that all memory accesses using Device memory types to the same
memory-mapped peripheral that are architecturally required to be observed before the Store-Release will arrive at
the memory-mapped peripheral before the memory access of the Store-Release.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RGJHK If a Load-Acquire to a memory address in a memory-mapped peripheral of an arbitrary system-defined size
that is defined as any type of Device memory access has observed the value that is stored to that address by a
Store-Release, then any memory access to the memory-mapped peripheral that is architecturally required to be
ordered before the memory access of the Store-Release will arrive at the memory-mapped peripheral before any
memory access to the same peripheral that is architecturally required to be ordered after the memory access of the
Load-Acquire.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RWRLC Load-Acquire and Store-Release access only a single data element.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RKCTN Load-Acquire and Store-Release accesses are single-copy atomic.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RBXRP If a Load-Acquire or Store-Release instruction accesses an address that is not aligned to the size of the data element
being accessed, the access generates an alignment fault.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RNVRJ A Store-Release Exclusive instruction only has the release semantics if the store is successful.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B6.18 Shareability domains on page 227.

B6.16 Device memory on page 222.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

235

Chapter B6. Memory Model
B6.24. Caches

B6.24 Caches

IJSPB When a memory location is marked with a Normal Cacheable memory attribute, determining whether a copy of
the memory location is held in a cache can depend on many aspects of the implementation, such as the following
factors:

• The size, line length, and associativity of the cache.
• The cache allocation algorithm.
• Activity by other elements of the system that can access the memory.
• Speculative instruction fetching algorithms.
• Speculative data fetching algorithms.
• Interrupt behaviors.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RQGSG An implementation can include multiple levels of cache, up to a maximum of seven levels, in a hierarchical
memory system.

Applies to an implementation of the architecture from Armv8.0-M onwards.

ISTRV The lower the cache level, the closer the cache is to the PE.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RPDSR Entries for addresses with a Normal cacheable attribute can be allocated to an enabled cache at any time.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RJGBL The allocation of a memory address to a cache location is IMPLEMENTATION DEFINED.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RSBGJ A cache entry covers at least 16 bytes and no more than 2KB of contiguous address space, aligned to its size.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RXXBW Where a breakdown in coherency can occur, data coherency of the caches is controlled in an IMPLEMENTATION
DEFINED manner.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RJVJN The architecture cannot guarantee whether:

• A memory location that is present in the cache remains in the cache.
• A memory location that is not present in the cache is brought into the cache.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RPHWM If the cache is disabled, no new allocation of memory locations into the cache occurs.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RLJQB The allocation of a memory location into a cache cannot cause the most recent value of that memory location to
become invisible to an observer, if it had previously been visible to that observer.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RQRLS If the cache is enabled, it is guaranteed that no memory location that does not have a cacheable attribute is allocated
into the cache.

Applies to an implementation of the architecture from Armv8.0-M onwards.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

236

Chapter B6. Memory Model
B6.24. Caches

RXXVH If the cache is enabled, it is guaranteed that no memory location is allocated to the cache if the access permissions
for that location are so that the location cannot be accessed by reads and cannot be accessed by writes.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RSCKQ Any cached memory location is not guaranteed to remain incoherent with the rest of memory.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RRQXN If an implementation permits cache hits when the Cacheability control fields force all memory locations to be
treated as Non-cacheable, then the cache initialization routine:

• Provides a mechanism to ensure the correct initialization of the caches.
• Is documented clearly as part of the documentation of the device.

In particular, if an implementation permits cache hits when the Cacheability controls force all memory locations to
be treated as Non-cacheable, and the cache contents are not invalidated at reset, the initialization routine avoids
any possibility of running from an uninitialized cache. It is acceptable for an initialization routine to require a
fixed instruction sequence to be placed in a restricted range of memory.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RWDBP It is UNPREDICTABLE whether the location is returned from cache or from memory when:

• The location is not marked as cacheable but is contained in the cache. This situation can occur if a location is
marked as Non-cacheable after it has been allocated into the cache.

• The location is marked as cacheable and might be contained in the cache, but the cache is disabled.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RNDNN The architecture allows copies of control values or data values to be cached. The existence of such copies can lead
to CONSTRAINED UNPREDICTABLE behavior, if the cache has not been correctly invalidated following a change
of the control or data values.

Unless explicitly stated otherwise, the behavior of the PE is consistent with:

• The old value.
• The new value.
• An amalgamation of the old and new values.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IBMPQ The choice between the behaviors might, in some implementations, vary for each use of a control or data value.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B6.25 Cache identification on page 238.

B6.28 Cache enabling and disabling on page 241.

B6.15 Cacheability attributes on page 221.

B6.29 Cache behavior at reset on page 242.

B6.33 Ordering of cache maintenance operations on page 249.

B6.21 Mismatched memory attributes on page 231.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

237

Chapter B6. Memory Model
B6.25. Cache identification

B6.25 Cache identification

RWBGH A PE controls the implemented caches using:

• A single Cache Type Register, CTR.
• A single Cache Level ID Register, CLIDR.
• A single Cache Size Selection Register, CSSELR.
• For each implemented cache, across all levels of caching, a Cache Size Identification Register, CCSIDR.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RXJTL The number of levels of cache is IMPLEMENTATION DEFINED and can be determined from the Cache Level ID
Register.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IPPSB Cache sets and Cache ways are numbered from 0. Usually the set number is an IMPLEMENTATION DEFINED
function of an address.

Applies to an implementation of the architecture from Armv8.0-M onwards.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

238

Chapter B6. Memory Model
B6.26. Cache visibility

B6.26 Cache visibility

RQLVB A completed write to a memory location that is Non-cacheable or Write-Through Cacheable for a level of cache
made by an observer accessing the memory system inside the level of cache is visible to all observers accessing
the memory system outside the level of cache without the need of explicit cache maintenance.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RRCHC A completed write to a memory location that is Non-cacheable for a level of cache made by an observer accessing
the memory system outside the level of cache is visible to all observers accessing the memory system inside the
level of cache without the need of explicit cache maintenance.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B6.15 Cacheability attributes on page 221.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

239

Chapter B6. Memory Model
B6.27. Cache coherency

B6.27 Cache coherency

RNNDJ Data coherency of caches is ensured:

• When caches are not used.
• As a result of cache maintenance operations.
• By the use of hardware coherency mechanisms to ensure coherency of data accesses to memory for cacheable

locations by observers in different Shareability domains.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RCPGW Hardware is not required to ensure coherency between instruction caches and memory, even for regions of memory
with the Shareability attribute.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B6.32 Cache maintenance operations on page 245.

B6.13 Memory barriers on page 214.

B6.19 Shareability attributes on page 229.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

240

Chapter B6. Memory Model
B6.28. Cache enabling and disabling

B6.28 Cache enabling and disabling

IPPLL The Configuration and Control Register, CCR, enables and disables caches across all levels of cache that are
visible to the PE.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RHTLD It is IMPLEMENTATION DEFINED whether the CCR.DC and CCR.IC bits affect the memory attributes that are
generated by an enabled MPU.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M && MPU.

ITNHX An implementation can use control bits in the Auxiliary Control Register, ACTLR, for finer-grained control of
cache enabling.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RSMDL For instruction fetches and data accesses, NS-Attr determines which banked instance, either Secure or Non-secure,
of CCR.IC or CCR.DC is used.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RDSTQ If the MPU is disabled, MPU_CTRL.ENABLE == 0, the CCR.DC and CCR.IC bits determine the cache state for
cacheable regions of the default system address map.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M && MPU.

See also:

B6.25 Cache identification on page 238.

B6.24 Caches on page 236.

B6.29 Cache behavior at reset on page 242.

B3.14 Secure address protection on page 98.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

241

Chapter B6. Memory Model
B6.29. Cache behavior at reset

B6.29 Cache behavior at reset

RKCFK All caches are disabled at reset.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RJMBT An implementation can require the use of a specific cache initialization routine to invalidate its storage array before
it is enabled:

• The exact form of any required cache initialization routine is IMPLEMENTATION DEFINED.
• If a required initialization routine is not performed, the state of an enabled cache is UNPREDICTABLE.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RTVKQ If an implementation permits cache hits when the cache is disabled, the cache initialization routine provides a
mechanism to ensure the correct initialization of the caches.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RCJGV If an implementation permits cache hits when the cache is disabled and the cache contents are not invalidated at
reset, the initialization routine avoids any possibility of running from an uninitialized cache.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IJSQQ An initialization routine can require a fixed instruction sequence to be placed in a restricted range of memory.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IJCTD Arm recommends that whenever an invalidation routine is required, it is based on the Armv8-M cache maintenance
operations.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B6.24 Caches on page 236.

B6.28 Cache enabling and disabling on page 241.

B6.32 Cache maintenance operations on page 245.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

242

Chapter B6. Memory Model
B6.30. Behavior of Preload Data (PLD) and Preload Instruction (PLI) instructions with caches

B6.30 Behavior of Preload Data (PLD) and Preload Instruction (PLI) instruc-
tions with caches

ICQLR PLD and PLI are memory system hints and their effect is IMPLEMENTATION DEFINED.

Applies to an implementation of the architecture from Armv8.0-M onwards.

ITPPK The instructions PLD and PLI do not generate exceptions but the memory system operations might generate an
imprecise fault (asynchronous exception) because of the memory access.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RQNGJ A PLD instruction does not cause any effect to the caches or memory other than the effects that, for permission or
other reasons, can be caused by the equivalent load from the same location with the same context and at the same
privilege level and Security state.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RSFNK A PLD instruction does not access Device-nGnRnE or Device-nGnRE memory.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RHNLN A PLI instruction does not cause any effect to the caches or memory other than the effects that, for permission
or other reasons, can be caused by the fetch resulting from changing the PC to the location specified by the PLI
instruction with the same context and at the same privilege level and Security state.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RMRFG A PLI instruction cannot access memory that has the Device-nGnRnE or Device-nGnRE attribute.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

PLD, PLDW (immediate).

PLD (literal).

PLD, PLDW (register).

PLI (immediate, literal).

PLI (register).

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

243

Chapter B6. Memory Model
B6.31. Branch predictors

B6.31 Branch predictors

IGTPB Branch predictor hardware typically uses a form of cache to hold branch information.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RMTBD Branch predictors are not architecturally visible.

Applies to an implementation of the architecture from Armv8.0-M onwards.

ICVCV The BPIALL operation is provided for timing and determinism

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B6.34 Branch predictor maintenance operations on page 250.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

244

Chapter B6. Memory Model
B6.32. Cache maintenance operations

B6.32 Cache maintenance operations

IMRMG Cache maintenance operations act on particular memory locations.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RJJLL Following a Clean operation, updates made by an observer that controls the cache are made visible to other
observers that can access memory at the point to which the operation is performed.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RVRBP The cleaning of a cache entry from a cache can overwrite memory that has been written by another observer only
if the entry contains a location that has been written to by an observer in the Shareability domain of that memory
location.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RSJFS Following an invalidate operation, updates made visible by observers that access memory at the point to which the
invalidate is defined are made visible to an observer that controls the cache.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RPGXK An invalidate operation might result in the loss of updates to the locations affected by the operation that have been
written by observers that access the cache.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RTKBD If the address of an entry on which the invalidate operates does not have a Normal cacheable attribute, or if the
cache is disabled, then an invalidate operation ensures that this address is not present in the cache.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RJTXK If the address of an entry on which the invalidate operates has the Normal cacheable attribute, the cache invalidate
operation cannot ensure that the address is not present in an enabled cache.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RSDVP A clean and invalidate operation behaves as the execution of a clean operation followed immediately by an
invalidate operation. Both operations are performed to the same location.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RVKSN The clean operation cleans from the level of cache that is specified through at least the next level of cache away
from the PE.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RGFXB The invalidate operation invalidates only at the level specified.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RKVSM For set/way operations and for All (entire cache) operations, the cache maintenance operation is to the next level
of caching.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RJTWT For address operations, the cache maintenance operation is to the point of coherency (PoC) or to the point of
unification (PoU) depending on the settings in CLIDR.{LoC,LOUU}.

Applies to an implementation of the architecture from Armv8.0-M onwards.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

245

Chapter B6. Memory Model
B6.32. Cache maintenance operations

RXLHX Data cache maintenance operations affect data caches and unified caches.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RQKMF Instruction cache maintenance operations only affect instruction caches.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RRSVL Cache maintenance operations are memory mapped, 32-bit write-only operations.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RNSHH Cache maintenance operations can have one of the following side-effects:

• Any location in the cache might be cleaned.
• Any unlocked location in the cache might be cleaned and invalidated.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RDWMR The ICIMVAU, DCIMVAC, DCCMVAU, DCCMVAC, and DCCIMVAC operations require the physical address in the
memory map but it does not have to be cache-line aligned.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RHCTC For DCISW, DCCSW, and DCCISW, the STR operation identifies the cache line to which it applies by specifying the
following:

• The cache set the line belongs to.
• The way number of the line in the set.
• The cache level.

The format of the register data for a set/way operation is:

0Way

31 32–A
31–A

B
B–1

L
L–1

4 3 2 1 0

SBZ Set SBZ Level

Where:

A = Log2(ASSOCIATIVITY), rounded up to the next integer if necessary.

B = (L + S).

L = Log2(LINELEN).

S = Log2(NSETS), rounded up to the next integer if necessary. ASSOCIATIVITY, LINELEN (line length, in
bytes), and NSETS (number of sets) have their usual meanings and are the values for the cache level being operated
on.

The values of A and S are rounded up to the next integer.

Level= ((Cache level to operate on)-1). For example, this field is 0 for operations on an L1 cache, or 1 for
operations on an L2 cache.

Set = The number of the set to operate on.

Way = The number of the way to operate on.

• If L == 4 then there is no SBZ field between the set and level fields in the register.

• If A == 0 there is no way field in the register, and register bits[31:B] are SBZ.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

246

Chapter B6. Memory Model
B6.32. Cache maintenance operations

• If the level, set, or way field in the register is larger than the size implemented in the cache, then the effect of
the operation is UNPREDICTABLE.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RRSBX After the completion of an instruction cache maintenance operation, a context synchronization event guarantees
that the effects of the cache maintenance operation are visible to all instruction fetches that follow the context
synchronization event.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IDHJQ Arm recommends that, wherever possible, all caches that require maintenance to ensure coherency are included in
the caches affected by the architecturally-defined cache maintenance operations.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RLRGS It is IMPLEMENTATION DEFINED whether the DCIMVAC and DCISW operations, when performed from Non-secure
state either:

• Clean any data that might be Secure data before invalidating it.
• Do not invalidate Secure data.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

RVKDF ICIALLU, ICIMVAU, DCCMVAU, DCCMVAC, DCCSW, DCCIMVAC, DCCISW, and BPIALL operations on Secure data
might be ignored if the operation was performed from Non-secure state.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

IMLLC The following is the sequence of cache cleaning operations for a line of self-modifying code.

; Enter this code with <Rx> containing the new 32-bit instruction and <Ry>;
containing the address of the instruction.
; Use STRH in the first line instead of STR for a 16-bit instruction.
STR <Rx>, [<Ry>] ; Write instruction to memory
DSB ; Ensure write is visible
MOV <Rt>, 0xE000E000 ; Create pointer to base of System Control Space
STR <Ry>, [<Rt>,#0xF64] ; Clean data cache by address to point of unification
DSB ; Ensure visibility of the data cleaned from the cache
STR <Ry>, [<Rt>,#0xF58] ; Invalidate instruction cache by address to PoU
STR <Ry>, [<Rt>,#0xF78] ; Invalidate branch predictor
DSB ; Ensure completion of the invalidations
ISB ; Synchronize fetched instruction stream

Applies to an implementation of the architecture from Armv8.0-M onwards.

RHXMM If the Security attribution of memory is changed, it is IMPLEMENTATION DEFINED whether cache maintenance
operations are required to keep the system state valid.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

RJFGF In the cache maintenance instructions that operate by Set/Way, if any index argument is larger than the value
supported by the implementation, then the behavior is CONSTRAINED UNPREDICTABLE and one of the following
occurs:

• The instruction generates a BusFault.

• The instruction performs cache maintenance on one of the following:

– No cache lines.
– A single arbitrary cache line.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

247

Chapter B6. Memory Model
B6.32. Cache maintenance operations

– Multiple arbitrary cache lines.

Applies to an implementation of the architecture from Armv8.0-M. Note, a BusFault requires M.

See also:

Cache Maintenance Operations.

Cache Maintenance Operations (NS alias).

B6.8 Observability of memory accesses on page 208.

B6.15 Cacheability attributes on page 221.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

248

Chapter B6. Memory Model
B6.33. Ordering of cache maintenance operations

B6.33 Ordering of cache maintenance operations

RGCNB All cache and branch predictor maintenance operations that do not specify an address execute, relative to each
other, in program order.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RGXNL All cache maintenance operations that specify an address:

• Execute in program order relative to all cache operations that do not specify an address.
• Execute in program order relative to all cache maintenance operations that specify the same address.
• Can execute in any order relative to cache maintenance operations that specify a different address.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RRTJG There is no restriction on the ordering of data or unified cache maintenance operation by address relative to any
explicit load or store.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RMJPP There is no restriction on the ordering of a data or unified cache maintenance operation by set/way relative to any
explicit load or store.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IVXXZ A DSB instruction can be inserted to enforce ordering as required.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RSWBG For the ICIALLU operation, the value in the register specified by the STR instruction that performs the operation is
ignored.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IZQQZ In a PE with the Security Extension, if cache maintenance operations are required when the security attribution of
memory is changed, the following sequence of steps can be followed:

1. If the attribution of the address range changes from Secure to Non-secure, ensure that memory does not
contain any data that is to remain secure.

2. Execute a DSB instruction.
3. Clean the affected lines in data or unified caches using the DCC* instruction.
4. Execute a DSB instruction.
5. Change the security attribution of the address range.
6. Execute a DSB instruction.
7. Invalidate the affected lines in all caches using the DCI* and ICI* instructions.
8. Execute a Context synchronization event.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B6.13.3 Data Synchronization Barrier on page 215.

B9.2 Security attribution on page 271.

B6.32 Cache maintenance operations on page 245.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

249

Chapter B6. Memory Model
B6.34. Branch predictor maintenance operations

B6.34 Branch predictor maintenance operations

RHVXX Branch predictor maintenance operations are independent of cache maintenance operations.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RNSRK A Context synchronization event event that follows a branch predictor maintenance operation guarantees that the
effects of the branch predictor maintenance operation are visible to all instructions after the Context synchronization
event.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RHRXF For the BPIALL operation, the value in the register specified by the STR instruction that performs the operation is
ignored.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RLXHX As a side-effect of a branch predictor maintenance operation, any entry in the branch predictor might be invalidated.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

Cache Maintenance Operations.

Cache Maintenance Operations (NS alias).

BPIALL, Branch Predictor Invalidate All.

B6.13 Memory barriers on page 214.

DSB.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

250

Chapter B7
The System Address Map

This chapter specifies the Armv8-M system address map rules. It contains the following sections:

B7.1 System address map on page 252.

B7.2 The System region of the system address map on page 253.

B7.3 The System Control Space (SCS) on page 255.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

251

Chapter B7. The System Address Map
B7.1. System address map

B7.1 System address map

RFQSD The address space is divided into the following regions:

Address Region Memory type XN? Cache Shareability Example usage
0x00000000 - Code Normal - WT RA Non-shareable Typically ROM or flash memory.
0x1FFFFFFF
0x20000000 - SRAM Normal - WBWA RA Non-shareable SRAM region typically used for on-chip RAM.
0x3FFFFFFF
0x40000000 - Peripheral Device, nGnRE XN - Shareable On-chip peripheral address space.
0x5FFFFFFF
0x60000000 - RAM Normal - WBWA RA Non-shareable Memory with write-back, write allocate
0x7FFFFFFF cache attribute for L2 and L3 cache support.
0x80000000 - RAM Normal - WT RA Non-shareable Memory with Write-Through cache attribute.
0x9FFFFFFF
0xA0000000 - Device Device, nGnRE XN - Shareable Peripherals accessible to all Requesters.
0xBFFFFFFF
0xC0000000 - Device Device, nGnRE XN - Non-Shareable Peripherals accessible only to the PE.
0xDFFFFFFF
0xE0000000 - System PPB Device, nGnRnE XN - Shareable 1 MB region reserved as the PPB.
0xE00FFFFF This supports key resources, including

the System Control Space, and debug features.
0xE0100000 - System Vendor_SYS Device, nGnRE XN - Shareable Vendor System Region.
0xFFFFFFFF

WT - Write-Through.

RA - Read-allocate.

WBWA - Write-back, write-allocate.

XN - Memory with the Execute Never memory attribute.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IXXGQ The term boundary is used to indicate the divide between memory regions stated in the system address map.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RMBRB An access that crosses a boundary is UNPREDICTABLE. This rule also applies to the 0xFFFFFFFF - 0x00000000
boundary.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RDNBD An unaligned or multi-word access that crosses a 0.5GB memory region boundary is UNPREDICTABLE.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B7.2 The System region of the system address map on page 253.

B6.2 Address space on page 198.

B6.1 Memory accesses on page 197.

B6.24 Caches on page 236.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

252

Chapter B7. The System Address Map
B7.2. The System region of the system address map

B7.2 The System region of the system address map

RMHGM The system region of the system address map is as follows:

0x00000000

0xE0000000

0xE000E000

0xE000EFFF

0xE0100000

 0xFFFFFFFF

Secure
and

 Non-secure
 SCS††

IMPLEMENTATION DEFINED vendor system region, Vendor_SYS

PPB†††

System region of
the address map

0xE000EC00

0xE000ED8F

† System Control Block (SCB).
†† System Control Space (SCS).
††† Private Peripheral Bus (PPB).

0xE000F000

0xE002DFFF

0xE000DFFF

0xE000EBFF

0xE000ED90

 0xDFFFFFFF

0xE002EBFF

0xE002EFFF

Non-secure
Alias

 SCS††

0xE002EC00

0xE002ED8F

Non-secure
Alias
SCB†

0xE002F000

0xE002E000

0xE002ED90

Secure
and

Non-Secure
 SCB†

0xE001E000

0xE001FFFF

0xE003E000

IMPLEMENTATION
DEFINED

Secure and
Non-secure

 Address Space

IMPLEMENTATION
DEFINED

Non-secure Address
Space 0xE003FFFF

Applies to an implementation of the architecture from Armv8.0-M. Note, The IMPDEF S & NS Address Space and IMPDEF
NS Address space are only available in an Armv8.1-M implementation.

RMXRW In a PE without the Security Extension, the Non-secure SCS is RAZ/WI and any unprivileged access to the
Non-secure SCS results in a BusFault.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M && !S. Note,
if !M a HardFault is generated.

IFWLM Arm recommends that Vendor_SYS is divided as follows:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

253

Chapter B7. The System Address Map
B7.2. The System region of the system address map

• 0xE0100000-0xEFFFFFFF is reserved.
• Vendor resources start at 0xF0000000.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IMSFV Arm strongly recommends that the IMPLEMENTATION DEFINED Secure and Non-secure Address space, 0
xE001E000 - 0xE001FFFF, and the IMPLEMENTATION DEFINED Non-secure alias Address space, 0xE003E000 -
0xE003FFFF, are implemented symmetrically.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - S. Note, The
IMPDEF S & NS Address Space and IMPDEF NS Address space are only available in an Armv8.1-M implementation.

RDQQS Unprivileged access to the PPB causes BusFault errors unless otherwise stated. Unprivileged accesses can be
enabled to the Software Trigger Interrupt Register in the System Control Space by programming a control bit in
the Configuration and Control Register.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RRJHJ If the exception entry context stacking, exception return context unstacking, lazy floating-point state preservation,
or the stacking or unstacking of a FNC_RETURN stack frame, results in an access to an address within the PPB
space the behavior of the access is CONSTRAINED UNPREDICTABLE and is one of the following:

• Generates a BusFault.
• Perform the specified access to the PPB space.

This does not apply to the VLSTM instruction.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B7.1 System address map on page 252.

B7.3 The System Control Space (SCS) on page 255.

STIR, Software Triggered Interrupt Register.

CCR, Configuration and Control Register.

B12.1.2 Debug resources on page 287.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

254

Chapter B7. The System Address Map
B7.3. The System Control Space (SCS)

B7.3 The System Control Space (SCS)

RCQVK The System Control Space (SCS) provides registers for control, configuration, and status reporting.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RCFPK The Secure view of the NS alias is identical to the Non-secure view of normal addresses unless otherwise stated.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

RGLNG Privileged accesses to unimplemented registers are RES0.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RNDML Unprivileged accesses to unimplemented registers will generate a BusFault unless otherwise stated.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

RBMLS The side effects of any access to the SCS that performs a context-altering operation take effect when the access
completes. A DSB instruction can be used to guarantee completion of a previous SCS access.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RWQQB A context synchronization event guarantees that the side effects of a previous SCS access are visible to all
instructions in program order following the context synchronization event.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B7.2 The System region of the system address map on page 253.

System Control Block.

System Control Block (NS alias).

Debug Control Block.

Debug Control Block (NS alias).

STIR, Software Triggered Interrupt Register.

SYST_CSR, SysTick Control and Status Register.

Chapter B11 Nested Vectored Interrupt Controller on page 279.

Chapter B9 The Armv8-M Protected Memory System Architecture on page 267.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

255

Chapter B8
Synchronization and Semaphores

This chapter specifies the Armv8-M architecture rules for exclusive access instructions and non-blocking synchro-
nization of shared memory. It contains the following sections:

B8.1 Exclusive access instructions on page 257.

B8.2 The local monitors on page 258.

B8.3 The global monitor on page 260.

B8.4 Exclusive access instructions and the monitors on page 264.

B8.5 Load-Exclusive and Store-Exclusive instruction constraints on page 265.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

256

Chapter B8. Synchronization and Semaphores
B8.1. Exclusive access instructions

B8.1 Exclusive access instructions

RLQDX Armv8 provides non-blocking synchronization of shared memory, using synchronization primitives for accesses to
both Normal and Device memory.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RRGCP The synchronization primitives and associated instructions are as follows:

Function T32 instruction
Load-Exclusive

Byte LDREXB, LDAEXB
Halfword LDREXH, LDAEXH
Word LDREX, LDAEX

Store-Exclusive
Byte STREXB, STLEXB
Halfword STREXH, STLEXH
Word STREX, STLEX

Clear-Exclusive
CLREX

Applies to an implementation of the architecture from Armv8.0-M onwards.

RMWFP A Load-Exclusive instruction performs a load from memory, and:

• The executing PE marks the memory address for exclusive access.
• The local monitor of the executing PE transitions to the Exclusive Access state.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RJHMH The size of the marked memory block is called the Exclusives reservation granule (ERG), and is an IMPLEMENTA-
TION DEFINED value that is of a power of 2 size, in the range 4 - 512 words.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RMTTN A marked block of the ERG is created by ignoring the least significant bits of the memory address. A marked
address is any address within this marked block.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RFMXK In some implementations the CTR identifies the Exclusives reservation granule. Where this is not the case, the
Exclusives reservation granule is treated as having the maximum of 512 words.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B8.2 The local monitors on page 258.

B8.3 The global monitor on page 260.

B8.4 Exclusive access instructions and the monitors on page 264.

B8.5 Load-Exclusive and Store-Exclusive instruction constraints on page 265.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

257

Chapter B8. Synchronization and Semaphores
B8.2. The local monitors

B8.2 The local monitors

RQTFP Any non-aborted attempt by the same PE to use a Store-Exclusive instruction to modify any address is guaranteed
to clear the marking.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RNJWC When a PE writes using any instruction other than a Store-Exclusive instruction:

• If the write is to a physical address that is not marked as Exclusive Access by its local monitor and that local
monitor is in the Exclusive Access state, it is IMPLEMENTATION DEFINED whether the write affects the state
of the local monitor.

• If the write is to a physical address that is marked as Exclusive Access by its local monitor, it is IMPLEMEN-
TATION DEFINED whether the write affects the state of the local monitor.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RPFFT It is IMPLEMENTATION DEFINED whether a store to a marked physical address causes a mark in the local monitor
to be cleared if that store is by an observer other than the one that caused the physical address to be marked.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RKXNM The state machine for the local monitor is shown here.

Open

Access

Exclusive

Access

LoadExcl(x) LoadExcl(x)

CLREX

StoreExcl(x)

Store(x)

CLREX

Store(!Marked_address)*

Store(Marked_address)*

Operations marked * are possible alternative IMPLEMENTATION DEFINED options.

Store(Marked_address)*

StoreExcl(Marked_address)

StoreExcl(!Marked_address)

Store(!Marked_address)*

In the diagram: LoadExcl represents any Load-Exclusive instruction

StoreExcl represents any Store-Exclusive instruction

Store represents any other store instruction.

Any LoadExcl operation updates the marked address to the most significant bits of the address x used for the operation.

Speculation or other cause

The local monitor only transitions to the Exclusive Access state as the result of the architectural execution of one
of the operations shown in the diagram.

Any transition of the local monitor to the Open Access state that is not caused by the architectural execution of an
operation shown here does not indefinitely delay forward progress of execution.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RWTHJ The local monitor does not hold any physical address, but instead treats any access as matching the address of the
previous Load-Exclusive instruction.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RJWQS A local monitor implementation can be unaware of Load-Exclusive and Store-Exclusive instructions from other
PEs.

Applies to an implementation of the architecture from Armv8.0-M onwards.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

258

Chapter B8. Synchronization and Semaphores
B8.2. The local monitors

RKJQW The architecture does not require a load instruction by another PE that is not a Load-Exclusive instruction to have
any effect on the local monitor.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RXMML It is IMPLEMENTATION DEFINED whether the transition from Exclusive Access to Open Access state occurs when
the Store or StoreExcl is from another observer.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RMRSD The architecture permits a local monitor to transition to the Open Access state as a result of speculation, or from
some other cause.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RHRHC An exception return clears the local monitor.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B8.4 Exclusive access instructions and the monitors on page 264.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

259

Chapter B8. Synchronization and Semaphores
B8.3. The global monitor

B8.3 The global monitor

RFKFB For each PE in the system, the global monitor:

• Can hold at least one marked block.
• Maintains a state machine for each marked block it can hold.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RVDLP For each PE, the architecture only requires global monitor support for a single marked address. Any situation that
might benefit from the use of multiple marked addresses on a single PE is CONSTRAINED UNPREDICTABLE.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RNNDC The global monitor can either reside in a block that is part of the hardware on which the PE executes or exist as a
secondary monitor at the memory interfaces.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IXTLH The IMPLEMENTATION DEFINED aspects of the monitors mean that the global monitor and the local monitor can
be combined into a single unit, provided that the unit performs the global monitor and the local monitor functions
defined in this manual.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IKDWM For shareable memory locations, in some implementations and for some memory types, the properties of the global
monitor require functionality outside the PE. Some system implementations might not implement this functionality
for all locations of memory. In particular, this can apply to:

• Any type of memory in the system implementation that does not support hardware cache coherency.
• Non-cacheable memory, or memory treated as Non-cacheable, in an implementation that does support

hardware cache coherency.

In such a system, it is defined by the system:

• Whether the global monitor is implemented.
• If the global monitor is implemented, which address ranges or memory types it monitors.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IQJNL The only memory types for which it is architecturally guaranteed that a global exclusive monitor is implemented
are:

• Inner Shareable, Inner Write-Back, Outer Write-Back Normal memory with Read allocation hint and Write
allocation hint and not transient.

• Outer Shareable, Inner Write-Back, Outer Write-Back Normal memory with Read allocation hint and Write
allocation hints and not transient.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RHBKJ The set of memory types that support atomic instructions includes all of the memory types for which a global
monitor is implemented.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RHLHS If the global monitor is not implemented for an address range or memory type, then performing a Load-
Exclusive/Store-Exclusive instruction to such a location, in the absence of any other fault, has one or more
of the following effects:

• The instruction generates BusFault.
• The instruction generates a DACCVIOL MemManage fault.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

260

Chapter B8. Synchronization and Semaphores
B8.3. The global monitor

• The instruction is treated as a NOP.
• The Load-Exclusive instruction is treated as if it were accessing a Non-shareable location, but the state of the

local monitor becomes UNKNOWN.
• The Store-Exclusive instruction is treated as if it were accessing a Non-shareable location, but the state of the

local monitor becomes UNKNOWN.
• The value held in the result register of the Store-Exclusive instruction becomes UNKNOWN.

Applies to an implementation of the architecture from Armv8.0-M. Note, a MemManage Fault requires M && MPU, a BusFault
requires M.

RFQRT For write transactions generated by non-PE observers that do not implement exclusive accesses or other atomic
access mechanisms, the effect that writes have on the global monitor and the local monitor that are used by an Arm
PE is IMPLEMENTATION DEFINED. The writes might not clear the global monitors of other PEs for:

• Some address ranges.
• Some memory types.

Applies to an implementation of the architecture from Armv8.0-M onwards.

B8.3.1 Load-Exclusive and Store-Exclusive

RRXVB The global monitor only supports a single outstanding exclusive access to shareable memory for each PE.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RGXLF The architecture does not require a load instruction by another PE, that is not a Load-Exclusive instruction, to have
any effect on the global monitor.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RMPKM A Load-Exclusive instruction by one PE has no effect on the global monitor state for any other PE.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RMFGC A Store-Exclusive instruction performs a conditional store to memory:

• The store is guaranteed to succeed only if the physical address accessed is marked as exclusive access for the
requesting PE and both the local monitor and the global monitor state machines for the requesting PE are in
the Exclusive Access state. In this case:

– A status value of 0 is returned to a register to acknowledge the successful store.
– The final state of the global monitor state machine for the requesting PE is IMPLEMENTATION DEFINED.
– If the address accessed is marked for exclusive access in the global monitor state machine for any other

PE then that state machine transitions to Open Access state.

• If no address is marked as exclusive access for the requesting PE, the store does not succeed:

– A status value of 1 is returned to a register to indicate that the store failed.
– The global monitor is not affected and remains in Open Access state for the requesting PE.

• If a different physical address is marked as exclusive access for the requesting PE, it is IMPLEMENTATION
DEFINED whether the store succeeds or not:

– If the store succeeds a status value of 0 is returned to a register, otherwise a value of 1 is returned.
– If the global monitor state machine for the PE was in the Exclusive Access state before the Store-

Exclusive instruction it is IMPLEMENTATION DEFINED whether that state machine transitions to the
Open Access state.

Applies to an implementation of the architecture from Armv8.0-M onwards.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

261

Chapter B8. Synchronization and Semaphores
B8.3. The global monitor

RNNMG In a shared memory system, the global monitor implements a separate state machine for each PE in the system.
The state machine for accesses to shareable memory by PE(n) can respond to all the shareable memory accesses
visible to it.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RWKPJ In a shared memory system, the global monitor implements a separate state machine for each observer that can
generate a Load-Exclusive or a Store-Exclusive instruction in the system.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RNWWH Whenever the global monitor state for a PE changes from Exclusive access to Open access, an event is generated
and held in the Event register for that PE. This register is used by the Wait for Event mechanism.

Applies to an implementation of the architecture from Armv8.0-M onwards.

B8.3.2 Load-Exclusive and Store-Exclusive in Shareable memory

RHKQT A Load-Exclusive instruction from shareable memory performs a load from memory, and causes the physical
address of the access to be marked as exclusive access for the requesting PE. This access can also cause the
exclusive access mark to be removed from any other physical address that has been marked by the requesting PE.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RGDMD The state machine for PE(n) in a global monitor is as follows.

Any LoadExcl operation updates the marked address to the most significant bits of the address x used for the operation.

Open

Access

Exclusive

Access

LoadExcl(x,n) LoadExcl(x,n)

CLREX(n)

StoreExcl(x,n)

CLREX(n)*

StoreExcl(Marked_address,!n)‡
Store(Marked_address,!n)
StoreExcl(Marked_address,n)*

Store(!Marked_address,n)

Operations marked * are possible alternative IMPLEMENTATION DEFINED options.

In the diagram: LoadExcl represents any Load-Exclusive instruction

StoreExcl represents any Store-Exclusive instruction

Store represents any other store instruction.

LoadExcl(x,!n)

StoreExcl(x,!n)
Store(x,n)

StoreExcl(!Marked_address,n)*
Store(Marked_address,n)*

StoreExcl(Marked_address,!n)‡

StoreExcl(Marked_address,n)*
StoreExcl(!Marked_address,n)*
Store(Marked_address,n)*
CLREX(n)*
StoreExcl(!Marked_address,!n)
Store(!Marked_address,!n)
CLREX(!n)

‡StoreExcl(Marked_address,!n) clears the monitor only if the StoreExcl updates memory

Store(x,!n)

CLREX(!n)

Applies to an implementation of the architecture from Armv8.0-M onwards.

RRGFK Whether a Store-Exclusive instruction successfully updates memory or not depends on whether the address
accessed matches the marked shareable memory address for the PE issuing the Store-Exclusive instruction, and
whether the local monitor and the global monitor are in the exclusive state.

Applies to an implementation of the architecture from Armv8.0-M onwards.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

262

Chapter B8. Synchronization and Semaphores
B8.3. The global monitor

RQVWF When the global monitor is in the Exclusive Access state, it is IMPLEMENTATION DEFINED whether a CLREX
instruction causes the global monitor to transition from Exclusive Access to Open Access state.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RDLMP A Load-Exclusive instruction can only update the marked shareable memory address for the PE issuing the
Load-Exclusive instruction.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RBSGB It is IMPLEMENTATION DEFINED:

• Whether a modification to a Non-shareable memory location can cause a global monitor to transition from
Exclusive Access to Open Access state.

• Whether a Load-Exclusive instruction to a Non-shareable memory location can cause a global monitor to
transition from Open Access to Exclusive Access state.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B8.4 Exclusive access instructions and the monitors on page 264.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

263

Chapter B8. Synchronization and Semaphores
B8.4. Exclusive access instructions and the monitors

B8.4 Exclusive access instructions and the monitors

RVXWN The Store-Exclusive instruction defines the register to which the status value of the monitors is returned.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RDTRN A Store-Exclusive instruction performs a conditional store to memory that depends on the state of the local monitor:

• If the local monitor is in the Exclusive Access state:

– If the address of the Store-Exclusive instruction is the same as the address that has been marked in the
monitor by an earlier Load-Exclusive instruction, then the store occurs. Otherwise, it is IMPLEMENTA-
TION DEFINED whether the store occurs.

– A status value is returned to a register:

* If the store took place the status value is 0.
* Otherwise, the status value is 1.

– The local monitor of the executing PE transitions to the Open Access state.

• If the local monitor is in the Open Access state:

– No store takes place.
– A status value of 1 is returned to a register.
– The local monitor remains in the Open Access state.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RDFNB A Store-Exclusive instruction performs a store to Shareable memory that depends on the state of both the local
monitor and the global monitor:

• If both the local monitor and the global monitor are in the Exclusive Access state:

– If the address of the Store-Exclusive instruction is the same as the address that has been marked in the
monitor by an earlier Load-Exclusive instruction, then the store occurs. Otherwise, it is IMPLEMENTA-
TION DEFINED whether the store occurs.

– A status value is returned to a register:

* If the store took place the status value is 0.
* Otherwise, the status value is 1.

– The local monitor of the executing PE transitions to the Open Access state.

• If either the local monitor or the global monitor is in the Open Access state:

– No store takes place.
– A status value of 1 is returned to a register.
– The local monitor of the executing PE transitions to the Open Access state.
– The global monitor that is associated with the executing PE transitions to the Open Access state.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B8.2 The local monitors on page 258.

B8.3 The global monitor on page 260.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

264

Chapter B8. Synchronization and Semaphores
B8.5. Load-Exclusive and Store-Exclusive instruction constraints

B8.5 Load-Exclusive and Store-Exclusive instruction constraints

IRTHW The Load-Exclusive and Store-Exclusive instructions are intended to work together as a pair, for example a
LDREX/STREX pair or a LDREXB/STREXB pair.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RBHPN The architecture does not require an address or size check as part of the IsExclusiveLocal() function.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RLHLG If two StoreExcl instructions are executed without an intervening LoadExcl instruction the second StoreExcl
instruction returns a status value of 1.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RDVRQ The architecture does not require every LoadExcl instruction to have a subsequent StoreExcl instruction.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RJXXS If the transaction size of a StoreExcl instruction is different from the preceding LoadExcl instruction in the
same thread of execution, behavior is a CONSTRAINED UNPREDICTABLE choice of:

• The StoreExcl either passes or fails, and the status value returned by the StoreExcl is UNKNOWN.
• The block of data of the size of the larger of the transaction sizes used by the LoadExcl/StoreExcl pair at

the address accessed by the LoadExcl/StoreExcl pair, is UNKNOWN.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RGVWN The hardware only ensures that a LoadExcl/StoreExcl pair succeeds if the LoadExcl and the StoreExcl

have the same transaction size.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RXLSK Forward progress can only be made using LoadExcl/StoreExcl loops if, for any LoadExcl/StoreExcl loop
within a single thread of execution if both of the following are true:

• There are no explicit memory accesses, pre-loads, direct or indirect register writes, cache maintenance
instructions, SVC instructions, or exception returns between the Load-Exclusive and the Store-Exclusive.

• The following conditions apply between the Store-Exclusive having returned a fail result and the retry of the
Load-Exclusive:

– There are no stores to any location within the same Exclusives reservation granule that the Store-
Exclusive is accessing.

– There are no direct or indirect register writes, other than changes to the flag fields in APSR or FPSCR,
caused by data processing or comparison instructions.

– There are no direct or indirect cache maintenance instructions, SVC instructions, or exception returns.

The exclusive monitor can be cleared at any time without an application-related cause, provided that such
clearing is not systematically repeated so as to prevent the forward progress in finite time of at least one of
the threads that is accessing the exclusive monitor.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IRFXR Keeping the LoadExcl and the StoreExcl operations close together in a single thread of execution minimizes
the chance of the exclusive monitor state being cleared between the LoadExcl instruction and the StoreExcl
instruction. Therefore, for best performance, Arm strongly recommends a limit of 128 bytes between LoadExcl

and StoreExcl instructions in a single thread of execution.

Applies to an implementation of the architecture from Armv8.0-M onwards.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

265

Chapter B8. Synchronization and Semaphores
B8.5. Load-Exclusive and Store-Exclusive instruction constraints

RPKQF The architecture sets an upper limit of 2048 bytes on the Exclusives reservation granule that can be marked as
exclusive.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IPGGN For performance reasons, Arm recommends that objects that are accessed by exclusive accesses are separated by
the size of the exclusive reservations granule.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RXPDN After taking a BusFault or a MemManage fault, the state of the exclusive monitors is UNKNOWN.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

RFCRN For the memory location accessed by a LoadExcl/StoreExcl pair, if the memory attributes for a StoreExcl
instruction are different from the memory attributes for the preceding LoadExcl instruction in the same thread of
execution, behavior is CONSTRAINED UNPREDICTABLE.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RDMJW The effect of a data or unified cache invalidate, clean, or clean and invalidate instruction on a local exclusive
monitor or a global exclusive monitor that is in the Exclusive Access state is CONSTRAINED UNPREDICTABLE,
and the instruction might clear the monitor, or it might leave it in the Exclusive Access state. For address-based
maintenance instructions, this also applies to the monitors of other PEs in the same Shareability domain as the
PE executing the cache maintenance instruction, as determined by the Shareability domain of the address being
maintained.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IMDHL Arm strongly recommends that implementations ensure that the use of such maintenance instructions by a PE in
the Non-secure state cannot cause a denial of service on a PE in the Secure state.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RRRTJ In the event of repeatedly-contending LoadExcl/StoreExcl instruction sequences from multiple PEs, an imple-
mentation ensures that forward progress is made by at least one PE.

Applies to an implementation of the architecture from Armv8.0-M onwards.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

266

Chapter B9
The Armv8-M Protected Memory System Architecture

This chapter specifies the Armv8-M Protected Memory System Architecture (PMSAv-8) rules, and in particular the
rules for the optional Memory Protection Unit(MPU) and the optional Security Attribution Unit (SAU). It contains
the following sections:

B9.1 Memory Protection Unit on page 268.

B9.2 Security attribution on page 271.

B9.3 Security attribution unit (SAU) on page 274.

B9.4 IMPLEMENTATION DEFINED Attribution Unit (IDAU) on page 275.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

267

Chapter B9. The Armv8-M Protected Memory System Architecture
B9.1. Memory Protection Unit

B9.1 Memory Protection Unit

RHPNK In an implementation that includes the Protected Memory System Architecture (PMSA), system address space is
protected by a Memory Protection Unit (MPU).

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - MPU.

RTBPJ PMSAv8-M only supports a unified memory model. All enabled regions support instruction and data accesses.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - MPU.

RHBNG Memory attributes are determined from the default system address map or by using an MPU.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - MPU.

RBXCN MPU support in Armv8-M is optional.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - MPU.

RMCCL The default memory map can be configured to provide a background region for privileged accesses.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - MPU.

RJVJC When the MPU is disabled or not present, accesses use memory attributes from the default system address map.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - !MPU.

RKLHL If the MPU is enabled, attributes for memory accesses that hit in a single region are provided by the hit region.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - MPU.

RDBBM The MPU divides the memory into regions.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - MPU.

RJVCN An individual MPU region is defined by:

Address >= MPU_RBAR.BASE:'00000' && Address <= MPU_RLAR.LIMIT:'11111'

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - MPU.

RMNDS The number of supported MPU regions is IMPLEMENTATION DEFINED.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - MPU.

IWTCL Because the MPU_TYPE register is banked, an implementation can have a different number of MPU regions,
including no MPU regions, for each Security state.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S && MPU.

RXGFK All MPU regions are aligned to a multiple of 32 bytes.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - MPU.

RBPGB The PE can fetch and execute instructions from each MPU region according to the value of MPU_RBAR.XN.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - MPU.

RNBPN Accesses to the following region of memory 0xE0000000-0xE00FFFFF, the Private Peripheral Bus (PPB) always
use memory attributes from the default system address map.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - MPU.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

268

Chapter B9. The Armv8-M Protected Memory System Architecture
B9.1. Memory Protection Unit

RZLHD Unless otherwise stated, all load, store, and instruction fetch transactions are subject to an MPU check.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - MPU.

RDNXT If MPU_CTRL.ENABLE is zero, MPU checks are carried out against the default system address map and not
against any defined MPU regions.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - MPU.

IHSCD The MPU check is one of a number of checks carried out on any load, store or instruction fetch transaction
including alignment, security attribution checks, and a check for any BusFaults.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - MPU.

RVHHL Exception vector reads from the Vector Address Table always use the default system address map and are not
subject to an MPU check.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - MPU.

RVWXJ If MPU_CTRL.HFNMIENA is set to 0, any load, store or instruction fetch transaction where the requested
execution priority is negative will use the Default Address Map for MPU checks.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - MPU.

RVPJQ For the purposes of MPU checks, any change in the current execution priority resulting from a MSR or CPS requires
a Context synchronization event to guarantee visibility.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - MPU.

RTGQD Any load, store or instruction fetch transactions to the PPB, within the range 0xE0000000-0xE00FFFFF, are not
subject to an MPU check but are checked against the default system address map. Instruction fetches to this region
generate an IACCVIOL MemManage fault.

Applies to an implementation of the architecture from Armv8.0-M. Note, MPU required for MPU checks.

RLLLP Any MPU region lookup performed for a load, store or instruction fetch transaction will generate a precise
MemManage Fault if any of the following is true:

• The address accessed by the load, store or instruction fetch transaction matches more than one MPU region.
• The load, store or instruction fetch transaction does not match all of the access conditions for the MPU region

being accessed.
• The load, store or instruction fetch transaction matches a background region or the default memory map.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - MPU.

RKDJG The MPU is restricted in how it can change the default memory map attributes associated with System space, that
is, for addresses in the region 0xE0100000-0xFFFFFFFF. Unless otherwise stated, system space is always XN
(Execute Never) and it is always Device-nGnR. If the MPU maps this to a type other than Device-nGnRnE, it is
UNKNOWN whether the region is treated as Device-nGnRE or as Device-nGnRnE.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - MPU.

RKMTF Unless otherwise stated for data accesses, the MPU memory attribution and privilege checking uses the configura-
tion registers that correspond to the current Security state of the PE.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - MPU && S .

RRLBR For instruction fetches, the MPU memory attribution and privilege checking uses the configuration registers
associated with the security of the target address.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - MPU.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

269

Chapter B9. The Armv8-M Protected Memory System Architecture
B9.1. Memory Protection Unit

RPLJG Setting MPU_CTRL.HFNMIENA. to zero disables the MPU if the requested priority for the handler of the
HardFault, NMI and exceptions that the MPU is associated with is negative.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - MPU.

RRJJL When MPU_RLAR.PXN == 1, a MemManage fault is generated if the PE is executing in a privileged mode and
attempts to execute an instruction from the corresponding memory region.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MPU && M &&
PXN.

RMKJC Setting the MPU_RNR.REGION field to a value that does not correspond to an implemented memory region is
CONSTRAINED UNPREDICTABLE as follows:

• Any subsequent read of MPU_RNR.REGION returns an UNKNOWN value.
• Any read of a register that is in an unimplemented region returns an UNKNOWN value.
• Any write to a register indirected by MPU_RNR.REGION causes all state that is indirected by that register

to become UNKNOWN.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - MPU.

See also:

B7.1 System address map on page 252.

B6.7 Access rights on page 206.

B6.17 Device memory attributes on page 224.

B6.19 Shareability attributes on page 229.

B6.20 Memory access restrictions on page 230.

B6.21 Mismatched memory attributes on page 231.

B6.22 Load-Exclusive and Store-Exclusive accesses to Normal memory on page 233.

B6.23 Load-Acquire and Store-Release accesses to memory on page 234.

MPU_CTRL, MPU Control Register.

TT_RESP, Test Target Response Payload.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

270

Chapter B9. The Armv8-M Protected Memory System Architecture
B9.2. Security attribution

B9.2 Security attribution

ISBSJ The Secure Attribution Unit and the Implementation Defined Attribution Unit are collectively referred to as the
Attribution Unit (AU).

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

RJGHS The Security Extension defines three levels of memory security attribution. In ascending order of security, these
are:

1. Non-secure.
2. Secure and Non-secure callable.
3. Secure and not Non-secure callable.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

RRPKG The following units can provide security attribution information:

• A Security attribution unit (SAU) inside the PE.
• An IMPLEMENTATION DEFINED attribution unit (IDAU) external to the PE. The presence of such a unit is

IMPLEMENTATION DEFINED.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

RMGXN The attribution information from the SAU is used unless the IDAU specifies attributes with a higher security, in
which case the IDAU attributes override the SAU attributes. This rule does not apply to architecturally defined
ranges exempt from memory attribution.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

RNJGR An attribution unit (AU) violation is defined as being a violation raised by either the SAU or the IDAU.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

RQGVS All boundaries between address ranges with different security attributes are aligned to 32-byte boundaries.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

RLDTN The behavior of the following address ranges is fixed, so they are exempt from memory attribution by both the
SAU and IDAU:

0xF0000000 - 0xFFFFFFFF

If the PE implements the Security Extension, this memory range is always marked as Secure and not
Non-secure callable for instruction fetches.

If the Security Extension is not present, this range is marked as Non-secure.

Ranges exempt from checking security violation

The following address ranges are marked with the Security state indicated by NS-Req, that is, the
current state of the PE for non-debug accesses. This marking sets the NS-Attr to NS-Req:

0xE0000000 - 0xE0003FFF: ITM, DWT, FPB, PMU.

0xE0005000 - 0xE0005FFF: RAS error record registers.

0xE000E000 - 0xE000EFFF: SCS Secure and Non-secure range.

0xE002E000 - 0xE002EFFF: SCS Non-Secure alias range.

0xE0040000 - 0xE0041FFF: TPIU, ETM.

0xE00FF000 - 0xE00FFFFF: ROM table.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

271

Chapter B9. The Armv8-M Protected Memory System Architecture
B9.2. Security attribution

0xE0000000 - 0xEFFFFFFF: for instruction fetch only.

Additional address ranges specified by the IDAU.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S. Note, some
address ranges require DB. RAS and PMU are only available in an Armv8.1-M implementation.

IVPWL The Security attribution and MPU check sequence, for all data accesses which are not instruction fetches and
accesses for instruction fetches are shown in the following diagrams.

NS-Attr = Security
of Address

NS-Req == Non-secure
and NS-Attr == Secure

AUVIOL SecureFault or
LSPERR SecureFault

NS-Req == Secure

Non-secure
MemManage

Fault

Secure
MemManage

Fault

Non-secure MPU
access violation

Do access

Secure MPU
access violation

Yes
No

No Yes

No

Yes Yes

All Memory
accesses other
than Instruction

Fetches

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

272

Chapter B9. The Armv8-M Protected Memory System Architecture
B9.2. Security attribution

NS-Attr = Security
of Address

NS-Attr ==
Secure and Not

Non-secure
callable

NS-Attr ==
Non-Secure

INVEP
SecureFault

INVTRAN
SecureFault

NS-Attr ==
Secure

Non-secure
MemManage

Fault

Secure
MemManage

Fault

Non-secure MPU
access violation

Do access

Secure MPU
access violation

NoYes Yes

No Yes

Yes

NS-Req ==
Secure

Yes

No Yes

No No

Instruction fetch

If the memory transaction is lazy state preservation then NS-req is determined by FPCCR.S. If the memory
transaction is an exception vector fetch access NS-Req is set to the Security state of the exception. Unless
otherwise specified, in all other cases it is the current Security state.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

RFTFR If the memory access is caused by the execution of an SG instruction the load from the stack is undertaken with the
NS-Req set to Secure even though the SG instruction was executed from the Non-secure state.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - S.

See also:

B9.3 Security attribution unit (SAU) on page 274.

B9.4 IMPLEMENTATION DEFINED Attribution Unit (IDAU) on page 275.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

273

Chapter B9. The Armv8-M Protected Memory System Architecture
B9.3. Security attribution unit (SAU)

B9.3 Security attribution unit (SAU)

RVFLR The SAU configuration defines an IMPLEMENTATION DEFINED number of memory regions. The number of
regions is indicated by SAU_TYPE.SREGION.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

IPPLK The memory regions defined by the SAU configuration are referred to as SAU_REGIONn, where n is a number
from 0 - (SAU_TYPE.SREGION-1).

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

RRVFP The SAU region configuration fields can only be accessed indirectly using the window registers, SAU_RNR shown
in the following table.

SAU region configuration field Associated window register field
SAU_REGIONn.ENABLE SAU_RLAR.ENABLE
SAU_REGIONn.NSC SAU_RLAR.NSC
SAU_REGIONn.BADDR SAU_RBAR.BADDR
SAU_REGIONn.LADDR SAU_RLAR.LADDR

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

RKRSC When the SAU is enabled, an address is defined as matching a region in the SAU if the following is true:

Address >= SAU_REGIONn.BADDR: '00000' && Address <= SAU_REGIONn.LADDR: '11111'.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

RMPJC Memory is marked as Secure by default. However, if the address matches a region with SAU_REGIONn.ENABLE
set to 1 and SAU_REGIONn.NSC set to 0, then memory is marked as Non-secure.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

RWGDK An address that matches multiple SAU regions is marked as Secure and not Not-secure callable regardless of the
attributes specified by the regions that matched the address.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

RGVFQ When the SAU is not enabled:

• Addresses are not checked against the SAU regions.
• The attribution of the address space is determined by the SAU_CTRL.ALLNS field.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

RMBJN To permit lockdown of the SAU configuration, it is IMPLEMENTATION DEFINED whether SAU_RLAR,
SAU_RBAR, SAU_CTRL, and SAU_RNR are writable.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

RBBCT Setting the SAU_RNR.REGION field to a value that does not correspond to an implemented memory region is
CONSTRAINED UNPREDICTABLE as follows:

• Any subsequent read of SAU_RNR.REGION returns an UNKNOWN value.
• Any read of a register that is in an unimplemented region returns an UNKNOWN value.
• Any write to a register indirected by SAU_RNR.REGION causes all state that is indirected by that register to

become UNKNOWN.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

274

Chapter B9. The Armv8-M Protected Memory System Architecture
B9.4. IMPLEMENTATION DEFINED Attribution Unit (IDAU)

B9.4 IMPLEMENTATION DEFINED Attribution Unit (IDAU)

RMVCM The IDAU can provide the following Security attribution information for an address:

• Security attribution exempt. This specifies that the address is exempt from security attribution. This
information is combined with the address ranges that are architecturally required to be exempt from attribution.

• Non-secure. This specifies if the address is Secure or Non-secure.
• Non-secure callable. This specifies if code at the address can be called from Non-secure state. This attribute

is only valid if the address is marked as Secure.
• Region number. This is the region number that matches the address, and is only used by the TT instruction.
• Region number valid. This specifies that the region number is valid. This field has no effect on the attribution

of the address, and is only used by the TT instruction.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

See also:

TT, TTT, TTA, TTAT.

B9.2 Security attribution on page 271.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

275

Chapter B10
The System Timer, SysTick

This chapter specifies the Armv8-M system timer rules. It contains the following section:

B10.1 The system timer, SysTick on page 277.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

276

Chapter B10. The System Timer, SysTick
B10.1. The system timer, SysTick

B10.1 The system timer, SysTick

RBQRG In a PE without the Main Extension and without the Security Extensions, either:

• No system timers are implemented.
• One system timer, SysTick, is implemented.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - !M && !S.

RPDDL In a PE without the Main Extension but with the Security Extension, one of the following is true:

• No system timers are implemented.

• One system timer, SysTick, is implemented. ICSR.STTNS determines which Security state owns the SysTick.

• Two system timers are implemented:

– SysTick, Secure instance.
– SysTick, Non-secure instance.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - !M && S.

RCNTG In a PE with the Main Extension but without the Security Extension, one system timer, SysTick, is implemented.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M && ST &&
!S.

RXPCW In a PE with the Main and Security Extensions, two system timers are implemented:

• SysTick, Secure instance.
• SysTick, Non-secure instance.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M && S && ST.

IDXSQ There are the following SysTick registers:

• SysTick Control and Status Register (SYST_CSR).
• SysTick Reload Value Register (SYST_RVR).
• SysTick Current Value Register (SYST_CVR).
• SysTick Calibration Value Register (SYST_CALIB).

In a PE with the Security Extension and a SysTick instance dedicated to each Security state, these registers are
banked.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ST.

IVHDT Each implemented SysTick is a 24-bit decrementing, wrap-on-zero, clear-on-write counter:

• When enabled, the counter counts down from the value in SYST_CVR, SYST_CVR. When it reaches zero,
SYST_CVR is reloaded with the value held in SYST_RVR on the next clock edge.

• Reading SYST_CVR returns the value of the counter at the time of the read access.
• When the counter reaches zero, it sets SYST_CSR.COUNTFLAG to 1. Reading SYST_CSR.COUNTFLAG

clears it to 0.
• A write to SYST_CVR clears both SYST_CVR and SYST_CSR.COUNTFLAG to 0. SYST_CVR is then

reloaded with the value held in SYST_RVR on the next clock edge.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ST.

RTLGK Writing the value zero to SYST_RVR disables the SysTick on the next wrap-on-zero. The value zero is held by the
counter after the wrap. This is true even when SYST_CSR.ENABLE is 1.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ST.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

277

Chapter B10. The System Timer, SysTick
B10.1. The system timer, SysTick

RTTFT A write to SYST_CVR does not cause a SysTick exception.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ST.

IVDJQ Setting SYST_CSR.TICKINT to 1 causes the SysTick exception to become pending on the SysTick reaching zero.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ST.

IPPGV Arm recommends that before enabling a SysTick by SYST_CSR.ENABLE, software writes the required counter
value to the SYST_RVR, and then writes to the SYST_CVR to clear the SYST_CVR to zero.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ST.

IMMRQ Software can optionally use SYST_CALIB.TENMS to scale the counter to other clock rates within the dynamic
range of the counter.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ST.

RQSKV When the PE is halted in Debug state, any implemented SysTicks do not decrement.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ST && Halting
debug.

IRWFQ Each implemented SysTick is clocked by a reference clock, either the PE clock or an external system clock. It
is IMPLEMENTATION DEFINED which clock is used as the external reference clock. Arm recommends that if an
external system clock is used, the relationship between the PE clock and the external clock is documented, so that
system timings can be calculated taking into account metastability, clock skew, and jitter.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ST.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

278

Chapter B11
Nested Vectored Interrupt Controller

This chapter specifies the Armv8-M Nested Vectored Interrupt Controller (NVIC) rules. It contains the following
sections:

B11.1 NVIC definition on page 280.

B11.2 NVIC operation on page 281.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

279

Chapter B11. Nested Vectored Interrupt Controller
B11.1. NVIC definition

B11.1 NVIC definition

RXJJQ An Armv8-M PE includes an integral interrupt controller.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RWQHG The Interrupt Controller Type Register (ICTR) defines the number of external interrupt lines that are supported.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

ICTR, Interrupt Controller Type Register.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

280

Chapter B11. Nested Vectored Interrupt Controller
B11.2. NVIC operation

B11.2 NVIC operation

RSNVK It is IMPLEMENTATION DEFINED which NVIC interrupts are implemented.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RSGCR When a particular NVIC interrupt line is not implemented, the registers that are associated with it are reserved.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RCCVJ Only an interrupt that is both pending and enabled with sufficient priority can preempt PE execution.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RCVJS The following events on the input associated with an interrupt cause the pending state associated with the interrupt
to become set:

• The input is HIGH while the active state associated with the interrupt is clear.
• The input transitions from LOW to HIGH while the active state associated with the interrupt is set.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IWTFS The Armv8-M interrupt behavior provides compatibility with both active-high level-sensitive and pulse-sensitive
interrupt signaling:

• For level-sensitive interrupts, the associated exception handler runs one time for each occurrence as long as
the level is cleared before the exception handler returns. If the level of the input is HIGH after the exception
handler returns, the exception will be pended again.

• For pulse-sensitive interrupts, the associated exception handler runs one time only, regardless of the number
of pulses that the NVIC sees before the exception handler is entered. If a pulse occurs after the exception
handler has been entered, the exception will be pended again.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IHVQQ For some implementations, pulse-sensitive interrupt signals are held long enough to ensure that the PE can sample
them reliably.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RQKFW All NVIC interrupts have a programmable priority value and an associated exception number.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RXNQW NVIC interrupts can be enabled and disabled by writing to their corresponding Interrupt Set-Enable or Interrupt
Clear-Enable register bit field.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RWGDJ An implementation can hard-wire interrupt enable bits to zero if the associated interrupt line does not exist.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RRSDJ An implementation can hard-wire interrupt enable bits to one if the associated interrupt line cannot be disabled.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RNRJV It is IMPLEMENTATION DEFINED for each NVIC interrupt line supported whether an NVIC interrupt supports
either or both setting and clearing of the associated pending state under software control.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

281

Chapter B11. Nested Vectored Interrupt Controller
B11.2. NVIC operation

B3.9 Exception numbers and exception priority numbers on page 82.

B3.13 Priority model on page 94.

Nested Vectored Interrupt Controller Block.

Nested Vectored Interrupt Controller Block(NS alias).

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

282

Chapter B12
Debug

This chapter specifies the Armv8-M debug rules. It contains the following sections:

B12.1 Debug feature overview on page 284.

B12.2 Accessing debug features on page 290.

B12.3 Debug authentication interface on page 294.

B12.4 Debug event behavior on page 306.

B12.5 Debug state on page 320.

B12.6 Exiting Debug state on page 323.

B12.7 Multiprocessor support on page 324.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

283

Chapter B12. Debug
B12.1. Debug feature overview

B12.1 Debug feature overview

RWXRJ The debug configuration of an implementation is IMPLEMENTATION DEFINED.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RGPKJ The following table describes the features of the Armv8-M debug architecture.

Feature Main Extension Baseline Implementation
DebugMonitor exception Always implemented Never implemented
Halting debug Optional Optional
EDBGRQ Optional Requires Halting debug
External Halt signal
Flash Patch and Breakpoint unit - FPB Optional Requires Halting debug
Data Watchpoint and Trace Unit - DWT
Debug functionality - DWT-D Optional Requires Halting debug
Trace functionality - DWT-T Requires ITM and Debug functionality Never implemented
Instrumenation Trace Macrocell - ITM Optional Never implemented
Cross Trigger Interface - CTI Requires ETM or Halting Debug Requires ETM or Halting Debug
Trace Port Interface Unit - TPIU Requires ITM or ETM Requires ETM
Embedded Trace Marcocell - ETM Optional Optional
Performance Monitors Unit - PMU Optional Never implemented
Unprivileged Debug Extension - UDE Optional Never implemented
DSP Debug Extension - DSPDE Optional Never implemented

Applies to an implementation of the architecture from Armv8.0-M. Note, CTI requires Halting debug or ETM. PMU && UDE
are only available in an Armv8.1-M implementation.

RFHRN The following optional debug components are not part of the Armv8-M architecture:

• The Cross-Trigger Interface (CTI).
• The CoreSight basic trace router (MTB).
• The Embedded Trace Macrocell (ETM).

Applies to an implementation of the architecture from Armv8.0-M. Note, CTI requires Halting debug or ETM.

IZNHD The recommended Debug implementation levels are:

• Minimum.
• Basic.
• Comprehensive.
• Program trace.

Minimum

In an implementation that includes the Main Extension, the minimum level contains support for the DebugMonitor
exception, including:

• The BKPT instruction.

• DEMCR Monitor debug features.

• Monitor entry from External debug requests.

• DFSR.

DHCSR, DCRSR, DCRDR, and the Halting debug features in DFSR and DEMCR are RES0.
ID_DFR0 is RAZ.

In an implementation that does not include the Main Extension there is no debug support.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

284

Chapter B12. Debug
B12.1. Debug feature overview

DFSR, DHCSR, DCRSR, DCRDR, and DEMCR are RES0.
ID_DFR0 is RAZ.

Basic

In an implementation that includes the Main Extension, the basic level adds support for Halting debug with:

• A Debug Access Port and ROM table.

• DHCSR, DCRSR, DCRDR, and the Halting debug features in DEMCR are implemented.

• FPB with at least two breakpoints.

• DWT with at least:

– One watchpoint that supports instruction, data address, and data value matching.

– DWT_PCSR.

• Optional support for a CTI in a multiprocessor system.

Support for the basic implementation is identified by ID_DFR0.

In an implementation that includes Armv8.1-M, the DSP Debug Extension adds support for DSPDE. Support for
the DSP Debug Extension is part of the basic level of debug.

In an implementation that does not include Armv8.1-M, there is no support for the DSP Debug Extension.

In an implementation that does not include the Main Extension, the basic level adds support for Halting debug
with:

• A Debug Access Port and ROM table.

• SHCSR, DFSR, DHCSR, DCRSR, DCRDR, and DEMCR are implemented. Access for the PE is IMPLE-
MENTATION DEFINED.

• FPB with at least two breakpoints.

• DWT with at least:

– One watchpoint that supports instruction, data address, and data value matching.

– DWT_PCSR.

• Optional support for a CTI in a multiprocessor system.

Support for the basic implementation is identified by ID_DFR0. In an Armv8.0 implementation ID_DFR0 is RAZ,
unless Halting debug is implemented.

Comprehensive

In an implementation that includes the Main Extension, the comprehensive level adds basic trace support with:

• An ITM.

• DWT with:

– Trace support.

– Profiling support.

– Cycle counter.

• TPIU.

In an implementation that does not include the Main Extension, there is no support for the comprehensive level.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

285

Chapter B12. Debug
B12.1. Debug feature overview

Program trace

In an implementation that includes the Main Extension, Program trace adds support for ETMs.

In an implementation that does not include the Main Extension, Program trace adds supports for ETMs and TPIUs.

An Armv8.1-M implementation introduces further optional debug extensions:

Performance Monitoring

In an implementation that includes Armv8.1-M, Performance Monitoring adds support for PMU. Support for the
Performance Monitors extension is part of the comprehensive level of debug.
In an implementation that does not include Armv8.1-M, there is no support for Performance Monitoring.

Unprivileged Debug Extension

In an implementation that does not include Armv8.1-M, there is no support for the Unprivileged Debug Extension.
Support for the Unprivileged Debug Extension is part of the basic level of debug.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB. Note, UDE
&& PMU are only available in an 8.1-M implementation.

See also:

B12.1.1 Debug mechanisms .

Halting debug.

DebugMonitor exception.

B12.4.4 Breakpoint instructions on page 318.

B13.1 Instrumentation Trace Macrocell on page 326.

B13.2 Data Watchpoint and Trace unit on page 335.

B13.3 Embedded Trace Macrocell on page 358.

B13.4 Trace Port Interface Unit on page 359.

B13.5 Flash Patch and Breakpoint unit on page 361.

DEMCR, Debug Exception and Monitor Control Register.

DFSR, Debug Fault Status Register.

DHCSR, Debug Halting Control and Status Register.

DCRDR, Debug Core Register Data Register.

DCRSR, Debug Core Register Select Register.

ID_DFR0, Debug Feature Register.

DWT_PCSR, DWT Program Control Sample Register .

B12.1.1 Debug mechanisms

RHWCH Armv8-M supports a range of invasive and non-invasive debug mechanisms. The invasive debug mechanisms are:

• The ability to halt the PE. This provides a run-stop debug model.
• Debugging code using the DebugMonitor exception. This provides less intrusive debug than halting the PE.

The non-invasive debug techniques are:

• Generating application trace by writing to the Instrumentation Trace Macrocell (ITM), causing a low level of

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

286

Chapter B12. Debug
B12.1. Debug feature overview

intrusion.
• Non-intrusive program trace and profiling.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB. Note, M is
required for the DebugMonitor exception and ITM.

ILBLF When the PE is halted, it is in Debug state.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - Halting debug.

ISXVR When the PE is not halted, it is in Non-debug state.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - Halting debug.

IHWPQ Non-invasive debug components do not guarantee that they do not make any changes to the behavior or performance
of the PE. Any changes that do occur must not be severe however, as this will reduce the usefulness of event
counters for performance measurement and profiling. This does not include any change to program behavior
that results from the same program being instrumented to use a Non-invasive debug feature, for example the
Performance Monitors, or from some other performance monitoring process being run concurrently with the
process being profiled. As such, a reasonable variation in performance is permissible.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IDMQP The Unprivileged Debug Extension, UDE, allows for a finer-grained control of debug access to the PE. UDE allows
conditional debug capabilities when the PE is in an unprivileged mode, including support for the DebugMonitor
exception and the optional Halting debug and non-invasive debug.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - UDE.

See also:

B12.2 Accessing debug features on page 290.

B12.1.2 Debug resources

RTZVG In the system address map, debug resources are in the Private Peripheral Bus (PPB) region.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RFBHD Except for the resources in the SCS, each debug component occupies a fixed 4KB address region.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB.

RWXTK The debug resources in the SCS are:

• The Debug Control Block (DCB).
• Debug controls in the System Control Block (SCB).

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB.

IKKBT If the Main Extension is implemented, then support for DebugMonitor is implemented. If the Main Extension is
not implemented, then DebugMonitor is not supported.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB. Note, M is
required for DebugMonitor exception.

RVMGD ROM table entries identify which optional debug components are implemented.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

287

Chapter B12. Debug
B12.1. Debug feature overview

RRRLF The addresses of the debug resources are:

Address range Debug Resource
0xE0000000-0xE0000FFF Instrumentation Trace Macrocell (ITM)
0xE0001000-0xE0001FFF Data Watchpoint and Trace Unit (DWT)
0xE0002000-0xE0002FFF Flashpatch and Breakpoint Unit (FPB)
0xE0003000-0xE0003FFF Performace Monitor Unit (PMU)
0xE000E000-0xE000EFFF Secure SCS

0xE000EC00-0xE000ED8F Secure and Non-secure System Control Block (SCB)
0xE000EDF0-0xE000EEFF Secure and Non-secure Debug Control Block (DCB)

0xE002E000-0xE002EFFF Non-secure SCS
0xE002EC00-0xE002ED8F Non-secure System Control Block (SCB)
0xE002EDF0-0xE002EEFF Non-secure Debug Control Block (DCB)

0xE0040000-0xE0040FFF Trace Port Interface Unit (TPIU),
when not implemented as a
shared resource otherwise reserved.

0xE0041000-0xE0041FFF Embedded Trace Macrocell (ETM)
0xE0042000-0xE00FEFFF- IMPLEMENTATION DEFINED

0xE00FF000-0xE00FFFFF ROM table

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB. Note, PMU
is only available in an Armv8.1-M implementation.

See also:

B13.1 Instrumentation Trace Macrocell on page 326.

B13.2 Data Watchpoint and Trace unit on page 335.

B13.5 Flash Patch and Breakpoint unit on page 361.

Chapter B7 The System Address Map on page 251.

B12.2.2 Debug System registers on page 292.

B13.4 Trace Port Interface Unit on page 359.

B13.3 Embedded Trace Macrocell on page 358.

B12.2.1 ROM table on page 290.

B12.2 Accessing debug features on page 290.

B12.1.3 Trace

RCZKQ Trace can be generated by using the:

• Embedded Trace Macrocell (ETM).
• Instrumentation Trace Macrocell (ITM).
• Data Watchpoint and Trace (DWT) unit.
• Performance Monitoring Unit (PMU).

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM && (ETM
|| DWT-T || PMU). Note, ITM requires M. PMU is only available in an Armv8.1 implementation.

RTBHB A debug implementation that generates trace includes a trace sink, such as a TPIU.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - (ETM || DWT-T
|| PMU) && ITM && TPIU. Note, ITM requires M. PMU is only available in an Armv8.1 implementation.

IRJKJ A TPIU can be either the Armv8-M TPIU implementation, or an external system resource.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ETM || ITM ||
DWT-T || PMU. Note, PMU is only available in an Armv8.1 implementation.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

288

Chapter B12. Debug
B12.1. Debug feature overview

See also:

ITM and DWT Packet Protocol Specification.

The applicable ETM Architecture Specification.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

289

Chapter B12. Debug
B12.2. Accessing debug features

B12.2 Accessing debug features

RWVSZ The mechanism by which an external debugger accesses the PE and system is IMPLEMENTATION DEFINED.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB.

IQPHR A debugger can use a Debug Access Port (DAP) interface, such as the DAP described in the Arm®Debug Interface
v5 Architecture Specification (ADIv5), to interrogate a system for Memory Access Ports (MEM-APs). The base
register in a Memory Access Port provides the address of the ROM table, or the first in a series of ROM tables
in a ROM table hierarchy. The Memory Access Port can then fetch the ROM table entries. Arm recommends
implementation of at least an ADIv5 DAP for compatibility with tools.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB.

RWPGQ A write from a DAP memory access are complete when the DAP reports the write as complete.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB.

RWCQK For SCS registers, a write from a DAP is complete when the write has completed and the SCS register has been
updated.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB.

RJRHS Software configures and controls the debug features through memory-mapped registers.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB.

RKSJT The Debug Access Port is an observer, and observes all accesses that the PE makes.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB.

See also:

B12.2.1 ROM table .

B12.3.4 DAP access permissions on page 301.

The Arm®Debug Interface v5 Architecture Specification.

B12.2.1 ROM table

IXFVN The ROM table is a table of entries providing a mechanism to identify the debug infrastructure that is supported by
the implementation.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB.

IFWPG The ROM table indicates the implemented debug components, and the position of those components in the memory
map. See the Arm®Debug Interface v5 Architecture Specification for the format of a ROM table entry.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB.

IPHJJ For an Armv8-M ROM table, all entry offsets are negative. The ROM table entry points to the top of a 4KB page,
the offset points to the bottom of that page that contains the Peripheral and Component ID registers.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB.

RGPPX The ROM table is implemented if any other debug component is implemented or a Debug Access Port is
implemented.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

290

Chapter B12. Debug
B12.2. Accessing debug features

RBQSP Bit[0] of the ROM table entries indicates whether the corresponding debug component is implemented and is
accessible through the PPB at the indicated address. If the corresponding debug component is not implemented,
this bit has a value of 0.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB.

RNDQW If a debug component is implemented, debug registers can provide additional information about the implemented
features of that debug component.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB.

RZZGJ The format of the ROM table is:

Offset Value Name Description
0x000 0xFFF0F003 ROMSCS Points to the SCS at 0xE000E000
0x004 0xFFF02002 or ROMDWT Points to the Data Watchpoint and Trace unit at 0xE0001000

0xFFF02003
0x008 0xFFF03002 or ROMFPB Points to the Flash Patch and Breakpoint unit at 0xE0002000

0xFFF03003
0x00C 0xFFF01002 or ROMITM Points to Instrumentation Trace unit at 0xE0000000.

0xFFF01003
0x010 0xFFF41002 or ROMTPIU Points to the Trace Port Interface Unit.

0xFFF41003
0x014 0xFFF42002 or ROMETM Points to the Embedded Trace Macrocell.

0xFFF42003
0x018 0xFFF42002 or ROMPMU Points to the Performance Monitoring Unit.

0xFFF42003
- 0x00000000 End End of table marker. It is IMPDEF whether the table is extended with

pointers to other system debug resources.
The table entries always terminate with a null entry.

0x020 - - Not used Reserved for additional ROM table entries.
0xEFC
0xF00 - - Reserved Reserved, not used for ROM table entries.
0xFC8
0xFCC 0x00000001 MEMTYPE Bit [0] is set to 1 to indicate that resources other

than those listed in the ROM table are
accessible in the same 32-bit address space,
using the DAP.Bits [31:1] of the MEMTYPE entry are RES0.

0xFD0 IMP DEF PIDR4 CIDRx values are fully defined for the ROM table, and are CorseSight compliant.
0xFD4 0 PIDR5 PIDRx values are CoreSight compliant or RAZ.
0xFD8 0 PIDR6
0xFDC 0 PIDR7
0xFE0 IMP DEF PIDR0
0xFE4 IMP DEF PIDR1
0xFE8 IMP DEF PIDR2
0xFEC IMP DEF PIDR3
0xFF0 0x0000000D CIDR0
0xFF4 0x00000010 CIDR1
0xFF8 0x00000005 CIDR2
0xFFC 0x000000B1 CIDR3

Accesses to the ROMITM cannot cause a non-existent memory exception.

It is IMPLEMENTATION DEFINED whether the ETM and TPIU are a shared resource and whether the resource is
managed by the local PE or a different resource.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB and those
indicated in the table. Note, PMU is only available in an Armv8.1-M implementation.

RJDGV If a PMU is implemented, the end-of-table marker is 0x1C and has a value of 0x00000000. It is IMPLEMENTATION
DEFINED whether the table is extended with pointers to other System debug resources.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - DB && PMU.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

291

Chapter B12. Debug
B12.2. Accessing debug features

See also:

B12.2.3 CoreSight and identification registers .

B12.2.2 Debug System registers

RRHDW The debug provision in the System Control Block (SCB) comprises:

• Two handler-related flag bits, ICSR.ISRPREEMPT and ICSR.ISRPENDING.
• The DFSR.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB.

See also:

Part D Register and Payload Specification.

Debug Control Block.

B12.2.3 CoreSight and identification registers

ICMLH Arm recommends that CoreSight-compliant ID registers are implemented to allow identification and discovery of
the components to a debugger.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB.

RQCWD The address spaces that are reserved in each of the debug components for IMPLEMENTATION DEFINED ID registers
and CoreSight compliance are:

Debug Component Space reserved for ID Space reserved for CoreSight
registers compliance

ITM 0xE0000FD0-0xE0000FFC 0xE0000FA0-0xE0000FCC
DWT 0xE0001FD0-0xE0001FFC 0xE0001FA0-0xE0001FCC
FPB 0xE0002FD0-0xE0002FFC 0xE0002FA0-0xE0002FCC
PMU 0xE0003FD0-0xE0003FFC 0xE0003FA0-0xE0003FFC
SCS 0xE000EFD0-0xE000EFFC 0xE000EFA0-0xE000EFCC
TPIU 0xE0040FD0-0xE0040FFC 0xE0040FA0-0xE0040FCC
ETM 0xE0041FD0-0xE0041FFC 0xE0041FA0-0xE0041FCC
ROM table 0xE00FFFD0-0xE00FFFFC 0xE00FFFA0-0xE00FFFCC

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB. Note, PMU
available only in an Armv8.1-M implementation.

RVWSX For the ROM table, the ID register space is used for a set of CoreSight-compliant ID registers.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB.

RHXDK For all components other than the ROM table, if the registers in the ID register space are not used for ID registers
they are RAZ.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB.

RVQPM If CoreSight-compliant ID registers are implemented, the Class field in Component ID Register 1 is:

• 0x1 for the ROM table.
• 0x9 for other components.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

292

Chapter B12. Debug
B12.2. Accessing debug features

IHQSR The Part number in the PIDR registers must be assigned a unique value for each implementation, or Unique
Component Identifier, as with all other CoreSight components.

CoreSight permits that two or more functionally different components are permitted to share the same Part number,
so long as they have different values of the DEVTYPE or DEVARCH registers. Each component has its own
DEVTYPE and DEVARCH registers, for example:

• DDEVTYPE.
• DDEVARCH.
• DWT_DEVTYPE.
• DWT_DEVARCH.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB.

ICTBF The Part number in the PIDR registers do not need to be unique for different implementation options of the same
part.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

293

Chapter B12. Debug
B12.3. Debug authentication interface

B12.3 Debug authentication interface

RGWTN The following pseudocode functions provide an abstracted description of the authentication interface:

• ExternalInvasiveDebugEnabled().
• ExternalSecureInvasiveDebugEnabled().
• ExternalNoninvasiveDebugEnabled().
• ExternalSecureNoninvasiveDebugEnabled().

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB.

RSWWT For an implementation using the CoreSight signals DBGEN, NIDEN, SPIDEN, and SPNIDEN:

• ExternalInvasiveDebugEnabled() returns TRUE if DBGEN is asserted.

• ExternalSecureInvasiveDebugEnabled() returns TRUE if both DBGEN and SPIDEN are as-
serted.

• ExternalNoninvasiveDebugEnabled() returns TRUE if either NIDEN or DBGEN is asserted.

• ExternalSecureNoninvasiveDebugEnabled() returns TRUE if both of the following conditions
apply:

– Either NIDEN or DBGEN is asserted.
– Either SPNIDEN or SPIDEN is asserted.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB.

IFCPK The unprivileged debug capabilities enabled by DAUTHCTRL.UIDEN being set to 1 are available regardless of
the state of the following:

• DAUTHCTRL.INTSPNIDEN.
• DAUTHCTRL.SPNIDENSEL.
• DAUTHCTRL.INTSPIDEN.
• DAUTHCTRL.SPIDENSEL.
• DBGEN.
• SPIDEN.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - Halting debug
&& UDE. Note, S is required for Secure Behavior.

RHVGN For any implementation of the authentication interface, if ExternalInvasiveDebugEnabled() is FALSE,
then ExternalSecureInvasiveDebugEnabled() is FALSE.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB.

RJWCS For any implementation of the authentication interface, if ExternalNoninvasiveDebugEnabled() is
FALSE, then ExternalSecureNoninvasiveDebugEnabled() is FALSE.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB.

RXCMD For any implementation of the authentication interface, if ExternalInvasiveDebugEnabled() is TRUE,
then ExternalNoninvasiveDebugEnabled() is TRUE.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB.

RLCHH For any implementation of the authentication interface, if ExternalSecureInvasiveDebugEnabled()
is TRUE, then ExternalSecureNoninvasiveDebugEnabled() is TRUE.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

294

Chapter B12. Debug
B12.3. Debug authentication interface

IMSRG Secure self-hosted debug is controlled by the authentication interface. The pseudocode function
ExternalSecureSelfHostedDebugEnabled() provides an abstracted description of this authen-
tication interface.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB.

RGLWM Between a change to the debug authentication interface and a following Context synchronization event, it is
UNPREDICTABLE whether the PE uses the old or the new values.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB.

See also:

B12.3.1 Halting debug authentication .

B12.3.3 DebugMonitor exception authentication on page 299.

B12.3.2 Non-invasive debug authentication on page 298.

B12.3.4 DAP access permissions on page 301.

B12.3.1 Halting debug authentication

IDMFG Halting debug authentication is controlled by the IMPLEMENTATION DEFINED authentication interface function
ExternalInvasiveDebugEnabled(), and if the Security Extension is implemented, the IMPLEMENTA-
TION DEFINED authentication interface function ExternalSecureInvasiveDebugEnabled().

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - Halting debug.
Note, External Secure invasive debug requires S.

RPHWV Halting is prohibited in privileged mode in all states if the function ExternalInvasiveDebugEnabled()
returns FALSE. If UDE is not implemented this rule applies to all privilege modes.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - Halting debug
&& UDE.

RJXTX When the PE is halted, the PE behaves as if ExternalInvasiveDebugEnabled() is TRUE. The pseu-
docode function HaltingDebugAllowed() describes this.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - Halting debug.

IBCZM If the Security Extension is not implemented, there are two Halting debug authentication modes:

ExternalInvasiveDebugEnabled() DHCSR.S_HALT Halting debug
authentication mode

FALSE 0 Halting is prohibited.
FALSE 1 Halting is allowed.
TRUE X Halting is allowed.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - Halting debug
&& !S && !UDE.

RBMRJ Halting is prohibited in privileged modes in Secure state if any of the following conditions are TRUE:

• The IMPLEMENTATION DEFINED ExternalInvasiveDebugEnabled() returns FALSE.
• DAUTHCTRL.SPIDENSEL is set to 1 and DAUTHCTRL_S.INTSPIDEN is set to 0.
• DAUTHCTRL.SPIDENSEL is set to 0 and ExternalSecureInvasiveDebugEnabled() returns

FALSE.

The pseudocode function SecureHaltingDebugAllowed describes this.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

295

Chapter B12. Debug
B12.3. Debug authentication interface

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - Halting debug
&& S.

IXKFR If the Security Extension is not implemented and the Unprivileged Debug Extension is implemented, Halting
debug has the following authentication modes:

HaltingDebugAllowed() DAUTHCTRL.UIDEN Halting debug authentication mode
FALSE 0 Halting is prohibited in all modes.
FALSE 1 Halting is allowed in unprivileged mode.

Halting is prohibited in privileged mode.
TRUE X Halting is allowed in all modes.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - Halting debug
&& !S && UDE.

RBDNX Halting in unprivileged modes is prohibited in Secure state if either of:

• SecureHaltingDebugAllowed() returns FALSE.
• DAUTHCTRL_S.UIDEN is set to 0.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - UDE && Halting
debug && S.

RXFKR Halting in unprivileged modes is prohibited in Non-secure state if all of the following are true:

• HaltingDebugAllowed() returns FALSE.
• DAUTHCTRL_S.UIDEN is set to 0.
• DAUTHCTRL_NS.UIDEN is set to 0.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - UDE && Halting
debug && S.

IVKHZ DAUTHCTRL_NS.UIDEN controls whether debug request can be raised from unprivileged mode in Non-secure
state. DAUTHCTRL_S.UIDEN controls whether debug requests can be raised from Secure or Non-secure state.
When DAUTHCTRL_S.UIDEN is set to 1 DHCSR.S_NSUIDE has an Effective value of 1.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - Halting debug
&& UDE. Note, S is required for Secure behavior.

IVQJZ The value of DHCSR.S_SDE, DHCSR.S_SUIDE and DHCSR.S_NSUIDE are updated when the PE is not halted
as described by the function UpdateDebugEnable().

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - Halting debug.
Note, S is required for Secure behavior. UDE is required for Unprivileged Debug.

RKBKM If the PE is in Non-debug state the following condition is true:

• DHCSR.S_SDE reads as one if the following is true, and reads as zero otherwise:

– SecureHaltingDebugAllowed() returns TRUE.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - Halting debug
&& !UDE. Note, S is required for Secure behavior.

RCVKR If the PE is in Non-debug state the following conditions are true:

• DHCSR.S_SDE reads as one if any one of the following are true, and reads as zero otherwise:

– SecureHaltingDebugAllowed() returns TRUE.
– UnprivHaltingDebugAllowed(TRUE) returns TRUE.

• DHCSR.S_SUIDE reads as one if all of the following are true and reads as zero otherwise:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

296

Chapter B12. Debug
B12.3. Debug authentication interface

– SecureHaltingDebugAllowed() returns FALSE.
– UnprivHaltingDebugAllowed(TRUE) returns TRUE.

• DHCSR.S_NSUIDE reads as one if both of the following are true and reads as zero otherwise:

– HaltingDebugAllowed() returns FALSE.
– UnprivHaltingDebugAllowed(FALSE) returns TRUE.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - Halting debug
&& UDE. Note, S is required for Secure behavior.

RKMXG If the PE is in Debug state:

• DHCSR.S_SDE reads as one if either of the following is true, and reads as zero otherwise:

– The PE entered Debug state from Secure state.
– The PE entered Debug state from Non-secure state when SecureHaltingDebugAllowed() re-

turned TRUE.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - Halting debug
&& !UDE. Note, S is required for Secure behavior.

RTNMM If the PE is in Debug state:

• DHCSR.S_SDE reads as one if any one of the following is true, and reads as zero otherwise:

– The PE entered Debug state from Secure state.
– The PE entered Debug state from Non-secure state when SecureHaltingDebugAllowed() re-

turned TRUE.
– The PE entered Debug state from Non-secure state when UnprivHaltingDebugAllowed(TRUE)

returned TRUE.

• DHCSR.S_SUIDE reads as one if the PE entered Debug state if both of the following are true and reads as
zero otherwise:

– UnprivHaltingDebugAllowed(TRUE) returned TRUE.
– SecureHaltingDebugAllowed() returned FALSE.

• DHCSR.S_NSUIDE reads as one if the PE entered Debug state if both the following are true, and reads as
zero otherwise:

– UnprivHaltingDebugAllowed(FALSE) returned TRUE.
– HaltingDebugAllowed() returned FALSE.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - Halting debug
&& UDE. Note, S is required for Secure behavior.

ILDTR If the Security Extension is implemented, there are three Halting debug authentication modes:

HaltingDebugAllowed() DHCSR.S_SDE Halting debug
authentication mode

FALSE X Halting is prohibited.
TRUE 0 Halting is allowed in Non-secure state.

Halting is prohibited in Secure state.
1 Halting is allowed.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - Halting debug
&& S && !UDE.

ILQVH In an Armv8.1-M PE, unprivileged debug is authentication is as follows:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

297

Chapter B12. Debug
B12.3. Debug authentication interface

Halting SecureHalting DAUTHCTRL_S. DAUTHCTRL_NS. Halting debug
DebugAllowed() DebugAllowed() UIDEN UIDEN authentication mode
FALSE FALSE 0 0 Halting is prohibited.
FALSE FALSE 0 1 Halting is allowed in

Non-secure unprivileged mode.
Halting is prohibited in
Secure unprivileged mode.
Halting is prohibited in
Non-secure privileged mode.
Halting is prohibited in
Secure privileged mode.

FALSE FALSE 1 X Halting is allowed in Secure
and Non-secure unprivileged mode.
Halting is prohibited in Secure and
Non-secure privileged mode.

TRUE FALSE 0 X Halting is allowed in Non-secure state and
in all privilege modes.

TRUE FALSE 1 X Halting is allowed in Non-secure state
and in Secure unprivileged mode.

TRUE TRUE X X Halting is allowed in all Security
states and privilege modes.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - Halting debug
&& UDE. Note, S required for Secure state.

RFXCB When DHCSR.C_DEBUGEN == 0 or the PE is in a state in which Halting is prohibited, the PE does not enter
Debug state.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - Halting debug.
Note, S is required for Secure behavior.

See also:

CanHaltOnEvent().

B12.3.2 Non-invasive debug authentication

RGFTG Non-invasive authentication is controlled by the IMPLEMENTATION DEFINED function:

ExternalNoninvasiveDebugEnabled().

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB && !S.

RHXQD Secure Non-invasive authentication is controlled by the IMPLEMENTATION DEFINED functions:

• ExternalSecureNoninvasiveDebugEnabled().
• ExternalNoninvasiveDebugEnabled().

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB && S.

RCFNB When HaltingDebugAllowed() is TRUE, the PE behaves as if ExternalNoninvasiveDebugEnabled()
returns TRUE.
The pseudocode function NoninvasiveDebugAllowed() describes this.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB && !UDE.

RLNCF Non-invasive debug of an operation is prohibited unless any of the following return TRUE:

• ExternalNoninvasiveDebugEnabled().
• HaltingDebugAllowed().
• UnprivHaltingDebugEnabled() and the PE is in unprivileged mode.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

298

Chapter B12. Debug
B12.3. Debug authentication interface

The pseudocode function NoninvasiveDebugAllowed() describes this.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - DB && UDE.

RQMRF Non-invasive debug is prohibited if the functions SecureNoninvasiveDebugAllowed() and
NoninvasiveDebugAllowed() both return FALSE.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB && S.

RGZZX Non-invasive debug of an operation in Secure state is prohibited unless any of the following are true:

• DHCSR.S_SDE is set to one and UDE is not implemented or is not permitted in Secure state.
• The PE is in unprivileged mode and UnprivHaltingDebugEnabled(TRUE) returns TRUE.
• DAUTHCTRL.SPNIDENSEL is set to 1 and DAUTHCTRL_S.INTSPIDEN is set to 1.
• ExternalSecureNoninvasiveDebugEnabled() returns TRUE.

The pseudocode function SecureNoninvasiveDebugAllowed() describes this.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB && S &&
UDE. Note, UDE is only available in an Armv8.1-M implementation.

RLXRK The PE does not generate any trace or profiling data when non-invasive debug of that operation is prohibited.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB.

RVYGT If non-invasive debug of Secure operations is prohibited, the PE does not generate any trace or profiling data that
contains secure information or is attributable to secure operations.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB && S.

RPSSV If non-invasive debug of privileged operations is prohibited, the PE does not generate any trace or profiling data
that contains privileged information or is attributable to privileged operations.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - DB && UDE.

RTWDH If non-invasive debug is prohibited in the current Security state, an ETM behaves as described in the relevant ETM
architecture.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB && S &&
ETM.

See also:

NoninvasiveDebugAllowed().

SecureNoninvasiveDebugAllowed().

B13.2.2 DWT unit operation on page 336.

B12.3.3 DebugMonitor exception authentication

RMXTM DebugMonitor exception authentication is only available if the Main Extension is implemented.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

RLQCN DebugMonitor exception authentication is controlled by the IMPLEMENTATION DEFINED authentication interface
function ExternalSecureSelfHostedDebugEnabled().

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M && S.

RGTSQ Unless otherwise stated DebugMonitor exceptions are never generated for Secure privileged operations if all of the

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

299

Chapter B12. Debug
B12.3. Debug authentication interface

following conditions are true:

• DAUTHCTRL.FSDMA is set to 0.

• Any of the following conditions are true:

– DAUTHCTRL.SPIDENSEL is set to 1 and DAUTHCTRL.INTSPIDEN is set to 0.
– DAUTHCTRL.SPIDENSEL is set to 0 and ExternalSecureSelfHostedDebugEnabled()

returns FALSE.

The pseudocode function SecureDebugMonitorAllowed() describes this.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M && S. Note,
DAUTHCTRL.FSDMA is only available in an Armv8.1-M implementation.

IPWJZ If UDE is implemented DAUTHCTRL.FSDMA allows the Secure DebugMonitor exception to be enabled in-
dependently of Halting debug and ExternalSecureSelfHostedDebugEnabled(). This field does not
control the DebugMonitor exception permissions directly, instead DAUTHCTRL.FSDMA is used as an input into
DEMCR.SDME, as described by UpdateDebugEnable() and SecureDebugMonitorAllowed().

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - M && S &&
UDE.

RWXMG When a DebugMonitor exception is not pending and is not active:

• DEMCR.SDME is set to 1 if SecureDebugMonitorAllowed() is TRUE.
• DEMCR.SDME is zero otherwise.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

RCPPN If SecureDebugMonitorAllowed() returned TRUE when a DebugMonitor exception is pending or active:

• DEMCR.SDME is set to 1 when the DebugMonitor exception became pending or active.
• DEMCR.SDME is zero otherwise.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

RYFPK If DEMCR.SDME == 1, SHPR3.PRI_12 behaves as RAZ/WI when accessed from Non-secure state.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M && S.

IHNGD When set to 1, DEMCR.MON_PEND remains set to 1 until one of the following occurs:

• The DebugMonitor exception is taken
• A write to DEMCR sets the DEMCR.MON_PEND to 0.
• The PE is reset.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

RSCZH DebugMonitor exceptions are never generated for unprivileged operations if either of the following conditions are
true:

• DEMCR.MON_EN is 0.
• DEMCR.UMON_EN is 0.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - UDE && M.

RCKPB DebugMonitor exceptions are never generated for Secure unprivileged operations when all of the following are
true:

• SecureDebugMonitorAllowed() returns FALSE.
• DEMCR.UMON_EN is 0 or DEMCR.MON_EN is 0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

300

Chapter B12. Debug
B12.3. Debug authentication interface

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - M && S &&
UDE.

See also

DEMCR, Debug Exception Monitor Control Register.

ExternalSecureSelfHostedDebugEnabled().

SecureDebugMonitorAllowed().

CanPendMonitorOnEvent().

UpdateDebugEnable().

B12.3.4 DAP access permissions

RBFSB When HaltingDebugAllowed() is TRUE the external debugger can issue requests to the entire physical
address space through the DAP. When the DAP accesses a System register the response to the DAP is defined by
the access permissions of the register being accessed.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB.

RFFPN The external debugger is capable of requesting Secure and Non-secure accesses through the DAP.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB && S.

RVDPK The external debugger is capable of requesting Privileged and Unprivileged accesses through the DAP.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - DB && UDE.

IXNTP DAUTHCTRL.UIDAPEN indicates software intent to allow the external debugger unprivileged access through the
DAP to selected PPB registers.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - DB. Note,
DAUTHCTRL.UIDAPEN requires UDE.

RTRLZ When either DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set, and no other debug authorization
is active, the PE permits the external debugger to request unprivileged access through the DAP to the System PPB
space. If the external debugger makes a privileged request, when DAUTHCTRL.UIDAPEN is set in either Security
state the PE demotes the request to an unprivileged request. An unprivileged access will return an error to the DAP
unless otherwise specified by the register description.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - DB. Note,
DAUTHCTRL.UIDAPEN requires UDE.

RDVSN If HaltingDebugAllowed() is FALSE, external debugger accesses through the DAP to addresses in the
range 0x00000000 to 0xDFFFFFFF return an error to the DAP.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB && UDE.
Note, UDE and PMU are only available in an Armv8.1-M implementation.

RKCXP If HaltingDebugAllowed() is FALSE and NoninvasiveDebugAllowed() is FALSE, external debug-
ger accesses through the DAP to registers in the table below, return an error to the DAP.

Region or Registers Component or description
0xE00xxFB0 - 0xE00xxFB7 CoreSight Software Lock Registers
0xE0000000 - 0xE0000FCF ITM
0xE0001000 - 0xE0001FCF DWT
0xE0003000 - 0xE0003FCF PMU

Applies to an implementation of the architecture from Armv8.0-M onwards.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

301

Chapter B12. Debug
B12.3. Debug authentication interface

RRNXL If HaltingDebugAllowed() is FALSE, DAP accesses to the IMPLEMENTATION DEFINED region
0xE0042000 - 0xE00FEFFF, are IMPLEMENTATION DEFINED, and might further depend on DAUTHC-
TRL.UIDAPEN or NoninvasiveDebugAllowed().

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - DB. Note,
DAUTHCTRL.UIDAPEN requires UDE.

ILGXS Where these rules do not prevent an external debugger access to a register through the DAP, the access permissions
are defined by the register. The access permissions are set out in the Usage Constraints section of each register
description.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB.

RKBQZ A DAP memory access calls MemD_with_priv_security() and DAPCheck().

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - DB. Note, Secure
accesses require S and unprivileged accesses require UDE.

IDKCB The architecture does not describe how a DAP requests Secure or Non-secure memory accesses. In the rec-
ommended ADIv5 Memory Access Port (MEM-AP), Arm recommends that, when CSW.DEVICEEN is set to
one:

• CSW[30], CSW.Prot[6], selects a Secure or Non-secure access:

– 0: Request a Secure access.

– 1: Request a Non-secure access.

• CSW[23], CSW.SPIDEN, must be one. This is because the DAP can always request a Secure access.

When CSW.DEVICEEN is zero the MEM-AP is incapable of requesting any accesses. In ADIv6 CSW[23] is
SDeviceEN, but the behavior remains the same.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB && S.

IRVWM The architecture does not describe how a DAP requests Privileged or Unprivileged memory accesses. In the
recommended ADIv5 or higher Memory Access Port (MEM-AP), Arm recommends that the IMPLEMENTATION
DEFINED field CSW[27:24], PROT, flags are used to define Privileged or Unprivileged accesses.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - DB && UDE.

IMRMX In a CoreSight DAP, the SPIDEN input to the Armv8-M MEM-AP is independent of the SPIDEN input of the PE,
and must be tied HIGH when CSW.DEVICEEN is one. When CSW.DEVICEEN is zero the MEM-AP is disabled
and is incapable of making any requests for memory accesses.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB && S.

RJHBC If DHCSR.S_SDE == 1, and the DAP requests a Secure access, NS-Req is set to Secure.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB && S.

RLVBG If either DHCSR.S_SDE == 0 or the DAP requests a Non-secure access, NS-Req set to Non-secure.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB && S.

RWMRR DAP accesses are checked by the IDAU and the SAU, if applicable. That is, if NS-Req on a DAP access specifies
Non-secure access, and the IDAU or SAU prohibits Non-secure access to the address, an error response is returned
to the DAP.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

302

Chapter B12. Debug
B12.3. Debug authentication interface

Secure address?

DHCSR.S_SDE == 1

NS-Req =

Non-secure

NS-Req =

Secure

YesNo

Return error to

DAP

Yes

Do Access

DAP requests Secure

access?
Yes

No

No

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB && S.

RVTTN Unless otherwise stated DAP accesses are not checked by the MPU.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB && MPU.

RFDCQ DAP accesses to the SCS registers ignore NS-Req.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB && S.

RSSVN Permitted DAP accesses to Secure SCS registers in the range 0xE000E000-0xE000EFFF are affected by the
values of DHCSR.S_SDE, DSCSR.SBRSELEN, and DSCSR.SBRSEL, as well as by the current Security state of
the PE. The following table shows the effect of these factors on the register being viewed.

DHCSR.S_SDE DSCSR.SBRSELEN DSCSR.SBRSEL Current Security state View of register
of the PE accessed

0 X X X Non-secure.
1 1 0 X Non-secure.
1 1 1 X Secure.
1 0 X Non-secure. Non-secure.
1 0 X Secure. Secure.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB && S.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

303

Chapter B12. Debug
B12.3. Debug authentication interface

RHXMG Permitted DAP accesses to the region 0xE002E000-0xE002EFFF are RAZ/WI if the access is privileged and
return an error if the access is unprivileged.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB.

IHBGQ An Armv8.1-M PE with UDE extends the existing DAP access regime for the Main Extension.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - DB && UDE.

RRXKV When DAUTHCTRL.UIDAPEN is set, unprivileged debugger accesses to reserved locations within the PPB are
treated as RES0 and do not return a DAP error.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - UDE.

RMRPC A privileged DAP request through the Unprivileged Debug Extension mechanism is demoted to an unprivileged
access and is subject to MPU checks. Both privileged and unprivileged requests are subject to MPU checks.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - UDE && MPU.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

304

Chapter B12. Debug
B12.3. Debug authentication interface

RWSQR The DAP access process is extended when the Unprivileged Debug Extension is implemented, and
HaltingDebugAllowed() returns FALSE, as shown in the following diagram.

If DAP requests a secure access AND DHCSR.S_SDE == 1 the NS-Req = Secure otherwise NS-Req = Non-secure

NS-Req = Secure?

Address
secure

If DHCSR.S_NSUIDE
==1, Request =

Unprivileged

If DHCSR.S_SUIDE
==1, Request =

Unprivileged

DAP access explicitly permitted
(R_BLPC) or if DAUTHCTRL.UIDAPEN

==1, and the access targets the PPB

DAP access explicitly permitted
(R_BLPC) or if DAUTHCTRL.UIDAPEN

==1, and the access targets the PPB

!HaltingDebugAllowed() &&
!DHCSR.S_NSUIDE

DHCSR.S_NSUIDE DHCSR.S_SUIDE

Non-Secure MPU
access violation?

Secure MPU access
violation?

Do Access (when DAUTHCTRL.UIDAPEN ==1, reserved areas of the PPB are RES0, and
accesses through this mechanism are demoted to unprivileged accesses)

DAP error

No

No

No

No

1

No

1

0 0

No No

Yes

Yes Yes

Yes

Yes

Yes

Yes

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - UDE && MPU.

ILBGV When HaltingDebugAllowed() returns TRUE, DAP accesses follow the behavior specified by RWMRR.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - UDE && MPU.

See also:

B3.14 Secure address protection on page 98.

Chapter B9 The Armv8-M Protected Memory System Architecture on page 267.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

305

Chapter B12. Debug
B12.4. Debug event behavior

B12.4 Debug event behavior

B12.4.1 About debug events

ICBWT An event that is triggered for debug reasons is known as a debug event.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB.

RPQKW A debug event that is not ignored causes one of the following to occur:

• If Halting debug is implemented and enabled, entry to Debug state.
• A HardFault exception.
• Lockup.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB. Note, entry
to Debug state requires Halting Debug.

RQLTQ A debug event that is not ignored, can cause a DebugMonitor exception to occur.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

RMNKP The HardFault exceptions or Lockup that are caused by debug events are generated by:

• A BKPT instruction that is executed when the PE can neither halt nor generate a DebugMonitor exception.
• In some circumstances, the FPB.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M. Note, an FPB
requires FPB.

RWCPW The debug events are as follows.

Debug event Actions
Step Halt or DebugMonitor exception.
Halt Request Halt
Breakpoint Halt, DebugMonitor exception, or Hardfault.
Watchpoint Halt or DebugMonitor exception.
Vector catch Halt only
PMU Overflow Halt or DebugMonitor exception
External Halt or DebugMonitor exception.

Applies to an implementation of the architecture from Armv8.0-M. Note, a DebugMonitor exception requires M. Halt requires
Halting Debug. PMU is only available in an Armv8.1-M implementation.

RLDRZ The DFSR contains status bits for each debug event. These bits are set to 1 when a debug event causes the PE to
halt or generate a DebugMonitor exception, and are then write-one-to-clear.

The following table shows which bit is set for each debug event.

Event cause DFSR bit
Step HALTED
Halt request HALTED
Breakpoint BKPT
Watchpoint DWTTRAP
Vector catch VCATCH
PMU Overflow PMU
External EXTERNAL

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M || Halting
debug. Note, PMU is only available in an Armv8.1-M implementation.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

306

Chapter B12. Debug
B12.4. Debug event behavior

RHNRV It is IMPLEMENTATION DEFINED whether the DFSR debug event bits are updated when an event is ignored.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB.

INSMV Debug events are either synchronous or asynchronous.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB.

RVSVN The synchronous debug events are:

• Breakpoint debug events, caused by execution of a BKPT instruction or by a match in the FPB.
• Vector catch debug events, caused when one or more DEMCR.VC_* bits are set to 1, and the PE takes the

corresponding exception.
• Step debug events, caused by DHCSR.C_STEP or DEMCR.MON_STEP.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB.

RPVGM A single instruction can generate several synchronous debug events.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB.

RWJFB Synchronous debug events are associated with the instruction that generated them and are taken instead of executing
the instruction. The PE does not generate any other synchronous exception or debug event that might have occurred
as a result of executing the instruction.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB.

RRNRD The Step debug event is taken on the instruction following the instruction being stepped. This means that
prioritization of the event applies relative to any other exception or debug event for the following instruction, not
for the instruction being stepped.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB.

RJSPS If multiple debug events and exceptions are generated on the same instruction, they are prioritized as follows:

1. Halt request (halting only), including where DHCSR.C_HALT is set by DHCSR.C_STEP of the previous
instruction.

2. Highest-priority pending exception that is eligible to be taken. If the Main Extension is implemented,
this might be a DebugMonitor exception, if DEMCR.MON_PEND == 1. This includes where
DEMCR.MON_PEND is set by DEMCR.MON_STEP of the previous instruction.

3. Vector catch.
4. Fault from an instruction fetch, including synchronous BusFault error.
5. Breakpoint that is signaled by an FPB unit.
6. BKPT instruction or other exception that results from decoding the instructions. This includes the cases

where exceptions from the instruction are UNDEFINED, an unimplemented or disabled coprocessor is targeted,
or the EPSR.T bit has a value of 1.

7. Other synchronous exception that is generated by executing the instruction, including an exception that is
generated by a memory access that is generated by the instruction.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB. Note, not all
of the debug features listed might be implemented in a particular implementation.

RBQVF The highest-priority synchronous debug event is reported in the DFSR.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB.

RFWQQ It is UNPREDICTABLE whether synchronous debug events that occur on the same instruction as a debug event with
a higher priority are reported in the DFSR.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

307

Chapter B12. Debug
B12.4. Debug event behavior

RTKRS The asynchronous debug events are:

• Watchpoint debug events caused by a match in the DWT, including instruction address match watchpoints.
• Halt request debug events, where either:

– A debugger write that has set DHCSR.C_HALT to 1 and DHCSR.C_DEBUGEN set to 1.
– A software write that sets DHCSR.C_HALT to 1 when DHCSR.C_DEBUGEN was set to 1.

• External debug request debug events caused by assertion of an IMPLEMENTATION DEFINED external debug
request.

• PMU Overflow caused by an overflow of a PMU counter that is configured to generate an interrupt.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB. Note, PMU
is only available in an Armv8.1-M implementation.

RMRMC When DHCSR.C_DEBUGEN == 0 or the PE is in a state in which halting is prohibited, DHCSR.C_HALT and
DHCSR.C_STEP are ignored, and these bits have an Effective value of 0.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - Halting debug.

See also:

B3.13 Priority model on page 94.

Halting debug.

DebugMonitor exception.

B12.4.3 Vector catch on page 315.

B14.6 Interrupts and Debug events on page 371.

Applies to an implementation of the architecture from Armv8.1-M onwards.

GenerateDebugEventResponse().

Halting debug

RWLCF Setting the DHCSR.C_DEBUGEN bit to 1 enables Halting debug.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - Halting debug.

RJXMW Setting the DAUTHCTRL.UIDEN bit to 1, enables halting debug in unprivileged state. Setting the Secure instance
of this bit enables unprivileged debug in both Secure and Non-secure state.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - Halting debug
&& UDE.

RRZTG A debug event sets DHCSR.C_HALT to 1 if all of the following conditions apply:

• The debug event supports generating entry to Debug state.
• DHCSR.C_DEBUGEN == 1.
• Unless otherwise stated, halting is allowed.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - Halting debug.

RTHLS If DHCSR.C_HALT has a value of 1 and halting is allowed, the PE halts and enters Debug state.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - Halting debug.

RFKWB A debug event that sets DHCSR.C_HALT to 1 pends entry to Debug state.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - Halting debug.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

308

Chapter B12. Debug
B12.4. Debug event behavior

IVBXN A debug event might set DHCSR.C_HALT and remain pending through execution in a mode or state where Halting
debug is prohibited, which might not be a finite time.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - Halting debug.

RHQTX When SecureHaltingDebugAllowed() returns FALSE and HaltingDebugAllowed() returns TRUE,
a Debug event that sets DHCSR.C_HALT to 1 will cause all of the following:

• The PE to halt on transition from Secure state to Non-secure state for any of the following reasons:

– Exception entry.
– Exception return.
– Non-secure function call.
– Function return.

• The PE will halt and enter Debug state before completing the first instruction in Non-secure state.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - Halting debug.

RVDMZ When UnprivHaltingDebugAllowed(FALSE) returns TRUE a debug event that sets DHCSR.C_HALT to
1 will cause the PE to halt and enter Debug state on transition from a privileged mode to an unprilvileged mode
before completing the first instruction in unprivileged mode.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - UDE && Halting
debug.

RXSRJ If DHCSR.C_HALT has a value of 1 or EDBGRQ is asserted before a Context synchronization event, and halting
is allowed after the Context synchronization event, then the PE halts and enters Debug state before the first
instruction following the Context synchronization event completes its execution.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - Halting debug ||
EDBGRQ.

RJXQF DFSR is updated at the same time as the PE sets DHCSR.C_HALT to 1.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - Halting debug.

RTXWB If an instruction that is being stepped or an instruction that generates a debug event reads DFSR or DHCSR, the
value that is read for the relevant DFSR bit or for DHCSR.C_HALT is UNKNOWN.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - Halting debug.

RFRJC For asynchronous debug events, if halting is allowed, the PE enters Debug state in finite time.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - Halting debug.

RVJKX Entering Debug state has no architecturally defined effect on the Event Register and exclusive monitors.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - Halting debug.

IJNGH DHCSR.C_SNAPSTALL might allow imprecise entry into the Debug state, for example by forcing any stalled
load or store instructions to be abandoned.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - Halting debug.

RBTBJ If DHCSR.C_DEBUGEN == 0 or HaltingDebugAllowed() == FALSE, DHCSR.C_SNAPSTALL is ignored
and has an Effective value of 0.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - Halting debug.

RHLNF If DHCSR.S_SDE == 0, DHCSR.C_SNAPSTALL ignores writes from the debugger.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

309

Chapter B12. Debug
B12.4. Debug event behavior

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - Halting debug
&& S.

RCBLC If UDE is implemented and DHCSR.S_SUIDE == 1, debugger writes to DHCSR.C_SNAPSTALL are ignored.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - Halting debug
&& UDE && S.

RRKBK When the PE is in a state in which halting is prohibited, if DHCSR.C_HALT == 1 and DHCSR.C_DEBUGEN ==
1, then DHCSR.C_HALT remains set unless it is cleared by a direct write to DHCSR. If the PE enters a state in
which halting is allowed while DHCSR.C_HALT is set to 1, then the PE enters Debug state.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - Halting debug.

See also:

DHCSR, Debug Halting Control and Status Register.

B12.4.2 Debug stepping on page 311.

B12.5 Debug state on page 320.

DebugMonitor exception

IDPCC The DebugMonitor exception is only available if the Main Extension is implemented.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

RVMDP Unless otherwise stated, a debug event sets DEMCR.MON_PEND to 1 if all of the following conditions apply:

• The debug event supports generating DebugMonitor exceptions and does not generate an entry into debug
state.

• One of the following conditions apply:

– DEMCR.MON_EN is set to 1.
– DEMCR.UMON_EN is set to 1 and the debug event was generated by an unprivileged operation.

• One of the following conditions apply:

– The Security Extension is not implemented.
– DEMCR.SDME is set to 1.
– The debug event was generated by a Non-secure operation.

• The DebugMonitor exception group priority is not sufficient to preempt current execution priority.

The pseudocode function CanPendMonitorOnEvent() describes this.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - M && UDE.

RVJJH If a Debug event that does not generate an entry to Debug state, and the architecture does not require that the debug
event set DEMCR.MON_PEND to 1, then:

• The PE escalates a DebugMonitor synchronous exception that is generated by executing a BKPT instruction
to a HardFault.

• The PE might set DEMCR.MON_PEND to 1 for a watchpoint debug event.
• The PE ignores the other debug event.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - M && UDE.

RCHXQ A debug event that sets DEMCR.MON_PEND to 1 pends a DebugMonitor exception.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

310

Chapter B12. Debug
B12.4. Debug event behavior

RVSPX DEMCR.MON_PEND is cleared to 0 when the PE takes a DebugMonitor exception. This means that a value of 1
for DEMCR.MON_PEND might never be observed for a synchronous DebugMonitor exception.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

RBRXT DFSR is updated at the same time as the PE sets DEMCR.MON_PEND to 1.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

RBKHP If an instruction that is being stepped or that generates a debug event reads DFSR or DEMCR, the value that is
read for the relevant DFSR bit or for DEMCR.MON_PEND is UNKNOWN.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

RVFLQ For asynchronous debug events, if taken as a DebugMonitor exception, and if the current priority is lower than the
DebugMonitor exception group priority, a DebugMonitor exception is taken in finite time.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

RJVSC A direct write to DEMCR can set DEMCR.MON_PEND to 1 at any time to make the DebugMonitor exception
pending or can set DEMCR.MON_PEND to 0 to remove a pending DebugMonitor exception.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

RXPBN When DEMCR.MON_PEND == 1, the PE takes the DebugMonitor exception according to the exception prioriti-
zation rules, regardless of the value of DEMCR.SDME and DEMCR.MON_EN.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

RNVQT From Armv8.1 when DEMCR.MON_PEND == 1, the PE takes the DebugMonitor exception according to the excep-
tion prioritization rules, regardless of the value of DEMCR.SDME, DEMCR.MON_EN and DEMCR.UMON_EN.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - M && UDE.

RQZHW Unless otherwise stated, synchronous and asynchronous DebugMonitor exceptions can only cause preemption at
instruction boundaries.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

RTMNT Synchronous and asynchronous DebugMonitor exceptions can only cause preemption at instruction or beat
boundaries for beat-wise executable instructions.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

IPJJD DebugMonitor exceptions cannot cause instruction resume or instruction restart. However, if another exception
preempts an execution-continuable instruction that also generates a watchpoint, the PE might take that exception
during the instruction, or abandon the instruction to take the exception, and, after returning from the exception,
tail-chain to the DebugMonitor exception.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

See also:

B13.2.2 DWT unit operation on page 336.

B13.5.2 FPB unit operation on page 361.

B3.27 Exceptions, instruction resume, or instruction restart on page 130.

B12.4.2 Debug stepping

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

311

Chapter B12. Debug
B12.4. Debug event behavior

RHMCN The Armv8-M architecture supports debug stepping in both Halting debug and for the DebugMonitor exception.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - Halting debug ||
M. Note, might require the DebugMonitor exception.

RTHTG It is IMPLEMENTATION DEFINED whether stepping a WFE or WFI instruction causes the WFE or WFI instruction
to:

• Retire and take the debug event.
• Go into a sleep state and take the debug event only when another wake up event occurs.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - Halting debug ||
M.

RLLVC If a debug event wakes a WFE or WFI instruction, then on taking the debug event, the instruction has retired.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - Halting debug ||
M.

ICMYW The debug architecture includes support for stepping over vector instructions.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

See also:

Halting debug stepping.

Debug monitor stepping.

Halting debug stepping

IQMXC A debugger can use Halting debug stepping to exit from Debug state, execute a single instruction, and then reenter
Debug state.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - Halting debug.

RSWKC Halting debug stepping is active when all of the following apply:

• DHCSR.C_DEBUGEN is set to 1, Halting debug is enabled, and halting is allowed.
• DHCSR.C_STEP is set to 1, halting stepping is enabled.
• The PE is in Non-debug state.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - Halting debug.

RZVKS When the PE exits Debug state and Halting debug stepping becomes active, the PE performs a Halting debug step
as follows:

1. Performs one of the following:

• Completes the next instruction without generating any exception.
• Takes any pending exception entry of sufficient priority, without completing the next instruction. The

PE performs an exception entry sequence that stacks the next instruction context. This context might
include instruction continuation bits if the next instruction was partly executed and supports instruction
resume. The exception might be a pending exception, or an exception generated by the execution of the
next instruction.

• Completes the execution of the next instruction, and then takes any pending exception of sufficient
priority. The PE performs an exception entry sequence that stacks the following instruction context.

• If the next instruction is an exception return instruction, completes the next instruction, tail-chaining to
enter a new exception handler.

In each case where the PE performs an exception entry sequence it does so according to the exception

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

312

Chapter B12. Debug
B12.4. Debug event behavior

priority and late-arrival rules, meaning derived and late-arriving exceptions might preempt the exception
entry sequence.

The exception behavior is not recursive. Only a single PushStack() update can occur in a step sequence.

2. Sets DFSR.HALTED and DHCSR.C_HALT to 1. A read of the DFSR.HALTED or the DHCSR.C_HALT
bit performed by the stepped instruction returns an UNKNOWN value.

3. After the Halting debug step, before executing the following instruction, because DHCSR.C_HALT is set
the PE will halt and enter Debug state if halting is still allowed. However, if halting is prohibited after the
Halting debug step then the PE does not enter Debug state and DHCSR.C_HALT remains set.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - Halting debug.

RLJJB If the implementation includes the Armv8.1-M profile Vector Extension, a Halting debug step has the following
additional possible actions when stepping over vector instructions. The PE:

• Attempts to complete the execution of all in-flight vector instructions, does not execute any new instructions,
and generates a synchronous exception that is taken.

• Completes the execution of all in-flight vector instructions, does not start the execution of new instructions,
and does not generate an exception.

• Completely executes the next vector instruction, without overlapping execution, and does not generate an
exception.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - Halting debug
&& MVE.

ILTRX The debugger can optionally set DHCSR.C_MASKINTS to 1 to prevent PENDSV, SysTick, and external con-
figurable interrupts from being taken. If a permitted exception becomes active, the PE steps into the exception
handler and halts before executing the first instruction of the associated exception handler.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - Halting debug.

RNSMR DHCSR.C_MASKINTS is ignored and has an Effective value of 0 if any of the following are true:

• HaltingDebugAllowed() returns FALSE.
• DHCSR.C_DEBUGEN is 0.
• The exception is Secure and DHCSR.S_SDE is 0.
• UDE is implemented, the exception is Secure and DHCSR.S_SUIDE is 1.
• UDE is implemented and DHCSR.S_NSUIDE is 1.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - Halting debug.
Note, S is required for Secure state, and UDE is only available in an Armv8.1-M implementation.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

313

Chapter B12. Debug
B12.4. Debug event behavior

RMBCB DHCSR.{C_HALT, C_STEP, C_MASKINTS} can be written in a single write to DHCSR, as follows:

DHCSR write
assumes that DHCSR.C_DEBUGEN and DHCSR.S_HALT are both set to 1 when the write occurs and the PE is halted.
C_HALT C_STEP C_MASKINTS Effect
0 0 0 Exit Debug state and start instruction execution.

Exceptions can become active and
prioritized according to the priority rules
and the configuration of exceptions.

0 0 1 Exit Debug state and start instruction execution.
PendSV, SysTick and, external configurable
interrupts are disabled, otherwise exceptions
can become active and proritized
according to the priority rules.

0 1 0 Exit Debug state, step an instruction and halt.
Exceptions can become active and
prioritized according to the priority rules.

0 1 1 Exit Debug state, step an instruction and halt.
PendSV, SysTick and, external configurable
interrupts are disabled, otherwise exceptions
can become active and proritized
according to the priority rules.

1 X X Remain in Debug state.

The write to DHCSR assumes that DHCSR.C_DEBUGEN and DHCSR.S_HALT are both set to 1 when the write
occurs, meaning the PE is halted.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - Halting debug.

Debug monitor stepping

IDXCT A debugger can use debug monitor stepping to return from the DebugMonitor exception handler, execute a single
instruction, and then reenter the DebugMonitor exception handler.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DebugMonitor
exception.

RMLRM Debug monitor stepping is active when all of the following apply:

• DHCSR.C_DEBUGEN is set to 0 or the PE is in a state in which halting is prohibited.
• DEMCR.MON_EN is set to 1, that is Monitor debug is enabled.
• DEMCR.MON_STEP is set to 1, that is monitor stepping is enabled.
• DEMCR.SDME == 1 or the PE is in Non-secure state.
• Execution priority is below the priority of the DebugMonitor exception.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

RMJCF From Armv8.1-M Debug monitor stepping is active when all of the following apply:

• DHCSR.C_DEBUGEN is set to 0 or the PE is in a state in which halting is prohibited.
• DEMCR.MON_EN is set to 1, or DEMCR.UMON_EN is set to 1 and the instruction is executed in

unprivileged mode, that is Monitor debug is enabled.
• DEMCR.MON_STEP is set to 1, that is monitor stepping is enabled.
• DEMCR.SDME == 1 or the PE is in Non-secure state.
• Execution priority is below the priority of the DebugMonitor exception.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - M && UDE.

RMWFT When DebugMonitor stepping becomes active, the PE performs a DebugMonitor step as follows:

1. It performs one of the following:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

314

Chapter B12. Debug
B12.4. Debug event behavior

• It completes the next instruction without generating any exception.
• It takes any pending exception of sufficient priority. The PE performs an exception entry sequence

that stacks the next instruction context. The exception might be a pending exception, or it might be an
exception generated by the execution of the next instruction.

• If the next instruction is an exception return instruction, the PE completes the next instruction, tail-
chaining to enter a new exception handler according to the normal exception priority and late-arrival
rules.

If the PE performs an exception entry sequence as part of step 1, the PE stacks the next instruction context.
This context might include instruction continuation bits if the next instruction was partly executed and
supports instruction resume.

2. If the execution priority is below the priority of the DebugMonitor exception after step 1, the PE sets
DEMCR.MON_PEND and DFSR.HALTED to 1. A read of DEMCR.MON_PEND or DFSR.HALTED by
the stepped instruction returns an UNKNOWN value.

3. Before executing the following instruction, the PE takes any pending exception with sufficient priority.

If step 2 set DEMCR.MON_PEND to 1, then the DebugMonitor exception is pending. However, it is
UNPREDICTABLE whether the PE uses the new value or the old value of DEMCR.MON_PEND in determining
the highest priority exception. This means that:

• Another exception might preempt execution before the DebugMonitor exception is taken, and the
exception might be lower priority than the DebugMonitor exception. However, this is a Context
synchronization event and the PE uses the new value of DEMCR.MON_PEND to determine the highest
priority exception before executing the next instruction.

• If no other exceptions are pending, the PE takes the DebugMonitor exception.

Derived and late-arriving exceptions might preempt the exception entry sequence.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

RJKJM If the implementation includes the Armv8.1-M profile Vector Extension, a Debug monitor step has the following
additional possible actions when stepping over vector instructions. The PE:

• Attempts to complete the execution of all in-flight vector instructions, does not execute any new instructions,
and generates a synchronous exception that is taken.

• Completes the execution of all in-flight vector instructions, does not start the execution of new instructions,
and does not generate an exception.

• Completely executes the next vector instruction, without overlapping execution, and does not generate an
exception.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - M && MVE.

IGPSX In all other cases, the DebugMonitor exception preempting execution returns control to the DebugMonitor exception
handler. Unless that handler clears DEMCR.MON_STEP to 0, returning from the handler performs the next debug
monitor step.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

IKPKX If, after the debug monitor stepping process, the taking of an exception means that the execution priority is no
longer below that of the DebugMonitor exception, the values of DEMCR.MON_STEP and DEMCR.MON_PEND
mean that debug monitor stepping process continues when execution priority falls back below the priority of the
DebugMonitor exception.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

B12.4.3 Vector catch

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

315

Chapter B12. Debug
B12.4. Debug event behavior

ITVRX Vector catch is the mechanism for generating a debug event and entering Debug state on entry to a particular
exception handler or reset.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

RJCXR Vector catching is only supported by Halting debug.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - Halting debug.

RPBVX The conditions for a vector catch, other than reset vector catch, are:

• DHCSR.C_DEBUGEN == 1 and halting is allowed for the Security state the exception is targeting.
• The associated exception enable bit is set.
• The associated active bit is set.
• The associated vector catch enable bit.
• An exception is taken to the relevant exception handler. The associated fault status register status bit is set to

1.

When these conditions are met, the PE sets DHCSR.C_HALT to 1 and enters Debug state before executing the first
instruction of the exception handler.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - Halting debug.
Note, If the Main Extension is not implemented only bits [24],[10] and [0] of DEMCR are implemented with Halting debug
functionality. SecureFault requires S.

IXDGP Late arrival and derived exceptions might occur, preempting the exception targeted by the vector catch and
postponing when the PE halts.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - Halting debug.

RXKMH The following table defines the exception, Fault status bit, and Vector catch bit.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

316

Chapter B12. Debug
B12.4. Debug event behavior

Exception Fault status bit Vector catch bit
DEMCR

HardFault HFSR.VECTTBL VC_INTERR
HFSR.FORCED VC_HARDERR
HFSR.DEBUGEVT VC_HARDERR

BusFault BFSR.IBUSERR VC_BUSERR
BFSR.PRECISERR VC_BUSERR
BFSR.IMPRECISERR VC_BUSERR
BFSR.UNSTKERR VC_INTERR
BFSR.STKERR VC_INTERR
BFSR.LSPERR VC_INTERR

DebugMonitor HFSR.DEBUGEVT -
MemManage fault MMFSR.IACCVIOL VC_MMERR

MMFSR.DACCVIOL VC_MMERR
MMFSR.MUNSTKERR VC_INTERR
MMFSR.MSTKERR VC_INTERR
MMFSR.MLSPERR VC_INTERR

NMI - -
PENDSV - -
UsageFault UFSR.UNDEFINSTR VC_STATERR

UFSR.INVSTATE VC_STATERR
UFSR.INVPC VC_STATERR
UFSR.NOCP VC_NOCPERR
UFSR.STKOF VC_INTERR
UFSR.UNALIGNED VC_CHKERR
UFSR.DIVBYZERO VC_CHKERR

SecureFault SFSR.INVEP VC_SFERR
SFSR.INVIS VC_SFERR
SFSR.INVER VC_SFERR
SFSR.AUVIOL VC_SFERR
SFSR.INVTRAN VC_SFERR
SFSR.LSPERR VC_SFERR
SFSR.LSERR VC_SFERR

SVCall - -
SysTick - -

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

RLKNL When DHCSR.C_DEBUGEN == 0 or the PE is in a state in which halting is prohibited, all DEMCR.VC_ bits,
other than DEMCR.VC_CORERESET, are ignored.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - Halting debug
&& S.

RVZDB If the PE resets into Secure state when both of:

• DHCSR.C_DEBUGEN == 1
• DEMCR.VC_CORERESET == 1

The PE will pend a Halt request and will halt and enter into Debug state when halting is permitted, setting
DFSR.VCATCH to 1.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - Halting debug
&& S.

RWRMQ The PE pends a Vector catch event when all of the following is true:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

317

Chapter B12. Debug
B12.4. Debug event behavior

• The PE has reset into Secure state.
• DHCSR.C_DEBUGEN == 1.
• DEMCR.VC_CORERESET == 1.
• Halting debug is not allowed in Secure state.

The PE does not halt until either it enters Non-secure state or debug is allowed in Secure state.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - Halting debug
&& S.

RMSWM If UDE is implemented and all of the following are true:

• DHCSR.C_DEBUGEN == 1,
• DEMCR.VC_CORERESET == 1,
• UnprivHaltingDebugAllowed(FALSE) returns TRUE,
• The PE resets into Secure state,

The PE will pend a Vector Catch debug event, if debug is prohibited in Secure state, and does not halt until either
the PE enters Non-secure state or debug is permitted in Secure state.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - Halting debug
&& UDE.

See also:

B1.1 Resets, Cold reset, and Warm reset on page 64.

B3.10 Exception enable, pending, and active bits on page 85.

B3.13 Priority model on page 94.

B3.12 Faults on page 89.

B3.9 Exception numbers and exception priority numbers on page 82.

B3.24 Exceptions during exception entry on page 124.

B3.25 Exceptions during exception return on page 126.

Chapter B1 Resets on page 63.

B12.4.4 Breakpoint instructions

RCRJG When DHCSR.C_DEBUGEN == 0 or when the PE is in a state in which halting is prohibited, the BKPT instruction
does not generate an entry to Debug state. If no DebugMonitor exception is generated, the BKPT instruction
generates a HardFault exception or enters Lockup state.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RNXTW A BKPT instruction halts the PE if all of the following are true:

• HaltingDebugAllowed() returns TRUE.

• DHCSR.C_DEBUGEN is set to 1.

• The PE is not halted.

• If the Security Extension is implemented and the PE is executing in Secure state, either of the following are
true:

– DHCSR.S_SDE is set to 1.
– The Unprivileged Debug Extension is implemented and DHCSR.S_SUIDE is set to 1.

• If the Unprivileged Debug Extension is implemented and DAUTHCTRL.UIDEN is set to 1 for the current

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

318

Chapter B12. Debug
B12.4. Debug event behavior

Security state.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - Halting debug
&& UDE.

RZJLD If UDE is implemented a BKPT instruction generates a DebugMonitor exception if it does not halt the PE and all
of the following conditions apply:

• The DebugMonitor exception priority is greater than the current execution priority.

• The Security Extension is not implemented, the instruction is executed in Non-secure state, or DEMCR.SDME
== 1.

• One of the following conditions apply:

– DEMCR.MON_EN == 1
– The Unprivileged Debug Extension is implemented, DEMCR.UMON_EN == 1, and the instruction is

executed in unprivileged mode.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - M && UDE.

B12.4.5 External debug request

RXZCP When the PE is in Non-debug state, an external agent can signal an external debug request.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RGTGX An external debug request can cause a debug event, that causes either:

• Entry to Debug state.
• If the Main Extension is implemented, a DebugMonitor exception.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M || Halting
debug.

RFGCV The PE ignores external debug requests when it is in Debug state.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - Halting debug.

RBXRD When DHCSR.C_DEBUGEN == 0 or the PE is in a state in which halting is prohibited, an External debug request
does not generate an entry to Debug state and is ignored if no DebugMonitor exception is generated.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RBNBR An External debug request that does not halt the PE will set DEMCR.MON_PEND to 1 if all of the following are
true:

• The DebugMonitor exception is enabled. That is if either or the following are true:

– DEMCR.MON_EN is set to 1.
– DEMCR.UMON_EN is set to 1 and the PE is executing in unprivileged mode.

• The priority of the DebugMonitor exception is not sufficient to preempt the current execution priority.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - M && UDE.

See also:

B12.4 Debug event behavior on page 306.

DFSR.EXTERNAL.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

319

Chapter B12. Debug
B12.5. Debug state

B12.5 Debug state

RRMKS In Halting debug, debug events allow an external debugger to halt the PE. The PE then enters Debug state. When
the PE is in Debug state:

• The PE stops executing instructions from the location indicated by the PC, and is instead controlled by the
external debug interface.

• The PE cannot service any interrupts.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - Halting debug.

RQDCP In Debug state, the PE clears the DHCSR.S_REGRDY bit to 0 when the debugger writes to DCRSR and the
PE then sets the bit to 1 when the transfer between the DCRDR and R0-R12 (Rn), Special-purpose register,
Floating-point Extension register, or DebugReturnAddress completes.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - Halting debug.
Note, Floating-point registers are RES0 if FP is not implemented.

IFKSM To transfer a word to a general-purpose register, to a Special-purpose register, to a Floating-point Extension register,
or to DebugReturnAddress, a debugger:

1. Writes the required word to DCRDR.
2. Writes to the DCRSR, with the REGSEL value indicating the required register, and the REGWnR bit set to 1

to indicate a write access. This clears the DHCSR.S_REGRDY bit to 0.
3. If required, polls DHCSR until DHCSR.S_REGRDY reads-as-one. This shows that the PE has transferred

the DCRDR value to the selected register.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - Halting debug.

ICMBB To transfer a word from a general-purpose register, from a Special-purpose register, from a Floating-point Extension
register, or from DebugReturnAddress, a debugger:

1. Writes to DCRSR, with the REGSEL value indicating the required register, and the REGWnR bit as 0 to
indicate a read access. This clears the DHCSR.S_REGRDY bit to 0.

2. Polls DHCSR until DHCSR.S_REGRDY reads-as-one. This shows that the PE has transferred the value of
the selected register to DCRDR.

3. Reads the required value from DCRDR.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - Halting debug.

RVLVD In Debug state, following a write to DCRSR that clears the DHCSR.S_REGRDY bit to 0, the behavior is
UNPREDICTABLE if any of the following occur before the PE sets DHCSR.S_REGRDY to 1:

• The PE exits Debug state, other than because of a Warm reset.
• The debugger writes to DCRDR or DCRSR.

If the DCRSR.REGWnR bit was set to 0 and the debugger reads from DCRDR before the PE sets
DHCSR.S_REGRDY to 1, then the read returns an UNKNOWN value.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - Halting debug.

RJKBB When using the DCRDR, DCRSR and DHCSR.S_REGRDY mechanism to write to XPSR, all bits of the XPSR
are fully accessible. The effect of writing an illegal value is UNPREDICTABLE.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - Halting debug.

IRXQB The DCRDR, DCRSR and DHCSR.S_REGRDY mechanism differs from the behavior of MSR or MRS instruction
accesses to the XPSR, where some bits are ignored on writes.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - Halting debug.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

320

Chapter B12. Debug
B12.5. Debug state

RQLRN When the PE is halted the Debugger can write to:

• The DebugReturnAddress.
• EPSR.IT/ICI bits.

On exiting Debug state the PE starts from DebugReturnAddress. The Debugger must ensure that the EPSR.IT and
EPSR.ICI bits are consistent with DebugReturnAddress, otherwise instruction execution will be UNPREDICTABLE.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - Halting debug.

RXZJN The debugger can write to the EPSR.IT/ICI/ECI bits. If the debugger does this, it writes a value consistent with the
instruction to be executed on exiting Debug state, otherwise instruction execution will be UNPREDICTABLE.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - Halting debug
&& MVE.

IRRFN The debugger can always set FAULTMASK to 1, but doing so might cause unexpected behavior on exit from
Debug state. An MSR instruction cannot set FAULTMASK to 1 when the execution priority is -1 or higher.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - Halting debug.

RXRRQ The debugger can write to the EPSR.IT/ICI bits, and on exiting Debug state any interrupted LDM or STM instruction
will use these new values. Clearing the ICI bits to 0 will cause the interrupted LDM or STM instruction to restart or
continue.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - Halting debug.

RQLTB The debugger can write to the EPSR.ECI bits, and on exiting Debug state any interrupted vector instructions will
use these new values. Clearing the ECI bits to 0 will cause the interrupted vector instruction to restart.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - Halting debug
&& MVE.

RBMHD When the PE is in Debug state, an indirect write to a Special-purpose register caused by an access by the debugger
to a register within the System Control Block (SCB) is guaranteed to be visible after the access to the register
within the SCB completed to a subsequent:

• Access to the Special-purpose register through DCRDR.
• Indirect read of the Special-purpose register made for an access of any register through DCRDR or any

register within the System Control Block.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - Halting debug.

RMDJX When the PE is in Debug state, a write to a Special-purpose register made by the debugger through the DCRDR is
guaranteed to be visible after the write is observed to be completed in DHCSR.S_REGRDY to a subsequent:

• Access of any register through DCRDR or any register within the System Control Block.
• Indirect read of the Special-purpose register made for an access to any register through DCRDR or any

register within the System Control Block.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - Halting debug.

IDMTG A read or write of a register through DCRDR starts with a write to DCRSR. Where the architecture guarantees that
a previous access is visible to a subsequent access through DCRDR, this means the write to DCRSR is made after
the point where the previous access is visible.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - Halting debug.

IWFHL Armv8.1-M introduces restrictions on the DCRDR and DCRSR mechanism for unprivileged debug access to the
floating-point registers when lazy state preservation is active or CPACR.CP10 associated with the Security state of
the floating-point context restricts access.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

321

Chapter B12. Debug
B12.5. Debug state

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - Halting debug
&& UDE.

RHTXM An access using the DCRDR and DCRSR mechanism to the FPSCR, VPR or the floating-point register file will
return RAZ/WI if CanDebugAccessFP() returns FALSE. When CanDebugAccessFP() returns TRUE,
DHCSR.S_FPD is set to 0.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - Halting debug
&& UDE. Note, Floating-point registers are RES0 if FP is not implemented.

RFMRB An access to the following registers using the DCRDR and DCRSR mechanism when DHCSR.S_SUIDE or
DHCSR.S_NSUIDE are set to 1 will return zeroes to the DCRDR:

• Secure Main Stack Pointer
• MSPLIM
• CONTROL
• FAULTMASK
• PRIMASK
• BASEPRI

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - Halting debug
&& UDE.

RJFLV An access to XPSR using the DCRDR and DCRSR mechanism when DHCSR.S_SUIDE or DHCSR.S_NSUIDE
are set to 1 will return the EAPSR values to the DCRDR.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - Halting debug
&& UDE.

See also:

DCRDR, Debug Core Register Data Register.

DCRSR, Debug Core Data Select Register.

DebugRegisterTransfer()

Applies to an implementation of the architecture from Armv8.1-M onwards.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

322

Chapter B12. Debug
B12.6. Exiting Debug state

B12.6 Exiting Debug state

RBFGT The PE exits Debug state:

• When the debugger writes 0 to DHCSR.C_HALT.
• On receipt of an external restart request.
• On Warm reset.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - Halting debug.

RGGMJ For synchronous debug events DebugReturnAddress is:

Synchronous debug event DebugReturnAddress
Breakpoint debug events (BKPT or FPB Match) Address of the breakpointed instruction.
Vector Catch debug events Address of the first instrucion of the exception handler.
Step debug events Address of the next instruction to be executed in simple

sequential execution order following the instruction that
was stepped. If an exception was taken during stepping,
this is the first instruction of the exception handler.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - Halting debug.

RXCCB Bit[0] of a DebugReturnAddress value is RAZ/SBZ. When writing a DebugReturnAddress, writing bit [0] of the
address does not affect the EPSR.T bit.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - Halting debug.

RHNKB Exiting Debug state has no architecturally defined effect on the Event Register and exclusive monitors.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - Halting debug.

RWKSD If software clears DHCSR.C_HALT to 0 when the PE is in Debug state, a subsequent read of the DHCSR that
returns 1 for both DHCSR.C_HALT and DHCSR.S_HALT indicates that the PE has reentered Debug state because
it has detected a new debug event.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - Halting debug.

RFKXH Before leaving Debug state caused by an imprecise entry into Debug state the system is reset.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - Halting debug.

See also:

B12.5 Debug state on page 320

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

323

Chapter B12. Debug
B12.7. Multiprocessor support

B12.7 Multiprocessor support

RQXLS Systems that support debug of more than one PE, either within a single device or as heterogeneous PEs in a more
complex system, require each PE to support all of the following to enable cross-triggering of debug events between
PEs:

• An external debug request.
• A cross-halt event.
• An external restart request.

Support for these features is OPTIONAL in other systems.

Applies to an implementation of the architecture from Armv8.0-M onwards.

B12.7.1 Cross-halt event

RDLCV When the PE enters Debug state, it signals to an external agent that it is entering Debug state.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - Halting debug.

B12.7.2 External restart request

RZKVW When the PE is in Debug state, an external agent can signal an external restart request that causes the PE to exit
Debug state.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - Halting debug.

RWJST An external restart request is not ordered with respect to accesses to memory-mapped registers. It is UNPRE-
DICTABLE whether an access to a memory-mapped register from a DAP completes before an external restart
request.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - Halting debug.

IVNDK A debugger ensures that any read or write of a memory-mapped register by the DAP completes before issuing an
external restart request.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DB.

RNJQN The PE ignores external restart requests when it is in Non-debug state.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B12.6 Exiting Debug state on page 323.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

324

Chapter B13
Debug and Trace Components

This chapter specifies the Armv8-M debug and trace component rules. It contains the following sections:

B13.1 Instrumentation Trace Macrocell on page 326.

B13.2 Data Watchpoint and Trace unit on page 335.

B13.3 Embedded Trace Macrocell on page 358.

B13.4 Trace Port Interface Unit on page 359.

B13.5 Flash Patch and Breakpoint unit on page 361.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

325

Chapter B13. Debug and Trace Components
B13.1. Instrumentation Trace Macrocell

B13.1 Instrumentation Trace Macrocell

B13.1.1 About the ITM

RGDNG The Instrumentation Trace Macrocell (ITM) provides a memory-mapped register interface that applications can
use to generate Instrumentation packets.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM.

IBXWJ The ITM is only available if the Main Extension is implemented.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM.

RLMXS The ITM generates Instrumentation packets, Synchronization packets, and the following protocol packets:

• Overflow packets.
• Local timestamp packets.
• Global timestamp packets.
• Extension packets.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM.

RXQRX The ITM combines the following packets into a single trace stream:

• Instrumentation packets.
• Synchronization packets.
• Protocol packets.
• Hardware source packets that are generated by the DWT.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM.

RMXMN If the implementation includes the PMU, the PMU Hardware source packets are included in the single trace stream.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - ITM && PMU.

IFQLR The following figure shows how the ITM relates to other debug components.

ETM

DWT

Local timestamps

ITM

Synchronization

Global timestamps

TPIU ‡

Global

timestamp clock

Global timestamps
Synchronous parallel

Serial Wire

Trace

output

‡ Or alternative trace sink

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM.

RBWJJ When multiple sources are generating data at the same time, the ITM arbitrates using the following priorities:

Synchronization, when required: Priority level -1, highest.

Instrumentation: Priority level 0.

Hardware source: Priority level 1.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

326

Chapter B13. Debug and Trace Components
B13.1. Instrumentation Trace Macrocell

Local timestamps: Priority level 2.

Global timestamp 1: Priority level 3.

Global timestamp 2: Priority level 4.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM.

See also:

Global timestamping.

B13.2 Data Watchpoint and Trace unit on page 335.

ITM and DWT Packet Protocol Specification.

B13.1.2 ITM operation

RNKSC The ITM consists of:

• Up to 256 stimulus port registers, ITM_STIMn.
• Up to eight enable registers, ITM_TERn.
• An access control register, ITM_TPR.
• A general control register, ITM_TCR.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM.

RMFDV The number of ITM_STIMn registers is an IMPLEMENTATION DEFINED multiple of eight. Software can discover
the number of supported stimulus ports by writing all ones to the ITM_TPR, and then reading how many bits are
set to 1.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM.

RCGVD If the ITM is disabled or not implemented, any Secure or Non-secure write to ITM_STIMn is ignored.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM && S.

RNJTR Unprivileged and privileged software can always read all ITM registers.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM.

RFFXF If the ITM is not implemented, the ITM registers are RAZ/WI.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM.

RCSFV The ITM_TPR defines whether each group of eight ITM_STIMn registers, and their corresponding ITM_TERn
bits, can be written by an unprivileged access.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM.

RPTXV ITM_STIMn registers are 32-bit registers that support the following word-aligned accesses:

• Byte accesses, to access register bits[7:0].
• Halfword accesses, to access register bits[15:0].
• Word accesses, to access register bits[31:0].

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM.

RLNMW Non-word-aligned accesses are UNPREDICTABLE.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

327

Chapter B13. Debug and Trace Components
B13.1. Instrumentation Trace Macrocell

RNQVK ITM_TCR.ITMENA is a global enable bit for the ITM. A Cold reset clears this bit to 0, disabling the ITM.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM.

RVRGP The ITM_TERn registers provide an enable bit for each stimulus port.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM.

RNTCR When software writes to an enabled ITM_STIMn register, the ITM combines the identity of the port, the size of
the write access, and the data that is written, into an Instrumentation packet that it writes to a stimulus port output
buffer. The ITM transmits packets from the output buffer to a trace sink.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM.

RXPRK If an ITM implementation supports more than 32 stimulus ports, paging is used to indicate the stimulus port
number. The stimulus port number is defined by the A field of the Instrumentation packet, byte 0 bits [7:3].

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM.

RQBCH An Extension packet is issued to define the page number, 0 to 7, with each subsequent Instrumentation packet.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM.

RHWBQ Whenever a debugger receives an Instrumentation packet, it uses the the page number from the last Extension
packet received, or a page number of 0 if the debugger has not received an Extension packet since the debugger
last received a Synchronization packet.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - ITM.

RLBSR The ITM does not generate trace if DEMCR.TRCENA == 0 and either of the following are true:

• NoninvasiveDebugAllowed() == FALSE and the PE is in Non-secure state.
• SecureNoninvasiveDebugAllowed() == FALSE and the PE is in Secure state.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM. Note, S
required for Secure state.

RPXSX The ITM does not generate trace if the PE is in unprivileged mode when UnprivHaltingDebugAllowed()
== FALSE for the current Security state.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - ITM && UDE.

RGRNM The size of the stimulus port output buffer is IMPLEMENTATION DEFINED, but has at least one entry. The stimulus
port output buffer is shared by all ITM_STIMn registers.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM.

RSXNK When the stimulus port output buffer is full, if software writes to any ITM_STIMn register, the ITM discards the
write data, and generates an Overflow packet.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM.

RSRPP Reading the ITM_STIMn register of any enabled stimulus port returns a value indicating the output buffer status
and that the port is enabled.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM.

RXVVB Reading an ITM_STIMn register when the ITM is disabled, or when the individual stimulus port is disabled in the
corresponding ITM_TERn register, returns the value indicating that the output buffer cannot accept data because
the port is disabled.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

328

Chapter B13. Debug and Trace Components
B13.1. Instrumentation Trace Macrocell

RFXSL Hardware source packets that are generated by any source use a separate output buffer. The output buffer status
that is obtained by reading an ITM_STIMn register is not affected by trace that is generated by any other source.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM && DWT-T.

RRGCV Stalling is supported through an optional control, ITM_TCR.STALLENA. When implemented and set to 1, the
ITM can stall the PE to guarantee delivery of the following Hardware source packets:

• Data Trace Data Address.
• Data Trace Data Value.
• Data Trace Match.
• Data Trace PC Value.
• Exception Trace.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM.

RNFJN Stalling does not affect the DWT counters.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM && DWT-T.

RNWVT Stalling does not affect the PMU counters.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - ITM && PMU.

RTNDP The ITM might generate an Overflow packet while the PE is stalled, if the DWT generates:

• A Hardware source packet other than a Data trace packet or Exception packet.
• A Data Trace PC value packet or Data Trace Match packet from a Cycle Counter comparator.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM.

RCRKK The ITM does not stall the PE in Secure state if SecureHaltingDebugAllowed() == FALSE.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM && S.

RGRHW The ITM does not stall the PE if HaltingDebugAllowed() == FALSE.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM.

RBGCP The ITM does not stall the PE in such a way as to deadlock the system.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM.

RFRJG The ITM does not stall the PE if the trace output is disabled.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM.

RXRVL The ITM does not stall for writes to the ITM_STIMn registers.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM.

RHDLH Instrumentation trace packets appear in the trace output in the order in which writes arrive at the ITM_STIMn
registers.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM.

RXNHX It is IMPLEMENTATION DEFINED whether an ITM requires flushing of trace data to guarantee that data is output.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM.

RTSXR If periodic flushing is required, the ITM flushes trace data:

• When a Synchronization packet is generated.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

329

Chapter B13. Debug and Trace Components
B13.1. Instrumentation Trace Macrocell

• When trace is disabled, meaning that either DEMCR.TRCENA is cleared to 0 or one or more of
ITM_TCR.{TXENA, SYNCENA, TSENA, SYNCENA} is cleared to 0, and the buffered trace includes at
least one corresponding packet type.

• In response to other IMPLEMENTATION DEFINED flush requests from the system.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM.

RMKFS If a system supports multiple trace streams, the debugger writes a unique nonzero trace ID value to the
ITM_TCR.TraceBusID field. The system uses this value to identify the individual trace streams. To avoid trace
stream corruption, before modifying the ITM_TCR.TraceBusID a debugger does the following:

• It clears the ITM_TCR.ITMENA bit to 0, to disable the ITM.
• It polls the ITM_TCR.BUSY bit until it returns to 0, indicating that the ITM is inactive.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM.

B13.1.3 Timestamp support

RRVLT Timestamps provide information on the timing of event generation regarding their visibility at a trace output port.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM.

RTFDG An Armv8-M PE can implement either or both of the following types of timestamp:

• Local timestamps.
• Global timestamps.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM.

Local timestamping

RRMXM Local timestamps provide delta timestamp values, meaning each local timestamp indicates the elapsed time since
generating the previous local timestamp.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM.

RWGBG The ITM generates the local timestamps from the timestamp counter in the ITM unit.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM.

RXLBH The timestamp counter size is an IMPLEMENTATION DEFINED value that is less than or equal to 28 bits.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM.

RGPXT It is IMPLEMENTATION DEFINED whether the ITM supports synchronous clocking of the timestamp counter mode.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM.

RSRJH It is IMPLEMENTATION DEFINED whether the ITM and TPIU support asynchronous clocking of the timestamp
counter mode.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM.

RGHPS ITM_TCR.TSENA enables Local timestamp packet generation.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM.

RFSWG When local timestamping is enabled and the DWT or ITM transfers a Hardware source or instrumentation trace
packet to the appropriate output FIFO, and the timestamp counter is nonzero, the ITM:

• Generates a Local timestamp packet.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

330

Chapter B13. Debug and Trace Components
B13.1. Instrumentation Trace Macrocell

• Resets the timestamp counter to zero.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM.

RBRRL If the timestamp counter overflows, it continues counting from zero and the ITM generates an Overflow packet and
transmits an associated Local timestamp packet at the earliest opportunity. If higher priority trace packets delay
transmission of this Local timestamp packet, the timestamp packet has the appropriate nonzero local timestamp
value.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM.

RXFRH The ITM can generate a Local timestamp packet relating to a single event packet, or to a stream of back-to-back
packets if multiple events generate a packet stream without any idle time.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM.

RQJJB Local timestamp packets include status information that indicates any delay in one or both of:

• Transmission of the timestamp packet relative to the corresponding event packet.
• Transmission of the corresponding event packet relative to the event itself.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM.

RNDCK If the ITM cannot generate a Local timestamp packet synchronously with the corresponding event packet, the
timestamp count continues to increment until the ITM can generate a Local timestamp packet.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM.

RTBMX The ITM compresses the count value in the timestamp packet by removing leading zeroes, and transmits the
smallest packet that can hold the required count value.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM.

ISQLG To prevent overflow, Arm recommends that the ITM emits a Local timestamp packet before the timestamp counter
overflows.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM.

Local timestamp clocking options

RDSTG If the implementation supports both synchronous and asynchronous clocking of the local timestamp counter,
ITM_TCR.SWOENA selects the clocking mode.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM.

RBDWS When software selects synchronous clocking, when local timestamping is enabled, the PE clock drives the
timestamp counter, and the counter increments on each PE clock cycle.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM.

IJQJD When software selects synchronous clocking, whether local timestamps are generated in Debug state is IMPLE-
MENTATION DEFINED. Arm recommends that entering Debug state disables local timestamping, regardless of the
value of the ITM_TCR.TSENA bit.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM.

RJDRD When software selects asynchronous clocking, and enables local timestamping, the TPIU output interface clock
drives the timestamp counter, through a configurable prescaler. The rate of asynchronous clocking depends on the
output encoding scheme. This clock might be asynchronous to the PE clock.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

331

Chapter B13. Debug and Trace Components
B13.1. Instrumentation Trace Macrocell

RNGDW When asynchronous clocking is implemented, whether the incoming clock signal can be divided before driving the
local timestamping counter is IMPLEMENTATION DEFINED.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM.

RRMTN If the implementation supports division of the incoming asynchronous clock signal, ITM_TCR.TSPrescale sets the
prescaler divide value.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM.

RSKCP Software only selects asynchronous clocking when the TPIU is configured to use an output mode that supports
asynchronous clocking.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM && TPIU.

RJGCF When software selects asynchronous clocking and the TPIU asynchronous interface is idle, the ITM holds the
timestamp counter at zero. This means that the ITM does not generate a local timestamp on the first packet after an
idle on the asynchronous interface.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM && TPIU.

See also:

B13.4 Trace Port Interface Unit on page 359.

Global timestamping
IDKSD Global timestamps provide absolute timestamp values, which are based on a system global timestamp clock. They

provide synchronization between different trace sources in the system.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM.

RHBWD If an implementation includes Global timestamping, the ITM generates Global timestamp (GTS) packets, which
are based on a global timestamp clock.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM.

RKWQJ The size of the global timestamp is either 48 bits or 64 bits. The choice between these two options is IMPLEMEN-
TATION DEFINED.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM.

RSRDF To transfer the global timestamp, two formats of Global timestamp packets are defined:

• The first packet format, Global timestamp 1 packet, holds the value of the least significant timestamp
bits[25:0], and wrap and clock change indicators.

• The second packet format, Global timestamp 2 packet, holds the value of the high-order timestamp bits:

– Bits[47:26], if a 48-bit global timestamp is supported.
– Bits[63:26], if a 64-bit global timestamp is supported.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM.

RVGBT The ITM generates a full Global timestamp packet, consisting of Global timestamp 1 packet Global timestamp 2
packet, in the following circumstances:

• When software first enables global timestamps, by changing the value of the ITM_TCR.GTSFREQ field
from zero to a nonzero value.

• When the system asserts the clock ratio change signal in the external ITM timestamp interface.
• In response to a Synchronization packet request, even if ITM_TCR.SYNCENA == 0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

332

Chapter B13. Debug and Trace Components
B13.1. Instrumentation Trace Macrocell

• When the ITM has to generate a global timestamp, and the ITM detects that the value of the high-order bits
of the global timestamp have changed since the Global timestamp 2 packet was last generated.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM.

RXQWL If the global timestamp generated by the ITM does not have to be a full global timestamp, the ITM generates only
a single Global timestamp 1 packet.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM.

RDJLN When the ITM generates a global timestamp, it does so after a non-delayed Instrumentation or Hardware Source
packet. The Global Timestamp 1 packet is always associated with the most recently output non-delayed Instrumen-
tation or Hardware Source packet.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM.

RWDCX When the ITM generates a full global timestamp:

1. The ITM first generates the Global timestamp 1 packet with timestamp bits[25:0], with the applicable bit of
the Wrap and ClockCh bits in that packet set to 1 to indicate that the high-order bits of the timestamp will
also be output. This is the packet that the ITM outputs immediately after a non-delayed trace packet.

2. Because of packet prioritization, the ITM might have to transmit other trace packets before it can output the
Global timestamp 2 packet that contains the high-order bits of the timestamp. It might also have to transmit
another Global timestamp packet. If so, it outputs the Global timestamp 1 packet with timestamp bits[25:0]
and the Wrap bit set to 1.

3. The ITM later generates the Global timestamp 2 packet with the high-order timestamp bits for the most
recently transmitted Global timestamp 1 packet.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM.

See also:

B13.1.4 Synchronization support .

B13.1.5 Continuation bits on page 334.

ITM and DWT Packet Protocol Specification.

B13.1.4 Synchronization support

ILRJT An external debugger uses Synchronization Packets to recover bit-to-byte alignment information in a serial data
stream.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM.

ILVGD Synchronization packets are independent of timestamp packets.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM.

RQRFL If the ITM connects to a parallel trace port interface, it must generate periodic Synchronization packets. An ITM
connected to an asynchronous serial trace port interface can generate Synchronization packets

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM.

IJNJV Arm recommends that software disables Synchronization packets when using an asynchronous serial trace port, to
reduce the data stream bandwidth.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

333

Chapter B13. Debug and Trace Components
B13.1. Instrumentation Trace Macrocell

RRMND If ITM_TCR.SYNCENA == 1, the ITM outputs a Synchronization packet:

• When it is first enabled.

• If DWT_CYCCNT is implemented and DWT_CTRL.SYNCTAP is nonzero, in response to a Synchronization
packet request from the DWT unit.

• If TPIU_PSCR is implemented, in response to a Synchronization packet request from the TPIU:

– If DWT_CYCCNT is not implemented, TPIU_PSCR is implemented.
– If DWT_CYCCNT is implemented, it is IMPLEMENTATION DEFINED whether TPIU_PSCR is imple-

mented.

• In response to other IMPLEMENTATION DEFINED Synchronization packet requests from the system.

• On exit from Debug state.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM. Note, might
require additional extensions as described in the rule.

See also:

DWT_CTRL.SYNCTAP.

B13.1.5 Continuation bits

IBFMX A Synchronization packet consists of a bit stream of at least 47 zero bits followed by a one bit. The final bit is the
byte alignment marker, and therefore bit[7] of the last byte of a Synchronization packet is always one.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM. Note, When
the ITM supports more than 32 Stimulus ports.

RJNVH The longest Extension packet is always 5 bytes. In an Extension packet, bit[7] of each byte, including the header
byte, but not including the last byte of a 5-byte packet, is a continuation bit, C. Bit[7] of the last byte of a 5-byte
Extension packet is part of the extension field. Bit[7] of the last byte of a fewer-than-5-byte Extension packet is
always zero.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM.

RXFTL For all other protocol packets, bit[7] of each byte, including the header byte, but not including the last byte of a
7-byte packet, is a continuation bit, C. Bit[7] of the last byte of a packet is always zero.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM.

RBBSF Each packet type defines its maximum packet length. Except for Global timestamp 2 and Synchronization packets,
the longest defined packet is 5 bytes.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM.

RDPJG The continuation bit, C, is defined as:

0: This is the last byte of the packet.

1: This is not the last byte of the packet.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ITM.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

334

Chapter B13. Debug and Trace Components
B13.2. Data Watchpoint and Trace unit

B13.2 Data Watchpoint and Trace unit

B13.2.1 About the DWT

RQQLQ The Data Watchpoint and Trace (DWT) unit provides the following features:

• Comparators that support:

– Use as a single comparator for instruction address matching or data address matching.
– Use in linked pairs for instruction address range matching or data address range matching.

• Generation, on a comparator match, of:

– A debug event that causes the PE either to enter Debug state or, if the Main Extension is implemented,
to take a DebugMonitor exception.

– Signaling a match to an ETM, if implemented.
– Signaling a match to another external resource.

• External instruction address sampling using an instruction address sample register.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T &&
(DebugMonitor exception || Halting debug). Note, some comparator matches require ETM.

RKBMX If the Main Extension is implemented, the DWT provides the following features:

• An optional cycle counter.

• Comparators that support:

– Use as a single comparator for cycle counter matching, if the cycle counter is implemented.
– Use as a single comparator for data value matching.
– Use in linked pairs for data value matching at a specific data address.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T && M.

RDVJV If the Main Extension and the ITM are implemented, the DWT provides the following trace generation features:

• Generating one or more trace packets on a comparator match.
• Generating periodic trace packets for software profiling.
• Exception trace.
• Performance profiling counters that generate trace.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T && M
&& ITM.

RCPXJ If DWT_CTRL.NOTRCPKT is 1, there is no DWT trace support.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RFKFP If DWT_CTRL.NOCYCCNT is 1, there is no cycle counter support.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RBKGF If DWT_CTRL.NOPRFCNT is 1, there is no profiling counter support.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RHFTT The DWT_CTRL.NUMCOMP field indicates the number of implemented DWT comparators, which is in the
range 0-15.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

335

Chapter B13. Debug and Trace Components
B13.2. Data Watchpoint and Trace unit

RVMSD It is optional whether the DWT supports Data value masking. If Data value masking is supported,
DWT_DEVARCH.REVISION==0b0001.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - DSPDE.

RWQLX If the Main Extension is not implemented, Cycle counter, Data value, Linked data value, and Data address with
value comparators and all trace features are not supported.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - !M && DWT-T.

RSSWT Data trace packets are only generated for comparators 0-3.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RCRHX When a DWT implementation includes one or more comparators, which comparator features are supported, and by
which comparators, is IMPLEMENTATION DEFINED.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

B13.2.2 DWT unit operation

IWTSS For each implemented comparator, a set of registers defines the comparator operation. For comparator n:

• DWT_COMPn holds a value for the comparison.
• DWT_FUNCTIONn defines the operation of the comparator.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

ILZMQ DWT_VMASKn is an additional register that defines the comparator operation.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - DSPDE.

RDWTC The DWT checks for a cycle counter match on each increment of the Cycle Counter.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RXBRD A Secure match is a match that is generated by one of the following:

• Vector fetches where NS-Req has a value of Secure for the operation.

• The hardware stacking or unstacking of registers, where NS-Req has a value of Secure for the operation, on
any of:

– Exception entry.
– Exception exit.
– Function call entry.
– Function return.
– Lazy state preservation.

• A privileged or unprivileged operation that is generated by an instruction that is executed in Secure state,
including:

– An Instruction address match for an instruction that is executed in Secure state.
– A Data address or Data value match for a load or store that is generated by an instruction that is executed

in Secure state.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T && S.

RBSKH An unprivileged match is a match that is generated by one of the following:

• The hardware stacking or unstacking of registers, where the operation is unprivileged on any of:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

336

Chapter B13. Debug and Trace Components
B13.2. Data Watchpoint and Trace unit

– Exception entry.
– Stacking of additional context on tail-chaining.
– Exception exit.
– Function call entry.
– Function return.
– Lazy state preservation.

• An operation that is generated by an instruction that is executed in an unprivileged mode, including:

– An instruction address match for an instruction that is executed in unprivileged mode.
– A Data address or Data value match for a load or store that is generalized by an instruction that is

executed in an unprivileged mode.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - DWT-T && S
&& UDE.

RDVCN A Secure match can be generated by a cycle counter match in Secure state if DWT_CTRL.CYCDISS == 1.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T && S.

IDWTB If the Cycle Counter increments on entry or exit from Secure state no Secure match is generated.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T && S.

RNDFF Privileged matches are prohibited if one or more of the following conditions apply:

• DEMCR.TRCENA == 0 or NoninvasiveDebugAllowed(TRUE) == FALSE. If UDE is not imple-
mented all matches will be prohibited.

• DWT_FUNCTION.ACTION specifies a debug event and all the following conditions apply:

– HaltingDebugAllowed() == FALSE or DHCSR.C_DEBUGEN == 0.
– The Main Extension is not implemented or DEMCR.MON_EN == 0.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RFRGS Unprivileged matches are prohibited if one or more of the following conditions apply:

• DEMCR.TRCENA == 0. or NoninvasiveDebugAllowed(FALSE) == FALSE.

• DWT_FUNCTION.ACTION specifies a debug event and all of the following are true:

– HaltingDebugAllowed() == FALSE or DHCSR.C_DEBUGEN == 0.
– UDE is not implemented or UnprivHaltingDebugAllowed() == FALSE or DHCSR.C_DEBUGEN

== 0.
– The Main extension is not implemented or DEMCR.MON_EN == 0.
– UDE is not implemented or DEMCR.UMON_EN == 0.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

IVTGP If UDE is not implemented, the NoninvasiveDebugAllowed() function ignores the privilege mode of the
match and a match will be generated if the function returns TRUE.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RMJBG Secure matches are prohibited if one or more of the following conditions applies:

• DWT_FUNCTION.ACTION specifies a trace or trigger event and SecureNoninvasiveDebugAllowed(TRUE)
== FALSE.

• DWT_FUNCTION.ACTION specifies a debug event and all of the following conditions apply:

– DHCSR.S_SDE == 0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

337

Chapter B13. Debug and Trace Components
B13.2. Data Watchpoint and Trace unit

– The Main Extension is not implemented or DEMCR.SDME == 0.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - DWT-T && S.
Note, M required if DEMCR.SDME == 1.

RHCFP For address and value comparisons, the control register values and the current execution priority and Security state
relate to the state of the PE when it generated the transaction that is being matched against.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T && S.

RFFKV Between a change to the debug authentication interface, DHCSR or DEMCR, that disables debug and a following
context synchronization event, it is UNPREDICTABLE whether the DWT uses the old values or the new values.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RVTNJ Where the DWT operation rules prohibit a match being generated, a match is not generated, even if the programmers’
model defines it as being UNPREDICTABLE whether a comparator generates a match as the result of the way in
which the DWT is programmed.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RLFXC DWT_CTRL.FOLDEVTENA, LSUEVTENA, SLEEPEVTENA, EXCEVTENA, and CPIEVTENA are ignored
and these fields have an Effective value of 0 if any of the following are true:

• DEMCR.TRCENA == 0.
• NoninvasiveDebugAllowed(FALSE) == FALSE.
• NoninvasiveDebugAllowed(TRUE) returns FALSE, and the PE is executing in a privileged mode.
• The Security Extension is implemented and SecureNoninvasiveDebugAllowed(FALSE) returns

FALSE, and the PE is executing in Secure state.
• The Security Extension and UDE are implemented, SecureNoninvasiveDebugAllowed(TRUE)

returns FALSE, and the PE is executing in Secure state and privileged mode.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T &&
UDE. Note, UDE only available in an Armv8.1-M implementation.

RBDPD The DWT does not generate any trace packets for an operation if any of the following are true:

• DEMCR.TRCENA == 0.
• NoninvasiveDebugAllowed(FALSE) returns FALSE.
• NoninvasiveDebugAllowed(TRUE) returns FALSE, and the operation is executed in a privileged

mode.
• The Security Extension is implemented, SecureNoninvasiveDebugAllowed(FALSE) returns

FALSE, and the operation is executed in Secure state.
• The Security Extension and UDE are implemented, SecureNoninvasiveDebugAllowed(TRUE)

returns FALSE, and the operation is executed in Secure state and privileged mode.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T &&
UDE. Note, UDE only available in an Armv8.1-M implementation.

RFHWV If SecureNoninvasiveDebugAllowed(TRUE) == FALSE, DWT_CTRL.FOLDEVTENA, LSUEVTENA,
SLEEPEVTENA, EXCEVTENA, and CPIEVTENA are ignored and these fields have an Effective value of 0 in
Secure state.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T && S.

RWSRR If SecureNoninvasiveDebugAllowed() == FALSE, Exception trace packets are not generated if the
exception number in the packet represents a Secure exception:

• Exception entry packets are not generated for exceptions that are taken to Secure state.
• Exception exit packets are not generated for exits from Secure state.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

338

Chapter B13. Debug and Trace Components
B13.2. Data Watchpoint and Trace unit

• Exception return packets are not generated for returns to Secure state.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T && S.

RDFWR Exception trace packets appear in the same order as for a simple sequential execution of the exception handling.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RBRSR When the DWT generates a match, DWT_FUNCTION.MATCHED is set to 1, unless the comparator is a Data
address limit or Instruction address limit comparator, in which case DWT_FUNCTION.MATCHED is UNKNOWN.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RGSSG When the DWT generates a match, then if DWT_FUNCTION.ACTION specifies a debug event, then
DHCSR.C_HALT is set to 1 if all of the following conditions are true:

• Either of the following conditions apply:

– HaltingDebugAllowed() returns TRUE.
– UnprivHaltingDebugAllowed(TRUE) returns TRUE and the operation is unprivileged.

• DHCSR.C_DEBUGEN == 1.

• DHCSR.S_HALT == 0.

• One of the following conditions apply:

– SecureHaltingDebugAllowed() returns TRUE.
– SecureUnprivHaltingDebugAllowed() returns TRUE and the operation is unprivileged.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - DWT-T &&
UDE.

RCJLL When the DWT generates a match, then if DWT_FUNCTION.ACTION specifies a debug event,
DEMCR.MON_PEND is set to 1 if all of the following conditions apply:

• The PE does not set DHCSR.C_HALT to 1 as a result of the match.

• DEMCR.MON_EN is set to 1, or all of the following apply:

– The Unprivileged Debug Extension is implemented.
– The match is an unprivileged match.
– DEMCR.UMON_EN is set to 1.

• Either:

– The watchpoint was not generated by a lazy state preservation access and the DebugMonitor exception
priority was not sufficient to preempt the execution priority of the lazy state preservation access.

– The watchpoint was generated by lazy state preservation and FPCCR.MONRDY is set to 1.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - DWT-T && M
&& UDE.

RFTBG When the DWT generates a match, then a Data trace match packet is generated, if all of the following conditions
apply:

• SecureNoninvasiveDebugAllowed() == FALSE.
• DWT_FUNCTION.ACTION specifies generating a Data trace PC value packet.
• The instruction address that would be included in the packet refers to an instruction that was executed in

Secure state.

Otherwise, the type of trace packet that is specified by DWT_FUNCTION.ACTION is generated.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T && M
&& S && !UDE.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

339

Chapter B13. Debug and Trace Components
B13.2. Data Watchpoint and Trace unit

RRGWF When the DWT generates a match and DWT_FUNCTION.ACTION specifies generating a Data trace PC value
packet, then the type of trace packet that is specified by DWT_FUNCTION.ACTION is ignored and a Data trace
match packet is generated in its place, if one or more of the following conditions apply for the instruction, that is
the subject of the match, referred to by the instruction address that would otherwise be included in the Data trace
PC value packet:

• The Unprivileged Debug Extension is implemented, NoninvasiveDebugAllowed(TRUE) returns
FALSE, and the instruction was executed in a privileged mode.

• The Security Extension and the Unprivilged Debug Extension are implemented, the instruction was executed
in a Secure privileged mode, and SecureNoninvasiveDebugAllowed(TRUE) returns FALSE.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - DWT-T && M
&& S && UDE.

RFNDW An access that results in a MemManage fault or SecureFault exception because of the alignment, SAU, IDAU, or
MPU checks, is not observed by the DWT, and cannot generate a match.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T && (S ||
M && MPU).

RPGJB The DWT treats hardware accesses to the stack as data accesses:

• For registers pushed to the stack by hardware as part of an exception entry or lazy state preservation.
• For registers popped from the stack by hardware as part of an exception return.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RNQNR The DWT treats hardware accesses to the stack as data accesses:

• For registers pushed to the stack by hardware as part of a Non-secure function call.
• For registers popped from the stack by hardware as part of a Non-secure function.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T && S.

RSFSC Where a hardware access to the stack generates a Data trace PC value packet, the PC value in the packet will be as
follows:

• On exception entry or a function call, the PC value will be the return address for the exception or function
call.

• On lazy state preservation the PC value is the address of the instruction that triggered the lazy state preserva-
tion.

• On exception return or Non-secure function return the PC value is either:

– The address of the instruction that caused the exception return or the Non-secure function return.
– The EXC_RETURN or FNC_RETURN payload value used in the exception return or the Non-secure

function return.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RYZLM Watchpoints that occur as a result of DWT Unit events will be taken when all in-flight instructions have completed.
However, under rare circumstances, the architecturally-visible overlap of instructions might be observable.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - DWT-T &&
MVE.

IBPHG If a higher priority exception preempts the generated watchpoint, then the in-flight instruction might be visible
when the PE enters Debug state or a DebugMonitor exception is subsequently taken. The debugger and software
can observe the stacked value of EPSR.ECI to determine the overlap status.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - DWT-T &&
MVE && Halting debug || DebugMonitor exception.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

340

Chapter B13. Debug and Trace Components
B13.2. Data Watchpoint and Trace unit

RHKDY Watchpoints can be triggered from a number of comparators based on configurable events. If triggered from
an instruction address comparator, the watchpoint is triggered whenever the instruction attempts to execute.
Predication has no effect on the watchpoint address comparator.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - DWT-T &&
MVE.

RSJCQ Predication affects data address and value comparators, and a watchpoint is triggered if the memory access is not
predicated. It is not triggered if the access is not performed.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - DWT-T &&
MVE.

RZHVG If Data value matching is supported, then the DWT implements the DWT_VMASK<n> registers for each
implemented comparator n that supports Data value matching.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - DSPDE.

RKCYJ Armv8.1-M introduces implicit branching for BF instructions, and this behavior might induce implicit changes in
the program flow. In the case where a breakpoint or watchpoint is set in program order after the branch point and
the implicit branch is taken, the breakpoint or watchpoint will have no effect.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB.

RFBRP It is UNKNOWN whether a Watchpoint or a Breakpoint that is targeted at an LE or LETP instruction will have any
effect.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB &&
(DWT-D || FPB).

B13.2.3 Constraints on programming DWT comparators

RMSPS If a DWT comparator, <n>, or pair of comparators, <n> and <n+1>, is programmed with a reserved combina-
tion of DWT_FUNCTION.MATCH and DWT_FUNCTION.ACTION, then it is UNPREDICTABLE whether any
comparator:

• Behaves as if disabled.

• Generates a match, setting DWT_FUNCTION.MATCHED bit to an UNKNOWN value, and any of the
following:

– Asserts CMPMATCH.
– Generates a debug event.
– Generates one or more trace packets.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RGPLQ Combinations of DWT_FUNCTION.MATCH and DWT_FUNCTION.ACTION that are not specified as valid
combinations are reserved.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RJHZK It is IMPLEMENTATION DEFINED which values of DWT_FUNCTION.MATCH are valid for counter <n>.
DWT_FUNCTION.ID defines which values are valid. Values that are not valid are reserved.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RCNHN The valid combinations of DWT_FUNCTION.MATCH and DWT_FUNCTION.ACTION for a single comparator,
and the events and Data trace packets that the comparator can generate from matching a single access, are identified
in the following table.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

341

Chapter B13. Debug and Trace Components
B13.2. Data Watchpoint and Trace unit

In the table:

-: means that the packet or event is not generated.

Yes: means that the packet or event is generated on a comparator match.

Data Trace
Comparator MATCH ACTION Debug Match PC Value Data Data
Type Event Packet Match Address Value

Packet Packet Packet
Disabled 0b0000 0bxx - - - - -
Cycle Counter 0b0001 0b00 - - - - -

0b01 Yes - - - -
0b10 - Yes - - -
0b11 - - Yes - -

Instruction Address 0b0010 0b00 - - - - -
0b01 Yes - - - -
0b10 - Yes - - -

Data address 0b01xx 0b00 - - - - -
(not 0b01 Yes - - - -
0b0111) 0b10 - Yes - - -

0b11 - - Yes - -
Data value 0b10xx 0b00 - - - - -

(not 0b01 Yes - - - -
0b1011) 0b10 - Yes - - -

Data address 0b11xx (not 0b10 - - - - Yes
with value 0b1111) 0b11 - - Yes - Yes

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T. Note,
Cycle counter, Data value and Data address with value are only available if M is implemented.

Instruction address range

RDKHG To match an instruction that is in an instruction address range, the following conditions are met:

• The first comparator, <n-1>, is programmed for Instruction address.
• The second comparator, <n>, is programmed for Instruction address limit.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RLNQD The valid combinations of DWT_FUNCTION.MATCH and DWT_FUNCTION.ACTION for an instruction
address range, and the events and data trace packets that matching a single access can generate, are specified in the
following table.

In the table:

-: means that the packet or event is not generated.

First: means that the packet or event is generated by the first comparator match.

Second: means that the packet or event is generated by the second comparator match.

MATCH ACTION Data Trace
<n-1> <n> <n-1> <n> Debug Match PC Value Data Data

Event packet packet Address packet Value packet
0b0000 0b0011 0bxx 0bxx - - - - -
0b0010 0b0011 0b00 0b00 - - - - -

0b00 0b11 - - Second - -
0b01 0b00 First - - - -
0b10 0b00 - First - - -

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

342

Chapter B13. Debug and Trace Components
B13.2. Data Watchpoint and Trace unit

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T && M.

RVDRJ If the Main Extension is not implemented the valid combinations of DWT_FUNCTION.MATCH and
DWT_FUNCTION.ACTION for an instruction address range, and the events and data trace packets that matching
a single access can generate, are specified in the following table.

In the table:

-: means that the packet or event is not generated.

First: means that the packet or event is generated by the first comparator match.

Second: means that the packet or event is generated by the second comparator match.

MATCH ACTION Data Trace
<n-1> <n> <n-1> <n> Debug Match PC Value Data Data

Event packet packet Address packet Value packet
0b0000 0b0011 0bxx 0bxx - - - - -
0b0010 0b0011 0b00 0b00 - - - - -

0b01 0b00 First - - - -

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T && !M.

Data address range

RLDGR To match a data access in a data address range, the following conditions are met:

• The first comparator, <n-1>, is programmed for either Data address or Data address with value.
• The second comparator, <n>, is programmed for Data address limit.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T && M.

RPSBJ The valid combinations of DWT_FUNCTION.MATCH and DWT_FUNCTION.ACTION for a data address range,
and the events and data trace packets that matching a single access can generate, are specified in the following
table.

In the table:

-: means that the packet or event is not generated.

First: means that the packet or event is generated by the first comparator match.

Second: means that the packet or event is generated by the second comparator match.

MATCH ACTION Data Trace
<n-1> <n> <n-1> <n> Debug Match PC Value Data Data

Event packet packet Address packet Value packet
0b0000 0b0111 0bxx 0bxx - - - - -
0b01xx 0b0111 0b00 0b00 - - - - -
(not 0b00 0b11 - - - Second -
0b0111) 0b01 0b00 First - - - -

0b10 0b00 - First - - -
0b11 0b00 - - First - -
0b11 0b11 - - First Second -

0b11xx 0b0111 0b10 0b00 - - - - First
(not 0b10 0b11 - - - Second First
0b1111) 0b10 0b11 - - First - First

0b11 0b11 - - First Second First

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

343

Chapter B13. Debug and Trace Components
B13.2. Data Watchpoint and Trace unit

RHDMX If the Main Extension is not implemented the valid combinations of and for a data address range, and the events
and data trace packets that matching a single access can generate, are specified in the following table.

In the table:

-: means that the packet or event is not generated.

First: means that the packet or event is generated by the first comparator match.

Second: means that the packet or event is generated by the second comparator match.

MATCH ACTION Data Trace
<n-1> <n> <n-1> <n> Debug Match PC Value Data Data

Event packet packet Address packet Value packet
0b0000 0b0111 0bxx 0bxx - - - - -
0b01xx 0b0111 0b00 0b00 - - - - -
(not 0b00 0b11 - - - Second -
0b0111) 0b01 0b00 First - - - -

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T && !M.

Data value at specific address

RKFHV Matching data values at specific data addresses is possible only if the Main Extension is implemented.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RNNXD To match a data value at a specific data address, the following conditions are met:

• The first comparator, <n-1>, is programmed for either Data address or Data address with value.
• The second comparator, <n>, is programmed for Linked data value.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RJKGJ The first comparator matches any access that matches the address. The second matches only accesses that match
the address and the data value.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RNTSD The valid combinations of DWT_FUNCTION.MATCH and DWT_FUNCTION.ACTION for a linked data value,
and the events and data trace packets that matching a single access can generate, are specified in the following
table.

In the table:

-: means that the packet or event is not generated.

First: means that the packet or event is generated by the first comparator match.

Second: means that the packet or event is generated by the second comparator match.

Both: means that a first packet is generated by a first comparator match, even if the Linked data value comparator
does not match, and a second packet is generated by the second comparator match, if both comparators match.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

344

Chapter B13. Debug and Trace Components
B13.2. Data Watchpoint and Trace unit

MATCH ACTION Data Trace
<n-1> <n> <n-1> <n> Debug Match PC Value Data Data

Event packet packet Address packet Value packet
0b0000 0b1011 0bxx 0bxx - - - - -
0b01xx 0b1011 0b00 0b00 - - - - -
(not 0b00 0b01 Second - - - -
0b0111) 0b00 0b10 - Second - - -

0b01 0b00 First - - - -
0b01 0b10 First Second - - -
0b10 0b00 - First - - -
0b10 0b01 Second First - - -
0b11 0b00 - - First - -
0b11 0b01 Second - First - -
0b11 0b10 - Second First - -

0b11xx 0b1011 0b10 0b00 - - - - First
(not 0b10 0b01 Second - - - First
0b1111) 0b10 0b10 - Second - - First

0b11 0b00 - - First - First
0b11 0b01 Second - First - First
0b11 0b10 - Second First - First

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

B13.2.4 CMPMATCH trigger events

IVNCC The CMPMATCH events signal watchpoint matches.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RPRJG The implementation of CMPMATCH is IMPLEMENTATION DEFINED.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RFTWC If an ETM is implemented, CMPMATCH events are output to the ETM.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T &&
ETM.

RTMZX If an ETM is not implemented, the effect of CMPMATCH is IMPLEMENTATION DEFINED, including whether the
trigger event has any observable effect or whether observable effects are visible to other components in the system.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RXXKM For all enabled watchpoints, if DWT_FUNCTIONn is not programmed as an Instruction address limit comparator
and is not programmed as a Data address limit comparator, CMPMATCH[n] is triggered on a comparator match.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RGVHS For all enabled watchpoints, if DWT_FUNCTIONn is programmed as an Instruction address limit or Data address
limit comparator, it is UNPREDICTABLE whether CMPMATCH[n] is triggered on a comparator match.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

B13.2.5 Matching in detail

Instruction address matching in detail

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

345

Chapter B13. Debug and Trace Components
B13.2. Data Watchpoint and Trace unit

RGNVB The DWT checks all instructions that are executed by a simple sequential execution of the program and do not
generate any exception for an instruction address match, including conditional instructions that fail their condition
code check.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RNQGR An instruction might be checked by the DWT for an instruction address match if it either:

• Is executed by a simple sequential execution of the program and generates a synchronous exception.
• Would be executed by the sequential execution of the program but is abandoned because of an asynchronous

exception.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RKJJC Speculative instruction prefetches, other than those that would be executed by the sequential execution of the
program but that are abandoned because of asynchronous exceptions, do not generate matches.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RDSDT For all instruction address matches, if bit[0] of the comparator address has a value of 1, it is UNPREDICTABLE
whether a match is generated when the other address bits match.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RKLXM For single instruction address matches, an instruction matches if the address of the first byte of the instruction
matches the comparator address.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RFXFM For single address matches, if the instruction at address A is a 4-byte T32 instruction, and the address A+2 matches
but the address A does not match, it is UNPREDICTABLE whether a match is generated.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RDNKD For instruction address range matches, an instruction at address A matches if the address A lies between the lower
comparator address, which is specified by comparator <n-1>, and the limit comparator address, which is specified
by comparator <n>. Both addresses are inclusive to the range.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RJNXZ For instruction address range matches, if the instruction at address A is a 4-byte T32 instruction, and the address
A+2 lies in the range but the address A does not lie in the range, it is UNPREDICTABLE whether a match is
generated.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RMLMQ For instruction address range matches, if so configured, a Data trace PC value packet or Data trace match packet is
generated for the first instruction that is executed in the range.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

IVHHW For instruction address range matches, if so configured, a branch or sequential execution that stays within the range
does not necessarily generate a new packet.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RHMNX For instruction address range matches, if so configured, CMPMATCH[n-1] is triggered for each instruction that
is executed inside the range, where n-1 is the lower of the two comparators that configure the range.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

346

Chapter B13. Debug and Trace Components
B13.2. Data Watchpoint and Trace unit

Data address matching in detail

RBPWC For all Data Address matches, all bits of the comparator address are considered.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RGSLX Speculative reads might generate data address matches.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RWWBH Speculative writes do not generate data address matches.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RVJFB Prefetches into a cache do not generate data address matches.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RCMRP For single data address matches, an access matches if any accessed byte lies between the comparator address and a
limit that is defined by DWT_FUNCTION.DATAVSIZE.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RKHRF For single data address matches, the comparator address is naturally aligned to DWT_FUNCTION.DATAVSIZE
otherwise generation of watchpoint events is UNPREDICTABLE.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RKKRJ For data address range matches, an access matches if any accessed byte lies between the lower comparator address,
which is specified by comparator <n-1>, and the limit comparator address, which is specified by comparator <n>.
Both addresses are inclusive to the range.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RCFMR For data address range matches, DWT_FUNCTION.DATAVSIZE is set to 0b00 for both the lower comparator
address and the limit comparator address otherwise it is UNPREDICTABLE whether or not a match is generated.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

Data value matching in detail

RBMSM Data value matching is only possible if the Main Extension is implemented.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RFVFQ Speculative reads might generate data value matches.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RVGJF Speculative writes do not generate data value matches.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RMLFK Prefetches into a cache do not generate data value matches.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RRMDB For data value matches, if the access size is smaller than DWT_FUNCTION.DATAVSIZE, there is no match.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RZDPM For unlinked data value matches, an access matches if all bytes of any naturally-aligned subset, the size of which is
specified by DWT_FUNCTION.DATAVSIZE, of the access match the data value in DWT_COMPn.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

347

Chapter B13. Debug and Trace Components
B13.2. Data Watchpoint and Trace unit

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RZHXP The data value in DWT_COMPn is in little-endian order with respect to memory.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

IHMMS If the access is unaligned then this might generate a higher priority alignment fault, depending on the instruction
type, profile, and configuration. In these cases no match is generated.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RSQKS For unlinked data value matches, if an access is unaligned, it is IMPLEMENTATION DEFINED whether it either
treated as:

• A sequence of byte accesses.
• A sequence of naturally-aligned accesses covering the accessed bytes. For a read, this access might access

more bytes than the original access.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RQRPW For linked data value matching, if an access is larger than DWT_FUNCTION.DATAVSIZE, then only the naturally-
aligned subset of the access of size DWT_FUNCTION.DATAVSIZE at the matching address is compared for a
match.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RQVRK For linked data value matching, the data address comparator address is naturally aligned to

DWT_FUNCTION.DATAVSIZE, and the DWT_FUNCTION.DATAVSIZE values for both comparators are the
same.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RKRCV A Data value comparator that is linked to a Data address comparator does not change the behavior of the address
comparator.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RKQJB For each comparator n that is configured to Data Value or Linked Data Value matching it is UNPREDICTABLE
whether comparator n generates a match when for bit m=31-0, if any of the following are true:

• DWT_FUNCTION<n>.DATAVSIZE specifies halfword or byte comparison and DWT_COMPn[31:16] is
not equal to DWT_COMPn[15:0].

• DWT_FUNCTION<n>.DATAVSIZE specifies byte comparsion and DWT_COMPn[15:8] is not equal to
DWT_COMPn[7:0].

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RZKRZ For each comparator n that is configured to Data Value or Linked Data Value matching the value matches if, for
each bit[m] any of the following are true:

• Bit[m] of the value is equal to DWT_COMPn[m].
• DWT_VMASKn is implemented, DWT_COMPn[m] is set to 0, and DWT_VMASKn[m] is set to 1.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - DSPDE.

RBVLK For each comparator n that is configured for Data Value or Linked Value matching, if DWT_VMASKn is
implemented, then it is UNPREDICTABLE whether comparator n generates a match when, for bit m = 0-31, all of
the following are true:

• DWT_VMASKn[m] is set to 1.
• DWT_COMPn[m] is not set to 0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

348

Chapter B13. Debug and Trace Components
B13.2. Data Watchpoint and Trace unit

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - DSPDE.

RHRTJ For each comparator n that is configured for Data Value or Linked Value matching, if DWT_VMASKn is
implemented, then it is UNPREDICTABLE whether comparator n generates a match if any of the following are true:

• DWT_FUNCTION<n>.DATAVSIZE specifies halfword or byte comparison and DWT_VMASKn[31:16] is
not equal to DWT_VMASKn[15:0].

• DWT_FUNCTION<n>.DATAVSIZE specifies byte comparison and DWT_VMASKn[15:8] is not equal to
DWT_VMASKn[7:0].

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - DSPDE.

RSMHR For each comparator n that is configured for neither Data Value nor Linked Data Value matching, DWT_VMASKn
is ignored if it is implemented.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - DSPDE.

See also:

DWT_AddressCompare().

DWT_ValidMatch().

DWT_InstructionAddressMatch().

DWT_DataAddressMatch().

DWT_DataValueMatch().

B13.2.6 DWT match restrictions and relaxations

RFRWG It is IMPLEMENTATION DEFINED whether the DWT treats a fetch from the exception vector table as part of an
exception entry or reset as a data access or ignores these accesses, for the purposes of DWT comparator matches.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RDTHW A fetch by the DWT from the exception vector table as part of an exception entry is never treated as an instruction
fetch.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RJQHW If a return is tail-chained, it is IMPLEMENTATION DEFINED whether hardware accesses the stack and therefore
IMPLEMENTATION DEFINED whether the DWT can generate events or trace.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RVJTK The DWT does not match accesses from the DAP.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RMNBX Any executed NOP or IT that matches an appropriately configured instruction address watchpoint causes a match.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RSLPX It is IMPLEMENTATION DEFINED whether a failed STREX instruction can generate a data access match.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RNHLN If an instruction or operation makes multiple or unaligned data accesses, then it is UNPREDICTABLE whether any
nonmatching access generated by an instruction that generated a matching access is treated as a matching access.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

349

Chapter B13. Debug and Trace Components
B13.2. Data Watchpoint and Trace unit

RCSSQ If an instruction or operation makes multiple or unaligned data accesses, then CMPMATCH is triggered for each
matching access.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RVFXT If an instruction or operation makes multiple or unaligned data accesses, then, if so configured, only a data value
match of at least a part of the value that is guaranteed to be single-copy atomic can generate a match.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RWJNR If an instruction or operation makes multiple or unaligned data accesses, then, if so configured, for a matching data
access that generates a debug event, if permitted, DHCSR.C_HALT or DEMCR.MON_PEND, as applicable, is set
to 1.

A pending DebugMonitor exception does not interrupt the multiple accesses, but another interrupt might, which
means that the debug event might be taken before the multiple operations complete.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RQCJL The DWT can match on the address of an access that generates a BusFault.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RQVHL It is IMPLEMENTATION DEFINED whether a stored value for an access that generates a BusFault:

• Can generate a data value match.
• Can be traced.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RKLFC For a load access that returns a BusFault, any data that is returned by the memory system is invalid, and the DWT
does not:

• Generate a data value match.
• Generate a Data trace data value packet.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RTQCF A data access that generates any fault other than a BusFault does not generate a data address or data value match at
the DWT and is not traced.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RFRHP DWT matches are generated asynchronously.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RTHHR A DSB barrier guarantees that the effect of a DWT match is visible to a subsequent read of DWT_FUNCTION.-
MATCHED, DHCSR, or DEMCR. In the absence of a DSB barrier, the effect is only guaranteed to be visible in
finite time.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RHPGH The effects of a DWT match never affect instructions appearing in program order before the operation that generates
the match.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

See also:

B3.26 Tail-chaining on page 127.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

350

Chapter B13. Debug and Trace Components
B13.2. Data Watchpoint and Trace unit

B13.2.7 DWT trace restrictions and relaxations

RPGCS If a single instruction makes multiple single-copy atomic accesses, such as the multiple-byte accesses from an
unaligned access or a predicated vector load/store operation, the DWT might gather a sequence of consecutive
bytes from the multiple accesses, and trace it as a single access.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RHDKK Where a single instruction or operation, or multiple instructions, generate multiple accesses that each generate one
or more trace packets, then if the architecture guarantees the order in which a pair of these accesses is observed by
the PE, the first trace packets that are generated for each of those accesses appear in the trace output in the same
order.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RWSKK Where a single instruction or operation, or multiple instructions, generate multiple accesses that each generate one
or more trace packets, then if the architecture does not guarantee the order of the accesses, the order of the trace
packets in the trace output is not defined.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RXCNB If a single instruction or operation makes multiple or unaligned data accesses, then, if so configured, only the
first access is guaranteed to generate a Data trace PC value packet, Data trace data address packet, or Data trace
match packet. If the architecture does not guarantee the order of the accesses, the first access might be any of the
accesses.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RXVBT If a single instruction or operation makes multiple or unaligned data accesses, then, if so configured, a Data trace
data value packet is generated for each matching access.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RQSCF If a single instruction or operation makes unaligned data accesses, it is UNPREDICTABLE how many Data trace
data value packets are generated for each unaligned matching access. An implementation might overread, meaning
that more data outside the access might be traced.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RKXBL If a single instruction or operation makes multiple or unaligned data accesses, then, if so configured, for a matching
data access that generates a Data trace data value packet, at least that part of the value that is guaranteed to be
single-copy atomic is traced.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RQWQS Duplicate Data trace PC value packets, Data trace data address packets, and Data trace data value packets from a
single access are not generated for a single access.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RCPXW Where a comparator or linked pair of comparators generates multiple packet types for a single access, the packets
appear in the trace output in the following order:

1. Data trace PC value packet.
2. Data trace match packet, generated by a Data address or Data address with value comparator match.
3. Data trace data address packet.
4. Data trace match packet, generated by a Data value comparator match.
5. Data trace data value packet.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

351

Chapter B13. Debug and Trace Components
B13.2. Data Watchpoint and Trace unit

RQXBC Where a comparator or linked pair of comparators generates multiple packet types for a single access, packets
are not interleaved with packets that are generated by other accesses by the same comparator or linked pair of
comparators.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RRHNF Where a comparator or linked pair of comparators generates a trace packet for a single access, if a comparator
other than this comparator or this linked pair of comparators generates a trace packet of the same type for the same
access, then only one of these packets is output. It is IMPLEMENTATION DEFINED which comparator is chosen.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

IMJXG Arm recommends that the packet from the lowest-numbered comparator is output.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RDKMV Where a comparator or linked pair of comparators generates multiple packet types for a single access, if any of the
packets cannot be output and an Overflow packet is generated, then the remaining packets for that access are not
generated.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RLNBW Where a comparator or linked pair of comparators generates multiple packet types for a single access, packets
might be interleaved with packets that are generated for the same access by comparators other than this comparator
or this linked pair of comparators.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

B13.2.8 CYCCNT cycle counter and related timers

RSVPW CYCCNT is an optional free-running 32-bit cycle counter. If the DWT unit implements CYCCNT then
DWT_CTRL.NOCYCCNT is RAZ.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RXDVS The cycle counter, DWT_CYCCNT, and the POSTCNT counter are disabled when DEMCR.TRCENA == 0, but
are not otherwise affected by debug authentication.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RRTJR The cycle counter does not count in Secure state when DWT_CTRL.CYCDISS is set to 1. This is independent of
Secure debug authentication.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T && S.

RKRFP When implemented and enabled, CYCCNT increments on each cycle of the PE clock, using the same definition of
cycle as the Event counters when counting cycles in power-saving modes.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RNFJW When the counter overflows it transparently wraps to zero.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RGXJK DWT_CTRL.CYCCNTENA enables the CYCCNT counter.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RBKCG POSTCNT is a 4-bit countdown counter derived from CYCCNT, that acts as a timer for the periodic generation of
Periodic PC sample packets or Event counter packets, when these packets are enabled.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

352

Chapter B13. Debug and Trace Components
B13.2. Data Watchpoint and Trace unit

IMGGL Periodic PC sample packets are not the same as the Data trace PC value packets that are generated by the DWT
comparators.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RDKGR The DWT does not support the generation of Periodic PC sample packets or Event packets if it does not implement
the CYCCNT timer and DWT_CTRL.NOTRCPKT is RAO.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RRNTV The DWT_CTRL.CYCTAP bit selects the CYCCNT tap bit for POSTCNT.

CYCTAP bit CYCCNT tap at POSTCNT clock rate
0 Bit[6] (PE clock)/64
1 Bit[10] (PE clock)/1024

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RSXKK A write to DWT_CTRL will initialize POSTCNT to the previous value of DWT_CTRL.POSTINIT if all of the
following are true:

• DWT_CTRL.PCSAMPLENA was set to 0 prior to the write.
• DWT_CTRL.CYCEVTENA was set to 0 prior to the write.
• The write sets either DWT_CTRL.PCSAMPLENA or DWT_CTRL.CYCEVTENA to 1.

It is UNPREDICTABLE whether any other write to DWT_CTRL that alters the value of DWT_CTRL.PCSAMPLENA
and DWT_CTRL.CYCEVTENA sets POSTCNT to DWT_CTRL.POSTINIT or leaves POSTCNT unchanged.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RXFRM When either DWT_CTRL.PCSAMPLENA or DWT_CTRL.CYCEVTENA is set to 1, and the CYCCNT tap bit
transitions, either from 0 to 1 or from 1 to 0:

• If POSTCNT is nonzero, POSTCNT decrements by 1.

• If POSTCNT is 0, the DWT:

– Reloads POSTCNT from DWT_CTRL.POSTPRESET.
– Generates a Periodic PC Sample packets if DWT_CTRL.PCSAMPLENA is set to 1.
– Generates an Event Counter packet with the Cyc bit set to 1 if DWT_CTRL.CYCEVTENA is set to 1.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

IPNNS The enable bit for the POSTCNT counter underflow event is DWT_CTRL.CYCEVTENA. There is no overflow
event for the CYCCNT counter. When CYCCNT overflows it wraps to zero transparently. Software cannot access
the POSTCNT value directly, or change this value.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

IJRVV This means that, to initialize POSTCNT, software:

1. Ensures that DWT_CTRL.CYCEVTENA and DWT_CTRL.PCSAMPLENA are set to 0. This can be
achieved with a single write to DWT_CTRL. This is also the reset value of these bits.

2. Writes the required initial value of POSTCNT to the DWT_CTRL.POSTINIT field, leaving
DWT_CTRL.CYCEVTENA and DWT_CTRL.PCSAMPLENA set to 0.

3. Sets either DWT_CTRL.CYCEVTENA or DWT_CTRL.PCSAMPLENA to 1 to enable the POSTCNT
counter.

Each of these are separate writes to DWT_CTRL.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

353

Chapter B13. Debug and Trace Components
B13.2. Data Watchpoint and Trace unit

RKNHF Disabling CYCCNT stops POSTCNT.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RTMHN Writes to DWT_CTRL.POSTINIT are ignored if either DWT_CTRL.CYCEVTENA was set to 1 or
DWT_CTRL.PCSAMPLENA was set to 1 prior to the write.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

B13.2.9 Profiling counter support

IHXPV If the Main Extension is implemented profiling counter support is an optional Non-invasive debug feature.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T && M.

RWHWR If profiling counter support is implemented the DWT provides five 8-bit Event counters for software profiling:

• DWT_FOLDCNT.
• DWT_LSUNCT.
• DWT_EXCCNT.
• DWT_SLEEPCNT.
• DWT_CPICNT.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RGLMJ Event counters do not increment when the PE is halted.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RBRGW The Event counters provide broadly accurate and statistically useful count information. However, the architecture
allows for a reasonable degree of inaccuracy in the counts.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RWMNV The Event counters and CYCCNT use the same definition of cycle in particular when counting cycles in power-
saving modes.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T && M.

IGNWQ To keep the implementation and validation cost low, a reasonable degree of inaccuracy in the counts is acceptable.
Arm does not define a reasonable degree of inaccuracy but recommends the following guidelines:

• Under normal operating conditions, the Event counters present an accurate value count.
• Entry to or exit from Debug state can be a source of inaccuracy.
• Under very unusual, non-repeating pathological cases, the counts can be inaccurate.

An implementation does not introduce inaccuracies that can be triggered systematically by the execution of normal
pieces of software. As the Event counters include counters for measuring exception overhead, this includes the
operation of exceptions.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

ICHKR Arm strongly recommends that an implementation document any particular scenarios where significant inaccuracies
in the Event counters are expected.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

IMWGQ At entry and exit from an exception or sleep state, the exact attribution of cycles to the exception and cycles to the
sleep overhead counters is IMPLEMENTATION DEFINED. Arm recommends that the overhead cycles are attributed
to the overhead counters.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

354

Chapter B13. Debug and Trace Components
B13.2. Data Watchpoint and Trace unit

IMPQN The architecture does not define the point in a pipeline where the particular instruction increments an Event counter,
relative to the point where the incremented counter can be read.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RLMPK An Event counter overflows on every 256th event that is counted and then wraps to 0. If the appropriate counter
overflow event is enabled in DWT_CTRL the DWT outputs an Event counter packet with the appropriate counter
flag set to 1.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RLHMB Setting one of the enable bits to 1 clears the corresponding counter to 0.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

IQRPG The following equation holds:

ICNT = CNTCY CLES + CNTFOLD − (CNTLSU + CNTEXC + CNTSLEEP + CNTCPI)

Where:

ICNT : is the total number of instructions Architecturally executed.

CNTCY CLES : is the number of cycles counted by DWT_CYCCNT.

CNTFOLD: is the number of instructions counted by DWT_FOLDCNT.

CNTLSU : is the number of cycles counted by DWT_LSUNCT.

CNTEXC : is the number of cycles counted by DWT_EXCCNT.

CNTSLEEP : is the number of cycles counted by DWT_SLEEPCNT.

CNTCPI : is the number of cycles counted by DWT_CPICNT.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

See also:

B13.4 Trace Port Interface Unit on page 359.

Generating Overflow packets from Event counters

RKWDH If an Event counter wraps to zero and the previous Event counter packet has been delayed and has not yet been
output, and the counter flag in the previous Event counter packet is set to 0, then it is IMPLEMENTATION DEFINED
whether:

• The DWT attempts to generate a second Event counter packet.
• The DWT updates the delayed Event counter packet to include the new wrap event.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RHKTL If an Event counter wraps to zero and the previous Event counter packet has been delayed and has not yet been
output, and the counter flag in the previous Event counter packet is set to 1, the DWT attempts to generate a second
Event counter packet.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RVPXK If the DWT unit attempts to generate a packet when its output buffer is full, an Overflow packet is output.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RSFFL The size of the DWT output buffer is IMPLEMENTATION DEFINED.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

355

Chapter B13. Debug and Trace Components
B13.2. Data Watchpoint and Trace unit

B13.2.10 Program Counter sampling support

RFXWL Program Counter sampling is an optional component provided through DWT_PCSR.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

ILNJL Program Counter sampling is independent of PC sampling provided by:

• Periodic PC sample packets.
• Data trace PC value packets generated as a result of a DWT comparator match.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

IKVFB The architecture does not define the delay between an instruction being executed by the PE and its address being
written to DWT_PCSR.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RNGNT When DWT_PCSR returns a value other than 0xFFFFFFFF, the returned value is an instruction that has been
committed for execution. It is IMPLEMENTATION DEFINED whether an instruction that failed its condition code
check is considered as committed for execution. A read of DWT_PCSR does not return the address of an instruction
that has been fetched but not committed for execution.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

ITNVH The following diagram describes when instructions are committed for execution:

Begin
Speculative

uArch
unfinished

Nonspeculative
uArch

unfinished

Speculative
uArch finished

Completed

Canceled

Nonspeculative
uArch finished

Committed
for

execution

Committed
for

execution

Operations performed

Cancel

Cancel

Applies to an implementation of the architecture from Armv8.0-M onwards.

IKCBH Arm recommends that instructions that fail the condition code check are considered as committed instructions.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RWPMF DWT_PCSR is able to sample references to branch targets. It is IMPLEMENTATION DEFINED whether it can
sample references to other instructions.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

ISJVK Arm recommends that DWT_PCSR can sample a reference to any instruction.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

356

Chapter B13. Debug and Trace Components
B13.2. Data Watchpoint and Trace unit

RLMDG The branch target for a conditional branch that fails its Condition code check is the instruction that immediately
follows the conditional branch instruction. The branch target for an exception is the exception vector address.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RNWKP Periodic sampling of DWT_PCSR provides broadly accurate and statistically useful profile information. However,
the architecture allows for a reasonable degree of inaccuracy in the sampled data.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

ITJTS To keep the implementation and validation cost low, a reasonable degree of inaccuracy in the counts is acceptable.
Arm does not define a reasonable degree of inaccuracy but recommends the following guidelines:

• In exceptional circumstances, such as a change in Security state or other boundary condition, it is acceptable
for the sample to represent an instruction that was not committed for execution.

• Under unusual non-repeating pathological cases, the sample can represent an instruction that was not
committed for execution. These cases are likely to occur as a result of asynchronous exceptions, such as
interrupts, where the chance of a systematic error in sampling is very unlikely.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

IKVJM Arm strongly recommends that an implementation document any particular scenarios where significant inaccuracies
in the sampled data are expected.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RJMVS When DEMCR.TRCENA is set to 0 any read of DWT_PCSR returns an UNKNOWN value.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T.

RXVFD A read of DWT_PCSR will return 0xFFFFFFFF if any of the following are true:

• The PE is in Debug state.
• The address of a recently executed instruction is not available.
• NoninvasiveDebugAllowed(FALSE) returns FALSE.
• The Unprivilged Debug Extension is implemented, NoninvasiveDebugAllowed(TRUE) returns

FALSE, and the instruction was executed in a privileged mode.
• The Security Extension is implemented and SecureNoninvasiveDebugAllowed(FALSE) returns

FALSE, and the instruction was executed in Secure state.
• The Security Extension and the Unprivileged Debug Extension are implemented,
SecureNoninvasiveDebugAllowed(TRUE)
returns FALSE, and the instruction was executed in Secure state and privileged mode.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - DWT-T &&
UDE && S. Note, UDE Is only available in an Armv8.1-M implementation.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

357

Chapter B13. Debug and Trace Components
B13.3. Embedded Trace Macrocell

B13.3 Embedded Trace Macrocell

ILCCX An Embedded Trace Macrocell (ETM) is an optional non-invasive debug feature of an Armv8-M implementation.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ETM.

RNGTT An ETM implementation complies with one of the following versions of the ETM architecture:

Data trace Security Extension
Implemented Not implemented

Implemented ETMv3 not permitted ETMv3 not permitted
ETMv4, version 4.2 or later ETMv4, version 4.0 or later

Not Implemented ETMv3, version 3.5 or later ETMv3, version 3.5
ETMv4, version 4.2 or later ETMv4, version 4.0 or later

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ETM.

RQWRD If Armv8.1-M is implemented and an ETM is implemented, ETMv4 version 4.5 is required. Data trace is not
supported in ETMv4 version 4.5 and is not supported in Armv8.1-M.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - ETM.

RLPJM If an ETM is implemented a trace sink is also implemented. If the trace sink that is implemented is the TPIU it is
CoreSight compliant, and complies with the TPIU architecture for compatibility with Arm and other CoreSight-
compatible debug solutions.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ETM.

RNLNS When an Armv8-M implementation includes an ETM, the CMPMATCH[N] signals from the DWT unit are
available as control inputs to the ETM unit.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ETM.

RNJDK If the Main Extension is not implemented, it is IMPLEMENTATION DEFINED whether the ETM is accessible only
to the debugger and is RES0 to software.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ETM && !M.

RWPBN If the ETMv3 is implemented the debugger programs the ETMTRACEIDR with a unique nonzero Trace ID for the
ETM trace stream.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ETM.

RTJSF If the ETMv4 is implemented the debugger programs the TRCTRACEIDR with a unique nonzero Trace ID for the
ETM trace stream.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ETM.

RWSTB The ETM is not directly affected by DEMCR.TRCENA being set to 0.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - ETM.

See also:

Arm® CoreSightTM Architecture Specification.

B13.2.4 CMPMATCH trigger events on page 345.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

358

Chapter B13. Debug and Trace Components
B13.4. Trace Port Interface Unit

B13.4 Trace Port Interface Unit

IPWXP The Trace Port Interface Unit (TPIU) support for Armv8-M provides an output path for trace data from the DWT,
ITM, and ETM. The TPIU is a trace sink.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - TPIU.

RCRTQ It is IMPLEMENTATION DEFINED whether the TPIU supports a parallel trace port output.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - TPIU.

RGTRP It is IMPLEMENTATION DEFINED whether the TPIU supports low-speed asynchronous serial port output using
NRZ encoding. This operates as a traditional UART.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - TPIU.

RLKQT It is IMPLEMENTATION DEFINED whether the TPIU supports medium-speed asynchronous serial port output using
Manchester encoding.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - TPIU.

ISDDK Arm recommends that the TPIU provides both parallel and asynchronous serial ports, for maximum flexibility
with external capture devices.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - TPIU.

RHJXK Whether the trace port clock is synchronous to the PE clock is IMPLEMENTATION DEFINED.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - TPIU.

RPKKS It is IMPLEMENTATION DEFINED whether the TPIU is reset by a Cold reset or has an independent Cold reset.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - TPIU.

RJBKJ Software ensures that all trace is output and flushed to the trace sink before setting the DEMCR.TRCENA bit to 0.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - TPIU.

RSTLV The TPIU is not directly affected by DEMCR.TRCENA being set to 0 or NoninvasiveDebugAllowed()
being FALSE.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - TPIU.

RJLCQ The output formatting modes that are supported by the TPIU are IMPLEMENTATION DEFINED. They are:

• Bypass.
• Continuous.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - TPIU.

RDMFP Bypass mode is only supported if a serial port output is supported.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - TPIU.

RRRJP Continuous mode is supported if the parallel trace port is implemented. Continuous mode is selected when the
parallel trace port is used.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - TPIU.

RFCFT Continuous mode is supported if the ETM is implemented. Continuous mode is selected when the ETM is used.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - TPIU.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

359

Chapter B13. Debug and Trace Components
B13.4. Trace Port Interface Unit

See also:

TPIU_FFCR, Formatter and Flush Control Register.

B13.1 Instrumentation Trace Macrocell on page 326.

B13.3 Embedded Trace Macrocell on page 358.

Chapter B1 Resets on page 63.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

360

Chapter B13. Debug and Trace Components
B13.5. Flash Patch and Breakpoint unit

B13.5 Flash Patch and Breakpoint unit

B13.5.1 About the FPB unit

RFTWL The Flash Patch and Breakpoint (FPB) unit supports setting breakpoints on instruction fetches.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FPB.

IBPFS The name Flash Patch and Breakpoint unit is historical and the architecture does not support remapping functional-
ity.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FPB.

RGDWW The number of implemented instruction address comparators is IMPLEMENTATION DEFINED. Software can
discover the number of implemented instruction address comparators from FP_CTRL.NUM_CODE.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FPB.

See also:

Chapter B7 The System Address Map on page 251.

B13.2.7 DWT trace restrictions and relaxations on page 351.

Part D Register and Payload Specification.

B13.5.2 FPB unit operation

RRKFD The FPB contains the following register types:

• A general control register, FP_CTRL.
• Comparator registers.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FPB.

RBKKW Each implemented instruction address comparator supports breakpoint generation.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FPB.

RFNQF The FP_CTRL register provides a global enable bit for the FPB, and ID fields that indicate the numbers of
instruction address comparison and literal comparison registers implemented.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FPB.

RCKBL When configured for breakpoint generation, instruction address comparators can be configured to match any
halfword-aligned addresses in the whole system address map.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FPB.

RXPXS Instruction address comparators match only on instruction fetches. The FPB treats hardware accesses to the stack
as data accesses for registers that are:

• Pushed to the stack by hardware as part of an exception entry or lazy state preservation.
• Popped from the stack by hardware as part of an exception return.
• Pushed to the stack by hardware as part of a Non-secure function return.
• Popped from the stack by hardware as part of a Non-secure function call.

It is IMPLEMENTATION DEFINED whether the FPB treats a fetch from the exception vector table as part of an
exception entry as a data access, or ignores these accesses, for the purposes of FPB address comparator matches.
The fetch is never be treated as an instruction fetch.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

361

Chapter B13. Debug and Trace Components
B13.5. Flash Patch and Breakpoint unit

The FPB does not match accesses from the DAP.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FPB.

ICNBW Bit[0] of each instruction fetch address is always 0.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FPB.

RCJKK When an Instruction address matching comparator is configured for breakpoint generation, a match on the address
of a 32-bit instruction is configured to match the first halfword or both halfwords of the instruction.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FPB.

RWSXN If a Breakpoint debug event is generated by the FPB on the second halfword of a 32-bit T32 instruction, it is
UNPREDICTABLE whether the breakpoint generates a debug event.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FPB.

RJNVD If the UDE is implemented an FPB match specifying a Breakpoint debug event generates a Breakpoint debug event
that halts the PE in unprivileged mode if either of the following conditions are true:

• HaltingDebugAllowed() returns TRUE
• UnprivHaltingDebugAllowed() returns TRUE.

and the all of the following conditions are true:

• DHCSR.S_HALT == 0.
• The Security Extension is not implemented, the matching instruction is executed in Non-secure state, or
UnprivHaltingDebugAllowed(TRUE) returns TRUE.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - FPB && UDE.

RHXMP An FPB match specifying a Breakpoint debug event generates a DebugMonitor exception if it does not halt the PE
and all of the following conditions are true:

• DEMCR.MON_EN == 1.
• DHCSR.S_HALT == 0.
• The DebugMonitor exception group priority is greater than the current execution priority.
• The Security Extension is not implemented, the matching instruction is executed in Non-secure state, or

DEMCR.SDME == 1.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FPB.

RLTML An FPB match specifying a Breakpoint debug event generates a DebugMonitor exception if it does not halt the PE
and either of the following conditions are true:

• DEMCR.MON_EN == 1.
• The Unprivileged Debug Extension is implemented, DEMCR.UMON_EN == 1 and the PE is executing in

unprivileged mode.

and all of the following conditions apply:

• DHCSR.S_HALT == 0.
• The DebugMonitor exception group priority is greater than the current execution priority.
• The Security Extension is not implemented, the matching instruction is executed in Non-secure state, or

DEMCR.SDME == 1.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - FPB && UDE.

RBFPK An FPB match that specifies a Breakpoint debug event might be ignored if it does not meet the conditions for
generating either:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

362

Chapter B13. Debug and Trace Components
B13.5. Flash Patch and Breakpoint unit

• A Breakpoint debug event that halts the PE.
• A DebugMonitor exception.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FPB.

RTKNR Between a change to the debug authentication interface, DHCSR, DEMCR or DAUTHCTRL, that disables debug,
and a following context synchronization event, it is UNPREDICTABLE whether any breakpoints generated by the
FPB:

• Generate a Breakpoint debug event based on the old values and either:

– If the Main Extension is implemented, generate a DebugMonitor exception.
– Halts the PE.

• Are escalated to HardFault or Lockup.

• Are ignored.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - FPB && UDE.

RDZWB Breakpoints that occur as a result of FPB Unit events behave in the same way as a scalar BKPT instruction. All
in-flight instructions are completed before halting.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - FPB && MVE.

IYVFX Entry to debug state and debug monitor is delayed until all in-flight instructions have completed.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - FPB && MVE.

See also:

Halting debug.

B12.4.1 About debug events on page 306.

GenerateDebugEventResponse()

InstructionExecute()

Applies to an implementation of the architecture from Armv8.1-M onwards.

B13.5.3 Cache maintenance

RBWSW Instruction caches are not permitted to cache breakpoints that are generated by a Flash Patch and Breakpoint unit.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FPB.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

363

Chapter B14
The Performance Monitoring Extension

This chapter specifies the optional Armv8.1-M Performance Monitoring Unit (PMU) Extension. It contains the
following sections:

B14.1 Counters on page 365.

B14.2 Accuracy of the performance counters on page 366.

B14.3 Security, access, and modes on page 367.

B14.4 Attributability on page 368.

B14.5 Coexistence with the DWT Performance Monitors on page 369.

B14.6 Interrupts and Debug events on page 371.

B14.7 Performance Monitors and Debug state on page 372

B14.8 List of supported architectural and microarchitectural events on page 373.

B14.9 Generic architectural and microarchitectural events on page 381.

B14.10 Common event descriptions on page 384.

B14.11 Required PMU events on page 405.

B14.12 IMPLEMENTATION DEFINED event numbers on page 406.

Applies to an implementation of the architecture from Armv8.1-M onwards.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

364

Chapter B14. The Performance Monitoring Extension
B14.1. Counters

B14.1 Counters

IWBLR The Performance Monitoring Unit (PMU) is an optional non-invasive debug component that allows events to be
identified and counted.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

RXVBC There is space for a maximum of 31 IMPLEMENTATION DEFINED event counters in the PMU.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

RKXXN Each event counter is a 16-bit general-purpose counter.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

INNBX By chaining counters in pairs, the counter range can be increased by halving the number of counters.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

RVVVF If the PMU is implemented, a minimum of two 16-bit event counters are required, and one 32-bit cycle counter.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

IJFVV Each event counter can be configured to count any of the events that might be supported by an implementation.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

RSLDG It is IMPLEMENTATION DEFINED whether PMU_EVCNTRn supports generating an interrupt. If the interrupt is
not supported PMU_INTENSET.Pn is RAZ/WI.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

RMGPL Each event counter can be configured to increment on each occurrence of a specified performance event.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

RVXPJ The dedicated 32-bit cycle counter is hard-wired to count cycles.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

RYVZG In case of a counter chain event, the architecture guarantees that the unsigned overflow of the lower half of the
counter and subsequent increment of the upper half of the counter are counted within the same cycle.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

RRVJT If a counter is configured to an event that is not supported on a specific implementation, the counter value is
UNKNOWN.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

365

Chapter B14. The Performance Monitoring Extension
B14.2. Accuracy of the performance counters

B14.2 Accuracy of the performance counters

IRYDQ The Performance Monitors provide broadly accurate and statistically useful count information. To keep the
implementation and validation costs low, a reasonable degree of inaccuracy in the counts is acceptable.

Arm does not define a reasonable degree of inaccuracy, but recommends the following guidelines:

• Under normal operating conditions, the counters present an accurate value of the count.
• In exceptional circumstances, such as a change in Security state or other boundary condition, it is acceptable

for the count to be inaccurate.
• Under very unusual, non-repeating, pathological cases, the counts can be inaccurate. These cases are likely

to occur as a result of asynchronous exceptions, such as interrupts, where the chance of a systematic error in
the count is very unlikely.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

RXCDG A reasonable degree of inaccuracy in the PMU is permitted, if this does not create systematic inaccuracies in
normal operating conditions.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

IJZGS In normal operating conditions:

• Top level counters for a category of PMU events will reflect the orthogonal items in their sub-categories,
when the sub-categories provide complete coverage. For example, a MEM_ACCESS event will be the sum
of events which count cache accesses.

• Where the sub-categories do not provide comprehensive coverage, the top level counters will count greater
than or equal to the sum of the sub-categories.

• Architectural events will be consistently applied but allowance should be made for edge conditions when
enabling or disabling counters.

• Arm recommends that barrier instructions are used when enabling or disabling the PMU or individual
counters.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

See also:

B6.13 Memory barriers on page 214.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

366

Chapter B14. The Performance Monitoring Extension
B14.3. Security, access, and modes

B14.3 Security, access, and modes

INPZL The access to the PMU using the DAP mirrors that of the DWT.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

RQDQC The counters do not increment when:

• The PE is in Secure state and privileged mode and SecureNoninvasiveDebugAllowed(TRUE) ==
FALSE.

• The PE is in Secure state and unprivileged mode and SecureNoninvasiveDebugAllowed(FALSE)
== FALSE.

• The PE is in Non-secure state and privileged mode and NoninvasiveDebugAllowed(TRUE) ==
FALSE.

• The PE is in Non-secure state and unprivileged mode and NoninvasiveDebugAllowed(FALSE) ==
FALSE.

• The PE is in Debug state.
• The PE is in low-power state.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU. Note,
Secure state requires S.

RCMTX When in low-power state or Debug state the counters retain their previous value.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

RNNSQ In lockup, it is UNKNOWN whether the counters increment.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

RZHBY If PMU_CTRL.DP is zero, the PMU cycle counter increments regardless of the Security state of the PE. Otherwise,
the PMU cycle counter incrementation is disabled when the PE is in Secure state.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU && S.

See also:

B13.2 Data Watchpoint and Trace unit on page 335.

B12.5 Debug state on page 320.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

367

Chapter B14. The Performance Monitoring Extension
B14.4. Attributability

B14.4 Attributability

RGBQN An event that is caused by the PE that is counting the event is Attributable. If an agent other than the PE that is
counting the events causes an event, these events are Unattributable.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

RXXLL All architecturally defined events are Attributable, unless stated otherwise in the PMU event list.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

RXGRG Events caused by the execution of an instruction are Attributable to the Security state and privilege mode the
instruction was executed in.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU && S.

RLDGQ Events are not counted if any of the following are true:

• The event is Attributable to Secure state and privileged mode
and SecureNoninvasiveDebugAllowed(TRUE) == FALSE.

• The event is Attributable to Secure state and unprivileged mode
and SecureNoninvasiveDebugAllowed(FALSE) == FALSE.

• The event is Attributable to Non-secure state and privileged mode
and NoninvasiveDebugAllowed(TRUE) == FALSE.

• The event is Attributable to Non-secure state and unprivileged mode
and NoninvasiveDebugAllowed(FALSE) == FALSE.

The event is Attributable to Secure state are not counted if SecureNoninvasiveDebugAllowed() ==
FALSE.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

RWJDJ Attributable Events caused by the following are Attributable to the NS-Req and privilege for the access:

• Vector fetches.

• The hardware stacking or unstacking of registers on any of:

– Exception entry.
– Exception exit.
– Function call entry.
– Function return.
– Lazy state preservation.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU. Note,
Secure state requires S.

RVHLM For each Unattributable event it is IMPLEMENTATION DEFINED whether the Unattributable event is counted when
counting Attributable events is prohibited.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

See also:

B14.10 Common event descriptions on page 384.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

368

Chapter B14. The Performance Monitoring Extension
B14.5. Coexistence with the DWT Performance Monitors

B14.5 Coexistence with the DWT Performance Monitors

RNKCB The PMU cycle counter PMU_CCNTR is an alias of the DWT_CYCCNT register. All derived PMU functions
are available whenever the PMU enables the cycle counter. If both the PMU and the DWT are implemented,
DWT_CTRL.NOCYCCNT is RAZ.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU &&
DWT-D.

RZBWD When PMU_CTRL.E == 1:

• A read of DWT_CPICNT, DWT_EXCCNT, DWT_FOLDCNT, DWT_LSUCNT, and DWT_SLEEPCNT
return an UNKNOWN value.

• DWT_CPICNT, DWT_EXCCNT, DWT_FOLDCNT, DWT_LSUCNT, and DWT_SLEEPCNT might incre-
ment at random.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU &&
DWT-T.

RKDKT When any of DWT_CTRL.FOLDEVTENA, LSUEVTENA, SLEEPEVTENA, EXCEVTENA, CPIEVTENA ==
1:

• A read of any PMU_EVCNTRn counters returns an UNKNOWN value.
• A read of the PMU overflow flags in PMU_OVSSET and PMU_OVSCLR return UNKNOWN values.
• The PMU_EVCNTRn counters might increment at random.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU &&
DWT-T.

RNDFK When PMU_CTRL.E == 1 and any of DWT_CTRL.CYCEVTENA, FOLDEVTENA, LSUEVTENA, SLEEP-
EVTENA, EXCEVTENA, CPIEVTENA == 1:

• The generation of Event Counter packets by the DWT is UNPREDICTABLE.
• If any of the PMU_INTENSET.Pn flags are set to 1, the generation of interrupts is UNPREDICTABLE.
• If PMU_CTRL.TRO == 1 the generation of Event Counter packets by the PMU is UNPREDICTABLE.
• The PMU and DWT counters might increment at random.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU &&
DWT-T.

RKBZG It is permissible for an implementation to allow the PMU or DWT to overwrite any packets held in the trace buffer
on enabling the PMU and disabling the DWT or enabling the DWT and disabling the PMU without requiring
software to flush output to the trace sink or TPIU.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU &&
DWT-T.

RRGQN At any time:

• A write to any of DWT_CPICNT, DWT_EXCCNT, DWT_FOLDCNT, DWT_LSUCNT, or
DWT_SLEEPCNT, including the indirect write of 0 when writing 1 to any of DWT_CTRL.CYCEVTENA,
FOLDEVTENA, LSUEVTENA, SLEEPEVTENA, EXCEVTENA, CPIEVTENA, sets the PMU_EVCNTRn
to UNKNOWN values.

• A write of PMU_EVCNTRn, including the indirect write of 0 when writing 1 to PMU_CTRL.P to 1,
sets DWT_CPICNT, DWT_EXCCNT, DWT_FOLDCNT, DWT_LSUCNT, and DWT_SLEEPCNT to
UNKNOWN values.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU &&
DWT-T.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

369

Chapter B14. The Performance Monitoring Extension
B14.5. Coexistence with the DWT Performance Monitors

IMZFG It is permissible for PMU and DWT Counters to be aliased.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU &&
DWT-T.

See also:

B13.4 Trace Port Interface Unit on page 359

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

370

Chapter B14. The Performance Monitoring Extension
B14.6. Interrupts and Debug events

B14.6 Interrupts and Debug events

IRJNK Counters can be configured to generate interrupts or debug events on overflow.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

RZDMH If a counter is configured to generate an interrupt when it overflows, DEMCR.MON_PEND is set to 1 to pend a
DebugMonitor exception with DFSR.PMU set to 1 if one of the following applies:

• The counter is configured to count events attributable to unprivileged mode and DEMCR.UMON_EN is set
to 1.

• The counter is configured to count events attributable to privileged mode and DEMCR.MON_EN is set to 1.

The associated field in PMU_OVSSET or PMU_OVSCLR indicates which counter triggered the exception.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

RWGGD For each implemented event counter m, and the cycle counter, unsigned overflow of the counter halts the PE if all
of the following conditions apply:

• PMU_INTENSETm is set to 1 for the event counter, or PMU_INTENSET.C is set to 1 for the cycle counter.
• DHCSR.C_PMOV is set to 1.
• CanHaltOnEvent() returns TRUE for the Security state and privilege mode of the event being counted.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU &&
DSPDE && UDE. Note, UDE is required for unprivileged events.

RYKXR For each implemented event counter m, and the cycle counter, unsigned overflow of the counter pends a Debug-
Monitor exception if it does not halt the PE and all of the following conditions apply:

• PMU_INTENSETm is set to 1 for the event counter, or PMU_INTENSET.C is set to 1 for the cycle counter.
• DEMCR.MON_EN is set to 1 for privileged events. or DEMCR.UMON_EN is set to 1 for unprivileged

events.
• The PE is in Non-secure state or DEMCR.SDME is set to 1.
• The group priority of the DebugMonitor exception is not sufficient to preempt the current execution priority.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

IHSYK The CTI uses the PMU as an event source.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

See also:

PMU_HandleOverflow().

Chapter B12 Debug on page 283

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

371

Chapter B14. The Performance Monitoring Extension
B14.7. Performance Monitors and Debug state

B14.7 Performance Monitors and Debug state

RJSTB Events that count cycles are not counted in Debug state.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

RWTSQ Events Attributable to the operations issued by the debugger through the external debug interface are not counted
in Debug state.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

RHFRP For each Unattributable event, it is IMPLEMENTATION DEFINED whether it is counted when the PE is in Debug
state.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

372

Chapter B14. The Performance Monitoring Extension
B14.8. List of supported architectural and microarchitectural events

B14.8 List of supported architectural and microarchitectural events

ICFXV Arm recommends the use of implementation-specific events based on performance behaviors of the underlying
microarchitecture.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

RGNJH Events 0x0000-0xBFFF are either defined or reserved for future common events. Implementations can implement
any of these events.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

RTPLX Implementations can define additional events that are specific to the implementation outside the specified reserved
space.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

IFHHC The list of common events for the PMU is as follows. The Event types are:

Arch

Architectural event. These events are the same across all implementations.

uArch

Microarchitectural event. These events might vary across different implementations.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

IPTHP In this section:

Architecturally executed Instruction architecturally executed is a class of event that counts for each instruction
of the specified type. Architecturally executed means that the program flow is of the type that the counted
instruction would be executed in a Simple sequential execution of the program. Therefore an instruction that
has been executed and retired is defined to be architecturally executed even if the PE discards the results of
the speculative execution.

If an instruction that would be executed in a Simple sequential execution of the program that generates a
synchronous exception, it is IMPLEMENTATION DEFINED whether the instruction is counted. Each architec-
turally executed instruction is counted once, even if the implementation splits the instruction into multiple
operations. Instructions that have no visible effect on the architectural state of the PE are architecturally
executed if they form part of the architecturally executed program flow. The point where such instructions
are retired is IMPLEMENTATION DEFINED.

Examples of instructions that have no visible effects are:

• A NOP.
• A conditional instruction that fails its Condition code check.
• A Compare and Branch on Zero, CBZ, instruction that does not branch.
• A Compare and Branch on Nonzero, CBNZ, instruction that does not branch.

The point at which an event causes an event counter to be updated is not defined.

Instruction architecturally executed, Condition code check pass Instruction architecturally executed, Condi-
tion code check pass is a class of events that explicitly do not occur for:

• A conditional instruction that fails its Condition code check.
• A Compare and Branch on Zero, CBZ, instruction that does not branch.
• A Compare and Branch on Nonzero, CBNZ, instruction that does not branch.
• A Store-Exclusive instruction that does not write to memory.

Otherwise the definition of architecturally executed is the same as Instruction architecturally executed.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

373

Chapter B14. The Performance Monitoring Extension
B14.8. List of supported architectural and microarchitectural events

A branch that is architecturally executed, with condition code check pass is also described as a branch taken.

Instruction memory access A PE acquires instructions for execution through instruction fetches. Instruction
fetches might be due to:

• Fetching instructions that are architecturally executed.
• The result of the execution of a PLI instruction.
• Speculation that a particular instruction might be executed in the future.

The relationship between the fetch of an individual instruction and an instruction memory access is IM-
PLEMENTATION DEFINED. For example, an implementation might fetch many instructions including a
non-integer number of instructions in a single instruction memory access.

Memory-read operations A PE accesses memory through memory-read operations and memory-write operations.
A memory-read operation might be due to:

• The result of an architecturally executed memory-reading instruction.
• The result of a Speculatively executed memory-reading instruction.

For levels of cache hierarchy beyond the Level 1 caches, memory-read operations also include accesses
made as part of a refill of another cache closer to the PE. Such refills might be due to any of the items in the
following, non-exhaustive, list:

• Memory-read operations or Memory-write operations that miss in the cache.
• The execution of a preload data instruction.
• The execution of an instruction preload instruction on a unified cache.
• The execution of a cache maintenance operation. A preload instruction or cache maintenance operation

is not, in itself, an access to that cache. However, as preload instruction or cache maintenance operation
might generate cache refills which are then treated as memory-read operations beyond that cache.

• Speculation that a future instruction might access that memory location.
• Instruction memory accesses.

The relationship between memory-read instructions and memory-read operations is IMPLEMENTATION
DEFINED.

Memory-write operations Memory-write operations might be due to:

• The result of an architecturally executed memory-writing instruction.
• The result of a Speculatively executed memory-writing instruction.

Speculatively executed memory-writing instructions that do not become architecturally executed must not
alter the architecturally defined view of memory. They can, however, generate a memory-write operation that
is later undone in some implementation-specific way.

For levels of cache hierarchy beyond the Level 1 caches, memory-write operations also include accesses
made as part of a write-back from another cache closer to the PE. A write-back of this type might be due to
any of the following non-exhaustive list:

• Evicting a dirty line from the cache, to allocate a cache line for a cache refill.
• The execution of a cache maintenance operation. A cache maintenance operation is not in itself an

access to that cache. However, a cache maintenance operation might generate write-backs which are
then treated as memory-write operations beyond that cache.

• The result of a coherency request from another PE.

The relationship between memory-writing instructions and memory-write operations is IMPLEMENTATION
DEFINED.

The data written back from a cache that is shared with other PEs might not be the data that was written by the
PE that performs the operation that leads to the write-back. Nevertheless, the event is counted as a write-back
event for that PE.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

374

Chapter B14. The Performance Monitoring Extension
B14.8. List of supported architectural and microarchitectural events

Microarchitectural operation It is permissible for an implementation of a PE to break down instructions into
separate, smaller, operations. The use of Microarchitectural operations (micro-ops) is IMPLEMENTATION
DEFINED. An instruction might create one or more micro-ops at any point in the execution pipeline. For the
purpose of event counting, the micro-ops are counted. The definition of a micro-op is implementation-specific.
An architecture instruction might create more than one micro-op for each instruction. Micro-ops might also
be removed or merged in the execution stream, so an architecture instruction might create no micro-ops for an
instruction. Any arbitrary translation of instructions to an equivalent sequence of micro-ops is permitted. The
PE must strictly follow the architecturally visible behavior no matter the underlying division of an instruction
into micro-ops.

The counting of operations can indicate the workload on the PE. However, there is no requirement for
operations to represent similar amounts of work, and direct comparisons between different microarchitectures
are not meaningful.

For example, an implementation might split an LDM instruction of six registers into six micro-ops, one for
each load, and a seventh address-generation operation to determine the base address or Writeback address.
Therefore an instruction might be split into multiple countable events.

Operations speculatively executed There is no architecturally guaranteed relationship between a Speculatively
executed micro-op and an architecturally executed instruction. The results of such an operation can also be
discarded, if it transpires that the operation was not required, following a mispredicted branch. Therefore,
Armv8-M defines these events as operations speculatively executed, where appropriate.

Slot An implementation of a PE might be able to execute multiple micro-ops in a single processor cycle. The
maximum number of micro-ops that can be executed might vary at different points in the execution pipeline.

To allow profiling of the utilization of the resource of the PE, an implementation-specific point in the execution
pipeline is chosen where the maximum number of micro-ops that can be executed is an IMPLEMENTATION
DEFINED fixed value.

Software change of the PC Some events relate to instructions that cause a software change of the PC. This
includes all:

• Branch instructions.
• Memory-reading instructions that explicitly write to the PC.
• Data-processing instructions that explicitly write to the PC.
• Exception return instructions.

It is IMPLEMENTATION DEFINED whether any or all of the following are treated as software changes to the
PC:

• A BKPT.
• An UNDEFINSTR Fault.
• Context synchronization barrier ISB instructions.

Speculatively executed Many events relate to speculatively executed operations. Here, speculatively executed
means the PE did some work associated with one or more instructions but the instructions were not necessarily
architecturally executed.

The definition of speculatively executed does not mean only those operations that are executed speculatively
and later abandoned, for example due to a branch misprediction or fault. That is, speculatively executed
operations must count operations on both false and correct execution paths.

Different groups of events can have different IMPLEMENTATION DEFINED definitions of speculatively
executed. Such groups share a common base type, which the event name denotes. Each of the events in the
previous example is of the base type, operation speculatively executed. For groups of events with a common
base type, speculatively executed operations are all counted on the same basis, which normally means at the
same point in the pipeline. It is possible to compare the counts and make meaningful observations about the
program being profiled.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

375

Chapter B14. The Performance Monitoring Extension
B14.8. List of supported architectural and microarchitectural events

Within these groups, events are commonly defined with reference to a particular architecture instruction or
group of instructions. In the case of speculatively executed operations this means operations with semantics
that map to that type of instruction.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

Event Event Event Description
number type mnemonic
0x0000 Arch SW_INCR Instruction architecturally executed,

condition code check pass, software
increment

0x0001 uArch L1I_CACHE_REFILL Attributable Level 1 instruction
cache refill

0x0003 uArch L1D_CACHE_REFILL Attributable Level 1 data
cache refill

0x0004 uArch L1D_CACHE Attributable Level 1 data cache
access

0x0006 Arch LD_RETIRED Instruction architecturally executed,
condition code check pass, load

0x0007 Arch ST_RETIRED Instruction architecturally executed,
condition code check pass, store

0x0008 Arch INST_RETIRED Instruction architecturally
executed

0x0009 Arch EXC_TAKEN Exception taken
0x000A Arch EXC_RETURN Instruction architecturally executed,

condition code check pass, exception
return

0x000C Arch PC_WRITE_RETIRED Instruction architecturally executed,
condition code check pass, software
change of the PC

0x000D Arch BR_IMMED_RETIRED Instruction architecturally executed,
immediate branch

0x000E Arch BR_RETURN_RETIRED Instruction architecturally executed,
condition code check pass, procedure
return

0x000F Arch UNALIGNED_LDST_RETIRED Instruction architecturally executed,
condition code check pass, unaligned load
or store

0x0010 uArch BR_MIS_PRED Mispredicted or not predicted branch
speculatively executed

0x0011 uArch CPU_CYCLES Cycle
0x0012 uArch BR_PRED Predictable branch speculatively

executed
0x0013 uArch MEM_ACCESS Data memory access
0x0014 uArch L1I_CACHE Attributable Level 1 instruction

cache access
0x0015 uArch L1D_CACHE_WB Attributable Level 1 data

cache write-back
0x0016 uArch L2D_CACHE Attributable Level 2 data

cache access
0x0017 uArch L2D_CACHE_REFILL Attributable Level 2 data

cache refill
0x0018 uArch L2D_CACHE_WB Attributable Level 2 data

cache write-back
0x0019 uArch BUS_ACCESS Attributable Bus access
0x001A uArch MEMORY_ERROR Local memory error
0x001B uArch INST_SPEC Operation speculatively executed
0x001D uArch BUS_CYCLES Bus cycle
0x001E Arch CHAIN For an odd numbered counter, increment

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

376

Chapter B14. The Performance Monitoring Extension
B14.8. List of supported architectural and microarchitectural events

Event number Event type Event mnemonic Description
when an overflow occurs on the preceding
even-numbered counter on the same PE

0x001F uArch L1D_CACHE_ALLOCATE Attributable Level 1
data cache
allocation without refill

0x0020 uArch L2D_CACHE_ALLOCATE Attributable Level 2
data cache
without refill

0x0021 Arch BR_RETIRED Instruction architecturally executed,
branch

0x0022 uArch BR_MIS_PRED_RETIRED Instruction architecturally
executed, mispredicted branch

0x0023 uArch STALL_FRONTEND No operation issued because of the
frontend

0x0024 uArch STALL_BACKEND No operation issued because of the
backend

0x0027 uArch L2I_CACHE Attributable Level 2 instruction cache
access

0x0028 uArch L2I_CACHE_REFILL Attributable Level 2 instruction cache
refill

0x0029 uArch L3D_CACHE_ALLOCATE Attributable Level 3 data cache allocation
without refill

0x002A uArch L3D_CACHE_REFILL Attributable Level 3 data cache refill
0x002B uArch L3D_CACHE Attributable Level 3 data cache access
0x002C uArch L3D_CACHE_WB Attributable Level 3 data cache write-back
0x0036 uArch LL_CACHE_RD Last level data cache read
0x0037 uArch LL_CACHE_MISS_RD Last level data cache read miss
0x0039 uArch L1D_CACHE_MISS_RD Last level data cache read miss
0x003A uArch OP_RETIRED Operation retired
0x003B uArch OP_SPEC Operation executed
0x003C uArch STALL No operation sent for execution
0x003D uArch STALL_SLOT_BACKEND No operation sent for execution on

a slot because of the backend
0x003E uArch STALL_SLOT_FRONTEND No operation sent for execution on

a slot because of the frontend
0x003F uArch STALL_SLOT No operation sent for execution on a slot
0x0040 uArch L1D_CACHE_RD Level 1 data cache read
0x0100 uArch LE_RETIRED Loop end instruction architecturally

executed, entry registered in the
LO_BRANCH_INFO cache

0x0101 uArch LE_SPEC Loop end instruction speculatively
execcuted entry registered in
LO_BRANCH_INFO cache

0x0104 uArch BF_RETIRED Branch future instruction architecturally
executed, condition code check pass,
and registers an entry in the
LO_BRANCH_INFO cache

0x0105 uArch BF_SPEC Branch future instruction speculatively
executed, condition code check pass,
and registers an entry in the
LO_BRANCH_INFOcache

0x108 uArch LE_CANCEL LO_BRANCH_INFO cache containing a
valid loop entry cleared while not
in the last iteration of the loop

0x109 uArch BF_CANCEL LO_BRANCH_INFO cache containing a
valid BF entry cleared and associated
branch not taken

0x0114 Arch SE_CALL_S Call to secure function, resulting in

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

377

Chapter B14. The Performance Monitoring Extension
B14.8. List of supported architectural and microarchitectural events

Event number Event type Event mnemonic Description
Security state change

0x0115 Arch SE_CALL_NS Call to non-secure function, resulting
in Security state change

0x0118 Arch DWT_CMPMATCH0 DWT comparator 0 match
0x0119 Arch DWT_CMPMATCH1 DWT comparator 1 match
0x011A Arch DWT_CMPMATCH2 DWT comparator 2 match
0x011B Arch DWT_CMPMATCH3 DWT comparator 3 match
0x011C Arch DWT_CMPMATCH4 DWT comparator 4 match
0x011D Arch DWT_CMPMATCH5 DWT comparator 5 match
0x011E Arch DWT_CMPMATCH6 DWT comparator 6 match
0x011F Arch DWT_CMPMATCH7 DWT comparator 7 match
0x0200 Arch MVE_INST_RETIRED MVE instruction architecturally executed
0x0201 uArch MVE_INST_SPEC MVE instruction speculatively executed
0x0204 Arch MVE_FP_RETIRED MVE floating-point instruction

architecturally executed
0x0205 uArch MVE_FP_SPEC MVE floating-point instruction

speculatively executed
0x0208 Arch MVE_FP_HP_RETIRED MVE half-precision floating-point

instruction architecturally executed
0x0209 uArch MVE_FP_HP_SPEC MVE half-precision floating-point

instruction speculatively executed
0x020C Arch MVE_FP_SP_RETIRED MVE single-precision floating-point

instruction architecturally executed
0x020D uArch MVE_FP_SP_SPEC MVE single-precision floating-point

instruction speculatively executed
0x0214 Arch MVE_FP_MAC_RETIRED MVE floating-point multiply

or multiply-accumulate instruction
architecturally executed

0x0215 uArch MVE_FP_MAC_SPEC MVE floating-point multiply
or multiply-accumulate instruction
speculatively executed

0x0224 Arch MVE_INT_RETIRED MVE integer instruction architecturally
executed

0x0225 uArch MVE_INT_SPEC MVE integer instruction speculatively
executed

0x0228 Arch MVE_INT_MAC_RETIRED MVE integer multiply
or multiply-accumulate instruction
architecturally executed

0x0229 uArch MVE_INT_MAC_SPEC MVE integer multiply or
multiply-accumulate instruction
speculatively executed

0x0238 Arch MVE_LDST_RETIRED MVE load or store instruction
architecturally executed

0x0239 uArch MVE_LDST_SPEC MVE load or store instruction
speculatively executed

0x023C Arch MVE_LD_RETIRED MVE load instruction architecturally
executed

0x023D uArch MVE_LD_SPEC MVE load instruction
speculatively executed

0x0240 Arch MVE_ST_RETIRED MVE store instruction
architecturally executed

0x0241 uArch MVE_ST_SPEC MVE store instruction
speculatively executed

0x0244 uArch MVE_LDST_CONTIG_RETIRED MVE contiguous load or store instruction
architecturally executed

0x0245 uArch MVE_LDST_CONTIG_SPEC MVE contiguous load or store instruction
speculatively executed

0x0248 uArch MVE_LD_CONTIG_RETIRED MVE contiguous load instruction

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

378

Chapter B14. The Performance Monitoring Extension
B14.8. List of supported architectural and microarchitectural events

Event number Event type Event mnemonic Description
architecturally executed

0x0249 uArch MVE_LD_CONTIG_SPEC MVE contiguous load instruction
speculatively executed

0x024C uArch MVE_ST_CONTIG_RETIRED MVE contiguous store instruction
architecturally executed

0x024D uArch MVE_ST_CONTIG_SPEC MVE contiguous store instruction
speculatively executed

0x0250 uArch MVE_LDST_NONCONTIG_RETIRED MVE non-contiguous load or store
instruction architecturally executed

0x0251 uArch MVE_LDST_NONCONTIG_SPEC MVE non-contiguous load or store
instruction speculatively executed

0x0254 uArch MVE_LD_NONCONTIG_RETIRED MVE non-contiguous load instruction
architecturally executed

0x0255 uArch MVE_LD_NONCONTIG_SPEC MVE non-contiguous load instruction
speculatively executed

0x0258 uArch MVE_ST_NONCONTIG_RETIRED MVE non-contiguous store instruction
architecturally executed

0x0259 uArch MVE_ST_NONCONTIG_SPEC MVE non-contiguous store instruction
speculatively executed

0x025C Arch MVE_LDST_MULTI_RETIRED MVE memory instruction targeting
multiple registers architecturally executed

0x025D uArch MVE_LDST_MULTI_SPEC MVE memory instruction targeting
multiple registers speculatively executed

0x0260 Arch MVE_LD_MULTI_RETIRED MVE memory load instruction
targeting multiple registers architecturally
executed

0x0261 uArch MVE_LD_MULTI_SPEC MVE memory load instruction
targeting multiple registers speculatively
executed

0x0264 Arch MVE_ST_MULTI_RETIRED MVE memory store instruction
targeting multiple registers architecturally
executed

0x0265 uArch MVE_ST_MULTI_SPEC MVE memory store instruction
targeting multiple registers speculatively
executed

0x028C uArch MVE_LDST_UNALIGNED_RETIRED MVE unaligned memory
load or store instruction architecturally
executed

0x028D uArch MVE_LDST_UNALIGNED_SPEC MVE unaligned memory load or store
instruction speculatively executed

0x0290 uArch MVE_LD_UNALIGNED_RETIRED MVE unaligned load instruction
architecturally executed

0x0291 uArch MVE_LD_UNALIGNED_SPEC MVE unaligned load instruction
speculatively executed

0x0294 uArch MVE_ST_UNALIGNED_RETIRED MVE unaligned store instruction
architecturally executed

0x0295 uArch MVE_ST_UNALIGNED_SPEC MVE unaligned store instruction
speculatively executed

0x0298 uArch MVE_LDST_UNALIGNED
_NONCONTIG_RETIRED MVE unaligned non-

contiguous load or store instruction
architecturally executed

0x0299 uArch MVE_LDST_UNALIGNED
_NONCONTIG_SPEC MVE unaligned non-contiguous load

or store instruction speculatively executed
0x02A0 Arch MVE_VREDUCE_RETIRED MVE vector reduction instruction

architecturally executed
0x02A1 uArch MVE_VREDUCE_SPEC MVE vector reduction instruction

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

379

Chapter B14. The Performance Monitoring Extension
B14.8. List of supported architectural and microarchitectural events

Event number Event type Event mnemonic Description
speculatively executed

0x02A4 Arch MVE_VREDUCE_FP_RETIRED MVE floating-point vector reduction
instruction architecturally executed

0x02A5 uArch MVE_VREDUCE_FP_SPEC MVE floating-point vector reduction
instruction speculatively executed

0x02A8 Arch MVE_VREDUCE_INT_RETIRED MVE integer vector reduction
instruction architecturally executed

0x02A9 uArch MVE_VREDUCE_INT_SPEC MVE integer vector reduction
instruction speculatively executed

0x02B8 uArch MVE_PRED Cycles where one or more predicated beats
architecturally executed

0x02CC uArch MVE_STALL Stall cycles caused by an MVE instruction
0x02CD uArch MVE_STALL_RESOURCE Stall cycles caused by an MVE instruction

because of resource conflicts
0x02CE uArch MVE_STALL_RESOURCE_MEM Stall cycles caused by an MVE

instruction because of memory resource
conflicts

0x02CF uArch MVE_STALL_RESOURCE_FP Stall cycles caused
by an MVE instruction because of
floating-point resource conflicts

0x02D0 uArch MVE_STALL_RESOURCE_INT Stall cycles caused by an MVE
instruction because of integer resource
conflicts

0x02D3 uArch MVE_STALL_BREAK Stall cycles caused by an MVE chain break
0x02D4 uArch MVE_STALL_DEPENDENCY Stall cycles caused by MVE register

dependency
0x04007 uArch ITCM_ACCESS Instruction TCM access
0x04008 uArch DTCM_ACCESS Data TCM access
0x04010 uArch TRCEXTOUT0 ETM external output 0
0x04011 uArch TRCEXTOUT1 ETM external output 1
0x04012 uArch TRCEXTOUT2 ETM external output 2
0x04013 uArch TRCEXTOUT3 ETM external output 3
0x04018 uArch CTI_TRIGOUT4 Cross-trigger Interface output trigger 4
0x04019 uArch CTI_TRIGOUT5 Cross-trigger Interface output trigger 5
0x0401A uArch CTI_TRIGOUT6 Cross-trigger Interface output trigger 6
0x0401B uArch CTI_TRIGOUT7 Cross-trigger Interface output trigger 7

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

380

Chapter B14. The Performance Monitoring Extension
B14.9. Generic architectural and microarchitectural events

B14.9 Generic architectural and microarchitectural events

This section provides descriptions that apply to multiple events.

B14.9.1 L<n>I_CACHE_REFILL (Level<n> instruction cache refill)

The counter counts each access that is counted by L<n>I_CACHE that returns instructions from beyond the
Level<n> instruction cache. Beyond in this context means a Level<m> cache, where m>n, or memory.

The event indicates to software that the access missed in the Level <n> instruction cache and might have a
significant performance impact because of the additional latency, compared to an access that hits in the Level <n>
instruction cache.

The definition of Level<n> cache is IMPLEMENTATION DEFINED, and does not necessarily correspond to the
cache levels that are defined by the CLIDR mechanism. Instead, increasing values of <n> correspond to increasing
average additional latency.

The counter does not count:

• Accesses where the miss does not have a significant impact on performance.
• A miss that does not cause a new cache refill but is satisfied from a previous miss.

If the cache is shared, only accesses that are Attributable to this PE are counted.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

B14.9.2 L<n>D_CACHE_REFILL (Level<n> data cache refill)

The counter counts each access that is counted by L<n>D_CACHE that returns data from beyond the Level<n>
data cache. Beyond in this context means a Level<m> cache, where m>n, or memory.

Each access to a cache line that causes a new linefill is counted, including those from instructions that generate mul-
tiple accesses, such as load or store multiples, and PUSH (multiple registers) and POP (multiple
registers) instructions. In particular, the counter counts accesses to the Level<n> cache that cause a refill. A
refill includes any access that causes data to be fetched from outside the Level 1 to the Level<n> cache, even if the
data is ultimately not allocated into the Level <n> cache.

The definition of Level<n> cache is IMPLEMENTATION DEFINED, and does not necessarily correspond to the
cache levels that are defined by the CLIDR mechanism. Instead, increasing values of <n> correspond to increasing
average additional latency.

The counter does not count:

• Accesses that do not cause a new Level<n> cache refill but are satisfied by refilling data from a previous miss.
• Accesses to a cache line that generate a memory access but not a new linefill, such as Write-Through writes

that hit in the cache.
• Cache maintenance instructions.
• A write that writes an entire line to the cache and does not fetch any data from outside the Level<n> cache.
• A write that misses in the cache, and writes through the cache without allocating a line.

If the cache is shared, only accesses that are Attributable to this PE are counted.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

B14.9.3 L<n>D_CACHE_MISS_RD (Level<n> data cache miss on read)

The counter counts each access that is counted by L<n>D_CACHE_RD that returns data from beyond the Level<n>
data or unified cache. Beyond in this context means a Level<m> cache, where m>n, or memory.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

381

Chapter B14. The Performance Monitoring Extension
B14.9. Generic architectural and microarchitectural events

The event indicates to software that the access missed in the Level<n> data or unified cache and might have a
significant performance impact because of the additional latency, compared to an access that hits in the Level<n>
data or unified cache.

The definition of Level<n> cache is IMPLEMENTATION DEFINED, and does not necessarily correspond to the
cache levels that are defined by the CLIDR mechanism. Instead, increasing values of <n> correspond to increasing
average additional latency.

The counter does not count:

• Accesses where the miss does not have a significant impact on performance.
• A miss that does not cause a new cache refill but is satisfied from a previous miss.

If the cache is shared, only accesses that are Attributable to this PE are counted.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

B14.9.4 L<n>D_CACHE_WB (Level<n> data cache write-back)

The counter counts every write-back of data from the Level<n> data or unified cache.

The counter counts each write-back that causes data to be written from the Level<n> cache to outside of the
Level<n> cache. For example, the counter counts the following cases:

• A write-back that causes data to be written to a Level<n+1> cache or memory.
• A write-back of a recently fetched cache line that has not been allocated to the Level<n> cache.
• Transfers of data from the Level<n> cache to outside of this cache that are made as a result of a coherency

request. The conditions that determine which of these are counted for transfers to other Level<n> caches
within the same multiprocessor cluster are IMPLEMENTATION DEFINED.

Each write-back is counted one time, even if multiple accesses are required to complete the write-back.

Whether write-backs that are made as a result of cache maintenance instructions are counted is IMPLEMENTATION
DEFINED. The counter does not count:

• The invalidation of a cache line without any write-back to a Level<n+1> cache or memory.
• Writes from the PE that write through the Level<n> cache to outside of the Level<n> cache.

An Unattributable write-back event occurs when a requestor outside the PE makes a coherency request that results
in write-back. If the cache is shared, then an Unattributable write-back event is not counted. If the cache is not
shared, then the event is counted. It is IMPLEMENTATION DEFINED whether a write of a whole cache line that is
not the result of the eviction of a line from a cache, is counted.

If the cache is shared, only accesses that are Attributable to this PE are counted.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

B14.9.5 L<n>I_CACHE (Level<n> instruction cache access)

The counter counts each Attributable access to at least the Level<n> instruction cache. Each access to other
Level<n> instruction memory structures, such as refill buffers, is also counted.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

382

Chapter B14. The Performance Monitoring Extension
B14.9. Generic architectural and microarchitectural events

B14.9.6 L<n>D_CACHE (Level<n> data cache access)

The counter counts each Attributable memory-read or Attributable memory-write access to at least the Level<n>
data or unified cache. Each access to a cache line is counted, including the multiple accesses of instructions, such
as LDM or STM. Each access to other Level<n> data or unified cache memory structures is also counted.

The counter does not count cache maintenance instructions.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

B14.9.7 L<n>D_CACHE_RD (Level<n> data cache access, read)

The counter operates the same way as L<n>_D_CACHE, with the one exception that the counter counts only
memory-read accesses.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

383

Chapter B14. The Performance Monitoring Extension
B14.10. Common event descriptions

B14.10 Common event descriptions

The common events that can be supported by the PMU counters are defined in this section. For the common
features, the counters normally increment only one time for each event. The individual event descriptions include
any exceptions to this. In the definitions, the term Architecturally executed means that the instruction flow is one
where the counted instruction would have been executed in a simple sequential execution model.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

SW_INCR (0x0000, Architectural)

The counter increments on writes to the PMU_SWINC register. If the PE performs two Architecturally executed
writes to the PMU_SWINC register without an intervening Context synchronization event, then the counter is
incremented twice.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

L1I_CACHE_REFILL (0x0001, Microarchitectural)

See L<n>I_CACHE_REFILL.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

L1D_CACHE_REFILL (0x0003, Microarchitectural)

See L<n>D_CACHE_REFILL.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

L1D_CACHE (0x0004, Microarchitectural)

See L<n>_D_CACHE.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

LD_RETIRED (0x0006, Architectural)

The counter increments for every executed memory-reading instruction.

LD_RETIRED does not count the return status value of a Store-Exclusive instruction. Whether the preload
instructions PLD, PLDW, and PLI, count as memory-reading instructions is IMPLEMENTATION DEFINED. Arm
recommends that if these instruction are not implemented as NOPs, then they are counted as memory-reading
instructions.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

ST_RETIRED (0x0007, Architectural)

The counter increments for every executed memory-writing instruction. The counter does not increment for a
Store-Exclusive instruction that fails.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

384

Chapter B14. The Performance Monitoring Extension
B14.10. Common event descriptions

INST_RETIRED (0x0008, Architectural)

The counter increments for every Architecturally executed instruction.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

EXC_TAKEN (0x0009, Architectural)

The counter increments on each exception entry. The counter does not further increment in the case of
a late or derived exception, but it is incremented when tail-chaining. This corresponds to calls to the
ActivateException()pseudocode function.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

EXC_RETURN (0x000A, Architectural)

The counter increments on each exception return. This occurs when the PE is in Handler mode, and one of the
following is executed and loads an EXC_RETURN value into the PC:

• A POP (multiple registers) or LDM that includes loading the PC.
• An LDR with the PC as a destination.
• A BX with any register.

This counter also increments on tail-chain.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

PC_WRITE_RETIRED (0x000C, Architectural)

The counter increments for every software change of the PC. This includes all of the following:

• Branch instructions.
• Loop start instructions.
• Loop end instructions.
• Memory-reading instructions that explicitly write to the PC.
• Data-processing instructions that explicitly write to the PC.

It is IMPLEMENTATION DEFINED whether the counter increments for any or all of:

• BKPT instructions.
• An exception generated because an instruction is UNDEFINED.
• The exception-generating instructions, SVC, and UDF.

It is IMPLEMENTATION DEFINED whether an ISB is counted as a software change of the PC. The counter does not
increment for exceptions other than those explicitly identified in these lists.

Conditional branches are only counted if the branch is taken.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

385

Chapter B14. The Performance Monitoring Extension
B14.10. Common event descriptions

BR_IMMED_RETIRED (0x000D, Architectural)

The counter counts all immediate branch instructions that are Architecturally executed, which includes the
immediate variants of any B branch instruction or CBNZ instruction. Conditional branches are always counted,
regardless of whether the branch is taken. If an ISB is counted as a software change of the PC instruction, then it
is IMPLEMENTATION DEFINED whether an ISB is counted as an immediate branch instruction.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

BR_RETURN_RETIRED (0x000E, Architectural)

The counter counts function return instructions.

For example the following, non-exhaustive, list shows instructions that are counted:

• BX LR.
• MOV PC, LR.
• POP {..., PC}.
• LDR PC, [SP], #offset.
• A BXNS with any register.
• Any indirect branch with FNC_RETURN as the target address.

The following is a non-exhaustive list of instructions that are not counted:

• BX with any register that is not LR.
• Any MOV PC where the register being written to is not the LR.
• LDM SP, {..., PC} because writeback is not specified.
• LDR PC, [SP, #offset] because this specifies the wrong addressing mode.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

UNALIGNED_LDST_RETIRED (0x000F, Architectural)

The counter counts each memory-reading instruction or memory-writing instruction access that would generate an
UNALIGNED UsageFault when CCR.UNALIGN_TRP is 1. It is IMPLEMENTATION DEFINED whether this event
counts accesses that generate a fault, including accesses that do generate an UNALIGNED UsageFault.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

BR_MIS_PRED (0x0010, Microarchitectural)

The counter counts each correction to the predicted program flow that occurs because of a misprediction from,
or no prediction from, the branch prediction resources, and that relates to instructions that the branch prediction
resources are capable of predicting. If no program-flow prediction resources are implemented, Arm recommends
that the counter counts all branches that are not taken.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

386

Chapter B14. The Performance Monitoring Extension
B14.10. Common event descriptions

CPU_CYCLES (0x0011, Microarchitectural)

The counter increments on every cycle.

All counters are subject to changes in clock frequency, including when a WFI or WFE instruction stops the clock.
This means that it is CONSTRAINED UNPREDICTABLE whether or not CPU_CYCLES continues to increment
when the clocks are stopped by WFI and WFE instructions.

Unlike PMU_CCNTR, this count is not affected by PMU_CTRL.DP, or by PMU_CTRL.C:

• The counter is not incremented in prohibited regions, and is not affected by PMU_CTRL.DP.
• The counter is reset when event counters are reset by PMU_CTRL.P, never by PMU_CTRL.C.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

BR_PRED (0x0012, Microarchitectural)

The counter counts every branch or other change in the program flow that the branch prediction resources are
capable of predicting. If all branches are subject to prediction, then all branches are predictable branches. If
branches are decoded before the branch predictor, so that the branch prediction logic dynamically predicts only
some branches, for example conditional and indirect branches, then it is IMPLEMENTATION DEFINED whether
other branches are counted as predictable branches. Arm recommends that all branches are counted.

An implementation might include other structures that predict branches, such as a loop buffer that predicts short
backwards direct branches as taken. Each execution of such a branch is a predictable branch. Terminating the loop
might generate a misprediction event that is counted by BR_MIS_PRED. If no program-flow prediction resources
are implemented, this event is optional, but Arm recommends that BR_PRED counts all branches.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

MEM_ACCESS (0x0013, Microarchitectural)

The counter counts memory-read or memory-write operations that the PE made. The counter increments whether
the access results in an access to a Level 1 data or unified cache, a Level 2 data or unified cache, or neither of these.
The counter does not increment as a result of:

• Instruction memory accesses.
• Cache maintenance instructions.
• Write-back from any cache.
• Refilling of any cache.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

L1I_CACHE (0x0014, Microarchitectural)

See L<n>_I_CACHE.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

L1D_CACHE_WB (0x0015, Microarchitectural)

See L<n>D_CACHE_WB.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

387

Chapter B14. The Performance Monitoring Extension
B14.10. Common event descriptions

L2D_CACHE (0x0016, Microarchitectural)

See [L<n>_D_CACHE.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

L2D_CACHE_REFILL (0x0017, Microarchitectural)

See L<n>D_CACHE_REFILL.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

L2D_CACHE_WB (0x0018, Microarchitectural)

See L<n>D_CACHE_WB.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

BUS_ACCESS (0x0019, Microarchitectural)

The counter counts memory-read or memory-write operations that access outside of the boundary of the PE and its
closely-coupled caches. This counter does not include accesses to or from a TCM. Where this boundary lies with
respect to any implemented caches is IMPLEMENTATION DEFINED.

The definition of a bus access is IMPLEMENTATION DEFINED but physically it is a single request rather than a
burst, (that is, for each bus cycle for which the bus is active). Bus accesses include refills of, and write-backs from,
data, instruction, and unified caches. Whether bus accesses include operations that do use the bus but that do not
explicitly transfer data is IMPLEMENTATION DEFINED. An Unattributable bus access occurs when a requestor
outside the PE makes a request that results in a bus access, for example, a coherency request. If the bus is shared,
then an Unattributable bus access is not counted. If the bus is not shared, then the event is counted.

If the bus is shared, then only Attributable bus accesses are counted. If the bus is not shared, then all bus accesses
are counted.

Where an implementation has multiple buses at this boundary, this event counts the sum of accesses across all
buses. If a bus supports multiple accesses per cycle, for example through multiple channels, the counter increments
one time for each channel that is active on a cycle, and so it might increment by more than one in any given cycle.
The maximum increment in any given cycle is IMPLEMENTATION DEFINED.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

MEMORY_ERROR (0x001A, Microarchitectural)

The counter counts every occurrence of a memory error that is signaled by memory closely coupled to this PE. The
definition of local memories is IMPLEMENTATION DEFINED but includes caches and tightly-coupled memories.
Memory error refers to a physical error that is detected by the hardware, such as a parity or ECC error. It includes
errors that are correctable and those that are not. It does not include errors that are defined in the architecture, such
as MPU or SAU faults.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

388

Chapter B14. The Performance Monitoring Extension
B14.10. Common event descriptions

INST_SPEC (0x001B, Microarchitectural)

The counter counts instructions that are speculatively executed by the PE. This includes instructions that are
subsequently not architecturally executed. As a result, this event counts a larger number of instructions than the
number of instructions Architecturally executed. The definition of speculatively executed is IMPLEMENTATION
DEFINED.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

BUS_CYCLES (0x001D, Microarchitectural)

The counter increments on every cycle of the external memory interface of the PE.

If the implementation clocks the external memory interface at the same rate as the processor hardware, the counter
counts every cycle.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

CHAIN (0x001E, Architectural)

Even-numbered counters never increment as a result of this event. This means the CHAIN event links the
odd-numbered counter with the preceding even-numbered counter to provide a 32-bit counter.

The CHAIN event means a system can provide N 16-bit counters, N/2 32-bit counters, or a mixture of 16-bit
counters and 32-bit counters. The increment of both counters is atomic with respect to software or external counter
access.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

L1D_CACHE_ALLOCATE (0x001F, Microarchitectural)

The counter increments on every Attributable write that writes an entire line into the Level 1 cache without fetching
from outside the Level 1 cache, for example a write from a coalescing buffer of a full cache line.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

L2D_CACHE_ALLOCATE (0x0020, Microarchitectural)

The counter increments on every Attributable write that writes an entire line into the Level 2 cache without fetching
from outside the Level 1 or Level 2 caches, for example:

• A write-back from a Level 1 to Level 2 cache.
• A write from a coalescing buffer of a full cache line.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

389

Chapter B14. The Performance Monitoring Extension
B14.10. Common event descriptions

BR_RETIRED (0x0021, Architectural)

The counter counts all branches on the Architecturally executed path that would incur cost if mispredicted:

• It counts at retirement:

– All branch instructions.
– All memory-reading instructions that explicitly write to the PC.
– All data-processing instructions that explicitly write to the PC.

• It counts both:

– Branches that are taken.
– Branches that are not taken.

• It is IMPLEMENTATION DEFINED whether this includes each of:

– Unconditional direct branch instructions.
– Exception-generating instructions.
– Exception return instructions.
– Context synchronization instructions.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

BR_MIS_PRED_RETIRED (0x0022, Microarchitectural)

The counter counts all instructions counted by BR_RETIRED that were not correctly predicted. If no program-flow
prediction resources are implemented, this event counts all retired not-taken branches.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

STALL_FRONTEND (0x0023, Microarchitectural)

The counter counts every cycle counted by the CPU_CYC event on which no operation was issued because there
are no operations available to issue for this PE from the frontend. The division between frontend and backend is
IMPLEMENTATION DEFINED. Frontend and backend events count at the same point in the pipeline.

For a simplified pipeline model of Fetch > Decode > Issue > Execute > Retire, Arm recommends that the events
are counted when instructions are dispatched from Decode to Issue.

On a given cycle, both events might be counted if the backend is unable to accept any operations and there are no
operations available to issue from the frontend.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

STALL_BACKEND (0x0024, Microarchitectural)

The counter counts every cycle counted by the CPU_CYCLES event on which no operation was issued because
either:

• The backend is unable to accept any of the operations available for issue for this PE.
• The backend is unable to accept any operations.

For example, the back end might be unable to accept operations because of a resource conflict or non-availability.
The division between frontend and backend is IMPLEMENTATION DEFINED. Frontend and backend events count at
the same point in the pipeline.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

390

Chapter B14. The Performance Monitoring Extension
B14.10. Common event descriptions

L2I_CACHE (0x0027, Microarchitectural)

See L<n>_I_CACHE.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

L2I_CACHE_REFILL (0x0028, Microarchitectural)

See L<n>I_CACHE_REFILL.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

L3D_CACHE_ALLOCATE (0x0029, Microarchitectural)

The counter increments on every Attributable write that writes an entire line into the Level 3 cache without fetching
from outside the Level 1, Level 2, or Level 3 cache, for example:

• A write-back from a Level 2 to Level 3 cache.
• A write from a coalescing buffer of a full cache line.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

L3D_CACHE_REFILL (0x002A, Microarchitectural)

See L<n>D_CACHE_REFILL.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

L3D_CACHE (0x002B, Microarchitectural)

See L<n>_D_CACHE.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

L3D_CACHE_WB (0x002C, Microarchitectural)

See L<n>D_CACHE_WB.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

LL_CACHE_RD (0x0036, Microarchitectural)

See L<n>_D_CACHE_RD.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

LL_CACHE_MISS_RD (0x0037, Microarchitectural)

See L<n>D_CACHE_MISS_RD.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

391

Chapter B14. The Performance Monitoring Extension
B14.10. Common event descriptions

L1D_CACHE_MISS_RD (0x0039, Microarchitectural)

See L<n>D_CACHE_MISS_RD.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

OP_RETIRED (0x003A, Microarchitectural)

The counter counts each operation counted by OP_SPEC that is later committed to the architectural state of this
PE.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

OP_SPEC (0x003B, Microarchitectural)

The counter counts the number of Attributable instructions or operations that are sent for execution by this PE,
including those that are not committed to the architectural state of this PE.

This event might be an alias for INST_SPEC.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

STALL (0x003C, Microarchitectural)

The counter counts every Attributable cycle on which no Attributable instruction operation was sent for execution
for this PE.

The division between frontend and backend is IMPLEMENTATION DEFINED. STALL, STALL_FRONTEND and
STALL_BACKEND events must count at the same point in the pipeline.

For a simplified pipeline model of Fetch, Decode, Issue, Execute, Retire, Arm recommends that the events are
counted when instructions are dispatched from Decode to Issue.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

STALL_SLOT_BACKEND (0x003D, Microarchitectural)

Counts each slot counted by STALL_SLOT where no Attributable instruction or operation was sent for execution
because either:

• The backend was unable to accept the instruction operation available for this PE on the slot
• The backend is unable to accept any operations on the slot.

The division between frontend and backend is IMPLEMENTATION DEFINED.
STALL_SLOT, STALL_SLOT_FRONTEND and STALL_SLOT_BACKEND events count at the same point in
the pipeline.

On a given cycle, both the STALL_SLOT_FRONTEND and the STALL_SLOT_BACKEND event might be
counted if the backend is unable to accept any operations and there are no operations available to issue from the
frontend.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

392

Chapter B14. The Performance Monitoring Extension
B14.10. Common event descriptions

STALL_SLOT_FRONTEND (0x003E, Microarchitectural)

Counts each slot counted by STALL_SLOT where no Attributable instruction or operation was sent for execution
because there was no Attributable instruction or operation available to issue for this PE from the frontend for the
slot.

The division between frontend and backend is IMPLEMENTATION DEFINED.
STALL_SLOT, STALL_SLOT_FRONTEND and STALL_SLOT_BACKEND events count at the same point in
the pipeline.

On a given cycle, both STALL_SLOT_FRONTEND and STALL_SLOT_BACKEND event might be counted if
the backend is unable to accept any instructions operations and there are no instructions or operations available to
issue from the frontend.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

STALL_SLOT (0x003F, Microarchitectural)

The counter counts on each Attributable cycle the number of instruction or operation slots that were not occupied
by an instruction or operation Attributable to this PE.

The definition of a slot is IMPLEMENTATION DEFINED, but there is a fixed number of slots, WIDTH, that are
available on each cycle, so that the formula STALL_SLOT / (CPU_CYCLES x WIDTH) gives the utilization
of the slots of the processor by Attributable instruction or operations of this PE. Each slot can hold at most one
instruction or operation each cycle.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

L1D_CACHE_RD (0x0040, Microarchitectural)

See L<n>_D_CACHE_RD.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

LE_RETIRED (0x0100, Microarchitectural)

The counter increments for every Architecturally executed loop end LE, LETP instruction, when that instruction
registers an entry inside the LO_BRANCH_INFO cache.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

LE_SPEC (0x0101, Microarchitectural)

The counter increments for every speculatively executed loop end LE, LETP instruction, when that instruction
registers an entry inside the LO_BRANCH_INFO cache.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

BF_RETIRED (0x0104, Microarchitectural)

The counter increments for every Architecturally executed branch future instruction, when that instruction registers
an entry inside the LO_BRANCH_INFO cache.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

393

Chapter B14. The Performance Monitoring Extension
B14.10. Common event descriptions

BF_SPEC (0x0105, Microarchitectural)

The counter increments for every speculatively executed branch future instruction, when that instruction registers
an entry inside the LO_BRANCH_INFO cache.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

LE_CANCEL (0x0108, Microarchitectural)

The LO_BRANCH_INFO cache was cleared while it contained a valid loop entry as set up by a loop end instruction,
and that did not coincide with the last iteration of the loop.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

BF_CANCEL (0x0109, Microarchitectural)

The LO_BRANCH_INFO cache was cleared while it contained a valid branch entry as set up by a branch future
instruction, and that did not coincide with a taken implicit branch.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

SE_CALL_S (0x0114, Architectural)

The counter increments for every Architecturally executed SG instruction that results in a Security state transition
from Non-secure state to Secure state.

Arm recommends that this counter increments regardless of the Security state filters that are applied to the PMU.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

SE_CALL_NS (0x0115, Architectural)

The counter increments for every Architecturally executed BLXNS instruction that results in a Security state
transition from Secure state to Non-secure state.

Arm recommends that this counter increments regardless of the Security state filters that are applied to the PMU.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

DWT_CMPMATCH<n> (0x0118, Architectural)

Where <n> = 0-7.

The counter increments for each successful comparator match indicated by DWT comparator <n>. The comparator
does not increment if the comparator is not implemented or is disabled.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU &&
DSPDE.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

394

Chapter B14. The Performance Monitoring Extension
B14.10. Common event descriptions

MVE_INST_RETIRED (0x0200, Architectural)

The counter increments for each Architecturally executed MVE instruction that is subject to beat-wise execution.
This includes instructions that are partially or fully predicated, and instructions that resume execution after returning
from an exception.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

MVE_INST_SPEC (0x0201, Microarchitectural)

The counter increments for each speculatively executed MVE instruction that is subject to beat-wise execution. This
includes instructions that are subsequently not Architecturally executed. As a result, this event might count a larger
number of instructions than the number of instructions Architecturally executed. The definition of speculatively
executed is IMPLEMENTATION DEFINED.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

MVE_FP_RETIRED (0x0204, Architectural)

The counter increments for each Architecturally executed MVE instruction, as counted by MVE_INST_RETIRED,
that operates on floating-point data. This includes MVE conversion instructions that convert to or from floating-
point representation, as well as floating-point vector compare and vector predicate instructions.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

MVE_FP_SPEC (0x0205, Microarchitectural)

The counter increments for each speculatively executed MVE instruction, as counted by MVE_INST_SPEC, that
operates on floating-point data. This includes MVE conversion instructions that convert to or from floating-point
representation, as well as floating-point vector compare and vector predicate instructions.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

MVE_FP_HP_RETIRED (0x0208, Architectural)

The counter increments for each Architecturally executed MVE floating-point instruction that operates on floating-
point data, as counted by MVE_FP_RETIRED, and which additionally operates on half-precision data. This
includes MVE conversion instructions that convert to or from half-precision floating-point representation.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

MVE_FP_HP_SPEC (0x0209, Microarchitectural)

The counter increments for each speculatively executed MVE floating-point instruction that operates on floating-
point data, as counted by MVE_FP_SPEC, and which additionally operates on half-precision data. This includes
MVE conversion instructions that convert to or from half-precision floating-point representation.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

395

Chapter B14. The Performance Monitoring Extension
B14.10. Common event descriptions

MVE_FP_SP_RETIRED (0x020C, Architectural)

The counter increments for each Architecturally executed MVE floating-point instruction that operates on floating-
point data, as counted by MVE_FP_RETIRED, and which additionally operates on single-precision data. This does
not include MVE conversion instructions that convert to or from single-precision floating-point representation.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

MVE_FP_SP_SPEC (0x020D, Microarchitectural)

The counter increments for each speculatively executed MVE floating-point instruction that operates on floating-
point data, as counted by MVE_FP_SPEC, and which additionally operates on single-precision data. This does not
include MVE conversion instructions that convert to or from single-precision floating-point representation.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

MVE_FP_MAC_RETIRED (0x0214, Architectural)

The counter increments for each Architecturally executed MVE floating-point instruction that performs a multiply
or multiply-accumulate operation. This includes instructions that perform fused multiply-accumulation.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

MVE_FP_MAC_SPEC (0x0215, Microarchitectural)

The counter increments for each speculatively executed MVE floating-point instruction that performs a multiply or
multiply-accumulate operation. This includes instructions that perform fused multiply-accumulation.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

MVE_INT_RETIRED (0x0224, Architectural)

The counter increments for each Architecturally executed MVE beat-wise integer or fixed-point instruction. This
does not include any floating-point conversion instructions. This does include integer vector compare and vector
predicate instructions.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

MVE_INT_SPEC (0x0225, Microarchitectural)

The counter increments for each speculatively executed MVE beat-wise integer or fixed-point instruction. This
does not include any floating-point conversion instructions. This does include integer vector compare and vector
predicate instructions.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

MVE_INT_MAC_RETIRED (0x0228, Architectural)

The counter increments for each Architecturally executed MVE integer or fixed-point instruction, as counted by
MVE_INT_RETIRED, which additionally performs a multiply or multiply-accumulate operation. This includes
reducing variants.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

396

Chapter B14. The Performance Monitoring Extension
B14.10. Common event descriptions

MVE_INT_MAC_SPEC (0x0229, Microarchitectural)

The counter increments for each speculatively executed MVE integer or fixed-point instruction, as counted by
MVE_INST_SPEC, which additionally performs a multiply or multiply-accumulate operation. This includes
reducing variants.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

MVE_LDST_RETIRED (0x0238, Architectural)

The counter increments for each Architecturally executed MVE load instruction that writes data to a Q register or
store instruction that sources data from a Q register.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

MVE_LDST_SPEC (0x0239, Microarchitectural)

The counter increments for each speculatively executed MVE load instruction that writes data to a Q register or
store instruction that sources data from a Q register.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

MVE_LD_RETIRED (0x023C, Architectural)

The counter increments each time MVE_LDST_RETIRED increments as a result of a load operation.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

MVE_LD_SPEC (0x023D, Microarchitectural)

The counter increments each time MVE_LDST_SPEC increments as a result of a load operation.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

MVE_ST_RETIRED (0x0240, Architectural)

The counter increments each time MVE_LDST_RETIRED increments as a result of a store operation.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

MVE_ST_SPEC (0x0241, Microarchitectural)

The counter increments each time MVE_LDST_SPEC increments as a result of a store operation.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

397

Chapter B14. The Performance Monitoring Extension
B14.10. Common event descriptions

MVE_LDST_CONTIG_RETIRED (0x0244, Microarchitectural)

The counter increments each time a contiguous memory load or store instruction is Architecturally executed, and
results in an optimal number of memory accesses. The counter increments for scatter-gather instructions that are
promoted to contiguous accesses. The counter increments regardless of alignment.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

MVE_LDST_CONTIG_SPEC (0x0245, Microarchitectural)

The counter increments each time a contiguous memory load or store instruction is speculatively executed, and
results in an optimal number of memory accesses. The counter increments for scatter-gather instructions that are
promoted to contiguous accesses. The counter increments regardless of alignment.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

MVE_LD_CONTIG_RETIRED (0x0248, Microarchitectural)

The counter increments each time MVE_LDST_CONTIG_RETIRED increments as a result of a load operation.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

MVE_LD_CONTIG_SPEC (0x0249, Microarchitectural)

The counter increments each time MVE_LDST_CONTIG_SPEC increments as a result of a load operation.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

MVE_ST_CONTIG_RETIRED (0x024C, Microarchitectural)

The counter increments each time MVE_LDST_CONTIG_RETIRED increments as a result of a store operation.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

MVE_ST_CONTIG_SPEC (0x024D, Microarchitectural)

The counter increments each time MVE_LDST_CONTIG_SPEC increments as a result of a store operation.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

MVE_LDST_NONCONTIG_RETIRED (0x0250, Microarchitectural)

The counter increments each time a non-contiguous memory load or store instruction is Architecturally executed,
and results in an increased number of accesses compared to a contiguous operation. The counter is incremented
one time, regardless of the additional number of memory requests that are required to complete the execution of
that instruction. The counter does not increment if a scatter-gather instruction is promoted to contiguous memory
accesses.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

398

Chapter B14. The Performance Monitoring Extension
B14.10. Common event descriptions

MVE_LDST_NONCONTIG_SPEC (0x0251, Microarchitectural)

The counter increments each time a non-contiguous memory load or store instruction is speculatively executed,
and results in an increased number of accesses compared to a contiguous operation. The counter is incremented
one time, regardless of the additional number of memory requests that are required to complete the execution of
that instruction. The counter does not increment if a scatter-gather instruction is promoted to contiguous memory
accesses.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

MVE_LD_NONCONTIG_RETIRED (0x0254, Microarchitectural)

The counter increments each time MVE_LDST_NONCONTIG_RETIRED increments as a result of a load
operation.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

MVE_LD_NONCONTIG_SPEC (0x0255, Microarchitectural)

The counter increments each time MVE_LDST_NONCONTIG_SPEC increments as a result of a load operation.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

MVE_ST_NONCONTIG_RETIRED (0x0258, Microarchitectural)

The counter increments each time MVE_LDST_NONCONTIG_RETIRED increments as a result of a store
operation.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

MVE_ST_NONCONTIG_SPEC (0x0259, Microarchitectural)

The counter increments each time MVE_LDST_NONCONTIG_SPEC increments as a result of a store operation.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

MVE_LDST_MULTI_RETIRED (0x025C, Architectural)

The counter increments whenever a VLD2x, VST2x, VLD4x, or VST4x instruction is Architecturally executed.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

MVE_LDST_MULTI_SPEC (0x025D, Microarchitectural)

The counter increments whenever a VLD2x, VST2x, VLD4x, or VST4x instruction is speculatively executed.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

399

Chapter B14. The Performance Monitoring Extension
B14.10. Common event descriptions

MVE_LD_MULTI_RETIRED (0x0260, Architectural)

The counter increments whenever a VLD2x, or VLD4x instruction is Architecturally executed.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

MVE_LD_MULTI_SPEC (0x0261, Microarchitectural)

The counter increments whenever a VLD2x, or VLD4x instruction is speculatively executed.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

MVE_ST_MULTI_RETIRED (0x0264, Architectural)

The counter increments whenever a VST2x, or VST4x instruction is Architecturally executed.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

MVE_ST_MULTI_SPEC (0x0265, Microarchitectural)

The counter increments whenever a VST2x, or VST4x instruction is speculatively executed.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

MVE_LDST_UNALIGNED_RETIRED (0x028C, Microarchitectural)

The counter increments when MVE_LDST_RETIRED increments as a result of an instruction that requires one or
more additional memory accesses because of misalignment.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

MVE_LDST_UNALIGNED_SPEC (0x028D, Microarchitectural)

The counter increments when MVE_LDST_SPEC increments as a result of an instruction that requires one or
more additional memory accesses because of the misalignment.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

MVE_LD_UNALIGNED_RETIRED (0x0290, Microarchitectural)

The counter increments when MVE_LDST_UNALIGNED_RETIRED increments as a result of a load operation.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

MVE_LD_UNALIGNED_SPEC (0x0291, Microarchitectural)

The counter increments when MVE_LDST_UNALIGNED_SPEC increments as a result of a load operation.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

400

Chapter B14. The Performance Monitoring Extension
B14.10. Common event descriptions

MVE_ST_UNALIGNED_RETIRED (0x0294, Microarchitectural)

The counter increments when MVE_LDST_UNALIGNED_RETIRED increments as a result of a store operation.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

MVE_ST_UNALIGNED_SPEC (0x0295, Microarchitectural)

The counter increments when MVE_LDST_UNALIGNED_SPEC increments as a result of a store operation.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

MVE_LDST_UNALIGNED_NONCONTIG_RETIRED (0x0298, Microarchitectural)

This counter increments whenever both MVE_LDST_UNALIGNED_RETIRED and
MVE_LDST_NONCONTIG_RETIRED increment.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

MVE_LDST_UNALIGNED_NONCONTIG_SPEC (0x0299, Microarchitectural)

This counter increments whenever both MVE_LDST_UNALIGNED_SPEC and MVE_LDST_NONCONTIG_SPEC
increment.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

MVE_VREDUCE_RETIRED (0x02A0, Architectural)

The counter increments whenever an MVE instruction that operates on a vector to produce a scalar result that is
stored in a general-purpose result is Architecturally executed. This includes only instructions that have the ‘V’
suffix.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

MVE_VREDUCE_SPEC (0x02A1, Microarchitectural)

The counter increments whenever an MVE instruction that operates on a vector to produce a scalar result that is
stored in a general-purpose register is speculatively executed. This includes only instructions that have the ‘V’
suffix.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

MVE_VREDUCE_FP_RETIRED (0x02A4, Architectural)

The counter increments whenever both MVE_VREDUCE_RETIRED and MVE_FP_RETIRED increment.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

401

Chapter B14. The Performance Monitoring Extension
B14.10. Common event descriptions

MVE_VREDUCE_FP_SPEC (0x02A5, Microarchitectural)

The counter increments whenever both MVE_VREDUCE_SPEC and MVE_FP_SPEC increment.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

MVE_VREDUCE_INT_RETIRED (0x02A8, Architectural)

The counter increments whenever both MVE_VREDUCE_SPEC and MVE_INST_RETIRED increment.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

MVE_VREDUCE_INT_SPEC (0x02A9, Microarchitectural)

The counter increments whenever both MVE_VREDUCE_SPEC and MVE_INST_SPEC increment.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

MVE_PRED (0x02B8, Microarchitectural)

The counter increments on each Architecture tick where one or more beats of an MVE beat-wise instruction
architecturally completes, and where one or more of these beats is partially or fully predicated false by VPR or
loop-tail predication.

If a beat is interrupted by an exception and does not architecturally complete, or if the beat is masked by EPSR.ECI
when resuming execution following an exception, Arm recommends that the counter does not increment.

The ratio (BEATS_PER_TICK) / (4 * then offers an approximate insight into the proportion of MVE instructions
affected by predication, where BEATS_PER_TICK is an IMPLEMENTATION DEFINED average number of beats,
including from distinct overlapping instructions, executed per Architecture tick.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

MVE_STALL (0x02CC, Microarchitectural)

The counter counts every cycle counted by the CPU_CYCLES event on which no operation was issued as a direct
result of an MVE instruction that is either currently executing or attempting to execute.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

MVE_STALL_RESOURCE (0x02CD, Microarchitectural)

The counter increments whenever MVE_STALL increments, and where the cause is attributable to an MVE
instruction failing to execute because there are no available resources in the PE capable of executing that instruction.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

MVE_STALL_RESOURCE_MEM (0x02CE, Microarchitectural)

The counter increments whenever MVE_STALL increments, and where the cause is attributable to an MVE
instruction failing to execute because there are no available memory resources in the PE capable of executing that
instruction.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

402

event.MVE_PRED#MVE\protect \T1\textunderscore PRED.*

Chapter B14. The Performance Monitoring Extension
B14.10. Common event descriptions

MVE_STALL_RESOURCE_FP (0x02CF, Microarchitectural)

The counter increments whenever MVE_STALL increments, and where the cause is attributable to an MVE
instruction failing to execute because there are no available floating-point resources in the PE capable of executing
that instruction.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

MVE_STALL_RESOURCE_INT (0x02D0, Microarchitectural)

The counter increments whenever MVE_STALL increments, and where the cause is attributable to an MVE
instruction failing to execute because there are no available integer resources in the PE capable of executing that
instruction.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

MVE_STALL_BREAK (0x02D3, Microarchitectural)

The counter increments whenever MVE_STALL increments, and where the cause is attributable to waiting for the
completion of an in-flight MVE instruction. A possible example is when an MVE chainable instruction completes
before executing a scalar instruction. Arm recommends that the counter increments only if no other specific
attributable cause can be identified.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

MVE_STALL_DEPENDENCY (0x02D4, Microarchitectural)

The counter increments whenever MVE_STALL increments, and where the cause is attributable to the subsequent
instruction being delayed to resolve a register RAW conflict.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

ITCM_ACCESS (0x4007, Microarchitectural)

The counter counts memory read or memory write operations that the PE made to an instruction TCM.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

DTCM_ACCESS (0x4008, Microarchitectural)

The counter counts memory read or memory write operations that the PE made to a data or unified TCM.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

TRCEXTOUT<n> (0x4010, Microarchitectural)

Where <n> = 0-3.

The counter counts for each event signaled by the ETM external event <n>.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU &&
DSPDE.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

403

Chapter B14. The Performance Monitoring Extension
B14.10. Common event descriptions

CTI_TRIGOUT<n> (0x4018, Microarchitectural)

Where <n> = 4-7.

The counter counts for each event signaled by the CTI output trigger <n>.

Note: CTI output triggers are input events to the PMU and PE Trace Unit.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU &&
DSPDE.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

404

Chapter B14. The Performance Monitoring Extension
B14.11. Required PMU events

B14.11 Required PMU events

RFXXR The architecture requires that the PMU supports at least the following common events:

• 0x000 SW_INCR:

– Instruction Architecturally executed, condition code check pass, software increment.

• 0x003 L1D_CACHE_REFILL:

– Attributable Level 1 data cache refill.
– This event is only required if the implementation includes a Level 1 data or unified cache.

• 0x004 L1D_CACHE:

– Attributable Level 1 data cache access.
– This event is only required if the implementation includes a Level 1 data or unified cache.

• 0x022 BR_MIS_PRED_RETIRED:

– Instruction Architecturally executed for a mispredicted branch.
– This event is only required if the implementation includes program flow prediction.

• 0x011 CPU_CYCLES:

– Cycle.

• 0x021 BR_RETIRED:

– All branch instructions Architecturally executed.
– This event is only required if the implementation includes program flow prediction.

• 0x008 INST_RETIRED:

– Instruction Architecturally executed.

• 0x023 STALL_FRONTEND:

– No operation issued because of the frontend.

• 0x024 STALL_BACKEND:

– No operation issued because of the backend.

• 0x200 MVE_INST_RETIRED:

– MVE instruction Architecturally executed.
– This event is only required if the implementation includes MVE.

• 0x238 MVE_LDST_RETIRED:

– MVE load or store instruction Architecturally executed.
– This event is only required if the implementation includes MVE.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

405

Chapter B14. The Performance Monitoring Extension
B14.12. IMPLEMENTATION DEFINED event numbers

B14.12 IMPLEMENTATION DEFINED event numbers

RZJSZ For IMPLEMENTATION DEFINED event numbers, each counter is independently defined to either:

• Increment only one time for each event.
• Count the duration for which an event occurs.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

ILCNR Arm recommends that implementers establish a standardized numbering scheme for their IMPLEMENTATION
DEFINED events, with common definitions and common count numbers applied to all of their implementations.
In general, Arm recommends standardization across implementations with common features. However, Arm
recognizes that attempting to standardize the encoding of microarchitectural features across too wide a range of
implementations is not productive.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

IRKHN Arm strongly recommends that the IMPLEMENTATION DEFINED events allow the user to measure the utilization
of any microarchitectural features that the implementation considers important for system performance, and any
significant deviations from optimal performance.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - PMU.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

406

Chapter B15
Reliability, Availability, and Serviceability (RAS) Extension

This chapter specifies the Armv8.1-M Reliability, Availability, and Serviceability (RAS) Extension. A minimal
implementation of this is mandatory for any implementation of the Armv8.1-M architecture, but any additional
RAS features are optional.

This chapter contains the following sections:

B15.1 Overview on page 408.

B15.2 Taxonomy of errors on page 409.

B15.3 Generating error exceptions on page 411.

B15.4 Error Synchronization Barrier (ESB) on page 414.

B15.5 Implicit Error Synchronization (IESB) on page 416.

B15.6 Fault handling on page 418.

B15.7 RAS error records on page 420.

B15.8 Multiple BusFault exceptions on page 423.

B15.9 Error Recovery reset on page 424

B15.10 Minimal RAS implementation on page 425.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

407

Chapter B15. Reliability, Availability, and Serviceability (RAS) Extension
B15.1. Overview

B15.1 Overview

IZTMS For a detailed description of possible RAS errors, see the Arm® Reliability, Availability, and Serviceability (RAS)
Specification, Armv8, for the Armv8-A architecture profile.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

RTXGN A minimum implementation of the RAS Extension is required for an implementation of the v8.1-M architecture.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

RRSMP ID_PFR0.RAS is nonzero when the RAS Extension is implemented.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

ICTQJ An error is a deviation from correct service. For the purpose of describing the RAS Extension, deviation from
correct service is defined using the following terms:

• A failure is the event of deviation from correct service. This includes data corruption, data loss, and service
loss.

• An error is the deviation.
• A fault is the cause of the error.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

RFCTN When a PE accesses memory or other state, an error might be detected in that memory or state, and corrected,
deferred, or signaled to the PE as a Detected error. It is IMPLEMENTATION DEFINED whether an error that is
detected by a consumer of a write from a PE is signaled to the PE and becomes a Detected error that is consumed
by the PE.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

ILTTV The nodes that are included as part of a PE, including an Armv8-M PE, are IMPLEMENTATION DEFINED.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

RTLFS A single error might generate multiple exceptions.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

INJVH Software must be aware that errors might be double-reported.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

See also:

B15.10 Minimal RAS implementation on page 425.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

408

Chapter B15. Reliability, Availability, and Serviceability (RAS) Extension
B15.2. Taxonomy of errors

B15.2 Taxonomy of errors

IGNNQ The architecture does not specify techniques for:

• Fault prevention.
• Fault removal.
• Fault injection.
• Testing.

These are IMPLEMENTATION DEFINED and are outside the scope of this architecture.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

See also:

• Arm® Reliability, Availability, and Serviceability (RAS) Specification, Armv8, for the Armv8-A architecture
profile.

B15.2.1 Architectural error propagation

RMVFK For a PE, Error propagation applies to the propagation of detected errors between the general-purpose registers or
the Floating-point Extension register file, and any program-visible architectural state of the PE, including:

• Other general-purpose registers and the Floating-point Extension register file.
• Memory-mapped registers.
• Special-purpose registers.
• Memory.

That is, the error is propagated by:

• A store of a corrupt value.

• A write of a corrupt value to a System register or a special-purpose register. Infecting a System register state
might mean that the PE generates transactions that would not otherwise be permitted.

• Any operation that would not have been permitted to occur had the error not been activated, including:

– A load or instruction fetch that would not have been permitted, including those from hardware speculation
or prefetching.

– A store to an incorrect address or a store that would not have been made or not permitted.
– A direct or indirect write to a special-purpose or System register that would not have been made or not

permitted.
– Assertion of any signal, such as an interrupt, that would not have been asserted.

• Any operation not occurring that would have occurred had the error not been activated.

• Taking an asynchronous exception.

• The PE discarding data that it holds in a modified state.

• Any other loss of uniprocessor semantics, ordering or coherency.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

RRGPS The propagated error is silently propagated if it is not signaled to a consumer as a Detected error.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

RJKVQ The features that a PE includes to contain an error are IMPLEMENTATION DEFINED, and it is IMPLEMENTATION
DEFINED whether an error can be signaled to the consumer as a Detected error.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

409

Chapter B15. Reliability, Availability, and Serviceability (RAS) Extension
B15.2. Taxonomy of errors

See also:

Arm® Reliability, Availability, and Serviceability (RAS) Specification, Armv8, for the Armv8-A architecture profile.

B15.2.2 Architecturally infected, contained, and uncontained

RVKZT Infected, Poisoned, Containable and Uncontainable apply to all program-visible architectural state of the PE,
including general-purpose registers, the Floating-point Extension register file, special purpose registers, System
registers, and memory.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

RZPCB An error is Uncontainable by the PE if the error is silently propagated, unless it is contained because all of the
following are true:

• The corrupt value is in the general-purpose register or in the Floating-point Extension register file.

• The error has only been silently propagated by an instruction that occurs in program order after one of the
following:

– Taking a BusFault that is generated by the error.
– An Error Synchronization Barrier operation that synchronizes the error.

• The error is not silently propagated in any other way.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

B15.2.3 Architecturally consumed errors

RRNNF For a PE, an error is architecturally consumed if any of the following are true:

• An instruction commits the corruption into the visible state of the PE.
• The error is on an instruction fetch and the instruction is committed for execution.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

RMKBF The PE takes action for a detected, architecturally consumed error either by:

• Generating an error exception.
• Entering a failure mode.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

B15.2.4 Other errors

ITCZS Errors from software faults are outside the scope of the RAS Extension error recovery architecture.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

IKDJP From within the PE itself, other errors might be detected. These are not errors that are detected by the architectural
model of the PE and so are treated like errors that are detected by another component. Other components might
report errors to a PE using error recovery interrupts. An example of this is when the cache, not the PE, detects a
RAM error. Other components might report errors to a PE using error recovery interrupts.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

410

Chapter B15. Reliability, Availability, and Serviceability (RAS) Extension
B15.3. Generating error exceptions

B15.3 Generating error exceptions

IWZHQ The following diagram shows the taxonomy of consumed errors.

Uncorrected

Silenty
propagated? Error corrected?

no

Uncontained

maybe

Corrected
yes

Component can
continue?

no

Component state
corrupted?

yes

Unrecoverable

no

Recoverable

yes

Restartable

no

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

RPVJQ An error exception is generated for all detected RAS errors that are neither Corrected nor Deferred errors. These
error exceptions are signaled to, and consumed by, a PE and are not silently propagated.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

RRPFG A Corrected error is detected and corrected by the PE, and is not silently propagated.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

INDMC In normal circumstances a Corrected error no longer infects the node. In IMPLEMENTATION DEFINED circum-
stances, the Corrected error might remain latent in the node.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

IPSKL For an Uncontainable error, if the error cannot be isolated to an application, the system must be shut down by
software to avoid Catastrophic failure.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

ILFCG For an Unrecoverable error, the application cannot continue and must be isolated by software methods.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

IPTXC For a Recoverable error, if software cannot locate and repair the error, the application must be isolated by software
methods.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

IRSJP For a Restartable error, software might take action to locate and repair the error before it is consumed. The PE can
be restarted by software without software taking any action to locate and repair the error.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

411

Chapter B15. Reliability, Availability, and Serviceability (RAS) Extension
B15.3. Generating error exceptions

RSJKL On each error exception, it is IMPLEMENTATION DEFINED whether the error has been contained or whether it is
Uncontainable. If the error has been contained, it is further IMPLEMENTATION DEFINED whether the state of the
PE on taking the error exception is Unrecoverable, Recoverable, or Restartable:

Uncontainable error (UC): The error is Uncontainable if it has been, or might have been, silently propagated.
This is also referred to as an Uncontained error.

Unrecoverable error (UEU): The state of the PE is Unrecoverable if all of the following are true:

• The error has not been silently propagated.
• The PE cannot recover execution from the return address of the exception. This might be because of one of

the following:
– The error has been architecturally consumed by the PE and infected the state of the PE general-purpose

registers, the Floating-point Extension register file, and System registers.
– The exception is asynchronous.

Recoverable error (UER): The state of the PE is Recoverable if all of the following are true:

• The error has not been silently propagated.
• The error has not been architecturally consumed by the PE (the architectural state of the PE is not infected).
• The exception is synchronous and the PE can recover execution from the return address of the exception.

The PE cannot make correct progress without either consuming the error or otherwise making the error Unrecover-
able. The error remains latent in the system.

Restartable error (UEO): The state of the PE is Restartable if all of the following are true:

• The error has not been silently propagated.
• The error has not been architecturally consumed by the PE (the architectural state of the PE is not infected).
• The exception is synchronous and the PE can recover execution from the return address of the exception.

The PE can make progress. However, the error might remain latent in the system.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

RKZPT The set of error types that can be reported by an implementation is IMPLEMENTATION DEFINED. An implementa-
tion can report:

• Any Restartable error as any of Recoverable, Unrecoverable, or Uncontainable.
• Any Recoverable error as either Unrecoverable or Uncontainable.
• Any Unrecoverable error as Uncontainable.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

IXCSK If the state of the PE is reported as Recoverable, this does not mean that the error can be recovered from. For
example, because the error in memory might be one which does not allow software to recover the operation. Rather,
software might be able to recover if it can repair the error and continue.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

RSGHS A bus error might be raised in response to:

• An architectural memory read, or reads from instruction fetches.
• An architectural write to memory, or cache maintenance operation.
• A read from memory because of hardware speculation, prefetching, or other non-architectural mechanisms.

The events that trigger bus errors are IMPLEMENTATION DEFINED.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

RQLCQ It is IMPLEMENTATION DEFINED whether a RAS error that is detected by the consumer of a write from a PE:

• Is deferred to the consumer.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

412

Chapter B15. Reliability, Availability, and Serviceability (RAS) Extension
B15.3. Generating error exceptions

• Is returned to the PE as a bus error.
• Generates an error recovery interrupt.

The behavior might vary by physical address or memory type.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

RTFLL The method by which the error is deferred depends on the component and is implementation-specific.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

IRDQV A common mechanism to defer the error is to create Poisoned state, which subsequently generates an error when
that state is accessed.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

RCXSW The size of the Protection granule for any implemented error detection mechanism is IMPLEMENTATION DEFINED,
and a system might implement multiple error detection mechanisms with different Protection granule sizes.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

RGBDR The mechanisms for clearing an error or poison from a Protection granule is IMPLEMENTATION DEFINED, and it is
IMPLEMENTATION DEFINED whether any such mechanism exists.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

RTTQG A BusFault exception is a synchronous recoverable or restartable error exception that is generated by instruction
fetches or architectural memory accesses.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

RPXMR BFSR is populated for every BusFault that is generated by a RAS error. RFSR is populated for every RAS BusFault
exception, and RFSR.V is set.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

RFZKC The severity of the error and the state of the PE are reported when the error exception is pended.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

IZKNJ If an error exception occurs while the BusFault exception handler is handling a previous error exception, the
existing exception nesting behaviors apply. This might cause the exception to escalate to a HardFault or Lockup.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

RVWPS A synchronous RAS error that was caused by a DAP request results in an error being returned to the debugger.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

RDCKC A DAP access that causes an asynchronous RAS error will not return an error to the debugger, but for a read access
UNKNOWN data will be returned. A BusFault might be generated and update RFSR, BFSR, and BFAR.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

B15.3.1 Error correction and deferment

RWXZD Hardware corrects or defers an error if it can do so. The error is logged, and a fault handling interrupt is generated
for fault handling purposes if the node is configured to do so.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

413

Chapter B15. Reliability, Availability, and Serviceability (RAS) Extension
B15.4. Error Synchronization Barrier (ESB)

B15.4 Error Synchronization Barrier (ESB)

IJLPC The RAS Extension introduces a new instruction, the Error Synchronization Barrier (ESB).

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

RDNTZ ESB acts as a NOP when the system cannot synchronize RAS errors.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

IDLKL ESB does not itself update any registers, but any ensuing BusFault exception will update at least BFSR and RFSR.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

ILNRD ESB might update syndrome bits, for example if IESBs are disabled.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

RZLCQ If there is a pending BusFault, which might have been forced to be recognized as a direct result of the call to
SynchronizeBusFault(), then an ESB also acts as a Data Synchronization Barrier so that a subsequent load
of the memory mapped syndrome registers and bits in BFSR, RFSR and SHCSR is guaranteed to return the correct
values.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

See also:

B15.5 Implicit Error Synchronization (IESB) on page 416.

B15.4.1 ESB and Unrecoverable errors

RVDCF An ESB acts as a barrier to all unrecoverable (RAS-related and non-RAS related) bus errors and causes any Latent
faults to be recognized synchronously with the instruction.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

IMSMM Depending on the current state of the PE, recognizing any latent bus errors might simply result in a BusFault being
pended, or the BusFault might be taken or escalated.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

IGCBZ The Error Synchronization Barrier operation contains the error for the current software context.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

B15.4.2 ESB and other containable errors

IPHSB For other types of Containable error:

• A Recoverable error has not yet been consumed by the PE.
• Restartable and Corrected errors, and BusFault exceptions from reads by hardware speculation that do not

corrupt the state of the PE, have not been consumed by the PE.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

RWKMP An unconsumed RAS error might be taken at the ESB.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

414

Chapter B15. Reliability, Availability, and Serviceability (RAS) Extension
B15.4. Error Synchronization Barrier (ESB)

B15.4.3 ESB and other errors

RPHJW Synchronous BusFault exceptions are not synchronized by an Error Synchronization Barrier.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

RTXBQ Interrupts are not synchronized by an ESB.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

RVSDB An ESB instruction will synchronize asynchronous BusFaults.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

RWRJG An ESB always synchronizes Containable errors, but it is IMPLEMENTATION DEFINED whether IMPLEMENTATION
DEFINED and uncategorized BusFault exceptions are Uncontainable, and whether they can be synchronized by an
Error Synchronization Barrier.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

ITZTR Uncontainable errors might not have been contained, and Uncontainable BusFault exceptions might be asyn-
chronous. An Uncontainable error might be taken at the ESB but this is not architecturally required.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

RTSGR It is IMPLEMENTATION DEFINED whether IMPLEMENTATION DEFINED and uncategorized interrupts are Contain-
able or Uncontainable.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

IHGSQ An Uncontainable error might be taken at an Error Synchronization Barrier or recorded in RFSR.IS by an
instr.ESB]ESB instruction.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

415

Chapter B15. Reliability, Availability, and Serviceability (RAS) Extension
B15.5. Implicit Error Synchronization (IESB)

B15.5 Implicit Error Synchronization (IESB)

ISSXC To ensure that faults arise in the appropriate PE state, an implicit error synchronization event (IESB) can optionally
be inserted on every exception entry, exception return, and on lazy state stacking operations.

Neither entry to, nor exit from, Debug state insert an IESB.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

RZGNM IESB only updates at least one of BFSR or RFSR if there was a latent asynchronous bus error that was synchronized.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

RVTKM An IESB acts as a barrier to all Unrecoverable (RAS-related and non-RAS related) bus errors.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

RGRKC Enabling IESBs causes all asynchronous BusFaults to escalate as if they were synchronous BusFaults, regardless
of whether they were asynchronously recognized, or forced to be recognized by an ESB or IESB.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

RNGQC Asynchronous BusFaults that escalate synchronously because IESBs are enabled are still reported as asynchronous
faults. This means that the exception return address does not point to the instruction that caused the fault.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

RWRDB AIRCR.IESB determines whether an exception entry or an exception return behaves as an implicit error synchro-
nization event and requires any outstanding RAS exceptions to be acknowledged:

• On exception entry, only errors relating to the background code and register stacking are acknowledged. Any
resulting BusFault from exception entry will be subject to the rules on derived exceptions.

• On exception return, only errors relating to the handler code are acknowledged. Register unstacking relates
to the background code and is not acknowledged. Any BusFault that occurs as a from exception return when
AIRCR.IESB is one will be treated as a synchronous exception to the Handler.

This ensures that the fault is associated with the context that triggered it.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

IPDXH Arm recommends that implementations support the implicit error synchronization behavior when asynchronous
exceptions and associated timings create the possibility of errors being associated with a context that is different to
the one that caused the error.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

IWJNK Writes by software to AIRCR.IESB can be ignored by the PE if it does not support configurable implicit ESB
insertion. The value that is read back determines whether the feature is supported.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

416

Chapter B15. Reliability, Availability, and Serviceability (RAS) Extension
B15.5. Implicit Error Synchronization (IESB)

RLZWF When IESBs are enabled:

• An IESB occurs prior to stacking a lazy floating-point context, and any RAS errors are associated with
foreground code.

• An IESB occurs after stacking a lazy floating-point context, and any RAS errors are associated with the
register stacking.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

RJMXC RAS faults set the first applicable syndrome information from the following list:

• BFSR.LSPERR if the error is attributable to lazy state preservation stacking.
• BFSR.STKERR if the error is attributable to exception register stacking.
• BFSR.UNSTKERR if the error is attributable to exception register unstacking.
• BFSR.IBUSERR if the error is caused by an instruction fetch or prefetch.
• BFSR.PRECISERR if the error occurred synchronously and is attributable to instruction execution.
• BFSR.IMPRECISERR otherwise.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

417

Chapter B15. Reliability, Availability, and Serviceability (RAS) Extension
B15.6. Fault handling

B15.6 Fault handling

RQRVP There are four forms of RAS error reporting:

• A bus error in response to an action from the PE.
• An error recovery interrupt.
• A Fault handling interrupt.
• A critical error interrupt.

Depending on the system configuration, the interrupts can be routed through a system interrupt controller or the
NVIC.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

IWPNL An error recovery interrupt can notify software of RAS faults that are detected in the system.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

ILVWP A fault handling interrupt can notify software of RAS events that are detected in the system.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

RJLPR When an error is detected by a node that supports fault reporting, the node records the error in Error record registers
and generates a RAS fault handling interrupt, if configured to do so.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

IXKVL The RAS fault handling interrupt might be routed at the system level to a PE that is not directly affected by the
fault. Conversely, the PE might receive fault handling interrupts relating to other devices in the system.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

RJTXP RAS fault handling interrupts might be sent to a dedicated fault handling PE by IMPLEMENTATION DEFINED
means.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

RSMXP The error recovery interrupts, fault handling interrupts, and critical error interrupts, are level sensitive or pulse
sensitive in the same way as other interrupts. It is IMPLEMENTATION DEFINED whether a node employs level
sensitive or pulse sensitive interrupts.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

RGTMF The error recovery interrupts, fault handling interrupts, and critical error interrupts are pended in finite times after
changes to the error conditions or to the fault being observed or corrected.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

RNHGH Support for critical error conditions and critical error interrupts at a node is IMPLEMENTATION DEFINED.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

IKLPK An example of a critical error is one where the node has entered a failure mode, which means that the primary
error recovery mechanisms cannot be used. For example, if a memory controller enters a failure mode and stops
handling memory requests from application processors, and application processors host the primary error recovery
software, then the error is signaled to a secondary error controller that has its own private resources to log the error.
The RAS Extension allows for a dedicated interrupt, called the critical error interrupt, to be generated by a node
when such an error occurs.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

418

Chapter B15. Reliability, Availability, and Serviceability (RAS) Extension
B15.6. Fault handling

RFWDD For a given node, the critical error interrupt is implemented if ERRFRn.CI !=0b00.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

RHJHC For a given node, if the critical error interrupt is implemented, then the error recovery interrupt is also implemented.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

RTCPP The critical error interrupt is enabled when ERRCTRLn.CI is set to 1.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

RLLPF If the critical error interrupt is implemented, then when a critical error condition is recorded, the node sets
ERRSTATUSn.CI to 1, regardless of whether the critical error interrupt is enabled or disabled.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

RWDPT If the critical error interrupt is implemented and disabled, then when a critical error condition is detected, the node
records the critical error as an Uncontainable error.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

IXPHJ Classifying the critical error condition as an Uncontainable error if the critical error interrupt is not enabled has the
effect of causing the node to generate an error recovery interrupt. The node also sets ERRSTATUSn.CI to 1. If the
critical error interrupt is enabled, it is IMPLEMENTATION DEFINED how the error is classified at the node. The
critical error flag is set to 1 in addition to the other syndrome information for the error, which is handled in the
normal way.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

See also:

Chapter B11 Nested Vectored Interrupt Controller on page 279.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

419

Chapter B15. Reliability, Availability, and Serviceability (RAS) Extension
B15.7. RAS error records

B15.7 RAS error records

IZFWK On encountering an error, a node writes to the RAS Error records. These records can then be analyzed by software
to determine whether there are any systematic problems to be dealt with.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

RQDZN Each node provides at least one Error record to control error reporting and expose status.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

RFDFQ A node can provide multiple Error records if it offers multiple, logically distinct functions.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

RSTJR If a node provides multiple Error records, these are serially indexed. Each record, other than the first record, has an
ERRFRn register that is RAZ/WI and the ERRTCTRLn register is RES0.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

ISDBZ An example of a group containing four error records owned by three nodes is shown below:

Node: <0> <1> <2>

Record: <0> <1> <2> <3>

In the diagram:

• Node<0> owns one error record: <0>.
• Node<1> owns two error records: <1> and <2>.
• Node<2> owns one error record: <3>.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

RJSWF The standard Error records contain:

• Controls for common features, and an identification mechanism for these controls. For each node it is
IMPLEMENTATION DEFINED whether the fault and error reporting mechanisms apply to both reads and
writes, or whether they can be individually controlled for reads and writes.

• A status register for common status fields, such as the type and coarse characterization of the error.
• An address register, if applicable.
• IMPLEMENTATION DEFINED controls and identification registers.
• IMPLEMENTATION DEFINED status registers.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

420

Chapter B15. Reliability, Availability, and Serviceability (RAS) Extension
B15.7. RAS error records

IWSCV Arm recommends that the IMPLEMENTATION DEFINED status registers in the standard Error record are used for:

• Identifying a Field Replaceable Unit (FRU).
• Locating the error within the FRU.
• Optional Corrected Error counters for software to poll the rate of Corrected errors.

The architecture provides optional formats for the counters.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

IQDFJ The content and format of the Error records is flexible to allow implementations to select an appropriate amount of
reporting.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

RGVGT A group of Error records can be sparsely populated, which means that not all registers in the group might contain
valid information. Error record registers that are not implemented have an associated ERRFRn register field that
reads as zero.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

RPJGD The number of Error records that can be accessed through the memory-mapped registers is IMPLEMENTATION
DEFINED, and might be zero. ERRDEVID.NUM indicates the highest numbered index of the Error records that
can be accessed, plus one.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

RJVDC The content of the Error record registers is preserved over Warm reset.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

ISVLS Arm recommends that all Error records are remotely accessible for access by all PEs in a system, or by a Baseboard
Management Controller (BMC) or System Control Processor (SCP) or debugger. The remote access mechanism
is IMPLEMENTATION DEFINED but might use CoreSight-like interfaces. Arm recommends that remote access is
possible when the rest of the system is in a fail state, for example when the system has locked up.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

RPRWQ When a new error is detected, the node:

• Sets or modifies ERRSTATUSn.{CE, DE, CI, UE, UET} to indicate the type of the new Detected error.

• The node either:

– Overwrites the Error record with the syndrome for the new error, if it has a higher priority than the
previous highest priority recorded error.

– Keeps the syndrome for the previous error, if the new error has a lower or the same priority as the
previous highest priority recorded error.

• Counts the error if it is a Corrected error and a counter is implemented.

• Sets ERRSTATUSn.V to 1.

• Generates an interrupt as required.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

RXPXH A counter for Corrected errors is OPTIONAL.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

421

Chapter B15. Reliability, Availability, and Serviceability (RAS) Extension
B15.7. RAS error records

RLJTP The overwriting of errors depends on the type of the previous highest priority error and the type of the newly
recorded error. This is shown in the table below. The table uses the following abbreviations:

• CE: Corrected error.

• CO: Count and overflow. Keep the previous error syndrome and count the error. If counting the error causes
an unsigned overflow of the counter set ERRSTATUSn.OF to 1.

• CW: Count and overwrite. Count CE if a counter is implemented and overwrite. If a counter is implemented
and overflows, ERRSTATUSn.OF is set to an UNKNOWN value. Otherwise, it is IMPLEMENTATION DEFINED
whether ERRSTATUSn.OF is set to 0 or unchanged.

• CWO: Count and overwrite or keep. The behavior is IMPLEMENTATION DEFINED and described by the
value of ERRFRn.CEO:

0: Count CE if a counter is implemented and keep the previous error syndrome.

1: Count CE. If ERRSTATUSn.OF == 1 before the CE is counted, keep the previous syndrome. Otherwise
record the new error syndrome.

If the counter overflows or if no counter is implemented ERRSTATUSn.OF is set to 1.

• DE: Detected error.

• O: Overflow. Keep the previous error syndrome and set ERRSTATUSn.OF to 1.

• UEO: Restartable error.

• UER: Recoverable error.

• UEU: Unrecoverable error.

• UC: Uncontainable error.

• WO: Overwrite and overflow. ERRSTATUSn.OF is set to 1.

If no counter is implemented, CW behaves the same as W, and CWO and CO behave the same as O.

Previous error type New detected error type
CE DE UEO UER UEU UC
CW W W W W W

CE CWO WO WO WO WO WO
DE CO O WO WO WO WO

UEO CO O O WO WO WO
UER CO O O O WO WO
UEU CO O O O O WO
UC CO O O O O O

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

RGPFK When a node generates an interrupt or exception, it ensures that any subsequent reads to the Error records return
the updated values.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

RZCKJ ERRGSRn contains a read-only copy of ERRSTATUSn.V.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

422

Chapter B15. Reliability, Availability, and Serviceability (RAS) Extension
B15.8. Multiple BusFault exceptions

B15.8 Multiple BusFault exceptions

IRDHF Asynchronous BusFaults can be generated by multiple exception conditions. The architecture does not define
relative priorities.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

RSCCP It is IMPLEMENTATION DEFINED whether bus errors that were generated by multiple exception conditions are
taken as a single BusFault exception.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

RSWRS On taking a BusFault exception, whether for one or more BusFault exception conditions, the effects of the BusFault
exception or exceptions on the state of the PE is reported in RFSR.UET as any one of the following:

• Uncontained error.
• Unrecoverable error.
• Restartable error.
• Recoverable error.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

RJJCW An Error Synchronization Barrier operation requires that all Unrecoverable errors are synchronized. If there are
multiple requests outstanding, they are all synchronized by a single Error Synchronization Barrier operation.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

423

Chapter B15. Reliability, Availability, and Serviceability (RAS) Extension
B15.9. Error Recovery reset

B15.9 Error Recovery reset

IRQFT A system might comprise of multiple power and logical domains, each of which might implement one or more
reset signals.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

IDWBJ This architecture defines two classes of reset:

• Cold reset.
• Warm reset.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

RNMJQ The RAS architecture provides an OPTIONAL reset, the Error Recovery Reset, that might be applied at any other
time. The Error Recovery reset initializes the component to a known state.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

RWVQT The way in which Error Recovery reset maps to a Warm reset is IMPLEMENTATION DEFINED. The mechanisms
for asserting the Error Recovery reset is IMPLEMENTATION DEFINED.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

424

Chapter B15. Reliability, Availability, and Serviceability (RAS) Extension
B15.10. Minimal RAS implementation

B15.10 Minimal RAS implementation

IQJVW The minimal RAS Extension is mandatory in an Armv8.1-M implementation. All additional RAS features are
optional.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

INPMM The RAS Extension is designed to provide a low implementation cost for devices that have limited RAS support.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

IDHMH The minimal implementation of the RAS Extension is:

• The ESB instruction. This might be implemented as a NOP for implementations that do not offer RAS-
induced BusFaults.

• RFSR. This might be implemented as RAZ/WI.
• ERRDEVID. This might be implemented as RAZ/WI.
• AIRCR.IESB This might be implemented as RAZ/WI.
• ID_PFR0.RAS reads as a 0b0010.

This provides the necessary architectural support while offering no actual RAS reporting functionality.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

IGRQK Error record registers that are not implemented are RES0. In a minimal implementation, there might be no Error
records.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

425

Part C
Armv8-M Instruction Set

Chapter C1
Instruction Set Overview

This chapter provides a definition of the instruction descriptions contained in Chapter C2 Instruction Specification
on page 451. It contains the following sections:

C1.1 Instruction set on page 428.

C1.2 Format of instruction descriptions on page 429.

C1.3 Conditional execution on page 436.

C1.4 Instruction set encoding information on page 442.

C1.5 Modified immediate constants on page 448.

C1.6 NOP-compatible hint instructions on page 449.

C1.7 SBZ or SBO fields in instructions on page 450.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

427

Chapter C1. Instruction Set Overview
C1.1. Instruction set

C1.1 Instruction set

RNPFK There is one instruction set, called T32.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

C1.4 Instruction set encoding information on page 442.

Chapter C2 Instruction Specification on page 451.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

428

Chapter C1. Instruction Set Overview
C1.2. Format of instruction descriptions

C1.2 Format of instruction descriptions

IXQQV Each instruction description in Chapter C2 Instruction Specification on page 451 has the following content:

1. A title.
2. A short description.
3. The instruction encoding or encodings.
4. Any alias conditions, if applicable.
5. A list of the assembler symbols for the instruction.
6. Pseudocode describing how the instruction operates.
7. Notes, if applicable.

Applies to an implementation of the architecture from Armv8.0-M onwards.

C1.2.1 The title

IRFFL The title of an instruction description includes the base mnemonic or mnemonics for the instruction. This is part of
the assembler syntax, for example SUB.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IBSWN If different forms of an instruction use the same base mnemonic, each form has its own description. In this case,
the title is the mnemonic followed by a short description of the instruction form in parentheses. This is most often
used when an operand is an immediate value in one instruction form, but is a register in another form.

For example, in Chapter C2 Instruction Specification on page 451 the Armv8-M Instruction Set there are the
following titles for different forms of the ADD instruction:

• ADD (SP plus immediate)
• ADD (SP plus register)
• ADD (immediate)
• ADD (immediate to PC)
• ADD (register)

Applies to an implementation of the architecture from Armv8.0-M onwards.

IRKXC Where an instruction has more than one variant, the descriptions might be combined, for example for CDP and
CDP2.

Applies to an implementation of the architecture from Armv8.0-M onwards.

C1.2.2 A short description

IQNXW This briefly describes the function of the instruction. The short description is not a complete description of the
instruction and must be read in conjunction with the instruction encoding, mnemonic, alias conditions, assembler
symbols, pseudocode and any applicable notes.

Applies to an implementation of the architecture from Armv8.0-M onwards.

C1.2.3 The instruction encoding or encodings

RLTJB Instruction descriptions in this manual contain:

• An encoding section, containing one or more encoding diagrams, each followed by some decode pseudocode
that:

1. Picks out any encoding-specific special cases.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

429

Chapter C1. Instruction Set Overview
C1.2. Format of instruction descriptions

2. Translates the fields of the encoding into inputs for the common pseudocode of the instruction

• An operation section, containing common pseudocode that applies to all of the encodings being described.
The Operation section pseudocode contains a call to the EncodingSpecificOperations() function which
triggers the decode pseudocode, either at its start or only after a Condition code check performed by if

ConditionPassed() then.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RBDDV An encoding diagram specifies each bit of the instruction encoding as one of the following:

• A mandatory 0 or 1, represented in the diagram as 0 or 1. If the PE attempts to decode and execute the
instruction and a bit does not have a mandatory value, the encoding corresponds to a different instruction.

• A should be 0 or should be 1, represented in the diagram as (0) or (1). If the PE attempts to decode
and execute the instruction and a bit does not have the should be value, the instruction is CONSTRAINED
UNPREDICTABLE.

• A named single bit or a bit in a named multi-bit field.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IRTFM In certain versions of the architecture some instruction encodings contain SBO or SBZ fields or bits. If these
encoding fields or bits are changed to hard bits, 1 or 0, the field or bit in the diagram will be enclosed in square
brackets. The architecture version being implemented will dictate whether or not the implementation follows hard
encodings or SBZ or SBO rules.
For example in MOV (register) bit 15 of the second halfword of the T3 encoding has changed from SBZ in
Armv8.0-M to 0 in Armv8.1-M, and is represented as [0].

Applies to an implementation of the architecture from Armv8.0-M onwards.

RBBZT An encoding diagram matches an instruction if all mandatory bits are identical in the encoding diagram and the
instruction.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IDKWV Between each encoding diagram and its T <n> heading, there is an italicized statement that describes which
Armv8-M variant the encoding is present in. For example, Armv8-M Main Extension only.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IJSBT The instruction description shows the instruction encoding diagram, or, if the instruction has multiple encodings,
shows all of the encoding diagrams. The heading for each encoding is the letter T followed by an arbitrary number,
usually between 1 and 5.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IFQDP Below each encoding diagram is the assembler syntax prototype for that encoding, written in typewriter font. The
assembler syntax prototype describes the syntax that can be used in the assembler to select this encoding, and also
the syntax that is used when disassembling this encoding.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IBLJR In some cases an encoding has multiple variants of assembler syntax prototype, when the prototype differs
depending on the value in one or more of the encoding fields. In these cases, the correct variant to use can be
identified by either:

• Its subheading.
• An annotation to the syntax.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

430

Chapter C1. Instruction Set Overview
C1.2. Format of instruction descriptions

B6.3 Endianness on page 199.

C1.2.6 Pseudocode describing how the instruction operates on page 433.

C1.2.4 Any alias conditions, if applicable

IBMHC Alias conditions are an optional part of an instruction description. If included, it describes the set of conditions for
which an alternative mnemonic and its associated assembler syntax prototypes are preferred for disassembly by a
disassembler. It includes a link to the alias instruction description that defines the alternative syntax. The alias
syntax and the original syntax can be used interchangeably in the assembler source code.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IRBCM Arm recommends that if a disassembler outputs the alias syntax, it consistently outputs the alias syntax.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IZJKQ Arm recommends that where possible, the alias is used.

Applies to an implementation of the architecture from Armv8.0-M onwards.

C1.2.5 Standard assembler syntax fields

IRHCC This manual uses the Arm Unified Assembler Language (UAL). This assembly language syntax provides a
canonical form for all T32 instructions.

Applies to an implementation of the architecture from Armv8.0-M onwards.

ILBNB UAL describes the syntax for the mnemonic and the operands of each instruction. Operands can also be referred to
as Assembler symbols. In addition, UAL assumes that instructions and data items can be given labels. It does not
specify the syntax to be used for labels, see the assembler documentation for these details.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IDPLM The Assembler symbols subsection of an instruction description contains a list of the symbols that the assembler
syntax prototype or prototypes use.

The following conventions are used:

< >: Angle brackets. Any symbol enclosed by these is mandatory. For each symbol, there is a description of what
the symbol represents. The description usually also specifies which encoding field or fields encodes the symbol.

{ }: Brace brackets. Any symbol enclosed by these is optional. For each optional symbol, there is a description
of what the symbol represents and how its presence or absence is encoded.

In some assembler syntax prototypes, some brace brackets are mandatory, for example if they surround a register
list. When the use of brace brackets is mandatory, they are separated from other syntax items by one or more
spaces.

: Usually precedes a numeric constant. All uses of # are optional in assembler source code. Arm recommends
that disassemblers output the # where the assembler syntax prototype includes it.

+/-: Indicates an optional + or - sign. If neither is coded, + is assumed.

! : Indicates that the result address is written back to the base register.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RMBQS Single spaces are used for clarity, to separate syntax items. Where a space is mandatory, the assembler syntax
prototype shows two or more consecutive spaces.

Applies to an implementation of the architecture from Armv8.0-M onwards.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

431

Chapter C1. Instruction Set Overview
C1.2. Format of instruction descriptions

RSXWN Any characters not shown in this conventions list must be coded exactly as shown in the assembler syntax prototype.
Apart from brace brackets, these characters are used as part of a meta-language to define the architectural assembler
syntax prototype for an instruction encoding, but have no architecturally defined significance in the input to an
assembler or in the output from a disassembler.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RQZDB UAL includes instruction selection rules that specify which instruction encoding is selected when more than one
can provide the required functionality. The following assembler syntax prototype fields are standard across all or
most instructions:

<c>: Specifies the condition under which the instruction is executed. If <c> is omitted, it defaults to always (AL).

<q>: Specifies one of the following optional assembler qualifiers on the instruction:

.N

Meaning narrow. The assembler must select a 16-bit encoding for the instruction. If this is not possible,
an assembler error is produced.

.W

Meaning wide. The assembler must select a 32-bit encoding for the instruction. If this is not possible,
an assembler error is produced.

If neither .W nor .N is specified, the assembler can select either a 16-bit or 32-bit encoding. If both encoding
lengths are available, it must select a 16-bit encoding. In the few cases where more than one encoding of the same
length is available for an instruction, the rules for selecting between them are instruction-specific and are part of
the instruction description.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RHGFS The following assembler syntax prototype field is standard across MVE instructions subject to VPT predictation:

<v>: Specifies a VPT predication block. This field is only available in implementations that include MVE, and it
is only available inside a VPT block. Inside a VPT block, <v> can have one of the following values:

T

Indicates that the instruction is in the THEN section of a VPT block.

E

Indicates that the instruction is in the ELSE section of a VPT block.

<v> does not affect the encoding of the instruction, and only highlights to the programmer that some of the vector
lanes might be masked because of VPT predication. The use of T or E outside a VPT block produces an assembler
error.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

IBWNR Syntax options exist to override the normal instruction selection rules and ensure that a particular encoding is
selected. These are useful when disassembling code, to ensure that subsequent assembly produces the original
code, and in some other situations.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B5.6.2 VPT predication on page 188.

Applies to an implementation of the architecture from Armv8.1-M onwards.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

432

Chapter C1. Instruction Set Overview
C1.2. Format of instruction descriptions

C1.2.6 Pseudocode describing how the instruction operates

IRTDZ Each instruction description includes pseudocode that provides a precise description of what the instruction does.

Applies to an implementation of the architecture from Armv8.0-M onwards.

ILRFZ In the instruction pseudocode, instruction fields are referred to by the names shown in the encoding diagram for
the instruction.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RNLPM Where the pseudocode describes UNPREDICTABLE behavior the constraints on that behavior are described in the
Operation section.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IBNVW Pseudocode does not describe the ordering requirements when an instruction generates multiple memory accesses.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RCRWM Pseudocode describes the exact rules when an UNDEFINED instruction fails its Condition code check.

In such cases, the UNDEFINED pseudocode statement lies inside the if ConditionPassed() then ... structure,
either directly or in the EncodingSpecificOperations() function call, and so the pseudocode indicates that the
instruction executes as a NOP.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IMZKZ Pseudocode does not describe the exact ordering requirements when a single floating-point instruction generates
more than one floating-point exception and one or more of those floating-point exceptions is trapped.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IJMFG An exception can be taken during execution of the pseudocode for an instruction, either explicitly as a result of
the execution of a pseudocode function, or implicitly, for example if an interrupt is taken during execution of an
LDM instruction. If this happens, the pseudocode does not describe the extent to which the normal behavior of the
instruction occurs.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

Chapter E1 Arm Pseudocode Definition on page 1801.

B6.10 Ordering requirements for memory accesses on page 211.

E1.1.1 General limitations of Arm pseudocode on page 1802.

C1.3.3 Conditional execution of undefined instructions on page 437.

B4.12 Priority of Floating-point exceptions relative to other Floating-point exceptions on page 176.

B3.18 Exception handling on page 104.

B3.22 Exception return on page 119.

C1.2.7 Use of labels in UAL instruction syntax

IBFJV The UAL syntax for some instructions includes the label of an instruction or a literal data item that is at a fixed
offset from the instruction being specified. The assembler must:

1. Calculate the PC or Align(PC,4) value of the instruction. The PC value of an instruction is its address plus 4

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

433

Chapter C1. Instruction Set Overview
C1.2. Format of instruction descriptions

for a T32 instruction. The Align(PC,4) value of an instruction is its PC value ANDed with 0xFFFFFFFC to
force it to be word-aligned.

2. Calculate the offset from the PC or Align(PC,4) value of the instruction to the address of the labeled
instruction or literal data item.

3. Assemble a PC-relative encoding of the instruction, that is, one that reads its PC or Align(PC,4) value and
adds the calculated offset to form the required address.

Applies to an implementation of the architecture from Armv8.0-M onwards.

ITCVF For instructions that encode a subtraction operation, if the instruction cannot encode the calculated offset, but can
encode minus the calculated offset, the instruction encoding specifies a subtraction of minus the calculated offset.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RDLVP The following instructions include a label:

• B and BL.

• CBNZ and CBZ.

• LDC, LDC2, LDR, LDRB, LDRD, LDRH, LDRSB, LDRSH, PLD, PLI, and VLDR:

– When the assembler calculates an offset of 0 for the normal syntax of these instructions, it must assemble
an encoding that adds 0 to the Align(PC,4) value of the instruction. Encodings that subtract 0 from the
Align(PC,4) value cannot be specified by the normal syntax.

– There is an alternative syntax for these instructions that specifies the addition or subtraction and the
immediate offset explicitly. In this syntax, the label is replaced by [PC, #+/-<imm>], where:

* +/-: Is + or omitted to specify that the immediate offset is to be added to the Align(PC,4) value, or -
if it is to be subtracted.

* <imm>: Is the immediate offset.

– This alternative syntax makes it possible to assemble the encodings that subtract 0 from the Align(PC,4)
value, and to disassemble them to a syntax that can be re-assembled correctly.

• ADR:

– When the assembler calculates an offset of 0 for the normal syntax of this instruction, it must assemble
the encoding that adds 0 to the Align(PC,4) value of the instruction. The encoding that subtracts from
the Align(PC,4) value cannot be specified by the normal syntax.

– There is an alternative syntax for this instruction that specifies the addition or subtraction and the
immediate value explicitly, by writing them as additions ADD <Rd>, PC,#<imm> or subtractions SUB

<Rd>,PC,#<imm>. This alternative syntax makes it possible to assemble the encoding that subtracts 0
from the Align(PC,4) value, and to disassemble it to a syntax that can be re-assembled correctly.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RKFSF From Armv8.1-M the following instructions also include a label:

• BF, BFX, BFL, BFLX, BFCSEL.
• LE and LETP.
• WLS and WLSTP.

Applies to an implementation of the architecture from Armv8.1-M onwards.

C1.2.8 Using syntax information

IBJGX For a particular encoding:

• There is usually more than one assembler syntax prototype variant that assembles to it.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

434

Chapter C1. Instruction Set Overview
C1.2. Format of instruction descriptions

• The exact set of prototype variants that assemble to it usually depends on the operands to the instruction,
for example the register numbers or immediate constants. As an example, for the AND (register)
instruction, the syntax AND R0, R0, R8 selects a 32-bit encoding, but AND R0, R0, R1 selects a 16-bit
encoding.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IHQSS For each instruction encoding that belongs to a target instruction set, an assembler can use the information in the
encoding to determine whether it can use that particular encoding to encode the instruction requested by the UAL
source. If multiple encodings can encode the instruction, then:

• If both a 16-bit encoding and a 32-bit encoding can encode the instruction, the architecturally preferred
encoding is the 16-bit encoding. This means that the assembler must use the 16-bit encoding instead of the
32-bit encoding.

• If multiple encodings of the same width can encode the instruction, the assembler syntax indicates the
preferred encoding, and how software can select other encodings if required. Each encoding also documents
UAL syntax that selects it in preference to any other encoding. If no encodings of the target instruction set
can encode the instruction requested by the UAL source, the assembler normally generates an error that
indicates that the instruction is not available in that instruction set.

Applies to an implementation of the architecture from Armv8.0-M onwards.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

435

Chapter C1. Instruction Set Overview
C1.3. Conditional execution

C1.3 Conditional execution

IXDMQ Conditionally executed means that the instruction only has its normal effect on the programmers’ model operation,
memory and coprocessors if the N, Z, C, and V flags in the APSR satisfy a condition specified in the instruction.
If the flags do not satisfy this condition, the instruction acts as a NOP, that is, execution advances to the next
instruction as normal, including any relevant checks for exceptions being taken, but has no other effect.

Applies to an implementation of the architecture from Armv8.0-M onwards.

ISPPQ Most T32 instructions are unconditional. Conditional execution in T32 code can be achieved using any of the
following instructions:

• A 16-bit conditional branch instruction, with a branch range of -256 to +254 bytes. See B for details.
• A 32-bit conditional branch instruction, with a branch range of approximately ± 1MB. See B for details.
• 16-bit Compare and Branch on Zero and Compare and Branch on Nonzero instructions, with a branch range

of +4 to +130 bytes. See CBNZ, CBZ for details.
• A 16-bit If-Then instruction that makes up to four following instructions conditional. See IT for details. The

instructions that are made conditional by an IT instruction are called its IT block. Instructions in an IT block
must either all have the same condition, or some can have one condition, and others can have the inverse
condition.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RFNBQ In T32 instructions, the condition (if it is not AL) is encoded in a preceding IT instruction, other than B, CBNZ and
CBZ. Some conditional branch instructions do not require a preceding IT instruction, and include a condition code
in their encoding.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IBDMC The following table shows the conditions that are available for conditionally executed instructions.

cond Mnemonic Meaning, integer Meaning, Floating-point APSR condition
extension artihmetic arithmetic flags

0000 EQ Equal Equal Z == 1
0001 NE Not equal Not equal, or unordered Z == 0
0010 CS Carry set Greater than, equal or unordered C == 1
0011 CC Carry clear Less than C == 0
0100 MI Minus, negative Less than N == 1
0101 PL Plus, positive or zero Greater than, equal or unordered N == 0
0110 VS Overflow Unordered V == 1
0111 VC No overflow Not unordered V == 0
1000 HI Unsigned higher Greater than or unordered C == 1 and Z == 0
1001 LS Unsigned lower or same Less than or equal C == 0 or Z == 1
1010 GE Signed greater than or equal Greater than or equal N == V
1011 LT Signed less than Less than or unordered N != V
1100 GT Signed greater than Greater than Z == 0 and N == V
1101 LE Signed less than or equal Less than, equal or unordered Z == 1 and N != V
1110 None (AL) Always (unconditional) Always (unconditional) Any

Unordered means at least one NaN operand.

HS (unsigned higher or same) is a synonym for CS.

LO (unsigned lower) is a synonym for CC.

AL is an optional mnemonic extension for always, except in IT instructions. See IT for details.

Applies to an implementation of the architecture from Armv8.0-M onwards.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

436

Chapter C1. Instruction Set Overview
C1.3. Conditional execution

C1.3.1 Conditional instructions

RWRJS The instructions that are made conditional by an IT instruction must be written with a condition after the mnemonic.
These conditions must match the conditions imposed by the IT instruction.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IWVXC An example of RWRJS is:

1 ITTEE EQ
2 ADDEQ R0, R1
3 SUBEQ R2, R3
4 ADDNE R4, R5
5 SUBNE R6, R7

Applies to an implementation of the architecture from Armv8.0-M onwards.

RTHGJ Some instructions cannot be made conditional by an IT instruction. Some instructions can be conditional if they
are the last instruction in the IT block, but not otherwise, see the individual instruction descriptions for details.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RTGXF If the assembler syntax indicates a conditional branch that correctly matches a preceding IT instruction, it is
assembled using a branch instruction encoding that does not include a condition field.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also

• IT instruction

C1.3.2 Pseudocode details of conditional execution

RNMVJ The CurrentCond() pseudocode function prototype returns a 4-bit condition specifier as follows:

• For the T1 and T3 encodings of the Branch instruction, it returns the 4-bit cond field of the encoding.

• For all other T32 instructions:

– If ITSTATE.IT[3:0] != '0000' it returns ITSTATE.IT[7:4]
– If ITSTATE.IT[7:0] == '00000000' it returns '1110'
– Otherwise, execution of the instruction is UNPREDICTABLE.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RLTPQ The ConditionPassed() function calls the ConditionHolds() function to determine whether the in-
struction must be executed.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also

C1.3.5 ITSTATE on page 438.

B.

C1.3.3 Conditional execution of undefined instructions

RNPNF The conditional execution applies to all instructions. This includes undefined instructions and other instructions
that would cause entry to the UsageFault or the UNDEFINSTR UsageFault.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

437

Chapter C1. Instruction Set Overview
C1.3. Conditional execution

Applies to an implementation of the architecture from Armv8.0-M onwards.

RPCJZ If such an instruction fails its condition code check the instruction behaves as a NOP and does not cause an
UsageFault.

Applies to an implementation of the architecture from Armv8.0-M onwards.

C1.3.4 Interaction of undefined instruction behavior with UNPREDICTABLE or CONSTRAINED UN-
PREDICTABLE instruction behavior

RNZWQ If this manual describes an instruction as both:

• UNPREDICTABLE and UNDEFINED, then the instruction is UNPREDICTABLE.
• CONSTRAINED UNPREDICTABLE and UNDEFINED, then the instruction is CONSTRAINED UNPREDICTABLE.

Applies to an implementation of the architecture from Armv8.0-M onwards.

C1.3.5 ITSTATE

IRGFT ITSTATE is held in EPSR.IT.

This register holds the If-Then Execution state bits for the T32 IT instruction.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RQKPG EPSR.IT and ITSTATE divide into two subfields:

IT[7:5]

Holds the base condition for the current IT block. The base condition is the top 3 bits of the condition
specified by the IT instruction.

This subfield is 0b000 when no IT block is active.

IT[4:0]

Encodes:

* The size of the IT block. This is the number of instructions that are to be conditionally executed. The
size of the block is indicated by the position of the least significant 1 in this field which is bit [4-size of
the block].

* The value of the least significant bit, bit[0], of the condition code for each instruction in the block.

* Changing the value of the least significant bit of a condition code from 0 to 1 inverts the condition
code. For example cond 0000 is EQ, and cond 0001 is NE.

This subfield is 0b00000 when no IT block is active.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RFPNH When an IT instruction is executed, IT bits[7:0] are set according to the condition in the instruction, and the Then
and Else (Tand E) parameters in the instruction.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RXKGZ An instruction in an IT block is conditional. The condition used is the current value of IT[7:4]. When an instruction
in an IT block completes its execution normally, ITSTATE is advanced by shifting IT bits[4:0] left by 1 bit.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IVQJM For example:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

438

Chapter C1. Instruction Set Overview
C1.3. Conditional execution

IT[7:5] IT[4:0]
ITTEE EQ 000 00111
ADDEQ R0, R1 000 01110
SUBEQ R2, R3 000 11100
ADDNE R4, R5 000 11000
SUBNE R6, R7 000 00000

Applies to an implementation of the architecture from Armv8.0-M onwards.

IKQBQ Instructions that can complete their normal execution by branching are only permitted in an IT block as its last
instruction, and so always result in ITSTATE advancing to normal execution.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IFJLN In the following table, P represents the base condition or the inverse of the base condition.

IT Bits
[7:5] [4] [3] [2] [1] [0]
cond_base P1 P2 P3 P4 1 Entry point for 4-instruction IT block
cond_base P1 P2 P3 1 0 Entry point for 3-instruction IT block
cond_base P1 P2 1 0 0 Entry point for 2-instruction IT block
cond_base P1 1 0 0 0 Entry point for 1-instruction IT block
000 0 0 0 0 0 Normal execution, not in an IT block

Combinations of the IT bits not shown in this table are reserved.

Applies to an implementation of the architecture from Armv8.0-M onwards.

C1.3.6 Pseudocode details of ITSTATE operation

IJLKP ITAdvance() describes how ITSTATE advances after normal execution.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IZGZL InITBlock() and LastInITBlock() test whether the current instruction is in an IT block, and whether it is
the last instruction of an IT block.

Applies to an implementation of the architecture from Armv8.0-M onwards.

C1.3.7 SVC and ITSTATE

RTSWQ The ReturnAddress() for an SVC instruction must point to the instruction after the SVC instruction and
advance ITSTATE.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IQWZW When an SVC instruction is escalated to HardFault resulting in lockup the ReturnAddress() is 0xEFFFFFFE.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B3.33 Lockup on page 145.

C1.3.8 CONSTRAINED UNPREDICTABLE behavior and IT blocks

RWWVX Branching into an IT block, other than by way of exception return or exit from Debug state, leads to CONSTRAINED
UNPREDICTABLE behavior. Execution starts from the address that is determined by the branch, but each instruction

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

439

Chapter C1. Instruction Set Overview
C1.3. Conditional execution

in the IT block is:

• Executed as if the instruction is not in an IT block, meaning that the instruction is executed unconditionally.
• Executed as if the instruction had passed its Condition code check within an IT block.
• Executed as a NOP. That is, the instruction behaves as if it had failed the Condition code check.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RCPDC For exception returns or Debug state exits that cause EPSR.IT to be set to a reserved value with a nonzero value in
EPSR.IT, the EPSR.IT bits are forced to 0b00000000.

Applies to an implementation of the architecture from Armv8.0-M. Note, Debug state requires Halting debug.

RHVNS Exception returns or Debug state exits that set EPSR.IT to a non-reserved value can occur when the flow of
execution returns to a point:

• Outside an IT block, but with the EPSR.IT bits set to a value other than 0b00000000.
• Inside an IT block, but with a different value of the EPSR.IT bits than if the IT block had been executed

without an exception return or Debug state exit.

In this case the instructions at the target of the exception return or Debug state exit does one of the following:

• Execute as if they passed the Condition code check for the remaining iterations of the EPSR.IT state machine.
• Execute as NOPs. That is, they behave as if they failed the Condition code check for the remaining iterations

of the EPSR.IT state machine.

Applies to an implementation of the architecture from Armv8.0-M. Note, Debug state requires Halting debug.

RLLDK A number of instructions in the architecture are described as being CONSTRAINED UNPREDICTABLE either:

• Anywhere within an IT block.
• As an instruction within an IT block, other than the last instruction within an IT block.

Unless otherwise stated in this reference manual, when these instructions are committed for execution, one of the
following occurs:

• An UNDEFINED exception is taken.
• The instructions are executed as if they had passed the condition code check.
• The instructions execute as NOPs, as if they had failed the condition code check.

Applies to an implementation of the architecture from Armv8.0-M onwards.

INJKF The behavior might in some implementations vary from instruction to instruction, or between different instances
of the same instruction.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RBWMN Branch instructions or other non-sequential instructions that change the PC are CONSTRAINED UNPREDICTABLE
in an IT block. Where these instructions are not treated as UNDEFINED within an IT block, the remaining iterations
of the EPSR.IT state machine is treated in one of the following ways:

• EPSR.IT is cleared to 0.
• EPSR.IT advances for either a sequential or a nonsequential change of the PC in the same way as it does for

instructions that are not CONSTRAINED UNPREDICTABLE that cause a sequential change of the PC.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IXHBL This behavior does not apply to an instruction that is the last instruction in an IT block.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RTMWN The instructions that are addressed by the updated PC does one of the following:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

440

Chapter C1. Instruction Set Overview
C1.3. Conditional execution

• Execute as if they had passed the condition code check for the remaining iterations of the EPSR.IT state
machine.

• Execute as NOPs. That is, they behave as if they had failed the condition code check for the remaining
iterations of the EPSR.IT state machine.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RKVXD The remaining iterations of the EPSR.IT state machine behave in one of the following ways:

• The EPSR.IT state machine advances as if it were in an IT block.
• The EPSR.IT bits are ignored.
• The EPSR.IT bits are forced to 0b00000000.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RGZBX Execution of an instruction inside an IT block with ITSTATE set to zero, an ICI value, or a value that is inconsistent
with the IT block is UNPREDICTABLE.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RVBCG In the VIWDUP and VDWDUP instructions the following conditions result in CONSTRAINED UNPREDICTABLE
behavior:

• Rn is not a multiple of imm.
• Rm is not a multiple of imm.
• Rn >= Rm.

The CONSTRAINED UNPREDICTABLE behavior is that the resulting values of Rn and Qd become UNKNOWN.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

See also:

B3.5 XPSR, APSR, IPSR, and EPSR on page 76.

B3.5.2 Execution Program Status Register (EPSR) on page 77.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

441

Chapter C1. Instruction Set Overview
C1.4. Instruction set encoding information

C1.4 Instruction set encoding information

C1.4.1 UNDEFINED and UNPREDICTABLE instruction set space

IFLRZ An attempt to execute an unallocated instruction results in either:

• UNPREDICTABLE behavior. The instruction is described as UNPREDICTABLE.
• An UNDEFINSTR UsageFault. The instruction is described as UNDEFINED.
• Unallocated instructions in the NOP hint space behave as NOPs.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RKDXB An instruction is UNDEFINED if it is declared as UNDEFINED in an instruction description.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RXDBQ An instruction is UNPREDICTABLE if:

• A bit marked (0) or (1) in the encoding diagram of an instruction is not 0 or 1, respectively, and the pseudocode
for that encoding does not indicate that a different special case applies.

• It is declared as UNPREDICTABLE in an instruction description.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RTRHK Unless otherwise specified, a T32 instruction that is provided by one or more of the architecture extensions is
either UNPREDICTABLE or UNDEFINED in an implementation that does not include those extensions. See the
individual instruction descriptions for details.

Applies to an implementation of the architecture from Armv8.0-M onwards.

C1.4.2 Pseudocode descriptions of operations on general-purpose registers and the PC

RHRGP In pseudocode, the uses of the R[] function are:

• Reading or writing R0-R12, SP, and LR, using n = 0-12, 13, and 14 respectively.
• Reading the PC, using n = 15.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RCHTM The use of RSPCheck() returns the value of the current SP

Applies to an implementation of the architecture from Armv8.0-M onwards.

RGXHR The function RZ returns zeroes if the PC is called.

Applies to an implementation of the architecture from Armv8.1-M onwards.

See also:

R[]. RSPCheck()

RZ

Applies to an implementation of the architecture from Armv8.1-M onwards.

C1.4.3 Use of 0b1111 as a register specifier

RWMVJ All use of the PC as a named register specifier for a source register that is described as CONSTRAINED UNPRE-
DICTABLE in the pseudocode or in other places in this reference manual does one of the following:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

442

Chapter C1. Instruction Set Overview
C1.4. Instruction set encoding information

• Cause the instruction to be treated as UNDEFINED.
• Cause the instruction to be executed as a NOP.
• Read an UNKNOWN value for the source register that is specified as the PC.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RBGJG All use of the PC as a named register specifier for a destination register that is described as CONSTRAINED
UNPREDICTABLE in the pseudocode or in other places in this reference manual does one of the following:

• Cause the instruction to be treated as UNDEFINED.
• Cause the instruction to be executed as a NOP.
• Ignore the write.
• Branch to an UNKNOWN location.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IQVWL The choice between the behavior of the PC as a source or destination register might vary in some implementations
from instruction to instruction, or between different instances of the same instruction.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RLXPR For instructions that specify two destination registers and if one is specified as the PC, then the other destination
register of the pair is UNKNOWN. The CONSTRAINED UNPREDICTABLE behavior for the write to the PC is either
to ignore the write or to branch to an UNKNOWN location.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RDRSS An instruction that specifies the PC as a Base register and specifies a base register writeback is CONSTRAINED
UNPREDICTABLE and behaves as if the PC is both the source and destination register.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RXLVX For instructions that affect any or all of APSR.{N, Z, C, V} or APSR.GE when the register specifier is not the PC,
any flags that are affected by an instruction that is CONSTRAINED UNPREDICTABLE become UNKNOWN.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RJFGT For MRC instructions that use the PC as the destination register descriptor (and therefore target APSR.{N, Z, C,
V}) and where these instructions are described as being CONSTRAINED UNPREDICTABLE the status of the flags
becomes UNKNOWN.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RXPBT Multi-access instructions that load the PC from Device memory are CONSTRAINED UNPREDICTABLE and one of
the following behaviors occurs:

• The instruction loads the PC from the memory location as if the memory location had the Normal Non-
cacheable attribute

• The instruction generates a IACCVIOL MemManage fault.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RRTKM All unallocated or reserved values of fields with allocated values within the memory-mapped registers that are
described in this reference manual behave, unless otherwise stated in the register description, in one of the following
ways:

• The encoding maps onto any of the allocated values, but otherwise does not cause CONSTRAINED UNPRE-
DICTABLE behavior.

• The encoding causes effects that could be achieved by a combination of more than one of the allocated
encodings.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

443

Chapter C1. Instruction Set Overview
C1.4. Instruction set encoding information

• The encoding causes the field to have no functional effect.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IQXNP When a value of 0b1111 is permitted as a register specifier, as indicated in the individual instruction descriptions, a
variety of meanings is possible. For register reads, these meanings are:

• Read the PC value, that is, the address of the current instruction + 4. The base register of the table branch
instructions TBB and TBH can be the PC. This enables branch tables to be placed in memory immediately
after the instruction. (Some instructions read the PC value implicitly, without the use of a register specifier,
for example the conditional branch instruction B<cond>.)

• Read the word-aligned PC value, that is, the address of the current instruction + 4, with bits [1:0] forced
to zero. The base register of LDC, LDR, LDRB, LDRD (pre-indexed, no write-back), LDRH, LDRSB, and LDRSH

instructions can be the word-aligned PC. This enables PC-relative data addressing. In addition, some
encodings of the ADD and SUB instructions permit their source registers to be 0b1111 for the same purpose.

• Read zero. This is done in some cases when one instruction is a special case of another, more general
instruction, but with one operand zero. In these cases, the instructions are listed on separate pages, with a
special case in the pseudocode for the more general instruction cross-referencing the other page. An example
of this is the descriptions of MOV (register) and ORR (register).

Applies to an implementation of the architecture from Armv8.0-M onwards.

IKVHQ When a value of 0b1111 is permitted as a register specifier, as indicated in the individual instruction descriptions, a
variety of meanings is possible. For register writes, these meanings are:

• The PC can be specified as the destination register of an LDR instruction. This is done by encoding Rt as
0b1111. The loaded value is treated as an address, and the effect of execution is a branch to that address.
bit[0] of the loaded value selects the Execution state after the branch and must have the value 1.

• Discard the result of a calculation. This is done in some cases when one instruction is a special case of
another, more general instruction, but with the result discarded. In these cases, the instructions are listed on
separate pages, with a special case in the pseudocode for the more general instruction cross-referencing the
other page. An example of this is the descriptions of TST (register) and AND (register).

• If the destination register specifier of an LDRB, LDRH, LDRSB, or LDRSH instruction is 0b1111, the instruction is
a memory hint instead of a load operation.

• If the destination register specifier of an MRC instruction is 0b1111, bits[31:28] of the value transferred from
the coprocessor are written to the N, Z, C, and V flags in the APSR, and bits[27:0] are discarded.

Applies to an implementation of the architecture from Armv8.0-M onwards.

C1.4.4 Use of 0b1101 as a register specifier

SP[1:0] definition

RDSDB Bits [1:0] of SP must be treated as SBZP (Should Be Zero or Preserved). Writing a nonzero value to bits [1:0]
results in UNPREDICTABLE behavior. Reading bits [1:0] returns zero.

Applies to an implementation of the architecture from Armv8.0-M onwards.

32-bit T32 instruction support for SP

RSKNR Use of the SP in T32 instructions and 16-bit data processing instructions is restricted to the following cases:

• SP as the source or destination register of a MOV instruction. Only register to register transfers without shifts
are supported, with no flag setting:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

444

Chapter C1. Instruction Set Overview
C1.4. Instruction set encoding information

1 MOV SP,Rm
2 MOV Rn,SP

• Adjusting SP up or down by a multiple of its alignment:

1 ADD{W} SP,SP,#N ; For N a multiple of 4
2 SUB{W} SP,SP,#N ; For N a multiple of 4
3 ADD SP,SP,Rm,LSL #shft ; For shft=0,1,2,3
4 SUB SP,SP,Rm,LSL #shft ; For shft=0,1,2,3

• SP as a base register, Rn, of any load or store instruction. This supports SP-based addressing for load, store,
or memory hint instructions, with positive or negative offsets, with and without write-back.

• SP as the first operand, Rn, in any ADD{S}, CMN, CMP, or SUB{S} instruction. The add and subtract instructions
support SP-based address generation, with the address going into a general-purpose register. CMN and CMP can
check the stack pointer.

• SP as the transferred register, Rt, in any LDR or STR instruction.
• SP as the address in a POP or PUSH instruction.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RMRNT Where an instruction states that the SP is UNPREDICTABLE and SP is used:

• The value that is read or written from or to the SP is UNKNOWN.
• The instruction is permitted to be treated as UNDEFINED.
• If the SP is being written, it is UNKNOWN whether a stack-limit check is applied.

Applies to an implementation of the architecture from Armv8.0-M onwards.

C1.4.5 16-bit T32 instruction support for SP

RSTHZ Arm deprecates any other use of the SP in 16-bit T32 instructions. This affects the high register forms of CMP and
ADD, where Arm deprecates the use of SP as Rm.

Applies to an implementation of the architecture from Armv8.0-M onwards.

C1.4.6 Branching

IPVGL Writing an address to the PC causes either a simple branch to that address or an interworking branch.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RTQSZ A simple branch is performed by BranchTo().

Applies to an implementation of the architecture from Armv8.1-M onwards.

RJTJJ An interworking branch is performed by BranchReturn().

Applies to an implementation of the architecture from Armv8.1-M onwards.

RCWSL Branching can occur in cases where 0b1111 is not a register specifier. In these cases, instructions write the PC
either:

• Implicitly, for example, b<cond>.
• By using a register mask rather than a register specifier, for example LDM.

Applies to an implementation of the architecture from Armv8.0-M onwards.

IFLZZ The address to branch to can be:

• A loaded value, for example LDM.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

445

Chapter C1. Instruction Set Overview
C1.4. Instruction set encoding information

• A register value, for example BX.
• The result of a calculation, for example TBB or TBH.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RWQBX The following table summarizes the branch instructions in the T32 instruction set.

Instruction See Range, T32
Branch to target address B ±16MB
Compare and Branch on Nonzero, CBNZ, CBZ 0-126 bytes
Compare and Branch on Zero
Call a subroutine BL ±16MB
Call a subroutine, optionally change Security state BLX, BLXNS Any
Branch to target address, change to Non-secure state BX, BXNS Any
Table Branch (byte offsets) TBB, TBH 0-510 bytes
Table Branch (halfword offsets) 0-31070 bytes

Applies to an implementation of the architecture from Armv8.0-M onwards.

RGJML Branches to loaded and calculated addresses can be performed by LDR, LDM and data-processing instructions.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RTPTF A load instruction that targets the PC behaves as a branch instruction.

Applies to an implementation of the architecture from Armv8.0-M onwards.

C1.4.7 Instruction set, interworking and interstating support

RLBQC The following instructions are Interworking branches:

• BX and BLX.
• POP (mulitple registers) and all forms of LDM, when the register list includes the PC.
• LDR (immediate), LDR (literal), and LDR (register), with <Rt> equal to the PC.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RWRZR The value of bit[0] of an interworking branch instruction is not stored in the PC. Bit[0] of an interworking branch
instruction sets EPSR.T. If EPSR.T is cleared to 0 an INVSTATE UsageFault or HardFault is generated on the
next instruction the PE attempts to execute.

Applies to an implementation of the architecture from Armv8.0-M. Note, requires M for INVSTATE UsageFault.

RGLPL The following instructions are interstating branches:

• BXNS and BLXNS.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

RGJMJ When an interstating branch is executed in Secure state, bit[0] of the target address indicates the target Security
state:

0: The target Security state is Non-secure state.

1: The target Security state is Secure state.

The value of bit[0] of an interstating branch instruction is not stored in the PC.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

RWNSX Interstating branches are UNDEFINED when executing in Non-secure state.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

446

Chapter C1. Instruction Set Overview
C1.4. Instruction set encoding information

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

See also:

C1.1 Instruction set on page 428.

B3.15 Security state transitions on page 99.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

447

Chapter C1. Instruction Set Overview
C1.5. Modified immediate constants

C1.5 Modified immediate constants

RJVCL The encoding of modified immediate constants in T32 instructions is:

i imm3 a b c d e f g h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 015 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Applies to an implementation of the architecture from Armv8.0-M onwards.

RTCLZ The table shows the range of modified immediate constants available in T32 data processing instructions, and how
they are encoded in the a, b, c, d, e, f, g, h, i, and imm3 fields in the instruction.

i:imm3:a <const> Carry flag set
0000x 00000000 00000000 00000000 abcdefgh No
0001x 00000000 abcdefgh 00000000 abcdefgh No
0010x abcdefgh 00000000 abcdefgh 00000000 No
0011x abcdefgh abcdefgh abcdefgh abcdefgh No
01000 1bcdefgh 00000000 00000000 00000000 Yes, to 1
01001 01bcdefg h0000000 00000000 00000000 Yes, to 0
01010 001bcdef gh000000 00000000 00000000 Yes, to 0
01011 0001bcde fgh00000 00000000 00000000 Yes, to 0
- Yes, to 0
- 8-bit values shifted to other positions
-
11101 00000000 00000000 000001bc defgh000 Yes, to 0
11110 00000000 00000000 0000001b cdefgh00 Yes, to 0
11111 00000000 00000000 00000001 bcdefgh0 Yes, to 0

This table shows the immediate constant value in binary form, to relate abcdefgh to the encoding diagram. In
assembly syntax, the immediate value is specified as a decimal integer by default.

The setting of the Carry flag will only apply if a logical oeperation with a modified immediate constant can set the
flags.

Where i:imm3:a is 0001x, 0010x or 0011x the instruction will be UNPREDICTABLE if abcdefgh == 0b00000000.

Applies to an implementation of the architecture from Armv8.0-M onwards.

C1.5.1 Operation of modified immediate constants

RTLFG T32ExpandImm() and T32T32ExpandImm_C() describe the operation of modified immediate constants.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RPHBG The operation of modified immediate constants are UNPREDICTABLE where both:

• hw2[7:0] == 0b0000000.

• hw1[10] == 0 and either:

– hw2 [14:12] == 0b001.
– hw2 [14:12] == 0b010.
– hw2 [14:12] == 0b011.

Applies to an implementation of the architecture from Armv8.0-M onwards.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

448

Chapter C1. Instruction Set Overview
C1.6. NOP-compatible hint instructions

C1.6 NOP-compatible hint instructions

IBJRT A hint instruction only provides an indication to the PE. It is not required that the PE perform an operation on a
hint instruction.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RVXQV A NOP-compatible hint instruction either:

• Acts as a NOP (No Operation) instruction.
• Performs some IMPLEMENTATION DEFINED behavior.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RDBNQ A PE without the Main Extension only supports the 16-bit encodings of the Armv8-M NOP-compatible hint
instructions.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - !M.

RDJQL A PE with the Main Extension supports both the 16-bit and the 32-bit encodings of the Armv8-M NOP-compatible
hint instructions.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

449

Chapter C1. Instruction Set Overview
C1.7. SBZ or SBO fields in instructions

C1.7 SBZ or SBO fields in instructions

IPWBN Many of the instructions have (0) or (1) in the instruction decode to indicate Should-Be-Zero, SBZ, or Should-Be-
One, SBO.

Applies to an implementation of the architecture from Armv8.0-M onwards.

RCKJK If the instruction bit pattern of an instruction is executed with these fields not having the should-be values, one of
the following must occur:

• The instruction is UNDEFINED.
• The instruction executes as a NOP.
• The instruction operates as if the bit had the should-be value.
• Any destination registers of the instruction become UNKNOWN.

The exceptions to this rule are:

• LDM, LDMIA, LDMFD.
• LDMDB, LDMEA.
• LDR (immediate).
• LDRB (immediate).
• LDRD (immediate).
• LDRH (immediate).
• LDRSB (literal).
• LDRSH (literal).
• POP (multiple registers).
• PUSH (multiple registers).
• SDIV.
• STM, STMIA, STMEA.
• STMDB, STMFD.
• UDIV.

Applies to an implementation of the architecture from Armv8.0-M onwards.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

450

Chapter C2
Instruction Specification

This chapter specifies the Armv8-M instruction set. It contains the following sections:

Top level T32 instruction set encoding

32-bit T32 instruction encoding

16-bit T32 instruction encoding

Alphabetical list of instructions

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

451

Chapter C2. Instruction Specification
C2.1. Top level T32 instruction set encoding

C2.1 Top level T32 instruction set encoding

The T32 instruction stream is a sequence of halfword-aligned halfwords. Each T32 instruction is either a single
16-bit halfword in that stream, or a 32-bit instruction consisting of two consecutive halfwords in that stream.

If the value of bits[15:11] of the halfword being decoded is one of the following, the halfword is the first halfword
of a 32-bit instruction:

• 0b11101.
• 0b11110.
• 0b11111.

Otherwise, the halfword is a 16-bit instruction.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
op0 op1

This table shows the decode field values and the associated subgroups:

op0 op1 Subgroup
!= 111 - 16-bit T32 instruction encoding

111 != 00 32-bit T32 instruction encoding

This table shows the decode field values and the associated instrutions:

op0 op1 Instruction
111 00 B T2

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

452

Chapter C2. Instruction Specification
C2.2. 16-bit T32 instruction encoding

C2.2 16-bit T32 instruction encoding

This section describes the encoding of the 16-bit T32 instruction encoding. This section is decoded from Top level
T32 instruction set encoding.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
op0

This table shows the decode field values and the associated subgroups:

op0 Subgroup
00xxxx Shift (immediate), add, subtract, move, and compare
010000 Data-processing (two low registers)
010001 Special data instructions and branch and exchange
0101xx Load/store (register offset)
011xxx Load/store word/byte (immediate offset)
1000xx Load/store halfword (immediate offset)
1001xx Load/store (SP-relative)
1010xx Add PC/SP (immediate)
1011xx Miscellaneous 16-bit instructions
1100xx Load/store multiple
1101xx Conditional branch, and Supervisor Call

This table shows the decode field values and the associated instrutions:

op0 Instruction
01001x LDR (literal) T1

C2.2.1 Shift (immediate), add, subtract, move, and compare

This section describes the encoding of the Shift (immediate), add, subtract, move, and compare. This section is
decoded from 16-bit T32 instruction encoding.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
op0 op1 op2

This table shows the decode field values and the associated subgroups:

op0 op1 op2 Subgroup
0 11 0 Add, subtract (three low registers)
0 11 1 Add, subtract (two low registers and immediate)
1 - - Add, subtract, compare, move (one low register and immediate)

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

453

Chapter C2. Instruction Specification
C2.2. 16-bit T32 instruction encoding

This table shows the decode field values and the associated instrutions:

op0 op1 op2 Instruction
Alias ASRS (immediate) T2
Alias ASR (immediate) T2
Alias LSLS (immediate) T2
Alias LSL (immediate) T2
Alias LSRS (immediate) T2
Alias LSR (immediate) T2

0 != 11 - MOV (register) T2

C2.2.1.1 Add, subtract (three low registers)

This section describes the encoding of the Add, subtract (three low registers). This section is decoded from Shift
(immediate), add, subtract, move, and compare.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
S

This table shows the decode field values and the associated instrutions:

S Instruction
0 ADD (register) T1
1 SUB (register) T1

C2.2.1.2 Add, subtract (two low registers and immediate)

This section describes the encoding of the Add, subtract (two low registers and immediate). This section is decoded
from Shift (immediate), add, subtract, move, and compare.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
S

This table shows the decode field values and the associated instrutions:

S Instruction
0 ADD (immediate) T1
1 SUB (immediate) T1

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

454

Chapter C2. Instruction Specification
C2.2. 16-bit T32 instruction encoding

C2.2.1.3 Add, subtract, compare, move (one low register and immediate)

This section describes the encoding of the Add, subtract, compare, move (one low register and immediate). This
section is decoded from Shift (immediate), add, subtract, move, and compare.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
op

This table shows the decode field values and the associated instrutions:

op Instruction
00 MOV (immediate) T1
01 CMP (immediate) T1
10 ADD (immediate) T2
11 SUB (immediate) T2

C2.2.2 Data-processing (two low registers)

This section describes the encoding of the Data-processing (two low registers). This section is decoded from 16-bit
T32 instruction encoding.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
op

This table shows the decode field values and the associated instrutions:

op Instruction
0000 AND (register) T1
0001 EOR (register) T1
Alias LSL (register) T1
Alias LSLS (register) T1
Alias LSR (register) T1
Alias LSRS (register) T1
Alias ASR (register) T1
Alias ASRS (register) T1
0101 ADC (register) T1
0110 SBC (register) T1
Alias ROR (register) T1
Alias RORS (register) T1
1000 TST (register) T1
1001 RSB (immediate) T1
1010 CMP (register) T1
1011 CMN (register) T1
1100 ORR (register) T1
1101 MUL T1
1110 BIC (register) T1

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

455

Chapter C2. Instruction Specification
C2.2. 16-bit T32 instruction encoding

1111 MVN (register) T1
0010 MOV, MOVS (register-shifted register) T1
0011
0100
0111

C2.2.3 Special data instructions and branch and exchange

This section describes the encoding of the Special data instructions and branch and exchange. This section is
decoded from 16-bit T32 instruction encoding.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
op0

This table shows the decode field values and the associated subgroups:

op0 Subgroup
11 Branch and exchange

!= 11 Add, subtract, compare, move (two high registers)

C2.2.3.1 Branch and exchange

This section describes the encoding of the Branch and exchange. This section is decoded from Special data
instructions and branch and exchange.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
L

This table shows the decode field values and the associated instrutions:

L Instruction
0 BX, BXNS T1
1 BLX, BLXNS T1

C2.2.3.2 Add, subtract, compare, move (two high registers)

This section describes the encoding of the Add, subtract, compare, move (two high registers). This section is
decoded from Special data instructions and branch and exchange.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

456

Chapter C2. Instruction Specification
C2.2. 16-bit T32 instruction encoding

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
op D Rs Rd

This table shows the decode field values and the associated instrutions:

D:Rd Rs op Instruction
!= 1101 != 1101 00 ADD (register) T2

- 1101 00 ADD (SP plus register) T1
1101 != 1101 00 ADD (SP plus register) T2

- - 01 CMP (register) T2
- - 10 MOV (register) T1

C2.2.4 Load/store (register offset)

This section describes the encoding of the Load/store (register offset). This section is decoded from 16-bit T32
instruction encoding.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
L B H

This table shows the decode field values and the associated instrutions:

B H L Instruction
0 0 0 STR (register) T1
0 1 0 STRH (register) T1
1 0 0 STRB (register) T1
1 1 0 LDRSB (register) T1
0 0 1 LDR (register) T1
0 1 1 LDRH (register) T1
1 0 1 LDRB (register) T1
1 1 1 LDRSH (register) T1

C2.2.5 Load/store word/byte (immediate offset)

This section describes the encoding of the Load/store word/byte (immediate offset). This section is decoded from
16-bit T32 instruction encoding.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

457

Chapter C2. Instruction Specification
C2.2. 16-bit T32 instruction encoding

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
B L

This table shows the decode field values and the associated instrutions:

B L Instruction
0 0 STR (immediate) T1
0 1 LDR (immediate) T1
1 0 STRB (immediate) T1
1 1 LDRB (immediate) T1

C2.2.6 Load/store halfword (immediate offset)

This section describes the encoding of the Load/store halfword (immediate offset). This section is decoded from
16-bit T32 instruction encoding.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
L

This table shows the decode field values and the associated instrutions:

L Instruction
0 STRH (immediate) T1
1 LDRH (immediate) T1

C2.2.7 Load/store (SP-relative)

This section describes the encoding of the Load/store (SP-relative). This section is decoded from 16-bit T32
instruction encoding.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
L

This table shows the decode field values and the associated instrutions:

L Instruction
0 STR (immediate) T2
1 LDR (immediate) T2

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

458

Chapter C2. Instruction Specification
C2.2. 16-bit T32 instruction encoding

C2.2.8 Add PC/SP (immediate)

This section describes the encoding of the Add PC/SP (immediate). This section is decoded from 16-bit T32
instruction encoding.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
op

This table shows the decode field values and the associated instrutions:

op Instruction
Alias ADD (immediate, to PC) T1

0 ADR T1
1 ADD (SP plus immediate) T1

C2.2.9 Miscellaneous 16-bit instructions

This section describes the encoding of the Miscellaneous 16-bit instructions. This section is decoded from 16-bit
T32 instruction encoding.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
op0 op1 op2 op3

This table shows the decode field values and the associated subgroups:

op0 op1 op2 op3 Subgroup
0000 - - - Adjust SP (immediate)
0010 - - - Extend
0110 00 - - UNALLOCATED

0110 01 0 - UNALLOCATED

0110 1x - - UNALLOCATED

0111 - - - UNALLOCATED

1000 - - - UNALLOCATED

1010 10 - - UNALLOCATED

1010 != 10 - - Reverse bytes
1111 - - 0000 Hints
x10x - - - Push and Pop

This table shows the decode field values and the associated instrutions:

op0 op1 op2 op3 Instruction
0110 01 1 - CPS T1
1110 - - - BKPT T1
1111 - - != 0000 IT T1
x0x1 - - - CBNZ, CBZ T1

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

459

Chapter C2. Instruction Specification
C2.2. 16-bit T32 instruction encoding

C2.2.9.1 Adjust SP (immediate)

This section describes the encoding of the Adjust SP (immediate). This section is decoded from Miscellaneous
16-bit instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
S

This table shows the decode field values and the associated instrutions:

S Instruction
0 ADD (SP plus immediate) T2
1 SUB (SP minus immediate) T1

C2.2.9.2 Extend

This section describes the encoding of the Extend. This section is decoded from Miscellaneous 16-bit instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
U B

This table shows the decode field values and the associated instrutions:

B U Instruction
0 0 SXTH T1
1 0 SXTB T1
0 1 UXTH T1
1 1 UXTB T1

C2.2.9.3 Reverse bytes

This section describes the encoding of the Reverse bytes. This section is decoded from Miscellaneous 16-bit
instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
op

This table shows the decode field values and the associated instrutions:

op Instruction

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

460

Chapter C2. Instruction Specification
C2.2. 16-bit T32 instruction encoding

00 REV T1
01 REV16 T1
11 REVSH T1

C2.2.9.4 Hints

This section describes the encoding of the Hints. This section is decoded from Miscellaneous 16-bit instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
hint

This table shows the decode field values and the associated subgroups:

hint Subgroup
0101 Reserved hint, behaves as NOP
011x Reserved hint, behaves as NOP
1xxx Reserved hint, behaves as NOP

This table shows the decode field values and the associated instrutions:

hint Instruction
0000 NOP T1
0001 YIELD T1
0010 WFE T1
0011 WFI T1
0100 SEV T1

C2.2.9.5 Push and Pop

This section describes the encoding of the Push and Pop. This section is decoded from Miscellaneous 16-bit
instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
L

This table shows the decode field values and the associated instrutions:

L Instruction
1 LDM, LDMIA, LDMFD T3

Alias POP (multiple registers) T3
Alias PUSH (multiple registers) T2

0 STMDB, STMFD T2

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

461

Chapter C2. Instruction Specification
C2.2. 16-bit T32 instruction encoding

C2.2.10 Load/store multiple

This section describes the encoding of the Load/store multiple. This section is decoded from 16-bit T32 instruction
encoding.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
L

This table shows the decode field values and the associated instrutions:

L Instruction
1 LDM, LDMIA, LDMFD T1
0 STM, STMIA, STMEA T1

C2.2.11 Conditional branch, and Supervisor Call

This section describes the encoding of the Conditional branch, and Supervisor Call. This section is decoded from
16-bit T32 instruction encoding.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
op0

This table shows the decode field values and the associated subgroups:

op0 Subgroup
111x Exception generation

This table shows the decode field values and the associated instrutions:

op0 Instruction
!= 111x B T1

C2.2.11.1 Exception generation

This section describes the encoding of the Exception generation. This section is decoded from Conditional branch,
and Supervisor Call.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

462

Chapter C2. Instruction Specification
C2.2. 16-bit T32 instruction encoding

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
S imm8

This table shows the decode field values and the associated instrutions:

S imm8 Instruction
0 - UDF T1
1 - SVC T1

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

463

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

C2.3 32-bit T32 instruction encoding

This section describes the encoding of the 32-bit T32 instruction encoding. This section is decoded from Top level
T32 instruction set encoding.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
op0 op1 op2

This table shows the decode field values and the associated subgroups:

op0 op1 op2 Subgroup
x11x - - Coprocessor, floating-point, and vector instructions
0100 - - Load/store (multiple, dual, exclusive, acquire-release)
0101 - - Data-processing (shifted register)
10xx - 1 Branches and miscellaneous control
10x0 - 0 Data-processing (modified immediate)
10x1 - 0 Data-processing (plain binary immediate)
1100 1xxx0 - UNALLOCATED

1100 != 1xxx0 - Load/store single
1101 0xxxx - Data-processing (register)
1101 10xxx - Multiply, multiply accumulate, and absolute difference
1101 11xxx - Long multiply and divide

C2.3.1 Coprocessor, floating-point, and vector instructions

This section describes the encoding of the Coprocessor, floating-point, and vector instructions. This section is
decoded from 32-bit T32 instruction encoding.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
op0

This table shows the decode field values and the associated subgroups:

op0 Subgroup
10 Floating-point and vector miscellaneous instructions
0x Floating-point and vector load/store, move, and coprocessor instructions
11 Miscellaneous vector arithmetic instructions

C2.3.1.1 Floating-point and vector miscellaneous instructions

This section describes the encoding of the Floating-point and vector miscellaneous instructions. This section is
decoded from Coprocessor, floating-point, and vector instructions.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

464

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
op0 op1

This table shows the decode field values and the associated subgroups:

op0 op1 Subgroup
0xx - Coprocessor data-processing instructions
100 1 Vector move instructions
10x 0 Floating-point data-processing, minNum/maxNum, and convert
101 1 Floating-point and vector move (register)
111 0 Vector immediate and register, and coprocessor data-processing instructions
111 1 UNALLOCATED

C2.3.1.1.1 Coprocessor data-processing instructions

This section describes the encoding of the Coprocessor data-processing instructions. This section is decoded from
Floating-point and vector miscellaneous instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Extension specific behavior

This table shows the decode field values and the associated subgroups:

Extension specific behavior Subgroup
CP_GCP Architected coprocessor data-processing instructions

CP_CDEv1 Custom general-purpose register instructions

Architected coprocessor data-processing instructions

This section describes the encoding of the Architected coprocessor data-processing instructions. This section is
decoded from Coprocessor data-processing instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
op0 op1 op2

This table shows the decode field values and the associated instrutions:

op0 op1 op2 Instruction
0 - 0 CDP, CDP2 T1
1 - 0 CDP, CDP2 T2
0 0 1 MCR, MCR2 T1
1 0 1 MCR, MCR2 T2

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

465

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

0 1 1 MRC, MRC2 T1
1 1 1 MRC, MRC2 T2

Custom general-purpose register instructions

This section describes the encoding of the Custom general-purpose register instructions. This section is decoded
from Coprocessor data-processing instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
op0 op1 op2

This table shows the decode field values and the associated instrutions:

op0 op1 op2 Instruction
0 0 0 CX1 T1
0 0 1 CX1D T1
0 1 0 CX2 T1
0 1 1 CX2D T1
1 - 0 CX3 T1
1 - 1 CX3D T1

C2.3.1.1.2 Vector move instructions

This section describes the encoding of the Vector move instructions. This section is decoded from Floating-point
and vector miscellaneous instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
op0 op1 op2

This table shows the decode field values and the associated subgroups:

op0 op1 op2 Subgroup
1 - - UNALLOCATED

0 != 000 - UNALLOCATED

0 000 0 UNALLOCATED

This table shows the decode field values and the associated instrutions:

op0 op1 op2 Instruction
0 000 1 VMOV (between general-purpose register and half-precision register) T1

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

466

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

C2.3.1.1.3 Floating-point data-processing, minNum/maxNum, and convert

This section describes the encoding of the Floating-point data-processing, minNum/maxNum, and convert. This
section is decoded from Floating-point and vector miscellaneous instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
op0 op1 op2 op3 op4 op5 op6

This table shows the decode field values and the associated instrutions:

op0 op1 op2 op3 op4 op5 op6 Instruction
1 1 00x - - - 1 VMINNM T2
1 1 111 110 - - 1 VCVTP T1
0 1 00x - - - 0 VDIV T1
0 0 11x - - - 0 VADD T2
0 0 01x - - - 0 VNMLS T1
1 1 111 010 - 0 1 VRINTP T1
0 1 110 000 1x 0 1 VMOV (register) T2
0 1 111 000 - - 1 VCVT (integer to floating-point) T1
0 1 10x - - - 1 VFMS T2
0 1 01x - - - 0 VFNMS T1
0 1 110 100 - 1 1 VCMPE T1
0 1 110 101 - 1 1 VCMPE T2
0 1 110 01x 1x 1 1 VCVTT T1
1 1 111 011 - 0 1 VRINTM T1
1 1 111 000 - 0 1 VRINTA T1
0 1 110 001 - 0 1 VNEG T2
0 1 110 111 - 0 1 VRINTX T1
1 1 111 111 - - 1 VCVTM T1
0 1 110 01x 1x 0 1 VCVTB T1
1 1 00x - - - 0 VMAXNM T2
0 0 00x - - - 0 VMLA T2
0 0 00x - - - 1 VMLS T2
0 1 111 10x - 1 1 VCVT (floating-point to integer) T1
0 1 01x - - - 1 VFNMA T1
0 1 10x - - - 0 VFMA T2
0 1 110 000 - 1 1 VABS T2
0 1 110 110 - 0 1 VRINTR T1
0 1 11x - - - 0 VMOV (immediate) T2
0 1 110 100 - 0 1 VCMP T1
1 1 110 000 10 0 1 VMOVX T1
0 1 110 101 - 0 1 VCMP T2
0 1 110 111 1x 1 1 VCVT (between double-precision and single-precision) T1
0 1 111 x1x - - 1 VCVT (between floating-point and fixed-point) T1
1 1 110 000 10 1 1 VINS T1
1 1 111 001 - 0 1 VRINTN T1
1 0 - - - - 0 VSEL T1
0 0 01x - - - 1 VNMLA T1
0 1 110 110 - 1 1 VRINTZ T1

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

467

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

1 1 111 101 - - 1 VCVTN T1
0 0 10x - - - 0 VMUL T2
1 1 111 100 - - 1 VCVTA T1
0 1 110 001 - 1 1 VSQRT T1
0 1 111 10x - 0 1 VCVTR T1
0 0 10x - - - 1 VNMUL T2
0 0 11x - - - 1 VSUB T2

C2.3.1.1.4 Floating-point and vector move (register)

This section describes the encoding of the Floating-point and vector move (register). This section is decoded from
Floating-point and vector miscellaneous instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
op0 op1 op2

This table shows the decode field values and the associated subgroups:

op0 op1 op2 Subgroup
0 0 - Move between Floating-point and vector registers
0 1 0 Move between general-purpose Register and Floating-point Special register
0 1 1 Duplicate vector register to the value of a general-purpose register
1 - - UNALLOCATED

Move between Floating-point and vector registers

This section describes the encoding of the Move between Floating-point and vector registers. This section is
decoded from Floating-point and vector move (register).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
op0 op1

This table shows the decode field values and the associated subgroups:

op0 op1 Subgroup
1x1 - UNALLOCATED

This table shows the decode field values and the associated instrutions:

op0 op1 Instruction
xx0 1 VMOV (general-purpose register to vector lane) T1
0x1 1 VMOV (vector lane to general-purpose register) T1

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

468

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

00x 0 VMOV (between general-purpose register and single-precision register) T1
Alias VMOV (single general-purpose register to half of doubleword register) T1
Alias VMOV (half of doubleword register to single general-purpose register) T1

Move between general-purpose Register and Floating-point Special register

This section describes the encoding of the Move between general-purpose Register and Floating-point Special
register. This section is decoded from Floating-point and vector move (register).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
op0

This table shows the decode field values and the associated instrutions:

op0 Instruction
111 VMRS T1
110 VMSR T1

Duplicate vector register to the value of a general-purpose register

This section describes the encoding of the Duplicate vector register to the value of a general-purpose register. This
section is decoded from Floating-point and vector move (register).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
op0 op1 op2

This table shows the decode field values and the associated subgroups:

op0 op1 op2 Subgroup
0x - - UNALLOCATED

11 - - UNALLOCATED

This table shows the decode field values and the associated instrutions:

op0 op1 op2 Instruction
10 0 0 VDUP T1

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

469

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

C2.3.1.1.5 Vector immediate and register, and coprocessor data-processing instructions

This section describes the encoding of the Vector immediate and register, and coprocessor data-processing
instructions. This section is decoded from Floating-point and vector miscellaneous instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
op0 op1

This table shows the decode field values and the associated subgroups:

op0 op1 Subgroup
0 0 Miscellaneous vector register instructions
1 0 Miscellaneous vector register and immediate instructions
0 1 Vector register, immediate, and predication instructions
1 1 Vector arithmetic, minimum, maximum, and shift instructions

Miscellaneous vector register instructions

This section describes the encoding of the Miscellaneous vector register instructions. This section is decoded from
Vector immediate and register, and coprocessor data-processing instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
op0 op1 op2 op3 op4 op5 op6

This table shows the decode field values and the associated instrutions:

op0 op1 op2 op3 op4 op5 op6 Instruction
0 11 != 11 01 - 10x 1 VQMOVUN T1
- != 11 - x1 1 x10 - VMLAS (vector by vector plus scalar) T1
- 11 != 11 11 1 10x 1 VMIN, VMINA T2
1 != 11 - x0 - x0x 0 VQDMLSDH, VQRDMLSDH T1
- 11 != 11 01 1 111 - VQSHL, VQSHLU T1
- 11 11 11 1 10x 1 VMINNM, VMINNMA (floating-point) T2
- 11 != 11 11 0 10x 1 VMAX, VMAXA T2
- 11 - x1 - x0x 0 VMULL (polynomial) T1
1 11 != 11 01 - 10x 1 VMOVN T1
- != 11 - x1 0 x0x 1 VMULH, VRMULH T1
- != 11 - x1 1 x0x 1 VMULH, VRMULH T2
0 != 11 - x1 1 x11 - VMUL (vector) T2
- != 11 - x0 0 x11 - VQDMLAH, VQRDMLAH (vector by scalar plus vector) T1
- != 11 - x0 0 x10 - VQDMLAH, VQRDMLAH (vector by scalar plus vector) T2
- 11 - x1 0 x10 - VFMA (vector by scalar plus vector, floating-point) T1
0 != 11 - x0 - x0x 1 VQDMLADH, VQRDMLADH T2
- 11 - x1 0 x11 - VMUL (floating-point) T2
- 11 - x1 1 x10 - VFMAS (vector by vector plus scalar, floating-point) T1
0 != 11 - x1 0 x11 - VQDMULH, VQRDMULH T3
- 11 - x0 - x0x - VCMUL (floating-point) T1

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

470

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

0 != 11 - x0 - x0x 0 VQDMLADH, VQRDMLADH T1
1 != 11 - x1 0 x11 - VQDMULH, VQRDMULH T4
1 != 11 - x0 - x0x 1 VQDMLSDH, VQRDMLSDH T2
- != 11 - x0 1 x11 - VQDMLASH, VQRDMLASH (vector by vector plus scalar) T1
- != 11 - x0 1 x10 - VQDMLASH, VQRDMLASH (vector by vector plus scalar) T2
- 11 != 11 01 - 00x 1 VSHLL T2
- 11 != 11 11 1 011 - VRSHL T2
- 11 != 11 01 1 011 - VSHL T2
- 11 11 11 - 00x 1 VCVT (between single and half-precision floating-point) T1
- 11 != 11 11 - 00x 1 VQMOVN T1
- != 11 - x1 - x0x 0 VMULL (integer) T1
1 != 11 - x1 1 x11 - VBRSR T1
- 11 11 11 0 10x 1 VMAXNM, VMAXNMA (floating-point) T2
- 11 != 11 11 1 111 - VQRSHL T2
- != 11 - x1 0 x10 - VMLA (vector by scalar plus vector) T1

Miscellaneous vector register and immediate instructions

This section describes the encoding of the Miscellaneous vector register and immediate instructions. This section
is decoded from Vector immediate and register, and coprocessor data-processing instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
op0 op1 op2 op3 op4

This table shows the decode field values and the associated instrutions:

op0 op1 op2 op3 op4 Instruction
- 111 - 0 0 VMLADAV T1

Alias VMLAV T1
Alias VMLALV T1

- != 111 - 0 0 VMLALDAV T1
0 != 111 - 0 1 VMLSLDAV T1
0 111 - 0 1 VMLSDAV T1
1 111 0 0 1 VMLSDAV T2
1 != 111 0 0 1 VRMLSLDAVH T1

Vector register, immediate, and predication instructions

This section describes the encoding of the Vector register, immediate, and predication instructions. This section is
decoded from Vector immediate and register, and coprocessor data-processing instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
op0 op1 op2 op3 op4 op5 op6 op7 op8

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

471

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

This table shows the decode field values and the associated instrutions:

op0 op1:op4 op2 op3:op4:op5 op5:op8 op6 op7 op7:op8 op8 Instruction
0 - != 11 1xxx0 - 11 111 - - VIDUP, VIWDUP T2
0 - != 11 1xxx0 - 11 != 111 - - VIDUP, VIWDUP T1
- - 11 0xxxx - 0x - - 1 VQDMULL T1
- - != 11 0xxx0 - 11 - - - VQADD T2
- - 11 0xxx0 - 10 - - - VADD (floating-point) T2
0 - != 11 1xxx1 - 10 - - - VSUB (vector) T2
0 - != 11 1xxx0 - 10 - - - VADD (vector) T2
0 - != 11 0xxxx - 0x - - 0 VHCADD T1
0 - != 11 1xxx1 - 11 111 - - VDDUP, VDWDUP T2
0 - != 11 1xxx1 - 11 != 111 - - VDDUP, VDWDUP T1
1 - != 11 0xxxx - 0x - - 0 VCADD T1
- - != 11 0xxx0 - 10 - - - VHADD T2
- - 11 0xxx1 - 10 - - - VSUB (floating-point) T2
- - != 11 0xxx1 - 10 - - - VHSUB T2
1 - 11 1xxx0 01 0x - - - VPSEL T1
1 0000 11 1xxxx - 1x - 1101 - VPNOT T1
1 0000 != 11 10000 - 0x - - 0 VCMP (vector) T1
1 0000 != 11 10000 - 0x - - 1 VCMP (vector) T2
1 0000 != 11 10001 - 0x - - - VCMP (vector) T3
1 0000 != 11 10000 - 10 - - - VCMP (vector) T4
1 0000 != 11 10000 - 11 - - - VCMP (vector) T5
1 0000 != 11 10001 - 1x - - - VCMP (vector) T6
- 0000 11 1000x - 1x - != 1101 - VCMP (floating-point) T2
- 0000 11 1000x != 01 0x - - - VCMP (floating-point) T1
1 != 0000 11 1xxxx - 1x - 1101 - VPST T1
1 != 0000 != 11 1xxx0 - 0x - - 0 VPT T1
1 != 0000 != 11 1xxx0 - 0x - - 1 VPT T2
1 != 0000 != 11 1xxx1 - 0x - - - VPT T3
1 != 0000 != 11 1xxx0 - 10 - - - VPT T4
1 != 0000 != 11 1xxx0 - 11 - - - VPT T5
1 != 0000 != 11 1xxx1 - 1x - - - VPT T6
- != 0000 11 1xxxx - 1x - != 1101 - VPT (floating-point) T2
- != 0000 11 1xxxx != 01 0x - - - VPT (floating-point) T1
0 - 11 0xxxx - 0x - - 0 VADC T1
- - != 11 0xxx1 - 11 - - - VQSUB T2
- - 11 0xxxx - 11 - - - VQDMULL T2
1 - 11 0xxxx - 0x - - 0 VSBC T1

Vector arithmetic, minimum, maximum, and shift instructions

This section describes the encoding of the Vector arithmetic, minimum, maximum, and shift instructions. This
section is decoded from Vector immediate and register, and coprocessor data-processing instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
op0 op1 op2 op3 op4 op5 op6 op7

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

472

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

This table shows the decode field values and the associated instrutions:

op0 op1:op2 op2:op3:op4:op5 op3:op4 op5 op6 op7 Instruction
- 110 - != 11 00 10x 0 VMINV, VMINAV T2
0 x0x - - - 11x 1 VSHRN T1
- 110 - != 11 10 10x 0 VMINV, VMINAV T1
1 x0x - - - 11x 0 VQRSHRUN T1
- 110 - 11 10 10x 0 VMINNMV, VMINNMAV (floating-point) T1
- 111 - - x0 x0x 0 VMLADAV T2
- != 111 - - 01 00x 0 VADDLV T1
- 111 - != 11 01 00x 0 VADDV T1
- 110 - 11 00 10x 0 VMINNMV, VMINNMAV (floating-point) T2
0 x1x - - - 110 - VSHLC T1
0 x0x - - - 11x 0 VQSHRUN T1
- x0x - - - 01x 0 VQSHRN T1
1 x0x - - - 11x 1 VRSHRN T1
- 110 - 11 10 00x 0 VMAXNMV, VMAXNMAV (floating-point) T1
- 110 - != 11 00 00x 0 VMAXV, VMAXAV T2
- 110 - != 11 10 00x 0 VMAXV, VMAXAV T1
- 110 - 11 00 00x 0 VMAXNMV, VMAXNMAV (floating-point) T2
- != 11x - - x0 x0x 0 VRMLALDAVH T1

Alias VRMLALVH T1
- x0x - - - 01x 1 VQRSHRN T1
- != 011 - - x0 x0x 1 VABAV T1
- x1x 00000 - - 01x 0 VSHLL T1

11000
xx001
xx01x
xx1xx

- x1x 01000 - - 01x 0 VMOVL T1
10000

C2.3.1.2 Floating-point and vector load/store, move, and coprocessor instructions

This section describes the encoding of the Floating-point and vector load/store, move, and coprocessor instructions.
This section is decoded from Coprocessor, floating-point, and vector instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
op1 op0

This table shows the decode field values and the associated subgroups:

op0 op1 Subgroup
0xx - Coprocessor load, store, and move instructions
100 - Floating-point and vector load/store and, complex arithmetic instructions
101 - Coprocessor and Floating-point load/store, move, and security
110 - UNALLOCATED

111 1 Vector load instructions
111 0 Vector store instructions

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

473

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

C2.3.1.2.1 Coprocessor load, store, and move instructions

This section describes the encoding of the Coprocessor load, store, and move instructions. This section is decoded
from Floating-point and vector load/store, move, and coprocessor instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Extension specific behavior

This table shows the decode field values and the associated subgroups:

Extension specific behavior Subgroup
CP_GCP Architected coprocessor load, store, and move instructions

CP_CDEv1 Custom Floating-point and vector instructions

Architected coprocessor load, store, and move instructions

This section describes the encoding of the Architected coprocessor load, store, and move instructions. This section
is decoded from Coprocessor load, store, and move instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
op0 op1 op2 op3

This table shows the decode field values and the associated instrutions:

op0 op1 op2 op3 Instruction
0 != 0010 1 != 1111 LDC, LDC2 (immediate) T1
1 != 0010 1 != 1111 LDC, LDC2 (immediate) T2
0 != 0010 1 1111 LDC, LDC2 (literal) T1
1 != 0010 1 1111 LDC, LDC2 (literal) T2
0 != 0010 0 - STC, STC2 T1
1 != 0010 0 - STC, STC2 T2
0 0010 1 - MRRC, MRRC2 T1
1 0010 1 - MRRC, MRRC2 T2
0 0010 0 - MCRR, MCRR2 T1
1 0010 0 - MCRR, MCRR2 T2

Custom Floating-point and vector instructions

This section describes the encoding of the Custom Floating-point and vector instructions. This section is decoded
from Coprocessor load, store, and move instructions.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

474

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
op0 op1 op2

This table shows the decode field values and the associated instrutions:

op0 op1 op2 Instruction
0 0 1 VCX1 (vector) T1
0 0 0 VCX1 T1
0 1 1 VCX2 (vector) T1
0 1 0 VCX2 T1
1 - 1 VCX3 (vector) T1
1 - 0 VCX3 T1

C2.3.1.2.2 Floating-point and vector load/store and, complex arithmetic instructions

This section describes the encoding of the Floating-point and vector load/store and, complex arithmetic instructions.
This section is decoded from Floating-point and vector load/store, move, and coprocessor instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
op0

This table shows the decode field values and the associated subgroups:

op0 Subgroup
1 Floating-point and vector complex arithmetic instructions
0 Floating-point and vector load/store instructions

Floating-point and vector complex arithmetic instructions

This section describes the encoding of the Floating-point and vector complex arithmetic instructions. This section
is decoded from Floating-point and vector load/store and, complex arithmetic instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
op0 op1 op2 op3 op4 op5 op6 op7

This table shows the decode field values and the associated subgroups:

op0 op1 op2 op3 op4 op5 op6 op7 Subgroup
0 0 0 0 0 1 0 0 UNALLOCATED

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

475

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

This table shows the decode field values and the associated instrutions:

op0 op1 op2 op3 op4 op5 op6 op7 Instruction
1 0 0 0 0 1 0 0 VCADD (floating-point) T1
- 1 0 0 0 1 0 0 VCMLA (floating-point) T1

Floating-point and vector load/store instructions

This section describes the encoding of the Floating-point and vector load/store instructions. This section is decoded
from Floating-point and vector load/store and, complex arithmetic instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
op0 op1 op2

This table shows the decode field values and the associated subgroups:

op0 op1 op2 Subgroup
1 1x 1 UNALLOCATED

This table shows the decode field values and the associated instrutions:

op0 op1 op2 Instruction
1 01 1 VLDR T3
1 00 1 VSTR T3

C2.3.1.2.3 Coprocessor and Floating-point load/store, move, and security

This section describes the encoding of the Coprocessor and Floating-point load/store, move, and security. This
section is decoded from Floating-point and vector load/store, move, and coprocessor instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
op0 op1 op2 op3 op4 op5

This table shows the decode field values and the associated subgroups:

op0 op1 op2 op3 op4 op5 Subgroup
0010 - - - 0 - UNALLOCATED

0000 - - - - - UNALLOCATED

11x1 - - - - - UNALLOCATED

This table shows the decode field values and the associated instrutions:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

476

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

op0 op1 op2 op3 op4 op5 Instruction
10x1 1 - 1xx - 1 FLDMDBX, FLDMIAX T1
01xx
10x1 1 != 1111 1xx - 0 VLDM T1
01xx
10x1 1 != 1111 0xx - - VLDM T2
01xx
1xx0 1 - 1xx - - VLDR T1
1xx0 1 - 0xx - - VLDR T2
00x1 1 - 00x - - VLLDM T1
00x1 1 - 01x - - VLLDM T2

Alias VPOP T1
Alias VPOP T2

10x1 0 - 1xx - 1 FSTMDBX, FSTMIAX T1
01xx
10x1 0 - 1xx - 0 VSTM T1
01xx
10x1 0 - 0xx - - VSTM T2
01xx
1xx0 0 - 1xx - - VSTR T1
1xx0 0 - 0xx - - VSTR T2
00x1 0 - 00x - - VLSTM T1
00x1 0 - 01x - - VLSTM T2

Alias VPUSH T1
Alias VPUSH T2

0010 - - 100 1 - VMOV (between two general-purpose registers and a doubleword register) T1
0010 - - 000 1 - VMOV (between two general-purpose registers and two single-precision registers) T1
01x0 1 1111 1xx - 0 VSCCLRM T1
01x0 1 1111 0xx - - VSCCLRM T2

C2.3.1.2.4 Vector load instructions

This section describes the encoding of the Vector load instructions. This section is decoded from Floating-point
and vector load/store, move, and coprocessor instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
op0 op1 op2 op3 op4 op5 op6 op7

This table shows the decode field values and the associated subgroups:

op0 op1 op2 op3 op4 op5 op6 op7 Subgroup
1 00xx - 1 - - - - UNALLOCATED

This table shows the decode field values and the associated instrutions:

op0 op1 op2 op3 op4 op5 op6 op7 Instruction

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

477

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

1 01xx - 1 != 11 - - 0 VLD2 T1
1 01xx - 1 != 11 - - 1 VLD4 T1
0 - - 1 00 - - - VLDRB, VLDRH, VLDRW T5
0 - - 1 01 - - - VLDRB, VLDRH, VLDRW T6
0 - - 1 10 - - - VLDRB, VLDRH, VLDRW T7
1 1xxx - 1 0x - - - VLDRB, VLDRH, VLDRW, VLDRD (vector) T5
1 1xxx - 1 1x - - - VLDRB, VLDRH, VLDRW, VLDRD (vector) T6
- 1x00 0 0 != 11 - - - VLDRB, VLDRH, VLDRW T1

1x01
0x01

- 1x00 1 0 != 11 - - - VLDRB, VLDRH, VLDRW T2
1x01
0x01

- 1xx0 - 0 11 - - - VLDR (System Register) T1
1xx1
0xx1

- 01x0 - 0 - 0 0 - VLDRB, VLDRH, VLDRW, VLDRD (vector) T1
- 01x0 - 0 - 0 1 - VLDRB, VLDRH, VLDRW, VLDRD (vector) T2
- 01x0 - 0 - 1 0 - VLDRB, VLDRH, VLDRW, VLDRD (vector) T3
- 01x0 - 0 - 1 1 - VLDRB, VLDRH, VLDRW, VLDRD (vector) T4
0 00x0 - 0 1x - - - VMOV (two general-purpose registers to two 32-bit vector lanes) T1

C2.3.1.2.5 Vector store instructions

This section describes the encoding of the Vector store instructions. This section is decoded from Floating-point
and vector load/store, move, and coprocessor instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
op0 op1 op2 op3 op4 op5 op6 op7

This table shows the decode field values and the associated subgroups:

op0 op1 op2 op3 op4 op5 op6 op7 Subgroup
1 00xx - 1 - - - - UNALLOCATED

This table shows the decode field values and the associated instrutions:

op0 op1 op2 op3 op4 op5 op6 op7 Instruction
1 01xx - 1 != 11 - - 0 VST2 T1
1 01xx - 1 != 11 - - 1 VST4 T1
0 - - 1 00 - - - VSTRB, VSTRH, VSTRW T5
0 - - 1 01 - - - VSTRB, VSTRH, VSTRW T6
0 - - 1 10 - - - VSTRB, VSTRH, VSTRW T7
1 1xxx - 1 0x - - - VSTRB, VSTRH, VSTRW, VSTRD (vector) T5
1 1xxx - 1 1x - - - VSTRB, VSTRH, VSTRW, VSTRD (vector) T6
- 1x00 0 0 != 11 - - - VSTRB, VSTRH, VSTRW T1

1x01

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

478

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

0x01
- 1x00 1 0 != 11 - - - VSTRB, VSTRH, VSTRW T2

1x01
0x01

- 1xx0 - 0 11 - - - VSTR (System Register) T1
1xx1
0xx1

- 01x0 - 0 - 0 0 - VSTRB, VSTRH, VSTRW, VSTRD (vector) T1
- 01x0 - 0 - 0 1 - VSTRB, VSTRH, VSTRW, VSTRD (vector) T2
- 01x0 - 0 - 1 0 - VSTRB, VSTRH, VSTRW, VSTRD (vector) T3
- 01x0 - 0 - 1 1 - VSTRB, VSTRH, VSTRW, VSTRD (vector) T4
0 00x0 - 0 1x - - - VMOV (two 32-bit vector lanes to two general-purpose registers) T1

C2.3.1.3 Miscellaneous vector arithmetic instructions

This section describes the encoding of the Miscellaneous vector arithmetic instructions. This section is decoded
from Coprocessor, floating-point, and vector instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
op0 op1 op2 op3 op4 op5 op6 op7

This table shows the decode field values and the associated instrutions:

op0 op1 op2 op3 op4 op5:op3 op5:op6 op7 Instruction
1 1 11xx00 0100 0 - x0 0 VCLS T1
0 0 00xxx0 0001 - - x1 0 VAND T1
- 1 000xxx - 0 11110 - - VMOV (immediate) (vector) T1

0xxx0
011x1

- 0 xxxxx0 0000 - - x1 0 VQADD T1
Alias VORN (immediate) T1

- 0 != 11xxx0 0100 - - x0 0 VSHL T3
- 1 000xxx 0xx1 0 - 11 - VBIC (immediate) T1

10x1
- 0 != 11xxx0 0110 - - x1 0 VMIN, VMINA T1
0 0 0xxxx0 1101 - - x0 0 VADD (floating-point) T1
1 0 1xxxx0 1111 - - x1 0 VMINNM, VMINNMA (floating-point) T1
- 1 != 000xxx 0111 0 - x1 0 VQSHL, VQSHLU T2
- 0 != 11xxx0 0110 - - x0 0 VMAX, VMAXA T1
0 0 xxxxx0 1000 - - x0 0 VADD (vector) T1
- 1 != 000xxx 0010 0 - x1 0 VRSHR T1
- 0 xxxxx0 0111 - - x0 0 VABD T1
- 1 != 000xxx 0000 0 - x1 0 VSHR T1
- 1 000xxx 0xx1 0 - 01 - VORR (immediate) T1

10x1
Alias VMOV (register) (vector) T1

1 0 xxxxx0 1000 - - x0 0 VSUB (vector) T1
0 0 1xxxx0 1100 - - x1 0 VFMA, VFMS (floating-point) T2
0 0 0xxxx0 1100 - - x1 0 VFMA, VFMS (floating-point) T1

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

479

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

- 1 != 000xxx 11xx 0 - x1 0 VCVT (between floating-point and fixed-point) (vector) T1
1 1 11xx00 0000 0 - x0 0 VREV64 T1
0 0 xxxxx0 1001 - - x1 0 VMUL (vector) T1
0 0 1xxxx0 1101 - - x0 0 VSUB (floating-point) T1
- 0 xxxxx0 0000 - - x0 0 VHADD T1
1 0 0xxxx0 1101 - - x1 0 VMUL (floating-point) T1
1 1 11xx01 0111 0 - x0 0 VABS (floating-point) T1
1 1 11xx00 0111 1 - x0 0 VQNEG T1
- 0 xxxxx0 0010 - - x0 0 VHSUB T1
1 1 110000 0101 1 - x0 0 VMVN (register) T1
- 0 != 11xxx0 0101 - - x0 0 VRSHL T1
1 0 xxxxx0 1011 - - x0 0 VQDMULH, VQRDMULH T2

Alias VAND (immediate) T1
1 1 11xx00 0111 0 - x0 0 VQABS T1
1 1 11xx01 0011 0 - x0 0 VABS (vector) T1
1 1 11xx10 01xx - - x0 0 VRINT (floating-point) T1
1 0 1xxxx0 1101 - - x0 0 VABD (floating-point) T1
1 1 11xx11 011x - - x0 0 VCVT (between floating-point and integer) T1
0 1 != 000xxx 0101 0 - x1 0 VSHL T1
- 0 xxxxx0 0001 - - x0 0 VRHADD T1
0 0 11xxx0 0001 - - x1 0 VORN T1
1 1 != 000xxx 0101 0 - x1 0 VSLI T1
1 1 != 000xxx 0100 0 - x1 0 VSRI T1
0 0 10xxx0 0001 - - x1 0 VORR T1
1 0 00xxx0 0001 - - x1 0 VEOR T1
0 0 xxxxx0 1011 - - x0 0 VQDMULH, VQRDMULH T1
1 1 11xx11 00xx - - x0 0 VCVT (from floating-point to integer) T1
1 1 11xx01 0011 1 - x0 0 VNEG (vector) T1
- 1 000xxx xx00 0 - 11 - VMVN (immediate) T1

x010
0110

- 0 != 11xxx0 0100 - - x1 0 VQSHL, VQSHLU T4
1 1 11xx01 0111 1 - x0 0 VNEG (floating-point) T1
1 1 11xx00 0001 0 - x0 0 VREV16 T1
1 0 0xxxx0 1111 - - x1 0 VMAXNM, VMAXNMA (floating-point) T1
0 0 01xxx0 0001 - - x1 0 VBIC (register) T1
1 1 != 000xxx 0110 0 - x1 0 VQSHL, VQSHLU T3
1 1 11xx00 0000 1 - x0 0 VREV32 T1
- 0 xxxxx0 0010 - - x1 0 VQSUB T1
1 1 11xx00 0100 1 - x0 0 VCLZ T1
- 0 != 11xxx0 0101 - - x1 0 VQRSHL T1

C2.3.2 Load/store (multiple, dual, exclusive, acquire-release)

This section describes the encoding of the Load/store (multiple, dual, exclusive, acquire-release). This section is
decoded from 32-bit T32 instruction encoding.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

480

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
op0 op1

This table shows the decode field values and the associated subgroups:

op0 op1 Subgroup
- 0x Load/store multiple
0 10 Load/store exclusive, load-acquire/store-release
0 11 Load/store dual (post-indexed)
1 10 Load/store dual (literal and immediate)
1 11 Load/store dual (pre-indexed), secure gateway

C2.3.2.1 Load/store multiple

This section describes the encoding of the Load/store multiple. This section is decoded from Load/store (multiple,
dual, exclusive, acquire-release).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
opc L Rn

This table shows the decode field values and the associated subgroups:

L Rn opc Subgroup
- - 00 UNALLOCATED

- - 11 UNALLOCATED

This table shows the decode field values and the associated instrutions:

L Rn opc Instruction
0 - 01 STM, STMIA, STMEA T2
1 != 1111 01 LDM, LDMIA, LDMFD T2
1 1111 01 CLRM T1
0 - 10 STMDB, STMFD T1
1 - 10 LDMDB, LDMEA T1

Alias PUSH (multiple registers) T1
Alias POP (multiple registers) T2

C2.3.2.2 Load/store exclusive, load-acquire/store-release

This section describes the encoding of the Load/store exclusive, load-acquire/store-release. This section is decoded
from Load/store (multiple, dual, exclusive, acquire-release).

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

481

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
op0 op1 op2

This table shows the decode field values and the associated subgroups:

op0 op1 op2 Subgroup
0 != 0xxxx1111 - Load/store exclusive
1 0xxxxxxxx 000 UNALLOCATED

1 - 01x Load/store exclusive byte/half/dual
1 - 1xx Load-acquire / Store-release

This table shows the decode field values and the associated instrutions:

op0 op1 op2 Instruction
0 0xxxx1111 - TT, TTT, TTA, TTAT T1
1 1xxxxxxxx 000 TBB, TBH T1

C2.3.2.2.1 Load/store exclusive

This section describes the encoding of the Load/store exclusive. This section is decoded from Load/store exclusive,
load-acquire/store-release.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
L

This table shows the decode field values and the associated instrutions:

L Instruction
0 STREX T1
1 LDREX T1

C2.3.2.2.2 Load/store exclusive byte/half/dual

This section describes the encoding of the Load/store exclusive byte/half/dual. This section is decoded from
Load/store exclusive, load-acquire/store-release.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
L sz

This table shows the decode field values and the associated subgroups:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

482

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

L sz Subgroup
0 10 UNALLOCATED

0 11 UNALLOCATED

1 10 UNALLOCATED

1 11 UNALLOCATED

This table shows the decode field values and the associated instrutions:

L sz Instruction
0 00 STREXB T1
0 01 STREXH T1
1 00 LDREXB T1
1 01 LDREXH T1

C2.3.2.2.3 Load-acquire / Store-release

This section describes the encoding of the Load-acquire / Store-release. This section is decoded from Load/store
exclusive, load-acquire/store-release.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
L op sz

This table shows the decode field values and the associated subgroups:

L op sz Subgroup
0 0 11 UNALLOCATED

0 1 11 UNALLOCATED

1 0 11 UNALLOCATED

1 1 11 UNALLOCATED

This table shows the decode field values and the associated instrutions:

L op sz Instruction
0 0 00 STLB T1
0 0 01 STLH T1
0 0 10 STL T1
0 1 00 STLEXB T1
0 1 01 STLEXH T1
0 1 10 STLEX T1
1 0 00 LDAB T1
1 0 01 LDAH T1
1 0 10 LDA T1
1 1 00 LDAEXB T1
1 1 01 LDAEXH T1
1 1 10 LDAEX T1

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

483

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

C2.3.2.3 Load/store dual (post-indexed)

This section describes the encoding of the Load/store dual (post-indexed). This section is decoded from Load/store
(multiple, dual, exclusive, acquire-release).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
L op0

This table shows the decode field values and the associated subgroups:

L op0 Subgroup
- 1111 UNPREDICTABLE

This table shows the decode field values and the associated instrutions:

L op0 Instruction
0 != 1111 STRD (immediate) T1
1 != 1111 LDRD (immediate) T1

C2.3.2.4 Load/store dual (literal and immediate)

This section describes the encoding of the Load/store dual (literal and immediate). This section is decoded from
Load/store (multiple, dual, exclusive, acquire-release).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
L op0

This table shows the decode field values and the associated instrutions:

L op0 Instruction
- 1111 LDRD (literal) T1
0 != 1111 STRD (immediate) T1
1 != 1111 LDRD (immediate) T1

C2.3.2.5 Load/store dual (pre-indexed), secure gateway

This section describes the encoding of the Load/store dual (pre-indexed), secure gateway. This section is decoded
from Load/store (multiple, dual, exclusive, acquire-release).

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

484

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
op0 op1 op2 op3

This table shows the decode field values and the associated subgroups:

op0 op1 op2 op3 Subgroup
0 0 1111 - UNPREDICTABLE

0 1 1111 != 1110100101111111 UNPREDICTABLE

1 0 1111 - UNPREDICTABLE

1 1 1111 - UNPREDICTABLE

This table shows the decode field values and the associated instrutions:

op0 op1 op2 op3 Instruction
0 1 1111 1110100101111111 SG T1
- 0 != 1111 - STRD (immediate) T1
- 1 != 1111 - LDRD (immediate) T1

C2.3.3 Data-processing (shifted register)

This section describes the encoding of the Data-processing (shifted register). This section is decoded from 32-bit
T32 instruction encoding.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
op0

This table shows the decode field values and the associated subgroups:

op0 Subgroup
0010 Wide shift, shift, and conditional instructions

!= 0010 Shifted register instructions

C2.3.3.1 Wide shift, shift, and conditional instructions

This section describes the encoding of the Wide shift, shift, and conditional instructions. This section is decoded
from Data-processing (shifted register).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
S Rn op0 op1 op2 op3 op4

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

485

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

This table shows the decode field values and the associated instrutions:

Rn S op0 op1 op2 op3 op4 Instruction
xxx0 1 0 - != 111 10 1111 ASRL (immediate) T1
xxx0 1 0 - != 111 00 1111 LSLL (immediate) T1
xxx0 1 0 - != 111 01 1111 LSRL (immediate) T1

- 1 0 - != 111 11 1111 SQSHLL (immediate) T1
xxx1 1 0 - != 111 10 1111 SRSHRL (immediate) T1
xxx1 1 0 - != 111 00 1111 UQSHLL (immediate) T1
xxx1 1 0 - != 111 01 1111 URSHRL (immediate) T1

- 1 0 - 111 11 1111 SQSHL (immediate) T1
- 1 0 - 111 10 1111 SRSHR (immediate) T1
- 1 0 - 111 00 1111 UQSHL (immediate) T1
- 1 0 - 111 01 1111 URSHR (immediate) T1

xxx0 1 - - != 111 10 1101 ASRL (register) T1
xxx0 1 - - != 111 00 1101 LSLL (register) T1

- 1 - - 111 10 1101 SQRSHR (register) T1
xxx1 1 - - != 111 10 1101 SQRSHRL (register) T1

- 1 - - 111 00 1101 UQRSHL (register) T1
xxx1 1 - - != 111 00 1101 UQRSHLL (register) T1

!= 1111 0 0 - - - != 11x1 ORR (register) T2
1111 0 0 - - - != 11x1 MOV (register) T3

Alias ASR (immediate) T3
Alias ASRS (immediate) T3
Alias LSL (immediate) T3
Alias LSLS (immediate) T3
Alias LSR (immediate) T3
Alias LSRS (immediate) T3
Alias ROR (immediate) T3
Alias RORS (immediate) T3
Alias RRX T3
Alias RRXS T3

!= 1111 1 0 - - - != 11x1 ORRS (register)
1111 1 0 - - - != 11x1 MOVS (register)

- - 1 00 - - != 1101 CSEL T1
- - 1 01 - - != 1101 CSINC T1
- - 1 10 - - != 1101 CSINV T1
- - 1 11 - - != 1101 CSNEG T1

Alias CINC T1
Alias CINV T1
Alias CNEG T1
Alias CSET T1
Alias CSETM T1

C2.3.3.2 Shifted register instructions

This section describes the encoding of the Shifted register instructions. This section is decoded from Data-
processing (shifted register).

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

486

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
op0 S Rn imm3 Rd imm2 sr_type

This table shows the decode field values and the associated subgroups:

Rd Rn S imm3:imm2:sr_type op0 Subgroup
- - - - 0101 UNALLOCATED

- - - - 0111 UNALLOCATED

- - - - 1001 UNALLOCATED

- - - - 1100 UNALLOCATED

- - - - 1111 UNALLOCATED

This table shows the decode field values and the associated instrutions:

Rd Rn S imm3:imm2:sr_type op0 Instruction
- - 0 - 0000 AND (register) T2

!= 1111 - 1 != 0000011 0000 ANDS (register)
1111 - 1 != 0000011 0000 TST (register) T2

!= 1111 - 1 0000011 0000 ANDS extend (register)
1111 - 1 0000011 0000 TST extend (register)

- - - - 0001 BIC (register) T2
- != 1111 0 - 0011 ORN (register) T1
- 1111 0 - 0011 MVN (register) T2
- != 1111 1 - 0011 ORNS (register)
- 1111 1 - 0011 MVNS (register)
- - 0 - 0100 EOR (register) T2

!= 1111 - 1 != 0000011 0100 EORS (register)
1111 - 1 != 0000011 0100 TEQ (register) T1

!= 1111 - 1 0000011 0100 EORS extend (register)
1111 - 1 0000011 0100 TEQ extend (register)

- - 0 xxxxxx0 0110 PKHBT, PKHTB T1
- != 1101 0 - 1000 ADD (register) T3
- 1101 0 - 1000 ADD (SP plus register) T3

!= 1111 != 1101 1 - 1000 ADDS (register)
!= 1111 1101 1 - 1000 ADDS (SP plus register)

1111 - 1 - 1000 CMN (register) T2
- - - - 1010 ADC (register) T2
- - - - 1011 SBC (register) T2
- != 1101 0 - 1101 SUB (register) T2
- 1101 0 - 1101 SUB (SP minus register) T1

!= 1111 != 1101 1 - 1101 SUBS (register)
!= 1111 1101 1 - 1101 SUBS (SP minus register)

1111 - 1 - 1101 CMP (register) T3
- - - - 1110 RSB (register) T1

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

487

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

C2.3.4 Branches and miscellaneous control

This section describes the encoding of the Branches and miscellaneous control. This section is decoded from
32-bit T32 instruction encoding.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
op0 op1 op2 op3 op4 op5 op6

This table shows the decode field values and the associated subgroups:

op0 op1 op2 op3 op4 op5 op6 Subgroup
0 1110 10 0 0 000 - Hints
0 1110 10 0 0 != 000 - UNALLOCATED

0 1110 11 0 0 - - Miscellaneous system
0 1111 0x 0 0 - - UNALLOCATED

1 1110 - 0 0 - - UNALLOCATED

1 1111 0x 0 0 - - UNALLOCATED

1 1111 1x 0 0 - - Exception generation
- - - 1 0 - 1 Loop and branch instructions

This table shows the decode field values and the associated instrutions:

op0 op1 op2 op3 op4 op5 op6 Instruction
0 1110 0x 0 0 - - MSR (register) T1
0 1111 1x 0 0 - - MRS T1
- != 111x - 0 0 - - B T3
- - - 0 1 - - B T4
- - - 1 1 - - BL T1

C2.3.4.1 Hints

This section describes the encoding of the Hints. This section is decoded from Branches and miscellaneous control.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
hint option

This table shows the decode field values and the associated subgroups:

hint option Subgroup
0000 0101 Reserved hint, behaves as NOP
0000 011x Reserved hint, behaves as NOP
0000 1xxx Reserved hint, behaves as NOP
0001 != 0x00 Reserved hint, behaves as NOP
0001 1xxx Reserved hint, behaves as NOP
001x - Reserved hint, behaves as NOP

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

488

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

01xx - Reserved hint, behaves as NOP
10xx - Reserved hint, behaves as NOP
110x - Reserved hint, behaves as NOP
1110 - Reserved hint, behaves as NOP

This table shows the decode field values and the associated instrutions:

hint option Instruction
0000 0000 NOP T2
0000 0001 YIELD T2
0000 0010 WFE T2
0000 0011 WFI T2
0000 0100 SEV T2
0001 0000 ESB T1
0001 0100 CSDB T1
1111 - DBG T1

C2.3.4.2 Miscellaneous system

This section describes the encoding of the Miscellaneous system. This section is decoded from Branches and
miscellaneous control.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
opc option

This table shows the decode field values and the associated subgroups:

opc option Subgroup
000x - UNALLOCATED

0011 - UNALLOCATED

0111 - UNALLOCATED

1xxx - UNALLOCATED

This table shows the decode field values and the associated instrutions:

opc option Instruction
0010 - CLREX T1
0100 != 0x00 DSB T1
0100 0000 SSBB T1
0100 0100 PSSBB T1
0101 - DMB T1
0110 - ISB T1

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

489

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

C2.3.4.3 Exception generation

This section describes the encoding of the Exception generation. This section is decoded from Branches and
miscellaneous control.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o1 o2

This table shows the decode field values and the associated subgroups:

o1 o2 Subgroup
0 0 UNALLOCATED

0 1 UNALLOCATED

1 0 UNALLOCATED

This table shows the decode field values and the associated instrutions:

o1 o2 Instruction
1 1 UDF T2

C2.3.4.4 Loop and branch instructions

This section describes the encoding of the Loop and branch instructions. This section is decoded from Branches
and miscellaneous control.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
op0

This table shows the decode field values and the associated subgroups:

op0 Subgroup
!= 0000 Branch future instructions

0000 Loop instructions

C2.3.4.4.1 Branch future instructions

This section describes the encoding of the Branch future instructions. This section is decoded from Loop and
branch instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
op0 op1

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

490

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

This table shows the decode field values and the associated instrutions:

op0 op1 Instruction
- 0 BF, BFX, BFL, BFLX, BFCSEL T4

0xx 1 BF, BFX, BFL, BFLX, BFCSEL T2
10x 1 BF, BFX, BFL, BFLX, BFCSEL T1
110 1 BF, BFX, BFL, BFLX, BFCSEL T3
111 1 BF, BFX, BFL, BFLX, BFCSEL T5

C2.3.4.4.2 Loop instructions

This section describes the encoding of the Loop instructions. This section is decoded from Loop and branch
instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
op0 op1 op2 op3

This table shows the decode field values and the associated instrutions:

op0 op1 op2 op3 Instruction
0xx 1111 1 - LCTP T1
000 1111 0 - LE, LETP T1
01x 1111 0 - LE, LETP T2
001 1111 0 - LE, LETP T3
1xx - 0 - WLS, DLS, WLSTP, DLSTP T1
1xx - 1 - WLS, DLS, WLSTP, DLSTP T2
0xx != 1111 0 - WLS, DLS, WLSTP, DLSTP T3
0xx != 1111 1 0 WLS, DLS, WLSTP, DLSTP T4
0xx != 1111 1 1 VCTP T1

C2.3.5 Data-processing (modified immediate)

This section describes the encoding of the Data-processing (modified immediate). This section is decoded from
32-bit T32 instruction encoding.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
op1 S Rn Rd

This table shows the decode field values and the associated subgroups:

Rd Rn S op1 Subgroup
- - - 0101 UNALLOCATED

- - - 011x UNALLOCATED

- - - 1001 UNALLOCATED

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

491

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

- - - 1100 UNALLOCATED

- - - 1111 UNALLOCATED

This table shows the decode field values and the associated instrutions:

Rd Rn S op1 Instruction
- - 0 0000 AND (immediate) T1

!= 1111 - 1 0000 ANDS (immediate)
1111 - 1 0000 TST (immediate) T1

- - - 0001 BIC (immediate) T1
- != 1111 - 0010 ORR (immediate) T1
- 1111 - 0010 MOV (immediate) T2
- != 1111 - 0011 ORN (immediate) T1
- 1111 - 0011 MVN (immediate) T1
- - 0 0100 EOR (immediate) T1

!= 1111 - 1 0100 EORS (immediate)
1111 - 1 0100 TEQ (immediate) T1

- != 1101 0 1000 ADD (immediate) T3
- 1101 0 1000 ADD (SP plus immediate) T3

!= 1111 != 1101 1 1000 ADDS (immediate)
!= 1111 1101 1 1000 ADDS (SP plus immediate)

1111 - 1 1000 CMN (immediate) T1
- - - 1010 ADC (immediate) T1
- - - 1011 SBC (immediate) T1
- != 1101 0 1101 SUB (immediate) T3
- 1101 0 1101 SUB (SP minus immediate) T2

!= 1111 != 1101 1 1101 SUBS (SP minus immediate)
!= 1111 1101 1 1101 SUBS (SP minus immediate)

1111 - 1 1101 CMP (immediate) T2
- - - 1110 RSB (immediate) T2

C2.3.6 Data-processing (plain binary immediate)

This section describes the encoding of the Data-processing (plain binary immediate). This section is decoded from
32-bit T32 instruction encoding.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
op0 op1

This table shows the decode field values and the associated subgroups:

op0 op1 Subgroup
0 0x Data-processing (simple immediate)
0 10 Move Wide (16-bit immediate)
0 11 UNALLOCATED

1 - Saturate, bitfield

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

492

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

C2.3.6.1 Data-processing (simple immediate)

This section describes the encoding of the Data-processing (simple immediate). This section is decoded from
Data-processing (plain binary immediate).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o1 o2 Rn

This table shows the decode field values and the associated subgroups:

Rn o1 o2 Subgroup
- 0 1 UNALLOCATED

- 1 0 UNALLOCATED

This table shows the decode field values and the associated instrutions:

Rn o1 o2 Instruction
Alias ADD (immediate, to PC) T3

!= 11x1 0 0 ADD (immediate) T4
1101 0 0 ADD (SP plus immediate) T4
1111 0 0 ADR T3

!= 11x1 1 1 SUB (immediate) T4
1101 1 1 SUB (SP minus immediate) T3
1111 1 1 ADR T2

Alias SUB (immediate, from PC) T2

C2.3.6.2 Move Wide (16-bit immediate)

This section describes the encoding of the Move Wide (16-bit immediate). This section is decoded from Data-
processing (plain binary immediate).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o1

This table shows the decode field values and the associated instrutions:

o1 Instruction
0 MOV (immediate) T3
1 MOVT T1

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

493

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

C2.3.6.3 Saturate, bitfield

This section describes the encoding of the Saturate, bitfield. This section is decoded from Data-processing (plain
binary immediate).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
op1 Rn imm3 imm2

This table shows the decode field values and the associated subgroups:

Rn imm3:imm2 op1 Subgroup
- - 111 UNALLOCATED

This table shows the decode field values and the associated instrutions:

Rn imm3:imm2 op1 Instruction
- - 000 SSAT T1
- != 00000 001 SSAT
- 00000 001 SSAT16 T1
- - 010 SBFX T1

!= 1111 - 011 BFI T1
1111 - 011 BFC T1

- - 100 USAT T1
- != 00000 101 USAT
- 00000 101 USAT16 T1
- - 110 UBFX T1

C2.3.7 Load/store single

This section describes the encoding of the Load/store single. This section is decoded from 32-bit T32 instruction
encoding.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
op0 op1 op2 op3

This table shows the decode field values and the associated subgroups:

op0 op1 op2 op3 Subgroup
00 - != 1111 000000 Load/store, unsigned (register offset)
00 - != 1111 000001 UNALLOCATED

00 - != 1111 00001x UNALLOCATED

00 - != 1111 0001xx UNALLOCATED

00 - != 1111 001xxx UNALLOCATED

00 - != 1111 01xxxx UNALLOCATED

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

494

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

00 - != 1111 10x0xx UNALLOCATED

00 - != 1111 10x1xx Load/store, unsigned (immediate, post-indexed)
00 - != 1111 1100xx Load/store, unsigned (negative immediate)
00 - != 1111 1110xx Load/store, unsigned (unprivileged)
00 - != 1111 11x1xx Load/store, unsigned (immediate, pre-indexed)
01 - != 1111 - Load/store, unsigned (positive immediate)
0x - 1111 - Load, unsigned (literal)
10 1 != 1111 000000 Load/store, signed (register offset)
10 1 != 1111 000001 UNALLOCATED

10 1 != 1111 00001x UNALLOCATED

10 1 != 1111 0001xx UNALLOCATED

10 1 != 1111 001xxx UNALLOCATED

10 1 != 1111 01xxxx UNALLOCATED

10 1 != 1111 10x0xx UNALLOCATED

10 1 != 1111 10x1xx Load/store, signed (immediate, post-indexed)
10 1 != 1111 1100xx Load/store, signed (negative immediate)
10 1 != 1111 1110xx Load/store, signed (unprivileged)
10 1 != 1111 11x1xx Load/store, signed (immediate, pre-indexed)
11 1 != 1111 - Load/store, signed (positive immediate)
1x 1 1111 - Load, signed (literal)

C2.3.7.1 Load/store, unsigned (register offset)

This section describes the encoding of the Load/store, unsigned (register offset). This section is decoded from
Load/store single.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
size L Rt

This table shows the decode field values and the associated subgroups:

L Rt size Subgroup
- - 11 UNALLOCATED

This table shows the decode field values and the associated instrutions:

L Rt size Instruction
0 - 00 STRB (register) T2
1 != 1111 00 LDRB (register) T2
1 1111 0x PLD, PLDW (register) T1
0 - 01 STRH (register) T2
1 != 1111 01 LDRH (register) T2
0 - 10 STR (register) T2
1 - 10 LDR (register) T2

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

495

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

C2.3.7.2 Load/store, unsigned (immediate, post-indexed)

This section describes the encoding of the Load/store, unsigned (immediate, post-indexed). This section is decoded
from Load/store single.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
size L

This table shows the decode field values and the associated subgroups:

L size Subgroup
- 11 UNALLOCATED

This table shows the decode field values and the associated instrutions:

L size Instruction
0 00 STRB (immediate) T3
1 00 LDRB (immediate) T3
0 01 STRH (immediate) T3
1 01 LDRH (immediate) T3
0 10 STR (immediate) T4
Alias PUSH (single register) T4

1 10 LDR (immediate) T4
Alias POP (single register) T4

C2.3.7.3 Load/store, unsigned (negative immediate)

This section describes the encoding of the Load/store, unsigned (negative immediate). This section is decoded
from Load/store single.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
size L Rt

This table shows the decode field values and the associated subgroups:

L Rt size Subgroup
- - 11 UNALLOCATED

This table shows the decode field values and the associated instrutions:

L Rt size Instruction
0 - 00 STRB (immediate) T3
1 != 1111 00 LDRB (immediate) T3

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

496

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

1 1111 0x PLD, PLDW (immediate) T2
0 - 01 STRH (immediate) T3
1 != 1111 01 LDRH (immediate) T3
0 - 10 STR (immediate) T4

Alias PUSH (single register) T4
1 - 10 LDR (immediate) T4

Alias POP (single register) T4

C2.3.7.4 Load/store, unsigned (unprivileged)

This section describes the encoding of the Load/store, unsigned (unprivileged). This section is decoded from
Load/store single.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
size L

This table shows the decode field values and the associated subgroups:

L size Subgroup
- 11 UNALLOCATED

This table shows the decode field values and the associated instrutions:

L size Instruction
0 00 STRBT T1
1 00 LDRBT T1
0 01 STRHT T1
1 01 LDRHT T1
0 10 STRT T1
1 10 LDRT T1

C2.3.7.5 Load/store, unsigned (immediate, pre-indexed)

This section describes the encoding of the Load/store, unsigned (immediate, pre-indexed). This section is decoded
from Load/store single.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
size L

This table shows the decode field values and the associated subgroups:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

497

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

L size Subgroup
- 11 UNALLOCATED

This table shows the decode field values and the associated instrutions:

L size Instruction
0 00 STRB (immediate) T3
1 00 LDRB (immediate) T3
0 01 STRH (immediate) T3
1 01 LDRH (immediate) T3
0 10 STR (immediate) T4
Alias PUSH (single register) T4

1 10 LDR (immediate) T4
Alias POP (single register) T4

C2.3.7.6 Load/store, unsigned (positive immediate)

This section describes the encoding of the Load/store, unsigned (positive immediate). This section is decoded from
Load/store single.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
size L Rt

This table shows the decode field values and the associated instrutions:

L Rt size Instruction
0 - 00 STRB (immediate) T2
1 != 1111 00 LDRB (immediate) T2
1 1111 0x PLD, PLDW (immediate) T1
0 - 01 STRH (immediate) T2
1 != 1111 01 LDRH (immediate) T2
0 - 10 STR (immediate) T3
1 - 10 LDR (immediate) T3

C2.3.7.7 Load, unsigned (literal)

This section describes the encoding of the Load, unsigned (literal). This section is decoded from Load/store single.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
size L Rt

This table shows the decode field values and the associated subgroups:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

498

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

L Rt size Subgroup
- - 11 UNALLOCATED

This table shows the decode field values and the associated instrutions:

L Rt size Instruction
1 != 1111 00 LDRB (literal) T1
1 1111 0x PLD (literal) T1
1 != 1111 01 LDRH (literal) T1
1 - 10 LDR (literal) T2

C2.3.7.8 Load/store, signed (register offset)

This section describes the encoding of the Load/store, signed (register offset). This section is decoded from
Load/store single.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
size Rt

This table shows the decode field values and the associated subgroups:

Rt size Subgroup
- 1x UNALLOCATED

1111 01 Reserved hint, behaves as NOP

This table shows the decode field values and the associated instrutions:

Rt size Instruction
!= 1111 00 LDRSB (register) T2

1111 00 PLI (register) T1
!= 1111 01 LDRSH (register) T2

C2.3.7.9 Load/store, signed (immediate, post-indexed)

This section describes the encoding of the Load/store, signed (immediate, post-indexed). This section is decoded
from Load/store single.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
size

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

499

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

This table shows the decode field values and the associated subgroups:

size Subgroup
1x UNALLOCATED

This table shows the decode field values and the associated instrutions:

size Instruction
00 LDRSB (immediate) T2
01 LDRSH (immediate) T2

C2.3.7.10 Load/store, signed (negative immediate)

This section describes the encoding of the Load/store, signed (negative immediate). This section is decoded from
Load/store single.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
size Rt

This table shows the decode field values and the associated subgroups:

Rt size Subgroup
- 1x UNALLOCATED

1111 01 Reserved hint, behaves as NOP

This table shows the decode field values and the associated instrutions:

Rt size Instruction
!= 1111 00 LDRSB (immediate) T2

1111 00 PLI (immediate, literal) T2
!= 1111 01 LDRSH (immediate) T2

C2.3.7.11 Load/store, signed (unprivileged)

This section describes the encoding of the Load/store, signed (unprivileged). This section is decoded from
Load/store single.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
size

This table shows the decode field values and the associated subgroups:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

500

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

size Subgroup
1x UNALLOCATED

This table shows the decode field values and the associated instrutions:

size Instruction
00 LDRSBT T1
01 LDRSHT T1

C2.3.7.12 Load/store, signed (immediate, pre-indexed)

This section describes the encoding of the Load/store, signed (immediate, pre-indexed). This section is decoded
from Load/store single.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
size

This table shows the decode field values and the associated subgroups:

size Subgroup
1x UNALLOCATED

This table shows the decode field values and the associated instrutions:

size Instruction
00 LDRSB (immediate) T2
01 LDRSH (immediate) T2

C2.3.7.13 Load/store, signed (positive immediate)

This section describes the encoding of the Load/store, signed (positive immediate). This section is decoded from
Load/store single.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
size Rt

This table shows the decode field values and the associated subgroups:

Rt size Subgroup
1111 01 Reserved hint, behaves as NOP

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

501

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

This table shows the decode field values and the associated instrutions:

Rt size Instruction
!= 1111 00 LDRSB (immediate) T1

1111 00 PLI (immediate, literal) T1
!= 1111 01 LDRSH (immediate) T1

C2.3.7.14 Load, signed (literal)

This section describes the encoding of the Load, signed (literal). This section is decoded from Load/store single.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
size Rt

This table shows the decode field values and the associated subgroups:

Rt size Subgroup
- 1x UNALLOCATED

1111 01 Reserved hint, behaves as NOP

This table shows the decode field values and the associated instrutions:

Rt size Instruction
!= 1111 00 LDRSB (literal) T1

1111 00 PLI (immediate, literal) T3
!= 1111 01 LDRSH (literal) T1

C2.3.8 Data-processing (register)

This section describes the encoding of the Data-processing (register). This section is decoded from 32-bit T32
instruction encoding.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
op0 op1

This table shows the decode field values and the associated subgroups:

op0 op1 Subgroup
0 0001 UNALLOCATED

0 001x UNALLOCATED

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

502

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

0 01xx UNALLOCATED

0 1xxx Register extends
1 0xxx Parallel add-subtract
1 10xx Data-processing (two source registers)
1 11xx UNALLOCATED

This table shows the decode field values and the associated instrutions:

op0 op1 Instruction
Alias ASRS (register) T2
Alias ASR (register) T2
Alias LSLS (register) T2
Alias LSL (register) T2
Alias LSRS (register) T2
Alias LSR (register) T2

0 0000 MOV, MOVS (register-shifted register) T2
Alias RORS (register) T2
Alias ROR (register) T2

C2.3.8.1 Register extends

This section describes the encoding of the Register extends. This section is decoded from Data-processing
(register).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
op1 U Rn

This table shows the decode field values and the associated subgroups:

Rn U op1 Subgroup
- - 11 UNALLOCATED

This table shows the decode field values and the associated instrutions:

Rn U op1 Instruction
!= 1111 0 00 SXTAH T1

1111 0 00 SXTH T2
!= 1111 1 00 UXTAH T1

1111 1 00 UXTH T2
!= 1111 0 01 SXTAB16 T1

1111 0 01 SXTB16 T1
!= 1111 1 01 UXTAB16 T1

1111 1 01 UXTB16 T1
!= 1111 0 10 SXTAB T1

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

503

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

1111 0 10 SXTB T2
!= 1111 1 10 UXTAB T1

1111 1 10 UXTB T2

C2.3.8.2 Parallel add-subtract

This section describes the encoding of the Parallel add-subtract. This section is decoded from Data-processing
(register).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
op1 U H S

This table shows the decode field values and the associated subgroups:

H S U op1 Subgroup
1 1 0 000 UNALLOCATED

1 1 1 000 UNALLOCATED

1 1 0 001 UNALLOCATED

1 1 1 001 UNALLOCATED

1 1 0 010 UNALLOCATED

1 1 1 010 UNALLOCATED

1 1 0 100 UNALLOCATED

1 1 1 100 UNALLOCATED

1 1 0 101 UNALLOCATED

1 1 1 101 UNALLOCATED

1 1 0 110 UNALLOCATED

1 1 1 110 UNALLOCATED

- - - 111 UNALLOCATED

This table shows the decode field values and the associated instrutions:

H S U op1 Instruction
0 0 0 000 SADD8 T1
0 1 0 000 QADD8 T1
1 0 0 000 SHADD8 T1
0 0 1 000 UADD8 T1
0 1 1 000 UQADD8 T1
1 0 1 000 UHADD8 T1
0 0 0 001 SADD16 T1
0 1 0 001 QADD16 T1
1 0 0 001 SHADD16 T1
0 0 1 001 UADD16 T1
0 1 1 001 UQADD16 T1
1 0 1 001 UHADD16 T1
0 0 0 010 SASX T1
0 1 0 010 QASX T1

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

504

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

1 0 0 010 SHASX T1
0 0 1 010 UASX T1
0 1 1 010 UQASX T1
1 0 1 010 UHASX T1
0 0 0 100 SSUB8 T1
0 1 0 100 QSUB8 T1
1 0 0 100 SHSUB8 T1
0 0 1 100 USUB8 T1
0 1 1 100 UQSUB8 T1
1 0 1 100 UHSUB8 T1
0 0 0 101 SSUB16 T1
0 1 0 101 QSUB16 T1
1 0 0 101 SHSUB16 T1
0 0 1 101 USUB16 T1
0 1 1 101 UQSUB16 T1
1 0 1 101 UHSUB16 T1
0 0 0 110 SSAX T1
0 1 0 110 QSAX T1
1 0 0 110 SHSAX T1
0 0 1 110 USAX T1
0 1 1 110 UQSAX T1
1 0 1 110 UHSAX T1

C2.3.8.3 Data-processing (two source registers)

This section describes the encoding of the Data-processing (two source registers). This section is decoded from
Data-processing (register).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
op0 op1

This table shows the decode field values and the associated subgroups:

op0 op1 Subgroup
010 01 UNALLOCATED

010 1x UNALLOCATED

011 01 UNALLOCATED

011 1x UNALLOCATED

1xx - UNALLOCATED

This table shows the decode field values and the associated instrutions:

op0 op1 Instruction
000 00 QADD T1
000 01 QDADD T1
000 10 QSUB T1

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

505

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

000 11 QDSUB T1
001 00 REV T2
001 01 REV16 T2
001 10 RBIT T1
001 11 REVSH T2
010 00 SEL T1
011 00 CLZ T1

C2.3.9 Multiply, multiply accumulate, and absolute difference

This section describes the encoding of the Multiply, multiply accumulate, and absolute difference. This section is
decoded from 32-bit T32 instruction encoding.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
op0

This table shows the decode field values and the associated subgroups:

op0 Subgroup
00 Multiply and absolute difference
01 UNALLOCATED

1x UNALLOCATED

C2.3.9.1 Multiply and absolute difference

This section describes the encoding of the Multiply and absolute difference. This section is decoded from Multiply,
multiply accumulate, and absolute difference.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
op1 Ra op2

This table shows the decode field values and the associated subgroups:

Ra op1 op2 Subgroup
- 000 1x UNALLOCATED

- 010 1x UNALLOCATED

- 011 1x UNALLOCATED

- 100 1x UNALLOCATED

- 101 1x UNALLOCATED

- 110 1x UNALLOCATED

- 111 01 UNALLOCATED

- 111 1x UNALLOCATED

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

506

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

This table shows the decode field values and the associated instrutions:

Ra op1 op2 Instruction
!= 1111 000 00 MLA T1

- 000 01 MLS T1
1111 000 00 MUL T2

!= 1111 001 - SMLABB, SMLABT, SMLATB, SMLATT T1
1111 001 - SMULBB, SMULBT, SMULTB, SMULTT T1

!= 1111 010 0x SMLAD, SMLADX T1
1111 010 0x SMUAD, SMUADX T1

!= 1111 011 0x SMLAWB, SMLAWT T1
1111 011 0x SMULWB, SMULWT T1

!= 1111 100 0x SMLSD, SMLSDX T1
1111 100 0x SMUSD, SMUSDX T1

!= 1111 101 0x SMMLA, SMMLAR T1
1111 101 0x SMMUL, SMMULR T1

- 110 0x SMMLS, SMMLSR T1
!= 1111 111 00 USADA8 T1

1111 111 00 USAD8 T1

C2.3.10 Long multiply and divide

This section describes the encoding of the Long multiply and divide. This section is decoded from 32-bit T32
instruction encoding.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
op1 op2

This table shows the decode field values and the associated subgroups:

op1 op2 Subgroup
000 != 0000 UNALLOCATED

001 != 1111 UNALLOCATED

010 != 0000 UNALLOCATED

011 != 1111 UNALLOCATED

100 0001 UNALLOCATED

100 001x UNALLOCATED

100 01xx UNALLOCATED

100 111x UNALLOCATED

101 0xxx UNALLOCATED

101 10xx UNALLOCATED

101 111x UNALLOCATED

110 0001 UNALLOCATED

110 001x UNALLOCATED

110 010x UNALLOCATED

110 0111 UNALLOCATED

110 1xxx UNALLOCATED

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

507

Chapter C2. Instruction Specification
C2.3. 32-bit T32 instruction encoding

111 - UNALLOCATED

This table shows the decode field values and the associated instrutions:

op1 op2 Instruction
000 0000 SMULL T1
001 1111 SDIV T1
010 0000 UMULL T1
011 1111 UDIV T1
100 0000 SMLAL T1
100 10xx SMLALBB, SMLALBT, SMLALTB, SMLALTT T1
100 110x SMLALD, SMLALDX T1
101 110x SMLSLD, SMLSLDX T1
110 0000 UMLAL T1
110 0110 UMAAL T1

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

508

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4 Alphabetical list of instructions

Every Armv8-M instruction is listed in this section. See Chapter C1 Instruction Set Overview on page 427 for the
format of the instruction descriptions.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

509

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.1 ADC (immediate)

Add with Carry (immediate). Add with Carry (immediate) adds an immediate value and the carry flag value to a
register value, and writes the result to the destination register. It can optionally update the condition flags based on
the result.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 1 0 1 0 S Rn 0 imm3 Rd imm8

ADC variant

Applies when S == 0.

ADC{<c>}{<q>} {<Rd>,} <Rn>, #<const>

ADCS variant

Applies when S == 1.

ADCS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); setflags = (S == '1'); imm32 = T32ExpandImm(i:imm3:imm8);
3 if d IN {13,15} || n IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register

is the same as <Rn>.
<Rn> Is the general-purpose source register, encoded in the "Rn" field.
<const> Is an immediate value derived from the 12-bit immediate that is encoded in the ’i:imm3:imm8’

field. See C1.5 Modified immediate constants on page 448 for the range of values.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 (result, carry, overflow) = AddWithCarry(R[n], imm32, APSR.C);
4 R[d] = result;
5 if setflags then
6 APSR.N = result[31];
7 APSR.Z = IsZeroBit(result);
8 APSR.C = carry;
9 APSR.V = overflow;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

510

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.2 ADC (register)

Add with Carry (register). Add with Carry (register) adds a register value, the carry flag value, and an optionally-
shifted register value, and writes the result to the destination register. It can optionally update the condition flags
based on the result.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 1 0 1 Rm Rdn

T1 variant

ADC<c>{<q>} {<Rdn>,} <Rdn>, <Rm>
// Inside IT block

ADCS{<q>} {<Rdn>,} <Rdn>, <Rm>
// Outside IT block

Decode for this encoding
1 d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();
2 (shift_t, shift_n) = (SRType_LSL, 0);

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 1 0 1 0 S Rn (0) imm3 Rd imm2

sr_type

Rm

ADC, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && sr_type == 11.

ADC{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ADC, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && sr_type == 11).

ADC<c>.W {<Rd>,} <Rn>, <Rm>
// Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1

ADC{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

ADCS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && imm2 == 00 && sr_type == 11.

ADCS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ADCS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && sr_type == 11).

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

511

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

ADCS.W {<Rd>,} <Rn>, <Rm>
// Outside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1

ADCS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
3 (shift_t, shift_n) = DecodeImmShift(sr_type, imm3:imm2);
4 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rdn> Is the first general-purpose source register and the destination register, encoded in the "Rdn"

field.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register

is the same as <Rn>.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
<shift> Is the type of shift to be applied to the second source register, encoded in the "sr_type" field. It

can have the following values:
LSL when sr_type = 00
LSR when sr_type = 01
ASR when sr_type = 10
ROR when sr_type = 11

<amount> Is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift>
= LSR or ASR) encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 shifted = Shift(R[m], shift_t, shift_n, APSR.C);
4 (result, carry, overflow) = AddWithCarry(R[n], shifted, APSR.C);
5 R[d] = result;
6 if setflags then
7 APSR.N = result[31];
8 APSR.Z = IsZeroBit(result);
9 APSR.C = carry;

10 APSR.V = overflow;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

512

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.3 ADD (SP plus immediate)

Add to SP (immediate). ADD (SP plus immediate) adds an immediate value to the SP value, and writes the result
to the destination register.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 1 Rd imm8

T1 variant

ADD{<c>}{<q>} <Rd>, SP, #<imm8>

Decode for this encoding
1 d = UInt(Rd); setflags = FALSE; imm32 = ZeroExtend(imm8:'00', 32);

T2
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 0 0 0 0 imm7

T2 variant

ADD{<c>}{<q>} {SP,} SP, #<imm7>

Decode for this encoding
1 d = 13; setflags = FALSE; imm32 = ZeroExtend(imm7:'00', 32);

T3
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 1 0 0 0 S 1 1 0 1 0 imm3 Rd imm8

ADD variant

Applies when S == 0.

ADD{<c>}.W {<Rd>,} SP, #<const>
// <Rd>, <const> can be represented in T1 or T2

ADD{<c>}{<q>} {<Rd>,} SP, #<const>

ADDS variant

Applies when S == 1 && Rd != 1111.

ADDS{<c>}{<q>} {<Rd>,} SP, #<const>

Decode for this encoding

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

513

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

1 if Rd == '1111' && S == '1' then SEE "CMN (immediate)";
2 if !HaveMainExt() then UNDEFINED;
3 d = UInt(Rd); setflags = (S == '1'); imm32 = T32ExpandImm(i:imm3:imm8);
4 if d == 15 && S == '0' then UNPREDICTABLE;

T4
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 1 0 0 0 0 0 1 1 0 1 0 imm3 Rd imm8

T4 variant

ADD{<c>}{<q>} {<Rd>,} SP, #<imm12>
// <imm12> cannot be represented in T1, T2, or T3

ADDW{<c>}{<q>} {<Rd>,} SP, #<imm12>
// <imm12> can be represented in T1, T2, or T3

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 d = UInt(Rd); setflags = FALSE; imm32 = ZeroExtend(i:imm3:imm8, 32);
3 if d == 15 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<imm7> Is an unsigned immediate, a multiple of 4 in the range 0 to 508, encoded in the "imm7" field

as <imm7>/4.
<Rd> For encoding T1: is the general-purpose destination register, encoded in the "Rd" field.

For encoding T3 and T4: is the general-purpose destination register, encoded in the "Rd" field.
If omitted, this register is the SP.

<imm8> Is an unsigned immediate, a multiple of 4, in the range 0 to 1020, encoded in the "imm8" field
as <imm8>/4.

<imm12> Is a 12-bit unsigned immediate, in the range 0 to 4095, encoded in the "i:imm3:imm8" field.
<const> Is an immediate value derived from the 12-bit immediate that is encoded in the ’i:imm3:imm8’

field. See C1.5 Modified immediate constants on page 448 for the range of values.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 (result, carry, overflow) = AddWithCarry(SP, imm32, '0');
4 RSPCheck[d] = result;
5 if setflags then
6 APSR.N = result[31];
7 APSR.Z = IsZeroBit(result);
8 APSR.C = carry;
9 APSR.V = overflow;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

514

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.4 ADD (SP plus register)

Add to SP (register). ADD (SP plus register) adds an optionally-shifted register value to the SP value, and writes
the result to the destination register.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 1 0 0 DM 1 1 0 1 Rdm

T1 variant

ADD{<c>}{<q>} {<Rdm>,} SP, <Rdm>

Decode for this encoding
1 d = UInt(DM:Rdm); m = UInt(DM:Rdm); setflags = FALSE;
2 if d == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;
3 (shift_t, shift_n) = (SRType_LSL, 0);

T2
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 1 0 0 1 Rm != 1101 1 0 1

T2 variant

ADD{<c>}{<q>} {SP,} SP, <Rm>

Decode for this encoding
1 if Rm == '1101' then SEE "encoding T1";
2 d = 13; m = UInt(Rm); setflags = FALSE;
3 (shift_t, shift_n) = (SRType_LSL, 0);

T3
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 1 0 0 0 S 1 1 0 1 (0) imm3 Rd imm2

sr_type

Rm

ADD, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && sr_type == 11.

ADD{<c>}{<q>} {<Rd>,} SP, <Rm>, RRX

ADD, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && sr_type == 11).

ADD{<c>}.W {<Rd>,} SP, <Rm>
// <Rd>, <Rm> can be represented in T1 or T2

ADD{<c>}{<q>} {<Rd>,} SP, <Rm> {, <shift> #<amount>}

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

515

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

ADDS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && Rd != 1111 && imm2 == 00 && sr_type ==
11.

ADDS{<c>}{<q>} {<Rd>,} SP, <Rm>, RRX

ADDS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && sr_type == 11) && Rd !=
1111.

ADDS{<c>}{<q>} {<Rd>,} SP, <Rm> {, <shift> #<amount>}

Decode for this encoding
1 if Rd == '1111' && S == '1' then SEE "CMN (register)";
2 if !HaveMainExt() then UNDEFINED;
3 d = UInt(Rd); m = UInt(Rm); setflags = (S == '1');
4 (shift_t, shift_n) = DecodeImmShift(sr_type, imm3:imm2);
5 if d == 13 && (shift_t != SRType_LSL || shift_n > 3) then UNPREDICTABLE;
6 if (d == 15 && S == '0') || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rdm> Is the general-purpose destination and second source register, encoded in the "Rdm" field. If

omitted, this register is the SP. Arm deprecates using the PC as the destination register, but if
the PC is used, the instruction is a simple branch to the address calculated by the operation.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register
is the SP.

<Rm> For encoding T2: is the second general-purpose source register, encoded in the "Rm" field.
The PC can be used, but this is deprecated.
For encoding T3: is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in the "sr_type" field. It
can have the following values:
LSL when sr_type = 00
LSR when sr_type = 01
ASR when sr_type = 10
ROR when sr_type = 11

<amount> Is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift>
= LSR or ASR) encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 shifted = Shift(R[m], shift_t, shift_n, APSR.C);
4 (result, carry, overflow) = AddWithCarry(SP, shifted, '0');
5 if d == 15 then
6 BranchTo(result); // setflags is always FALSE here
7 else
8 RSPCheck[d] = result;
9 if setflags then

10 APSR.N = result[31];
11 APSR.Z = IsZeroBit(result);
12 APSR.C = carry;
13 APSR.V = overflow;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

516

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.5 ADD (immediate)

Add (immediate). Add (immediate) adds an immediate value to a register value, and writes the result to the
destination register. It can optionally update the condition flags based on the result.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 0 imm3 Rn Rd

T1 variant

ADD<c>{<q>} <Rd>, <Rn>, #<imm3>
// Inside IT block

ADDS{<q>} <Rd>, <Rn>, #<imm3>
// Outside IT block

Decode for this encoding
1 d = UInt(Rd); n = UInt(Rn); setflags = !InITBlock(); imm32 = ZeroExtend(imm3, 32);

T2
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 Rdn imm8

T2 variant

ADD<c>{<q>} <Rdn>, #<imm8>
// Inside IT block, and <Rdn>, <imm8> can be represented in T1

ADD<c>{<q>} {<Rdn>,} <Rdn>, #<imm8>
// Inside IT block, and <Rdn>, <imm8> cannot be represented in T1

ADDS{<q>} <Rdn>, #<imm8>
// Outside IT block, and <Rdn>, <imm8> can be represented in T1

ADDS{<q>} {<Rdn>,} <Rdn>, #<imm8>
// Outside IT block, and <Rdn>, <imm8> cannot be represented in T1

Decode for this encoding
1 d = UInt(Rdn); n = UInt(Rdn); setflags = !InITBlock(); imm32 = ZeroExtend(imm8, 32);

T3
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 1 0 0 0 S Rn != 1101 0 imm3 Rd imm8

ADD variant

Applies when S == 0.

ADD<c>.W {<Rd>,} <Rn>, #<const>
// Inside IT block, and <Rd>, <Rn>, <const> can be represented in T1 or T2

ADD{<c>}{<q>} {<Rd>,} <Rn>, #<const>

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

517

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

ADDS variant

Applies when S == 1 && Rd != 1111.

ADDS.W {<Rd>,} <Rn>, #<const>
// Outside IT block, and <Rd>, <Rn>, <const> can be represented in T1 or T2

ADDS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for this encoding
1 if Rd == '1111' && S == '1' then SEE "CMN (immediate)";
2 if Rn == '1101' then SEE "ADD (SP plus immediate)";
3 if !HaveMainExt() then UNDEFINED;
4 d = UInt(Rd); n = UInt(Rn); setflags = (S == '1'); imm32 = T32ExpandImm(i:imm3:imm8);
5 if d == 13 || (d == 15 && S == '0') || n == 15 then UNPREDICTABLE;

T4
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 1 0 0 0 0 0 Rn != 11x1 0 imm3 Rd imm8

T4 variant

ADD{<c>}{<q>} {<Rd>,} <Rn>, #<imm12>
// <imm12> cannot be represented in T1, T2, or T3

ADDW{<c>}{<q>} {<Rd>,} <Rn>, #<imm12>
// <imm12> can be represented in T1, T2, or T3

Decode for this encoding
1 if Rn == '1111' then SEE ADR;
2 if Rn == '1101' then SEE "ADD (SP plus immediate)";
3 if !HaveMainExt() then UNDEFINED;
4 d = UInt(Rd); n = UInt(Rn); setflags = FALSE; imm32 = ZeroExtend(i:imm3:imm8, 32);
5 if d IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rdn> Is the general-purpose source and destination register, encoded in the "Rdn" field.
<imm8> Is an 8-bit unsigned immediate, in the range 0 to 255, encoded in the "imm8" field.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register

is the same as <Rn>.
<Rn> For encoding T1: is the general-purpose source register, encoded in the "Rn" field.

For encoding T3: is the general-purpose source register, encoded in the "Rn" field. If the SP is
used, see C2.4.3 ADD (SP plus immediate) on page 513.
For encoding T4: is the general-purpose source register, encoded in the "Rn" field. If the SP is
used, see C2.4.3 ADD (SP plus immediate) on page 513. If the PC is used, see C2.4.8 ADR on
page 525.

<imm3> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "imm3" field.
<imm12> Is a 12-bit unsigned immediate, in the range 0 to 4095, encoded in the "i:imm3:imm8" field.
<const> Is an immediate value derived from the 12-bit immediate that is encoded in the ’i:imm3:imm8’

field. See C1.5 Modified immediate constants on page 448 for the range of values.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

518

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 (result, carry, overflow) = AddWithCarry(R[n], imm32, '0');
4 R[d] = result;
5 if setflags then
6 APSR.N = result[31];
7 APSR.Z = IsZeroBit(result);
8 APSR.C = carry;
9 APSR.V = overflow;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

519

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.6 ADD (immediate, to PC)

Add to PC. Add to PC adds an immediate value to the Align(PC, 4) value to form a PC-relative address, and writes
the result to the destination register. Arm recommends that, where possible, software avoids using this alias.

This instruction is a pseudo-instruction of the ADR instruction. This means that:

• The encodings in this description are named to match the encodings of ADR.

• The assembler syntax is used only for assembly, and is not used on disassembly.

• The description of ADR gives the operational pseudocode for this instruction.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 Rd imm8

T1 variant

ADD{<c>}{<q>} <Rd>, PC, #<imm8>

is equivalent to

ADR{<c>}{<q>} <Rd>, <label>

and is never the preferred disassembly.

T3
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 1 0 0 0 0 0 1 1 1 1 0 imm3 Rd imm8

T3 variant

ADDW{<c>}{<q>} <Rd>, PC, #<imm12>
// <Rd>, <imm12> can be represented in T1

is equivalent to

ADR{<c>}{<q>} <Rd>, <label>

and is never the preferred disassembly.

T3 variant

ADD{<c>}{<q>} <Rd>, PC, #<imm12>

is equivalent to

ADR{<c>}{<q>} <Rd>, <label>

and is never the preferred disassembly.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

520

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

<label> For encoding T1: the label of an instruction or literal data item whose address is to be loaded
into <Rd>. The assembler calculates the required value of the offset from the Align(PC,
4) value of the ADR instruction to this label. Permitted values of the size of the offset are
multiples of 4 in the range 0 to 1020.
For encoding T2 and T3: the label of an instruction or literal data item whose address is
to be loaded into <Rd>. The assembler calculates the required value of the offset from the
Align(PC, 4) value of the ADR instruction to this label. If the offset is zero or positive,
encoding T3 is used, with imm32 equal to the offset. If the offset is negative, encoding T2 is
used, with imm32 equal to the size of the offset. That is, the use of encoding T2 indicates that
the required offset is minus the value of imm32. Permitted values of the size of the offset are
0-4095.

<imm8> Is an unsigned immediate, a multiple of 4, in the range 0 to 1020, encoded in the "imm8" field
as <imm8>/4.

<imm12> Is a 12-bit unsigned immediate, in the range 0 to 4095, encoded in the "i:imm3:imm8" field.

Operation for all encodings
The description of ADR gives the operational pseudocode for this instruction.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

521

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.7 ADD (register)

Add (register). ADD (register) adds a register value and an optionally-shifted register value, and writes the result
to the destination register. It can optionally update the condition flags based on the result.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 0 0 Rm Rn Rd

T1 variant

ADD<c>{<q>} <Rd>, <Rn>, <Rm>
// Inside IT block

ADDS{<q>} {<Rd>,} <Rn>, <Rm>
// Outside IT block

Decode for this encoding
1 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = !InITBlock();
2 (shift_t, shift_n) = (SRType_LSL, 0);

T2
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 1 0 0 DN Rm != 1101 Rdn

T2 variant

Applies when !(DN == 1 && Rdn == 101).

ADD<c>{<q>} <Rdn>, <Rm>
// Preferred syntax, Inside IT block

ADD{<c>}{<q>} {<Rdn>,} <Rdn>, <Rm>

Decode for this encoding
1 if (DN:Rdn) == '1101' || Rm == '1101' then SEE "ADD (SP plus register)";
2 d = UInt(DN:Rdn); n = UInt(DN:Rdn); m = UInt(Rm); setflags = FALSE;
3 (shift_t, shift_n) = (SRType_LSL, 0);
4 if d == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;
5 if d == 15 && m == 15 then UNPREDICTABLE;

T3
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 1 0 0 0 S Rn != 1101 (0) imm3 Rd imm2

sr_type

Rm

ADD, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && sr_type == 11.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

522

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

ADD{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ADD, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && sr_type == 11).

ADD<c>.W {<Rd>,} <Rn>, <Rm>
// Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1 or T2

ADD{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

ADDS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && Rd != 1111 && imm2 == 00 && sr_type ==
11.

ADDS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ADDS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && sr_type == 11) && Rd !=
1111.

ADDS.W {<Rd>,} <Rn>, <Rm>
// Outside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1 or T2

ADDS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for this encoding
1 if Rd == '1111' && S == '1' then SEE "CMN (register)";
2 if Rn == '1101' then SEE "ADD (SP plus register)";
3 if !HaveMainExt() then UNDEFINED;
4 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
5 (shift_t, shift_n) = DecodeImmShift(sr_type, imm3:imm2);
6 if d == 13 || (d == 15 && S == '0') || n == 15 || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rdn> Is the general-purpose source and destination register, encoded in the "DN:Rdn" field. If the

PC is used, the instruction is a branch to the address calculated by the operation. This is a
simple branch. The assembler language allows <Rdn> to be specified once or twice in the
assembler syntax. When used inside an IT block, and <Rdn> and <Rm> are in the range R0
to R7, <Rdn> must be specified once so that encoding T2 is preferred to encoding T1. In all
other cases there is no difference in behavior when <Rdn> is specified once or twice.

<Rd> For encoding T1: is the general-purpose destination register, encoded in the "Rd" field. When
used inside an IT block, <Rd> must be specified. When used outside an IT block, <Rd> is
optional, and:

- If omitted, this register is the same as <Rn>.
- If present, encoding T1 is preferred to encoding T2.

For encoding T3: is the general-purpose destination register, encoded in the "Rd" field. If
omitted, this register is the same as <Rn>.

<Rn> For encoding T1: is the first general-purpose source register, encoded in the "Rn" field.
For encoding T3: is the first general-purpose source register, encoded in the "Rn" field. If the
SP is used, see C2.4.4 ADD (SP plus register) on page 515.

<Rm> For encoding T1 and T3: is the second general-purpose source register, encoded in the "Rm"
field.
For encoding T2: is the second general-purpose source register, encoded in the "Rm" field.
The PC can be used.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

523

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

<shift> Is the type of shift to be applied to the second source register, encoded in the "sr_type" field. It
can have the following values:
LSL when sr_type = 00
LSR when sr_type = 01
ASR when sr_type = 10
ROR when sr_type = 11

<amount> Is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift>
= LSR or ASR) encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 shifted = Shift(R[m], shift_t, shift_n, APSR.C);
4 (result, carry, overflow) = AddWithCarry(R[n], shifted, '0');
5 if d == 15 then
6 BranchTo(result); // setflags is always FALSE here
7 else
8 R[d] = result;
9 if setflags then

10 APSR.N = result[31];
11 APSR.Z = IsZeroBit(result);
12 APSR.C = carry;
13 APSR.V = overflow;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

524

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.8 ADR

Form PC-relative address. Address to Register adds an immediate value to the PC value, and writes the result to
the destination register.

This instruction is used by the pseudo-instructions ADD (immediate, to PC) and SUB (immediate, from PC).

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 Rd imm8

T1 variant

ADR{<c>}{<q>} <Rd>, <label>

Decode for this encoding
1 d = UInt(Rd); imm32 = ZeroExtend(imm8:'00', 32); add = TRUE;

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 1 0 1 0 1 0 1 1 1 1 0 imm3 Rd imm8

T2 variant

ADR{<c>}{<q>} <Rd>, <label>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 d = UInt(Rd); imm32 = ZeroExtend(i:imm3:imm8, 32); add = FALSE;
3 if d IN {13,15} then UNPREDICTABLE;

T3
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 1 0 0 0 0 0 1 1 1 1 0 imm3 Rd imm8

T3 variant

ADR{<c>}.W <Rd>, <label>
// <Rd>, <label> can be presented in T1

ADR{<c>}{<q>} <Rd>, <label>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 d = UInt(Rd); imm32 = ZeroExtend(i:imm3:imm8, 32); add = TRUE;
3 if d IN {13,15} then UNPREDICTABLE;

Alias conditions

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

525

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Alias or pseudo-instruction preferred when
ADD (immediate, to PC) Never
SUB (immediate, from PC) i:imm3:imm8 == ‘000000000000‘

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<label> For encoding T1: the label of an instruction or literal data item whose address is to be loaded

into <Rd>. The assembler calculates the required value of the offset from the Align(PC,
4) value of the ADR instruction to this label. Permitted values of the size of the offset are
multiples of 4 in the range 0 to 1020.
For encoding T2 and T3: the label of an instruction or literal data item whose address is
to be loaded into <Rd>. The assembler calculates the required value of the offset from the
Align(PC, 4) value of the ADR instruction to this label. If the offset is zero or positive,
encoding T3 is used, with imm32 equal to the offset. If the offset is negative, encoding T2 is
used, with imm32 equal to the size of the offset. That is, the use of encoding T2 indicates that
the required offset is minus the value of imm32. Permitted values of the size of the offset are
0-4095.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 result = if add then (Align(PC,4) + imm32) else (Align(PC,4) - imm32);
4 R[d] = result;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

526

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.9 AND (immediate)

Bitwise AND (immediate). AND (immediate) performs a bitwise AND of a register value and an immediate value,
and writes the result to the destination register.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 0 0 0 0 S Rn 0 imm3 Rd imm8

AND variant

Applies when S == 0.

AND{<c>}{<q>} {<Rd>,} <Rn>, #<const>

ANDS variant

Applies when S == 1 && Rd != 1111.

ANDS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for this encoding
1 if Rd == '1111' && S == '1' then SEE "TST (immediate)";
2 if !HaveMainExt() then UNDEFINED;
3 d = UInt(Rd); n = UInt(Rn); setflags = (S == '1');
4 (imm32, carry) = T32ExpandImm_C(i:imm3:imm8, APSR.C);
5 if d == 13 || (d == 15 && S == '0') || n IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register

is the same as <Rn>.
<Rn> Is the general-purpose source register, encoded in the "Rn" field.
<const> Is an immediate value derived from the 12-bit immediate that is encoded in the ’i:imm3:imm8’

field. See C1.5 Modified immediate constants on page 448 for the range of values.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 result = R[n] AND imm32;
4 R[d] = result;
5 if setflags then
6 APSR.N = result[31];
7 APSR.Z = IsZeroBit(result);
8 APSR.C = carry;
9 // APSR.V unchanged

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

527

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.10 AND (register)

Bitwise AND (register). AND (register) performs a bitwise AND of a register value and an optionally-shifted
register value, and writes the result to the destination register. It can optionally update the condition flags based on
the result.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 0 0 0 Rm Rdn

T1 variant

AND<c>{<q>} {<Rdn>,} <Rdn>, <Rm>
// Inside IT block

ANDS{<q>} {<Rdn>,} <Rdn>, <Rm>
// Outside IT block

Decode for this encoding
1 d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();
2 (shift_t, shift_n) = (SRType_LSL, 0);

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 0 0 S Rn (0) imm3 Rd imm2

sr_type

Rm

AND, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && sr_type == 11.

AND{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

AND, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && sr_type == 11).

AND<c>.W {<Rd>,} <Rn>, <Rm>
// Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1

AND{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

ANDS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && Rd != 1111 && imm2 == 00 && sr_type ==
11.

ANDS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ANDS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && sr_type == 11) && Rd !=
1111.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

528

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

ANDS.W {<Rd>,} <Rn>, <Rm>
// Outside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1

ANDS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for this encoding
1 if Rd == '1111' && S == '1' then SEE "TST (register)";
2 if !HaveMainExt() then UNDEFINED;
3 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
4 (shift_t, shift_n) = DecodeImmShift(sr_type, imm3:imm2);
5 if d == 13 || (d == 15 && S == '0') || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rdn> Is the first general-purpose source register and the destination register, encoded in the "Rdn"

field.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register

is the same as <Rn>.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
<shift> Is the type of shift to be applied to the second source register, encoded in the "sr_type" field. It

can have the following values:
LSL when sr_type = 00
LSR when sr_type = 01
ASR when sr_type = 10
ROR when sr_type = 11

<amount> Is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift>
= LSR or ASR) encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
4 result = R[n] AND shifted;
5 R[d] = result;
6 if setflags then
7 APSR.N = result[31];
8 APSR.Z = IsZeroBit(result);
9 APSR.C = carry;

10 // APSR.V unchanged

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

529

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.11 ASR (immediate)

Arithmetic Shift Right (immediate). Arithmetic Shift Right (immediate) shifts a register value right by an immediate
number of bits, shifting in copies of its sign bit, and writes the result to the destination register.

This instruction is an alias of the MOV (register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV (register).

• The description of MOV (register) gives the operational pseudocode for this instruction.

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 op = 10 imm5 Rm Rd

T2 variant

ASR<c>{<q>} {<Rd>,} <Rm>, #<imm>
// Inside IT block

is equivalent to

MOV<c>{<q>} <Rd>, <Rm>, ASR #<imm>

and is the preferred disassembly when InITBlock().

T3
Armv8-M Main Extension only

• In Armv8.0-M, bit[15] (lower 16 bits of the encoding) [0] represents (0).

• In Armv8.1-M, bit[15] (lower 16 bits of the encoding) [0] represents 0.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0

S = 0

1 1 1 1

C = [0]

imm3 Rd imm2

sr_type = 10

Rm != 11x1

MOV, shift or rotate by value variant

ASR<c>.W {<Rd>,} <Rm>, #<imm>
// Inside IT block, and <Rd>, <Rm>, <imm> can be represented in T2

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, ASR #<imm>

and is always the preferred disassembly.

MOV, shift or rotate by value variant

ASR{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, ASR #<imm>

and is always the preferred disassembly.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

530

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> Is the general-purpose source register, encoded in the "Rm" field.
<imm> For encoding T2: is the shift amount, in the range 1 to 32, encoded in the "imm5" field as

<imm> modulo 32.
For encoding T3: is the shift amount, in the range 1 to 32, encoded in the "imm3:imm2" field
as <imm> modulo 32.

Operation for all encodings
The description of MOV (register) gives the operational pseudocode for this instruction.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

531

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.12 ASR (register)

Arithmetic Shift Right (register). Arithmetic Shift Right (register) shifts a register value right by a variable number
of bits, shifting in copies of its sign bit, and writes the result to the destination registers. The variable number of
bits is read from the bottom byte of a register.

This instruction is an alias of the MOV, MOVS (register-shifted register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted
register).

• The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruc-
tion.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 op = 0100 Rs Rdm

Arithmetic shift right variant

ASR<c>{<q>} {<Rdm>,} <Rdm>, <Rs>
// Inside IT block

is equivalent to

MOV<c>{<q>} <Rdm>, <Rdm>, ASR <Rs>

and is the preferred disassembly when InITBlock().

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0

sr_type = 10
S = 0

Rm 1 1 1 1 Rd 0 0 0 0 Rs

Non flag setting variant

ASR<c>.W {<Rd>,} <Rm>, <Rs>
// Inside IT block, and <Rd>, <Rm>, <sr_type>, <Rs> can be represented in T1

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, ASR <Rs>

and is always the preferred disassembly.

Non flag setting variant

ASR{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, ASR <Rs>

and is always the preferred disassembly.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

532

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rdm> Is the first general-purpose source register and the destination register, encoded in the "Rdm"

field.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> Is the first general-purpose source register, encoded in the "Rm" field.
<Rs> Is the second general-purpose source register holding a shift amount in its bottom 8 bits,

encoded in the "Rs" field.

Operation for all encodings
The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

533

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.13 ASRL (immediate)

Arithmetic Shift Right Long. Arithmetic shift right by 1 to 32 bits of a 64-bit value stored in two general-purpose
registers.

T1
Armv8.1-M MVE

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 1 RdaLo 0 0 immh RdaHi (1) imml 1 0 1 1 1 1

T1: ASRL variant

ASRL<c> RdaLo, RdaHi, #<imm>

Decode for this encoding
1 if RdaHi == '111' then SEE "SRSHR (immediate)";
2 if !HaveMainExt() then UNDEFINED;
3 if !HasArchVersion(Armv8p1) then CONSTRAINED_UNPREDICTABLE;
4 if !HaveMve() then UNDEFINED;
5 dah = UInt(RdaHi:'1');
6 dal = UInt(RdaLo:'0');
7 (-, amount) = DecodeImmShift('10', immh:imml);
8 if RdaHi == '110' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<RdaLo> General-purpose register for the low-half of the 64-bit source and destination, containing the

value to be shifted. This must be an even numbered register.
<RdaHi> General-purpose register for the high-half of the 64-bit source and destination, containing the

value to be shifted. This must be an odd numbered register.
<imm> The number of bits to shift by, in the range 1-32.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3
4 op1 = SInt(R[dah]:R[dal]);
5 result = (op1 >> amount)[63:0];
6 R[dah] = result[63:32];
7 R[dal] = result[31:0];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

534

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.14 ASRL (register)

Arithmetic Shift Right Long. Arithmetic shift right by 0 to 64 bits of a 64-bit value stored in two general-purpose
registers. The shift amount is read in as the bottom byte of Rm. If the shift amount is negative, the shift direction is
reversed.

T1
Armv8.1-M MVE

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 1 RdaLo 0 Rm RdaHi (1) (0) (0) 1 0 1 1 0 1

T1: ASRL variant

ASRL<c> RdaLo, RdaHi, Rm

Decode for this encoding
1 if RdaHi == '111' then SEE "SQRSHR (register)";
2 if !HaveMainExt() then UNDEFINED;
3 if !HasArchVersion(Armv8p1) then CONSTRAINED_UNPREDICTABLE;
4 if !HaveMve() then UNDEFINED;
5 dah = UInt(RdaHi:'1');
6 dal = UInt(RdaLo:'0');
7 m = UInt(Rm);
8 if RdaHi == '110' || Rm == '11x1' || Rm == RdaHi:'1' then CONSTRAINED_UNPREDICTABLE;
9 if Rm == RdaLo:'0' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<RdaLo> General-purpose register for the low-half of the 64-bit source and destination, containing the

value to be shifted. This must be an even numbered register.
<RdaHi> General-purpose register for the high-half of the 64-bit source and destination, containing the

value to be shifted. This must be an odd numbered register.
<Rm> General-purpose source register holding a shift amount in its bottom 8 bits.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3
4 amount = SInt(R[m][7:0]);
5 op1 = SInt(R[dah]:R[dal]);
6 result = (op1 >> amount)[63:0];
7 R[dah] = result[63:32];
8 R[dal] = result[31:0];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

535

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.15 ASRS (immediate)

Arithmetic Shift Right, Setting flags (immediate). Arithmetic Shift Right, Setting flags (immediate) shifts a register
value right by an immediate number of bits, shifting in copies of its sign bit, writes the result to the destination
register, and updates the condition flags based on the result.

This instruction is an alias of the MOV (register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV (register).

• The description of MOV (register) gives the operational pseudocode for this instruction.

T2
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 op = 10 imm5 Rm Rd

T2 variant

ASRS{<q>} {<Rd>,} <Rm>, #<imm>
// Outside IT block

is equivalent to

MOVS{<q>} <Rd>, <Rm>, ASR #<imm>

and is the preferred disassembly when !InITBlock().

T3
Armv8-M Main Extension only

• In Armv8.0-M, bit[15] (lower 16 bits of the encoding) [0] represents (0).

• In Armv8.1-M, bit[15] (lower 16 bits of the encoding) [0] represents 0.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0

S = 1

1 1 1 1

C = [0]

imm3 Rd imm2

sr_type = 10

Rm

MOVS, shift or rotate by value variant

ASRS.W {<Rd>,} <Rm>, #<imm>
// Outside IT block, and <Rd>, <Rm>, <imm> can be represented in T2

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, ASR #<imm>

and is always the preferred disassembly.

MOVS, shift or rotate by value variant

ASRS{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, ASR #<imm>

and is always the preferred disassembly.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

536

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> Is the general-purpose source register, encoded in the "Rm" field.
<imm> For encoding T2: is the shift amount, in the range 1 to 32, encoded in the "imm5" field as

<imm> modulo 32.
For encoding T3: is the shift amount, in the range 1 to 32, encoded in the "imm3:imm2" field
as <imm> modulo 32.

Operation for all encodings
The description of MOV (register) gives the operational pseudocode for this instruction.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

537

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.16 ASRS (register)

Arithmetic Shift Right, Setting flags (register). Arithmetic Shift Right, Setting flags (register) shifts a register value
right by a variable number of bits, shifting in copies of its sign bit, writes the result to the destination register, and
updates the condition flags based on the result. The variable number of bits is read from the bottom byte of a
register.

This instruction is an alias of the MOV, MOVS (register-shifted register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted
register).

• The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruc-
tion.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 op = 0100 Rs Rdm

Arithmetic shift right variant

ASRS{<q>} {<Rdm>,} <Rdm>, <Rs>
// Outside IT block

is equivalent to

MOVS{<q>} <Rdm>, <Rdm>, ASR <Rs>

and is the preferred disassembly when !InITBlock().

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0

sr_type = 10
S = 1

Rm 1 1 1 1 Rd 0 0 0 0 Rs

Flag setting variant

ASRS.W {<Rd>,} <Rm>, <Rs>
// Outside IT block, and <Rd>, <Rm>, <sr_type>, <Rs> can be represented in T1

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, ASR <Rs>

and is always the preferred disassembly.

Flag setting variant

ASRS{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, ASR <Rs>

and is always the preferred disassembly.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

538

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rdm> Is the first general-purpose source register and the destination register, encoded in the "Rdm"

field.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> Is the first general-purpose source register, encoded in the "Rm" field.
<Rs> Is the second general-purpose source register holding a shift amount in its bottom 8 bits,

encoded in the "Rs" field.

Operation for all encodings
The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

539

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.17 B

Branch. Branch causes a branch to a target address.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 cond != 111x imm8

T1 variant

B<c>{<q>} <label>
// Not permitted in IT block

Decode for this encoding
1 if cond == '1110' then SEE UDF;
2 if cond == '1111' then SEE SVC;
3 imm32 = SignExtend(imm8:'0', 32);
4 if InITBlock() then UNPREDICTABLE;

T2
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 0 imm11

T2 variant

B{<c>}{<q>} <label>
// Outside or last in IT block

Decode for this encoding
1 imm32 = SignExtend(imm11:'0', 32);
2 cond = CurrentCond();
3 if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

T3
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 S cond != 111x imm6 1 0 J1 0 J2 imm11

T3 variant

B<c>.W <label>
// Not permitted in IT block, and <label> can be represented in T1

B<c>{<q>} <label>
// Not permitted in IT block

Decode for this encoding

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

540

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

1 if cond[3:1] == '111' then SEE "Related encodings";
2 if !HaveMainExt() then UNDEFINED;
3 imm32 = SignExtend(S:J2:J1:imm6:imm11:'0', 32);
4 if InITBlock() then UNPREDICTABLE;

T4
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 S imm10 1 0 J1 1 J2 imm11

T4 variant

B{<c>}.W <label>
// <label> can be represented in T2

B{<c>}{<q>} <label>

Decode for this encoding
1 I1 = NOT(J1 EOR S); I2 = NOT(J2 EOR S); imm32 = SignExtend(S:I1:I2:imm10:imm11:'0', 32);
2 cond = CurrentCond();
3 if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Assembler symbols for all encodings

<c> For encoding T1: see C1.2.5 Standard assembler syntax fields on page 431. Must not be AL
or omitted.
For encoding T2 and T4: see C1.2.5 Standard assembler syntax fields on page 431.
For encoding T3: see C1.2.5 Standard assembler syntax fields on page 431. <c> must not be
AL or omitted.

<q> See C1.2.5 Standard assembler syntax fields on page 431.
<label> For encoding T1: the label of the instruction that is to be branched to. The assembler calculates

the required value of the offset from the PC value of the B instruction to this label, then selects
an encoding that sets imm32 to that offset. Permitted offsets are even numbers in the range
-256 to 254.
For encoding T2: the label of the instruction that is to be branched to. The assembler calculates
the required value of the offset from the PC value of the B instruction to this label, then selects
an encoding that sets imm32 to that offset. Permitted offsets are even numbers in the range
-2048 to 2046.
For encoding T3: the label of the instruction that is to be branched to. The assembler calculates
the required value of the offset from the PC value of the B instruction to this label, then selects
an encoding that sets imm32 to that offset. Permitted offsets are even numbers in the range
-1048576 to 1048574.
For encoding T4: the label of the instruction that is to be branched to. The assembler calculates
the required value of the offset from the PC value of the B instruction to this label, then selects
an encoding that sets imm32 to that offset. Permitted offsets are even numbers in the range
-16777216 to 16777214.

Operation for all encodings
1 if ConditionPassed(cond) then
2 EncodingSpecificOperations();
3 BranchTo(PC + imm32);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

541

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.18 BF, BFX, BFL, BFLX, BFCSEL

Branch Future, Branch Future and Exchange, Branch Future with Link, Branch Future with Link and Exchange,
Branch Future Conditional Select. These instructions notify the PE about an upcoming branch to <label>, so
that the branch will be taken instead of fetching and executing the instruction at <b_label>. This allows the PE
to reduce or eliminate any associated performance penalty that might have been caused by a branch that the PE was
not notified about. It is IMPLEMENTATION DEFINED whether this instruction is treated as a NOP. To ensure correct
program flow behavior in these cases, fallback code should be present at the point specified by <b_label>.

For the Branch Future with Link variant, the link register is updated when the branch is performed. The value
written is offset from the branch point by 4 bytes, which corresponds to the length of the BL (immediate) instruction
that would usually follow the branch point as part of the fallback code.

For the Branch Future with Link and Exchange variant, the link register is updated when the branch is performed.
The value written is offset from the branch point by 2 bytes, which corresponds to the length of the BLX (register)
instruction that would usually follow the branch point as part of the fallback code.

The Branch Future Conditional Select variant creates a future branch to <label> if the condition code passes. If
the explicit condition code fails, this variant does not behave as a NOP. Instead it creates a future branch to the
instruction specified by <ba_label>, if there is no other active BF entry in the loop and branch cache.

T1
Armv8.1-M Low Overhead Branch Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 boff 1 0 immA 1 1 1 0

immC

immB 1

T1: BF variant

BF<c> <b_label>, <label>

Decode for this encoding
1 if boff == '0000' then SEE "Related encodings";
2 if !HaveLOBExt() then UNDEFINED;
3
4 endOffset = ZeroExtend(boff:'0', 32);
5 offset = SignExtend(immA:immB:immC:'1', 32);
6 bOffset = bits(32) UNKNOWN;
7 n = integer UNKNOWN;
8 regAddr = FALSE;
9 link = FALSE;

10 bcond = CondAL;

T2
Armv8.1-M Low Overhead Branch Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 boff 0 bcond T

immA

1 1 1 0

immC

immB 1

T2: BFCSEL variant

BFCSEL <b_label>, <label>, <ba_label>, <bcond>

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

542

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Decode for this encoding
1 if boff == '0000' then SEE "Related encodings";
2 if !HaveLOBExt() then UNDEFINED;
3
4 endOffset = ZeroExtend(boff:'0', 32);
5 offset = SignExtend(immA:immB:immC:'1', 32);
6 bOffset = (if T == '1' then 5 else 3)[31:0];
7 n = integer UNKNOWN;
8 regAddr = FALSE;
9 link = FALSE;

10 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
11 if bcond == '111x' then CONSTRAINED_UNPREDICTABLE;

T3
Armv8.1-M Low Overhead Branch Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 boff 1 1 0 Rn 1 1 1 0 (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) 1

T3: BFX variant

BFX<c> <b_label>, Rn

Decode for this encoding
1 if boff == '0000' then SEE "Related encodings";
2 if !HaveLOBExt() then UNDEFINED;
3
4 endOffset = ZeroExtend(boff:'0', 32);
5 offset = Zeros(32);
6 bOffset = bits(32) UNKNOWN;
7 n = UInt(Rn);
8 regAddr = TRUE;
9 link = FALSE;

10 bcond = CondAL;
11 if Rn == '11x1' then CONSTRAINED_UNPREDICTABLE;

T4
Armv8.1-M Low Overhead Branch Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 boff immA 1 1 0 0

immC

immB 1

T4: BFL variant

BFL<c> <b_label>, <label>

Decode for this encoding
1 if boff == '0000' then SEE "Related encodings";
2 if !HaveLOBExt() then UNDEFINED;
3
4 endOffset = ZeroExtend(boff:'0', 32);
5 offset = SignExtend(immA:immB:immC:'1', 32);
6 bOffset = bits(32) UNKNOWN;
7 n = integer UNKNOWN;
8 regAddr = FALSE;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

543

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

9 link = TRUE;
10 bcond = CondAL;

T5
Armv8.1-M Low Overhead Branch Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 boff 1 1 1 Rn 1 1 1 0 (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) 1

T5: BFLX variant

BFLX<c> <b_label>, Rn

Decode for this encoding
1 if boff == '0000' then SEE "Related encodings";
2 if !HaveLOBExt() then UNDEFINED;
3
4 endOffset = ZeroExtend(boff:'0', 32);
5 offset = Zeros(32);
6 bOffset = bits(32) UNKNOWN;
7 n = UInt(Rn);
8 regAddr = TRUE;
9 link = TRUE;

10 bcond = CondAL;
11 if Rn == '11x1' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<b_label> The PC relative offset of the first instruction in the fallback code, that will not be executed if

the future branch is taken.
<Rn> The address to branch to.
<ba_label> The PC relative offset of the address to branch to in case the associated BFCSEL condition

code check fails and no other branch future is pending. The range of this address allows
branching over a 2-byte or 4-byte instruction located at <b_label>.

<T> Selects whether the instruction at <b_label> is a 2-byte (T = 0) or 4-byte (T = 1) instruction to
be branched around, as specified by <ba_label>.

<bcond> The comparison condition to use. The evaluation of this comparison is performed when this
instruction is executed and not at the point the branch is performed.
This parameter must be one of the following values:
EQ Encoded as bcond = 0000
NE Encoded as bcond = 0001
CS Encoded as bcond = 0010
CC Encoded as bcond = 0011
MI Encoded as bcond = 0100
PL Encoded as bcond = 0101
VS Encoded as bcond = 0110
VC Encoded as bcond = 0111
HI Encoded as bcond = 1000
LS Encoded as bcond = 1001
GE Encoded as bcond = 1010
LT Encoded as bcond = 1011
GT Encoded as bcond = 1100
LE Encoded as bcond = 1101

<label> The PC relative offset of the address to branch to.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

544

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3
4 // BF can be implemented as a NOP
5 allow_bf = boolean IMPLEMENTATION_DEFINED "BF allowed";
6
7 if ConditionPassed(bcond) then
8 jump_addr = if regAddr then R[n] else PC + offset;
9 else

10 jump_addr = PC + endOffset + bOffset;
11 // If the condition fails, capture a BF entry only if it does not override
12 // an existing BF entry.
13 if LO_BRANCH_INFO.VALID == '1' && LO_BRANCH_INFO.BF == '1' then
14 allow_bf = FALSE;
15 // A branch that results in a transition to a different instruction set
16 // causes the BF instruction to be treated as a NOP.
17 allow_bf = allow_bf && (jump_addr[0] == '1');
18 // Branches that would cause a FNC_RETURN or EXC_RETURN aren't supported,
19 // and also cause BF to be treated as a NOP.
20 allow_bf = allow_bf && (!regAddr || IsReturn(jump_addr) == AddrType_NORMAL);
21 // Check if the branch cache info is enabled.
22 allow_bf = allow_bf && CCR.LOB == '1';
23 // Set up the branch info cache if allowed
24 if allow_bf then
25 LO_BRANCH_INFO.VALID = '1';
26 LO_BRANCH_INFO.BF = '1';
27 LO_BRANCH_INFO.LF = if link then '1' else '0';
28 LO_BRANCH_INFO.T16IND = if regAddr then '1' else '0';
29 LO_BRANCH_INFO.END_ADDR = (PC + endOffset)[31:1];
30 LO_BRANCH_INFO.JUMP_ADDR = jump_addr[31:1];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

545

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.19 BFC

Bit Field Clear. Bit Field Clear clears any number of adjacent bits at any position in a register, without affecting
the other bits in the register.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 (0) 1 1 0 1 1 0 1 1 1 1 0 imm3 Rd imm2 (0) msb

T1 variant

BFC{<c>}{<q>} <Rd>, #<lsb>, #<width>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 d = UInt(Rd); msbit = UInt(msb); lsbit = UInt(imm3:imm2);
3 if msbit < lsbit then UNPREDICTABLE;
4 if d IN {13,15} then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If msbit < lsbit, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<lsb> Is the least significant bit that is to be cleared, in the range 0 to 31, encoded in the "imm3:imm2"

field.
<width> Is the number of bits to be cleared, in the range 1 to 32-<lsb>, encoded in the "msb" field as

<lsb>+<width>-1.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 if msbit >= lsbit then
4 R[d][msbit:lsbit] = Replicate('0', msbit-lsbit+1);
5 // Other bits of R[d] are unchanged
6 else
7 R[d] = bits(32) UNKNOWN;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

546

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.20 BFI

Bit Field Insert. Bit Field Insert copies any number of low order bits from a register into the same number of
adjacent bits at any position in the destination register.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 (0) 1 1 0 1 1 0 Rn != 1111 0 imm3 Rd imm2 (0) msb

T1 variant

BFI{<c>}{<q>} <Rd>, <Rn>, #<lsb>, #<width>

Decode for this encoding
1 if Rn == '1111' then SEE BFC;
2 if !HaveMainExt() then UNDEFINED;
3 d = UInt(Rd); n = UInt(Rn); msbit = UInt(msb); lsbit = UInt(imm3:imm2);
4 if msbit < lsbit then UNPREDICTABLE;
5 if d IN {13,15} || n == 13 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If msbit < lsbit, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the general-purpose source register, encoded in the "Rn" field.
<lsb> Is the least significant destination bit, in the range 0 to 31, encoded in the "imm3:imm2" field.
<width> Is the number of bits to be copied, in the range 1 to 32-<lsb>, encoded in the "msb" field as

<lsb>+<width>-1.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 if msbit >= lsbit then
4 R[d][msbit:lsbit] = R[n][(msbit-lsbit):0];
5 // Other bits of R[d] are unchanged
6 else
7 R[d] = bits(32) UNKNOWN;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

547

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.21 BIC (immediate)

Bit Clear (immediate). Bit Clear (immediate) performs a bitwise AND of a register value and the complement of
an immediate value, and writes the result to the destination register. It can optionally update the condition flags
based on the result.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 0 0 0 1 S Rn 0 imm3 Rd imm8

BIC variant

Applies when S == 0.

BIC{<c>}{<q>} {<Rd>,} <Rn>, #<const>

BICS variant

Applies when S == 1.

BICS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); setflags = (S == '1');
3 (imm32, carry) = T32ExpandImm_C(i:imm3:imm8, APSR.C);
4 if d IN {13,15} || n IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register

is the same as <Rn>.
<Rn> Is the general-purpose source register, encoded in the "Rn" field.
<const> Is an immediate value derived from the 12-bit immediate that is encoded in the ’i:imm3:imm8’

field. See C1.5 Modified immediate constants on page 448 for the range of values.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 result = R[n] AND NOT(imm32);
4 R[d] = result;
5 if setflags then
6 APSR.N = result[31];
7 APSR.Z = IsZeroBit(result);
8 APSR.C = carry;
9 // APSR.V unchanged

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

548

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.22 BIC (register)

Bit Clear (register). Bit Clear (register) performs a bitwise AND of a register value and the complement of an
optionally-shifted register value, and writes the result to the destination register. It can optionally update the
condition flags based on the result.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 1 1 1 0 Rm Rdn

T1 variant

BIC<c>{<q>} {<Rdn>,} <Rdn>, <Rm>
// Inside IT block

BICS{<q>} {<Rdn>,} <Rdn>, <Rm>
// Outside IT block

Decode for this encoding
1 d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();
2 (shift_t, shift_n) = (SRType_LSL, 0);

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 0 1 S Rn (0) imm3 Rd imm2

sr_type

Rm

BIC, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && sr_type == 11.

BIC{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

BIC, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && sr_type == 11).

BIC<c>.W {<Rd>,} <Rn>, <Rm>
// Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1

BIC{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

BICS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && imm2 == 00 && sr_type == 11.

BICS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

BICS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && sr_type == 11).

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

549

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

BICS.W {<Rd>,} <Rn>, <Rm>
// Outside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1

BICS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
3 (shift_t, shift_n) = DecodeImmShift(sr_type, imm3:imm2);
4 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rdn> Is the first general-purpose source register and the destination register, encoded in the "Rdn"

field.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register

is the same as <Rn>.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
<shift> Is the type of shift to be applied to the second source register, encoded in the "sr_type" field. It

can have the following values:
LSL when sr_type = 00
LSR when sr_type = 01
ASR when sr_type = 10
ROR when sr_type = 11

<amount> Is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift>
= LSR or ASR) encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
4 result = R[n] AND NOT(shifted);
5 R[d] = result;
6 if setflags then
7 APSR.N = result[31];
8 APSR.Z = IsZeroBit(result);
9 APSR.C = carry;

10 // APSR.V unchanged

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

550

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.23 BKPT

Breakpoint. Breakpoint causes a DebugMonitor exception or a debug halt to occur depending on the configuration
of the debug support.

BKPT is an unconditional instruction and executes as such both inside and outside an IT instruction block.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 0 imm8

T1 variant

BKPT{<q>} {#}<imm>

Decode for this encoding
1 imm32 = ZeroExtend(imm8, 32);
2 // imm32 is for assembly/disassembly only and is ignored by hardware.

Assembler symbols for all encodings

<q> See C1.2.5 Standard assembler syntax fields on page 431. A BKPT instruction must be
unconditional.

<imm> Is an 8-bit unsigned immediate, in the range 0 to 255, encoded in the "imm8" field. The
PE ignores this value, but a debugger might use it to store additional information about the
breakpoint.

Operation for all encodings
1 EncodingSpecificOperations();
2 GenerateDebugEventResponse(TRUE);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

551

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.24 BL

Branch with Link (immediate). Branch with Link (immediate) calls a subroutine at a PC-relative address.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 S imm10 1 1 J1 1 J2 imm11

T1 variant

BL{<c>}{<q>} <label>

Decode for this encoding
1 I1 = NOT(J1 EOR S); I2 = NOT(J2 EOR S); imm32 = SignExtend(S:I1:I2:imm10:imm11:'0', 32);
2 if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<label> The label of the instruction that is to be branched to. The assembler calculates the required

value of the offset from the PC value of the BL instruction to this label, then selects an encoding
with imm32 set to that offset. Permitted offsets are even numbers in the range -16777216 to
16777214.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 next_instr_addr = PC;
4 LR = next_instr_addr[31:1] : '1';
5 BranchTo(PC + imm32);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

552

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.25 BLX, BLXNS

Branch with Link and Exchange (Non-secure). Branch with Link and Exchange calls a subroutine at an address,
with the address and instruction set specified by a register. Bit[0] complies with the Arm architecture interworking
rules for switching between the A32 and T32 instruction sets. However, Armv8-M only supports the T32 instruction
set, so bit[0] must be 1. If bit[0] is 0 the PE takes an INVSTATE UsageFault exception on the instruction at the
target address.

Branch with Link and Exchange Non-secure calls a subroutine at an address specified by a register, and if bit[0] of
the target address is 0 then the instruction causes a transition from Secure to Non-secure state. This variant of the
instruction must only be used when the additional steps required to make such a transition safe have been taken.

BLXNS is UNDEFINED if executed in Non-secure state, or if the Security Extension is not implemented.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 1 1 1 1 Rm NS (0) (0)

BLX variant

Applies when NS == 0.

BLX{<c>}{<q>} <Rm>

BLXNS variant

Applies when NS == 1.

BLXNS{<c>}{<q>} <Rm>

Decode for this encoding
1 m = UInt(Rm); allowNonSecure = NS == '1';
2 if !IsSecure() && allowNonSecure then UNDEFINED;
3 if m IN {13,15} then UNPREDICTABLE;
4 if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rm> Is the general-purpose register holding the address to be branched to, encoded in the "Rm"

field. The SP can be used, but this is deprecated.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3
4 target = R[m];
5 nextInstrAddr = NextInstrAddr()[31:1] : '1';
6
7 if allowNonSecure && (target[0] == '0') then
8 if !IsAligned(SP, 8) then UNPREDICTABLE;
9 address = SP - 8;

10 RETPSR_Type savedPSR = Zeros();
11 savedPSR.Exception = IPSR.Exception;
12 savedPSR.SFPA = CONTROL_S.SFPA;
13 // Only the stack locations, not the store order, are architected

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

553

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

14 spName = LookUpSP();
15 mode = CurrentMode();
16 exc = Stack(address, 0, spName, mode, nextInstrAddr);
17 if exc.fault == NoFault then exc = Stack(address, 4, spName, mode, savedPSR);
18 HandleException(exc);
19 // Stack pointer update will raise a fault if limit violated
20 SP = address;
21 LR = 0xFEFFFFFF[31:0];
22 // If in handler mode, IPSR must be nonzero. To prevent revealing which
23 // Secure handler is calling Non-secure code, IPSR is set to an invalid but
24 // nonzero value(in other words the reset exception number).
25 if mode == PEMode_Handler then
26 IPSR = 0x1[31:0];
27 else
28 LR = nextInstrAddr;
29
30 BranchCall(target, allowNonSecure);

CONSTRAINED UNPREDICTABLE behavior
If !IsAligned(SP, 8), then one of the following behaviors must occur:

• The instruction uses the current value of the stack pointer.

• The instruction behaves as though bits[2:0] of the stack pointer are 0b000.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

554

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.26 BX, BXNS

Branch and Exchange (Non-secure). Branch and Exchange causes a branch to an address, with the address and
instruction set specified by a register. Bit[0] complies with the Arm architecture interworking rules for switching
between the A32 and T32 instruction sets. However, Armv8-M only supports the T32 instruction set, so bit[0]
must be 1. If bit[0] is 0 the PE takes an INVSTATE UsageFault exception on the instruction at the target address.

Branch and Exchange Non-secure causes a branch to an address specified by a register. If bit[0] of the target address
is 0, and the target address is not FNC_RETURN or EXC_RETURN, then the instruction causes a transition from
Secure to Non-secure state. This variant of the instruction must only be used when the additional steps required to
make such a transition safe have been taken.

BX can also be used for an exception return.

BXNS is UNDEFINED if executed in Non-secure state, or if the Security Extension is not implemented.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 1 1 1 0 Rm NS (0) (0)

BX variant

Applies when NS == 0.

BX{<c>}{<q>} <Rm>

BXNS variant

Applies when NS == 1.

BXNS{<c>}{<q>} <Rm>

Decode for this encoding
1 m = UInt(Rm); allowNonSecure = NS == '1';
2 if !IsSecure() && allowNonSecure then UNDEFINED;
3 if m IN {13,15} then UNPREDICTABLE;
4 if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rm> Is the general-purpose register holding the address to be branched to, encoded in the "Rm"

field. The SP can be used, but this is deprecated.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 exc = BranchReturn(R[m], allowNonSecure);
4 HandleException(exc);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

555

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.27 CBNZ, CBZ

Compare and Branch on Nonzero or Zero. Compare and Branch on Nonzero and Compare and Branch on Zero
compare the value in a register with zero, and conditionally branch forward a constant value. They do not affect
the condition flags.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 op 0 i 1 imm5 Rn

CBNZ variant

Applies when op == 1.

CBNZ{<q>} <Rn>, <label>

CBZ variant

Applies when op == 0.

CBZ{<q>} <Rn>, <label>

Decode for this encoding
1 n = UInt(Rn); imm32 = ZeroExtend(i:imm5:'0', 32); nonzero = (op == '1');
2 if InITBlock() then UNPREDICTABLE;

Assembler symbols for all encodings

<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rn> Is the general-purpose register to be tested, encoded in the "Rn" field.
<label> Is the program label to be conditionally branched to. Its offset from the PC, a multiple of 2 in

the range 0 to 126, is encoded as "i:imm5" times 4.

Operation for all encodings
1 EncodingSpecificOperations();
2 if nonzero != IsZero(R[n]) then
3 BranchTo(PC + imm32);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

556

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.28 CDP, CDP2

Coprocessor Data Processing. Coprocessor Data Processing tells a coprocessor to perform an operation.

If no coprocessor can execute the instruction, a UsageFault exception is generated.

Arm reserves coprocessors CP8 to CP15, and this manual defines the valid instructions when coproc is in this
range.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 opc1 CRn CRd coproc opc2 0 CRm

T1 variant

CDP{<c>}{<q>} <coproc>, {#}<opc1>, <CRd>, <CRn>, <CRm> {, {#}<opc2>}

Decode for this encoding
1 if coproc IN {'100x', '101x', '111x'} then SEE "Floating-point and MVE";
2 if CoprocType(UInt(coproc)) == CP_CDEv1 then SEE "CDE instructions";
3 if !HaveMainExt() then UNDEFINED;
4 cp = UInt(coproc);

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 opc1 CRn CRd coproc opc2 0 CRm

T2 variant

CDP2{<c>}{<q>} <coproc>, {#}<opc1>, <CRd>, <CRn>, <CRm> {, {#}<opc2>}

Decode for this encoding
1 if coproc IN {'100x', '101x', '111x'} then SEE "Floating-point and MVE";
2 if CoprocType(UInt(coproc)) == CP_CDEv1 then SEE "CDE instructions";
3 if !HaveMainExt() then UNDEFINED;
4 cp = UInt(coproc);

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<coproc> Is the name of the coprocessor, encoded in the "coproc" field. The generic coprocessor names

are p0 to p15.
<opc1> Is a coprocessor-specific opcode, in the range 0 to 15, encoded in the "opc1" field.
<CRd> Is the destination coprocessor register, encoded in the "CRd" field.
<CRn> Is the coprocessor register that contains the first operand, encoded in the "CRn" field.
<CRm> Is the coprocessor register that contains the second operand, encoded in the "CRm" field.
<opc2> Is a coprocessor-specific opcode in the range 0 to 7, defaulting to 0 and encoded in the "opc2"

field.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

557

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteCPCheck(cp);
4 if !Coproc_Accepted(cp, ThisInstr()) then
5 GenerateCoprocessorException();
6 else
7 Coproc_InternalOperation(cp, ThisInstr());

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

558

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.29 CINC

Conditional Increment. Returns, in the destination register, the value of the source register incremented by 1, if the
condition is TRUE. Otherwise returns the value of the source register.

This is an alias of CSINC with the following condition satisfied: Rn == Rm && Rn != 15.

This alias is the preferred disassembly.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 1 Rn 1 (0) 0 1 Rd fcond Rn

CINC variant

CINC Rd, Rn, <fcond>

is equivalent to

CSINC Rd, Rn, Rn, invert (<cond>)

and is the preferred disassembly when Rn == Rm && Rn != 15

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

559

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.30 CINV

Conditional Invert. Returns, in the destination register, the bitwise inversion of the value of the source register, if
the condition is TRUE. Otherwise returns the value of the source register.

This is an alias of CSINV with the following condition satisfied: Rn == Rm && Rn != 15.

This alias is the preferred disassembly.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 1 Rn 1 (0) 1 0 Rd fcond Rn

T1: CINV variant

CINV Rd, Rn, <fcond>

is equivalent to

CSINV Rd, Rn, Rn, invert (<cond>)

and is the preferred disassembly when Rn == Rm && Rn != 15

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

560

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.31 CLREX

Clear Exclusive. Clear Exclusive clears the local record of the executing PE that an address has had a request for
an exclusive access.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 1 (1) (1) (1) (1) 1 0 (0) 0 (1) (1) (1) (1) 0 0 1 0 (1) (1) (1) (1)

T1 variant

CLREX{<c>}{<q>}

Decode for this encoding
1 // No additional decoding required

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ClearExclusiveLocal(ProcessorID());

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

561

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.32 CLRM

Clear multiple. Zeros the specified general-purpose registers. It is IMPLEMENTATION DEFINED whether this
instruction is interrupt-continuable. See EPSR.ICI. If an exception returns to this instruction with non-zero
EPSR.ICI bits, and the PE does not support interrupt-continuable behavior, the instruction restarts from the
beginning

T1
Armv8.1-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 0 (0) 1 1 1 1 1 A M (0) register_list

T1: CLRM variant

CLRM<c> <registers>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 if !HasArchVersion(Armv8p1) then CONSTRAINED_UNPREDICTABLE;
3
4 registers = A:M:'0':register_list;
5 if BitCount(registers) < 1 then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<registers> A list of the registers to clear, separated by commas and surrounded by { and }. The valid

registers are APSR, LR/R14, and R12-R0, and are encoded as a bitmask in the A, M and
register_list fields.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3
4 for i = 0 to 14
5 if registers[i] == '1' then
6 R[i] = Zeros(32);
7
8 if registers[15] == '1' then
9 APSR = Zeros(32);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

562

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.33 CLZ

Count Leading Zeros. Count Leading Zeros returns the number of binary zero bits before the first binary one bit in
a value.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 1 1 Rm 1 1 1 1 Rd 1 0 0 0 Rm2

T1 variant

CLZ{<c>}{<q>} <Rd>, <Rm>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 if Rm != Rm2 then UNPREDICTABLE;
3 d = UInt(Rd); m = UInt(Rm);
4 if d IN {13,15} || m IN {13,15} then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If Rm != Rm2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as described, with no change to its behavior and no additional side effects.

• The value in the destination register is UNKNOWN.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> Is the general-purpose source register, encoded in the "Rm" field. Its number must be encoded

twice.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 result = CountLeadingZeroBits(R[m]);
4 R[d] = result[31:0];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

563

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.34 CMN (immediate)

Compare Negative (immediate). Compare Negative (immediate) adds a register value and an immediate value. It
updates the condition flags based on the result, and discards the result.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 1 0 0 0 1 Rn 0 imm3 1 1 1 1 imm8

T1 variant

CMN{<c>}{<q>} <Rn>, #<const>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 n = UInt(Rn); imm32 = T32ExpandImm(i:imm3:imm8);
3 if n == 15 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rn> Is the general-purpose source register, encoded in the "Rn" field.
<const> Is an immediate value derived from the 12-bit immediate that is encoded in the ’i:imm3:imm8’

field. See C1.5 Modified immediate constants on page 448 for the range of values.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 (result, carry, overflow) = AddWithCarry(R[n], imm32, '0');
4 APSR.N = result[31];
5 APSR.Z = IsZeroBit(result);
6 APSR.C = carry;
7 APSR.V = overflow;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

564

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.35 CMN (register)

Compare Negative (register). Compare Negative (register) adds a register value and an optionally-shifted register
value. It updates the condition flags based on the result, and discards the result.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 1 0 1 1 Rm Rn

T1 variant

CMN{<c>}{<q>} <Rn>, <Rm>

Decode for this encoding
1 n = UInt(Rn); m = UInt(Rm);
2 (shift_t, shift_n) = (SRType_LSL, 0);

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 1 0 0 0 1 Rn (0) imm3 1 1 1 1 imm2

sr_type

Rm

Rotate right with extend variant

Applies when imm3 == 000 && imm2 == 00 && sr_type == 11.

CMN{<c>}{<q>} <Rn>, <Rm>, RRX

Shift or rotate by value variant

Applies when !(imm3 == 000 && imm2 == 00 && sr_type == 11).

CMN{<c>}.W <Rn>, <Rm>
// <Rn>, <Rm> can be represented in T1

CMN{<c>}{<q>} <Rn>, <Rm> {, <shift> #<amount>}

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 n = UInt(Rn); m = UInt(Rm);
3 (shift_t, shift_n) = DecodeImmShift(sr_type, imm3:imm2);
4 if n == 15 || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
<shift> Is the type of shift to be applied to the second source register, encoded in the "sr_type" field. It

can have the following values:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

565

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

LSL when sr_type = 00
LSR when sr_type = 01
ASR when sr_type = 10
ROR when sr_type = 11

<amount> Is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift>
= LSR or ASR) encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 shifted = Shift(R[m], shift_t, shift_n, APSR.C);
4 (result, carry, overflow) = AddWithCarry(R[n], shifted, '0');
5 APSR.N = result[31];
6 APSR.Z = IsZeroBit(result);
7 APSR.C = carry;
8 APSR.V = overflow;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

566

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.36 CMP (immediate)

Compare (immediate). Compare (immediate) subtracts an immediate value from a register value. It updates the
condition flags based on the result, and discards the result.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 1 Rn imm8

T1 variant

CMP{<c>}{<q>} <Rn>, #<imm8>

Decode for this encoding
1 n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 1 1 0 1 1 Rn 0 imm3 1 1 1 1 imm8

T2 variant

CMP{<c>}.W <Rn>, #<const>
// <Rn>, <const> can be represented in T1

CMP{<c>}{<q>} <Rn>, #<const>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 n = UInt(Rn); imm32 = T32ExpandImm(i:imm3:imm8);
3 if n == 15 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rn> For encoding T1: is a general-purpose source register, encoded in the "Rn" field.

For encoding T2: is the general-purpose source register, encoded in the "Rn" field.
<imm8> Is an 8-bit unsigned immediate, in the range 0 to 255, encoded in the "imm8" field.
<const> Is an immediate value derived from the 12-bit immediate that is encoded in the ’i:imm3:imm8’

field. See C1.5 Modified immediate constants on page 448 for the range of values.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 (result, carry, overflow) = AddWithCarry(R[n], NOT(imm32), '1');
4 APSR.N = result[31];
5 APSR.Z = IsZeroBit(result);
6 APSR.C = carry;
7 APSR.V = overflow;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

567

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.37 CMP (register)

Compare (register). Compare (register) subtracts an optionally-shifted register value from a register value. It
updates the condition flags based on the result, and discards the result.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 1 0 1 0 Rm Rn

T1 variant

CMP{<c>}{<q>} <Rn>, <Rm>
// <Rn> and <Rm> both from R0-R7

Decode for this encoding
1 n = UInt(Rn); m = UInt(Rm);
2 (shift_t, shift_n) = (SRType_LSL, 0);

T2
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 1 0 1 N Rm Rn

T2 variant

CMP{<c>}{<q>} <Rn>, <Rm>
// <Rn> and <Rm> not both from R0-R7

Decode for this encoding
1 n = UInt(N:Rn); m = UInt(Rm);
2 (shift_t, shift_n) = (SRType_LSL, 0);
3 if n < 8 && m < 8 then UNPREDICTABLE;
4 if n == 15 || m == 15 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If n < 8 && m < 8, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as described, with no change to its behavior and no additional side effects.

• The condition flags become UNKNOWN.

T3
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 1 1 0 1 1 Rn (0) imm3 1 1 1 1 imm2

sr_type

Rm

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

568

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Rotate right with extend variant

Applies when imm3 == 000 && imm2 == 00 && sr_type == 11.

CMP{<c>}{<q>} <Rn>, <Rm>, RRX

Shift or rotate by value variant

Applies when !(imm3 == 000 && imm2 == 00 && sr_type == 11).

CMP{<c>}.W <Rn>, <Rm>
// <Rn>, <Rm> can be represented in T1 or T2

CMP{<c>}{<q>} <Rn>, <Rm>, <shift> #<amount>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 n = UInt(Rn); m = UInt(Rm);
3 (shift_t, shift_n) = DecodeImmShift(sr_type, imm3:imm2);
4 if n == 15 || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rn> For encoding T1 and T3: is the first general-purpose source register, encoded in the "Rn" field.

For encoding T2: is the first general-purpose source register, encoded in the "N:Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
<shift> Is the type of shift to be applied to the second source register, encoded in the "sr_type" field. It

can have the following values:
LSL when sr_type = 00
LSR when sr_type = 01
ASR when sr_type = 10
ROR when sr_type = 11

<amount> Is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift>
= LSR or ASR) encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 shifted = Shift(R[m], shift_t, shift_n, APSR.C);
4 (result, carry, overflow) = AddWithCarry(R[n], NOT(shifted), '1');
5 APSR.N = result[31];
6 APSR.Z = IsZeroBit(result);
7 APSR.C = carry;
8 APSR.V = overflow;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

569

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.38 CNEG

Conditional Negate. Returns, in the destination register, the negated value of the source register if the condition is
TRUE, and otherwise returns the value of the source register.

This is an alias of CSNEG with the following condition satisfied: Rn == Rm.

This alias is the preferred disassembly.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 1 Rn 1 (0) 1 1 Rd fcond Rn

CNEG variant

CNEG Rd, Rn, <fcond>

is equivalent to

CSNEG Rd, Rn, Rn, invert (<cond>)

and is the preferred disassembly when Rn == Rm

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

570

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.39 CPS

Change PE State. Change PE State. The instruction modifies the PRIMASK and FAULTMASK special-purpose
register values.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 1 1 0 0 1 1 im (0) (0) I F

CPSID variant

Applies when im == 1.

CPSID{<q>} <iflags>

CPSIE variant

Applies when im == 0.

CPSIE{<q>} <iflags>

Decode for this encoding
1 enable = (im == '0'); disable = (im == '1');
2 if InITBlock() then UNPREDICTABLE;
3 if (I == '0' && F =='0') then UNPREDICTABLE;
4 affectPRI = (I == '1'); affectFAULT = (F == '1');
5 if !HaveMainExt() then
6 if (I == '0') then UNPREDICTABLE;
7 if (F == '1') then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If I == ’0’ && F == ’0’, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

CONSTRAINED UNPREDICTABLE behavior
If !HaveMainExt() && (I == ’0’ || F == ’1’), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

Assembler symbols for all encodings

<q> See C1.2.5 Standard assembler syntax fields on page 431.
<iflags> Is a sequence of one or more of the following, specifying which interrupt mask bits are

affected:
f FAULTMASK. When set to 1, raises the execution priority to -1, the same priority as

HardFault. This is a 1-bit register, that can be updated only by privileged software. The
register clears to 0 on return from any exception other than NMI.
i PRIMASK. When set to 1, raises the execution priority to 0. This is a 1-bit register, that

can be updated only by privileged software.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

571

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 EncodingSpecificOperations();
2 if CurrentModeIsPrivileged() then
3 if enable then
4 if affectPRI then
5 PRIMASK.PM = '0';
6 if affectFAULT then
7 FAULTMASK.FM = '0';
8 if disable then
9 if affectPRI then

10 PRIMASK.PM = '1';
11 if affectFAULT && ExecutionPriority() > -1 then
12 FAULTMASK.FM = '1';

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

572

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.40 CSDB

Consumption of Speculative Data Barrier. Consumption of Speculative Data Barrier is a memory barrier that
controls speculative execution and data value prediction.

No instruction other than branch instructions and instructions that write to the PC appearing in program order after
the CSDB can be speculatively executed using the results of any:

• Data value predictions of any instructions.

• APSR.{N,Z,C,V} predictions of any instructions other than conditional branch instructions and conditional
instructions that write to the PC appearing in program order before the CSDB that have not been architecturally
resolved.

APSR.{N,Z,C,V} is not considered a data value. This instruction permits:

• Control flow speculation before and after the CSDB.

• Speculative execution of conditional data processing instructions after the CSDB, unless they use the results
of data value or APSR.{N,Z,C,V} predictions of instructions appearing in program order before the CSDB
that have not been architecturally resolved.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 0 0 0 1 0 1 0 0

T1 variant

CSDB{<c>}.W

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 if InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes unconditionally.

• The instruction executes conditionally.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ConsumptionOfSpeculativeDataBarrier();

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

573

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.41 CSEL

Conditional Select. Returns, in the destination register, the value of the first source register if the condition is
TRUE, and otherwise returns the value of the second source register.

This instruction is not permitted in an IT block.

T1
Armv8.1-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 1 Rn 1 (0) 0 0 Rd fcond Rm

T1: CSEL variant

CSEL Rd, Rn, Rm, <fcond>

Decode for this encoding
1 if Rm == '1101' then SEE "Related encodings";
2 if !HaveMainExt() then UNDEFINED;
3 if !HasArchVersion(Armv8p1) then CONSTRAINED_UNPREDICTABLE;
4 d = UInt(Rd);
5 m = UInt(Rm);
6 n = UInt(Rn);
7 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
8 if Rd == '11x1' || Rn == '1101' then CONSTRAINED_UNPREDICTABLE;
9 if fcond == '111x' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<Rd> Destination general-purpose register.
<Rn> First source general-purpose register (ZR is permitted, PC is not).
<Rm> Second source general-purpose register (ZR is permitted, PC is not).
<fcond> The comparison condition to use. This is in the format of a standard Arm condition code.

This parameter must be one of the following values:
EQ Encoded as fcond = 0000
NE Encoded as fcond = 0001
CS Encoded as fcond = 0010
CC Encoded as fcond = 0011
MI Encoded as fcond = 0100
PL Encoded as fcond = 0101
VS Encoded as fcond = 0110
VC Encoded as fcond = 0111
HI Encoded as fcond = 1000
LS Encoded as fcond = 1001
GE Encoded as fcond = 1010
LT Encoded as fcond = 1011
GT Encoded as fcond = 1100
LE Encoded as fcond = 1101

Operation for all encodings
1 EncodingSpecificOperations();
2
3 bits(32) result;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

574

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

4 if ConditionHolds(fcond) then
5 result = RZ[n];
6 else
7 result = RZ[m];
8 R[d] = result;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

575

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.42 CSET

Conditional Set. Sets the destination register to 1 if the condition is TRUE, and otherwise set it to 0.

This is an alias of CSINC with the following condition satisfied: Rn==15 && Rm==15.

This alias is the preferred disassembly.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 1 1 1 1 1 1 (0) 0 1 Rd fcond 1 1 1 1

CSET variant

CSET Rd, <fcond>

is equivalent to

CSINC Rd, Zr, Zr, invert (<cond>)

and is the preferred disassembly when Rn == 15 && Rm == 15

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

576

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.43 CSETM

Conditional Set Mask. Sets all bits of the destination register to 1 if the condition is TRUE. Otherwise sets all bits
to 0.

This is an alias of CSINV with the following condition satisfied: Rn==15 && Rm==15.

This alias is the preferred disassembly.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 1 1 1 1 1 1 (0) 1 0 Rd fcond 1 1 1 1

T1: CSETM variant

CSETM Rd, <fcond>

is equivalent to

CSINV Rd, Zr, Zr, invert (<cond>)

and is the preferred disassembly when Rn == 15 && Rm == 15

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

577

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.44 CSINC

Conditional Select Increment. Returns, in the destination register, the value of the first source register if the
condition is TRUE, and otherwise returns the value of the second source register incremented by 1.

This instruction is not permitted in an IT block.

T1
Armv8.1-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 1 Rn 1 (0) 0 1 Rd fcond Rm

T1: CSINC variant

CSINC Rd, Rn, Rm, <fcond>

Decode for this encoding
1 if Rm == '1101' then SEE "Related encodings";
2 if !HaveMainExt() then UNDEFINED;
3 if !HasArchVersion(Armv8p1) then CONSTRAINED_UNPREDICTABLE;
4 d = UInt(Rd);
5 m = UInt(Rm);
6 n = UInt(Rn);
7 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
8 if Rd == '11x1' || Rn == '1101' then CONSTRAINED_UNPREDICTABLE;
9 if fcond == '111x' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<Rd> Destination general-purpose register.
<Rn> First source general-purpose register (ZR is permitted, PC is not).
<Rm> Second source general-purpose register (ZR is permitted, PC is not).
<fcond> The comparison condition to use. This is in the format of a standard Arm condition code.

This parameter must be one of the following values:
EQ Encoded as fcond = 0000
NE Encoded as fcond = 0001
CS Encoded as fcond = 0010
CC Encoded as fcond = 0011
MI Encoded as fcond = 0100
PL Encoded as fcond = 0101
VS Encoded as fcond = 0110
VC Encoded as fcond = 0111
HI Encoded as fcond = 1000
LS Encoded as fcond = 1001
GE Encoded as fcond = 1010
LT Encoded as fcond = 1011
GT Encoded as fcond = 1100
LE Encoded as fcond = 1101

Operation for all encodings
1 EncodingSpecificOperations();
2
3 bits(32) result;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

578

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

4 if ConditionHolds(fcond) then
5 result = RZ[n];
6 else
7 result = RZ[m] + 1;
8 R[d] = result;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

579

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.45 CSINV

Conditional Select Invert. Returns, in the destination register, the value of the first source register if the condition
is TRUE, and otherwise returns the value of the second source register, bitwise inverted.

This instruction is not permitted in an IT block.

T1
Armv8.1-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 1 Rn 1 (0) 1 0 Rd fcond Rm

T1: CSINV variant

CSINV Rd, Rn, Rm, <fcond>

Decode for this encoding
1 if Rm == '1101' then SEE "Related encodings";
2 if !HaveMainExt() then UNDEFINED;
3 if !HasArchVersion(Armv8p1) then CONSTRAINED_UNPREDICTABLE;
4 d = UInt(Rd);
5 m = UInt(Rm);
6 n = UInt(Rn);
7 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
8 if Rd == '11x1' || Rn == '1101' then CONSTRAINED_UNPREDICTABLE;
9 if fcond == '111x' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<Rd> Destination general-purpose register.
<Rn> First source general-purpose register (ZR is permitted, PC is not).
<Rm> Second source general-purpose register (ZR is permitted, PC is not).
<fcond> The comparison condition to use. This is in the format of a standard Arm condition code.

This parameter must be one of the following values:
EQ Encoded as fcond = 0000
NE Encoded as fcond = 0001
CS Encoded as fcond = 0010
CC Encoded as fcond = 0011
MI Encoded as fcond = 0100
PL Encoded as fcond = 0101
VS Encoded as fcond = 0110
VC Encoded as fcond = 0111
HI Encoded as fcond = 1000
LS Encoded as fcond = 1001
GE Encoded as fcond = 1010
LT Encoded as fcond = 1011
GT Encoded as fcond = 1100
LE Encoded as fcond = 1101

Operation for all encodings
1 EncodingSpecificOperations();
2
3 bits(32) result;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

580

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

4 if ConditionHolds(fcond) then
5 result = RZ[n];
6 else
7 result = NOT(RZ[m]);
8 R[d] = result;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

581

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.46 CSNEG

Conditional Select Negation. Returns, in the destination register, the value of the first source register if the
condition is TRUE, and otherwise returns the value of the second source register negated.

This instruction is not permitted in an IT block.

T1
Armv8.1-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 1 Rn 1 (0) 1 1 Rd fcond Rm

T1: CSNEG variant

CSNEG Rd, Rn, Rm, <fcond>

Decode for this encoding
1 if Rm == '1101' then SEE "Related encodings";
2 if !HaveMainExt() then UNDEFINED;
3 if !HasArchVersion(Armv8p1) then CONSTRAINED_UNPREDICTABLE;
4 d = UInt(Rd);
5 m = UInt(Rm);
6 n = UInt(Rn);
7 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
8 if Rd == '11x1' || Rn == '1101' then CONSTRAINED_UNPREDICTABLE;
9 if fcond == '111x' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<Rd> Destination general-purpose register.
<Rn> First source general-purpose register (ZR is permitted, PC is not).
<Rm> Second source general-purpose register (ZR is permitted, PC is not).
<fcond> The comparison condition to use. This is in the format of a standard Arm condition code.

This parameter must be one of the following values:
EQ Encoded as fcond = 0000
NE Encoded as fcond = 0001
CS Encoded as fcond = 0010
CC Encoded as fcond = 0011
MI Encoded as fcond = 0100
PL Encoded as fcond = 0101
VS Encoded as fcond = 0110
VC Encoded as fcond = 0111
HI Encoded as fcond = 1000
LS Encoded as fcond = 1001
GE Encoded as fcond = 1010
LT Encoded as fcond = 1011
GT Encoded as fcond = 1100
LE Encoded as fcond = 1101

Operation for all encodings
1 EncodingSpecificOperations();
2
3 bits(32) result;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

582

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

4 if ConditionHolds(fcond) then
5 result = RZ[n];
6 else
7 result = NOT(RZ[m]);
8 result = result + 1;
9 R[d] = result;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

583

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.47 CX1

Custom Instruction Class 1. Custom instruction class 1 computes a value based on an immediate, and optionally
the destination value, and writes the result to the destination register.

The source and destination registers can be either general-purpose registers or the Condition flags, specified by use
of APSR_nzcv.

T1
Armv8-M Custom Datapath Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 A 1 1 1 0 0 0 op1 Rd 0 coproc op2 0 op3

Accumulator variant

Applies when A == 1

CX1A<c>, <coproc>, <Rd>, #<imm>

Non-accumulator variant

Applies when A == 0

CX1 <coproc>, <Rd>, #<imm>

Decode for this encoding
1 if CoprocType(UInt(coproc)) != CP_CDEv1 then SEE "Coprocessor instructions";
2 if !HaveMainExt() then UNDEFINED;
3 cp = UInt(coproc);
4 d = UInt(Rd);
5 imm = op1:op2:op3;
6 acc = (A == '1');
7 ExecuteCPCheck(cp);
8 if d == 13 then UNPREDICTABLE;
9 if !acc && InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If d == 13, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction returns an UNKNOWN value in SP.

• The instruction executes as NOP.

CONSTRAINED UNPREDICTABLE behavior
If d == 13, then one of the following behaviors must occur:

• It is UNKNOWN whether a stack limit check is performed.

CONSTRAINED UNPREDICTABLE behavior
If !acc && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

584

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<A> Accumulate with existing register contents. This parameter must be one of the following
values:
- Encoded as A = 0
A Encoded as A = 1

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<coproc> Is the name of the coprocessor, encoding in the "coproc" field. Valid names are p0 to p7

inclusive.
<Rd> Is the general-purpose R0 - R14 or APSR_nzcv destination register, encoded in the "Rd"

field. For accumulator variants <Rd> also specifies the source register. APSR_nzcv is
encoded by the "Rd" field value 0b1111.

<imm> Is the immediate encoded in op1:op2:op3.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 if (!Coproc_Accepted(cp, ThisInstr())) then
4 GenerateCoprocessorException();
5 elsif acc then
6 RF[d] = CX_op1(ThisInstr(), RF[d], 32);
7 else
8 RF[d] = CX_op0(ThisInstr(), 32);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

585

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.48 CX1D

Custom Instruction Class 1. Custom instruction class 1 dual computes a value based on an immediate, and
optionally the destination register pair value, and writes the result to a destination register pair.

The destination registers are a consecutive pair of general-purpose registers.

The significance of the words in each pair is consistent with the current data endianness.

T1
Armv8-M Custom Datapath Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 A 1 1 1 0 0 0 op1 Rd 0 coproc op2 1 op3

Accumulator variant

Applies when A == 1

CX1DA<c>, <coproc>, <Rd>, <Rd+1>, #<imm>

Non-accumulator variant

Applies when A == 0

CX1D <coproc>, <Rd>, <Rd+1>, #<imm>

Decode for this encoding
1 if CoprocType(UInt(coproc)) != CP_CDEv1 then SEE "Coprocessor instructions";
2 if !HaveMainExt() then UNDEFINED;
3 cp = UInt(coproc);
4 d = UInt(Rd);
5 d2 = d + 1;
6 imm = op1:op2:op3;
7 acc = (A == '1');
8 ExecuteCPCheck(cp);
9 // Register pairs containing SP or PC are UNPREDICTABLE.

10 if d > 10 then UNPREDICTABLE;
11 if Rd[0] == '1' then UNPREDICTABLE;
12 if !acc && InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If d is odd, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction returns and UNKNOWN value in Rd, Rd + 1 and Rd - 1.

• The instruction executes as NOP.

CONSTRAINED UNPREDICTABLE behavior
If d == 12, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction returns and UNKNOWN value in R12 and SP.

• The instruction executes as NOP.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

586

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

CONSTRAINED UNPREDICTABLE behavior
If d == 12 || d == 13, then one of the following behaviors must occur:

• It is UNKNOWN whether a stack limit check is performed.

CONSTRAINED UNPREDICTABLE behavior
If d == 14, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

CONSTRAINED UNPREDICTABLE behavior
If !acc && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP.

Assembler symbols for all encodings

<A> Accumulate with existing register contents. This parameter must be one of the following
values:
- Encoded as A = 0
A Encoded as A = 1

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<coproc> Is the name of the coprocessor, encoding in the "coproc" field. Valid names are p0 to p7

inclusive.
<Rd> Is the general-purpose register R0 - R10 specifying the first of destination register pair,

encoded in the "Rd" field. For accumulator variants, <Rd> also specifies the source register.
<imm> Is the immediate encoded in op1:op2:op3.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 if (!Coproc_Accepted(cp, ThisInstr())) then
4 GenerateCoprocessorException();
5 elsif acc then
6 RFD[d] = CX_op1(ThisInstr(), RFD[d], 64);
7 else
8 RFD[d] = CX_op0(ThisInstr(), 64);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

587

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.49 CX2

Custom Instruction Class 2. Custom instruction class 2 computes a value based on a source register, an immediate,
and optionally the destination value, and writes the result to the destination register. The source and destination
registers can be either general-purpose registers or the Condition flags, specified by use of APSR_nzcv.

T1
Armv8-M Custom Datapath Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 A 1 1 1 0 0 1 op1 Rn Rd 0 coproc op2 0 op3

Accumulator variant

Applies when A == 1

CX2A<c>, <coproc>, <Rd>, <Rn>, #<imm>

Non-accumulator variant

Applies when A == 0

CX2 <coproc>, <Rd>, <Rn>, #<imm>

Decode for this encoding
1 if CoprocType(UInt(coproc)) != CP_CDEv1 then SEE "Coprocessor instructions";
2 if !HaveMainExt() then UNDEFINED;
3 cp = UInt(coproc);
4 d = UInt(Rd);
5 n = UInt(Rn);
6 imm = op1:op2:op3;
7 acc = (A == '1');
8 ExecuteCPCheck(cp);
9 if d == 13 || n == 13 then UNPREDICTABLE;

10 if !acc && InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If d == 13, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction returns an UNKNOWN value in SP.

• The instruction executes as NOP.

CONSTRAINED UNPREDICTABLE behavior
If d == 13, then one of the following behaviors must occur:

• It is UNKNOWN whether a stack limit check is performed.

CONSTRAINED UNPREDICTABLE behavior
If n == 13, then one of the following behaviors must occur:

• The instruction executes as NOP.

• The instruction returns an UNKNOWN value.

• The instruction is UNDEFINED.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

588

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

CONSTRAINED UNPREDICTABLE behavior
If !acc && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP.

Assembler symbols for all encodings

<A> Accumulate with existing register contents. This parameter must be one of the following
values:
- Encoded as A = 0
A Encoded as A = 1

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<coproc> Is the name of the coprocessor, encoding in the "coproc" field. Valid names are p0 to p7

inclusive.
<Rd> Is the general-purpose R0 - R14 or APSR_nzcv destination register, encoded in the "Rd"

field. For accumulator variants <Rd> also specifies the source register. APSR_nzcv is
encoded by the "Rd" field value 0b1111.

<Rn> Is the general-purpose R0 - R14 or APSR_nzcv source register, encoded in the "Rn" field.
APSR_nzcv is encoded by the "Rn" field value 0b1111.

<imm> Is the immediate encoded in op1:op2:op3.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 if (!Coproc_Accepted(cp, ThisInstr())) then
4 GenerateCoprocessorException();
5 elsif acc then
6 RF[d] = CX_op2(ThisInstr(), RF[d], RF[n], 32);
7 else
8 RF[d] = CX_op1(ThisInstr(), RF[n], 32);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

589

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.50 CX2D

Custom Instruction Class 2. Custom instruction class 2 dual computes a value based on a source register, an
immediate, and optionally the destination register pair value, and writes the result to the destination register pair.

The destination registers are a consecutive pair of general-purpose registers.

The source registers can be either general-purpose registers or the Condition flags, specified by use of APSR_nzcv.

The significance of the words in each pair is consistent with the current data endianness.

T1
Armv8-M Custom Datapath Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 A 1 1 1 0 0 1 op1 Rn Rd 0 coproc op2 1 op3

Accumulator variant

Applies when A == 1

CX2DA<c>, <coproc>, <Rd>, <Rd+1>, <Rn>, #<imm>

Non-accumulator variant

Applies when A == 0

CX2D <coproc>, <Rd>, <Rd+1>, <Rn>, #<imm>

Decode for this encoding
1 if CoprocType(UInt(coproc)) != CP_CDEv1 then SEE "Coprocessor instructions";
2 if !HaveMainExt() then UNDEFINED;
3 cp = UInt(coproc);
4 d = UInt(Rd);
5 n = UInt(Rn);
6 imm = op1:op2:op3;
7 acc = (A == '1');
8 ExecuteCPCheck(cp);
9 // Register pairs containing SP or PC are UNPREDICTABLE.

10 if d > 10 then UNPREDICTABLE;
11 if n == 13 then UNPREDICTABLE;
12 if Rd[0] == '1' then UNPREDICTABLE;
13 if !acc && InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If d is odd, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction returns and UNKNOWN value in Rd, Rd + 1 and Rd - 1.

• The instruction executes as NOP.

CONSTRAINED UNPREDICTABLE behavior
If d == 12, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction returns and UNKNOWN value in R12 and SP.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

590

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

• The instruction executes as NOP.

CONSTRAINED UNPREDICTABLE behavior
If d == 12 || d == 13, then one of the following behaviors must occur:

• It is UNKNOWN whether a stack limit check is performed.

CONSTRAINED UNPREDICTABLE behavior
If d == 14, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

CONSTRAINED UNPREDICTABLE behavior
If n == 13, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The value in the destination register is UNKNOWN.

• The instruction executes as NOP.

CONSTRAINED UNPREDICTABLE behavior
If !acc && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP.

Assembler symbols for all encodings

<A> Accumulate with existing register contents. This parameter must be one of the following
values:
- Encoded as A = 0
A Encoded as A = 1

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<coproc> Is the name of the coprocessor, encoding in the "coproc" field. Valid names are p0 to p7

inclusive.
<Rd> Is the general-purpose register R0 - R10 specifying the first of destination register pair,

encoded in the "Rd" field. For accumulator variants, <Rd> also specifies the source register.
<Rn> Is the general-purpose R0 - R14 or APSR_nzcv source register, encoded in the "Rn" field.

APSR_nzcv is encoded by the "Rn" field value 0b1111.
<imm> Is the immediate encoded in op1:op2:op3.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 if (!Coproc_Accepted(cp, ThisInstr())) then
4 GenerateCoprocessorException();
5 elsif acc then
6 RFD[d] = CX_op2(ThisInstr(), RFD[d], RF[n], 64);
7 else
8 RFD[d] = CX_op1(ThisInstr(), RF[n], 64);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

591

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.51 CX3

Custom Instruction Class 3. Custom instruction class 3 computes a value based two source registers, an immediate
and optionally the destination value, and writes the result to the destination register.

The source and destination registers can be either general-purpose registers or the Condition flags, specified by use
of APSR_nzcv.

T1
Armv8-M Custom Datapath Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 A 1 1 1 0 1 op1 Rn Rm 0 coproc op2 0 op3 Rd

Accumulator variant

Applies when A == 1

CX3A<c>, <coproc>, <Rd>, <Rn>, <Rm>, #<imm>

Non-accumulator variant

Applies when A == 0

CX3 <coproc>, <Rd>, <Rn>, <Rm>, #<imm>

Decode for this encoding
1 if CoprocType(UInt(coproc)) != CP_CDEv1 then SEE "Coprocessor instructions";
2 if !HaveMainExt() then UNDEFINED;
3 cp = UInt(coproc);
4 d = UInt(Rd);
5 n = UInt(Rn);
6 m = UInt(Rm);
7 imm = op1:op2:op3;
8 acc = (A == '1');
9 ExecuteCPCheck(cp);

10 if d == 13 || n == 13 || m == 13 then UNPREDICTABLE;
11 if !acc && InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If d == 13, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction returns an UNKNOWN value in SP.

• The instruction executes as NOP.

CONSTRAINED UNPREDICTABLE behavior
If d == 13, then one of the following behaviors must occur:

• It is UNKNOWN whether a stack limit check is performed.

CONSTRAINED UNPREDICTABLE behavior
If n == 13 or m == 13, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

592

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

• The instruction returns and UNKNOWN value in SP.

• The instruction executes as NOP.

CONSTRAINED UNPREDICTABLE behavior
If !acc && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP.

Assembler symbols for all encodings

<A> Accumulate with existing register contents. This parameter must be one of the following
values:
- Encoded as A = 0
A Encoded as A = 1

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<coproc> Is the name of the coprocessor, encoding in the "coproc" field. Valid names are p0 to p7

inclusive.
<Rd> Is the general-purpose R0 - R14 or APSR_nzcv destination register, encoded in the "Rd"

field. For accumulator variants <Rd> also specifies the source register. APSR_nzcv is
encoded by the "Rd" field value 0b1111.

<Rn> Is the general-purpose R0 - R14 or APSR_nzcv destination register, encoded in the "Rn"
field. APSR_nzcv is encoded by the "Rn" field value 0b1111.

<Rm> Is the general-purpose R0 - R14 or APSR_nzcv destination register, encoded in the "Rm"
field. APSR_nzcv is encoded by the "Rm" field value 0b1111.

<imm> Is the immediate encoded in op1:op2:op3.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 if (!Coproc_Accepted(cp, ThisInstr())) then
4 GenerateCoprocessorException();
5 elsif acc then
6 RF[d] = CX_op3(ThisInstr(), RF[d], RF[n], RF[m], 32);
7 else
8 RF[d] = CX_op2(ThisInstr(), RF[n], RF[m], 32);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

593

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.52 CX3D

Custom Instruction Class 3. Custom instruction class 3 dual computes a value based on two source registers, an
immediate, and optionally the destination register pair value, and writes the result to the destination register pair.

The source registers can be either general-purpose registers or the Condition flags, specified by use of APSR_nzcv.

The destination registers are a consecutive pair of general-purpose registers.

The significance of the words in each pair is consistent with the current data endianness.

T1
Armv8-M Custom Datapath Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 A 1 1 1 0 1 op1 Rn Rm 0 coproc op2 1 op3 Rd

Accumulator variant

Applies when A == 1

CX3DA<c>, <coproc>, <Rd>, <Rd+1>, <Rn>, <Rm>, #<imm>

Non-accumulator variant

Applies when A == 0

CX3D <coproc>, <Rd>, <Rd+1>, <Rn>, <Rm>, #<imm>

Decode for this encoding
1 if CoprocType(UInt(coproc)) != CP_CDEv1 then SEE "Coprocessor instructions";
2 if !HaveMainExt() then UNDEFINED;
3 cp = UInt(coproc);
4 d = UInt(Rd);
5 n = UInt(Rn);
6 m = UInt(Rm);
7 imm = op1:op2:op3;
8 acc = (A == '1');
9 ExecuteCPCheck(cp);

10 // Register pairs containing SP or PC are UNPREDICTABLE.
11 if d > 10 then UNPREDICTABLE;
12 if n == 13 || m == 13 then UNPREDICTABLE;
13 if Rd[0] == '1' then UNPREDICTABLE;
14 if !acc && InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If d is odd, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction returns and UNKNOWN value in Rd, Rd + 1 and Rd - 1.

• The instruction executes as NOP.

CONSTRAINED UNPREDICTABLE behavior
If d == 12, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction returns and UNKNOWN value in SP.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

594

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

• The instruction executes as NOP.

CONSTRAINED UNPREDICTABLE behavior
If d == 12 || d == 13, then one of the following behaviors must occur:

• It is UNKNOWN whether a stack limit check is performed.

CONSTRAINED UNPREDICTABLE behavior
If d == 14, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

CONSTRAINED UNPREDICTABLE behavior
If n == 13 || m == 13, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The value in the destination register is UNKNOWN.

• The instruction executes as NOP.

CONSTRAINED UNPREDICTABLE behavior
If !acc && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP.

Assembler symbols for all encodings

<A> Accumulate with existing register contents. This parameter must be one of the following
values:
- Encoded as A = 0
A Encoded as A = 1

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<coproc> Is the name of the coprocessor, encoding in the "coproc" field. Valid names are p0 to p7

inclusive.
<Rd> Is the general-purpose register R0 - R10 specifying the first of destination register pair,

encoded in the "Rd" field. For accumulator variants, <Rd> also specifies the source register.
<Rn> Is the general-purpose R0 - R14 or APSR_nzcv source register, encoded in the "Rn" field.

APSR_nzcv is encoded by the "Rn" field value 0b1111.
<Rm> Is the general-purpose R0 - R14 or APSR_nzcv source register, encoded in the "Rm" field.

APSR_nzcv is encoded by the "Rm" field value 0b1111.
<imm> Is the immediate encoded in op1:op2:op3.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 if (!Coproc_Accepted(cp, ThisInstr())) then
4 GenerateCoprocessorException();
5 elsif acc then
6 RFD[d] = CX_op3(ThisInstr(), RFD[d], RF[n], RF[m], 64);
7 else
8 RFD[d] = CX_op2(ThisInstr(), RF[n], RF[m], 64);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

595

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.53 DBG

Debug hint. Debug Hint provides a hint to debug trace support and related debug systems. See debug architecture
documentation for what use (if any) is made of this instruction.

DBG is a NOP-compatible hint.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 1 1 1 1 option

T1 variant

DBG{<c>}{<q>} #<option>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 // Any decoding of 'option' is specified by the debug system

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<option> Is a 4-bit unsigned immediate, in the range 0 to 15, encoded in the "option" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 Hint_Debug(option);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

596

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.54 DMB

Data Memory Barrier. Data Memory Barrier acts as a memory barrier. It ensures that all explicit memory accesses
that appear in program order before the DMB instruction are observed before any explicit memory accesses
that appear in program order after the DMB instruction. It does not affect the ordering of any other instructions
executing on the PE.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 1 (1) (1) (1) (1) 1 0 (0) 0 (1) (1) (1) (1) 0 1 0 1 option

T1 variant

DMB{<c>}{<q>} {<option>}

Decode for this encoding
1 // No additional decoding required

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<option> Specifies an optional limitation on the barrier operation. Values are:

SY Full system barrier operation, encoded as option = 0b1111. Can be omitted.
All other encodings of option are reserved. The corresponding instructions execute as full
system barrier operations, but must not be relied upon by software.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 DataMemoryBarrier(option);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

597

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.55 DSB

Data Synchronization Barrier. Data Synchronization Barrier acts as a special kind of memory barrier. No instruction
in program order after this instruction can execute until this instruction completes. This instruction completes only
when both:

• Any explicit memory access made before this instruction is complete.

• The side-effects of any SCS access that performs a context-altering operation are visible.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 1 (1) (1) (1) (1) 1 0 (0) 0 (1) (1) (1) (1) 0 1 0 0 option

T1 variant

DSB{<c>}{<q>} {<option>}

Decode for this encoding
1 // No additional decoding required

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<option> Specifies an optional limitation on the barrier operation. Values are:

SY Full system barrier operation, encoded as option = 0b1111. Can be omitted.
All other encodings of option are reserved. The corresponding instructions execute as full
system barrier operations, but must not be relied upon by software.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 DataSynchronizationBarrier(option);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

598

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.56 EOR (immediate)

Exclusive OR (immediate). Exclusive OR (immediate) performs a bitwise Exclusive OR of a register value and an
immediate value, and writes the result to the destination register. It can optionally update the condition flags based
on the result.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 0 1 0 0 S Rn 0 imm3 Rd imm8

EOR variant

Applies when S == 0.

EOR{<c>}{<q>} {<Rd>,} <Rn>, #<const>

EORS variant

Applies when S == 1 && Rd != 1111.

EORS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for this encoding
1 if Rd == '1111' && S == '1' then SEE "TEQ (immediate)";
2 if !HaveMainExt() then UNDEFINED;
3 d = UInt(Rd); n = UInt(Rn); setflags = (S == '1');
4 (imm32, carry) = T32ExpandImm_C(i:imm3:imm8, APSR.C);
5 if d == 13 || (d == 15 && S == '0') || n IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register

is the same as <Rn>.
<Rn> Is the general-purpose source register, encoded in the "Rn" field.
<const> Is an immediate value derived from the 12-bit immediate that is encoded in the ’i:imm3:imm8’

field. See C1.5 Modified immediate constants on page 448 for the range of values.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 result = R[n] EOR imm32;
4 R[d] = result;
5 if setflags then
6 APSR.N = result[31];
7 APSR.Z = IsZeroBit(result);
8 APSR.C = carry;
9 // APSR.V unchanged

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

599

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.57 EOR (register)

Exclusive OR (register). Exclusive OR (register) performs a bitwise Exclusive OR of a register value and an
optionally-shifted register value, and writes the result to the destination register. It can optionally update the
condition flags based on the result.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 0 0 1 Rm Rdn

T1 variant

EOR<c>{<q>} {<Rdn>,} <Rdn>, <Rm>
// Inside IT block

EORS{<q>} {<Rdn>,} <Rdn>, <Rm>
// Outside IT block

Decode for this encoding
1 d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();
2 (shift_t, shift_n) = (SRType_LSL, 0);

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 1 0 0 S Rn (0) imm3 Rd imm2

sr_type

Rm

EOR, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && sr_type == 11.

EOR{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

EOR, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && sr_type == 11).

EOR<c>.W {<Rd>,} <Rn>, <Rm>
// Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1

EOR{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

EORS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && Rd != 1111 && imm2 == 00 && sr_type ==
11.

EORS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

EORS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && sr_type == 11) && Rd !=
1111.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

600

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

EORS.W {<Rd>,} <Rn>, <Rm>
// Outside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1

EORS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for this encoding
1 if Rd == '1111' && S == '1' then SEE "TEQ (register)";
2 if !HaveMainExt() then UNDEFINED;
3 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
4 (shift_t, shift_n) = DecodeImmShift(sr_type, imm3:imm2);
5 if d == 13 || (d == 15 && S == '0') || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rdn> Is the first general-purpose source register and the destination register, encoded in the "Rdn"

field.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register

is the same as <Rn>.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
<shift> Is the type of shift to be applied to the second source register, encoded in the "sr_type" field. It

can have the following values:
LSL when sr_type = 00
LSR when sr_type = 01
ASR when sr_type = 10
ROR when sr_type = 11

<amount> Is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift>
= LSR or ASR) encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
4 result = R[n] EOR shifted;
5 R[d] = result;
6 if setflags then
7 APSR.N = result[31];
8 APSR.Z = IsZeroBit(result);
9 APSR.C = carry;

10 // APSR.V unchanged

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

601

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.58 ESB

Error Synchronization Barrier. Error Synchronization Barrier is used to synchronize any asynchronous RAS
exceptions. That is, RAS errors notified to the PE will not silently propagate past this instruction.

T1
Armv8.1-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

T1: ESB variant

ESB<c>

Decode for this encoding
1
2 if !HaveMainExt() then UNDEFINED;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3
4 supported = boolean IMPLEMENTATION_DEFINED "Detection of Unrecoverable errors supported";
5 if HasArchVersion(Armv8p1) && supported then
6 HandleException(SynchronizeBusFault());
7 // If there is a pending BusFault (which might have been forced to be recognised as a
8 // direct result of the call to SynchronizeBusFault() above) then an ESB also acts as
9 // a Data Synchronization Barrier so that a subsequent load of the memory mapped

10 // syndrome registers and pending bits (BFSR, RFSR, and SHCSR) is guaranteed to
11 // return the correct values.
12 if SHCSR.BUSFAULTPENDED == '1' then
13 DataSynchronizationBarrier('1111');

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

602

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.59 FLDMDBX, FLDMIAX

FLDMX (Decrement Before, Increment After). FLDMX (Decrement Before, Increment After) loads multiple
extension registers from consecutive memory locations using an address from a general-purpose register.

Arm deprecates use of FLDMDBX and FLDMIAX, except for disassembly purposes, and reassembly of disassem-
bled code.

T1
Armv8-M Floating-point Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 P U D W 1 Rn Vd 1 0 1 1 imm7

imm1 = 1

Decrement Before variant

Applies when P == 1 && U == 0 && W == 1.

FLDMDBX{<c>}{<q>} <Rn>{!}, <dreglist>

Increment After variant

Applies when P == 0 && U == 1.

FLDMIAX{<c>}{<q>} <Rn>{!}, <dreglist>

Decode for this encoding
1 if P == '0' && U == '0' && W == '0' then SEE "Related encodings";
2 if P == '0' && U == '1' && W == '0' && Rn == '1111' then SEE "VSCCLRM";
3 if P == '1' && W == '0' then SEE VLDR;
4 CheckDecodeFaults(ExtType_MveOrFp);
5 if P == U && W == '1' then UNDEFINED;
6 // Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
7 single_regs = FALSE; add = (U == '1'); wback = (W == '1'); imm8 = imm7 : imm1;
8 d = UInt(D:Vd); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
9 regs = UInt(imm8) DIV 2;

10 if n == 15 then UNPREDICTABLE;
11 if regs == 0 || (d+regs) > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If regs == 0, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction operates as a FLDMX with the same addressing mode but loads no registers.

CONSTRAINED UNPREDICTABLE behavior
If regs > 16 || (d+regs) > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the floating-point registers are UNKNOWN. If the instruction specifies writeback, the base
register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

603

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

CONSTRAINED UNPREDICTABLE behavior
If VFPSmallRegisterBank() && (d+regs) > 16, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
! Specifies base register writeback. Encoded in the "W" field as 1 if present, otherwise 0.
<dreglist> Is the list of consecutively numbered 64-bit floating-point registers to be transferred. The first

register in the list is encoded in "D:Vd", and "imm8" is set to twice the number of registers in
the list plus one. The list must contain at least one register, all registers must be in the range
D0-D15, and must not contain more than 16 registers.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 address = if add then R[n] else R[n]-imm32;
5 regval = if add then R[n]+imm32 else R[n]-imm32;
6
7 // Determine if the stack pointer limit must be checked
8 if n == 13 && wback then
9 // If memory operation is not performed as a result of a stack limit violation,

10 // and the write-back of the SP itself does not raise a stack limit violation, it
11 // is "IMPLEMENTATION_DEFINED" whether a SPLIM exception is raised.
12 // Arm recommends that any instruction which discards a memory access as
13 // a result of a stack limit violation, and where the write-back of the SP itself
14 // does not raise a stack limit violation, generates an SPLIM exception.
15 if boolean IMPLEMENTATION_DEFINED "SPLIM exception on invalid memory access" then
16 if ViolatesSPLim(LookUpSP(), address) then
17 if HaveMainExt() then
18 UFSR.STKOF = '1';
19 // If the Main Extension is not implemented the fault always escalates to
20 // a HardFault
21 excInfo = CreateException(UsageFault);
22 HandleException(excInfo);
23 applylimit = TRUE;
24 else
25 applylimit = FALSE;
26
27 // Memory operation only performed if limit not violated
28 if !(applylimit && ViolatesSPLim(LookUpSP(), regval)) then
29 for r = 0 to regs-1
30 if single_regs then
31 if (d+r) < 32 || !VFPSmallRegisterBank() then
32 S[d+r] = MemA[address,4];
33 address = address+4;
34 else
35 if (d+r) < 16 || !VFPSmallRegisterBank() then
36 word1 = MemA[address,4]; word2 = MemA[address+4,4];
37 // Combine the word-aligned words in the correct order for
38 // current endianness.
39 D[d+r] = if BigEndian(address, 8) then word1:word2 else word2:word1;
40 elsif boolean UNKNOWN then
41 - = MemA[address,4]; - = MemA[address+4,4];
42 address = address+8;
43
44 // If the stack pointer is being updated a fault will be raised if
45 // the limit is violated

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

604

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

46 if wback then RSPCheck[n] = regval;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

605

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.60 FSTMDBX, FSTMIAX

FSTMX (Decrement Before, Increment After). FSTMX (Decrement Before, Increment After) stores multiple
extension registers to consecutive memory locations using an address from a general-purpose register.

Arm deprecates use of FSTMDBX and FSTMIAX, except for disassembly purposes, and reassembly of disassem-
bled code.

T1
Armv8-M Floating-point Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 P U D W 0 Rn Vd 1 0 1 1 imm7

imm1 = 1

Decrement Before variant

Applies when P == 1 && U == 0 && W == 1.

FSTMDBX{<c>}{<q>} <Rn>{!}, <dreglist>

Increment After variant

Applies when P == 0 && U == 1.

FSTMIAX{<c>}{<q>} <Rn>{!}, <dreglist>

Decode for this encoding
1 if P == '0' && U == '0' && W == '0' then SEE "Related encodings";
2 if P == '1' && W == '0' then SEE VSTR;
3 CheckDecodeFaults(ExtType_MveOrFp);
4 if P == U && W == '1' then UNDEFINED;
5 // Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
6 single_regs = FALSE; add = (U == '1'); wback = (W == '1'); imm8 = imm7 : imm1;
7 d = UInt(D:Vd); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
8 regs = UInt(imm8) DIV 2;
9 if n == 15 then UNPREDICTABLE;

10 if regs == 0 || (d+regs) > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If regs == 0, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction operates as a FSTMX with the same addressing mode but stores no registers.

CONSTRAINED UNPREDICTABLE behavior
If regs > 16 || (d+regs) > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction if
the register list had not gone out of range, become UNKNOWN. If the instruction specifies writeback, then
that register becomes UNKNOWN. This behavior does not affect any other memory locations.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

606

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

CONSTRAINED UNPREDICTABLE behavior
If VFPSmallRegisterBank() && (d+regs) > 16, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
! Specifies base register writeback. Encoded in the "W" field as 1 if present, otherwise 0.
<dreglist> Is the list of consecutively numbered 64-bit floating-point registers to be transferred. The first

register in the list is encoded in "D:Vd", and "imm8" is set to twice the number of registers in
the list plus one. The list must contain at least one register, all registers must be in the range
D0-D15, and must not contain more than 16 registers.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 address = if add then R[n] else R[n]-imm32;
5 regval = if add then R[n]+imm32 else R[n]-imm32;
6
7 // Determine if the stack pointer limit should be checked
8 if n == 13 && wback then
9 violatesLimit = ViolatesSPLim(LookUpSP(), regval);

10 else
11 violatesLimit = FALSE;
12
13 // Memory operation only performed if limit not violated
14 if !violatesLimit then
15 for r = 0 to regs-1
16 if single_regs then
17 if (d+r) < 32 || !VFPSmallRegisterBank() then
18 MemA[address,4] = S[d+r];
19 address = address+4;
20 else
21 // Store as two word-aligned words in the correct order for current
22 // endianness.
23 if (d+r) < 16 || !VFPSmallRegisterBank() then
24 bigEndian = BigEndian(address, 8);
25 MemA[address,4] = if bigEndian then D[d+r][63:32] else D[d+r][31:0];
26 MemA[address+4,4] = if bigEndian then D[d+r][31:0] else D[d+r][63:32];
27 elsif boolean UNKNOWN then
28 MemA[address,4] = bits(32) UNKNOWN;
29 MemA[address+4,4] = bits(32) UNKNOWN;
30 address = address+8;
31
32 // If the stack pointer is being updated a fault will be raised if
33 // the limit is violated
34 if wback then RSPCheck[n] = regval;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

607

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.61 ISB

Instruction Synchronization Barrier. Instruction Synchronization Barrier flushes the pipeline in the PE and is a
context synchronization event.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 1 (1) (1) (1) (1) 1 0 (0) 0 (1) (1) (1) (1) 0 1 1 0 option

T1 variant

ISB{<c>}{<q>} {<option>}

Decode for this encoding
1 // No additional decoding required

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<option> Specifies an optional limitation on the barrier operation. Values are:

SY Full system barrier operation, encoded as option = 0b1111. Can be omitted.
All other encodings of option are reserved. The corresponding instructions execute as full
system barrier operations, but must not be relied upon by software.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 InstructionSynchronizationBarrier(option);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

608

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.62 IT

If-Then. If Then makes up to four following instructions (the IT block) conditional. The conditions for the
instructions in the IT block can be the same, or some of them can be the inverse of others.

IT does not affect the condition code flags. Branches to any instruction in the IT block are not permitted, apart
from those performed by exception returns.

16-bit instructions in the IT block, other than CMP (register), CMN (register), and TST (register), do not set the
condition code flags. The AL condition can be specified to get this changed behavior without conditional execution.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 1 firstcond mask != 0000

T1 variant

IT{<x>{<y>{<z>}}}{<q>} <cond>

Decode for this encoding
1 if mask == '0000' then SEE "Related encodings";
2 if !HaveMainExt() then UNDEFINED;
3 if firstcond == '1111' || (firstcond == '1110' && BitCount(mask) != 1) then UNPREDICTABLE;
4 if InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If firstcond == ’1111’ || (firstcond == ’1110’ && BitCount(mask) != 1), then one
of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The ‘1111’ condition is treated as being the same as the ‘1110’ condition, meaning always, and the ITSTATE
state machine is progressed in the same way as for any other cond_base value.

Assembler symbols for all encodings

<x> The condition for the second instruction in the IT block. If omitted, the "mask" field is set to
0b1000. If present it is encoded in the "mask[3]" field:
E NOT firstcond[0]
T firstcond[0]

<y> The condition for the third instruction in the IT block. If omitted and <x> is present, the
"mask[2:0]" field is set to 0b100. If <y> is present it is encoded in the "mask[2]" field:
E NOT firstcond[0]
T firstcond[0]

<z> The condition for the fourth instruction in the IT block. If omitted and <y> is present, the
"mask[1:0]" field is set to 0b10. If <z> is present, the "mask[0]" field is set to 1, and it is
encoded in the "mask[1]" field:
E NOT firstcond[0]
T firstcond[0]

<q> See C1.2.5 Standard assembler syntax fields on page 431.
<cond> The condition for the first instruction in the IT block, encoded in the "firstcond" field. See C1.3

Conditional execution on page 436 for the range of conditions available, and the encodings.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

609

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 EncodingSpecificOperations();
2 ITSTATE[7:0] = firstcond:mask;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

610

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.63 LCTP

Loop Clear with Tail Predication. Exits loop mode by invalidating LO_BRANCH_INFO and clears any tail
predication being applied.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 0 0 0 (0) (0) 1 1 1 1 1 1 1 0 (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) 1

T1: LCTP variant

LCTP<c>

Decode for this encoding
1 if !HaveLOBExt() then UNDEFINED;
2 if !HaveMve() then UNDEFINED;
3 HandleException(CheckCPEnabled(10));

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3
4 ExecuteFPCheck();
5 FPSCR.LTPSIZE = 4[2:0]; // Disable loop predication
6 if LO_BRANCH_INFO.BF == '0' then
7 LO_BRANCH_INFO.VALID = '0';

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

611

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.64 LDA

Load-Acquire Word. Load-Acquire Word loads a word from memory and writes it to a register. The instruction
also has memory ordering semantics.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1 0 1 Rn Rt (1) (1) (1) (1) 1 0 1 0 (1) (1) (1) (1)

T1 variant

LDA{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding
1 t = UInt(Rt); n = UInt(Rn);
2 if t IN {13,15} || n == 15 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 address = R[n];
4 R[t] = MemO[address, 4];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

612

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.65 LDAB

Load-Acquire Byte. Load-Acquire Byte loads a byte from memory, zero-extends it to form a 32-bit word and
writes it to a register. The instruction also has memory ordering semantics.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1 0 1 Rn Rt (1) (1) (1) (1) 1 0 0 0 (1) (1) (1) (1)

T1 variant

LDAB{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding
1 t = UInt(Rt); n = UInt(Rn);
2 if t IN {13,15} || n == 15 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 address = R[n];
4 R[t] = ZeroExtend(MemO[address, 1], 32);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

613

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.66 LDAEX

Load-Acquire Exclusive Word. Load-Acquire Exclusive Word loads a word from memory, writes it to a register,
and:

• If the address has the Shareable memory attribute, marks the physical address as exclusive access for the
executing PE in a global monitor.

• Causes the executing PE to indicate an active exclusive access in the local monitor.

The instruction also has memory ordering semantics.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1 0 1 Rn Rt (1) (1) (1) (1) 1 1 1 0 (1) (1) (1) (1)

T1 variant

LDAEX{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding
1 t = UInt(Rt); n = UInt(Rn);
2 if t IN {13,15} || n == 15 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 address = R[n];
4 SetExclusiveMonitors(address, 4);
5 R[t] = MemO[address, 4];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

614

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.67 LDAEXB

Load-Acquire Exclusive Byte. Load-Acquire Exclusive Byte loads a byte from memory, zero-extends it to form a
32-bit word, writes it to a register, and:

• If the address has the Shareable memory attribute, marks the physical address as exclusive access for the
executing PE in a global monitor.

• Causes the executing PE to indicate an active exclusive access in the local monitor.

The instruction also has memory ordering semantics.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1 0 1 Rn Rt (1) (1) (1) (1) 1 1 0 0 (1) (1) (1) (1)

T1 variant

LDAEXB{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding
1 t = UInt(Rt); n = UInt(Rn);
2 if t IN {13,15} || n == 15 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 address = R[n];
4 SetExclusiveMonitors(address, 1);
5 R[t] = ZeroExtend(MemO[address, 1], 32);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

615

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.68 LDAEXH

Load-Acquire Exclusive Halfword. Load-Acquire Exclusive Halfword loads a halfword from memory, zero-extends
it to form a 32-bit word, writes it to a register, and:

• If the address has the Shareable memory attribute, marks the physical address as exclusive access for the
executing PE in a global monitor.

• Causes the executing PE to indicate an active exclusive access in the local monitor.

The instruction also has memory ordering semantics.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1 0 1 Rn Rt (1) (1) (1) (1) 1 1 0 1 (1) (1) (1) (1)

T1 variant

LDAEXH{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding
1 t = UInt(Rt); n = UInt(Rn);
2 if t IN {13,15} || n == 15 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 address = R[n];
4 SetExclusiveMonitors(address, 2);
5 R[t] = ZeroExtend(MemO[address, 2], 32);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

616

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.69 LDAH

Load-Acquire Halfword. Load-Acquire Halfword loads a halfword from memory, zero-extends it to form a 32-bit
word and writes it to a register. The instruction also has memory ordering semantics.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1 0 1 Rn Rt (1) (1) (1) (1) 1 0 0 1 (1) (1) (1) (1)

T1 variant

LDAH{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding
1 t = UInt(Rt); n = UInt(Rn);
2 if t IN {13,15} || n == 15 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 address = R[n];
4 R[t] = ZeroExtend(MemO[address, 2], 32);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

617

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.70 LDC, LDC2 (immediate)

Load Coprocessor (immediate). Load Coprocessor loads memory data from a sequence of consecutive memory
addresses to a coprocessor. If no coprocessor can execute the instruction, a UsageFault exception is generated.

This is a generic coprocessor instruction. Some of the fields have no functionality defined by the architecture and
are free for use by the coprocessor instruction set designer. These fields are the D bit, the CRd field, and in the
Unindexed addressing mode only, the imm8 field.

Arm reserves coprocessors CP8 to CP15, and this manual defines the valid instructions when coproc is in this
range.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 P U D W 1 Rn != 1111 CRd coproc imm8

Offset variant

Applies when P == 1 && W == 0.

LDC{L}{<c>}{<q>} <coproc>, <CRd>, [<Rn>{, #{+/-}<imm>}]

Post-indexed variant

Applies when P == 0 && W == 1.

LDC{L}{<c>}{<q>} <coproc>, <CRd>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

LDC{L}{<c>}{<q>} <coproc>, <CRd>, [<Rn>, #{+/-}<imm>]!

Unindexed variant

Applies when P == 0 && U == 1 && W == 0.

LDC{L}{<c>}{<q>} <coproc>, <CRd>, [<Rn>], <option>

Decode for this encoding
1 if Rn == '1111' then SEE "LDC (literal)";
2 if coproc IN {'100x', '101x', '111x'} then SEE "Floating-point and MVE";
3 if CoprocType(UInt(coproc)) == CP_CDEv1 then SEE "CDE instructions";
4 if P == '0' && U == '0' && D == '1' && W == '0' then SEE "MRRC, MRRC2";
5 if P == '0' && U == '0' && D == '0' && W == '0' then UNDEFINED;
6 if !HaveMainExt() then UNDEFINED;
7 n = UInt(Rn); cp = UInt(coproc); imm32 = ZeroExtend(imm8:'00', 32);
8 index = (P == '1'); add = (U == '1'); wback = (W == '1');

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 P U D W 1 Rn != 1111 CRd coproc imm8

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

618

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Offset variant

Applies when P == 1 && W == 0.

LDC2{L}{<c>}{<q>} <coproc>, <CRd>, [<Rn>{, #{+/-}<imm>}]

Post-indexed variant

Applies when P == 0 && W == 1.

LDC2{L}{<c>}{<q>} <coproc>, <CRd>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

LDC2{L}{<c>}{<q>} <coproc>, <CRd>, [<Rn>, #{+/-}<imm>]!

Unindexed variant

Applies when P == 0 && U == 1 && W == 0.

LDC2{L}{<c>}{<q>} <coproc>, <CRd>, [<Rn>], <option>

Decode for this encoding
1 if Rn == '1111' then SEE "LDC (literal)";
2 if coproc IN {'100x', '101x', '111x'} then SEE "Floating-point and MVE";
3 if CoprocType(UInt(coproc)) == CP_CDEv1 then SEE "CDE instructions";
4 if P == '0' && U == '0' && D == '1' && W == '0' then SEE "MRRC, MRRC2";
5 if P == '0' && U == '0' && D == '0' && W == '0' then UNDEFINED;
6 if !HaveMainExt() then UNDEFINED;
7 n = UInt(Rn); cp = UInt(coproc); imm32 = ZeroExtend(imm8:'00', 32);
8 index = (P == '1'); add = (U == '1'); wback = (W == '1');

Assembler symbols for all encodings

L If specified, selects the D == 1 form of the encoding. If omitted, selects the D == 0 form.
<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<coproc> Is the name of the coprocessor, encoded in the "coproc" field. The generic coprocessor names

are p0 to p15.
<CRd> Is the coprocessor register to be transferred, encoded in the "CRd" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field. If the PC is used, see C2.4.71

LDC, LDC2 (literal) on page 621.
<option> Is a coprocessor option, in the range 0 to 255 enclosed in { }, encoded in the "imm8" field.
+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted

and encoded in the "U" field. It can have the following values:
- when U = 0
+ when U = 1

<imm> Is the immediate offset used for forming the address, a multiple of 4 in the range 0-1020,
defaulting to 0 and encoded in the "imm8" field, as <imm>/4.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteCPCheck(cp);
4
5 thisInstr = ThisInstr();
6 if !Coproc_Accepted(cp, thisInstr) then

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

619

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

7 GenerateCoprocessorException();
8 else
9 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);

10 address = if index then offset_addr else R[n];
11
12 // Determine if the stack pointer limit check should be performed
13 if wback && n == 13 then
14 violatesLimit = ViolatesSPLim(LookUpSP(), offset_addr);
15 else
16 violatesLimit = FALSE;
17
18 // Memory operation only performed if limit not violated
19 if !violatesLimit then
20 repeat
21 Coproc_SendLoadedWord(MemA[address,4], cp, thisInstr);
22 address = address + 4;
23 until Coproc_DoneLoading(cp, thisInstr);
24
25 // If the stack pointer is being updated a fault will be raised
26 // if the limit is violated
27 if wback then RSPCheck[n] = offset_addr;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

620

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.71 LDC, LDC2 (literal)

Load Coprocessor (literal). Load Coprocessor loads memory data from a sequence of consecutive memory
addresses to a coprocessor. If no coprocessor can execute the instruction, a UsageFault exception is generated.

This is a generic coprocessor instruction. The D bit and the CRd field have no functionality defined by the
architecture and are free for use by the coprocessor instruction set designer.

Arm reserves coprocessors CP8 to CP15, and this manual defines the valid instructions when coproc is in this
range.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 P U D W 1 1 1 1 1 CRd coproc imm8

T1 variant

Applies when !(P == 0 && U == 0 && W == 0).

LDC{L}{<c>}{<q>} <coproc>, <CRd>, <label>
LDC{L}{<c>}{<q>} <coproc>, <CRd>, [PC, #{+/-}<imm>]

Decode for this encoding
1 if coproc IN {'100x', '101x', '111x'} then SEE "Floating-point and MVE";
2 if CoprocType(UInt(coproc)) == CP_CDEv1 then SEE "CDE instructions";
3 if P == '0' && U == '0' && D == '1' && W == '0' then SEE "MRRC, MRRC2";
4 if P == '0' && U == '0' && D == '0' && W == '0' then UNDEFINED;
5 if !HaveMainExt() then UNDEFINED;
6 index = (P == '1'); // Always TRUE in the T32 instruction set
7 add = (U == '1'); cp = UInt(coproc); imm32 = ZeroExtend(imm8:'00', 32);
8 if W == '1' || P == '0' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If W == ’1’ || P == ’0’, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes without writeback of the base address.

• The instruction executes as LDC with writeback to the PC.

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 P U D W 1 1 1 1 1 CRd coproc imm8

T2 variant

Applies when !(P == 0 && U == 0 && W == 0).

LDC2{L}{<c>}{<q>} <coproc>, <CRd>, <label>
LDC2{L}{<c>}{<q>} <coproc>, <CRd>, [PC, #{+/-}<imm>]

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

621

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Decode for this encoding
1 if coproc IN {'100x', '101x', '111x'} then SEE "Floating-point and MVE";
2 if CoprocType(UInt(coproc)) == CP_CDEv1 then SEE "CDE instructions";
3 if P == '0' && U == '0' && D == '1' && W == '0' then SEE "MRRC, MRRC2";
4 if P == '0' && U == '0' && D == '0' && W == '0' then UNDEFINED;
5 if !HaveMainExt() then UNDEFINED;
6 index = (P == '1'); // Always TRUE in the T32 instruction set
7 add = (U == '1'); cp = UInt(coproc); imm32 = ZeroExtend(imm8:'00', 32);
8 if W == '1' || P == '0' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If W == ’1’ || P == ’0’, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes without writeback of the base address.

• The instruction executes as LDC with writeback to the PC.

Assembler symbols for all encodings

L If specified, selects the D == 1 form of the encoding. If omitted, selects the D == 0 form.
<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<coproc> Is the name of the coprocessor, encoded in the "coproc" field. The generic coprocessor names

are p0 to p15.
<CRd> Is the coprocessor register to be transferred, encoded in the "CRd" field.
<label> The label of the literal data item that is to be loaded into <Rt>. The assembler calculates

the required value of the offset from the Align(PC, 4) value of the instruction to this label.
Permitted values of the offset are multiples of 4 in the range -1020 to 1020. If the offset is
zero or positive, imm32 is equal to the offset and add == TRUE (encoded as U == 1). If the
offset is negative, imm32 is equal to minus the offset and add == FALSE (encoded as
U == 0).

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted
and encoded in the "U" field. It can have the following values:
- when U = 0
+ when U = 1

<imm> Is the immediate offset used for forming the address, a multiple of 4 in the range 0-1020,
defaulting to 0 and encoded in the "imm8" field, as <imm>/4.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteCPCheck(cp);
4
5 thisInstr = ThisInstr();
6 if !Coproc_Accepted(cp, thisInstr) then
7 GenerateCoprocessorException();
8 else
9 offset_addr = if add then (Align(PC,4) + imm32) else (Align(PC,4) - imm32);

10 address = if index then offset_addr else Align(PC,4);
11 repeat
12 Coproc_SendLoadedWord(MemA[address,4], cp, thisInstr); address = address + 4;
13 until Coproc_DoneLoading(cp, thisInstr);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

622

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.72 LDM, LDMIA, LDMFD

Load Multiple (Increment After, Full Descending). Load Multiple loads multiple registers from consecutive
memory locations using an address from a base register. The sequential memory locations start at this address, and
the address just above the last of those locations can optionally be written back to the base register.

The registers loaded can include the PC. If they do, the word loaded for the PC is treated as a branch address,
a function return value, or an exception return value. Bit[0] of the address in the PC complies with the Arm
architecture interworking rules for switching between the A32 and T32 instruction sets. However, Armv8-M only
supports the T32 instruction set, so bit[0] must be 1. If bit[0] of the target address is 0, and the target address is not
FNC_RETURN or EXC_RETURN, the PE takes an INVSTATE UsageFault exception on the instruction at the
target address.

This instruction is used by the alias POP (multiple registers).

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 1 Rn register_list

T1 variant

LDM{IA}{<c>}{<q>} <Rn>{!}, <registers>
// Preferred syntax

LDMFD{<c>}{<q>} <Rn>{!}, <registers>
// Alternate syntax, Full Descending stack

Decode for this encoding
1 n = UInt(Rn); registers = '00000000':register_list; wback = (registers[n] == '0');
2 if BitCount(registers) < 1 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as LDM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15. If the instruction specifies writeback, the modification to the base address
on writeback might differ from the number of registers loaded.

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 0 W 1 Rn != 1111 P M (0) register_list

T2 variant

LDM{IA}{<c>}.W <Rn>{!}, <registers>
// Preferred syntax
// if <Rn>, '!' and <registers> can be represented in T1

LDMFD{<c>}.W <Rn>{!}, <registers>

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

623

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

// Alternate syntax
// Full Descending stack, if <Rn>, '!' and <registers> can be represented in T1

LDM{IA}{<c>}{<q>} <Rn>{!}, <registers>
// Preferred syntax

LDMFD{<c>}{<q>} <Rn>{!}, <registers>
// Alternate syntax, Full Descending stack

Decode for this encoding
1 if Rn == '1111' && HasArchVersion(Armv8p1) then SEE "CLRM";
2 if !HaveMainExt() then UNDEFINED;
3 n = UInt(Rn); registers = P:M:'0':register_list; wback = (W == '1');
4 if n == 15 || BitCount(registers) < 2 || (P == '1' && M == '1') then UNPREDICTABLE;
5 if registers[15] == '1' && InITBlock() && !LastInITBlock() then UNPREDICTABLE;
6 if wback && registers[n] == '1' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as LDM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15. If the instruction specifies writeback, the modification to the base address
on writeback might differ from the number of registers loaded.

CONSTRAINED UNPREDICTABLE behavior
If wback && registers<n> == ’1’, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

CONSTRAINED UNPREDICTABLE behavior
If BitCount(registers) == 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction loads a single register using the specified addressing modes.

• The instruction executes as LDM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15.

CONSTRAINED UNPREDICTABLE behavior
If P == ’1’ && M == ’1’, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction loads the register list and either R14 or R15, both R14 and R15, or neither of these registers.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

624

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

T3
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 0 P register_list

T3 variant

LDM{<c>}{<q>} SP!, <registers>

Decode for this encoding
1 n = 13; wback = TRUE;
2 registers = P:'0000000':register_list;
3 if BitCount(registers) < 1 then UNPREDICTABLE;
4 if registers[15] == '1' && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as LDM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15. If the instruction specifies writeback, the modification to the base address
on writeback might differ from the number of registers loaded.

Assembler symbols for all encodings

IA Is an optional suffix for the Increment After form.
<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
! For encoding T1: the address adjusted by the size of the data loaded is written back to the base

register. It is omitted if <Rn> is included in <registers>, otherwise it must be present.
For encoding T2: the address adjusted by the size of the data loaded is written back to the base
register. If specified, it is encoded in the "W" field as 1, otherwise this field defaults to 0.

<registers> For encoding T1: is a list of one or more registers to be loaded, separated by commas and
surrounded by { and }. The registers in the list must be in the range R0-R7, encoded in the
"register_list" field. For encoding T2: is a list of one or more registers to be loaded, separated
by commas and surrounded by { and }. The registers in the list must be in the range R0-R12,
encoded in the "register_list" field, and can optionally contain one of the LR or the PC. If the
LR is in the list, the "M" field is set to 1, otherwise it defaults to 0. If the PC is in the list, the
"P" field is set to 1, otherwise it defaults to 0. If the PC is in the list:

- The LR must not be in the list.
- The instruction must be either outside any IT block, or the last instruction in an IT block.

For encoding T3: is a list of one or more registers to be loaded, separated by commas and
surrounded by { and }. The registers in the list must be in the range R0-R7, encoded in the
"register_list" field, and can optionally include the PC. If the PC is in the list, the "P" field is
set to 1, otherwise this field defaults to 0. If the PC is in the list, the instruction must be either
outside any IT block, or the last instruction in an IT block.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

625

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

3 address = R[n];
4 if n == 13 && wback then
5 // If memory operation is not performed as a result of a stack limit violation,
6 // and the write-back of the SP itself does not raise a stack limit violation, it
7 // is "IMPLEMENTATION_DEFINED" whether a SPLIM exception is raised.
8 // Arm recommends that any instruction which discards a memory access as
9 // a result of a stack limit violation, and where the write-back of the SP itself

10 // does not raise a stack limit violation, generates an SPLIM exception.
11 if boolean IMPLEMENTATION_DEFINED "SPLIM exception on invalid memory access" then
12 if ViolatesSPLim(LookUpSP(), address) then
13 if HaveMainExt() then
14 UFSR.STKOF = '1';
15 // If the Main Extension is not implemented the fault always escalates to
16 // a HardFault
17 excInfo = CreateException(UsageFault);
18 HandleException(excInfo);
19 applylimit = TRUE;
20 else
21 applylimit = FALSE;
22
23 for i = 0 to 14
24 // If R[n] is the SP, memory operation only performed if limit not violated
25 if registers[i] == '1' && !(applylimit && ViolatesSPLim(LookUpSP(), address)) then
26 if i != n then
27 R[i] = MemA[address,4];
28 else
29 newBaseVal = MemA[address,4];
30 address = address + 4;
31 if registers[15] == '1' && !(applylimit && ViolatesSPLim(LookUpSP(), address)) then
32 newPCVal = MemA[address,4];
33
34 // If the register list contains the register that holds the base address it
35 // must be updated after all memory reads have been performed. This prevents
36 // the base address being overwritten if one of the memory reads generates a
37 // fault.
38 if registers[n] == '1' then
39 wback = TRUE;
40 else
41 newBaseVal = R[n] + 4*BitCount(registers);
42 // If the PC is in the register list update that now, which might raise a fault
43 // Likewise if R[n] is the SP writing back might raise a fault due to SP limit violation
44 if registers[15] == '1' then
45 LoadWritePC(newPCVal, n, newBaseVal, wback, FALSE);
46 elsif wback then
47 RSPCheck[n] = newBaseVal;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

626

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.73 LDMDB, LDMEA

Load Multiple Decrement Before (Empty Ascending). Load Multiple Decrement Before (Load Multiple Empty
Ascending) loads multiple registers from sequential memory locations using an address from a base register.
The sequential memory locations end just below this address, and the address of the first of those locations can
optionally be written back to the base register.

The registers loaded can include the PC. If they do, the word loaded for the PC is treated as a branch address or an
exception return value. Bit[0] complies with the Arm architecture interworking rules for switching between the
A32 and T32 instruction sets. However, Armv8-M only supports the T32 instruction set, so bit[0] must be 1. If
bit[0] is 0 the PE takes an INVSTATE UsageFault exception on the instruction at the target address.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 1 0 0 W 1 Rn P M (0) register_list

T1 variant

LDMDB{<c>}{<q>} <Rn>{!}, <registers>
// Preferred syntax

LDMEA{<c>}{<q>} <Rn>{!}, <registers>
// Alternate syntax, Empty Ascending stack

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 n = UInt(Rn); registers = P:M:'0':register_list; wback = (W == '1');
3 if n == 15 || BitCount(registers) < 2 || (P == '1' && M == '1') then UNPREDICTABLE;
4 if registers[15] == '1' && InITBlock() && !LastInITBlock() then UNPREDICTABLE;
5 if wback && registers[n] == '1' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If wback && registers<n> == ’1’, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

CONSTRAINED UNPREDICTABLE behavior
If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as LDM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15. If the instruction specifies writeback, the modification to the base address
on writeback might differ from the number of registers loaded.

CONSTRAINED UNPREDICTABLE behavior
If BitCount(registers) == 1, then one of the following behaviors must occur:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

627

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction loads a single register using the specified addressing modes.

• The instruction executes as LDM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15.

CONSTRAINED UNPREDICTABLE behavior
If P == ’1’ && M == ’1’, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction loads the register list and either R14 or R15, both R14 and R15, or neither of these registers.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
! The address adjusted by the size of the data loaded is written back to the base register. If

specified, it is encoded in the "W" field as 1, otherwise this field defaults to 0.
<registers> Is a list of one or more registers to be loaded, separated by commas and surrounded by { and }.

The registers in the list must be in the range R0-R12, encoded in the "register_list" field, and
can optionally contain one of the LR or the PC. If the LR is in the list, the "M" field is set to 1,
otherwise it defaults to 0. If the PC is in the list, the "P" field is set to 1, otherwise it defaults
to 0. If the PC is in the list:

- The LR must not be in the list.
- The instruction must be either outside any IT block, or the last instruction in an IT block.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 address = R[n] - 4*BitCount(registers);
4
5 // Determine if the stack pointer limit should be checked
6 if n == 13 && wback && registers[n] == '0' then
7 violatesLimit = ViolatesSPLim(LookUpSP(), address);
8 else
9 violatesLimit = FALSE;

10
11 for i = 0 to 15
12 // Memory operation only performed if limit not violated
13 if registers[i] == '1' && !violatesLimit then
14 data = MemA[address,4];
15 address = address + 4;
16 if i == 15 then
17 newPCVal = data;
18 elsif i == n then
19 newBaseVal = data;
20 else
21 R[i] = data;
22
23 // If the register list contains the register that holds the base address it
24 // must be updated after all memory reads have been performed. This prevents
25 // the base address being overwritten if one of the memory reads generates a
26 // fault.
27 if registers[n] == '1' then
28 wback = TRUE;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

628

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

29 else
30 newBaseVal = R[n] - 4*BitCount(registers);
31 // If the PC is in the register list update that now, which may raise a fault
32 if registers[15] == '1' then
33 LoadWritePC(newPCVal, n, newBaseVal, wback, TRUE);
34 elsif wback then
35 RSPCheck[n] = newBaseVal;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

629

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.74 LDR (immediate)

Load Register (immediate). Load Register (immediate) calculates an address from a base register value and
an immediate offset, loads a word from memory, and writes it to a register. It can use offset, post-indexed, or
pre-indexed addressing.

The register loaded can be the PC. If it is, the word loaded for the PC is treated as a branch address or an exception
return value. Bit[0] complies with the Arm architecture interworking rules for switching between the A32 and T32
instruction sets. However, Armv8-M only supports the T32 instruction set, so bit[0] must be 1. If bit[0] is 0 the PE
takes an INVSTATE UsageFault exception on the instruction at the target address.

This instruction is used by the alias POP (single register).

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 imm5 Rn Rt

T1 variant

LDR{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding
1 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm5:'00', 32);
2 index = TRUE; add = TRUE; wback = FALSE;

T2
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 1 Rt imm8

T2 variant

LDR{<c>}{<q>} <Rt>, [SP{, #{+}<imm>}]

Decode for this encoding
1 t = UInt(Rt); n = 13; imm32 = ZeroExtend(imm8:'00', 32);
2 index = TRUE; add = TRUE; wback = FALSE;

T3
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 1 1 0 1 Rn != 1111 Rt imm12

T3 variant

LDR{<c>}.W <Rt>, [<Rn> {, #{+}<imm>}]
// <Rt>, <Rn>, <imm> can be represented in T1 or T2

LDR{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

630

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

1 if Rn == '1111' then SEE "LDR (literal)";
2 if !HaveMainExt() then UNDEFINED;
3 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32); index = TRUE; add = TRUE;
4 wback = FALSE; if t == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

T4
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 1 0 1 Rn != 1111 Rt 1 P U W imm8

Offset variant

Applies when P == 1 && U == 0 && W == 0.

LDR{<c>}{<q>} <Rt>, [<Rn> {, #-<imm>}]

Post-indexed variant

Applies when P == 0 && W == 1.

LDR{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

LDR{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

Decode for this encoding
1 if Rn == '1111' then SEE "LDR (literal)";
2 if P == '1' && U == '1' && W == '0' then SEE LDRT;
3 if P == '0' && W == '0' then UNDEFINED;
4 if !HaveMainExt() then UNDEFINED;
5 t = UInt(Rt); n = UInt(Rn);
6 imm32 = ZeroExtend(imm8, 32); index = (P == '1'); add = (U == '1'); wback = (W == '1');
7 if (wback && n == t) || (t == 15 && InITBlock() && !LastInITBlock()) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

Alias conditions
Alias preferred when
POP (single register) Rn == ‘1101‘ &&

P == ‘0‘ &&
U == ‘1‘ &&
W == ‘1‘ &&
imm8 == ‘00000100‘

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

631

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rt> For encoding T1 and T2: is the general-purpose register to be transferred, encoded in the "Rt"

field.
For encoding T3: is the general-purpose register to be transferred, encoded in the "Rt" field.
The SP can be used. The PC can be used, provided the instruction is either outside an IT block
or the last instruction of an IT block. If the PC is used, the instruction branches to the address
(data) loaded to the PC.
For encoding T4: is the general-purpose register to be transferred, encoded in the "Rt" field.
The PC can be used, provided the instruction is either outside an IT block or the last instruction
of an IT block. If the PC is used, the instruction branches to the address (data) loaded to the
PC.

<Rn> For encoding T1: is the general-purpose base register, encoded in the "Rn" field.
For encoding T3 and T4: is the general-purpose base register, encoded in the "Rn" field. For
PC use see C2.4.75 LDR (literal) on page 634.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted
and encoded in the "U" field. It can have the following values:
- when U = 0
+ when U = 1

+ Specifies the offset is added to the base register.
<imm> For the post-indexed or pre-indexed variant: is an 8-bit unsigned immediate byte offset, in the

range 0 to 255, encoded in the "imm8" field.
For encoding T1: is the optional positive unsigned immediate byte offset, a multiple of 4 in
the range 0 to 124, defaulting to 0 and encoded in the "imm5" field as <imm>/4.
For encoding T2: is the optional positive unsigned immediate byte offset, a multiple of 4, in
the range 0 to 1020, defaulting to 0 and encoded in the "imm8" field as <imm>/4.
For encoding T3: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095,
defaulting to 0 and encoded in the "imm12" field.
For encoding T4: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255,
defaulting to 0 and encoded in the "imm8" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
4 address = if index then offset_addr else R[n];
5
6 // Determine if the stack pointer limit should be checked
7 if n == 13 && wback then
8 violatesLimit = ViolatesSPLim(LookUpSP(), offset_addr);
9 else

10 violatesLimit = FALSE;
11 // Memory operation only performed if limit not violated
12 if !violatesLimit then
13 data = MemU[address,4];
14
15 // If the stack pointer is being updated a fault will be raised if
16 // the limit is violated
17 if t == 15 then
18 if address[1:0] == '00' then
19 LoadWritePC(data, n, offset_addr, wback, TRUE);
20 else
21 UNPREDICTABLE;
22 else
23 if wback then RSPCheck[n] = offset_addr;
24 R[t] = data;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

632

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

CONSTRAINED UNPREDICTABLE behavior
If t == 15 && address<1:0> != ’00’, then one of the following behaviors must occur:

• The instruction executes as described, with no change to its behavior and no additional side effects.

• The instruction generates an UNALIGNED UsageFault.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

633

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.75 LDR (literal)

Load Register (literal). Load Register (literal) calculates an address from the PC value and an immediate offset,
loads a word from memory, and writes it to a register.

The register loaded can be the PC. If it is, the word loaded for the PC is treated as a branch address or an exception
return value. Bit[0] complies with the Arm architecture interworking rules for switching between the A32 and T32
instruction sets. However, Armv8-M only supports the T32 instruction set, so bit[0] must be 1. If bit[0] is 0 the PE
takes an INVSTATE UsageFault exception on the instruction at the target address.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 Rt imm8

T1 variant

LDR{<c>}{<q>} <Rt>, <label>
// Normal form

Decode for this encoding
1 t = UInt(Rt); imm32 = ZeroExtend(imm8:'00', 32); add = TRUE;

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 U 1 0 1 1 1 1 1 Rt imm12

T2 variant

LDR{<c>}.W <Rt>, <label>
// Preferred syntax, and <Rt>, <label> can be represented in T1

LDR{<c>}{<q>} <Rt>, <label>
// Preferred syntax

LDR{<c>}{<q>} <Rt>, [PC, #{+/-}<imm>]
// Alternative syntax

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 t = UInt(Rt); imm32 = ZeroExtend(imm12, 32); add = (U == '1');
3 if t == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rt> For encoding T1: is the general-purpose register to be transferred, encoded in the "Rt" field.

For encoding T2: is the general-purpose register to be transferred, encoded in the "Rt" field.
The SP can be used. The PC can be used, provided the instruction is either outside an IT block
or the last instruction of an IT block. If the PC is used, the instruction branches to the address
(data) loaded to the PC.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

634

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

<label> For encoding T1: the label of the literal data item that is to be loaded into <Rt>. The assembler
calculates the required value of the offset from the Align(PC, 4) value of the instruction to
this label. Permitted values of the offset are Multiples of four in the range 0 to 1020.
For encoding T2: the label of the literal data item that is to be loaded into <Rt>. The assembler
calculates the required value of the offset from the Align(PC, 4) value of the instruction to
this label. Permitted values of the offset are -4095 to 4095. If the offset is zero or positive,
imm32 is equal to the offset and add == TRUE, encoded as U == 1. If the offset is negative,
imm32 is equal to minus the offset and add == FALSE, encoded as U == 0.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted
and encoded in the "U" field. It can have the following values:
- when U = 0
+ when U = 1

<imm> Is a 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded in the "imm12"
field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 base = Align(PC,4);
4 address = if add then (base + imm32) else (base - imm32);
5 data = MemU[address,4];
6 if t == 15 then
7 if address[1:0] == '00' then
8 LoadWritePC(data, 0, Zeros(32), FALSE, FALSE);
9 else

10 UNPREDICTABLE;
11 else
12 R[t] = data;

CONSTRAINED UNPREDICTABLE behavior
If t == 15 && address<1:0> != ’00’, then one of the following behaviors must occur:

• The instruction executes as described, with no change to its behavior and no additional side effects.

• The instruction generates an UNALIGNED UsageFault.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

635

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.76 LDR (register)

Load Register (register). Load Register (register) calculates an address from a base register value and an offset
register value, loads a word from memory, and writes it to a register. The offset register value can be shifted left by
0, 1, 2, or 3 bits.

The register loaded can be the PC. If it is, the word loaded for the PC is treated as a branch address or an exception
return value. Bit[0] complies with the Arm architecture interworking rules for switching between the A32 and T32
instruction sets. However, Armv8-M only supports the T32 instruction set, so bit[0] must be 1. If bit[0] is 0 the PE
takes an INVSTATE UsageFault exception on the instruction at the target address.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 0 0 Rm Rn Rt

T1 variant

LDR{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>]

Decode for this encoding
1 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
2 index = TRUE; add = TRUE; wback = FALSE;
3 (shift_t, shift_n) = (SRType_LSL, 0);

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 1 0 1 Rn != 1111 Rt 0 0 0 0 0 0 imm2 Rm

T2 variant

LDR{<c>}.W <Rt>, [<Rn>, {+}<Rm>]
// <Rt>, <Rn>, <Rm> can be represented in T1

LDR{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>{, LSL #<imm>}]

Decode for this encoding
1 if Rn == '1111' then SEE "LDR (literal)";
2 if !HaveMainExt() then UNDEFINED;
3 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
4 index = TRUE; add = TRUE; wback = FALSE;
5 (shift_t, shift_n) = (SRType_LSL, UInt(imm2));
6 if m IN {13,15} then UNPREDICTABLE;
7 if t == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rt> For encoding T1: is the general-purpose register to be transferred, encoded in the "Rt" field.

For encoding T2: is the general-purpose register to be transferred, encoded in the "Rt" field.
The SP can be used. The PC can be used, provided the instruction is either outside an IT block
or the last instruction of an IT block. If the PC is used, the instruction branches to the address
(data) loaded to the PC.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

636

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

<Rn> Is the general-purpose base register, encoded in the "Rn" field.
+ Specifies the index register is added to the base register.
<Rm> Is the general-purpose index register, encoded in the "Rm" field.
<imm> If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. <imm>

is encoded in imm2. If absent, no shift is specified and imm2 is encoded as 0b00.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 offset = Shift(R[m], shift_t, shift_n, APSR.C);
4 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
5 address = if index then offset_addr else R[n];
6
7 // Determine if the stack pointer limit should be checked
8 if n == 13 && wback then
9 violatesLimit = ViolatesSPLim(LookUpSP(), offset_addr);

10 else
11 violatesLimit = FALSE;
12 // Memory operation only performed if limit not violated
13 if !violatesLimit then
14 data = MemU[address,4];
15
16 // If the stack pointer is being updated a fault will be raised if
17 // the limit is violated
18 if t == 15 then
19 if address[1:0] == '00' then
20 LoadWritePC(data, n, offset_addr, wback, TRUE);
21 else
22 UNPREDICTABLE;
23 else
24 if wback then RSPCheck[n] = offset_addr;
25 R[t] = data;

CONSTRAINED UNPREDICTABLE behavior
If t == 15 && address<1:0> != ’00’, then one of the following behaviors must occur:

• The instruction executes as described, with no change to its behavior and no additional side effects.

• The instruction generates an UNALIGNED UsageFault.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

637

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.77 LDRB (immediate)

Load Register Byte (immediate). Load Register Byte (immediate) calculates an address from a base register value
and an immediate offset, loads a byte from memory, zero-extends it to form a 32-bit word, and writes it to a register.
It can use offset, post-indexed, or pre-indexed addressing.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 imm5 Rn Rt

T1 variant

LDRB{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding
1 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm5, 32);
2 index = TRUE; add = TRUE; wback = FALSE;

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 1 0 0 1 Rn != 1111 Rt != 1111 imm12

T2 variant

LDRB{<c>}.W <Rt>, [<Rn> {, #{+}<imm>}]
// <Rt>, <Rn>, <imm> can be represented in T1

LDRB{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding
1 if Rt == '1111' then SEE "PLD (immediate)";
2 if Rn == '1111' then SEE "LDRB (literal)";
3 if !HaveMainExt() then UNDEFINED;
4 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
5 index = TRUE; add = TRUE; wback = FALSE;
6 if t == 13 then UNPREDICTABLE;

T3
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 0 1 Rn != 1111 Rt 1 P U W imm8

Offset variant

Applies when Rt != 1111 && P == 1 && U == 0 && W == 0.

LDRB{<c>}{<q>} <Rt>, [<Rn> {, #-<imm>}]

Post-indexed variant

Applies when P == 0 && W == 1.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

638

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

LDRB{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

LDRB{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

Decode for this encoding
1 if Rt == '1111' && P == '1' && U == '0' && W == '0' then SEE "PLD (immediate)";
2 if Rn == '1111' then SEE "LDRB (literal)";
3 if P == '1' && U == '1' && W == '0' then SEE LDRBT;
4 if P == '0' && W == '0' then UNDEFINED;
5 if !HaveMainExt() then UNDEFINED;
6 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
7 index = (P == '1'); add = (U == '1'); wback = (W == '1');
8 if t == 13 || (wback && n == t) then UNPREDICTABLE;
9 if t == 15 && W == '1' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> For encoding T1: is the general-purpose base register, encoded in the "Rn" field.

For encoding T2 and T3: is the general-purpose base register, encoded in the "Rn" field. For
PC use see C2.4.78 LDRB (literal) on page 641.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted
and encoded in the "U" field. It can have the following values:
- when U = 0
+ when U = 1

+ Specifies the offset is added to the base register.
<imm> For the post-indexed or pre-indexed variant: is an 8-bit unsigned immediate byte offset, in the

range 0 to 255, encoded in the "imm8" field.
For encoding T1: is an optional 5-bit unsigned immediate byte offset, in the range 0 to 31,
defaulting to 0 and encoded in the "imm5" field.
For encoding T2: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095,
defaulting to 0 and encoded in the "imm12" field.
For encoding T3: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255,
defaulting to 0 and encoded in the "imm8" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
4 address = if index then offset_addr else R[n];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

639

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

5
6 // Determine if the stack pointer limit should be checked
7 if n == 13 && wback then
8 violatesLimit = ViolatesSPLim(LookUpSP(), offset_addr);
9 else

10 violatesLimit = FALSE;
11
12 // Memory operation only performed if limit not violated
13 if !violatesLimit then
14 R[t] = ZeroExtend(MemU[address,1], 32);
15
16 // If the stack pointer is being updated a fault will be raised if
17 // the limit is violated
18 if wback then RSPCheck[n] = offset_addr;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

640

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.78 LDRB (literal)

Load Register Byte (literal). Load Register Byte (literal) calculates an address from the PC value and an immediate
offset, loads a byte from memory, zero-extends it to form a 32-bit word, and writes it to a register.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 U 0 0 1 1 1 1 1 Rt != 1111 imm12

T1 variant

LDRB{<c>}{<q>} <Rt>, <label>
// Preferred syntax

LDRB{<c>}{<q>} <Rt>, [PC, #{+/-}<imm>]
// Alternative syntax

Decode for this encoding
1 if Rt == '1111' then SEE "PLD (literal)";
2 if !HaveMainExt() then UNDEFINED;
3 t = UInt(Rt); imm32 = ZeroExtend(imm12, 32); add = (U == '1');
4 if t == 13 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<label> The label of the literal data item that is to be loaded into <Rt>. The assembler calculates

the required value of the offset from the Align(PC, 4) value of the instruction to this label.
Permitted values of the offset are -4095 to 4095. If the offset is zero or positive, imm32 is
equal to the offset and add == TRUE, encoded as U == 1. If the offset is negative, imm32 is
equal to minus the offset and add == FALSE, encoded as U == 0.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted
and encoded in the "U" field. It can have the following values:
- when U = 0
+ when U = 1

<imm> Is a 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded in the "imm12"
field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 base = Align(PC,4);
4 address = if add then (base + imm32) else (base - imm32);
5 R[t] = ZeroExtend(MemU[address,1], 32);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

641

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.79 LDRB (register)

Load Register Byte (register). Load Register Byte (register) calculates an address from a base register value and an
offset register value, loads a byte from memory, zero-extends it to form a 32-bit word, and writes it to a register.
The offset register value can be shifted left by 0, 1, 2, or 3 bits.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 0 Rm Rn Rt

T1 variant

LDRB{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>]

Decode for this encoding
1 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
2 index = TRUE; add = TRUE; wback = FALSE;
3 (shift_t, shift_n) = (SRType_LSL, 0);

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 0 1 Rn != 1111 Rt != 1111 0 0 0 0 0 0 imm2 Rm

T2 variant

LDRB{<c>}.W <Rt>, [<Rn>, {+}<Rm>]
// <Rt>, <Rn>, <Rm> can be represented in T1

LDRB{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>{, LSL #<imm>}]

Decode for this encoding
1 if Rt == '1111' then SEE "PLD (register)";
2 if Rn == '1111' then SEE "LDRB (literal)";
3 if !HaveMainExt() then UNDEFINED;
4 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
5 index = TRUE; add = TRUE; wback = FALSE;
6 (shift_t, shift_n) = (SRType_LSL, UInt(imm2));
7 if t == 13 || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
+ Specifies the index register is added to the base register.
<Rm> Is the general-purpose index register, encoded in the "Rm" field.
<imm> If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. <imm>

is encoded in imm2. If absent, no shift is specified and imm2 is encoded as 0b00.

Operation for all encodings

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

642

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 offset = Shift(R[m], shift_t, shift_n, APSR.C);
4 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
5 address = if index then offset_addr else R[n];
6 R[t] = ZeroExtend(MemU[address,1],32);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

643

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.80 LDRBT

Load Register Byte Unprivileged. Load Register Byte Unprivileged calculates an address from a base register
value and an immediate offset, loads a byte from memory, zero-extends it to form a 32-bit word, and writes it to a
register.

When privileged software uses an LDRBT instruction, the memory access is restricted as if the software was
unprivileged.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 0 1 Rn != 1111 Rt 1 1 1 0 imm8

T1 variant

LDRBT{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding
1 if Rn == '1111' then SEE "LDRB (literal)";
2 if !HaveMainExt() then UNDEFINED;
3 t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
4 register_form = FALSE; imm32 = ZeroExtend(imm8, 32);
5 if t IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
+ Specifies the offset is added to the base register.
<imm> Is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 and

encoded in the "imm8" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 address = R[n] + imm32;
4 R[t] = ZeroExtend(MemU_unpriv[address,1],32);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

644

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.81 LDRD (immediate)

Load Register Dual (immediate). Load Register Dual (immediate) calculates an address from a base register
value and an immediate offset, loads two words from memory, and writes them to two registers. It can use offset,
post-indexed, or pre-indexed addressing.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 P U 1 W 1 Rn != 1111 Rt Rt2 imm8

Offset variant

Applies when P == 1 && W == 0.

LDRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn> {, #{+/-}<imm>}]

Post-indexed variant

Applies when P == 0 && W == 1.

LDRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

LDRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>, #{+/-}<imm>]!

Decode for this encoding
1 if P == '0' && W == '0' then SEE "Related encodings";
2 if Rn == '1111' then SEE "LDRD (literal)";
3 if !HaveMainExt() then UNDEFINED;
4 t = UInt(Rt); t2 = UInt(Rt2); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
5 index = (P == '1'); add = (U == '1'); wback = (W == '1');
6 if wback && (n == t || n == t2) then UNPREDICTABLE;
7 if t IN {13,15} || t2 IN {13,15} || t == t2 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If wback && (n == t || n == t2), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

CONSTRAINED UNPREDICTABLE behavior
If t == t2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The load instruction executes but the destination register takes an UNKNOWN value.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

645

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rt> Is the first general-purpose register to be transferred, encoded in the "Rt" field.
<Rt2> Is the second general-purpose register to be transferred, encoded in the "Rt2" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field. For PC use see C2.4.82 LDRD

(literal) on page 647.
+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted

and encoded in the "U" field. It can have the following values:
- when U = 0
+ when U = 1

<imm> For the offset variant: is the optional unsigned immediate byte offset, a multiple of 4, in the
range 0 to 1020, defaulting to 0 and encoded in the "imm8" field as <imm>/4.
For the post-indexed and pre-indexed variant: is the unsigned immediate byte offset, a multiple
of 4, in the range 0 to 1020, encoded in the "imm8" field as <imm>/4.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
4 address = if index then offset_addr else R[n];
5
6 // Determine if the stack pointer limit should be checked
7 if n == 13 && wback then
8 violatesLimit = ViolatesSPLim(LookUpSP(), offset_addr);
9 else

10 violatesLimit = FALSE;
11 // Memory operation only performed if limit not violated
12 if !violatesLimit then
13 R[t] = MemA[address,4];
14 R[t2] = MemA[address+4,4];
15
16 // If the stack pointer is being updated a fault will be raised if
17 // the limit is violated
18 if wback then RSPCheck[n] = offset_addr;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

646

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.82 LDRD (literal)

Load Register Dual (literal). Load Register Dual (literal) calculates an address from the PC value and an immediate
offset, loads two words from memory, and writes them to two registers.

For the M profile, the PC value must be word-aligned, otherwise the behavior of the instruction is UNPREDICTABLE.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0

P = 1

U 1

W = 0

1 1 1 1 1 Rt Rt2 imm8

T1 variant

LDRD{<c>}{<q>} <Rt>, <Rt2>, <label>
// Normal form

LDRD{<c>}{<q>} <Rt>, <Rt2>, [PC, #{+/-}<imm>]
// Alternative form

Decode for this encoding
1 if P == '0' && W == '0' then SEE "Related encodings";
2 if P == '1' && W == '1' && U == '0' then SEE SG;
3 if !HaveMainExt() then UNDEFINED;
4 t = UInt(Rt); t2 = UInt(Rt2);
5 imm32 = ZeroExtend(imm8:'00', 32); add = (U == '1');
6 if t IN {13,15} || t2 IN {13,15} || t == t2 then UNPREDICTABLE;
7 if W == '1' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If t == t2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The load instruction executes but the destination register takes an UNKNOWN value.

CONSTRAINED UNPREDICTABLE behavior
If W == ’1’, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes without writeback of the base address.

• The instruction uses post-indexed addressing when P == ‘0’ and uses pre-indexed addressing otherwise.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rt> Is the first general-purpose register to be transferred, encoded in the "Rt" field.
<Rt2> Is the second general-purpose register to be transferred, encoded in the "Rt2" field.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

647

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

<label> The label of the literal data item that is to be loaded into <Rt>. The assembler calculates
the required value of the offset from the Align(PC, 4) value of the instruction to this label.
Permitted values of the offset are multiples of 4 in the range -1020 to 1020. If the offset is zero
or positive, imm32 is equal to the offset and add == TRUE, encoded as U == 1. If the offset
is negative, imm32 is equal to minus the offset and add == FALSE, encoded as U == 0.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted
and encoded in the "U" field. It can have the following values:
- when U = 0
+ when U = 1

<imm> Is the optional 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 and
encoded in the "imm8" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 if PC[1:0] != '00' then UNPREDICTABLE;
4 address = if add then (PC + imm32) else (PC - imm32);
5 R[t] = MemA[address,4];
6 R[t2] = MemA[address+4,4];

CONSTRAINED UNPREDICTABLE behavior
If PC<1:0> != ’00’, then one of the following behaviors must occur:

• The instruction executes as described, with no change to its behavior and no additional side effects.

• The instruction generates an UNALIGNED UsageFault.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

648

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.83 LDREX

Load Register Exclusive. Load Register Exclusive calculates an address from a base register value and an
immediate offset, loads a word from memory, writes it to a register, and:

• If the address has the Shareable memory attribute, marks the physical address as exclusive access for the
executing PE in a global monitor.

• Causes the executing PE to indicate an active exclusive access in the local monitor.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 0 1 0 1 Rn Rt (1) (1) (1) (1) imm8

T1 variant

LDREX{<c>}{<q>} <Rt>, [<Rn> {, #<imm>}]

Decode for this encoding
1 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
2 if t IN {13,15} || n == 15 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
<imm> The immediate offset added to the value of <Rn> to calculate the address. <imm> can be

omitted, meaning an offset of 0. Values are multiples of 4 in the range 0-1020.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 address = R[n] + imm32;
4 SetExclusiveMonitors(address,4);
5 R[t] = MemA[address,4];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

649

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.84 LDREXB

Load Register Exclusive Byte. Load Register Exclusive Byte derives an address from a base register value, loads a
byte from memory, zero-extends it to form a 32-bit word, writes it to a register, and:

• If the address has the Shareable memory attribute, marks the physical address as exclusive access for the
executing PE in a global monitor.

• Causes the executing PE to indicate an active exclusive access in the local monitor.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1 0 1 Rn Rt (1) (1) (1) (1) 0 1 0 0 (1) (1) (1) (1)

T1 variant

LDREXB{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding
1 t = UInt(Rt); n = UInt(Rn);
2 if t IN {13,15} || n == 15 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 address = R[n];
4 SetExclusiveMonitors(address,1);
5 R[t] = ZeroExtend(MemA[address,1], 32);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

650

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.85 LDREXH

Load Register Exclusive Halfword. Load Register Exclusive Halfword derives an address from a base register
value, loads a halfword from memory, zero-extends it to form a 32-bit word, writes it to a register, and:

• If the address has the Shareable memory attribute, marks the physical address as exclusive access for the
executing PE in a global monitor.

• Causes the executing PE to indicate an active exclusive access in the local monitor.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1 0 1 Rn Rt (1) (1) (1) (1) 0 1 0 1 (1) (1) (1) (1)

T1 variant

LDREXH{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding
1 t = UInt(Rt); n = UInt(Rn);
2 if t IN {13,15} || n == 15 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 address = R[n];
4 SetExclusiveMonitors(address,2);
5 R[t] = ZeroExtend(MemA[address,2], 32);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

651

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.86 LDRH (immediate)

Load Register Halfword (immediate). Load Register Halfword (immediate) calculates an address from a base
register value and an immediate offset, loads a halfword from memory, zero-extends it to form a 32-bit word, and
writes it to a register. It can use offset, post-indexed, or pre-indexed addressing.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 1 imm5 Rn Rt

T1 variant

LDRH{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding
1 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm5:'0', 32);
2 index = TRUE; add = TRUE; wback = FALSE;

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 1 0 1 1 Rn != 1111 Rt != 1111 imm12

T2 variant

LDRH{<c>}.W <Rt>, [<Rn> {, #{+}<imm>}]
// <Rt>, <Rn>, <imm> can be represented in T1

LDRH{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding
1 if Rt == '1111' then SEE "Related encodings";
2 if Rn == '1111' then SEE "LDRH (literal)";
3 if !HaveMainExt() then UNDEFINED;
4 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
5 index = TRUE; add = TRUE; wback = FALSE;
6 if t == 13 then UNPREDICTABLE;

T3
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 1 1 Rn != 1111 Rt 1 P U W imm8

Offset variant

Applies when Rt != 1111 && P == 1 && U == 0 && W == 0.

LDRH{<c>}{<q>} <Rt>, [<Rn> {, #-<imm>}]

Post-indexed variant

Applies when P == 0 && W == 1.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

652

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

LDRH{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

LDRH{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

Decode for this encoding
1 if Rn == '1111' then SEE "LDRH (literal)";
2 if Rt == '1111' && P == '1' && U == '0' && W == '0' then SEE "Related encodings";
3 if P == '1' && U == '1' && W == '0' then SEE LDRHT;
4 if P == '0' && W == '0' then UNDEFINED;
5 if !HaveMainExt() then UNDEFINED;
6 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
7 index = (P == '1'); add = (U == '1'); wback = (W == '1');
8 if t == 13 || (t == 15 && W == '1') || (wback && n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> For encoding T1: is the general-purpose base register, encoded in the "Rn" field.

For encoding T2 and T3: is the general-purpose base register, encoded in the "Rn" field. For
PC use see C2.4.87 LDRH (literal) on page 655.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted
and encoded in the "U" field. It can have the following values:
- when U = 0
+ when U = 1

+ Specifies the offset is added to the base register.
<imm> For the post-indexed or pre-indexed variant: is an 8-bit unsigned immediate byte offset, in the

range 0 to 255, encoded in the "imm8" field.
For encoding T1: is the optional positive unsigned immediate byte offset, a multiple of 2 in
the range 0 to 62, defaulting to 0 and encoded in the "imm5" field as <imm>/2.
For encoding T2: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095,
defaulting to 0 and encoded in the "imm12" field.
For encoding T3: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255,
defaulting to 0 and encoded in the "imm8" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
4 address = if index then offset_addr else R[n];
5

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

653

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

6 // Determine if the stack pointer limit should be checked
7 if n == 13 && wback then
8 violatesLimit = ViolatesSPLim(LookUpSP(), offset_addr);
9 else

10 violatesLimit = FALSE;
11 // Memory operation only performed if limit not violated
12 if !violatesLimit then
13 R[t] = ZeroExtend(MemU[address,2], 32);
14
15 // If the stack pointer is being updated a fault will be raised if
16 // the limit is violated
17 if wback then RSPCheck[n] = offset_addr;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

654

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.87 LDRH (literal)

Load Register Halfword (literal). Load Register Halfword (literal) calculates an address from the PC value and an
immediate offset, loads a halfword from memory, zero-extends it to form a 32-bit word, and writes it to a register.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 U 0 1 1 1 1 1 1 Rt != 1111 imm12

T1 variant

LDRH{<c>}{<q>} <Rt>, <label>
// Preferred syntax

LDRH{<c>}{<q>} <Rt>, [PC, #{+/-}<imm>]
// Alternative syntax

Decode for this encoding
1 if Rt == '1111' then SEE "PLD (literal)";
2 if !HaveMainExt() then UNDEFINED;
3 t = UInt(Rt); imm32 = ZeroExtend(imm12, 32); add = (U == '1');
4 if t == 13 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<label> The label of the literal data item that is to be loaded into <Rt>. The assembler calculates

the required value of the offset from the Align(PC, 4) value of the instruction to this label.
Permitted values of the offset are -4095 to 4095. If the offset is zero or positive, imm32 is
equal to the offset and add == TRUE, encoded as U == 1. If the offset is negative, imm32 is
equal to minus the offset and add == FALSE, encoded as U == 0.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted
and encoded in the "U" field. It can have the following values:
- when U = 0
+ when U = 1

<imm> Is a 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded in the "imm12"
field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 base = Align(PC,4);
4 address = if add then (base + imm32) else (base - imm32);
5 data = MemU[address,2];
6 R[t] = ZeroExtend(data, 32);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

655

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.88 LDRH (register)

Load Register Halfword (register). Load Register Halfword (register) calculates an address from a base register
value and an offset register value, loads a halfword from memory, zero-extends it to form a 32-bit word, and writes
it to a register. The offset register value can be shifted left by 0, 1, 2, or 3 bits.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 0 1 Rm Rn Rt

T1 variant

LDRH{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>]

Decode for this encoding
1 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
2 index = TRUE; add = TRUE; wback = FALSE;
3 (shift_t, shift_n) = (SRType_LSL, 0);

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 1 1 Rn != 1111 Rt != 1111 0 0 0 0 0 0 imm2 Rm

T2 variant

LDRH{<c>}.W <Rt>, [<Rn>, {+}<Rm>]
// <Rt>, <Rn>, <Rm> can be represented in T1

LDRH{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>{, LSL #<imm>}]

Decode for this encoding
1 if Rn == '1111' then SEE "LDRH (literal)";
2 if Rt == '1111' then SEE "Related encodings";
3 if !HaveMainExt() then UNDEFINED;
4 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
5 index = TRUE; add = TRUE; wback = FALSE;
6 (shift_t, shift_n) = (SRType_LSL, UInt(imm2));
7 if t == 13 || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
+ Specifies the index register is added to the base register.
<Rm> Is the general-purpose index register, encoded in the "Rm" field.
<imm> If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. <imm>

is encoded in imm2. If absent, no shift is specified and imm2 is encoded as 0b00.

Operation for all encodings

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

656

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 offset = Shift(R[m], shift_t, shift_n, APSR.C);
4 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
5 address = if index then offset_addr else R[n];
6 data = MemU[address,2];
7 if wback then R[n] = offset_addr;
8 R[t] = ZeroExtend(data, 32);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

657

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.89 LDRHT

Load Register Halfword Unprivileged. Load Register Halfword Unprivileged calculates an address from a base
register value and an immediate offset, loads a halfword from memory, zero-extends it to form a 32-bit word, and
writes it to a register.

When privileged software uses an LDRHT instruction, the memory access is restricted as if the software was
unprivileged.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 1 1 Rn != 1111 Rt 1 1 1 0 imm8

T1 variant

LDRHT{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding
1 if Rn == '1111' then SEE "LDRH (literal)";
2 if !HaveMainExt() then UNDEFINED;
3 t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
4 register_form = FALSE; imm32 = ZeroExtend(imm8, 32);
5 if t IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
+ Specifies the offset is added to the base register.
<imm> Is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 and

encoded in the "imm8" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 address = R[n] + imm32;
4 data = MemU_unpriv[address,2];
5 R[t] = ZeroExtend(data, 32);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

658

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.90 LDRSB (immediate)

Load Register Signed Byte (immediate). Load Register Signed Byte (immediate) calculates an address from a
base register value and an immediate offset, loads a byte from memory, sign-extends it to form a 32-bit word, and
writes it to a register. It can use offset, post-indexed, or pre-indexed addressing.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 1 0 0 1 Rn != 1111 Rt != 1111 imm12

T1 variant

LDRSB{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding
1 if Rt == '1111' then SEE "PLI (immediate, literal)";
2 if Rn == '1111' then SEE "LDRSB (literal)";
3 if !HaveMainExt() then UNDEFINED;
4 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
5 index = TRUE; add = TRUE; wback = FALSE;
6 if t == 13 then UNPREDICTABLE;

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 0 0 1 Rn != 1111 Rt 1 P U W imm8

Offset variant

Applies when P == 1 && U == 0 && W == 0.

LDRSB{<c>}{<q>} <Rt>, [<Rn> {, #-<imm>}]

Post-indexed variant

Applies when P == 0 && W == 1.

LDRSB{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

LDRSB{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

Decode for this encoding
1 if Rt == '1111' && P == '1' && U == '0' && W == '0' then SEE "PLI (immediate, literal)";
2 if Rn == '1111' then SEE "LDRSB (literal)";
3 if P == '1' && U == '1' && W == '0' then SEE LDRSBT;
4 if P == '0' && W == '0' then UNDEFINED;
5 if !HaveMainExt() then UNDEFINED;
6 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
7 index = (P == '1'); add = (U == '1'); wback = (W == '1');
8 if t == 13 || (t == 15 && W == '1') || (wback && n == t) then UNPREDICTABLE;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

659

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

CONSTRAINED UNPREDICTABLE behavior
If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field. For PC use see C2.4.91 LDRSB

(literal) on page 661.
+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted

and encoded in the "U" field. It can have the following values:
- when U = 0
+ when U = 1

+ Specifies the offset is added to the base register.
<imm> For the post-indexed or pre-indexed variant: is an 8-bit unsigned immediate byte offset, in the

range 0 to 255, encoded in the "imm8" field.
For encoding T1: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095,
defaulting to 0 and encoded in the "imm12" field.
For encoding T2: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255,
defaulting to 0 and encoded in the "imm8" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
4 address = if index then offset_addr else R[n];
5
6 // Determine if the stack pointer limit should be checked
7 if n == 13 && wback then
8 violatesLimit = ViolatesSPLim(LookUpSP(), offset_addr);
9 else

10 violatesLimit = FALSE;
11 // Memory operation only performed if limit not violated
12 if !violatesLimit then
13 R[t] = SignExtend(MemU[address,1], 32);
14
15 // If the stack pointer is being updated a fault will be raised if
16 // the limit is violated
17 if wback then RSPCheck[n] = offset_addr;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

660

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.91 LDRSB (literal)

Load Register Signed Byte (literal). Load Register Signed Byte (literal) calculates an address from the PC value
and an immediate offset, loads a byte from memory, sign-extends it to form a 32-bit word, and writes it to a register.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 U 0 0 1 1 1 1 1 Rt != 1111 imm12

T1 variant

LDRSB{<c>}{<q>} <Rt>, <label>
// Preferred syntax

LDRSB{<c>}{<q>} <Rt>, [PC, #{+/-}<imm>]
// Alternative syntax

Decode for this encoding
1 if Rt == '1111' then SEE "PLI (immediate, literal)";
2 if !HaveMainExt() then UNDEFINED;
3 t = UInt(Rt); imm32 = ZeroExtend(imm12, 32); add = (U == '1');
4 if t == 13 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<label> The label of the literal data item that is to be loaded into <Rt>. The assembler calculates

the required value of the offset from the Align(PC, 4) value of the instruction to this label.
Permitted values of the offset are -4095 to 4095. If the offset is zero or positive, imm32 is
equal to the offset and add == TRUE, encoded as U == 1. If the offset is negative, imm32 is
equal to minus the offset and add == FALSE, encoded as U == 0.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted
and encoded in the "U" field. It can have the following values:
- when U = 0
+ when U = 1

<imm> Is a 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded in the "imm12"
field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 base = Align(PC,4);
4 address = if add then (base + imm32) else (base - imm32);
5 R[t] = SignExtend(MemU[address,1], 32);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

661

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.92 LDRSB (register)

Load Register Signed Byte (register). Load Register Signed Byte (register) calculates an address from a base
register value and an offset register value, loads a byte from memory, sign-extends it to form a 32-bit word, and
writes it to a register. The offset register value can be shifted left by 0, 1, 2, or 3 bits.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 1 1 Rm Rn Rt

T1 variant

LDRSB{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>]

Decode for this encoding
1 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
2 index = TRUE; add = TRUE; wback = FALSE;
3 (shift_t, shift_n) = (SRType_LSL, 0);

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 0 0 1 Rn != 1111 Rt != 1111 0 0 0 0 0 0 imm2 Rm

T2 variant

LDRSB{<c>}.W <Rt>, [<Rn>, {+}<Rm>]
// <Rt>, <Rn>, <Rm> can be represented in T1

LDRSB{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>{, LSL #<imm>}]

Decode for this encoding
1 if Rt == '1111' then SEE "PLI (register)";
2 if Rn == '1111' then SEE "LDRSB (literal)";
3 if !HaveMainExt() then UNDEFINED;
4 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
5 index = TRUE; add = TRUE; wback = FALSE;
6 (shift_t, shift_n) = (SRType_LSL, UInt(imm2));
7 if t == 13 || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
+ Specifies the index register is added to the base register.
<Rm> Is the general-purpose index register, encoded in the "Rm" field.
<imm> If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. <imm>

is encoded in imm2. If absent, no shift is specified and imm2 is encoded as 0b00.

Operation for all encodings

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

662

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 offset = Shift(R[m], shift_t, shift_n, APSR.C);
4 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
5 address = if index then offset_addr else R[n];
6 R[t] = SignExtend(MemU[address,1], 32);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

663

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.93 LDRSBT

Load Register Signed Byte Unprivileged. Load Register Signed Byte Unprivileged calculates an address from a
base register value and an immediate offset, loads a byte from memory, sign-extends it to form a 32-bit word, and
writes it to a register.

When privileged software uses an LDRSBT instruction, the memory access is restricted as if the software was
unprivileged.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 0 0 1 Rn != 1111 Rt 1 1 1 0 imm8

T1 variant

LDRSBT{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding
1 if Rn == '1111' then SEE "LDRSB (literal)";
2 if !HaveMainExt() then UNDEFINED;
3 t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
4 register_form = FALSE; imm32 = ZeroExtend(imm8, 32);
5 if t IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
+ Specifies the offset is added to the base register.
<imm> Is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 and

encoded in the "imm8" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 address = R[n] + imm32;
4 R[t] = SignExtend(MemU_unpriv[address,1], 32);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

664

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.94 LDRSH (immediate)

Load Register Signed Halfword (immediate). Load Register Signed Halfword (immediate) calculates an address
from a base register value and an immediate offset, loads a halfword from memory, sign-extends it to form a 32-bit
word, and writes it to a register. It can use offset, post-indexed, or pre-indexed addressing.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 1 0 1 1 Rn != 1111 Rt != 1111 imm12

T1 variant

LDRSH{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding
1 if Rn == '1111' then SEE "LDRSH (literal)";
2 if Rt == '1111' then SEE "Related encodings";
3 if !HaveMainExt() then UNDEFINED;
4 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
5 index = TRUE; add = TRUE; wback = FALSE;
6 if t == 13 then UNPREDICTABLE;

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 0 1 1 Rn != 1111 Rt 1 P U W imm8

Offset variant

Applies when Rt != 1111 && P == 1 && U == 0 && W == 0.

LDRSH{<c>}{<q>} <Rt>, [<Rn> {, #-<imm>}]

Post-indexed variant

Applies when P == 0 && W == 1.

LDRSH{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

LDRSH{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

Decode for this encoding
1 if Rn == '1111' then SEE "LDRSH (literal)";
2 if Rt == '1111' && P == '1' && U == '0' && W == '0' then SEE "Related encodings";
3 if P == '1' && U == '1' && W == '0' then SEE LDRSHT;
4 if P == '0' && W == '0' then UNDEFINED;
5 if !HaveMainExt() then UNDEFINED;
6 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
7 index = (P == '1'); add = (U == '1'); wback = (W == '1');
8 if t == 13 || (t == 15 && W == '1') || (wback && n == t) then UNPREDICTABLE;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

665

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

CONSTRAINED UNPREDICTABLE behavior
If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field. For PC use see C2.4.95 LDRSH

(literal) on page 667.
+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted

and encoded in the "U" field. It can have the following values:
- when U = 0
+ when U = 1

+ Specifies the offset is added to the base register.
<imm> For the post-indexed or pre-indexed variant: is an 8-bit unsigned immediate byte offset, in the

range 0 to 255, encoded in the "imm8" field.
For encoding T1: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095,
defaulting to 0 and encoded in the "imm12" field.
For encoding T2: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255,
defaulting to 0 and encoded in the "imm8" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
4 address = if index then offset_addr else R[n];
5 // Determine if the stack pointer limit should be checked
6 if n == 13 && wback then
7 violatesLimit = ViolatesSPLim(LookUpSP(), offset_addr);
8 else
9 violatesLimit = FALSE;

10 // Memory operation only performed if limit not violated
11 if !violatesLimit then
12 R[t] = SignExtend(MemU[address,2], 32);
13
14 // If the stack pointer is being updated a fault will be raised if
15 // the limit is violated
16 if wback then RSPCheck[n] = offset_addr;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

666

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.95 LDRSH (literal)

Load Register Signed Halfword (literal). Load Register Signed Halfword (literal) calculates an address from the
PC value and an immediate offset, loads a halfword from memory, sign-extends it to form a 32-bit word, and writes
it to a register.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 U 0 1 1 1 1 1 1 Rt != 1111 imm12

T1 variant

LDRSH{<c>}{<q>} <Rt>, <label>
// Preferred syntax

LDRSH{<c>}{<q>} <Rt>, [PC, #{+/-}<imm>]
// Alternative syntax

Decode for this encoding
1 if Rt == '1111' then SEE "Related encodings";
2 if !HaveMainExt() then UNDEFINED;
3 t = UInt(Rt); imm32 = ZeroExtend(imm12, 32); add = (U == '1');
4 if t == 13 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<label> The label of the literal data item that is to be loaded into <Rt>. The assembler calculates

the required value of the offset from the Align(PC, 4) value of the instruction to this label.
Permitted values of the offset are -4095 to 4095. If the offset is zero or positive, imm32 is
equal to the offset and add == TRUE, encoded as U == 1. If the offset is negative, imm32 is
equal to minus the offset and add == FALSE, encoded as U == 0.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted
and encoded in the "U" field. It can have the following values:
- when U = 0
+ when U = 1

<imm> Is a 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded in the "imm12"
field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 base = Align(PC,4);
4 address = if add then (base + imm32) else (base - imm32);
5 data = MemU[address,2];
6 R[t] = SignExtend(data, 32);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

667

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.96 LDRSH (register)

Load Register Signed Halfword (register). Load Register Signed Halfword (register) calculates an address from a
base register value and an offset register value, loads a halfword from memory, sign-extends it to form a 32-bit
word, and writes it to a register. The offset register value can be shifted left by 0, 1, 2, or 3 bits.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 Rm Rn Rt

T1 variant

LDRSH{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>]

Decode for this encoding
1 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
2 index = TRUE; add = TRUE; wback = FALSE;
3 (shift_t, shift_n) = (SRType_LSL, 0);

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 0 1 1 Rn != 1111 Rt != 1111 0 0 0 0 0 0 imm2 Rm

T2 variant

LDRSH{<c>}.W <Rt>, [<Rn>, {+}<Rm>]
// <Rt>, <Rn>, <Rm> can be represented in T1

LDRSH{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>{, LSL #<imm>}]

Decode for this encoding
1 if Rn == '1111' then SEE "LDRSH (literal)";
2 if Rt == '1111' then SEE "Related encodings";
3 if !HaveMainExt() then UNDEFINED;
4 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
5 index = TRUE; add = TRUE; wback = FALSE;
6 (shift_t, shift_n) = (SRType_LSL, UInt(imm2));
7 if t == 13 || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
+ Specifies the index register is added to the base register.
<Rm> Is the general-purpose index register, encoded in the "Rm" field.
<imm> If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. <imm>

is encoded in imm2. If absent, no shift is specified and imm2 is encoded as 0b00.

Operation for all encodings

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

668

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 offset = Shift(R[m], shift_t, shift_n, APSR.C);
4 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
5 address = if index then offset_addr else R[n];
6 data = MemU[address,2];
7 if wback then R[n] = offset_addr;
8 R[t] = SignExtend(data, 32);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

669

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.97 LDRSHT

Load Register Signed Halfword Unprivileged. Load Register Signed Halfword Unprivileged calculates an address
from a base register value and an immediate offset, loads a halfword from memory, sign-extends it to form a 32-bit
word, and writes it to a register.

When privileged software uses an LDRSHT instruction, the memory access is restricted as if the software was
unprivileged.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 0 1 1 Rn != 1111 Rt 1 1 1 0 imm8

T1 variant

LDRSHT{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding
1 if Rn == '1111' then SEE "LDRSH (literal)";
2 if !HaveMainExt() then UNDEFINED;
3 t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
4 register_form = FALSE; imm32 = ZeroExtend(imm8, 32);
5 if t IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
+ Specifies the offset is added to the base register.
<imm> Is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 and

encoded in the "imm8" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 address = R[n] + imm32;
4 data = MemU_unpriv[address,2];
5 R[t] = SignExtend(data, 32);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

670

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.98 LDRT

Load Register Unprivileged. Load Register Unprivileged calculates an address from a base register value and an
immediate offset, loads a word from memory, and writes it to a register.

When privileged software uses an LDRT instruction, the memory access is restricted as if the software was
unprivileged.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 1 0 1 Rn != 1111 Rt 1 1 1 0 imm8

T1 variant

LDRT{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding
1 if Rn == '1111' then SEE "LDR (literal)";
2 if !HaveMainExt() then UNDEFINED;
3 t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
4 register_form = FALSE; imm32 = ZeroExtend(imm8, 32);
5 if t IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
+ Specifies the offset is added to the base register.
<imm> Is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 and

encoded in the "imm8" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 address = R[n] + imm32;
4 data = MemU_unpriv[address,4];
5 R[t] = data;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

671

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.99 LE, LETP

Loop End, Loop End with Tail Predication. If additional iterations of a loop are required this instruction branches
back to the <label>. It also stores the loop information in the loop info cache so that future iterations of the
loop will branch back to the start just before the LE instruction is encountered. The first variant of the instruction
checks a loop iteration counter (stored in LR) to determine if additional iterations are required. It also decrements
the counter ready for the next iteration.

The second variant does not use an iteration count and always triggers another iteration of the loop.

The third (TP) variant also checks the loop iteration counter to determine if additional iterations are required.
However the counter is decremented by the number of elements in a vector (as indicated by the FPSCR.LTPSIZE
field). On the last iteration of the loop, this variant disables tail predication.

This instruction is not permitted in an IT block.

T1
Armv8.1-M Low Overhead Branch Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0

imml

immh 1

T1: LE variant

LE LR, <label>

Decode for this encoding
1 if !HaveLOBExt() then UNDEFINED;
2
3 forever = FALSE;
4 tp = FALSE;
5 imm32 = ZeroExtend(immh:imml:'0', 32);
6 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M Low Overhead Branch Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 0 0 0 1 (0) 1 1 1 1 1 1 0 0

imml

immh 1

T2: LE variant

LE <label>

Decode for this encoding
1 if !HaveLOBExt() then UNDEFINED;
2
3 forever = TRUE;
4 tp = FALSE;
5 imm32 = ZeroExtend(immh:imml:'0', 32);
6 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

672

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

T3
Armv8.1-M Low Overhead Branch Extension and MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0

imml

immh 1

T3: LETP variant

LETP LR, <label>

Decode for this encoding
1 if !HaveLOBExt() then UNDEFINED;
2 if !HaveMve() then UNDEFINED;
3 HandleException(CheckCPEnabled(10));
4
5 forever = FALSE;
6 tp = TRUE;
7 imm32 = ZeroExtend(immh:imml:'0', 32);
8 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<LR> LR is used to hold the iteration counter of the loop, this instruction must always use this
register.

<label> Specifies the label of the first instruction in the loop body.

Operation for all encodings
1 EncodingSpecificOperations();
2
3 if tp then
4 ExecuteFPCheck();
5 elsif LTPSIZE != 4 then
6 // Tail predicated loop starts should be paired with an LETP loop end.
7 // Using a LE instruction in this case is a programming error.
8 UFSR.INVSTATE = '1';
9 HandleException(CreateException(UsageFault));

10 if !forever && IsLastLowOverheadLoop() then
11 if tp then
12 FPSCR.LTPSIZE = 4[2:0]; // Disable loop predication
13 else
14 // Decrement the loop counter
15 if !forever then
16 LR = LR - (1 << (4 - LTPSIZE))[31:0];
17 // Set up the branch cache info
18 jumpAddr = PC - imm32;
19 if CCR.LOB == '1' then
20 LO_BRANCH_INFO.VALID = '1';
21 LO_BRANCH_INFO.BF = '0';
22 LO_BRANCH_INFO.LF = if forever then '1' else '0';
23 LO_BRANCH_INFO.T16IND = '0';
24 LO_BRANCH_INFO.JUMP_ADDR = jumpAddr[31:1];
25 LO_BRANCH_INFO.END_ADDR = ThisInstrAddr()[31:1];
26 // Branch to the start of the loop
27 BranchTo(jumpAddr);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

673

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.100 LSL (immediate)

Logical Shift Left (immediate). Logical Shift Left (immediate) shifts a register value left by an immediate number
of bits, shifting in zeros, and writes the result to the destination register.

This instruction is an alias of the MOV (register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV (register).

• The description of MOV (register) gives the operational pseudocode for this instruction.

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 op = 00 imm5 != 00000 Rm Rd

T2 variant

LSL<c>{<q>} {<Rd>,} <Rm>, #<imm>
// Inside IT block

is equivalent to

MOV<c>{<q>} <Rd>, <Rm>, LSL #<imm>

and is the preferred disassembly when InITBlock().

T3
Armv8-M Main Extension only

• In Armv8.0-M, bit[15] (lower 16 bits of the encoding) [0] represents (0).

• In Armv8.1-M, bit[15] (lower 16 bits of the encoding) [0] represents 0.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0

S = 0

1 1 1 1

C = [0]

imm3 Rd imm2

sr_type = 00

Rm != 11x1

MOV, shift or rotate by value variant

LSL<c>.W {<Rd>,} <Rm>, #<imm>
// Inside IT block, and <Rd>, <Rm>, <imm> can be represented in T2

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, LSL #<imm>

and is always the preferred disassembly.

MOV, shift or rotate by value variant

LSL{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, LSL #<imm>

and is always the preferred disassembly.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

674

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> Is the general-purpose source register, encoded in the "Rm" field.
<imm> For encoding T2: is the shift amount, in the range 1 to 31, encoded in the "imm5" field.

For encoding T3: is the shift amount, in the range 1 to 31, encoded in the "imm3:imm2" field.

Operation for all encodings
The description of MOV (register) gives the operational pseudocode for this instruction.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

675

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.101 LSL (register)

Logical Shift Left (register). Logical Shift Left (register) shifts a register value left by a variable number of bits,
shifting in zeros, and writes the result to the destination register. The variable number of bits is read from the
bottom byte of a register.

This instruction is an alias of the MOV, MOVS (register-shifted register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted
register).

• The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruc-
tion.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 op = 0010 Rs Rdm

Logical shift left variant

LSL<c>{<q>} {<Rdm>,} <Rdm>, <Rs>
// Inside IT block

is equivalent to

MOV<c>{<q>} <Rdm>, <Rdm>, LSL <Rs>

and is the preferred disassembly when InITBlock().

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0

sr_type = 00
S = 0

Rm 1 1 1 1 Rd 0 0 0 0 Rs

Non flag setting variant

LSL<c>.W {<Rd>,} <Rm>, <Rs>
// Inside IT block, and <Rd>, <Rm>, <sr_type>, <Rs> can be represented in T1

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, LSL <Rs>

and is always the preferred disassembly.

Non flag setting variant

LSL{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, LSL <Rs>

and is always the preferred disassembly.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

676

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rdm> Is the first general-purpose source register and the destination register, encoded in the "Rdm"

field.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> Is the first general-purpose source register, encoded in the "Rm" field.
<Rs> Is the second general-purpose source register holding a shift amount in its bottom 8 bits,

encoded in the "Rs" field.

Operation for all encodings
The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

677

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.102 LSLL (immediate)

Logical Shift Left Long. Logical shift left by 1 to 32 bits of a 64-bit value stored in two general-purpose registers.

T1
Armv8.1-M MVE

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 1 RdaLo 0 0 immh RdaHi (1) imml 0 0 1 1 1 1

T1: LSLL variant

LSLL<c> RdaLo, RdaHi, #<imm>

Decode for this encoding
1 if RdaHi == '111' then SEE "UQSHL (immediate)";
2 if !HaveMainExt() then UNDEFINED;
3 if !HasArchVersion(Armv8p1) then CONSTRAINED_UNPREDICTABLE;
4 if !HaveMve() then UNDEFINED;
5 dah = UInt(RdaHi:'1');
6 dal = UInt(RdaLo:'0');
7 (-, amount) = DecodeImmShift('10', immh:imml);
8 if RdaHi == '110' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<RdaLo> General-purpose register for the low-half of the 64-bit source and destination, containing the

value to be shifted. This must be an even numbered register.
<RdaHi> General-purpose register for the high-half of the 64-bit source and destination, containing the

value to be shifted. This must be an odd numbered register.
<imm> The number of bits to shift by, in the range 1-32.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3
4 op1 = UInt(R[dah]:R[dal]);
5 result = (op1 << amount)[63:0];
6 R[dah] = result[63:32];
7 R[dal] = result[31:0];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

678

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.103 LSLL (register)

Logical Shift Left Long. Logical shift left by 0 to 64 bits of a 64-bit value stored in two general-purpose registers.
The shift amount is read in as the bottom byte of Rm. If the shift amount is negative, the shift direction is reversed.

T1
Armv8.1-M MVE

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 1 RdaLo 0 Rm RdaHi (1) (0) (0) 0 0 1 1 0 1

T1: LSLL variant

LSLL<c> RdaLo, RdaHi, Rm

Decode for this encoding
1 if RdaHi == '111' then SEE "UQRSHL (register)";
2 if !HaveMainExt() then UNDEFINED;
3 if !HasArchVersion(Armv8p1) then CONSTRAINED_UNPREDICTABLE;
4 if !HaveMve() then UNDEFINED;
5 dah = UInt(RdaHi:'1');
6 dal = UInt(RdaLo:'0');
7 m = UInt(Rm);
8 if RdaHi == '110' || Rm == '11x1' || Rm == RdaHi:'1' then CONSTRAINED_UNPREDICTABLE;
9 if Rm == RdaLo:'0' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<RdaLo> General-purpose register for the low-half of the 64-bit source and destination, containing the

value to be shifted. This must be an even numbered register.
<RdaHi> General-purpose register for the high-half of the 64-bit source and destination, containing the

value to be shifted. This must be an odd numbered register.
<Rm> General-purpose source register holding a shift amount in its bottom 8 bits.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3
4 amount = SInt(R[m][7:0]);
5 op1 = UInt(R[dah]:R[dal]);
6 result = (op1 << amount)[63:0];
7 R[dah] = result[63:32];
8 R[dal] = result[31:0];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

679

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.104 LSLS (immediate)

Logical Shift Left, Setting flags (immediate). Logical Shift Left, Setting flags (immediate) shifts a register value
left by an immediate number of bits, shifting in zeros, writes the result to the destination register, and updates the
condition flags based on the result.

This instruction is an alias of the MOV (register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV (register).

• The description of MOV (register) gives the operational pseudocode for this instruction.

T2
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 op = 00 imm5 != 00000 Rm Rd

T2 variant

LSLS{<q>} {<Rd>,} <Rm>, #<imm>
// Outside IT block

is equivalent to

MOVS{<q>} <Rd>, <Rm>, LSL #<imm>

and is the preferred disassembly when !InITBlock().

T3
Armv8-M Main Extension only

• In Armv8.0-M, bit[15] (lower 16 bits of the encoding) [0] represents (0).

• In Armv8.1-M, bit[15] (lower 16 bits of the encoding) [0] represents 0.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0

S = 1

1 1 1 1

C = [0]

imm3 Rd imm2

sr_type = 00

Rm

MOVS, shift or rotate by value variant

LSLS.W {<Rd>,} <Rm>, #<imm>
// Outside IT block, and <Rd>, <Rm>, <imm> can be represented in T2

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, LSL #<imm>

and is always the preferred disassembly.

MOVS, shift or rotate by value variant

LSLS{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, LSL #<imm>

and is always the preferred disassembly.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

680

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> Is the general-purpose source register, encoded in the "Rm" field.
<imm> For encoding T2: is the shift amount, in the range 1 to 31, encoded in the "imm5" field.

For encoding T3: is the shift amount, in the range 1 to 31, encoded in the "imm3:imm2" field.

Operation for all encodings
The description of MOV (register) gives the operational pseudocode for this instruction.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

681

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.105 LSLS (register)

Logical Shift Left, Setting flags (register). Logical Shift Left, Setting flags (register) shifts a register value left by a
variable number of bits, shifting in zeros, writes the result to the destination register, and updates the condition
flags based on the result. The variable number of bits is read from the bottom byte of a register.

This instruction is an alias of the MOV, MOVS (register-shifted register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted
register).

• The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruc-
tion.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 op = 0010 Rs Rdm

Logical shift left variant

LSLS{<q>} {<Rdm>,} <Rdm>, <Rs>
// Outside IT block

is equivalent to

MOVS{<q>} <Rdm>, <Rdm>, LSL <Rs>

and is the preferred disassembly when !InITBlock().

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0

sr_type = 00
S = 1

Rm 1 1 1 1 Rd 0 0 0 0 Rs

Flag setting variant

LSLS.W {<Rd>,} <Rm>, <Rs>
// Outside IT block, and <Rd>, <Rm>, <sr_type>, <Rs> can be represented in T1

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, LSL <Rs>

and is always the preferred disassembly.

Flag setting variant

LSLS{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, LSL <Rs>

and is always the preferred disassembly.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

682

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rdm> Is the first general-purpose source register and the destination register, encoded in the "Rdm"

field.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> Is the first general-purpose source register, encoded in the "Rm" field.
<Rs> Is the second general-purpose source register holding a shift amount in its bottom 8 bits,

encoded in the "Rs" field.

Operation for all encodings
The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

683

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.106 LSR (immediate)

Logical Shift Right (immediate). Logical Shift Right (immediate) shifts a register value right by an immediate
number of bits, shifting in zeros, and writes the result to the destination register.

This instruction is an alias of the MOV (register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV (register).

• The description of MOV (register) gives the operational pseudocode for this instruction.

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 op = 01 imm5 Rm Rd

T2 variant

LSR<c>{<q>} {<Rd>,} <Rm>, #<imm>
// Inside IT block

is equivalent to

MOV<c>{<q>} <Rd>, <Rm>, LSR #<imm>

and is the preferred disassembly when InITBlock().

T3
Armv8-M Main Extension only

• In Armv8.0-M, bit[15] (lower 16 bits of the encoding) [0] represents (0).

• In Armv8.1-M, bit[15] (lower 16 bits of the encoding) [0] represents 0.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0

S = 0

1 1 1 1

C = [0]

imm3 Rd imm2

sr_type = 01

Rm != 11x1

MOV, shift or rotate by value variant

LSR<c>.W {<Rd>,} <Rm>, #<imm>
// Inside IT block, and <Rd>, <Rm>, <imm> can be represented in T2

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, LSR #<imm>

and is always the preferred disassembly.

MOV, shift or rotate by value variant

LSR{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, LSR #<imm>

and is always the preferred disassembly.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

684

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> Is the general-purpose source register, encoded in the "Rm" field.
<imm> For encoding T2: is the shift amount, in the range 1 to 32, encoded in the "imm5" field as

<imm> modulo 32.
For encoding T3: is the shift amount, in the range 1 to 32, encoded in the "imm3:imm2" field
as <imm> modulo 32.

Operation for all encodings
The description of MOV (register) gives the operational pseudocode for this instruction.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

685

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.107 LSR (register)

Logical Shift Right (register). Logical Shift Right (register) shifts a register value right by a variable number of
bits, shifting in zeros, and writes the result to the destination register. The variable number of bits is read from the
bottom byte of a register.

This instruction is an alias of the MOV, MOVS (register-shifted register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted
register).

• The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruc-
tion.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 op = 0011 Rs Rdm

Logical shift right variant

LSR<c>{<q>} {<Rdm>,} <Rdm>, <Rs>
// Inside IT block

is equivalent to

MOV<c>{<q>} <Rdm>, <Rdm>, LSR <Rs>

and is the preferred disassembly when InITBlock().

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0

sr_type
S = 0

Rm 1 1 1 1 Rd 0 0 0 0 Rs

Non flag setting variant

LSR<c>.W {<Rd>,} <Rm>, <Rs>
// Inside IT block, and <Rd>, <Rm>, <type>, <Rs> can be represented in T1

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, LSR <Rs>

and is always the preferred disassembly.

Non flag setting variant

LSR{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, LSR <Rs>

and is always the preferred disassembly.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

686

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rdm> Is the first general-purpose source register and the destination register, encoded in the "Rdm"

field.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> Is the first general-purpose source register, encoded in the "Rm" field.
<Rs> Is the second general-purpose source register holding a shift amount in its bottom 8 bits,

encoded in the "Rs" field.

Operation for all encodings
The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

687

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.108 LSRL (immediate)

Logical Shift Right Long. Logical shift right by 1 to 32 bits of a 64-bit value stored in two general-purpose
registers.

T1
Armv8.1-M MVE

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 1 RdaLo 0 0 immh RdaHi (1) imml 0 1 1 1 1 1

T1: LSRL variant

LSRL<c> RdaLo, RdaHi, #<imm>

Decode for this encoding
1 if RdaHi == '111' then SEE "URSHR (immediate)";
2 if !HaveMainExt() then UNDEFINED;
3 if !HasArchVersion(Armv8p1) then CONSTRAINED_UNPREDICTABLE;
4 if !HaveMve() then UNDEFINED;
5 dah = UInt(RdaHi:'1');
6 dal = UInt(RdaLo:'0');
7 (-, amount) = DecodeImmShift('10', immh:imml);
8 if RdaHi == '110' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<RdaLo> General-purpose register for the low-half of the 64-bit source and destination, containing the

value to be shifted. This must be an even numbered register.
<RdaHi> General-purpose register for the high-half of the 64-bit source and destination, containing the

value to be shifted. This must be an odd numbered register.
<imm> The number of bits to shift by, in the range 1-32.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3
4 op1 = UInt(R[dah]:R[dal]);
5 result = (op1 >> amount)[63:0];
6 R[dah] = result[63:32];
7 R[dal] = result[31:0];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

688

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.109 LSRS (immediate)

Logical Shift Right, Setting flags (immediate). Logical Shift Right, Setting flags (immediate) shifts a register value
right by an immediate number of bits, shifting in zeros, writes the result to the destination register, and updates the
condition flags based on the result.

This instruction is an alias of the MOV (register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV (register).

• The description of MOV (register) gives the operational pseudocode for this instruction.

T2
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 op = 01 imm5 Rm Rd

T2 variant

LSRS{<q>} {<Rd>,} <Rm>, #<imm>
// Outside IT block

is equivalent to

MOVS{<q>} <Rd>, <Rm>, LSR #<imm>

and is the preferred disassembly when !InITBlock().

T3
Armv8-M Main Extension only

• In Armv8.0-M, bit[15] (lower 16 bits of the encoding) [0] represents (0).

• In Armv8.1-M, bit[15] (lower 16 bits of the encoding) [0] represents 0.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0

S = 1

1 1 1 1

C = [0]

imm3 Rd imm2

sr_type = 01

Rm

MOVS, shift or rotate by value variant

LSRS.W {<Rd>,} <Rm>, #<imm>
// Outside IT block, and <Rd>, <Rm>, <imm> can be represented in T2

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, LSR #<imm>

and is always the preferred disassembly.

MOVS, shift or rotate by value variant

LSRS{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, LSR #<imm>

and is always the preferred disassembly.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

689

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> Is the general-purpose source register, encoded in the "Rm" field.
<imm> For encoding T2: is the shift amount, in the range 1 to 32, encoded in the "imm5" field as

<imm> modulo 32.
For encoding T3: is the shift amount, in the range 1 to 32, encoded in the "imm3:imm2" field
as <imm> modulo 32.

Operation for all encodings
The description of MOV (register) gives the operational pseudocode for this instruction.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

690

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.110 LSRS (register)

Logical Shift Right, Setting flags (register). Logical Shift Right, Setting flags (register) shifts a register value right
by a variable number of bits, shifting in zeros, writes the result to the destination register, and updates the condition
flags based on the result. The variable number of bits is read from the bottom byte of a register.

This instruction is an alias of the MOV, MOVS (register-shifted register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted
register).

• The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruc-
tion.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 op = 0011 Rs Rdm

Logical shift right variant

LSRS{<q>} {<Rdm>,} <Rdm>, <Rs>
// Outside IT block

is equivalent to

MOVS{<q>} <Rdm>, <Rdm>, LSR <Rs>

and is the preferred disassembly when !InITBlock().

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0

sr_type = 01
S = 1

Rm 1 1 1 1 Rd 0 0 0 0 Rs

Flag setting variant

LSRS.W {<Rd>,} <Rm>, <Rs>
// Outside IT block, and <Rd>, <Rm>, <sr_type>, <Rs> can be represented in T1

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, LSR <Rs>

and is always the preferred disassembly.

Flag setting variant

LSRS{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, LSR <Rs>

and is always the preferred disassembly.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

691

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rdm> Is the first general-purpose source register and the destination register, encoded in the "Rdm"

field.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> Is the first general-purpose source register, encoded in the "Rm" field.
<Rs> Is the second general-purpose source register holding a shift amount in its bottom 8 bits,

encoded in the "Rs" field.

Operation for all encodings
The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

692

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.111 MCR, MCR2

Move to Coprocessor from Register. Move to Coprocessor from Register passes the value of a general-purpose
register to a coprocessor.

If no coprocessor can execute the instruction, a UsageFault exception is generated.

Arm reserves coprocessors CP8 to CP15, and this manual defines the valid instructions when coproc is in this
range.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 opc1 0 CRn Rt coproc opc2 1 CRm

T1 variant

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

Decode for this encoding
1 if coproc IN {'100x', '101x', '111x'} then SEE "Floating-point and MVE";
2 if CoprocType(UInt(coproc)) == CP_CDEv1 then SEE "CDE instructions";
3 if !HaveMainExt() then UNDEFINED;
4 t = UInt(Rt); cp = UInt(coproc);
5 if t == 15 || t == 13 then UNPREDICTABLE;

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 opc1 0 CRn Rt coproc opc2 1 CRm

T2 variant

MCR2{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

Decode for this encoding
1 if coproc IN {'100x', '101x', '111x'} then SEE "Floating-point and MVE";
2 if CoprocType(UInt(coproc)) == CP_CDEv1 then SEE "CDE instructions";
3 if !HaveMainExt() then UNDEFINED;
4 t = UInt(Rt); cp = UInt(coproc);
5 if t == 15 || t == 13 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<coproc> Is the name of the coprocessor, encoded in the "coproc" field. The generic coprocessor names

are p0 to p15.
<opc1> Is a coprocessor-specific opcode in the range 0 to 7, encoded in the "opc1" field.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<CRn> Is the first coprocessor register, encoded in the "CRn" field.
<CRm> Is the second coprocessor register, encoded in the "CRm" field.
<opc2> Is a coprocessor-specific opcode in the range 0 to 7, defaulting to 0 and encoded in the "opc2"

field.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

693

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteCPCheck(cp);
4 if !Coproc_Accepted(cp, ThisInstr()) then
5 GenerateCoprocessorException();
6 else
7 Coproc_SendOneWord(R[t], cp, ThisInstr());

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

694

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.112 MCRR, MCRR2

Move to Coprocessor from two Registers. Move to Coprocessor from two Registers passes the values of two
general-purpose registers to a coprocessor.

If no coprocessor can execute the instruction, a UsageFault exception is generated.

Arm reserves coprocessors CP8 to CP15, and this manual defines the valid instructions when coproc is in this
range.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 0 0 1 0 0 Rt2 Rt coproc opc1 CRm

T1 variant

MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

Decode for this encoding
1 if coproc IN {'100x', '101x', '111x'} then SEE "Floating-point and MVE";
2 if CoprocType(UInt(coproc)) == CP_CDEv1 then SEE "CDE instructions";
3 if !HaveMainExt() then UNDEFINED;
4 t = UInt(Rt); t2 = UInt(Rt2); cp = UInt(coproc);
5 if t == 15 || t2 == 15 then UNPREDICTABLE;
6 if t == 13 || t2 == 13 then UNPREDICTABLE;

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 0 0 1 0 0 Rt2 Rt coproc opc1 CRm

T2 variant

MCRR2{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

Decode for this encoding
1 if coproc IN {'100x', '101x', '111x'} then SEE "Floating-point and MVE";
2 if CoprocType(UInt(coproc)) == CP_CDEv1 then SEE "CDE instructions";
3 if !HaveMainExt() then UNDEFINED;
4 t = UInt(Rt); t2 = UInt(Rt2); cp = UInt(coproc);
5 if t == 15 || t2 == 15 then UNPREDICTABLE;
6 if t == 13 || t2 == 13 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<coproc> Is the name of the coprocessor, encoded in the "coproc" field. The generic coprocessor names

are p0 to p15.
<opc1> Is a coprocessor-specific opcode in the range 0 to 15, encoded in the "opc1" field.
<Rt> Is the first general-purpose register to be transferred, encoded in the "Rt" field.
<Rt2> Is the second general-purpose register to be transferred, encoded in the "Rt2" field.
<CRm> Is a coprocessor register, encoded in the "CRm" field.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

695

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteCPCheck(cp);
4 if !Coproc_Accepted(cp, ThisInstr()) then
5 GenerateCoprocessorException();
6 else
7 Coproc_SendTwoWords(R[t2], R[t], cp, ThisInstr());

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

696

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.113 MLA

Multiply Accumulate. Multiply Accumulate multiplies two register values, and adds a third register value. The
least significant 32 bits of the result are written to the destination register. These 32 bits do not depend on whether
signed or unsigned calculations are performed.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 0 0 0 Rn Ra != 1111 Rd 0 0 0 0 Rm

T1 variant

MLA{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for this encoding
1 if Ra == '1111' then SEE MUL;
2 if !HaveMainExt() then UNDEFINED;
3 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); setflags = FALSE;
4 if d IN {13,15} || n IN {13,15} || m IN {13,15} || a == 13 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm"

field.
<Ra> Is the third general-purpose source register holding the addend, encoded in the "Ra" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 operand1 = SInt(R[n]); // operand1 = UInt(R[n]) produces the same final results
4 operand2 = SInt(R[m]); // operand2 = UInt(R[m]) produces the same final results
5 addend = SInt(R[a]); // addend = UInt(R[a]) produces the same final results
6 result = operand1 * operand2 + addend;
7 R[d] = result[31:0];
8 if setflags then
9 APSR.N = result[31];

10 APSR.Z = IsZeroBit(result[31:0]);
11 // APSR.C unchanged
12 // APSR.V unchanged

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

697

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.114 MLS

Multiply and Subtract. Multiply and Subtract multiplies two register values, and subtracts the least significant
32 bits of the result from a third register value. These 32 bits do not depend on whether signed or unsigned
calculations are performed. The result is written to the destination register.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 0 0 0 Rn Ra Rd 0 0 0 1 Rm

T1 variant

MLS{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} || a IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm"

field.
<Ra> Is the third general-purpose source register holding the minuend, encoded in the "Ra" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 operand1 = SInt(R[n]); // operand1 = UInt(R[n]) produces the same final results
4 operand2 = SInt(R[m]); // operand2 = UInt(R[m]) produces the same final results
5 addend = SInt(R[a]); // addend = UInt(R[a]) produces the same final results
6 result = addend - operand1 * operand2;
7 R[d] = result[31:0];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

698

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.115 MOV (immediate)

Move (immediate). Move (immediate) writes an immediate value to the destination register. It can optionally
update the condition flags based on the value.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 0 Rd imm8

T1 variant

MOV<c>{<q>} <Rd>, #<imm8>
// Inside IT block

MOVS{<q>} <Rd>, #<imm8>
// Outside IT block

Decode for this encoding
1 d = UInt(Rd); setflags = !InITBlock(); imm32 = ZeroExtend(imm8, 32); carry = APSR.C;

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 0 0 1 0 S 1 1 1 1 0 imm3 Rd imm8

MOV variant

Applies when S == 0.

MOV<c>.W <Rd>, #<const>
// Inside IT block, and <Rd>, <const> can be represented in T1

MOV{<c>}{<q>} <Rd>, #<const>

MOVS variant

Applies when S == 1.

MOVS.W <Rd>, #<const>
// Outside IT block, and <Rd>, <const> can be represented in T1

MOVS{<c>}{<q>} <Rd>, #<const>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 d = UInt(Rd); setflags = (S == '1'); (imm32, carry) = T32ExpandImm_C(i:imm3:imm8, APSR.C);
3 if d IN {13,15} then UNPREDICTABLE;

T3
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 1 0 0 1 0 0 imm4 0 imm3 Rd imm8

T3 variant

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

699

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

MOV{<c>}{<q>} <Rd>, #<imm16>
// <imm16> cannot be represented in T1 or T2

MOVW{<c>}{<q>} <Rd>, #<imm16>
// <imm16> can be represented in T1 or T2

Decode for this encoding
1 d = UInt(Rd); setflags = FALSE; imm32 = ZeroExtend(imm4:i:imm3:imm8, 32);
2 carry = bit UNKNOWN;
3 if d IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<imm8> Is an 8-bit unsigned immediate, in the range 0 to 255, encoded in the "imm8" field.
<imm16> Is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm4:i:imm3:imm8"

field.
<const> Is an immediate value derived from the 12-bit immediate that is encoded in the ’i:imm3:imm8’

field. See C1.5 Modified immediate constants on page 448 for the range of values.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 result = imm32;
4 R[d] = result;
5 if setflags then
6 APSR.N = result[31];
7 APSR.Z = IsZeroBit(result);
8 APSR.C = carry;
9 // APSR.V unchanged

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

700

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.116 MOV (register)

Move (register). Move (register) copies a value from a register to the destination register. It can optionally update
the condition flags based on the value.

This instruction is used by the aliases ASRS (immediate), ASR (immediate), LSLS (immediate), LSL (immediate),
LSRS (immediate), LSR (immediate), RORS (immediate), ROR (immediate), RRXS, RRX.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 1 1 0 D Rm Rd

T1 variant

MOV{<c>}{<q>} <Rd>, <Rm>

Decode for this encoding
1 d = UInt(D:Rd); m = UInt(Rm); setflags = FALSE;
2 (shift_t, shift_n) = (SRType_LSL, 0);
3 if HaveMainExt() then
4 if d == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

T2
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 op != 11 imm5 Rm Rd

T2 variant

MOV<c>{<q>} <Rd>, <Rm> {, <shift> #<amount>}
// Inside IT block

MOVS{<q>} <Rd>, <Rm> {, <shift> #<amount>}
// Outside IT block

Decode for this encoding
1 if op == '11' then SEE "Related encodings";
2 d = UInt(Rd); m = UInt(Rm); setflags = !InITBlock();
3 (shift_t, shift_n) = DecodeImmShift(op, imm5);
4 if op == '00' && imm5 == '00000' && InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If op == ’00’ && imm5 == ’00000’ && InITBlock(), then one of the following behaviors must
occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passed its condition code check.

• The instruction executes as NOP, as if it failed its condition code check.

• The instruction executes as MOV Rd, Rm.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

701

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

T3
Armv8-M Main Extension only

• In Armv8.0-M, bit[15] (lower 16 bits of the encoding) [0] represents (0).

• In Armv8.1-M, bit[15] (lower 16 bits of the encoding) [0] represents 0.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 S 1 1 1 1

C = [0]

imm3 Rd imm2

sr_type

Rm

MOV, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && sr_type == 11.

MOV{<c>}{<q>} <Rd>, <Rm>, RRX

MOV, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && sr_type == 11).

MOV<c>.W <Rd>, <Rm> {, <shift> #<amount>}
// Inside IT block
// and <Rd>, <Rm>, <shift>, <amount> can be represented in T1 or T2

MOV{<c>}{<q>} <Rd>, <Rm> {, <shift> #<amount>}

MOVS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && imm2 == 00 && sr_type == 11.

MOVS{<c>}{<q>} <Rd>, <Rm>, RRX

MOVS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && sr_type == 11).

MOVS.W <Rd>, <Rm> {, <shift> #<amount>}
// Outside IT block
// and <Rd>, <Rm>, <shift>, <amount> can be represented in T1 or T2

MOVS{<c>}{<q>} <Rd>, <Rm> {, <shift> #<amount>}

Decode for this encoding
1 if HasArchVersion(Armv8p1) then
2 if C == '1' then SEE "Conditional select instructions";
3 if S == '1' && Rm == '11x1' then SEE "Wide shift instructions";
4 elsif HasArchVersion(Armv8p0) then
5 if C == '1' then UNPREDICTABLE;
6 if !HaveMainExt() then UNDEFINED;
7 d = UInt(Rd); m = UInt(Rm); setflags = (S == '1');
8 (shift_t, shift_n) = DecodeImmShift(sr_type, imm3:imm2);
9 if !setflags && (imm3:imm2:sr_type == '0000000') then

10 if (d == 15 || m == 15 || (d == 13 && m == 13)) then UNPREDICTABLE;
11 else
12 if (d IN {13,15} || m IN {13,15}) then UNPREDICTABLE;

Alias conditions

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

702

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Alias variant preferred when
ASRS (immediate) T3 S == ‘1‘ && sr_type == ‘10‘
ASRS (immediate) T2 op == ‘10‘ && !InITBlock()
ASR (immediate) T3 S == ‘0‘ && sr_type == ‘10‘
ASR (immediate) T2 op == ‘10‘ && InITBlock()
LSLS (immediate) T3 S == ‘1‘ && imm3:Rd:imm2 != ‘000xxxx00‘ && sr_type == ‘00‘
LSLS (immediate) T2 op == ‘00‘ && imm5 != ‘00000‘ && !InITBlock()
LSL (immediate) T3 S == ‘0‘ && imm3:Rd:imm2 != ‘000xxxx00‘ && sr_type == ‘00‘
LSL (immediate) T2 op == ‘00‘ && imm5 != ‘00000‘ && InITBlock()
LSRS (immediate) T3 S == ‘1‘ && sr_type == ‘01‘
LSRS (immediate) T2 op == ‘01‘ && !InITBlock
LSR (immediate) T3 S ==‘0‘ && sr_type == ‘01‘
LSR (immediate) T2 op == ‘01‘ && InITBlock()
RORS (immediate) - S == ‘1‘ && imm3:Rd:imm2 != ‘000xxxx00‘ && sr_type == ‘11‘
ROR (immediate) - S == ‘0‘ && imm3:Rd:imm2 != ‘000xxxx00‘ && sr_type == ‘11‘
RRXS - S == ‘1‘ && imm3 == ‘000‘ && imm2 == ‘00‘ && sr_type == ‘11‘
RRX - S == ‘0‘ && imm3 == ‘000‘ && imm2 == ‘00‘ && sr_type ==‘11‘

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> For encoding T1: is the general-purpose destination register, encoded in the "D:Rd" field. If

the PC is used:
- The instruction causes a simple branch to the address moved to the PC.
- The instruction must either be outside an IT block or the last instruction of an IT block.

For encoding T2 and T3: is the general-purpose destination register, encoded in the "Rd" field.
<Rm> For encoding T1: is the general-purpose source register, encoded in the "Rm" field. The PC

can be used.
For encoding T2 and T3: is the general-purpose source register, encoded in the "Rm" field.

<shift> For encoding T2: is the type of shift to be applied to the source register, encoded in the "op"
field. It can have the following values:
LSL when sr_type = 00
LSR when sr_type = 01
ASR when sr_type = 10

For encoding T3: is the type of shift to be applied to the source register, encoded in the
"sr_type" field. It can have the following values:
LSL when sr_type = 00
LSR when sr_type = 01
ASR when sr_type = 10
ROR when sr_type = 11

<amount> For encoding T2: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1
to 32 (when <shift> = LSR or ASR) encoded in the "imm5" field as <amount> modulo 32.
For encoding T3: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1
to 32 (when <shift> = LSR or ASR) encoded in the "imm3:imm2" field as <amount> modulo
32.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 (result, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
4 if d == 15 then
5 BranchTo(result); // setflags is always FALSE here
6 else
7 RSPCheck[d] = result;
8 if setflags then
9 APSR.N = result[31];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

703

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

10 APSR.Z = IsZeroBit(result);
11 APSR.C = carry;
12 // APSR.V unchanged

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

704

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.117 MOV, MOVS (register-shifted register)

Move (register-shifted register). Move (register-shifted register) copies a register-shifted register value to the
destination register. It can optionally update the condition flags based on the value.

This instruction is used by the aliases ASRS (register), ASR (register), LSLS (register), LSL (register), LSRS
(register), LSR (register), RORS (register), ROR (register).

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 op Rs Rdm

Arithmetic shift right variant

Applies when op == 0100.

MOV<c>{<q>} <Rdm>, <Rdm>, ASR <Rs>
// Inside IT block

MOVS{<q>} <Rdm>, <Rdm>, ASR <Rs>
// Outside IT block

Logical shift left variant

Applies when op == 0010.

MOV<c>{<q>} <Rdm>, <Rdm>, LSL <Rs>
// Inside IT block

MOVS{<q>} <Rdm>, <Rdm>, LSL <Rs>
// Outside IT block

Logical shift right variant

Applies when op == 0011.

MOV<c>{<q>} <Rdm>, <Rdm>, LSR <Rs>
// Inside IT block

MOVS{<q>} <Rdm>, <Rdm>, LSR <Rs>
// Outside IT block

Rotate right variant

Applies when op == 0111.

MOV<c>{<q>} <Rdm>, <Rdm>, ROR <Rs>
// Inside IT block

MOVS{<q>} <Rdm>, <Rdm>, ROR <Rs>
// Outside IT block

Decode for this encoding
1 if !(op IN {'0010', '0011', '0100', '0111'}) then SEE "Related encodings";
2 d = UInt(Rdm); m = UInt(Rdm); s = UInt(Rs);
3 setflags = !InITBlock(); shift_t = DecodeRegShift(op[2]:op[0]);

T2
Armv8-M Main Extension only

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

705

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0

sr_type

S Rm 1 1 1 1 Rd 0 0 0 0 Rs

Flag setting variant

Applies when S == 1.

MOVS.W <Rd>, <Rm>, <sr_type> <Rs>
// Outside IT block, and <Rd>, <Rm>, <sr_type>, <Rs> can be represented in T1

MOVS{<c>}{<q>} <Rd>, <Rm>, <sr_type> <Rs>

Non flag setting variant

Applies when S == 0.

MOV<c>.W <Rd>, <Rm>, <sr_type> <Rs>
// Inside IT block, and <Rd>, <Rm>, <sr_type>, <Rs> can be represented in T1

MOV{<c>}{<q>} <Rd>, <Rm>, <sr_type> <Rs>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 d = UInt(Rd); m = UInt(Rm); s = UInt(Rs);
3 setflags = (S == '1'); shift_t = DecodeRegShift(sr_type);
4 if d IN {13,15} || m IN {13,15} || s IN {13,15} then UNPREDICTABLE;

Alias conditions
Alias variant preferred when
ASRS (register) T1 (aritmetic shift right) op == ‘0100‘ && !InITBlock()
ASRS (register) T2 (flag setting) sr_type == ‘10‘ && S == ‘1‘
ASR (register) T1 (arithmetic shift right) op == ‘0100‘ && InITBlock()
ASR (register) T2 (non flag setting) sr_type == ‘10‘ && S == ‘0‘
LSLS (register) T1 (logical shift left) op == ‘0010‘ && !InITBlock()
LSLS (register) T2 (flag setting) sr_type == ‘00‘ && S == ‘1‘
LSL (register) T1 (logical shift left) op == ‘0010‘ && InITBlock()
LSL (register) T2 (non flag setting) sr_type == ‘00‘ && S == ‘0‘
LSRS (register) T1 (logical shift right) op == ‘0011‘ && !InITBlock()
LSRS (register) T2 (flag setting) sr_type == ‘01‘ && S == ‘1‘
LSR (register) T1 (logical shift right) op == ‘0011‘ && InITBlock()
LSR (register) T2 (non flag setting) sr_type ==‘01‘ && S == ‘0‘
RORS (register) T1 (rotate right) op == ‘0111‘ && !InITBlock()
RORS (register) T2 (flag setting) sr_type == ‘11‘ && S ==‘1‘
ROR (register) T1 (rotate right) op == ‘0111‘ && InITBlock()
ROR (register) T2 (non flag setting) sr_type == ‘11‘ && S == ‘0‘

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rdm> Is the general-purpose source register and the destination register, encoded in the "Rdm" field.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> Is the general-purpose source register, encoded in the "Rm" field.
<sr_type> Is the type of shift to be applied to the second source register, encoded in the "sr_type" field. It

can have the following values:
LSL when sr_type = 00

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

706

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

LSR when sr_type = 01
ASR when sr_type = 10
ROR when sr_type = 11

<Rs> Is the general-purpose source register holding a shift amount in its bottom 8 bits, encoded in
the "Rs" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 shift_n = UInt(R[s][7:0]);
4 (result, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
5 R[d] = result;
6 if setflags then
7 APSR.N = result[31];
8 APSR.Z = IsZeroBit(result);
9 APSR.C = carry;

10 // APSR.V unchanged

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

707

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.118 MOVT

Move Top. Move Top writes an immediate value to the top halfword of the destination register. It does not affect
the contents of the bottom halfword.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 1 0 1 1 0 0 imm4 0 imm3 Rd imm8

T1 variant

MOVT{<c>}{<q>} <Rd>, #<imm16>

Decode for this encoding
1 d = UInt(Rd); imm16 = imm4:i:imm3:imm8;
2 if d IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<imm16> Is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm4:i:imm3:imm8"

field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 R[d][31:16] = imm16;
4 // R[d][15:0] unchanged

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

708

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.119 MRC, MRC2

Move to Register from Coprocessor. Move to Register from Coprocessor causes a coprocessor to transfer a value
to a general-purpose register or to the condition flags.

Arm reserves coprocessors CP8 to CP15, and this manual defines the valid instructions when coproc is in this
range.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 opc1 1 CRn Rt coproc opc2 1 CRm

T1 variant

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

Decode for this encoding
1 if coproc IN {'100x', '101x', '111x'} then SEE "Floating-point and MVE";
2 if CoprocType(UInt(coproc)) == CP_CDEv1 then SEE "CDE instructions";
3 if !HaveMainExt() then UNDEFINED;
4 t = UInt(Rt); cp = UInt(coproc);
5 if t == 13 then UNPREDICTABLE;

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 opc1 1 CRn Rt coproc opc2 1 CRm

T2 variant

MRC2{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

Decode for this encoding
1 if coproc IN {'100x', '101x', '111x'} then SEE "Floating-point and MVE";
2 if CoprocType(UInt(coproc)) == CP_CDEv1 then SEE "CDE instructions";
3 if !HaveMainExt() then UNDEFINED;
4 t = UInt(Rt); cp = UInt(coproc);
5 if t == 13 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<coproc> Is the name of the coprocessor, encoded in the "coproc" field. The generic coprocessor names

are p0 to p15.
<opc1> Is a coprocessor-specific opcode in the range 0 to 7, encoded in the "opc1" field.
<Rt> Is the general-purpose register to be transferred or APSR_nzcv (encoded as 0b1111),

encoded in the "Rt" field. If APSR_nzcv is used, bits [31:28] of the transferred value are
written to the APSR condition flags.

<CRn> Is the first coprocessor register, encoded in the "CRn" field.
<CRm> Is the second coprocessor register, encoded in the "CRm" field.
<opc2> Is a coprocessor-specific opcode in the range 0 to 7, defaulting to 0 and encoded in the "opc2"

field.
DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

709

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteCPCheck(cp);
4 if !Coproc_Accepted(cp, ThisInstr()) then
5 GenerateCoprocessorException();
6 else
7 value = Coproc_GetOneWord(cp, ThisInstr());
8 if t != 15 then
9 R[t] = value;

10 else
11 APSR.N = value[31];
12 APSR.Z = value[30];
13 APSR.C = value[29];
14 APSR.V = value[28];
15 // value[27:0] are not used.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

710

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.120 MRRC, MRRC2

Move to two Registers from Coprocessor. Move to two Registers from Coprocessor causes a coprocessor to
transfer values to two general-purpose registers.

If no coprocessor can execute the instruction, a UsageFault exception is generated.

Arm reserves coprocessors CP8 to CP15, and this manual defines the valid instructions when coproc is in this
range.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 0 0 1 0 1 Rt2 Rt coproc opc1 CRm

T1 variant

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

Decode for this encoding
1 if coproc IN {'100x', '101x', '111x'} then SEE "Floating-point and MVE";
2 if CoprocType(UInt(coproc)) == CP_CDEv1 then SEE "CDE instructions";
3 if !HaveMainExt() then UNDEFINED;
4 t = UInt(Rt); t2 = UInt(Rt2); cp = UInt(coproc);
5 if t == 15 || t2 == 15 || t == t2 then UNPREDICTABLE;
6 if t == 13 || t2 == 13 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If t == t2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 0 0 1 0 1 Rt2 Rt coproc opc1 CRm

T2 variant

MRRC2{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

Decode for this encoding
1 if coproc IN {'100x', '101x', '111x'} then SEE "Floating-point and MVE";
2 if CoprocType(UInt(coproc)) == CP_CDEv1 then SEE "CDE instructions";
3 if !HaveMainExt() then UNDEFINED;
4 t = UInt(Rt); t2 = UInt(Rt2); cp = UInt(coproc);
5 if t == 15 || t2 == 15 || t == t2 then UNPREDICTABLE;
6 if t == 13 || t2 == 13 then UNPREDICTABLE;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

711

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

CONSTRAINED UNPREDICTABLE behavior
If t == t2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<coproc> Is the name of the coprocessor, encoded in the "coproc" field. The generic coprocessor names

are p0 to p15.
<opc1> Is a coprocessor-specific opcode in the range 0 to 15, encoded in the "opc1" field.
<Rt> Is the first general-purpose register to be transferred, encoded in the "Rt" field.
<Rt2> Is the second general-purpose register to be transferred, encoded in the "Rt2" field.
<CRm> Is a coprocessor register, encoded in the "CRm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteCPCheck(cp);
4 if !Coproc_Accepted(cp, ThisInstr()) then
5 GenerateCoprocessorException();
6 else
7 (R[t2], R[t]) = Coproc_GetTwoWords(cp, ThisInstr());

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

712

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.121 MRS

Move to Register from Special register. Move to Register from Special register moves the value from the selected
special-purpose register into a general-purpose register.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 1 1 (0) (1) (1) (1) (1) 1 0 (0) 0 Rd SYSm

T1 variant

MRS{<c>}{<q>} <Rd>, <spec_reg>

Decode for this encoding
1 d = UInt(Rd);
2 if d IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<spec_reg> Is the special register to be accessed, encoded in the "SYSm" field. It can have the following

values:
APSR when SYSm = 00000000
IAPSR when SYSm = 00000001
EAPSR when SYSm = 00000010
XPSR when SYSm = 00000011
IPSR when SYSm = 00000101
EPSR when SYSm = 00000110
IEPSR when SYSm = 00000111
MSP when SYSm = 00001000
PSP when SYSm = 00001001
MSPLIM when SYSm = 00001010
PSPLIM when SYSm = 00001011
PRIMASK when SYSm = 00010000
BASEPRI when SYSm = 00010001
BASEPRI_MAX when SYSm = 00010010
FAULTMASK when SYSm = 00010011
CONTROL when SYSm = 00010100
MSP_NS when SYSm = 10001000
PSP_NS when SYSm = 10001001
MSPLIM_NS when SYSm = 10001010
PSPLIM_NS when SYSm = 10001011
PRIMASK_NS when SYSm = 10010000
BASEPRI_NS when SYSm = 10010001
FAULTMASK_NS when SYSm = 10010011
CONTROL_NS when SYSm = 10010100
SP_NS when SYSm = 10011000

The following encodings are UNPREDICTABLE:
- SYSm = 00000100
- SYSm = 000011xx

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

713

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

- SYSm = 00010101
- SYSm = 0001011x
- SYSm = 00011xxx
- SYSm = 001xxxxx
- SYSm = 01xxxxxx
- SYSm = 10000xxx
- SYSm = 100011xx
- SYSm = 10010010
- SYSm = 10010101
- SYSm = 1001011x
- SYSm = 10011001
- SYSm = 1001101x
- SYSm = 100111xx
- SYSm = 101xxxxx
- SYSm = 11xxxxxx

An access to a register not ending in _NS returns the register associated with the current
Security state. Access to a register ending in _NS in Secure state returns the Non-secure
register. Access to a register ending in _NS in Non-secure state is RAZ/WI. Access to
BASEPRI_MAX returns the contents of BASEPRI.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 R[d] = Zeros(32);
4
5 // NOTE: the MSB of SYSm is used to select between either the current
6 // domains view of the registers and other domains view of the register.
7 // This is required so that the Secure state can access the Non-secure
8 // versions of banked registers. For security reasons the Secure versions of
9 // the registers are not accessible from the Non-secure state.

10 case SYSm[7:3] of
11 when '00000' /* XPSR accesses */
12 if UInt(SYSm) == 4 then UNPREDICTABLE;
13 if CurrentModeIsPrivileged() && SYSm[0] == '1' then
14 R[d][8:0] = IPSR.Exception;
15 if SYSm[1] == '1' then
16 R[d][26:24] = '000'; /* EPSR reads as zero */
17 R[d][15:10] = '000000';
18 if SYSm[2] == '0' then
19 R[d][31:27] = APSR[31:27];
20 if HaveDSPExt() then
21 R[d][19:16] = APSR[19:16];
22 when '00001' /* SP access */
23 if CurrentModeIsPrivileged() then
24 case SYSm[2:0] of
25 when '000'
26 R[d] = SP_Main;
27 when '001'
28 R[d] = SP_Process;
29 when '010'
30 if IsSecure() then
31 R[d] = MSPLIM_S.LIMIT:'000';
32 else
33 if HaveMainExt() then
34 R[d] = MSPLIM_NS.LIMIT:'000';
35 else
36 UNPREDICTABLE;
37 when '011'
38 if IsSecure() then
39 R[d] = PSPLIM_S.LIMIT:'000';
40 else
41 if HaveMainExt() then
42 R[d] = PSPLIM_NS.LIMIT:'000';

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

714

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

43 else
44 UNPREDICTABLE;
45 otherwise
46 UNPREDICTABLE;
47 when '10001' /* SP access - alt domain */
48 if !HaveSecurityExt() then UNPREDICTABLE;
49 if CurrentModeIsPrivileged() && CurrentState == SecurityState_Secure then
50 case SYSm[2:0] of
51 when '000'
52 R[d] = SP_Main_NonSecure;
53 when '001'
54 R[d] = SP_Process_NonSecure;
55 when '010'
56 if HaveMainExt() then
57 R[d] = MSPLIM_NS.LIMIT:'000';
58 else
59 UNPREDICTABLE;
60 when '011'
61 if HaveMainExt() then
62 R[d] = PSPLIM_NS.LIMIT:'000';
63 else
64 UNPREDICTABLE;
65 otherwise
66 UNPREDICTABLE;
67 when '00010' /* Priority mask or CONTROL access */
68 case SYSm[2:0] of
69 when '000'
70 if CurrentModeIsPrivileged() then
71 R[d][0] = PRIMASK.PM;
72 when '001'
73 if HaveMainExt() then
74 if CurrentModeIsPrivileged() then
75 R[d][7:0] = BASEPRI[7:0];
76 else
77 UNPREDICTABLE;
78 when '010'
79 if HaveMainExt() then
80 if CurrentModeIsPrivileged() then
81 R[d][7:0] = BASEPRI[7:0];
82 else
83 UNPREDICTABLE;
84 when '011'
85 if HaveMainExt() then
86 if CurrentModeIsPrivileged() then
87 R[d][0] = FAULTMASK.FM;
88 else
89 UNPREDICTABLE;
90 when '100'
91 if HaveMveOrFPExt() && IsSecure() then
92 R[d][3:0] = CONTROL[3:0];
93 elsif HaveMveOrFPExt() then
94 R[d][2:0] = CONTROL[2:0];
95 else
96 R[d][1:0] = CONTROL[1:0];
97 otherwise
98 UNPREDICTABLE;
99 when '10010' /* Priority mask or CONTROL access - alt domain */

100 if !HaveSecurityExt() then UNPREDICTABLE;
101 if CurrentState == SecurityState_Secure then
102 case SYSm[2:0] of
103 when '000'
104 if CurrentModeIsPrivileged() then
105 R[d][0] = PRIMASK_NS.PM;
106 when '001'
107 if HaveMainExt() then
108 if CurrentModeIsPrivileged() then
109 R[d][7:0] = BASEPRI_NS[7:0];
110 else
111 UNPREDICTABLE;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

715

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

112 when '011'
113 if HaveMainExt() then
114 if CurrentModeIsPrivileged() then
115 R[d][0] = FAULTMASK_NS.FM;
116 else
117 UNPREDICTABLE;
118 when '100'
119 if HaveMveOrFPExt() then
120 R[d][2:0] = CONTROL_NS[2:0];
121 else
122 R[d][1:0] = CONTROL_NS[1:0];
123 otherwise
124 UNPREDICTABLE;
125 when '10011' /* SP_NS - Non-secure stack pointer */
126 if !HaveSecurityExt() then UNPREDICTABLE;
127 if CurrentState == SecurityState_Secure then
128 case SYSm[2:0] of
129 when '000'
130 R[d] = _SP(LookUpSP_with_security_mode(FALSE, CurrentMode()));
131 otherwise
132 UNPREDICTABLE;
133 otherwise
134 UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If SYSm not valid special register, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

716

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.122 MSR (register)

Move to Special register from Register. Move to Special register from Register moves the value of a general-purpose
register to the specified special-purpose register.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 0 (0) Rn 1 0 (0) 0 mask (0) (0) SYSm

T1 variant

MSR{<c>}{<q>} <spec_reg>, <Rn>

Decode for this encoding
1 n = UInt(Rn);
2 if HaveMainExt() then
3 if mask == '00' || (mask != '10' && !(UInt(SYSm) IN {0..3})) then UNPREDICTABLE;
4 else
5 if mask != '10' then UNPREDICTABLE;
6 if n IN {13,15} then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If combination of SYSm and mask not supported, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction treats mask and SYSm as UNKNOWN.

Encoding conditions
_<bits> Effect mask encoding Notes
_nzcvq Write the N, Z, C, V, Q bits, APSR[31:27] 0b10 Always supported
_g Write the GE[3:0] bits, APSR[19:16] 0b01 Supported only if the PE
_nzcvqg Write the N, Z, C, V, Q, GE[3:0] bits 0b11 implements the DSP extension.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<spec_reg> Is the special register to be accessed, encoded in the "SYSm" field. It can have the following

values:
APSR when SYSm = 00000000
IAPSR when SYSm = 00000001
EAPSR when SYSm = 00000010
XPSR when SYSm = 00000011
IPSR when SYSm = 00000101
EPSR when SYSm = 00000110
IEPSR when SYSm = 00000111
MSP when SYSm = 00001000
PSP when SYSm = 00001001
MSPLIM when SYSm = 00001010
PSPLIM when SYSm = 00001011

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

717

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

PRIMASK when SYSm = 00010000
BASEPRI when SYSm = 00010001
BASEPRI_MAX when SYSm = 00010010
FAULTMASK when SYSm = 00010011
CONTROL when SYSm = 00010100
MSP_NS when SYSm = 10001000
PSP_NS when SYSm = 10001001
MSPLIM_NS when SYSm = 10001010
PSPLIM_NS when SYSm = 10001011
PRIMASK_NS when SYSm = 10010000
BASEPRI_NS when SYSm = 10010001
FAULTMASK_NS when SYSm = 10010011
CONTROL_NS when SYSm = 10010100
SP_NS when SYSm = 10011000

The following encodings are UNPREDICTABLE:
- SYSm = 00000100
- SYSm = 000011xx
- SYSm = 00010101
- SYSm = 0001011x
- SYSm = 00011xxx
- SYSm = 001xxxxx
- SYSm = 01xxxxxx
- SYSm = 10000xxx
- SYSm = 100011xx
- SYSm = 10010010
- SYSm = 10010101
- SYSm = 1001011x
- SYSm = 10011001
- SYSm = 1001101x
- SYSm = 100111xx
- SYSm = 101xxxxx
- SYSm = 11xxxxxx

An access to a register not ending in _NS returns the register associated with the current
Security state. Access to a register ending in _NS in Secure state returns the Non-secure
register. Access to a register ending in _NS in Non-secure state is RAZ/WI. Access to
BASEPRI_MAX writes to BASEPRI if the priority that is written is higher than the existing
priority in BASEPRI. Otherwise, the access is ignored.

<Rn> Is the general-purpose source register, encoded in the "Rn" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3
4 // NOTE: the MSB of SYSm is used to select between either the current
5 // domains view of the registers and other domains view of the register.
6 // This is required to that the Secure state can access the Non-secure
7 // versions of banked registers. For security reasons the Secure versions of
8 // the registers are not accessible from the Non-secure state.
9 case SYSm[7:3] of

10 when '00000' /* XPSR accesses */
11 if UInt(SYSm) == 4 then UNPREDICTABLE;
12 if SYSm[2] == '0' then /* Include APSR */
13 if mask[0] == '1' then /* GE[3:0] bits */
14 if !HaveDSPExt() then
15 UNPREDICTABLE;
16 else
17 APSR[19:16] = R[n][19:16];
18 if mask[1] == '1' then /* N, Z, C, V, Q bits */
19 APSR[31:27] = R[n][31:27];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

718

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

20 when '00001' /* SP access */
21 if CurrentModeIsPrivileged() then
22 case SYSm[2:0] of
23 when '000'
24 // MSR not subject to SP limit, write directly to register.
25 if IsSecure() then
26 exc = _SP(RNamesSP_Main_Secure, FALSE, TRUE, R[n][31:2]:'00');
27 else
28 exc = _SP(RNamesSP_Main_NonSecure, FALSE, TRUE, R[n][31:2]:'00');
29 assert exc.fault == NoFault;
30 when '001'
31 // MSR not subject to SP limit, write directly to register.
32 if IsSecure() then
33 exc = _SP(RNamesSP_Process_Secure, FALSE, TRUE, R[n][31:2]:'00');
34 else
35 exc = _SP(RNamesSP_Process_NonSecure, FALSE, TRUE,
36 R[n][31:2]:'00');
37 assert exc.fault == NoFault;
38 when '010'
39 if IsSecure() then
40 MSPLIM_S.LIMIT = R[n][31:3];
41 else
42 if HaveMainExt() then
43 MSPLIM_NS.LIMIT = R[n][31:3];
44 else
45 UNPREDICTABLE;
46 when '011'
47 if IsSecure() then
48 PSPLIM_S.LIMIT = R[n][31:3];
49 else
50 if HaveMainExt() then
51 PSPLIM_NS.LIMIT = R[n][31:3];
52 else
53 UNPREDICTABLE;
54 otherwise
55 UNPREDICTABLE;
56 when '10001' /* SP access - alt domain */
57 if !HaveSecurityExt() then UNPREDICTABLE;
58 if CurrentModeIsPrivileged() && CurrentState == SecurityState_Secure then
59 case SYSm[2:0] of
60 when '000'
61 // MSR not subject to SP limit, write directly to register.
62 exc = _SP(RNamesSP_Main_NonSecure, FALSE, TRUE, R[n][31:2]:'00');
63 assert exc.fault == NoFault;
64 when '001'
65 // MSR not subject to SP limit, write directly to register.
66 exc = _SP(RNamesSP_Process_NonSecure, FALSE, TRUE, R[n][31:2]:'00');
67 assert exc.fault == NoFault;
68 when '010'
69 if HaveMainExt() then
70 MSPLIM_NS.LIMIT = R[n][31:3];
71 else
72 UNPREDICTABLE;
73 when '011'
74 if HaveMainExt() then
75 PSPLIM_NS.LIMIT = R[n][31:3];
76 else
77 UNPREDICTABLE;
78 otherwise
79 UNPREDICTABLE;
80 when '00010' /* Priority mask or CONTROL access */
81 case SYSm[2:0] of
82 when '000'
83 if CurrentModeIsPrivileged() then
84 PRIMASK.PM = R[n][0];
85 when '001'
86 if CurrentModeIsPrivileged() then
87 if HaveMainExt() then
88 BASEPRI[7:0] = R[n][7:0];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

719

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

89 else
90 UNPREDICTABLE;
91 when '010'
92 if CurrentModeIsPrivileged() then
93 if HaveMainExt() then
94 if ((R[n][7:0] != '00000000') &&
95 (UInt(R[n][7:0]) < UInt(BASEPRI[7:0]) ||
96 BASEPRI[7:0] == '00000000')) then
97 BASEPRI[7:0] = R[n][7:0];
98 else
99 UNPREDICTABLE;

100 when '011'
101 if CurrentModeIsPrivileged() then
102 if HaveMainExt() then
103 if ExecutionPriority() > -1 || R[n][0] == '0' then
104 FAULTMASK.FM = R[n][0];
105 else
106 UNPREDICTABLE;
107 when '100'
108 if CurrentModeIsPrivileged() then
109 CONTROL.nPRIV = R[n][0];
110 CONTROL.SPSEL = R[n][1];
111 if HaveMveOrFPExt() && (IsSecure() || NSACR.CP10 == '1') then
112 CONTROL.FPCA = R[n][2];
113 if HaveMveOrFPExt() && IsSecure() then
114 CONTROL_S.SFPA = R[n][3];
115 otherwise
116 UNPREDICTABLE;
117 when '10010' /* Priority mask or CONTROL access - alt domain */
118 if !HaveSecurityExt() then UNPREDICTABLE;
119 if CurrentModeIsPrivileged() && CurrentState == SecurityState_Secure then
120 case SYSm[2:0] of
121 when '000'
122 PRIMASK_NS.PM = R[n][0];
123 when '001'
124 if HaveMainExt() then
125 BASEPRI_NS[7:0] = R[n][7:0];
126 else
127 UNPREDICTABLE;
128 when '011'
129 if HaveMainExt() then
130 if ExecutionPriority() > -1 || R[n][0] == '0' then
131 FAULTMASK_NS.FM = R[n][0];
132 else
133 UNPREDICTABLE;
134 when '100'
135 CONTROL_NS.nPRIV = R[n][0];
136 CONTROL_NS.SPSEL = R[n][1];
137 if HaveMveOrFPExt() then CONTROL_NS.FPCA = R[n][2];
138 otherwise
139 UNPREDICTABLE;
140 when '10011' /* SP_NS - Non-secure stack pointer */
141 if !HaveSecurityExt() then UNPREDICTABLE;
142 if CurrentState == SecurityState_Secure then
143 case SYSm[2:0] of
144 when '000'
145 spName = LookUpSP_with_security_mode(FALSE, CurrentMode());
146 // MSR SP_NS is subject to SP limit check.
147 - = _SP(spName, FALSE, FALSE, R[n]);
148 otherwise
149 UNPREDICTABLE;
150 otherwise
151 UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If SYSm not valid special register, then one of the following behaviors must occur:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

720

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction treats SYSm as UNKNOWN.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

721

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.123 MUL

Multiply. Multiply multiplies two register values. The least significant 32 bits of the result are written to the
destination register. These 32 bits do not depend on whether signed or unsigned calculations are performed.

It can optionally update the condition flags based on the result. In the T32 instruction set, this option is limited to
only a few forms of the instruction. Use of this option adversely affects performance on many implementations.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 1 1 0 1 Rn Rdm

T1 variant

MUL<c>{<q>} <Rdm>, <Rn>{, <Rdm>}
// Inside IT block

MULS{<q>} <Rdm>, <Rn>{, <Rdm>}
// Outside IT block

Decode for this encoding
1 d = UInt(Rdm); n = UInt(Rn); m = UInt(Rdm); setflags = !InITBlock();

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 0 0 0 Rn 1 1 1 1 Rd 0 0 0 0 Rm

T2 variant

MUL<c>.W <Rd>, <Rn>{, <Rm>}
// Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1

MUL{<c>}{<q>} <Rd>, <Rn>{, <Rm>}

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = FALSE;
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rdm> Is the second general-purpose source register holding the multiplier and the destination register,

encoded in the "Rdm" field.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

If omitted, <Rd> is used.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

722

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 operand1 = SInt(R[n]); // operand1 = UInt(R[n]) produces the same final results
4 operand2 = SInt(R[m]); // operand2 = UInt(R[m]) produces the same final results
5 result = operand1 * operand2;
6 R[d] = result[31:0];
7 if setflags then
8 APSR.N = result[31];
9 APSR.Z = IsZeroBit(result[31:0]);

10 // APSR.C unchanged
11 // APSR.V unchanged

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

723

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.124 MVN (immediate)

Bitwise NOT (immediate). Bitwise NOT (immediate) writes the bitwise inverse of an immediate value to the
destination register. It can optionally update the condition flags based on the value.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 0 0 1 1 S 1 1 1 1 0 imm3 Rd imm8

MVN variant

Applies when S == 0.

MVN{<c>}{<q>} <Rd>, #<const>

MVNS variant

Applies when S == 1.

MVNS{<c>}{<q>} <Rd>, #<const>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 d = UInt(Rd); setflags = (S == '1');
3 (imm32, carry) = T32ExpandImm_C(i:imm3:imm8, APSR.C);
4 if d IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<const> Is an immediate value derived from the 12-bit immediate that is encoded in the ’i:imm3:imm8’

field. See C1.5 Modified immediate constants on page 448 for the range of values.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 result = NOT(imm32);
4 R[d] = result;
5 if setflags then
6 APSR.N = result[31];
7 APSR.Z = IsZeroBit(result);
8 APSR.C = carry;
9 // APSR.V unchanged

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

724

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.125 MVN (register)

Bitwise NOT (register). Bitwise NOT (register) writes the bitwise inverse of a register value to the destination
register. It can optionally update the condition flags based on the result.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 1 1 1 1 Rm Rd

T1 variant

MVN<c>{<q>} <Rd>, <Rm>
// Inside IT block

MVNS{<q>} <Rd>, <Rm>
// Outside IT block

Decode for this encoding
1 d = UInt(Rd); m = UInt(Rm); setflags = !InITBlock();
2 (shift_t, shift_n) = (SRType_LSL, 0);

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 1 S 1 1 1 1 (0) imm3 Rd imm2

sr_type

Rm

MVN, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && sr_type == 11.

MVN{<c>}{<q>} <Rd>, <Rm>, RRX

MVN, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && sr_type == 11).

MVN<c>.W <Rd>, <Rm>
// Inside IT block, and <Rd>, <Rm> can be represented in T1

MVN{<c>}{<q>} <Rd>, <Rm> {, <shift> #<amount>}

MVNS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && imm2 == 00 && sr_type == 11.

MVNS{<c>}{<q>} <Rd>, <Rm>, RRX

MVNS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && sr_type == 11).

MVNS.W <Rd>, <Rm>
// Outside IT block, and <Rd>, <Rm> can be represented in T1

MVNS{<c>}{<q>} <Rd>, <Rm> {, <shift> #<amount>}

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

725

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 d = UInt(Rd); m = UInt(Rm); setflags = (S == '1');
3 (shift_t, shift_n) = DecodeImmShift(sr_type, imm3:imm2);
4 if d IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> Is the general-purpose source register, encoded in the "Rm" field.
<shift> Is the type of shift to be applied to the source register, encoded in the "sr_type" field. It can

have the following values:
LSL when sr_type = 00
LSR when sr_type = 01
ASR when sr_type = 10
ROR when sr_type = 11

<amount> Is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift>
= LSR or ASR) encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
4 result = NOT(shifted);
5 R[d] = result;
6 if setflags then
7 APSR.N = result[31];
8 APSR.Z = IsZeroBit(result);
9 APSR.C = carry;

10 // APSR.V unchanged

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

726

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.126 NOP

No Operation. No Operation does nothing.

The architecture makes no guarantees about any timing effects of including a NOP instruction.

This is a NOP-compatible hint.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0

T1 variant

NOP{<c>}{<q>}

Decode for this encoding
1 // No additional decoding required

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 0 0 0 0 0 0 0 0

T2 variant

NOP{<c>}.W

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 // No additional decoding required

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 // Do nothing

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

727

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.127 ORN (immediate)

Logical OR NOT (immediate). Logical OR NOT (immediate) performs a bitwise (inclusive) OR of a register
value and the complement of an immediate value, and writes the result to the destination register. It can optionally
update the condition flags based on the result.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 0 0 1 1 S Rn != 1111 0 imm3 Rd imm8

Flag setting variant

Applies when S == 1.

ORNS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Non flag setting variant

Applies when S == 0.

ORN{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for this encoding
1 if Rn == '1111' then SEE "MVN (immediate)";
2 if !HaveMainExt() then UNDEFINED;
3 d = UInt(Rd); n = UInt(Rn); setflags = (S == '1');
4 (imm32, carry) = T32ExpandImm_C(i:imm3:imm8, APSR.C);
5 if d IN {13,15} || n == 13 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register

is the same as <Rn>.
<Rn> Is the general-purpose source register, encoded in the "Rn" field.
<const> Is an immediate value derived from the 12-bit immediate that is encoded in the ’i:imm3:imm8’

field. See C1.5 Modified immediate constants on page 448 for the range of values.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 result = R[n] OR NOT(imm32);
4 R[d] = result;
5 if setflags then
6 APSR.N = result[31];
7 APSR.Z = IsZeroBit(result);
8 APSR.C = carry;
9 // APSR.V unchanged

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

728

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.128 ORN (register)

Logical OR NOT (register). Logical OR NOT (register) performs a bitwise (inclusive) OR of a register value
and the complement of an optionally-shifted register value, and writes the result to the destination register. It can
optionally update the condition flags based on the result.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 1 S Rn != 1111 (0) imm3 Rd imm2

sr_type

Rm

ORN, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && sr_type == 11.

ORN{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ORN, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && sr_type == 11).

ORN{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

ORNS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && imm2 == 00 && sr_type == 11.

ORNS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ORNS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && sr_type == 11).

ORNS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for this encoding
1 if Rn == '1111' then SEE "MVN (register)";
2 if !HaveMainExt() then UNDEFINED;
3 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
4 (shift_t, shift_n) = DecodeImmShift(sr_type, imm3:imm2);
5 if d IN {13,15} || n == 13 || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
<shift> Is the type of shift to be applied to the second source register, encoded in the "sr_type" field. It

can have the following values:
LSL when sr_type = 00
LSR when sr_type = 01
ASR when sr_type = 10
ROR when sr_type = 11

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

729

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

<amount> Is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift>
= LSR or ASR) encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
4 result = R[n] OR NOT(shifted);
5 R[d] = result;
6 if setflags then
7 APSR.N = result[31];
8 APSR.Z = IsZeroBit(result);
9 APSR.C = carry;

10 // APSR.V unchanged

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

730

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.129 ORR (immediate)

Logical OR (immediate). Logical OR (immediate) performs a bitwise (inclusive) OR of a register value and an
immediate value, and writes the result to the destination register. It can optionally update the condition flags based
on the result.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 0 0 1 0 S Rn != 1111 0 imm3 Rd imm8

ORR variant

Applies when S == 0.

ORR{<c>}{<q>} {<Rd>,} <Rn>, #<const>

ORRS variant

Applies when S == 1.

ORRS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for this encoding
1 if Rn == '1111' then SEE "MOV (immediate)";
2 if !HaveMainExt() then UNDEFINED;
3 d = UInt(Rd); n = UInt(Rn); setflags = (S == '1');
4 (imm32, carry) = T32ExpandImm_C(i:imm3:imm8, APSR.C);
5 if d IN {13,15} || n == 13 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register

is the same as <Rn>.
<Rn> Is the general-purpose source register, encoded in the "Rn" field.
<const> Is an immediate value derived from the 12-bit immediate that is encoded in the ’i:imm3:imm8’

field. See C1.5 Modified immediate constants on page 448 for the range of values.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 result = R[n] OR imm32;
4 R[d] = result;
5 if setflags then
6 APSR.N = result[31];
7 APSR.Z = IsZeroBit(result);
8 APSR.C = carry;
9 // APSR.V unchanged

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

731

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.130 ORR (register)

Logical OR (register). Logical OR (register) performs a bitwise (inclusive) OR of a register value and an optionally-
shifted register value, and writes the result to the destination register. It can optionally update the condition flags
based on the result.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 1 1 0 0 Rm Rdn

T1 variant

ORR<c>{<q>} {<Rdn>,} <Rdn>, <Rm>
// Inside IT block

ORRS{<q>} {<Rdn>,} <Rdn>, <Rm>
// Outside IT block

Decode for this encoding
1 d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();
2 (shift_t, shift_n) = (SRType_LSL, 0);

T2
Armv8-M Main Extension only

• In Armv8.0-M, bit[15] (lower 16 bits of the encoding) [0] represents (0).

• In Armv8.1-M, bit[15] (lower 16 bits of the encoding) [0] represents 0.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 S Rn != 1111

C = [0]

imm3 Rd imm2

sr_type

Rm

ORR, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && sr_type == 11.

ORR{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ORR, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && sr_type == 11).

ORR<c>.W {<Rd>,} <Rn>, <Rm>
// Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1

ORR{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

ORRS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && imm2 == 00 && sr_type == 11.

ORRS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ORRS, shift or rotate by value variant

Applies when S == 1&& !(imm3 == 000 && imm2 == 00 && sr_type == 11).

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

732

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

ORRS.W {<Rd>,} <Rn>, <Rm>
// Outside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1

ORRS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for this encoding
1 if HasArchVersion(Armv8p1) then
2 if C == '1' then SEE "Conditional select instructions";
3 if S == '1' && Rm == '11x1' then SEE "Wide shift instructions";
4 elsif HasArchVersion(Armv8p0) then
5 if C == '1' then UNPREDICTABLE;
6 if Rn == '1111' then SEE "MOV (register)";
7 if !HaveMainExt() then UNDEFINED;
8 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
9 (shift_t, shift_n) = DecodeImmShift(sr_type, imm3:imm2);

10 if d IN {13,15} || n == 13 || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rdn> Is the first general-purpose source register and the destination register, encoded in the "Rdn"

field.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register

is the same as <Rn>.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
<shift> Is the type of shift to be applied to the second source register, encoded in the "sr_type" field. It

can have the following values:
LSL when sr_type = 00
LSR when sr_type = 01
ASR when sr_type = 10
ROR when sr_type = 11

<amount> Is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift>
= LSR or ASR) encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
4 result = R[n] OR shifted;
5 R[d] = result;
6 if setflags then
7 APSR.N = result[31];
8 APSR.Z = IsZeroBit(result);
9 APSR.C = carry;

10 // APSR.V unchanged

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

733

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.131 PKHBT, PKHTB

Pack Halfword. Pack Halfword combines one halfword of its first operand with the other halfword of its shifted
second operand.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 1 1 0

S = 0

Rn (0) imm3 Rd imm2 tb

T = 0

Rm

PKHBT variant

Applies when tb == 0.

PKHBT{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, LSL #<imm>}
// tbform == FALSE

PKHTB variant

Applies when tb == 1.

PKHTB{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ASR #<imm>}
// tbform == TRUE

Decode for this encoding
1 if S == '1' || T == '1' then UNDEFINED;
2 if !HaveDSPExt() then UNDEFINED;
3 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); tbform = (tb == '1');
4 (shift_t, shift_n) = DecodeImmShift(tb:'0', imm3:imm2);
5 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
<imm> The shift to apply to the value read from <Rm>, encoded in imm3:imm2. For PKHBT, it is one

of:
1-31 Left shift by specified number of bits, encoded as a binary number.
omitted No shift, encoded as 0b00000.

<imm> The shift to apply to the value read from <Rm>, encoded in imm3:imm2. For PKHTB, it is one
of:
1-32 Arithmetic right shift by specified number of bits. A shift by 32 bits is encoded

as 0b00000. Other shift amounts are encoded as binary numbers.
omitted Instruction is a pseudo-instruction and is assembled as though PKHBT<c><q>

<Rd>, <Rm>, <Rn> had been written.
For both variants an assembler can permit <imm> = 0 to mean the same thing as omitting the
shift, but this is not standard UAL and must not be used for disassembly.

Operation for all encodings
1 if ConditionPassed() then

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

734

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

2 EncodingSpecificOperations();
3 operand2 = Shift(R[m], shift_t, shift_n, APSR.C); // APSR.C ignored
4 bits(32) result;
5 result[15:0] = if tbform then operand2[15:0] else R[n][15:0];
6 result[31:16] = if tbform then R[n][31:16] else operand2[31:16];
7 R[d] = result;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

735

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.132 PLD (literal)

Preload Data (literal). Preload Data signals the memory system that data memory accesses from a specified address
are likely in the near future. The memory system can respond by taking actions that are expected to speed up the
memory accesses when they do occur, such as pre-loading the cache line containing the specified address into the
data cache.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 U 0 (0) 1 1 1 1 1 1 1 1 1 imm12

T1 variant

PLD{<c>}{<q>} <label>
// Preferred syntax

PLD{<c>}{<q>} [PC, #{+/-}<imm>]
// Alternative syntax

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 imm32 = ZeroExtend(imm12, 32); add = (U == '1');

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<label> The label of the literal data item that is likely to be accessed in the near future. The assembler

calculates the required value of the offset from the Align(PC, 4) value of the instruction
to this label. The offset must be in the range -4095 to 4095. If the offset is zero or positive,
imm32 is equal to the offset and add == TRUE. If the offset is negative, imm32 is equal to
minus the offset and add == FALSE.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted
and encoded in the "U" field. It can have the following values:
- when U = 0
+ when U = 1

<imm> Is a 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded in the "imm12"
field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 address = if add then (Align(PC,4) + imm32) else (Align(PC,4) - imm32);
4 Hint_PreloadData(address);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

736

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.133 PLD, PLDW (immediate)

Preload Data (immediate). Preload Data signals the memory system that data memory accesses from a specified
address are likely in the near future. The memory system can respond by taking actions that are expected to speed
up the memory accesses when they do occur, such as pre-loading the cache line containing the specified address
into the data cache.

The PLD instruction signals that the likely memory access is a read, and the PLDW instruction signals that it is a
write.

The effect of a PLD or PLDW is IMPLEMENTATION DEFINED.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 1 0 W 1 Rn != 1111 1 1 1 1 imm12

Preload read variant

Applies when W == 0.

PLD{<c>}{<q>} [<Rn> {, #{+}<imm>}]

Preload write variant

Applies when W == 1.

PLDW{<c>}{<q>} [<Rn> {, #{+}<imm>}]

Decode for this encoding
1 if Rn == '1111' then SEE "PLD (literal)";
2 if !HaveMainExt() then UNDEFINED;
3 n = UInt(Rn); imm32 = ZeroExtend(imm12, 32); add = TRUE; is_pldw = (W == '1');

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 W 1 Rn != 1111 1 1 1 1 1 1 0 0 imm8

Preload read variant

Applies when W == 0.

PLD{<c>}{<q>} [<Rn> {, #-<imm>}]

Preload write variant

Applies when W == 1.

PLDW{<c>}{<q>} [<Rn> {, #-<imm>}]

Decode for this encoding
1 if Rn == '1111' then SEE "PLD (literal)";
2 if !HaveMainExt() then UNDEFINED;
3 n = UInt(Rn); imm32 = ZeroExtend(imm8, 32); add = FALSE; is_pldw = (W == '1');

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

737

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rn> Is the general-purpose base register, encoded in the "Rn" field. If the PC is used, see C2.4.132

PLD (literal) on page 736.
+ Specifies the offset is added to the base register.
<imm> For encoding T1: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095,

defaulting to 0 and encoded in the "imm12" field.
For encoding T2: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255,
defaulting to 0 and encoded in the "imm8" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 address = if add then (R[n] + imm32) else (R[n] - imm32);
4 if is_pldw then
5 Hint_PreloadDataForWrite(address);
6 else
7 Hint_PreloadData(address);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

738

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.134 PLD, PLDW (register)

Preload Data (register). Preload Data is a memory hint instruction that can signal the memory system that data
memory accesses from a specified address are likely in the near future. The memory system can respond by taking
actions that are expected to speed up the memory accesses when they do occur, such as pre-loading the cache line
containing the specified address into the data cache.

The PLD instruction signals that the likely memory access is a read, and the PLDW instruction signals that it is a
write.

The effect of a PLD or PLDW is IMPLEMENTATION DEFINED.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 W 1 Rn != 1111 1 1 1 1 0 0 0 0 0 0 shift Rm

Preload read variant

Applies when W == 0.

PLD{<c>}{<q>} [<Rn>, {+}<Rm> {, LSL #<amount>}]

Preload write variant

Applies when W == 1.

PLDW{<c>}{<q>} [<Rn>, {+}<Rm> {, LSL #<amount>}]

Decode for this encoding
1 if Rn == '1111' then SEE "PLD (literal)";
2 if !HaveMainExt() then UNDEFINED;
3 n = UInt(Rn); m = UInt(Rm); add = TRUE; is_pldw = (W == '1');
4 (shift_t, shift_n) = (SRType_LSL, UInt(shift));
5 if m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
+ Specifies the index register that is added to the base register.
<Rm> Is the general purpose index register, encoded in the "Rm" field.
<amount> Is the shift amount, in the range 0-3, defaulting to 0 and encoded in the "imm2" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 offset = Shift(R[m], shift_t, shift_n, APSR.C);
4 address = if add then (R[n] + offset) else (R[n] - offset);
5 if is_pldw then
6 Hint_PreloadDataForWrite(address);
7 else
8 Hint_PreloadData(address);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

739

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.135 PLI (immediate, literal)

Preload Instruction (immediate, literal). Preload Instruction is a memory hint instruction that can signal the memory
system that instruction memory accesses from a specified address are likely in the near future. The memory system
can respond by taking actions that are expected to speed up the memory accesses when they do occur, such as
pre-loading the cache line containing the specified address into the instruction cache.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 1 0 0 1 Rn != 1111 1 1 1 1 imm12

T1 variant

PLI{<c>}{<q>} [<Rn> {, #{+}<imm>}]

Decode for this encoding
1 if Rn == '1111' then SEE "encoding T3";
2 if !HaveMainExt() then UNDEFINED;
3 n = UInt(Rn); imm32 = ZeroExtend(imm12, 32); add = TRUE;

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 0 0 1 Rn != 1111 1 1 1 1 1 1 0 0 imm8

T2 variant

PLI{<c>}{<q>} [<Rn> {, #-<imm>}]

Decode for this encoding
1 if Rn == '1111' then SEE "encoding T3";
2 if !HaveMainExt() then UNDEFINED;
3 n = UInt(Rn); imm32 = ZeroExtend(imm8, 32); add = FALSE;

T3
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 U 0 0 1 1 1 1 1 1 1 1 1 imm12

T3 variant

PLI{<c>}{<q>} <label>
// Preferred syntax

PLI{<c>}{<q>} [PC, #{+/-}<imm>]
// Alternative syntax

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 n = 15; imm32 = ZeroExtend(imm12, 32); add = (U == '1');

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

740

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<label> The label of the instruction that is likely to be accessed in the near future. The assembler

calculates the required value of the offset from the Align(PC, 4) value of the instruction
to this label. The offset must be in the range -4095 to 4095. If the offset is zero or positive,
imm32 is equal to the offset and add == TRUE. If the offset is negative, imm32 is equal to
minus the offset and add == FALSE.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.
+ Specifies the offset is added to the base register.
+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted

and encoded in the "U" field. It can have the following values:
- when U = 0
+ when U = 1

<imm> For encoding T1: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095,
defaulting to 0 and encoded in the "imm12" field.
For encoding T2: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255,
defaulting to 0 and encoded in the "imm8" field.
For encoding T3: is a 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded
in the "imm12" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 base = if n == 15 then Align(PC,4) else R[n];
4 address = if add then (base + imm32) else (base - imm32);
5 Hint_PreloadInstr(address);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

741

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.136 PLI (register)

Preload Instruction (register). Preload Instruction is a memory hint instruction that can signal the memory system
that instruction memory accesses from a specified address are likely in the near future. The memory system
can respond by taking actions that are expected to speed up the memory accesses when they do occur, such as
pre-loading the cache line containing the specified address into the instruction cache.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 0 0 1 Rn != 1111 1 1 1 1 0 0 0 0 0 0 imm2 Rm

T1 variant

PLI{<c>}{<q>} [<Rn>, {+}<Rm> {, LSL #<amount>}]

Decode for this encoding
1 if Rn == '1111' then SEE "PLI (immediate, literal)";
2 if !HaveMainExt() then UNDEFINED;
3 n = UInt(Rn); m = UInt(Rm); add = TRUE;
4 (shift_t, shift_n) = (SRType_LSL, UInt(imm2));
5 if m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
+ Specifies the index register is added to the base register.
<Rm> Is the general-purpose index register, encoded in the "Rm" field.
<amount> Is the shift amount, in the range 0 to 3, defaulting to 0 and encoded in the "imm2" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 offset = Shift(R[m], shift_t, shift_n, APSR.C);
4 address = if add then (R[n] + offset) else (R[n] - offset);
5 Hint_PreloadInstr(address);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

742

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.137 POP (multiple registers)

Pop multiple registers from stack. Pop multiple registers from stack loads multiple general-purpose registers from
the stack, loading from consecutive memory locations starting at the address in SP, and updates SP to point above
the loaded data.

If the registers loaded include the PC, the word loaded for the PC is treated as a branch address or an exception
return value. Bit[0] complies with the Arm architecture interworking rules for switching between the A32 and T32
instruction sets. However, Armv8-M only supports the T32 instruction set, so bit[0] must be 1. If bit[0] is 0 the PE
takes an INVSTATE UsageFault exception on the instruction at the target address.

This instruction is an alias of the LDM, LDMIA, LDMFD instruction. This means that:

• The encodings in this description are named to match the encodings of LDM, LDMIA, LDMFD.

• The description of LDM, LDMIA, LDMFD gives the operational pseudocode for this instruction.

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 0

W = 1

1 Rn = 1101 P M (0) register_list

T2 variant

POP{<c>}{<q>} <registers>

is equivalent to

LDM{<c>}{<q>} SP!, <registers>

and is the preferred disassembly when BitCount(register_list) > 1.

T3
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 0 P register_list

T3 variant

POP{<c>}{<q>} <registers>

is equivalent to

LDM{<c>}{<q>} SP!, <registers>

and is always the preferred disassembly.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

743

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

<registers> For encoding T2: is a list of two or more registers to be loaded, separated by commas and
surrounded by { and }. The lowest-numbered register is loaded from the lowest memory
address, through to the highest-numbered register from the highest memory address. The
registers in the list must be in the range R0-R12, encoded in the "register_list" field, and can
optionally contain one of the LR or the PC. If the LR is in the list, the "M" field is set to 1,
otherwise it defaults to 0. If the PC is in the list, the "P" field is set to 1, otherwise it defaults
to 0. The PC can be in the list. If it is, the instruction branches to the address loaded to the PC,
and: If the PC is in the list:

- The LR must not be in the list.
- The instruction must be either outside any IT block, or the last instruction in an IT block.

For encoding T3: is a list of one or more registers to be loaded, separated by commas and
surrounded by { and }. The registers in the list must be in the range R0-R7, encoded in the
"register_list" field, and can optionally include the PC. If the PC is in the list, the "P" field is
set to 1, otherwise this field defaults to 0. If the PC is in the list, the instruction must be either
outside any IT block, or the last instruction in an IT block.

Operation for all encodings
The description of LDM, LDMIA, LDMFD gives the operational pseudocode for this instruction.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

744

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.138 POP (single register)

Pop single register from stack. Pop single register from stack loads a single general-purpose register from the
stack, loading from the address in SP, and updates SP to point above the loaded data.

This instruction is an alias of the LDR (immediate) instruction. This means that:

• The encodings in this description are named to match the encodings of LDR (immediate).

• The description of LDR (immediate) gives the operational pseudocode for this instruction.

T4
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 1 0 1 Rn = 1101 Rt 1

P = 0
U = 1

W = 1

imm8 = 00000100

Post-indexed variant

POP{<c>}{<q>} <register>

is equivalent to

LDR{<c>}{<q>} <Rt>, [SP], #4

and is always the preferred disassembly.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<register> Is the general-purpose register <Rt> to be loaded surrounded by { and }.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field. The PC can be used,

provided the instruction is either outside an IT block or the last instruction of an IT block. If
the PC is used, the instruction branches to the address (data) loaded to the PC.

Operation for all encodings
The description of LDR (immediate) gives the operational pseudocode for this instruction.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

745

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.139 PSSBB

Physical Speculative Store Bypass Barrier. Physical Speculative Store Bypass Barrier is a memory barrier which
prevents speculative loads from bypassing earlier stores to the same physical address.

The semantics of the Physical Speculative Store Bypass Barrier are:

• When a load to a location appears in program order after the PSSBB, then the load does not speculatively
read an entry earlier in the coherence order for that location than the entry generated by the latest store
satisfying all of the following conditions:

– The store is to the same location as the load.

– The store appears in program order before the PSSBB.

– The memory attributes of the store are the same as the memory attributes of the load.

• When a load to a location appears in program order before the PSSBB, then the load does not speculatively
read data from any store satisfying all of the following conditions:

– The store is to the same location as the load.

– The store appears in program order after the PSSBB.

– The memory attributes of the store are the same as the memory attributes of the load.

PSSBB does not have any impact on the rules associated with mismatched attributes.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 1 (1) (1) (1) (1) 1 0 (0) 0 (1) (1) (1) (1) 0 1 0 0 0 1 0 0

T1 variant

PSSBB{<q>}

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 if InITBlock() then UNPREDICTABLE;

Assembler symbols for all encodings

<q> See C1.2.5 Standard assembler syntax fields on page 431.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 SpeculativeSynchronizationBarrier();

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

746

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.140 PUSH (multiple registers)

Push multiple registers to stack. Push multiple registers to stack stores multiple general-purpose registers to the
stack, storing to consecutive memory locations ending below the address in SP, and updates SP to point to the start
of the stored data.

This instruction is an alias of the STMDB, STMFD instruction. This means that:

• The encodings in this description are named to match the encodings of STMDB, STMFD.

• The description of STMDB, STMFD gives the operational pseudocode for this instruction.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 1 0 0

W = 1

0 Rn = 1101 (0) M (0) register_list

T1 variant

PUSH{<c>}{<q>} <registers>

is equivalent to

STMDB{<c>}{<q>} SP!, <registers>

and is the preferred disassembly when BitCount(register_list) > 1.

T2
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 1 0 M register_list

T2 variant

PUSH{<c>}{<q>} <registers>

is equivalent to

STMDB{<c>}{<q>} SP!, <registers>

and is always the preferred disassembly.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<registers> For encoding T1: is a list of one or more registers to be stored, separated by commas and

surrounded by { and }. The lowest-numbered register is stored to the lowest memory address,
through to the highest-numbered register to the highest memory address. The registers in
the list must be in the range R0-R12, encoded in the "register_list" field, and can optionally
contain the LR. If the LR is in the list, the "M" field is set to 1, otherwise it defaults to 0.
For encoding T2: is a list of one or more registers to be stored, separated by commas and
surrounded by { and }. The registers in the list must be in the range R0-R7, encoded in the
"register_list" field, and can optionally include the LR. If the LR is in the list, the "M" field is
set to 1, otherwise this field defaults to 0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

747

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
The description of STMDB, STMFD gives the operational pseudocode for this instruction.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

748

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.141 PUSH (single register)

Push single register to stack. Push single register to stack stores a single general-purpose register to the stack,
storing to the 32-bit word below the address in SP, and updates SP to point to the start of the stored data.

This instruction is an alias of the STR (immediate) instruction. This means that:

• The encodings in this description are named to match the encodings of STR (immediate).

• The description of STR (immediate) gives the operational pseudocode for this instruction.

T4
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 1 0 0 Rn = 1101 Rt 1

P = 1
U = 0

W = 1

imm8 = 00000100

Pre-indexed variant

PUSH{<c>}{<q>} <register>
// Standard syntax

is equivalent to

STR{<c>}{<q>} <Rt>, [SP, #-4]!

and is always the preferred disassembly.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<register> Is the general-purpose register <Rt> to be stored surrounded by { and }.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

Operation for all encodings
The description of STR (immediate) gives the operational pseudocode for this instruction.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

749

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.142 QADD

Saturating Add. Saturating Add adds two register values, saturates the result to the 32-bit signed integer range -231

to 231-1, and writes the result to the destination register. If saturation occurs, it sets the Q flag in the APSR.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 1 0 0 0 Rm

T1 variant

QADD{<c>}{<q>} {<Rd>,} <Rm>, <Rn>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> Is the first general-purpose source register, encoded in the "Rm" field.
<Rn> Is the second general-purpose source register, encoded in the "Rn" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 (R[d], sat) = SignedSatQ(SInt(R[m]) + SInt(R[n]), 32);
4 if sat then
5 APSR.Q = '1';

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

750

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.143 QADD16

Saturating Add 16. Saturating Add 16 performs two 16-bit integer additions, saturates the results to the 16-bit
signed integer range -215 to 215-1, and writes the results to the destination register.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 1 Rn 1 1 1 1 Rd 0 0 0 1 Rm

T1 variant

QADD16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 sum1 = SInt(R[n][15:0]) + SInt(R[m][15:0]);
4 sum2 = SInt(R[n][31:16]) + SInt(R[m][31:16]);
5 bits(32) result;
6 result[15:0] = SignedSat(sum1, 16);
7 result[31:16] = SignedSat(sum2, 16);
8 R[d] = result;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

751

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.144 QADD8

Saturating Add 8. Saturating Add 8 performs four 8-bit integer additions, saturates the results to the 8-bit signed
integer range -27 to 27-1, and writes the results to the destination register.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 0 0 0 1 Rm

T1 variant

QADD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 sum1 = SInt(R[n][7:0]) + SInt(R[m][7:0]);
4 sum2 = SInt(R[n][15:8]) + SInt(R[m][15:8]);
5 sum3 = SInt(R[n][23:16]) + SInt(R[m][23:16]);
6 sum4 = SInt(R[n][31:24]) + SInt(R[m][31:24]);
7 bits(32) result;
8 result[7:0] = SignedSat(sum1, 8);
9 result[15:8] = SignedSat(sum2, 8);

10 result[23:16] = SignedSat(sum3, 8);
11 result[31:24] = SignedSat(sum4, 8);
12 R[d] = result;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

752

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.145 QASX

Saturating Add and Subtract with Exchange. Saturating Add and Subtract with Exchange exchanges the two
halfwords of the second operand, performs one 16-bit integer addition and one 16-bit subtraction, saturates the
results to the 16-bit signed integer range -215 to 215-1, and writes the results to the destination register.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 1 0 Rn 1 1 1 1 Rd 0 0 0 1 Rm

T1 variant

QASX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 diff = SInt(R[n][15:0]) - SInt(R[m][31:16]);
4 sum = SInt(R[n][31:16]) + SInt(R[m][15:0]);
5 bits(32) result;
6 result[15:0] = SignedSat(diff, 16);
7 result[31:16] = SignedSat(sum, 16);
8 R[d] = result;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

753

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.146 QDADD

Saturating Double and Add. Saturating Double and Add adds a doubled register value to another register value,
and writes the result to the destination register. Both the doubling and the addition have their results saturated to
the 32-bit signed integer range -231 to 231-1. If saturation occurs in either operation, it sets the Q flag in the APSR.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 1 0 0 1 Rm

T1 variant

QDADD{<c>}{<q>} {<Rd>,} <Rm>, <Rn>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> Is the first general-purpose source register, encoded in the "Rm" field.
<Rn> Is the second general-purpose source register, encoded in the "Rn" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 (doubled, sat1) = SignedSatQ(2 * SInt(R[n]), 32);
4 (R[d], sat2) = SignedSatQ(SInt(R[m]) + SInt(doubled), 32);
5 if sat1 || sat2 then
6 APSR.Q = '1';

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

754

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.147 QDSUB

Saturating Double and Subtract. Saturating Double and Subtract subtracts a doubled register value from another
register value, and writes the result to the destination register. Both the doubling and the subtraction have their
results saturated to the 32-bit signed integer range -231 to 231-1. If saturation occurs in either operation, it sets the
Q flag in the APSR.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 1 0 1 1 Rm

T1 variant

QDSUB{<c>}{<q>} {<Rd>,} <Rm>, <Rn>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> Is the first general-purpose source register, encoded in the "Rm" field.
<Rn> Is the second general-purpose source register, encoded in the "Rn" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 (doubled, sat1) = SignedSatQ(2 * SInt(R[n]), 32);
4 (R[d], sat2) = SignedSatQ(SInt(R[m]) - SInt(doubled), 32);
5 if sat1 || sat2 then
6 APSR.Q = '1';

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

755

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.148 QSAX

Saturating Subtract and Add with Exchange. Saturating Subtract and Add with Exchange exchanges the two
halfwords of the second operand, performs one 16-bit integer subtraction and one 16-bit addition, saturates the
results to the 16-bit signed integer range -215 to 215-1, and writes the results to the destination register.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 1 0 Rn 1 1 1 1 Rd 0 0 0 1 Rm

T1 variant

QSAX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 sum = SInt(R[n][15:0]) + SInt(R[m][31:16]);
4 diff = SInt(R[n][31:16]) - SInt(R[m][15:0]);
5 bits(32) result;
6 result[15:0] = SignedSat(sum, 16);
7 result[31:16] = SignedSat(diff, 16);
8 R[d] = result;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

756

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.149 QSUB

Saturating Subtract. Saturating Subtract subtracts one register value from another register value, saturates the result
to the 32-bit signed integer range -231 to 231-1, and writes the result to the destination register. If saturation occurs,
it sets the Q flag in the APSR.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 1 0 1 0 Rm

T1 variant

QSUB{<c>}{<q>} {<Rd>,} <Rm>, <Rn>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> Is the first general-purpose source register, encoded in the "Rm" field.
<Rn> Is the second general-purpose source register, encoded in the "Rn" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 (R[d], sat) = SignedSatQ(SInt(R[m]) - SInt(R[n]), 32);
4 if sat then
5 APSR.Q = '1';

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

757

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.150 QSUB16

Saturating Subtract 16. Saturating Subtract 16 performs two 16-bit integer subtractions, saturates the results to the
16-bit signed integer range -215 to 215-1, and writes the results to the destination register.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 0 1 Rn 1 1 1 1 Rd 0 0 0 1 Rm

T1 variant

QSUB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 diff1 = SInt(R[n][15:0]) - SInt(R[m][15:0]);
4 diff2 = SInt(R[n][31:16]) - SInt(R[m][31:16]);
5 bits(32) result;
6 result[15:0] = SignedSat(diff1, 16);
7 result[31:16] = SignedSat(diff2, 16);
8 R[d] = result;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

758

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.151 QSUB8

Saturating Subtract 8. Saturating Subtract 8 performs four 8-bit integer subtractions, saturates the results to the
8-bit signed integer range -27 to 27-1, and writes the results to the destination register.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 0 0 Rn 1 1 1 1 Rd 0 0 0 1 Rm

T1 variant

QSUB8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 diff1 = SInt(R[n][7:0]) - SInt(R[m][7:0]);
4 diff2 = SInt(R[n][15:8]) - SInt(R[m][15:8]);
5 diff3 = SInt(R[n][23:16]) - SInt(R[m][23:16]);
6 diff4 = SInt(R[n][31:24]) - SInt(R[m][31:24]);
7 R[d][7:0] = SignedSat(diff1, 8);
8 R[d][15:8] = SignedSat(diff2, 8);
9 R[d][23:16] = SignedSat(diff3, 8);

10 R[d][31:24] = SignedSat(diff4, 8);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

759

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.152 RBIT

Reverse Bits. Reverse Bits reverses the bit order in a 32-bit register.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 1 Rm 1 1 1 1 Rd 1 0 1 0 Rm2

T1 variant

RBIT{<c>}{<q>} <Rd>, <Rm>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 if Rm != Rm2 then UNPREDICTABLE;
3 d = UInt(Rd); m = UInt(Rm);
4 if d IN {13,15} || m IN {13,15} then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If Rm != Rm2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as described, with no change to its behavior and no additional side effects.

• The value in the destination register is UNKNOWN.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> Is the general-purpose source register, encoded in the "Rm" field. Its number must be encoded

twice.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 bits(32) result;
4 for i = 0 to 31
5 result[31-i] = R[m][i];
6 R[d] = result;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

760

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.153 REV

Byte-Reverse Word. Byte-Reverse Word reverses the byte order in a 32-bit register.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 0 1 0 0 0 Rm Rd

T1 variant

REV{<c>}{<q>} <Rd>, <Rm>

Decode for this encoding
1 d = UInt(Rd); m = UInt(Rm);

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 1 Rm 1 1 1 1 Rd 1 0 0 0 Rm2

T2 variant

REV{<c>}.W <Rd>, <Rm>
// <Rd>, <Rm> can be represented in T1

REV{<c>}{<q>} <Rd>, <Rm>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 if Rm != Rm2 then UNPREDICTABLE;
3 d = UInt(Rd); m = UInt(Rm);
4 if d IN {13,15} || m IN {13,15} then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If Rm != Rm2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as described, with no change to its behavior and no additional side effects.

• The value in the destination register is UNKNOWN.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> For encoding T1: is the general-purpose source register, encoded in the "Rm" field.

For encoding T2: is the general-purpose source register, encoded in the "Rm" field. Its number
must be encoded twice.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

761

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 bits(32) result;
4 result[31:24] = R[m][7:0];
5 result[23:16] = R[m][15:8];
6 result[15:8] = R[m][23:16];
7 result[7:0] = R[m][31:24];
8 R[d] = result;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

762

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.154 REV16

Byte-Reverse Packed Halfword. Byte-Reverse Packed Halfword reverses the byte order in each 16-bit halfword of
a 32-bit register.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 0 1 0 0 1 Rm Rd

T1 variant

REV16{<c>}{<q>} <Rd>, <Rm>

Decode for this encoding
1 d = UInt(Rd); m = UInt(Rm);

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 1 Rm 1 1 1 1 Rd 1 0 0 1 Rm2

T2 variant

REV16{<c>}.W <Rd>, <Rm>
// <Rd>, <Rm> can be represented in T1

REV16{<c>}{<q>} <Rd>, <Rm>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 if Rm != Rm2 then UNPREDICTABLE;
3 d = UInt(Rd); m = UInt(Rm);
4 if d IN {13,15} || m IN {13,15} then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If Rm != Rm2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as described, with no change to its behavior and no additional side effects.

• The value in the destination register is UNKNOWN.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> For encoding T1: is the general-purpose source register, encoded in the "Rm" field.

For encoding T2: is the general-purpose source register, encoded in the "Rm" field. Its number
must be encoded twice.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

763

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 bits(32) result;
4 result[31:24] = R[m][23:16];
5 result[23:16] = R[m][31:24];
6 result[15:8] = R[m][7:0];
7 result[7:0] = R[m][15:8];
8 R[d] = result;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

764

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.155 REVSH

Byte-Reverse Signed Halfword. Byte-Reverse Signed Halfword reverses the byte order in the lower 16-bit halfword
of a 32-bit register, and sign extends the result to 32 bits.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 0 1 0 1 1 Rm Rd

T1 variant

REVSH{<c>}{<q>} <Rd>, <Rm>

Decode for this encoding
1 d = UInt(Rd); m = UInt(Rm);

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 1 Rm 1 1 1 1 Rd 1 0 1 1 Rm2

T2 variant

REVSH{<c>}.W <Rd>, <Rm>
// <Rd>, <Rm> can be represented in T1

REVSH{<c>}{<q>} <Rd>, <Rm>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 if Rm != Rm2 then UNPREDICTABLE;
3 d = UInt(Rd); m = UInt(Rm);
4 if d IN {13,15} || m IN {13,15} then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If Rm != Rm2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as described, with no change to its behavior and no additional side effects.

• The value in the destination register is UNKNOWN.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> For encoding T1: is the general-purpose source register, encoded in the "Rm" field.

For encoding T2: is the general-purpose source register, encoded in the "Rm" field. Its number
must be encoded twice.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

765

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 bits(32) result;
4 result[31:8] = SignExtend(R[m][7:0], 24);
5 result[7:0] = R[m][15:8];
6 R[d] = result;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

766

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.156 ROR (immediate)

Rotate Right (immediate). Rotate Right (immediate) rotates a register value by a constant number of bits, inserting
the bits that are rotated off the right end into the vacated bit positions on the left, and writes the result to the
destination register.

This instruction is an alias of the MOV (register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV (register).

• The description of MOV (register) gives the operational pseudocode for this instruction.

T3
Armv8-M Main Extension only

• In Armv8.0-M, bit[15] (lower 16 bits of the encoding) [0] represents (0).

• In Armv8.1-M, bit[15] (lower 16 bits of the encoding) [0] represents 0.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0

S = 0

1 1 1 1

C = [0]

imm3 Rd imm2

sr_type = 11

Rm != 11x1

MOV, shift or rotate by value variant

Applies when !(imm3 == 000 && imm2 == 00).

ROR{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, ROR #<imm>

and is always the preferred disassembly.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> Is the general-purpose source register, encoded in the "Rm" field.
<imm> Is the shift amount, in the range 1 to 31, encoded in the "imm3:imm2" field.

Operation for all encodings
The description of MOV (register) gives the operational pseudocode for this instruction.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

767

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.157 ROR (register)

Rotate Right (register). Rotate Right (register) rotates a register value by a variable number of bits, inserting the
bits that are rotated off the right end into the vacated bit positions on the left, and writes the result to the destination
register. The variable number of bits is read from the bottom byte of a register.

This instruction is an alias of the MOV, MOVS (register-shifted register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted
register).

• The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruc-
tion.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 op = 0111 Rs Rdm

Rotate right variant

ROR<c>{<q>} {<Rdm>,} <Rdm>, <Rs>
// Inside IT block

is equivalent to

MOV<c>{<q>} <Rdm>, <Rdm>, ROR <Rs>

and is the preferred disassembly when InITBlock().

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0

sr_type = 11
S = 0

Rm 1 1 1 1 Rd 0 0 0 0 Rs

Non flag setting variant

ROR<c>.W {<Rd>,} <Rm>, <Rs>
// Inside IT block, and <Rd>, <Rm>, <sr_type>, <Rs> can be represented in T1

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, ROR <Rs>

and is always the preferred disassembly.

Non flag setting variant

ROR{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, ROR <Rs>

and is always the preferred disassembly.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

768

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rdm> Is the first general-purpose source register and the destination register, encoded in the "Rdm"

field.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> Is the first general-purpose source register, encoded in the "Rm" field.
<Rs> Is the second general-purpose source register holding a rotate amount in its bottom 8 bits,

encoded in the "Rs" field.

Operation for all encodings
The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

769

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.158 RORS (immediate)

Rotate Right, Setting flags (immediate). Rotate Right, Setting flags (immediate) rotates a register value by a
constant number of bits, inserting the bits that are rotated off the right end into the vacated bit positions on the left,
writes the result to the destination register, and updates the condition flags based on the result.

This instruction is an alias of the MOV (register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV (register).

• The description of MOV (register) gives the operational pseudocode for this instruction.

T3
Armv8-M Main Extension only

• In Armv8.0-M, bit[15] (lower 16 bits of the encoding) [0] represents (0).

• In Armv8.1-M, bit[15] (lower 16 bits of the encoding) [0] represents 0.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0

S = 1

1 1 1 1

C = [0]

imm3 Rd imm2

sr_type = 11

Rm

MOVS, shift or rotate by value variant

Applies when !(imm3 == 000 && imm2 == 00).

RORS{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, ROR #<imm>

and is always the preferred disassembly.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> Is the general-purpose source register, encoded in the "Rm" field.
<imm> Is the shift amount, in the range 1 to 31, encoded in the "imm3:imm2" field.

Operation for all encodings
The description of MOV (register) gives the operational pseudocode for this instruction.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

770

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.159 RORS (register)

Rotate Right, Setting flags (register). Rotate Right, Setting flags (register) rotates a register value by a variable
number of bits, inserting the bits that are rotated off the right end into the vacated bit positions on the left, writes
the result to the destination register, and updates the condition flags based on the result. The variable number of
bits is read from the bottom byte of a register.

This instruction is an alias of the MOV, MOVS (register-shifted register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted
register).

• The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruc-
tion.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 op = 0111 Rs Rdm

Rotate right variant

RORS{<q>} {<Rdm>,} <Rdm>, <Rs>
// Outside IT block

is equivalent to

MOVS{<q>} <Rdm>, <Rdm>, ROR <Rs>

and is the preferred disassembly when !InITBlock().

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0

sr_type = 11
S = 1

Rm 1 1 1 1 Rd 0 0 0 0 Rs

Flag setting variant

RORS.W {<Rd>,} <Rm>, <Rs>
// Outside IT block, and <Rd>, <Rm>, <sr_type>, <Rs> can be represented in T1

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, ROR <Rs>

and is always the preferred disassembly.

Flag setting variant

RORS{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, ROR <Rs>

and is always the preferred disassembly.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

771

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rdm> Is the first general-purpose source register and the destination register, encoded in the "Rdm"

field.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> Is the first general-purpose source register, encoded in the "Rm" field.
<Rs> Is the second general-purpose source register holding a rotate amount in its bottom 8 bits,

encoded in the "Rs" field.

Operation for all encodings
The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

772

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.160 RRX

Rotate Right with Extend. Rotate Right with Extend shifts a register value right by one bit, shifting the Carry flag
into bit[31], and writes the result to the destination register.

This instruction is an alias of the MOV (register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV (register).

• The description of MOV (register) gives the operational pseudocode for this instruction.

T3
Armv8-M Main Extension only

• In Armv8.0-M, bit[15] (lower 16 bits of the encoding) [0] represents (0).

• In Armv8.1-M, bit[15] (lower 16 bits of the encoding) [0] represents 0.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0

S = 0

1 1 1 1

C = [0]
imm3 = 000

Rd

imm2 = 00
sr_type = 11

Rm != 11x1

MOV, rotate right with extend variant

RRX{<c>}{<q>} {<Rd>,} <Rm>

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, RRX

and is always the preferred disassembly.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> Is the general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
The description of MOV (register) gives the operational pseudocode for this instruction.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

773

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.161 RRXS

Rotate Right with Extend, Setting flags. Rotate Right with Extend, Setting flags shifts a register value right by one
bit, shifting the Carry flag into bit[31] and bit[0] into the Carry flag, writes the result to the destination register and
updates the condition flags (other than Carry) based on the result.

This instruction is an alias of the MOV (register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV (register).

• The description of MOV (register) gives the operational pseudocode for this instruction.

T3
Armv8-M Main Extension only

• In Armv8.0-M, bit[15] (lower 16 bits of the encoding) [0] represents (0).

• In Armv8.1-M, bit[15] (lower 16 bits of the encoding) [0] represents 0.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0

S = 1

1 1 1 1

C = [0]
imm3 = 000

Rd

imm2 = 00
sr_type = 11

Rm

MOVS, rotate right with extend variant

RRXS{<c>}{<q>} {<Rd>,} <Rm>

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, RRX

and is always the preferred disassembly.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> Is the general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
The description of MOV (register) gives the operational pseudocode for this instruction.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

774

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.162 RSB (immediate)

Reverse Subtract (immediate). Reverse Subtract (immediate) subtracts a register value from an immediate value,
and writes the result to the destination register. It can optionally update the condition flags based on the result.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 1 0 0 1 Rn Rd

T1 variant

RSB<c>{<q>} {<Rd>, }<Rn>, #0
// Inside IT block

RSBS{<q>} {<Rd>, }<Rn>, #0
// Outside IT block

Decode for this encoding
1 d = UInt(Rd); n = UInt(Rn); setflags = !InITBlock(); imm32 = Zeros(32); // immediate = #0

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 1 1 1 0 S Rn 0 imm3 Rd imm8

RSB variant

Applies when S == 0.

RSB<c>.W {<Rd>,} <Rn>, #0
// Inside IT block

RSB{<c>}{<q>} {<Rd>,} <Rn>, #<const>

RSBS variant

Applies when S == 1.

RSBS.W {<Rd>,} <Rn>, #0
// Outside IT block

RSBS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); setflags = (S == '1'); imm32 = T32ExpandImm(i:imm3:imm8);
3 if d IN {13,15} || n IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register

is the same as <Rn>.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

775

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

<Rn> Is the general-purpose source register, encoded in the "Rn" field.
<const> Is an immediate value derived from the 12-bit immediate that is encoded in the ’i:imm3:imm8’

field. See C1.5 Modified immediate constants on page 448 for the range of values.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 (result, carry, overflow) = AddWithCarry(NOT(R[n]), imm32, '1');
4 R[d] = result;
5 if setflags then
6 APSR.N = result[31];
7 APSR.Z = IsZeroBit(result);
8 APSR.C = carry;
9 APSR.V = overflow;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

776

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.163 RSB (register)

Reverse Subtract (register). Reverse Subtract (register) subtracts a register value from an optionally-shifted register
value, and writes the result to the destination register. It can optionally update the condition flags based on the
result.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 1 1 1 0 S Rn (0) imm3 Rd imm2

sr_type

Rm

RSB, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && sr_type == 11.

RSB{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

RSB, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && sr_type == 11).

RSB{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

RSBS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && imm2 == 00 && sr_type == 11.

RSBS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

RSBS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && sr_type == 11).

RSBS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
3 (shift_t, shift_n) = DecodeImmShift(sr_type, imm3:imm2);
4 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register

is the same as <Rn>.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
<shift> Is the type of shift to be applied to the second source register, encoded in the "sr_type" field. It

can have the following values:
LSL when sr_type = 00
LSR when sr_type = 01
ASR when sr_type = 10
ROR when sr_type = 11

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

777

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

<amount> Is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift>
= LSR or ASR) encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 shifted = Shift(R[m], shift_t, shift_n, APSR.C);
4 (result, carry, overflow) = AddWithCarry(NOT(R[n]), shifted, '1');
5 R[d] = result;
6 if setflags then
7 APSR.Z = IsZeroBit(result);
8 APSR.N = result[31];
9 APSR.C = carry;

10 APSR.V = overflow;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

778

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.164 SADD16

Signed Add 16. Signed Add 16 performs two 16-bit signed integer additions, and writes the results to the
destination register. It sets the APSR.GE bits according to the results of the additions.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 1 Rn 1 1 1 1 Rd 0 0 0 0 Rm

T1 variant

SADD16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 sum1 = SInt(R[n][15:0]) + SInt(R[m][15:0]);
4 sum2 = SInt(R[n][31:16]) + SInt(R[m][31:16]);
5 R[d] = sum2[15:0] : sum1[15:0];
6 APSR.GE[1:0] = if sum1 >= 0 then '11' else '00';
7 APSR.GE[3:2] = if sum2 >= 0 then '11' else '00';

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

779

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.165 SADD8

Signed Add 8. Signed Add 8 performs four 8-bit signed integer additions, and writes the results to the destination
register. It sets the APSR.GE bits according to the results of the additions.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 0 0 0 0 Rm

T1 variant

SADD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 sum1 = SInt(R[n][7:0]) + SInt(R[m][7:0]);
4 sum2 = SInt(R[n][15:8]) + SInt(R[m][15:8]);
5 sum3 = SInt(R[n][23:16]) + SInt(R[m][23:16]);
6 sum4 = SInt(R[n][31:24]) + SInt(R[m][31:24]);
7 R[d] = sum4[7:0] : sum3[7:0] : sum2[7:0] : sum1[7:0];
8 APSR.GE[0] = if sum1 >= 0 then '1' else '0';
9 APSR.GE[1] = if sum2 >= 0 then '1' else '0';

10 APSR.GE[2] = if sum3 >= 0 then '1' else '0';
11 APSR.GE[3] = if sum4 >= 0 then '1' else '0';

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

780

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.166 SASX

Signed Add and Subtract with Exchange. Signed Add and Subtract with Exchange exchanges the two halfwords of
the second operand, performs one 16-bit integer addition and one 16-bit subtraction, and writes the results to the
destination register. It sets the APSR.GE bits according to the results.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 1 0 Rn 1 1 1 1 Rd 0 0 0 0 Rm

T1 variant

SASX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 diff = SInt(R[n][15:0]) - SInt(R[m][31:16]);
4 sum = SInt(R[n][31:16]) + SInt(R[m][15:0]);
5 R[d] = sum[15:0] : diff[15:0];
6 APSR.GE[1:0] = if diff >= 0 then '11' else '00';
7 APSR.GE[3:2] = if sum >= 0 then '11' else '00';

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

781

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.167 SBC (immediate)

Subtract with Carry (immediate). Subtract with Carry (immediate) subtracts an immediate value and the value of
NOT(Carry flag) from a register value, and writes the result to the destination register. It can optionally update the
condition flags based on the result.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 1 0 1 1 S Rn 0 imm3 Rd imm8

SBC variant

Applies when S == 0.

SBC{<c>}{<q>} {<Rd>,} <Rn>, #<const>

SBCS variant

Applies when S == 1.

SBCS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); setflags = (S == '1'); imm32 = T32ExpandImm(i:imm3:imm8);
3 if d IN {13,15} || n IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register

is the same as <Rn>.
<Rn> Is the general-purpose source register, encoded in the "Rn" field.
<const> Is an immediate value derived from the 12-bit immediate that is encoded in the ’i:imm3:imm8’

field. See C1.5 Modified immediate constants on page 448 for the range of values.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 (result, carry, overflow) = AddWithCarry(R[n], NOT(imm32), APSR.C);
4 R[d] = result;
5 if setflags then
6 APSR.N = result[31];
7 APSR.Z = IsZeroBit(result);
8 APSR.C = carry;
9 APSR.V = overflow;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

782

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.168 SBC (register)

Subtract with Carry (register). Subtract with Carry (register) subtracts an optionally-shifted register value and the
value of NOT(Carry flag) from a register value, and writes the result to the destination register. It can optionally
update the condition flags based on the result.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 1 1 0 Rm Rdn

T1 variant

SBC<c>{<q>} {<Rdn>,} <Rdn>, <Rm>
// Inside IT block

SBCS{<q>} {<Rdn>,} <Rdn>, <Rm>
// Outside IT block

Decode for this encoding
1 d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();
2 (shift_t, shift_n) = (SRType_LSL, 0);

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 1 0 1 1 S Rn (0) imm3 Rd imm2

sr_type

Rm

SBC, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && sr_type == 11.

SBC{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

SBC, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && sr_type == 11).

SBC<c>.W {<Rd>,} <Rn>, <Rm>
// Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1

SBC{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

SBCS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && imm2 == 00 && sr_type == 11.

SBCS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

SBCS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && sr_type == 11).

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

783

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

SBCS.W {<Rd>,} <Rn>, <Rm>
// Outside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1

SBCS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
3 (shift_t, shift_n) = DecodeImmShift(sr_type, imm3:imm2);
4 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rdn> Is the first general-purpose source register and the destination register, encoded in the "Rdn"

field.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register

is the same as <Rn>.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
<shift> Is the type of shift to be applied to the second source register, encoded in the "sr_type" field. It

can have the following values:
LSL when sr_type = 00
LSR when sr_type = 01
ASR when sr_type = 10
ROR when sr_type = 11

<amount> Is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift>
= LSR or ASR) encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 shifted = Shift(R[m], shift_t, shift_n, APSR.C);
4 (result, carry, overflow) = AddWithCarry(R[n], NOT(shifted), APSR.C);
5 R[d] = result;
6 if setflags then
7 APSR.N = result[31];
8 APSR.Z = IsZeroBit(result);
9 APSR.C = carry;

10 APSR.V = overflow;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

784

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.169 SBFX

Signed Bit Field Extract. Signed Bit Field Extract extracts any number of adjacent bits at any position from one
register, sign extends them to 32 bits, and writes the result to the destination register.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 (0) 1 1 0 1 0 0 Rn 0 imm3 Rd imm2 (0) widthm1

T1 variant

SBFX{<c>}{<q>} <Rd>, <Rn>, #<lsb>, #<width>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn);
3 lsbit = UInt(imm3:imm2); widthminus1 = UInt(widthm1);
4 msbit = lsbit + widthminus1;
5 if msbit > 31 then UNPREDICTABLE;
6 if d IN {13,15} || n IN {13,15} then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If msbit > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the general-purpose source register, encoded in the "Rn" field.
<lsb> Is the bit number of the least significant bit in the field, in the range 0 to 31, encoded in the

"imm3:imm2" field.
<width> Is the width of the field, in the range 1 to 32-<lsb>, encoded in the "widthm1" field as

<width>-1.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 if msbit <= 31 then
4 R[d] = SignExtend(R[n][msbit:lsbit], 32);
5 else
6 R[d] = bits(32) UNKNOWN;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

785

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.170 SDIV

Signed Divide. Signed Divide divides a 32-bit signed integer register value by a 32-bit signed integer register value
and writes the result to the destination register. The condition code flags are not affected.

If R[n] == 0x80000000 (-231) and R[m] == 0xFFFFFFFF (-1), the result of the division is 0x80000000.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 1 0 0 1 Rn (1) (1) (1) (1) Rd 1 1 1 1 Rm

T1 variant

SDIV{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
2 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register holding the dividend, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register holding the divisor, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 if SInt(R[m]) == 0 then
4 if IntegerZeroDivideTrappingEnabled() then
5 GenerateIntegerZeroDivide();
6 else
7 result = 0;
8 else
9 result = RoundTowardsZero(Real(SInt(R[n])) / Real(SInt(R[m])));

10 R[d] = result[31:0];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

786

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.171 SEL

Select Bytes. Select Bytes selects each byte of its result from either its first operand or its second operand,
according to the values of the GE flags.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 1 0 Rn 1 1 1 1 Rd 1 0 0 0 Rm

T1 variant

SEL{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 bits(32) result;
4 result[7:0] = if APSR.GE[0] == '1' then R[n][7:0] else R[m][7:0];
5 result[15:8] = if APSR.GE[1] == '1' then R[n][15:8] else R[m][15:8];
6 result[23:16] = if APSR.GE[2] == '1' then R[n][23:16] else R[m][23:16];
7 result[31:24] = if APSR.GE[3] == '1' then R[n][31:24] else R[m][31:24];
8 R[d] = result;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

787

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.172 SEV

Send Event. Send Event is a hint instruction. It causes an event to be signaled to all PEs within the multiprocessor
system.

This is a NOP-compatible hint.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 1 0 1 0 0 0 0 0 0

T1 variant

SEV{<c>}{<q>}

Decode for this encoding
1 // No additional decoding required

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 0 0 0 0 0 1 0 0

T2 variant

SEV{<c>}.W

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 // No additional decoding required

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 SendEvent();

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

788

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.173 SG

Secure Gateway. Secure Gateway marks a valid branch target for branches from Non-secure code that call Secure
code.

This instruction sets the Security state to Secure if its address is in Secure memory. If the address of this instruction
is in Non-secure memory, the instruction behaves as a NOP.

If the PE was previously in Non-secure state:

• This instruction sets bit[0] of LR to 0, to indicate that the return address will cause a transition from Secure
to Non-secure state.

• If the Floating-point Extension is implemented, this instruction marks Secure floating-point state as inactive,
by setting CONTROL_S.SFPA to 0. This indicates that the floating-point registers do not contain active state
that belongs to the Secure state.

An INVEP SecureFault is generated if the PE attempts to reenter Thread mode when CCR_S.TRD is set to 1 and
either or both of the following are true:

• CONTROL_S.SPSEL is 0.

• The current Stack Pointer of the Secure state points to an address that contains the value 0xFEFA125A[31:1].

If the Security Extension is not implemented, this instruction behaves as a NOP.

SG is an unconditional instruction and executes as such both inside and outside an IT instruction block. Arm
recommends that software does not place SG inside an IT instruction block.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 0 1 1 1 1 1 1 1

T1 variant

SG{<q>}

Decode for this encoding
1 // No encoding specific operations

Assembler symbols for all encodings

<q> See C1.2.5 Standard assembler syntax fields on page 431.

Operation for all encodings
1 EncodingSpecificOperations();
2
3 if HaveSecurityExt() then
4 sAttributes = SecurityCheck(ThisInstrAddr(), TRUE, IsSecure());
5 if !sAttributes.ns then
6 if !IsSecure() then
7 if HasArchVersion(Armv8p1) && CurrentMode() == PEMode_Thread then
8 // The access to the Secure stack should be performed with the privilege
9 // level of the current mode in the Secure state, and not the current state.

10 // NOTE: The load below is performed, and any faults handled even if thread
11 // mode re-entrancy checking is disabled.
12 secIsPriv = CurrentModeIsPrivileged(TRUE);
13 secSp = LookUpSP_with_security_mode(TRUE, PEMode_Thread);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

789

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

14 (exc, spData) = MemA_with_priv_security(_SP(secSp), 4, AccType_NORMAL,
15 secIsPriv, TRUE, TRUE);
16 HandleException(exc);
17 // Check for an exception stack frame if thread mode re-entrancy is disabled.
18 if CCR_S.TRD == '1' && (spData[31:1] == 0xFEFA125A[31:1] ||
19 secSp == RNamesSP_Main_Secure) then
20 SFSR.INVEP = '1';
21 HandleException(CreateException(SecureFault));
22
23 // Set up the security meta data flags and change to the Secure state
24 LR[0] = '0';
25 if HaveMveOrFPExt() then
26 CONTROL_S.SFPA = '0';
27 // LOB data cleared to prevent Non-secure code from interfering
28 // with Secure execution
29 if HaveLOBExt() then
30 LO_BRANCH_INFO.VALID = '0';
31 CurrentState = SecurityState_Secure;
32 // IT/ICI/ECI data cleared to prevent Non-secure code from interfering
33 // with Secure execution
34 if HaveMainExt() then
35 ITSTATE = Zeros(8);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

790

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.174 SHADD16

Signed Halving Add 16. Signed Halving Add 16 performs two signed 16-bit integer additions, halves the results,
and writes the results to the destination register.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 1 Rn 1 1 1 1 Rd 0 0 1 0 Rm

T1 variant

SHADD16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 sum1 = SInt(R[n][15:0]) + SInt(R[m][15:0]);
4 sum2 = SInt(R[n][31:16]) + SInt(R[m][31:16]);
5 R[d] = sum2[16:1] : sum1[16:1];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

791

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.175 SHADD8

Signed Halving Add 8. Signed Halving Add 8 performs four signed 8-bit integer additions, halves the results, and
writes the results to the destination register.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 0 0 1 0 Rm

T1 variant

SHADD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 sum1 = SInt(R[n][7:0]) + SInt(R[m][7:0]);
4 sum2 = SInt(R[n][15:8]) + SInt(R[m][15:8]);
5 sum3 = SInt(R[n][23:16]) + SInt(R[m][23:16]);
6 sum4 = SInt(R[n][31:24]) + SInt(R[m][31:24]);
7 R[d] = sum4[8:1] : sum3[8:1] : sum2[8:1] : sum1[8:1];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

792

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.176 SHASX

Signed Halving Add and Subtract with Exchange. Signed Halving Add and Subtract with Exchange exchanges the
two halfwords of the second operand, performs one signed 16-bit integer addition and one signed 16-bit subtraction,
halves the results, and writes the results to the destination register.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 1 0 Rn 1 1 1 1 Rd 0 0 1 0 Rm

T1 variant

SHASX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 diff = SInt(R[n][15:0]) - SInt(R[m][31:16]);
4 sum = SInt(R[n][31:16]) + SInt(R[m][15:0]);
5 R[d] = sum[16:1] : diff[16:1];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

793

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.177 SHSAX

Signed Halving Subtract and Add with Exchange. Signed Halving Subtract and Add with Exchange exchanges
the two halfwords of the second operand, performs one signed 16-bit integer subtraction and one signed 16-bit
addition, halves the results, and writes the results to the destination register.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 1 0 Rn 1 1 1 1 Rd 0 0 1 0 Rm

T1 variant

SHSAX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 sum = SInt(R[n][15:0]) + SInt(R[m][31:16]);
4 diff = SInt(R[n][31:16]) - SInt(R[m][15:0]);
5 R[d] = diff[16:1] : sum[16:1];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

794

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.178 SHSUB16

Signed Halving Subtract 16. Signed Halving Subtract 16 performs two signed 16-bit integer subtractions, halves
the results, and writes the results to the destination register.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 0 1 Rn 1 1 1 1 Rd 0 0 1 0 Rm

T1 variant

SHSUB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 diff1 = SInt(R[n][15:0]) - SInt(R[m][15:0]);
4 diff2 = SInt(R[n][31:16]) - SInt(R[m][31:16]);
5 R[d] = diff2[16:1] : diff1[16:1];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

795

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.179 SHSUB8

Signed Halving Subtract 8. Signed Halving Subtract 8 performs four signed 8-bit integer subtractions, halves the
results, and writes the results to the destination register.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 0 0 Rn 1 1 1 1 Rd 0 0 1 0 Rm

T1 variant

SHSUB8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 diff1 = SInt(R[n][7:0]) - SInt(R[m][7:0]);
4 diff2 = SInt(R[n][15:8]) - SInt(R[m][15:8]);
5 diff3 = SInt(R[n][23:16]) - SInt(R[m][23:16]);
6 diff4 = SInt(R[n][31:24]) - SInt(R[m][31:24]);
7 R[d] = diff4[8:1] : diff3[8:1] : diff2[8:1] : diff1[8:1];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

796

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.180 SMLABB, SMLABT, SMLATB, SMLATT

Signed Multiply Accumulate (halfwords). Signed Multiply Accumulate (halfwords) performs a signed multiply
accumulate operation. The multiply acts on two signed 16-bit quantities, taken from either the bottom or the top
half of their respective source registers. The other halves of these source registers are ignored. The 32-bit product
is added to a 32-bit accumulate value and the result is written to the destination register.

If overflow occurs during the addition of the accumulate value, the instruction sets the Q flag in the APSR. It is not
possible for overflow to occur during the multiplication.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 0 0 1 Rn Ra != 1111 Rd 0 0 N M Rm

SMLABB variant

Applies when N == 0 && M == 0.

SMLABB{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMLABT variant

Applies when N == 0 && M == 1.

SMLABT{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMLATB variant

Applies when N == 1 && M == 0.

SMLATB{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMLATT variant

Applies when N == 1 && M == 1.

SMLATT{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for this encoding
1 if Ra == '1111' then SEE "SMULBB, SMULBT, SMULTB, SMULTT";
2 if !HaveDSPExt() then UNDEFINED;
3 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra);
4 n_high = (N == '1'); m_high = (M == '1');
5 if d IN {13,15} || n IN {13,15} || m IN {13,15} || a == 13 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register holding the multiplicand in the bottom or top half

(selected by <x>), encoded in the "Rn" field.
<Rm> Is the second general-purpose source register holding the multiplier in the bottom or top half

(selected by <y>), encoded in the "Rm" field.
<Ra> Is the third general-purpose source register holding the addend, encoded in the "Ra" field.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

797

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 operand1 = if n_high then R[n][31:16] else R[n][15:0];
4 operand2 = if m_high then R[m][31:16] else R[m][15:0];
5 result = SInt(operand1) * SInt(operand2) + SInt(R[a]);
6 R[d] = result[31:0];
7 if result != SInt(result[31:0]) then // Signed overflow
8 APSR.Q = '1';

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

798

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.181 SMLAD, SMLADX

Signed Multiply Accumulate Dual. Signed Multiply Accumulate Dual performs two signed 16-bit by 16-bit
multiplications. It adds the products to a 32-bit accumulate operand.

Optionally, the instruction can exchange the halfwords of the second operand before performing the arithmetic.

This instruction sets the Q flag if the accumulate operation overflows. Overflow cannot occur during the multiplica-
tions.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 0 1 0 Rn Ra != 1111 Rd 0 0 0 M Rm

SMLAD variant

Applies when M == 0.

SMLAD{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMLADX variant

Applies when M == 1.

SMLADX{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for this encoding
1 if Ra == '1111' then SEE SMUAD;
2 if !HaveDSPExt() then UNDEFINED;
3 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra);
4 m_swap = (M == '1');
5 if d IN {13,15} || n IN {13,15} || m IN {13,15} || a == 13 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
<Ra> Is the third general-purpose source register holding the addend, encoded in the "Ra" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 operand2 = if m_swap then ROR(R[m],16) else R[m];
4 product1 = SInt(R[n][15:0]) * SInt(operand2[15:0]);
5 product2 = SInt(R[n][31:16]) * SInt(operand2[31:16]);
6 result = product1 + product2 + SInt(R[a]);
7 R[d] = result[31:0];
8 if result != SInt(result[31:0]) then // Signed overflow
9 APSR.Q = '1';

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

799

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.182 SMLAL

Signed Multiply Accumulate Long. Signed Multiply Accumulate Long multiplies two signed 32-bit values to
produce a 64-bit value, and accumulates this with a 64-bit value.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 1 1 0 0 Rn RdLo RdHi 0 0 0 0 Rm

T1 variant

SMLAL{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); setflags = FALSE;
3 if dLo IN {13,15} || dHi IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;
4 if dHi == dLo then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If dHi == dLo, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<RdLo> Is the general-purpose source register holding the lower 32 bits of the addend, and the

destination register for the lower 32 bits of the result, encoded in the "RdLo" field.
<RdHi> Is the general-purpose source register holding the upper 32 bits of the addend, and the

destination register for the upper 32 bits of the result, encoded in the "RdHi" field.
<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm"

field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 result = SInt(R[n]) * SInt(R[m]) + SInt(R[dHi]:R[dLo]);
4 R[dHi] = result[63:32];
5 R[dLo] = result[31:0];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

800

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.183 SMLALBB, SMLALBT, SMLALTB, SMLALTT

Signed Multiply Accumulate Long (halfwords). Signed Multiply Accumulate Long (halfwords) multiplies two
signed 16-bit values to produce a 32-bit value, and accumulates this with a 64-bit value. The multiply acts on two
signed 16-bit quantities, taken from either the bottom or the top half of their respective source registers. The other
halves of these source registers are ignored. The 32-bit product is sign-extended and accumulated with a 64-bit
accumulate value.

Overflow is possible during this instruction, but only as a result of the 64-bit addition. This overflow is not detected
if it occurs. Instead, the result wraps around modulo 264.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 1 1 0 0 Rn RdLo RdHi 1 0 N M Rm

SMLALBB variant

Applies when N == 0 && M == 0.

SMLALBB{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

SMLALBT variant

Applies when N == 0 && M == 1.

SMLALBT{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

SMLALTB variant

Applies when N == 1 && M == 0.

SMLALTB{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

SMLALTT variant

Applies when N == 1 && M == 1.

SMLALTT{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm);
3 n_high = (N == '1'); m_high = (M == '1');
4 if dLo IN {13,15} || dHi IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;
5 if dHi == dLo then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If dHi == dLo, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

801

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<RdLo> Is the general-purpose source register holding the lower 32 bits of the addend, and the

destination register for the lower 32 bits of the result, encoded in the "RdLo" field.
<RdHi> Is the general-purpose source register holding the upper 32 bits of the addend, and the

destination register for the upper 32 bits of the result, encoded in the "RdHi" field.
<Rn> Is the first general-purpose source register holding the multiplicand in the bottom or top half

(selected by <x>), encoded in the "Rn" field.
<Rm> Is the second general-purpose source register holding the multiplier in the bottom or top half

(selected by <x>), encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 operand1 = if n_high then R[n][31:16] else R[n][15:0];
4 operand2 = if m_high then R[m][31:16] else R[m][15:0];
5 result = SInt(operand1) * SInt(operand2) + SInt(R[dHi]:R[dLo]);
6 R[dHi] = result[63:32];
7 R[dLo] = result[31:0];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

802

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.184 SMLALD, SMLALDX

Signed Multiply Accumulate Long Dual. Signed Multiply Accumulate Long Dual performs two signed 16-bit by
16-bit multiplications. It adds the products to a 64-bit accumulate operand.

Optionally, the instruction can exchange the halfwords of the second operand before performing the arithmetic.

Overflow is possible during this instruction, but only as a result of the 64-bit addition. This overflow is not detected
if it occurs. Instead, the result wraps around modulo 264.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 1 1 0 0 Rn RdLo RdHi 1 1 0 M Rm

SMLALD variant

Applies when M == 0.

SMLALD{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

SMLALDX variant

Applies when M == 1.

SMLALDX{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); m_swap = (M == '1');
3 if dLo IN {13,15} || dHi IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;
4 if dHi == dLo then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If dHi == dLo, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<RdLo> Is the general-purpose source register holding the lower 32 bits of the addend, and the

destination register for the lower 32 bits of the result, encoded in the "RdLo" field.
<RdHi> Is the general-purpose source register holding the upper 32 bits of the addend, and the

destination register for the upper 32 bits of the result, encoded in the "RdHi" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

803

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

3 operand2 = if m_swap then ROR(R[m],16) else R[m];
4 product1 = SInt(R[n][15:0]) * SInt(operand2[15:0]);
5 product2 = SInt(R[n][31:16]) * SInt(operand2[31:16]);
6 result = product1 + product2 + SInt(R[dHi]:R[dLo]);
7 R[dHi] = result[63:32];
8 R[dLo] = result[31:0];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

804

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.185 SMLAWB, SMLAWT

Signed Multiply Accumulate (word by halfword). Signed Multiply Accumulate (word by halfword) performs a
signed multiply accumulate operation. The multiply acts on a signed 32-bit quantity and a signed 16-bit quantity.
The signed 16-bit quantity is taken from either the bottom or the top half of its source register. The other half of
the second source register is ignored. The top 32 bits of the 48-bit product are added to a 32-bit accumulate value
and the result is written to the destination register. The bottom 16 bits of the 48-bit product are ignored.

If overflow occurs during the addition of the accumulate value, the instruction sets the Q flag in the APSR. No
overflow can occur during the multiplication.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 0 1 1 Rn Ra != 1111 Rd 0 0 0 M Rm

SMLAWB variant

Applies when M == 0.

SMLAWB{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMLAWT variant

Applies when M == 1.

SMLAWT{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for this encoding
1 if Ra == '1111' then SEE "SMULWB, SMULWT";
2 if !HaveDSPExt() then UNDEFINED;
3 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); m_high = (M == '1');
4 if d IN {13,15} || n IN {13,15} || m IN {13,15} || a == 13 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register holding the multiplier in the bottom or top half

(selected by <y>), encoded in the "Rm" field.
<Ra> Is the third general-purpose source register holding the addend, encoded in the "Ra" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 operand2 = if m_high then R[m][31:16] else R[m][15:0];
4 result = SInt(R[n]) * SInt(operand2) + (SInt(R[a]) << 16);
5 R[d] = result[47:16];
6 if (result >> 16) != SInt(R[d]) then // Signed overflow
7 APSR.Q = '1';

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

805

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.186 SMLSD, SMLSDX

Signed Multiply Subtract Dual. Signed Multiply Subtract Dual performs two signed 16-bit by 16-bit multiplications.
It adds the difference of the products to a 32-bit accumulate operand.

Optionally, the instruction can exchange the halfwords of the second operand before performing the arithmetic.

This instruction sets the Q flag if the accumulate operation overflows. Overflow cannot occur during the multiplica-
tions or subtraction.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 1 0 0 Rn Ra != 1111 Rd 0 0 0 M Rm

SMLSD variant

Applies when M == 0.

SMLSD{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMLSDX variant

Applies when M == 1.

SMLSDX{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for this encoding
1 if Ra == '1111' then SEE SMUSD;
2 if !HaveDSPExt() then UNDEFINED;
3 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); m_swap = (M == '1');
4 if d IN {13,15} || n IN {13,15} || m IN {13,15} || a == 13 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
<Ra> Is the third general-purpose source register holding the addend, encoded in the "Ra" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 operand2 = if m_swap then ROR(R[m],16) else R[m];
4 product1 = SInt(R[n][15:0]) * SInt(operand2[15:0]);
5 product2 = SInt(R[n][31:16]) * SInt(operand2[31:16]);
6 result = product1 - product2 + SInt(R[a]);
7 R[d] = result[31:0];
8 if result != SInt(result[31:0]) then // Signed overflow
9 APSR.Q = '1';

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

806

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.187 SMLSLD, SMLSLDX

Signed Multiply Subtract Long Dual. Signed Multiply Subtract Long Dual performs two signed 16-bit by 16-bit
multiplications. It adds the difference of the products to a 64-bit accumulate operand.

Optionally, the instruction can exchange the halfwords of the second operand before performing the arithmetic.

Overflow is possible during this instruction, but only as a result of the 64-bit addition. This overflow is not detected
if it occurs. Instead, the result wraps around modulo 264.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 1 1 0 1 Rn RdLo RdHi 1 1 0 M Rm

SMLSLD variant

Applies when M == 0.

SMLSLD{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

SMLSLDX variant

Applies when M == 1.

SMLSLDX{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); m_swap = (M == '1');
3 if dLo IN {13,15} || dHi IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;
4 if dHi == dLo then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If dHi == dLo, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<RdLo> Is the general-purpose source register holding the lower 32 bits of the addend, and the

destination register for the lower 32 bits of the result, encoded in the "RdLo" field.
<RdHi> Is the general-purpose source register holding the upper 32 bits of the addend, and the

destination register for the upper 32 bits of the result, encoded in the "RdHi" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

807

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

3 operand2 = if m_swap then ROR(R[m],16) else R[m];
4 product1 = SInt(R[n][15:0]) * SInt(operand2[15:0]);
5 product2 = SInt(R[n][31:16]) * SInt(operand2[31:16]);
6 result = product1 - product2 + SInt(R[dHi]:R[dLo]);
7 R[dHi] = result[63:32];
8 R[dLo] = result[31:0];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

808

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.188 SMMLA, SMMLAR

Signed Most Significant Word Multiply Accumulate. Signed Most Significant Word Multiply Accumulate
multiplies two signed 32-bit values, extracts the most significant 32 bits of the result, and adds an accumulate
value.

Optionally, the instruction can specify that the result is rounded instead of being truncated. In this case, the constant
0x80000000 is added to the product before the high word is extracted.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 1 0 1 Rn Ra != 1111 Rd 0 0 0 R Rm

SMMLA variant

Applies when R == 0.

SMMLA{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMMLAR variant

Applies when R == 1.

SMMLAR{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for this encoding
1 if Ra == '1111' then SEE SMMUL;
2 if !HaveDSPExt() then UNDEFINED;
3 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); round = (R == '1');
4 if d IN {13,15} || n IN {13,15} || m IN {13,15} || a == 13 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm"

field.
<Ra> Is the third general-purpose source register holding the addend, encoded in the "Ra" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 result = (SInt(R[a]) << 32) + SInt(R[n]) * SInt(R[m]);
4 if round then result = result + 0x80000000;
5 R[d] = result[63:32];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

809

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.189 SMMLS, SMMLSR

Signed Most Significant Word Multiply Subtract. Signed Most Significant Word Multiply Subtract multiplies two
signed 32-bit values, subtracts the result from a 32-bit accumulate value that is shifted left by 32 bits, and extracts
the most significant 32 bits of the result of that subtraction.

Optionally, the instruction can specify that the result of the instruction is rounded instead of being truncated. In
this case, the constant 0x80000000 is added to the result of the subtraction before the high word is extracted.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 1 1 0 Rn Ra Rd 0 0 0 R Rm

SMMLS variant

Applies when R == 0.

SMMLS{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMMLSR variant

Applies when R == 1.

SMMLSR{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); round = (R == '1');
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} || a IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm"

field.
<Ra> Is the third general-purpose source register holding the addend, encoded in the "Ra" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 result = (SInt(R[a]) << 32) - SInt(R[n]) * SInt(R[m]);
4 if round then result = result + 0x80000000;
5 R[d] = result[63:32];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

810

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.190 SMMUL, SMMULR

Signed Most Significant Word Multiply. Signed Most Significant Word Multiply multiplies two signed 32-bit
values, extracts the most significant 32 bits of the result, and writes those bits to the destination register.

Optionally, the instruction can specify that the result is rounded instead of being truncated. In this case, the constant
0x80000000 is added to the product before the high word is extracted.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 1 0 1 Rn 1 1 1 1 Rd 0 0 0 R Rm

SMMUL variant

Applies when R == 0.

SMMUL{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

SMMULR variant

Applies when R == 1.

SMMULR{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); round = (R == '1');
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 result = SInt(R[n]) * SInt(R[m]);
4 if round then result = result + 0x80000000;
5 R[d] = result[63:32];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

811

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.191 SMUAD, SMUADX

Signed Dual Multiply Add. Signed Dual Multiply Add performs two signed 16-bit by 16-bit multiplications. It
adds the products together, and writes the result to the destination register.

Optionally, the instruction can exchange the halfwords of the second operand before performing the arithmetic.

This instruction sets the Q flag if the addition overflows. The multiplications cannot overflow.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 0 1 0 Rn 1 1 1 1 Rd 0 0 0 M Rm

SMUAD variant

Applies when M == 0.

SMUAD{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

SMUADX variant

Applies when M == 1.

SMUADX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); m_swap = (M == '1');
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 operand2 = if m_swap then ROR(R[m],16) else R[m];
4 product1 = SInt(R[n][15:0]) * SInt(operand2[15:0]);
5 product2 = SInt(R[n][31:16]) * SInt(operand2[31:16]);
6 result = product1 + product2;
7 R[d] = result[31:0];
8 if result != SInt(result[31:0]) then // Signed overflow
9 APSR.Q = '1';

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

812

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.192 SMULBB, SMULBT, SMULTB, SMULTT

Signed Multiply (halfwords). Signed Multiply (halfwords) multiplies two signed 16-bit quantities, taken from
either the bottom or the top half of their respective source registers. The other halves of these source registers are
ignored. The 32-bit product is written to the destination register. No overflow is possible during this instruction.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 0 0 1 Rn 1 1 1 1 Rd 0 0 N M Rm

SMULBB variant

Applies when N == 0 && M == 0.

SMULBB{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

SMULBT variant

Applies when N == 0 && M == 1.

SMULBT{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

SMULTB variant

Applies when N == 1 && M == 0.

SMULTB{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

SMULTT variant

Applies when N == 1 && M == 1.

SMULTT{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 n_high = (N == '1'); m_high = (M == '1');
4 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register holding the multiplicand in the bottom or top half

(selected by <x>), encoded in the "Rn" field.
<Rm> Is the second general-purpose source register holding the multiplier in the bottom or top half

(selected by <y>), encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 operand1 = if n_high then R[n][31:16] else R[n][15:0];
4 operand2 = if m_high then R[m][31:16] else R[m][15:0];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

813

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

5 result = SInt(operand1) * SInt(operand2);
6 R[d] = result[31:0];
7 // Signed overflow cannot occur

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

814

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.193 SMULL

Signed Multiply Long. Signed Multiply Long multiplies two 32-bit signed values to produce a 64-bit result.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 1 0 0 0 Rn RdLo RdHi 0 0 0 0 Rm

T1 variant

SMULL{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); setflags = FALSE;
3 if dLo IN {13,15} || dHi IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;
4 if dHi == dLo then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If dHi == dLo, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<RdLo> Is the general-purpose destination register for the lower 32 bits of the result, encoded in the

"RdLo" field.
<RdHi> Is the general-purpose destination register for the upper 32 bits of the result, encoded in the

"RdHi" field.
<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm"

field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 result = SInt(R[n]) * SInt(R[m]);
4 R[dHi] = result[63:32];
5 R[dLo] = result[31:0];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

815

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.194 SMULWB, SMULWT

Signed Multiply (word by halfword). Signed Multiply (word by halfword) multiplies a signed 32-bit quantity and
a signed 16-bit quantity. The signed 16-bit quantity is taken from either the bottom or the top half of its source
register. The other half of the second source register is ignored. The top 32 bits of the 48-bit product are written to
the destination register. The bottom 16 bits of the 48-bit product are ignored. No overflow is possible during this
instruction.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 0 1 1 Rn 1 1 1 1 Rd 0 0 0 M Rm

SMULWB variant

Applies when M == 0.

SMULWB{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

SMULWT variant

Applies when M == 1.

SMULWT{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); m_high = (M == '1');
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register holding the multiplier in the bottom or top half

(selected by <y>), encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 operand2 = if m_high then R[m][31:16] else R[m][15:0];
4 product = SInt(R[n]) * SInt(operand2);
5 R[d] = product[47:16];
6 // Signed overflow cannot occur

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

816

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.195 SMUSD, SMUSDX

Signed Dual Multiply Subtract. Signed Dual Multiply Subtract performs two signed 16-bit by 16-bit multiplications.
It subtracts one of the products from the other, and writes the result to the destination register.

Optionally, the instruction can exchange the halfwords of the second operand before performing the arithmetic.

Overflow cannot occur.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 1 0 0 Rn 1 1 1 1 Rd 0 0 0 M Rm

SMUSD variant

Applies when M == 0.

SMUSD{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

SMUSDX variant

Applies when M == 1.

SMUSDX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); m_swap = (M == '1');
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 operand2 = if m_swap then ROR(R[m],16) else R[m];
4 product1 = SInt(R[n][15:0]) * SInt(operand2[15:0]);
5 product2 = SInt(R[n][31:16]) * SInt(operand2[31:16]);
6 result = product1 - product2;
7 R[d] = result[31:0];
8 // Signed overflow cannot occur

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

817

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.196 SQRSHR (register)

Signed Saturating Rounding Shift Right. Signed saturating rounding shift right by 0 to 32 bits of a 32-bit value
stored in a general-purpose register. The shift amount is read in as the bottom byte of Rm. If the shift amount is
negative, the shift direction is reversed.

T1
Armv8.1-M MVE

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 1 Rda Rm 1 1 1 (1) (0) (0) 1 0 1 1 0 1

T1: SQRSHR variant

SQRSHR<c> Rda, Rm

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 if !HasArchVersion(Armv8p1) then CONSTRAINED_UNPREDICTABLE;
3 if !HaveMve() then UNDEFINED;
4 da = UInt(Rda);
5 m = UInt(Rm);
6 if Rda == '11x1' || Rm == '11x1' || Rm == Rda then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<Rda> General-purpose source and destination register, containing the value to be shifted.
<Rm> General-purpose source register holding a shift amount in its bottom 8 bits.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3
4 amount = SInt(R[m][7:0]);
5 op1 = SInt(R[da]);
6 op1 = op1 + (1 << (amount - 1));
7 (result, sat) = SignedSatQ((op1 >> amount), 32);
8 if sat then APSR.Q = '1';
9 R[da] = result[31:0];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

818

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.197 SQRSHRL (register)

Signed Saturating Rounding Shift Right Long. Signed saturating rounding shift right by 0 to 64 bits of a 64-bit
value stored in two general-purpose registers. The shift amount is read in as the bottom byte of Rm. If the shift
amount is negative, the shift direction is reversed.

T1
Armv8.1-M MVE

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 1 RdaLo 1 Rm RdaHi (1) sat (0) 1 0 1 1 0 1

T1: SQRSHRL variant

SQRSHRL<c> RdaLo, RdaHi, #<saturate>, Rm

Decode for this encoding
1 if RdaHi == '111' then SEE "SQRSHR (register)";
2 if !HaveMainExt() then UNDEFINED;
3 if !HasArchVersion(Armv8p1) then CONSTRAINED_UNPREDICTABLE;
4 if !HaveMve() then UNDEFINED;
5 dah = UInt(RdaHi:'1');
6 dal = UInt(RdaLo:'0');
7 m = UInt(Rm);
8 saturateTo = if sat == '0' then 64 else 48;
9 if RdaHi == '110' || Rm == '11x1' || Rm == RdaHi:'1' then CONSTRAINED_UNPREDICTABLE;

10 if Rm == RdaLo:'0' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<RdaLo> General-purpose register for the low-half of the 64-bit source and destination, containing the

value to be shifted. This must be an even numbered register.
<RdaHi> General-purpose register for the high-half of the 64-bit source and destination, containing the

value to be shifted. This must be an odd numbered register.
<saturate> The bit position for saturation.

This parameter must be one of the following values:
#64 Encoded as sat = 0
#48 Encoded as sat = 1

<Rm> General-purpose source register holding a shift amount in its bottom 8 bits.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3
4 amount = SInt(R[m][7:0]);
5 op1 = SInt(R[dah]:R[dal]);
6 op1 = op1 + (1 << (amount - 1));
7 (shiftedOp, didSat) = SignedSatQ((op1 >> amount), saturateTo);
8 result = SignExtend(shiftedOp, 64);
9 if didSat then APSR.Q = '1';

10 R[dah] = result[63:32];
11 R[dal] = result[31:0];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

819

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.198 SQSHL (immediate)

Signed Saturating Shift Left. Signed saturating shift left by 1 to 32 bits of a 32-bit value stored in a general-purpose
register.

T1
Armv8.1-M MVE

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 1 Rda 0 immh 1 1 1 (1) imml 1 1 1 1 1 1

T1: SQSHL variant

SQSHL<c> Rda, #<imm>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 if !HasArchVersion(Armv8p1) then CONSTRAINED_UNPREDICTABLE;
3 if !HaveMve() then UNDEFINED;
4 da = UInt(Rda);
5 (-, amount) = DecodeImmShift('10', immh:imml);
6 if Rda == '11x1' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<Rda> General-purpose source and destination register, containing the value to be shifted.
<imm> The number of bits to shift by, in the range 1-32.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3
4 op1 = SInt(R[da]);
5 (result, sat) = SignedSatQ((op1 << amount), 32);
6 if sat then APSR.Q = '1';
7 R[da] = result[31:0];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

820

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.199 SQSHLL (immediate)

Signed Saturating Shift Left Long. Signed saturating shift left by 1 to 32 bits of a 64-bit value stored in two
general-purpose registers.

T1
Armv8.1-M MVE

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 1 RdaLo (1) 0 immh RdaHi (1) imml 1 1 1 1 1 1

T1: SQSHLL variant

SQSHLL<c> RdaLo, RdaHi, #<imm>

Decode for this encoding
1 if RdaHi == '111' then SEE "SQSHL (immediate)";
2 if !HaveMainExt() then UNDEFINED;
3 if !HasArchVersion(Armv8p1) then CONSTRAINED_UNPREDICTABLE;
4 if !HaveMve() then UNDEFINED;
5 dah = UInt(RdaHi:'1');
6 dal = UInt(RdaLo:'0');
7 (-, amount) = DecodeImmShift('10', immh:imml);
8 if RdaHi == '110' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<RdaLo> General-purpose register for the low-half of the 64-bit source and destination, containing the

value to be shifted. This must be an even numbered register.
<RdaHi> General-purpose register for the high-half of the 64-bit source and destination, containing the

value to be shifted. This must be an odd numbered register.
<imm> The number of bits to shift by, in the range 1-32.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3
4 op1 = SInt(R[dah]:R[dal]);
5 (result, sat) = SignedSatQ((op1 << amount), 64);
6 if sat then APSR.Q = '1';
7 R[dah] = result[63:32];
8 R[dal] = result[31:0];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

821

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.200 SRSHR (immediate)

Signed Rounding Shift Right. Signed rounding shift right by 1 to 32 bits of a 32-bit value stored in a general-purpose
register.

T1
Armv8.1-M MVE

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 1 Rda 0 immh 1 1 1 (1) imml 1 0 1 1 1 1

T1: SRSHR variant

SRSHR<c> Rda, #<imm>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 if !HasArchVersion(Armv8p1) then CONSTRAINED_UNPREDICTABLE;
3 if !HaveMve() then UNDEFINED;
4 da = UInt(Rda);
5 (-, amount) = DecodeImmShift('10', immh:imml);
6 if Rda == '11x1' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<Rda> General-purpose source and destination register, containing the value to be shifted.
<imm> The number of bits to shift by, in the range 1-32.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3
4 op1 = SInt(R[da]);
5 op1 = op1 + (1 << (amount - 1));
6 result = (op1 >> amount)[31:0];
7 R[da] = result[31:0];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

822

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.201 SRSHRL (immediate)

Signed Rounding Shift Right Long. Signed rounding shift right by 1 to 32 bits of a 64-bit value stored in two
general-purpose registers.

T1
Armv8.1-M MVE

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 1 RdaLo 1 0 immh RdaHi (1) imml 1 0 1 1 1 1

T1: SRSHRL variant

SRSHRL<c> RdaLo, RdaHi, #<imm>

Decode for this encoding
1 if RdaHi == '111' then SEE "SRSHR (immediate)";
2 if !HaveMainExt() then UNDEFINED;
3 if !HasArchVersion(Armv8p1) then CONSTRAINED_UNPREDICTABLE;
4 if !HaveMve() then UNDEFINED;
5 dah = UInt(RdaHi:'1');
6 dal = UInt(RdaLo:'0');
7 (-, amount) = DecodeImmShift('10', immh:imml);
8 if RdaHi == '110' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<RdaLo> General-purpose register for the low-half of the 64-bit source and destination, containing the

value to be shifted. This must be an even numbered register.
<RdaHi> General-purpose register for the high-half of the 64-bit source and destination, containing the

value to be shifted. This must be an odd numbered register.
<imm> The number of bits to shift by, in the range 1-32.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3
4 op1 = SInt(R[dah]:R[dal]);
5 op1 = op1 + (1 << (amount - 1));
6 result = (op1 >> amount)[63:0];
7 R[dah] = result[63:32];
8 R[dal] = result[31:0];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

823

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.202 SSAT

Signed Saturate. Signed Saturate saturates an optionally-shifted signed value to a selectable signed range.

The APSR.Q flag is set to 1 if the operation saturates.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 (0) 1 1 0 0 sh 0 Rn 0 imm3 Rd imm2 (0) sat_imm

Arithmetic shift right variant

Applies when sh == 1 && !(imm3 == 000 && imm2 == 00).

SSAT{<c>}{<q>} <Rd>, #<imm>, <Rn>, ASR #<amount>

Logical shift left variant

Applies when sh == 0.

SSAT{<c>}{<q>} <Rd>, #<imm>, <Rn> {, LSL #<amount>}

Decode for this encoding
1 if sh == '1' && (imm3:imm2) == '00000' then
2 if HaveDSPExt() then
3 SEE SSAT16;
4 else
5 UNDEFINED;
6 if !HaveMainExt() then UNDEFINED;
7 d = UInt(Rd); n = UInt(Rn); saturate_to = UInt(sat_imm)+1;
8 (shift_t, shift_n) = DecodeImmShift(sh:'0', imm3:imm2);
9 if d IN {13,15} || n IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<imm> Is the bit position for saturation, in the range 1 to 32, encoded in the "sat_imm" field as

<imm>-1.
<Rn> Is the general-purpose source register, encoded in the "Rn" field.
<amount> For the arithmetic shift right variant: is the shift amount, in the range 1 to 31 encoded in the

"imm3:imm2" field as <amount>.
For the logical shift left variant: is the optional shift amount, in the range 0 to 31, defaulting to
0 and encoded in the "imm3:imm2" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 operand = Shift(R[n], shift_t, shift_n, APSR.C); // APSR.C ignored
4 (result, sat) = SignedSatQ(SInt(operand), saturate_to);
5 R[d] = SignExtend(result, 32);
6 if sat then
7 APSR.Q = '1';

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

824

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.203 SSAT16

Signed Saturate 16. Signed Saturate 16 saturates two signed 16-bit values to a selected signed range.

The APSR.Q flag is set to 1 if the operation saturates.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 (0) 1 1 0 0 1 0 Rn 0 0 0 0 Rd 0 0 (0) (0) sat_imm

T1 variant

SSAT16{<c>}{<q>} <Rd>, #<imm>, <Rn>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); saturate_to = UInt(sat_imm)+1;
3 if d IN {13,15} || n IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<imm> Is the bit position for saturation, in the range 1 to 16, encoded in the "sat_imm" field as

<imm>-1.
<Rn> Is the general-purpose source register, encoded in the "Rn" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 (result1, sat1) = SignedSatQ(SInt(R[n][15:0]), saturate_to);
4 (result2, sat2) = SignedSatQ(SInt(R[n][31:16]), saturate_to);
5 bits(32) result;
6 result[15:0] = SignExtend(result1, 16);
7 result[31:16] = SignExtend(result2, 16);
8 R[d] = result;
9 if sat1 || sat2 then

10 APSR.Q = '1';

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

825

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.204 SSAX

Signed Subtract and Add with Exchange. Signed Subtract and Add with Exchange exchanges the two halfwords of
the second operand, performs one 16-bit integer subtraction and one 16-bit addition, and writes the results to the
destination register. It sets the APSR.GE bits according to the results.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 1 0 Rn 1 1 1 1 Rd 0 0 0 0 Rm

T1 variant

SSAX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 sum = SInt(R[n][15:0]) + SInt(R[m][31:16]);
4 diff = SInt(R[n][31:16]) - SInt(R[m][15:0]);
5 R[d] = diff[15:0] : sum[15:0];
6 APSR.GE[1:0] = if sum >= 0 then '11' else '00';
7 APSR.GE[3:2] = if diff >= 0 then '11' else '00';

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

826

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.205 SSBB

Speculative Store Bypass Barrier. Speculative Store Bypass Barrier is a memory barrier which prevents speculative
loads from bypassing earlier stores to the same address under certain conditions.

The semantics of the Speculative Store Bypass Barrier are:

• When a load to a location appears in program order after the SSBB, then the load does not speculatively read
an entry earlier in the coherence order for that location than the entry generated by the latest store satisfying
all of the following conditions:

– The store is to the same location as the load.

– The store appears in program order before the SSBB.

• When a load to a location appears in program order before the SSBB, then the load does not speculatively
read data from any store satisfying all of the following conditions:

– The store is to the same location as the load.

– The store appears in program order after the SSBB.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 1 (1) (1) (1) (1) 1 0 (0) 0 (1) (1) (1) (1) 0 1 0 0 0 0 0 0

T1 variant

SSBB{<q>}

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 if InITBlock() then UNPREDICTABLE;

Assembler symbols for all encodings

<q> See C1.2.5 Standard assembler syntax fields on page 431.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 SpeculativeSynchronizationBarrier();

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

827

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.206 SSUB16

Signed Subtract 16. Signed Subtract 16 performs two 16-bit signed integer subtractions, and writes the results to
the destination register. It sets the APSR.GE bits according to the results of the subtractions.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 0 1 Rn 1 1 1 1 Rd 0 0 0 0 Rm

T1 variant

SSUB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 diff1 = SInt(R[n][15:0]) - SInt(R[m][15:0]);
4 diff2 = SInt(R[n][31:16]) - SInt(R[m][31:16]);
5 R[d] = diff2[15:0] : diff1[15:0];
6 APSR.GE[1:0] = if diff1 >= 0 then '11' else '00';
7 APSR.GE[3:2] = if diff2 >= 0 then '11' else '00';

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

828

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.207 SSUB8

Signed Subtract 8. Signed Subtract 8 performs four 8-bit signed integer subtractions, and writes the results to the
destination register. It sets the APSR.GE bits according to the results of the subtractions.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 0 0 Rn 1 1 1 1 Rd 0 0 0 0 Rm

T1 variant

SSUB8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 diff1 = SInt(R[n][7:0]) - SInt(R[m][7:0]);
4 diff2 = SInt(R[n][15:8]) - SInt(R[m][15:8]);
5 diff3 = SInt(R[n][23:16]) - SInt(R[m][23:16]);
6 diff4 = SInt(R[n][31:24]) - SInt(R[m][31:24]);
7 R[d] = diff4[7:0] : diff3[7:0] : diff2[7:0] : diff1[7:0];
8 APSR.GE[0] = if diff1 >= 0 then '1' else '0';
9 APSR.GE[1] = if diff2 >= 0 then '1' else '0';

10 APSR.GE[2] = if diff3 >= 0 then '1' else '0';
11 APSR.GE[3] = if diff4 >= 0 then '1' else '0';

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

829

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.208 STC, STC2

Store Coprocessor. Store Coprocessor stores data from a coprocessor to a sequence of consecutive memory
addresses.

If no coprocessor can execute the instruction, a UsageFault exception is generated.

Arm reserves coprocessors CP8 to CP15, and this manual defines the valid instructions when coproc is in this
range.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 P U D W 0 Rn CRd coproc imm8

Offset variant

Applies when P == 1 && W == 0.

STC{L}{<c>}{<q>} <coproc>, <CRd>, [<Rn>{, #{+/-}<imm>}]

Post-indexed variant

Applies when P == 0 && W == 1.

STC{L}{<c>}{<q>} <coproc>, <CRd>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

STC{L}{<c>}{<q>} <coproc>, <CRd>, [<Rn>, #{+/-}<imm>]!

Unindexed variant

Applies when P == 0 && U == 1 && W == 0.

STC{L}{<c>}{<q>} <coproc>, <CRd>, [<Rn>], <option>

Decode for this encoding
1 if coproc IN {'100x', '101x', '111x'} then SEE "Floating-point and MVE";
2 if CoprocType(UInt(coproc)) == CP_CDEv1 then SEE "CDE instructions";
3 if P == '0' && U == '0' && D == '1' && W == '0' then SEE "MCRR, MCRR2";
4 if P == '0' && U == '0' && D == '0' && W == '0' then UNDEFINED;
5 if !HaveMainExt() then UNDEFINED;
6 n = UInt(Rn); cp = UInt(coproc); imm32 = ZeroExtend(imm8:'00', 32);
7 index = (P == '1'); add = (U == '1'); wback = (W == '1');
8 if n == 15 then UNPREDICTABLE;

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 P U D W 0 Rn CRd coproc imm8

Offset variant

Applies when P == 1 && W == 0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

830

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

STC2{L}{<c>}{<q>} <coproc>, <CRd>, [<Rn>{, #{+/-}<imm>}]

Post-indexed variant

Applies when P == 0 && W == 1.

STC2{L}{<c>}{<q>} <coproc>, <CRd>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

STC2{L}{<c>}{<q>} <coproc>, <CRd>, [<Rn>, #{+/-}<imm>]!

Unindexed variant

Applies when P == 0 && U == 1 && W == 0.

STC2{L}{<c>}{<q>} <coproc>, <CRd>, [<Rn>], <option>

Decode for this encoding
1 if coproc IN {'100x', '101x', '111x'} then SEE "Floating-point and MVE";
2 if CoprocType(UInt(coproc)) == CP_CDEv1 then SEE "CDE instructions";
3 if P == '0' && U == '0' && D == '1' && W == '0' then SEE "MCRR, MCRR2";
4 if P == '0' && U == '0' && D == '0' && W == '0' then UNDEFINED;
5 if !HaveMainExt() then UNDEFINED;
6 n = UInt(Rn); cp = UInt(coproc); imm32 = ZeroExtend(imm8:'00', 32);
7 index = (P == '1'); add = (U == '1'); wback = (W == '1');
8 if n == 15 then UNPREDICTABLE;

Assembler symbols for all encodings

L If specified, selects the D == 1 form of the encoding. If omitted, selects the D == 0 form.
<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<coproc> Is the name of the coprocessor, encoded in the "coproc" field. The generic coprocessor names

are p0 to p15.
<CRd> Is the coprocessor register to be transferred, encoded in the "CRd" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
<option> Is a coprocessor option, in the range 0 to 255 enclosed in { }, encoded in the "imm8" field.
+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted

and encoded in the "U" field. It can have the following values:
- when U = 0
+ when U = 1

<imm> Is the immediate offset used for forming the address, a multiple of 4 in the range 0-1020,
defaulting to 0 and encoded in the "imm8" field, as <imm>/4.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteCPCheck(cp);
4 if !Coproc_Accepted(cp, ThisInstr()) then
5 GenerateCoprocessorException();
6 else
7 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
8 address = if index then offset_addr else R[n];
9

10 // Determine if the stack pointer limit check should be performed
11 if wback && n == 13 then

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

831

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

12 violatesLimit = ViolatesSPLim(LookUpSP(), offset_addr);
13 else
14 violatesLimit = FALSE;
15
16 // Memory operation only performed if limit not violated
17 if !violatesLimit then
18 repeat
19 MemA[address,4] = Coproc_GetWordToStore(cp, ThisInstr());
20 address = address + 4;
21 until Coproc_DoneStoring(cp, ThisInstr());
22
23 // If the stack pointer is being updated a fault will be raised
24 // if the limit is violated
25 if wback then RSPCheck[n] = offset_addr;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

832

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.209 STL

Store-Release Word. Store Release Word stores a word from a register to memory. The instruction also has
memory ordering semantics.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1 0 0 Rn Rt (1) (1) (1) (1) 1 0 1 0 (1) (1) (1) (1)

T1 variant

STL{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding
1 t = UInt(Rt); n = UInt(Rn);
2 if t IN {13,15} || n == 15 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 address = R[n];
4 MemO[address, 4] = R[t];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

833

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.210 STLB

Store-Release Byte. Store Release Byte stores a byte from a register to memory. The instruction also has memory
ordering semantics.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1 0 0 Rn Rt (1) (1) (1) (1) 1 0 0 0 (1) (1) (1) (1)

T1 variant

STLB{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding
1 t = UInt(Rt); n = UInt(Rn);
2 if t IN {13,15} || n == 15 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 address = R[n];
4 MemO[address, 1] = R[t][7:0];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

834

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.211 STLEX

Store-Release Exclusive Word. Store Release Exclusive Word stores a word from a register to memory if the
executing PE has exclusive access to the memory addressed. The instruction also has memory ordering semantics.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1 0 0 Rn Rt (1) (1) (1) (1) 1 1 1 0 Rd

T1 variant

STLEX{<c>}{<q>} <Rd>, <Rt>, [<Rn>]

Decode for this encoding
1 d = UInt(Rd); t = UInt(Rt); n = UInt(Rn);
2 if d IN {13,15} || t IN {13,15} || n == 15 then UNPREDICTABLE;
3 if d == n || d == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If d == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

CONSTRAINED UNPREDICTABLE behavior
If d == n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs the store to an UNKNOWN address.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the destination general-purpose register into which the status result of the store exclusive is

written, encoded in the "Rd" field. The value returned is:
1 If the operation fails to update memory.
0 If the operation updates memory.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 address = R[n];
4 if ExclusiveMonitorsPass(address,4) then
5 MemO[address, 4] = R[t];
6 R[d] = ZeroExtend('0');

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

835

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

7 else
8 R[d] = ZeroExtend('1');

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

836

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.212 STLEXB

Store-Release Exclusive Byte. Store Release Exclusive Byte stores a byte from a register to memory if the
executing PE has exclusive access to the memory addressed. The instruction also has memory ordering semantics.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1 0 0 Rn Rt (1) (1) (1) (1) 1 1 0 0 Rd

T1 variant

STLEXB{<c>}{<q>} <Rd>, <Rt>, [<Rn>]

Decode for this encoding
1 d = UInt(Rd); t = UInt(Rt); n = UInt(Rn);
2 if d IN {13,15} || t IN {13,15} || n == 15 then UNPREDICTABLE;
3 if d == n || d == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If d == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

CONSTRAINED UNPREDICTABLE behavior
If d == n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs the store to an UNKNOWN address.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the destination general-purpose register into which the status result of the store exclusive is

written, encoded in the "Rd" field. The value returned is:
1 If the operation fails to update memory.
0 If the operation updates memory.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 address = R[n];
4 if ExclusiveMonitorsPass(address,1) then
5 MemO[address, 1] = R[t][7:0];
6 R[d] = ZeroExtend('0');

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

837

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

7 else
8 R[d] = ZeroExtend('1');

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

838

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.213 STLEXH

Store-Release Exclusive Halfword. Store Release Exclusive Halfword stores a halfword from a register to memory
if the executing PE has exclusive access to the memory addressed. The instruction also has memory ordering
semantics.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1 0 0 Rn Rt (1) (1) (1) (1) 1 1 0 1 Rd

T1 variant

STLEXH{<c>}{<q>} <Rd>, <Rt>, [<Rn>]

Decode for this encoding
1 d = UInt(Rd); t = UInt(Rt); n = UInt(Rn);
2 if d IN {13,15} || t IN {13,15} || n == 15 then UNPREDICTABLE;
3 if d == n || d == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If d == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

CONSTRAINED UNPREDICTABLE behavior
If d == n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs the store to an UNKNOWN address.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the destination general-purpose register into which the status result of the store exclusive is

written, encoded in the "Rd" field. The value returned is:
1 If the operation fails to update memory.
0 If the operation updates memory.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 address = R[n];
4 if ExclusiveMonitorsPass(address,2) then
5 MemO[address, 2] = R[t][15:0];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

839

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

6 R[d] = ZeroExtend('0');
7 else
8 R[d] = ZeroExtend('1');

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

840

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.214 STLH

Store-Release Halfword. Store Release Halfword stores a halfword from a register to memory. The instruction
also has memory ordering semantics.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1 0 0 Rn Rt (1) (1) (1) (1) 1 0 0 1 (1) (1) (1) (1)

T1 variant

STLH{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding
1 t = UInt(Rt); n = UInt(Rn);
2 if t IN {13,15} || n == 15 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 address = R[n];
4 MemO[address, 2] = R[t][15:0];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

841

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.215 STM, STMIA, STMEA

Store Multiple. Store Multiple stores multiple registers to consecutive memory locations using an address from a
base register. The consecutive memory locations start at this address, and the address just above the last of those
locations can optionally be written back to the base register.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 0 Rn register_list

T1 variant

STM{IA}{<c>}{<q>} <Rn>!, <registers>
// Preferred syntax

STMEA{<c>}{<q>} <Rn>!, <registers>
// Alternate syntax, Empty Ascending stack

Decode for this encoding
1 n = UInt(Rn); registers = '00000000':register_list; wback = TRUE;
2 if BitCount(registers) < 1 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction operates as an STM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15. If the instruction specifies writeback, the modification to the base address
on writeback might differ from the number of registers stored.

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 0 W 0 Rn (0) M (0) register_list

T2 variant

STM{IA}{<c>}.W <Rn>{!}, <registers>
// Preferred syntax
// if <Rn>, '!' and <registers> can be represented in T1

STMEA{<c>}.W <Rn>{!}, <registers>
// Alternate syntax
// Empty Ascending stack
// if <Rn>, '!' and <registers> can be represented in T1

STM{IA}{<c>}{<q>} <Rn>{!}, <registers>
// Preferred syntax

STMEA{<c>}{<q>} <Rn>{!}, <registers>
// Alternate syntax, Empty Ascending stack

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

842

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 n = UInt(Rn); registers = '0':M:'0':register_list; wback = (W == '1');
3 if n == 15 || BitCount(registers) < 2 then UNPREDICTABLE;
4 if wback && registers[n] == '1' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction operates as an STM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15. If the instruction specifies writeback, the modification to the base address
on writeback might differ from the number of registers stored.

CONSTRAINED UNPREDICTABLE behavior
If BitCount(registers) == 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as described, with no change to its behavior and no additional side effects.

• The instruction operates as an STM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15.

CONSTRAINED UNPREDICTABLE behavior
If wback && registers<n> == ’1’, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored for the base register is UNKNOWN.

Assembler symbols for all encodings

IA Is an optional suffix for the Increment After form.
<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
! The address adjusted by the size of the data loaded is written back to the base register. If

specified, it is encoded in the "W" field as 1, otherwise this field defaults to 0.
<registers> For encoding T1: is a list of one or more registers to be stored, separated by commas and

surrounded by { and }. The registers in the list must be in the range R0-R7, encoded in the
"register_list" field. If the base register is not the lowest-numbered register in the list, such an
instruction stores an UNKNOWN value for the base register.
For encoding T2: is a list of one or more registers to be stored, separated by commas and
surrounded by { and }. The registers in the list must be in the range R0-R12, encoded in the
"register_list" field, and can optionally contain the LR. If the LR is in the list, the "M" field is
set to 1, otherwise it defaults to 0.

Operation for all encodings
1 if ConditionPassed() then

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

843

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

2 EncodingSpecificOperations();
3 address = R[n];
4 endAddress = R[n] + 4*BitCount(registers);
5
6 // Determine if the stack pointer limit should be checked
7 if n == 13 && wback && registers[n] == '0' then
8 violatesLimit = ViolatesSPLim(LookUpSP(), endAddress);
9 else

10 violatesLimit = FALSE;
11
12 for i = 0 to 14
13 // Memory operation only performed if limit not violated
14 if registers[i] == '1' && !violatesLimit then
15 if i == n && wback && i != LowestSetBit(registers) then
16 MemA[address,4] = bits(32) UNKNOWN; // encoding T1 only
17 else
18 MemA[address,4] = R[i];
19 address = address + 4;
20
21 // If the stack pointer is being updated a fault will be raised if
22 // the limit is violated
23 if wback then RSPCheck[n] = endAddress;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

844

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.216 STMDB, STMFD

Store Multiple Decrement Before (Full Descending). Store Multiple Decrement Before stores multiple registers to
consecutive memory locations using an address from a base register. The consecutive memory locations end just
below this address, and the address of the first of those locations can optionally be written back to the base register.

This instruction is used by the alias PUSH (multiple registers).

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 1 0 0 W 0 Rn (0) M (0) register_list

T1 variant

STMDB{<c>}{<q>} <Rn>{!}, <registers>
// Preferred syntax

STMFD{<c>}{<q>} <Rn>{!}, <registers>
// Alternate syntax, Full Descending stack

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 n = UInt(Rn); registers = '0':M:'0':register_list; wback = (W == '1');
3 if n == 15 || BitCount(registers) < 2 then UNPREDICTABLE;
4 if wback && registers[n] == '1' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction operates as an STM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15. If the instruction specifies writeback, the modification to the base address
on writeback might differ from the number of registers stored.

CONSTRAINED UNPREDICTABLE behavior
If wback && registers<n> == ’1’, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored for the base register is UNKNOWN.

CONSTRAINED UNPREDICTABLE behavior
If BitCount(registers) == 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as described, with no change to its behavior and no additional side effects.

• The instruction operates as an STM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

845

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

T2
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 1 0 M register_list

T2 variant

STMDB{<c>}{<q>} SP!, <registers>

Decode for this encoding
1 n = 13; wback = TRUE;
2 registers = '0':M:'000000':register_list;
3 if BitCount(registers) < 1 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction operates as an STM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15. If the instruction specifies writeback, the modification to the base address
on writeback might differ from the number of registers stored.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
! The address adjusted by the size of the data loaded is written back to the base register. If

specified, it is encoded in the "W" field as 1, otherwise this field defaults to 0.
<registers> For encoding T1: is a list of one or more registers to be stored, separated by commas and

surrounded by { and }. The registers in the list must be in the range R0-R12, encoded in the
"register_list" field, and can optionally contain the LR. If the LR is in the list, the "M" field is
set to 1, otherwise it defaults to 0.
For encoding T2: is a list of one or more registers to be stored, separated by commas and
surrounded by { and }. The registers in the list must be in the range R0-R7, encoded in the
"register_list" field, and can optionally include the LR. If the LR is in the list, the "M" field is
set to 1, otherwise this field defaults to 0.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 address = R[n] - 4*BitCount(registers);
4 applyLimit = n == 13 && wback;
5
6 for i = 0 to 14
7 // If R[n] is the SP, memory operation only performed if limit not violated
8 if registers[i] == '1' && !(applyLimit && ViolatesSPLim(LookUpSP(), address)) then
9 MemA[address,4] = R[i];

10 address = address + 4;
11
12 // If R[n] is the SP, stack pointer update will raise a fault if limit violated
13 if wback then RSPCheck[n] = R[n] - 4*BitCount(registers);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

846

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.217 STR (immediate)

Store Register (immediate). Store Register (immediate) calculates an address from a base register value and an
immediate offset, and stores a word from a register to memory. It can use offset, post-indexed, or pre-indexed
addressing.

This instruction is used by the alias PUSH (single register).

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 imm5 Rn Rt

T1 variant

STR{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding
1 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm5:'00', 32);
2 index = TRUE; add = TRUE; wback = FALSE;

T2
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 0 Rt imm8

T2 variant

STR{<c>}{<q>} <Rt>, [SP{, #{+}<imm>}]

Decode for this encoding
1 t = UInt(Rt); n = 13; imm32 = ZeroExtend(imm8:'00', 32);
2 index = TRUE; add = TRUE; wback = FALSE;

T3
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 1 1 0 0 Rn != 1111 Rt imm12

T3 variant

STR{<c>}.W <Rt>, [<Rn> {, #{+}<imm>}]
// <Rt>, <Rn>, <imm> can be represented in T1 or T2

STR{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding
1 if Rn == '1111' then UNDEFINED;
2 if !HaveMainExt() then UNDEFINED;
3 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
4 index = TRUE; add = TRUE; wback = FALSE;
5 if t == 15 then UNPREDICTABLE;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

847

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

T4
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 1 0 0 Rn != 1111 Rt 1 P U W imm8

Offset variant

Applies when P == 1 && U == 0 && W == 0.

STR{<c>}{<q>} <Rt>, [<Rn> {, #-<imm>}]

Post-indexed variant

Applies when P == 0 && W == 1.

STR{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

STR{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

Decode for this encoding
1 if P == '1' && U == '1' && W == '0' then SEE STRT;
2 if Rn == '1111' || (P == '0' && W == '0') then UNDEFINED;
3 if !HaveMainExt() then UNDEFINED;
4 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
5 index = (P == '1'); add = (U == '1'); wback = (W == '1');
6 if t == 15 || (wback && n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

Alias conditions
Alias preferred when
PUSH (single register) Rn == ‘1101‘ &&

P == ‘1‘ &&
U == ‘0‘ &&
W == ‘1‘ &&
imm8 == ‘00000100‘

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted

and encoded in the "U" field. It can have the following values:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

848

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

- when U = 0
+ when U = 1

+ Specifies the offset is added to the base register.
<imm> For the post-indexed or pre-indexed variant: is an 8-bit unsigned immediate byte offset, in the

range 0 to 255, encoded in the "imm8" field.
For encoding T1: is the optional positive unsigned immediate byte offset, a multiple of 4 in
the range 0 to 124, defaulting to 0 and encoded in the "imm5" field as <imm>/4.
For encoding T2: is the optional positive unsigned immediate byte offset, a multiple of 4, in
the range 0 to 1020, defaulting to 0 and encoded in the "imm8" field as <imm>/4.
For encoding T3: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095,
defaulting to 0 and encoded in the "imm12" field.
For encoding T4: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255,
defaulting to 0 and encoded in the "imm8" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
4 address = if index then offset_addr else R[n];
5
6 // Determine if the stack pointer limit should be checked
7 if n == 13 && wback then
8 violatesLimit = ViolatesSPLim(LookUpSP(), offset_addr);
9 else

10 violatesLimit = FALSE;
11 // Memory operation only performed if limit not violated
12 if !violatesLimit then
13 MemU[address,4] = R[t];
14
15 // If the stack pointer is being updated a fault will be raised if
16 // the limit is violated
17 if wback then RSPCheck[n] = offset_addr;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

849

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.218 STR (register)

Store Register (register). Store Register (register) calculates an address from a base register value and an offset
register value, stores a word from a register to memory. The offset register value can be shifted left by 0, 1, 2, or 3
bits.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 0 0 Rm Rn Rt

T1 variant

STR{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>]

Decode for this encoding
1 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
2 index = TRUE; add = TRUE; wback = FALSE;
3 (shift_t, shift_n) = (SRType_LSL, 0);

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 1 0 0 Rn != 1111 Rt 0 0 0 0 0 0 imm2 Rm

T2 variant

STR{<c>}.W <Rt>, [<Rn>, {+}<Rm>]
// <Rt>, <Rn>, <Rm> can be represented in T1

STR{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>{, LSL #<imm>}]

Decode for this encoding
1 if Rn == '1111' then UNDEFINED;
2 if !HaveMainExt() then UNDEFINED;
3 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
4 index = TRUE; add = TRUE; wback = FALSE;
5 (shift_t, shift_n) = (SRType_LSL, UInt(imm2));
6 if t == 15 || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
+ Specifies the index register is added to the base register.
<Rm> Is the general-purpose index register, encoded in the "Rm" field.
<imm> If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. <imm>

is encoded in imm2. If absent, no shift is specified and imm2 is encoded as 0b00.

Operation for all encodings
1 if ConditionPassed() then

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

850

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

2 EncodingSpecificOperations();
3 offset = Shift(R[m], shift_t, shift_n, APSR.C);
4 address = R[n] + offset;
5 MemU[address,4] = R[t];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

851

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.219 STRB (immediate)

Store Register Byte (immediate). Store Register Byte (immediate) calculates an address from a base register
value and an immediate offset, and stores a byte from a register to memory. It can use offset, post-indexed, or
pre-indexed addressing.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 imm5 Rn Rt

T1 variant

STRB{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding
1 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm5, 32);
2 index = TRUE; add = TRUE; wback = FALSE;

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 1 0 0 0 Rn != 1111 Rt imm12

T2 variant

STRB{<c>}.W <Rt>, [<Rn> {, #{+}<imm>}]
// <Rt>, <Rn>, <imm> can be represented in T1

STRB{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding
1 if Rn == '1111' then UNDEFINED;
2 if !HaveMainExt() then UNDEFINED;
3 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
4 index = TRUE; add = TRUE; wback = FALSE;
5 if t IN {13,15} then UNPREDICTABLE;

T3
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 0 0 Rn != 1111 Rt 1 P U W imm8

Offset variant

Applies when P == 1 && U == 0 && W == 0.

STRB{<c>}{<q>} <Rt>, [<Rn> {, #-<imm>}]

Post-indexed variant

Applies when P == 0 && W == 1.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

852

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

STRB{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

STRB{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

Decode for this encoding
1 if P == '1' && U == '1' && W == '0' then SEE STRBT;
2 if Rn == '1111' || (P == '0' && W == '0') then UNDEFINED;
3 if !HaveMainExt() then UNDEFINED;
4 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
5 index = (P == '1'); add = (U == '1'); wback = (W == '1');
6 if t IN {13,15} || (wback && n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted

and encoded in the "U" field. It can have the following values:
- when U = 0
+ when U = 1

+ Specifies the offset is added to the base register.
<imm> For the post-indexed or pre-indexed variant: is an 8-bit unsigned immediate byte offset, in the

range 0 to 255, encoded in the "imm8" field.
For encoding T1: is an optional 5-bit unsigned immediate byte offset, in the range 0 to 31,
defaulting to 0 and encoded in the "imm5" field.
For encoding T2: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095,
defaulting to 0 and encoded in the "imm12" field.
For encoding T3: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255,
defaulting to 0 and encoded in the "imm8" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
4 address = if index then offset_addr else R[n];
5
6 // Determine if the stack pointer limit should be checked
7 if n == 13 && wback then
8 violatesLimit = ViolatesSPLim(LookUpSP(), offset_addr);
9 else

10 violatesLimit = FALSE;
11 // Memory operation only performed if limit not violated
12 if !violatesLimit then

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

853

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

13 MemU[address,1] = R[t][7:0];
14
15 // If the stack pointer is being updated a fault will be raised if
16 // the limit is violated
17 if wback then RSPCheck[n] = offset_addr;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

854

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.220 STRB (register)

Store Register Byte (register). Store Register Byte (register) calculates an address from a base register value and
an offset register value, and stores a byte from a register to memory. The offset register value can be shifted left by
0, 1, 2, or 3 bits.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 1 0 Rm Rn Rt

T1 variant

STRB{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>]

Decode for this encoding
1 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
2 index = TRUE; add = TRUE; wback = FALSE;
3 (shift_t, shift_n) = (SRType_LSL, 0);

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 0 0 Rn != 1111 Rt 0 0 0 0 0 0 imm2 Rm

T2 variant

STRB{<c>}.W <Rt>, [<Rn>, {+}<Rm>]
// <Rt>, <Rn>, <Rm> can be represented in T1

STRB{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>{, LSL #<imm>}]

Decode for this encoding
1 if Rn == '1111' then UNDEFINED;
2 if !HaveMainExt() then UNDEFINED;
3 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
4 index = TRUE; add = TRUE; wback = FALSE;
5 (shift_t, shift_n) = (SRType_LSL, UInt(imm2));
6 if t IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
+ Specifies the index register is added to the base register.
<Rm> Is the general-purpose index register, encoded in the "Rm" field.
<imm> If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. <imm>

is encoded in imm2. If absent, no shift is specified and imm2 is encoded as 0b00.

Operation for all encodings
1 if ConditionPassed() then

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

855

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

2 EncodingSpecificOperations();
3 offset = Shift(R[m], shift_t, shift_n, APSR.C);
4 address = R[n] + offset;
5 MemU[address,1] = R[t][7:0];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

856

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.221 STRBT

Store Register Byte Unprivileged. Store Register Byte Unprivileged calculates an address from a base register
value and an immediate offset, and stores a byte from a register to memory. When privileged software uses an
STRBT instruction, the memory access is restricted as if the software was unprivileged.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 0 0 Rn != 1111 Rt 1 1 1 0 imm8

T1 variant

STRBT{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding
1 if Rn == '1111' then UNDEFINED;
2 if !HaveMainExt() then UNDEFINED;
3 t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
4 register_form = FALSE; imm32 = ZeroExtend(imm8, 32);
5 if t IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
+ Specifies the offset is added to the base register.
<imm> Is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 and

encoded in the "imm8" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 address = R[n] + imm32;
4 MemU_unpriv[address,1] = R[t][7:0];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

857

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.222 STRD (immediate)

Store Register Dual (immediate). Store Register Dual (immediate) calculates an address from a base register value
and an immediate offset, and stores two words from two registers to memory. It can use offset, post-indexed, or
pre-indexed addressing.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 P U 1 W 0 Rn != 1111 Rt Rt2 imm8

Offset variant

Applies when P == 1 && W == 0.

STRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn> {, #{+/-}<imm>}]

Post-indexed variant

Applies when P == 0 && W == 1.

STRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

STRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>, #{+/-}<imm>]!

Decode for this encoding
1 if P == '0' && W == '0' then SEE "Related encodings";
2 if !HaveMainExt() then UNDEFINED;
3 t = UInt(Rt); t2 = UInt(Rt2); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
4 index = (P == '1'); add = (U == '1'); wback = (W == '1');
5 if wback && (n == t || n == t2) then UNPREDICTABLE;
6 if n == 15 || t IN {13,15} || t2 IN {13,15} then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If wback && (n == t || n == t2), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rt> Is the first general-purpose register to be transferred, encoded in the "Rt" field.
<Rt2> Is the second general-purpose register to be transferred, encoded in the "Rt2" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted

and encoded in the "U" field. It can have the following values:
- when U = 0
+ when U = 1

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

858

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

<imm> For the offset variant: is the optional unsigned immediate byte offset, a multiple of 4, in the
range 0 to 1020, defaulting to 0 and encoded in the "imm8" field as <imm>/4.
For the post-indexed and pre-indexed variant: is the unsigned immediate byte offset, a multiple
of 4, in the range 0 to 1020, encoded in the "imm8" field as <imm>/4.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
4 address = if index then offset_addr else R[n];
5
6 // Determine if the stack pointer limit should be checked
7 if n == 13 && wback then
8 violatesLimit = ViolatesSPLim(LookUpSP(), offset_addr);
9 else

10 violatesLimit = FALSE;
11 // Memory operation only performed if limit not violated
12 if !violatesLimit then
13 MemA[address,4] = R[t];
14 MemA[address+4,4] = R[t2];
15
16 // If the stack pointer is being updated a fault will be raised if
17 // the limit is violated
18 if wback then RSPCheck[n] = offset_addr;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

859

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.223 STREX

Store Register Exclusive. Store Register Exclusive calculates an address from a base register value and an
immediate offset, and stores a word from a register to memory if the executing PE has exclusive access to the
memory addressed.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 0 1 0 0 Rn Rt != 1111 Rd imm8

T1 variant

STREX{<c>}{<q>} <Rd>, <Rt>, [<Rn> {, #<imm>}]

Decode for this encoding
1 d = UInt(Rd); t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
2 if t == 15 then SEE "TT";
3 if d IN {13,15} || t == 13 || n == 15 then UNPREDICTABLE;
4 if d == n || d == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If d == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

CONSTRAINED UNPREDICTABLE behavior
If d == n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs the store to an UNKNOWN address.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the destination general-purpose register into which the status result of the store exclusive is

written, encoded in the "Rd" field. The value returned is:
1 If the operation fails to update memory.
0 If the operation updates memory.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
<imm> The immediate offset added to the value of <Rn> to calculate the address. <imm> can be

omitted, meaning an offset of 0. Values are multiples of 4 in the range 0-1020.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

860

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

3 address = R[n] + imm32;
4 if ExclusiveMonitorsPass(address,4) then
5 MemA[address,4] = R[t];
6 R[d] = ZeroExtend('0');
7 else
8 R[d] = ZeroExtend('1');

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

861

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.224 STREXB

Store Register Exclusive Byte. Store Register Exclusive Byte derives an address from a base register value, and
stores a byte from a register to memory if the executing PE has exclusive access to the memory addressed.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1 0 0 Rn Rt (1) (1) (1) (1) 0 1 0 0 Rd

T1 variant

STREXB{<c>}{<q>} <Rd>, <Rt>, [<Rn>]

Decode for this encoding
1 d = UInt(Rd); t = UInt(Rt); n = UInt(Rn);
2 if d IN {13,15} || t IN {13,15} || n == 15 then UNPREDICTABLE;
3 if d == n || d == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If d == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

CONSTRAINED UNPREDICTABLE behavior
If d == n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs the store to an UNKNOWN address.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the destination general-purpose register into which the status result of the store exclusive is

written, encoded in the "Rd" field. The value returned is:
1 If the operation fails to update memory.
0 If the operation updates memory.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 address = R[n];
4 if ExclusiveMonitorsPass(address,1) then
5 MemA[address,1] = R[t][7:0];
6 R[d] = ZeroExtend('0');

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

862

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

7 else
8 R[d] = ZeroExtend('1');

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

863

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.225 STREXH

Store Register Exclusive Halfword. Store Register Exclusive Halfword derives an address from a base register
value, and stores a halfword from a register to memory if the executing PE has exclusive access to the memory
addressed.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1 0 0 Rn Rt (1) (1) (1) (1) 0 1 0 1 Rd

T1 variant

STREXH{<c>}{<q>} <Rd>, <Rt>, [<Rn>]

Decode for this encoding
1 d = UInt(Rd); t = UInt(Rt); n = UInt(Rn);
2 if d IN {13,15} || t IN {13,15} || n == 15 then UNPREDICTABLE;
3 if d == n || d == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If d == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

CONSTRAINED UNPREDICTABLE behavior
If d == n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs the store to an UNKNOWN address.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the destination general-purpose register into which the status result of the store exclusive is

written, encoded in the "Rd" field. The value returned is:
1 If the operation fails to update memory.
0 If the operation updates memory.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 address = R[n];
4 if ExclusiveMonitorsPass(address,2) then
5 MemA[address,2] = R[t][15:0];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

864

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

6 R[d] = ZeroExtend('0');
7 else
8 R[d] = ZeroExtend('1');

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

865

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.226 STRH (immediate)

Store Register Halfword (immediate). Store Register Halfword (immediate) calculates an address from a base
register value and an immediate offset, and stores a halfword from a register to memory. It can use offset,
post-indexed, or pre-indexed addressing.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 0 imm5 Rn Rt

T1 variant

STRH{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding
1 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm5:'0', 32);
2 index = TRUE; add = TRUE; wback = FALSE;

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 1 0 1 0 Rn != 1111 Rt imm12

T2 variant

STRH{<c>}.W <Rt>, [<Rn> {, #{+}<imm>}]
// <Rt>, <Rn>, <imm> can be represented in T1

STRH{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding
1 if Rn == '1111' then UNDEFINED;
2 if !HaveMainExt() then UNDEFINED;
3 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
4 index = TRUE; add = TRUE; wback = FALSE;
5 if t IN {13,15} then UNPREDICTABLE;

T3
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 1 0 Rn != 1111 Rt 1 P U W imm8

Offset variant

Applies when P == 1 && U == 0 && W == 0.

STRH{<c>}{<q>} <Rt>, [<Rn> {, #-<imm>}]

Post-indexed variant

Applies when P == 0 && W == 1.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

866

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

STRH{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.

STRH{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

Decode for this encoding
1 if P == '1' && U == '1' && W == '0' then SEE STRHT;
2 if Rn == '1111' || (P == '0' && W == '0') then UNDEFINED;
3 if !HaveMainExt() then UNDEFINED;
4 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
5 index = (P == '1'); add = (U == '1'); wback = (W == '1');
6 if t IN {13,15} || (wback && n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted

and encoded in the "U" field. It can have the following values:
- when U = 0
+ when U = 1

+ Specifies the offset is added to the base register.
<imm> For the post-indexed or pre-indexed variant: is an 8-bit unsigned immediate byte offset, in the

range 0 to 255, encoded in the "imm8" field.
For encoding T1: is the optional positive unsigned immediate byte offset, a multiple of 2 in
the range 0 to 62, defaulting to 0 and encoded in the "imm5" field as <imm>/2.
For encoding T2: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095,
defaulting to 0 and encoded in the "imm12" field.
For encoding T3: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255,
defaulting to 0 and encoded in the "imm8" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
4 address = if index then offset_addr else R[n];
5
6 // Determine if the stack pointer limit should be checked
7 if n == 13 && wback then
8 violatesLimit = ViolatesSPLim(LookUpSP(), offset_addr);
9 else

10 violatesLimit = FALSE;
11 // Memory operation only performed if limit not violated
12 if !violatesLimit then

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

867

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

13 MemU[address,2] = R[t][15:0];
14
15 // If the stack pointer is being updated a fault will be raised if
16 // the limit is violated
17 if wback then RSPCheck[n] = offset_addr;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

868

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.227 STRH (register)

Store Register Halfword (register). Store Register Halfword (register) calculates an address from a base register
value and an offset register value, and stores a halfword from a register to memory. The offset register value can be
shifted left by 0, 1, 2, or 3 bits.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 0 1 Rm Rn Rt

T1 variant

STRH{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>]

Decode for this encoding
1 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
2 index = TRUE; add = TRUE; wback = FALSE;
3 (shift_t, shift_n) = (SRType_LSL, 0);

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 1 0 Rn != 1111 Rt 0 0 0 0 0 0 imm2 Rm

T2 variant

STRH{<c>}.W <Rt>, [<Rn>, {+}<Rm>]
// <Rt>, <Rn>, <Rm> can be represented in T1

STRH{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>{, LSL #<imm>}]

Decode for this encoding
1 if Rn == '1111' then UNDEFINED;
2 if !HaveMainExt() then UNDEFINED;
3 t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
4 index = TRUE; add = TRUE; wback = FALSE;
5 (shift_t, shift_n) = (SRType_LSL, UInt(imm2));
6 if t IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
+ Specifies the index register is added to the base register.
<Rm> Is the general-purpose index register, encoded in the "Rm" field.
<imm> If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. <imm>

is encoded in imm2. If absent, no shift is specified and imm2 is encoded as 0b00.

Operation for all encodings
1 if ConditionPassed() then

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

869

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

2 EncodingSpecificOperations();
3 offset = Shift(R[m], shift_t, shift_n, APSR.C);
4 address = R[n] + offset;
5 MemU[address,2] = R[t][15:0];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

870

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.228 STRHT

Store Register Halfword Unprivileged. Store Register Halfword Unprivileged calculates an address from a base
register value and an immediate offset, and stores a halfword from a register to memory.

When privileged software uses an STRHT instruction, the memory access is restricted as if the software was
unprivileged.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 1 0 Rn != 1111 Rt 1 1 1 0 imm8

T1 variant

STRHT{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding
1 if Rn == '1111' then UNDEFINED;
2 if !HaveMainExt() then UNDEFINED;
3 t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
4 register_form = FALSE; imm32 = ZeroExtend(imm8, 32);
5 if t IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
+ Specifies the offset is added to the base register.
<imm> Is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 and

encoded in the "imm8" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 address = R[n] + imm32;
4 MemU_unpriv[address,2] = R[t][15:0];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

871

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.229 STRT

Store Register Unprivileged. Store Register Unprivileged calculates an address from a base register value and an
immediate offset, and stores a word from a register to memory.

When privileged software uses an STRT instruction, the memory access is restricted as if the software was
unprivileged.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 1 0 0 Rn != 1111 Rt 1 1 1 0 imm8

T1 variant

STRT{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding
1 if Rn == '1111' then UNDEFINED;
2 if !HaveMainExt() then UNDEFINED;
3 t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
4 register_form = FALSE; imm32 = ZeroExtend(imm8, 32);
5 if t IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
+ Specifies the offset is added to the base register.
<imm> Is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 and

encoded in the "imm8" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 address = R[n] + imm32;
4 data = R[t];
5 MemU_unpriv[address,4] = data;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

872

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.230 SUB (SP minus immediate)

Subtract from SP (immediate). Subtract (SP minus immediate) subtracts an immediate value from the SP value,
and writes the result to the destination register.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 0 0 0 1 imm7

T1 variant

SUB{<c>}{<q>} {SP,} SP, #<imm7>

Decode for this encoding
1 d = 13; setflags = FALSE; imm32 = ZeroExtend(imm7:'00', 32);

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 1 1 0 1 S 1 1 0 1 0 imm3 Rd imm8

SUB variant

Applies when S == 0.

SUB{<c>}.W {<Rd>,} SP, #<const>
// <Rd>, <const> can be represented in T1

SUB{<c>}{<q>} {<Rd>,} SP, #<const>

SUBS variant

Applies when S == 1 && Rd != 1111.

SUBS{<c>}{<q>} {<Rd>,} SP, #<const>

Decode for this encoding
1 if Rd == '1111' && S == '1' then SEE "CMP (immediate)";
2 if !HaveMainExt() then UNDEFINED;
3 d = UInt(Rd); setflags = (S == '1'); imm32 = T32ExpandImm(i:imm3:imm8);
4 if d == 15 && S == '0' then UNPREDICTABLE;

T3
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 1 0 1 0 1 0 1 1 0 1 0 imm3 Rd imm8

T3 variant

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

873

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

SUB{<c>}{<q>} {<Rd>,} SP, #<imm12>
// <imm12> cannot be represented in T1, T2, or T3

SUBW{<c>}{<q>} {<Rd>,} SP, #<imm12>
// <imm12> can be represented in T1, T2, or T3

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 d = UInt(Rd); setflags = FALSE; imm32 = ZeroExtend(i:imm3:imm8, 32);
3 if d == 15 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<imm7> Is an unsigned immediate, a multiple of 4 in the range 0 to 508, encoded in the "imm7" field

as <imm7>/4.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register

is the SP.
<imm12> Is a 12-bit unsigned immediate, in the range 0 to 4095, encoded in the "i:imm3:imm8" field.
<const> Is an immediate value derived from the 12-bit immediate that is encoded in the ’i:imm3:imm8’

field. See C1.5 Modified immediate constants on page 448 for the range of values.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 (result, carry, overflow) = AddWithCarry(SP, NOT(imm32), '1');
4 RSPCheck[d] = result;
5 if setflags then
6 APSR.N = result[31];
7 APSR.Z = IsZeroBit(result);
8 APSR.C = carry;
9 APSR.V = overflow;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

874

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.231 SUB (SP minus register)

Subtract from SP (register). Subtract (SP minus register) subtracts an optionally-shifted register value from the SP
value, and writes the result to the destination register.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 1 1 0 1 S 1 1 0 1 (0) imm3 Rd imm2

sr_type

Rm

SUB, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && sr_type == 11.

SUB{<c>}{<q>} {<Rd>,} SP, <Rm>, RRX

SUB, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && sr_type == 11).

SUB{<c>}.W {<Rd>,} SP, <Rm>
// <Rd>, <Rm> can be represented in T1 or T2

SUB{<c>}{<q>} {<Rd>,} SP, <Rm> {, <shift> #<amount>}

SUBS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && Rd != 1111 && imm2 == 00 && sr_type ==
11.

SUBS{<c>}{<q>} {<Rd>,} SP, <Rm>, RRX

SUBS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && sr_type == 11) && Rd !=
1111.

SUBS{<c>}{<q>} {<Rd>,} SP, <Rm> {, <shift> #<amount>}

Decode for this encoding
1 if Rd == '1111' && S == '1' then SEE "CMP (register)";
2 if !HaveMainExt() then UNDEFINED;
3 d = UInt(Rd); m = UInt(Rm); setflags = (S == '1');
4 (shift_t, shift_n) = DecodeImmShift(sr_type, imm3:imm2);
5 if d == 13 && (shift_t != SRType_LSL || shift_n > 3) then UNPREDICTABLE;
6 if (d == 15 && S == '0') || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register

is the SP.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
<shift> Is the type of shift to be applied to the second source register, encoded in the "sr_type" field. It

can have the following values:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

875

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

LSL when sr_type = 00
LSR when sr_type = 01
ASR when sr_type = 10
ROR when sr_type = 11

<amount> Is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift>
= LSR or ASR) encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 shifted = Shift(R[m], shift_t, shift_n, APSR.C);
4 (result, carry, overflow) = AddWithCarry(SP, NOT(shifted), '1');
5 RSPCheck[d] = result;
6 if setflags then
7 APSR.N = result[31];
8 APSR.Z = IsZeroBit(result);
9 APSR.C = carry;

10 APSR.V = overflow;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

876

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.232 SUB (immediate)

Subtract (immediate). Subtract (immediate) subtracts an immediate value from a register value, and writes the
result to the destination register. It can optionally update the condition flags based on the result.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 1 imm3 Rn Rd

T1 variant

SUB<c>{<q>} <Rd>, <Rn>, #<imm3>
// Inside IT block

SUBS{<q>} <Rd>, <Rn>, #<imm3>
// Outside IT block

Decode for this encoding
1 d = UInt(Rd); n = UInt(Rn); setflags = !InITBlock(); imm32 = ZeroExtend(imm3, 32);

T2
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 Rdn imm8

T2 variant

SUB<c>{<q>} <Rdn>, #<imm8>
// Inside IT block, and <Rdn>, <imm8> can be represented in T1

SUB<c>{<q>} {<Rdn>,} <Rdn>, #<imm8>
// Inside IT block, and <Rdn>, <imm8> cannot be represented in T1

SUBS{<q>} <Rdn>, #<imm8>
// Outside IT block, and <Rdn>, <imm8> can be represented in T1

SUBS{<q>} {<Rdn>,} <Rdn>, #<imm8>
// Outside IT block, and <Rdn>, <imm8> cannot be represented in T1

Decode for this encoding
1 d = UInt(Rdn); n = UInt(Rdn); setflags = !InITBlock(); imm32 = ZeroExtend(imm8, 32);

T3
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 1 1 0 1 S Rn != 1101 0 imm3 Rd imm8

SUB variant

Applies when S == 0.

SUB<c>.W {<Rd>,} <Rn>, #<const>
// Inside IT block, and <Rd>, <Rn>, <const> can be represented in T1 or T2

SUB{<c>}{<q>} {<Rd>,} <Rn>, #<const>

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

877

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

SUBS variant

Applies when S == 1 && Rd != 1111.

SUBS.W {<Rd>,} <Rn>, #<const>
// Outside IT block, and <Rd>, <Rn>, <const> can be represented in T1 or T2

SUBS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for this encoding
1 if Rd == '1111' && S == '1' then SEE "CMP (immediate)";
2 if Rn == '1101' then SEE "SUB (SP minus immediate)";
3 if !HaveMainExt() then UNDEFINED;
4 d = UInt(Rd); n = UInt(Rn); setflags = (S == '1'); imm32 = T32ExpandImm(i:imm3:imm8);
5 if d == 13 || (d == 15 && S == '0') || n == 15 then UNPREDICTABLE;

T4
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 1 0 1 0 1 0 Rn != 11x1 0 imm3 Rd imm8

T4 variant

SUB{<c>}{<q>} {<Rd>,} <Rn>, #<imm12>
// <imm12> cannot be represented in T1, T2, or T3

SUBW{<c>}{<q>} {<Rd>,} <Rn>, #<imm12>
// <imm12> can be represented in T1, T2, or T3

Decode for this encoding
1 if Rn == '1111' then SEE ADR;
2 if Rn == '1101' then SEE "SUB (SP minus immediate)";
3 if !HaveMainExt() then UNDEFINED;
4 d = UInt(Rd); n = UInt(Rn); setflags = FALSE; imm32 = ZeroExtend(i:imm3:imm8, 32);
5 if d IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rdn> Is the general-purpose source and destination register, encoded in the "Rdn" field.
<imm8> Is an 8-bit unsigned immediate, in the range 0 to 255, encoded in the "imm8" field.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register

is the same as <Rn>.
<Rn> For encoding T1: is the general-purpose source register, encoded in the "Rn" field.

For encoding T3: is the general-purpose source register, encoded in the "Rn" field. If the SP is
used, see C2.4.230 SUB (SP minus immediate) on page 873.
For encoding T4: is the general-purpose source register, encoded in the "Rn" field. If the SP
is used, see C2.4.230 SUB (SP minus immediate) on page 873. If the PC is used, see C2.4.8
ADR on page 525.

<imm3> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "imm3" field.
<imm12> Is a 12-bit unsigned immediate, in the range 0 to 4095, encoded in the "i:imm3:imm8" field.
<const> Is an immediate value derived from the 12-bit immediate that is encoded in the ’i:imm3:imm8’

field. See C1.5 Modified immediate constants on page 448 for the range of values.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

878

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 (result, carry, overflow) = AddWithCarry(R[n], NOT(imm32), '1');
4 R[d] = result;
5 if setflags then
6 APSR.N = result[31];
7 APSR.Z = IsZeroBit(result);
8 APSR.C = carry;
9 APSR.V = overflow;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

879

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.233 SUB (immediate, from PC)

Subtract from PC. Subtract from PC subtracts an immediate value from the Align(PC, 4) value to form a PC-relative
address, and writes the result to the destination register. Arm recommends that, where possible, software avoids
using this alias.

This instruction is an alias of the ADR instruction. This means that:

• The encodings in this description are named to match the encodings of ADR.

• The description of ADR gives the operational pseudocode for this instruction.

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 1 0 1 0 1 0 1 1 1 1 0 imm3 Rd imm8

T2 variant

SUB{<c>}{<q>} <Rd>, PC, #<imm12>

is equivalent to

ADR{<c>}{<q>} <Rd>, <label>

and is the preferred disassembly when i:imm3:imm8 == ’000000000000’.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<label> For encoding T1: the label of an instruction or literal data item whose address is to be loaded

into <Rd>. The assembler calculates the required value of the offset from the Align(PC,
4) value of the ADR instruction to this label. Permitted values of the size of the offset are
multiples of 4 in the range 0 to 1020.
For encoding T2 and T3: the label of an instruction or literal data item whose address is
to be loaded into <Rd>. The assembler calculates the required value of the offset from the
Align(PC, 4) value of the ADR instruction to this label. If the offset is zero or positive,
encoding T3 is used, with imm32 equal to the offset. If the offset is negative, encoding T2 is
used, with imm32 equal to the size of the offset. That is, the use of encoding T2 indicates that
the required offset is minus the value of imm32. Permitted values of the size of the offset are
0-4095.

<imm12> Is a 12-bit unsigned immediate, in the range 0 to 4095, encoded in the "i:imm3:imm8" field.

Operation for all encodings
The description of ADR gives the operational pseudocode for this instruction.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

880

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.234 SUB (register)

Subtract (register). Subtract (register) subtracts an optionally-shifted register value from a register value, and
writes the result to the destination register. It can optionally update the condition flags based on the result.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 0 1 Rm Rn Rd

T1 variant

SUB<c>{<q>} <Rd>, <Rn>, <Rm>
// Inside IT block

SUBS{<q>} {<Rd>,} <Rn>, <Rm>
// Outside IT block

Decode for this encoding
1 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = !InITBlock();
2 (shift_t, shift_n) = (SRType_LSL, 0);

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 1 1 0 1 S Rn != 1101 (0) imm3 Rd imm2

sr_type

Rm

SUB, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && sr_type == 11.

SUB{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

SUB, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && sr_type == 11).

SUB<c>.W {<Rd>,} <Rn>, <Rm>
// Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1

SUB{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

SUBS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && Rd != 1111 && imm2 == 00 && sr_type ==
11.

SUBS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

SUBS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && sr_type == 11) && Rd !=
1111.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

881

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

SUBS.W {<Rd>,} <Rn>, <Rm>
// Outside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1

SUBS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for this encoding
1 if Rd == '1111' && S == '1' then SEE "CMP (register)";
2 if Rn == '1101' then SEE "SUB (SP minus register)";
3 if !HaveMainExt() then UNDEFINED;
4 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
5 (shift_t, shift_n) = DecodeImmShift(sr_type, imm3:imm2);
6 if d == 13 || (d == 15 && S == '0') || n == 15 || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register

is the same as <Rn>.
<Rn> For encoding T1: is the first general-purpose source register, encoded in the "Rn" field.

For encoding T2: is the first general-purpose source register, encoded in the "Rn" field. If the
SP is used, see C2.4.231 SUB (SP minus register) on page 875.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
<shift> Is the type of shift to be applied to the second source register, encoded in the "sr_type" field. It

can have the following values:
LSL when sr_type = 00
LSR when sr_type = 01
ASR when sr_type = 10
ROR when sr_type = 11

<amount> Is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift>
= LSR or ASR) encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 shifted = Shift(R[m], shift_t, shift_n, APSR.C);
4 (result, carry, overflow) = AddWithCarry(R[n], NOT(shifted), '1');
5 R[d] = result;
6 if setflags then
7 APSR.N = result[31];
8 APSR.Z = IsZeroBit(result);
9 APSR.C = carry;

10 APSR.V = overflow;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

882

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.235 SVC

Supervisor Call. The Supervisor Call instruction generates a call to a system supervisor.

Use it as a call to an operating system to provide a service.

In older versions of the Arm architecture, SVC was called SWI, Software Interrupt.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 1 1 1 1 imm8

T1 variant

SVC{<c>}{<q>} {#}<imm>

Decode for this encoding
1 imm32 = ZeroExtend(imm8, 32);
2 // imm32 is for assembly/disassembly. SVC handlers in some
3 // systems interpret imm8 in software, for example to determine the required service.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<imm> Is an 8-bit unsigned immediate, in the range 0 to 255, encoded in the "imm8" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 CallSupervisor();

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

883

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.236 SXTAB

Signed Extend and Add Byte. Signed Extend and Add Byte extracts an 8-bit value from a register, sign-extends it
to 32 bits, adds the result to the value in another register, and writes the final result to the destination register. The
instruction can specify a rotation by 0, 8, 16, or 24 bits before extracting the 8-bit value.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 1 0 0 Rn != 1111 1 1 1 1 Rd 1 (0)

rotate

Rm

T1 variant

SXTAB{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ROR #<amount>}

Decode for this encoding
1 if Rn == '1111' then SEE SXTB;
2 if !HaveDSPExt() then UNDEFINED;
3 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:'000');
4 if d IN {13,15} || n == 13 || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
<amount> Is the rotate amount, encoded in the "rotate" field. It can have the following values:

0 when rotate = 00
8 when rotate = 01
16 when rotate = 10
24 when rotate = 11

ROR #<amount> can be omitted, meaning a rotate amount of 0. This is the preferred disas-
sembly for rotate == 0b00.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 rotated = ROR(R[m], rotation);
4 R[d] = R[n] + SignExtend(rotated[7:0], 32);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

884

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.237 SXTAB16

Signed Extend and Add Byte 16. Signed Extend and Add Byte 16 extracts two 8-bit values from a register,
sign-extends them to 16 bits each, adds the results to two 16-bit values from another register, and writes the final
results to the destination register. The instruction can specify a rotation by 0, 8, 16, or 24 bits before extracting the
8-bit values.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 0 1 0 Rn != 1111 1 1 1 1 Rd 1 (0)

rotate

Rm

T1 variant

SXTAB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ROR #<amount>}

Decode for this encoding
1 if Rn == '1111' then SEE SXTB16;
2 if !HaveDSPExt() then UNDEFINED;
3 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:'000');
4 if d IN {13,15} || n == 13 || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
<amount> Is the rotate amount, encoded in the "rotate" field. It can have the following values:

0 when rotate = 00
8 when rotate = 01
16 when rotate = 10
24 when rotate = 11

ROR #<amount> can be omitted, meaning a rotate amount of 0. This is the preferred disas-
sembly for rotate == 0b00.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 rotated = ROR(R[m], rotation);
4 bits(32) result;
5 result[15:0] = R[n][15:0] + SignExtend(rotated[7:0], 16);
6 result[31:16] = R[n][31:16] + SignExtend(rotated[23:16], 16);
7 R[d] = result;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

885

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.238 SXTAH

Signed Extend and Add Halfword. Signed Extend and Add Halfword extracts a 16-bit value from a register,
sign-extends it to 32 bits, adds the result to a value from another register, and writes the final result to the destination
register. The instruction can specify a rotation by 0, 8, 16, or 24 bits before extracting the 16-bit value.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 0 0 0 Rn != 1111 1 1 1 1 Rd 1 (0)

rotate

Rm

T1 variant

SXTAH{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ROR #<amount>}

Decode for this encoding
1 if Rn == '1111' then SEE SXTH;
2 if !HaveDSPExt() then UNDEFINED;
3 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:'000');
4 if d IN {13,15} || n == 13 || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
<amount> Is the rotate amount, encoded in the "rotate" field. It can have the following values:

0 when rotate = 00
8 when rotate = 01
16 when rotate = 10
24 when rotate = 11

ROR #<amount> can be omitted, meaning a rotate amount of 0. This is the preferred disas-
sembly for rotate == 0b00.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 rotated = ROR(R[m], rotation);
4 R[d] = R[n] + SignExtend(rotated[15:0], 32);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

886

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.239 SXTB

Signed Extend Byte. Signed Extend Byte extracts an 8-bit value from a register, sign extends it to 32 bits, and
writes the result to the destination register. The instruction can specify a rotation by 0, 8, 16, or 24 bits before
extracting the 8-bit value.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 0 1 0 0 1 Rm Rd

T1 variant

SXTB{<c>}{<q>} {<Rd>,} <Rm>

Decode for this encoding
1 d = UInt(Rd); m = UInt(Rm); rotation = 0;

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 1 0 0 1 1 1 1 1 1 1 1 Rd 1 (0)

rotate

Rm

T2 variant

SXTB{<c>}.W {<Rd>,} <Rm>
// <Rd>, <Rm> can be represented in T1

SXTB{<c>}{<q>} {<Rd>,} <Rm> {, ROR #<amount>}

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
3 if d IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> Is the general-purpose source register, encoded in the "Rm" field.
<amount> Is the rotate amount, encoded in the "rotate" field. It can have the following values:

0 when rotate = 00
8 when rotate = 01
16 when rotate = 10
24 when rotate = 11

ROR #<amount> can be omitted, meaning a rotate amount of 0. This is the preferred disas-
sembly for rotate == 0b00.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

887

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 rotated = ROR(R[m], rotation);
4 R[d] = SignExtend(rotated[7:0], 32);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

888

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.240 SXTB16

Signed Extend Byte 16. Signed Extend Byte 16 extracts two 8-bit values from a register, sign-extends them to 16
bits each, and writes the results to the destination register. The instruction can specify a rotation by 0, 8, 16, or 24
bits before extracting the 8-bit values.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 0 1 0 1 1 1 1 1 1 1 1 Rd 1 (0)

rotate

Rm

T1 variant

SXTB16{<c>}{<q>} {<Rd>,} <Rm> {, ROR #<amount>}

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
3 if d IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> Is the general-purpose source register, encoded in the "Rm" field.
<amount> Is the rotate amount, encoded in the "rotate" field. It can have the following values:

0 when rotate = 00
8 when rotate = 01
16 when rotate = 10
24 when rotate = 11

ROR #<amount> can be omitted, meaning a rotate amount of 0. This is the preferred disas-
sembly for rotate == 0b00.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 rotated = ROR(R[m], rotation);
4 bits(32) result;
5 result[15:0] = SignExtend(rotated[7:0], 16);
6 result[31:16] = SignExtend(rotated[23:16], 16);
7 R[d] = result;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

889

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.241 SXTH

Signed Extend Halfword. Signed Extend Halfword extracts a 16-bit value from a register, sign extends it to 32 bits,
and writes the result to the destination register. The instruction can specify a rotation by 0, 8, 16, or 24 bits before
extracting the 16-bit value.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 0 1 0 0 0 Rm Rd

T1 variant

SXTH{<c>}{<q>} {<Rd>,} <Rm>

Decode for this encoding
1 d = UInt(Rd); m = UInt(Rm); rotation = 0;

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 Rd 1 (0)

rotate

Rm

T2 variant

SXTH{<c>}.W {<Rd>,} <Rm>
// <Rd>, <Rm> can be represented in T1

SXTH{<c>}{<q>} {<Rd>,} <Rm> {, ROR #<amount>}

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
3 if d IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> Is the general-purpose source register, encoded in the "Rm" field.
<amount> Is the rotate amount, encoded in the "rotate" field. It can have the following values:

0 when rotate = 00
8 when rotate = 01
16 when rotate = 10
24 when rotate = 11

ROR #<amount> can be omitted, meaning a rotate amount of 0. This is the preferred disas-
sembly for rotate == 0b00.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

890

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 rotated = ROR(R[m], rotation);
4 R[d] = SignExtend(rotated[15:0], 32);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

891

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.242 TBB, TBH

Table Branch Byte or Halfword. Table Branch Byte causes a PC-relative forward branch using a table of single
byte offsets. A base register provides a pointer to the table, and a second register supplies an index into the table.
The branch length is twice the value of the byte returned from the table.

Table Branch Halfword causes a PC-relative forward branch using a table of single halfword offsets. A base
register provides a pointer to the table, and a second register supplies an index into the table. The branch length is
twice the value of the halfword returned from the table.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1 0 1 Rn (1) (1) (1) (1) (0) (0) (0) (0) 0 0 0 H Rm

Byte variant

Applies when H == 0.

TBB{<c>}{<q>} [<Rn>, <Rm>]
// Outside or last in IT block

Halfword variant

Applies when H == 1.

TBH{<c>}{<q>} [<Rn>, <Rm>, LSL #1]
// Outside or last in IT block

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 n = UInt(Rn); m = UInt(Rm); is_tbh = (H == '1');
3 if n == 13 || m IN {13,15} then UNPREDICTABLE;
4 if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rn> Is the general-purpose base register holding the address of the table of branch lengths, encoded

in the "Rn" field. The PC can be used. If it is, the table immediately follows this instruction.
<Rm> For the byte variant: is the general-purpose index register, encoded in the "Rm" field. This

register contains an integer pointing to a single byte in the table. The offset in the table is the
value of the index.
For the halfword variant: is the general-purpose index register, encoded in the "Rm" field.
This register contains an integer pointing to a halfword in the table. The offset in the table is
twice the value of the index.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 if is_tbh then
4 halfwords = UInt(MemU[R[n]+LSL(R[m],1), 2]);
5 else
6 halfwords = UInt(MemU[R[n]+R[m], 1]);
7 BranchTo(PC + 2*halfwords);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

892

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.243 TEQ (immediate)

Test Equivalence (immediate). Test Equivalence (immediate) performs an exclusive OR operation on a register
value and an immediate value. It updates the condition flags based on the result, and discards the result.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 0 1 0 0 1 Rn 0 imm3 1 1 1 1 imm8

T1 variant

TEQ{<c>}{<q>} <Rn>, #<const>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 n = UInt(Rn);
3 (imm32, carry) = T32ExpandImm_C(i:imm3:imm8, APSR.C);
4 if n IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rn> Is the general-purpose source register, encoded in the "Rn" field.
<const> Is an immediate value derived from the 12-bit immediate that is encoded in the ’i:imm3:imm8’

field. See C1.5 Modified immediate constants on page 448 for the range of values.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 result = R[n] EOR imm32;
4 APSR.N = result[31];
5 APSR.Z = IsZeroBit(result);
6 APSR.C = carry;
7 // APSR.V unchanged

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

893

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.244 TEQ (register)

Test Equivalence (register). Test Equivalence (register) performs an exclusive OR operation on a register value and
an optionally-shifted register value. It updates the condition flags based on the result, and discards the result.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 1 0 0 1 Rn (0) imm3 1 1 1 1 imm2

sr_type

Rm

Rotate right with extend variant

Applies when imm3 == 000 && imm2 == 00 && sr_type == 11.

TEQ{<c>}{<q>} <Rn>, <Rm>, RRX

Shift or rotate by value variant

Applies when !(imm3 == 000 && imm2 == 00 && sr_type == 11).

TEQ{<c>}{<q>} <Rn>, <Rm> {, <shift> #<amount>}

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 n = UInt(Rn); m = UInt(Rm);
3 (shift_t, shift_n) = DecodeImmShift(sr_type, imm3:imm2);
4 if n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
<shift> Is the type of shift to be applied to the second source register, encoded in the "sr_type" field. It

can have the following values:
LSL when sr_type = 00
LSR when sr_type = 01
ASR when sr_type = 10
ROR when sr_type = 11

<amount> Is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift>
= LSR or ASR) encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
4 result = R[n] EOR shifted;
5 APSR.N = result[31];
6 APSR.Z = IsZeroBit(result);
7 APSR.C = carry;
8 // APSR.V unchanged

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

894

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.245 TST (immediate)

Test (immediate). Test (immediate) performs a bitwise AND operation on a register value and an immediate value.
It updates the condition flags based on the result, and discards the result.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 0 0 0 0 1 Rn 0 imm3 1 1 1 1 imm8

T1 variant

TST{<c>}{<q>} <Rn>, #<const>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 n = UInt(Rn);
3 (imm32, carry) = T32ExpandImm_C(i:imm3:imm8, APSR.C);
4 if n IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rn> Is the general-purpose source register, encoded in the "Rn" field.
<const> Is an immediate value derived from the 12-bit immediate that is encoded in the ’i:imm3:imm8’

field. See C1.5 Modified immediate constants on page 448 for the range of values.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 result = R[n] AND imm32;
4 APSR.N = result[31];
5 APSR.Z = IsZeroBit(result);
6 APSR.C = carry;
7 // APSR.V unchanged

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

895

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.246 TST (register)

Test (register). Test (register) performs a bitwise AND operation on a register value and an optionally-shifted
register value. It updates the condition flags based on the result, and discards the result.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 1 0 0 0 Rm Rn

T1 variant

TST{<c>}{<q>} <Rn>, <Rm>

Decode for this encoding
1 n = UInt(Rn); m = UInt(Rm);
2 (shift_t, shift_n) = (SRType_LSL, 0);

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 0 0 1 Rn (0) imm3 1 1 1 1 imm2

sr_type

Rm

Rotate right with extend variant

Applies when imm3 == 000 && imm2 == 00 && sr_type == 11.

TST{<c>}{<q>} <Rn>, <Rm>, RRX

Shift or rotate by value variant

Applies when !(imm3 == 000 && imm2 == 00 && sr_type == 11).

TST{<c>}.W <Rn>, <Rm>
// <Rn>, <Rm> can be represented in T1

TST{<c>}{<q>} <Rn>, <Rm> {, <shift> #<amount>}

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 n = UInt(Rn); m = UInt(Rm);
3 (shift_t, shift_n) = DecodeImmShift(sr_type, imm3:imm2);
4 if n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
<shift> Is the type of shift to be applied to the second source register, encoded in the "sr_type" field. It

can have the following values:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

896

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

LSL when sr_type = 00
LSR when sr_type = 01
ASR when sr_type = 10
ROR when sr_type = 11

<amount> Is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift>
= LSR or ASR) encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
4 result = R[n] AND shifted;
5 APSR.N = result[31];
6 APSR.Z = IsZeroBit(result);
7 APSR.C = carry;
8 // APSR.V unchanged

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

897

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.247 TT, TTT, TTA, TTAT

Test Target (Alternate Domain, Unprivileged). Test Target (TT) queries the Security state and access permissions
of a memory location.

Test Target Unprivileged (TTT) queries the Security state and access permissions of a memory location for an
unprivileged access to that location.

Test Target Alternate Domain (TTA) and Test Target Alternate Domain Unprivileged (TTAT) query the Security
state and access permissions of a memory location for a Non-secure access to that location. These instructions are
only valid when executing in Secure state, and are UNDEFINED if used from Non-secure state.

These instructions return the Security state and access permissions in the destination register. See TT_RESP for
the format of the destination register.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 0 1 0 0 Rn 1 1 1 1 Rd A T (0) (0) (0) (0) (0) (0)

TT variant

Applies when A == 0 && T == 0.

TT{<c>}{<q>} <Rd>, <Rn>

TTA variant

Applies when A == 1 && T == 0.

TTA{<c>}{<q>} <Rd>, <Rn>

TTAT variant

Applies when A == 1 && T == 1.

TTAT{<c>}{<q>} <Rd>, <Rn>

TTT variant

Applies when A == 0 && T == 1.

TTT{<c>}{<q>} <Rd>, <Rn>

Decode for this encoding
1 d = UInt(Rd); n = UInt(Rn); alt = (A == '1'); forceunpriv = (T == '1');
2 if d IN {13,15} || n == 15 then UNPREDICTABLE;
3 if alt && !IsSecure() then UNDEFINED;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the destination general-purpose register into which the status result of the target test is

written, encoded in the "Rd" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

898

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 addr = R[n];
4 R[d] = TTResp(addr, alt, forceunpriv);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

899

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.248 UADD16

Unsigned Add 16. Unsigned Add 16 performs two 16-bit unsigned integer additions, and writes the results to the
destination register. It sets the APSR.GE bits according to the results of the additions.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 1 Rn 1 1 1 1 Rd 0 1 0 0 Rm

T1 variant

UADD16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 sum1 = UInt(R[n][15:0]) + UInt(R[m][15:0]);
4 sum2 = UInt(R[n][31:16]) + UInt(R[m][31:16]);
5 R[d] = sum2[15:0] : sum1[15:0];
6 APSR.GE[1:0] = if sum1 >= 0x10000 then '11' else '00';
7 APSR.GE[3:2] = if sum2 >= 0x10000 then '11' else '00';

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

900

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.249 UADD8

Unsigned Add 8. Unsigned Add 8 performs four unsigned 8-bit integer additions, and writes the results to the
destination register. It sets the APSR.GE bits according to the results of the additions.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 0 1 0 0 Rm

T1 variant

UADD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 sum1 = UInt(R[n][7:0]) + UInt(R[m][7:0]);
4 sum2 = UInt(R[n][15:8]) + UInt(R[m][15:8]);
5 sum3 = UInt(R[n][23:16]) + UInt(R[m][23:16]);
6 sum4 = UInt(R[n][31:24]) + UInt(R[m][31:24]);
7 R[d] = sum4[7:0] : sum3[7:0] : sum2[7:0] : sum1[7:0];
8 APSR.GE[0] = if sum1 >= 0x100 then '1' else '0';
9 APSR.GE[1] = if sum2 >= 0x100 then '1' else '0';

10 APSR.GE[2] = if sum3 >= 0x100 then '1' else '0';
11 APSR.GE[3] = if sum4 >= 0x100 then '1' else '0';

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

901

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.250 UASX

Unsigned Add and Subtract with Exchange. Unsigned Add and Subtract with Exchange exchanges the two
halfwords of the second operand, performs one unsigned 16-bit integer addition and one unsigned 16-bit subtraction,
and writes the results to the destination register. It sets the APSR.GE bits according to the results.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 1 0 Rn 1 1 1 1 Rd 0 1 0 0 Rm

T1 variant

UASX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 diff = UInt(R[n][15:0]) - UInt(R[m][31:16]);
4 sum = UInt(R[n][31:16]) + UInt(R[m][15:0]);
5 R[d] = sum[15:0] : diff[15:0];
6 APSR.GE[1:0] = if diff >= 0 then '11' else '00';
7 APSR.GE[3:2] = if sum >= 0x10000 then '11' else '00';

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

902

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.251 UBFX

Unsigned Bit Field Extract. Unsigned Bit Field Extract extracts any number of adjacent bits at any position from
one register, zero extends them to 32 bits, and writes the result to the destination register.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 (0) 1 1 1 1 0 0 Rn 0 imm3 Rd imm2 (0) widthm1

T1 variant

UBFX{<c>}{<q>} <Rd>, <Rn>, #<lsb>, #<width>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn);
3 lsbit = UInt(imm3:imm2); widthminus1 = UInt(widthm1);
4 msbit = lsbit + widthminus1;
5 if msbit > 31 then UNPREDICTABLE;
6 if d IN {13,15} || n IN {13,15} then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If msbit > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the general-purpose source register, encoded in the "Rn" field.
<lsb> Is the bit number of the least significant bit in the field, in the range 0 to 31, encoded in the

"imm3:imm2" field.
<width> Is the width of the field, in the range 1 to 32-<lsb>, encoded in the "widthm1" field as

<width>-1.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 if msbit <= 31 then
4 R[d] = ZeroExtend(R[n][msbit:lsbit], 32);
5 else
6 R[d] = bits(32) UNKNOWN;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

903

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.252 UDF

Permanently Undefined. Permanently Undefined generates an Undefined Instruction exception.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 1 1 1 0 imm8

T1 variant

UDF{<c>}{<q>} {#}<imm>

Decode for this encoding
1 imm32 = ZeroExtend(imm8, 32);
2 // imm32 is for assembly and disassembly only, and is ignored by hardware.

T2
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 1 1 1 1 1 1 imm4 1 0 1 0 imm12

T2 variant

UDF{<c>}.W {#}<imm>
// <imm> can be represented in T1

UDF{<c>}{<q>} {#}<imm>

Decode for this encoding
1 imm32 = ZeroExtend(imm4:imm12, 32);
2 // imm32 is for assembly and disassembly only, and is ignored by hardware.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431. Arm deprecates using any <c>
value other than AL.

<q> See C1.2.5 Standard assembler syntax fields on page 431.
<imm> For encoding T1: is an 8-bit unsigned immediate, in the range 0 to 255, encoded in the "imm8"

field. The PE ignores the value of this constant.
For encoding T2: is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the
"imm4:imm12" field. The PE ignores the value of this constant.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 UNDEFINED;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

904

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.253 UDIV

Unsigned Divide. Unsigned Divide divides a 32-bit unsigned integer register value by a 32-bit unsigned integer
register value, and writes the result to the destination register. The condition flags are not affected.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 1 0 1 1 Rn (1) (1) (1) (1) Rd 1 1 1 1 Rm

T1 variant

UDIV{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
2 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register holding the dividend, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register holding the divisor, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 if UInt(R[m]) == 0 then
4 if IntegerZeroDivideTrappingEnabled() then
5 GenerateIntegerZeroDivide();
6 else
7 result = 0;
8 else
9 result = RoundTowardsZero(Real(UInt(R[n])) / Real(UInt(R[m])));

10 R[d] = result[31:0];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

905

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.254 UHADD16

Unsigned Halving Add 16. Unsigned Halving Add 16 performs two unsigned 16-bit integer additions, halves the
results, and writes the results to the destination register.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 1 Rn 1 1 1 1 Rd 0 1 1 0 Rm

T1 variant

UHADD16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 sum1 = UInt(R[n][15:0]) + UInt(R[m][15:0]);
4 sum2 = UInt(R[n][31:16]) + UInt(R[m][31:16]);
5 R[d] = sum2[16:1] : sum1[16:1];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

906

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.255 UHADD8

Unsigned Halving Add 8. Unsigned Halving Add 8 performs four unsigned 8-bit integer additions, halves the
results, and writes the results to the destination register.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 0 1 1 0 Rm

T1 variant

UHADD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 sum1 = UInt(R[n][7:0]) + UInt(R[m][7:0]);
4 sum2 = UInt(R[n][15:8]) + UInt(R[m][15:8]);
5 sum3 = UInt(R[n][23:16]) + UInt(R[m][23:16]);
6 sum4 = UInt(R[n][31:24]) + UInt(R[m][31:24]);
7 R[d] = sum4[8:1] : sum3[8:1] : sum2[8:1] : sum1[8:1];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

907

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.256 UHASX

Unsigned Halving Add and Subtract with Exchange. Unsigned Halving Add and Subtract with Exchange exchanges
the two halfwords of the second operand, performs one unsigned 16-bit integer addition and one unsigned 16-bit
subtraction, halves the results, and writes the results to the destination register.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 1 0 Rn 1 1 1 1 Rd 0 1 1 0 Rm

T1 variant

UHASX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 diff = UInt(R[n][15:0]) - UInt(R[m][31:16]);
4 sum = UInt(R[n][31:16]) + UInt(R[m][15:0]);
5 R[d] = sum[16:1] : diff[16:1];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

908

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.257 UHSAX

Unsigned Halving Subtract and Add with Exchange. Unsigned Halving Subtract and Add with Exchange exchanges
the two halfwords of the second operand, performs one unsigned 16-bit integer subtraction and one unsigned 16-bit
addition, halves the results, and writes the results to the destination register.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 1 0 Rn 1 1 1 1 Rd 0 1 1 0 Rm

T1 variant

UHSAX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 sum = UInt(R[n][15:0]) + UInt(R[m][31:16]);
4 diff = UInt(R[n][31:16]) - UInt(R[m][15:0]);
5 R[d] = diff[16:1] : sum[16:1];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

909

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.258 UHSUB16

Unsigned Halving Subtract 16. Unsigned Halving Subtract 16 performs two unsigned 16-bit integer subtractions,
halves the results, and writes the results to the destination register.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 0 1 Rn 1 1 1 1 Rd 0 1 1 0 Rm

T1 variant

UHSUB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 diff1 = UInt(R[n][15:0]) - UInt(R[m][15:0]);
4 diff2 = UInt(R[n][31:16]) - UInt(R[m][31:16]);
5 R[d] = diff2[16:1] : diff1[16:1];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

910

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.259 UHSUB8

Unsigned Halving Subtract 8. Unsigned Halving Subtract 8 performs four unsigned 8-bit integer subtractions,
halves the results, and writes the results to the destination register.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 0 0 Rn 1 1 1 1 Rd 0 1 1 0 Rm

T1 variant

UHSUB8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 diff1 = UInt(R[n][7:0]) - UInt(R[m][7:0]);
4 diff2 = UInt(R[n][15:8]) - UInt(R[m][15:8]);
5 diff3 = UInt(R[n][23:16]) - UInt(R[m][23:16]);
6 diff4 = UInt(R[n][31:24]) - UInt(R[m][31:24]);
7 R[d] = diff4[8:1] : diff3[8:1] : diff2[8:1] : diff1[8:1];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

911

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.260 UMAAL

Unsigned Multiply Accumulate Accumulate Long. Unsigned Multiply Accumulate Accumulate Long multiplies
two unsigned 32-bit values to produce a 64-bit value, adds two unsigned 32-bit values, and writes the 64-bit result
to two registers.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 1 1 1 0 Rn RdLo RdHi 0 1 1 0 Rm

T1 variant

UMAAL{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm);
3 if dLo IN {13,15} || dHi IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;
4 if dHi == dLo then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If dHi == dLo, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<RdLo> Is the general-purpose source register holding the first addend and the destination register for

the lower 32 bits of the result, encoded in the "RdLo" field.
<RdHi> Is the general-purpose source register holding the second addend and the destination register

for the upper 32 bits of the result, encoded in the "RdHi" field.
<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm"

field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 result = UInt(R[n]) * UInt(R[m]) + UInt(R[dHi]) + UInt(R[dLo]);
4 R[dHi] = result[63:32];
5 R[dLo] = result[31:0];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

912

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.261 UMLAL

Unsigned Multiply Accumulate Long. Unsigned Multiply Accumulate Long multiplies two unsigned 32-bit values
to produce a 64-bit value, and accumulates this with a 64-bit value.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 1 1 1 0 Rn RdLo RdHi 0 0 0 0 Rm

T1 variant

UMLAL{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); setflags = FALSE;
3 if dLo IN {13,15} || dHi IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;
4 if dHi == dLo then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If dHi == dLo, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<RdLo> Is the general-purpose source register holding the lower 32 bits of the addend, and the

destination register for the lower 32 bits of the result, encoded in the "RdLo" field.
<RdHi> Is the general-purpose source register holding the upper 32 bits of the addend, and the

destination register for the upper 32 bits of the result, encoded in the "RdHi" field.
<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm"

field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 result = UInt(R[n]) * UInt(R[m]) + UInt(R[dHi]:R[dLo]);
4 R[dHi] = result[63:32];
5 R[dLo] = result[31:0];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

913

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.262 UMULL

Unsigned Multiply Long. Unsigned Multiply Long multiplies two 32-bit unsigned values to produce a 64-bit
result.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 1 0 1 0 Rn RdLo RdHi 0 0 0 0 Rm

T1 variant

UMULL{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); setflags = FALSE;
3 if dLo IN {13,15} || dHi IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;
4 if dHi == dLo then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If dHi == dLo, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<RdLo> Is the general-purpose destination register for the lower 32 bits of the result, encoded in the

"RdLo" field.
<RdHi> Is the general-purpose destination register for the upper 32 bits of the result, encoded in the

"RdHi" field.
<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm"

field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 result = UInt(R[n]) * UInt(R[m]);
4 R[dHi] = result[63:32];
5 R[dLo] = result[31:0];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

914

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.263 UQADD16

Unsigned Saturating Add 16. Unsigned Saturating Add 16 performs two unsigned 16-bit integer additions, saturates
the results to the 16-bit unsigned integer range 0 to 216-1, and writes the results to the destination register.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 1 Rn 1 1 1 1 Rd 0 1 0 1 Rm

T1 variant

UQADD16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 sum1 = UInt(R[n][15:0]) + UInt(R[m][15:0]);
4 sum2 = UInt(R[n][31:16]) + UInt(R[m][31:16]);
5 bits(32) result;
6 result[15:0] = UnsignedSat(sum1, 16);
7 result[31:16] = UnsignedSat(sum2, 16);
8 R[d] = result;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

915

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.264 UQADD8

Unsigned Saturating Add 8. Unsigned Saturating Add 8 performs four unsigned 8-bit integer additions, saturates
the results to the 8-bit unsigned integer range 0 to 28-1, and writes the results to the destination register.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 0 1 0 1 Rm

T1 variant

UQADD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 sum1 = UInt(R[n][7:0]) + UInt(R[m][7:0]);
4 sum2 = UInt(R[n][15:8]) + UInt(R[m][15:8]);
5 sum3 = UInt(R[n][23:16]) + UInt(R[m][23:16]);
6 sum4 = UInt(R[n][31:24]) + UInt(R[m][31:24]);
7 bits(32) result;
8 result[7:0] = UnsignedSat(sum1, 8);
9 result[15:8] = UnsignedSat(sum2, 8);

10 result[23:16] = UnsignedSat(sum3, 8);
11 result[31:24] = UnsignedSat(sum4, 8);
12 R[d] = result;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

916

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.265 UQASX

Unsigned Saturating Add and Subtract with Exchange. Unsigned Saturating Add and Subtract with Exchange
exchanges the two halfwords of the second operand, performs one unsigned 16-bit integer addition and one
unsigned 16-bit subtraction, saturates the results to the 16-bit unsigned integer range 0 to 216-1, and writes the
results to the destination register.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 1 0 Rn 1 1 1 1 Rd 0 1 0 1 Rm

T1 variant

UQASX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 diff = UInt(R[n][15:0]) - UInt(R[m][31:16]);
4 sum = UInt(R[n][31:16]) + UInt(R[m][15:0]);
5 bits(32) result;
6 result[15:0] = UnsignedSat(diff, 16);
7 result[31:16] = UnsignedSat(sum, 16);
8 R[d] = result;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

917

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.266 UQRSHL (register)

Unsigned Saturating Rounding Shift Left. Unsigned saturating rounding shift left by 0 to 32 bits of a 32-bit value
stored in a general-purpose register. The shift amount is read in as the bottom byte of Rm. If the shift amount is
negative, the shift direction is reversed.

T1
Armv8.1-M MVE

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 1 Rda Rm 1 1 1 (1) (0) (0) 0 0 1 1 0 1

T1: UQRSHL variant

UQRSHL<c> Rda, Rm

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 if !HasArchVersion(Armv8p1) then CONSTRAINED_UNPREDICTABLE;
3 if !HaveMve() then UNDEFINED;
4 da = UInt(Rda);
5 m = UInt(Rm);
6 if Rda == '11x1' || Rm == '11x1' || Rm == Rda then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<Rda> General-purpose source and destination register, containing the value to be shifted.
<Rm> General-purpose source register holding a shift amount in its bottom 8 bits.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3
4 amount = SInt(R[m][7:0]);
5 op1 = UInt(R[da]);
6 op1 = op1 + (1 << (- 1 - amount));
7 (result, sat) = UnsignedSatQ((op1 << amount), 32);
8 if sat then APSR.Q = '1';
9 R[da] = result[31:0];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

918

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.267 UQRSHLL (register)

Unsigned Saturating Rounding Shift Left Long. Unsigned saturating rounding shift left by 0 to 64 bits of a 64-bit
value stored in two general-purpose registers. The shift amount is read in as the bottom byte of Rm. If the shift
amount is negative, the shift direction is reversed.

T1
Armv8.1-M MVE

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 1 RdaLo 1 Rm RdaHi (1) sat (0) 0 0 1 1 0 1

T1: UQRSHLL variant

UQRSHLL<c> RdaLo, RdaHi, #<saturate>, Rm

Decode for this encoding
1 if RdaHi == '111' then SEE "UQRSHL (register)";
2 if !HaveMainExt() then UNDEFINED;
3 if !HasArchVersion(Armv8p1) then CONSTRAINED_UNPREDICTABLE;
4 if !HaveMve() then UNDEFINED;
5 dah = UInt(RdaHi:'1');
6 dal = UInt(RdaLo:'0');
7 m = UInt(Rm);
8 saturateTo = if sat == '0' then 64 else 48;
9 if RdaHi == '110' || Rm == '11x1' || Rm == RdaHi:'1' then CONSTRAINED_UNPREDICTABLE;

10 if Rm == RdaLo:'0' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<RdaLo> General-purpose register for the low-half of the 64-bit source and destination, containing the

value to be shifted. This must be an even numbered register.
<RdaHi> General-purpose register for the high-half of the 64-bit source and destination, containing the

value to be shifted. This must be an odd numbered register.
<saturate> The bit position for saturation.

This parameter must be one of the following values:
#64 Encoded as sat = 0
#48 Encoded as sat = 1

<Rm> General-purpose source register holding a shift amount in its bottom 8 bits.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3
4 amount = SInt(R[m][7:0]);
5 op1 = UInt(R[dah]:R[dal]);
6 op1 = op1 + (1 << (- 1 - amount));
7 (shiftedOp, didSat) = UnsignedSatQ((op1 << amount), saturateTo);
8 result = ZeroExtend(shiftedOp, 64);
9 if didSat then APSR.Q = '1';

10 R[dah] = result[63:32];
11 R[dal] = result[31:0];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

919

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.268 UQSAX

Unsigned Saturating Subtract and Add with Exchange. Unsigned Saturating Subtract and Add with Exchange
exchanges the two halfwords of the second operand, performs one unsigned 16-bit integer subtraction and one
unsigned 16-bit addition, saturates the results to the 16-bit unsigned integer range 0 to 216-1, and writes the results
to the destination register.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 1 0 Rn 1 1 1 1 Rd 0 1 0 1 Rm

T1 variant

UQSAX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 sum = UInt(R[n][15:0]) + UInt(R[m][31:16]);
4 diff = UInt(R[n][31:16]) - UInt(R[m][15:0]);
5 bits(32) result;
6 result[15:0] = UnsignedSat(sum, 16);
7 result[31:16] = UnsignedSat(diff, 16);
8 R[d] = result;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

920

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.269 UQSHL (immediate)

Unsigned Saturating Shift Left. Unsigned saturating shift left by 1 to 32 bits of a 32-bit value stored in a
general-purpose register.

T1
Armv8.1-M MVE

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 1 Rda 0 immh 1 1 1 (1) imml 0 0 1 1 1 1

T1: UQSHL variant

UQSHL<c> Rda, #<imm>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 if !HasArchVersion(Armv8p1) then CONSTRAINED_UNPREDICTABLE;
3 if !HaveMve() then UNDEFINED;
4 da = UInt(Rda);
5 (-, amount) = DecodeImmShift('10', immh:imml);
6 if Rda == '11x1' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<Rda> General-purpose source and destination register, containing the value to be shifted.
<imm> The number of bits to shift by, in the range 1-32.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3
4 op1 = UInt(R[da]);
5 (result, sat) = UnsignedSatQ((op1 << amount), 32);
6 if sat then APSR.Q = '1';
7 R[da] = result[31:0];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

921

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.270 UQSHLL (immediate)

Unsigned Saturating Shift Left Long. Unsigned saturating shift left by 1 to 32 bits of a 64-bit value stored in two
general-purpose registers.

T1
Armv8.1-M MVE

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 1 RdaLo 1 0 immh RdaHi (1) imml 0 0 1 1 1 1

T1: UQSHLL variant

UQSHLL<c> RdaLo, RdaHi, #<imm>

Decode for this encoding
1 if RdaHi == '111' then SEE "UQSHL (immediate)";
2 if !HaveMainExt() then UNDEFINED;
3 if !HasArchVersion(Armv8p1) then CONSTRAINED_UNPREDICTABLE;
4 if !HaveMve() then UNDEFINED;
5 dah = UInt(RdaHi:'1');
6 dal = UInt(RdaLo:'0');
7 (-, amount) = DecodeImmShift('10', immh:imml);
8 if RdaHi == '110' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<RdaLo> General-purpose register for the low-half of the 64-bit source and destination, containing the

value to be shifted. This must be an even numbered register.
<RdaHi> General-purpose register for the high-half of the 64-bit source and destination, containing the

value to be shifted. This must be an odd numbered register.
<imm> The number of bits to shift by, in the range 1-32.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3
4 op1 = UInt(R[dah]:R[dal]);
5 (result, sat) = UnsignedSatQ((op1 << amount), 64);
6 if sat then APSR.Q = '1';
7 R[dah] = result[63:32];
8 R[dal] = result[31:0];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

922

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.271 UQSUB16

Unsigned Saturating Subtract 16. Unsigned Saturating Subtract 16 performs two unsigned 16-bit integer subtrac-
tions, saturates the results to the 16-bit unsigned integer range 0 to 216-1, and writes the results to the destination
register.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 0 1 Rn 1 1 1 1 Rd 0 1 0 1 Rm

T1 variant

UQSUB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 diff1 = UInt(R[n][15:0]) - UInt(R[m][15:0]);
4 diff2 = UInt(R[n][31:16]) - UInt(R[m][31:16]);
5 bits(32) result;
6 result[15:0] = UnsignedSat(diff1, 16);
7 result[31:16] = UnsignedSat(diff2, 16);
8 R[d] = result;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

923

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.272 UQSUB8

Unsigned Saturating Subtract 8. Unsigned Saturating Subtract 8 performs four unsigned 8-bit integer subtractions,
saturates the results to the 8-bit unsigned integer range 0 to 28-1, and writes the results to the destination register.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 0 0 Rn 1 1 1 1 Rd 0 1 0 1 Rm

T1 variant

UQSUB8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 diff1 = UInt(R[n][7:0]) - UInt(R[m][7:0]);
4 diff2 = UInt(R[n][15:8]) - UInt(R[m][15:8]);
5 diff3 = UInt(R[n][23:16]) - UInt(R[m][23:16]);
6 diff4 = UInt(R[n][31:24]) - UInt(R[m][31:24]);
7 bits(32) result;
8 result[7:0] = UnsignedSat(diff1, 8);
9 result[15:8] = UnsignedSat(diff2, 8);

10 result[23:16] = UnsignedSat(diff3, 8);
11 result[31:24] = UnsignedSat(diff4, 8);
12 R[d] = result;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

924

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.273 URSHR (immediate)

Unsigned Rounding Shift Right. Unsigned rounding shift right by 1 to 32 bits of a 32-bit value stored in a
general-purpose register.

T1
Armv8.1-M MVE

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 1 Rda 0 immh 1 1 1 (1) imml 0 1 1 1 1 1

T1: URSHR variant

URSHR<c> Rda, #<imm>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 if !HasArchVersion(Armv8p1) then CONSTRAINED_UNPREDICTABLE;
3 if !HaveMve() then UNDEFINED;
4 da = UInt(Rda);
5 (-, amount) = DecodeImmShift('10', immh:imml);
6 if Rda == '11x1' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<Rda> General-purpose source and destination register, containing the value to be shifted.
<imm> The number of bits to shift by, in the range 1-32.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3
4 op1 = UInt(R[da]);
5 op1 = op1 + (1 << (amount - 1));
6 result = (op1 >> amount)[31:0];
7 R[da] = result[31:0];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

925

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.274 URSHRL (immediate)

Unsigned Rounding Shift Right Long. Unsigned rounding shift right by 1 to 32 bits of a 64-bit value stored in two
general-purpose registers.

T1
Armv8.1-M MVE

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 1 RdaLo 1 0 immh RdaHi (1) imml 0 1 1 1 1 1

T1: URSHRL variant

URSHRL<c> RdaLo, RdaHi, #<imm>

Decode for this encoding
1 if RdaHi == '111' then SEE "URSHR (immediate)";
2 if !HaveMainExt() then UNDEFINED;
3 if !HasArchVersion(Armv8p1) then CONSTRAINED_UNPREDICTABLE;
4 if !HaveMve() then UNDEFINED;
5 dah = UInt(RdaHi:'1');
6 dal = UInt(RdaLo:'0');
7 (-, amount) = DecodeImmShift('10', immh:imml);
8 if RdaHi == '110' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<RdaLo> General-purpose register for the low-half of the 64-bit source and destination, containing the

value to be shifted. This must be an even numbered register.
<RdaHi> General-purpose register for the high-half of the 64-bit source and destination, containing the

value to be shifted. This must be an odd numbered register.
<imm> The number of bits to shift by, in the range 1-32.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3
4 op1 = UInt(R[dah]:R[dal]);
5 op1 = op1 + (1 << (amount - 1));
6 result = (op1 >> amount)[63:0];
7 R[dah] = result[63:32];
8 R[dal] = result[31:0];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

926

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.275 USAD8

Unsigned Sum of Absolute Differences. Unsigned Sum of Absolute Differences performs four unsigned 8-bit
subtractions, and adds the absolute values of the differences together.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 1 1 1 Rn 1 1 1 1 Rd 0 0 0 0 Rm

T1 variant

USAD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 absdiff1 = Abs(UInt(R[n][7:0]) - UInt(R[m][7:0]));
4 absdiff2 = Abs(UInt(R[n][15:8]) - UInt(R[m][15:8]));
5 absdiff3 = Abs(UInt(R[n][23:16]) - UInt(R[m][23:16]));
6 absdiff4 = Abs(UInt(R[n][31:24]) - UInt(R[m][31:24]));
7 result = absdiff1 + absdiff2 + absdiff3 + absdiff4;
8 R[d] = result[31:0];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

927

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.276 USADA8

Unsigned Sum of Absolute Differences and Accumulate. Unsigned Sum of Absolute Differences and Accumulate
performs four unsigned 8-bit subtractions, and adds the absolute values of the differences to a 32-bit accumulate
operand.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 1 1 1 Rn Ra != 1111 Rd 0 0 0 0 Rm

T1 variant

USADA8{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for this encoding
1 if Ra == '1111' then SEE USAD8;
2 if !HaveDSPExt() then UNDEFINED;
3 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra);
4 if d IN {13,15} || n IN {13,15} || m IN {13,15} || a == 13 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
<Ra> Is the third general-purpose source register holding the addend, encoded in the "Ra" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 absdiff1 = Abs(UInt(R[n][7:0]) - UInt(R[m][7:0]));
4 absdiff2 = Abs(UInt(R[n][15:8]) - UInt(R[m][15:8]));
5 absdiff3 = Abs(UInt(R[n][23:16]) - UInt(R[m][23:16]));
6 absdiff4 = Abs(UInt(R[n][31:24]) - UInt(R[m][31:24]));
7 result = UInt(R[a]) + absdiff1 + absdiff2 + absdiff3 + absdiff4;
8 R[d] = result[31:0];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

928

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.277 USAT

Unsigned Saturate. Unsigned Saturate saturates an optionally-shifted signed value to a selected unsigned range.

The Q flag is set to 1 if the operation saturates.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 (0) 1 1 1 0 sh 0 Rn 0 imm3 Rd imm2 (0) sat_imm

Arithmetic shift right variant

Applies when sh == 1 && !(imm3 == 000 && imm2 == 00).

USAT{<c>}{<q>} <Rd>, #<imm>, <Rn>, ASR #<amount>

Logical shift left variant

Applies when sh == 0.

USAT{<c>}{<q>} <Rd>, #<imm>, <Rn> {, LSL #<amount>}

Decode for this encoding
1 if sh == '1' && (imm3:imm2) == '00000' then
2 if HaveDSPExt() then
3 SEE USAT16;
4 else
5 UNDEFINED;
6 if !HaveMainExt() then UNDEFINED;
7 d = UInt(Rd); n = UInt(Rn); saturate_to = UInt(sat_imm);
8 (shift_t, shift_n) = DecodeImmShift(sh:'0', imm3:imm2);
9 if d IN {13,15} || n IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<imm> Is the bit position for saturation, in the range 0 to 31, encoded in the "sat_imm" field.
<Rn> Is the general-purpose source register, encoded in the "Rn" field.
<amount> For the arithmetic shift right variant: is the shift amount, in the range 1 to 31 encoded in the

"imm3:imm2" field as <amount>.
For the logical shift left variant: is the optional shift amount, in the range 0 to 31, defaulting to
0 and encoded in the "imm3:imm2" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 operand = Shift(R[n], shift_t, shift_n, APSR.C); // APSR.C ignored
4 (result, sat) = UnsignedSatQ(SInt(operand), saturate_to);
5 R[d] = ZeroExtend(result, 32);
6 if sat then
7 APSR.Q = '1';

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

929

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.278 USAT16

Unsigned Saturate 16. Unsigned Saturate 16 saturates two signed 16-bit values to a selected unsigned range.

The Q flag is set to 1 if the operation saturates.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 (0) 1 1 1 0 1 0 Rn 0 0 0 0 Rd 0 0 (0) (0) sat_imm

T1 variant

USAT16{<c>}{<q>} <Rd>, #<imm>, <Rn>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); saturate_to = UInt(sat_imm);
3 if d IN {13,15} || n IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<imm> Is the bit position for saturation, in the range 0 to 15, encoded in the "sat_imm" field.
<Rn> Is the general-purpose source register, encoded in the "Rn" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 (result1, sat1) = UnsignedSatQ(SInt(R[n][15:0]), saturate_to);
4 (result2, sat2) = UnsignedSatQ(SInt(R[n][31:16]), saturate_to);
5 bits(32) result;
6 result[15:0] = ZeroExtend(result1, 16);
7 result[31:16] = ZeroExtend(result2, 16);
8 R[d] = result;
9 if sat1 || sat2 then

10 APSR.Q = '1';

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

930

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.279 USAX

Unsigned Subtract and Add with Exchange. Unsigned Subtract and Add with Exchange exchanges the two
halfwords of the second operand, performs one unsigned 16-bit integer subtraction and one unsigned 16-bit
addition, and writes the results to the destination register. It sets the APSR.GE bits according to the results.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 1 0 Rn 1 1 1 1 Rd 0 1 0 0 Rm

T1 variant

USAX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 sum = UInt(R[n][15:0]) + UInt(R[m][31:16]);
4 diff = UInt(R[n][31:16]) - UInt(R[m][15:0]);
5 R[d] = diff[15:0] : sum[15:0];
6 APSR.GE[1:0] = if sum >= 0x10000 then '11' else '00';
7 APSR.GE[3:2] = if diff >= 0 then '11' else '00';

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

931

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.280 USUB16

Unsigned Subtract 16. Unsigned Subtract 16 performs two 16-bit unsigned integer subtractions, and writes the
results to the destination register. It sets the APSR.GE bits according to the results of the subtractions.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 0 1 Rn 1 1 1 1 Rd 0 1 0 0 Rm

T1 variant

USUB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 diff1 = UInt(R[n][15:0]) - UInt(R[m][15:0]);
4 diff2 = UInt(R[n][31:16]) - UInt(R[m][31:16]);
5 R[d] = diff2[15:0] : diff1[15:0];
6 APSR.GE[1:0] = if diff1 >= 0 then '11' else '00';
7 APSR.GE[3:2] = if diff2 >= 0 then '11' else '00';

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

932

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.281 USUB8

Unsigned Subtract 8. Unsigned Subtract 8 performs four 8-bit unsigned integer subtractions, and writes the results
to the destination register. It sets the APSR.GE bits according to the results of the subtractions.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 0 0 Rn 1 1 1 1 Rd 0 1 0 0 Rm

T1 variant

USUB8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
3 if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 diff1 = UInt(R[n][7:0]) - UInt(R[m][7:0]);
4 diff2 = UInt(R[n][15:8]) - UInt(R[m][15:8]);
5 diff3 = UInt(R[n][23:16]) - UInt(R[m][23:16]);
6 diff4 = UInt(R[n][31:24]) - UInt(R[m][31:24]);
7 R[d] = diff4[7:0] : diff3[7:0] : diff2[7:0] : diff1[7:0];
8 APSR.GE[0] = if diff1 >= 0 then '1' else '0';
9 APSR.GE[1] = if diff2 >= 0 then '1' else '0';

10 APSR.GE[2] = if diff3 >= 0 then '1' else '0';
11 APSR.GE[3] = if diff4 >= 0 then '1' else '0';

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

933

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.282 UXTAB

Unsigned Extend and Add Byte. Unsigned Extend and Add Byte extracts an 8-bit value from a register, zero-
extends it to 32 bits, adds the result to the value in another register, and writes the final result to the destination
register. The instruction can specify a rotation by 0, 8, 16, or 24 bits before extracting the 8-bit value.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 1 0 1 Rn != 1111 1 1 1 1 Rd 1 (0)

rotate

Rm

T1 variant

UXTAB{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ROR #<amount>}

Decode for this encoding
1 if Rn == '1111' then SEE UXTB;
2 if !HaveDSPExt() then UNDEFINED;
3 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:'000');
4 if d IN {13,15} || n == 13 || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
<amount> Is the rotate amount, encoded in the "rotate" field. It can have the following values:

0 when rotate = 00
8 when rotate = 01
16 when rotate = 10
24 when rotate = 11

ROR #<amount> can be omitted, meaning a rotate amount of 0. This is the preferred disas-
sembly for rotate == 0b00.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 rotated = ROR(R[m], rotation);
4 R[d] = R[n] + ZeroExtend(rotated[7:0], 32);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

934

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.283 UXTAB16

Unsigned Extend and Add Byte 16. Unsigned Extend and Add Byte 16 extracts two 8-bit values from a register,
zero-extends them to 16 bits each, adds the results to two 16-bit values from another register, and writes the final
results to the destination register. The instruction can specify a rotation by 0, 8, 16, or 24 bits before extracting the
8-bit values.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 0 1 1 Rn != 1111 1 1 1 1 Rd 1 (0)

rotate

Rm

T1 variant

UXTAB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ROR #<amount>}

Decode for this encoding
1 if Rn == '1111' then SEE UXTB16;
2 if !HaveDSPExt() then UNDEFINED;
3 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:'000');
4 if d IN {13,15} || n == 13 || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
<amount> Is the rotate amount, encoded in the "rotate" field. It can have the following values:

0 when rotate = 00
8 when rotate = 01
16 when rotate = 10
24 when rotate = 11

ROR #<amount> can be omitted, meaning a rotate amount of 0. This is the preferred disas-
sembly for rotate == 0b00.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 rotated = ROR(R[m], rotation);
4 bits(32) result;
5 result[15:0] = R[n][15:0] + ZeroExtend(rotated[7:0], 16);
6 result[31:16] = R[n][31:16] + ZeroExtend(rotated[23:16], 16);
7 R[d] = result;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

935

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.284 UXTAH

Unsigned Extend and Add Halfword. Unsigned Extend and Add Halfword extracts a 16-bit value from a register,
zero-extends it to 32 bits, adds the result to a value from another register, and writes the final result to the destination
register. The instruction can specify a rotation by 0, 8, 16, or 24 bits before extracting the 16-bit value.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 0 0 1 Rn != 1111 1 1 1 1 Rd 1 (0)

rotate

Rm

T1 variant

UXTAH{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ROR #<amount>}

Decode for this encoding
1 if Rn == '1111' then SEE UXTH;
2 if !HaveDSPExt() then UNDEFINED;
3 d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:'000');
4 if d IN {13,15} || n == 13 || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
<amount> Is the rotate amount, encoded in the "rotate" field. It can have the following values:

0 when rotate = 00
8 when rotate = 01
16 when rotate = 10
24 when rotate = 11

ROR #<amount> can be omitted, meaning a rotate amount of 0. This is the preferred disas-
sembly for rotate == 0b00.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 rotated = ROR(R[m], rotation);
4 R[d] = R[n] + ZeroExtend(rotated[15:0], 32);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

936

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.285 UXTB

Unsigned Extend Byte. Unsigned Extend Byte extracts an 8-bit value from a register, zero extends it to 32 bits,
and writes the result to the destination register. The instruction can specify a rotation by 0, 8, 16, or 24 bits before
extracting the 8-bit value.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 0 1 0 1 1 Rm Rd

T1 variant

UXTB{<c>}{<q>} {<Rd>,} <Rm>

Decode for this encoding
1 d = UInt(Rd); m = UInt(Rm); rotation = 0;

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 Rd 1 (0)

rotate

Rm

T2 variant

UXTB{<c>}.W {<Rd>,} <Rm>
// <Rd>, <Rm> can be represented in T1

UXTB{<c>}{<q>} {<Rd>,} <Rm> {, ROR #<amount>}

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
3 if d IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> Is the general-purpose source register, encoded in the "Rm" field.
<amount> Is the rotate amount, encoded in the "rotate" field. It can have the following values:

0 when rotate = 00
8 when rotate = 01
16 when rotate = 10
24 when rotate = 11

ROR #<amount> can be omitted, meaning a rotate amount of 0. This is the preferred disas-
sembly for rotate == 0b00.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

937

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 rotated = ROR(R[m], rotation);
4 R[d] = ZeroExtend(rotated[7:0], 32);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

938

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.286 UXTB16

Unsigned Extend Byte 16. Unsigned Extend Byte 16 extracts two 8-bit values from a register, zero-extends them
to 16 bits each, and writes the results to the destination register. The instruction can specify a rotation by 0, 8, 16,
or 24 bits before extracting the 8-bit values.

T1
Armv8-M DSP Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 Rd 1 (0)

rotate

Rm

T1 variant

UXTB16{<c>}{<q>} {<Rd>,} <Rm> {, ROR #<amount>}

Decode for this encoding
1 if !HaveDSPExt() then UNDEFINED;
2 d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
3 if d IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
<amount> Is the rotate amount, encoded in the "rotate" field. It can have the following values:

0 when rotate = 00
8 when rotate = 01
16 when rotate = 10
24 when rotate = 11

ROR #<amount> can be omitted, meaning a rotate amount of 0. This is the preferred disas-
sembly for rotate == 0b00.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 rotated = ROR(R[m], rotation);
4 bits(32) result;
5 result[15:0] = ZeroExtend(rotated[7:0], 16);
6 result[31:16] = ZeroExtend(rotated[23:16], 16);
7 R[d] = result;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

939

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.287 UXTH

Unsigned Extend Halfword. Unsigned Extend Halfword extracts a 16-bit value from a register, zero extends it to
32 bits, and writes the result to the destination register. The instruction can specify a rotation by 0, 8, 16, or 24 bits
before extracting the 16-bit value.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 0 1 0 1 0 Rm Rd

T1 variant

UXTH{<c>}{<q>} {<Rd>,} <Rm>

Decode for this encoding
1 d = UInt(Rd); m = UInt(Rm); rotation = 0;

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 Rd 1 (0)

rotate

Rm

T2 variant

UXTH{<c>}.W {<Rd>,} <Rm>
// <Rd>, <Rm> can be represented in T1

UXTH{<c>}{<q>} {<Rd>,} <Rm> {, ROR #<amount>}

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
3 if d IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> Is the general-purpose source register, encoded in the "Rm" field.
<amount> Is the rotate amount, encoded in the "rotate" field. It can have the following values:

0 when rotate = 00
8 when rotate = 01
16 when rotate = 10
24 when rotate = 11

ROR #<amount> can be omitted, meaning a rotate amount of 0. This is the preferred disas-
sembly for rotate == 0b00.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

940

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 rotated = ROR(R[m], rotation);
4 R[d] = ZeroExtend(rotated[15:0], 32);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

941

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.288 VABAV

Vector Absolute Difference and Accumulate Across Vector. Subtract the elements of the second source vector
register from the corresponding elements of the first source vector and accumulate the absolute values of the results.
The initial value of the general-purpose destination register is added to the result.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 0 1 0 size Qn 0 Rda 1 1 1 1 N 0 M 0 Qm 1

T1: VABAV variant

VABAV<v>.<dt> Rda, Qn, Qm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if M == '1' || N == '1' then UNDEFINED;
4 da = UInt(Rda);
5 m = UInt(M:Qm);
6 n = UInt(N:Qn);
7 esize = 8 << UInt(size);
8 elements = 32 DIV esize;
9 unsigned = (U == '1');

10 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
11 if Rda == '11x1' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> This parameter determines the following values:

– Unsigned flag: S indicates signed, U indicates unsigned.
– Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
S8 Encoded as size = 00, U = 0
U8 Encoded as size = 00, U = 1
S16 Encoded as size = 01, U = 0
U16 Encoded as size = 01, U = 1
S32 Encoded as size = 10, U = 0
U32 Encoded as size = 10, U = 1

<Rda> General-purpose source and destination register.
<Qn> First source vector register.
<Qm> Second source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

942

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 op1 = Q[n, curBeat];
7 op2 = Q[m, curBeat];
8 result = UInt(R[da]);
9 for e = 0 to elements-1

10 if elmtMask[e*(esize>>3)] == '1' then
11 result = result + Abs(Int(Elem[op1, e, esize], unsigned) -
12 Int(Elem[op2, e, esize], unsigned));
13
14 R[da] = result[31:0];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

943

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.289 VABD (floating-point)

Vector Absolute Difference. Subtract the elements of the second source vector from the corresponding elements of
the first source vector and place the absolute values of the results in the elements of the destination vector register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE with Half-precision and Single-precision Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 0 D 1 sz Qn 0 Qd 0 1 1 0 1 N 1 M 0 Qm 0

T1: VABD variant

VABD<v>.<dt> Qd, Qn, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveFp);
2 if D == '1' || M == '1' || N == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 m = UInt(M:Qm);
5 n = UInt(N:Qn);
6 esize = if sz == '1' then 16 else 32;
7 elements = 32 DIV esize;
8 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> Size: indicates the floating-point format used.

This parameter must be one of the following values:
F32 Encoded as sz = 0
F16 Encoded as sz = 1

<Qd> Destination vector register.
<Qn> First source vector register.
<Qm> Second source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[n, curBeat];
8 op2 = Q[m, curBeat];
9 for e = 0 to elements-1

10 // Avoid Floating-point exceptions on a predicated lane by checking the element mask
11 pred = (elmtMask[e*(esize>>3)] == '0');
12 value = FPAbs(FPSub(Elem[op1, e, esize], Elem[op2, e, esize], FALSE, pred));
13 Elem[result, e, esize] = value;
14

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

944

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

15 for e = 0 to 3
16 if elmtMask[e] == '1' then
17 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

945

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.290 VABD

Vector Absolute Difference. Subtract the elements of the second source vector register from the corresponding
elements of the first source vector register and place the absolute values of the results in the elements of the
destination vector register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 0 D size Qn 0 Qd 0 0 1 1 1 N 1 M 0 Qm 0

T1: VABD variant

VABD<v>.<dt> Qd, Qn, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' || N == '1' then UNDEFINED;
3 if size == '11' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 n = UInt(N:Qn);
7 esize = 8 << UInt(size);
8 elements = 32 DIV esize;
9 unsigned = (U == '1');

10 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> This parameter determines the following values:

– Unsigned flag: S indicates signed, U indicates unsigned.
– Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
S8 Encoded as size = 00, U = 0
U8 Encoded as size = 00, U = 1
S16 Encoded as size = 01, U = 0
U16 Encoded as size = 01, U = 1
S32 Encoded as size = 10, U = 0
U32 Encoded as size = 10, U = 1

<Qd> Destination vector register.
<Qn> First source vector register.
<Qm> Second source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

946

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[n, curBeat];
8 op2 = Q[m, curBeat];
9 for e = 0 to elements-1

10 value = Abs(Int(Elem[op1, e, esize], unsigned) - Int(Elem[op2, e, esize], unsigned));
11 Elem[result, e, esize] = value[esize-1:0];
12
13 for e = 0 to 3
14 if elmtMask[e] == '1' then
15 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

947

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.291 VABS (floating-point)

Vector Absolute. Compute the absolute value of each element of a vector register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE with Half-precision and Single-precision Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 1 Qd 0 0 1 1 1 0 1 M 0 Qm 0

T1: VABS variant

VABS<v>.<dt> Qd, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveFp);
2 if D == '1' || M == '1' then UNDEFINED;
3 if size IN {'11', '00'} then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 esize = 8 << UInt(size);
7 elements = 32 DIV esize;
8 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> Size: indicates the floating-point format used.

This parameter must be one of the following values:
F16 Encoded as size = 01
F32 Encoded as size = 10

<Qd> Destination vector register.
<Qm> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[m, curBeat];
8 for e = 0 to elements-1
9 value = FPAbs(Elem[op1, e, esize]);

10 Elem[result, e, esize] = value;
11
12 for e = 0 to 3
13 if elmtMask[e] == '1' then
14 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

948

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.292 VABS (vector)

Vector Absolute. Compute the absolute value of each element in a vector register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 1 Qd 0 0 0 1 1 0 1 M 0 Qm 0

T1: VABS variant

VABS<v>.<dt> Qd, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' then UNDEFINED;
3 if size == '11' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 esize = 8 << UInt(size);
7 elements = 32 DIV esize;
8 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> Size: indicates the size of the elements in the vector.

This parameter must be one of the following values:
S8 Encoded as size = 00
S16 Encoded as size = 01
S32 Encoded as size = 10

<Qd> Destination vector register.
<Qm> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[m, curBeat];
8 for e = 0 to elements-1
9 value = Abs(SInt(Elem[op1, e, esize]));

10 Elem[result, e, esize] = value[esize-1:0];
11
12 for e = 0 to 3
13 if elmtMask[e] == '1' then
14 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

949

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.293 VABS

Floating-point Absolute. Floating-point Absolute takes the absolute value of a half-precision or single-precision or
double-precision register, and places the result in the destination register.

T2
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 0 0 0 0 Vd 1 0 size 1 1 M 0 Vm

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when size == 01.

VABS{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VABS{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VABS{<c>}{<q>}.F64 <Dd>, <Dm>

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (M == '1' || D == '1') then UNDEFINED;
4 if size == '01' && InITBlock() then UNPREDICTABLE;
5 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
6 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.
<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.
<Dm> Is the 64-bit name of the floating-point source register, encoded in the "M:Vm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 case size of
5 when '01' S[d] = Zeros(16) : FPAbs(S[m][15:0]);
6 when '10' S[d] = FPAbs(S[m]);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

950

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

7 when '11' D[d] = FPAbs(D[m]);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

951

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.294 VADC

Whole Vector Add With Carry. Add with carry across beats, with carry in from and out to FPSCR.C. Initial value
of FPSCR.C can be overridden by using the I variant. FPSCR.C is not updated for beats disabled because of
predication. FPSCR.N, .V and .Z are zeroed.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 D 1 1 Qn 0 Qd I 1 1 1 1 N 0 M 0 Qm 0

T1: VADC variant

VADC{I}<v>.I32 Qd, Qn, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' || N == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 m = UInt(M:Qm);
5 n = UInt(N:Qn);
6 carryInit = (I == '1');
7 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<I> Specifies where the initial carry in for wide arithmetic comes from.
This parameter must be one of the following values:
- Encoded as I = 0

Indicates carry input comes from FPSCR.C.
I Encoded as I = 1

Indicates carry input is 0.
<v> See C1.2.5 Standard assembler syntax fields on page 431.
<Qd> Destination vector register.
<Qn> Source vector register.
<Qm> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 op1 = Q[n, curBeat];
7 op2 = Q[m, curBeat];
8 if carryInit && IsFirstBeat() then
9 (FPSCR.N, FPSCR.Z, FPSCR.C, FPSCR.V) = ('0', '0', '0', '0');

10 (result, carryOut, -) = AddWithCarry(op1, op2, FPSCR.C);
11 if elmtMask[0] == '1' then

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

952

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

12 (FPSCR.N, FPSCR.Z, FPSCR.C, FPSCR.V) = ('0', '0', carryOut, '0');
13
14 for e = 0 to 3
15 if elmtMask[e] == '1' then
16 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

953

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.295 VADD (floating-point)

Vector Add. Add the value of the elements in the first source vector register to either the respective elements in the
second source vector register or a general-purpose register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE with Half-precision and Single-precision Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 0 D 0 sz Qn 0 Qd 0 1 1 0 1 N 1 M 0 Qm 0

T1: VADD variant

VADD<v>.<dt> Qd, Qn, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveFp);
2 if D == '1' || M == '1' || N == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 m = UInt(M:Qm);
5 n = UInt(N:Qn);
6 esize = if sz == '1' then 16 else 32;
7 elements = 32 DIV esize;
8 withScalar = FALSE;
9 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE with Half-precision and Single-precision Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 sz 1 1 1 0 0 D 1 1 Qn 0 Qd 0 1 1 1 1 N 1 0 0 Rm

T2: VADD variant

VADD<v>.<dt> Qd, Qn, Rm

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveFp);
2 if D == '1' || N == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 m = UInt(Rm);
5 n = UInt(N:Qn);
6 esize = if sz == '1' then 16 else 32;
7 elements = 32 DIV esize;
8 withScalar = TRUE;
9 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

10 if Rm == '11x1' then CONSTRAINED_UNPREDICTABLE;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

954

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> Size: indicates the floating-point format used.

This parameter must be one of the following values:
F32 Encoded as sz = 0
F16 Encoded as sz = 1

<Qd> Destination vector register.
<Qn> First source vector register.
<Qm> Second source vector register.
<Rm> Source general-purpose register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[n, curBeat];
8 if withScalar then
9 for e = 0 to elements-1

10 // Avoid Floating-point exceptions on a predicated lane by checking the element mask
11 pred = (elmtMask[e*(esize>>3)] == '0');
12 value = FPAdd(Elem[op1, e, esize], R[m][esize-1:0], FALSE, pred);
13 Elem[result, e, esize] = value;
14 else
15 for e = 0 to elements-1
16 // Avoid Floating-point exceptions on a predicated lane by checking the element mask
17 pred = (elmtMask[e*(esize>>3)] == '0');
18 op2 = Q[m, curBeat];
19 value = FPAdd(Elem[op1, e, esize], Elem[op2, e, esize], FALSE, pred);
20 Elem[result, e, esize] = value;
21
22 for e = 0 to 3
23 if elmtMask[e] == '1' then
24 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

955

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.296 VADD (vector)

Vector Add. Add the value of the elements in the first source vector register to either the respective elements in
the second source vector register or a general-purpose register. The result is then written to the destination vector
register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 0 D size Qn 0 Qd 0 1 0 0 0 N 1 M 0 Qm 0

T1: VADD variant

VADD<v>.<dt> Qd, Qn, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' || N == '1' then UNDEFINED;
3 if size == '11' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 n = UInt(N:Qn);
7 withScalar = FALSE;
8 esize = 8 << UInt(size);
9 elements = 32 DIV esize;

10 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 D size Qn 1 Qd 0 1 1 1 1 N 1 0 0 Rm

T2: VADD variant

VADD<v>.<dt> Qd, Qn, Rm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || N == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(Rm);
6 n = UInt(N:Qn);
7 withScalar = TRUE;
8 esize = 8 << UInt(size);
9 elements = 32 DIV esize;

10 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
11 if Rm == '11x1' then CONSTRAINED_UNPREDICTABLE;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

956

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> Size: indicates the size of the elements in the vector.

This parameter must be one of the following values:
I8 Encoded as size = 00
I16 Encoded as size = 01
I32 Encoded as size = 10

<Qd> Destination vector register.
<Qn> First source vector register.
<Qm> Second source vector register.
<Rm> Source general-purpose register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[n, curBeat];
8 if withScalar then
9 for e = 0 to elements-1

10 value = Elem[op1, e, esize] + R[m][esize-1:0];
11 Elem[result, e, esize] = value;
12 else
13 op2 = Q[m, curBeat];
14 for e = 0 to elements-1
15 value = Elem[op1, e, esize] + Elem[op2, e, esize];
16 Elem[result, e, esize] = value;
17
18 for e = 0 to 3
19 if elmtMask[e] == '1' then
20 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

957

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.297 VADD

Floating-point Add. Floating-point Add adds two half-precision or single-precision or double-precision registers,
and places the result in the destination register.

T2
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 D 1 1 Vn Vd 1 0 size N 0 M 0 Vm

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when size == 01.

VADD{<c>}{<q>}.F16 {<Sd>,} <Sn>, <Sm>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VADD{<c>}{<q>}.F32 {<Sd>,} <Sn>, <Sm>

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VADD{<c>}{<q>}.F64 {<Dd>,} <Dn>, <Dm>

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (M == '1' || N == '1' || D == '1') then
4 UNDEFINED;
5 if size == '01' && InITBlock() then UNPREDICTABLE;
6 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
7 n = if dp_operation then UInt(N:Vn) else UInt(Vn:N);
8 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sn> Is the 32-bit name of the first floating-point source register, encoded in the "Vn:N" field.
<Sm> Is the 32-bit name of the second floating-point source register, encoded in the "Vm:M" field.
<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.
<Dn> Is the 64-bit name of the first floating-point source register, encoded in the "N:Vn" field.
<Dm> Is the 64-bit name of the second floating-point source register, encoded in the "M:Vm" field.

Operation for all encodings
1 if ConditionPassed() then

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

958

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 case size of
5 when '01' S[d] = Zeros(16) : FPAdd(S[n][15:0], S[m][15:0], TRUE);
6 when '10' S[d] = FPAdd(S[n], S[m], TRUE);
7 when '11' D[d] = FPAdd(D[n], D[m], TRUE);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

959

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.298 VADDLV

Vector Add Long Across Vector. Add across the elements of a vector accumulating the result into a scalar. The
64-bit result is stored across two registers, the upper-half is stored in an odd-numbered register and the lower half
is stored in an even-numbered register. The initial value of the general-purpose destination registers can optionally
be added to the result.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 0 1 RdaHi (1) (0) 0 1 RdaLo (0) 1 1 1 1 0 0 A 0 Qm 0

T1: VADDLV variant

VADDLV{A}<v>.<dt> RdaLo, RdaHi, Qm

Decode for this encoding
1 if RdaHi == '111' then SEE "VADDV";
2 CheckDecodeFaults(ExtType_Mve);
3 dah = UInt(RdaHi:'1');
4 dal = UInt(RdaLo:'0');
5 m = UInt(Qm);
6 accumulate = (A == '1');
7 esize = 32;
8 elements = 32 DIV esize;
9 unsigned = (U == '1');

10 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
11 if RdaHi == '110' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<A> Accumulate with existing register contents.
This parameter must be one of the following values:
- Encoded as A = 0
A Encoded as A = 1

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> Unsigned flag: S indicates signed, U indicates unsigned.

This parameter must be one of the following values:
S32 Encoded as U = 0
U32 Encoded as U = 1

<RdaLo> General-purpose register for the low-half of the 64-bit source and destination. This must be an
even numbered register.

<RdaHi> General-purpose register for the high-half of the 64-bit source and destination. This must be
an odd numbered register.

<Qm> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

960

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = if accumulate || !IsFirstBeat() then Int(R[dah]:R[dal], unsigned) else 0;
7 op = Q[m, curBeat];
8
9 for e = 0 to elements-1

10 if elmtMask[e*(esize>>3)] == '1' then
11 result = result + Int(Elem[op, e, esize], unsigned);
12
13 R[dah] = result[63:32];
14 R[dal] = result[31:0];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

961

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.299 VADDV

Vector Add Across Vector. Add across the elements of a vector accumulating the result into a scalar. The initial
value of the general-purpose destination register can optionally be added to the result.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 0 1 1 1 1 size 0 1 Rda (0) 1 1 1 1 0 0 A 0 Qm 0

T1: VADDV variant

VADDV{A}<v>.<dt> Rda, Qm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 da = UInt(Rda:'0');
4 m = UInt(Qm);
5 accumulate = (A == '1');
6 esize = 8 << UInt(size);
7 elements = 32 DIV esize;
8 unsigned = (U == '1');
9 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<A> Accumulate with existing register contents.
This parameter must be one of the following values:
- Encoded as A = 0
A Encoded as A = 1

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> This parameter determines the following values:

– Unsigned flag: S indicates signed, U indicates unsigned.
– Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
S8 Encoded as size = 00, U = 0
U8 Encoded as size = 00, U = 1
S16 Encoded as size = 01, U = 0
U16 Encoded as size = 01, U = 1
S32 Encoded as size = 10, U = 0
U32 Encoded as size = 10, U = 1

<Rda> General-purpose source and destination register. This must be an even numbered register.
<Qm> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

962

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = if accumulate || !IsFirstBeat() then Int(R[da], unsigned) else 0;
7 op = Q[m, curBeat];
8
9 for e = 0 to elements-1

10 if elmtMask[e*(esize>>3)] == '1' then
11 result = result + Int(Elem[op, e, esize], unsigned);
12
13 R[da] = result[31:0];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

963

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.300 VAND (immediate)

Vector Bitwise AND. This is a pseudo-instruction, equivalent to a VBIC (immediate) instruction with the immediate
value bitwise inverted.

This is an alias of VBIC (immediate).

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 i 1 1 1 1 1 Da 0 0 0 imm3 Qda 0 cmode 0 1 1 1 imm4

VAND variant

VAND<v>.<dt> Qda, #<imm>

is equivalent to

VBIC<v>.<dt> Qda, #~<imm>

and is never the preferred disassembly

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

964

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.301 VAND

Vector Bitwise And. Compute a bitwise AND of a vector register with another vector register. The result is written
to the destination vector register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 0 D 0 0 Qn 0 Qd 0 0 0 0 1 N 1 M 1 Qm 0

T1: VAND variant

VAND<v>{.<dt>} Qd, Qn, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' || N == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 m = UInt(M:Qm);
5 n = UInt(N:Qn);
6 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> An optional data type. It is ignored by assemblers and does not affect the encoding. This can

be one of the following: S8, S16, S32, U8, U16, U32, I8, I16, I32, F16, F32.
<Qd> Destination vector register.
<Qn> Source vector register.
<Qm> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Q[n, curBeat] AND Q[m, curBeat];
7
8 for e = 0 to 3
9 if elmtMask[e] == '1' then

10 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

965

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.302 VBIC (immediate)

Vector Bitwise Clear. Compute a bitwise AND of a vector register and the complement of an immediate value.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 i 1 1 1 1 1 Da 0 0 0 imm3 Qda 0 cmode 0 1 1 1 imm4

T1: VBIC variant

VBIC<v>.<dt> Qda, #<imm>

Decode for this encoding
1 if cmode == '1110' then SEE "VMOV (immediate) (vector)";
2 if cmode IN {'0xx0', '110x', '10x0'} then SEE "VMVN (immediate)";
3 CheckDecodeFaults(ExtType_Mve);
4 if Da == '1' then UNDEFINED;
5 if cmode == '1111' then UNDEFINED;
6 da = UInt(Da:Qda);
7 imm64 = AdvSIMDExpandImm('1', cmode, i:imm3:imm4);
8 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> Size: indicates the size of the elements in the vector, for use with the AdvSIMDExpandImm()

function.
This parameter must be one of the following values:
I32 Encoded as:

cmode = 0001
cmode = 0011
cmode = 0101
cmode = 0111

I16 Encoded as:
cmode = 1001
cmode = 1011

<Qda> Source and destination vector register.
<imm> The immediate value to load in to each element. This must be an immediate that can be

encoded for use with the AdvSIMDExpandImm() function.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 opd = Q[da, curBeat];
7 imm32 = if curBeat[0] == '0' then imm64[31:0] else imm64[63:32];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

966

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

8 result = opd AND NOT(imm32);
9

10 for e = 0 to 3
11 if elmtMask[e] == '1' then
12 Elem[Q[da, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

967

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.303 VBIC (register)

Vector Bitwise Clear. Compute a bitwise AND of a vector register and the complement of a vector register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 0 D 0 1 Qn 0 Qd 0 0 0 0 1 N 1 M 1 Qm 0

T1: VBIC variant

VBIC<v>{.<dt>} Qd, Qn, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' || N == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 m = UInt(M:Qm);
5 n = UInt(N:Qn);
6 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> An optional data type. It is ignored by assemblers and does not affect the encoding. This can

be one of the following: S8, S16, S32, U8, U16, U32, I8, I16, I32, F16, F32.
<Qd> Destination vector register.
<Qn> Source vector register.
<Qm> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 opm = Q[m, curBeat];
7 opn = Q[n, curBeat];
8 result = opn AND NOT(opm);
9

10 for e = 0 to 3
11 if elmtMask[e] == '1' then
12 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

968

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.304 VBRSR

Vector Bit Reverse and Shift Right. Reverse the specified number of LSB bits in each element of a vector register
and set the other bits to zero. The number of bits to reverse is read in from the bottom byte of Rm and clamped to
the range [0, <dt>].

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 0 D size Qn 1 Qd 1 1 1 1 0 N 1 1 0 Rm

T1: VBRSR variant

VBRSR<v>.<dt> Qd, Qn, Rm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || N == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(Rm);
6 n = UInt(N:Qn);
7 esize = 8 << UInt(size);
8 elements = 32 DIV esize;
9 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

10 if Rm == '11x1' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> Size: indicates the size of the elements in the vector.

This parameter must be one of the following values:
8 Encoded as size = 00
16 Encoded as size = 01
32 Encoded as size = 10

<Qd> Destination vector register.
<Qn> Source vector register.
<Rm> General-purpose register containing the number of LSB bits to reverse in its bottom 8 bits.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[n, curBeat];
8 revBit = UInt(R[m][7:0]);
9 for e = 0 to elements-1

10 Elem[result, e, esize] = BitReverseShiftRight(Elem[op1, e, esize], revBit);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

969

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

11
12 for e = 0 to 3
13 if elmtMask[e] == '1' then
14 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

970

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.305 VCADD (floating-point)

Vector Complex Add with Rotate. This instruction performs a complex addition of the first operand with the second
operand rotated in the complex plane by the specified amount. A 90 degree rotation of this operand corresponds
to a multiplication by a positive imaginary unit, while a 270 degree rotation corresponds to a multiplication by a
negative imaginary unit. Even and odd elements of the source vectors are interpreted to be the real and imaginary
components, respectively, of a complex number. The results are written into the destination vector register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE with Half-precision and Single-precision Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 rot 1 D 0 sz Qn 0 Qd 0 1 0 0 0 N 1 M 0 Qm 0

T1: VCADD variant

VCADD<v>.<dt> Qd, Qn, Qm, #<rotate>

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveFp);
2 if D == '1' || M == '1' || N == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 m = UInt(M:Qm);
5 n = UInt(N:Qn);
6 esize = if sz == '0' then 16 else 32;
7 elements = 32 DIV esize;
8 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
9 if D:Qd == M:Qm && sz == '1' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> Size: indicates the floating-point format used.

This parameter must be one of the following values:
F16 Encoded as sz = 0
F32 Encoded as sz = 1

<Qd> Destination vector register.
<Qn> First source vector register.
<Qm> Second source vector register.
<rotate> The rotation amount.

This parameter must be one of the following values:
#90 Encoded as rot = 0
#270 Encoded as rot = 1

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

971

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

5
6 result = Zeros(32);
7 if esize == 32 then
8 // Avoid Floating-point exceptions on a predicated lane by checking the element mask
9 pred = (elmtMask[0*(esize>>3)] == '0');

10 case rot:curBeat[0] of
11 when '00' result = FPSub(Q[n, curBeat], Q[m, curBeat+1], FALSE, pred);
12 when '01' result = FPAdd(Q[n, curBeat], Q[m, curBeat-1], FALSE, pred);
13 when '10' result = FPAdd(Q[n, curBeat], Q[m, curBeat+1], FALSE, pred);
14 when '11' result = FPSub(Q[n, curBeat], Q[m, curBeat-1], FALSE, pred);
15 else
16 op1 = Q[n, curBeat];
17 op2 = Q[m, curBeat];
18 for e = 0 to elements-1
19 // Avoid Floating-point exceptions on a predicated lane by checking the element mask
20 pred = (elmtMask[e*(esize>>3)] == '0');
21 case rot:e[0] of
22 when '00' value = FPSub(Elem[op1, e, esize], Elem[op2, e+1, esize], FALSE, pred);
23 when '01' value = FPAdd(Elem[op1, e, esize], Elem[op2, e-1, esize], FALSE, pred);
24 when '10' value = FPAdd(Elem[op1, e, esize], Elem[op2, e+1, esize], FALSE, pred);
25 when '11' value = FPSub(Elem[op1, e, esize], Elem[op2, e-1, esize], FALSE, pred);
26 Elem[result, e, esize] = value;
27
28 for e = 0 to 3
29 if elmtMask[e] == '1' then
30 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

972

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.306 VCADD

Vector Complex Add with Rotate. This instruction performs a complex addition of the first operand with the second
operand rotated in the complex plane by the specified amount. A 90 degree rotation of this operand corresponds
to a multiplication by a positive imaginary unit, while a 270 degree rotation corresponds to a multiplication by a
negative imaginary unit. Even and odd elements of the source vectors are interpreted to be the real and imaginary
components, respectively, of a complex number. The result is then written to the destination vector register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 0 D size Qn 0 Qd rot 1 1 1 1 N 0 M 0 Qm 0

T1: VCADD variant

VCADD<v>.<dt> Qd, Qn, Qm, #<rotate>

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || M == '1' || N == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 n = UInt(N:Qn);
7 esize = 8 << UInt(size);
8 elements = 32 DIV esize;
9 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

10 if D:Qd == M:Qm && size == '10' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> Size: indicates the size of the elements in the vector.

This parameter must be one of the following values:
I8 Encoded as size = 00
I16 Encoded as size = 01
I32 Encoded as size = 10

<Qd> Destination vector register.
<Qn> First source vector register.
<Qm> Second source vector register.
<rotate> The rotation amount.

This parameter must be one of the following values:
#90 Encoded as rot = 0
#270 Encoded as rot = 1

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

973

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 // 32 bit operations are handled differently as they perform cross beat
8 // register accesses
9 if esize == 32 then

10 case rot:curBeat[0] of
11 when '00' result = (Q[n, curBeat] - Q[m, curBeat+1])[31:0];
12 when '01' result = (Q[n, curBeat] + Q[m, curBeat-1])[31:0];
13 when '10' result = (Q[n, curBeat] + Q[m, curBeat+1])[31:0];
14 when '11' result = (Q[n, curBeat] - Q[m, curBeat-1])[31:0];
15 else
16 op1 = Q[n, curBeat];
17 op2 = Q[m, curBeat];
18 for e = 0 to elements-1
19 case rot:e[0] of
20 when '00' value = Elem[op1, e, esize] - Elem[op2, e+1, esize];
21 when '01' value = Elem[op1, e, esize] + Elem[op2, e-1, esize];
22 when '10' value = Elem[op1, e, esize] + Elem[op2, e+1, esize];
23 when '11' value = Elem[op1, e, esize] - Elem[op2, e-1, esize];
24 Elem[result, e, esize] = value[esize-1:0];
25
26 for e = 0 to 3
27 if elmtMask[e] == '1' then
28 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

974

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.307 VCLS

Vector Count Leading Sign-bits. Count the leading sign bits of each element in a vector register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 0 Qd 0 0 1 0 0 0 1 M 0 Qm 0

T1: VCLS variant

VCLS<v>.<dt> Qd, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' then UNDEFINED;
3 if size == '11' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 esize = 8 << UInt(size);
7 elements = 32 DIV esize;
8 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> Size: indicates the size of the elements in the vector.

This parameter must be one of the following values:
S8 Encoded as size = 00
S16 Encoded as size = 01
S32 Encoded as size = 10

<Qd> Destination vector register.
<Qm> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[m, curBeat];
8 for e = 0 to elements-1
9 value = CountLeadingSignBits(Elem[op1, e, esize]);

10 Elem[result, e, esize] = value[esize-1:0];
11
12 for e = 0 to 3
13 if elmtMask[e] == '1' then
14 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

975

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.308 VCLZ

Vector Count Leading Zeros. Count the leading zeros of each element in a vector register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 0 Qd 0 0 1 0 0 1 1 M 0 Qm 0

T1: VCLZ variant

VCLZ<v>.<dt> Qd, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' then UNDEFINED;
3 if size == '11' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 esize = 8 << UInt(size);
7 elements = 32 DIV esize;
8 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> Size: indicates the size of the elements in the vector.

This parameter must be one of the following values:
I8 Encoded as size = 00
I16 Encoded as size = 01
I32 Encoded as size = 10

<Qd> Destination vector register.
<Qm> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[m, curBeat];
8 for e = 0 to elements-1
9 value = CountLeadingZeroBits(Elem[op1, e, esize]);

10 Elem[result, e, esize] = value[esize-1:0];
11
12 for e = 0 to 3
13 if elmtMask[e] == '1' then
14 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

976

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.309 VCMLA (floating-point)

Vector Complex Multiply Accumulate. This instruction operates on complex numbers that are represented in
registers as pairs of elements. Each element holds a floating-point value. The odd element holds the imaginary part
of the number, and the even element holds the real part of the number. The instruction performs the computation
on the corresponding complex number element pairs from the two source registers and the destination register.
Considering the complex number from the second source register on an Argand diagram, the number is rotated
counterclockwise by 0, 90, 180, or 270 degrees. If the transformation was a rotation by 0 or 180 degrees, the two
elements of the transformed complex number are multiplied by the real element of the first source register. If the
transformation was a rotation by 90 or 270 degrees, the two elements are multiplied by the imaginary element of
the complex number from the first source register. The result of the multiplication is added on to the existing value
in the destination vector register. The multiplication and addition operations are fused and the result is not rounded.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE with Half-precision and Single-precision Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 rot Da 1 sz Qn 0 Qda 0 1 0 0 0 N 1 M 0 Qm 0

T1: VCMLA variant

VCMLA<v>.<dt> Qda, Qn, Qm, #<rotate>

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveFp);
2 if Da == '1' || M == '1' || N == '1' then UNDEFINED;
3 da = UInt(Da:Qda);
4 m = UInt(M:Qm);
5 n = UInt(N:Qn);
6 esize = if sz == '0' then 16 else 32;
7 elements = 32 DIV esize;
8 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
9 if sz == '1' && (Da:Qda == M:Qm || Da:Qda == N:Qn) then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> Size: indicates the floating-point format used.

This parameter must be one of the following values:
F16 Encoded as sz = 0
F32 Encoded as sz = 1

<Qda> Source and destination vector register.
<Qn> First source vector register.
<Qm> Second source vector register.
<rotate> The rotation amount.

This parameter must be one of the following values:
#0 Encoded as rot = 00
#90 Encoded as rot = 01
#180 Encoded as rot = 10
#270 Encoded as rot = 11

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

977

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 dest = Q[da, curBeat];
8 if esize == 32 then
9 // Avoid Floating-point exceptions on a predicated lane by checking the element mask

10 pred = (elmtMask[0*(esize>>3)] == '0');
11 if (curBeat[0] == '0') then
12 case rot of
13 when '00'
14 element1 = Q[m, curBeat];
15 element2 = Q[n, curBeat];
16 when '01'
17 element1 = FPNeg(Q[m, curBeat+1]);
18 element2 = Q[n, curBeat+1];
19 when '10'
20 element1 = FPNeg(Q[m, curBeat]);
21 element2 = Q[n, curBeat];
22 when '11'
23 element1 = Q[m, curBeat+1];
24 element2 = Q[n, curBeat+1];
25 else
26 case rot of
27 when '00'
28 element1 = Q[m, curBeat];
29 element2 = Q[n, curBeat-1];
30 when '01'
31 element1 = Q[m, curBeat-1];
32 element2 = Q[n, curBeat];
33 when '10'
34 element1 = FPNeg(Q[m, curBeat]);
35 element2 = Q[n, curBeat-1];
36 when '11'
37 element1 = FPNeg(Q[m, curBeat-1]);
38 element2 = Q[n, curBeat];
39 result = FPMulAdd(dest, element2, element1, FALSE, pred);
40 else
41 // Avoid Floating-point exceptions on a predicated lane by checking the element mask
42 pred0 = (elmtMask[0*(esize>>3)] == '0');
43 pred1 = (elmtMask[1*(esize>>3)] == '0');
44 op1 = Q[m, curBeat];
45 op2 = Q[n, curBeat];
46 case rot of
47 when '00'
48 elem1 = Elem[op1, 0, esize];
49 elem2 = Elem[op2, 0, esize];
50 elem3 = Elem[op1, 1, esize];
51 elem4 = Elem[op2, 0, esize];
52 when '01'
53 elem1 = FPNeg(Elem[op1, 1, esize]);
54 elem2 = Elem[op2, 1, esize];
55 elem3 = Elem[op1, 0, esize];
56 elem4 = Elem[op2, 1, esize];
57 when '10'
58 elem1 = FPNeg(Elem[op1, 0, esize]);
59 elem2 = Elem[op2, 0, esize];
60 elem3 = FPNeg(Elem[op1, 1, esize]);
61 elem4 = Elem[op2, 0, esize];
62 when '11'
63 elem1 = Elem[op1, 1, esize];
64 elem2 = Elem[op2, 1, esize];
65 elem3 = FPNeg(Elem[op1, 0, esize]);
66 elem4 = Elem[op2, 1, esize];
67 Elem[result, 0, esize] = FPMulAdd(Elem[dest, 0, esize], elem2, elem1, FALSE, pred0);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

978

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

68 Elem[result, 1, esize] = FPMulAdd(Elem[dest, 1, esize], elem4, elem3, FALSE, pred1);
69
70 for e = 0 to 3
71 if elmtMask[e] == '1' then
72 Elem[Q[da, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

979

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.310 VCMP (floating-point)

Vector Compare. Perform a lane-wise comparison between each element in the first source vector register and
either the respective elements in the second source vector register or the value of a general-purpose register. The
resulting boolean conditions are placed in VPR.P0. The VPR.P0 flags for predicated lanes are zeroed.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE with Half-precision and Single-precision Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 sz 1 1 1 0 0 0 1 1 Qn 1 0 0 0 fcA 1 1 1 1 fcC 0 M 0 Qm fcB

T1: VCMP variant

VCMP<v>.<dt> <fc>, Qn, Qm

Decode for this encoding
1 if fcA == '0' && fcB == '1' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_MveFp);
3 if M == '1' then UNDEFINED;
4 m = UInt(M:Qm);
5 n = UInt(Qn);
6 f_cond = fcA:fcB:fcC;
7 withScalar = FALSE;
8 esize = 8 << UInt(if sz == '1' then '01' else '10');
9 elements = 32 DIV esize;

10 ebytes = esize DIV 8;
11 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE with Half-precision and Single-precision Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 sz 1 1 1 0 0 0 1 1 Qn 1 0 0 0 fcA 1 1 1 1 fcC 1 fcB 0 Rm

T2: VCMP variant

VCMP<v>.<dt> <fc>, Qn, Rm

Decode for this encoding
1 if Rm == '1101' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_MveFp);
3 m = UInt(Rm);
4 n = UInt(Qn);
5 f_cond = fcA:fcB:fcC;
6 withScalar = TRUE;
7 esize = 8 << UInt(if sz == '1' then '01' else '10');
8 elements = 32 DIV esize;
9 ebytes = esize DIV 8;

10 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
11 if fcA == '0' && fcB == '1' then CONSTRAINED_UNPREDICTABLE;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

980

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> Size: indicates the floating-point format used.

This parameter must be one of the following values:
F32 Encoded as sz = 0
F16 Encoded as sz = 1

<fc> The comparison condition to use.
This parameter must be one of the following values:
EQ Encoded as fcA = 0, fcB = 0, fcC = 0
NE Encoded as fcA = 0, fcB = 0, fcC = 1
GE Encoded as fcA = 1, fcB = 0, fcC = 0
LT Encoded as fcA = 1, fcB = 0, fcC = 1
GT Encoded as fcA = 1, fcB = 1, fcC = 0
LE Encoded as fcA = 1, fcB = 1, fcC = 1

<Qn> First source vector register
<Qm> Source vector register.
<Rm> Source general-purpose register (ZR is permitted, PC is not).

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 op1 = Q[n, curBeat];
7 beatPred = Zeros(4);
8 if withScalar then
9 op2 = RZ[m][esize-1:0];

10 else
11 opm = Q[m, curBeat];
12 for e = 0 to elements-1
13 if !withScalar then
14 op2 = Elem[opm, e, esize];
15 // Avoid Floating-point exceptions on a predicated lane by checking the element mask
16 predicated = (elmtMask[e*(esize>>3)] == '0');
17 (flN, flZ, flC, flV) = FPCompare(Elem[op1, e, esize], op2, TRUE, FALSE, predicated);
18 pred = ConditionHolds(f_cond, flN, flZ, flC, flV);
19 Elem[beatPred, e, ebytes] = Replicate(if pred then '1' else '0');
20
21 Elem[VPR.P0, curBeat, 4] = beatPred AND elmtMask;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

981

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.311 VCMP (vector)

Vector Compare. Perform a lane-wise comparison between each element in the first source vector register and
either the respective elements in the second source vector register or the value of a general-purpose register. The
resulting boolean conditions are placed in VPR.P0. The VPR.P0 flags for predicated lanes are zeroed.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 0 0 size Qn 1 0 0 0 0 1 1 1 1 fc 0 M 0 Qm 0

T1: VCMP variant

VCMP<v>.<dt> <fc>, Qn, Qm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if M == '1' then UNDEFINED;
4 m = UInt(M:Qm);
5 n = UInt(Qn);
6 f_cond = '00':fc;
7 withScalar = FALSE;
8 esize = 8 << UInt(size);
9 elements = 32 DIV esize;

10 ebytes = esize DIV 8;
11 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 0 0 size Qn 1 0 0 0 0 1 1 1 1 fc 0 M 0 Qm 1

T2: VCMP variant

VCMP<v>.<dt> <fc>, Qn, Qm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if M == '1' then UNDEFINED;
4 m = UInt(M:Qm);
5 n = UInt(Qn);
6 f_cond = '01':fc;
7 withScalar = FALSE;
8 esize = 8 << UInt(size);
9 elements = 32 DIV esize;

10 ebytes = esize DIV 8;
11 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

982

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

T3
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 0 0 size Qn 1 0 0 0 1 1 1 1 1 fcl 0 M 0 Qm fch

T3: VCMP variant

VCMP<v>.<dt> <fc>, Qn, Qm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if M == '1' then UNDEFINED;
4 m = UInt(M:Qm);
5 n = UInt(Qn);
6 f_cond = '1':fch:fcl;
7 withScalar = FALSE;
8 esize = 8 << UInt(size);
9 elements = 32 DIV esize;

10 ebytes = esize DIV 8;
11 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T4
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 0 0 size Qn 1 0 0 0 0 1 1 1 1 fc 1 0 0 Rm

T4: VCMP variant

VCMP<v>.<dt> <fc>, Qn, Rm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 m = UInt(Rm);
4 n = UInt(Qn);
5 f_cond = '00':fc;
6 withScalar = TRUE;
7 esize = 8 << UInt(size);
8 elements = 32 DIV esize;
9 ebytes = esize DIV 8;

10 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
11 if Rm == '1101' then CONSTRAINED_UNPREDICTABLE;

T5
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 0 0 size Qn 1 0 0 0 0 1 1 1 1 fc 1 1 0 Rm

T5: VCMP variant

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

983

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

VCMP<v>.<dt> <fc>, Qn, Rm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 m = UInt(Rm);
4 n = UInt(Qn);
5 f_cond = '01':fc;
6 withScalar = TRUE;
7 esize = 8 << UInt(size);
8 elements = 32 DIV esize;
9 ebytes = esize DIV 8;

10 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
11 if Rm == '1101' then CONSTRAINED_UNPREDICTABLE;

T6
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 0 0 size Qn 1 0 0 0 1 1 1 1 1 fcl 1 fch 0 Rm

T6: VCMP variant

VCMP<v>.<dt> <fc>, Qn, Rm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 m = UInt(Rm);
4 n = UInt(Qn);
5 f_cond = '1':fch:fcl;
6 withScalar = TRUE;
7 esize = 8 << UInt(size);
8 elements = 32 DIV esize;
9 ebytes = esize DIV 8;

10 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
11 if Rm == '1101' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for T1 encodings

<dt> Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
I8 Encoded as size = 00
I16 Encoded as size = 01
I32 Encoded as size = 10

<fc> The comparison condition to use.
This parameter must be one of the following values:
EQ Encoded as fc = 0
NE Encoded as fc = 1

Assembler symbols for T2 encodings

<dt> Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
U8 Encoded as size = 00
U16 Encoded as size = 01

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

984

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

U32 Encoded as size = 10
<fc> The comparison condition to use.

This parameter must be one of the following values:
CS Encoded as fc = 0
HI Encoded as fc = 1

Assembler symbols for T3 encodings

<dt> Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
S8 Encoded as size = 00
S16 Encoded as size = 01
S32 Encoded as size = 10

<fc> The comparison condition to use.
This parameter must be one of the following values:
GE Encoded as fch = 0, fcl = 0
LT Encoded as fch = 0, fcl = 1
GT Encoded as fch = 1, fcl = 0
LE Encoded as fch = 1, fcl = 1

Assembler symbols for T4 encodings

<dt> Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
I8 Encoded as size = 00
I16 Encoded as size = 01
I32 Encoded as size = 10

<fc> The comparison condition to use.
This parameter must be one of the following values:
EQ Encoded as fc = 0
NE Encoded as fc = 1

Assembler symbols for T5 encodings

<dt> Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
U8 Encoded as size = 00
U16 Encoded as size = 01
U32 Encoded as size = 10

<fc> The comparison condition to use.
This parameter must be one of the following values:
CS Encoded as fc = 0
HI Encoded as fc = 1

Assembler symbols for T6 encodings

<dt> Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
S8 Encoded as size = 00
S16 Encoded as size = 01
S32 Encoded as size = 10

<fc> The comparison condition to use.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

985

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

This parameter must be one of the following values:
GE Encoded as fch = 0, fcl = 0
LT Encoded as fch = 0, fcl = 1
GT Encoded as fch = 1, fcl = 0
LE Encoded as fch = 1, fcl = 1

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<Qn> First source vector register
<Qm> Second source vector register
<Rm> Source general-purpose register (ZR is permitted, PC is not).

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 op1 = Q[n, curBeat];
7 beatPred = Zeros(4);
8 if withScalar then
9 op2 = RZ[m][esize-1:0];

10 else
11 opm = Q[m, curBeat];
12 for e = 0 to elements-1
13 if !withScalar then
14 op2 = Elem[opm, e, esize];
15 (result, flC, flV) = AddWithCarry(Elem[op1, e, esize], NOT(op2), '1');
16 flN = result[esize-1];
17 flZ = IsZeroBit(result);
18 pred = ConditionHolds(f_cond, flN, flZ, flC, flV);
19 Elem[beatPred, e, ebytes] = Replicate(if pred then '1' else '0');
20
21 Elem[VPR.P0, curBeat, 4] = beatPred AND elmtMask;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

986

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.312 VCMP

Floating-point Compare. Floating-point Compare compares two registers, or one register and zero. It writes the
result to FPSCR condition flags. These are normally transferred to the APSR condition flags by a subsequent
VMRS instruction.

It raises an Invalid Operation exception only if either operand is a signaling NaN.

T1
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 0 1 0 0 Vd 1 0 size

E = 0

1 M 0 Vm

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when size == 01.

VCMP{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VCMP{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VCMP{<c>}{<q>}.F64 <Dd>, <Dm>

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (M == '1' || D == '1') then UNDEFINED;
4 if size == '01' && InITBlock() then UNPREDICTABLE;
5 quiet_nan_exc = (E == '1'); with_zero = FALSE;
6 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
7 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

T2
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 0 1 0 1 Vd 1 0 size

E = 0

1 (0) 0 (0) (0) (0) (0)

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

987

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Applies when size == 01.

VCMP{<c>}{<q>}.F16 <Sd>, #0.0

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VCMP{<c>}{<q>}.F32 <Sd>, #0.0

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VCMP{<c>}{<q>}.F64 <Dd>, #0.0

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (D == '1') then UNDEFINED;
4 if size == '01' && InITBlock() then UNPREDICTABLE;
5 quiet_nan_exc = (E == '1'); with_zero = TRUE;
6 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
7 m = integer UNKNOWN;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.
<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.
<Dm> Is the 64-bit name of the floating-point source register, encoded in the "M:Vm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 case size of
5 when '01'
6 op16 = if with_zero then FPZero('0',16) else S[m][15:0];
7 (FPSCR.N, FPSCR.Z, FPSCR.C, FPSCR.V) = FPCompare(S[d][15:0], op16, quiet_nan_exc,
8 TRUE);
9 when '10'

10 op32 = if with_zero then FPZero('0',32) else S[m];
11 (FPSCR.N, FPSCR.Z, FPSCR.C, FPSCR.V) = FPCompare(S[d], op32, quiet_nan_exc,
12 TRUE);
13 when '11'
14 op64 = if with_zero then FPZero('0',64) else D[m];
15 (FPSCR.N, FPSCR.Z, FPSCR.C, FPSCR.V) = FPCompare(D[d], op64, quiet_nan_exc,
16 TRUE);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

988

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.313 VCMPE

Floating-point Compare, raising Invalid Operation on NaN. Floating-point Compare, raising Invalid Operation on
NaN compares two registers, or one register and zero. It writes the result to FPSCR condition flags. These are
normally transferred to the APSR condition flags by a subsequent VMRS instruction.

It raises an Invalid Operation exception if either operand is any type of NaN.

T1
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 0 1 0 0 Vd 1 0 size

E = 1

1 M 0 Vm

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when size == 01.

VCMPE{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VCMPE{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VCMPE{<c>}{<q>}.F64 <Dd>, <Dm>

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (M == '1' || D == '1') then UNDEFINED;
4 if size == '01' && InITBlock() then UNPREDICTABLE;
5 quiet_nan_exc = (E == '1'); with_zero = FALSE;
6 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
7 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

T2
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 0 1 0 1 Vd 1 0 size

E = 1

1 (0) 0 (0) (0) (0) (0)

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

989

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Applies when size == 01.

VCMPE{<c>}{<q>}.F16 <Sd>, #0.0

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VCMPE{<c>}{<q>}.F32 <Sd>, #0.0

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VCMPE{<c>}{<q>}.F64 <Dd>, #0.0

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (D == '1') then UNDEFINED;
4 if size == '01' && InITBlock() then UNPREDICTABLE;
5 quiet_nan_exc = (E == '1'); with_zero = TRUE;
6 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
7 m = integer UNKNOWN;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.
<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.
<Dm> Is the 64-bit name of the floating-point source register, encoded in the "M:Vm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 case size of
5 when '01'
6 op16 = if with_zero then FPZero('0',16) else S[m][15:0];
7 (FPSCR.N, FPSCR.Z, FPSCR.C, FPSCR.V) = FPCompare(S[d][15:0], op16, quiet_nan_exc,
8 TRUE);
9 when '10'

10 op32 = if with_zero then FPZero('0',32) else S[m];
11 (FPSCR.N, FPSCR.Z, FPSCR.C, FPSCR.V) = FPCompare(S[d], op32, quiet_nan_exc,
12 TRUE);
13 when '11'
14 op64 = if with_zero then FPZero('0',64) else D[m];
15 (FPSCR.N, FPSCR.Z, FPSCR.C, FPSCR.V) = FPCompare(D[d], op64, quiet_nan_exc,
16 TRUE);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

990

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.314 VCMUL (floating-point)

Vector Complex Multiply. This instruction operates on complex numbers that are represented in registers as pairs of
elements. Each element holds a floating-point value. The odd element holds the imaginary part of the number, and
the even element holds the real part of the number. The instruction performs the computation on the corresponding
complex number element pairs from the two source registers and the destination register. Considering the complex
number from the second source register on an Argand diagram, the number is rotated counterclockwise by 0, 90,
180, or 270 degrees. If the transformation was a rotation by 0 or 180 degrees, the two elements of the transformed
complex number are multiplied by the real element of the first source register. If the transformation was a rotation
by 90 or 270 degrees, the two elements are multiplied by the imaginary element of the complex number from the
first source register. The results are written into the destination vector register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE with Half-precision and Single-precision Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 sz 1 1 1 0 0 D 1 1 Qn 0 Qd

roth

1 1 1 0 N 0 M 0 Qm

rotl

T1: VCMUL variant

VCMUL<v>.<dt> Qd, Qn, Qm, #<rotate>

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveFp);
2 if D == '1' || M == '1' || N == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 m = UInt(M:Qm);
5 n = UInt(N:Qn);
6 esize = if sz == '0' then 16 else 32;
7 elements = 32 DIV esize;
8 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
9 if sz == '1' && (D:Qd == M:Qm || D:Qd == N:Qn) then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> Size: indicates the floating-point format used.

This parameter must be one of the following values:
F16 Encoded as sz = 0
F32 Encoded as sz = 1

<Qd> Destination vector register.
<Qn> First source vector register.
<Qm> Second source vector register.
<rotate> The rotation amount.

This parameter must be one of the following values:
#0 Encoded as roth = 0, rotl = 0
#90 Encoded as roth = 0, rotl = 1
#180 Encoded as roth = 1, rotl = 0
#270 Encoded as roth = 1, rotl = 1

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

991

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 if esize == 32 then
8 // Avoid Floating-point exceptions on a predicated lane by checking the element mask
9 pred = (elmtMask[0*(esize>>3)] == '0');

10 if (curBeat[0] == '0') then
11 case roth:rotl of
12 when '00'
13 element1 = Q[m, curBeat];
14 element2 = Q[n, curBeat];
15 when '01'
16 element1 = FPNeg(Q[m, curBeat+1]);
17 element2 = Q[n, curBeat+1];
18 when '10'
19 element1 = FPNeg(Q[m, curBeat]);
20 element2 = Q[n, curBeat];
21 when '11'
22 element1 = Q[m, curBeat+1];
23 element2 = Q[n, curBeat+1];
24 else
25 case roth:rotl of
26 when '00'
27 element1 = Q[m, curBeat];
28 element2 = Q[n, curBeat-1];
29 when '01'
30 element1 = Q[m, curBeat-1];
31 element2 = Q[n, curBeat];
32 when '10'
33 element1 = FPNeg(Q[m, curBeat]);
34 element2 = Q[n, curBeat-1];
35 when '11'
36 element1 = FPNeg(Q[m, curBeat-1]);
37 element2 = Q[n, curBeat];
38 result = FPMul(element2, element1, FALSE, pred);
39 else
40 // Avoid Floating-point exceptions on a predicated lane by checking the element mask
41 pred0 = (elmtMask[0*(esize>>3)] == '0');
42 pred1 = (elmtMask[1*(esize>>3)] == '0');
43 op1 = Q[m, curBeat];
44 op2 = Q[n, curBeat];
45 case roth:rotl of
46 when '00'
47 elem1 = Elem[op1, 0, esize];
48 elem2 = Elem[op2, 0, esize];
49 elem3 = Elem[op1, 1, esize];
50 elem4 = Elem[op2, 0, esize];
51 when '01'
52 elem1 = FPNeg(Elem[op1, 1, esize]);
53 elem2 = Elem[op2, 1, esize];
54 elem3 = Elem[op1, 0, esize];
55 elem4 = Elem[op2, 1, esize];
56 when '10'
57 elem1 = FPNeg(Elem[op1, 0, esize]);
58 elem2 = Elem[op2, 0, esize];
59 elem3 = FPNeg(Elem[op1, 1, esize]);
60 elem4 = Elem[op2, 0, esize];
61 when '11'
62 elem1 = Elem[op1, 1, esize];
63 elem2 = Elem[op2, 1, esize];
64 elem3 = FPNeg(Elem[op1, 0, esize]);
65 elem4 = Elem[op2, 1, esize];
66 Elem[result, 0, esize] = FPMul(elem2, elem1, FALSE, pred0);
67 Elem[result, 1, esize] = FPMul(elem4, elem3, FALSE, pred1);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

992

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

68
69 for e = 0 to 3
70 if elmtMask[e] == '1' then
71 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

993

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.315 VCTP

Create Vector Tail Predicate. Creates a predicate pattern in VPR.P0 such that any element numbered the value of
Rn or greater is predicated. Any element numbered lower than the value of Rn is not predicated. If placed within
a VPT block and a lane is predicated, the corresponding VPR.P0 pattern will also be predicated. The generated
VPR.P0 pattern can be used by an ensuing predication instruction to apply tail predication on a vector register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 0 0 0 size Rn 1 1 1 0 1 (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) 1

T1: VCTP variant

VCTP<v>.<dt> Rn

Decode for this encoding
1 if Rn == '1111' then SEE "Related encodings";
2 if !HaveMve() then UNDEFINED;
3 HandleException(CheckCPEnabled(10));
4 n = UInt(Rn);
5 predSize = UInt(size);
6 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
7 if Rn == '1101' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> The size of the elements in the vector to process.

This parameter must be one of the following values:
8 Encoded as size = 00
16 Encoded as size = 01
32 Encoded as size = 10
64 Encoded as size = 11

<Rn> The register containing the number of elements that need to be processed.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 loopCount = R[n];
7 if UInt(loopCount) <= (1 << (4 - predSize)) then
8 fullMask = ZeroExtend(Ones(UInt(loopCount[4-predSize:0] : Zeros(predSize))), 16);
9 else

10 fullMask = Ones(16);
11
12 Elem[VPR.P0, curBeat, 4] = elmtMask AND Elem[fullMask, curBeat, 4];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

994

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.316 VCVT (between double-precision and single-precision)

Convert between double-precision and single-precision. This instruction does one of the following:

• Converts the value in a double-precision register to single-precision and writes the result to a single-precision
register.

• Converts the value in a single-precision register to double-precision and writes the result to a double-precision
register.

T1
Armv8-M Floating-point Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 0 1 1 1 Vd 1 0 1 sz 1 1 M 0 Vm

Encoding

Applies when sz == 0.

VCVT{<c>}{<q>}.F64.F32 <Dd>, <Sm>

Encoding

Applies when sz == 1.

VCVT{<c>}{<q>}.F32.F64 <Sd>, <Dm>

Decode for this encoding
1 CheckDecodeFaults(ExtType_DpFp);
2 double_to_single = (sz == '1');
3 if double_to_single then
4 if VFPSmallRegisterBank() && (M == '1') then UNDEFINED;
5 d = UInt(Vd:D);
6 m = UInt(M:Vm);
7 else
8 if VFPSmallRegisterBank() && (D == '1') then UNDEFINED;
9 d = UInt(D:Vd);

10 m = UInt(Vm:M);

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Dm> Is the 64-bit name of the floating-point source register, encoded in the "M:Vm" field.
<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.
<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations(); ExecuteFPCheck();
3 if double_to_single then
4 S[d] = FPDoubleToSingle(D[m], TRUE);
5 else
6 D[d] = FPSingleToDouble(S[m], TRUE);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

995

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.317 VCVT (between floating-point and fixed-point) (vector)

Vector Convert between floating-point and fixed-point. Convert between floating-point and fixed-point values in
elements of a vector register. The number of fractional bits in the fixed-point value is specified by an immediate.
Fixed-point values can be specified as signed or unsigned. The floating-point to fixed-point operation uses the
Round towards Zero rounding mode. The fixed-point to floating-point operation uses the Round to Nearest
rounding mode. For floating-point to fixed-point operation, if the source value is outside the range of the target
fixed-point type, the result is saturated.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE with Half-precision and Single-precision Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 1 D imm6 Qd 0 1 1 fsi op 0 1 M 1 Qm 0

T1: VCVT variant

VCVT<v>.<dt> Qd, Qm, #<fbits>

Decode for this encoding
1 if imm6 == '000xxx' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_MveFp);
3 if D == '1' || M == '1' then UNDEFINED;
4 if imm6 == '0xxxxx' || (fsi == '0' && imm6 == '10xxxx') then UNDEFINED;
5 d = UInt(D:Qd);
6 m = UInt(M:Qm);
7 esize = 16 << UInt(fsi);
8 elements = 32 DIV esize;
9 toFixed = (op == '1');

10 unsigned = (U == '1');
11 fracBits = 64 - UInt(imm6);
12 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> This parameter must be one of the following values:

F16.S16 Encoded as fsi = 0, op = 0, U = 0
Convert signed 16-bit integer to half-precision floating-point

F16.U16 Encoded as fsi = 0, op = 0, U = 1
Convert unsigned 16-bit integer to half-precision floating-point

S16.F16 Encoded as fsi = 0, op = 1, U = 0
Convert half-precision floating-point to signed 16-bit integer

U16.F16 Encoded as fsi = 0, op = 1, U = 1
Convert half-precision floating-point to unsigned 16-bit integer

F32.S32 Encoded as fsi = 1, op = 0, U = 0
Convert signed 32-bit integer to single-precision floating-point

F32.U32 Encoded as fsi = 1, op = 0, U = 1
Convert unsigned 32-bit integer to single-precision floating-point

S32.F32 Encoded as fsi = 1, op = 1, U = 0

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

996

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Convert single-precision floating-point to signed 32-bit integer
U32.F32 Encoded as fsi = 1, op = 1, U = 1

Convert single-precision floating-point to unsigned 32-bit integer
<Qd> Destination vector register.
<Qm> Source vector register.
<fbits> The number of fraction bits in the fixed-point number. For 16-bit fixed-point, this number

must be in the range 1-16. For 32-bit fixed-point, this number must be in the range 1-32. The
value of (64 - <fbits>) is encoded in imm6.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[m, curBeat];
8 for e = 0 to elements-1
9 // Avoid Floating-point exceptions on a predicated lane by checking the element mask

10 pred = (elmtMask[e*(esize>>3)] == '0');
11 if toFixed then
12 // Round to zero
13 value = FPToFixed(Elem[op1, e, esize], esize, fracBits, unsigned, TRUE, FALSE, pred);
14 else
15 // Round nearest
16 value = FixedToFP(Elem[op1, e, esize], esize, fracBits, unsigned, TRUE, FALSE, pred);
17 Elem[result, e, esize] = value[esize-1:0];
18
19 for e = 0 to 3
20 if elmtMask[e] == '1' then
21 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

997

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.318 VCVT (between floating-point and fixed-point)

Floating-point Convert (between floating-point and fixed-point). Floating-point Convert (between floating-point
and fixed-point) converts a value in a register from floating-point to fixed-point, or from fixed-point to floating-point,
and places the result in the destination register. Software can specify the fixed-point value as either signed or
unsigned.

The fixed-point value can be 16-bit or 32-bit. Conversions from fixed-point values take their operand from the
low-order bits of the source register and ignore any remaining bits. Signed conversions to fixed-point values sign-
extend the result value to the destination register width. Unsigned conversions to fixed-point values zero-extend
the result value to the destination register width.

The floating-point to fixed-point operation uses the Round towards Zero rounding mode. The fixed-point to
floating-point operation uses the Round to Nearest rounding mode.

T1
Armv8-M Floating-point Extension only, sf == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 1 op 1 U Vd 1 0 sf sx 1 i 0 imm4

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when op == 0 && sf == 01.

VCVT{<c>}{<q>}.F16.<dt> <Sdm>, <Sdm>, #<fbits>

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when op == 1 && sf == 01.

VCVT{<c>}{<q>}.<dt>.F16 <Sdm>, <Sdm>, #<fbits>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when op == 0 && sf == 10.

VCVT{<c>}{<q>}.F32.<dt> <Sdm>, <Sdm>, #<fbits>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when op == 1 && sf == 10.

VCVT{<c>}{<q>}.<dt>.F32 <Sdm>, <Sdm>, #<fbits>

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when op == 0 && sf == 11.

VCVT{<c>}{<q>}.F64.<dt> <Ddm>, <Ddm>, #<fbits>

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

998

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when op == 1 && sf == 11.

VCVT{<c>}{<q>}.<dt>.F64 <Ddm>, <Ddm>, #<fbits>

Decode for this encoding
1 dp_operation = (sf == '11');
2 CheckFPDecodeFaults(sf);
3 if VFPSmallRegisterBank() && dp_operation && (D == '1') then UNDEFINED;
4 if sf == '01' && InITBlock() then UNPREDICTABLE;
5 to_fixed = (op == '1'); unsigned = (U == '1');
6 esize = if sx == '0' then 16 else 32;
7 fract = esize - UInt(imm4:i);
8 if to_fixed then
9 round_zero = TRUE;

10 else
11 round_nearest = TRUE;
12 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
13 if fract < 0 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If frac_bits < 0, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> Is the data type for the fixed-point number, encoded in the "U:sx" field. It can have the

following values:
S16 when U = 0, sx = 0
S32 when U = 0, sx = 1
U16 when U = 1, sx = 0
U32 when U = 1, sx = 1

<Sdm> Is the 32-bit name of the floating-point destination and source register, encoded in the "Vd:D"
field.

<Ddm> Is the 64-bit name of the floating-point destination and source register, encoded in the "D:Vd"
field.

<fbits> The number of fraction bits in the fixed-point number:
- If <dt> is S16 or U16, <fbits> must be in the range 0-16. (16 - <fbits>) is encoded

in [imm4, i]
- If <dt> is S32 or U32, <fbits> must be in the range 1-32. (32 - <fbits>) is encoded

in [imm4, i].

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 if to_fixed then
5 case sf of
6 when '01'

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

999

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

7 result = FPToFixed(S[d][15:0], esize, fract, unsigned, round_zero, TRUE);
8 S[d] = if unsigned then ZeroExtend(result, 32) else SignExtend(result, 32);
9 when '10'

10 result = FPToFixed(S[d], esize, fract, unsigned, round_zero, TRUE);
11 S[d] = if unsigned then ZeroExtend(result, 32) else SignExtend(result, 32);
12 when '11'
13 result = FPToFixed(D[d], esize, fract, unsigned, round_zero, TRUE);
14 D[d] = if unsigned then ZeroExtend(result, 64) else SignExtend(result, 64);
15 else
16 case sf of
17 when '01'
18 fp16 = FixedToFP(S[d][esize-1:0], 16, fract, unsigned, round_nearest, TRUE);
19 S[d] = Zeros(16):fp16;
20 when '10'
21 S[d] = FixedToFP(S[d][esize-1:0], 32, fract, unsigned, round_nearest, TRUE);
22 when '11'
23 D[d] = FixedToFP(D[d][esize-1:0], 64, fract, unsigned, round_nearest, TRUE);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1000

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.319 VCVT (between floating-point and integer)

Vector Convert between floating-point and integer. Convert between floating-point and integer values in elements of
a vector register. When converting to integer the value is rounded towards zero, when converting to floating-point
the value is rounded to nearest. For floating-point to integer operation, if the source value is outside the range of
the target integer type, the result is saturated.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE with Half-precision and Single-precision Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 1 Qd 0 0 1 1 op 1 M 0 Qm 0

T1: VCVT variant

VCVT<v>.<dt> Qd, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveFp);
2 if D == '1' || M == '1' then UNDEFINED;
3 if size IN {'11', '00'} then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 toInteger = (op[1] == '1');
7 unsigned = (op[0] == '1');
8 esize = 8 << UInt(size);
9 elements = 32 DIV esize;

10 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> This parameter must be one of the following values:

F16.S16 Encoded as op = 00, size = 01
Convert signed 16-bit integer to half-precision floating-point

F32.S32 Encoded as op = 00, size = 10
Convert signed 32-bit integer to single-precision floating-point

F16.U16 Encoded as op = 01, size = 01
Convert unsigned 16-bit integer to half-precision floating-point

F32.U32 Encoded as op = 01, size = 10
Convert unsigned 32-bit integer to single-precision floating-point

S16.F16 Encoded as op = 10, size = 01
Convert half-precision floating-point to signed 16-bit integer

S32.F32 Encoded as op = 10, size = 10
Convert single-precision floating-point to signed 32-bit integer

U16.F16 Encoded as op = 11, size = 01
Convert half-precision floating-point to unsigned 16-bit integer

U32.F32 Encoded as op = 11, size = 10
Convert single-precision floating-point to unsigned 32-bit integer

<Qd> Destination vector register.
<Qm> Source vector register.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1001

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[m, curBeat];
8 for e = 0 to elements-1
9 // Avoid Floating-point exceptions on a predicated lane by checking the element mask

10 pred = (elmtMask[e*(esize>>3)] == '0');
11 if toInteger then
12 // Round to zero
13 value = FPToFixed(Elem[op1, e, esize], esize, 0, unsigned, TRUE, FALSE, pred);
14 else
15 // Round to nearest
16 value = FixedToFP(Elem[op1, e, esize], esize, 0, unsigned, TRUE, FALSE, pred);
17 Elem[result, e, esize] = value[esize-1:0];
18
19 for e = 0 to 3
20 if elmtMask[e] == '1' then
21 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1002

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.320 VCVT (between single and half-precision floating-point)

Vector Convert between half-precision and single-precision. Convert between half-precision and single-precision
floating-point values in elements of a vector register. For half-precision to single-precision operation, the top half
(T variant) or bottom half (B variant) of the source vector register is selected. For single-precision to half-precision
operation, the top half (T variant) or bottom half (B variant) of the destination vector register is selected and the
other half retains its previous value.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE with Half-precision and Single-precision Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 op 1 1 1 0 0 D 1 1 1 1 1 1 Qd T 1 1 1 0 0 0 M 0 Qm 1

T1: VCVT variant

VCVT<T><v>.<dt> Qd, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveFp);
2 if D == '1' || M == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 m = UInt(M:Qm);
5 elements = 4;
6 halfToSingle = (op == '1');
7 esize = if halfToSingle then 16 else 32;
8 top = UInt(T);
9 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<T> Specifies that the FP16 value read from or written to the top (T) or bottom (B) half of the FP32
vector register element.
This parameter must be one of the following values:
B Encoded as T = 0

Indicates bottom half
T Encoded as T = 1

Indicates top half
<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> This parameter must be one of the following values:

F16.F32 Encoded as op = 0
Convert single-precision to half-precision

F32.F16 Encoded as op = 1
Convert half-precision to single-precision

<Qd> Destination vector register.
<Qm> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1003

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[m, curBeat];
8 if halfToSingle then
9 // Avoid Floating-point exceptions on a predicated lane by checking the element mask

10 pred = (elmtMask[top*(esize>>3)] == '0');
11 result = FPHalfToSingle(Elem[op1, top, 16], FALSE, pred);
12 else
13 // Avoid Floating-point exceptions on a predicated lane by checking the element mask
14 pred = (elmtMask[0*(esize>>3)] == '0');
15 // Write to the selected half of the destination element
16 Elem[result, top, 16] = FPSingleToHalf(op1, FALSE, pred);
17 // Don't overwrite the other half
18 Elem[result, 1-top, 16] = Elem[Q[d, curBeat], 1-top, 16];
19
20 for e = 0 to 3
21 if elmtMask[e] == '1' then
22 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1004

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.321 VCVT (floating-point to integer)

Convert floating-point to integer with Round towards Zero. Convert floating-point to integer with Round towards
Zero converts a value in a register from floating-point to a 32-bit integer, using the Round towards Zero rounding
mode, and places the result in the destination register.

T1
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 1

opc2 = 10x

Vd 1 0 size

op = 1

1 M 0 Vm

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when opc2 == 100 && size == 01.

VCVT{<c>}{<q>}.U32.F16 <Sd>, <Sm>

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when opc2 == 101 && size == 01.

VCVT{<c>}{<q>}.S32.F16 <Sd>, <Sm>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when opc2 == 100 && size == 10.

VCVT{<c>}{<q>}.U32.F32 <Sd>, <Sm>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when opc2 == 101 && size == 10.

VCVT{<c>}{<q>}.S32.F32 <Sd>, <Sm>

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when opc2 == 100 && size == 11.

VCVT{<c>}{<q>}.U32.F64 <Sd>, <Dm>

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when opc2 == 101 && size == 11.

VCVT{<c>}{<q>}.S32.F64 <Sd>, <Dm>

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1005

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Decode for this encoding
1 if opc2 != '000' && !(opc2 IN '10x') then SEE "Related encodings";
2 dp_operation = (size == '11');
3 CheckFPDecodeFaults(size);
4 to_integer = (opc2[2] == '1');
5 if to_integer then
6 if VFPSmallRegisterBank() && dp_operation && (M == '1') then UNDEFINED;
7 unsigned = (opc2[0] == '0'); round_zero = (op == '1');
8 d = UInt(Vd:D); m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);
9 else

10 if VFPSmallRegisterBank() && dp_operation && (D == '1') then UNDEFINED;
11 unsigned = (op == '0'); round_nearest = FALSE; // FALSE selects FPSCR rounding
12 m = UInt(Vm:M); d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
13 if size == '01' && InITBlock() then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.
<Dm> Is the 64-bit name of the floating-point source register, encoded in the "M:Vm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 if to_integer then
5 case size of
6 when '01'
7 S[d] = FPToFixed(S[m][15:0], 32, 0, unsigned, round_zero, TRUE);
8 when '10'
9 S[d] = FPToFixed(S[m], 32, 0, unsigned, round_zero, TRUE);

10 when '11'
11 S[d] = FPToFixed(D[m], 32, 0, unsigned, round_zero, TRUE);
12 else
13 case size of
14 when '01'
15 fp16 = FixedToFP(S[m], 16, 0, unsigned, round_nearest, TRUE);
16 S[d] = Zeros(16):fp16;
17 when '10'
18 S[d] = FixedToFP(S[m], 32, 0, unsigned, round_nearest, TRUE);
19 when '11'
20 D[d] = FixedToFP(S[m], 64, 0, unsigned, round_nearest, TRUE);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1006

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.322 VCVT (from floating-point to integer)

Vector Convert from floating-point to integer. Convert each element in a vector from floating-point to integer using
the specified rounding mode and place the results in a second vector. If a source element is outside the range of the
target integer type, the result element is saturated.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE with Half-precision and Single-precision Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 1 Qd 0 0 0 RM op 1 M 0 Qm 0

T1: VCVT variant

VCVT<ANPM><v>.<dt> Qd, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveFp);
2 if D == '1' || M == '1' then UNDEFINED;
3 if size IN {'11', '00'} then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 unsigned = (op == '1');
7 esize = 8 << UInt(size);
8 elements = 32 DIV esize;
9 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<ANPM> The rounding mode.
This parameter must be one of the following values:
A Encoded as RM = 00

Round to nearest with ties to away
N Encoded as RM = 01

Round to nearest with ties to even
P Encoded as RM = 10

Round towards plus infinity
M Encoded as RM = 11

Round towards minus infinity
<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> This parameter must be one of the following values:

S16.F16 Encoded as op = 0, size = 01
Convert half-precision floating-point to signed 16-bit integer

S32.F32 Encoded as op = 0, size = 10
Convert single-precision floating-point to signed 32-bit integer

U16.F16 Encoded as op = 1, size = 01
Convert half-precision floating-point to unsigned 16-bit integer

U32.F32 Encoded as op = 1, size = 10
Convert single-precision floating-point to unsigned 32-bit integer

<Qd> Destination vector register.
<Qm> Source vector register.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1007

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[m, curBeat];
8 for e = 0 to elements-1
9 // Avoid Floating-point exceptions on a predicated lane by checking the element mask

10 pred = (elmtMask[e*(esize>>3)] == '0');
11 U = unsigned;
12 Elem[result, e, esize] = FPToFixedDirected(Elem[op1, e, esize], 0, U, RM, FALSE, pred);
13
14 for e = 0 to 3
15 if elmtMask[e] == '1' then
16 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1008

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.323 VCVT (integer to floating-point)

Convert integer to floating-point. Convert integer to floating-point converts a value in a register from a 32-bit
integer to floating-point, using the rounding mode specified by FPSCR, and places the result in the destination
register.

T1
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 1

opc2 = 000

Vd 1 0 size op 1 M 0 Vm

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when size == 01.

VCVT{<c>}{<q>}.F16.<dt> <Sd>, <Sm>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VCVT{<c>}{<q>}.F32.<dt> <Sd>, <Sm>

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VCVT{<c>}{<q>}.F64.<dt> <Dd>, <Sm>

Decode for this encoding
1 if opc2 != '000' && !(opc2 IN '10x') then SEE "Related encodings";
2 dp_operation = (size == '11');
3 CheckFPDecodeFaults(size);
4 to_integer = (opc2[2] == '1');
5 if to_integer then
6 if VFPSmallRegisterBank() && dp_operation && (M == '1') then UNDEFINED;
7 unsigned = (opc2[0] == '0'); round_zero = (op == '1');
8 d = UInt(Vd:D); m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);
9 else

10 if VFPSmallRegisterBank() && dp_operation && (D == '1') then UNDEFINED;
11 unsigned = (op == '0'); round_nearest = FALSE; // FALSE selects FPSCR rounding
12 m = UInt(Vm:M); d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
13 if size == '01' && InITBlock() then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> Is the data type for the operand, encoded in the "op" field. It can have the following values:

U32 when op = 0
S32 when op = 1

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1009

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.
<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 if to_integer then
5 case size of
6 when '01'
7 S[d] = FPToFixed(S[m][15:0], 32, 0, unsigned, round_zero, TRUE);
8 when '10'
9 S[d] = FPToFixed(S[m], 32, 0, unsigned, round_zero, TRUE);

10 when '11'
11 S[d] = FPToFixed(D[m], 32, 0, unsigned, round_zero, TRUE);
12 else
13 case size of
14 when '01'
15 fp16 = FixedToFP(S[m], 16, 0, unsigned, round_nearest, TRUE);
16 S[d] = Zeros(16):fp16;
17 when '10'
18 S[d] = FixedToFP(S[m], 32, 0, unsigned, round_nearest, TRUE);
19 when '11'
20 D[d] = FixedToFP(S[m], 64, 0, unsigned, round_nearest, TRUE);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1010

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.324 VCVTA

Convert floating-point to integer with Round to Nearest with Ties to Away. Convert floating-point to integer with
Round to Nearest with Ties to Away converts a value in a register from floating-point to a 32-bit integer using the
Round to Nearest with Ties to Away rounding mode, and places the result in the destination register.

T1
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 1 D 1 1 1 1 RM = 00 Vd 1 0 size op 1 M 0 Vm

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when size == 01.

VCVTA{<q>}.<dt>.F16 <Sd>, <Sm>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VCVTA{<q>}.<dt>.F32 <Sd>, <Sm>

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VCVTA{<q>}.<dt>.F64 <Sd>, <Dm>

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (M == '1') then UNDEFINED;
4 if InITBlock() then UNPREDICTABLE;
5 unsigned = (op == '0');
6 round_mode = RM;
7 d = UInt(Vd:D);
8 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols for all encodings

<q> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> Is the data type for the elements of the destination, encoded in the "op" field. It can have the

following values:
U32 when op = 0
S32 when op = 1

<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.
<Dm> Is the 64-bit name of the floating-point source register, encoded in the "M:Vm" field.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1011

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 case size of
5 when '01'
6 S[d] = FPToFixedDirected(S[m][15:0], 0, unsigned, round_mode, TRUE);
7 when '10'
8 S[d] = FPToFixedDirected(S[m], 0, unsigned, round_mode, TRUE);
9 when '11'

10 S[d] = FPToFixedDirected(D[m], 0, unsigned, round_mode, TRUE);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1012

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.325 VCVTB

Floating-point Convert Bottom. Floating-point Convert Bottom does one of the following:

• Converts the half-precision value in the bottom half of a single-precision register to single-precision and
writes the result to a single-precision register.

• Converts the value in a single-precision register to half-precision and writes the result into the bottom half of
a single-precision register, preserving the other half of the target register.

• Converts the half-precision value in the bottom half of a single-precision register to double-precision and
writes the result to a double-precision register, without intermediate rounding.

• Converts the value in the double-precision register to half-precision and writes the result into the bottom half
of a single-precision register, preserving the other half of the target register, without intermediate rounding.

T1
Armv8-M Floating-point Extension only, sz == 1 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 0 0 1 op Vd 1 0 1 sz

T = 0

1 M 0 Vm

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when op == 0 && sz == 0.

VCVTB{<c>}{<q>}.F32.F16 <Sd>, <Sm>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when op == 1 && sz == 0.

VCVTB{<c>}{<q>}.F16.F32 <Sd>, <Sm>

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when op == 0 && sz == 1.

VCVTB{<c>}{<q>}.F64.F16 <Dd>, <Sm>

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when op == 1 && sz == 1.

VCVTB{<c>}{<q>}.F16.F64 <Sd>, <Dm>

Decode for this encoding
1 dp_operation = (sz == '1');
2 CheckDecodeFaults(if dp_operation then ExtType_DpFp else ExtType_SpFp);
3 if (VFPSmallRegisterBank() && dp_operation &&
4 ((M == '1' && op == '1') || (D == '1' && op == '0'))) then
5 UNDEFINED;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1013

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

6 convert_from_half = (op == '0');
7 lowbit = if T == '1' then 16 else 0;
8 if dp_operation then
9 if convert_from_half then

10 d = UInt(D:Vd); m = UInt(Vm:M);
11 else
12 d = UInt(Vd:D); m = UInt(M:Vm);
13 else
14 d = UInt(Vd:D); m = UInt(Vm:M);

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Dm> Is the 64-bit name of the floating-point source register, encoded in the "M:Vm" field.
<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.
<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4
5 if convert_from_half then
6 if dp_operation then
7 D[d] = FPHalfToDouble(S[m][lowbit+15:lowbit], TRUE);
8 else
9 S[d] = FPHalfToSingle(S[m][lowbit+15:lowbit], TRUE);

10 else
11 if dp_operation then
12 S[d][lowbit+15:lowbit] = FPDoubleToHalf(D[m], TRUE);
13 else
14 S[d][lowbit+15:lowbit] = FPSingleToHalf(S[m], TRUE);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1014

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.326 VCVTM

Convert floating-point to integer with Round towards -Infinity. Convert floating-point to integer with Round
towards -Infinity converts a value in a register from floating-point to a 32-bit integer using the Round towards
-Infinity rounding mode, and places the result in the destination register.

T1
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 1 D 1 1 1 1 RM = 11 Vd 1 0 size op 1 M 0 Vm

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when size == 01.

VCVTM{<q>}.<dt>.F16 <Sd>, <Sm>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VCVTM{<q>}.<dt>.F32 <Sd>, <Sm>

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VCVTM{<q>}.<dt>.F64 <Sd>, <Dm>

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (M == '1') then UNDEFINED;
4 if InITBlock() then UNPREDICTABLE;
5 unsigned = (op == '0');
6 round_mode = RM;
7 d = UInt(Vd:D);
8 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols for all encodings

<q> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> Is the data type for the elements of the destination, encoded in the "op" field. It can have the

following values:
U32 when op = 0
S32 when op = 1

<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.
<Dm> Is the 64-bit name of the floating-point source register, encoded in the "M:Vm" field.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1015

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 case size of
5 when '01'
6 S[d] = FPToFixedDirected(S[m][15:0], 0, unsigned, round_mode, TRUE);
7 when '10'
8 S[d] = FPToFixedDirected(S[m], 0, unsigned, round_mode, TRUE);
9 when '11'

10 S[d] = FPToFixedDirected(D[m], 0, unsigned, round_mode, TRUE);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1016

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.327 VCVTN

Convert floating-point to integer with Round to Nearest. Convert floating-point to integer with Round to Nearest
converts a value in a register from floating-point to a 32-bit integer using the Round to Nearest rounding mode,
and places the result in the destination register.

T1
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 1 D 1 1 1 1 RM = 01 Vd 1 0 size op 1 M 0 Vm

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when size == 01.

VCVTN{<q>}.<dt>.F16 <Sd>, <Sm>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VCVTN{<q>}.<dt>.F32 <Sd>, <Sm>

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VCVTN{<q>}.<dt>.F64 <Sd>, <Dm>

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (M == '1') then UNDEFINED;
4 if InITBlock() then UNPREDICTABLE;
5 unsigned = (op == '0');
6 round_mode = RM;
7 d = UInt(Vd:D);
8 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols for all encodings

<q> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> Is the data type for the elements of the destination, encoded in the "op" field. It can have the

following values:
U32 when op = 0
S32 when op = 1

<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.
<Dm> Is the 64-bit name of the floating-point source register, encoded in the "M:Vm" field.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1017

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 case size of
5 when '01'
6 S[d] = FPToFixedDirected(S[m][15:0], 0, unsigned, round_mode, TRUE);
7 when '10'
8 S[d] = FPToFixedDirected(S[m], 0, unsigned, round_mode, TRUE);
9 when '11'

10 S[d] = FPToFixedDirected(D[m], 0, unsigned, round_mode, TRUE);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1018

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.328 VCVTP

Convert floating-point to integer with Round towards +Infinity. Convert floating-point to integer with Round
towards +Infinity converts a value in a register from floating-point to a 32-bit integer using the Round towards
+Infinity rounding mode, and places the result in the destination register.

T1
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 1 D 1 1 1 1 RM = 10 Vd 1 0 size op 1 M 0 Vm

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when size == 01.

VCVTP{<q>}.<dt>.F16 <Sd>, <Sm>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VCVTP{<q>}.<dt>.F32 <Sd>, <Sm>

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VCVTP{<q>}.<dt>.F64 <Sd>, <Dm>

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (M == '1') then UNDEFINED;
4 if InITBlock() then UNPREDICTABLE;
5 unsigned = (op == '0');
6 round_mode = RM;
7 d = UInt(Vd:D);
8 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols for all encodings

<q> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> Is the data type for the elements of the destination, encoded in the "op" field. It can have the

following values:
U32 when op = 0
S32 when op = 1

<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.
<Dm> Is the 64-bit name of the floating-point source register, encoded in the "M:Vm" field.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1019

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 case size of
5 when '01'
6 S[d] = FPToFixedDirected(S[m][15:0], 0, unsigned, round_mode, TRUE);
7 when '10'
8 S[d] = FPToFixedDirected(S[m], 0, unsigned, round_mode, TRUE);
9 when '11'

10 S[d] = FPToFixedDirected(D[m], 0, unsigned, round_mode, TRUE);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1020

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.329 VCVTR

Convert floating-point to integer. Convert floating-point to integer converts a value in a register from floating-point
to a 32-bit integer, using the rounding mode specified by FPSCR, and places the result in the destination register.

T1
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 1

opc2 = 10x

Vd 1 0 size

op = 0

1 M 0 Vm

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when opc2 == 100 && size == 01.

VCVTR{<c>}{<q>}.U32.F16 <Sd>, <Sm>

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when opc2 == 101 && size == 01.

VCVTR{<c>}{<q>}.S32.F16 <Sd>, <Sm>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when opc2 == 100 && size == 10.

VCVTR{<c>}{<q>}.U32.F32 <Sd>, <Sm>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when opc2 == 101 && size == 10.

VCVTR{<c>}{<q>}.S32.F32 <Sd>, <Sm>

Double-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when opc2 == 100 && size == 11.

VCVTR{<c>}{<q>}.U32.F64 <Sd>, <Dm>

Double-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when opc2 == 101 && size == 11.

VCVTR{<c>}{<q>}.S32.F64 <Sd>, <Dm>

Decode for this encoding

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1021

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

1 if opc2 != '000' && !(opc2 IN '10x') then SEE "Related encodings";
2 dp_operation = (size == '11');
3 CheckFPDecodeFaults(size);
4 to_integer = (opc2[2] == '1');
5 if to_integer then
6 if VFPSmallRegisterBank() && dp_operation && (M == '1') then UNDEFINED;
7 unsigned = (opc2[0] == '0'); round_zero = (op == '1');
8 d = UInt(Vd:D); m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);
9 else

10 if VFPSmallRegisterBank() && dp_operation && (D == '1') then UNDEFINED;
11 unsigned = (op == '0'); round_nearest = FALSE; // FALSE selects FPSCR rounding
12 m = UInt(Vm:M); d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
13 if size == '01' && InITBlock() then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.
<Dm> Is the 64-bit name of the floating-point source register, encoded in the "M:Vm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 if to_integer then
5 case size of
6 when '01'
7 S[d] = FPToFixed(S[m][15:0], 32, 0, unsigned, round_zero, TRUE);
8 when '10'
9 S[d] = FPToFixed(S[m], 32, 0, unsigned, round_zero, TRUE);

10 when '11'
11 S[d] = FPToFixed(D[m], 32, 0, unsigned, round_zero, TRUE);
12 else
13 case size of
14 when '01'
15 fp16 = FixedToFP(S[m], 16, 0, unsigned, round_nearest, TRUE);
16 S[d] = Zeros(16):fp16;
17 when '10'
18 S[d] = FixedToFP(S[m], 32, 0, unsigned, round_nearest, TRUE);
19 when '11'
20 D[d] = FixedToFP(S[m], 64, 0, unsigned, round_nearest, TRUE);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1022

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.330 VCVTT

Floating-point Convert Top. Floating-point Convert Top does one of the following:

• Converts the half-precision value in the top half of a single-precision register to single-precision and writes
the result to a single-precision register.

• Converts the value in a single-precision register to half-precision and writes the result into the top half of a
single-precision register, preserving the other half of the target register.

• Converts the half-precision value in the top half of a single-precision register to double-precision and writes
the result to a double-precision register, without intermediate rounding.

• Converts the value in the double-precision register to half-precision and writes the result into the top half of a
double-precision register, preserving the other half of the target register, without intermediate rounding.

T1
Armv8-M Floating-point Extension only, sz == 1 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 0 0 1 op Vd 1 0 1 sz

T = 1

1 M 0 Vm

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when op == 0 && sz == 0.

VCVTT{<c>}{<q>}.F32.F16 <Sd>, <Sm>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when op == 1 && sz == 0.

VCVTT{<c>}{<q>}.F16.F32 <Sd>, <Sm>

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when op == 0 && sz == 1.

VCVTT{<c>}{<q>}.F64.F16 <Dd>, <Sm>

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when op == 1 && sz == 1.

VCVTT{<c>}{<q>}.F16.F64 <Sd>, <Dm>

Decode for this encoding
1 dp_operation = (sz == '1');
2 CheckDecodeFaults(if dp_operation then ExtType_DpFp else ExtType_SpFp);
3 if (VFPSmallRegisterBank() && dp_operation &&
4 ((M == '1' && op == '1') || (D == '1' && op == '0'))) then
5 UNDEFINED;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1023

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

6 convert_from_half = (op == '0');
7 lowbit = if T == '1' then 16 else 0;
8 if dp_operation then
9 if convert_from_half then

10 d = UInt(D:Vd); m = UInt(Vm:M);
11 else
12 d = UInt(Vd:D); m = UInt(M:Vm);
13 else
14 d = UInt(Vd:D); m = UInt(Vm:M);

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Dm> Is the 64-bit name of the floating-point source register, encoded in the "M:Vm" field.
<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.
<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4
5 if convert_from_half then
6 if dp_operation then
7 D[d] = FPHalfToDouble(S[m][lowbit+15:lowbit], TRUE);
8 else
9 S[d] = FPHalfToSingle(S[m][lowbit+15:lowbit], TRUE);

10 else
11 if dp_operation then
12 S[d][lowbit+15:lowbit] = FPDoubleToHalf(D[m], TRUE);
13 else
14 S[d][lowbit+15:lowbit] = FPSingleToHalf(S[m], TRUE);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1024

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.331 VCX1 (vector)

Custom Extension Instruction Class 1 Vector. Custom extension register instruction class 1 vector computes a
value based on an immediate, and optionally the destination value, and writes the result to the destination register.
The source and destination registers are within the Floating-point and SIMD register file, and require the current
execution state to have access to these registers.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8-M Custom Datapath Extension with Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 A 1 1 0 op1 0 D 1 0 op2 Vd 0 coproc op3 1 op4

Accumulator variant

Applies when A == 1

VCX1A<v> <coproc>, <Qd>, #<imm>

Non-accumulator variant

Applies when A == 0

VCX1<v> <coproc>, <Qd>, #<imm>

Decode for this encoding
1 if CoprocType(UInt(coproc)) != CP_CDEv1 then SEE "Coprocessor instructions";
2 cp = UInt(coproc);
3 ExecuteCPCheck(cp);
4 ExecuteCPCheck(10);
5 CheckDecodeFaults(ExtType_Mve);
6 if D == '1' || Vd[0] == '1' then UNDEFINED;
7 imm = op1:op2:op3:op4;
8 acc = (A == '1');
9 d = UInt(D:Vd[3:1]);

10 if InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP.

Assembler symbols for all encodings

A Accumulate with existing register contents. This parameter must be one of the following
values:
- Encoded as A = 0
A Encoded as A = 1

<v> See C1.2.5 Standard assembler syntax fields on page 431.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1025

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

<coproc> Is the name of the coprocessor, encoding in the "coproc" field. Valid names are p0 to p7
inclusive.

<Qd> Is the source and destination vector register Q0 - Q7, encoded in the "D:Vd" fields as
<Qd>*2.

<imm> Is the immediate encoded in "op1:op2:op3:op4".

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3 if (!Coproc_Accepted(cp, ThisInstr())) then GenerateCoprocessorException();
4
5 // Get current beat number and predication mask
6 (curBeat, elmtMask) = GetCurInstrBeat();
7
8 result = Zeros(32);
9 if acc then

10 // If the accumulator variant is used, then the 32-bit value from the vector
11 // source-destination register is used as an input to the custom operation
12 result = VCX_op1(ThisInstr(), Q[d, curBeat], 32, TRUE, curBeat, elmtMask);
13 else
14 result = VCX_op0(ThisInstr(), 32, TRUE, curBeat, elmtMask);
15
16 for e = 0 to 3
17 // If the vector lane is not predicated
18 if elmtMask[e] == '1' then
19 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1026

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.332 VCX1

Custom Extension Instruction Class 1. Custom extension register instruction class 1 computes a value based on
an immediate, and optionally the destination value, and writes the result to the destination register. The source
and destination registers are within the Floating-point register file, and require the current execution state to have
access to these registers.

T1
Armv8-M Custom Datapath Extension with Armv8.1-M MVE or Armv8-M Floating-point Extension.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 A 1 1 0 sz 0 D 1 0 op1 Vd 0 coproc op2 0 op3

Single-register accumulator variant

Applies when A == 1 and sz == 0

VCX1A <coproc>, <Sd>, #<imm>

Double-register accumulator variant

Applies when A == 1 and sz == 1

VCX1A <coproc>, <Dd>, #<imm>

Single-register non-accumulator variant

Applies when A == 0 and sz == 0

VCX1 <coproc>, <Sd>, #<imm>

Double-register non-accumulator variant

Applies when A == 0 and sz == 1

VCX1 <coproc>, <Dd>, #<imm>

Decode for this encoding
1 if CoprocType(UInt(coproc)) != CP_CDEv1 then SEE "Coprocessor instructions";
2 cp = UInt(coproc);
3 ExecuteCPCheck(cp);
4 ExecuteCPCheck(10);
5 CheckDecodeFaults(ExtType_MveOrFp);
6 dp_operation = (sz == '1');
7 imm = op1:op2:op3;
8 acc = (A == '1');
9 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);

10 if VFPSmallRegisterBank() && dp_operation && D == '1' then UNDEFINED;
11 if InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1027

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<A> Accumulate with existing register contents. This parameter must be one of the following
values:
- Encoded as A = 0
A Encoded as A = 1

<coproc> Is the name of the coprocessor, encoding in the "coproc" field. Valid names are p0 to p7
inclusive.

<Dd> Is the 64-bit name of the floating-point source and destination register D0 - D15 encoded in
the "D:Vd" fields.

<Sd> Is the 32-bit name of the floating-point source and destination register S0 - S31 encoded in
the "Vd:D" fields.

<imm> Is the immediate encoded in "op1:op2:op3".

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 if (!Coproc_Accepted(cp, ThisInstr())) then
5 GenerateCoprocessorException();
6 elsif dp_operation then
7 if acc then
8 D[d] = VCX_op1(ThisInstr(), D[d], 64);
9 else

10 D[d] = VCX_op0(ThisInstr(), 64);
11 else
12 if acc then
13 S[d] = VCX_op1(ThisInstr(), S[d], 32);
14 else
15 S[d] = VCX_op0(ThisInstr(), 32);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1028

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.333 VCX2 (vector)

Custom Extension Instruction Class 2 Vector. Custom extension register instruction class 2 vector computes a
value based on a source register, an immediate, and optionally the destination value, and writes the result to the
destination register. The source and destination registers are within the Floating-point and SIMD register file, and
require the current execution state to have access to these registers.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8-M Custom Datapath Extension with Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 A 1 1 0 op1 0 D 1 1 op2 Vd 0 coproc op3 1 M op4 Vm

Accumulator variant

Applies when A == 1

VCX2A<v> <coproc>, <Qd>, <Qm>, #<imm>

Non-accumulator variant

Applies when A == 0

VCX2<v> <coproc>, <Qd>, <Qm>, #<imm>

Decode for this encoding
1 if CoprocType(UInt(coproc)) != CP_CDEv1 then SEE "Coprocessor instructions";
2 cp = UInt(coproc);
3 ExecuteCPCheck(cp);
4 ExecuteCPCheck(10);
5 CheckDecodeFaults(ExtType_Mve);
6 if D == '1' || M == '1' || Vd[0] == '1' || Vm[0] == '1' then UNDEFINED;
7 imm = op1:op2:op3:op4;
8 acc = (A == '1');
9 d = UInt(D:Vd[3:1]);

10 m = UInt(M:Vm[3:1]);
11 if InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP.

Assembler symbols for all encodings

A Accumulate with existing register contents. This parameter must be one of the following
values:
- Encoded as A = 0
A Encoded as A = 1

<v> See C1.2.5 Standard assembler syntax fields on page 431.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1029

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

<coproc> Is the name of the coprocessor, encoding in the "coproc" field. Valid names are p0 to p7
inclusive.

<Qd> Is the source and destination vector register Q0 - Q7, encoded in the "D:Vd" fields as
<Qd>*2.

<Qm> Is the source vector register Q0 - Q7, encoded in the "M:Vm" fields as <Qm>*2.
<imm> Is the immediate encoded in "op1:op2:op3:op4".

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3 if (!Coproc_Accepted(cp, ThisInstr())) then GenerateCoprocessorException();
4
5 // Get current beat number and predication mask
6 (curBeat, elmtMask) = GetCurInstrBeat();
7
8 result = Zeros(32);
9 if acc then

10 // If the accumulator variant is used, then the 32-bit value from the vector
11 // source-destination register is used as an input to the custom operation
12 result = VCX_op2(ThisInstr(), Q[d, curBeat], Q[m, curBeat], 32, TRUE,
13 curBeat, elmtMask);
14 else
15 result = VCX_op1(ThisInstr(), Q[m, curBeat], 32, TRUE, curBeat, elmtMask);
16
17 for e = 0 to 3
18 // If the vector lane is not predicated
19 if elmtMask[e] == '1' then
20 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1030

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.334 VCX2

Custom Extension Instruction Class 2. Custom extension register instruction class 2 computes a value based on a
source register, an immediate, and optionally the destination value, and writes the result to the destination register.
The source and destination registers are within the Floating-point register file, and require the current execution
state to have access to these registers.

T1
Armv8-M Custom Datapath Extension with Armv8.1-M MVE or Armv8-M Floating-point Extension.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 A 1 1 0 sz 0 D 1 1 op1 Vd 0 coproc op2 0 M op3 Vm

Single-register accumulator variant

Applies when A == 1 and sz == 0

VCX2A <coproc>, <Sd>, <Sm>, #<imm>

Double-register accumulator variant

Applies when A == 1 and sz == 1

VCX2A <coproc>, <Dd>, <Dm>, #<imm>

Single-register non-accumulator variant

Applies when A == 0 and sz == 0

VCX2 <coproc>, <Sd>, <Sm>, #<imm>

Double-register non-accumulator variant

Applies when A == 0 and sz == 1

VCX2 <coproc>, <Dd>, <Dm>, #<imm>

Decode for this encoding
1 if CoprocType(UInt(coproc)) != CP_CDEv1 then SEE "Coprocessor instructions";
2 cp = UInt(coproc);
3 ExecuteCPCheck(cp);
4 ExecuteCPCheck(10);
5 CheckDecodeFaults(ExtType_MveOrFp);
6 dp_operation = (sz == '1');
7 imm = op1:op2:op3;
8 acc = (A == '1');
9 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);

10 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);
11 if VFPSmallRegisterBank() && dp_operation && (D == '1' || M == '1') then UNDEFINED;
12 if InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1031

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<A> Accumulate with existing register contents. This parameter must be one of the following
values:
- Encoded as A = 0
A Encoded as A = 1

<coproc> Is the name of the coprocessor, encoding in the "coproc" field. Valid names are p0 to p7
inclusive.

<Dd> Is the 64-bit name of the floating-point source and destination register D0 - D15 encoded in
the "D:Vd" fields.

<Dm> Is the 64-bit name of the floating-point source register D0 - D15, encoded in the "M:Vm"
fields.

<Sd> Is the 32-bit name of the floating-point source and destination register S0 - S31 encoded in
the "Vd:D" fields.

<Sm> Is the 32-bit name of the floating-point source register S0 - S31, encoded in the "Vm:M"
fields

<imm> Is the immediate encoded in "op1:op2:op3".

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 if (!Coproc_Accepted(cp, ThisInstr())) then
5 GenerateCoprocessorException();
6 elsif dp_operation then
7 if acc then
8 D[d] = VCX_op2(ThisInstr(), D[d], D[m], 64);
9 else

10 D[d] = VCX_op1(ThisInstr(), D[m], 64);
11 else
12 if acc then
13 S[d] = VCX_op2(ThisInstr(), S[d], S[m], 32);
14 else
15 S[d] = VCX_op1(ThisInstr(), S[m], 32);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1032

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.335 VCX3 (vector)

Custom Extension Instruction Class 3 Vector. Custom extension register instruction class 3 vector computes a
value based on two source registers, an immediate, and optionally the destination value, and writes the result to the
destination register. The source and destination registers are within the Floating-point and SIMD register file, and
require the current execution state to have access to these registers.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8-M Custom Datapath Extension with Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 A 1 1 0 op1 1 D op2 Vn Vd 0 coproc N 1 M op3 Vm

Accumulator variant

Applies when A == 1

VCX3A<v> <coproc>, <Qd>, <Qn>, <Qm>, #<imm>

Non-accumulator variant

Applies when A == 0

VCX3<v> <coproc>, <Qd>, <Qn>, <Qm>, #<imm>

Decode for this encoding
1 if CoprocType(UInt(coproc)) != CP_CDEv1 then SEE "Coprocessor instructions";
2 cp = UInt(coproc);
3 ExecuteCPCheck(cp);
4 ExecuteCPCheck(10);
5 CheckDecodeFaults(ExtType_Mve);
6 if D == '1' || M == '1' || N == '1' || Vd[0] == '1' || Vm[0] == '1' || Vn[0] == '1' then
7 UNDEFINED;
8 imm = op1:op2:op3;
9 acc = (A == '1');

10 d = UInt(D:Vd[3:1]);
11 n = UInt(N:Vn[3:1]);
12 m = UInt(M:Vm[3:1]);
13 if InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

• The instruction executes as NOP.

Assembler symbols for all encodings

A Accumulate with existing register contents. This parameter must be one of the following
values:
- Encoded as A = 0

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1033

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

A Encoded as A = 1
<v> See C1.2.5 Standard assembler syntax fields on page 431.
<coproc> Is the name of the coprocessor, encoding in the "coproc" field. Valid names are p0 to p7

inclusive.
<Qm> Is the source vector register Q0 - Q7, encoded in the "M:Vm" fields as <Qm>*2.
<Qd> Is the source and destination vector register Q0 - Q7, encoded in the "D:Vd" fields as

<Qd>*2.
<Qn> Is the source vector register Q0 - Q7, encoded in the "N:Vn" fields as <Qn>*2.
<imm> Is the immediate encoded in "op1:op2:op3".

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3 if (!Coproc_Accepted(cp, ThisInstr())) then GenerateCoprocessorException();
4
5 // Get current beat number and predication mask
6 (curBeat, elmtMask) = GetCurInstrBeat();
7
8 result = Zeros(32);
9 if acc then

10 // If the accumulator variant is used, then the 32-bit value from the vector
11 // source-destination register is used as an input to the custom operation
12 result = VCX_op3(ThisInstr(), Q[d, curBeat], Q[n, curBeat], Q[m, curBeat], 32,
13 TRUE, curBeat, elmtMask);
14 else
15 result = VCX_op2(ThisInstr(), Q[n, curBeat], Q[m, curBeat], 32,
16 TRUE, curBeat, elmtMask);
17
18 for e = 0 to 3
19 // If the vector lane is not predicated
20 if elmtMask[e] == '1' then
21 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1034

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.336 VCX3

Custom Extension Instruction Class 3. Custom extension register instruction class 3 computes a value based on
two source registers, an immediate, and optionally the destination value, and writes the result to the destination
register. The source and destination registers are within the Floating-point register file, and require the current
execution state to have access to these registers.

T1
Armv8-M Custom Datapath Extension with Armv8.1-M MVE or Armv8-M Floating-point Extension.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 A 1 1 0 sz 1 D op1 Vn Vd 0 coproc N 0 M op2 Vm

Single-register accumulator variant

Applies when A == 1 and sz == 0

VCX3A <coproc>, <Sd>, <Sn>, <Sm>, #<imm>

Double-register accumulator variant

Applies when A == 1 and sz == 1

VCX3A <coproc>, <Dd>, <Dn>, <Dm>, #<imm>

Single-register non-accumulator variant

Applies when A == 0 and sz == 0

VCX3 <coproc>, <Sd>, <Sn>, <Sm>, #<imm>

Double-register non-accumulator variant

Applies when A == 0 and sz == 1

VCX3 <coproc>, <Dd>, <Dn>, <Dm>, #<imm>

Decode for this encoding
1 if CoprocType(UInt(coproc)) != CP_CDEv1 then SEE "Coprocessor instructions";
2 cp = UInt(coproc);
3 ExecuteCPCheck(cp);
4 ExecuteCPCheck(10);
5 CheckDecodeFaults(ExtType_MveOrFp);
6 dp_operation = (sz == '1');
7 imm = op1:op2;
8 acc = (A == '1');
9 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);

10 n = if dp_operation then UInt(N:Vn) else UInt(Vn:N);
11 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);
12 if VFPSmallRegisterBank() && dp_operation && (D == '1' || M == '1' || N == '1') then
13 UNDEFINED;
14 if InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it passes the Condition code check.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1035

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

• The instruction executes as NOP.

Assembler symbols for all encodings

<A> Accumulate with existing register contents. This parameter must be one of the following
values:
- Encoded as A = 0
A Encoded as A = 1

<coproc> Is the name of the coprocessor, encoding in the "coproc" field. Valid names are p0 to p7
inclusive.

<Dd> Is the 64-bit name of the floating-point source and destination register D0 - D15 encoded in
the "D:Vd" fields.

<Dm> Is the 64-bit name of the floating-point source register D0 - D15, encoded in the "M:Vm"
fields.

<Dn> Is the 64-bit name of the floating-point source register D0 - D15, encoded in the "N:Vn"
fields

<Sd> Is the 32-bit name of the floating-point source and destination register S0 - S31 encoded in
the "Vd:D" fields.

<Sm> Is the 32-bit name of the floating-point source register S0 - S31, encoded in the "Vm:M"
fields

<Sn> Is the 32-bit name of the floating-point source register S0 - S31, encoded in the "Vn:N"
fields.

<imm> Is the immediate encoded in "op1:op2".

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 if (!Coproc_Accepted(cp, ThisInstr())) then
5 GenerateCoprocessorException();
6 elsif dp_operation then
7 if acc then
8 D[d] = VCX_op3(ThisInstr(), D[d], D[n], D[m], 64);
9 else

10 D[d] = VCX_op2(ThisInstr(), D[n], D[m], 64);
11 else
12 if acc then
13 S[d] = VCX_op3(ThisInstr(), S[d], S[n], S[m], 32);
14 else
15 S[d] = VCX_op2(ThisInstr(), S[n], S[m], 32);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1036

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.337 VDDUP, VDWDUP

Vector Decrement and Duplicate, Vector Decrement with Wrap and Duplicate. Creates a vector with elements of
successively decrementing values, starting at an offset specified by Rn. The value is decremented by the specified
immediate value, which can take the following values: 1, 2, 4, 8. For all variants, the updated start offset is written
back to Rn. For the wrapping variant, the operation wraps so that the values written to the vector register elements
are in the range [0, Rm). However, if Rn and Rm are not a multiple of imm, or if Rn >= Rm, the operation is
CONSTRAINED UNPREDICTABLE, with the resulting values of Rn and Qd UNKNOWN.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 D size Rn 1 Qd 1 1 1 1 1

immh

1 1 0 Rm

imml

T1: VDWDUP variant

VDWDUP<v>.<dt> Qd, Rn, Rm, #<imm>

Decode for this encoding
1 if Rm == '111' then SEE "VDDUP";
2 if size == '11' then SEE "Related encodings";
3 CheckDecodeFaults(ExtType_Mve);
4 if D == '1' then UNDEFINED;
5 d = UInt(D:Qd);
6 m = UInt(Rm:'1');
7 n = UInt(Rn:'0');
8 wrap = TRUE;
9 imm2i = 1 << UInt(immh:imml);

10 esize = 8 << UInt(size);
11 elements = 32 DIV esize;
12 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
13 if Rm == '110' then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 D size Rn 1 Qd 1 1 1 1 1

immh

1 1 0 1 1 1

imml

T2: VDDUP variant

VDDUP<v>.<dt> Qd, Rn, #<imm>

Decode for this encoding

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1037

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 n = UInt(Rn:'0');
6 m = integer UNKNOWN;
7 wrap = FALSE;
8 imm2i = 1 << UInt(immh:imml);
9 esize = 8 << UInt(size);

10 elements = 32 DIV esize;
11 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for T1 encodings

<Rn> Current offset to start writing into Qd. Must be a multiple of imm. This must be an even
numbered register.

Assembler symbols for T2 encodings

<Rn> Current offset to start writing into Qd. This must be an even numbered register.

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> Size: indicates the size of the elements in the vector.

This parameter must be one of the following values:
U8 Encoded as size = 00
U16 Encoded as size = 01
U32 Encoded as size = 10

<Qd> Destination vector register.
<Rm> Size of the range. Must be a multiple of imm. This must be an odd numbered register.
<imm> The increment between successive element values.

This parameter must be one of the following values:
#1 Encoded as immh = 0, imml = 0
#2 Encoded as immh = 0, imml = 1
#4 Encoded as immh = 1, imml = 0
#8 Encoded as immh = 1, imml = 1

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 curOffset = UInt(R[n]);
8 if wrap then
9 bufSize = UInt(R[m]);

10 if bufSize MOD imm2i != 0 then CONSTRAINED_UNPREDICTABLE;
11 if curOffset MOD imm2i != 0 then CONSTRAINED_UNPREDICTABLE;
12 if curOffset >= bufSize then CONSTRAINED_UNPREDICTABLE;
13 for e = 0 to elements - 1
14 Elem[result, e, esize] = curOffset[esize-1:0];
15 if wrap && curOffset == 0 then
16 curOffset = bufSize - imm2i;
17 else
18 curOffset = curOffset - imm2i;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1038

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

19 R[n] = curOffset[31:0];
20
21 for e = 0 to 3
22 if elmtMask[e] == '1' then
23 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1039

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.338 VDIV

Floating-point Divide. Floating-point Divide divides one floating-point value by another floating-point value and
writes the result to a third floating-point register.

T1
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 0 0 Vn Vd 1 0 size N 0 M 0 Vm

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when size == 01.

VDIV{<c>}{<q>}.F16 {<Sd>,} <Sn>, <Sm>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VDIV{<c>}{<q>}.F32 {<Sd>,} <Sn>, <Sm>

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VDIV{<c>}{<q>}.F64 {<Dd>,} <Dn>, <Dm>

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (M == '1' || N == '1' || D == '1') then
4 UNDEFINED;
5 if size == '01' && InITBlock() then UNPREDICTABLE;
6 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
7 n = if dp_operation then UInt(N:Vn) else UInt(Vn:N);
8 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sn> Is the 32-bit name of the first floating-point source register, encoded in the "Vn:N" field.
<Sm> Is the 32-bit name of the second floating-point source register, encoded in the "Vm:M" field.
<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.
<Dn> Is the 64-bit name of the first floating-point source register, encoded in the "N:Vn" field.
<Dm> Is the 64-bit name of the second floating-point source register, encoded in the "M:Vm" field.

Operation for all encodings
1 if ConditionPassed() then

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1040

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 case size of
5 when '01'
6 S[d] = Zeros(16) : FPDiv(S[n][15:0], S[m][15:0], TRUE);
7 when '10'
8 S[d] = FPDiv(S[n], S[m], TRUE);
9 when '11'

10 D[d] = FPDiv(D[n], D[m], TRUE);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1041

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.339 VDUP

Vector Duplicate. Set each element of a vector register to the value of a general-purpose register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 B 1 0 Qd 0 Rt 1 0 1 1 D 0 E 1 (0) (0) (0) (0)

T1: VDUP variant

VDUP<v>.<size> Qd, Rt

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if B:E == '11' then UNDEFINED;
3 if D == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 t = UInt(Rt);
6 case B:E of
7 when '00' esize = 32; elements = 1;
8 when '01' esize = 16; elements = 2;
9 when '10' esize = 8; elements = 4;

10 otherwise
11 UNDEFINED;
12 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
13 if Rt == '11x1' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<size> Size: indicates the size of the elements in the vector.

This parameter must be one of the following values:
32 Encoded as B = 0, E = 0
16 Encoded as B = 0, E = 1
8 Encoded as B = 1, E = 0

<Qd> Destination vector register.
<Rt> Source general-purpose register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 for e = 0 to elements-1
8 Elem[result, e, esize] = R[t][esize-1:0];
9

10 for e = 0 to 3
11 if elmtMask[e] == '1' then

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1042

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

12 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1043

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.340 VEOR

Vector Bitwise Exclusive Or. Compute a bitwise EOR of a vector register with another vector register. The result
is written to the destination vector register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 0 D 0 0 Qn 0 Qd 0 0 0 0 1 N 1 M 1 Qm 0

T1: VEOR variant

VEOR<v>{.<dt>} Qd, Qn, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' || N == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 m = UInt(M:Qm);
5 n = UInt(N:Qn);
6 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> An optional data type. It is ignored by assemblers and does not affect the encoding. This can

be one of the following: S8, S16, S32, U8, U16, U32, I8, I16, I32, F16, F32.
<Qd> Destination vector register.
<Qn> Source vector register.
<Qm> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Q[n, curBeat] EOR Q[m, curBeat];
7
8 for e = 0 to 3
9 if elmtMask[e] == '1' then

10 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1044

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.341 VFMA (vector by scalar plus vector, floating-point)

Vector Fused Multiply Accumulate. Multiply each element in a vector register by a general-purpose register value
to produce a vector of results. Each result is then added to its respective element in the destination register. The
result of each multiply is not rounded before the addition.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE with Half-precision and Single-precision Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 sz 1 1 1 0 0 Da 1 1 Qn 1 Qda 0 1 1 1 0 N 1 0 0 Rm

T1: VFMA variant

VFMA<v>.<dt> Qda, Qn, Rm

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveFp);
2 if Da == '1' || N == '1' then UNDEFINED;
3 da = UInt(Da:Qda);
4 m = UInt(Rm);
5 n = UInt(N:Qn);
6 esize = if sz == '1' then 16 else 32;
7 elements = 32 DIV esize;
8 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
9 if Rm == '11x1' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> Size: indicates the floating-point format used.

This parameter must be one of the following values:
F32 Encoded as sz = 0
F16 Encoded as sz = 1

<Qda> Accumulator vector register.
<Qn> Source vector register.
<Rm> Source general-purpose register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[n, curBeat];
8 element2 = R[m][esize-1:0];
9 op3 = Q[da, curBeat];

10 for e = 0 to elements-1
11 // Avoid Floating-point exceptions on a predicated lane by checking the element mask
12 pred = (elmtMask[e*(esize>>3)] == '0');

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1045

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

13 element1 = Elem[op1, e, esize];
14 element3 = Elem[op3, e, esize];
15 Elem[result, e, esize] = FPMulAdd(element3, element1, element2, FALSE, pred);
16
17 for e = 0 to 3
18 if elmtMask[e] == '1' then
19 Elem[Q[da, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1046

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.342 VFMA

Floating-point Fused Multiply Accumulate. Floating-point Fused Multiply Accumulate multiplies two registers,
adds the product to the destination register, and places the result in the destination register. The result of the
multiply is not rounded before the addition.

T2
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 0 Vn Vd 1 0 size N

op = 0

M 0 Vm

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when size == 01.

VFMA{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VFMA{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VFMA{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (M == '1' || N == '1' || D == '1') then
4 UNDEFINED;
5 if size == '01' && InITBlock() then UNPREDICTABLE;
6 op1_neg = (op == '1');
7 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
8 n = if dp_operation then UInt(N:Vn) else UInt(Vn:N);
9 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sn> Is the 32-bit name of the first floating-point source register, encoded in the "Vn:N" field.
<Sm> Is the 32-bit name of the second floating-point source register, encoded in the "Vm:M" field.
<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.
<Dn> Is the 64-bit name of the first floating-point source register, encoded in the "N:Vn" field.
<Dm> Is the 64-bit name of the second floating-point source register, encoded in the "M:Vm" field.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1047

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 case size of
5 when '01'
6 op16 = if op1_neg then FPNeg(S[n][15:0]) else S[n][15:0];
7 S[d] = Zeros(16) : FPMulAdd(S[d][15:0], op16, S[m][15:0], TRUE);
8 when '10'
9 op32 = if op1_neg then FPNeg(S[n]) else S[n];

10 S[d] = FPMulAdd(S[d], op32, S[m], TRUE);
11 when '11'
12 op64 = if op1_neg then FPNeg(D[n]) else D[n];
13 D[d] = FPMulAdd(D[d], op64, D[m], TRUE);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1048

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.343 VFMA, VFMS (floating-point)

Vector Fused Multiply Accumulate, Vector Fused Multiply Subtract. Multiply each element of the first source
vector register by its respective element in the second vector register. Each result is then added to or subtracted
from its respective element in the destination register. The result of each multiply is not rounded before the addition
or subtraction.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE with Half-precision and Single-precision Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 0 Da 0 sz Qn 0 Qda 0 1 1 0 0 N 1 M 1 Qm 0

T1: VFMA variant

VFMA<v>.<dt> Qda, Qn, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveFp);
2 if Da == '1' || M == '1' || N == '1' then UNDEFINED;
3 da = UInt(Da:Qda);
4 m = UInt(M:Qm);
5 n = UInt(N:Qn);
6 esize = if sz == '1' then 16 else 32;
7 elements = 32 DIV esize;
8 add = TRUE;
9 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE with Half-precision and Single-precision Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 0 Da 1 sz Qn 0 Qda 0 1 1 0 0 N 1 M 1 Qm 0

T2: VFMS variant

VFMS<v>.<dt> Qda, Qn, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveFp);
2 if Da == '1' || M == '1' || N == '1' then UNDEFINED;
3 da = UInt(Da:Qda);
4 m = UInt(M:Qm);
5 n = UInt(N:Qn);
6 esize = if sz == '1' then 16 else 32;
7 elements = 32 DIV esize;
8 add = FALSE;
9 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1049

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> Size: indicates the floating-point format used.

This parameter must be one of the following values:
F32 Encoded as sz = 0
F16 Encoded as sz = 1

<Qda> Source and destination vector register.
<Qn> First source vector register.
<Qm> Second source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[n, curBeat];
8 op2 = Q[m, curBeat];
9 op3 = Q[da, curBeat];

10 for e = 0 to elements-1
11 // Avoid Floating-point exceptions on a predicated lane by checking the element mask
12 pred = (elmtMask[e*(esize>>3)] == '0');
13 element1 = Elem[op1, e, esize];
14 element2 = Elem[op2, e, esize];
15 element3 = Elem[op3, e, esize];
16 if !add then
17 element1 = FPNeg(element1);
18 Elem[result, e, esize] = FPMulAdd(element3, element1, element2, FALSE, pred);
19
20 for e = 0 to 3
21 if elmtMask[e] == '1' then
22 Elem[Q[da, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1050

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.344 VFMAS (vector by vector plus scalar, floating-point)

Vector Fused Multiply Accumulate Scalar. Multiply each element in the source vector by the respective element
from the destination vector and add to a scalar value. The resulting values are stored in the destination vector
register. The result of each multiply is not rounded before the addition.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE with Half-precision and Single-precision Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 sz 1 1 1 0 0 Da 1 1 Qn 1 Qda 1 1 1 1 0 N 1 0 0 Rm

T1: VFMAS variant

VFMAS<v>.<dt> Qda, Qn, Rm

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveFp);
2 if Da == '1' || N == '1' then UNDEFINED;
3 da = UInt(Da:Qda);
4 m = UInt(Rm);
5 n = UInt(N:Qn);
6 esize = if sz == '1' then 16 else 32;
7 elements = 32 DIV esize;
8 add = TRUE;
9 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

10 if Rm == '11x1' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> Size: indicates the floating-point format used.

This parameter must be one of the following values:
F32 Encoded as sz = 0
F16 Encoded as sz = 1

<Qda> Source and destination vector register.
<Qn> Source vector register.
<Rm> Source general-purpose register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[n, curBeat];
8 op2 = Q[da, curBeat];
9 element3 = R[m][esize-1:0];

10 for e = 0 to elements-1
11 // Avoid Floating-point exceptions on a predicated lane by checking the element mask

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1051

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

12 pred = (elmtMask[e*(esize>>3)] == '0');
13 element1 = Elem[op1, e, esize];
14 element2 = Elem[op2, e, esize];
15 if !add then
16 element1 = FPNeg(element1);
17 Elem[result, e, esize] = FPMulAdd(element3, element1, element2, FALSE, pred);
18
19 for e = 0 to 3
20 if elmtMask[e] == '1' then
21 Elem[Q[da, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1052

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.345 VFMS

Floating-point Fused Multiply Subtract. Floating-point Fused Multiply Subtract negates one register and multiplies
it with another register, adds the product to the destination register, and places the result in the destination register.
The result of the multiply is not rounded before the addition.

T2
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 0 Vn Vd 1 0 size N

op = 1

M 0 Vm

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when size == 01.

VFMS{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VFMS{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VFMS{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (M == '1' || N == '1' || D == '1') then
4 UNDEFINED;
5 if size == '01' && InITBlock() then UNPREDICTABLE;
6 op1_neg = (op == '1');
7 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
8 n = if dp_operation then UInt(N:Vn) else UInt(Vn:N);
9 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sn> Is the 32-bit name of the first floating-point source register, encoded in the "Vn:N" field.
<Sm> Is the 32-bit name of the second floating-point source register, encoded in the "Vm:M" field.
<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.
<Dn> Is the 64-bit name of the first floating-point source register, encoded in the "N:Vn" field.
<Dm> Is the 64-bit name of the second floating-point source register, encoded in the "M:Vm" field.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1053

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 case size of
5 when '01'
6 op16 = if op1_neg then FPNeg(S[n][15:0]) else S[n][15:0];
7 S[d] = Zeros(16) : FPMulAdd(S[d][15:0], op16, S[m][15:0], TRUE);
8 when '10'
9 op32 = if op1_neg then FPNeg(S[n]) else S[n];

10 S[d] = FPMulAdd(S[d], op32, S[m], TRUE);
11 when '11'
12 op64 = if op1_neg then FPNeg(D[n]) else D[n];
13 D[d] = FPMulAdd(D[d], op64, D[m], TRUE);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1054

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.346 VFNMA

Floating-point Fused Negate Multiply Accumulate. Floating-point Fused Negate Multiply Accumulate negates
one floating-point register value and multiplies it by another floating-point register value, adds the negation of the
floating-point value in the destination register to the product, and writes the result back to the destination register.
The result of the multiply is not rounded before the addition.

T1
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 0 1 Vn Vd 1 0 size N

op = 1

M 0 Vm

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when size == 01.

VFNMA{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VFNMA{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VFNMA{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (M == '1' || N == '1' || D == '1') then
4 UNDEFINED;
5 if size == '01' && InITBlock() then UNPREDICTABLE;
6 op1_neg = (op == '1');
7 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
8 n = if dp_operation then UInt(N:Vn) else UInt(Vn:N);
9 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sn> Is the 32-bit name of the first floating-point source register, encoded in the "Vn:N" field.
<Sm> Is the 32-bit name of the second floating-point source register, encoded in the "Vm:M" field.
<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.
<Dn> Is the 64-bit name of the first floating-point source register, encoded in the "N:Vn" field.
<Dm> Is the 64-bit name of the second floating-point source register, encoded in the "M:Vm" field.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1055

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 case size of
5 when '01'
6 op16 = if op1_neg then FPNeg(S[n][15:0]) else S[n][15:0];
7 S[d] = Zeros(16) : FPMulAdd(FPNeg(S[d][15:0]), op16, S[m][15:0], TRUE);
8 when '10'
9 op32 = if op1_neg then FPNeg(S[n]) else S[n];

10 S[d] = FPMulAdd(FPNeg(S[d]), op32, S[m], TRUE);
11 when '11'
12 op64 = if op1_neg then FPNeg(D[n]) else D[n];
13 D[d] = FPMulAdd(FPNeg(D[d]), op64, D[m], TRUE);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1056

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.347 VFNMS

Floating-point Fused Negate Multiply Subtract. Floating-point Fused Negate Multiply Subtract multiplies together
two floating-point register values, adds the negation of the floating-point value in the destination register to the
product, and writes the result back to the destination register. The result of the multiply is not rounded before the
addition.

T1
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 0 1 Vn Vd 1 0 size N

op = 0

M 0 Vm

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when size == 01.

VFNMS{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VFNMS{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VFNMS{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (M == '1' || N == '1' || D == '1') then
4 UNDEFINED;
5 if size == '01' && InITBlock() then UNPREDICTABLE;
6 op1_neg = (op == '1');
7 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
8 n = if dp_operation then UInt(N:Vn) else UInt(Vn:N);
9 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sn> Is the 32-bit name of the first floating-point source register, encoded in the "Vn:N" field.
<Sm> Is the 32-bit name of the second floating-point source register, encoded in the "Vm:M" field.
<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.
<Dn> Is the 64-bit name of the first floating-point source register, encoded in the "N:Vn" field.
<Dm> Is the 64-bit name of the second floating-point source register, encoded in the "M:Vm" field.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1057

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 case size of
5 when '01'
6 op16 = if op1_neg then FPNeg(S[n][15:0]) else S[n][15:0];
7 S[d] = Zeros(16) : FPMulAdd(FPNeg(S[d][15:0]), op16, S[m][15:0], TRUE);
8 when '10'
9 op32 = if op1_neg then FPNeg(S[n]) else S[n];

10 S[d] = FPMulAdd(FPNeg(S[d]), op32, S[m], TRUE);
11 when '11'
12 op64 = if op1_neg then FPNeg(D[n]) else D[n];
13 D[d] = FPMulAdd(FPNeg(D[d]), op64, D[m], TRUE);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1058

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.348 VHADD

Vector Halving Add. Add the value of the elements in the first source vector register to either the respective
elements in the second source vector register or a general-purpose register. The result is halved before being
written to the destination vector register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 0 D size Qn 0 Qd 0 0 0 0 0 N 1 M 0 Qm 0

T1: VHADD variant

VHADD<v>.<dt> Qd, Qn, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' || N == '1' then UNDEFINED;
3 if size == '11' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 n = UInt(N:Qn);
7 esize = 8 << UInt(size);
8 elements = 32 DIV esize;
9 unsigned = (U == '1');

10 withScalar = FALSE;
11 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 0 0 D size Qn 0 Qd 0 1 1 1 1 N 1 0 0 Rm

T2: VHADD variant

VHADD<v>.<dt> Qd, Qn, Rm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || N == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(Rm);
6 n = UInt(N:Qn);
7 esize = 8 << UInt(size);
8 elements = 32 DIV esize;
9 unsigned = (U == '1');

10 withScalar = TRUE;
11 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
12 if Rm == '11x1' then CONSTRAINED_UNPREDICTABLE;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1059

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> This parameter determines the following values:

– Size: indicates the size of the elements in the vector.
– Unsigned flag: S indicates signed, U indicates unsigned.
This parameter must be one of the following values:
S8 Encoded as size = 00, U = 0
U8 Encoded as size = 00, U = 1
S16 Encoded as size = 01, U = 0
U16 Encoded as size = 01, U = 1
S32 Encoded as size = 10, U = 0
U32 Encoded as size = 10, U = 1

<Qd> Destination vector register.
<Qn> First source vector register.
<Qm> Second source vector register.
<Rm> Source general-purpose register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[n, curBeat];
8 if !withScalar then
9 op2 = Q[m, curBeat];

10 for e = 0 to elements-1
11 if withScalar then
12 value = Int(Elem[op1, e, esize], unsigned) + Int(R[m][esize-1:0], unsigned);
13 else
14 value = Int(Elem[op1, e, esize], unsigned) + Int(Elem[op2, e, esize], unsigned);
15 Elem[result, e, esize] = value[esize:1];
16
17 for e = 0 to 3
18 if elmtMask[e] == '1' then
19 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1060

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.349 VHCADD

Vector Halving Complex Add with Rotate. This instruction performs a complex addition of the first operand
with the second operand rotated in the complex plane by the specified amount. A 90 degree rotation of this
operand corresponds to a multiplication by a positive imaginary unit, while a 270 degree rotation corresponds to a
multiplication by a negative imaginary unit. Even and odd elements of the source vectors are interpreted to be the
real and imaginary components, respectively, of a complex number. The result is halved before being written to
the destination register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 D size Qn 0 Qd rot 1 1 1 1 N 0 M 0 Qm 0

T1: VHCADD variant

VHCADD<v>.<dt> Qd, Qn, Qm, #<rotate>

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || M == '1' || N == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 n = UInt(N:Qn);
7 esize = 8 << UInt(size);
8 elements = 32 DIV esize;
9 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

10 if D:Qd == M:Qm && size == '10' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> Size: indicates the size of the elements in the vector.

This parameter must be one of the following values:
S8 Encoded as size = 00
S16 Encoded as size = 01
S32 Encoded as size = 10

<Qd> Destination vector register.
<Qn> First source vector register.
<Qm> Second source vector register.
<rotate> The rotation amount.

This parameter must be one of the following values:
#90 Encoded as rot = 0
#270 Encoded as rot = 1

Operation for all encodings
1 EncodingSpecificOperations();

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1061

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 // 32 bit operations are handled differently as they perform cross beat
8 // register accesses
9 if esize == 32 then

10 case rot:curBeat[0] of
11 when '00' result = (SInt(Q[n, curBeat]) - SInt(Q[m, curBeat+1]))[32:1];
12 when '01' result = (SInt(Q[n, curBeat]) + SInt(Q[m, curBeat-1]))[32:1];
13 when '10' result = (SInt(Q[n, curBeat]) + SInt(Q[m, curBeat+1]))[32:1];
14 when '11' result = (SInt(Q[n, curBeat]) - SInt(Q[m, curBeat-1]))[32:1];
15 else
16 op1 = Q[n, curBeat];
17 op2 = Q[m, curBeat];
18 for e = 0 to elements-1
19 case rot:e[0] of
20 when '00' value = SInt(Elem[op1, e, esize]) - SInt(Elem[op2, e+1, esize]);
21 when '01' value = SInt(Elem[op1, e, esize]) + SInt(Elem[op2, e-1, esize]);
22 when '10' value = SInt(Elem[op1, e, esize]) + SInt(Elem[op2, e+1, esize]);
23 when '11' value = SInt(Elem[op1, e, esize]) - SInt(Elem[op2, e-1, esize]);
24 Elem[result, e, esize] = value[esize:1];
25
26 for e = 0 to 3
27 if elmtMask[e] == '1' then
28 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1062

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.350 VHSUB

Vector Halving Subtract. Subtract the value of the elements in the second source vector register from either the
respective elements in the first source vector register or a general-purpose register. The result is halved before
being written to the destination vector register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 0 D size Qn 0 Qd 0 0 0 1 0 N 1 M 0 Qm 0

T1: VHSUB variant

VHSUB<v>.<dt> Qd, Qn, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' || N == '1' then UNDEFINED;
3 if size == '11' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 n = UInt(N:Qn);
7 esize = 8 << UInt(size);
8 elements = 32 DIV esize;
9 unsigned = (U == '1');

10 withScalar = FALSE;
11 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 0 0 D size Qn 0 Qd 1 1 1 1 1 N 1 0 0 Rm

T2: VHSUB variant

VHSUB<v>.<dt> Qd, Qn, Rm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || N == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(Rm);
6 n = UInt(N:Qn);
7 esize = 8 << UInt(size);
8 elements = 32 DIV esize;
9 unsigned = (U == '1');

10 withScalar = TRUE;
11 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
12 if Rm == '11x1' then CONSTRAINED_UNPREDICTABLE;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1063

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> This parameter determines the following values:

– Size: indicates the size of the elements in the vector.
– Unsigned flag: S indicates signed, U indicates unsigned.
This parameter must be one of the following values:
S8 Encoded as size = 00, U = 0
U8 Encoded as size = 00, U = 1
S16 Encoded as size = 01, U = 0
U16 Encoded as size = 01, U = 1
S32 Encoded as size = 10, U = 0
U32 Encoded as size = 10, U = 1

<Qd> Destination vector register.
<Qn> First source vector register.
<Qm> Second source vector register.
<Rm> Source general-purpose register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[n, curBeat];
8 if !withScalar then
9 op2 = Q[m, curBeat];

10 for e = 0 to elements-1
11 if withScalar then
12 value = Int(Elem[op1, e, esize], unsigned) - Int(R[m][esize-1:0], unsigned);
13 else
14 value = Int(Elem[op1, e, esize], unsigned) - Int(Elem[op2, e, esize], unsigned);
15 Elem[result, e, esize] = value[esize:1];
16
17 for e = 0 to 3
18 if elmtMask[e] == '1' then
19 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1064

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.351 VIDUP, VIWDUP

Vector Increment and Duplicate, Vector Increment with Wrap and Duplicate. Creates a vector with elements of
successively incrementing values, starting at an offset specified by Rn. The value is incremented by the specified
immediate value, which can take the following values: 1, 2, 4, 8. For all variants, the updated start offset is written
back to Rn. For the wrapping variant, the operation wraps so that the values written to the vector register elements
are in the range [0, Rm). However, if Rn and Rm are not a multiple of imm, or if Rn >= Rm, the operation is
CONSTRAINED UNPREDICTABLE, with the resulting values of Rn and Qd UNKNOWN.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 D size Rn 1 Qd 0 1 1 1 1

immh

1 1 0 Rm

imml

T1: VIWDUP variant

VIWDUP<v>.<dt> Qd, Rn, Rm, #<imm>

Decode for this encoding
1 if Rm == '111' then SEE "VIDUP";
2 if size == '11' then SEE "Related encodings";
3 CheckDecodeFaults(ExtType_Mve);
4 if D == '1' then UNDEFINED;
5 d = UInt(D:Qd);
6 m = UInt(Rm:'1');
7 n = UInt(Rn:'0');
8 wrap = TRUE;
9 imm2i = 1 << UInt(immh:imml);

10 esize = 8 << UInt(size);
11 elements = 32 DIV esize;
12 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
13 if Rm == '110' then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 D size Rn 1 Qd 0 1 1 1 1

immh

1 1 0 1 1 1

imml

T2: VIDUP variant

VIDUP<v>.<dt> Qd, Rn, #<imm>

Decode for this encoding

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1065

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 n = UInt(Rn:'0');
6 m = integer UNKNOWN;
7 wrap = FALSE;
8 imm2i = 1 << UInt(immh:imml);
9 esize = 8 << UInt(size);

10 elements = 32 DIV esize;
11 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for T1 encodings

<Rn> Current offset to start writing into Qd. Must be a multiple of imm. This must be an even
numbered register.

Assembler symbols for T2 encodings

<Rn> Current offset to start writing into Qd. This must be an even numbered register.

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> Size: indicates the size of the elements in the vector.

This parameter must be one of the following values:
U8 Encoded as size = 00
U16 Encoded as size = 01
U32 Encoded as size = 10

<Qd> Destination vector register.
<Rm> Size of the range. Must be a multiple of imm. This must be an odd numbered register.
<imm> The increment between successive element values.

This parameter must be one of the following values:
#1 Encoded as immh = 0, imml = 0
#2 Encoded as immh = 0, imml = 1
#4 Encoded as immh = 1, imml = 0
#8 Encoded as immh = 1, imml = 1

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 curOffset = UInt(R[n]);
8 if wrap then
9 bufSize = UInt(R[m]);

10 if bufSize MOD imm2i != 0 then CONSTRAINED_UNPREDICTABLE;
11 if curOffset MOD imm2i != 0 then CONSTRAINED_UNPREDICTABLE;
12 if curOffset >= bufSize then CONSTRAINED_UNPREDICTABLE;
13 for e = 0 to elements - 1
14 Elem[result, e, esize] = curOffset[esize-1:0];
15 curOffset = curOffset + imm2i;
16 if wrap && curOffset == bufSize then
17 curOffset = 0;
18 R[n] = curOffset[31:0];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1066

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

19
20 for e = 0 to 3
21 if elmtMask[e] == '1' then
22 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1067

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.352 VINS

Floating-point move Insertion. Floating-point move Insertion copies the lower 16 bits of the 32-bit source Floating-
point Extension register into the upper 16 bits of the 32-bit destination Floating-point Extension register, while
preserving the values in the remaining bits.

T1
Armv8.1-M Floating-point Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 1 D 1 1 0 0 0 0 Vd 1 0 1 0 1 1 M 0 Vm

T1 variant

VINS<q>.F16 <Sd>, <Sm>

Decode for this encoding
1 CheckDecodeFaults(ExtType_HpFp);
2 if InITBlock() then UNPREDICTABLE;
3 d = UInt(Vd:D); m = UInt(Vm:M);

Assembler symbols for all encodings

<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 S[d][31:16] = S[m][15:0];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1068

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.353 VLD2

Vector Deinterleaving Load - Stride 2. Loads two 64-bit contiguous blocks of data from memory and writes them
to parts of 2 destination registers. The parts of the destination registers written to, and the offsets from the base
address register, are determined by the pat parameter. If the instruction is executed 2 times with the same base
address and destination registers, but with different pat values, the effect is to load data from memory and to
deinterleave it into the specified registers with a stride of 2. The base address register can optionally be incremented
by 32.

This instruction is subject to beat-wise execution.

This instruction is not VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 0 1 D W 1 Rn Qd 1 1 1 1 size (0) pat (0) (0) (0) (0) 0

T1: VLD2 variant (Non writeback: W=0)

VLD2<pat>.<size> {Qd, Qd+1}, [Rn]

T1: VLD2 variant (Writeback: W=1)

VLD2<pat>.<size> {Qd, Qd+1}, [Rn]!

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 n = UInt(Rn);
6 pattern = UInt(pat);
7 esize = 8 << UInt(size);
8 elements = 32 DIV esize;
9 wback = (W == '1');

10 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
11 if InVPTBlock() then CONSTRAINED_UNPREDICTABLE;
12 if Rn == '1101' && W == '1' then CONSTRAINED_UNPREDICTABLE;
13 if Rn == '1111' then CONSTRAINED_UNPREDICTABLE;
14 if UInt(D:Qd) > 6 then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<pat> Specifies the pattern of register elements and memory addresses to access.
This parameter must be one of the following values:
0 Encoded as pat = 0
1 Encoded as pat = 1

<size> Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
8 Encoded as size = 00
16 Encoded as size = 01
32 Encoded as size = 10

<Qd> Destination vector register.
<Rn> The base register for the target address.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1069

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, -) = GetCurInstrBeat();
5
6 // Pre-calculate variables for memory / register access patterns
7 addrWordOffset = curBeat[1] : (UInt(curBeat[1]) + pattern)[0] : curBeat[0];
8 baseAddress = R[n] + ZeroExtend(addrWordOffset:'00', 32);
9 xBeat = UInt(curBeat[1] : (pattern[0] EOR curBeat[1]));

10
11 for e = 0 to elements-1
12 address = baseAddress + (e * (esize DIV 8));
13 case esize of
14 when 8
15 y = UInt(e[0]);
16 xE = UInt(curBeat[0] : e[1]);
17 when 16
18 y = UInt(e[0]);
19 xE = UInt(curBeat[0]);
20 when 32
21 y = UInt(curBeat[0]);
22 xE = 0;
23 Elem[Q[d + y, xBeat], xE, esize] = MemA_MVE[address, esize DIV 8];
24
25 // The optional write back to the base register is only performed on the
26 // last beat of the instruction.
27 if wback && IsLastBeat() then
28 R[n] = R[n] + 32;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1070

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.354 VLD4

Vector Deinterleaving Load - Stride 4. Loads two 64-bit contiguous blocks of data from memory and writes them
to parts of 4 destination registers. The parts of the destination registers written to, and the offsets from the base
address register, are determined by the pat parameter. If the instruction is executed 4 times with the same base
address and destination registers, but with different pat values, the effect is to load data from memory and to
deinterleave it into the specified registers with a stride of 4. The base address register can optionally be incremented
by 64.

This instruction is subject to beat-wise execution.

This instruction is not VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 0 1 D W 1 Rn Qd 1 1 1 1 size pat (0) (0) (0) (0) 1

T1: VLD4 variant (Non writeback: W=0)

VLD4<pat>.<size> {Qd, Qd+1, Qd+2, Qd+3}, [Rn]

T1: VLD4 variant (Writeback: W=1)

VLD4<pat>.<size> {Qd, Qd+1, Qd+2, Qd+3}, [Rn]!

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 n = UInt(Rn);
6 pattern = UInt(pat);
7 esize = 8 << UInt(size);
8 elements = 32 DIV esize;
9 wback = (W == '1');

10 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
11 if InVPTBlock() then CONSTRAINED_UNPREDICTABLE;
12 if Rn == '1101' && W == '1' then CONSTRAINED_UNPREDICTABLE;
13 if Rn == '1111' then CONSTRAINED_UNPREDICTABLE;
14 if UInt(D:Qd) > 4 then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<pat> Specifies the pattern of register elements and memory addresses to access.
This parameter must be one of the following values:
0 Encoded as pat = 00
1 Encoded as pat = 01
2 Encoded as pat = 10
3 Encoded as pat = 11

<size> Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
8 Encoded as size = 00
16 Encoded as size = 01

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1071

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

32 Encoded as size = 10
<Qd> Destination vector register.
<Rn> The base register for the target address.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, -) = GetCurInstrBeat();
5
6 // Pre-calculate variables for memory / register access patterns
7 addrWordOffset = curBeat[1] : (UInt(curBeat[1]) + pattern)[1:0] : curBeat[0];
8 baseAddress = R[n] + ZeroExtend(addrWordOffset:'00', 32);
9 xBeat = UInt(curBeat[1] : (pattern[1] EOR (pattern[0] AND curBeat[1])));

10
11 for e = 0 to elements-1
12 address = baseAddress + (e * (esize DIV 8));
13 case esize of
14 when 8
15 y = UInt(e[1:0]);
16 xE = UInt((pattern[0] EOR curBeat[1]) : curBeat[0]);
17 when 16
18 y = UInt(curBeat[0] : e[0]);
19 xE = UInt(pattern[0] EOR curBeat[1]);
20 when 32
21 y = UInt((pattern[0] EOR curBeat[1]) : curBeat[0]);
22 xE = 0;
23 Elem[Q[d + y, xBeat], xE, esize] = MemA_MVE[address, esize DIV 8];
24
25 // The optional write back to the base register is only performed on the
26 // last beat of the instruction.
27 if wback && IsLastBeat() then
28 R[n] = R[n] + 64;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1072

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.355 VLDM

Floating-point Load Multiple. Floating-point Load Multiple loads multiple extension registers from consecutive
memory locations using an address from a general-purpose register.

This instruction is used by the alias VPOP.

T1
Armv8-M Floating-point Extension only or MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 P U D W 1 Rn Vd 1 0 1 1 imm7

imm1 = 0

Decrement Before variant

Applies when P == 1 && U == 0 && W == 1.

VLDMDB{<c>}{<q>}{.<size>} <Rn>!, <dreglist>

Increment After variant

Applies when P == 0 && U == 1 && Rn != 1111.

VLDM{<c>}{<q>}{.<size>} <Rn>{!}, <dreglist>
VLDMIA{<c>}{<q>}{.<size>} <Rn>{!}, <dreglist>

Decode for this encoding
1 if P == '0' && U == '0' && W == '0' then SEE "Related encodings";
2 if P == '0' && U == '1' && W == '0' && Rn == '1111' then SEE "VSCCLRM";
3 if P == '1' && W == '0' then SEE VLDR;
4 CheckDecodeFaults(ExtType_MveOrFp);
5 if P == U && W == '1' then UNDEFINED;
6 // Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
7 single_regs = FALSE; add = (U == '1'); wback = (W == '1'); imm8 = imm7 : imm1;
8 d = UInt(D:Vd); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
9 regs = UInt(imm8) DIV 2;

10 if n == 15 then UNPREDICTABLE;
11 if regs == 0 || (d+regs) > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If regs == 0, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction operates as a VLDM with the same addressing mode but loads no registers.

CONSTRAINED UNPREDICTABLE behavior
If (d+regs) > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the floating-point registers are UNKNOWN. If the instruction specifies writeback, the base
register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1073

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

T2
Armv8-M Floating-point Extension only or MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 P U D W 1 Rn Vd 1 0 1 0 imm8

Decrement Before variant

Applies when P == 1 && U == 0 && W == 1.

VLDMDB{<c>}{<q>}{.<size>} <Rn>!, <sreglist>

Increment After variant

Applies when P == 0 && U == 1 && Rn != 1111.

VLDM{<c>}{<q>}{.<size>} <Rn>{!}, <sreglist>
VLDMIA{<c>}{<q>}{.<size>} <Rn>{!}, <sreglist>

Decode for this encoding
1 if P == '0' && U == '0' then SEE "Related encodings";
2 if P == '0' && U == '1' && W == '0' && Rn == '1111' then SEE "VSCCLRM";
3 if P == '1' && W == '0' then SEE VLDR;
4 CheckDecodeFaults(ExtType_MveOrFp);
5 if P == '1' && U == '1' && W == '1' then UNDEFINED;
6 // Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
7 single_regs = TRUE; add = (U == '1'); wback = (W == '1');
8 d = UInt(Vd:D); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
9 regs = UInt(imm8);

10 topReg = d+regs-1;
11 if n == 15 then UNPREDICTABLE;
12 if regs == 0 || topReg > 63 then UNPREDICTABLE;
13 if topReg[0] == '0' && topReg > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If regs == 0, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction operates as a VLDM with the same addressing mode but loads no registers.

CONSTRAINED UNPREDICTABLE behavior
If (d+regs) > 64, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the floating-point registers are UNKNOWN. If the instruction specifies writeback, the base
register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

Alias conditions
Alias preferred when
VPOP P == ‘0‘ &&

U == ‘1‘ &&
W == ‘1‘ &&
Rn == ‘1101‘

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1074

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<size> An optional data size specifier. If present, it must be equal to the size in bits, 32 or 64, of the

registers being transferred.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
! Specifies base register writeback. Encoded in the "W" field as 1 if present, otherwise 0.
<sreglist> Is the list of consecutively numbered 32-bit floating-point registers to be transferred. The first

register in the list is encoded in "Vd:D", and "imm8" is set to the number of registers in the
list. The list must contain at least one register.

<dreglist> Is the list of consecutively numbered 64-bit floating-point registers to be transferred. The first
register in the list is encoded in "D:Vd", and "imm8" is set to twice the number of registers in
the list. The list must contain at least one register, and must not contain more than 16 registers.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 address = if add then R[n] else R[n]-imm32;
5 regval = if add then R[n]+imm32 else R[n]-imm32;
6
7 // Determine if the stack pointer limit must be checked
8 if n == 13 && wback then
9 // If memory operation is not performed as a result of a stack limit violation,

10 // and the write-back of the SP itself does not raise a stack limit violation, it
11 // is "IMPLEMENTATION_DEFINED" whether a SPLIM exception is raised.
12 // Arm recommends that any instruction which discards a memory access as
13 // a result of a stack limit violation, and where the write-back of the SP itself
14 // does not raise a stack limit violation, generates an SPLIM exception.
15 if boolean IMPLEMENTATION_DEFINED "SPLIM exception on invalid memory access" then
16 if ViolatesSPLim(LookUpSP(), address) then
17 if HaveMainExt() then
18 UFSR.STKOF = '1';
19 // If the Main Extension is not implemented the fault always escalates to
20 // a HardFault
21 excInfo = CreateException(UsageFault);
22 HandleException(excInfo);
23 applylimit = TRUE;
24 else
25 applylimit = FALSE;
26
27 // Memory operation only performed if limit not violated
28 if !(applylimit && ViolatesSPLim(LookUpSP(), regval)) then
29 for r = 0 to regs-1
30 if single_regs then
31 if (d+r) < 32 || !VFPSmallRegisterBank() then
32 S[d+r] = MemA[address,4];
33 address = address+4;
34 else
35 if (d+r) < 16 || !VFPSmallRegisterBank() then
36 word1 = MemA[address,4]; word2 = MemA[address+4,4];
37 // Combine the word-aligned words in the correct order for
38 // current endianness.
39 D[d+r] = if BigEndian(address, 8) then word1:word2 else word2:word1;
40 elsif boolean UNKNOWN then
41 - = MemA[address,4]; - = MemA[address+4,4];
42 address = address+8;
43
44 // If the stack pointer is being updated a fault will be raised if
45 // the limit is violated
46 if wback then RSPCheck[n] = regval;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1075

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.356 VLDR (System Register)

Load System Register. Load a system register from memory. The target address is calculated from a base register
plus an immediate offset. Access to the FPCXT payloads generates an UNDEFINED exception if the instruction is
executed from Non-secure state. If CP10 is not enabled and either the Main extension is not implemented or the
Floating-point context is active, access to FPCXT_NS will generate a NOCP UsageFault. Accesses to FPCXT_NS
will not trigger lazy state preservation if there is no active Floating-point context. Accesses to FPCXT_NS do not
trigger Floating-point context creation regardless of the value of FPCCR.ASPEN. FPSCR_nzcvqc allows access to
FPSCR condition and saturation flags. The VPR register can only be accessed from privileged mode. FPCXT_NS,
enables saving and restoration of the Non-secure floating-point context. If the Floating-point extension nor MVE
are implemented and Floating-point context is active then the current FPSCR value is accessed. FPCXT_S, enables
saving and restoration of the Secure floating-point context.

T1
Armv8.1-M Floating-point Extension and / or Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 (0) 1 1 0 P A

regh

W 1 Rn regl 0 1 1 1 1 1 imm

T1: VLDR variant (Offset: P=1, W=0)

VLDR<c> <reg>, [Rn{, #+/-<imm>}]

T1: VLDR variant (Pre-indexed: P=1, W=1)

VLDR<c> <reg>, [Rn, #+/-<imm>]!

T1: VLDR variant (Post-indexed: P=0, W=1)

VLDR<c> <reg>, [Rn], #+/-<imm>

Decode for this encoding
1 if P == '0' && W == '0' then SEE "Related encodings";
2 if !HasArchVersion(Armv8p1) then
3 UFSR.NOCP = '1';
4 HandleException(CreateException(UsageFault));
5 fpCxtAnyAccess = (regh:regl == '111x');
6 fpCxtNSAccess = (regh:regl == '1110');
7 fpInactive = !HaveMveOrFPExt() || (FPCCR_NS.ASPEN == '1' && CONTROL.FPCA == '0');
8 if fpCxtAnyAccess && !IsSecure() then UNDEFINED;
9 if fpCxtNSAccess then

10 if !HaveMainExt() || !fpInactive then
11 HandleException(CheckCPEnabled(10));
12 else
13 CheckDecodeFaults(ExtType_MveOrFp);
14 n = UInt(Rn);
15 index = (P == '1');
16 add = (A == '1');
17 wback = (W == '1');
18 r = regh:regl;
19 imm32 = ZeroExtend(imm:'00', 32);
20 if (regh:regl) IN {'10xx', '01xx', '0011', '0000'} then CONSTRAINED_UNPREDICTABLE;
21 if Rn == '1111' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1076

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<reg> The system register to access

This parameter must be one of the following values:
FPSCR Encoded as regh = 0, regl = 001
FPSCR_nzcvqc Encoded as regh = 0, regl = 010
VPR Encoded as regh = 1, regl = 100
P0 Encoded as regh = 1, regl = 101
FPCXT_NS Encoded as regh = 1, regl = 110
FPCXT_S Encoded as regh = 1, regl = 111

<Rn> The base register for the target address.
<imm> The signed immediate value that is added to base register to calculate the target address. This

value must be a multiple of 4.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 if !fpCxtNSAccess then
4 ExecuteFPCheck();
5 elsif !fpInactive then
6 PreserveFPState();
7 SerializeVFP();
8 VFPExcBarrier();
9

10 offsetAddr = if add then (R[n] + imm32) else (R[n] - imm32);
11 address = if index then offsetAddr else R[n];
12
13 // Determine if the stack pointer limit should be checked
14 if n == 13 && wback then
15 violatesLimit = ViolatesSPLim(LookUpSP(), offsetAddr);
16 else
17 violatesLimit = FALSE;
18 // Memory operation only performed if limit not violated
19 if !violatesLimit then
20 case r of
21 when '0001'
22 FPSCR = MemA[address, 4];
23 when '0010'
24 // Only update the N, Z, C, V, and QC flags
25 FPSCR[31:27] = MemA[address, 4][31:27];
26 when '1100'
27 if HaveMve() then
28 if CurrentModeIsPrivileged() then
29 VPR = MemA[address, 4];
30 else
31 UNPREDICTABLE;
32 when '1101'
33 if HaveMve() then
34 VPR.P0 = MemA[address, 4][15:0];
35 else
36 UNPREDICTABLE;
37 when '1110'
38 if (HaveFPExt() || HaveMve()) && !fpInactive then
39 FPCXT_Type cxt = MemA[address, 4];
40 CONTROL_S.SFPA = cxt.SFPA;
41 FPSCR = Zeros(4):cxt[27:0];
42 when '1111'
43 FPCXT_Type cxt = MemA[address, 4];
44 CONTROL_S.SFPA = cxt.SFPA;
45 FPSCR = Zeros(4):cxt[27:0];
46 otherwise
47 UNPREDICTABLE;
48
49 // If the stack pointer is being updated a fault will be raised if
50 // the limit is violated

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1077

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

51 if wback then
52 RSPCheck[n] = offsetAddr;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1078

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.357 VLDR

Floating-point Load Register. Floating-point Load Register loads a Floating-point Extension register from memory,
using an address from a general-purpose register, with an optional offset.

T1
Armv8-M Floating-point Extension only or MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 1 U D 0 1 Rn Vd 1 0 1 1 imm8

Literal variant

Applies when Rn == 1111.

VLDR{<c>}{<q>}{.64} <Dd>, <label>
VLDR{<c>}{<q>}{.64} <Dd>, [PC, #{+/-}<imm>]

Offset variant

Applies when Rn != 1111.

VLDR{<c>}{<q>}{.64} <Dd>, [<Rn> {, #{+/-}<imm>}]

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveOrFp);
2 if VFPSmallRegisterBank() && (D == '1') then UNDEFINED;
3 fp_size = 64; add = (U == '1'); imm32 = ZeroExtend(imm8:'00', 32);
4 d = UInt(D:Vd); n = UInt(Rn);

T2
Armv8-M Floating-point Extension only or MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 1 U D 0 1 Rn Vd 1 0 1 0 imm8

Literal variant

Applies when Rn == 1111.

VLDR{<c>}{<q>}{.32} <Sd>, <label>
VLDR{<c>}{<q>}{.32} <Sd>, [PC, #{+/-}<imm>]

Offset variant

Applies when Rn != 1111.

VLDR{<c>}{<q>}{.32} <Sd>, [<Rn> {, #{+/-}<imm>}]

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveOrFp);
2 fp_size = 32; add = (U == '1'); imm32 = ZeroExtend(imm8:'00', 32);
3 d = UInt(Vd:D); n = UInt(Rn);

T3

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1079

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Armv8.1-M Floating-point Extension only or MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 1 U D 0 1 Rn Vd 1 0 0 1 imm8

Literal variant

Applies when Rn == 1111.

VLDR{<c>}{<q>}.16 <Sd>, <label>
VLDR{<c>}{<q>}.16 <Sd>, [PC, #{+/-}<imm>]

Offset variant

Applies when Rn != 1111.

VLDR{<c>}{<q>}.16 <Sd>, [<Rn> {, #{+/-}<imm>}]

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveOrFp);
2 fp_size = 16; add = (U == '1'); imm32 = ZeroExtend(imm8:'0', 32);
3 d = UInt(Vd:D); n = UInt(Rn);

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
.64 Optional data size specifiers.
<Dd> The destination register for a doubleword load.
.32 Optional data size specifiers.
<Sd> The destination register for a singleword load.
<label> The label of the literal data item to be loaded. The assembler calculates the required value of

the offset from the Align(PC, 4) value of the instruction to this label. Permitted values are
multiples of 4 in the range -1020 to 1020. If the offset is zero or positive, imm32 is equal to
the offset and add == TRUE. If the offset is negative, imm32 is equal to minus the offset and
add == FALSE.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.
+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted

and encoded in the "U" field. It can have the following values:
- when U = 0
+ when U = 1

<imm> The immediate offset used for forming the address. For the immediate forms of the syntax,
<imm> can be omitted, in which case the #0 form of the instruction is assembled. Permitted
values are multiples of 4 in the range 0 to 1020.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 base = if n == 15 then Align(PC,4) else R[n];
5 address = if add then (base + imm32) else (base - imm32);
6 case fp_size of
7 when 16
8 S[d] = Zeros(16) : MemA[address,2];
9 when 32

10 S[d] = MemA[address,4];
11 when 64
12 word1 = MemA[address,4]; word2 = MemA[address+4,4];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1080

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

13 // Combine the word-aligned words in the correct order for current endianness.
14 D[d] = if BigEndian(address, 8) then word1:word2 else word2:word1;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1081

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.358 VLDRB, VLDRH, VLDRW

Vector Load Register. Load consecutive elements from memory into a destination vector register. Each element
loaded will be the zero or sign-extended representation of the value in memory. In indexed mode, the target address
is calculated from a base register offset by an immediate value. Otherwise, the base register address is used directly.
The sum of the base register and the immediate value can optionally be written back to the base register. Predicated
lanes are zeroed instead of retaining their previous values.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 0 P A 0 W 1 0 Rn Qd 0 1 1 1 size imm

T1: VLDRB variant (Offset: P=1, W=0)

VLDRB<v>.<dt> Qd, [Rn{, #+/-<imm>}]

T1: VLDRB variant (Pre-indexed: P=1, W=1)

VLDRB<v>.<dt> Qd, [Rn, #+/-<imm>]!

T1: VLDRB variant (Post-indexed: P=0, W=1)

VLDRB<v>.<dt> Qd, [Rn], #+/-<imm>

Decode for this encoding
1 if P == '0' && W == '0' then SEE "Related encodings";
2 if size == '11' then SEE "Related encodings";
3 CheckDecodeFaults(ExtType_Mve);
4 if size == '00' then UNDEFINED;
5 d = UInt(Qd);
6 n = UInt(Rn);
7 msize = 8;
8 mbytes = msize DIV 8;
9 esize = 8 << UInt(size);

10 elements = 32 DIV esize;
11 imm32 = ZeroExtend(imm, 32);
12 index = (P == '1');
13 add = (A == '1');
14 wback = (W == '1');
15 unsigned = (U == '1');
16 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 0 P A 0 W 1 1 Rn Qd 0 1 1 1 size imm

T2: VLDRH variant (Offset: P=1, W=0)

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1082

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

VLDRH<v>.<dt> Qd, [Rn{, #+/-<imm>}]

T2: VLDRH variant (Pre-indexed: P=1, W=1)

VLDRH<v>.<dt> Qd, [Rn, #+/-<imm>]!

T2: VLDRH variant (Post-indexed: P=0, W=1)

VLDRH<v>.<dt> Qd, [Rn], #+/-<imm>

Decode for this encoding
1 if P == '0' && W == '0' then SEE "Related encodings";
2 if size == '11' then SEE "Related encodings";
3 CheckDecodeFaults(ExtType_Mve);
4 if size == '0x' then UNDEFINED;
5 d = UInt(Qd);
6 n = UInt(Rn);
7 msize = 16;
8 mbytes = msize DIV 8;
9 esize = 8 << UInt(size);

10 elements = 32 DIV esize;
11 imm32 = ZeroExtend(imm:'0', 32);
12 index = (P == '1');
13 add = (A == '1');
14 wback = (W == '1');
15 unsigned = (U == '1');
16 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T5
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 P A D W 1 Rn Qd 1 1 1 1 0 0 imm

T5: VLDRB variant (Offset: P=1, W=0)

VLDRB<v>.<dt> Qd, [Rn{, #+/-<imm>}]

T5: VLDRB variant (Pre-indexed: P=1, W=1)

VLDRB<v>.<dt> Qd, [Rn, #+/-<imm>]!

T5: VLDRB variant (Post-indexed: P=0, W=1)

VLDRB<v>.<dt> Qd, [Rn], #+/-<imm>

Decode for this encoding
1 if P == '0' && W == '0' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 n = UInt(Rn);
6 msize = 8;
7 mbytes = msize DIV 8;
8 esize = msize;
9 elements = 32 DIV esize;

10 imm32 = ZeroExtend(imm, 32);
11 index = (P == '1');
12 add = (A == '1');

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1083

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

13 wback = (W == '1');
14 unsigned = TRUE;
15 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
16 if Rn == '1101' && W == '1' then CONSTRAINED_UNPREDICTABLE;
17 if Rn == '1111' then CONSTRAINED_UNPREDICTABLE;

T6
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 P A D W 1 Rn Qd 1 1 1 1 0 1 imm

T6: VLDRH variant (Offset: P=1, W=0)

VLDRH<v>.<dt> Qd, [Rn{, #+/-<imm>}]

T6: VLDRH variant (Pre-indexed: P=1, W=1)

VLDRH<v>.<dt> Qd, [Rn, #+/-<imm>]!

T6: VLDRH variant (Post-indexed: P=0, W=1)

VLDRH<v>.<dt> Qd, [Rn], #+/-<imm>

Decode for this encoding
1 if P == '0' && W == '0' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 n = UInt(Rn);
6 msize = 16;
7 mbytes = msize DIV 8;
8 esize = msize;
9 elements = 32 DIV esize;

10 imm32 = ZeroExtend(imm:'0', 32);
11 index = (P == '1');
12 add = (A == '1');
13 wback = (W == '1');
14 unsigned = TRUE;
15 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
16 if Rn == '1101' && W == '1' then CONSTRAINED_UNPREDICTABLE;
17 if Rn == '1111' then CONSTRAINED_UNPREDICTABLE;

T7
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 P A D W 1 Rn Qd 1 1 1 1 1 0 imm

T7: VLDRW variant (Offset: P=1, W=0)

VLDRW<v>.<dt> Qd, [Rn{, #+/-<imm>}]

T7: VLDRW variant (Pre-indexed: P=1, W=1)

VLDRW<v>.<dt> Qd, [Rn, #+/-<imm>]!

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1084

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

T7: VLDRW variant (Post-indexed: P=0, W=1)

VLDRW<v>.<dt> Qd, [Rn], #+/-<imm>

Decode for this encoding
1 if P == '0' && W == '0' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 n = UInt(Rn);
6 msize = 32;
7 mbytes = msize DIV 8;
8 esize = msize;
9 elements = 32 DIV esize;

10 imm32 = ZeroExtend(imm:'00', 32);
11 index = (P == '1');
12 add = (A == '1');
13 wback = (W == '1');
14 unsigned = TRUE;
15 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
16 if Rn == '1101' && W == '1' then CONSTRAINED_UNPREDICTABLE;
17 if Rn == '1111' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for T1 encodings

<dt> This parameter determines the following values:
– Unsigned flag: S indicates signed, U indicates unsigned.
– Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
S16 Encoded as size = 01, U = 0
U16 Encoded as size = 01, U = 1
S32 Encoded as size = 10, U = 0
U32 Encoded as size = 10, U = 1

<imm> The signed immediate value that is added to base register to calculate the target address.

Assembler symbols for T2 encodings

<dt> This parameter determines the following values:
– Unsigned flag: S indicates signed, U indicates unsigned.
– Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
S32 Encoded as size = 10, U = 0
U32 Encoded as size = 10, U = 1

<imm> The signed immediate value that is added to base register to calculate the target address. This
value must be a multiple of 2.

Assembler symbols for T5 encodings

<dt> Data size. The unsigned, signed, floating and signless datatypes of the memory transfer size
are allowed.

<imm> The signed immediate value that is added to base register to calculate the target address.

Assembler symbols for T6 encodings

<dt> Data size. The unsigned, signed, floating and signless datatypes of the memory transfer size
are allowed.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1085

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

<imm> The signed immediate value that is added to base register to calculate the target address. This
value must be a multiple of 2.

Assembler symbols for T7 encodings

<dt> Data size. The unsigned, signed, floating and signless datatypes of the memory transfer size
are allowed.

<imm> The signed immediate value that is added to base register to calculate the target address. This
value must be a multiple of 4.

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<Qd> Destination vector register.
<Rn> The base register for the target address.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 offsetAddr = if add then (R[n] + imm32) else (R[n] - imm32);
8 address = if index then offsetAddr else R[n];
9 address = address + (curBeat * mbytes * elements);

10
11 for e = 0 to elements-1
12 if elmtMask[e*(esize >> 3)] == '1' then
13 Elem[result, e, esize] = Extend(MemA_MVE[address + (e * mbytes), mbytes], unsigned);
14
15 // The optional write back to the base register is only performed on the
16 // last beat of the instruction.
17 if wback && IsLastBeat() then
18 R[n] = offsetAddr;
19
20 Q[d, curBeat] = result;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1086

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.359 VLDRB, VLDRH, VLDRW, VLDRD (vector)

Vector Gather Load. Load a byte, halfword, word, or doubleword from memory at the address contained in either:

a) A base register R[n] plus an offset contained in each element of Q[m], optionally shifted by the element size,
or

b) Each element of Q[m] plus an immediate offset. The base element can optionally be written back, irrespective
of predication, with that value incremented by the immediate or by the immediate scaled by the memory
element size.

Each element loaded will be the zero or sign-extended representation of the value in memory. The result is written
back into the corresponding element in the destination vector register Q[d]. Predicated lanes are zeroed instead of
retaining their previous values.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 0 0 1 D 0 1 Rn Qd 0 1 1 1 size 0 M 0 Qm os

T1: VLDRB variant

VLDRB<v>.<dt> Qd, [Rn, Qm]

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' then UNDEFINED;
3 if size == '11' || (U == '0' && size == '00') then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 n = UInt(Rn);
7 msize = '00';
8 esize = 8 << UInt(size);
9 elements = 32 DIV esize;

10 mesize = 8;
11 add = TRUE;
12 useReg = TRUE;
13 scaleOffset = (os == '1');
14 unsigned = (U == '1');
15 wback = FALSE;
16 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
17 if D:Qd == M:Qm then CONSTRAINED_UNPREDICTABLE;
18 if Rn == '1111' then CONSTRAINED_UNPREDICTABLE;
19 if os == '1' then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 0 0 1 D 0 1 Rn Qd 0 1 1 1 size 0 M 1 Qm os

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1087

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

T2: VLDRH variant

VLDRH<v>.<dt> Qd, [Rn, Qm{, UXTW #os}]

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' then UNDEFINED;
3 if size == '11' || size == '00' || (U == '0' && size == '01') then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 n = UInt(Rn);
7 msize = '01';
8 esize = 8 << UInt(size);
9 elements = 32 DIV esize;

10 mesize = 16;
11 add = TRUE;
12 useReg = TRUE;
13 scaleOffset = (os == '1');
14 unsigned = (U == '1');
15 wback = FALSE;
16 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
17 if D:Qd == M:Qm then CONSTRAINED_UNPREDICTABLE;
18 if Rn == '1111' then CONSTRAINED_UNPREDICTABLE;

T3
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 0 0 1 D 0 1 Rn Qd 0 1 1 1 size 1 M 0 Qm os

T3: VLDRW variant

VLDRW<v>.<dt> Qd, [Rn, Qm{, UXTW #os}]

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' then UNDEFINED;
3 if U == '0' || size != '10' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 n = UInt(Rn);
7 msize = '10';
8 esize = 8 << UInt(size);
9 elements = 32 DIV esize;

10 mesize = 32;
11 add = TRUE;
12 useReg = TRUE;
13 scaleOffset = (os == '1');
14 unsigned = (U == '1');
15 wback = FALSE;
16 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
17 if D:Qd == M:Qm then CONSTRAINED_UNPREDICTABLE;
18 if Rn == '1111' then CONSTRAINED_UNPREDICTABLE;

T4
Armv8.1-M MVE

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1088

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 0 0 1 D 0 1 Rn Qd 0 1 1 1 size 1 M 1 Qm os

T4: VLDRD variant

VLDRD<v>.<dt> Qd, [Rn, Qm{, UXTW #os}]

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' then UNDEFINED;
3 if U == '0' || size != '11' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 n = UInt(Rn);
7 msize = '11';
8 esize = 8 << UInt(size);
9 elements = 32 DIV esize;

10 mesize = 64;
11 add = TRUE;
12 useReg = TRUE;
13 scaleOffset = (os == '1');
14 unsigned = (U == '1');
15 wback = FALSE;
16 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
17 if D:Qd == M:Qm then CONSTRAINED_UNPREDICTABLE;
18 if Rn == '1111' then CONSTRAINED_UNPREDICTABLE;

T5
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 1 A D W 1 Qm (0) Qd 1 1 1 1 0 M imm

T5: VLDRW variant (Non writeback: W=0)

VLDRW<v>.<dt> Qd, [Qm{, #+/-<imm>}]

T5: VLDRW variant (Writeback: W=1)

VLDRW<v>.<dt> Qd, [Qm{, #+/-<imm>}]!

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 m = UInt(M:Qm);
5 n = integer UNKNOWN;
6 size = '10';
7 msize = size;
8 offset = ZeroExtend(imm:Zeros(UInt(size)), 32);
9 esize = 8 << UInt(size);

10 elements = 32 DIV esize;
11 mesize = 32;
12 add = (A == '1');
13 useReg = FALSE;
14 scaleOffset = FALSE;
15 unsigned = TRUE;
16 wback = (W == '1');
17 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
18 if D:Qd == M:Qm then CONSTRAINED_UNPREDICTABLE;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1089

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

T6
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 1 A D W 1 Qm (0) Qd 1 1 1 1 1 M imm

T6: VLDRD variant (Non writeback: W=0)

VLDRD<v>.<dt> Qd, [Qm{, #+/-<imm>}]

T6: VLDRD variant (Writeback: W=1)

VLDRD<v>.<dt> Qd, [Qm{, #+/-<imm>}]!

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 m = UInt(M:Qm);
5 n = integer UNKNOWN;
6 size = '11';
7 msize = size;
8 offset = ZeroExtend(imm:Zeros(UInt(size)), 32);
9 esize = 8 << UInt(size);

10 elements = 32 DIV esize;
11 mesize = 64;
12 add = (A == '1');
13 useReg = FALSE;
14 scaleOffset = FALSE;
15 unsigned = TRUE;
16 wback = (W == '1');
17 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
18 if D:Qd == M:Qm then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for T1 encodings

<dt> This parameter determines the following values:
– Unsigned flag: S indicates signed, U indicates unsigned. Operations that do not perform
widening are always unsigned (encoded with U=1), the equivalent sized floating and signless
datatypes are allowed but are an alias for the unsigned version.
– Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
U8 Encoded as size = 00, U = 1
S16 Encoded as size = 01, U = 0
U16 Encoded as size = 01, U = 1
S32 Encoded as size = 10, U = 0
U32 Encoded as size = 10, U = 1

<Qm> Vector offset register. The elements of this register contain the unsigned offsets to add to the
base address.

Assembler symbols for T2 encodings

<dt> This parameter determines the following values:
– Unsigned flag: S indicates signed, U indicates unsigned. Operations that do not perform
widening are always unsigned (encoded with U=1), the equivalent sized floating and signless
datatypes are allowed but are an alias for the unsigned version.
– Size: indicates the size of the elements in the vector.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1090

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

This parameter must be one of the following values:
U16 Encoded as size = 01, U = 1
S32 Encoded as size = 10, U = 0
U32 Encoded as size = 10, U = 1

<Qm> Vector offset register. The elements of this register contain the unsigned offsets to add to the
base address.

Assembler symbols for T3 encodings

<dt> Unsigned flag: S indicates signed, U indicates unsigned. Operations that do not perform
widening are always unsigned (encoded with U=1), the equivalent sized floating and signless
datatypes are allowed but are an alias for the unsigned version.
This parameter must be the following value:
U32 Encoded as size = 10, U = 1

<Qm> Vector offset register. The elements of this register contain the unsigned offsets to add to the
base address.

Assembler symbols for T4 encodings

<dt> Unsigned flag: S indicates signed, U indicates unsigned. Operations that do not perform
widening are always unsigned (encoded with U=1), the equivalent sized floating and signless
datatypes are allowed but are an alias for the unsigned version.
This parameter must be the following value:
U64 Encoded as size = 11, U = 1

<Qm> Vector offset register. The elements of this register contain the unsigned offsets to add to the
base address.

Assembler symbols for T5 encodings

<dt> Data size. The unsigned, signed, floating and signless datatypes of the memory transfer size
are allowed.

<Qm> The base register for the target address.
<imm> The signed immediate value that is added to base register to calculate the target address. This

value must be a multiple of 4.

Assembler symbols for T6 encodings

<dt> Data size. The unsigned, signed, floating and signless datatypes of the memory transfer size
are allowed.

<Qm> The base register for the target address.
<imm> The signed immediate value that is added to base register to calculate the target address. This

value must be a multiple of 8.

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<Qd> Destination vector register.
<Rn> The base register for the target address.
<os> The amount by which the vector offset is left shifted by before being added to the general-

purpose base address. If the value is present it must correspond to memory transfer size
(1=half word, 2=word, 3=double word).

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1091

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

This parameter must be one of the following values:
<omitted> Encoded as os = 0
<Offset scaled> Encoded as os = 1

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 if esize == 64 then
8 // 64 bit accesses read their base address or offset from the first element
9 // in each pair of 32 bit elements.

10 if useReg then
11 baseAddr = R[n];
12 offset = Q[m, UInt(curBeat[1]:'0')];
13 if scaleOffset then
14 offset = LSL(offset, UInt(msize));
15 else
16 baseAddr = Q[m, UInt(curBeat[1]:'0')];
17 offsetAddress = if add then baseAddr + offset else baseAddr - offset;
18 bigEndian = BigEndian(offsetAddress, 8);
19 address = (if (curBeat[0] == '0') == bigEndian then offsetAddress + 4
20 else offsetAddress);
21 if elmtMask[0] == '1' then
22 result = MemA_MVE[address, 4];
23 // Address writeback is not predicated
24 if wback && (curBeat[0] == '1') then
25 Q[m, curBeat-1] = offsetAddress[31:0];
26 else
27 // 32, 16, or 8 bit accesses
28 for e = 0 to (elements - 1)
29 if useReg then
30 baseAddr = R[n];
31 offset = ZeroExtend(Elem[Q[m, curBeat], e, esize], 32);
32 if scaleOffset then
33 offset = LSL(offset, UInt(msize));
34 else
35 // 16 / 8 bit vector+immediate accesses are not supported
36 baseAddr = Q[m, curBeat];
37 address = if add then baseAddr + offset else baseAddr - offset;
38 if elmtMask[e*(esize>>3)] == '1' then
39 memValue = MemA_MVE[address, mesize DIV 8];
40 Elem[result, e, esize] = Extend(memValue, esize, unsigned);
41 // Address writeback is not predicated
42 if wback then
43 Elem[Q[m, curBeat], e, esize] = address[esize-1:0];
44
45
46 Q[d, curBeat] = result;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1092

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.360 VLLDM

Floating-point Lazy Load Multiple. Floating-point Lazy Load Multiple restores the contents of the Secure
Floating-point registers that were protected by a VLSTM instruction, and marks the Floating-point context as
active.

If the lazy state preservation set up by a previous VLSTM instruction is active (FPCCR.LSPACT == 1), this
instruction deactivates lazy state preservation and enables access to the Secure Floating-point registers.

If lazy state preservation is inactive (FPCCR.LSPACT == 0), either because lazy state preservation was not enabled
(FPCCR.LSPEN == 0) or because a Floating-point instruction caused the Secure Floating-point register contents
to be stored to memory, this instruction loads the stored Secure Floating-point register contents back into the
Floating-point registers.

If Secure Floating-point is not in use (CONTROL_S.SFPA == 0), this instruction behaves as a NOP.

This instruction is only available in Secure state, and is UNDEFINED in Non-secure state.

If the Floating-point Extension and MVE are not implemented, this instruction is available in Secure state, but
behaves as a NOP.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 0 0 (0) 1 1 Rn (0) (0) (0) (0) 1 0 1 0 0 (0) (0) (0) (0) (0) (0) (0)

T1 variant

VLLDM{<c>}{<q>} <Rn> {, <reglist>}

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 n = UInt(Rn);
3 if !IsSecure() || !VFPSmallRegisterBank() then UNDEFINED;
4 lowRegsOnly = TRUE;
5 if n == 15 then UNPREDICTABLE;

T2
Armv8.1-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 0 0 (0) 1 1 Rn (0) (0) (0) (0) 1 0 1 0 1 (0) (0) (0) (0) (0) (0) (0)

T2 variant

VLLDM{<c>}{<q>} <Rn>, <reglist>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 n = UInt(Rn);
3 if !IsSecure() then UNDEFINED;
4 lowRegsOnly = FALSE;
5 if n == 15 then UNPREDICTABLE;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1093

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
<reglist> For encoding T1: Optional register list of {D0-D15}, having the register list is the preferred

disassembly
For encoding T2: Mandatory register list of {D0-D31}

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3
4 if CONTROL_S.SFPA == '1' then
5 // Check access to the co-processor is permitted
6 exc = CheckCPEnabled(10);
7 HandleException(exc);
8
9 if FPCCR_S.LSPACT == '1' then // state in FP is still valid

10 FPCCR_S.LSPACT = '0';
11 else
12 if !IsAligned(R[n],8) then
13 UFSR.UNALIGNED = '1';
14 exc = CreateException(UsageFault);
15 HandleException(exc);
16
17 for i = 0 to 15
18 S[i] = MemA[R[n] + (4*i), 4];
19 FPSCR = MemA[R[n] + 0x40, 4];
20 if HaveMve() then
21 VPR = MemA[R[n] + 0x44, 4];
22 if FPCCR_S.TS == '1' then
23 for i = 0 to 15
24 S[i+16] = MemA[R[n] + 0x48 + (4*i), 4];
25 if !lowRegsOnly && boolean UNKNOWN then
26 for i = 0 to 31
27 - = MemA[R[n] + 0x88 + (4*i), 4];
28
29 CONTROL.FPCA = '1';

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1094

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.361 VLSTM

Floating-point Lazy Store Multiple. Floating-point Lazy Store Multiple stores the contents of Secure Floating-point
registers to a prepared stack frame, and clears the Secure Floating-point registers.

If Floating-point lazy preservation is enabled (FPCCR.LSPEN == 1), then the next time a Floating-point instruction
other than VLSTM or VLLDM is executed:

• The contents of Secure Floating-point registers are stored to memory.

• The Secure Floating-point registers are cleared.

If Secure Floating-point is not in use (CONTROL_S.SFPA == 0), this instruction behaves as a NOP.

This instruction is only available in Secure state, and is UNDEFINED in Non-secure state.

If the Floating-point Extension and MVE are not implemented, this instruction is available in Secure state, but
behaves as a NOP.

T1
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 0 0 (0) 1 0 Rn (0) (0) (0) (0) 1 0 1 0 0 (0) (0) (0) (0) (0) (0) (0)

T1 variant

VLSTM{<c>}{<q>} <Rn> {, <reglist>}

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 n = UInt(Rn);
3 if !IsSecure() || !VFPSmallRegisterBank() then UNDEFINED;
4 lowRegsOnly = TRUE;
5 if n == 15 then UNPREDICTABLE;

T2
Armv8.1-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 0 0 (0) 1 0 Rn (0) (0) (0) (0) 1 0 1 0 1 (0) (0) (0) (0) (0) (0) (0)

T2 variant

VLSTM{<c>}{<q>} <Rn>, <reglist>

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 n = UInt(Rn);
3 if !IsSecure() then UNDEFINED;
4 lowRegsOnly = FALSE;
5 if n == 15 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1095

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

<Rn> Is the general-purpose base register, encoded in the "Rn" field.
<reglist> For encoding T1: Optional register list of {D0-D15}, having the register list is the preferred

disassembly
For encoding T2: Mandatory register list of {D0-D31}

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3
4 if CONTROL_S.SFPA == '1' then
5 // Check access to the co-processor is permitted
6 exc = CheckCPEnabled(10);
7 HandleException(exc);
8
9 // LSPACT should not be active at the same time as there is active FP

10 // state. This is a possible attack senario so raise a SecureFault.
11 lspact = if FPCCR_S.S == '1' then FPCCR_S.LSPACT else FPCCR_NS.LSPACT;
12 if lspact == '1' then
13 SFSR.LSERR = '1';
14 exc = CreateException(SecureFault);
15 HandleException(exc);
16 else
17 if !IsAligned(R[n],8) then
18 UFSR.UNALIGNED = '1';
19 exc = CreateException(UsageFault);
20 HandleException(exc);
21
22 if FPCCR.LSPEN == '0' then
23 for i = 0 to 15
24 MemA[R[n] + (4*i), 4] = S[i];
25 MemA[R[n] + 0x40, 4] = FPSCR;
26 if HaveMve() then
27 MemA[R[n] + 0x44, 4] = VPR;
28
29 pushFPCalleeFrame = FPCCR.TS == '1';
30 if pushFPCalleeFrame then
31 for i = 0 to 15
32 MemA[R[n] + 0x48 + (4*i), 4] = S[i+16];
33
34 InvalidateFPRegs(pushFPCalleeFrame, pushFPCalleeFrame);
35
36 if !lowRegsOnly && boolean UNKNOWN then
37 for i = 0 to 31
38 MemA[R[n] + 0x88 + (4*i), 4] = bits(32) UNKNOWN;
39 else
40 UpdateFPCCR(R[n], FALSE);
41
42 CONTROL.FPCA = '0';

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1096

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.362 VMAX, VMAXA

Vector Maximum, Vector Maximum Absolute. Find the maximum value of the elements in the source operands,
and store the result in the corresponding destination elements.

The absolute variant takes the elements from the destination vector, treating them as unsigned, and compares them
to the absolute values of the corresponding elements in the source vector. The larger values are stored back into the
destination vector.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 0 D size Qn 0 Qd 0 0 1 1 0 N 1 M 0 Qm 0

T1: VMAX variant

VMAX<v>.<dt> Qd, Qn, Qm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || M == '1' || N == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 n = UInt(N:Qn);
7 absolute = FALSE;
8 unsigned = U == '1';
9 esize = 8 << UInt(size);

10 elements = 32 DIV esize;
11 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 (0) 1 1 1 0 0 Da 1 1 size 1 1 Qda 0 1 1 1 0 1 0 M 0 Qm 1

T2: VMAXA variant

VMAXA<v>.<dt> Qda, Qm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if Da == '1' || M == '1' then UNDEFINED;
4 da = UInt(Da:Qda);
5 m = UInt(M:Qm);
6 d = da;
7 n = da;
8 absolute = TRUE;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1097

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

9 unsigned = FALSE;
10 esize = 8 << UInt(size);
11 elements = 32 DIV esize;
12 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for T1 encodings

<dt> This parameter determines the following values:
– Unsigned flag: S indicates signed, U indicates unsigned.
– Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
S8 Encoded as size = 00, U = 0
U8 Encoded as size = 00, U = 1
S16 Encoded as size = 01, U = 0
U16 Encoded as size = 01, U = 1
S32 Encoded as size = 10, U = 0
U32 Encoded as size = 10, U = 1

Assembler symbols for T2 encodings

<dt> Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
S8 Encoded as size = 00
S16 Encoded as size = 01
S32 Encoded as size = 10

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<Qd> Destination vector register.
<Qda> Source and destination vector register.
<Qm> Source vector register.
<Qn> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[n, curBeat];
8 op2 = Q[m, curBeat];
9 for e = 0 to elements-1

10 value1 = Int(Elem[op1, e, esize], unsigned || absolute);
11 value2 = Int(Elem[op2, e, esize], unsigned);
12 if absolute then
13 value2 = Abs(value2);
14 Elem[result, e, esize] = Max(value1, value2)[esize-1:0];
15
16 for e = 0 to 3
17 if elmtMask[e] == '1' then
18 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1098

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.363 VMAXNM

Floating-point Maximum Number. Floating-point Maximum Number determines the floating-point maximum
number.

NaN handling is specified by IEEE754-2008.

T2
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 1 D 0 0 Vn Vd 1 0 size N

op = 0

M 0 Vm

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when size == 01.

VMAXNM{<q>}.F16 <Sd>, <Sn>, <Sm>
// Not permitted in IT block

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VMAXNM{<q>}.F32 <Sd>, <Sn>, <Sm>
// Not permitted in IT block

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VMAXNM{<q>}.F64 <Dd>, <Dn>, <Dm>
// Not permitted in IT block

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (M == '1' || N == '1' || D == '1') then
4 UNDEFINED;
5 if InITBlock() then UNPREDICTABLE;
6 maximum = (op == '0');
7 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
8 n = if dp_operation then UInt(N:Vn) else UInt(Vn:N);
9 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols for all encodings

<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sn> Is the 32-bit name of the first floating-point source register, encoded in the "Vn:N" field.
<Sm> Is the 32-bit name of the second floating-point source register, encoded in the "Vm:M" field.
<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1099

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

<Dn> Is the 64-bit name of the first floating-point source register, encoded in the "N:Vn" field.
<Dm> Is the 64-bit name of the second floating-point source register, encoded in the "M:Vm" field.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3 case size of
4 when '01'
5 if maximum then
6 S[d] = Zeros(16) : FPMaxNum(S[n][15:0], S[m][15:0], TRUE);
7 else
8 S[d] = Zeros(16) : FPMinNum(S[n][15:0], S[m][15:0], TRUE);
9 when '10'

10 if maximum then
11 S[d] = FPMaxNum(S[n], S[m], TRUE);
12 else
13 S[d] = FPMinNum(S[n], S[m], TRUE);
14 when '11'
15 if maximum then
16 D[d] = FPMaxNum(D[n], D[m], TRUE);
17 else
18 D[d] = FPMinNum(D[n], D[m], TRUE);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1100

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.364 VMAXNM, VMAXNMA (floating-point)

Vector Maximum, Vector Maximum Absolute. Find the floating-point maximum number of the elements in the
source operands, and store the result in the corresponding destination elements. It handles NaNs in consistence
with the IEEE754-2008 specification, and returns the numerical operand when one operand is numerical and the
other is a quiet NaN.

The absolute variant takes the absolute values of the elements from the destination vector and compares them to
the absolute values of the corresponding elements in the source vector. The larger values are stored back into the
destination vector.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE with Half-precision and Single-precision Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 0 D 0 sz Qn 0 Qd 0 1 1 1 1 N 1 M 1 Qm 0

T1: VMAXNM variant

VMAXNM<v>.<dt> Qd, Qn, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveFp);
2 if D == '1' || M == '1' || N == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 m = UInt(M:Qm);
5 n = UInt(N:Qn);
6 absolute = FALSE;
7 esize = if sz == '1' then 16 else 32;
8 elements = 32 DIV esize;
9 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE with Half-precision and Single-precision Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 sz 1 1 1 0 0 Da 1 1 1 1 1 1 Qda 0 1 1 1 0 1 0 M 0 Qm 1

T2: VMAXNMA variant

VMAXNMA<v>.<dt> Qda, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveFp);
2 if Da == '1' || M == '1' then UNDEFINED;
3 da = UInt(Da:Qda);
4 m = UInt(M:Qm);
5 d = da;
6 n = da;
7 absolute = TRUE;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1101

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

8 esize = if sz == '1' then 16 else 32;
9 elements = 32 DIV esize;

10 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> Size: indicates the floating-point format used.

This parameter must be one of the following values:
F32 Encoded as sz = 0
F16 Encoded as sz = 1

<Qd> Destination vector register.
<Qda> Source and destination vector register.
<Qm> Source vector register.
<Qn> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[n, curBeat];
8 op2 = Q[m, curBeat];
9 for e = 0 to elements-1

10 // Avoid Floating-point exceptions on a predicated lane by checking the element mask
11 predicated = (elmtMask[e*(esize>>3)] == '0');
12 value1 = Elem[op1, e, esize];
13 value2 = Elem[op2, e, esize];
14 if absolute then
15 value1 = FPAbs(value1);
16 value2 = FPAbs(value2);
17 Elem[result, e, esize] = FPMaxNum(value1, value2, FALSE, predicated);
18
19 for e = 0 to 3
20 if elmtMask[e] == '1' then
21 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1102

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.365 VMAXNMV, VMAXNMAV (floating-point)

Vector Maximum Across Vector, Vector Maximum Absolute Across Vector. Find the maximum value of the
elements in a vector register. Store the maximum value in the general-purpose destination register only if it is
larger than the starting value of the general-purpose destination register. The general-purpose register is read as the
same width as the vector elements. For half-precision the upper half of the general-purpose register is cleared on
writeback. This instruction handles NaNs in consistence with the IEEE754-2008 specification, and returns the
numerical operand when one operand is numerical and the other is a quiet NaN.

The absolute variant of the instruction compares the absolute value of vector elements.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE with Half-precision and Single-precision Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 sz 1 1 1 0 1 1 1 0 1 1 1 0 Rda 1 1 1 1 0 0 M 0 Qm 0

T1: VMAXNMV variant

VMAXNMV<v>.<dt> Rda, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveFp);
2 if M == '1' then UNDEFINED;
3 da = UInt(Rda);
4 m = UInt(M:Qm);
5 absolute = FALSE;
6 esize = if sz == '1' then 16 else 32;
7 elements = 32 DIV esize;
8 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
9 if Rda == '11x1' then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE with Half-precision and Single-precision Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 sz 1 1 1 0 1 1 1 0 1 1 0 0 Rda 1 1 1 1 0 0 M 0 Qm 0

T2: VMAXNMAV variant

VMAXNMAV<v>.<dt> Rda, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveFp);
2 if M == '1' then UNDEFINED;
3 da = UInt(Rda);
4 m = UInt(M:Qm);
5 absolute = TRUE;
6 esize = if sz == '1' then 16 else 32;
7 elements = 32 DIV esize;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1103

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

8 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
9 if Rda == '11x1' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> Size: indicates the floating-point format used.

This parameter must be one of the following values:
F32 Encoded as sz = 0
F16 Encoded as sz = 1

<Rda> General-purpose source and destination register.
<Qm> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 op1 = Q[m, curBeat];
7 result = Elem[R[da], 0, esize];
8 for e = 0 to elements-1
9 if elmtMask[e*(esize>>3)] == '1' then

10 value = Elem[op1, e, esize];
11 result = FPConvertNaN(result, FALSE);
12 value = FPConvertNaN(value, FALSE);
13 if absolute then
14 value = FPAbs(value);
15 result = FPMaxNum(value, result, FALSE);
16
17 R[da] = ZeroExtend(result);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1104

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.366 VMAXV, VMAXAV

Vector Maximum Across Vector, Vector Maximum Absolute Across Vector. Find the maximum value of the
elements in a vector register. Store the maximum value in the general-purpose destination register only if it is
larger than the starting value of the general-purpose destination register. The general-purpose register is read as the
same width as the vector elements. The result of the operation is sign-extended to 32 bits before being stored back.

The absolute variant of the instruction compares the absolute value of signed vector elements and treats the value
in the general-purpose register as unsigned.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 0 1 1 1 0 size 1 0 Rda 1 1 1 1 0 0 M 0 Qm 0

T1: VMAXV variant

VMAXV<v>.<dt> Rda, Qm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if M == '1' then UNDEFINED;
4 da = UInt(Rda);
5 m = UInt(M:Qm);
6 absolute = FALSE;
7 unsigned = U == '1';
8 esize = 8 << UInt(size);
9 elements = 32 DIV esize;

10 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
11 if Rda == '11x1' then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 (0) 1 1 1 0 1 1 1 0 size 0 0 Rda 1 1 1 1 0 0 M 0 Qm 0

T2: VMAXAV variant

VMAXAV<v>.<dt> Rda, Qm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if M == '1' then UNDEFINED;
4 da = UInt(Rda);
5 m = UInt(M:Qm);
6 absolute = TRUE;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1105

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

7 unsigned = FALSE;
8 esize = 8 << UInt(size);
9 elements = 32 DIV esize;

10 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
11 if Rda == '11x1' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for T1 encodings

<dt> This parameter determines the following values:
– Unsigned flag: S indicates signed, U indicates unsigned.
– Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
S8 Encoded as size = 00, U = 0
U8 Encoded as size = 00, U = 1
S16 Encoded as size = 01, U = 0
U16 Encoded as size = 01, U = 1
S32 Encoded as size = 10, U = 0
U32 Encoded as size = 10, U = 1

Assembler symbols for T2 encodings

<dt> Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
S8 Encoded as size = 00
S16 Encoded as size = 01
S32 Encoded as size = 10

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<Rda> General-purpose source and destination register.
<Qm> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 op1 = Q[m, curBeat];
7 result = Int(Elem[R[da], 0, esize], absolute || unsigned);
8 for e = 0 to elements-1
9 if elmtMask[e*(esize>>3)] == '1' then

10 value = Int(Elem[op1, e, esize], unsigned);
11 if absolute then
12 value = Abs(value);
13 result = Max(value, result);
14
15 R[da] = result[31:0];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1106

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.367 VMIN, VMINA

Vector Minimum, Vector Minimum Absolute. Find the minimum value of the elements in the source operands, and
store the result in the corresponding destination elements.

The absolute variant takes the elements from the destination vector, treating them as unsigned, and compares them
to the absolute values of the corresponding elements in the source vector. The smaller values are stored back into
the destination vector.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 0 D size Qn 0 Qd 0 0 1 1 0 N 1 M 1 Qm 0

T1: VMIN variant

VMIN<v>.<dt> Qd, Qn, Qm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || M == '1' || N == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 n = UInt(N:Qn);
7 absolute = FALSE;
8 unsigned = U == '1';
9 esize = 8 << UInt(size);

10 elements = 32 DIV esize;
11 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 (0) 1 1 1 0 0 Da 1 1 size 1 1 Qda 1 1 1 1 0 1 0 M 0 Qm 1

T2: VMINA variant

VMINA<v>.<dt> Qda, Qm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if Da == '1' || M == '1' then UNDEFINED;
4 da = UInt(Da:Qda);
5 m = UInt(M:Qm);
6 d = da;
7 n = da;
8 absolute = TRUE;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1107

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

9 unsigned = FALSE;
10 esize = 8 << UInt(size);
11 elements = 32 DIV esize;
12 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for T1 encodings

<dt> This parameter determines the following values:
– Unsigned flag: S indicates signed, U indicates unsigned.
– Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
S8 Encoded as size = 00, U = 0
U8 Encoded as size = 00, U = 1
S16 Encoded as size = 01, U = 0
U16 Encoded as size = 01, U = 1
S32 Encoded as size = 10, U = 0
U32 Encoded as size = 10, U = 1

Assembler symbols for T2 encodings

<dt> Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
S8 Encoded as size = 00
S16 Encoded as size = 01
S32 Encoded as size = 10

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<Qd> Destination vector register.
<Qda> Source and destination vector register.
<Qm> Source vector register.
<Qn> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[n, curBeat];
8 op2 = Q[m, curBeat];
9 for e = 0 to elements-1

10 value1 = Int(Elem[op1, e, esize], unsigned || absolute);
11 value2 = Int(Elem[op2, e, esize], unsigned);
12 if absolute then
13 value2 = Abs(value2);
14 Elem[result, e, esize] = Min(value1, value2)[esize-1:0];
15
16 for e = 0 to 3
17 if elmtMask[e] == '1' then
18 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1108

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.368 VMINNM

Floating-point Minimum Number. Floating-point Minimum Number determines the floating-point minimum
number.

NaN handling is specified by IEEE754-2008.

T2
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 1 D 0 0 Vn Vd 1 0 size N

op = 1

M 0 Vm

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when size == 01.

VMINNM{<q>}.F16 <Sd>, <Sn>, <Sm>
// Not permitted in IT block

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VMINNM{<q>}.F32 <Sd>, <Sn>, <Sm>
// Not permitted in IT block

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VMINNM{<q>}.F64 <Dd>, <Dn>, <Dm>
// Not permitted in IT block

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (M == '1' || N == '1' || D == '1') then
4 UNDEFINED;
5 if InITBlock() then UNPREDICTABLE;
6 maximum = (op == '0');
7 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
8 n = if dp_operation then UInt(N:Vn) else UInt(Vn:N);
9 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols for all encodings

<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sn> Is the 32-bit name of the first floating-point source register, encoded in the "Vn:N" field.
<Sm> Is the 32-bit name of the second floating-point source register, encoded in the "Vm:M" field.
<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1109

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

<Dn> Is the 64-bit name of the first floating-point source register, encoded in the "N:Vn" field.
<Dm> Is the 64-bit name of the second floating-point source register, encoded in the "M:Vm" field.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3 case size of
4 when '01'
5 if maximum then
6 S[d] = Zeros(16) : FPMaxNum(S[n][15:0], S[m][15:0], TRUE);
7 else
8 S[d] = Zeros(16) : FPMinNum(S[n][15:0], S[m][15:0], TRUE);
9 when '10'

10 if maximum then
11 S[d] = FPMaxNum(S[n], S[m], TRUE);
12 else
13 S[d] = FPMinNum(S[n], S[m], TRUE);
14 when '11'
15 if maximum then
16 D[d] = FPMaxNum(D[n], D[m], TRUE);
17 else
18 D[d] = FPMinNum(D[n], D[m], TRUE);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1110

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.369 VMINNM, VMINNMA (floating-point)

Vector Minimum, Vector Minimum Absolute. Find the floating-point minimum number of the elements in the
source operands, and store the result in the corresponding destination elements. It handles NaNs in consistence
with the IEEE754-2008 specification, and returns the numerical operand when one operand is numerical and the
other is a quiet NaN.

The absolute variant takes the absolute values of the elements from the destination vector and compares them to
the absolute values of the corresponding elements in the source vector. The smaller values are stored back into the
destination vector.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE with Half-precision and Single-precision Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 0 D 1 sz Qn 0 Qd 0 1 1 1 1 N 1 M 1 Qm 0

T1: VMINNM variant

VMINNM<v>.<dt> Qd, Qn, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveFp);
2 if D == '1' || M == '1' || N == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 m = UInt(M:Qm);
5 n = UInt(N:Qn);
6 absolute = FALSE;
7 esize = if sz == '1' then 16 else 32;
8 elements = 32 DIV esize;
9 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE with Half-precision and Single-precision Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 sz 1 1 1 0 0 Da 1 1 1 1 1 1 Qda 1 1 1 1 0 1 0 M 0 Qm 1

T2: VMINNMA variant

VMINNMA<v>.<dt> Qda, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveFp);
2 if Da == '1' || M == '1' then UNDEFINED;
3 da = UInt(Da:Qda);
4 m = UInt(M:Qm);
5 d = da;
6 n = da;
7 absolute = TRUE;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1111

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

8 esize = if sz == '1' then 16 else 32;
9 elements = 32 DIV esize;

10 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> Size: indicates the floating-point format used.

This parameter must be one of the following values:
F32 Encoded as sz = 0
F16 Encoded as sz = 1

<Qd> Destination vector register.
<Qda> Source and destination vector register.
<Qm> Source vector register.
<Qn> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[n, curBeat];
8 op2 = Q[m, curBeat];
9 for e = 0 to elements-1

10 // Avoid Floating-point exceptions on a predicated lane by checking the element mask
11 predicated = (elmtMask[e*(esize>>3)] == '0');
12 value1 = Elem[op1, e, esize];
13 value2 = Elem[op2, e, esize];
14 if absolute then
15 value1 = FPAbs(value1);
16 value2 = FPAbs(value2);
17 Elem[result, e, esize] = FPMinNum(value1, value2, FALSE, predicated);
18
19 for e = 0 to 3
20 if elmtMask[e] == '1' then
21 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1112

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.370 VMINNMV, VMINNMAV (floating-point)

Vector Minimum Across Vector, Vector Minimum Absolute Across Vector. Find the minimum value of the
elements in a vector register. Store the minimum value in the general-purpose destination register only if it is
smaller than the starting value of the general-purpose destination register. The general-purpose register is read as
the same width as the vector elements. For half-precision the upper half of the general-purpose register is cleared
on writeback. This instruction handles NaNs in consistence with the IEEE754-2008 specification, and returns the
numerical operand when one operand is numerical and the other is a quiet NaN.

The absolute variant of the instruction compares the absolute value of vector elements.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE with Half-precision and Single-precision Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 sz 1 1 1 0 1 1 1 0 1 1 1 0 Rda 1 1 1 1 1 0 M 0 Qm 0

T1: VMINNMV variant

VMINNMV<v>.<dt> Rda, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveFp);
2 if M == '1' then UNDEFINED;
3 da = UInt(Rda);
4 m = UInt(M:Qm);
5 absolute = FALSE;
6 esize = if sz == '1' then 16 else 32;
7 elements = 32 DIV esize;
8 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
9 if Rda == '11x1' then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE with Half-precision and Single-precision Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 sz 1 1 1 0 1 1 1 0 1 1 0 0 Rda 1 1 1 1 1 0 M 0 Qm 0

T2: VMINNMAV variant

VMINNMAV<v>.<dt> Rda, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveFp);
2 if M == '1' then UNDEFINED;
3 da = UInt(Rda);
4 m = UInt(M:Qm);
5 absolute = TRUE;
6 esize = if sz == '1' then 16 else 32;
7 elements = 32 DIV esize;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1113

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

8 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
9 if Rda == '11x1' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> Size: indicates the floating-point format used.

This parameter must be one of the following values:
F32 Encoded as sz = 0
F16 Encoded as sz = 1

<Rda> General-purpose source and destination register.
<Qm> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 op1 = Q[m, curBeat];
7 result = Elem[R[da], 0, esize];
8 for e = 0 to elements-1
9 if elmtMask[e*(esize>>3)] == '1' then

10 value = Elem[op1, e, esize];
11 result = FPConvertNaN(result, FALSE);
12 value = FPConvertNaN(value, FALSE);
13 if absolute then
14 value = FPAbs(value);
15 result = FPMinNum(value, result, FALSE);
16
17 R[da] = ZeroExtend(result);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1114

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.371 VMINV, VMINAV

Vector Minimum Across Vector, Vector Minimum Absolute Across Vector. Find the minimum value of the
elements in a vector register. Store the minimum value in the general-purpose destination register only if it is
smaller than the starting value of the general-purpose destination register. The general-purpose register is read as
the same width as the vector elements. The result of the operation is sign-extended to 32 bits before being stored
back.

The absolute variant of the instruction compares the absolute value of signed vector elements and treats the value
in the general-purpose register as unsigned.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 0 1 1 1 0 size 1 0 Rda 1 1 1 1 1 0 M 0 Qm 0

T1: VMINV variant

VMINV<v>.<dt> Rda, Qm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if M == '1' then UNDEFINED;
4 da = UInt(Rda);
5 m = UInt(M:Qm);
6 absolute = FALSE;
7 unsigned = U == '1';
8 esize = 8 << UInt(size);
9 elements = 32 DIV esize;

10 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
11 if Rda == '11x1' then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 (0) 1 1 1 0 1 1 1 0 size 0 0 Rda 1 1 1 1 1 0 M 0 Qm 0

T2: VMINAV variant

VMINAV<v>.<dt> Rda, Qm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if M == '1' then UNDEFINED;
4 da = UInt(Rda);
5 m = UInt(M:Qm);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1115

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

6 absolute = TRUE;
7 unsigned = FALSE;
8 esize = 8 << UInt(size);
9 elements = 32 DIV esize;

10 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
11 if Rda == '11x1' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for T1 encodings

<dt> This parameter determines the following values:
– Unsigned flag: S indicates signed, U indicates unsigned.
– Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
S8 Encoded as size = 00, U = 0
U8 Encoded as size = 00, U = 1
S16 Encoded as size = 01, U = 0
U16 Encoded as size = 01, U = 1
S32 Encoded as size = 10, U = 0
U32 Encoded as size = 10, U = 1

Assembler symbols for T2 encodings

<dt> Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
S8 Encoded as size = 00
S16 Encoded as size = 01
S32 Encoded as size = 10

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<Rda> General-purpose source and destination register.
<Qm> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 op1 = Q[m, curBeat];
7 result = Int(Elem[R[da], 0, esize], absolute || unsigned);
8 for e = 0 to elements-1
9 if elmtMask[e*(esize>>3)] == '1' then

10 value = Int(Elem[op1, e, esize], unsigned);
11 if absolute then
12 value = Abs(value);
13 result = Min(value, result);
14
15 R[da] = result[31:0];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1116

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.372 VMLA (vector by scalar plus vector)

Vector Multiply Accumulate. Multiply each element in the source vector by a scalar value and add to the respective
element from the destination vector. Store the result in the destination register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 0 0 Da size Qn 1 Qda 0 1 1 1 0 N 1 0 0 Rm

T1: VMLA variant

VMLA<v>.<dt> Qda, Qn, Rm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if Da == '1' || N == '1' then UNDEFINED;
4 da = UInt(Da:Qda);
5 m = UInt(Rm);
6 n = UInt(N:Qn);
7 unsigned = (U == '1');
8 esize = 8 << UInt(size);
9 elements = 32 DIV esize;

10 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
11 if Rm == '11x1' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> This parameter determines the following values:

– Unsigned flag: S indicates signed, U indicates unsigned.
– Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
S8 Encoded as size = 00, U = 0
U8 Encoded as size = 00, U = 1
S16 Encoded as size = 01, U = 0
U16 Encoded as size = 01, U = 1
S32 Encoded as size = 10, U = 0
U32 Encoded as size = 10, U = 1

<Qda> Accumulator vector register.
<Qn> Source vector register.
<Rm> Source general-purpose register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1117

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

5
6 result = Zeros(32);
7 op1 = Q[n, curBeat];
8 element2 = Int(R[m][esize-1:0], unsigned);
9 op3 = Q[da, curBeat];

10 for e = 0 to elements-1
11 element1 = Int(Elem[op1, e, esize], unsigned);
12 element3 = Int(Elem[op3, e, esize], unsigned);
13 value = (element1 * element2) + element3;
14 Elem[result, e, esize] = value[esize-1:0];
15
16 for e = 0 to 3
17 if elmtMask[e] == '1' then
18 Elem[Q[da, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1118

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.373 VMLA

Floating-point Multiply Accumulate. Floating-point Multiply Accumulate multiplies two floating-point registers,
adds the product to the destination register, and places the result in the destination register.

T2
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 D 0 0 Vn Vd 1 0 size N

op = 0

M 0 Vm

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when size == 01.

VMLA{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VMLA{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VMLA{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (M == '1' || N == '1' || D == '1') then
4 UNDEFINED;
5 if size == '01' && InITBlock() then UNPREDICTABLE;
6 add = (op == '0');
7 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
8 n = if dp_operation then UInt(N:Vn) else UInt(Vn:N);
9 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sn> Is the 32-bit name of the first floating-point source register, encoded in the "Vn:N" field.
<Sm> Is the 32-bit name of the second floating-point source register, encoded in the "Vm:M" field.
<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.
<Dn> Is the 64-bit name of the first floating-point source register, encoded in the "N:Vn" field.
<Dm> Is the 64-bit name of the second floating-point source register, encoded in the "M:Vm" field.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1119

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 case size of
5 when '01'
6 if add then
7 addend16 = FPMul(S[n][15:0], S[m][15:0], TRUE);
8 else
9 addend16 = FPNeg(FPMul(S[n][15:0], S[m][15:0], TRUE));

10 S[d] = Zeros(16) : FPAdd(S[d][15:0], addend16, TRUE);
11 when '10'
12 if add then
13 addend32 = FPMul(S[n], S[m], TRUE);
14 else
15 addend32 = FPNeg(FPMul(S[n], S[m], TRUE));
16 S[d] = FPAdd(S[d], addend32, TRUE);
17 when '11'
18 if add then
19 addend64 = FPMul(D[n], D[m], TRUE);
20 else
21 addend64 = FPNeg(FPMul(D[n], D[m], TRUE));
22 D[d] = FPAdd(D[d], addend64, TRUE);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1120

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.374 VMLADAV

Vector Multiply Add Dual Accumulate Across Vector. The elements of the vector registers are handled in pairs.
In the base variant, corresponding elements from the two source registers are multiplied together, whereas the
exchange variant swaps the values in each pair of values read from the first source register, before multiplying them
with the values from the second source register. The results of the pairs of multiply operations are combined by
adding them together. At the end of each beat these results are accumulated and the lower 32 bits written back to
the general-purpose destination register. The initial value of the general-purpose destination register can optionally
be added to the result.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 0 1 1 1 1 Qn sz Rda X 1 1 1 0 N 0 A 0 Qm 0

T1: VMLADAV variant

VMLADAV{A}{X}<v>.<dt> Rda, Qn, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if N == '1' then UNDEFINED;
3 if U == '1' && X == '1' then UNDEFINED;
4 da = UInt(Rda:'0');
5 m = UInt(Qm);
6 n = UInt(N:Qn);
7 exchange = (X == '1');
8 accumulate = (A == '1');
9 esize = if sz == '0' then 16 else 32;

10 elements = 32 DIV esize;
11 unsigned = (U == '1');
12 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 0 1 1 1 1 Qn 0 Rda X 1 1 1 1 N 0 A 0 Qm 0

T2: VMLADAV variant

VMLADAV{A}{X}<v>.<dt> Rda, Qn, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if N == '1' then UNDEFINED;
3 if U == '1' && X == '1' then UNDEFINED;
4 da = UInt(Rda:'0');
5 m = UInt(Qm);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1121

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

6 n = UInt(N:Qn);
7 exchange = (X == '1');
8 accumulate = (A == '1');
9 esize = 8;

10 elements = 32 DIV esize;
11 unsigned = (U == '1');
12 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for T1 encodings

<dt> This parameter determines the following values:
– Unsigned flag: S indicates signed, U indicates unsigned.
– Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
S16 Encoded as sz = 0, U = 0
U16 Encoded as sz = 0, U = 1
S32 Encoded as sz = 1, U = 0
U32 Encoded as sz = 1, U = 1

Assembler symbols for T2 encodings

<dt> Unsigned flag: S indicates signed, U indicates unsigned.
This parameter must be one of the following values:
S8 Encoded as U = 0
U8 Encoded as U = 1

Assembler symbols for all encodings

<A> Accumulate with existing register contents.
This parameter must be one of the following values:
- Encoded as A = 0
A Encoded as A = 1

<X> Exchange adjacent pairs of values in Qm.
This parameter must be one of the following values:
- Encoded as X = 0
X Encoded as X = 1

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<Rda> General-purpose source and destination register. This must be an even numbered register.
<Qn> First source vector register.
<Qm> Second source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = if accumulate || !IsFirstBeat() then Int(R[da], unsigned) else 0;
7 // 32 bit operations are handled differently as they perform cross beat
8 // register accesses
9 if esize == 32 then

10 if elmtMask[0] == '1' then
11 if exchange then
12 if curBeat[0] == '0' then
13 mul = Int(Q[n, curBeat+1], unsigned) * Int(Q[m, curBeat], unsigned);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1122

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

14 else
15 mul = Int(Q[n, curBeat-1], unsigned) * Int(Q[m, curBeat], unsigned);
16 else
17 mul = Int(Q[n, curBeat], unsigned) * Int(Q[m, curBeat], unsigned);
18 result = result + mul;
19 else
20 op1 = Q[n, curBeat];
21 op2 = Q[m, curBeat];
22 for e = 0 to elements-1
23 if elmtMask[e*(esize>>3)] == '1' then
24 if exchange then
25 if e[0] == '0' then
26 mul = (Int(Elem[op1, e+1, esize], unsigned) *
27 Int(Elem[op2, e, esize], unsigned));
28 else
29 mul = (Int(Elem[op1, e-1, esize], unsigned) *
30 Int(Elem[op2, e, esize], unsigned));
31 else
32 elem1 = Int(Elem[op1, e, esize], unsigned);
33 elem2 = Int(Elem[op2, e, esize], unsigned);
34 mul = elem1 * elem2;
35 result = result + mul;
36 R[da] = result[31:0];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1123

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.375 VMLALDAV

Vector Multiply Add Long Dual Accumulate Across Vector. The elements of the vector registers are handled in
pairs. In the base variant, corresponding elements from the two source registers are multiplied together, whereas
the exchange variant swaps the values in each pair of values read from the first source register, before multiplying
them with the values from the second source register. The results of the pairs of multiply operations are combined
by adding them together. At the end of each beat these results are accumulated. The 64-bit result is stored across
two registers, the upper-half is stored in an odd-numbered register and the lower half is stored in an even-numbered
register. The initial value of the general-purpose destination registers can optionally be added to the result.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 0 1 RdaHi Qn sz RdaLo X 1 1 1 0 N 0 A 0 Qm 0

T1: VMLALDAV variant

VMLALDAV{A}{X}<v>.<dt> RdaLo, RdaHi, Qn, Qm

Decode for this encoding
1 if RdaHi == '111' then SEE "VMLADAV";
2 CheckDecodeFaults(ExtType_Mve);
3 if N == '1' then UNDEFINED;
4 if U == '1' && X == '1' then UNDEFINED;
5 dah = UInt(RdaHi:'1');
6 dal = UInt(RdaLo:'0');
7 m = UInt(Qm);
8 n = UInt(N:Qn);
9 exchange = (X == '1');

10 accumulate = (A == '1');
11 esize = if sz == '0' then 16 else 32;
12 elements = 32 DIV esize;
13 unsigned = (U == '1');
14 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
15 if RdaHi == '110' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<A> Accumulate with existing register contents.
This parameter must be one of the following values:
- Encoded as A = 0
A Encoded as A = 1

<X> Exchange adjacent pairs of values in Qm.
This parameter must be one of the following values:
- Encoded as X = 0
X Encoded as X = 1

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> This parameter determines the following values:

– Unsigned flag: S indicates signed, U indicates unsigned.
– Size: indicates the size of the elements in the vector.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1124

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

This parameter must be one of the following values:
S16 Encoded as sz = 0, U = 0
U16 Encoded as sz = 0, U = 1
S32 Encoded as sz = 1, U = 0
U32 Encoded as sz = 1, U = 1

<RdaLo> General-purpose register for the low-half of the 64-bit source and destination. This must be an
even numbered register.

<RdaHi> General-purpose register for the high-half of the 64-bit source and destination. This must be
an odd numbered register.

<Qn> First source vector register.
<Qm> Second source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = if accumulate || !IsFirstBeat() then Int(R[dah]:R[dal], unsigned) else 0;
7 // 32 bit operations are handled differently as they perform cross beat
8 // register accesses
9 if esize == 32 then

10 if elmtMask[0] == '1' then
11 if exchange then
12 if curBeat[0] == '0' then
13 mul = Int(Q[n, curBeat+1], unsigned) * Int(Q[m, curBeat], unsigned);
14 else
15 mul = Int(Q[n, curBeat-1], unsigned) * Int(Q[m, curBeat], unsigned);
16 else
17 mul = Int(Q[n, curBeat], unsigned) * Int(Q[m, curBeat], unsigned);
18 result = result + mul;
19 else
20 op1 = Q[n, curBeat];
21 op2 = Q[m, curBeat];
22 for e = 0 to elements-1
23 if elmtMask[e*(esize>>3)] == '1' then
24 if exchange then
25 if e[0] == '0' then
26 mul = (Int(Elem[op1, e+1, esize], unsigned) *
27 Int(Elem[op2, e, esize], unsigned));
28 else
29 mul = (Int(Elem[op1, e-1, esize], unsigned) *
30 Int(Elem[op2, e, esize], unsigned));
31 else
32 elem1 = Int(Elem[op1, e, esize], unsigned);
33 elem2 = Int(Elem[op2, e, esize], unsigned);
34 mul = elem1 * elem2;
35 result = result + mul;
36 R[dah] = result[63:32];
37 R[dal] = result[31:0];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1125

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.376 VMLALV

Vector Multiply Accumulate Long Across Vector. This is an alias of VMLALDAV without exchange.

This is an alias of VMLALDAV with the following condition satisfied: X==0.

This alias is the preferred disassembly.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 0 1 RdaHi Qn sz RdaLo 0 1 1 1 0 N 0 A 0 Qm 0

VMLALV variant

VMLALV{A}<v>.<dt> RdaLo, RdaHi, Qn, Qm

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1126

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.377 VMLAS (vector by vector plus scalar)

Vector Multiply Accumulate Scalar. Multiply each element in the source vector by the respective element from the
destination vector and add to a scalar value. Store the result in the destination register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 0 0 Da size Qn 1 Qda 1 1 1 1 0 N 1 0 0 Rm

T1: VMLAS variant

VMLAS<v>.<dt> Qda, Qn, Rm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if Da == '1' || N == '1' then UNDEFINED;
4 da = UInt(Da:Qda);
5 m = UInt(Rm);
6 n = UInt(N:Qn);
7 unsigned = (U == '1');
8 esize = 8 << UInt(size);
9 elements = 32 DIV esize;

10 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
11 if Rm == '11x1' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> This parameter determines the following values:

– Unsigned flag: S indicates signed, U indicates unsigned.
– Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
S8 Encoded as size = 00, U = 0
U8 Encoded as size = 00, U = 1
S16 Encoded as size = 01, U = 0
U16 Encoded as size = 01, U = 1
S32 Encoded as size = 10, U = 0
U32 Encoded as size = 10, U = 1

<Qda> Source and destination vector register.
<Qn> Source vector register.
<Rm> Source general-purpose register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1127

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

5
6 result = Zeros(32);
7 op1 = Q[n, curBeat];
8 op2 = Q[da, curBeat];
9 element3 = Int(R[m][esize-1:0], unsigned);

10 for e = 0 to elements-1
11 element1 = Int(Elem[op1, e, esize], unsigned);
12 element2 = Int(Elem[op2, e, esize], unsigned);
13 value = (element1 * element2) + element3;
14 Elem[result, e, esize] = value[esize-1:0];
15
16 for e = 0 to 3
17 if elmtMask[e] == '1' then
18 Elem[Q[da, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1128

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.378 VMLAV

Vector Multiply Accumulate Across Vector. This is an alias of VMLADAV without exchange.

This is an alias of VMLADAV with the following condition satisfied: X==0.

This alias is the preferred disassembly.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 0 1 1 1 1 Qn sz Rda 0 1 1 1 0 N 0 A 0 Qm 0

VMLAV variant

VMLAV{A}<v>.<dt> Rda, Qn, Qm

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1129

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.379 VMLS

Floating-point Multiply Subtract. Floating-point Multiply Subtract multiplies two floating-point registers, subtracts
the product from the destination floating-point register, and places the result in the destination floating-point
register.

Arm recommends that software does not use the VMLS instruction in the Round towards +Infinity and Round
towards -Infinity rounding modes, because the rounding of the product and of the sum can change the result of the
instruction in opposite directions, defeating the purpose of these rounding modes.

T2
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 D 0 0 Vn Vd 1 0 size N

op = 1

M 0 Vm

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when size == 01.

VMLS{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VMLS{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VMLS{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (M == '1' || N == '1' || D == '1') then
4 UNDEFINED;
5 if size == '01' && InITBlock() then UNPREDICTABLE;
6 add = (op == '0');
7 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
8 n = if dp_operation then UInt(N:Vn) else UInt(Vn:N);
9 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sn> Is the 32-bit name of the first floating-point source register, encoded in the "Vn:N" field.
<Sm> Is the 32-bit name of the second floating-point source register, encoded in the "Vm:M" field.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1130

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.
<Dn> Is the 64-bit name of the first floating-point source register, encoded in the "N:Vn" field.
<Dm> Is the 64-bit name of the second floating-point source register, encoded in the "M:Vm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 case size of
5 when '01'
6 if add then
7 addend16 = FPMul(S[n][15:0], S[m][15:0], TRUE);
8 else
9 addend16 = FPNeg(FPMul(S[n][15:0], S[m][15:0], TRUE));

10 S[d] = Zeros(16) : FPAdd(S[d][15:0], addend16, TRUE);
11 when '10'
12 if add then
13 addend32 = FPMul(S[n], S[m], TRUE);
14 else
15 addend32 = FPNeg(FPMul(S[n], S[m], TRUE));
16 S[d] = FPAdd(S[d], addend32, TRUE);
17 when '11'
18 if add then
19 addend64 = FPMul(D[n], D[m], TRUE);
20 else
21 addend64 = FPNeg(FPMul(D[n], D[m], TRUE));
22 D[d] = FPAdd(D[d], addend64, TRUE);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1131

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.380 VMLSDAV

Vector Multiply Subtract Dual Accumulate Across Vector. The elements of the vector registers are handled in pairs.
In the base variant, corresponding elements from the two source registers are multiplied together, whereas the
exchange variant swaps the values in each pair of values read from the first source register, before multiplying them
with the values from the second source register. The results of the pairs of multiply operations are combined by
subtracting one from the other. At the end of each beat these results are accumulated and the lower 32 bits written
back to the general-purpose destination register. The initial value of the general-purpose destination register can
optionally be added to the result.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 1 1 1 Qn sz Rda X 1 1 1 0 N 0 A 0 Qm 1

T1: VMLSDAV variant

VMLSDAV{A}{X}<v>.<dt> Rda, Qn, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if N == '1' then UNDEFINED;
3 da = UInt(Rda:'0');
4 m = UInt(Qm);
5 n = UInt(N:Qn);
6 exchange = (X == '1');
7 accumulate = (A == '1');
8 esize = if sz == '0' then 16 else 32;
9 elements = 32 DIV esize;

10 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 1 1 1 1 Qn 0 Rda X 1 1 1 0 N 0 A 0 Qm 1

T2: VMLSDAV variant

VMLSDAV{A}{X}<v>.S8 Rda, Qn, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if N == '1' then UNDEFINED;
3 da = UInt(Rda:'0');
4 m = UInt(Qm);
5 n = UInt(N:Qn);
6 exchange = (X == '1');
7 accumulate = (A == '1');

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1132

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

8 esize = 8;
9 elements = 32 DIV esize;

10 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for T1 encodings

<dt> Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
S16 Encoded as sz = 0
S32 Encoded as sz = 1

Assembler symbols for all encodings

<A> Accumulate with existing register contents.
This parameter must be one of the following values:
- Encoded as A = 0
A Encoded as A = 1

<X> Exchange adjacent pairs of values in Qm.
This parameter must be one of the following values:
- Encoded as X = 0
X Encoded as X = 1

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<Rda> General-purpose source and destination register. This must be an even numbered register.
<Qn> First source vector register.
<Qm> Second source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = if accumulate || !IsFirstBeat() then SInt(R[da]) else 0;
7 // 32 bit operations are handled differently as they perform cross beat
8 // register accesses
9 if esize == 32 then

10 if elmtMask[0] == '1' then
11 if exchange then
12 if curBeat[0] == '0' then
13 mul = SInt(Q[n, curBeat+1]) * SInt(Q[m, curBeat]);
14 else
15 mul = SInt(Q[n, curBeat-1]) * SInt(Q[m, curBeat]);
16 else
17 mul = SInt(Q[n, curBeat]) * SInt(Q[m, curBeat]);
18 if curBeat[0] == '0' then
19 result = result + mul;
20 else
21 result = result - mul;
22 else
23 op1 = Q[n, curBeat];
24 op2 = Q[m, curBeat];
25 for e = 0 to elements-1
26 if elmtMask[e*(esize>>3)] == '1' then
27 if exchange then
28 if e[0] == '0' then
29 mul = (SInt(Elem[op1, e+1, esize]) *
30 SInt(Elem[op2, e, esize]));
31 else
32 mul = (SInt(Elem[op1, e-1, esize]) *

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1133

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

33 SInt(Elem[op2, e, esize]));
34 else
35 elem1 = SInt(Elem[op1, e, esize]);
36 elem2 = SInt(Elem[op2, e, esize]);
37 mul = elem1 * elem2;
38 if e[0] == '0' then
39 result = result + mul;
40 else
41 result = result - mul;
42 R[da] = result[31:0];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1134

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.381 VMLSLDAV

Vector Multiply Subtract Long Dual Accumulate Across Vector. The elements of the vector registers are handled
in pairs. In the base variant, corresponding elements from the two source registers are multiplied together, whereas
the exchange variant swaps the values in each pair of values read from the first source register, before multiplying
them with the values from the second source register. The results of the pairs of multiply operations are combined
by subtracting one from the other. At the end of each beat these results are accumulated. The 64-bit result is
stored across two registers, the upper-half is stored in an odd-numbered register and the lower half is stored in an
even-numbered register. The initial value of the general-purpose destination registers can optionally be added to
the result.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 RdaHi Qn sz RdaLo X 1 1 1 0 N 0 A 0 Qm 1

T1: VMLSLDAV variant

VMLSLDAV{A}{X}<v>.<dt> RdaLo, RdaHi, Qn, Qm

Decode for this encoding
1 if RdaHi == '111' then SEE "VMLSDAV";
2 CheckDecodeFaults(ExtType_Mve);
3 if N == '1' then UNDEFINED;
4 dah = UInt(RdaHi:'1');
5 dal = UInt(RdaLo:'0');
6 m = UInt(Qm);
7 n = UInt(N:Qn);
8 exchange = (X == '1');
9 accumulate = (A == '1');

10 esize = if sz == '0' then 16 else 32;
11 elements = 32 DIV esize;
12 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
13 if RdaHi == '110' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<A> Accumulate with existing register contents.
This parameter must be one of the following values:
- Encoded as A = 0
A Encoded as A = 1

<X> Exchange adjacent pairs of values in Qm.
This parameter must be one of the following values:
- Encoded as X = 0
X Encoded as X = 1

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> Size: indicates the size of the elements in the vector.

This parameter must be one of the following values:
S16 Encoded as sz = 0
S32 Encoded as sz = 1

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1135

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

<RdaLo> General-purpose register for the low-half of the 64-bit source and destination. This must be an
even numbered register.

<RdaHi> General-purpose register for the high-half of the 64-bit source and destination. This must be
an odd numbered register.

<Qn> First source vector register.
<Qm> Second source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = if accumulate || !IsFirstBeat() then SInt(R[dah]:R[dal]) else 0;
7 // 32 bit operations are handled differently as they perform cross beat
8 // register accesses
9 if esize == 32 then

10 if elmtMask[0] == '1' then
11 if exchange then
12 if curBeat[0] == '0' then
13 mul = SInt(Q[n, curBeat+1]) * SInt(Q[m, curBeat]);
14 else
15 mul = SInt(Q[n, curBeat-1]) * SInt(Q[m, curBeat]);
16 else
17 mul = SInt(Q[n, curBeat]) * SInt(Q[m, curBeat]);
18 if curBeat[0] == '0' then
19 result = result + mul;
20 else
21 result = result - mul;
22 else
23 op1 = Q[n, curBeat];
24 op2 = Q[m, curBeat];
25 for e = 0 to elements-1
26 if elmtMask[e*(esize>>3)] == '1' then
27 if exchange then
28 if e[0] == '0' then
29 mul = (SInt(Elem[op1, e+1, esize]) *
30 SInt(Elem[op2, e, esize]));
31 else
32 mul = (SInt(Elem[op1, e-1, esize]) *
33 SInt(Elem[op2, e, esize]));
34 else
35 elem1 = SInt(Elem[op1, e, esize]);
36 elem2 = SInt(Elem[op2, e, esize]);
37 mul = elem1 * elem2;
38 if e[0] == '0' then
39 result = result + mul;
40 else
41 result = result - mul;
42 R[dah] = result[63:32];
43 R[dal] = result[31:0];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1136

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.382 VMOV (between general-purpose register and half-precision register)

Floating-point Move (between general-purpose register and half-precision register). Floating-point Move (between
general-purpose register and half-precision register) transfers the contents of a half-precision register to a general-
purpose register, or the contents of a general-purpose register to a half-precision register

T1
Armv8.1-M Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 0 0 op Vn Rt 1 0 0 1 N (0) (0) 1 (0) (0) (0) (0)

T1 variant

From general-purpose register op == 0.

VMOV{<c>}{<q>}.F16, <Sn>, <Rt>

T1 variant

To general-purpose register op == 1.

VMOV{<c>}{<q>}.F16, <Rt>, <Sn>

Decode for this encoding
1 CheckDecodeFaults(ExtType_HpFp);
2 if InITBlock() then UNPREDICTABLE;
3 to_arm_register = (op == '1');
4 t = UInt(Rt); n = UInt(Vn:N);
5 if t == 15 || t == 13 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Sn> Is the 32-bit name of the floating-point source register, encoded in the "Vn:N" field.
<Rt> Is the general-purpose register that <Sn> will be transferred to or from, encoded in the "Rt"

field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 if to_arm_register then
5 R[t] = Zeros(16) : S[n][15:0];
6 else
7 S[n] = Zeros(16) : R[t][15:0];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1137

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.383 VMOV (between general-purpose register and single-precision register)

Floating-point Move (between general-purpose register and single-precision register). Floating-point Move
(between general-purpose register and single-precision register) transfers the contents of a single-precision register
to a general-purpose register, or the contents of a general-purpose register to a single-precision register.

T1
Armv8-M Floating-point Extension only or MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 0 0 op Vn Rt 1 0 1 0 N (0) (0) 1 (0) (0) (0) (0)

Encoding

Applies when op == 0.

VMOV{<c>}{<q>} <Sn>, <Rt>

Encoding

Applies when op == 1.

VMOV{<c>}{<q>} <Rt>, <Sn>

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveOrFp);
2 to_arm_register = (op == '1'); t = UInt(Rt); n = UInt(Vn:N);
3 if t == 15 || t == 13 then UNPREDICTABLE;

Assembler symbols for all encodings

<Rt> Is the general-purpose register that <Sn> will be transferred to or from, encoded in the "Rt"
field.

<Sn> Is the 32-bit name of the floating-point register to be transferred, encoded in the "Vn:N" field.
<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 if to_arm_register then
5 R[t] = S[n];
6 else
7 S[n] = R[t];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1138

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.384 VMOV (between two general-purpose registers and a doubleword register)

Floating-point Move (between two general-purpose registers and a doubleword register). Floating-point Move
(between two general-purpose registers and a doubleword register) transfers two words from two general-purpose
registers to a doubleword register, or from a doubleword register to two general-purpose registers.

T1
Armv8-M Floating-point Extension only or MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 0 0 1 0 op Rt2 Rt 1 0 1 1 0 0 M 1 Vm

Encoding

Applies when op == 1.

VMOV{<c>}{<q>} <Rt>, <Rt2>, <Dm>

Encoding

Applies when op == 0.

VMOV{<c>}{<q>} <Dm>, <Rt>, <Rt2>

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveOrFp);
2 if VFPSmallRegisterBank() && (M == '1') then UNDEFINED;
3 to_arm_registers = (op == '1'); t = UInt(Rt); t2 = UInt(Rt2); m = UInt(M:Vm);
4 if t == 15 || t2 == 15 then UNPREDICTABLE;
5 if t == 13 || t2 == 13 then UNPREDICTABLE;
6 if to_arm_registers && t == t2 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If to_arm_registers && t == t2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

Assembler symbols for all encodings

<Dm> Is the 64-bit name of the floating-point register to be transferred, encoded in the "M:Vm" field.
<Rt2> Is the first general-purpose register that <Dm>[63:32] will be transferred to or from, encoded

in the "Rt" field.
<Rt> Is the first general-purpose register that <Dm>[31:0] will be transferred to or from, encoded in

the "Rt" field.
<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 if to_arm_registers then
5 R[t] = D[m][31:0];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1139

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

6 R[t2] = D[m][63:32];
7 else
8 D[m][31:0] = R[t];
9 D[m][63:32] = R[t2];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1140

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.385 VMOV (between two general-purpose registers and two single-precision registers)

Floating-point Move (between two general-purpose registers and two single-precision registers). Floating-point
Move (between two general-purpose registers and two single-precision registers) transfers the contents of two
consecutively numbered single-precision registers to two general-purpose registers, or the contents of two general-
purpose registers to a pair of single-precision registers. The general-purpose registers do not have to be contiguous.

T1
Armv8-M Floating-point Extension only or MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 0 0 1 0 op Rt2 Rt 1 0 1 0 0 0 M 1 Vm

Encoding

Applies when op == 1.

VMOV{<c>}{<q>} <Rt>, <Rt2>, <Sm>, <Sm1>

Encoding

Applies when op == 0.

VMOV{<c>}{<q>} <Sm>, <Sm1>, <Rt>, <Rt2>

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveOrFp);
2 to_arm_registers = (op == '1'); t = UInt(Rt); t2 = UInt(Rt2); m = UInt(Vm:M);
3 if t == 15 || t2 == 15 || m == 31 then UNPREDICTABLE;
4 if t == 13 || t2 == 13 then UNPREDICTABLE;
5 if to_arm_registers && t == t2 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If to_arm_registers && t == t2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

CONSTRAINED UNPREDICTABLE behavior
If m == 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• One or more of the single-precision registers become UNKNOWN for a move to the single-precision register.
The general-purpose registers listed in the instruction become UNKNOWN for a move from the single-precision
registers. This behavior does not affect any other general-purpose registers.

Assembler symbols for all encodings

<Rt2> Is the second general-purpose register that <Sm1> will be transferred to or from, encoded in
the "Rt" field.

<Rt> Is the first general-purpose register that <Sm> will be transferred to or from, encoded in the
"Rt" field.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1141

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

<Sm1> Is the 32-bit name of the second floating-point register to be transferred. This is the next
floating-point register after <Sm>.

<Sm> Is the 32-bit name of the first floating-point register to be transferred, encoded in the "Vm:M"
field.

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 if to_arm_registers then
5 R[t] = S[m];
6 R[t2] = S[m+1];
7 else
8 S[m] = R[t];
9 S[m+1] = R[t2];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1142

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.386 VMOV (general-purpose register to vector lane)

Vector Move (general-purpose register to vector lane). Copy the value of a general-purpose register to a vector
lane.

This instruction is subject to beat-wise execution if it is not in an IT block.

This instruction is not VPT compatible.

T1
Armv8.1-M Floating-point Extension and / or Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 op1 0 Qd h Rt 1 0 1 1 D op2 1 (0) (0) (0) (0)

T1: VMOV variant

VMOV<c>.<dt> Qd[idx], Rt

Decode for this encoding
1 if D == '1' then UNDEFINED;
2 if op1 == '0x' && op2 == '10' then UNDEFINED;
3 d = UInt(D:Qd);
4 t = UInt(Rt);
5 case (h:op1:op2) of
6 when 'x1xxx' isMve = TRUE; esize = 8; elemIdx = UInt((h:op1:op2)[1:0]);
7 when 'x0xx1' isMve = TRUE; esize = 16; elemIdx = UInt((h:op1:op2)[1]);
8 when 'x0x00' isMve = FALSE; esize = 32; elemIdx = 0;
9 CheckDecodeFaults(if isMve then ExtType_Mve else ExtType_MveOrFp);

10 targetBeat = UInt((h:op1:op2)[4]:(h:op1:op2)[2]);
11 if InVPTBlock() then CONSTRAINED_UNPREDICTABLE;
12 if Rt == '11x1' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> Size: indicates the size of the elements in the vector.

This parameter must be one of the following values:
32 Encoded as op1 = 0x, op2 = 00
16 Encoded as op1 = 0x, op2 = x1
8 Encoded as op1 = 1x, op2 = xx

<Qd> Destination vector register.
<idx> Element index to select in the vector register, must be in the range 0 to ((128/dt)-1). This value

is encoded into the bits of h:op1:op2 which are not used to encode dt.
<Rt> Source general-purpose register.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4
5 if InITBlock() || !HaveMve() then
6 Elem[Q[d, targetBeat],elemIdx,esize] = R[t][esize-1:0];
7 else
8 (curBeat, -) = GetCurInstrBeat();
9 if curBeat == targetBeat then

10 Elem[Q[d, curBeat],elemIdx,esize] = R[t][esize-1:0];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1143

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.387 VMOV (half of doubleword register to single general-purpose register)

Floating-point Move (half of doubleword register to single general-purpose register). Floating-point Move (half
of doubleword register to single general-purpose register) transfers one word from the upper or lower half of a
doubleword register to a general-purpose register.

This instruction is an alias of VMOV (vector lane to general-purpose register)

T1
Armv8.0-M Floating-point Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 0 H 1 Vn Rt 1 0 1 1 N 0 0 1 (0) (0) (0) (0)

VMOV variant

VMOV<c><q>.<dt> Rt, Dn[x]

is equivalent to

VMOV<c>.<dt> Rt, Qn[idx]

where Dn[x] is expressed as Qn[idx]

Operation for all encodings
The description of VMOV (vector lane to general-purpose register) gives the operational pseudocode for this
instruction.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1144

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.388 VMOV (immediate) (vector)

Vector Move (immediate). Set each element of a vector register to the immediate operand value. The immediate is
generated by the AdvSIMDExpandImm() function based on the requested data type and immediate value.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 i 1 1 1 1 1 D 0 0 0 imm3 Qd 0 cmode 0 1 op 1 imm4

T1: VMOV variant

VMOV<v>.<dt> Qd, #<imm>

Decode for this encoding
1 if op == '0' && cmode IN {'0xx1', '10x1'} then SEE "VORR (immediate)";
2 if op == '1' && cmode IN {'0xx0', '110x', '10x0'} then SEE "VMVN (immediate)";
3 if op == '1' && cmode IN {'0xx1', '10x1'} then SEE "VBIC (immediate)";
4 CheckDecodeFaults(ExtType_Mve);
5 if D == '1' then UNDEFINED;
6 if cmode == '1111' && op == '1' then UNDEFINED;
7 d = UInt(D:Qd);
8 imm64 = AdvSIMDExpandImm(op, cmode, i:imm3:imm4);
9 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> Size: indicates the size of the elements in the vector, for use with the AdvSIMDExpandImm()

function.
This parameter must be one of the following values:
I32 Encoded as:

cmode = 0000, op = 0
cmode = 0010, op = 0
cmode = 0100, op = 0
cmode = 0110, op = 0
cmode = 1100, op = 0
cmode = 1101, op = 0

I16 Encoded as:
cmode = 1000, op = 0
cmode = 1010, op = 0

I8 Encoded as:
cmode = 1110, op = 0

I64 Encoded as:
cmode = 1110, op = 1

F32 Encoded as:
cmode = 1111, op = 0

<Qd> Destination vector register.
<imm> The immediate value to load in to each element. This must be an immediate that can be

encoded for use with the AdvSIMDExpandImm() function.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1145

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 if curBeat[0] == '0' then
7 result = imm64[31:0];
8 else
9 result = imm64[63:32];

10
11 for e = 0 to 3
12 if elmtMask[e] == '1' then
13 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1146

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.389 VMOV (immediate)

Floating-point Move (immediate). Floating-point Move (immediate) places an immediate constant into the
destination floating-point register.

T2
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 imm4H Vd 1 0 size (0) 0 (0) 0 imm4L

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when size == 01.

VMOV{<c>}{<q>}.F16 <Sd>, #<imm>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VMOV{<c>}{<q>}.F32 <Sd>, #<imm>

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VMOV{<c>}{<q>}.F64 <Dd>, #<imm>

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (D == '1') then UNDEFINED;
4 if size == '01' && InITBlock() then UNPREDICTABLE;
5 case size of
6 when '01'
7 d = UInt(Vd:D);
8 imm16 = VFPExpandImm(imm4H:imm4L, 16);
9 imm32 = Zeros(16) : imm16;

10 when '10'
11 d = UInt(Vd:D);
12 imm32 = VFPExpandImm(imm4H:imm4L, 32);
13 when '11'
14 d = UInt(D:Vd);
15 imm64 = VFPExpandImm(imm4H:imm4L, 64);

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.
<imm> Is a floating-point constant. For details of the range of constants available and the encoding of

<imm>, see the definition of VFPExpandImm().

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1147

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 if dp_operation then
5 D[d] = imm64;
6 else
7 S[d] = imm32;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1148

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.390 VMOV (register) (vector)

Vector Move (register). Copy the value of one vector register to another vector register.

This is an alias of VORR with the following condition satisfied: Qm==Qn.

This alias is the preferred disassembly.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 0 D 1 0 Qm 0 Qd 0 0 0 0 1 M 1 M 1 Qm 0

VMOV variant

VMOV<v> Qd, Qm

is equivalent to

VORR<v> Qd, Qm, Qm

and is the preferred disassembly when Qm == Qn

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1149

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.391 VMOV (register)

Floating-point Move (register). Floating-point Move (register) copies the contents of one register to another.

T2
Armv8-M Floating-point Extension or MVE, sz == 1 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 0 0 0 0 Vd 1 0 1 sz 0 1 M 0 Vm

Single-precision scalar variant

Armv8-M Floating-point Extension or MVE.

Applies when sz == 0.

VMOV{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Armv8-M Floating-point Extension or MVE.

Applies when sz == 1.

VMOV{<c>}{<q>}.F64 <Dd>, <Dm>

Decode for this encoding
1 dp_operation = (sz == '1');
2 CheckDecodeFaults(if dp_operation then ExtType_MveOrDpFp else ExtType_MveOrFp);
3 if VFPSmallRegisterBank() && dp_operation && (M == '1' || D == '1') then UNDEFINED;
4 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
5 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.
<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.
<Dm> Is the 64-bit name of the floating-point source register, encoded in the "M:Vm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 if dp_operation then
5 D[d] = D[m];
6 else
7 S[d] = S[m];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1150

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.392 VMOV (single general-purpose register to half of doubleword register)

Floating-point Move (single general-purpose register to half of doubleword register). Floating-point Move (single
general-purpose register to half of doubleword register) transfers one word from a general-purpose register to the
upper or lower half of a doubleword register.

This instruction is an alias of VMOV (general-purpose register to vector lane)

T1
Armv8.0-M Floating-point Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 0 H 0 Vd Rt 1 0 1 1 D 0 0 1 (0) (0) (0) (0)

VMOV variant

VMOV<c><q>.<size> Dd[x], Rt

is equivalent to

VMOV<c>.<dt> Qd[idx], Rt

where Dd[x] is expressed as Qd[idx]

Operation for all encodings
The description of VMOV (general-purpose register to vector lane) gives the operational pseudocode for this
instruction.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1151

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.393 VMOV (two 32-bit vector lanes to two general-purpose registers)

Vector Move (two 32-bit vector lanes to two general-purpose registers). Copy two 32-bit vector lanes to two
general-purpose registers.

This instruction is subject to beat-wise execution if it is not in an IT block.

This instruction is not VPT compatible.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 0 0 D 0 0 Rt2 Qd 0 1 1 1 1 (0) (0) (0) idx Rt

T1: VMOV variant

VMOV<c> Rt, Rt2, Qd[idx], Qd[idx2]

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 t = UInt(Rt);
5 t2 = UInt(Rt2);
6 if InVPTBlock() then CONSTRAINED_UNPREDICTABLE;
7 if Rt == '11x1' then CONSTRAINED_UNPREDICTABLE;
8 if Rt2 == '11x1' || Rt == Rt2 then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<Rt> Destination general-purpose register
<Rt2> Destination general-purpose register
<idx> The first index for the vector register.

This parameter must be one of the following values:
2 Encoded as idx = 0
3 Encoded as idx = 1

<Qd> Source vector register.
<idx2> The second index for the vector register. This must be two less than the first index.

This parameter must be one of the following values:
0 Encoded as idx = 0
1 Encoded as idx = 1

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4
5 if InITBlock() then
6 R[t] = Q[d, UInt('0':idx)];
7 R[t2] = Q[d, UInt('1':idx)];
8 else
9 (curBeat, -) = GetCurInstrBeat();

10 if curBeat[0] == idx then
11 tReg = if curBeat[1] == '0' then t else t2;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1152

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

12 R[tReg] = Q[d, curBeat];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1153

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.394 VMOV (two general-purpose registers to two 32-bit vector lanes)

Vector Move (two general-purpose registers to two 32-bit vector lanes). Copy two general-purpose registers to two
32-bit vector lanes.

This instruction is subject to beat-wise execution if it is not in an IT block.

This instruction is not VPT compatible.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 0 0 D 0 1 Rt2 Qd 0 1 1 1 1 (0) (0) (0) idx Rt

T1: VMOV variant

VMOV<c> Qd[idx], Qd[idx2], Rt, Rt2

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 t = UInt(Rt);
5 t2 = UInt(Rt2);
6 if InVPTBlock() then CONSTRAINED_UNPREDICTABLE;
7 if Rt == '11x1' then CONSTRAINED_UNPREDICTABLE;
8 if Rt2 == '11x1' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<Qd> Destination vector register.
<idx> The first index for the vector register.

This parameter must be one of the following values:
2 Encoded as idx = 0
3 Encoded as idx = 1

<idx2> The second index for the vector register. This must be two less than the first index.
This parameter must be one of the following values:
0 Encoded as idx = 0
1 Encoded as idx = 1

<Rt> Source general-purpose register.
<Rt2> Source general-purpose register.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4
5 if InITBlock() then
6 Q[d, UInt('0':idx)] = R[t];
7 Q[d, UInt('1':idx)] = R[t2];
8 else
9 (curBeat, -) = GetCurInstrBeat();

10 if curBeat[0] == idx then
11 tReg = if curBeat[1] == '0' then t else t2;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1154

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

12 Q[d, curBeat] = R[tReg];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1155

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.395 VMOV (vector lane to general-purpose register)

Vector Move (vector lane to general-purpose register). Copy the value of a vector lane to a general-purpose register.

This instruction is subject to beat-wise execution if it is not in an IT block.

This instruction is not VPT compatible.

T1
Armv8.1-M Floating-point Extension and / or Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 U op1 1 Qn h Rt 1 0 1 1 N op2 1 (0) (0) (0) (0)

T1: VMOV variant

VMOV<c>.<dt> Rt, Qn[idx]

Decode for this encoding
1 if N == '1' then UNDEFINED;
2 if U == '1' && op1 == '0x' && op2 == '00' then UNDEFINED;
3 if op1 == '0x' && op2 == '10' then UNDEFINED;
4 n = UInt(N:Qn);
5 t = UInt(Rt);
6 case (U:h:op1:op2) of
7 when 'xx1xxx' isMve = TRUE; esize = 8; elemIdx = UInt((h:op1:op2)[1:0]);
8 when 'xx0xx1' isMve = TRUE; esize = 16; elemIdx = UInt((h:op1:op2)[1]);
9 when '0x0x00' isMve = FALSE; esize = 32; elemIdx = 0;

10 CheckDecodeFaults(if isMve then ExtType_Mve else ExtType_MveOrFp);
11 targetBeat = UInt((h:op1:op2)[4]:(h:op1:op2)[2]);
12 unsigned = (U == '1');
13 if InVPTBlock() then CONSTRAINED_UNPREDICTABLE;
14 if Rt == '11x1' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> This parameter determines the following values:

– Unsigned flag: S indicates signed, U indicates unsigned.
– Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
32 Encoded as op1 = 0x, op2 = 00, U = 0
S16 Encoded as op1 = 0x, op2 = x1, U = 0
U16 Encoded as op1 = 0x, op2 = x1, U = 1
S8 Encoded as op1 = 1x, op2 = xx, U = 0
U8 Encoded as op1 = 1x, op2 = xx, U = 1

<Rt> Destination general-purpose register.
<Qn> Source vector register.
<idx> Element index to select in the vector register, must be in the range 0 to ((128/dt)-1). This value

is encoded into the bits of h:op1:op2 which are not used to encode dt.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1156

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

5 if InITBlock() || !HaveMve() then
6 R[t] = Extend(Elem[Q[n, targetBeat],elemIdx,esize], unsigned);
7 else
8 (curBeat, -) = GetCurInstrBeat();
9 if curBeat == targetBeat then

10 R[t] = Extend(Elem[Q[n, curBeat],elemIdx,esize], unsigned);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1157

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.396 VMOVL

Vector Move Long. Selects an element of 8 or 16-bits from either the top half (T variant) or bottom half (B variant)
of each source element, sign or zero-extends, performs a signed or unsigned left shift by an immediate value and
places the 16 or 32-bit results in the destination vector.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 0 1 D 1 sz 0 0 0 Qd T 1 1 1 1 0 1 M 0 Qm 0

T1: VMOVL variant

VMOVL<T><v>.<dt> Qd, Qm

Decode for this encoding
1 if sz IN {'11', '00'} then SEE "VSHLL";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || M == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 unsigned = (U == '1');
7 esize = 8 * UInt(sz);
8 elements = 16 DIV esize;
9 top = UInt(T);

10 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<T> Specifies which half of the source element is used.
This parameter must be one of the following values:
B Encoded as T = 0

Indicates bottom half
T Encoded as T = 1

Indicates top half
<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> This parameter determines the following values:

– Unsigned flag: S indicates signed, U indicates unsigned.
– The size of the elements in the vector.
This parameter must be one of the following values:
S8 Encoded as sz = 01, U = 0
U8 Encoded as sz = 01, U = 1
S16 Encoded as sz = 10, U = 0
U16 Encoded as sz = 10, U = 1

<Qd> Destination vector register.
<Qm> Source vector register.

Operation for all encodings

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1158

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[m, curBeat];
8 for e = 0 to elements-1
9 operand = Int(Elem[op1, 2*e + top, esize], unsigned);

10 Elem[result, e, 2*esize] = operand[(2*esize)-1:0];
11
12 for e = 0 to 3
13 if elmtMask[e] == '1' then
14 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1159

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.397 VMOVN

Vector Move and Narrow. Performs an element-wise narrowing to half-width, writing the result to either the top
half (T variant) or bottom half (B variant) of the result element. The other half of the destination vector element
retains its previous value.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 0 D 1 1 size 0 1 Qd T 1 1 1 0 1 0 M 0 Qm 1

T1: VMOVN variant

VMOVN<T><v>.<dt> Qd, Qm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || M == '1' then UNDEFINED;
4 if size == '10' then UNDEFINED;
5 d = UInt(D:Qd);
6 m = UInt(M:Qm);
7 esize = 8 << UInt(size);
8 elements = 16 DIV esize;
9 top = UInt(T);

10 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<T> Specifies which half of the result element the result is written to.
This parameter must be one of the following values:
B Encoded as T = 0

Indicates bottom half
T Encoded as T = 1

Indicates top half
<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> Size: indicates the size of the elements in the vector.

This parameter must be one of the following values:
I16 Encoded as size = 00
I32 Encoded as size = 01

<Qd> Destination vector register.
<Qm> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1160

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

6 op1 = Q[m, curBeat];
7 result = Q[d, curBeat];
8 for e = 0 to elements-1
9 operand = UInt(Elem[op1, e, 2*esize]);

10 Elem[result, 2*e + top, esize] = operand[esize-1:0];
11
12 for e = 0 to 3
13 if elmtMask[e] == '1' then
14 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1161

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.398 VMOVX

Floating-point Move extraction. Floating-point Move extraction copies the upper 16 bits of the 32-bit source FP
register into the lower 16 bits of the 32-bit destination FP register, while clearing the remaining bits to zero.

T1
Armv8.1-M Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 1 D 1 1 0 0 0 0 Vd 1 0 1 0 0 1 M 0 Vm

T1 variant

VMOVX<q>.F16 <Sd>, <Sm>

Decode for this encoding
1 CheckDecodeFaults(ExtType_HpFp);
2 if InITBlock() then UNPREDICTABLE;
3 d = UInt(Vd:D); m = UInt(Vm:M);

Assembler symbols for all encodings

<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 S[d] = Zeros(16) : S[m][31:16];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1162

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.399 VMRS

Move to general-purpose Register from Floating-point Special register. Move to general-purpose Register from
Floating-point Special register moves the value of FPSCR, FPCXT_NS, FPCXT_S, VPR, or VPR.P0 to a general-
purpose register, or thevalues of FPSCR condition flags to the APSR condition flags.

Access to the FPCXT payloads generates an UNDEFINED exception if the instruction is executed from Non-secure
state.

If CP10 is not enabled and either the Main extension is not implemented or the Floating-point context is active,
access to FPCXT_NS will generate a NOCP UsageFault. Accesses to FPCXT_NS will not trigger lazy state
preservation if there is no active Floating-point context. Accesses to FPCXT_NS do not trigger Floating-point
context creation regardless of the value of FPCCR.ASPEN.

T1
Armv8-M Floating-point Extension and / or Armv8.1-M MVE.

• For Armv8.1-M, the reg field is configurable, and all of the listed registers can be accessed.

• For Armv8.0-M, only access to FPSCR is permitted, and the reg field is not configurable.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 1 1 1 reg Rt 1 0 1 0 (0) (0) (0) 1 (0) (0) (0) (0)

T1 variant

VMRS{<c>}{<q>} <Rt>, <spec_reg>

Decode for this encoding
1 fpCxtAnyAccess = HasArchVersion(Armv8p1) && (reg == '111x');
2 fpCxtNSAccess = HasArchVersion(Armv8p1) && (reg == '1110');
3 fpInactive = !HaveMveOrFPExt() || (FPCCR_NS.ASPEN == '1' && CONTROL.FPCA == '0');
4 if fpCxtAnyAccess && !IsSecure() then UNDEFINED;
5 if fpCxtNSAccess then
6 if !HaveMainExt() || !fpInactive then
7 HandleException(CheckCPEnabled(10));
8 else
9 CheckDecodeFaults(ExtType_MveOrFp);

10 t = UInt(Rt);
11 if t == 13 || (t == 15 && reg != '0001') then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Rt> Is the general-purpose destination register, encoded in the "Rt" field. Is one of:

APSR_nzcv Encoded as 0b1111. This instruction transfers the FPSCR.N, Z, C, V
condition flags to the APSR.N, Z, C, V condition flags.
R0-R14 General-purpose register.

<spec_reg> Is the special register to be accessed, encoded in the "reg" field. The permitted values are:
0b1110 FPCXT_NS, enables saving and restoration of the Non-secure floating-point

context. If the Floating-point context is active then the current FPSCR value is accessed
and the default value in FPDSCR_NS is written into FPSCR, otherwise the default value in
FPDSCR_NS is accessed. If neither the Floating-point extension nor MVE are implemented
then access to this payload behaves as a NOP. If Armv8.1-M is not implemented, access to
this register is UNPREDICTABLE.
0b1111 FPCXT_S, enables saving and restoration of the Secure floating-point context.

If Armv8.1-M is not implemented, access to this register is UNPREDICTABLE.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1163

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

0b0001 FPSCR.
0b0010 FPSCR_nzcvqc, access to FPSCR condition and saturation flags. If Armv8.1-M

is not implemented, access to this register is UNPREDICTABLE.
0b1101 P0, if MVE is implemented access to VPR.P0 predicate field is permitted,

otherwise the access is UNPREDICTABLE.
0b1100 VPR register. If MVE is not implemented, access to this register is UNPRE-

DICTABLE. The VPR register can only be accessed from privileged mode, unprivileged
accesses behave as a NOP.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 if !fpCxtNSAccess then
4 ExecuteFPCheck();
5 elsif !fpInactive then
6 PreserveFPState();
7 SerializeVFP();
8 VFPExcBarrier();
9

10 case reg of
11 when '0001'
12 if t == 15 then
13 APSR.N = FPSCR.N;
14 APSR.Z = FPSCR.Z;
15 APSR.C = FPSCR.C;
16 APSR.V = FPSCR.V;
17 else
18 R[t] = FPSCR;
19 when '0010'
20 if HasArchVersion(Armv8p1) then
21 // Only read the N, Z, C, V, and QC flags
22 R[t] = FPSCR[31:27]:Zeros(27);
23 else
24 UNPREDICTABLE;
25 when '1100'
26 if HaveMve() then
27 if CurrentModeIsPrivileged() then
28 R[t] = VPR;
29 else
30 UNPREDICTABLE;
31 when '1101'
32 if HaveMve() then
33 R[t] = Zeros(16):VPR.P0;
34 else
35 UNPREDICTABLE;
36 when '1110'
37 if HasArchVersion(Armv8p1) then
38 if HaveFPExt() || HaveMve() then
39 FPCXT_Type cxt = Zeros(32);
40 if !fpInactive then
41 cxt.SFPA = CONTROL_S.SFPA;
42 cxt[27:0] = FPSCR[27:0];
43 else
44 cxt[27:0] = FPDSCR_NS[27:0];
45 R[t] = cxt;
46 // If the FP context isn't secure the FPSCR value is set
47 // to the NS default so any NS functions that are called
48 // before an FP instruction is executed in the secure
49 // state will get the same FPSCR value as functions
50 // called after a secure FP instruction (which is the value
51 // of FPDSCR_NS).
52 if !fpInactive && CONTROL_S.SFPA == '0' then
53 FPSCR = FPDSCR_NS[31:0];
54 else
55 UNPREDICTABLE;
56 when '1111'

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1164

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

57 if HasArchVersion(Armv8p1) then
58 FPCXT_Type cxt = Zeros(32);
59 cxt.SFPA = CONTROL_S.SFPA;
60 cxt[27:0] = FPSCR[27:0];
61 R[t] = cxt;
62 FPSCR = FPDSCR_NS[31:0];
63 CONTROL_S.SFPA = '0';
64 else
65 UNPREDICTABLE;
66 otherwise
67 UNPREDICTABLE;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1165

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.400 VMSR

Move to Floating-point Special register from general-purpose Register. Move to Floating-point Special register
from general-purpose Register moves the value of a general-purpose register to FPSCR, FPCXT_NS, FPCXT_S,
VPR, or VPR.P0.

Access to the FPCXT payloads generates an UNDEFINED exception if the instruction is executed from Non-secure
state.

If CP10 is not enabled and either the Main extension is not implemented or the Floating-point context is active,
access to FPCXT_NS will generate a NOCP UsageFault. Accesses to FPCXT_NS will not trigger lazy state
preservation if there is no active Floating-point context. Accesses to FPCXT_NS do not trigger Floating-point
context creation regardless of the value of FPCCR.ASPEN.

T1
Armv8-M Floating-point Extension and / or Armv8.1-M MVE.

• For Armv8.1-M, the reg field is configurable, and all of the listed registers can be accessed.

• For Armv8.0-M, only access to FPSCR is permitted, and the reg field is not configurable.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 1 1 0 reg Rt 1 0 1 0 (0) (0) (0) 1 (0) (0) (0) (0)

T1 variant

VMSR{<c>}{<q>} <spec_reg>, <Rt>

Decode for this encoding
1 fpCxtAnyAccess = HasArchVersion(Armv8p1) && (reg == '111x');
2 fpCxtNSAccess = HasArchVersion(Armv8p1) && (reg == '1110');
3 fpInactive = !HaveMveOrFPExt() || (FPCCR_NS.ASPEN == '1' && CONTROL.FPCA == '0');
4 if fpCxtAnyAccess && !IsSecure() then UNDEFINED;
5 if fpCxtNSAccess then
6 if !HaveMainExt() || !fpInactive then
7 HandleException(CheckCPEnabled(10));
8 else
9 CheckDecodeFaults(ExtType_MveOrFp);

10 t = UInt(Rt);
11 if t == 15 || t == 13 then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<spec_reg> Is the special register to be accessed, encoded in the "reg" field. The permitted values are:

0b1110 FPCXT_NS, enables saving and restoration of the Non-secure floating-point
context. If the Floating-point extension nor MVE are implemented and Floating-point context
is active then the currect FPSCR value is accessed, otherwise the instruction behaves as a NOP.
If Armv8.1-M is not implemented, access to this register is UNPREDICTABLE.
0b1111 FPCXT_S, enables saving and restoration of the Secure floating-point context.

If Armv8.1-M is not implemented, access to this register is UNPREDICTABLE.
0b0001 FPSCR.
0b0010 FPSCR_nzcvqc, access to FPSCR condition and saturation flags. If Armv8.1-M

is not implemented, access to this register is UNPREDICTABLE.
0b1101 P0, if MVE is implemented access to VPR.P0 predicate field is permitted,

otherwise the access is UNPREDICTABLE.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1166

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

0b1100 VPR register. If MVE is not implemented, access to this register is UNPRE-
DICTABLE. The VPR register can only be accessed from privileged mode, unprivileged
accesses behave as a NOP.

<Rt> Is the general-purpose source register to be transferred to <spec_reg>, encoded in the "Rt"
field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 if !fpCxtNSAccess then
4 ExecuteFPCheck();
5 elsif !fpInactive then
6 PreserveFPState();
7 SerializeVFP();
8 VFPExcBarrier();
9

10 case reg of
11 when '0001'
12 FPSCR = R[t];
13 when '0010'
14 if HasArchVersion(Armv8p1) then
15 // Only update the N, Z, C, V, and QC flags
16 FPSCR[31:27] = R[t][31:27];
17 else
18 UNPREDICTABLE;
19 when '1100'
20 if HaveMve() then
21 if CurrentModeIsPrivileged() then
22 VPR = R[t];
23 else
24 UNPREDICTABLE;
25 when '1101'
26 if HaveMve() then
27 VPR.P0 = R[t][15:0];
28 else
29 UNPREDICTABLE;
30 when '1110'
31 if HasArchVersion(Armv8p1) then
32 if (HaveFPExt() || HaveMve()) && !fpInactive then
33 FPCXT_Type cxt = R[t];
34 CONTROL_S.SFPA = cxt.SFPA;
35 FPSCR = Zeros(4):cxt[27:0];
36 else
37 UNPREDICTABLE;
38 when '1111'
39 if HasArchVersion(Armv8p1) then
40 FPCXT_Type cxt = R[t];
41 CONTROL_S.SFPA = cxt.SFPA;
42 FPSCR = Zeros(4):cxt[27:0];
43 else
44 UNPREDICTABLE;
45 otherwise
46 UNPREDICTABLE;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1167

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.401 VMUL (floating-point)

Vector Multiply. Multiply the value of the elements in the first source vector register by either the respective
elements in the second source vector register or a general-purpose register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE with Half-precision and Single-precision Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 0 D 0 sz Qn 0 Qd 0 1 1 0 1 N 1 M 1 Qm 0

T1: VMUL variant

VMUL<v>.<dt> Qd, Qn, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveFp);
2 if D == '1' || M == '1' || N == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 m = UInt(M:Qm);
5 n = UInt(N:Qn);
6 esize = if sz == '1' then 16 else 32;
7 elements = 32 DIV esize;
8 withScalar = FALSE;
9 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE with Half-precision and Single-precision Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 sz 1 1 1 0 0 D 1 1 Qn 1 Qd 0 1 1 1 0 N 1 1 0 Rm

T2: VMUL variant

VMUL<v>.<dt> Qd, Qn, Rm

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveFp);
2 if D == '1' || N == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 m = UInt(Rm);
5 n = UInt(N:Qn);
6 esize = if sz == '1' then 16 else 32;
7 elements = 32 DIV esize;
8 withScalar = TRUE;
9 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

10 if Rm == '11x1' then CONSTRAINED_UNPREDICTABLE;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1168

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> Size: indicates the floating-point format used.

This parameter must be one of the following values:
F32 Encoded as sz = 0
F16 Encoded as sz = 1

<Qd> Destination vector register.
<Qn> First source vector register.
<Qm> Second source vector register.
<Rm> Source general-purpose register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[n, curBeat];
8 if withScalar then
9 for e = 0 to elements-1

10 // Avoid Floating-point exceptions on a predicated lane by checking the element mask
11 pred = (elmtMask[e*(esize>>3)] == '0');
12 value = FPMul(Elem[op1, e, esize], R[m][esize-1:0], FALSE, pred);
13 Elem[result, e, esize] = value;
14 else
15 for e = 0 to elements-1
16 // Avoid Floating-point exceptions on a predicated lane by checking the element mask
17 pred = (elmtMask[e*(esize>>3)] == '0');
18 op2 = Q[m, curBeat];
19 value = FPMul(Elem[op1, e, esize], Elem[op2, e, esize], FALSE, pred);
20 Elem[result, e, esize] = value;
21
22 for e = 0 to 3
23 if elmtMask[e] == '1' then
24 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1169

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.402 VMUL (vector)

Vector Multiply. Multiply the value of the elements in the first source vector register by either the respective
elements in the second source vector register or a general-purpose register. The result is then written to the
destination vector register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 0 D size Qn 0 Qd 0 1 0 0 1 N 1 M 1 Qm 0

T1: VMUL variant

VMUL<v>.<dt> Qd, Qn, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' || N == '1' then UNDEFINED;
3 if size == '11' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 n = UInt(N:Qn);
7 withScalar = FALSE;
8 esize = 8 << UInt(size);
9 elements = 32 DIV esize;

10 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 D size Qn 1 Qd 1 1 1 1 0 N 1 1 0 Rm

T2: VMUL variant

VMUL<v>.<dt> Qd, Qn, Rm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || N == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(Rm);
6 n = UInt(N:Qn);
7 withScalar = TRUE;
8 esize = 8 << UInt(size);
9 elements = 32 DIV esize;

10 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
11 if Rm == '11x1' then CONSTRAINED_UNPREDICTABLE;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1170

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> Size: indicates the size of the elements in the vector.

This parameter must be one of the following values:
I8 Encoded as size = 00
I16 Encoded as size = 01
I32 Encoded as size = 10

<Qd> Destination vector register.
<Qn> First source vector register.
<Qm> Second source vector register.
<Rm> Source general-purpose register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[n, curBeat];
8 if withScalar then
9 for e = 0 to elements-1

10 value = SInt(Elem[op1, e, esize]) * SInt(R[m][esize-1:0]);
11 Elem[result, e, esize] = value[esize-1:0];
12 else
13 op2 = Q[m, curBeat];
14 for e = 0 to elements-1
15 value = SInt(Elem[op1, e, esize]) * SInt(Elem[op2, e, esize]);
16 Elem[result, e, esize] = value[esize-1:0];
17
18 for e = 0 to 3
19 if elmtMask[e] == '1' then
20 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1171

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.403 VMUL

Floating-point Multiply. Floating-point Multiply multiplies two floating-point register values, and places the result
in the destination floating-point register.

T2
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 D 1 0 Vn Vd 1 0 size N 0 M 0 Vm

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when size == 01.

VMUL{<c>}{<q>}.F16 {<Sd>,} <Sn>, <Sm>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VMUL{<c>}{<q>}.F32 {<Sd>,} <Sn>, <Sm>

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VMUL{<c>}{<q>}.F64 {<Dd>,} <Dn>, <Dm>

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (M == '1' || N == '1' || D == '1') then
4 UNDEFINED;
5 if size == '01' && InITBlock() then UNPREDICTABLE;
6 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
7 n = if dp_operation then UInt(N:Vn) else UInt(Vn:N);
8 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sn> Is the 32-bit name of the first floating-point source register, encoded in the "Vn:N" field.
<Sm> Is the 32-bit name of the second floating-point source register, encoded in the "Vm:M" field.
<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.
<Dn> Is the 64-bit name of the first floating-point source register, encoded in the "N:Vn" field.
<Dm> Is the 64-bit name of the second floating-point source register, encoded in the "M:Vm" field.

Operation for all encodings
1 if ConditionPassed() then

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1172

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 case size of
5 when '01'
6 S[d] = Zeros(16) : FPMul(S[n][15:0], S[m][15:0], TRUE);
7 when '10'
8 S[d] = FPMul(S[n], S[m], TRUE);
9 when '11'

10 D[d] = FPMul(D[n], D[m], TRUE);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1173

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.404 VMULH, VRMULH

Vector Multiply Returning High Half, Vector Rounding Multiply Returning High Half. Multiply each element in a
vector register by its respective element in another vector register and return the high half of the result. The result
is optionally rounded before the high half is selected.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 0 0 D size Qn 1 Qd 0 1 1 1 0 N 0 M 0 Qm 1

T1: VMULH variant

VMULH<v>.<dt> Qd, Qn, Qm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || M == '1' || N == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 n = UInt(N:Qn);
7 esize = 8 << UInt(size);
8 elements = 32 DIV esize;
9 unsigned = (U == '1');

10 round = FALSE;
11 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 0 0 D size Qn 1 Qd 1 1 1 1 0 N 0 M 0 Qm 1

T2: VRMULH variant

VRMULH<v>.<dt> Qd, Qn, Qm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || M == '1' || N == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 n = UInt(N:Qn);
7 esize = 8 << UInt(size);
8 elements = 32 DIV esize;
9 unsigned = (U == '1');

10 round = TRUE;
11 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1174

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> This parameter determines the following values:

– Unsigned flag: S indicates signed, U indicates unsigned.
– Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
S8 Encoded as size = 00, U = 0
U8 Encoded as size = 00, U = 1
S16 Encoded as size = 01, U = 0
U16 Encoded as size = 01, U = 1
S32 Encoded as size = 10, U = 0
U32 Encoded as size = 10, U = 1

<Qd> Destination vector register.
<Qn> Source vector register.
<Qm> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[n, curBeat];
8 op2 = Q[m, curBeat];
9 rVal = if round then 1 << (esize-1) else 0;

10 for e = 0 to elements-1
11 value = (Int(Elem[op1, e, esize], unsigned) * Int(Elem[op2, e, esize], unsigned)) + rVal;
12 Elem[result, e, esize] = value[(2*esize)-1:esize];
13
14 for e = 0 to 3
15 if elmtMask[e] == '1' then
16 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1175

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.405 VMULL (integer)

Vector Multiply Long. Performs an element-wise integer multiplication of two single-width source operand
elements. These are selected from either the top half (T variant) or bottom half (B variant) of double-width source
vector register elements. The operation produces a double-width result.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 0 0 D size Qn 1 Qd T 1 1 1 0 N 0 M 0 Qm 0

T1: VMULL variant

VMULL<T><v>.<dt> Qd, Qn, Qm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || M == '1' || N == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 n = UInt(N:Qn);
7 esize = 8 << UInt(size);
8 unsigned = (U == '1');
9 top = UInt(T);

10 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
11 if size == '10' && (D:Qd == M:Qm || D:Qd == N:Qn) then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<T> Specifies which half of the source element is used.
This parameter must be one of the following values:
B Encoded as T = 0

Indicates bottom half
T Encoded as T = 1

Indicates top half
<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> This parameter determines the following values:

– Unsigned flag: S indicates signed, U indicates unsigned.
– Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
S8 Encoded as size = 00, U = 0
U8 Encoded as size = 00, U = 1
S16 Encoded as size = 01, U = 0
U16 Encoded as size = 01, U = 1
S32 Encoded as size = 10, U = 0
U32 Encoded as size = 10, U = 1

<Qd> Destination vector register.
<Qn> Source vector register.
<Qm> Source vector register.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1176

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 if esize == 32 then
8 op1 = Q[n, UInt(curBeat[1]:T)];
9 op2 = Q[m, UInt(curBeat[1]:T)];

10 mul = Int(op1, unsigned) * Int(op2, unsigned);
11 result = if curBeat[0] == '1' then mul[63:32] else mul[31:0];
12 else
13 op1 = Q[n, curBeat];
14 op2 = Q[m, curBeat];
15 elements = 16 DIV esize;
16 for e = 0 to elements-1
17 element1 = Elem[op1, e * 2 + top, esize];
18 element2 = Elem[op2, e * 2 + top, esize];
19 Elem[result, e, esize * 2] = (Int(element1, unsigned) *
20 Int(element2, unsigned))[2*esize-1:0];
21
22 for e = 0 to 3
23 if elmtMask[e] == '1' then
24 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1177

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.406 VMULL (polynomial)

Vector Multiply Long. Performs an element-wise polynomial multiplication of two single-width source operand
elements. These are selected from either the top half (T variant) or bottom half (B variant) of double-width source
vector register elements. The operation produces a double-width result.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1

size

1 1 1 0 0 D 1 1 Qn 1 Qd T 1 1 1 0 N 0 M 0 Qm 0

T1: VMULL variant

VMULL<T><v>.<dt> Qd, Qn, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' || N == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 m = UInt(M:Qm);
5 n = UInt(N:Qn);
6 esize = 8 << UInt(size);
7 elements = 16 DIV esize;
8 top = UInt(T);
9 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<T> Specifies which half of the source element is used.
This parameter must be one of the following values:
B Encoded as T = 0

Indicates bottom half
T Encoded as T = 1

Indicates top half
<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> Specifies whether to do 8x8->16 or 16x16->32 polynomial multiplications.

This parameter must be one of the following values:
P8 Encoded as size = 0

Indicates 8x8->16
P16 Encoded as size = 1

Indicates 16x16->32
<Qd> Destination vector register.
<Qn> Source vector register.
<Qm> Source vector register.

Operation for all encodings

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1178

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[m, curBeat];
8 op2 = Q[n, curBeat];
9 for e = 0 to elements-1

10 element1 = Elem[op1, e * 2 + top, esize];
11 element2 = Elem[op2, e * 2 + top, esize];
12 Elem[result, e, esize*2] = PolynomialMult(element1, element2)[esize*2-1:0];
13
14 for e = 0 to 3
15 if elmtMask[e] == '1' then
16 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1179

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.407 VMVN (immediate)

Vector Bitwise NOT. Set each element of a vector register to the bitwise inverse of the immediate operand
value. The immediate is generated by the AdvSIMDExpandImm() function based on the requested data type and
immediate value.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 i 1 1 1 1 1 D 0 0 0 imm3 Qd 0 cmode 0 1 1 1 imm4

T1: VMVN variant

VMVN<v>.<dt> Qd, #<imm>

Decode for this encoding
1 if cmode == '1110' then SEE "VMOV (immediate) (vector)";
2 if cmode IN {'0xx1', '10x1'} then SEE "VBIC (immediate)";
3 CheckDecodeFaults(ExtType_Mve);
4 if D == '1' then UNDEFINED;
5 if cmode == '1111' then UNDEFINED;
6 d = UInt(D:Qd);
7 imm64 = AdvSIMDExpandImm('1', cmode, i:imm3:imm4);
8 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> Size: indicates the size of the elements in the vector, for use with the AdvSIMDExpandImm()

function.
This parameter must be one of the following values:
I32 Encoded as:

cmode = 0000
cmode = 0010
cmode = 0100
cmode = 0110
cmode = 1100
cmode = 1101

I16 Encoded as:
cmode = 1000
cmode = 1010

<Qd> Destination vector register.
<imm> The immediate value to load in to each element. This must be an immediate that can be

encoded for use with the AdvSIMDExpandImm() function.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1180

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 if curBeat[0] == '0' then
7 result = NOT(imm64[31:0]);
8 else
9 result = NOT(imm64[63:32]);

10
11 for e = 0 to 3
12 if elmtMask[e] == '1' then
13 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1181

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.408 VMVN (register)

Vector Bitwise Not. Bitwise invert the value of a vector register and place the result in another vector register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 0 0 0 0 Qd 0 0 1 0 1 1 1 M 0 Qm 0

T1: VMVN variant

VMVN<v> Qd, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 m = UInt(M:Qm);
5 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<Qd> Destination vector register.
<Qm> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = NOT(Q[m, curBeat]);
7
8 for e = 0 to 3
9 if elmtMask[e] == '1' then

10 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1182

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.409 VNEG (floating-point)

Vector Negate. Negate the value of each element of a vector register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE with Half-precision and Single-precision Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 1 Qd 0 0 1 1 1 1 1 M 0 Qm 0

T1: VNEG variant

VNEG<v>.<dt> Qd, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveFp);
2 if D == '1' || M == '1' then UNDEFINED;
3 if size IN {'11', '00'} then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 esize = 8 << UInt(size);
7 elements = 32 DIV esize;
8 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> Size: indicates the floating-point format used.

This parameter must be one of the following values:
F16 Encoded as size = 01
F32 Encoded as size = 10

<Qd> Destination vector register.
<Qm> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[m, curBeat];
8 for e = 0 to elements-1
9 value = FPNeg(Elem[op1, e, esize]);

10 Elem[result, e, esize] = value;
11
12 for e = 0 to 3
13 if elmtMask[e] == '1' then
14 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1183

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.410 VNEG (vector)

Vector Negate. Negate the value of each element in a vector register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 1 Qd 0 0 0 1 1 1 1 M 0 Qm 0

T1: VNEG variant

VNEG<v>.<dt> Qd, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' then UNDEFINED;
3 if size == '11' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 esize = 8 << UInt(size);
7 elements = 32 DIV esize;
8 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> Size: indicates the size of the elements in the vector.

This parameter must be one of the following values:
S8 Encoded as size = 00
S16 Encoded as size = 01
S32 Encoded as size = 10

<Qd> Destination vector register.
<Qm> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[m, curBeat];
8 for e = 0 to elements-1
9 value = -SInt(Elem[op1, e, esize]);

10 Elem[result, e, esize] = value[esize-1:0];
11
12 for e = 0 to 3
13 if elmtMask[e] == '1' then
14 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1184

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.411 VNEG

Floating-point Negate. Floating-point Negate inverts the sign bit of a half-precision or single-precision or double-
precision register, and places the result in the destination register.

T2
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 0 0 0 1 Vd 1 0 size 0 1 M 0 Vm

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when size == 01.

VNEG{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VNEG{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VNEG{<c>}{<q>}.F64 <Dd>, <Dm>

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (M == '1' || D == '1') then UNDEFINED;
4 if size == '01' && InITBlock() then UNPREDICTABLE;
5 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
6 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.
<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.
<Dm> Is the 64-bit name of the floating-point source register, encoded in the "M:Vm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 case size of
5 when '01' S[d] = Zeros(16) : FPNeg(S[m][15:0]);
6 when '10' S[d] = FPNeg(S[m]);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1185

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

7 when '11' D[d] = FPNeg(D[m]);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1186

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.412 VNMLA

Floating-point Multiply Accumulate and Negate. Floating-point Multiply Accumulate and Negate multiplies two
floating-point register values, adds the negation of the floating-point value in the destination register to the negation
of the product, and writes the result back to the destination register.

Arm recommends that software does not use the VNMLA instruction in the Round towards +Infinity and Round
towards -Infinity rounding modes, because the rounding of the product and of the sum can change the result of the
instruction in opposite directions, defeating the purpose of these rounding modes.

T1
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 D 0 1 Vn Vd 1 0 size N

op = 1

M 0 Vm

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when size == 01.

VNMLA{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VNMLA{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VNMLA{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (M == '1' || N == '1' || D == '1') then
4 UNDEFINED;
5 if size == '01' && InITBlock() then UNPREDICTABLE;
6 operation = if op == '1' then VFPNegMul_VNMLA else VFPNegMul_VNMLS;
7 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
8 n = if dp_operation then UInt(N:Vn) else UInt(Vn:N);
9 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sn> Is the 32-bit name of the first floating-point source register, encoded in the "Vn:N" field.
<Sm> Is the 32-bit name of the second floating-point source register, encoded in the "Vm:M" field.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1187

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.
<Dn> Is the 64-bit name of the first floating-point source register, encoded in the "N:Vn" field.
<Dm> Is the 64-bit name of the second floating-point source register, encoded in the "M:Vm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 case size of
5 when '01'
6 product16 = FPMul(S[n][15:0], S[m][15:0], TRUE);
7 case operation of
8 when VFPNegMul_VNMLA
9 S[d] = Zeros(16) : FPAdd(FPNeg(S[d][15:0]), FPNeg(product16), TRUE);

10 when VFPNegMul_VNMLS
11 S[d] = Zeros(16) : FPAdd(FPNeg(S[d][15:0]), product16, TRUE);
12 when VFPNegMul_VNMUL
13 S[d] = Zeros(16) : FPNeg(product16);
14 when '10'
15 product32 = FPMul(S[n], S[m], TRUE);
16 case operation of
17 when VFPNegMul_VNMLA
18 S[d] = FPAdd(FPNeg(S[d]), FPNeg(product32), TRUE);
19 when VFPNegMul_VNMLS
20 S[d] = FPAdd(FPNeg(S[d]), product32, TRUE);
21 when VFPNegMul_VNMUL
22 S[d] = FPNeg(product32);
23 when '11'
24 product64 = FPMul(D[n], D[m], TRUE);
25 case operation of
26 when VFPNegMul_VNMLA
27 D[d] = FPAdd(FPNeg(D[d]), FPNeg(product64), TRUE);
28 when VFPNegMul_VNMLS
29 D[d] = FPAdd(FPNeg(D[d]), product64, TRUE);
30 when VFPNegMul_VNMUL
31 D[d] = FPNeg(product64);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1188

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.413 VNMLS

Floating-point Multiply Subtract and Negate. Floating-point Multiply Subtract and Negate multiplies two floating-
point register values, adds the negation of the floating-point value in the destination register to the product, and
writes the result back to the destination register.

T1
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 D 0 1 Vn Vd 1 0 size N

op = 0

M 0 Vm

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when size == 01.

VNMLS{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VNMLS{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VNMLS{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (M == '1' || N == '1' || D == '1') then
4 UNDEFINED;
5 if size == '01' && InITBlock() then UNPREDICTABLE;
6 operation = if op == '1' then VFPNegMul_VNMLA else VFPNegMul_VNMLS;
7 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
8 n = if dp_operation then UInt(N:Vn) else UInt(Vn:N);
9 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sn> Is the 32-bit name of the first floating-point source register, encoded in the "Vn:N" field.
<Sm> Is the 32-bit name of the second floating-point source register, encoded in the "Vm:M" field.
<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.
<Dn> Is the 64-bit name of the first floating-point source register, encoded in the "N:Vn" field.
<Dm> Is the 64-bit name of the second floating-point source register, encoded in the "M:Vm" field.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1189

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 case size of
5 when '01'
6 product16 = FPMul(S[n][15:0], S[m][15:0], TRUE);
7 case operation of
8 when VFPNegMul_VNMLA
9 S[d] = Zeros(16) : FPAdd(FPNeg(S[d][15:0]), FPNeg(product16), TRUE);

10 when VFPNegMul_VNMLS
11 S[d] = Zeros(16) : FPAdd(FPNeg(S[d][15:0]), product16, TRUE);
12 when VFPNegMul_VNMUL
13 S[d] = Zeros(16) : FPNeg(product16);
14 when '10'
15 product32 = FPMul(S[n], S[m], TRUE);
16 case operation of
17 when VFPNegMul_VNMLA
18 S[d] = FPAdd(FPNeg(S[d]), FPNeg(product32), TRUE);
19 when VFPNegMul_VNMLS
20 S[d] = FPAdd(FPNeg(S[d]), product32, TRUE);
21 when VFPNegMul_VNMUL
22 S[d] = FPNeg(product32);
23 when '11'
24 product64 = FPMul(D[n], D[m], TRUE);
25 case operation of
26 when VFPNegMul_VNMLA
27 D[d] = FPAdd(FPNeg(D[d]), FPNeg(product64), TRUE);
28 when VFPNegMul_VNMLS
29 D[d] = FPAdd(FPNeg(D[d]), product64, TRUE);
30 when VFPNegMul_VNMUL
31 D[d] = FPNeg(product64);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1190

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.414 VNMUL

Floating-point Multiply and Negate. Floating-point Multiply and Negate multiplies two floating-point register
values, and writes the negation of the result to the destination register.

T2
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 D 1 0 Vn Vd 1 0 size N 1 M 0 Vm

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when size == 01.

VNMUL{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VNMUL{<c>}{<q>}.F32 {<Sd>,} <Sn>, <Sm>

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VNMUL{<c>}{<q>}.F64 {<Dd>,} <Dn>, <Dm>

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (M == '1' || N == '1' || D == '1') then
4 UNDEFINED;
5 if size == '01' && InITBlock() then UNPREDICTABLE;
6 operation = VFPNegMul_VNMUL;
7 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
8 n = if dp_operation then UInt(N:Vn) else UInt(Vn:N);
9 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sn> Is the 32-bit name of the first floating-point source register, encoded in the "Vn:N" field.
<Sm> Is the 32-bit name of the second floating-point source register, encoded in the "Vm:M" field.
<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.
<Dn> Is the 64-bit name of the first floating-point source register, encoded in the "N:Vn" field.
<Dm> Is the 64-bit name of the second floating-point source register, encoded in the "M:Vm" field.

Operation for all encodings

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1191

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 case size of
5 when '01'
6 product16 = FPMul(S[n][15:0], S[m][15:0], TRUE);
7 case operation of
8 when VFPNegMul_VNMLA
9 S[d] = Zeros(16) : FPAdd(FPNeg(S[d][15:0]), FPNeg(product16), TRUE);

10 when VFPNegMul_VNMLS
11 S[d] = Zeros(16) : FPAdd(FPNeg(S[d][15:0]), product16, TRUE);
12 when VFPNegMul_VNMUL
13 S[d] = Zeros(16) : FPNeg(product16);
14 when '10'
15 product32 = FPMul(S[n], S[m], TRUE);
16 case operation of
17 when VFPNegMul_VNMLA
18 S[d] = FPAdd(FPNeg(S[d]), FPNeg(product32), TRUE);
19 when VFPNegMul_VNMLS
20 S[d] = FPAdd(FPNeg(S[d]), product32, TRUE);
21 when VFPNegMul_VNMUL
22 S[d] = FPNeg(product32);
23 when '11'
24 product64 = FPMul(D[n], D[m], TRUE);
25 case operation of
26 when VFPNegMul_VNMLA
27 D[d] = FPAdd(FPNeg(D[d]), FPNeg(product64), TRUE);
28 when VFPNegMul_VNMLS
29 D[d] = FPAdd(FPNeg(D[d]), product64, TRUE);
30 when VFPNegMul_VNMUL
31 D[d] = FPNeg(product64);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1192

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.415 VORN (immediate)

Vector Bitwise OR NOT. This is a pseudo-instruction, equivalent to a VORR (immediate) instruction with the
immediate value bitwise inverted.

This is an alias of VORR (immediate).

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 i 1 1 1 1 1 Da 0 0 0 imm3 Qda 0 cmode 0 1 0 1 imm4

VORN variant

VORN<v>.<dt> Qda, #<imm>

is equivalent to

VORR<v>.<dt> Qda, #~<imm>

and is never the preferred disassembly

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1193

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.416 VORN

Vector Bitwise Or Not. Compute a bitwise OR NOT of a vector register with another vector register. The result is
written to the destination vector register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 0 D 1 1 Qn 0 Qd 0 0 0 0 1 N 1 M 1 Qm 0

T1: VORN variant

VORN<v>{.<dt>} Qd, Qn, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' || N == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 m = UInt(M:Qm);
5 n = UInt(N:Qn);
6 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> An optional data type. It is ignored by assemblers and does not affect the encoding. This can

be one of the following: S8, S16, S32, U8, U16, U32, I8, I16, I32, F16, F32.
<Qd> Destination vector register.
<Qn> Source vector register.
<Qm> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Q[n, curBeat] OR NOT(Q[m, curBeat]);
7
8 for e = 0 to 3
9 if elmtMask[e] == '1' then

10 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1194

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.417 VORR (immediate)

Vector Bitwise OR. OR the value of a vector register with the immediate operand value. The immediate is generated
by the AdvSIMDExpandImm() function based on the requested data type and immediate value.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 i 1 1 1 1 1 Da 0 0 0 imm3 Qda 0 cmode 0 1 0 1 imm4

T1: VORR variant

VORR<v>.<dt> Qda, #<imm>

Decode for this encoding
1 if cmode IN {'xxx0', '11x1'} then SEE "VMOV (immediate)";
2 CheckDecodeFaults(ExtType_Mve);
3 if Da == '1' then UNDEFINED;
4 da = UInt(Da:Qda);
5 imm64 = AdvSIMDExpandImm('1', cmode, i:imm3:imm4);
6 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> Size: indicates the size of the elements in the vector, for use with the AdvSIMDExpandImm()

function.
This parameter must be one of the following values:
I32 Encoded as:

cmode = 0001
cmode = 0011
cmode = 0101
cmode = 0111

I16 Encoded as:
cmode = 1001
cmode = 1011

<Qda> Source and destination vector register.
<imm> The immediate value to load in to each element. This must be an immediate that can be

encoded for use with the AdvSIMDExpandImm() function.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 opd = Q[da, curBeat];
7 imm32 = if curBeat[0] == '0' then imm64[31:0] else imm64[63:32];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1195

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

8 result = opd OR imm32;
9

10 for e = 0 to 3
11 if elmtMask[e] == '1' then
12 Elem[Q[da, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1196

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.418 VORR

Vector Bitwise Or. Compute a bitwise OR of a vector register with another vector register. The result is written to
the destination vector register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 0 D 1 0 Qn 0 Qd 0 0 0 0 1 N 1 M 1 Qm 0

T1: VORR variant

VORR<v>{.<dt>} Qd, Qn, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' || N == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 m = UInt(M:Qm);
5 n = UInt(N:Qn);
6 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> An optional data type. It is ignored by assemblers and does not affect the encoding. This can

be one of the following: S8, S16, S32, U8, U16, U32, I8, I16, I32, F16, F32.
<Qd> Destination vector register.
<Qn> Source vector register.
<Qm> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Q[n, curBeat] OR Q[m, curBeat];
7
8 for e = 0 to 3
9 if elmtMask[e] == '1' then

10 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1197

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.419 VPNOT

Vector Predicate NOT. Inverts the predicate condition in VPR.P0. The VPR.P0 flags for predicated lanes are
zeroed.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 0 0 1 1 (0) (0) (0) 1 0 0 0 (0) 1 1 1 1 (0) 1 (0) 0 1 1 0 1

T1: VPNOT variant

VPNOT<v>

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2
3 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 Elem[VPR.P0, curBeat, 4] = (NOT Elem[VPR.P0, curBeat, 4]) AND elmtMask;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1198

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.420 VPOP

Pop Floating-point registers from stack. Pop Floating-point registers from stack loads multiple consecutive
Floating-point registers from the stack.

This instruction is an alias of the VLDM instruction. This means that:

• The encodings in this description are named to match the encodings of VLDM.

• The description of VLDM gives the operational pseudocode for this instruction.

T1
Armv8-M Floating-point Extension only or MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0

P = 0
U = 1

D

W = 1

1 Rn = 1101 Vd 1 0 1 1 imm7

imm1 = 0

Increment After variant

VPOP{<c>}{<q>}{.<size>} <dreglist>

is equivalent to

VLDM{<c>}{<q>}{.<size>} SP!, <dreglist>

and is always the preferred disassembly.

T2
Armv8-M Floating-point Extension only or MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0

P = 0
U = 1

D

W = 1

1 Rn = 1101 Vd 1 0 1 0 imm8

Increment After variant

VPOP{<c>}{<q>}{.<size>} <sreglist>

is equivalent to

VLDM{<c>}{<q>}{.<size>} SP!, <sreglist>

and is always the preferred disassembly.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<size> An optional data size specifier. If present, it must be equal to the size in bits, 32 or 64, of the

registers being transferred.
<sreglist> Is the list of consecutively numbered 32-bit floating-point registers to be transferred. The first

register in the list is encoded in "Vd:D", and "imm8" is set to the number of registers in the
list. The list must contain at least one register.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1199

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

<dreglist> Is the list of consecutively numbered 64-bit floating-point registers to be transferred. The first
register in the list is encoded in "D:Vd", and "imm8" is set to twice the number of registers in
the list. The list must contain at least one register, and must not contain more than 16 registers.

Operation for all encodings
The description of VLDM gives the operational pseudocode for this instruction.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1200

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.421 VPSEL

Vector Predicated Select. Compute a bytewise conditional select of a vector register with another vector register,
based on the VPR predicate bits

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 0 D 1 1 Qn 1 Qd 0 1 1 1 1 N 0 M 0 Qm 1

T1: VPSEL variant

VPSEL<v>{.<dt>} Qd, Qn, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' || N == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 m = UInt(M:Qm);
5 n = UInt(N:Qn);
6 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> An optional data type. It is ignored by assemblers and does not affect the encoding. This can

be one of the following: S8, S16, S32, U8, U16, U32, I8, I16, I32, F16, F32.
<Qd> Destination vector register.
<Qn> Source vector register.
<Qm> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 opm = Q[m, curBeat];
8 opn = Q[n, curBeat];
9 vpr = Elem[VPR.P0, curBeat, 4];

10 for e = 0 to 3
11 Elem[result, e, 8] = Elem[if vpr[e] == '1' then opn else opm, e, 8];
12
13 for e = 0 to 3
14 if elmtMask[e] == '1' then
15 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1201

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.422 VPST

Vector Predicate Set Then. Predicates the following instructions, up to a maximum of four instructions. This
instruction is similar to VPT. However no comparison is performed and instead the current value of VPR.P0 is
used as the predicate condition.

This instruction is subject to beat-wise execution.

This instruction is not VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 0 Mkh 1 1 (0) (0) (0) 1 Mkl (0) 1 1 1 1 (0) 1 (0) 0 1 1 0 1

T1: VPST variant

VPST{x{y{z}}}

Decode for this encoding
1 if Mkh:Mkl == '0000' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3
4 mask = Mkh:Mkl;
5 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
6 if InVPTBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<x> Specifies the condition for an optional second instruction in the VPT block, and whether the
condition is the same as for the first instruction (T) or its inverse (E). This is encoded in the
mask field in a similar way to the IT instruction, except that rather than encoding T and E
directly into f_cond[0], a 1 in the corresponding mask bit indicates that the previous predicate
value in VPR.P0 should be inverted

<y> Specifies the condition for an optional third instruction in the VPT block. It is encoded in the
mask field in the same way as the x field.

<z> Specifies the condition for an optional fourth instruction in the VPT block. It is encoded in the
mask field in the same way as the x field.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, -) = GetCurInstrBeat();
5
6 // Only one mask field per pair of beats, so the mask is only updated on odd beats.
7 if curBeat[0] == '1' then
8 SetVPTMask(curBeat, mask);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1202

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.423 VPT (floating-point)

Vector Predicate Then. Predicates the following instructions, up to a maximum of four instructions, by masking
the operation of instructions on a per-lane basis based on the VPR.P0 predicate values. The predicated instructions
are referred to as the Vector Predication Block or simply the VPT Block. The VPR.P0 predicate values may be
inverted after each instruction in the VPT block based on the mask fields (see x, y, and z).

This instruction is subject to beat-wise execution.

This instruction is not VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE with Half-precision and Single-precision Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 sz 1 1 1 0 0 Mkh 1 1 Qn 1 Mkl fcA 1 1 1 1 fcC 0 M 0 Qm fcB

T1: VPT variant

VPT{x{y{z}}}.<dt> <fc>, Qn, Qm

Decode for this encoding
1 if (fcA == '0' && fcB == '1') || Mkh:Mkl == '0000' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_MveFp);
3 if M == '1' then UNDEFINED;
4 m = UInt(M:Qm);
5 n = UInt(Qn);
6 mask = Mkh:Mkl;
7 f_cond = fcA:fcB:fcC;
8 withScalar = FALSE;
9 esize = 8 << UInt(if sz == '1' then '01' else '10');

10 elements = 32 DIV esize;
11 ebytes = esize DIV 8;
12 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
13 if InVPTBlock() then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE with Half-precision and Single-precision Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 sz 1 1 1 0 0 Mkh 1 1 Qn 1 Mkl fcA 1 1 1 1 fcC 1 fcB 0 Rm

T2: VPT variant

VPT{x{y{z}}}.<dt> <fc>, Qn, Rm

Decode for this encoding
1 if Mkh:Mkl == '0000' then SEE "Related encodings";
2 if Rm == '1101' then SEE "Related encodings";
3 CheckDecodeFaults(ExtType_MveFp);
4 m = UInt(Rm);
5 n = UInt(Qn);
6 mask = Mkh:Mkl;
7 f_cond = fcA:fcB:fcC;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1203

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

8 withScalar = TRUE;
9 esize = 8 << UInt(if sz == '1' then '01' else '10');

10 elements = 32 DIV esize;
11 ebytes = esize DIV 8;
12 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
13 if InVPTBlock() then CONSTRAINED_UNPREDICTABLE;
14 if fcA == '0' && fcB == '1' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<dt> Size: indicates the floating-point format used.
This parameter must be one of the following values:
F32 Encoded as sz = 0
F16 Encoded as sz = 1

<fc> The comparison condition to use.
This parameter must be one of the following values:
EQ Encoded as fcA = 0, fcB = 0, fcC = 0
NE Encoded as fcA = 0, fcB = 0, fcC = 1
GE Encoded as fcA = 1, fcB = 0, fcC = 0
LT Encoded as fcA = 1, fcB = 0, fcC = 1
GT Encoded as fcA = 1, fcB = 1, fcC = 0
LE Encoded as fcA = 1, fcB = 1, fcC = 1

<Qn> Source vector register.
<Qm> Source vector register.
<Rm> Source general-purpose register (ZR is permitted, PC is not).
<x> Specifies the condition for an optional second instruction in the VPT block, and whether the

condition is the same as for the first instruction (T) or its inverse (E). This is encoded in the
mask field in a similar way to the IT instruction, except that rather than encoding T and E
directly into f_cond[0], a 1 in the corresponding mask bit indicates that the previous predicate
value in VPR.P0 should be inverted

<y> Specifies the condition for an optional third instruction in the VPT block. It is encoded in the
mask field in the same way as the x field.

<z> Specifies the condition for an optional fourth instruction in the VPT block. It is encoded in the
mask field in the same way as the x field.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 op1 = Q[n, curBeat];
7 beatPred = Zeros(4);
8 if withScalar then
9 op2 = RZ[m][esize-1:0];

10 else
11 opm = Q[m, curBeat];
12 for e = 0 to elements-1
13 if !withScalar then
14 op2 = Elem[opm, e, esize];
15 // Avoid Floating-point exceptions on a predicated lane by checking the element mask
16 predicated = (elmtMask[e*(esize>>3)] == '0');
17 (flN, flZ, flC, flV) = FPCompare(Elem[op1, e, esize], op2, TRUE, FALSE, predicated);
18 pred = ConditionHolds(f_cond, flN, flZ, flC, flV);
19 Elem[beatPred, e, ebytes] = Replicate(if pred then '1' else '0');
20
21 Elem[VPR.P0, curBeat, 4] = beatPred AND elmtMask;
22 // Only one mask field per pair of beats, so the mask is only updated on odd beats.
23 if curBeat[0] == '1' then

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1204

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

24 SetVPTMask(curBeat, mask);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1205

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.424 VPT

Vector Predicate Then. Predicates the following instructions, up to a maximum of four instructions, by masking
the operation of instructions on a per-lane basis based on the VPR.P0 predicate values. The predicated instructions
are referred to as the Vector Predication Block or simply the VPT Block. The VPR.P0 predicate values may be
inverted after each instruction in the VPT block based on the mask fields (see x, y, and z).

This instruction is subject to beat-wise execution.

This instruction is not VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 0 Mkh size Qn 1 Mkl 0 1 1 1 1 fc 0 M 0 Qm 0

T1: VPT variant

VPT{x{y{z}}}.<dt> <fc>, Qn, Qm

Decode for this encoding
1 if Mkh:Mkl == '0000' then SEE "Related encodings";
2 if size == '11' then SEE "Related encodings";
3 CheckDecodeFaults(ExtType_Mve);
4 if M == '1' then UNDEFINED;
5 m = UInt(M:Qm);
6 n = UInt(Qn);
7 mask = Mkh:Mkl;
8 f_cond = '00':fc;
9 withScalar = FALSE;

10 esize = 8 << UInt(size);
11 elements = 32 DIV esize;
12 ebytes = esize DIV 8;
13 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
14 if InVPTBlock() then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 0 Mkh size Qn 1 Mkl 0 1 1 1 1 fc 0 M 0 Qm 1

T2: VPT variant

VPT{x{y{z}}}.<dt> <fc>, Qn, Qm

Decode for this encoding
1 if Mkh:Mkl == '0000' then SEE "Related encodings";
2 if size == '11' then SEE "Related encodings";
3 CheckDecodeFaults(ExtType_Mve);
4 if M == '1' then UNDEFINED;
5 m = UInt(M:Qm);
6 n = UInt(Qn);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1206

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

7 mask = Mkh:Mkl;
8 f_cond = '01':fc;
9 withScalar = FALSE;

10 esize = 8 << UInt(size);
11 elements = 32 DIV esize;
12 ebytes = esize DIV 8;
13 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
14 if InVPTBlock() then CONSTRAINED_UNPREDICTABLE;

T3
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 0 Mkh size Qn 1 Mkl 1 1 1 1 1 fcl 0 M 0 Qm fch

T3: VPT variant

VPT{x{y{z}}}.<dt> <fc>, Qn, Qm

Decode for this encoding
1 if Mkh:Mkl == '0000' then SEE "Related encodings";
2 if size == '11' then SEE "Related encodings";
3 CheckDecodeFaults(ExtType_Mve);
4 if M == '1' then UNDEFINED;
5 m = UInt(M:Qm);
6 n = UInt(Qn);
7 mask = Mkh:Mkl;
8 f_cond = '1':fch:fcl;
9 withScalar = FALSE;

10 esize = 8 << UInt(size);
11 elements = 32 DIV esize;
12 ebytes = esize DIV 8;
13 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
14 if InVPTBlock() then CONSTRAINED_UNPREDICTABLE;

T4
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 0 Mkh size Qn 1 Mkl 0 1 1 1 1 fc 1 0 0 Rm

T4: VPT variant

VPT{x{y{z}}}.<dt> <fc>, Qn, Rm

Decode for this encoding
1 if Mkh:Mkl == '0000' then SEE "Related encodings";
2 if size == '11' then SEE "Related encodings";
3 CheckDecodeFaults(ExtType_Mve);
4 m = UInt(Rm);
5 n = UInt(Qn);
6 mask = Mkh:Mkl;
7 f_cond = '00':fc;
8 withScalar = TRUE;
9 esize = 8 << UInt(size);

10 elements = 32 DIV esize;
11 ebytes = esize DIV 8;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1207

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

12 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
13 if InVPTBlock() then CONSTRAINED_UNPREDICTABLE;
14 if Rm == '1101' then CONSTRAINED_UNPREDICTABLE;

T5
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 0 Mkh size Qn 1 Mkl 0 1 1 1 1 fc 1 1 0 Rm

T5: VPT variant

VPT{x{y{z}}}.<dt> <fc>, Qn, Rm

Decode for this encoding
1 if Mkh:Mkl == '0000' then SEE "Related encodings";
2 if size == '11' then SEE "Related encodings";
3 CheckDecodeFaults(ExtType_Mve);
4 m = UInt(Rm);
5 n = UInt(Qn);
6 mask = Mkh:Mkl;
7 f_cond = '01':fc;
8 withScalar = TRUE;
9 esize = 8 << UInt(size);

10 elements = 32 DIV esize;
11 ebytes = esize DIV 8;
12 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
13 if InVPTBlock() then CONSTRAINED_UNPREDICTABLE;
14 if Rm == '1101' then CONSTRAINED_UNPREDICTABLE;

T6
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 0 Mkh size Qn 1 Mkl 1 1 1 1 1 fcl 1 fch 0 Rm

T6: VPT variant

VPT{x{y{z}}}.<dt> <fc>, Qn, Rm

Decode for this encoding
1 if Mkh:Mkl == '0000' then SEE "Related encodings";
2 if size == '11' then SEE "Related encodings";
3 CheckDecodeFaults(ExtType_Mve);
4 m = UInt(Rm);
5 n = UInt(Qn);
6 mask = Mkh:Mkl;
7 f_cond = '1':fch:fcl;
8 withScalar = TRUE;
9 esize = 8 << UInt(size);

10 elements = 32 DIV esize;
11 ebytes = esize DIV 8;
12 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
13 if InVPTBlock() then CONSTRAINED_UNPREDICTABLE;
14 if Rm == '1101' then CONSTRAINED_UNPREDICTABLE;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1208

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for T1 encodings

<dt> Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
I8 Encoded as size = 00
I16 Encoded as size = 01
I32 Encoded as size = 10

<fc> The comparison condition to use.
This parameter must be one of the following values:
EQ Encoded as fc = 0
NE Encoded as fc = 1

Assembler symbols for T2 encodings

<dt> Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
U8 Encoded as size = 00
U16 Encoded as size = 01
U32 Encoded as size = 10

<fc> The comparison condition to use.
This parameter must be one of the following values:
CS Encoded as fc = 0
HI Encoded as fc = 1

Assembler symbols for T3 encodings

<dt> Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
S8 Encoded as size = 00
S16 Encoded as size = 01
S32 Encoded as size = 10

<fc> The comparison condition to use.
This parameter must be one of the following values:
GE Encoded as fch = 0, fcl = 0
LT Encoded as fch = 0, fcl = 1
GT Encoded as fch = 1, fcl = 0
LE Encoded as fch = 1, fcl = 1

Assembler symbols for T4 encodings

<dt> Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
I8 Encoded as size = 00
I16 Encoded as size = 01
I32 Encoded as size = 10

<fc> The comparison condition to use.
This parameter must be one of the following values:
EQ Encoded as fc = 0
NE Encoded as fc = 1

Assembler symbols for T5 encodings

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1209

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

<dt> Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
U8 Encoded as size = 00
U16 Encoded as size = 01
U32 Encoded as size = 10

<fc> The comparison condition to use.
This parameter must be one of the following values:
CS Encoded as fc = 0
HI Encoded as fc = 1

Assembler symbols for T6 encodings

<dt> Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
S8 Encoded as size = 00
S16 Encoded as size = 01
S32 Encoded as size = 10

<fc> The comparison condition to use.
This parameter must be one of the following values:
GE Encoded as fch = 0, fcl = 0
LT Encoded as fch = 0, fcl = 1
GT Encoded as fch = 1, fcl = 0
LE Encoded as fch = 1, fcl = 1

Assembler symbols for all encodings

<Qn> Source vector register.
<Qm> Source vector register.
<Rm> Source general-purpose register (ZR is permitted, PC is not).
<x> Specifies the condition for an optional second instruction in the VPT block, and whether the

condition is the same as for the first instruction (T) or its inverse (E). This is encoded in the
mask field in a similar way to the IT instruction, except that rather than encoding T and E
directly into f_cond[0], a 1 in the corresponding mask bit indicates that the previous predicate
value in VPR.P0 should be inverted

<y> Specifies the condition for an optional third instruction in the VPT block. It is encoded in the
mask field in the same way as the x field.

<z> Specifies the condition for an optional fourth instruction in the VPT block. It is encoded in the
mask field in the same way as the x field.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 op1 = Q[n, curBeat];
7 beatPred = Zeros(4);
8 if withScalar then
9 op2 = RZ[m][esize-1:0];

10 else
11 opm = Q[m, curBeat];
12 for e = 0 to elements-1
13 if !withScalar then
14 op2 = Elem[opm, e, esize];
15 (result, flC, flV) = AddWithCarry(Elem[op1, e, esize], NOT(op2), '1');

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1210

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

16 flN = result[esize-1];
17 flZ = IsZeroBit(result);
18 pred = ConditionHolds(f_cond, flN, flZ, flC, flV);
19 Elem[beatPred, e, ebytes] = Replicate(if pred then '1' else '0');
20
21 Elem[VPR.P0, curBeat, 4] = beatPred AND elmtMask;
22 // Only one mask field per pair of beats, so the mask is only updated on odd beats.
23 if curBeat[0] == '1' then
24 SetVPTMask(curBeat, mask);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1211

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.425 VPUSH

Push Floating-point registers to stack. Push Floating-point registers to stack stores multiple consecutive registers
from the Floating-point register file to the stack.

This instruction is an alias of the VSTM instruction. This means that:

• The encodings in this description are named to match the encodings of VSTM.

• The description of VSTM gives the operational pseudocode for this instruction.

T1
Armv8-M Floating-point Extension only or MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0

P = 1
U = 0

D

W = 1

0 Rn = 1101 Vd 1 0 1 1 imm7

imm1 = 0

Decrement Before variant

VPUSH{<c>}{<q>}{.<size>} <dreglist>

is equivalent to

VSTMDB{<c>}{<q>}{.<size>} SP!, <dreglist>

and is always the preferred disassembly.

T2
Armv8-M Floating-point Extension only or MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0

P = 1
U = 0

D

W = 1

0 Rn = 1101 Vd 1 0 1 0 imm8

Decrement Before variant

VPUSH{<c>}{<q>}{.<size>} <sreglist>

is equivalent to

VSTMDB{<c>}{<q>}{.<size>} SP!, <sreglist>

and is always the preferred disassembly.

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<size> An optional data size specifier. If present, it must be equal to the size in bits, 32 or 64, of the

registers being transferred.
<sreglist> Is the list of consecutively numbered 32-bit floating-point registers to be transferred. The first

register in the list is encoded in "Vd:D", and "imm8" is set to the number of registers in the
list. The list must contain at least one register.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1212

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

<dreglist> Is the list of consecutively numbered 64-bit floating-point registers to be transferred. The first
register in the list is encoded in "D:Vd", and "imm8" is set to twice the number of registers in
the list. The list must contain at least one register, and must not contain more than 16 registers.

Operation for all encodings
The description of VSTM gives the operational pseudocode for this instruction.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1213

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.426 VQABS

Vector Saturating Absolute. Compute the absolute value of and saturate each element in a vector register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 0 Qd 0 0 1 1 1 0 1 M 0 Qm 0

T1: VQABS variant

VQABS<v>.<dt> Qd, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' then UNDEFINED;
3 if size == '11' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 esize = 8 << UInt(size);
7 elements = 32 DIV esize;
8 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> Size: indicates the size of the elements in the vector.

This parameter must be one of the following values:
S8 Encoded as size = 00
S16 Encoded as size = 01
S32 Encoded as size = 10

<Qd> Destination vector register.
<Qm> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[m, curBeat];
8 for e = 0 to elements-1
9 value = Abs(SInt(Elem[op1, e, esize]));

10 (Elem[result, e, esize], sat) = SignedSatQ(value, esize);
11 if sat && elmtMask[e*(esize>>3)] == '1' then
12 FPSCR.QC = '1';
13
14 for e = 0 to 3
15 if elmtMask[e] == '1' then
16 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1214

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.427 VQADD

Vector Saturating Add. Add the value of the elements in the first source vector register to either the respective
elements in the second source vector register or a general-purpose register. The result is saturated before being
written to the destination vector register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 0 D size Qn 0 Qd 0 0 0 0 0 N 1 M 1 Qm 0

T1: VQADD variant

VQADD<v>.<dt> Qd, Qn, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' || N == '1' then UNDEFINED;
3 if size == '11' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 n = UInt(N:Qn);
7 esize = 8 << UInt(size);
8 elements = 32 DIV esize;
9 unsigned = (U == '1');

10 withScalar = FALSE;
11 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 0 0 D size Qn 0 Qd 0 1 1 1 1 N 1 1 0 Rm

T2: VQADD variant

VQADD<v>.<dt> Qd, Qn, Rm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || N == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(Rm);
6 n = UInt(N:Qn);
7 esize = 8 << UInt(size);
8 elements = 32 DIV esize;
9 unsigned = (U == '1');

10 withScalar = TRUE;
11 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
12 if Rm == '11x1' then CONSTRAINED_UNPREDICTABLE;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1215

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> This parameter determines the following values:

– Size: indicates the size of the elements in the vector.
– Unsigned flag: S indicates signed, U indicates unsigned.
This parameter must be one of the following values:
S8 Encoded as size = 00, U = 0
U8 Encoded as size = 00, U = 1
S16 Encoded as size = 01, U = 0
U16 Encoded as size = 01, U = 1
S32 Encoded as size = 10, U = 0
U32 Encoded as size = 10, U = 1

<Qd> Destination vector register.
<Qn> First source vector register.
<Qm> Second source vector register.
<Rm> Source general-purpose register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[n, curBeat];
8 if !withScalar then
9 op2 = Q[m, curBeat];

10 for e = 0 to elements-1
11 if withScalar then
12 value = Int(Elem[op1, e, esize], unsigned) + Int(R[m][esize-1:0], unsigned);
13 else
14 value = Int(Elem[op1, e, esize], unsigned) + Int(Elem[op2, e, esize], unsigned);
15 (Elem[result, e, esize], sat) = SatQ(value, esize, unsigned);
16 if sat && elmtMask[e*(esize>>3)] == '1' then
17 FPSCR.QC = '1';
18
19 for e = 0 to 3
20 if elmtMask[e] == '1' then
21 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1216

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.428 VQDMLADH, VQRDMLADH

Vector Saturating Doubling Multiply Add Dual Returning High Half, Vector Saturating Rounding Doubling
Multiply Add Dual Returning High Half. The elements of the vector registers are handled in pairs. In the base
variant, corresponding elements from the two source registers are multiplied together, whereas the exchange variant
swaps the values in each pair of values read from the first source register, before multiplying them with the values
from the second source register. The results of the pairs of multiply operations are combined by adding them
together and doubling the result. The high halves of the resulting values are selected as the final results. The base
variant writes the results into the lower element of each pair of elements in the destination register, whereas the
exchange variant writes to the upper element in each pair. The results are optionally rounded before the high half
is selected and saturated.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 D size Qn 0 Qd X 1 1 1 0 N 0 M 0 Qm 0

T1: VQDMLADH variant

VQDMLADH{X}<v>.<dt> Qd, Qn, Qm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || M == '1' || N == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 n = UInt(N:Qn);
7 exchange = (X == '1');
8 esize = 8 << UInt(size);
9 elements = 32 DIV esize;

10 round = FALSE;
11 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 D size Qn 0 Qd X 1 1 1 0 N 0 M 0 Qm 1

T2: VQRDMLADH variant

VQRDMLADH{X}<v>.<dt> Qd, Qn, Qm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || M == '1' || N == '1' then UNDEFINED;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1217

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 n = UInt(N:Qn);
7 exchange = (X == '1');
8 esize = 8 << UInt(size);
9 elements = 32 DIV esize;

10 round = TRUE;
11 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<X> Exchange adjacent pairs of values in Qm.
This parameter must be one of the following values:
- Encoded as X = 0
X Encoded as X = 1

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> Size: indicates the size of the elements in the vector.

This parameter must be one of the following values:
S8 Encoded as size = 00
S16 Encoded as size = 01
S32 Encoded as size = 10

<Qd> Destination vector register.
<Qn> First source vector register.
<Qm> Second source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 rVal = if round then 1 << (esize-1) else 0;
8 // 32 bit operations are handled differently as they perform cross beat
9 // register accesses

10 if esize == 32 then
11 if (curBeat[0] == '1') == exchange then
12 if exchange then
13 mul1 = SInt(Q[n, curBeat]) * SInt(Q[m, curBeat-1]);
14 mul2 = SInt(Q[n, curBeat-1]) * SInt(Q[m, curBeat]);
15 else
16 mul1 = SInt(Q[n, curBeat]) * SInt(Q[m, curBeat]);
17 mul2 = SInt(Q[n, curBeat+1]) * SInt(Q[m, curBeat+1]);
18 (value, sat) = SignedSatQ(2 * (mul1 + mul2) + rVal, esize*2);
19 result = value[63:32];
20 if sat && elmtMask[0] == '1' then
21 FPSCR.QC = '1';
22 else
23 // No computation on this beat, so don't write to the dest register.
24 elmtMask = Zeros();
25 else
26 op1 = Q[n, curBeat];
27 op2 = Q[m, curBeat];
28 for e = 0 to elements-1
29 if (e[0] == '1') == exchange then
30 if exchange then
31 mul1 = SInt(Elem[op1, e, esize]) * SInt(Elem[op2, e-1, esize]);
32 mul2 = SInt(Elem[op1, e-1, esize]) * SInt(Elem[op2, e, esize]);
33 else
34 mul1 = SInt(Elem[op1, e, esize]) * SInt(Elem[op2, e, esize]);
35 mul2 = SInt(Elem[op1, e+1, esize]) * SInt(Elem[op2, e+1, esize]);
36 (value, sat) = SignedSatQ(2 * (mul1 + mul2) + rVal, esize*2);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1218

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

37 Elem[result, e, esize] = value[esize+esize-1:esize];
38 if sat && elmtMask[e*(esize>>3)] == '1' then
39 FPSCR.QC = '1';
40 else
41 // No computation on this lane, so assign original value.
42 Elem[result, e, esize] = Elem[Q[d, curBeat], e, esize];
43
44 for e = 0 to 3
45 if elmtMask[e] == '1' then
46 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1219

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.429 VQDMLAH, VQRDMLAH (vector by scalar plus vector)

Vector Saturating Doubling Multiply Accumulate, Vector Saturating Rounding Doubling Multiply Accumulate.
Multiply each element in the source vector by a scalar value, double the result and add to the respective element
from the destination vector High Half. Store the high half of each result in the destination register. The result is
optionally rounded before the high half is selected and saturated.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 (0) 1 1 1 0 0 Da size Qn 0 Qda 0 1 1 1 0 N 1 1 0 Rm

T1: VQDMLAH variant

VQDMLAH<v>.<dt> Qda, Qn, Rm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if Da == '1' || N == '1' then UNDEFINED;
4 da = UInt(Da:Qda);
5 m = UInt(Rm);
6 n = UInt(N:Qn);
7 unsigned = FALSE;
8 esize = 8 << UInt(size);
9 elements = 32 DIV esize;

10 round = FALSE;
11 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
12 if Rm == '11x1' then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 (0) 1 1 1 0 0 Da size Qn 0 Qda 0 1 1 1 0 N 1 0 0 Rm

T2: VQRDMLAH variant

VQRDMLAH<v>.<dt> Qda, Qn, Rm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if Da == '1' || N == '1' then UNDEFINED;
4 da = UInt(Da:Qda);
5 m = UInt(Rm);
6 n = UInt(N:Qn);
7 unsigned = FALSE;
8 esize = 8 << UInt(size);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1220

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

9 elements = 32 DIV esize;
10 round = TRUE;
11 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
12 if Rm == '11x1' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> Size: indicates the size of the elements in the vector.

This parameter must be one of the following values:
S8 Encoded as size = 00
S16 Encoded as size = 01
S32 Encoded as size = 10

<Qda> Accumulator vector register.
<Qn> Source vector register.
<Rm> Source general-purpose register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[n, curBeat];
8 element2 = Int(R[m][esize-1:0], unsigned);
9 op3 = Q[da, curBeat];

10 rVal = if round then 1 << (esize-1) else 0;
11 for e = 0 to elements-1
12 element1 = Int(Elem[op1, e, esize], unsigned);
13 element3 = Int(Elem[op3, e, esize], unsigned) << esize;
14 (value, sat) = SatQ((2 * element1 * element2) + element3 + rVal, esize*2, unsigned);
15 Elem[result, e, esize] = value[esize+esize-1:esize];
16 if sat && elmtMask[e*(esize>>3)] == '1' then
17 FPSCR.QC = '1';
18
19 for e = 0 to 3
20 if elmtMask[e] == '1' then
21 Elem[Q[da, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1221

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.430 VQDMLASH, VQRDMLASH (vector by vector plus scalar)

Vector Saturating Doubling Multiply Accumulate Scalar High Half, Vector Saturating Rounding Doubling Multiply
Accumulate Scalar High Half. Multiply each element in the source vector by the respective element from the
destination vector, double the result and add to a scalar value. Store the high half of each result in the destination
register. The result is optionally rounded before the high half is selected and saturated.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 (0) 1 1 1 0 0 Da size Qn 0 Qda 1 1 1 1 0 N 1 1 0 Rm

T1: VQDMLASH variant

VQDMLASH<v>.<dt> Qda, Qn, Rm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if Da == '1' || N == '1' then UNDEFINED;
4 da = UInt(Da:Qda);
5 m = UInt(Rm);
6 n = UInt(N:Qn);
7 unsigned = FALSE;
8 esize = 8 << UInt(size);
9 elements = 32 DIV esize;

10 round = FALSE;
11 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
12 if Rm == '11x1' then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 (0) 1 1 1 0 0 Da size Qn 0 Qda 1 1 1 1 0 N 1 0 0 Rm

T2: VQRDMLASH variant

VQRDMLASH<v>.<dt> Qda, Qn, Rm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if Da == '1' || N == '1' then UNDEFINED;
4 da = UInt(Da:Qda);
5 m = UInt(Rm);
6 n = UInt(N:Qn);
7 unsigned = FALSE;
8 esize = 8 << UInt(size);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1222

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

9 elements = 32 DIV esize;
10 round = TRUE;
11 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
12 if Rm == '11x1' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> Size: indicates the size of the elements in the vector.

This parameter must be one of the following values:
S8 Encoded as size = 00
S16 Encoded as size = 01
S32 Encoded as size = 10

<Qda> Source and destination vector register.
<Qn> Source vector register.
<Rm> Source general-purpose register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[n, curBeat];
8 op2 = Q[da, curBeat];
9 element3 = Int(R[m][esize-1:0], unsigned) << esize;

10 rVal = if round then 1 << (esize-1) else 0;
11 for e = 0 to elements-1
12 element1 = Int(Elem[op1, e, esize], unsigned);
13 element2 = Int(Elem[op2, e, esize], unsigned);
14 (value, sat) = SatQ((2 * element1 * element2) + element3 + rVal, esize*2, unsigned);
15 Elem[result, e, esize] = value[esize+esize-1:esize];
16 if sat && elmtMask[e*(esize>>3)] == '1' then
17 FPSCR.QC = '1';
18
19 for e = 0 to 3
20 if elmtMask[e] == '1' then
21 Elem[Q[da, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1223

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.431 VQDMLSDH, VQRDMLSDH

Vector Saturating Doubling Multiply Subtract Dual Returning High Half, Vector Saturating Rounding Doubling
Multiply Subtract Dual Returning High Half. The elements of the vector registers are handled in pairs. In the base
variant, corresponding elements from the two source registers are multiplied together, whereas the exchange variant
swaps the values in each pair of values read from the first source register, before multiplying them with the values
from the second source register. The results of the pairs of multiply operations are combined by subtracting one
from the other and doubling the result. The high halves of the resulting values are selected as the final results. The
base variant writes the results into the lower element of each pair of elements in the destination register, whereas
the exchange variant writes to the upper element in each pair. The results are optionally rounded before the high
half is selected and saturated.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 0 D size Qn 0 Qd X 1 1 1 0 N 0 M 0 Qm 0

T1: VQDMLSDH variant

VQDMLSDH{X}<v>.<dt> Qd, Qn, Qm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || M == '1' || N == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 n = UInt(N:Qn);
7 exchange = (X == '1');
8 esize = 8 << UInt(size);
9 elements = 32 DIV esize;

10 round = FALSE;
11 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 0 D size Qn 0 Qd X 1 1 1 0 N 0 M 0 Qm 1

T2: VQRDMLSDH variant

VQRDMLSDH{X}<v>.<dt> Qd, Qn, Qm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || M == '1' || N == '1' then UNDEFINED;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1224

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 n = UInt(N:Qn);
7 exchange = (X == '1');
8 esize = 8 << UInt(size);
9 elements = 32 DIV esize;

10 round = TRUE;
11 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<X> Exchange adjacent pairs of values in Qm.
This parameter must be one of the following values:
- Encoded as X = 0
X Encoded as X = 1

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> Size: indicates the size of the elements in the vector.

This parameter must be one of the following values:
S8 Encoded as size = 00
S16 Encoded as size = 01
S32 Encoded as size = 10

<Qd> Destination vector register.
<Qn> First source vector register.
<Qm> Second source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 rVal = if round then 1 << (esize-1) else 0;
8 // 32 bit operations are handled differently as they perform cross beat
9 // register accesses

10 if esize == 32 then
11 if (curBeat[0] == '1') == exchange then
12 if exchange then
13 mul1 = SInt(Q[n, curBeat]) * SInt(Q[m, curBeat-1]);
14 mul2 = SInt(Q[n, curBeat-1]) * SInt(Q[m, curBeat]);
15 else
16 mul1 = SInt(Q[n, curBeat]) * SInt(Q[m, curBeat]);
17 mul2 = SInt(Q[n, curBeat+1]) * SInt(Q[m, curBeat+1]);
18 (value, sat) = SignedSatQ(2 * (mul1 - mul2) + rVal, esize*2);
19 result = value[63:32];
20 if sat && elmtMask[0] == '1' then
21 FPSCR.QC = '1';
22 else
23 // No computation on this beat, so don't write to the dest register.
24 elmtMask = Zeros();
25 else
26 op1 = Q[n, curBeat];
27 op2 = Q[m, curBeat];
28 for e = 0 to elements-1
29 if (e[0] == '1') == exchange then
30 if exchange then
31 mul1 = SInt(Elem[op1, e, esize]) * SInt(Elem[op2, e-1, esize]);
32 mul2 = SInt(Elem[op1, e-1, esize]) * SInt(Elem[op2, e, esize]);
33 else
34 mul1 = SInt(Elem[op1, e, esize]) * SInt(Elem[op2, e, esize]);
35 mul2 = SInt(Elem[op1, e+1, esize]) * SInt(Elem[op2, e+1, esize]);
36 (value, sat) = SignedSatQ(2 * (mul1 - mul2) + rVal, esize*2);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1225

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

37 Elem[result, e, esize] = value[esize+esize-1:esize];
38 if sat && elmtMask[e*(esize>>3)] == '1' then
39 FPSCR.QC = '1';
40 else
41 // No computation on this lane, so assign original value.
42 Elem[result, e, esize] = Elem[Q[d, curBeat], e, esize];
43
44 for e = 0 to 3
45 if elmtMask[e] == '1' then
46 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1226

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.432 VQDMULH, VQRDMULH

Vector Saturating Doubling Multiply Returning High Half, Vector Saturating Rounding Doubling Multiply
Returning High Half. Multiply a general-purpose register value by each element of a vector register to produce
a vector of results or multiply each element of a vector register by its corresponding element in another vector
register, double the results, and place the most significant half of the final results in the destination vector. The
results are optionally rounded before being saturated.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 0 D size Qn 0 Qd 0 1 0 1 1 N 1 M 0 Qm 0

T1: VQDMULH variant

VQDMULH<v>.<dt> Qd, Qn, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' || N == '1' then UNDEFINED;
3 if size == '11' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 n = UInt(N:Qn);
7 esize = 8 << UInt(size);
8 elements = 32 DIV esize;
9 withScalar = FALSE;

10 round = FALSE;
11 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 0 D size Qn 0 Qd 0 1 0 1 1 N 1 M 0 Qm 0

T2: VQRDMULH variant

VQRDMULH<v>.<dt> Qd, Qn, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' || N == '1' then UNDEFINED;
3 if size == '11' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 n = UInt(N:Qn);
7 esize = 8 << UInt(size);
8 elements = 32 DIV esize;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1227

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

9 withScalar = FALSE;
10 round = TRUE;
11 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T3
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 D size Qn 1 Qd 0 1 1 1 0 N 1 1 0 Rm

T3: VQDMULH variant

VQDMULH<v>.<dt> Qd, Qn, Rm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || N == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(Rm);
6 n = UInt(N:Qn);
7 esize = 8 << UInt(size);
8 elements = 32 DIV esize;
9 withScalar = TRUE;

10 round = FALSE;
11 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
12 if Rm == '11x1' then CONSTRAINED_UNPREDICTABLE;

T4
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 0 D size Qn 1 Qd 0 1 1 1 0 N 1 1 0 Rm

T4: VQRDMULH variant

VQRDMULH<v>.<dt> Qd, Qn, Rm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || N == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(Rm);
6 n = UInt(N:Qn);
7 esize = 8 << UInt(size);
8 elements = 32 DIV esize;
9 withScalar = TRUE;

10 round = TRUE;
11 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
12 if Rm == '11x1' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for T1 encodings

<Qn> First source vector register.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1228

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for T2 encodings

<Qn> First source vector register.

Assembler symbols for T3 encodings

<Qn> Source vector register.

Assembler symbols for T4 encodings

<Qn> Source vector register.

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> Size: indicates the size of the elements in the vector.

This parameter must be one of the following values:
S8 Encoded as size = 00
S16 Encoded as size = 01
S32 Encoded as size = 10

<Qd> Destination vector register.
<Qm> Second source vector register.
<Rm> Source general-purpose register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[n, curBeat];
8 op2 = if withScalar then R[m] else Q[m, curBeat];
9 rVal = if round then 1 << (esize-1) else 0;

10 for e = 0 to elements-1
11 opm = if withScalar then op2[esize-1:0] else Elem[op2, e, esize];
12 value = ((2 * SInt(Elem[op1, e, esize]) * SInt(opm)) + rVal) >> esize;
13 (Elem[result, e, esize], sat) = SignedSatQ(value, esize);
14 if sat && elmtMask[e*(esize>>3)] == '1' then
15 FPSCR.QC = '1';
16
17 for e = 0 to 3
18 if elmtMask[e] == '1' then
19 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1229

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.433 VQDMULL

Vector Multiply Long. Performs an element-wise integer multiplication of two single-width source operand
elements. These are selected from either the top half (T variant) or bottom half (B variant) of double-width source
vector register elements or the lower single-width portion of the general-purpose register. The product of the
multiplication is doubled and saturated to produce a double-width product that is written back to the destination
vector register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 sz 1 1 1 0 0 D 1 1 Qn 0 Qd T 1 1 1 1 N 0 M 0 Qm 1

T1: VQDMULL variant

VQDMULL<T><v>.<dt> Qd, Qn, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' || N == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 m = UInt(M:Qm);
5 n = UInt(N:Qn);
6 esize = 16 << UInt(sz);
7 top = UInt(T);
8 withScalar = FALSE;
9 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

10 if sz == '1' && (D:Qd == M:Qm || D:Qd == N:Qn) then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 sz 1 1 1 0 0 D 1 1 Qn 0 Qd T 1 1 1 1 N 1 1 0 Rm

T2: VQDMULL variant

VQDMULL<T><v>.<dt> Qd, Qn, Rm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || N == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 m = UInt(Rm);
5 n = UInt(N:Qn);
6 esize = 16 << UInt(sz);
7 top = UInt(T);
8 withScalar = TRUE;
9 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1230

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

10 if D:Qd == N:Qn && sz == '1' then CONSTRAINED_UNPREDICTABLE;
11 if Rm == '11x1' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<T> Specifies which half of the source element is used.
This parameter must be one of the following values:
B Encoded as T = 0

Indicates bottom half
T Encoded as T = 1

Indicates top half
<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> Size: indicates the size of the elements in the vector.

This parameter must be one of the following values:
S16 Encoded as sz = 0
S32 Encoded as sz = 1

<Qd> Destination vector register.
<Qn> Source vector register.
<Qm> Source vector register.
<Rm> Source general-purpose register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 if esize == 32 then
8 op1 = Q[n, UInt(curBeat[1]:T)];
9 if withScalar then

10 op2 = R[m];
11 else
12 op2 = Q[m, UInt(curBeat[1]:T)];
13 (mul, sat) = SignedSatQ(2 * SInt(op1) * SInt(op2), 64);
14 result = if curBeat[0] == '1' then mul[63:32] else mul[31:0];
15 if sat && elmtMask[0] == '1' then
16 FPSCR.QC = '1';
17 else
18 op1 = Q[n, curBeat];
19 if withScalar then
20 op2 = R[m];
21 else
22 op2 = Q[m, curBeat];
23 elements = 16 DIV esize;
24 for e = 0 to elements-1
25 element1 = Elem[op1, e * 2 + top, esize];
26 if withScalar then
27 element2 = Elem[op2, 0, esize];
28 else
29 element2 = Elem[op2, e * 2 + top, esize];
30 value = 2 * SInt(element1) * SInt(element2);
31 (Elem[result, e, esize * 2], sat) = SignedSatQ(value, 2 * esize);
32 if sat && elmtMask[(e*2 + top) * (esize>>3)] == '1' then
33 FPSCR.QC = '1';
34
35 for e = 0 to 3
36 if elmtMask[e] == '1' then
37 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1231

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.434 VQMOVN

Vector Saturating Move and Narrow. Performs an element-wise saturation to half-width, writing the result to either
the top half (T variant) or bottom half (B variant) of the result element. The other half of the destination vector
element retains its previous value.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 0 0 D 1 1 size 1 1 Qd T 1 1 1 0 0 0 M 0 Qm 1

T1: VQMOVN variant

VQMOVN<T><v>.<dt> Qd, Qm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || M == '1' then UNDEFINED;
4 if size == '10' then UNDEFINED;
5 d = UInt(D:Qd);
6 m = UInt(M:Qm);
7 unsigned = (U == '1');
8 esize = 8 << UInt(size);
9 elements = 16 DIV esize;

10 top = UInt(T);
11 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<T> Specifies which half of the result element the result is written to.
This parameter must be one of the following values:
B Encoded as T = 0

Indicates bottom half
T Encoded as T = 1

Indicates top half
<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> This parameter determines the following values:

– Unsigned flag: S indicates signed, U indicates unsigned.
– Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
S16 Encoded as size = 00, U = 0
U16 Encoded as size = 00, U = 1
S32 Encoded as size = 01, U = 0
U32 Encoded as size = 01, U = 1

<Qd> Destination vector register.
<Qm> Source vector register.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1232

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 op1 = Q[m, curBeat];
7 result = Q[d, curBeat];
8 for e = 0 to elements-1
9 operand = Int(Elem[op1, e, 2*esize], unsigned);

10 (value, sat) = SatQ(operand, esize, unsigned);
11 Elem[result, 2*e + top, esize] = value;
12 if sat && elmtMask[(e*2 + top) * (esize>>3)] == '1' then
13 FPSCR.QC = '1';
14
15 for e = 0 to 3
16 if elmtMask[e] == '1' then
17 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1233

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.435 VQMOVUN

Vector Saturating Move Unsigned and Narrow. Performs an element-wise saturation to half-width, writing the
result to either the top half (T variant) or bottom half (B variant) of the result element. The other half of the
destination vector element retains its previous value. The result is always saturated to an unsigned value.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 D 1 1 size 0 1 Qd T 1 1 1 0 1 0 M 0 Qm 1

T1: VQMOVUN variant

VQMOVUN<T><v>.<dt> Qd, Qm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || M == '1' then UNDEFINED;
4 if size == '10' then UNDEFINED;
5 d = UInt(D:Qd);
6 m = UInt(M:Qm);
7 unsigned = FALSE;
8 destUnsigned = TRUE;
9 esize = 8 << UInt(size);

10 elements = 16 DIV esize;
11 top = UInt(T);
12 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<T> Specifies which half of the result element the result is written to.
This parameter must be one of the following values:
B Encoded as T = 0

Indicates bottom half
T Encoded as T = 1

Indicates top half
<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> Size: indicates the size of the elements in the vector.

This parameter must be one of the following values:
S16 Encoded as size = 00
S32 Encoded as size = 01

<Qd> Destination vector register.
<Qm> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1234

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 op1 = Q[m, curBeat];
7 result = Q[d, curBeat];
8 for e = 0 to elements-1
9 operand = Int(Elem[op1, e, 2*esize], unsigned);

10 (value, sat) = SatQ(operand, esize, destUnsigned);
11 Elem[result, 2*e + top, esize] = value;
12 if sat && elmtMask[(e*2 + top) * (esize>>3)] == '1' then
13 FPSCR.QC = '1';
14
15 for e = 0 to 3
16 if elmtMask[e] == '1' then
17 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1235

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.436 VQNEG

Vector Saturating Negate. Negate the value and saturate each element in a vector register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 0 Qd 0 0 1 1 1 1 1 M 0 Qm 0

T1: VQNEG variant

VQNEG<v>.<dt> Qd, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' then UNDEFINED;
3 if size == '11' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 esize = 8 << UInt(size);
7 elements = 32 DIV esize;
8 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> Size: indicates the size of the elements in the vector.

This parameter must be one of the following values:
S8 Encoded as size = 00
S16 Encoded as size = 01
S32 Encoded as size = 10

<Qd> Destination vector register.
<Qm> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[m, curBeat];
8 for e = 0 to elements-1
9 value = -SInt(Elem[op1, e, esize]);

10 (Elem[result, e, esize], sat) = SignedSatQ(value, esize);
11 if sat && elmtMask[e*(esize>>3)] == '1' then
12 FPSCR.QC = '1';
13
14 for e = 0 to 3
15 if elmtMask[e] == '1' then
16 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1236

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.437 VQRSHL

Vector Saturating Rounding Shift Left. The vector variant shifts each element of the first vector by a value from
the least significant byte of the corresponding element of the second vector and places the results in the destination
vector.

The register variants shift each element of a vector register by the value specified in a source register. The direction
of the shift depends on the sign of the element from the second vector register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 0 D size Qn 0 Qd 0 0 1 0 1 N 1 M 1 Qm 0

T1: VQRSHL variant

VQRSHL<v>.<dt> Qd, Qm, Qn

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || M == '1' || N == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 n = UInt(N:Qn);
7 unsigned = (U == '1');
8 withScalar = FALSE;
9 withVector = TRUE;

10 esize = 8 << UInt(size);
11 elements = 32 DIV esize;
12 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 0 0 Da 1 1 size 1 1 Qda 1 1 1 1 0 1 1 1 0 Rm

T2: VQRSHL variant

VQRSHL<v>.<dt> Qda, Rm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if Da == '1' then UNDEFINED;
4 da = UInt(Da:Qda);
5 m = UInt(Rm);
6 d = da;
7 n = m;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1237

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

8 m = da;
9 unsigned = (U == '1');

10 withScalar = TRUE;
11 withVector = FALSE;
12 esize = 8 << UInt(size);
13 elements = 32 DIV esize;
14 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
15 if Rm == '11x1' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> This parameter determines the following values:

– Unsigned flag: S indicates signed, U indicates unsigned.
– Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
S8 Encoded as size = 00, U = 0
U8 Encoded as size = 00, U = 1
S16 Encoded as size = 01, U = 0
U16 Encoded as size = 01, U = 1
S32 Encoded as size = 10, U = 0
U32 Encoded as size = 10, U = 1

<Qd> Destination vector register.
<Qda> Source and destination vector register.
<Qm> Source vector register.
<Qn> Source vector register, the elements of which containing the amount to shift by.
<Rm> Source general-purpose register containing the amount to shift by.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[m, curBeat];
8 if withVector then
9 op2 = Q[n, curBeat];

10 if withScalar then
11 shiftAmount = SInt(R[n][7:0]);
12 for e = 0 to elements-1
13 if withVector then
14 shiftAmount = SInt(Elem[op2, e, esize][7:0]);
15 // 0 for left shift, 2^(n-1) for right shift
16 round_const = 1 << (-1-shiftAmount);
17 operand = Int(Elem[op1, e, esize], unsigned);
18 (value, sat) = SatQ((operand + round_const) << shiftAmount, esize, unsigned);
19 Elem[result, e, esize] = value;
20 if sat && elmtMask[e*(esize>>3)] == '1' then
21 FPSCR.QC = '1';
22
23 for e = 0 to 3
24 if elmtMask[e] == '1' then
25 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1238

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.438 VQRSHRN

Vector Saturating Rounding Shift Right and Narrow. Performs an element-wise saturation to half-width, with shift,
writing the rounded result to either the top half (T variant) or bottom half (B variant) of the result element. The
other half of the destination vector element retains its previous value.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 0 1 D 0 sz imm Qd T 1 1 1 1 0 1 M 0 Qm 1

T1: VQRSHRN variant

VQRSHRN<T><v>.<dt> Qd, Qm, #<imm>

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 m = UInt(M:Qm);
5 unsigned = (U == '1');
6 imm5 = sz:imm;
7 case sz of
8 when '01' size = '00'; shiftAmount = 16 - UInt(imm5);
9 when '1x' size = '01'; shiftAmount = 32 - UInt(imm5);

10 otherwise UNDEFINED;
11 esize = 8 << UInt(size);
12 elements = 16 DIV esize;
13 top = UInt(T);
14 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<T> Specifies which half of the result element the result is written to.
This parameter must be one of the following values:
B Encoded as T = 0

Indicates bottom half
T Encoded as T = 1

Indicates top half
<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> This parameter determines the following values:

– Unsigned flag: S indicates signed, U indicates unsigned.
– The size of the elements in the vector.
This parameter must be one of the following values:
S16 Encoded as sz = 01, U = 0
U16 Encoded as sz = 01, U = 1
S32 Encoded as sz = 1x, U = 0
U32 Encoded as sz = 1x, U = 1

<Qd> Destination vector register.
<Qm> Source vector register.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1239

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

<imm> The number of bits to shift by, in the range 1 to <dt>/2. The encoding of this field is a logical
OR of the most significant bits of the imm parameter and the least significant bits of the size
field (sz).

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 op1 = Q[m, curBeat];
7 result = Q[d, curBeat];
8 for e = 0 to elements-1
9 operand = Int(Elem[op1, e, 2*esize], unsigned);

10 // 0 for left shift, 2^(n-1) for right shift
11 operand = operand + (1 << (shiftAmount-1));
12 operand = operand >> shiftAmount;
13 (value, sat) = SatQ(operand, esize, unsigned);
14 Elem[result, 2*e + top, esize] = value;
15 if sat && elmtMask[(e*2 + top) * (esize>>3)] == '1' then
16 FPSCR.QC = '1';
17
18 for e = 0 to 3
19 if elmtMask[e] == '1' then
20 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1240

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.439 VQRSHRUN

Vector Saturating Rounding Shift Right Unsigned and Narrow. Performs an element-wise saturation to half-width,
with shift, writing the rounded result to either the top half (T variant) or bottom half (B variant) of the result
element. The other half of the destination vector element retains its previous value.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 1 D 0 sz imm Qd T 1 1 1 1 1 1 M 0 Qm 0

T1: VQRSHRUN variant

VQRSHRUN<T><v>.<dt> Qd, Qm, #<imm>

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 m = UInt(M:Qm);
5 unsigned = FALSE;
6 destUnsigned = TRUE;
7 imm5 = sz:imm;
8 case sz of
9 when '01' size = '00'; shiftAmount = 16 - UInt(imm5);

10 when '1x' size = '01'; shiftAmount = 32 - UInt(imm5);
11 otherwise UNDEFINED;
12 esize = 8 << UInt(size);
13 elements = 16 DIV esize;
14 top = UInt(T);
15 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<T> Specifies which half of the result element the result is written to.
This parameter must be one of the following values:
B Encoded as T = 0

Indicates bottom half
T Encoded as T = 1

Indicates top half
<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> The size of the elements in the vector.

This parameter must be one of the following values:
S16 Encoded as sz = 01
S32 Encoded as sz = 1x

<Qd> Destination vector register.
<Qm> Source vector register.
<imm> The number of bits to shift by, in the range 1 to <dt>/2. The encoding of this field is a logical

OR of the most significant bits of the imm parameter and the least significant bits of the size
field (sz).

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1241

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 op1 = Q[m, curBeat];
7 result = Q[d, curBeat];
8 for e = 0 to elements-1
9 operand = Int(Elem[op1, e, 2*esize], unsigned);

10 // 0 for left shift, 2^(n-1) for right shift
11 operand = operand + (1 << (shiftAmount-1));
12 operand = operand >> shiftAmount;
13 (value, sat) = SatQ(operand, esize, destUnsigned);
14 Elem[result, 2*e + top, esize] = value;
15 if sat && elmtMask[(e*2 + top) * (esize>>3)] == '1' then
16 FPSCR.QC = '1';
17
18 for e = 0 to 3
19 if elmtMask[e] == '1' then
20 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1242

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.440 VQSHL, VQSHLU

Vector Saturating Shift Left, Vector Saturating Shift Left Unsigned. The register variants shift each element of
a vector register by the value specified in a source register. The direction of the shift depends on the sign of the
element from the second vector register.

The immediate variant shifts each element of a vector register to the left by the immediate value.

The vector variant shifts each element of the first vector by a value from the least significant byte of the corre-
sponding element of the second vector and places the results in the destination vector.

The unsigned variant produces unsigned results, although the operands are signed.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 0 0 Da 1 1 size 0 1 Qda 1 1 1 1 0 1 1 1 0 Rm

T1: VQSHL variant

VQSHL<v>.<dt> Qda, Rm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if Da == '1' then UNDEFINED;
4 da = UInt(Da:Qda);
5 m = UInt(Rm);
6 d = da;
7 n = m;
8 m = da;
9 unsigned = (U == '1');

10 destUnsigned = unsigned;
11 withScalar = TRUE;
12 withVector = FALSE;
13 esize = 8 << UInt(size);
14 elements = 32 DIV esize;
15 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
16 if Rm == '11x1' then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 1 D sz imm Qd 0 0 1 1 1 0 1 M 1 Qm 0

T2: VQSHL variant

VQSHL<v>.<dt> Qd, Qm, #<imm>

Decode for this encoding

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1243

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

1 if sz == '000' then SEE "VMOV";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || M == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 unsigned = (U == '1');
7 destUnsigned = unsigned;
8 n = integer UNKNOWN;
9 imm6 = sz:imm;

10 case sz of
11 when '001' size = '00'; shiftAmount = UInt(imm6) - 8;
12 when '01x' size = '01'; shiftAmount = UInt(imm6) - 16;
13 when '1xx' size = '10'; shiftAmount = UInt(imm6) - 32;
14 otherwise UNDEFINED;
15 withScalar = FALSE;
16 withVector = FALSE;
17 esize = 8 << UInt(size);
18 elements = 32 DIV esize;
19 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T3
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D sz imm Qd 0 0 1 1 0 0 1 M 1 Qm 0

T3: VQSHLU variant

VQSHLU<v>.<dt> Qd, Qm, #<imm>

Decode for this encoding
1 if sz == '000' then SEE "VMOV";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || M == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 unsigned = FALSE;
7 destUnsigned = TRUE;
8 n = integer UNKNOWN;
9 imm6 = sz:imm;

10 case sz of
11 when '001' size = '00'; shiftAmount = UInt(imm6) - 8;
12 when '01x' size = '01'; shiftAmount = UInt(imm6) - 16;
13 when '1xx' size = '10'; shiftAmount = UInt(imm6) - 32;
14 otherwise UNDEFINED;
15 withScalar = FALSE;
16 withVector = FALSE;
17 esize = 8 << UInt(size);
18 elements = 32 DIV esize;
19 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T4
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 0 D size Qn 0 Qd 0 0 1 0 0 N 1 M 1 Qm 0

T4: VQSHL variant

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1244

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

VQSHL<v>.<dt> Qd, Qm, Qn

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || M == '1' || N == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 n = UInt(N:Qn);
7 unsigned = (U == '1');
8 destUnsigned = unsigned;
9 withScalar = FALSE;

10 withVector = TRUE;
11 esize = 8 << UInt(size);
12 elements = 32 DIV esize;
13 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for T1 encodings

<dt> This parameter determines the following values:
– Unsigned flag: S indicates signed, U indicates unsigned.
– Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
S8 Encoded as size = 00, U = 0
U8 Encoded as size = 00, U = 1
S16 Encoded as size = 01, U = 0
U16 Encoded as size = 01, U = 1
S32 Encoded as size = 10, U = 0
U32 Encoded as size = 10, U = 1

Assembler symbols for T2 encodings

<dt> This parameter determines the following values:
– Unsigned flag: S indicates signed, U indicates unsigned.
– The size of the elements in the vector.
This parameter must be one of the following values:
S8 Encoded as sz = 001, U = 0
U8 Encoded as sz = 001, U = 1
S16 Encoded as sz = 01x, U = 0
U16 Encoded as sz = 01x, U = 1
S32 Encoded as sz = 1xx, U = 0
U32 Encoded as sz = 1xx, U = 1

Assembler symbols for T3 encodings

<dt> The size of the elements in the vector.
This parameter must be one of the following values:
S8 Encoded as sz = 001
S16 Encoded as sz = 01x
S32 Encoded as sz = 1xx

Assembler symbols for T4 encodings

<dt> This parameter determines the following values:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1245

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

– Unsigned flag: S indicates signed, U indicates unsigned.
– Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
S8 Encoded as size = 00, U = 0
U8 Encoded as size = 00, U = 1
S16 Encoded as size = 01, U = 0
U16 Encoded as size = 01, U = 1
S32 Encoded as size = 10, U = 0
U32 Encoded as size = 10, U = 1

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<Qd> Destination vector register.
<Qda> Source and destination vector register.
<Qm> Source vector register.
<Qn> Source vector register, the elements of which containing the amount to shift by.
<Rm> Source general-purpose register containing the amount to shift by.
<imm> The number of bits to shift by, in the range 0 to <dt>-1. The encoding of this field is a logical

OR of the most significant bits of the imm parameter and the least significant bits of the size
field (sz).

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[m, curBeat];
8 if withVector then
9 op2 = Q[n, curBeat];

10 if withScalar then
11 shiftAmount = SInt(R[n][7:0]);
12 for e = 0 to elements-1
13 if withVector then
14 shiftAmount = SInt(Elem[op2, e, esize][7:0]);
15 operand = Int(Elem[op1, e, esize], unsigned);
16 (value, sat) = SatQ(operand << shiftAmount, esize, destUnsigned);
17 Elem[result, e, esize] = value;
18 if sat && elmtMask[e*(esize>>3)] == '1' then
19 FPSCR.QC = '1';
20
21 for e = 0 to 3
22 if elmtMask[e] == '1' then
23 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1246

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.441 VQSHRN

Vector Saturating Shift Right and Narrow. Performs an element-wise saturation to half-width, with shift, writing
the result to either the top half (T variant) or bottom half (B variant) of the result element. The other half of the
destination vector element retains its previous value.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 0 1 D 0 sz imm Qd T 1 1 1 1 0 1 M 0 Qm 0

T1: VQSHRN variant

VQSHRN<T><v>.<dt> Qd, Qm, #<imm>

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 m = UInt(M:Qm);
5 unsigned = (U == '1');
6 imm5 = sz:imm;
7 case sz of
8 when '01' size = '00'; shiftAmount = 16 - UInt(imm5);
9 when '1x' size = '01'; shiftAmount = 32 - UInt(imm5);

10 otherwise UNDEFINED;
11 esize = 8 << UInt(size);
12 elements = 16 DIV esize;
13 top = UInt(T);
14 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<T> Specifies which half of the result element the result is written to.
This parameter must be one of the following values:
B Encoded as T = 0

Indicates bottom half
T Encoded as T = 1

Indicates top half
<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> This parameter determines the following values:

– Unsigned flag: S indicates signed, U indicates unsigned.
– The size of the elements in the vector.
This parameter must be one of the following values:
S16 Encoded as sz = 01, U = 0
U16 Encoded as sz = 01, U = 1
S32 Encoded as sz = 1x, U = 0
U32 Encoded as sz = 1x, U = 1

<Qd> Destination vector register.
<Qm> Source vector register.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1247

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

<imm> The number of bits to shift by, in the range 1 to <dt>/2. The encoding of this field is a logical
OR of the most significant bits of the imm parameter and the least significant bits of the size
field (sz).

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 op1 = Q[m, curBeat];
7 result = Q[d, curBeat];
8 for e = 0 to elements-1
9 operand = Int(Elem[op1, e, 2*esize], unsigned);

10 operand = operand >> shiftAmount;
11 (value, sat) = SatQ(operand, esize, unsigned);
12 Elem[result, 2*e + top, esize] = value;
13 if sat && elmtMask[(e*2 + top) * (esize>>3)] == '1' then
14 FPSCR.QC = '1';
15
16 for e = 0 to 3
17 if elmtMask[e] == '1' then
18 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1248

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.442 VQSHRUN

Vector Saturating Shift Right Unsigned and Narrow. Performs an element-wise saturation to half-width, with shift,
writing the result to either the top half (T variant) or bottom half (B variant) of the result element. The other half of
the destination vector element retains its previous value.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 0 sz imm Qd T 1 1 1 1 1 1 M 0 Qm 0

T1: VQSHRUN variant

VQSHRUN<T><v>.<dt> Qd, Qm, #<imm>

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 m = UInt(M:Qm);
5 unsigned = FALSE;
6 destUnsigned = TRUE;
7 imm5 = sz:imm;
8 case sz of
9 when '01' size = '00'; shiftAmount = 16 - UInt(imm5);

10 when '1x' size = '01'; shiftAmount = 32 - UInt(imm5);
11 otherwise UNDEFINED;
12 esize = 8 << UInt(size);
13 elements = 16 DIV esize;
14 top = UInt(T);
15 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<T> Specifies which half of the result element the result is written to.
This parameter must be one of the following values:
B Encoded as T = 0

Indicates bottom half
T Encoded as T = 1

Indicates top half
<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> The size of the elements in the vector.

This parameter must be one of the following values:
S16 Encoded as sz = 01
S32 Encoded as sz = 1x

<Qd> Destination vector register.
<Qm> Source vector register.
<imm> The number of bits to shift by, in the range 1 to <dt>/2. The encoding of this field is a logical

OR of the most significant bits of the imm parameter and the least significant bits of the size
field (sz).

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1249

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 op1 = Q[m, curBeat];
7 result = Q[d, curBeat];
8 for e = 0 to elements-1
9 operand = Int(Elem[op1, e, 2*esize], unsigned);

10 operand = operand >> shiftAmount;
11 (value, sat) = SatQ(operand, esize, destUnsigned);
12 Elem[result, 2*e + top, esize] = value;
13 if sat && elmtMask[(e*2 + top) * (esize>>3)] == '1' then
14 FPSCR.QC = '1';
15
16 for e = 0 to 3
17 if elmtMask[e] == '1' then
18 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1250

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.443 VQSUB

Vector Saturating Subtract. Subtract the value of the elements in the second source vector register from either the
respective elements in the first source vector register or a general-purpose register. The result is saturated before
being written to the destination vector register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 0 D size Qn 0 Qd 0 0 0 1 0 N 1 M 1 Qm 0

T1: VQSUB variant

VQSUB<v>.<dt> Qd, Qn, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' || N == '1' then UNDEFINED;
3 if size == '11' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 n = UInt(N:Qn);
7 esize = 8 << UInt(size);
8 elements = 32 DIV esize;
9 unsigned = (U == '1');

10 withScalar = FALSE;
11 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 0 0 D size Qn 0 Qd 1 1 1 1 1 N 1 1 0 Rm

T2: VQSUB variant

VQSUB<v>.<dt> Qd, Qn, Rm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || N == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(Rm);
6 n = UInt(N:Qn);
7 esize = 8 << UInt(size);
8 elements = 32 DIV esize;
9 unsigned = (U == '1');

10 withScalar = TRUE;
11 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
12 if Rm == '11x1' then CONSTRAINED_UNPREDICTABLE;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1251

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> This parameter determines the following values:

– Size: indicates the size of the elements in the vector.
– Unsigned flag: S indicates signed, U indicates unsigned.
This parameter must be one of the following values:
S8 Encoded as size = 00, U = 0
U8 Encoded as size = 00, U = 1
S16 Encoded as size = 01, U = 0
U16 Encoded as size = 01, U = 1
S32 Encoded as size = 10, U = 0
U32 Encoded as size = 10, U = 1

<Qd> Destination vector register.
<Qn> First source vector register.
<Qm> Second source vector register.
<Rm> Source general-purpose register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[n, curBeat];
8 if !withScalar then
9 op2 = Q[m, curBeat];

10 for e = 0 to elements-1
11 if withScalar then
12 value = Int(Elem[op1, e, esize], unsigned) - Int(R[m][esize-1:0], unsigned);
13 else
14 value = Int(Elem[op1, e, esize], unsigned) - Int(Elem[op2, e, esize], unsigned);
15 (Elem[result, e, esize], sat) = SatQ(value, esize, unsigned);
16 if sat && elmtMask[e*(esize>>3)] == '1' then
17 FPSCR.QC = '1';
18
19 for e = 0 to 3
20 if elmtMask[e] == '1' then
21 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1252

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.444 VREV16

Vector Reverse. Reverse the order of 8-bit elements within each halfword of the source vector register and places
the result in the destination vector register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 0 Qd 0 0 0 0 1 0 1 M 0 Qm 0

T1: VREV16 variant

VREV16<v>.<size> Qd, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' then UNDEFINED;
3 if size != '00' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 esize = 8 << UInt(size);
7 elements = 64 DIV esize;
8 width = 2;
9 groupsize = (1 << (3-width-UInt(size))); // elements per reversing group: 2, 4 or 8

10 reverse_mask = (groupsize-1)[esize-1:0]; // EORing mask used for index calculations
11 groups_per_beat = width;
12 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<size> Size: indicates the size of the elements in the vector.

This parameter must be the following value:
8 Encoded as size = 00

<Qd> Destination vector register.
<Qm> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 // 64 bit wide operations are handled differently as they perform cross beat
8 // register accesses
9 if width == 0 then

10 op1 = Q[m, UInt(curBeat[1:0] EOR 1[1:0])];
11 for e = 0 to (groupsize >> 1)-1
12 // Calculate destination element index by bitwise EOR on source element index:
13 elemIdx = UInt((e[esize-1:0] EOR (UInt(reverse_mask) >> 1)[esize-1:0]));

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1253

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

14 Elem[result, elemIdx, esize] = Elem[op1, e, esize];
15 else
16 op1 = Q[m, curBeat];
17 for g = 0 to groups_per_beat-1
18 for e = 0 to groupsize -1
19 elemIdx = (g*groupsize) + UInt(e[esize-1:0] EOR (reverse_mask));
20 Elem[result, elemIdx, esize] = Elem[op1, (g*groupsize)+e, esize];
21
22 for e = 0 to 3
23 if elmtMask[e] == '1' then
24 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1254

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.445 VREV32

Vector Reverse. Reverse the order of 8-bit or 16-bit elements within each word of the source vector register and
places the result in the destination vector register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 0 Qd 0 0 0 0 0 1 1 M 0 Qm 0

T1: VREV32 variant

VREV32<v>.<size> Qd, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' then UNDEFINED;
3 if size == '1x' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 esize = 8 << UInt(size);
7 elements = 64 DIV esize;
8 width = 1;
9 groupsize = (1 << (3-width-UInt(size))); // elements per reversing group: 2, 4 or 8

10 reverse_mask = (groupsize-1)[esize-1:0]; // EORing mask used for index calculations
11 groups_per_beat = width;
12 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<size> Size: indicates the size of the elements in the vector.

This parameter must be one of the following values:
8 Encoded as size = 00
16 Encoded as size = 01

<Qd> Destination vector register.
<Qm> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 // 64 bit wide operations are handled differently as they perform cross beat
8 // register accesses
9 if width == 0 then

10 op1 = Q[m, UInt(curBeat[1:0] EOR 1[1:0])];
11 for e = 0 to (groupsize >> 1)-1
12 // Calculate destination element index by bitwise EOR on source element index:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1255

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

13 elemIdx = UInt((e[esize-1:0] EOR (UInt(reverse_mask) >> 1)[esize-1:0]));
14 Elem[result, elemIdx, esize] = Elem[op1, e, esize];
15 else
16 op1 = Q[m, curBeat];
17 for g = 0 to groups_per_beat-1
18 for e = 0 to groupsize -1
19 elemIdx = (g*groupsize) + UInt(e[esize-1:0] EOR (reverse_mask));
20 Elem[result, elemIdx, esize] = Elem[op1, (g*groupsize)+e, esize];
21
22 for e = 0 to 3
23 if elmtMask[e] == '1' then
24 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1256

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.446 VREV64

Vector Reverse. Reverse the order of 8-bit, 16-bit or 32-bit elements within each doubleword of the source vector
register and places the result in the destination vector register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 0 Qd 0 0 0 0 0 0 1 M 0 Qm 0

T1: VREV64 variant

VREV64<v>.<size> Qd, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' then UNDEFINED;
3 if size == '11' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 esize = 8 << UInt(size);
7 elements = 64 DIV esize;
8 width = 0;
9 groupsize = (1 << (3-width-UInt(size))); // elements per reversing group: 2, 4 or 8

10 reverse_mask = (groupsize-1)[esize-1:0]; // EORing mask used for index calculations
11 groups_per_beat = width;
12 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
13 if D:Qd == M:Qm then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<size> Size: indicates the size of the elements in the vector.

This parameter must be one of the following values:
8 Encoded as size = 00
16 Encoded as size = 01
32 Encoded as size = 10

<Qd> Destination vector register.
<Qm> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 // 64 bit wide operations are handled differently as they perform cross beat
8 // register accesses
9 if width == 0 then

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1257

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

10 op1 = Q[m, UInt(curBeat[1:0] EOR 1[1:0])];
11 for e = 0 to (groupsize >> 1)-1
12 // Calculate destination element index by bitwise EOR on source element index:
13 elemIdx = UInt((e[esize-1:0] EOR (UInt(reverse_mask) >> 1)[esize-1:0]));
14 Elem[result, elemIdx, esize] = Elem[op1, e, esize];
15 else
16 op1 = Q[m, curBeat];
17 for g = 0 to groups_per_beat-1
18 for e = 0 to groupsize -1
19 elemIdx = (g*groupsize) + UInt(e[esize-1:0] EOR (reverse_mask));
20 Elem[result, elemIdx, esize] = Elem[op1, (g*groupsize)+e, esize];
21
22 for e = 0 to 3
23 if elmtMask[e] == '1' then
24 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1258

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.447 VRHADD

Vector Rounding Halving Add. Add the value of the elements in the first source vector register to the respective
elements in the second source vector register. The result is halved and rounded before being written to the
destination vector register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 0 D size Qn 0 Qd 0 0 0 0 1 N 1 M 0 Qm 0

T1: VRHADD variant

VRHADD<v>.<dt> Qd, Qn, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' || N == '1' then UNDEFINED;
3 if size == '11' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 n = UInt(N:Qn);
7 esize = 8 << UInt(size);
8 elements = 32 DIV esize;
9 unsigned = (U == '1');

10 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> This parameter determines the following values:

– Unsigned flag: S indicates signed, U indicates unsigned.
– Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
S8 Encoded as size = 00, U = 0
U8 Encoded as size = 00, U = 1
S16 Encoded as size = 01, U = 0
U16 Encoded as size = 01, U = 1
S32 Encoded as size = 10, U = 0
U32 Encoded as size = 10, U = 1

<Qd> Destination vector register.
<Qn> First source vector register.
<Qm> Second source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1259

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[n, curBeat];
8 op2 = Q[m, curBeat];
9 for e = 0 to elements-1

10 value = Int(Elem[op1, e, esize], unsigned) + Int(Elem[op2, e, esize], unsigned);
11 Elem[result, e, esize] = (value + 1)[esize:1];
12
13 for e = 0 to 3
14 if elmtMask[e] == '1' then
15 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1260

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.448 VRINT (floating-point)

Vector Round Integer. Round a floating-point value to an integer value. The result remains in floating-point format.
It is not converted to an integer.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE with Half-precision and Single-precision Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Qd 0 0 1 op 1 M 0 Qm 0

T1: VRINT variant

VRINT<op><v>.<dt> Qd, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveFp);
2 if D == '1' || M == '1' then UNDEFINED;
3 if op == '1x0' then UNDEFINED;
4 if size IN {'11', '00'} then UNDEFINED;
5 d = UInt(D:Qd);
6 m = UInt(M:Qm);
7 esize = 8 << UInt(size);
8 elements = 32 DIV esize;
9 case op of

10 when '010' // A, Round to nearest, with ties away
11 rmode = '01'; away = TRUE; exact = FALSE;
12 when '000' // N, Round to nearest, with ties to even
13 rmode = '00'; away = FALSE; exact = FALSE;
14 when '111' // P, Round towards Plus Infinity
15 rmode = '01'; away = FALSE; exact = FALSE;
16 when '101' // M, Round towards Minus Infinity
17 rmode = '10'; away = FALSE; exact = FALSE;
18 when '001' // X, Round to nearest with ties to even, raising inexact
19 // exception if result not numerically equal to input
20 rmode = '00'; away = FALSE; exact = TRUE;
21 when '011' // Z, Round towards zero
22 rmode = '11'; away = FALSE; exact = FALSE;
23 otherwise
24 UNDEFINED;
25 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<op> The rounding mode.
This parameter must be one of the following values:
N Encoded as op = 000

Round to nearest with ties to even
X Encoded as op = 001

Round to nearest with ties to even, raising inexact exception if result not numerically
equal to input
A Encoded as op = 010

Round to nearest with ties to away

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1261

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Z Encoded as op = 011
Round towards zero

M Encoded as op = 101
Round towards minus infinity

P Encoded as op = 111
Round towards plus infinity

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> Size: indicates the floating-point format used.

This parameter must be one of the following values:
F16 Encoded as size = 01
F32 Encoded as size = 10

<Qd> Destination vector register.
<Qm> Source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[m, curBeat];
8 for e = 0 to elements-1
9 // Avoid Floating-point exceptions on a predicated lane by checking the element mask

10 pred = (elmtMask[e*(esize>>3)] == '0');
11 conv = FPRoundInt(Elem[op1, e, esize], rmode, away, exact, FALSE, pred);
12 Elem[result, e, esize] = conv;
13
14 for e = 0 to 3
15 if elmtMask[e] == '1' then
16 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1262

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.449 VRINTA

Floating-point Round to Nearest Integer with Ties to Away. Floating-point Round to Nearest Integer with Ties to
Away rounds a floating-point value to an integral floating-point value of the same size using the Round to Nearest
with Ties to Away rounding mode. A zero input gives a zero result with the same sign, an infinite input gives an
infinite result with the same sign, and a NaN is propagated as for normal arithmetic.

T1
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 1 D 1 1 1 0 RM = 00 Vd 1 0 size 0 1 M 0 Vm

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when size == 01.

VRINTA{<q>}.F16.F16 <Sd>, <Sm>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VRINTA{<q>}.F32.F32 <Sd>, <Sm>

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VRINTA{<q>}.F64.F64 <Dd>, <Dm>

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (M == '1' || D == '1') then UNDEFINED;
4 if InITBlock() then UNPREDICTABLE;
5 case RM of
6 when '00' // Round to nearest, with ties away
7 rmode = '01'; away = TRUE;
8 when '01' // Round to nearest, with ties to even
9 rmode = '00'; away = FALSE;

10 when '10' // Round towards Plus Infinity
11 rmode = '01'; away = FALSE;
12 when '11' // Round towards Minus Infinity
13 rmode = '10'; away = FALSE;
14 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
15 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols for all encodings

<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.
<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.
<Dm> Is the 64-bit name of the floating-point source register, encoded in the "M:Vm" field.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1263

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4
5 exact = FALSE;
6
7 case size of
8 when '01'
9 S[d] = Zeros(16) : FPRoundInt(S[m][15:0], rmode, away, exact, TRUE);

10 when '10'
11 S[d] = FPRoundInt(S[m], rmode, away, exact, TRUE);
12 when '11'
13 D[d] = FPRoundInt(D[m], rmode, away, exact, TRUE);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1264

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.450 VRINTM

Floating-point Round to Integer towards -Infinity. Floating-point Round to Integer towards -Infinity rounds a
floating-point value to an integral floating-point value of the same size using the Round towards -Infinity rounding
mode. A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same
sign, and a NaN is propagated as for normal arithmetic.

T1
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 1 D 1 1 1 0 RM = 11 Vd 1 0 size 0 1 M 0 Vm

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when size == 01.

VRINTM{<q>}.F16.F16 <Sd>, <Sm>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VRINTM{<q>}.F32.F32 <Sd>, <Sm>

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VRINTM{<q>}.F64.F64 <Dd>, <Dm>

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (M == '1' || D == '1') then UNDEFINED;
4 if InITBlock() then UNPREDICTABLE;
5 case RM of
6 when '00' // Round to nearest, with ties away
7 rmode = '01'; away = TRUE;
8 when '01' // Round to nearest, with ties to even
9 rmode = '00'; away = FALSE;

10 when '10' // Round towards Plus Infinity
11 rmode = '01'; away = FALSE;
12 when '11' // Round towards Minus Infinity
13 rmode = '10'; away = FALSE;
14 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
15 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols for all encodings

<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.
<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.
<Dm> Is the 64-bit name of the floating-point source register, encoded in the "M:Vm" field.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1265

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4
5 exact = FALSE;
6
7 case size of
8 when '01'
9 S[d] = Zeros(16) : FPRoundInt(S[m][15:0], rmode, away, exact, TRUE);

10 when '10'
11 S[d] = FPRoundInt(S[m], rmode, away, exact, TRUE);
12 when '11'
13 D[d] = FPRoundInt(D[m], rmode, away, exact, TRUE);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1266

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.451 VRINTN

Floating-point Round to Nearest Integer with Ties to Even. Floating-point Round to Nearest Integer with Ties to
Even rounds a floating-point value to an integral floating-point value of the same size using the Round to Nearest
rounding mode. A zero input gives a zero result with the same sign, an infinite input gives an infinite result with
the same sign, and a NaN is propagated as for normal arithmetic.

T1
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 1 D 1 1 1 0 RM = 01 Vd 1 0 size 0 1 M 0 Vm

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when size == 01.

VRINTN{<q>}.F16.F16 <Sd>, <Sm>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VRINTN{<q>}.F32.F32 <Sd>, <Sm>

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VRINTN{<q>}.F64.F64 <Dd>, <Dm>

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (M == '1' || D == '1') then UNDEFINED;
4 if InITBlock() then UNPREDICTABLE;
5 case RM of
6 when '00' // Round to nearest, with ties away
7 rmode = '01'; away = TRUE;
8 when '01' // Round to nearest, with ties to even
9 rmode = '00'; away = FALSE;

10 when '10' // Round towards Plus Infinity
11 rmode = '01'; away = FALSE;
12 when '11' // Round towards Minus Infinity
13 rmode = '10'; away = FALSE;
14 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
15 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols for all encodings

<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.
<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.
<Dm> Is the 64-bit name of the floating-point source register, encoded in the "M:Vm" field.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1267

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4
5 exact = FALSE;
6
7 case size of
8 when '01'
9 S[d] = Zeros(16) : FPRoundInt(S[m][15:0], rmode, away, exact, TRUE);

10 when '10'
11 S[d] = FPRoundInt(S[m], rmode, away, exact, TRUE);
12 when '11'
13 D[d] = FPRoundInt(D[m], rmode, away, exact, TRUE);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1268

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.452 VRINTP

Floating-point Round to Integer towards +Infinity. Floating-point Round to Integer towards +Infinity rounds a
floating-point value to an integral floating-point value of the same size using the Round towards +Infinity rounding
mode. A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same
sign, and a NaN is propagated as for normal arithmetic.

T1
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 1 D 1 1 1 0 RM = 10 Vd 1 0 size 0 1 M 0 Vm

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when size == 01.

VRINTP{<q>}.F16.F16 <Sd>, <Sm>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VRINTP{<q>}.F32.F32 <Sd>, <Sm>

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VRINTP{<q>}.F64.F64 <Dd>, <Dm>

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (M == '1' || D == '1') then UNDEFINED;
4 if InITBlock() then UNPREDICTABLE;
5 case RM of
6 when '00' // Round to nearest, with ties away
7 rmode = '01'; away = TRUE;
8 when '01' // Round to nearest, with ties to even
9 rmode = '00'; away = FALSE;

10 when '10' // Round towards Plus Infinity
11 rmode = '01'; away = FALSE;
12 when '11' // Round towards Minus Infinity
13 rmode = '10'; away = FALSE;
14 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
15 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols for all encodings

<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.
<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.
<Dm> Is the 64-bit name of the floating-point source register, encoded in the "M:Vm" field.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1269

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4
5 exact = FALSE;
6
7 case size of
8 when '01'
9 S[d] = Zeros(16) : FPRoundInt(S[m][15:0], rmode, away, exact, TRUE);

10 when '10'
11 S[d] = FPRoundInt(S[m], rmode, away, exact, TRUE);
12 when '11'
13 D[d] = FPRoundInt(D[m], rmode, away, exact, TRUE);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1270

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.453 VRINTR

Floating-point Round to Integer. Floating-point Round to Integer rounds a floating-point value to an integral
floating-point value of the same size using the rounding mode specified in FPSCR. A zero input gives a zero result
with the same sign, an infinite input gives an infinite result with the same sign, and a NaN is propagated as for
normal arithmetic.

T1
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 0 1 1 0 Vd 1 0 size

op = 0

1 M 0 Vm

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when size == 01.

VRINTR{<c>}{<q>}.F16.F16 <Sd>, <Sm>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VRINTR{<c>}{<q>}.F32.F32 <Sd>, <Sm>

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VRINTR{<c>}{<q>}.F64.F64 <Dd>, <Dm>

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (M == '1' || D == '1') then UNDEFINED;
4 if size == '01' && InITBlock() then UNPREDICTABLE;
5 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
6 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.
<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.
<Dm> Is the 64-bit name of the floating-point source register, encoded in the "M:Vm" field.

Operation for all encodings
1 if ConditionPassed() then

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1271

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4
5 rmode = if op == '1' then '11' else FPSCR.RMode;
6 exact = FALSE;
7 away = FALSE;
8
9 case size of

10 when '01'
11 S[d] = Zeros(16) : FPRoundInt(S[m][15:0], rmode, away, exact, TRUE);
12 when '10'
13 S[d] = FPRoundInt(S[m], rmode, away, exact, TRUE);
14 when '11'
15 D[d] = FPRoundInt(D[m], rmode, away, exact, TRUE);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1272

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.454 VRINTX

Floating-point Round to Integer, raising Inexact exception. This instruction rounds a floating-point value to an
integral floating-point value of the same size. A zero input gives a zero result with the same sign, an infinite input
gives an infinite result with the same sign, and a NaN is propagated as for normal arithmetic.

VRINTX uses the rounding mode specified in FPSCR, and raises an Inexact exception when the result value is not
numerically equal to the input value.

T1
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 0 1 1 1 Vd 1 0 size 0 1 M 0 Vm

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when size == 01.

VRINTX{<c>}{<q>}.F16.F16 <Sd>, <Sm>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VRINTX{<c>}{<q>}.F32.F32 <Sd>, <Sm>

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VRINTX{<c>}{<q>}.F64.F64 <Dd>, <Dm>

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (M == '1' || D == '1') then UNDEFINED;
4 if size == '01' && InITBlock() then UNPREDICTABLE;
5 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
6 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.
<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.
<Dm> Is the 64-bit name of the floating-point source register, encoded in the "M:Vm" field.

Operation for all encodings
1 if ConditionPassed() then

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1273

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4
5 rmode = FPSCR[23:22];
6 away = FALSE;
7 exact = TRUE;
8
9 case size of

10 when '01'
11 S[d] = Zeros(16) : FPRoundInt(S[m][15:0], rmode, away, exact, TRUE);
12 when '10'
13 S[d] = FPRoundInt(S[m], rmode, away, exact, TRUE);
14 when '11'
15 D[d] = FPRoundInt(D[m], rmode, away, exact, TRUE);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1274

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.455 VRINTZ

Floating-point Round to Integer towards Zero. Floating-point Round to Integer towards Zero rounds a floating-point
value to an integral floating-point value of the same size, using the Round towards Zero rounding mode. A zero
input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and a NaN
is propagated as for normal arithmetic.

T1
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 0 1 1 0 Vd 1 0 size

op = 1

1 M 0 Vm

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when size == 01.

VRINTZ{<c>}{<q>}.F16.F16 <Sd>, <Sm>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VRINTZ{<c>}{<q>}.F32.F32 <Sd>, <Sm>

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VRINTZ{<c>}{<q>}.F64.F64 <Dd>, <Dm>

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (M == '1' || D == '1') then UNDEFINED;
4 if size == '01' && InITBlock() then UNPREDICTABLE;
5 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
6 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.
<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.
<Dm> Is the 64-bit name of the floating-point source register, encoded in the "M:Vm" field.

Operation for all encodings
1 if ConditionPassed() then

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1275

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4
5 rmode = if op == '1' then '11' else FPSCR.RMode;
6 exact = FALSE;
7 away = FALSE;
8
9 case size of

10 when '01'
11 S[d] = Zeros(16) : FPRoundInt(S[m][15:0], rmode, away, exact, TRUE);
12 when '10'
13 S[d] = FPRoundInt(S[m], rmode, away, exact, TRUE);
14 when '11'
15 D[d] = FPRoundInt(D[m], rmode, away, exact, TRUE);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1276

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.456 VRMLALDAVH

Vector Rounding Multiply Add Long Dual Accumulate Across Vector Returning High 64 bits. The elements of the
vector registers are handled in pairs. In the base variant, corresponding elements from the two source registers
are multiplied together, whereas the exchange variant swaps the values in each pair of values read from the first
source register, before multiplying them with the values from the second source register. The results of the pairs of
multiply operations are combined by adding them together. At the end of each beat these results are accumulated.
The upper 64 bits of a 72-bit accumulator value is selected and stored across two registers, the top 32 bits are
stored in an even-numbered register and the lower 32 bits are stored in an odd-numbered register. The initial value
of the general-purpose destination registers can optionally be shifted up by 8 bits and added to the result. The
result is rounded before the top 64 bits are selected.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 0 1 RdaHi Qn 0 RdaLo X 1 1 1 1 N 0 A 0 Qm 0

T1: VRMLALDAVH variant

VRMLALDAVH{A}{X}<v>.<dt> RdaLo, RdaHi, Qn, Qm

Decode for this encoding
1 if RdaHi == '11x' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if N == '1' then UNDEFINED;
4 if U == '1' && X == '1' then UNDEFINED;
5 dah = UInt(RdaHi:'1');
6 dal = UInt(RdaLo:'0');
7 m = UInt(Qm);
8 n = UInt(N:Qn);
9 exchange = (X == '1');

10 accumulate = (A == '1');
11 esize = 32;
12 elements = 32 DIV esize;
13 unsigned = (U == '1');
14 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<A> Accumulate with existing register contents.
This parameter must be one of the following values:
- Encoded as A = 0
A Encoded as A = 1

<X> Exchange adjacent pairs of values in Qm.
This parameter must be one of the following values:
- Encoded as X = 0
X Encoded as X = 1

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> Unsigned flag: S indicates signed, U indicates unsigned.

This parameter must be one of the following values:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1277

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

S32 Encoded as U = 0
U32 Encoded as U = 1

<RdaLo> General-purpose register for the low-half of the 64-bit source and destination. This must be an
even numbered register.

<RdaHi> General-purpose register for the high-half of the 64-bit source and destination. This must be
an odd numbered register.

<Qn> First source vector register.
<Qm> Second source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = if accumulate || !IsFirstBeat() then Int(R[dah]:R[dal], unsigned) << 8 else 0;
7 if elmtMask[0] == '1' then
8 if exchange then
9 if curBeat[0] == '0' then

10 mul = Int(Q[n, curBeat+1], unsigned) * Int(Q[m, curBeat], unsigned);
11 else
12 mul = Int(Q[n, curBeat-1], unsigned) * Int(Q[m, curBeat], unsigned);
13 else
14 mul = Int(Q[n, curBeat], unsigned) * Int(Q[m, curBeat], unsigned);
15 result = result + mul + (1 << 7);
16 R[dah] = result[71:40];
17 R[dal] = result[39:8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1278

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.457 VRMLALVH

Vector Multiply Accumulate Long Across Vector Returning High 64 bits. This is an alias of VRMLALDAVH
without exchange.

This is an alias of VRMLALDAVH with the following condition satisfied: X==0.

This alias is the preferred disassembly.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 0 1 RdaHi Qn 0 RdaLo 0 1 1 1 1 N 0 A 0 Qm 0

VRMLALVH variant

VRMLALVH{A}<v>.<dt> RdaLo, RdaHi, Qn, Qm

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1279

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.458 VRMLSLDAVH

Vector Rounding Multiply Subtract Long Dual Accumulate Across Vector Returning High 64 bits. The elements of
the vector registers are handled in pairs. In the base variant, corresponding elements from the two source registers
are multiplied together, whereas the exchange variant swaps the values in each pair of values read from the first
source register, before multiplying them with the values from the second source register. The results of the pairs
of multiply operations are combined by subtracting one from the other. At the end of each beat these results are
accumulated. The upper 64 bits of a 72-bit accumulator value is selected and stored across two registers, the top 32
bits are stored in an even-numbered register and the lower 32 bits are stored in an odd-numbered register. The
initial value of the general-purpose destination registers can optionally be shifted up by 8 bits and added to the
result. The result is rounded before the top 64 bits are selected.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 1 RdaHi Qn 0 RdaLo X 1 1 1 0 N 0 A 0 Qm 1

T1: VRMLSLDAVH variant

VRMLSLDAVH{A}{X}<v>.S32 RdaLo, RdaHi, Qn, Qm

Decode for this encoding
1 if RdaHi == '111' then SEE "VMLSDAV";
2 CheckDecodeFaults(ExtType_Mve);
3 if N == '1' then UNDEFINED;
4 dah = UInt(RdaHi:'1');
5 dal = UInt(RdaLo:'0');
6 m = UInt(Qm);
7 n = UInt(N:Qn);
8 exchange = (X == '1');
9 accumulate = (A == '1');

10 esize = 32;
11 elements = 32 DIV esize;
12 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
13 if RdaHi == '110' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<A> Accumulate with existing register contents.
This parameter must be one of the following values:
- Encoded as A = 0
A Encoded as A = 1

<X> Exchange adjacent pairs of values in Qm.
This parameter must be one of the following values:
- Encoded as X = 0
X Encoded as X = 1

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<RdaLo> General-purpose register for the low-half of the 64-bit source and destination. This must be an

even numbered register.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1280

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

<RdaHi> General-purpose register for the high-half of the 64-bit source and destination. This must be
an odd numbered register.

<Qn> First source vector register.
<Qm> Second source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = if accumulate || !IsFirstBeat() then SInt(R[dah]:R[dal]) << 8 else 0;
7 if elmtMask[0] == '1' then
8 if exchange then
9 if curBeat[0] == '0' then

10 mul = SInt(Q[n, curBeat+1]) * SInt(Q[m, curBeat]);
11 else
12 mul = SInt(Q[n, curBeat-1]) * SInt(Q[m, curBeat]);
13 else
14 mul = SInt(Q[n, curBeat]) * SInt(Q[m, curBeat]);
15 if curBeat[0] == '0' then
16 result = result + mul + (1 << 7);
17 else
18 result = result - mul + (1 << 7);
19 R[dah] = result[71:40];
20 R[dal] = result[39:8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1281

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.459 VRSHL

Vector Rounding Shift Left. The vector variant shifts each element of the first vector by a value from the least
significant byte of the corresponding element of the second vector and places the results in the destination vector.

The register variants shift each element of a vector register by the value specified in a source register. The direction
of the shift depends on the sign of the element from the second vector register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 0 D size Qn 0 Qd 0 0 1 0 1 N 1 M 0 Qm 0

T1: VRSHL variant

VRSHL<v>.<dt> Qd, Qm, Qn

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || M == '1' || N == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 n = UInt(N:Qn);
7 unsigned = (U == '1');
8 withScalar = FALSE;
9 withVector = TRUE;

10 esize = 8 << UInt(size);
11 elements = 32 DIV esize;
12 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 0 0 Da 1 1 size 1 1 Qda 1 1 1 1 0 0 1 1 0 Rm

T2: VRSHL variant

VRSHL<v>.<dt> Qda, Rm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if Da == '1' then UNDEFINED;
4 da = UInt(Da:Qda);
5 m = UInt(Rm);
6 d = da;
7 n = m;
8 m = da;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1282

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

9 unsigned = (U == '1');
10 withScalar = TRUE;
11 withVector = FALSE;
12 esize = 8 << UInt(size);
13 elements = 32 DIV esize;
14 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
15 if Rm == '11x1' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> This parameter determines the following values:

– Unsigned flag: S indicates signed, U indicates unsigned.
– Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
S8 Encoded as size = 00, U = 0
U8 Encoded as size = 00, U = 1
S16 Encoded as size = 01, U = 0
U16 Encoded as size = 01, U = 1
S32 Encoded as size = 10, U = 0
U32 Encoded as size = 10, U = 1

<Qd> Destination vector register.
<Qda> Source and destination vector register.
<Qm> Source vector register.
<Qn> Source vector register, the elements of which containing the amount to shift by.
<Rm> Source general-purpose register containing the amount to shift by.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[m, curBeat];
8 if withVector then
9 op2 = Q[n, curBeat];

10 if withScalar then
11 shiftAmount = SInt(R[n][7:0]);
12 for e = 0 to elements-1
13 if withVector then
14 shiftAmount = SInt(Elem[op2, e, esize][7:0]);
15 // 0 for left shift, 2^(n-1) for right shift
16 round_const = 1 << (-1-shiftAmount);
17 operand = Int(Elem[op1, e, esize], unsigned);
18 Elem[result, e, esize] = ((operand + round_const) << shiftAmount)[esize-1:0];
19
20 for e = 0 to 3
21 if elmtMask[e] == '1' then
22 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1283

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.460 VRSHR

Vector Rounding Shift Right. The immediate variant shifts each element of a vector register to the right by the
immediate value.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 1 D sz imm Qd 0 0 0 1 0 0 1 M 1 Qm 0

T1: VRSHR variant

VRSHR<v>.<dt> Qd, Qm, #<imm>

Decode for this encoding
1 if sz == '000' then SEE "VMOV";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || M == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 unsigned = (U == '1');
7 n = integer UNKNOWN;
8 imm6 = sz:imm;
9 case sz of

10 when '001' size = '00'; shiftAmount = 16 - UInt(imm6);
11 when '01x' size = '01'; shiftAmount = 32 - UInt(imm6);
12 when '1xx' size = '10'; shiftAmount = 64 - UInt(imm6);
13 otherwise UNDEFINED;
14 withScalar = FALSE;
15 withVector = FALSE;
16 esize = 8 << UInt(size);
17 elements = 32 DIV esize;
18 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> This parameter determines the following values:

– Unsigned flag: S indicates signed, U indicates unsigned.
– The size of the elements in the vector.
This parameter must be one of the following values:
S8 Encoded as sz = 001, U = 0
U8 Encoded as sz = 001, U = 1
S16 Encoded as sz = 01x, U = 0
U16 Encoded as sz = 01x, U = 1
S32 Encoded as sz = 1xx, U = 0
U32 Encoded as sz = 1xx, U = 1

<Qd> Destination vector register.
<Qm> Source vector register.
<imm> The number of bits to shift by, in the range 1 to <dt>. The encoding of this field is a logical

OR of the most significant bits of the imm parameter and the least significant bits of the size
field (sz).

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1284

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[m, curBeat];
8 if withVector then
9 op2 = Q[n, curBeat];

10 if withScalar then
11 shiftAmount = SInt(R[n][7:0]);
12 for e = 0 to elements-1
13 if withVector then
14 shiftAmount = SInt(Elem[op2, e, esize][7:0]);
15 // 0 for left shift, 2^(n-1) for right shift
16 round_const = 1 << (shiftAmount-1);
17 operand = Int(Elem[op1, e, esize], unsigned);
18 Elem[result, e, esize] = ((operand + round_const) >> shiftAmount)[esize-1:0];
19
20 for e = 0 to 3
21 if elmtMask[e] == '1' then
22 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1285

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.461 VRSHRN

Vector Rounding Shift Right and Narrow. Performs an element-wise narrowing to half-width, with shift, writing
the rounded result to either the top half (T variant) or bottom half (B variant) of the result element. The other half
of the destination vector element retains its previous value.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 1 D 0 sz imm Qd T 1 1 1 1 1 1 M 0 Qm 1

T1: VRSHRN variant

VRSHRN<T><v>.<dt> Qd, Qm, #<imm>

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 m = UInt(M:Qm);
5 imm5 = sz:imm;
6 case sz of
7 when '01' size = '00'; shiftAmount = 16 - UInt(imm5);
8 when '1x' size = '01'; shiftAmount = 32 - UInt(imm5);
9 otherwise UNDEFINED;

10 esize = 8 << UInt(size);
11 elements = 16 DIV esize;
12 top = UInt(T);
13 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<T> Specifies which half of the result element the result is written to.
This parameter must be one of the following values:
B Encoded as T = 0

Indicates bottom half
T Encoded as T = 1

Indicates top half
<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> The size of the elements in the vector.

This parameter must be one of the following values:
I16 Encoded as sz = 01
I32 Encoded as sz = 1x

<Qd> Destination vector register.
<Qm> Source vector register.
<imm> The number of bits to shift by, in the range 1 to <dt>/2. The encoding of this field is a logical

OR of the most significant bits of the imm parameter and the least significant bits of the size
field (sz).

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1286

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 op1 = Q[m, curBeat];
7 result = Q[d, curBeat];
8 for e = 0 to elements-1
9 operand = UInt(Elem[op1, e, 2*esize]);

10 // 0 for left shift, 2^(n-1) for right shift
11 operand = operand + (1 << (shiftAmount-1));
12 operand = operand >> shiftAmount;
13 Elem[result, 2*e + top, esize] = operand[esize-1:0];
14
15 for e = 0 to 3
16 if elmtMask[e] == '1' then
17 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1287

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.462 VSBC

Whole Vector Subtract With Carry. Beat-wise subtracts the value of the elements in the second source vector
register and the value of NOT(Carry flag) from the respective elements in the first source vector register, the carry
flag being FPSCR.C. The initial value of FPSCR.C can be overridden by using the I variant. FPSCR.C is not
updated for beats disabled due to predication. FPSCR.N, .V and .Z are zeroed.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 0 D 1 1 Qn 0 Qd I 1 1 1 1 N 0 M 0 Qm 0

T1: VSBC variant

VSBC{I}<v>.I32 Qd, Qn, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' || N == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 m = UInt(M:Qm);
5 n = UInt(N:Qn);
6 carryInit = (I == '1');
7 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<I> Specifies where the initial carry in for wide arithmetic comes from.
This parameter must be one of the following values:
- Encoded as I = 0

Indicates carry input comes from FPSCR.C.
I Encoded as I = 1

Indicates carry input is 1.
<v> See C1.2.5 Standard assembler syntax fields on page 431.
<Qd> Destination vector register.
<Qn> First source vector register.
<Qm> Second source vector register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 op1 = Q[n, curBeat];
7 op2 = NOT(Q[m, curBeat]);
8 if carryInit && IsFirstBeat() then
9 (FPSCR.N, FPSCR.Z, FPSCR.C, FPSCR.V) = ('0', '0', '1', '0');

10 (result, carryOut, -) = AddWithCarry(op1, op2, FPSCR.C);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1288

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

11 if elmtMask[0] == '1' then
12 (FPSCR.N, FPSCR.Z, FPSCR.C, FPSCR.V) = ('0', '0', carryOut, '0');
13
14 for e = 0 to 3
15 if elmtMask[e] == '1' then
16 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1289

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.463 VSCCLRM

Floating-point Secure Context Clear Multiple. Zeros VPR and the specified floating-point registers if there is an
active floating-point context. This instruction is UNDEFINED if executed in Non-secure state. This instruction is
present on all PEs that implement the Armv8.1-M architecture, even if the Floating-point Extension is not present.
It is IMPLEMENTATION DEFINED whether this instruction is interrupt-continuable. See EPSR.ICI. If an exception
returns to this instruction with non-zero EPSR.ICI bits, and the PE does not support interrupt-continuable behavior,
the instruction restarts from the beginning. If the Floating-point Extension is not implemented, access to the
FPCXT payload is RES0. It is permissible to specify any or none of the the floating-point registers to be cleared,
but the VPR must always be specified

T1
Armv8.1-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 0 1 D 0 1 1 1 1 1 Vd 1 0 1 1 imm7 0

T1: VSCCLRM variant

VSCCLRM<c> <dreglist>

Decode for this encoding
1
2 // If the Armv8.1-M extensions are not implemented this instruction will raise a
3 // NOCP or an UNDEFINSTR UsageFault depending on whether the co-processor is
4 // enabled.
5 if !HasArchVersion(Armv8p1) then
6 HandleException(CheckCPEnabled(10));
7 UNDEFINED;
8 if !HaveMainExt() || !IsSecure() then
9 UNDEFINED;

10 if HaveMveOrFPExt() && (FPCCR.ASPEN == '0' || CONTROL_S.SFPA == '1') then
11 HandleException(CheckCPEnabled(10));
12 singleRegs = FALSE;
13 d = UInt(D:Vd);
14 regs = UInt(imm7);
15 topReg = d+regs-1;
16 if topReg > 31 then UNPREDICTABLE;

T2
Armv8.1-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 0 1 D 0 1 1 1 1 1 Vd 1 0 1 0 imm8

T2: VSCCLRM variant

VSCCLRM<c> <sreglist>

Decode for this encoding
1
2 // If the Armv8.1-M extensions are not implemented this instruction will raise a
3 // NOCP or an UNDEFINSTR UsageFault depending on whether the co-processor is
4 // enabled.
5 if !HasArchVersion(Armv8p1) then

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1290

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

6 HandleException(CheckCPEnabled(10));
7 UNDEFINED;
8 if !HaveMainExt() || !IsSecure() then
9 UNDEFINED;

10 if HaveMveOrFPExt() && (FPCCR.ASPEN == '0' || CONTROL_S.SFPA == '1') then
11 HandleException(CheckCPEnabled(10));
12 singleRegs = TRUE;
13 d = UInt(Vd:D);
14 regs = UInt(imm8);
15 topReg = d+regs-1;
16 if topReg > 63 then UNPREDICTABLE;
17 if topReg > 31 && topReg[0] == '0' then UNPREDICTABLE;

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<dreglist> Is the list of consecutively numbered 64-bit floating-point registers to be cleared, separated by

commas and surrounded by { and }. The first register in the list is encoded in "D:Vd", and
"imm7" is set to the number of registers in the list. Because this instruction always clears the
VPR register, it is mandatory to have VPR in the register list

<sreglist> Is the list of consecutively numbered 32-bit floating-point registers to be cleared, separated by
commas and surrounded by { and }. The first register in the list is encoded in "Vd:D", and
"imm8" is set to the number of registers in the list. Registers above S31 are specified by using
D registers in the register list. Because this instruction always clears the VPR register, it is
mandatory to have VPR in the register list

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3
4 if HaveMveOrFPExt() && (FPCCR.ASPEN == '0' || CONTROL_S.SFPA == '1') then
5 ExecuteFPCheck();
6
7 for r = 0 to regs-1
8 if singleRegs then
9 if (d+r) < 32 || !VFPSmallRegisterBank() then

10 S[d+r] = Zeros();
11 else
12 if (d+r) < 16 || !VFPSmallRegisterBank() then
13 D[d+r] = Zeros();
14 VPR = Zeros(32);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1291

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.464 VSEL

Floating-point Conditional Select. Floating-point Conditional Select allows the destination register to take the
value from either one or the other of two source registers according to the condition codes in the APSR.

The condition codes for VSEL are limited to GE, GT, EQ, and VS. The effect of LT, LE, NE, and VC can be
achieved by exchanging the source operands.

T1
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 0 D cc Vn Vd 1 0 size N 0 M 0 Vm

VSELEQ, Double-precision variant

Armv8-M Floating-point Extension only.

Applies when cc == 00 && size == 11.

VSELEQ.F64 <Dd>, <Dn>, <Dm>
// Not permitted in IT block

VSELEQ, Half-precision variant

Armv8.1-M Floating-point Extension only.

Applies when cc == 00 && size == 01.

VSELEQ.F16 <Sd>, <Sn>, <Sm>
// Not permitted in IT block

VSELEQ, Single-precision variant

Armv8-M Floating-point Extension only.

Applies when cc == 00 && size == 10.

VSELEQ.F32 <Sd>, <Sn>, <Sm>
// Not permitted in IT block

VSELGE, Double-precision variant

Armv8-M Floating-point Extension only.

Applies when cc == 10 && size == 11.

VSELGE.F64 <Dd>, <Dn>, <Dm>
// Not permitted in IT block

VSELGE, Half-precision variant

Armv8.1-M Floating-point Extension only.

Applies when cc == 10 && size == 01.

VSELGE.F16 <Sd>, <Sn>, <Sm>
// Not permitted in IT block

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1292

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

VSELGE, Single-precision variant

Armv8-M Floating-point Extension only.

Applies when cc == 10 && size == 10.

VSELGE.F32 <Sd>, <Sn>, <Sm>
// Not permitted in IT block

VSELGT, Double-precision variant

Armv8-M Floating-point Extension only.

Applies when cc == 11 && size == 11.

VSELGT.F64 <Dd>, <Dn>, <Dm>
// Not permitted in IT block

VSELGT, Half-precision variant

Armv8.1-M Floating-point Extension only.

Applies when cc == 11 && size == 01.

VSELGT.F16 <Sd>, <Sn>, <Sm>
// Not permitted in IT block

VSELGT, Single-precision variant

Armv8-M Floating-point Extension only.

Applies when cc == 11 && size == 10.

VSELGT.F32 <Sd>, <Sn>, <Sm>
// Not permitted in IT block

VSELVS, Double-precision variant

Armv8-M Floating-point Extension only.

Applies when cc == 01 && size == 11.

VSELVS.F64 <Dd>, <Dn>, <Dm>
// Not permitted in IT block

VSELVS, Half-precision variant

Armv8.1-M Floating-point Extension only.

Applies when cc == 01 && size == 01.

VSELVS.F16 <Sd>, <Sn>, <Sm>
// Not permitted in IT block

VSELVS, Single-precision variant

Armv8-M Floating-point Extension only.

Applies when cc == 01 && size == 10.

VSELVS.F32 <Sd>, <Sn>, <Sm>
// Not permitted in IT block

Decode for this encoding

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1293

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (M == '1' || N == '1' || D == '1') then
4 UNDEFINED;
5 if InITBlock() then UNPREDICTABLE;
6 cond = cc:(cc[1] EOR cc[0]):'0';
7 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
8 n = if dp_operation then UInt(N:Vn) else UInt(Vn:N);
9 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols for all encodings

<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.
<Dn> Is the 64-bit name of the first floating-point source register, encoded in the "N:Vn" field.
<Dm> Is the 64-bit name of the second floating-point source register, encoded in the "M:Vm" field.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sn> Is the 32-bit name of the first floating-point source register, encoded in the "Vn:N" field.
<Sm> Is the 32-bit name of the second floating-point source register, encoded in the "Vm:M" field.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 case size of
5 when '01'
6 S[d] = Zeros(16) : (if ConditionHolds(cond) then S[n] else S[m])[15:0];
7 when '10'
8 S[d] = if ConditionHolds(cond) then S[n] else S[m];
9 when '11'

10 D[d] = if ConditionHolds(cond) then D[n] else D[m];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1294

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.465 VSHL

Vector Shift Left. The immediate variant shifts each element of a vector register to the left by the immediate value.

The register variants shift each element of a vector register by the value specified in a source register. The direction
of the shift depends on the sign of the element from the second vector register.

The vector variant shifts each element of the first vector by a value from the least significant byte of the corre-
sponding element of the second vector and places the results in the destination vector.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 1 D sz imm Qd 0 0 1 0 1 0 1 M 1 Qm 0

T1: VSHL variant

VSHL<v>.<dt> Qd, Qm, #<imm>

Decode for this encoding
1 if sz == '000' then SEE "VMOV";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || M == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 unsigned = TRUE;
7 n = integer UNKNOWN;
8 imm6 = sz:imm;
9 case sz of

10 when '001' size = '00'; shiftAmount = UInt(imm6) - 8;
11 when '01x' size = '01'; shiftAmount = UInt(imm6) - 16;
12 when '1xx' size = '10'; shiftAmount = UInt(imm6) - 32;
13 otherwise UNDEFINED;
14 withScalar = FALSE;
15 withVector = FALSE;
16 esize = 8 << UInt(size);
17 elements = 32 DIV esize;
18 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 0 0 Da 1 1 size 0 1 Qda 1 1 1 1 0 0 1 1 0 Rm

T2: VSHL variant

VSHL<v>.<dt> Qda, Rm

Decode for this encoding

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1295

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if Da == '1' then UNDEFINED;
4 da = UInt(Da:Qda);
5 m = UInt(Rm);
6 d = da;
7 n = m;
8 m = da;
9 unsigned = (U == '1');

10 withScalar = TRUE;
11 withVector = FALSE;
12 esize = 8 << UInt(size);
13 elements = 32 DIV esize;
14 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
15 if Rm == '11x1' then CONSTRAINED_UNPREDICTABLE;

T3
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 0 D size Qn 0 Qd 0 0 1 0 0 N 1 M 0 Qm 0

T3: VSHL variant

VSHL<v>.<dt> Qd, Qm, Qn

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || M == '1' || N == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 n = UInt(N:Qn);
7 unsigned = (U == '1');
8 withScalar = FALSE;
9 withVector = TRUE;

10 esize = 8 << UInt(size);
11 elements = 32 DIV esize;
12 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for T1 encodings

<dt> The size of the elements in the vector.
This parameter must be one of the following values:
I8 Encoded as sz = 001
I16 Encoded as sz = 01x
I32 Encoded as sz = 1xx

Assembler symbols for T2 encodings

<dt> This parameter determines the following values:
– Unsigned flag: S indicates signed, U indicates unsigned.
– Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
S8 Encoded as size = 00, U = 0
U8 Encoded as size = 00, U = 1
S16 Encoded as size = 01, U = 0

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1296

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

U16 Encoded as size = 01, U = 1
S32 Encoded as size = 10, U = 0
U32 Encoded as size = 10, U = 1

Assembler symbols for T3 encodings

<dt> This parameter determines the following values:
– Unsigned flag: S indicates signed, U indicates unsigned.
– Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
S8 Encoded as size = 00, U = 0
U8 Encoded as size = 00, U = 1
S16 Encoded as size = 01, U = 0
U16 Encoded as size = 01, U = 1
S32 Encoded as size = 10, U = 0
U32 Encoded as size = 10, U = 1

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<Qd> Destination vector register.
<Qda> Source and destination vector register.
<Qm> Source vector register.
<Qn> Source vector register, the elements of which containing the amount to shift by.
<Rm> Source general-purpose register containing the amount to shift by.
<imm> The number of bits to shift by, in the range 0 to <dt>-1. The encoding of this field is a logical

OR of the most significant bits of the imm parameter and the least significant bits of the size
field (sz).

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[m, curBeat];
8 if withVector then
9 op2 = Q[n, curBeat];

10 if withScalar then
11 shiftAmount = SInt(R[n][7:0]);
12 for e = 0 to elements-1
13 if withVector then
14 shiftAmount = SInt(Elem[op2, e, esize][7:0]);
15 operand = Int(Elem[op1, e, esize], unsigned);
16 Elem[result, e, esize] = (operand << shiftAmount)[esize-1:0];
17
18 for e = 0 to 3
19 if elmtMask[e] == '1' then
20 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1297

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.466 VSHLC

Whole Vector Left Shift with Carry. Logical shift left by 1-32 bits, with carry across beats, carry in from general-
purpose register, and carry out to the same general-purpose register. Permits treating a vector register as a single
128-bit scalar. The carry in is from the lower <imm> bits of the general-purpose register, not the upper bits.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 Da 1 imm Qda 0 1 1 1 1 1 1 0 0 Rdm

T1: VSHLC variant

VSHLC<v> Qda, Rdm, #<imm>

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if Da == '1' then UNDEFINED;
3 da = UInt(Da:Qda);
4 dm = UInt(Rdm);
5 (-, amount) = DecodeImmShift('10', imm);
6 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
7 if Rdm == '11x1' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<Qda> Source and destination vector register.
<Rdm> Source and destination general-purpose register for carry in and out.
<imm> The number of bits to shift by, in the range 1-32.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 (result, carry) = LSL_C(Q[da, curBeat], R[dm], amount);
7 if elmtMask[0] == '1' then
8 R[dm] = carry;
9

10 for e = 0 to 3
11 if elmtMask[e] == '1' then
12 Elem[Q[da, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1298

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.467 VSHLL

Vector Shift Left Long. Selects an element of 8 or 16-bits from either the top half (T variant) or bottom half (B
variant) of each source element, performs a left shift by an immediate value, performs a signed or unsigned left
shift by an immediate value and places the 16 or 32-bit results in the destination vector.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 0 1 D 1 sz imm Qd T 1 1 1 1 0 1 M 0 Qm 0

T1: VSHLL variant

VSHLL<T><v>.<dt> Qd, Qm, #<imm>

Decode for this encoding
1 if imm == '000' && sz IN {'10', '01'} then SEE "VMOVL";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || M == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 unsigned = (U == '1');
7 imm5 = sz:imm;
8 case sz of
9 when '01' size = '00'; shiftAmount = UInt(imm5) - 8;

10 when '1x' size = '01'; shiftAmount = UInt(imm5) - 16;
11 otherwise UNDEFINED;
12 esize = 8 << UInt(size);
13 elements = 16 DIV esize;
14 top = UInt(T);
15 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 0 0 D 1 1 size 0 1 Qd T 1 1 1 0 0 0 M 0 Qm 1

T2: VSHLL variant

VSHLL<T><v>.<dt> Qd, Qm, #<imm>

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || M == '1' then UNDEFINED;
4 if size == '10' then UNDEFINED;
5 d = UInt(D:Qd);
6 m = UInt(M:Qm);
7 unsigned = (U == '1');

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1299

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

8 esize = 8 << UInt(size);
9 elements = 16 DIV esize;

10 shiftAmount = esize;
11 top = UInt(T);
12 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for T1 encodings

<dt> This parameter determines the following values:
– Unsigned flag: S indicates signed, U indicates unsigned.
– The size of the elements in the vector.
This parameter must be one of the following values:
S8 Encoded as sz = 01, U = 0
U8 Encoded as sz = 01, U = 1
S16 Encoded as sz = 1x, U = 0
U16 Encoded as sz = 1x, U = 1

Assembler symbols for T2 encodings

<dt> This parameter determines the following values:
– Unsigned flag: S indicates signed, U indicates unsigned.
– Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
S8 Encoded as size = 00, U = 0
U8 Encoded as size = 00, U = 1
S16 Encoded as size = 01, U = 0
U16 Encoded as size = 01, U = 1

Assembler symbols for all encodings

<T> Specifies which half of the source element is used.
This parameter must be one of the following values:
B Encoded as T = 0

Indicates bottom half
T Encoded as T = 1

Indicates top half
<v> See C1.2.5 Standard assembler syntax fields on page 431.
<Qd> Destination vector register.
<Qm> Source vector register.
<imm> The number of bits to shift by, in the range 1 to <dt>. The encoding of this field is a logical

OR of the most significant bits of the imm parameter and the least significant bits of the size
field (sz). If <imm> == <dt> the encoding is T2, otherwise the encoding is T1

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[m, curBeat];
8 for e = 0 to elements-1
9 operand = Int(Elem[op1, 2*e + top, esize], unsigned);

10 operand = operand << shiftAmount;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1300

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

11 Elem[result, e, 2*esize] = operand[(2*esize)-1:0];
12
13 for e = 0 to 3
14 if elmtMask[e] == '1' then
15 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1301

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.468 VSHR

Vector Shift Right. Shifts each element of a vector register to the right by the immediate value.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 1 D sz imm Qd 0 0 0 0 0 0 1 M 1 Qm 0

T1: VSHR variant

VSHR<v>.<dt> Qd, Qm, #<imm>

Decode for this encoding
1 if sz == '000' then SEE "VMOV";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || M == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 unsigned = (U == '1');
7 imm6 = sz:imm;
8 case sz of
9 when '001' size = '00'; shiftAmount = 16 - UInt(imm6);

10 when '01x' size = '01'; shiftAmount = 32 - UInt(imm6);
11 when '1xx' size = '10'; shiftAmount = 64 - UInt(imm6);
12 otherwise UNDEFINED;
13 esize = 8 << UInt(size);
14 elements = 32 DIV esize;
15 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> This parameter determines the following values:

– Unsigned flag: S indicates signed, U indicates unsigned.
– The size of the elements in the vector.
This parameter must be one of the following values:
S8 Encoded as sz = 001, U = 0
U8 Encoded as sz = 001, U = 1
S16 Encoded as sz = 01x, U = 0
U16 Encoded as sz = 01x, U = 1
S32 Encoded as sz = 1xx, U = 0
U32 Encoded as sz = 1xx, U = 1

<Qd> Destination vector register.
<Qm> Source vector register.
<imm> The number of bits to shift by, in the range 1 to <dt>. The encoding of this field is a logical

OR of the most significant bits of the imm parameter and the least significant bits of the size
field (sz).

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1302

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[m, curBeat];
8 for e = 0 to elements-1
9 operand = Int(Elem[op1, e, esize], unsigned);

10 Elem[result, e, esize] = (operand >> shiftAmount)[esize-1:0];
11
12 for e = 0 to 3
13 if elmtMask[e] == '1' then
14 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1303

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.469 VSHRN

Vector Shift Right and Narrow. Performs an element-wise narrowing to half-width, with shift, writing the result to
either the top half (T variant) or bottom half (B variant) of the result element. The other half of the destination
vector element retains its previous value.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 0 sz imm Qd T 1 1 1 1 1 1 M 0 Qm 1

T1: VSHRN variant

VSHRN<T><v>.<dt> Qd, Qm, #<imm>

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 m = UInt(M:Qm);
5 imm5 = sz:imm;
6 case sz of
7 when '01' size = '00'; shiftAmount = 16 - UInt(imm5);
8 when '1x' size = '01'; shiftAmount = 32 - UInt(imm5);
9 otherwise UNDEFINED;

10 esize = 8 << UInt(size);
11 elements = 16 DIV esize;
12 top = UInt(T);
13 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<T> Specifies which half of the result element the result is written to.
This parameter must be one of the following values:
B Encoded as T = 0

Indicates bottom half
T Encoded as T = 1

Indicates top half
<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> The size of the elements in the vector.

This parameter must be one of the following values:
I16 Encoded as sz = 01
I32 Encoded as sz = 1x

<Qd> Destination vector register.
<Qm> Source vector register.
<imm> The number of bits to shift by, in the range 1 to <dt>/2. The encoding of this field is a logical

OR of the most significant bits of the imm parameter and the least significant bits of the size
field (sz).

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1304

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 op1 = Q[m, curBeat];
7 result = Q[d, curBeat];
8 for e = 0 to elements-1
9 operand = UInt(Elem[op1, e, 2*esize]);

10 operand = operand >> shiftAmount;
11 Elem[result, 2*e + top, esize] = operand[esize-1:0];
12
13 for e = 0 to 3
14 if elmtMask[e] == '1' then
15 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1305

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.470 VSLI

Vector Shift Left and Insert. Takes each element in the operand vector, left shifts them by an immediate value, and
inserts the results in the destination vector. Bits shifted out of the left of each element are lost.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D sz imm Qd 0 0 1 0 1 0 1 M 1 Qm 0

T1: VSLI variant

VSLI<v>.<dt> Qd, Qm, #<imm>

Decode for this encoding
1 if sz == '000' then SEE "VMOV";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || M == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 unsigned = TRUE;
7 imm6 = sz:imm;
8 case sz of
9 when '001' size = '00'; shiftAmount = UInt(imm6) - 8;

10 when '01x' size = '01'; shiftAmount = UInt(imm6) - 16;
11 when '1xx' size = '10'; shiftAmount = UInt(imm6) - 32;
12 otherwise UNDEFINED;
13 esize = 8 << UInt(size);
14 elements = 32 DIV esize;
15 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> The size of the elements in the vector.

This parameter must be one of the following values:
8 Encoded as sz = 001
16 Encoded as sz = 01x
32 Encoded as sz = 1xx

<Qd> Destination vector register.
<Qm> Source vector register.
<imm> The number of bits to shift by, in the range 0 to <dt>-1. The encoding of this field is a logical

OR of the most significant bits of the imm parameter and the least significant bits of the size
field (sz).

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1306

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 op1 = Q[m, curBeat];
7 result = Q[d, curBeat];
8 mask = LSL(Ones(esize), shiftAmount);
9 for e = 0 to elements-1

10 shiftedOp = (LSL(Elem[op1, e, esize], shiftAmount))[esize-1:0];
11 Elem[result, e, esize] = (Elem[result, e, esize] AND NOT(mask)) OR shiftedOp;
12
13 for e = 0 to 3
14 if elmtMask[e] == '1' then
15 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1307

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.471 VSQRT

Floating-point Square Root. Floating-point Square Root calculates the square root of a floating-point register value
and writes the result to another floating-point register.

T1
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 0 0 0 1 Vd 1 0 size 1 1 M 0 Vm

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when size == 01.

VSQRT{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VSQRT{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VSQRT{<c>}{<q>}.F64 <Dd>, <Dm>

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (M == '1' || D == '1') then UNDEFINED;
4 if size == '01' && InITBlock() then UNPREDICTABLE;
5 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
6 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sm> Is the 32-bit name of the floating-point source register, encoded in the "Vm:M" field.
<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.
<Dm> Is the 64-bit name of the floating-point source register, encoded in the "M:Vm" field.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 case size of
5 when '01' S[d] = Zeros(16) : FPSqrt(S[m][15:0]);
6 when '10' S[d] = FPSqrt(S[m]);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1308

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

7 when '11' D[d] = FPSqrt(D[m]);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1309

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.472 VSRI

Vector Shift Right and Insert. Takes each element in the operand vector, right shifts them by an immediate value,
and inserts the results in the destination vector. Bits shifted out of the right of each element are lost.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D sz imm Qd 0 0 1 0 0 0 1 M 1 Qm 0

T1: VSRI variant

VSRI<v>.<dt> Qd, Qm, #<imm>

Decode for this encoding
1 if sz == '000' then SEE "VMOV";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || M == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 unsigned = TRUE;
7 imm6 = sz:imm;
8 case sz of
9 when '001' size = '00'; shiftAmount = 16 - UInt(imm6);

10 when '01x' size = '01'; shiftAmount = 32 - UInt(imm6);
11 when '1xx' size = '10'; shiftAmount = 64 - UInt(imm6);
12 otherwise UNDEFINED;
13 esize = 8 << UInt(size);
14 elements = 32 DIV esize;
15 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> The size of the elements in the vector.

This parameter must be one of the following values:
8 Encoded as sz = 001
16 Encoded as sz = 01x
32 Encoded as sz = 1xx

<Qd> Destination vector register.
<Qm> Source vector register.
<imm> The number of bits to shift by, in the range 1 to <dt>. The encoding of this field is a logical

OR of the most significant bits of the imm parameter and the least significant bits of the size
field (sz).

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1310

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 op1 = Q[m, curBeat];
7 result = Q[d, curBeat];
8 mask = LSR(Ones(esize), shiftAmount);
9 for e = 0 to elements-1

10 shiftedOp = (LSR(Elem[op1, e, esize], shiftAmount))[esize-1:0];
11 Elem[result, e, esize] = (Elem[result, e, esize] AND NOT(mask)) OR shiftedOp;
12
13 for e = 0 to 3
14 if elmtMask[e] == '1' then
15 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1311

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.473 VST2

Vector Interleaving Store - Stride 2. Saves two 64-bit contiguous blocks of data to memory made up of multiple
parts of 2 source registers. The parts of the source registers written to, and the offsets from the base address register,
are determined by the pat parameter. If the instruction is executed 2 times with the same base address and source
registers, but with different pat values, the effect is to interleave the specified registers with a stride of 2 and to save
the data to memory. The base address register can optionally be incremented by 32.

This instruction is subject to beat-wise execution.

This instruction is not VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 0 1 D W 0 Rn Qd 1 1 1 1 size (0) pat (0) (0) (0) (0) 0

T1: VST2 variant (Non writeback: W=0)

VST2<pat>.<size> {Qd, Qd+1}, [Rn]

T1: VST2 variant (Writeback: W=1)

VST2<pat>.<size> {Qd, Qd+1}, [Rn]!

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 n = UInt(Rn);
6 pattern = UInt(pat);
7 esize = 8 << UInt(size);
8 elements = 32 DIV esize;
9 wback = (W == '1');

10 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
11 if InVPTBlock() then CONSTRAINED_UNPREDICTABLE;
12 if Rn == '1101' && W == '1' then CONSTRAINED_UNPREDICTABLE;
13 if Rn == '1111' then CONSTRAINED_UNPREDICTABLE;
14 if UInt(D:Qd) > 6 then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<pat> Specifies the pattern of register elements and memory addresses to access.
This parameter must be one of the following values:
0 Encoded as pat = 0
1 Encoded as pat = 1

<size> Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
8 Encoded as size = 00
16 Encoded as size = 01
32 Encoded as size = 10

<Qd> Source vector register.
<Rn> The base register for the target address.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1312

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, -) = GetCurInstrBeat();
5
6 // Pre-calculate variables for memory / register access patterns
7 addrWordOffset = curBeat[1] : (UInt(curBeat[1]) + pattern)[0] : curBeat[0];
8 baseAddress = R[n] + ZeroExtend(addrWordOffset:'00', 32);
9 xBeat = UInt(curBeat[1] : (pattern[0] EOR curBeat[1]));

10
11 for e = 0 to elements-1
12 address = baseAddress + (e * (esize DIV 8));
13 case esize of
14 when 8
15 y = UInt(e[0]);
16 xE = UInt(curBeat[0] : e[1]);
17 when 16
18 y = UInt(e[0]);
19 xE = UInt(curBeat[0]);
20 when 32
21 y = UInt(curBeat[0]);
22 xE = 0;
23 MemA_MVE[address, esize DIV 8] = Elem[Q[d + y, xBeat], xE, esize];
24
25 // The optional write back to the base register is only performed on the
26 // last beat of the instruction.
27 if wback && IsLastBeat() then
28 R[n] = R[n] + 32;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1313

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.474 VST4

Vector Interleaving Store - Stride 4. Saves two 64-bit contiguous blocks of data to memory made up of multiple
parts of 4 source registers. The parts of the source registers written to, and the offsets from the base address register,
are determined by the pat parameter. If the instruction is executed 4 times with the same base address and source
registers, but with different pat values, the effect is to interleave the specified registers with a stride of 4 and to save
the data to memory. The base address register can optionally be incremented by 64.

This instruction is subject to beat-wise execution.

This instruction is not VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 0 1 D W 0 Rn Qd 1 1 1 1 size pat (0) (0) (0) (0) 1

T1: VST4 variant (Non writeback: W=0)

VST4<pat>.<size> {Qd, Qd+1, Qd+2, Qd+3}, [Rn]

T1: VST4 variant (Writeback: W=1)

VST4<pat>.<size> {Qd, Qd+1, Qd+2, Qd+3}, [Rn]!

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 n = UInt(Rn);
6 pattern = UInt(pat);
7 esize = 8 << UInt(size);
8 elements = 32 DIV esize;
9 wback = (W == '1');

10 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
11 if InVPTBlock() then CONSTRAINED_UNPREDICTABLE;
12 if Rn == '1101' && W == '1' then CONSTRAINED_UNPREDICTABLE;
13 if Rn == '1111' then CONSTRAINED_UNPREDICTABLE;
14 if UInt(D:Qd) > 4 then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for all encodings

<pat> Specifies the pattern of register elements and memory addresses to access.
This parameter must be one of the following values:
0 Encoded as pat = 00
1 Encoded as pat = 01
2 Encoded as pat = 10
3 Encoded as pat = 11

<size> Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
8 Encoded as size = 00
16 Encoded as size = 01
32 Encoded as size = 10

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1314

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

<Qd> Source vector register.
<Rn> The base register for the target address.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, -) = GetCurInstrBeat();
5
6 // Pre-calculate variables for memory / register access patterns
7 addrWordOffset = curBeat[1] : (UInt(curBeat[1]) + pattern)[1:0] : curBeat[0];
8 baseAddress = R[n] + ZeroExtend(addrWordOffset:'00', 32);
9 xBeat = UInt(curBeat[1] : (pattern[1] EOR (pattern[0] AND curBeat[1])));

10
11 for e = 0 to elements-1
12 address = baseAddress + (e * (esize DIV 8));
13 case esize of
14 when 8
15 y = UInt(e[1:0]);
16 xE = UInt((pattern[0] EOR curBeat[1]) : curBeat[0]);
17 when 16
18 y = UInt(curBeat[0] : e[0]);
19 xE = UInt(pattern[0] EOR curBeat[1]);
20 when 32
21 y = UInt((pattern[0] EOR curBeat[1]) : curBeat[0]);
22 xE = 0;
23 MemA_MVE[address, esize DIV 8] = Elem[Q[d + y, xBeat], xE, esize];
24
25 // The optional write back to the base register is only performed on the
26 // last beat of the instruction.
27 if wback && IsLastBeat() then
28 R[n] = R[n] + 64;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1315

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.475 VSTM

Floating-point Store Multiple. Floating-point Store Multiple stores multiple extension registers to consecutive
memory locations using an address from a general-purpose register.

This instruction is used by the alias VPUSH.

T1
Armv8-M Floating-point Extension only or MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 P U D W 0 Rn Vd 1 0 1 1 imm7

imm1 = 0

Decrement Before variant

Applies when P == 1 && U == 0 && W == 1.

VSTMDB{<c>}{<q>}{.<size>} <Rn>!, <dreglist>

Increment After variant

Applies when P == 0 && U == 1.

VSTM{<c>}{<q>}{.<size>} <Rn>{!}, <dreglist>
VSTMIA{<c>}{<q>}{.<size>} <Rn>{!}, <dreglist>

Decode for this encoding
1 if P == '0' && U == '0' && W == '0' then SEE "Related encodings";
2 if P == '1' && W == '0' then SEE VSTR;
3 CheckDecodeFaults(ExtType_MveOrFp);
4 if P == U && W == '1' then UNDEFINED;
5 // Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
6 single_regs = FALSE; add = (U == '1'); wback = (W == '1'); imm8 = imm7 : imm1;
7 d = UInt(D:Vd); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
8 regs = UInt(imm8) DIV 2;
9 if n == 15 then UNPREDICTABLE;

10 if regs == 0 || (d+regs) > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If regs == 0, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction operates as a VSTM with the same addressing mode but stores no registers.

CONSTRAINED UNPREDICTABLE behavior
If (d+regs) > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction if
the register list had not gone out of range, become UNKNOWN. If the instruction specifies writeback, then
that register becomes UNKNOWN. This behavior does not affect any other memory locations.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1316

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

T2
Armv8-M Floating-point Extension only or MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 P U D W 0 Rn Vd 1 0 1 0 imm8

Decrement Before variant

Applies when P == 1 && U == 0 && W == 1.

VSTMDB{<c>}{<q>}{.<size>} <Rn>!, <sreglist>

Increment After variant

Applies when P == 0 && U == 1.

VSTM{<c>}{<q>}{.<size>} <Rn>{!}, <sreglist>
VSTMIA{<c>}{<q>}{.<size>} <Rn>{!}, <sreglist>

Decode for this encoding
1 if P == '0' && U == '0' then SEE "Related encodings";
2 if P == '1' && W == '0' then SEE VSTR;
3 CheckDecodeFaults(ExtType_MveOrFp);
4 if P == '1' && U == '1' && W == '1' then UNDEFINED;
5 // Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
6 single_regs = TRUE; add = (U == '1'); wback = (W == '1'); d = UInt(Vd:D); n = UInt(Rn);
7 imm32 = ZeroExtend(imm8:'00', 32); regs = UInt(imm8);
8 topReg = d+regs-1;
9 if n == 15 then UNPREDICTABLE;

10 if regs == 0 || topReg > 63 then UNPREDICTABLE;
11 if topReg[0] == '0' && topReg > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If regs == 0, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction operates as a VSTM with the same addressing mode but stores no registers.

CONSTRAINED UNPREDICTABLE behavior
If (d+regs) > 64, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction if
the register list had not gone out of range, become UNKNOWN. If the instruction specifies writeback, then
that register becomes UNKNOWN. This behavior does not affect any other memory locations.

Alias conditions
Alias is preferred when
VPUSH P == ‘1‘ &&

U == ‘0‘ &&
W == ‘1‘ &&
RN == ‘1101‘

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1317

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<size> An optional data size specifier. If present, it must be equal to the size in bits, 32 or 64, of the

registers being transferred.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
! Specifies base register writeback. Encoded in the "W" field as 1 if present, otherwise 0.
<sreglist> Is the list of consecutively numbered 32-bit floating-point registers to be transferred. The first

register in the list is encoded in "Vd:D", and "imm8" is set to the number of registers in the
list. The list must contain at least one register.

<dreglist> Is the list of consecutively numbered 64-bit floating-point registers to be transferred. The first
register in the list is encoded in "D:Vd", and "imm8" is set to twice the number of registers in
the list. The list must contain at least one register, and must not contain more than 16 registers.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 address = if add then R[n] else R[n]-imm32;
5 regval = if add then R[n]+imm32 else R[n]-imm32;
6
7 // Determine if the stack pointer limit should be checked
8 if n == 13 && wback then
9 violatesLimit = ViolatesSPLim(LookUpSP(), regval);

10 else
11 violatesLimit = FALSE;
12
13 // Memory operation only performed if limit not violated
14 if !violatesLimit then
15 for r = 0 to regs-1
16 if single_regs then
17 if (d+r) < 32 || !VFPSmallRegisterBank() then
18 MemA[address,4] = S[d+r];
19 address = address+4;
20 else
21 // Store as two word-aligned words in the correct order for current
22 // endianness.
23 if (d+r) < 16 || !VFPSmallRegisterBank() then
24 bigEndian = BigEndian(address, 8);
25 MemA[address,4] = if bigEndian then D[d+r][63:32] else D[d+r][31:0];
26 MemA[address+4,4] = if bigEndian then D[d+r][31:0] else D[d+r][63:32];
27 elsif boolean UNKNOWN then
28 MemA[address,4] = bits(32) UNKNOWN;
29 MemA[address+4,4] = bits(32) UNKNOWN;
30 address = address+8;
31
32 // If the stack pointer is being updated a fault will be raised if
33 // the limit is violated
34 if wback then RSPCheck[n] = regval;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1318

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.476 VSTR (System Register)

Store System Register. Store a system register in memory. The target address is calculated from a base register
plus an immediate offset. Access to the FPCXT payloads generates an UNDEFINED exception if the instruction is
executed from Non-secure state. If CP10 is not enabled and either the Main extension is not implemented or the
Floating-point context is active, access to FPCXT_NS will generate a NOCP UsageFault. Accesses to FPCXT_NS
will not trigger lazy state preservation if there is no active Floating-point context. Accesses to FPCXT_NS do not
trigger Floating-point context creation regardless of the value of FPCCR.ASPEN. FPSCR_nzcvqc allows access to
FPSCR condition and saturation flags. The VPR register can only be accessed from privileged mode. FPCXT_NS,
enables saving and restoration of the Non-secure floating-point context. If the Floating-point context is active then
the current FPSCR value is accessed and the default value in FPDSCR_NS is written into FPSCR, otherwise the
default value in FPDSCR_NS is accessed. The payloads cannot be accessed if neither the Floating-point extension
nor MVE are implemented. FPCXT_S, enables saving and restoration of the Secure floating-point context.

T1
Armv8.1-M Floating-point Extension and / or Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 (0) 1 1 0 P A

regh

W 0 Rn regl 0 1 1 1 1 1 imm

T1: VSTR variant (Offset: P=1, W=0)

VSTR<c> <reg>, [Rn{, #+/-<imm>}]

T1: VSTR variant (Pre-indexed: P=1, W=1)

VSTR<c> <reg>, [Rn, #+/-<imm>]!

T1: VSTR variant (Post-indexed: P=0, W=1)

VSTR<c> <reg>, [Rn], #+/-<imm>

Decode for this encoding
1 if P == '0' && W == '0' then SEE "Related encodings";
2 if !HasArchVersion(Armv8p1) then
3 UFSR.NOCP = '1';
4 HandleException(CreateException(UsageFault));
5 fpCxtAnyAccess = (regh:regl == '111x');
6 fpCxtNSAccess = (regh:regl == '1110');
7 fpInactive = !HaveMveOrFPExt() || (FPCCR_NS.ASPEN == '1' && CONTROL.FPCA == '0');
8 if fpCxtAnyAccess && !IsSecure() then UNDEFINED;
9 if fpCxtNSAccess then

10 if !HaveMainExt() || !fpInactive then
11 HandleException(CheckCPEnabled(10));
12 else
13 CheckDecodeFaults(ExtType_MveOrFp);
14 n = UInt(Rn);
15 index = (P == '1');
16 add = (A == '1');
17 wback = (W == '1');
18 r = regh:regl;
19 imm32 = ZeroExtend(imm:'00', 32);
20 if (regh:regl) IN {'10xx', '01xx', '0011', '0000'} then CONSTRAINED_UNPREDICTABLE;
21 if Rn == '1111' then CONSTRAINED_UNPREDICTABLE;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1319

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<reg> The system register to access

This parameter must be one of the following values:
FPSCR Encoded as regh = 0, regl = 001
FPSCR_nzcvqc Encoded as regh = 0, regl = 010
VPR Encoded as regh = 1, regl = 100
P0 Encoded as regh = 1, regl = 101
FPCXT_NS Encoded as regh = 1, regl = 110
FPCXT_S Encoded as regh = 1, regl = 111

<Rn> The base register for the target address.
<imm> The signed immediate value that is added to base register to calculate the target address. This

value must be a multiple of 4.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 if !fpCxtNSAccess then
4 ExecuteFPCheck();
5 elsif !fpInactive then
6 PreserveFPState();
7 SerializeVFP();
8 VFPExcBarrier();
9

10 offsetAddr = if add then (R[n] + imm32) else (R[n] - imm32);
11 address = if index then offsetAddr else R[n];
12
13 // Determine if the stack pointer limit should be checked
14 if n == 13 && wback then
15 violatesLimit = ViolatesSPLim(LookUpSP(), offsetAddr);
16 else
17 violatesLimit = FALSE;
18 // Memory operation only performed if limit not violated
19 if !violatesLimit then
20 case r of
21 when '0001'
22 MemA[address, 4] = FPSCR;
23 when '0010'
24 // Only read the N, Z, C, V, and QC flags
25 MemA[address, 4] = FPSCR[31:27]:Zeros(27);
26 when '1100'
27 if HaveMve() then
28 if CurrentModeIsPrivileged() then
29 MemA[address, 4] = VPR;
30 else
31 UNPREDICTABLE;
32 when '1101'
33 if HaveMve() then
34 MemA[address, 4] = Zeros(16):VPR.P0;
35 else
36 UNPREDICTABLE;
37 when '1110'
38 if HaveFPExt() || HaveMve() then
39 FPCXT_Type cxt = Zeros(32);
40 if !fpInactive then
41 cxt.SFPA = CONTROL_S.SFPA;
42 cxt[27:0] = FPSCR[27:0];
43 else
44 cxt[27:0] = FPDSCR_NS[27:0];
45 MemA[address, 4] = cxt;
46 // If the FP context isn't secure the FPSCR value is set
47 // to the NS default so any NS functions that are called

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1320

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

48 // before an FP instruction is executed in the secure
49 // state will get the same FPSCR value as functions
50 // called after a secure FP instruction (which is the value
51 // of FPDSCR_NS).
52 if !fpInactive && CONTROL_S.SFPA == '0' then
53 // Ensuring that the memory access has succeeded before
54 // updating the value of FPSCR.
55 FPSCR = FPDSCR_NS[31:0];
56 when '1111'
57 FPCXT_Type cxt = Zeros(32);
58 cxt.SFPA = CONTROL_S.SFPA;
59 cxt[27:0] = FPSCR[27:0];
60 MemA[address, 4] = cxt;
61 // Ensuring that the memory access has succeeded before
62 // updating the value of FPSCR.
63 FPSCR = FPDSCR_NS[31:0];
64 CONTROL_S.SFPA = '0';
65 otherwise
66 UNPREDICTABLE;
67
68 // If the stack pointer is being updated a fault will be raised if
69 // the limit is violated
70 if wback then
71 RSPCheck[n] = offsetAddr;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1321

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.477 VSTR

Floating-point Store Register. Floating-point Store Register stores a single Floating-point Extension register to
memory, using an address from a general-purpose register, with an optional offset.

T1
Armv8-M Floating-point Extension only or MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 1 U D 0 0 Rn Vd 1 0 1 1 imm8

T1 variant

VSTR{<c>}{<q>}{.64} <Dd>, [<Rn>{, #{+/-}<imm>}]

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveOrFp);
2 if VFPSmallRegisterBank() && (D == '1') then UNDEFINED;
3 fp_size = 64; add = (U == '1'); imm32 = ZeroExtend(imm8:'00', 32);
4 d = UInt(D:Vd); n = UInt(Rn);
5 if n == 15 then UNPREDICTABLE;

T2
Armv8-M Floating-point Extension only or MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 1 U D 0 0 Rn Vd 1 0 1 0 imm8

T2 variant

VSTR{<c>}{<q>}{.32} <Sd>, [<Rn>{, #{+/-}<imm>}]

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveOrFp);
2 fp_size = 32; add = (U == '1'); imm32 = ZeroExtend(imm8:'00', 32);
3 d = UInt(Vd:D); n = UInt(Rn);
4 if n == 15 then UNPREDICTABLE;

T3
Armv8.1-M Floating-point Extension only or MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 1 U D 0 0 Rn Vd 1 0 0 1 imm8

T3 variant

VSTR{<c>}{<q>}.16 <Sd>, [<Rn> {, #{+/-}<imm>}]

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveOrFp);
2 fp_size = 16; add = (U == '1'); imm32 = ZeroExtend(imm8:'0', 32);
3 d = UInt(Vd:D); n = UInt(Rn);
4 if n == 15 then UNPREDICTABLE;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1322

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
.64 Optional data size specifiers.
<Dd> The source register for a doubleword store.
.32 Optional data size specifiers.
<Sd> The source register for a singleword store.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted

and encoded in the "U" field. It can have the following values:
- when U = 0
+ when U = 1

<imm> The immediate offset used for forming the address. Values are multiples of 4 in the range
0-1020. <imm> can be omitted, meaning an offset of +0.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 address = if add then (R[n] + imm32) else (R[n] - imm32);
5 case fp_size of
6 when 16
7 MemA[address,2] = S[d][15:0];
8 when 32
9 MemA[address,4] = S[d];

10 when 64
11 // Store as two word-aligned words in the correct order for current endianness.
12 bigEndian = BigEndian(address, 8);
13 MemA[address,4] = if bigEndian then D[d][63:32] else D[d][31:0];
14 MemA[address+4,4] = if bigEndian then D[d][31:0] else D[d][63:32];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1323

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.478 VSTRB, VSTRH, VSTRW

Vector Store Register. Store consecutive elements to memory from a vector register. In indexed mode, the target
address is calculated from a base register offset by an immediate value. Otherwise, the base register address is used
directly. The sum of the base register and the immediate value can optionally be written back to the base register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 (0) 1 1 0 P A 0 W 0 0 Rn Qd 0 1 1 1 size imm

T1: VSTRB variant (Offset: P=1, W=0)

VSTRB<v>.<dt> Qd, [Rn{, #+/-<imm>}]

T1: VSTRB variant (Pre-indexed: P=1, W=1)

VSTRB<v>.<dt> Qd, [Rn, #+/-<imm>]!

T1: VSTRB variant (Post-indexed: P=0, W=1)

VSTRB<v>.<dt> Qd, [Rn], #+/-<imm>

Decode for this encoding
1 if P == '0' && W == '0' then SEE "Related encodings";
2 if size == '11' then SEE "Related encodings";
3 CheckDecodeFaults(ExtType_Mve);
4 if size == '00' then UNDEFINED;
5 d = UInt(Qd);
6 n = UInt(Rn);
7 msize = 8;
8 mbytes = msize DIV 8;
9 esize = 8 << UInt(size);

10 elements = 32 DIV esize;
11 imm32 = ZeroExtend(imm, 32);
12 index = (P == '1');
13 add = (A == '1');
14 wback = (W == '1');
15 unsigned = TRUE;
16 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 (0) 1 1 0 P A 0 W 0 1 Rn Qd 0 1 1 1 size imm

T2: VSTRH variant (Offset: P=1, W=0)

VSTRH<v>.<dt> Qd, [Rn{, #+/-<imm>}]

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1324

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

T2: VSTRH variant (Pre-indexed: P=1, W=1)

VSTRH<v>.<dt> Qd, [Rn, #+/-<imm>]!

T2: VSTRH variant (Post-indexed: P=0, W=1)

VSTRH<v>.<dt> Qd, [Rn], #+/-<imm>

Decode for this encoding
1 if P == '0' && W == '0' then SEE "Related encodings";
2 if size == '11' then SEE "Related encodings";
3 CheckDecodeFaults(ExtType_Mve);
4 if size == '0x' then UNDEFINED;
5 d = UInt(Qd);
6 n = UInt(Rn);
7 msize = 16;
8 mbytes = msize DIV 8;
9 esize = 8 << UInt(size);

10 elements = 32 DIV esize;
11 imm32 = ZeroExtend(imm:'0', 32);
12 index = (P == '1');
13 add = (A == '1');
14 wback = (W == '1');
15 unsigned = TRUE;
16 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T5
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 P A D W 0 Rn Qd 1 1 1 1 0 0 imm

T5: VSTRB variant (Offset: P=1, W=0)

VSTRB<v>.<dt> Qd, [Rn{, #+/-<imm>}]

T5: VSTRB variant (Pre-indexed: P=1, W=1)

VSTRB<v>.<dt> Qd, [Rn, #+/-<imm>]!

T5: VSTRB variant (Post-indexed: P=0, W=1)

VSTRB<v>.<dt> Qd, [Rn], #+/-<imm>

Decode for this encoding
1 if P == '0' && W == '0' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 n = UInt(Rn);
6 msize = 8;
7 mbytes = msize DIV 8;
8 esize = msize;
9 elements = 32 DIV esize;

10 imm32 = ZeroExtend(imm, 32);
11 index = (P == '1');
12 add = (A == '1');
13 wback = (W == '1');
14 unsigned = TRUE;
15 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1325

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

16 if Rn == '1101' && W == '1' then CONSTRAINED_UNPREDICTABLE;
17 if Rn == '1111' then CONSTRAINED_UNPREDICTABLE;

T6
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 P A D W 0 Rn Qd 1 1 1 1 0 1 imm

T6: VSTRH variant (Offset: P=1, W=0)

VSTRH<v>.<dt> Qd, [Rn{, #+/-<imm>}]

T6: VSTRH variant (Pre-indexed: P=1, W=1)

VSTRH<v>.<dt> Qd, [Rn, #+/-<imm>]!

T6: VSTRH variant (Post-indexed: P=0, W=1)

VSTRH<v>.<dt> Qd, [Rn], #+/-<imm>

Decode for this encoding
1 if P == '0' && W == '0' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 n = UInt(Rn);
6 msize = 16;
7 mbytes = msize DIV 8;
8 esize = msize;
9 elements = 32 DIV esize;

10 imm32 = ZeroExtend(imm:'0', 32);
11 index = (P == '1');
12 add = (A == '1');
13 wback = (W == '1');
14 unsigned = TRUE;
15 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
16 if Rn == '1101' && W == '1' then CONSTRAINED_UNPREDICTABLE;
17 if Rn == '1111' then CONSTRAINED_UNPREDICTABLE;

T7
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 P A D W 0 Rn Qd 1 1 1 1 1 0 imm

T7: VSTRW variant (Offset: P=1, W=0)

VSTRW<v>.<dt> Qd, [Rn{, #+/-<imm>}]

T7: VSTRW variant (Pre-indexed: P=1, W=1)

VSTRW<v>.<dt> Qd, [Rn, #+/-<imm>]!

T7: VSTRW variant (Post-indexed: P=0, W=1)

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1326

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

VSTRW<v>.<dt> Qd, [Rn], #+/-<imm>

Decode for this encoding
1 if P == '0' && W == '0' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 n = UInt(Rn);
6 msize = 32;
7 mbytes = msize DIV 8;
8 esize = msize;
9 elements = 32 DIV esize;

10 imm32 = ZeroExtend(imm:'00', 32);
11 index = (P == '1');
12 add = (A == '1');
13 wback = (W == '1');
14 unsigned = TRUE;
15 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
16 if Rn == '1101' && W == '1' then CONSTRAINED_UNPREDICTABLE;
17 if Rn == '1111' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for T1 encodings

<dt> Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
16 Encoded as size = 01
32 Encoded as size = 10

<imm> The signed immediate value that is added to base register to calculate the target address.

Assembler symbols for T2 encodings

<dt> Size: indicates the size of the elements in the vector.
This parameter must be the following value:
32 Encoded as size = 10

<imm> The signed immediate value that is added to base register to calculate the target address. This
value must be a multiple of 2.

Assembler symbols for T5 encodings

<dt> Data size. The unsigned, signed, floating and signless datatypes of the memory transfer size
are allowed.

<imm> The signed immediate value that is added to base register to calculate the target address.

Assembler symbols for T6 encodings

<dt> Data size. The unsigned, signed, floating and signless datatypes of the memory transfer size
are allowed.

<imm> The signed immediate value that is added to base register to calculate the target address. This
value must be a multiple of 2.

Assembler symbols for T7 encodings

<dt> Data size. The unsigned, signed, floating and signless datatypes of the memory transfer size
are allowed.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1327

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

<imm> The signed immediate value that is added to base register to calculate the target address. This
value must be a multiple of 4.

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<Qd> Source vector register.
<Rn> The base register for the target address.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 offsetAddr = if add then (R[n] + imm32) else (R[n] - imm32);
7 address = if index then offsetAddr else R[n];
8 address = address + (curBeat * mbytes * elements);
9

10 for e = 0 to elements-1
11 if elmtMask[e*(esize >> 3)] == '1' then
12 elem = Elem[Q[d, curBeat], e, esize][(mbytes*8)-1:0];
13 MemA_MVE[address + (e * mbytes), mbytes] = elem;
14
15 // The optional write back to the base register is only performed on the
16 // last beat of the instruction.
17 if wback && IsLastBeat() then
18 R[n] = offsetAddr;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1328

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.479 VSTRB, VSTRH, VSTRW, VSTRD (vector)

Vector Scatter Store. Store data from elements of Q[d] into a memory byte, halfword, word, or doubleword at the
address contained in either:

a) A base register R[n] plus an offset contained in each element of Q[m], optionally shifted by the element size,
or

b) Each element of Q[m] plus an immediate offset. The base element can optionally be written back, irrespective
of predication, with that value incremented by the immediate or by the immediate scaled by the memory
element size.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 (0) 1 1 0 0 1 D 0 0 Rn Qd 0 1 1 1 size 0 M 0 Qm os

T1: VSTRB variant

VSTRB<v>.<dt> Qd, [Rn, Qm]

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' then UNDEFINED;
3 if size == '11' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 n = UInt(Rn);
7 msize = '00';
8 esize = 8 << UInt(size);
9 elements = 32 DIV esize;

10 mesize = 8;
11 add = TRUE;
12 useReg = TRUE;
13 scaleOffset = (os == '1');
14 wback = FALSE;
15 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
16 if Rn == '1111' then CONSTRAINED_UNPREDICTABLE;
17 if os == '1' then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 (0) 1 1 0 0 1 D 0 0 Rn Qd 0 1 1 1 size 0 M 1 Qm os

T2: VSTRH variant

VSTRH<v>.<dt> Qd, [Rn, Qm{, UXTW #os}]

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1329

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' then UNDEFINED;
3 if size IN {'11', '00'} then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 n = UInt(Rn);
7 msize = '01';
8 esize = 8 << UInt(size);
9 elements = 32 DIV esize;

10 mesize = 16;
11 add = TRUE;
12 useReg = TRUE;
13 scaleOffset = (os == '1');
14 wback = FALSE;
15 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
16 if Rn == '1111' then CONSTRAINED_UNPREDICTABLE;

T3
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 (0) 1 1 0 0 1 D 0 0 Rn Qd 0 1 1 1 size 1 M 0 Qm os

T3: VSTRW variant

VSTRW<v>.<dt> Qd, [Rn, Qm{, UXTW #os}]

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' then UNDEFINED;
3 if size != '10' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 n = UInt(Rn);
7 msize = '10';
8 esize = 8 << UInt(size);
9 elements = 32 DIV esize;

10 mesize = 32;
11 add = TRUE;
12 useReg = TRUE;
13 scaleOffset = (os == '1');
14 wback = FALSE;
15 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
16 if Rn == '1111' then CONSTRAINED_UNPREDICTABLE;

T4
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 (0) 1 1 0 0 1 D 0 0 Rn Qd 0 1 1 1 size 1 M 1 Qm os

T4: VSTRD variant

VSTRD<v>.<dt> Qd, [Rn, Qm{, UXTW #os}]

Decode for this encoding

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1330

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' then UNDEFINED;
3 if size != '11' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 n = UInt(Rn);
7 msize = '11';
8 esize = 8 << UInt(size);
9 elements = 32 DIV esize;

10 mesize = 64;
11 add = TRUE;
12 useReg = TRUE;
13 scaleOffset = (os == '1');
14 wback = FALSE;
15 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
16 if Rn == '1111' then CONSTRAINED_UNPREDICTABLE;

T5
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 1 A D W 0 Qm (0) Qd 1 1 1 1 0 M imm

T5: VSTRW variant (Non writeback: W=0)

VSTRW<v>.<dt> Qd, [Qm{, #+/-<imm>}]

T5: VSTRW variant (Writeback: W=1)

VSTRW<v>.<dt> Qd, [Qm{, #+/-<imm>}]!

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 m = UInt(M:Qm);
5 n = integer UNKNOWN;
6 size = '10';
7 msize = size;
8 offset = ZeroExtend(imm:Zeros(UInt(size)), 32);
9 esize = 8 << UInt(size);

10 elements = 32 DIV esize;
11 mesize = 32;
12 add = (A == '1');
13 useReg = FALSE;
14 scaleOffset = FALSE;
15 wback = (W == '1');
16 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T6
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 1 A D W 0 Qm (0) Qd 1 1 1 1 1 M imm

T6: VSTRD variant (Non writeback: W=0)

VSTRD<v>.<dt> Qd, [Qm{, #+/-<imm>}]

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1331

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

T6: VSTRD variant (Writeback: W=1)

VSTRD<v>.<dt> Qd, [Qm{, #+/-<imm>}]!

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 m = UInt(M:Qm);
5 n = integer UNKNOWN;
6 size = '11';
7 msize = size;
8 offset = ZeroExtend(imm:Zeros(UInt(size)), 32);
9 esize = 8 << UInt(size);

10 elements = 32 DIV esize;
11 mesize = 64;
12 add = (A == '1');
13 useReg = FALSE;
14 scaleOffset = FALSE;
15 wback = (W == '1');
16 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for T1 encodings

<dt> Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
8 Encoded as size = 00
16 Encoded as size = 01
32 Encoded as size = 10

<Qm> Vector offset register. The elements of this register contain the unsigned offsets to add to the
base address.

Assembler symbols for T2 encodings

<dt> Size: indicates the size of the elements in the vector.
This parameter must be one of the following values:
16 Encoded as size = 01
32 Encoded as size = 10

<Qm> Vector offset register. The elements of this register contain the unsigned offsets to add to the
base address.

Assembler symbols for T3 encodings

<dt> This parameter must be the following value:
32 Encoded as size = 10

<Qm> Vector offset register. The elements of this register contain the unsigned offsets to add to the
base address.

Assembler symbols for T4 encodings

<dt> This parameter must be the following value:
64 Encoded as size = 11

<Qm> Vector offset register. The elements of this register contain the unsigned offsets to add to the
base address.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1332

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for T5 encodings

<dt> Data size. The unsigned, signed, floating and signless datatypes of the memory transfer size
are allowed.

<Qm> The base register for the target address.
<imm> The signed immediate value that is added to base register to calculate the target address. This

value must be a multiple of 4.

Assembler symbols for T6 encodings

<dt> Data size. The unsigned, signed, floating and signless datatypes of the memory transfer size
are allowed.

<Qm> The base register for the target address.
<imm> The signed immediate value that is added to base register to calculate the target address. This

value must be a multiple of 8.

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<Qd> Source vector register.
<Rn> The base register for the target address.
<os> The amount by which the vector offset is left shifted by before being added to the general-

purpose base address. If the value is present it must correspond to memory transfer size
(1=half word, 2=word, 3=double word).
This parameter must be one of the following values:
<omitted> Encoded as os = 0
<Offset scaled> Encoded as os = 1

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 if esize == 64 then
7 // 64 bit accesses read their base address or offset from the first element
8 // in each pair of 32 bit elements.
9 if useReg then

10 baseAddr = R[n];
11 offset = Q[m, UInt(curBeat[1]:'0')];
12 if scaleOffset then
13 offset = LSL(offset, UInt(msize));
14 else
15 baseAddr = Q[m, UInt(curBeat[1]:'0')];
16 offsetAddress = if add then baseAddr + offset else baseAddr - offset;
17 bigEndian = BigEndian(offsetAddress, 8);
18 address = (if (curBeat[0] == '0') == bigEndian then offsetAddress + 4
19 else offsetAddress);
20 if elmtMask[0] == '1' then
21 MemA_MVE[address, 4] = Q[d, curBeat];
22 // Address writeback is not predicated
23 if wback && (curBeat[0] == '1') then
24 Q[m, curBeat-1] = offsetAddress[31:0];
25 else
26 // 32, 16, or 8 bit accesses
27 for e = 0 to (elements - 1)
28 if useReg then

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1333

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

29 baseAddr = R[n];
30 offset = ZeroExtend(Elem[Q[m, curBeat], e, esize], 32);
31 if scaleOffset then
32 offset = LSL(offset, UInt(msize));
33 else
34 // 16 / 8 bit vector+immediate accesses are not supported
35 baseAddr = Q[m, curBeat];
36 address = if add then baseAddr + offset else baseAddr - offset;
37 if elmtMask[e*(esize>>3)] == '1' then
38 memValue = Elem[Q[d, curBeat], e, esize][mesize-1:0];
39 MemA_MVE[address, mesize DIV 8] = memValue;
40 // Address writeback is not predicated
41 if wback then
42 Elem[Q[m, curBeat], e, esize] = address[esize-1:0];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1334

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.480 VSUB (floating-point)

Vector Subtract. Subtract the value of the elements in the second source vector register from either the respective
elements in the first source vector register or a general-purpose register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE with Half-precision and Single-precision Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 0 D 1 sz Qn 0 Qd 0 1 1 0 1 N 1 M 0 Qm 0

T1: VSUB variant

VSUB<v>.<dt> Qd, Qn, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveFp);
2 if D == '1' || M == '1' || N == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 m = UInt(M:Qm);
5 n = UInt(N:Qn);
6 esize = if sz == '1' then 16 else 32;
7 elements = 32 DIV esize;
8 withScalar = FALSE;
9 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE with Half-precision and Single-precision Floating-point Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 sz 1 1 1 0 0 D 1 1 Qn 0 Qd 1 1 1 1 1 N 1 0 0 Rm

T2: VSUB variant

VSUB<v>.<dt> Qd, Qn, Rm

Decode for this encoding
1 CheckDecodeFaults(ExtType_MveFp);
2 if D == '1' || N == '1' then UNDEFINED;
3 d = UInt(D:Qd);
4 m = UInt(Rm);
5 n = UInt(N:Qn);
6 esize = if sz == '1' then 16 else 32;
7 elements = 32 DIV esize;
8 withScalar = TRUE;
9 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

10 if Rm == '11x1' then CONSTRAINED_UNPREDICTABLE;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1335

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> Size: indicates the floating-point format used.

This parameter must be one of the following values:
F32 Encoded as sz = 0
F16 Encoded as sz = 1

<Qd> Destination vector register.
<Qn> First source vector register.
<Qm> Second source vector register.
<Rm> Source general-purpose register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[n, curBeat];
8 if withScalar then
9 for e = 0 to elements-1

10 // Avoid Floating-point exceptions on a predicated lane by checking the element mask
11 pred = (elmtMask[e*(esize>>3)] == '0');
12 value = FPSub(Elem[op1, e, esize], R[m][esize-1:0], FALSE, pred);
13 Elem[result, e, esize] = value;
14 else
15 for e = 0 to elements-1
16 // Avoid Floating-point exceptions on a predicated lane by checking the element mask
17 pred = (elmtMask[e*(esize>>3)] == '0');
18 op2 = Q[m, curBeat];
19 value = FPSub(Elem[op1, e, esize], Elem[op2, e, esize], FALSE, pred);
20 Elem[result, e, esize] = value;
21
22 for e = 0 to 3
23 if elmtMask[e] == '1' then
24 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1336

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.481 VSUB (vector)

Vector Subtract. Subtract the value of the elements in the second source vector register from either the respective
elements in the first source vector register or a general-purpose register. The result is then written to the destination
vector register.

This instruction is subject to beat-wise execution.

This instruction is VPT compatible.

This instruction is not permitted in an IT block.

T1
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 0 D size Qn 0 Qd 0 1 0 0 0 N 1 M 0 Qm 0

T1: VSUB variant

VSUB<v>.<dt> Qd, Qn, Qm

Decode for this encoding
1 CheckDecodeFaults(ExtType_Mve);
2 if D == '1' || M == '1' || N == '1' then UNDEFINED;
3 if size == '11' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(M:Qm);
6 n = UInt(N:Qn);
7 withScalar = FALSE;
8 esize = 8 << UInt(size);
9 elements = 32 DIV esize;

10 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 D size Qn 1 Qd 1 1 1 1 1 N 1 0 0 Rm

T2: VSUB variant

VSUB<v>.<dt> Qd, Qn, Rm

Decode for this encoding
1 if size == '11' then SEE "Related encodings";
2 CheckDecodeFaults(ExtType_Mve);
3 if D == '1' || N == '1' then UNDEFINED;
4 d = UInt(D:Qd);
5 m = UInt(Rm);
6 n = UInt(N:Qn);
7 withScalar = TRUE;
8 esize = 8 << UInt(size);
9 elements = 32 DIV esize;

10 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
11 if Rm == '11x1' then CONSTRAINED_UNPREDICTABLE;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1337

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Assembler symbols for all encodings

<v> See C1.2.5 Standard assembler syntax fields on page 431.
<dt> Size: indicates the size of the elements in the vector.

This parameter must be one of the following values:
I8 Encoded as size = 00
I16 Encoded as size = 01
I32 Encoded as size = 10

<Qd> Destination vector register.
<Qn> First source vector register.
<Qm> Second source vector register.
<Rm> Source general-purpose register.

Operation for all encodings
1 EncodingSpecificOperations();
2 ExecuteFPCheck();
3
4 (curBeat, elmtMask) = GetCurInstrBeat();
5
6 result = Zeros(32);
7 op1 = Q[n, curBeat];
8 if withScalar then
9 for e = 0 to elements-1

10 value = Elem[op1, e, esize] - R[m][esize-1:0];
11 Elem[result, e, esize] = value;
12 else
13 op2 = Q[m, curBeat];
14 for e = 0 to elements-1
15 value = Elem[op1, e, esize] - Elem[op2, e, esize];
16 Elem[result, e, esize] = value;
17
18 for e = 0 to 3
19 if elmtMask[e] == '1' then
20 Elem[Q[d, curBeat], e, 8] = Elem[result, e, 8];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1338

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.482 VSUB

Floating-point Subtract. Floating-point Subtract subtracts one floating-point register value from another floating-
point register value, and places the results in the destination floating-point register.

T2
Armv8-M Floating-point Extension only, size == 11 UNDEFINED in single-precision only implementations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 D 1 1 Vn Vd 1 0 size N 1 M 0 Vm

Half-precision scalar variant

Armv8.1-M Floating-point Extension only.

Applies when size == 01.

VSUB{<c>}{<q>}.F16 {<Sd>,} <Sn>, <Sm>

Single-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 10.

VSUB{<c>}{<q>}.F32 {<Sd>,} <Sn>, <Sm>

Double-precision scalar variant

Armv8-M Floating-point Extension only.

Applies when size == 11.

VSUB{<c>}{<q>}.F64 {<Dd>,} <Dn>, <Dm>

Decode for this encoding
1 dp_operation = (size == '11');
2 CheckFPDecodeFaults(size);
3 if VFPSmallRegisterBank() && dp_operation && (M == '1' || N == '1' || D == '1') then
4 UNDEFINED;
5 if size == '01' && InITBlock() then UNPREDICTABLE;
6 d = if dp_operation then UInt(D:Vd) else UInt(Vd:D);
7 n = if dp_operation then UInt(N:Vn) else UInt(Vn:N);
8 m = if dp_operation then UInt(M:Vm) else UInt(Vm:M);

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.
<Sd> Is the 32-bit name of the floating-point destination register, encoded in the "Vd:D" field.
<Sn> Is the 32-bit name of the first floating-point source register, encoded in the "Vn:N" field.
<Sm> Is the 32-bit name of the second floating-point source register, encoded in the "Vm:M" field.
<Dd> Is the 64-bit name of the floating-point destination register, encoded in the "D:Vd" field.
<Dn> Is the 64-bit name of the first floating-point source register, encoded in the "N:Vn" field.
<Dm> Is the 64-bit name of the second floating-point source register, encoded in the "M:Vm" field.

Operation for all encodings
1 if ConditionPassed() then

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1339

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

2 EncodingSpecificOperations();
3 ExecuteFPCheck();
4 case size of
5 when '01'
6 S[d] = Zeros(16) : FPSub(S[n][15:0], S[m][15:0], TRUE);
7 when '10'
8 S[d] = FPSub(S[n], S[m], TRUE);
9 when '11'

10 D[d] = FPSub(D[n], D[m], TRUE);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1340

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.483 WFE

Wait For Event. Wait For Event is a hint instruction. If the Event Register is clear, it suspends execution in the
lowest power state available consistent with a fast wakeup without the need for software restoration, until a reset,
exception or other event occurs.

This is a NOP-compatible hint.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 1 0 0 1 0 0 0 0 0

T1 variant

WFE{<c>}{<q>}

Decode for this encoding
1 // No additional decoding required

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 0 0 0 0 0 0 1 0

T2 variant

WFE{<c>}.W

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 // No additional decoding required

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 if EventRegistered() then
4 ClearEventRegister();
5 else
6 WaitForEvent();

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1341

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.484 WFI

Wait For Interrupt. Wait For Interrupt is a hint instruction. It suspends execution, in the lowest power state available
consistent with a fast wakeup without the need for software restoration, until a reset, asynchronous exception or
other event occurs.

This is a NOP-compatible hint.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 1 0 0 1 1 0 0 0 0

T1 variant

WFI{<c>}{<q>}

Decode for this encoding
1 // No additional decoding required

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 0 0 0 0 0 0 1 1

T2 variant

WFI{<c>}.W

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 // No additional decoding required

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 WaitForInterrupt();

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1342

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.485 WLS, DLS, WLSTP, DLSTP

While Loop Start, Do Loop Start, While Loop Start with Tail Predication, Do Loop Start with Tail Predication.
This instruction partially sets up a loop. A LE or LETP (Loop End) instruction completes the setup. The base
variants of this instruction (WLS and DLS) set LR to the number of loop iterations to be performed, whereas
the TP variants of this instruction set LR to the number of vector-elements that must be processed. For the TP
variants, if the number of elements required is not a multiple of the vector length then the appropriate number of
vector elements will be predicated on the last iteration of the loop. When using WLS or WLSTP, if the number
of iterations required is zero, then these instructions branch to the label specified. Each loop start instruction is
normally used with a matching LE or LETP instruction.

This instruction is not permitted in an IT block.

T1
Armv8.1-M Low Overhead Branch Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 0 0 1 (0) (0) Rn 1 1 0 0

imml

immh 1

T1: WLS variant

WLS LR, Rn, <label>

Decode for this encoding
1 if !HaveLOBExt() then UNDEFINED;
2 n = UInt(Rn);
3 tSize = 4[2:0]; // No truncation. Set size to full vector length
4 imm32 = ZeroExtend(immh:imml:'0', 32);
5 isWhileLoop = TRUE;
6 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
7 if Rn == '11x1' then CONSTRAINED_UNPREDICTABLE;

T2
Armv8.1-M Low Overhead Branch Extension

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 0 0 1 (0) (0) Rn 1 1 1 0 (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) 1

T2: DLS variant

DLS LR, Rn

Decode for this encoding
1 if !HaveLOBExt() then UNDEFINED;
2 n = UInt(Rn);
3 tSize = 4[2:0]; // No truncation. Set size to full vector length
4 imm32 = Zeros(32);
5 isWhileLoop = FALSE;
6 if InITBlock() then CONSTRAINED_UNPREDICTABLE;
7 if Rn == '11x1' then CONSTRAINED_UNPREDICTABLE;

T3

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1343

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

Armv8.1-M Low Overhead Branch Extension and MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 0 0 0 size Rn 1 1 0 0

imml

immh 1

T3: WLSTP variant

WLSTP.<size> LR, Rn, <label>

Decode for this encoding
1 if Rn == '1111' then SEE "Related encodings";
2 if !HaveLOBExt() then UNDEFINED;
3 if !HaveMve() then UNDEFINED;
4 HandleException(CheckCPEnabled(10));
5 n = UInt(Rn);
6 tSize = '0':size;
7 imm32 = ZeroExtend(immh:imml:'0', 32);
8 isWhileLoop = TRUE;
9 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

10 if Rn == '1101' then CONSTRAINED_UNPREDICTABLE;

T4
Armv8.1-M Low Overhead Branch Extension and MVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 0 0 0 size Rn 1 1 1 0 0 (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) 1

T4: DLSTP variant

DLSTP.<size> LR, Rn

Decode for this encoding
1 if Rn == '1111' then SEE "Related encodings";
2 if !HaveLOBExt() then UNDEFINED;
3 if !HaveMve() then UNDEFINED;
4 HandleException(CheckCPEnabled(10));
5 n = UInt(Rn);
6 tSize = '0':size;
7 imm32 = Zeros(32);
8 isWhileLoop = FALSE;
9 if InITBlock() then CONSTRAINED_UNPREDICTABLE;

10 if Rn == '1101' then CONSTRAINED_UNPREDICTABLE;

Assembler symbols for T1 encodings

<LR> LR is used to hold the iteration counter of the loop, this instruction must always use this
register.

<Rn> The register holding the number of loop iterations to perform.
<label> Specifies the label of the instruction to branch to if no loop iterations are required.

Assembler symbols for T2 encodings

<LR> LR is used to hold the iteration counter of the loop, this instruction must always use this
register.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1344

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

<Rn> The register holding the number of loop iterations to perform.

Assembler symbols for T3 encodings

<LR> LR is used to hold the number of elements to process, this instruction must always use this
register.

<Rn> The register holding the number of elements to process.
<label> Specifies the label of the instruction after the loop (the first instruction after the LE).

Assembler symbols for T4 encodings

<LR> LR is used to hold the number of elements to process, this instruction must always use this
register.

<Rn> The register holding the number of elements to process.

Assembler symbols for all encodings

<size> The size of the elements in the vector to process. This value is stored in the FPSCR.LTPSIZE
field, and causes tail predication to be applied on the last iteration of the loop.
This parameter must be one of the following values:
8 Encoded as size = 00
16 Encoded as size = 01
32 Encoded as size = 10
64 Encoded as size = 11

Operation for all encodings
1 EncodingSpecificOperations();
2
3 count = R[n];
4 if isWhileLoop && count == Zeros(32) then
5 BranchTo(PC + imm32);
6 else
7 // To avoid creating unnecessary FP context, the LTPSIZE is only set if
8 // tail predication is being used.
9 if tSize != 4[2:0] then

10 ExecuteFPCheck();
11 FPSCR.LTPSIZE = tSize;
12 // Set up the new iteration count
13 LR = count;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1345

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.486 YIELD

Yield hint. Yield is a hint instruction. It enables software with a multithreading capability to indicate to the
hardware that it is performing a task, for example a spinlock, that could be swapped out to improve overall system
performance. Hardware can use this hint to suspend and resume multiple code threads if it supports the capability.

This is a NOP-compatible hint.

T1
Armv8-M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 1 0 0 0 1 0 0 0 0

T1 variant

YIELD{<c>}{<q>}

Decode for this encoding
1 // No additional decoding required

T2
Armv8-M Main Extension only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 0 0 0 0 0 0 0 1

T2 variant

YIELD{<c>}.W

Decode for this encoding
1 if !HaveMainExt() then UNDEFINED;
2 // No additional decoding required

Assembler symbols for all encodings

<c> See C1.2.5 Standard assembler syntax fields on page 431.
<q> See C1.2.5 Standard assembler syntax fields on page 431.

Operation for all encodings
1 if ConditionPassed() then
2 EncodingSpecificOperations();
3 Hint_Yield();

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1346

Part D
Armv8-M Registers and Payload Specification

Chapter D1
Register and Payload Specification

This chapter specifies the Armv8-M registers and payloads. It contains the following sections:

Register Index

Alphabetical list of registers

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1348

Chapter D1. Register and Payload Specification
D1.1. Register index

D1.1 Register index

Address Component

- Special and general-purpose registers
- Payloads
0xE0000000 Instrumentation Macrocell
0xE0001000 Data Watchpoint and Trace
0xE0002000 Flash Patch and Breakpoint
0xE0003000 Performance Monitoring Unit
0xE0005000 Reliability, Availability and Serviceability Extension Fault Status Register
0xE000E004 Implementation Control Block
0xE000E010 SysTick Timer
0xE000E100 Nested Vectored Interrupt Controller
0xE000ECFC System Control Block
0xE000ED90 Memory Protection Unit
0xE000EDD0 Security Attribution Unit
0xE000EDF0 Debug Control Block
0xE000EF00 Software Interrupt Generation
0xE000EF04 Reliability, Availability and Serviceability Extension Fault Status Register
0xE000EF34 Floating-Point Extension
0xE000EF50 Cache Maintenance Operations
0xE000EFB0 Debug Identification Block
0xE002E004 Implementation Control Block (NS alias)
0xE002E010 SysTick Timer (NS alias)
0xE002E100 Nested Vectored Interrupt Controller (NS alias)
0xE002ECFC System Control Block (NS alias)
0xE002ED90 Memory Protection Unit (NS alias)
0xE002EDF0 Debug Control Block (NS alias)
0xE002EF00 Software Interrupt Generation (NS alias)
0xE002EF04 Reliability, Availability and Serviceability Extension Fault Status Register (NS Alias)
0xE002EF34 Floating-Point Extension (NS alias)
0xE002EF50 Cache Maintenance Operations (NS alias)
0xE002EFB0 Debug Identification Block (NS alias)
0xE0040000 Trace Port Interface Unit

D1.1.1 Special and general-purpose registers

Name Description

APSR Application Program Status Register
BASEPRI Base Priority Mask Register
CONTROL Control Register
EPSR Execution Program Status Register
FAULTMASK Fault Mask Register
FPSCR Floating-point Status and Control Register
IPSR Interrupt Program Status Register
LO_BRANCH_INFO Loop and branch tracking information
LR Link Register
MSPLIM Main Stack Pointer Limit Register
PC Program Counter
PRIMASK Exception Mask Register
PSPLIM Process Stack Pointer Limit Register

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1349

Chapter D1. Register and Payload Specification
D1.1. Register index

Name Description

Rn General-Purpose Register n
SP Current Stack Pointer Register
SP Stack Pointer (Non-secure)
VPR Vector Predication Status and Control Register
XPSR Combined Program Status Registers

D1.1.2 Payloads

Name Description

EXC_RETURN Exception Return Payload
FNC_RETURN Function Return Payload
FPCXT Floating-point context payload
MAIR_ATTR Memory Attribute Indirection Register Attributes
RETPSR Combined Exception Return Program Status Registers
TT_RESP Test Target Response Payload

D1.1.3 Instrumentation Macrocell

Address Register Description

0xE0000000 ITM_STIMn ITM Stimulus Port Register n
0xE0000E00 ITM_TERn ITM Trace Enable Register n
0xE0000E40 ITM_TPR ITM Trace Privilege Register
0xE0000E80 ITM_TCR ITM Trace Control Register
0xE0000FB0 ITM_LAR ITM Software Lock Access Register
0xE0000FB4 ITM_LSR ITM Software Lock Status Register
0xE0000FBC ITM_DEVARCH ITM Device Architecture Register
0xE0000FCC ITM_DEVTYPE ITM Device Type Register
0xE0000FD0 ITM_PIDR4 ITM Peripheral Identification Register 4
0xE0000FD4 ITM_PIDR5 ITM Peripheral Identification Register 5
0xE0000FD8 ITM_PIDR6 ITM Peripheral Identification Register 6
0xE0000FDC ITM_PIDR7 ITM Peripheral Identification Register 7
0xE0000FE0 ITM_PIDR0 ITM Peripheral Identification Register 0
0xE0000FE4 ITM_PIDR1 ITM Peripheral Identification Register 1
0xE0000FE8 ITM_PIDR2 ITM Peripheral Identification Register 2
0xE0000FEC ITM_PIDR3 ITM Peripheral Identification Register 3
0xE0000FF0 ITM_CIDR0 ITM Component Identification Register 0
0xE0000FF4 ITM_CIDR1 ITM Component Identification Register 1
0xE0000FF8 ITM_CIDR2 ITM Component Identification Register 2
0xE0000FFC ITM_CIDR3 ITM Component Identification Register 3

D1.1.4 Data Watchpoint and Trace

Address Register Description

0xE0001000 DWT_CTRL DWT Control Register
0xE0001004 DWT_CYCCNT DWT Cycle Count Register
0xE0001008 DWT_CPICNT DWT CPI Count Register

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1350

Chapter D1. Register and Payload Specification
D1.1. Register index

Address Register Description

0xE000100C DWT_EXCCNT DWT Exception Overhead Count Register
0xE0001010 DWT_SLEEPCNT DWT Sleep Count Register
0xE0001014 DWT_LSUCNT DWT LSU Count Register
0xE0001018 DWT_FOLDCNT DWT Folded Instruction Count Register
0xE000101C DWT_PCSR DWT Program Counter Sample Register
0xE0001020 DWT_COMPn DWT Comparator Register n
0xE0001028 DWT_FUNCTIONn DWT Comparator Function Register n
0xE000102C DWT_VMASKn DWT Comparator Value Mask Register n
0xE0001FB0 DWT_LAR DWT Software Lock Access Register
0xE0001FB4 DWT_LSR DWT Software Lock Status Register
0xE0001FBC DWT_DEVARCH DWT Device Architecture Register
0xE0001FCC DWT_DEVTYPE DWT Device Type Register
0xE0001FD0 DWT_PIDR4 DWT Peripheral Identification Register 4
0xE0001FD4 DWT_PIDR5 DWT Peripheral Identification Register 5
0xE0001FD8 DWT_PIDR6 DWT Peripheral Identification Register 6
0xE0001FDC DWT_PIDR7 DWT Peripheral Identification Register 7
0xE0001FE0 DWT_PIDR0 DWT Peripheral Identification Register 0
0xE0001FE4 DWT_PIDR1 DWT Peripheral Identification Register 1
0xE0001FE8 DWT_PIDR2 DWT Peripheral Identification Register 2
0xE0001FEC DWT_PIDR3 DWT Peripheral Identification Register 3
0xE0001FF0 DWT_CIDR0 DWT Component Identification Register 0
0xE0001FF4 DWT_CIDR1 DWT Component Identification Register 1
0xE0001FF8 DWT_CIDR2 DWT Component Identification Register 2
0xE0001FFC DWT_CIDR3 DWT Component Identification Register 3

D1.1.5 Flash Patch and Breakpoint

Address Register Description

0xE0002000 FP_CTRL Flash Patch Control Register
0xE0002004 FP_REMAP Flash Patch Remap Register
0xE0002008 FP_COMPn Flash Patch Comparator Register n
0xE0002FB0 FP_LAR FPB Software Lock Access Register
0xE0002FB4 FP_LSR FPB Software Lock Status Register
0xE0002FBC FP_DEVARCH FPB Device Architecture Register
0xE0002FCC FP_DEVTYPE FPB Device Type Register
0xE0002FD0 FP_PIDR4 FP Peripheral Identification Register 4
0xE0002FD4 FP_PIDR5 FP Peripheral Identification Register 5
0xE0002FD8 FP_PIDR6 FP Peripheral Identification Register 6
0xE0002FDC FP_PIDR7 FP Peripheral Identification Register 7
0xE0002FE0 FP_PIDR0 FP Peripheral Identification Register 0
0xE0002FE4 FP_PIDR1 FP Peripheral Identification Register 1
0xE0002FE8 FP_PIDR2 FP Peripheral Identification Register 2
0xE0002FEC FP_PIDR3 FP Peripheral Identification Register 3
0xE0002FF0 FP_CIDR0 FP Component Identification Register 0
0xE0002FF4 FP_CIDR1 FP Component Identification Register 1
0xE0002FF8 FP_CIDR2 FP Component Identification Register 2
0xE0002FFC FP_CIDR3 FP Component Identification Register 3

D1.1.6 Performance Monitoring Unit

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1351

Chapter D1. Register and Payload Specification
D1.1. Register index

Address Register Description

0xE0003000 PMU_EVCNTRn Performance Monitoring Unit Event Counter Register
0xE000307C PMU_CCNTR Performance Monitoring Unit Cycle Counter Register
0xE0003400 PMU_EVTYPERn Performance Monitoring Unit Event Type and Filter Register
0xE000347C PMU_CCFILTR Performance Monitoring Unit Cycle Counter Filter Register
0xE0003C00 PMU_CNTENSET Performance Monitoring Unit Count Enable Set Register
0xE0003C20 PMU_CNTENCLR Performance Monitoring Unit Count Enable Clear Register
0xE0003C40 PMU_INTENSET Performance Monitoring Unit Interrupt Enable Set Register
0xE0003C60 PMU_INTENCLR Performance Monitoring Unit Interrupt Enable Clear Register
0xE0003C80 PMU_OVSCLR Performance Monitoring Unit Overflow Flag Status Clear Register
0xE0003CA0 PMU_SWINC Performance Monitoring Unit Software Increment Register
0xE0003CC0 PMU_OVSSET Performance Monitoring Unit Overflow Flag Status Set Register
0xE0003E00 PMU_TYPE Performance Monitoring Unit Type Register
0xE0003E04 PMU_CTRL Performance Monitoring Unit Control Register
0xE0003FB8 PMU_AUTHSTATUS Performance Monitoring Unit Authentication Status Register
0xE0003FBC PMU_DEVARCH Performance Monitoring Unit Device Architecture Register
0xE0003FCC PMU_DEVTYPE Performance Monitoring Unit Device Type Register
0xE0003FD0 PMU_PIDR4 Performance Monitoring Unit Peripheral Identification Register 4
0xE0003FE0 PMU_PIDR0 Performance Monitoring Unit Peripheral Identification Register 0
0xE0003FE4 PMU_PIDR1 Performance Monitoring Unit Peripheral Identification Register 1
0xE0003FE8 PMU_PIDR2 Performance Monitoring Unit Peripheral Identification Register 2
0xE0003FEC PMU_PIDR3 Performance Monitoring Unit Peripheral Identification Register 3
0xE0003FF0 PMU_CIDR0 Performance Monitoring Unit Component Identification Register 0
0xE0003FF4 PMU_CIDR1 Performance Monitoring Unit Component Identification Register 1
0xE0003FF8 PMU_CIDR2 Performance Monitoring Unit Component Identification Register 2
0xE0003FFC PMU_CIDR3 Performance Monitoring Unit Component Identification Register 3

D1.1.7 Reliability, Availability and Serviceability Extension Fault Status Register

Address Register Description

0xE0005000 ERRFRn Error Record Feature Register n
0xE0005008 ERRCTRLn Error Record Control Register n
0xE0005010 ERRSTATUSn Error Record Primary Status Register n
0xE0005018 ERRADDRn Error Record Address Register n
0xE000501C ERRADDR2n Error Record Address 2 Register n
0xE0005020 ERRMISC0n Error Record Miscellaneous 0 Register n
0xE0005024 ERRMISC1n Error Record Miscellaneous 1 Register n
0xE0005028 ERRMISC2n Error Record Miscellaneous 2 Register n
0xE000502C ERRMISC3n Error Record Miscellaneous 3 Register n
0xE0005030 ERRMISC4n Error Record Miscellaneous 4 Register n
0xE0005034 ERRMISC5n Error Record Miscellaneous 5 Register n
0xE0005038 ERRMISC6n Error Record Miscellaneous 6 Register n
0xE000503C ERRMISC7n Error Record Miscellaneous 7 Register n
0xE0005E00 ERRGSRn RAS Fault Group Status Register
0xE0005E10 ERRIIDR Error Implementer ID Register
0xE0005FC8 ERRDEVID Error Record Device ID Register

D1.1.8 Implementation Control Block

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1352

Chapter D1. Register and Payload Specification
D1.1. Register index

Address Register Description

0xE000E004 ICTR Interrupt Controller Type Register
0xE000E008 ACTLR Auxiliary Control Register
0xE000E00C CPPWR Coprocessor Power Control Register

D1.1.9 SysTick Timer

Address Register Description

0xE000E010 SYST_CSR SysTick Control and Status Register
0xE000E014 SYST_RVR SysTick Reload Value Register
0xE000E018 SYST_CVR SysTick Current Value Register
0xE000E01C SYST_CALIB SysTick Calibration Value Register

D1.1.10 Nested Vectored Interrupt Controller

Address Register Description

0xE000E100 NVIC_ISERn Interrupt Set Enable Register n
0xE000E180 NVIC_ICERn Interrupt Clear Enable Register n
0xE000E200 NVIC_ISPRn Interrupt Set Pending Register n
0xE000E280 NVIC_ICPRn Interrupt Clear Pending Register n
0xE000E300 NVIC_IABRn Interrupt Active Bit Register n
0xE000E380 NVIC_ITNSn Interrupt Target Non-secure Register n
0xE000E400 NVIC_IPRn Interrupt Priority Register n

D1.1.11 System Control Block

Address Register Description

0xE000ECFC REVIDR Revision ID Register
0xE000ED00 CPUID CPUID Base Register
0xE000ED04 ICSR Interrupt Control and State Register
0xE000ED08 VTOR Vector Table Offset Register
0xE000ED0C AIRCR Application Interrupt and Reset Control Register
0xE000ED10 SCR System Control Register
0xE000ED14 CCR Configuration and Control Register
0xE000ED18 SHPR1 System Handler Priority Register 1
0xE000ED1C SHPR2 System Handler Priority Register 2
0xE000ED20 SHPR3 System Handler Priority Register 3
0xE000ED24 SHCSR System Handler Control and State Register
0xE000ED28 MMFSR MemManage Fault Status Register
0xE000ED28 CFSR Configurable Fault Status Register
0xE000ED29 BFSR BusFault Status Register
0xE000ED2A UFSR UsageFault Status Register
0xE000ED2C HFSR HardFault Status Register
0xE000ED30 DFSR Debug Fault Status Register
0xE000ED34 MMFAR MemManage Fault Address Register
0xE000ED38 BFAR BusFault Address Register
0xE000ED3C AFSR Auxiliary Fault Status Register

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1353

Chapter D1. Register and Payload Specification
D1.1. Register index

Address Register Description

0xE000ED40 ID_PFR0 Processor Feature Register 0
0xE000ED44 ID_PFR1 Processor Feature Register 1
0xE000ED48 ID_DFR0 Debug Feature Register 0
0xE000ED4C ID_AFR0 Auxiliary Feature Register 0
0xE000ED50 ID_MMFR0 Memory Model Feature Register 0
0xE000ED54 ID_MMFR1 Memory Model Feature Register 1
0xE000ED58 ID_MMFR2 Memory Model Feature Register 2
0xE000ED5C ID_MMFR3 Memory Model Feature Register 3
0xE000ED60 ID_ISAR0 Instruction Set Attribute Register 0
0xE000ED64 ID_ISAR1 Instruction Set Attribute Register 1
0xE000ED68 ID_ISAR2 Instruction Set Attribute Register 2
0xE000ED6C ID_ISAR3 Instruction Set Attribute Register 3
0xE000ED70 ID_ISAR4 Instruction Set Attribute Register 4
0xE000ED74 ID_ISAR5 Instruction Set Attribute Register 5
0xE000ED78 CLIDR Cache Level ID Register
0xE000ED7C CTR Cache Type Register
0xE000ED80 CCSIDR Current Cache Size ID register
0xE000ED84 CSSELR Cache Size Selection Register
0xE000ED88 CPACR Coprocessor Access Control Register
0xE000ED8C NSACR Non-secure Access Control Register

D1.1.12 Memory Protection Unit

Address Register Description

0xE000ED90 MPU_TYPE MPU Type Register
0xE000ED94 MPU_CTRL MPU Control Register
0xE000ED98 MPU_RNR MPU Region Number Register
0xE000ED9C MPU_RBAR MPU Region Base Address Register
0xE000EDA0 MPU_RLAR MPU Region Limit Address Register
0xE000EDA4 MPU_RBAR_An MPU Region Base Address Register Alias n
0xE000EDA8 MPU_RLAR_An MPU Region Limit Address Register Alias n
0xE000EDC0 MPU_MAIR0 MPU Memory Attribute Indirection Register 0
0xE000EDC4 MPU_MAIR1 MPU Memory Attribute Indirection Register 1

D1.1.13 Security Attribution Unit

Address Register Description

0xE000EDD0 SAU_CTRL SAU Control Register
0xE000EDD4 SAU_TYPE SAU Type Register
0xE000EDD8 SAU_RNR SAU Region Number Register
0xE000EDDC SAU_RBAR SAU Region Base Address Register
0xE000EDE0 SAU_RLAR SAU Region Limit Address Register
0xE000EDE4 SFSR Secure Fault Status Register
0xE000EDE8 SFAR Secure Fault Address Register

D1.1.14 Debug Control Block

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1354

Chapter D1. Register and Payload Specification
D1.1. Register index

Address Register Description

0xE000EDF0 DHCSR Debug Halting Control and Status Register
0xE000EDF4 DCRSR Debug Core Register Select Register
0xE000EDF8 DCRDR Debug Core Register Data Register
0xE000EDFC DEMCR Debug Exception and Monitor Control Register
0xE000EE00 DSCEMCR Debug Set Clear Exception and Monitor Control Register
0xE000EE04 DAUTHCTRL Debug Authentication Control Register
0xE000EE08 DSCSR Debug Security Control and Status Register

D1.1.15 Software Interrupt Generation

Address Register Description

0xE000EF00 STIR Software Triggered Interrupt Register

D1.1.16 Reliability, Availability and Serviceability Extension Fault Status Register

Address Register Description

0xE000EF04 RFSR RAS Fault Status Register

D1.1.17 Floating-Point Extension

Address Register Description

0xE000EF34 FPCCR Floating-Point Context Control Register
0xE000EF38 FPCAR Floating-Point Context Address Register
0xE000EF3C FPDSCR Floating-Point Default Status Control Register
0xE000EF40 MVFR0 Media and VFP Feature Register 0
0xE000EF44 MVFR1 Media and VFP Feature Register 1
0xE000EF48 MVFR2 Media and VFP Feature Register 2

D1.1.18 Cache Maintenance Operations

Address Register Description

0xE000EF50 ICIALLU Instruction Cache Invalidate All to PoU
0xE000EF58 ICIMVAU Instruction Cache line Invalidate by Address to PoU
0xE000EF5C DCIMVAC Data Cache line Invalidate by Address to PoC
0xE000EF60 DCISW Data Cache line Invalidate by Set/Way
0xE000EF64 DCCMVAU Data Cache line Clean by address to PoU
0xE000EF68 DCCMVAC Data Cache line Clean by Address to PoC
0xE000EF6C DCCSW Data Cache Clean line by Set/Way
0xE000EF70 DCCIMVAC Data Cache line Clean and Invalidate by Address to PoC
0xE000EF74 DCCISW Data Cache line Clean and Invalidate by Set/Way
0xE000EF78 BPIALL Branch Predictor Invalidate All

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1355

Chapter D1. Register and Payload Specification
D1.1. Register index

D1.1.19 Debug Identification Block

Address Register Description

0xE000EFB0 DLAR SCS Software Lock Access Register
0xE000EFB4 DLSR SCS Software Lock Status Register
0xE000EFB8 DAUTHSTATUS Debug Authentication Status Register
0xE000EFBC DDEVARCH SCS Device Architecture Register
0xE000EFCC DDEVTYPE SCS Device Type Register
0xE000EFD0 DPIDR4 SCS Peripheral Identification Register 4
0xE000EFD4 DPIDR5 SCS Peripheral Identification Register 5
0xE000EFD8 DPIDR6 SCS Peripheral Identification Register 6
0xE000EFDC DPIDR7 SCS Peripheral Identification Register 7
0xE000EFE0 DPIDR0 SCS Peripheral Identification Register 0
0xE000EFE4 DPIDR1 SCS Peripheral Identification Register 1
0xE000EFE8 DPIDR2 SCS Peripheral Identification Register 2
0xE000EFEC DPIDR3 SCS Peripheral Identification Register 3
0xE000EFF0 DCIDR0 SCS Component Identification Register 0
0xE000EFF4 DCIDR1 SCS Component Identification Register 1
0xE000EFF8 DCIDR2 SCS Component Identification Register 2
0xE000EFFC DCIDR3 SCS Component Identification Register 3

D1.1.20 Implementation Control Block (NS alias)

Address Register Description

0xE002E004 ICTR Interrupt Controller Type Register (NS)
0xE002E008 ACTLR Auxiliary Control Register (NS)
0xE002E00C CPPWR Coprocessor Power Control Register (NS)

D1.1.21 SysTick Timer (NS alias)

Address Register Description

0xE002E010 SYST_CSR SysTick Control and Status Register (NS)
0xE002E014 SYST_RVR SysTick Reload Value Register (NS)
0xE002E018 SYST_CVR SysTick Current Value Register (NS)
0xE002E01C SYST_CALIB SysTick Calibration Value Register (NS)

D1.1.22 Nested Vectored Interrupt Controller (NS alias)

Address Register Description

0xE002E100 NVIC_ISERn Interrupt Set Enable Register n (NS)
0xE002E180 NVIC_ICERn Interrupt Clear Enable Register n (NS)
0xE002E200 NVIC_ISPRn Interrupt Set Pending Register n (NS)
0xE002E280 NVIC_ICPRn Interrupt Clear Pending Register n (NS)
0xE002E300 NVIC_IABRn Interrupt Active Bit Register n (NS)
0xE002E400 NVIC_IPRn Interrupt Priority Register n (NS)

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1356

Chapter D1. Register and Payload Specification
D1.1. Register index

D1.1.23 System Control Block (NS alias)

Address Register Description

0xE002ECFC REVIDR Revision ID Register (NS)
0xE002ED00 CPUID CPUID Base Register (NS)
0xE002ED04 ICSR Interrupt Control and State Register (NS)
0xE002ED08 VTOR Vector Table Offset Register (NS)
0xE002ED0C AIRCR Application Interrupt and Reset Control Register (NS)
0xE002ED10 SCR System Control Register (NS)
0xE002ED14 CCR Configuration and Control Register (NS)
0xE002ED18 SHPR1 System Handler Priority Register 1 (NS)
0xE002ED1C SHPR2 System Handler Priority Register 2 (NS)
0xE002ED20 SHPR3 System Handler Priority Register 3 (NS)
0xE002ED24 SHCSR System Handler Control and State Register (NS)
0xE002ED28 MMFSR MemManage Fault Status Register (NS)
0xE002ED28 CFSR Configurable Fault Status Register (NS)
0xE002ED29 BFSR BusFault Status Register (NS)
0xE002ED2A UFSR UsageFault Status Register (NS)
0xE002ED2C HFSR HardFault Status Register (NS)
0xE002ED30 DFSR Debug Fault Status Register (NS)
0xE002ED34 MMFAR MemManage Fault Address Register (NS)
0xE002ED38 BFAR BusFault Address Register (NS)
0xE002ED3C AFSR Auxiliary Fault Status Register (NS)
0xE002ED40 ID_PFR0 Processor Feature Register 0 (NS)
0xE002ED44 ID_PFR1 Processor Feature Register 1 (NS)
0xE002ED48 ID_DFR0 Debug Feature Register 0 (NS)
0xE002ED4C ID_AFR0 Auxiliary Feature Register 0 (NS)
0xE002ED50 ID_MMFR0 Memory Model Feature Register 0 (NS)
0xE002ED54 ID_MMFR1 Memory Model Feature Register 1 (NS)
0xE002ED58 ID_MMFR2 Memory Model Feature Register 2 (NS)
0xE002ED5C ID_MMFR3 Memory Model Feature Register 3 (NS)
0xE002ED60 ID_ISAR0 Instruction Set Attribute Register 0 (NS)
0xE002ED64 ID_ISAR1 Instruction Set Attribute Register 1 (NS)
0xE002ED68 ID_ISAR2 Instruction Set Attribute Register 2 (NS)
0xE002ED6C ID_ISAR3 Instruction Set Attribute Register 3 (NS)
0xE002ED70 ID_ISAR4 Instruction Set Attribute Register 4 (NS)
0xE002ED74 ID_ISAR5 Instruction Set Attribute Register 5 (NS)
0xE002ED78 CLIDR Cache Level ID Register (NS)
0xE002ED7C CTR Cache Type Register (NS)
0xE002ED80 CCSIDR Current Cache Size ID register (NS)
0xE002ED84 CSSELR Cache Size Selection Register (NS)
0xE002ED88 CPACR Coprocessor Access Control Register (NS)

D1.1.24 Memory Protection Unit (NS alias)

Address Register Description

0xE002ED90 MPU_TYPE MPU Type Register (NS)
0xE002ED94 MPU_CTRL MPU Control Register (NS)
0xE002ED98 MPU_RNR MPU Region Number Register (NS)
0xE002ED9C MPU_RBAR MPU Region Base Address Register (NS)
0xE002EDA0 MPU_RLAR MPU Region Limit Address Register (NS)

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1357

Chapter D1. Register and Payload Specification
D1.1. Register index

Address Register Description

0xE002EDA4 MPU_RBAR_An MPU Region Base Address Register Alias n (NS)
0xE002EDA8 MPU_RLAR_An MPU Region Limit Address Register Alias n (NS)
0xE002EDC0 MPU_MAIR0 MPU Memory Attribute Indirection Register 0 (NS)
0xE002EDC4 MPU_MAIR1 MPU Memory Attribute Indirection Register 1 (NS)

D1.1.25 Debug Control Block (NS alias)

Address Register Description

0xE002EDF0 DHCSR Debug Halting Control and Status Register (NS)
0xE002EDF8 DCRDR Debug Core Register Data Register (NS)
0xE002EDFC DEMCR Debug Exception and Monitor Control Register (NS)
0xE002EE00 DSCEMCR Debug Set Clear Exception and Monitor Control Register (NS)
0xE002EE04 DAUTHCTRL Debug Authentication Control Register (NS)

D1.1.26 Software Interrupt Generation (NS alias)

Address Register Description

0xE002EF00 STIR Software Triggered Interrupt Register (NS)

D1.1.27 Reliability, Availability and Serviceability Extension Fault Status Register (NS Alias)

Address Register Description

0xE002EF04 RFSR RAS Fault Status Register (NS)

D1.1.28 Floating-Point Extension (NS alias)

Address Register Description

0xE002EF34 FPCCR Floating-Point Context Control Register (NS)
0xE002EF38 FPCAR Floating-Point Context Address Register (NS)
0xE002EF3C FPDSCR Floating-Point Default Status Control Register (NS)
0xE002EF40 MVFR0 Media and VFP Feature Register 0 (NS)
0xE002EF44 MVFR1 Media and VFP Feature Register 1 (NS)
0xE002EF48 MVFR2 Media and VFP Feature Register 2 (NS)

D1.1.29 Cache Maintenance Operations (NS alias)

Address Register Description

0xE002EF50 ICIALLU Instruction Cache Invalidate All to PoU (NS)
0xE002EF58 ICIMVAU Instruction Cache line Invalidate by Address to PoU (NS)
0xE002EF5C DCIMVAC Data Cache line Invalidate by Address to PoC (NS)
0xE002EF60 DCISW Data Cache line Invalidate by Set/Way (NS)

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1358

Chapter D1. Register and Payload Specification
D1.1. Register index

Address Register Description

0xE002EF64 DCCMVAU Data Cache line Clean by address to PoU (NS)
0xE002EF68 DCCMVAC Data Cache line Clean by Address to PoC (NS)
0xE002EF6C DCCSW Data Cache Clean line by Set/Way (NS)
0xE002EF70 DCCIMVAC Data Cache line Clean and Invalidate by Address to PoC (NS)
0xE002EF74 DCCISW Data Cache line Clean and Invalidate by Set/Way (NS)
0xE002EF78 BPIALL Branch Predictor Invalidate All (NS)

D1.1.30 Debug Identification Block (NS alias)

Address Register Description

0xE002EFB0 DLAR SCS Software Lock Access Register (NS)
0xE002EFB4 DLSR SCS Software Lock Status Register (NS)
0xE002EFB8 DAUTHSTATUS Debug Authentication Status Register (NS)
0xE002EFBC DDEVARCH SCS Device Architecture Register (NS)
0xE002EFCC DDEVTYPE SCS Device Type Register (NS)
0xE002EFD0 DPIDR4 SCS Peripheral Identification Register 4 (NS)
0xE002EFD4 DPIDR5 SCS Peripheral Identification Register 5 (NS)
0xE002EFD8 DPIDR6 SCS Peripheral Identification Register 6 (NS)
0xE002EFDC DPIDR7 SCS Peripheral Identification Register 7 (NS)
0xE002EFE0 DPIDR0 SCS Peripheral Identification Register 0 (NS)
0xE002EFE4 DPIDR1 SCS Peripheral Identification Register 1 (NS)
0xE002EFE8 DPIDR2 SCS Peripheral Identification Register 2 (NS)
0xE002EFEC DPIDR3 SCS Peripheral Identification Register 3 (NS)
0xE002EFF0 DCIDR0 SCS Component Identification Register 0 (NS)
0xE002EFF4 DCIDR1 SCS Component Identification Register 1 (NS)
0xE002EFF8 DCIDR2 SCS Component Identification Register 2 (NS)
0xE002EFFC DCIDR3 SCS Component Identification Register 3 (NS)

D1.1.31 Trace Port Interface Unit

Address Register Description

0xE0040000 TPIU_SSPSR TPIU Supported Parallel Port Sizes Register
0xE0040004 TPIU_CSPSR TPIU Current Parallel Port Sizes Register
0xE0040010 TPIU_ACPR TPIU Asynchronous Clock Prescaler Register
0xE00400F0 TPIU_SPPR TPIU Selected Pin Protocol Register
0xE0040300 TPIU_FFSR TPIU Formatter and Flush Status Register
0xE0040304 TPIU_FFCR TPIU Formatter and Flush Control Register
0xE0040308 TPIU_PSCR TPIU Periodic Synchronization Control Register
0xE0040FB0 TPIU_LAR TPIU Software Lock Access Register
0xE0040FB4 TPIU_LSR TPIU Software Lock Status Register
0xE0040FC8 TPIU_TYPE TPIU Device Identifier Register
0xE0040FCC TPIU_DEVTYPE TPIU Device Type Register
0xE0040FD0 TPIU_PIDR4 TPIU Peripheral Identification Register 4
0xE0040FD4 TPIU_PIDR5 TPIU Peripheral Identification Register 5
0xE0040FD8 TPIU_PIDR6 TPIU Peripheral Identification Register 6
0xE0040FDC TPIU_PIDR7 TPIU Peripheral Identification Register 7
0xE0040FE0 TPIU_PIDR0 TPIU Peripheral Identification Register 0
0xE0040FE4 TPIU_PIDR1 TPIU Peripheral Identification Register 1

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1359

Chapter D1. Register and Payload Specification
D1.1. Register index

Address Register Description

0xE0040FE8 TPIU_PIDR2 TPIU Peripheral Identification Register 2
0xE0040FEC TPIU_PIDR3 TPIU Peripheral Identification Register 3
0xE0040FF0 TPIU_CIDR0 TPIU Component Identification Register 0
0xE0040FF4 TPIU_CIDR1 TPIU Component Identification Register 1
0xE0040FF8 TPIU_CIDR2 TPIU Component Identification Register 2
0xE0040FFC TPIU_CIDR3 TPIU Component Identification Register 3

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1360

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2 Alphabetical list of registers

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1361

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.1 ACTLR, Auxiliary Control Register

The ACTLR characteristics are:

Purpose
Provides IMPLEMENTATION DEFINED configuration and control options.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
This register is always implemented.

Attributes
32-bit read/write register located at 0xE000E008.

Secure software can access the Non-secure version of this register via ACTLR_NS located at 0xE002E008.
The location 0xE002E008 is RES0 to software executing in Non-secure state and the debugger.

It is IMPLEMENTATION DEFINED whether this register is banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The ACTLR bit assignments are:

031

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]
IMPLEMENTATION DEFINED. The contents of this field are IMPLEMENTATION DEFINED.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1362

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.2 AFSR, Auxiliary Fault Status Register

The AFSR characteristics are:

Purpose
Provides IMPLEMENTATION DEFINED fault status information.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
This register is always implemented.

Attributes
32-bit read/write register located at 0xE000ED3C.

Secure software can access the Non-secure version of this register via AFSR_NS located at 0xE002ED3C.
The location 0xE002ED3C is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The AFSR bit assignments are:

031

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]
IMPLEMENTATION DEFINED. The contents of this field are IMPLEMENTATION DEFINED.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1363

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.3 AIRCR, Application Interrupt and Reset Control Register

The AIRCR characteristics are:

Purpose
Sets or returns interrupt control and reset configuration.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
This register is always implemented.

Attributes
32-bit read/write register located at 0xE000ED0C.

Secure software can access the Non-secure version of this register via AIRCR_NS located at 0xE002ED0C.
The location 0xE002ED0C is RES0 to software executing in Non-secure state and the debugger.

This register is banked between Security states on a bit by bit basis.

Field descriptions

The AIRCR bit assignments are:

On a read:

0

(0)

1234567

RES0

8101112

RES0

1314151631

VECTKEYSTAT

ENDIANNESS
PRIS

BFHFNMINS
PRIGROUP

IESB

VECTCLRACTIVE
SYSRESETREQ
SYSRESETREQS

DIT

On a write:

0

(0)

1234567

RES0

8101112

RES0

1314151631

VECTKEY

ENDIANNESS
PRIS

BFHFNMINS
PRIGROUP

IESB

VECTCLRACTIVE
SYSRESETREQ
SYSRESETREQS

DIT

VECTKEY, bits [31:16], on a write
Vector key. Writes to the AIRCR must be accompanied by a write of the value 0x05FA to this field. Writes
to the AIRCR fields that are not accompanied by this value are ignored for the purpose of updating any of the
AIRCR values or initiating any AIRCR functionality.

This field is not banked between Security states.

The possible values of this field are:

0x05FA
Permit write to AIRCR fields.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1364

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

Not 0x05FA
Accompanying write to AIRCR fields ignored.

VECTKEYSTAT, bits [31:16], on a read
Vector key status. Returns the bitwise inverse of the value required to be written to VECTKEY.

This field is not banked between Security states.

This field reads as 0xFA05.

ENDIANNESS, bit [15]
Data endianness. Indicates how the PE interprets the memory system data endianness.

This bit is not banked between Security states.

The possible values of this bit are:

0
Little-endian.

1
Big-endian.

This bit is read-only.

This bit reads as an IMPLEMENTATION DEFINED value.

PRIS, bit [14]
Prioritize Secure exceptions. The value of this bit defines whether Secure exception priority boosting is
enabled.

This bit is not banked between Security states.

The possible values of this bit are:

0
Priority ranges of Secure and Non-secure exceptions are identical.

1
Non-secure exceptions are de-prioritized.

To allow lock down of this bit, it is IMPLEMENTATION DEFINED whether this bit is writable.

This bit is RAZ/WI from Non-secure state.

This bit resets to zero on a Warm reset.

BFHFNMINS, bit [13]
BusFault, HardFault, and NMI Non-secure enable. The value of this bit defines whether BusFault and NMI
exceptions are Non-secure, and whether exceptions target the Non-secure HardFault exception.

This bit is not banked between Security states.

The possible values of this bit are:

0
BusFault, HardFault, and NMI are Secure.

1
BusFault and NMI are Non-secure and exceptions can target Non-secure HardFault.

If an implementation resets into Secure state, this bit resets to zero. If an implementation does not support
Secure state, this bit is RAO/WI. To allow lock down of this field it is IMPLEMENTATION DEFINED whether
this bit is writable. The effect of setting both BFHFNMINS and PRIS to 1 is UNPREDICTABLE.

This bit is read-only from Non-secure state.

This bit resets to zero on a Warm reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1365

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

Bits [12:11]
Reserved, RES0.

PRIGROUP, bits [10:8]
Priority grouping. The value of this field defines the exception priority binary point position for the selected
Security state.

This field is banked between Security states.

The possible values of this field are:

0b000
Group priority [7:1], subpriority [0].

0b001
Group priority [7:2], subpriority [1:0].

0b010
Group priority [7:3], subpriority [2:0].

0b011
Group priority [7:4], subpriority [3:0].

0b100
Group priority [7:5], subpriority [4:0].

0b101
Group priority [7:6], subpriority [5:0].

0b110
Group priority [7], subpriority [6:0].

0b111
No group priority, subpriority [7:0].

If the Main Extension is not implemented, this field is RES0.

This field resets to zero on a Warm reset.

Bits [7:6]
Reserved, RES0.

IESB, bit [5]
Implicit ESB Enable. This bit indicates and allows modification of whether an implicit Error Synchronization
Barriers occurs around lazy state preservation, and on every exception entry and return.

This bit is not banked between Security states.

The possible values of this bit are:

0
No Implicit ESB.

1
Implicit ESB are enabled.

Enabling implicit ESB’s also causes imprecise BusFault exceptions to escalate as if they were precise,
however because the address of the instruction that caused the fault is not known they are still reported as an
IMPRECISERR in BFSR.

If a PE does not allow configuring implicit ESB insertion, this bit is WI and the value read indicates whether
the PE never or always inserts an implicit ESB around lazy state preservation, and on exception entry and
return.

If AIRCR.BFHFNMINS is zero this bit is RAZ/WI from Non-secure state.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1366

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

If RAS is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

DIT, bit [4]
Data Independent Timing. This bit indicates and allows modification of whether for the selected Security
state data independent timing operations are guaranteed to be timing invariant with respect to the data values
being operated on.

This bit is banked between Security states.

The possible values of this bit are:

0
The architecture makes no statement about the timing properties of any instructions.

1
Operations which the architecture defines as having data independent timing exhibit this behavior.

If configuration of timing invariance is not supported this bit is WI, and the value read indicates whether the
PE always or never exhibits timing invariant behavior.

This bit resets to zero on a Warm reset.

SYSRESETREQS, bit [3]
System reset request Secure only. The value of this bit defines whether the SYSRESETREQ bit is functional
for Non-secure use.

This bit is not banked between Security states.

The possible values of this bit are:

0
SYSRESETREQ functionality is available to both Security states.

1
SYSRESETREQ functionality is only available to Secure state.

This bit is RAZ/WI from Non-secure state.

This bit resets to zero on a Warm reset.

SYSRESETREQ, bit [2]
System reset request. This bit allows software or a debugger to request a system reset.

This bit is not banked between Security states.

The possible values of this bit are:

0
Do not request a system reset.

1
Request a system reset.

When SYSRESETREQS is set to 1, the Non-secure view of this bit is RAZ/WI.

This bit resets to zero on a Warm reset.

VECTCLRACTIVE, bit [1]
Clear active state.

A debugger write of one to this bit when the PE is halted in Debug state:

• IPSR is cleared to zero.

• If DHCSR.S_NSUIDE==0, the active state for all Non-secure exceptions is cleared.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1367

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

• If DHCSR.S_SUIDE==0 and DHCSR.S_SDE==1, the active state for all Secure exceptions is cleared.

This bit is not banked between Security states.

The possible values of this bit are:

0
Do not clear active state.

1
Clear active state.

Writes to this bit while the PE is in Non-debug state are ignored.

This bit reads as zero.

Bit [0]
Reserved, RES0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1368

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.4 APSR, Application Program Status Register

The APSR characteristics are:

Purpose
Provides privileged and unprivileged access to the PE Execution state fields.

Usage constraints
Privileged and unprivileged access permitted.

Configurations
This register is always implemented.

Attributes
32-bit read/write special-purpose register.

This register is not banked between Security states.

Field descriptions

The APSR bit assignments are:

015

RES0

1619

GE

2026

RES0

27

Q

28

V

29

C

30

Z

31

N

N, bit [31]
Negative condition flag. When updated by a flag setting instruction this bit indicates whether the result of the
operation when treated as a two’s complement signed integer is negative.

The possible values of this bit are:

0
Result is positive or zero.

1
Result is negative.

See individual instruction pages for details.

This bit resets to an UNKNOWN value on a Warm reset.

Z, bit [30]
Zero condition flag. When updated by a flag setting instruction this bit indicates whether the result of the
operation was zero.

The possible values of this bit are:

0
Result is nonzero.

1
Result is zero.

See individual instruction pages for details.

This bit resets to an UNKNOWN value on a Warm reset.

C, bit [29]
Carry condition flag. When updated by a flag setting instruction this bit indicates whether the operation
resulted in an unsigned overflow or whether the last bit shifted out of the result was set.

The possible values of this bit are:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1369

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0
No carry occurred, or last bit shifted was clear.

1
Carry occurred, or last bit shifted was set.

See individual instruction pages for details.

This bit resets to an UNKNOWN value on a Warm reset.

V, bit [28]
Overflow condition flag. When updated by a flag setting instruction this bit indicates whether a signed
overflow occurred.

The possible values of this bit are:

0
Signed overflow did not occur.

1
Signed overflow occurred.

See individual instruction pages for details.

This bit resets to an UNKNOWN value on a Warm reset.

Q, bit [27]
Sticky saturation flag. When updated by certain instructions this bit indicates either that an overflow occurred
or that the result was saturated. This bit is cumulative and can only be cleared to zero by software.

The possible values of this bit are:

0
Saturation or overflow has not occurred since bit was last cleared.

1
Saturation or overflow has occurred since bit was last cleared.

See individual instruction pages for details.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to an UNKNOWN value on a Warm reset.

Bits [26:20]
Reserved, RES0.

GE, bits [19:16]
Greater than or equal flags. When updated by parallel addition and subtraction instructions these bits record
whether the result was greater than or equal to zero. SEL instructions use these bits to determine which
register to select a particular byte from.

See individual instruction pages for details.

If the DSP Extension is not implemented, this field is RES0.

This field resets to an UNKNOWN value on a Warm reset.

Bits [15:0]
Reserved, RES0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1370

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.5 BASEPRI, Base Priority Mask Register

The BASEPRI characteristics are:

Purpose
Changes the priority level required for exception preemption.

Usage constraints
Privileged access only. Unprivileged access is RAZ/WI, unless otherwise stated.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes
32-bit read/write special-purpose register.

This register is banked between Security states.

Field descriptions

The BASEPRI bit assignments are:

07

BASEPRI

831

RES0

Bits [31:8]
Reserved, RES0.

BASEPRI, bits [7:0]
Base priority mask. BASEPRI changes the priority level required for exception preemption. It has an effect
only when BASEPRI has a lower value than the unmasked priority level of the currently executing software.

The possible values of this field are:

0
Disables masking by BASEPRI.

1-255
Priority value.

The number of implemented bits in BASEPRI is the same as the number of implemented bits in each field of
the priority registers, and BASEPRI has the same format as those fields.

This field resets to zero on a Warm reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1371

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.6 BFAR, BusFault Address Register

The BFAR characteristics are:

Purpose
Shows the address associated with a precise data access BusFault.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes
32-bit read/write register located at 0xE000ED38.

Secure software can access the Non-secure version of this register via BFAR_NS located at 0xE002ED38.
The location 0xE002ED38 is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The BFAR bit assignments are:

031

ADDRESS

ADDRESS, bits [31:0]
Data address for a precise BusFault. This register is updated with the address of a location that produced
a BusFault. BFSR shows the reason for the fault. This field is valid only when BFSR.BFARVALID is set,
otherwise it is UNKNOWN.

In implementations without unique BFAR and MMFAR registers, the value of this register is UNKNOWN if
MMFSR.MMARVALID is set.

If AIRCR.BFHFNMINS is zero this field is RAZ/WI from Non-secure state.

This field resets to an UNKNOWN value on a Warm reset.

Note

If an implementation shares a common BFAR and MMFAR it must not leak Secure state in-
formation to the Non-secure state. One possible implementation is that BFAR shares resource
with the Secure MMFAR if AIRCR.BFHFNMINS is zero, and with the Non-secure MMFAR if
AIRCR.BFHFNMINS is set.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1372

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.7 BFSR, BusFault Status Register

The BFSR characteristics are:

Purpose
Shows the status of bus errors resulting from instruction fetches and data accesses. This includes errors
resulting from RAS errors.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

If the Main Extension is implemented, this register is word, halfword, and byte accessible.

If the Main Extension is not implemented, this register is word accessible only, halfword and byte accesses
are UNPREDICTABLE.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes
8-bit read/write-one-to-clear register located at 0xE000ED29.

Secure software can access the Non-secure version of this register via BFSR_NS located at 0xE002ED29.
The location 0xE002ED29 is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

This register is part of CFSR.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The BFSR bit assignments are:

0123456

(0)

7

BFARVALID
LSPERR
STKERR

UNSTKERR

IBUSERR
PRECISERR
IMPRECISERR

BFARVALID, bit [7]
BFAR valid. Indicates validity of the contents of the BFAR register.

The possible values of this bit are:

0
BFAR content not valid.

1
BFAR content valid.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1373

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

If AIRCR.BFHFNMINS is zero this bit is RAZ/WI from Non-secure state.

This bit resets to zero on a Warm reset.

Bit [6]
Reserved, RES0.

LSPERR, bit [5]
Lazy state preservation error. Records whether a precise BusFault occurred during FP lazy state preservation.

The possible values of this bit are:

0
No BusFault occurred.

1
BusFault occurred.

If AIRCR.BFHFNMINS is zero this bit is RAZ/WI from Non-secure state.

This bit resets to zero on a Warm reset.

STKERR, bit [4]
Stack error. Records whether a precise derived BusFault occurred during exception entry stacking.

The possible values of this bit are:

0
No derived BusFault occurred.

1
Derived BusFault occurred during exception entry.

If AIRCR.BFHFNMINS is zero this bit is RAZ/WI from Non-secure state.

This bit resets to zero on a Warm reset.

UNSTKERR, bit [3]
Unstack error. Records whether a precise derived BusFault occurred during exception return unstacking.

The possible values of this bit are:

0
No derived BusFault occurred.

1
Derived BusFault occurred during exception return.

If AIRCR.BFHFNMINS is zero this bit is RAZ/WI from Non-secure state.

This bit resets to zero on a Warm reset.

IMPRECISERR, bit [2]
Imprecise error. Records whether an imprecise data access error has occurred.

The possible values of this bit are:

0
No imprecise data access error has occurred.

1
Imprecise data access error has occurred.

If AIRCR.BFHFNMINS is zero this bit is RAZ/WI from Non-secure state.

This bit resets to zero on a Warm reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1374

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

PRECISERR, bit [1]
Precise error. Records whether a precise data access error has occurred.

The possible values of this bit are:

0
No precise data access error has occurred.

1
Precise data access error has occurred.

When a precise error is recorded, the associated address is written to the BFAR and BFSR.BFARVALID bit
is set.

If AIRCR.BFHFNMINS is zero this bit is RAZ/WI from Non-secure state.

This bit resets to zero on a Warm reset.

IBUSERR, bit [0]
Instruction bus error. Records whether a precise BusFault on an instruction prefetch has occurred.

The possible values of this bit are:

0
No BusFault on instruction prefetch has occurred.

1
A BusFault on an instruction prefetch has occurred.

An IBUSERR is only recorded if the instruction is issued for execution.

If AIRCR.BFHFNMINS is zero this bit is RAZ/WI from Non-secure state.

This bit resets to zero on a Warm reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1375

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.8 BPIALL, Branch Predictor Invalidate All

The BPIALL characteristics are:

Purpose
Invalidate all entries from branch predictors.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

Configurations
This register is always implemented.

Attributes
32-bit write-only register located at 0xE000EF78.

Secure software can access the Non-secure version of this register via BPIALL_NS located at 0xE002EF78.
The location 0xE002EF78 is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The BPIALL bit assignments are:

031

Ignored

Ignored, bits [31:0]
Ignored. The value written to this field is ignored.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1376

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.9 CCR, Configuration and Control Register

The CCR characteristics are:

Purpose
Sets or returns configuration and control data.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From ARMv8.1-M, this register is accessible for read accesses through unprivileged DAP requests when
DAUTHCTRL.UIDAPEN (either bank) is set.

Configurations
This register is always implemented.

Attributes
32-bit read/write register located at 0xE000ED14.

Secure software can access the Non-secure version of this register via CCR_NS located at 0xE002ED14.
The location 0xE002ED14 is RES0 to software executing in Non-secure state and the debugger.

This register is banked between Security states on a bit by bit basis.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The CCR bit assignments are:

0

(1)

12

(0)

3457

RES0

89

(1)

101115

RES0

1617

IC

18

BP

19202131

RES0

TRD
LOB
DC

STKOFHFNMIGN

USERSETMPEND
UNALIGN_TRP

DIV_0_TRP
BFHFNMIGN

Bits [31:21]
Reserved, RES0.

TRD, bit [20]
Thread reentrancy disabled. Enables checking for exception stack frame integrity signatures on SG instruc-
tions. If enabled this check causes a fault to be raised if an attempt is made to re-enter Secure Thread mode
while a call to Secure Thread mode is already in progress.

This bit is not banked between Security states.

The possible values of this bit are:

0
Integrity signature checking not performed.

1
Integrity signature checking performed.

This bit is RAZ/WI from Non-secure state.

If version Armv8.1-M of the architecture is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1377

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

LOB, bit [19]
Loop and branch info cache enable. Enables the branch cache used by loop and branch future instructions for
the selected Security state.

This bit is banked between Security states.

The possible values of this bit are:

0
Branch cache disabled for the selected Security state.

1
Branch cache enabled for the selected Security state.

Arm recommends that the RAO/WI behavior should only be used for CCR.BP where the branch predictor is
static and does not display any dynamic behavior.

If version Armv8.1-M of the architecture is not implemented, this bit is RES0.

If the branch cache is not supported, this bit is RAZ/WI.

This bit resets to zero on a Warm reset.

BP, bit [18]
Branch prediction enable. Enables program flow prediction for the selected Security state.

This bit is banked between Security states.

The possible values of this bit are:

0
Program flow prediction disabled for the selected Security state.

1
Program flow prediction enabled for the selected Security state.

If program flow prediction cannot be disabled, this bit is RAO/WI. If the program flow prediction is not
supported, this bit is RAZ/WI.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

IC, bit [17]
Instruction cache enable. This is a global enable bit for instruction caches in the selected Security state.

This bit is banked between Security states.

The possible values of this bit are:

0
Instruction caches disabled for the selected Security state.

1
Instruction caches enabled for the selected Security state.

If the PE does not implement instruction caches, this bit is RAZ/WI.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

DC, bit [16]
Data cache enable. Enables data caching of all data accesses to Normal memory.

This bit is banked between Security states.

The possible values of this bit are:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1378

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0
Data caching disabled.

1
Data caching enabled.

The secure version of this bit controls the Cacheability of accesses to secure memory.

The non-secure version of this bit controls the Cacheability of accesses to non-secure memory.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

Bits [15:11]
Reserved, RES0.

STKOFHFNMIGN, bit [10]
Stack overflow in HardFault and NMI ignore. Controls the effect of a stack limit violation while executing at
a requested priority less than 0 for the Security state with which the stack limit register is associated.

This bit is banked between Security states.

The possible values of this bit are:

0
Stack limit faults not ignored.

1
Stack limit faults at requested priorities of less than 0 ignored.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

Bit [9]
Reserved, RES1.

BFHFNMIGN, bit [8]
BusFault in HardFault or NMI ignore. Determines the effect of precise BusFaults on handlers running at a
requested priority less than 0.

This bit is not banked between Security states.

The possible values of this bit are:

0
Precise BusFaults not ignored.

1
Precise BusFaults at requested priorities of less than 0 ignored.

If AIRCR.BFHFNMINS is zero this bit is RAZ/WI from Non-secure state.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

Bits [7:5]
Reserved, RES0.

DIV_0_TRP, bit [4]
Divide by zero trap. Controls the generation of a DIVBYZERO UsageFault when attempting to perform
integer division by zero.

This bit is banked between Security states.

The possible values of this bit are:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1379

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0
DIVBYZERO UsageFault generation disabled.

1
DIVBYZERO UsageFault generation enabled.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

UNALIGN_TRP, bit [3]
Unaligned trap. Controls the trapping of unaligned word or halfword accesses.

This bit is banked between Security states.

The possible values of this bit are:

0
Unaligned accesses permitted from LDR, LDRH, STR, and STRH.

1
Any unaligned transaction generates an UNALIGNED UsageFault.

Unaligned load/store multiples and atomic/exclusive accesses always generate an UNALIGNED UsageFault.

If the Main Extension is not implemented, this bit is RES1.

This bit resets to zero on a Warm reset if the Main Extension is implemented.

Bit [2]
Reserved, RES0.

USERSETMPEND, bit [1]
User set main pending. Determines whether unprivileged accesses are permitted to pend interrupts via the
STIR.

This bit is banked between Security states.

The possible values of this bit are:

0
Unprivileged accesses to the STIR generate a fault.

1
Unprivileged accesses to the STIR are permitted.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

Bit [0]
Reserved, RES1.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1380

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.10 CCSIDR, Current Cache Size ID register

The CCSIDR characteristics are:

Purpose
The CCSIDR provides information about the architecture of the currently selected cache.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If CSSELR points to an unimplemented cache, the value of this register is UNKNOWN.

Configurations
This register is always implemented.

Attributes
32-bit read-only register located at 0xE000ED80.

Secure software can access the Non-secure version of this register via CCSIDR_NS located at 0xE002ED80.
The location 0xE002ED80 is RES0 to software executing in Non-secure state and the debugger.

This register is banked between Security states.

Preface

Provides indirect read access to the architecture of the cache currently selected by CSSELR. The parameters
NumSets, Associativity, and LineSize in these registers define the architecturally visible parameters that are
required for the cache maintenance by Set/Way instructions. They are not guaranteed to represent the actual
microarchitectural features of a design. You cannot make any inference about the actual sizes of caches based on
these parameters.

Field descriptions

The CCSIDR bit assignments are:

02

LineSize

312

Associativity

1327

NumSets

28293031

WT
WB

WA
RA

WT, bit [31]
Write-Through. Indicates whether the currently selected cache level supports Write-Through.

The possible values of this bit are:

0
Not supported.

1
Supported.

This bit reads as an IMPLEMENTATION DEFINED value.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1381

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

WB, bit [30]
Writeback. Indicates whether the currently selected cache level supports Write-Back.

The possible values of this bit are:

0
Not supported.

1
Supported.

This bit reads as an IMPLEMENTATION DEFINED value.

RA, bit [29]
Read-allocate. Indicates whether the currently selected cache level supports read-allocation.

The possible values of this bit are:

0
Not supported.

1
Supported.

This bit reads as an IMPLEMENTATION DEFINED value.

WA, bit [28]
Write-Allocate. Indicates whether the currently selected cache level supports write-allocation.

The possible values of this bit are:

0
Not supported.

1
Supported.

This bit reads as an IMPLEMENTATION DEFINED value.

NumSets, bits [27:13]
Number of sets. Indicates (Number of sets in the currently selected cache) - 1. Therefore, a value of 0
indicates that 1 is set in the cache. The number of sets does not have to be a power of 2.

This field reads as an IMPLEMENTATION DEFINED value.

Associativity, bits [12:3]
Associativity. Indicates (Associativity of cache) - 1. A value of 0 indicates an associativity of 1. The
associativity does not have to be a power of 2.

This field reads as an IMPLEMENTATION DEFINED value.

LineSize, bits [2:0]
Line size. Indicates (Log2(Number of words per line in the currently selected cache)) - 2.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1382

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.11 CFSR, Configurable Fault Status Register

The CFSR characteristics are:

Purpose
Contains the three Configurable Fault Status Registers.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

If the Main Extension is implemented, this register is word, halfword, and byte accessible.

If the Main Extension is not implemented, this register is word accessible only, halfword and byte accesses
are UNPREDICTABLE.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes
32-bit read/write-one-to-clear register located at 0xE000ED28.

Secure software can access the Non-secure version of this register via CFSR_NS located at 0xE002ED28.
The location 0xE002ED28 is RES0 to software executing in Non-secure state and the debugger.

This register is banked between Security states on a bit by bit basis.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The CFSR bit assignments are:

07

MMFSR

815

BFSR

1631

UFSR

UFSR, bits [31:16]
UsageFault Status Register. Provides information on UsageFault exceptions.

This field is banked between Security states.

See UFSR.

This field resets to zero on a Warm reset.

BFSR, bits [15:8]
BusFault Status Register. Provides information on BusFault exceptions.

This field is not banked between Security states.

See BFSR.

This field resets to zero on a Warm reset.

MMFSR, bits [7:0]
MemManage Fault Status Register. Provides information on MemManage exceptions.

This field is banked between Security states.

See MMFSR.

This field resets to zero on a Warm reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1383

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.12 CLIDR, Cache Level ID Register

The CLIDR characteristics are:

Purpose
Identifies the type of caches implemented and the level of coherency and unification.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

Configurations
This register is always implemented.

Attributes
32-bit read-only register located at 0xE000ED78.

Secure software can access the Non-secure version of this register via CLIDR_NS located at 0xE002ED78.
The location 0xE002ED78 is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The CLIDR bit assignments are:

02

Ctype1

35

Ctype2

68

Ctype3

911

Ctype4

1214

Ctype5

1517

Ctype6

1820

Ctype7

2123

LoUIS

2426

LoC

2729

LoUU

3031

ICB

ICB, bits [31:30]
Inner cache boundary. This field indicates the boundary between inner and outer domain.

The possible values of this field are:

0b00
Not disclosed in this mechanism.

0b01
L1 cache is the highest inner level.

0b10
L2 cache is the highest inner level.

0b11
L3 cache is the highest inner level.

This field reads as an IMPLEMENTATION DEFINED value.

LoUU, bits [29:27]
Level of Unification Uniprocessor. This field indicates the Level of Unification Uniprocessor for the cache
hierarchy.

This field reads as an IMPLEMENTATION DEFINED value.

LoC, bits [26:24]
Level of Coherence. This field indicates the Level of Coherence for the cache hierarchy.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1384

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

LoUIS, bits [23:21]
Level of Unification Inner Shareable. This field indicates the Level of Unification Shareable for the cache
hierarchy.

This field reads as an IMPLEMENTATION DEFINED value.

Ctypem, bits [3(m-1)+2:3(m-1)], for m = 1 to 7
Cache type field m. Indicates the type of cache implemented at level m.

The possible values of this field are:

0b000
No cache.

0b001
Instruction cache only.

0b010
Data cache only.

0b011
Separate instruction and data caches.

0b100
Unified cache.

All other values are reserved.

If Ctype<m> is set to 0b000, and m < 7, then all of the following apply.

Level m represents the last level of software-visible cache.

Ctype<m=1> through to Ctype7 must read as zero.

Software must treat Ctype<m+1> through Ctype7 as if they are invalid and read as an UNKNOWN value.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1385

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.13 CONTROL, Control Register

The CONTROL characteristics are:

Purpose
Provides access to the PE control fields.

Usage constraints
Privileged access only, unprivileged reads are permitted but unprivileged writes are ignored unless otherwise
specified.

Configurations
This register is always implemented.

Attributes
32-bit read/write special-purpose register.

This register is banked between Security states on a bit by bit basis.

Field descriptions

The CONTROL bit assignments are:

0123431

RES0

SFPA
FPCA

nPRIV
SPSEL

Bits [31:4]
Reserved, RES0.

SFPA, bit [3]
Secure Floating-point active. Indicates that the Floating-point registers contain active state that belongs to the
Secure state.

This bit is not banked between Security states.

The possible values of this bit are:

0
The Floating-point registers do not contain state that belongs to the Secure state.

1
The Floating-point registers contain state that belongs to the Secure state.

This bit accessible from both privileged and unprivileged modes using the MRS or MSR instructions.

This bit is RAZ/WI from Non-secure state.

If the Security Extension is not implemented, this bit is RES0.

If neither the Floating-point Extension or MVE are implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

FPCA, bit [2]
Floating-point context active. Defines whether the FP Extension is active in the current context.

This bit is not banked between Security states.

The possible values of this bit are:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1386

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0
FP Extension is not active.

1
FP Extension is active.

When NSACR.CP10 is set to zero, the Non-secure view of this bit is read-only. If FPCCR.ASPEN is set to 1,
enabling automatic Floating-point state preservation, then the PE sets this bit to 1 on successful completion
of any Floating-point instruction.

If neither the Floating-point Extension or MVE are implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

SPSEL, bit [1]
Stack-pointer select. Defines the stack pointer to be used.

This bit is banked between Security states.

The possible values of this bit are:

0
Use SP_main as the current stack.

1
In Thread mode use SP_process as the current stack.

This bit resets to zero on a Warm reset.

nPRIV, bit [0]
Not privileged. Defines the execution privilege in Thread mode.

This bit is banked between Security states.

The possible values of this bit are:

0
Thread mode has privileged access.

1
Thread mode has unprivileged access only.

If the Main Extension is not implemented, it is IMPLEMENTATION DEFINED whether this field is RW or
RAZ/WI.

This bit resets to zero on a Warm reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1387

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.14 CPACR, Coprocessor Access Control Register

The CPACR characteristics are:

Purpose
Specifies the access privileges for coprocessors and the Floating-point Extension. If MVE is implemented,
this register specifies the access privileges for MVE.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes
32-bit read/write register located at 0xE000ED88.

Secure software can access the Non-secure version of this register via CPACR_NS located at 0xE002ED88.
The location 0xE002ED88 is RES0 to software executing in Non-secure state and the debugger.

This register is banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The CPACR bit assignments are:

01

CP0

23

CP1

45

CP2

67

CP3

89

CP4

1011

CP5

1213

CP6

1415

CP7

1619

RES0

2021

CP10

2223

CP11

2431

RES0

Bits [31:24]
Reserved, RES0.

CP11, bits [23:22]
CP11 Privilege. The value in this field is ignored. If the CP10 field is RAZ/WI this field is also RAZ/WI. If
the value of this field is not programmed to the same value as the CP10 field, then the value is UNKNOWN.

This field resets to an UNKNOWN value on a Warm reset.

CP10, bits [21:20]
CP10 Privilege. Defines the access rights for the Floating-point functionality.

The possible values of this field are:

0b00
All accesses to the FP Extension and MVE result in NOCP UsageFault.

0b01
Unprivileged accesses to the FP Extension and MVE result in NOCP UsageFault.

0b11
Full access to the FP Extension and MVE.

All other values are reserved.

The features controlled by this field are:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1388

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

Unless otherwise specified, the execution of any instructions within the encoding space defined by IsCPIn-
struction() for CP10.

Access to any Floating-point registers in the range D0-D16.

See individual instruction pages for details.

If neither the Floating-point Extension or MVE are implemented, this field is RES0.

This field resets to an UNKNOWN value on a Warm reset.

Bits [19:16]
Reserved, RES0.

CPm, bits [2m+1:2m], for m = 0 to 7
Coprocessor m privilege. Controls access privileges for coprocessor m.

The possible values of this field are:

0b00
Access denied. Any attempted access generates a NOCP UsageFault.

0b01
Privileged access only. An unprivileged access generates a NOCP UsageFault.

0b10
Reserved.

0b11
Full access.

If coprocessor m is not implemented, this field is RAZ/WI.

This field resets to an UNKNOWN value on a Warm reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1389

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.15 CPPWR, Coprocessor Power Control Register

The CPPWR characteristics are:

Purpose
Specifies whether coprocessors are permitted to enter a non-retentive power state.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes
32-bit read/write register located at 0xE000E00C.

Secure software can access the Non-secure version of this register via CPPWR_NS located at 0xE002E00C.
The location 0xE002E00C is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The CPPWR bit assignments are:

01234567891011121314151619

RES0

202122232431

RES0

SUS11
SU11

SUS10
SU10

SUS7
SU7

SUS6
SU6

SUS5
SU5

SU0
SUS0
SU1
SUS1

SU2
SUS2
SU3
SUS3

SU4
SUS4

Bits [31:24]
Reserved, RES0.

SUS11, bit [23]
State UNKNOWN Secure only 11. The value in this field is ignored. If the value of this bit is not programmed
to the same value as the SUS10 field, then the value is UNKNOWN.

If SU10 is always RAZ/WI this field is also RAZ/WI.

This bit is RAZ/WI from Non-secure state.

This bit resets to zero on a Warm reset.

SU11, bit [22]
State UNKNOWN 11. The value in this field is ignored. If the value of this bit is not programmed to the same
value as the SU10 field, then the value is UNKNOWN.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1390

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

When SUS10 is set to 1, the Non-secure view of this bit is RAZ/WI. If SU10 is always RAZ/WI this field is
also RAZ/WI.

This bit resets to zero on a Warm reset.

SUS10, bit [21]
State UNKNOWN Secure only 10. This bit indicates and allows modification of whether the SU10 field can be
modified from Non-secure state.

The possible values of this bit are:

0
The SU10 field is accessible from both Security states.

1
The SU10 field is only accessible from the Secure state.

If SU10 is always RAZ/WI this field is also RAZ/WI.

This bit is RAZ/WI from Non-secure state.

This bit resets to zero on a Warm reset.

SU10, bit [20]
State UNKNOWN 10. This bit indicates and allows modification of whether the state associated with the
Floating-point and MVE units is permitted to become UNKNOWN. This can be used as a hint to power control
logic that these units might be powered down.

The possible values of this bit are:

0
The Floating-point and MVE state is not permitted to become UNKNOWN.

1
The Floating-point and MVE state is permitted to become UNKNOWN.

When SUS10 is set to 1, the Non-secure view of this bit is RAZ/WI. It is IMPLEMENTATION DEFINED
whether this bit is always RAZ/WI.

This bit resets to zero on a Warm reset.

Bits [19:16]
Reserved, RES0.

SUSm, bit [2m+1], for m = 0 to 7
State UNKNOWN Secure only m. This field indicates and allows modification of whether the SUm field can
be modified from Non-secure state.

The possible values of this field are:

0
The SUm field is accessible from both Security states.

1
The SUm field is only accessible from the Secure state.

If SUm is always RAZ/WI this field is also RAZ/WI.

This field is RAZ/WI from Non-secure state.

This field resets to zero on a Warm reset.

SUm, bit [2m], for m = 0 to 7
State UNKNOWN m. This field indicates and allows modification of whether the state associated with
coprocessor m is permitted to become UNKNOWN. This can be used as a hint to power control logic that the
coprocessor might be powered down.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1391

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

The possible values of this field are:

0
The coprocessor state is not permitted to become UNKNOWN.

1
The coprocessor state is permitted to become UNKNOWN.

When SUSm is set to 1, the Non-secure view of this bit is RAZ/WI. It is IMPLEMENTATION DEFINED whether
this bit is always RAZ/WI.

This field resets to zero on a Warm reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1392

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.16 CPUID, CPUID Base Register

The CPUID characteristics are:

Purpose
Provides identification information for the PE, including an implementer code for the device and a device ID
number.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

Configurations
This register is always implemented.

Attributes
32-bit read-only register located at 0xE000ED00.

Secure software can access the Non-secure version of this register via CPUID_NS located at 0xE002ED00.
The location 0xE002ED00 is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The CPUID bit assignments are:

03

Revision

415

PartNo

1619

Architecture

2023

Variant

2431

Implementer

Implementer, bits [31:24]
Implementer code. This field must hold an implementer code that has been assigned by Arm.

The possible values of this field are:

0x41
’A’: Arm Limited.

Not 0x41
Implementer other than Arm Limited.

Arm can assign codes that are not published in this manual. All values not assigned by Arm are reserved and
must not be used.

This field reads as an IMPLEMENTATION DEFINED value.

Variant, bits [23:20]
Variant number. IMPLEMENTATION DEFINED variant number. Typically, this field is used to distinguish
between different product variants, or major revisions of a product.

This field reads as an IMPLEMENTATION DEFINED value.

Architecture, bits [19:16]
Architecture version. Defines the Architecture implemented by the PE.

The possible values of this field are:

0b1100
Armv8-M architecture without Main Extension.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1393

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0b1111
Armv8-M architecture with Main Extension.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

PartNo, bits [15:4]
Part number. IMPLEMENTATION DEFINED primary part number for the device.

This field reads as an IMPLEMENTATION DEFINED value.

Revision, bits [3:0]
Revision number. IMPLEMENTATION DEFINED revision number for the device.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1394

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.17 CSSELR, Cache Size Selection Register

The CSSELR characteristics are:

Purpose
Selects the current Cache Size ID Register, CCSIDR, by specifying the required cache level and the cache
type (either instruction or data cache)

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

Configurations
This register is always implemented.

Attributes
32-bit read/write register located at 0xE000ED84.

Secure software can access the Non-secure version of this register via CSSELR_NS located at 0xE002ED84.
The location 0xE002ED84 is RES0 to software executing in Non-secure state and the debugger.

This register is banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The CSSELR bit assignments are:

013

Level

431

RES0

InD

Bits [31:4]
Reserved, RES0.

Level, bits [3:1]
Cache level. Selects which cache level is to be identified. Permitted values are from 0b000, indicating Level
1 cache, to 0b110 indicating Level 7 cache.

The possible values of this field are:

0b000
Level 1 cache.

0b001
Level 2 cache.

0b010
Level 3 cache.

0b011
Level 4 cache.

0b100
Level 5 cache.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1395

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0b101
Level 6 cache.

0b110
Level 7 cache.

All other values are reserved.

Writing a reserved value or value corresponding to an unimplemented level of cache is CONSTRAINED
UNPREDICTABLE.

This field resets to an UNKNOWN value on a Warm reset.

InD, bit [0]
Instruction not data. Selects whether the instruction or the data cache is to be identified.

The possible values of this bit are:

0
Data or unified cache.

1
Instruction cache.

This bit resets to an UNKNOWN value on a Warm reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1396

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.18 CTR, Cache Type Register

The CTR characteristics are:

Purpose
Provides information about the architecture of the caches.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

Configurations
This register is always implemented.

Attributes
32-bit read-only register located at 0xE000ED7C.

Secure software can access the Non-secure version of this register via CTR_NS located at 0xE002ED7C.
The location 0xE002ED7C is RES0 to software executing in Non-secure state and the debugger.

This register is banked between Security states.

Field descriptions

The CTR bit assignments are:

When Format!='0b100':

028

RES0

2931

Format

When Format=='0b100':

03

IminLine

413

RES0

1415

RES1

1619

DminLine

2023

ERG

2427

CWG

28

(0)

2931

Format

Format, bits [31:29]
Cache Type Register format. Indicates whether cache type information is provided.

The possible values of this field are:

0b000
No cache type information is provided.

0b100
Cache type information is provided.

All other values are reserved.

The value of this field is an IMPLEMENTATION DEFINED choice of either 0b000 or 0b100.

If CLIDR is nonzero then this field must read as 0b100.

This field reads as an IMPLEMENTATION DEFINED value.

Bits [28:0], when Format!=’0b100’
Reserved, RES0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1397

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

Bit [28], when Format==’0b100’
Reserved, RES0.

CWG, bits [27:24], when Format==’0b100’
Cache Write-Back Granule. Log2 of the number of words of the maximum size of memory that can be
overwritten as a result of the eviction of a cache entry that has had a memory location in it modified.

The possible values of this field are:

0b0000
Indicates that this register does not provide Cache Write-Back Granule information and either the
architectural maximum of 512 words (2KB) must be assumed, or the Cache Write-Back Granule can be
determined from maximum cache line size encoded in the Cache Size ID Registers.

0b0001-0b1000
Log2 of the number of words.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

ERG, bits [23:20], when Format==’0b100’
Exclusives Reservation Granule. Log2 of the number of words of the maximum size of the reservation
granule that has been implemented for the Load-Exclusive and Store-Exclusive instructions.

The possible values of this field are:

0b0000
Indicates that this register does not provide Exclusives Reservation Granule information and the archi-
tectural maximum of 512 words (2KB) must be assumed.

0b0001-0b1000
Log2 of the number of words.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

DminLine, bits [19:16], when Format==’0b100’
Data cache minimum line length. Log2 of the number of words in the smallest cache line of all the data
caches and unified caches that are controlled by the PE.

This field reads as an IMPLEMENTATION DEFINED value.

Bits [15:14], when Format==’0b100’
Reserved, RES1.

Bits [13:4], when Format==’0b100’
Reserved, RES0.

IminLine, bits [3:0], when Format==’0b100’
Instruction cache minimum line length. Log2 of the number of words in the smallest cache line of all the
instruction caches that are controlled by the PE.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1398

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.19 DAUTHCTRL, Debug Authentication Control Register

The DAUTHCTRL characteristics are:

Purpose
This register allows the IMPLEMENTATION DEFINED authentication interface to be overridden from software.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

If Armv8.1-M is implemented, this register is word, halfword and byte accessible.

This register is RES0 if accessed via the debugger.

Configurations
Present if Halting debug or the Main Extension is implemented.

This register is RES0 if both Halting debug and Main Extension are not implemented.

Attributes
32-bit read/write register located at 0xE000EE04.

Secure software can access the Non-secure version of this register via DAUTHCTRL_NS located at
0xE002EE04. The location 0xE002EE04 is RES0 to software executing in Non-secure state and the
debugger.

This register is banked between Security states on a bit by bit basis.

Field descriptions

The DAUTHCTRL bit assignments are:

012347

RES0

89101131

RES0

UIDEN
UIDAPEN

FSDMA
INTSPNIDEN

SPIDENSEL
INTSPIDEN
SPNIDENSEL

Bits [31:11]
Reserved, RES0.

UIDEN, bit [10]
Unprivileged Invasive Debug Enable. Enables halting debug for unprivileged modes, regardless of the state
of other debug controls.

This bit is banked between Security states.

The possible values of this bit are:

0
Halting debug operates as normal.

1
Unprivileged halting debug allowed.

See UnprivHaltingDebugAllowed() and UpdateDebugEnable().

If version Armv8.1 of the architecture and UDE are not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1399

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

UIDAPEN, bit [9]
Unprivileged Invasive DAP Access Enable. Enables unprivileged DAP access to specific PPB registers.

This bit is banked between Security states.

The possible values of this bit are:

0
No unprivileged DAP access.

1
Unprivileged DAP access allowed.

Unprivileged DAP access is allowed if either of the banked fields is set.

If version Armv8.1 of the architecture and UDE are not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.

FSDMA, bit [8]
Force Secure DebugMonitor Allowed. Allows Secure DebugMonitor to be enabled without having to enable
secure halting debug.

This bit is not banked between Security states.

The possible values of this bit are:

0
Secure DebugMonitor determined by other means.

1
Secure DebugMonitor allowed.

This bit is RAZ/WI from Non-secure state.

If version Armv8.1-M of the architecture is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

Bits [7:4]
Reserved, RES0.

INTSPNIDEN, bit [3]
Internal Secure non-invasive debug enable. Overrides the external Secure non-invasive debug authentication
interface.

This bit is not banked between Security states.

The possible values of this bit are:

0
Secure Non-invasive debug prohibited.

1
Secure Non-invasive debug allowed.

Ignored if DAUTHCTRL.SPNIDENSEL == 0. See SecureNoninvasiveDebugAllowed().

This bit is RAZ/WI from Non-secure state.

This bit resets to zero on a Cold reset.

SPNIDENSEL, bit [2]
Secure non-invasive debug enable select. Selects between DAUTHCTRL and the IMPLEMENTATION
DEFINED external authentication interface for control of Secure non-invasive debug.

This bit is not banked between Security states.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1400

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

The possible values of this bit are:

0
Secure non-invasive debug controlled by the IMPLEMENTATION DEFINED external authentication
interface. In the CoreSight authentication interface, this is controlled by the SPNIDEN signal.

1
Secure non-invasive debug controlled by DAUTHCTRL.INTSPNIDEN.

The PE ignores the value of this bit and Secure non-invasive debug is allowed if DHCSR.S_SDE == 1. See
SecureNoninvasiveDebugAllowed().

This bit is RAZ/WI from Non-secure state.

This bit resets to zero on a Cold reset.

INTSPIDEN, bit [1]
Internal Secure invasive debug enable. Overrides the external Secure invasive debug authentication interfaces.

This bit is not banked between Security states.

The possible values of this bit are:

0
Secure halting and self-hosted debug prohibited.

1
Secure halting and self-hosted debug allowed.

Ignored if DAUTHCTRL.SPIDENSEL == 0. See SecureHaltingDebugAllowed() and SecureDebugMoni-
torAllowed().

This bit is RAZ/WI from Non-secure state.

This bit resets to zero on a Cold reset.

SPIDENSEL, bit [0]
Secure invasive debug enable select. Selects between DAUTHCTRL and the IMPLEMENTATION DEFINED
external authentication interface for control of Secure invasive debug.

This bit is not banked between Security states.

The possible values of this bit are:

0
Secure halting and self-hosted debug controlled by the IMPLEMENTATION DEFINED external authentica-
tion interface. In the CoreSight authentication interface, both are controlled by the SPIDEN signal.

1
Secure halting and self-hosted debug controlled by DAUTHCTRL.INTSPIDEN.

See SecureHaltingDebugAllowed() and SecureDebugMonitorAllowed().

This bit is RAZ/WI from Non-secure state.

This bit resets to zero on a Cold reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1401

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.20 DAUTHSTATUS, Debug Authentication Status Register

The DAUTHSTATUS characteristics are:

Purpose
Provides information about the state of the IMPLEMENTATION DEFINED authentication interface for debug.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if Halting debug is implemented.

This register is RES0 if Halting debug is not implemented.

Attributes
32-bit read-only register located at 0xE000EFB8.

Secure software can access the Non-secure version of this register via DAUTHSTATUS_NS located at
0xE002EFB8. The location 0xE002EFB8 is RES0 to software executing in Non-secure state and the
debugger.

This register is not banked between Security states.

Field descriptions

The DAUTHSTATUS bit assignments are:

01

NSID

2345

SID

67

SNID

815

RES0

161718192021

SUID

22232431

RES0

SUNID
NSUNID

NSNID
NSUID

Bits [31:24]
Reserved, RES0.

SUNID, bits [23:22]
Secure Unprivileged Non-invasive Debug Allowed. Indicates that Unprivileged Non-invasive debug is
allowed for the Secure state.

The possible values of this field are:

0b00
Security Extension or Unprivileged Non-invasive Debug not implemented.

0b01
Reserved.

0b10
Secure Non-invasive debug prohibited.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1402

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0b11
Secure Non-invasive debug allowed in unprivileged mode.

If version Armv8.1 of the architecture and UDE are not implemented, this field is RES0.

SUID, bits [21:20]
Secure Unprivileged Invasive Debug Allowed. Indicates that Unprivileged Halting Debug is allowed for the
Secure state.

The possible values of this field are:

0b00
Security Extension or Unprivileged Debug not implemented.

0b01
Reserved.

0b10
Secure halting debug prohibited.

0b11
Secure halting debug allowed in unprivileged mode.

If version Armv8.1 of the architecture and UDE are not implemented, this field is RES0.

NSUNID, bits [19:18]
Non-secure Unprivileged Non-invasive Debug Allowed. Indicates that Unprivileged Non-invasive Debug is
allowed for the Non-secure state.

The possible values of this field are:

0b00
Unprivileged Non-invasive debug not implemented.

0b01
Reserved.

0b10
Non-secure Non-invasive debug prohibited.

0b11
Non-secure Non-invasive debug allowed in unprivileged mode.

If version Armv8.1 of the architecture and UDE are not implemented, this field is RES0.

NSUID, bits [17:16]
Non-secure Unprivileged Invasive Debug Allowed. Indicates that Unprivileged Halting Debug is allowed for
the Non-secure state.

The possible values of this field are:

0b00
Unprivileged halting debug not implemented.

0b01
Reserved.

0b10
Non-secure halting debug prohibited.

0b11
Non-secure halting debug allowed in unprivileged mode.

If version Armv8.1 of the architecture and UDE are not implemented, this field is RES0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1403

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

Bits [15:8]
Reserved, RES0.

SNID, bits [7:6]
Secure Non-invasive Debug. Indicates whether Secure non-invasive debug is implemented and allowed.

The possible values of this field are:

0b00
Security Extension not implemented.

0b01
Reserved.

0b10
Security Extension implemented and Secure non-invasive debug prohibited.

0b11
Security Extension implemented and Secure non-invasive debug allowed.

SID, bits [5:4]
Secure Invasive Debug. Indicates whether Secure invasive debug is implemented and allowed.

The possible values of this field are:

0b00
Security Extension not implemented.

0b01
Reserved.

0b10
Security Extension implemented and Secure invasive debug prohibited.

0b11
Security Extension implemented and Secure invasive debug allowed.

NSNID, bits [3:2]
Non-secure Non-invasive Debug. Indicates whether Non-secure non-invasive debug is allowed.

The possible values of this field are:

0b0x
Reserved.

0b10
Non-secure non-invasive debug prohibited.

0b11
Non-secure non-invasive debug allowed.

NSID, bits [1:0]
Non-secure Invasive Debug. Indicates whether Non-secure invasive debug is allowed.

The possible values of this field are:

0b0x
Reserved.

0b10
Non-secure invasive debug prohibited.

0b11
Non-secure invasive debug allowed.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1404

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.21 DCCIMVAC, Data Cache line Clean and Invalidate by Address to PoC

The DCCIMVAC characteristics are:

Purpose
Clean and invalidate data or unified cache line by address to PoC.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

Configurations
This register is always implemented.

Attributes
32-bit write-only register located at 0xE000EF70.

Secure software can access the Non-secure version of this register via DCCIMVAC_NS located at
0xE002EF70. The location 0xE002EF70 is RES0 to software executing in Non-secure state and the
debugger.

This register is not banked between Security states.

Field descriptions

The DCCIMVAC bit assignments are:

031

ADDRESS

ADDRESS, bits [31:0]
Address. Writing to this field initiates the maintenance operation for the address written.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1405

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.22 DCCISW, Data Cache line Clean and Invalidate by Set/Way

The DCCISW characteristics are:

Purpose
Clean and invalidate data or unified cache line by set/way.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

Configurations
This register is always implemented.

Attributes
32-bit write-only register located at 0xE000EF74.

Secure software can access the Non-secure version of this register via DCCISW_NS located at 0xE002EF74.
The location 0xE002EF74 is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The DCCISW bit assignments are:

0

(0)

13

Level

431

SetWay

SetWay, bits [31:4]
Cache set/way. Contains two fields: Way, bits[31:32-A], the number of the way to operate on. Set, bits[B-
1:L], the number of the set to operate on. Bits[L-1:4] are RES0. A = Log2(ASSOCIATIVITY), L =
Log2(LINELEN), B = (L + S), S = Log2(NSETS). ASSOCIATIVITY, LINELEN (line length, in bytes), and
NSETS (number of sets) have their usual meanings and are the values for the cache level being operated on.
The values of A and S are rounded up to the next integer.

Level, bits [3:1]
Cache level. Cache level to operate on, minus 1. For example, this field is 0 for operations on L1 cache, or 1
for operations on L2 cache.

Bit [0]
Reserved, RES0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1406

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.23 DCCMVAC, Data Cache line Clean by Address to PoC

The DCCMVAC characteristics are:

Purpose
Clean data or unified cache line by address to PoC.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

Configurations
This register is always implemented.

Attributes
32-bit write-only register located at 0xE000EF68.

Secure software can access the Non-secure version of this register via DCCMVAC_NS located at
0xE002EF68. The location 0xE002EF68 is RES0 to software executing in Non-secure state and the
debugger.

This register is not banked between Security states.

Field descriptions

The DCCMVAC bit assignments are:

031

ADDRESS

ADDRESS, bits [31:0]
Address. Writing to this field initiates the maintenance operation for the address written.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1407

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.24 DCCMVAU, Data Cache line Clean by address to PoU

The DCCMVAU characteristics are:

Purpose
Clean data or unified cache line by address to PoU.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

Configurations
This register is always implemented.

Attributes
32-bit write-only register located at 0xE000EF64.

Secure software can access the Non-secure version of this register via DCCMVAU_NS located at
0xE002EF64. The location 0xE002EF64 is RES0 to software executing in Non-secure state and the
debugger.

This register is not banked between Security states.

Field descriptions

The DCCMVAU bit assignments are:

031

ADDRESS

ADDRESS, bits [31:0]
Address. Writing to this field initiates the maintenance operation for the address written.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1408

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.25 DCCSW, Data Cache Clean line by Set/Way

The DCCSW characteristics are:

Purpose
Clean data or unified cache line by set/way.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

Configurations
This register is always implemented.

Attributes
32-bit write-only register located at 0xE000EF6C.

Secure software can access the Non-secure version of this register via DCCSW_NS located at 0xE002EF6C.
The location 0xE002EF6C is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The DCCSW bit assignments are:

0

(0)

13

Level

431

SetWay

SetWay, bits [31:4]
Cache set/way. Contains two fields: Way, bits [31:32-A], the number of the way to operate on. Set, bits
[B-1:L], the number of the set to operate on. Bits [L-1:4] are RES0. A = Log2(ASSOCIATIVITY), L =
Log2(LINELEN), B = (L + S), S = Log2(NSETS). ASSOCIATIVITY, LINELEN (line length, in bytes), and
NSETS (number of sets) have their usual meanings and are the values for the cache level being operated on.
The values of A and S are rounded up to the next integer.

Level, bits [3:1]
Cache level. Cache level to operate on, minus 1. For example, this field is 0 for operations on L1 cache, or 1
for operations on L2 cache.

Bit [0]
Reserved, RES0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1409

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.26 DCIDR0, SCS Component Identification Register 0

The DCIDR0 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the SCS.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if Halting debug is implemented.

This register is RES0 if Halting debug is not implemented.

Attributes
32-bit read-only register located at 0xE000EFF0.

Secure software can access the Non-secure version of this register via DCIDR0_NS located at 0xE002EFF0.
The location 0xE002EFF0 is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The DCIDR0 bit assignments are:

07

PRMBL_0

831

RES0

Bits [31:8]
Reserved, RES0.

PRMBL_0, bits [7:0]
CoreSight component identification preamble. See the Arm® CoreSight™ Architecture Specification.

This field reads as 0x0D.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1410

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.27 DCIDR1, SCS Component Identification Register 1

The DCIDR1 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the SCS.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if Halting debug is implemented.

This register is RES0 if Halting debug is not implemented.

Attributes
32-bit read-only register located at 0xE000EFF4.

Secure software can access the Non-secure version of this register via DCIDR1_NS located at 0xE002EFF4.
The location 0xE002EFF4 is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The DCIDR1 bit assignments are:

03

PRMBL_1

47

CLASS

831

RES0

Bits [31:8]
Reserved, RES0.

CLASS, bits [7:4]
CoreSight component class. See the Arm® CoreSight™ Architecture Specification.

This field reads as 0x9.

PRMBL_1, bits [3:0]
CoreSight component identification preamble. See the Arm® CoreSight™ Architecture Specification.

This field reads as 0x0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1411

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.28 DCIDR2, SCS Component Identification Register 2

The DCIDR2 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the SCS.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if Halting debug is implemented.

This register is RES0 if Halting debug is not implemented.

Attributes
32-bit read-only register located at 0xE000EFF8.

Secure software can access the Non-secure version of this register via DCIDR2_NS located at 0xE002EFF8.
The location 0xE002EFF8 is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The DCIDR2 bit assignments are:

07

PRMBL_2

831

RES0

Bits [31:8]
Reserved, RES0.

PRMBL_2, bits [7:0]
CoreSight component identification preamble. See the Arm® CoreSight™ Architecture Specification.

This field reads as 0x05.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1412

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.29 DCIDR3, SCS Component Identification Register 3

The DCIDR3 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the SCS.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if Halting debug is implemented.

This register is RES0 if Halting debug is not implemented.

Attributes
32-bit read-only register located at 0xE000EFFC.

Secure software can access the Non-secure version of this register via DCIDR3_NS located at 0xE002EFFC.
The location 0xE002EFFC is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The DCIDR3 bit assignments are:

07

PRMBL_3

831

RES0

Bits [31:8]
Reserved, RES0.

PRMBL_3, bits [7:0]
CoreSight component identification preamble. See the Arm® CoreSight™ Architecture Specification.

This field reads as 0xB1.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1413

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.30 DCIMVAC, Data Cache line Invalidate by Address to PoC

The DCIMVAC characteristics are:

Purpose
Invalidate data or unified cache line by address to PoC.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
This register is always implemented.

Attributes
32-bit write-only register located at 0xE000EF5C.

Secure software can access the Non-secure version of this register via DCIMVAC_NS located at
0xE002EF5C. The location 0xE002EF5C is RES0 to software executing in Non-secure state and the
debugger.

This register is not banked between Security states.

Field descriptions

The DCIMVAC bit assignments are:

031

ADDRESS

ADDRESS, bits [31:0]
Address. Writing to this field initiates the maintenance operation for the address written.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1414

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.31 DCISW, Data Cache line Invalidate by Set/Way

The DCISW characteristics are:

Purpose
Invalidate data or unified cache line by set/way.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
This register is always implemented.

Attributes
32-bit write-only register located at 0xE000EF60.

Secure software can access the Non-secure version of this register via DCISW_NS located at 0xE002EF60.
The location 0xE002EF60 is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The DCISW bit assignments are:

0

(0)

13

Level

431

SetWay

SetWay, bits [31:4]
Cache set/way. Contains two fields: Way, bits[31:32-A], the number of the way to operate on. Set, bits[B-
1:L], the number of the set to operate on. Bits[L-1:4] are RES0. A = Log2(ASSOCIATIVITY), L =
Log2(LINELEN), B = (L + S), S = Log2(NSETS). ASSOCIATIVITY, LINELEN (line length, in bytes), and
NSETS (number of sets) have their usual meanings and are the values for the cache level being operated on.
The values of A and S are rounded up to the next integer.

Level, bits [3:1]
Cache level. Cache level to operate on, minus 1. For example, this field is 0 for operations on L1 cache, or 1
for operations on L2 cache.

Bit [0]
Reserved, RES0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1415

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.32 DCRDR, Debug Core Register Data Register

The DCRDR characteristics are:

Purpose
With the DCRSR, provides debug access to the general-purpose registers, special-purpose registers, and the
Floating-point Extension registers. If the Main Extension is implemented, it can also be used for message
passing between an external debugger and a debug agent running on the PE.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then this register is accessible only to the debugger and UNKNOWN
to software.

Configurations
Present only if Halting debug is implemented.

This register is RES0 if Halting debug is not implemented.

Attributes
32-bit read/write register located at 0xE000EDF8.

Secure software can access the Non-secure version of this register via DCRDR_NS located at 0xE002EDF8.
The location 0xE002EDF8 is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The DCRDR bit assignments are:

031

DBGTMP

DBGTMP, bits [31:0]
Data temporary buffer. Provides debug access for reading and writing the general-purpose registers, special-
purpose registers, and Floating-point Extension registers.

The value of this register is UNKNOWN if the PE is in Debug state, the debugger has written to DCRSR since
entering Debug state and DHCSR.S_REGRDY is set to 0. The value of this register is UNKNOWN if the Main
Extension is not implemented and the PE is in Non-debug state.

This field resets to an UNKNOWN value on a Warm reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1416

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.33 DCRSR, Debug Core Register Select Register

The DCRSR characteristics are:

Purpose
With the DCRDR, provides debug access to the general-purpose registers, special-purpose registers, and
the Floating-point Extension registers. A write to the DCRSR specifies the register to transfer, whether the
transfer is a read or write, and starts the transfer.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

Writes to this register while the PE is in Non-debug state are ignored.

This register is accessible only to the debugger and RES0 to software.

Configurations
Present only if Halting debug is implemented.

This register is RES0 if Halting debug is not implemented.

Attributes
32-bit write-only register located at 0xE000EDF4.

This register is not banked between Security states.

Field descriptions

The DCRSR bit assignments are:

06

REGSEL

715

RES0

161731

RES0

REGWnR

Bits [31:17]
Reserved, RES0.

REGWnR, bit [16]
Register write/not-read. Specifies the access type for the transfer.

The possible values of this bit are:

0
Read.

1
Write.

Bits [15:7]
Reserved, RES0.

REGSEL, bits [6:0]
Register selector. Specifies the general-purpose register, special-purpose register, or Floating-point Extension
register to transfer.

The possible values of this field are:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1417

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0b0000000-0b0001100
General-purpose registers R0-R12.

0b0001101
Current stack pointer, SP.

0b0001110
LR.

0b0001111
DebugReturnAddress.

0b0010000
XPSR / EAPSR, if privileged debug is permitted for the current state this values accesses XPSR,
otherwise EAPSR is accessed.

0b0010001
Current state main stack pointer, SP_main.

Accessible only when privileged debug is permitted for the current state.

0b0010010
Current state process stack pointer, SP_process.

0b0010100
Current state. The value corresponds to {CONTROL[7:0], FAULTMASK[7:0], BASEPRI[7:0], PRI-
MASK[7:0]}.

All bits are returned except when one or more of the following restrictions apply.

If DHCSR.S_SDE is 0 then the bit corresponding to CONTROL.SFPA is RES0.

When only unprivileged debug is permitted for the current Security state, the bits corresponding to the
following fields are RES0:

• All fields corresponding to the Control register except CONTROL.FPCA and CONTROL.SFPA.
Access to CONTROL.SFPA depends on DHCSR.S_SDE as described above.

• FAULTMASK[7:0].

• BASEPRI[7:0].

• PRIMASK[7:0].

If the Main Extension is not implemented FAULTMASK[7:0] and BASEPRI[7:0] are RES0.

0b0011000
Non-secure main stack pointer, MSP_NS.

If the Security Extension is not implemented, this value is reserved.

Accessible only when privileged debug is permitted for the Non-secure state.

0b0011001
Non-secure process stack pointer, PSP_NS.

If the Security Extension is not implemented, this value is reserved.

0b0011010
Secure main stack pointer, MSP_S. Accessible only when DHCSR.S_SDE == 1.

If the Security Extension is not implemented, this value is reserved.

Accessible only when privileged debug is permitted for the Secure state.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1418

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0b0011011
Secure process stack pointer, PSP_S. Accessible only when DHCSR.S_SDE == 1.

If the Security Extension is not implemented, this value is reserved.

0b0011100
Secure main stack limit, MSPLIM_S. Accessible only when DHCSR.S_SDE == 1.

If the Security Extension is not implemented, this value is reserved.

Accessible only when privileged debug is permitted for the Secure state.

0b0011101
Secure process stack limit, PSPLIM_S. Accessible only when DHCSR.S_SDE == 1.

If the Security Extension is not implemented, this value is reserved.

0b0011110
Non-secure main stack limit, MSPLIM_NS.

If the Main Extension is not implemented, this value is reserved.

Accessible only when privileged debug is permitted for the Non-secure state.

0b0011111
Non-secure process stack limit, PSPLIM_NS.

If the Main Extension is not implemented, this value is reserved.

0b0100001
FPSCR.

If MVE and the Floating-point Extension are not implemented, this value is reserved.

0b0100010
Secure state. The value corresponds to {CONTROL_S[7:0], FAULTMASK_S[7:0], BASEPRI_S[7:0],
PRIMASK_S[7:0]}.

All bits are RES0 when DHCSR.S_SDE == 0.

All bits are returned when DHCSR.S_SDE == 1 and DHCSR.S_SUIDE == 0.

When DHCSR.S_SDE == 1 and DHCSR.S_SUIDE == 1 the bits corresponding to the following fields
are RES0:

• All fields corresponding to the CONTROL_S register except for CONTROL_S.SFPA and CON-
TROL_S.FPCA.

• FAULTMASK_S[7:0].

• BASEPRI_S[7:0].

• PRIMASK_S[7:0].

If the Main Extension is not implemented, FAULTMASK_S[7:0] and BASEPRI_S[7:0] are RES0.

If the Security Extension is not implemented, this value is reserved.

0b0100011
Non-secure state. The value corresponds to {CONTROL_NS[7:0], FAULTMASK_NS[7:0],
BASEPRI_NS[7:0], PRIMASK_NS[7:0]}. All bits are returned when the PE is in Non-secure state and
DHCSR.S_NSUIDE == 0.

When the PE is in Non-secure state and DHCSR.S_NSUIDE == 1 the bits corresponding to following
fields are RES0:

• All fields corresponding to the CONTROL_NS register except for CONTROL_NS.FPCA.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1419

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

• FAULTMASK_NS[7:0].

• BASEPRI_NS[7:0].

• PRIMASK_NS[7:0].

If the Main Extension is not implemented, FAULTMASK_NS[7:0] and BASEPRI_NS[7:0] are RES0.

If the Security Extension is not implemented, this value is reserved.

0b0100100
VPR.

If MVE is not implemented, this value is reserved.

0b1000000-0b1011111
FP registers, S0-S31.

If MVE and the Floating-point Extension are not implemented, these values are reserved.

All other values are reserved.

If the Security Extension and either MVE or the Floating-point Extension are implemented, then FPSCR,
VPR and S0-S31 are not accessible:

• From Non-secure state if DHCSR.S_SDE == 0 and FPCCR indicates the registers contain values from
Secure state.

• From Non-secure state if DHCSR.S_SDE == 0 and NSACR prevents Non-secure access to the registers.

• FPCCR.LSPACT, the banked variant associated with the Floating-point context as indicated by
FPCCR_S.S, is set and only unprivileged debug is permitted for the security state associated with the
Floating-point state (as indicated by FPCCR.S).

Registers that are not accessible are RAZ/WI.

If this field is written with a reserved value, the PE might behave as if a defined value was written, or ignore
the value written, and the value of DCRDR becomes UNKNOWN.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1420

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.34 DDEVARCH, SCS Device Architecture Register

The DDEVARCH characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the SCS.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if Halting debug is implemented.

This register is RES0 if Halting debug is not implemented.

Attributes
32-bit read-only register located at 0xE000EFBC.

Secure software can access the Non-secure version of this register via DDEVARCH_NS located at
0xE002EFBC. The location 0xE002EFBC is RES0 to software executing in Non-secure state and the
debugger.

This register is not banked between Security states.

Field descriptions

The DDEVARCH bit assignments are:

011

ARCHPART

1215

ARCHVER

1619

REVISION

202131

ARCHITECT

PRESENT

ARCHITECT, bits [31:21]
Architect. Defines the architect of the component. Bits [31:28] are the JEP106 continuation code (JEP106
bank ID, minus 1) and bits [27:21] are the JEP106 ID code.

The possible values of this field are:

0x23B
JEP106 continuation code 0x4, ID code 0x3B. Arm Limited.

Other values are defined by the JEDEC JEP106 standard.

This field reads as 0x23B.

PRESENT, bit [20]
DEVARCH Present. Defines that the DEVARCH register is present.

The possible values of this bit are:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1421

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

1
DEVARCH information present.

This bit reads as one.

REVISION, bits [19:16]
Revision. Defines the architecture revision of the component.

The possible values of this field are:

0b0000
M-Profile debug architecture v3.0.

This field reads as 0b0000.

ARCHVER, bits [15:12]
Architecture Version. Defines the architecture version of the component.

The possible values of this field are:

0b0010
M-Profile debug architecture v3.

ARCHVER and ARCHPART are also defined as a single field, ARCHID, so that ARCHVER is
ARCHID[15:12].

This field reads as 0b0010.

ARCHPART, bits [11:0]
Architecture Part. Defines the architecture of the component.

The possible values of this field are:

0xA04
M-Profile debug architecture.

ARCHVER and ARCHPART are also defined as a single field, ARCHID, so that ARCHPART is
ARCHID[11:0].

This field reads as 0xA04.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1422

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.35 DDEVTYPE, SCS Device Type Register

The DDEVTYPE characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the SCS.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if Halting debug is implemented.

This register is RES0 if Halting debug is not implemented.

Attributes
32-bit read-only register located at 0xE000EFCC.

Secure software can access the Non-secure version of this register via DDEVTYPE_NS located at
0xE002EFCC. The location 0xE002EFCC is RES0 to software executing in Non-secure state and the
debugger.

This register is not banked between Security states.

Field descriptions

The DDEVTYPE bit assignments are:

03

MAJOR

47

SUB

831

RES0

Bits [31:8]
Reserved, RES0.

SUB, bits [7:4]
Sub-type. Component sub-type.

The possible values of this field are:

0x0
Other.

This field reads as 0b0000.

MAJOR, bits [3:0]
Major type. CoreSight major type.

The possible values of this field are:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1423

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0x0
Miscellaneous.

This field reads as 0b0000.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1424

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.36 DEMCR, Debug Exception and Monitor Control Register

The DEMCR characteristics are:

Purpose
Manages vector catch behavior and DebugMonitor handling when debugging.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

If Armv8.1-M is implemented, this register is word, halfword and byte accessible.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present if Halting debug or the Main Extension is implemented.

This register is RES0 if both Halting debug and Main Extension are not implemented.

Attributes
32-bit read/write register located at 0xE000EDFC.

Secure software can access the Non-secure version of this register via DEMCR_NS located at 0xE002EDFC.
The location 0xE002EDFC is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The DEMCR bit assignments are:

013

RES0

45678910111215

RES0

16171819202122

(0)

23242531

RES0

TRCENA
MONPRKEY
UMON_EN

SDME
MON_REQ
MON_STEP
MON_PEND

MON_EN
VC_SFERR

VC_CORERESET
VC_MMERR
VC_NOCPERR
VC_CHKERR
VC_STATERR

VC_BUSERR
VC_INTERR
VC_HARDERR

Bits [31:25]
Reserved, RES0.

TRCENA, bit [24]
Trace enable. Global enable for all DWT, PMU, and ITM features.

The possible values of this bit are:

0
DWT, PMU, and ITM features disabled.

1
DWT, PMU, and ITM features enabled.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1425

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

If the DWT, PMU, and ITM units are not implemented, this bit is RES0. See the descriptions of DWT, PMU,
and ITM for details of which features this bit controls.

Setting this bit to 0 might not stop all events. To ensure that all events are stopped, software must set all
DWT, PMU, and ITM feature enable bits to 0, and ensure that all trace generated by the DWT, PMU, and
ITM has been flushed, before setting this bit to 0.

It is IMPLEMENTATION DEFINED whether this bit affects how the system processes trace.

Arm recommends that this bit is set to 1 when using an ETM even if any implemented DWT, PMU, and ITM
are not being used.

This bit resets to zero on a Cold reset.

MONPRKEY, bit [23]
Monitor pend req key. Writes to the MON_PEND and MON_REQ fields are ignored unless MONPRKEY is
concurrently written to zero.

The possible values of this bit are:

0
Concurrent write to MON_PEND and MON_REQ are not ignored.

1
Concurrent write to MON_PEND and MON_REQ are ignored.

This bit reads-as-zero.

If version Armv8.1-M of the architecture is not implemented, this bit is RES0.

Bit [22]
Reserved, RES0.

UMON_EN, bit [21]
Unprivileged monitor enable. DebugMonitor pend enable when the PE is in an unprivileged mode.

The possible values of this bit are:

0
DebugMonitor exception controlled by DEMCR.MON_EN.

1
DebugMonitor exception can be pended for unprivileged execution.

Writes to this field by unprivileged DAP accesses are ignored.

If DEMCR.SDME is one this bit is RAZ/WI from Non-secure state

If version Armv8.1 of the architecture and UDE are not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

SDME, bit [20]
Secure DebugMonitor enable. Indicates whether the DebugMonitor targets the Secure or the Non-secure
state and whether debug events are allowed in Secure state.

The possible values of this bit are:

0
Debug events prohibited in Secure state and the DebugMonitor exception targets Non-secure state.

1
Debug events allowed in Secure state and the DebugMonitor exception targets Secure state.

When DebugMonitor exception is not pending or active, this bit reflects the value of SecureDebugMonitorAl-
lowed(), otherwise, the previous value is retained.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1426

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

This bit is read-only.

If the Security Extension is not implemented, this bit is RES0.

If the Main Extension is not implemented, this bit is RES0.

MON_REQ, bit [19]
Monitor request. DebugMonitor semaphore bit.

The PE does not use this bit. The monitor software defines the meaning and use of this bit.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

MON_STEP, bit [18]
Monitor step. Enable DebugMonitor exception stepping.

The possible values of this bit are:

0
Stepping disabled.

1
Stepping enabled.

The effect of changing this bit at an execution priority that is lower than the priority of the DebugMonitor
exception is UNPREDICTABLE.

The effect of a write to DEMCR.MON_STEP is CONSTRAINED UNPREDICTABLE unless one of:

• The PE is executing at a priority that is greater than or the same as the priority of the DebugMonitor
exception.

• Before the write, DEMCR.MON_STEP == 0 and the write writes 0 to DEMCR.MON_STEP.

The CONSTRAINED UNPREDICTABLE write does one of the following:

• The write is ignored.

• DEMCR.MON_STEP is set to 1. The effect of the subsequent instruction is UNPREDICTABLE, and the
PE might generate a DebugMonitor exception at any time, if enabled and permitted.

• DEMCR.MON_STEP is set to 0. It is UNPREDICTABLE whether an ’in progress’ step completes.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

MON_PEND, bit [17]
Monitor pend. Sets or clears the pending state of the DebugMonitor exception.

The possible values of this bit are:

0
Clear the status of the DebugMonitor exception to not pending.

1
Set the status of the DebugMonitor exception to pending.

When the DebugMonitor exception is pending it becomes active subject to the exception priority rules. The
effect of setting this bit to 1 is not affected by the value of the MON_EN and UMON_EN bits. This means
that software or a debugger can set MON_PEND to 1 and pend a DebugMonitor exception, even when
MON_EN and UMON_EN are set to 0.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1427

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

MON_EN, bit [16]
Monitor enable. Enable the DebugMonitor exception.

The possible values of this bit are:

0
DebugMonitor exception disabled.

1
DebugMonitor exception enabled.

If a debug event halts the PE, the PE ignores the value of this bit. Unprivileged writes to this bit from the
DAP are ignored.

If DEMCR.SDME is one this bit is RAZ/WI from Non-secure state

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

Bits [15:12]
Reserved, RES0.

VC_SFERR, bit [11]
Vector Catch SecureFault. SecureFault exception Halting debug vector catch enable.

The possible values of this bit are:

0
Halting debug trap on SecureFault disabled.

1
Halting debug trap on SecureFault enabled.

The PE ignores the value of this bit if any of the following are true:

• DHCSR.C_DEBUGEN == 0.

• DHCSR.S_NSUIDE == 1.

• HaltingDebugAllowed() == FALSE. .

• DHCSR.S_SDE == 0.

• DHCSR.S_SUIDE == 1.

If the Security Extension is not implemented, this bit is RES0.

If the Main Extension is not implemented, this bit is RES0.

If Halting debug is not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.

VC_HARDERR, bit [10]
Vector Catch HardFault errors. HardFault exception Halting debug vector catch enable.

The possible values of this bit are:

0
Halting debug trap on HardFault disabled.

1
Halting debug trap on HardFault enabled.

The PE ignores the value of this bit if any of the following are true:

• DHCSR.C_DEBUGEN == 0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1428

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

• DHCSR.S_NSUIDE == 1.

• HaltingDebugAllowed() == FALSE.

• The Security Extension is implemented, either DHCSR.S_SDE == 0 or DHCSR.S_SUIDE == 1, and the
exception targets Secure state.

If Halting debug is not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.

VC_INTERR, bit [9]
Vector Catch interrupt errors. Enable Halting debug vector catch for faults arising from lazy state preservation,
stack violations and context stacking or unstacking during exception entry or return.

The possible values of this bit are:

0
Halting debug trap on faults disabled.

1
Halting debug trap on faults enabled.

The PE ignores the value of this bit if any of the following are true:

• DHCSR.C_DEBUGEN == 0.

• DHCSR.S_NSUIDE == 1.

• HaltingDebugAllowed() == FALSE.

• The Security Extension is implemented, DHCSR.S_SDE == 0 or DHCSR.S_SUIDE == 1, and the
exception targets Secure state.

If the Main Extension is not implemented, this bit is RES0.

If Halting debug is not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.

VC_BUSERR, bit [8]
Vector Catch BusFault errors. BusFault exception Halting debug vector catch enable.

The possible values of this bit are:

0
Halting debug trap on BusFault disabled.

1
Halting debug trap on BusFault enabled.

The PE ignores the value of this bit if any of the following are true:

• DHCSR.C_DEBUGEN == 0.

• DHCSR.S_NSUIDE == 1.

• HaltingDebugAllowed() == FALSE.

• The Security Extension is implemented, DHCSR.S_SDE == 0 or DHCSR.S_SUIDE == 1, and the
exception targets Secure state.

If the Main Extension is not implemented, this bit is RES0.

If Halting debug is not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1429

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

VC_STATERR, bit [7]
Vector Catch state errors. Enable Halting debug trap on a UsageFault exception caused by a state information
error, for example an Undefined Instruction exception.

The possible values of this bit are:

0
Halting debug trap on UsageFault caused by state information error disabled.

1
Halting debug trap on UsageFault caused by state information error enabled.

The PE ignores the value of this bit if any of the following are true:

• DHCSR.C_DEBUGEN == 0.

• DHCSR.S_NSUIDE == 1.

• HaltingDebugAllowed() == FALSE.

• The Security Extension is implemented, DHCSR.S_SDE == 0 or DHCSR.S_SUIDE == 1, and the
exception targets Secure state.

If the Main Extension is not implemented, this bit is RES0.

If Halting debug is not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.

VC_CHKERR, bit [6]
Vector Catch check errors. Enable Halting debug trap on a UsageFault exception caused by an alignment
check error or divide-by-zero trap.

The possible values of this bit are:

0
Halting debug trap on UsageFault caused by checking error disabled.

1
Halting debug trap on UsageFault caused by checking error enabled.

The PE ignores the value of this bit if any of the following are true:

• DHCSR.C_DEBUGEN == 0.

• DHCSR.S_NSUIDE == 1.

• HaltingDebugAllowed() == FALSE.

• The Security Extension is implemented, DHCSR.S_SDE == 0 or DHCSR.S_SUIDE == 1, and the
exception targets Secure state.

If the Main Extension is not implemented, this bit is RES0.

If Halting debug is not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.

VC_NOCPERR, bit [5]
Vector Catch NOCP errors. Enable Halting debug trap on a UsageFault caused by an access to a coprocessor.

The possible values of this bit are:

0
Halting debug trap on UsageFault caused by access to a coprocessor disabled.

1
Halting debug trap on UsageFault caused by access to a coprocessor enabled.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1430

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

The PE ignores the value of this bit if any of the following are true:

• DHCSR.C_DEBUGEN == 0.

• DHCSR.S_NSUIDE == 1.

• HaltingDebugAllowed() == FALSE.

• The Security Extension is implemented, DHCSR.S_SDE == 0 or DHCSR.S_SUIDE == 1, and the
exception targets Secure state.

If the Main Extension is not implemented, this bit is RES0.

If Halting debug is not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.

VC_MMERR, bit [4]
Vector Catch MemManage errors. Enable Halting debug trap on a MemManage exception.

The possible values of this bit are:

0
Halting debug trap on MemManage disabled.

1
Halting debug trap on MemManage enabled.

The PE ignores the value of this bit if any of the following are true:

• DHCSR.C_DEBUGEN == 0.

• DHCSR.S_NSUIDE == 1.

• HaltingDebugAllowed() == FALSE.

• The Security Extension is implemented, DHCSR.S_SDE == 0 or DHCSR.S_SUIDE == 1, and the
exception targets Secure state.

If the Main Extension is not implemented, this bit is RES0.

If Halting debug is not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.

Bits [3:1]
Reserved, RES0.

VC_CORERESET, bit [0]
Vector Catch Core reset. Enable Reset Vector Catch. This causes a Warm reset to halt a running system.

The possible values of this bit are:

0
Halting debug trap on reset disabled.

1
Halting debug trap on reset enabled.

If DHCSR.C_DEBUGEN == 0, the PE ignores the value of this bit. Otherwise, when this bit is set to 1 a
Warm reset will pend a Vector Catch debug event. The debug event is pended regardless of debug permissions
or the security state of the PE, and the PE will halt when it enters a mode or state where debug is enabled.

If Halting debug is not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1431

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.37 DFSR, Debug Fault Status Register

The DFSR characteristics are:

Purpose
Shows which debug event occurred.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present if Halting debug or the Main Extension is implemented.

This register is RES0 if both Halting debug and Main Extension are not implemented.

Attributes
32-bit read/write-one-to-clear register located at 0xE000ED30.

Secure software can access the Non-secure version of this register via DFSR_NS located at 0xE002ED30.
The location 0xE002ED30 is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The DFSR bit assignments are:

012345631

RES0

PMU
EXTERNAL

VCATCH

HALTED
BKPT
DWTTRAP

Bits [31:6]
Reserved, RES0.

PMU, bit [5]
PMU event. Sticky flag indicating whether a PMU counter overflow event has occurred.

The possible values of this bit are:

0
PMU event has not occurred.

1
PMU event has occurred.

If version Armv8.1 of the architecture and PMU are not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1432

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

EXTERNAL, bit [4]
External event. Sticky flag indicating whether an External debug request debug event has occurred.

The possible values of this bit are:

0
Debug event has not occurred.

1
Debug event has occurred.

This bit resets to zero on a Cold reset.

VCATCH, bit [3]
Vector Catch event. Sticky flag indicating whether a Vector catch debug event has occurred.

The possible values of this bit are:

0
Debug event has not occurred.

1
Debug event has occurred.

If Halting debug is not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.

DWTTRAP, bit [2]
Watchpoint event. Sticky flag indicating whether a Watchpoint debug event has occurred.

The possible values of this bit are:

0
Debug event has not occurred.

1
Debug event has occurred.

If the DWT is not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.

BKPT, bit [1]
Breakpoint event. Sticky flag indicating whether a Breakpoint debug event has occurred.

The possible values of this bit are:

0
Debug event has not occurred.

1
Debug event has occurred.

This bit resets to zero on a Cold reset.

HALTED, bit [0]
Halt or step event. Sticky flag indicating that a Halt request debug event or Step debug event has occurred.

The possible values of this bit are:

0
Debug event has not occurred.

1
Debug event has occurred.

This bit resets to zero on a Cold reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1433

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.38 DHCSR, Debug Halting Control and Status Register

The DHCSR characteristics are:

Purpose
Controls Halting debug.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

It is IMPLEMENTATION DEFINED whether this register is accessible only to the debugger and RES0 for
software.

Configurations
Present only if Halting debug is implemented.

This register is RES0 if Halting debug is not implemented.

Attributes
32-bit read/write register located at 0xE000EDF0.

Secure software can access the Non-secure version of this register via DHCSR_NS located at 0xE002EDF0.
The location 0xE002EDF0 is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The DHCSR bit assignments are:

On a read:

01234

(0)

56715

RES0

16171819202122232425262731

RES0

S_RESTART_ST
S_RESET_ST
S_RETIRE_ST

S_FPD
S_SUIDE
S_NSUIDE

S_SDE
S_LOCKUP

C_DEBUGEN
C_HALT
C_STEP
C_MASKINTS

C_SNAPSTALL
C_PMOV

S_REGRDY
S_HALT
S_SLEEP

On a write:

01234

(0)

56715

RES0

1631

DBGKEY

C_PMOV
C_SNAPSTALL

C_MASKINTS

C_DEBUGEN
C_HALT
C_STEP

DBGKEY, bits [31:16], on a write
Debug key. A debugger must write 0xA05F to this field to enable write access to the remaining bits,
otherwise the PE ignores the write access.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1434

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

The possible values of this field are:

0xA05F
Writes accompanied by this value update bits[15:0].

Not 0xA05F
Write ignored.

Bits [31:27], on a read
Reserved, RES0.

S_RESTART_ST, bit [26], on a read
Restart sticky status. Indicates the PE has processed a request to clear DHCSR.C_HALT to 0. That is, either
a write to DHCSR that clears DHCSR.C_HALT from 1 to 0, or an External Restart Request.

The possible values of this bit are:

0
PE has not left Debug state since the last read of DHCSR.

1
PE has left Debug state since the last read of DHCSR.

If the PE is not halted when C_HALT is cleared to zero, it is UNPREDICTABLE whether this bit is set to 1. If
DHCSR.C_DEBUGEN == 0 this bit reads as an UNKNOWN value.

This bit clears to zero when read.

Note

If the request to clear C_HALT is made simultaneously with a request to set C_HALT, for example
a restart request and external debug request occur together, then the PE notionally leaves Debug
state and immediately halts again and S_RESTART_ST is set to 1.

S_RESET_ST, bit [25], on a read
Reset sticky status. Indicates whether the PE has been reset since the last read of the DHCSR.

The possible values of this bit are:

0
No reset since last DHCSR read.

1
At least one reset since last DHCSR read.

This bit clears to zero when read.

This bit resets to one on a Warm reset.

S_RETIRE_ST, bit [24], on a read
Retire sticky status. Set to 1 every time the PE retires one of more instructions.

The possible values of this bit are:

0
No instruction retired since last DHCSR read.

1
At least one instruction retired since last DHCSR read.

This bit clears to zero when read.

This bit resets to an UNKNOWN value on a Warm reset.

S_FPD, bit [23], on a read
Floating-point registers Debuggable. Indicates that FPSCR, VPR, and the Floating-point registers are
RAZ/WI in the current PE state when accessed via DCRSR. This reflects !CanDebugAccessFP().

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1435

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

The possible values of this bit are:

0
Floating-point registers accessible.

1
Floating-point registers are RAZ/WI.

If version Armv8.1-M of the architecture is not implemented, this bit is RES0.

S_SUIDE, bit [22], on a read
Secure unprivileged halting debug enabled. Indicates whether Secure unprivileged-only halting debug is
allowed or active.

The possible values of this bit are:

0
Secure invasive halting debug prohibited or not restricted to an unprivileged mode.

1
Unprivileged Secure invasive halting debug enabled.

If the PE is in Non-debug state, this bit reflects the value of UnprivHaltingDebugAllowed(TRUE) &&
!SecureHaltingDebugAllowed().

The value of this bit does not change whilst the PE remains in Debug state.

If the Security Extension is not implemented, this bit is RES0.

If version Armv8.1 of the architecture and UDE are not implemented, this bit is RES0.

S_NSUIDE, bit [21], on a read
Non-secure unprivileged halting debug enabled. Indicates whether Non-secure unprivileged-only halting
debug is allowed or active.

The possible values of this bit are:

0
Non-secure invasive halting debug prohibited or not restricted to an unprivileged mode.

1
Unprivileged Non-secure invasive halting debug enabled.

If the PE is in Non-debug state, this bit reflects the value of UnprivHaltingDebugAllowed(FALSE) &&
!HaltingDebugAllowed().

The value of this bit does not change whilst the PE remains in Debug state.

If version Armv8.1 of the architecture and UDE are not implemented, this bit is RES0.

S_SDE, bit [20], on a read
Secure debug enabled. Indicates whether Secure invasive debug is allowed.

The possible values of this bit are:

0
Secure invasive debug prohibited.

1
Secure invasive debug allowed.

If the PE is in Non-debug state, this bit reflects the value of SecureHaltingDebugAllowed() or UnprivHalt-
ingDebugAllowed(TRUE).

If the PE is in Debug state then this bit is 1 if the PE entered Debug state from either Non-secure state with
SecureHaltingDebugAllowed() == TRUE or from Secure state, and 0 otherwise. The value of this bit does
not change while the PE remains in Debug state.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1436

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

If the Security Extension is not implemented, this bit is RES0.

S_LOCKUP, bit [19], on a read
Lockup status. Indicates whether the PE is in Lockup state.

The possible values of this bit are:

0
Not locked up.

1
Locked up.

This bit can only be read as 1 by a remote debugger, using the DAP. The value of 1 indicates that the PE is
running but locked up. The bit clears to 0 when the PE enters Debug state.

S_SLEEP, bit [18], on a read
Sleeping status. Indicates whether the PE is sleeping.

The possible values of this bit are:

0
Not sleeping.

1
Sleeping.

The debugger must set the C_HALT bit to 1 to gain control, or wait for an interrupt or other wakeup event to
wakeup the system.

S_HALT, bit [17], on a read
Halted status. Indicates whether the PE is in Debug state.

The possible values of this bit are:

0
In Non-debug state.

1
In Debug state.

S_REGRDY, bit [16], on a read
Register ready status. Handshake flag to transfers through the DCRDR.

The possible values of this bit are:

0
Write to DCRSR performed, but transfer not yet complete.

1
Transfer complete, or no outstanding transfer.

This bit is valid only when the PE is in Debug state, otherwise this bit is UNKNOWN.

This bit resets to an UNKNOWN value on a Warm reset.

Bits [15:7]
Reserved, RES0.

C_PMOV, bit [6]
Halt on PMU overflow control. Request entry to Debug state when a PMU counter overflows.

The possible values of this bit are:

0
No action.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1437

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

1
If C_DEBUGEN is set to 1, then when a PMU counter is configured to generate an interrupt overflows,
the PE sets DHCSR.C_HALT to 1 and DFSR.PMU to 1.

PMU_OVSSET and PMU_OVSCLR indicate which counter or counters triggered the halt.

If the Main Extension is not implemented, this bit is RES0.

If version Armv8.1 of the architecture and PMU are not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.

C_SNAPSTALL, bit [5]
Snap stall control. Allow imprecise entry to Debug state.

The possible values of this bit are:

0
No action.

1
Allows imprecise entry to Debug state, for example by forcing any stalled load or store instruction to be
abandoned.

Setting this bit to 1 allows a debugger to request an imprecise entry to Debug state. Writing 1 to this bit
makes the state of the memory system UNPREDICTABLE. Therefore if a debugger writes 1 to this bit it must
reset the system before leaving Debug state.

The effect of setting this bit to 1 is UNPREDICTABLE unless the DHCSR write also sets C_DEBUGEN and
C_HALT to 1. This means that if the PE is not already in Debug state, it enters Debug state when the stalled
instruction completes.

If the Security Extension is implemented, then writes to this bit are ignored when DHCSR.S_SDE == 0 or
DHCSR.S_SUIDE == 1.

If DHCSR.C_DEBUGEN == 0, HaltingDebugAllowed() == FALSE, or DHCSR.S_NSUIDE == 1, the PE
ignores this bit and behaves as if it is set to 0.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.

Note

A debugger can write to the DHCSR to clear this bit to 0. However, this does not remove the
UNPREDICTABLE state of the memory system caused by setting C_SNAPSTALL to 1. The
architecture does not guarantee that setting this bit to 1 will force an entry to Debug State. Arm
strongly recommends that a value of 1 is never written to C_SNAPSTALL when the PE is in Debug
state. It is IMPLEMENTATION DEFINED whether this bit behaves as RAZ/WI.

Bit [4]
Reserved, RES0.

C_MASKINTS, bit [3]
Mask interrupts control. When debug is enabled, the debugger can write to this bit to mask PendSV, SysTick
and external configurable interrupts.

The possible values of this bit are:

0
Do not mask.

1
Mask PendSV, SysTick and external configurable interrupts.

The effect of any single write to DHCSR that changes the value of this bit is UNPREDICTABLE unless one of:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1438

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

• Before the write, DHCSR.{S_HALT,C_HALT} are both set to 1 and the write also writes 1 to
DHCSR.C_HALT.

• Before the write, DHCSR.C_DEBUGEN == 0 or HaltingDebugAllowed() == FALSE, and the write
writes 0 to DHCSR.C_MASKINTS.

This means that a single write to DHCSR must not clear DHCSR.C_HALT to 0 and change the value of the
C_MASKINTS bit.

If the Security Extension is implemented and either DHCSR.S_SDE == 0 or DHCSR.S_SUIDE == 1, this bit
does not affect interrupts targeting Secure state.

If DHCSR.C_DEBUGEN == 0, HaltingDebugAllowed() == FALSE, or DHCSR.S_NSUIDE == 1, the PE
ignores this bit and behaves as if it is set to 0.

If DHCSR.C_DEBUGEN == 0 this bit reads as an UNKNOWN value.

This bit resets to an UNKNOWN value on a Cold reset.

Note

This bit does not affect NMI.

C_STEP, bit [2]
Step control. Enable single instruction step.

The possible values of this bit are:

0
No effect.

1
Single step enabled.

The effect of a single write to DHCSR that changes the value of this bit is UNPREDICTABLE unless one of:

• Before the write, DHCSR.{S_HALT,C_HALT} are both set to 1.

• Before the write, DHCSR.C_DEBUGEN == 0 or HaltingDebugAllowed() == FALSE or
DHCSR.C_STEP == 0, and the write writes 0 to DHCSR.C_STEP.

The PE ignores this bit and behaves as if it set to 0 if any of:

• DHCSR.C_DEBUGEN == 0 or HaltingDebugAllowed() == FALSE.

• The Security Extension is implemented, DHCSR.S_SDE == 0 and the PE is in Secure state.

If DHCSR.C_DEBUGEN == 0 this bit reads as an UNKNOWN value.

This bit resets to an UNKNOWN value on a Cold reset.

C_HALT, bit [1]
Halt control. PE to enter Debug state halt request.

The possible values of this bit are:

0
Causes the PE to leave Debug state, if the PE is in Debug state.

1
Halt the PE.

The PE sets C_HALT to 1 when a debug event pends an entry to Debug state.

The PE ignores this bit and behaves as if it is set to 0 if any of:

• UnprivHaltingDebugAllowed(IsSecure()) == FALSE and either DHCSR.C_DEBUGEN == 0 or Halt-
ingDebugAllowed() == FALSE.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1439

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

• The Security Extension is implemented, DHCSR.S_SDE == 0 and the PE is in Secure state.

If DHCSR.C_DEBUGEN == 0 this bit reads as an UNKNOWN value.

This bit resets to zero on a Warm reset.

C_DEBUGEN, bit [0]
Debug enable control. Enable Halting debug.

The possible values of this bit are:

0
Disabled.

1
Enabled.

If a debugger writes to DHCSR to change the value of this bit from 0 to 1, it must also write 0 to the
C_MASKINTS bit, otherwise behavior is UNPREDICTABLE.

If this bit is set to 0:

• The PE behaves as if DHCSR.{C_MASKINTS, C_STEP, C_HALT} are all set to 0.

• DHCSR.{S_RESTART_ST, C_MASKINTS, C_STEP, C_HALT} are UNKNOWN on reads of DHCSR.

This bit is read/write to the debugger. Writes from software are ignored.

This bit resets to zero on a Cold reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1440

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.39 DLAR, SCS Software Lock Access Register

The DLAR characteristics are:

Purpose
Provides CoreSight Software Lock control for the SCS, see the Arm® CoreSight™ Architecture Specification
for details.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

This register is RAZ/WI if accessed via the debugger.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the optional Software Lock is implemented.

This register is RAZ/WI if the Software Lock is not implemented.

Attributes
32-bit write-only register located at 0xE000EFB0.

Secure software can access the Non-secure version of this register via DLAR_NS located at 0xE002EFB0.
The location 0xE002EFB0 is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The DLAR bit assignments are:

031

KEY

KEY, bits [31:0]
Lock Access control.

Writing the key value 0xC5ACCE55 to this field unlocks the lock, enabling write accesses to the registers of
this component through a memory-mapped interface.

Writing any other value to this register locks the lock, disabling write accesses to the registers of this
component through a memory mapped interface.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1441

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.40 DLSR, SCS Software Lock Status Register

The DLSR characteristics are:

Purpose
Provides CoreSight Software Lock status information for the SCS, see the Arm® CoreSight™ Architecture
Specification for details.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

This register is RAZ/WI if accessed via the debugger.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the optional Software Lock is implemented.

This register is RAZ/WI if the Software Lock is not implemented.

Attributes
32-bit read-only register located at 0xE000EFB4.

Secure software can access the Non-secure version of this register via DLSR_NS located at 0xE002EFB4.
The location 0xE002EFB4 is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The DLSR bit assignments are:

012331

RES0

nTT
SLK

SLI

Bits [31:3]
Reserved, RES0.

nTT, bit [2]
Not thirty-two bit. See the Arm® CoreSight™ Architecture Specification.

This bit reads as zero.

SLK, bit [1]
Software Lock status. See the Arm® CoreSight™ Architecture Specification.

The possible values of this bit are:

0
Lock clear. Software writes are permitted to the registers of the component.

1
Lock set. Software writes to the registers of this component are ignored, and reads have no side-effects.

For a debugger read of this register, or when the Software Lock is not implemented, this bit is RES0.

This bit resets to one on a Warm reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1442

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

SLI, bit [0]
Software Lock implemented. See the Arm® CoreSight™ Architecture Specification.

The possible values of this bit are:

0
Software Lock not implemented or debugger access.

1
Software Lock is implemented and software access.

For a debugger read of this register, or when the Software Lock is not implemented, this bit is RAZ.

This bit reads as an IMPLEMENTATION DEFINED value.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1443

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.41 DPIDR0, SCS Peripheral Identification Register 0

The DPIDR0 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the SCS.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if Halting debug is implemented.

This register is RES0 if Halting debug is not implemented.

Attributes
32-bit read-only register located at 0xE000EFE0.

Secure software can access the Non-secure version of this register via DPIDR0_NS located at 0xE002EFE0.
The location 0xE002EFE0 is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The DPIDR0 bit assignments are:

07

PART_0

831

RES0

Bits [31:8]
Reserved, RES0.

PART_0, bits [7:0]
Part number bits [7:0]. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1444

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.42 DPIDR1, SCS Peripheral Identification Register 1

The DPIDR1 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the SCS.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if Halting debug is implemented.

This register is RES0 if Halting debug is not implemented.

Attributes
32-bit read-only register located at 0xE000EFE4.

Secure software can access the Non-secure version of this register via DPIDR1_NS located at 0xE002EFE4.
The location 0xE002EFE4 is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The DPIDR1 bit assignments are:

03

PART_1

47

DES_0

831

RES0

Bits [31:8]
Reserved, RES0.

DES_0, bits [7:4]
JEP106 identification code bits [3:0]. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

PART_1, bits [3:0]
Part number bits [11:8]. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1445

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.43 DPIDR2, SCS Peripheral Identification Register 2

The DPIDR2 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the SCS.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if Halting debug is implemented.

This register is RES0 if Halting debug is not implemented.

Attributes
32-bit read-only register located at 0xE000EFE8.

Secure software can access the Non-secure version of this register via DPIDR2_NS located at 0xE002EFE8.
The location 0xE002EFE8 is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The DPIDR2 bit assignments are:

02

DES_1

347

REVISION

831

RES0

JEDEC

Bits [31:8]
Reserved, RES0.

REVISION, bits [7:4]
Component revision. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

JEDEC, bit [3]
JEDEC assignee value is used. See the Arm® CoreSight™ Architecture Specification.

This bit reads as one.

DES_1, bits [2:0]
JEP106 identification code bits [6:4]. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1446

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.44 DPIDR3, SCS Peripheral Identification Register 3

The DPIDR3 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the SCS.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if Halting debug is implemented.

This register is RES0 if Halting debug is not implemented.

Attributes
32-bit read-only register located at 0xE000EFEC.

Secure software can access the Non-secure version of this register via DPIDR3_NS located at 0xE002EFEC.
The location 0xE002EFEC is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The DPIDR3 bit assignments are:

03

CMOD

47

REVAND

831

RES0

Bits [31:8]
Reserved, RES0.

REVAND, bits [7:4]
RevAnd. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

CMOD, bits [3:0]
Customer Modified. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1447

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.45 DPIDR4, SCS Peripheral Identification Register 4

The DPIDR4 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the SCS.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if Halting debug is implemented.

This register is RES0 if Halting debug is not implemented.

Attributes
32-bit read-only register located at 0xE000EFD0.

Secure software can access the Non-secure version of this register via DPIDR4_NS located at 0xE002EFD0.
The location 0xE002EFD0 is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The DPIDR4 bit assignments are:

03

DES_2

47

SIZE

831

RES0

Bits [31:8]
Reserved, RES0.

SIZE, bits [7:4]
4KB count. See the Arm® CoreSight™ Architecture Specification.

This field reads as zero.

DES_2, bits [3:0]
JEP106 continuation code. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1448

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.46 DPIDR5, SCS Peripheral Identification Register 5

The DPIDR5 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the SCS.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if Halting debug is implemented.

This register is RES0 if Halting debug is not implemented.

Attributes
32-bit read-only register located at 0xE000EFD4.

Secure software can access the Non-secure version of this register via DPIDR5_NS located at 0xE002EFD4.
The location 0xE002EFD4 is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The DPIDR5 bit assignments are:

031

RES0

Bits [31:0]
Reserved, RES0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1449

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.47 DPIDR6, SCS Peripheral Identification Register 6

The DPIDR6 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the SCS.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if Halting debug is implemented.

This register is RES0 if Halting debug is not implemented.

Attributes
32-bit read-only register located at 0xE000EFD8.

Secure software can access the Non-secure version of this register via DPIDR6_NS located at 0xE002EFD8.
The location 0xE002EFD8 is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The DPIDR6 bit assignments are:

031

RES0

Bits [31:0]
Reserved, RES0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1450

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.48 DPIDR7, SCS Peripheral Identification Register 7

The DPIDR7 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the SCS.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if Halting debug is implemented.

This register is RES0 if Halting debug is not implemented.

Attributes
32-bit read-only register located at 0xE000EFDC.

Secure software can access the Non-secure version of this register via DPIDR7_NS located at 0xE002EFDC.
The location 0xE002EFDC is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The DPIDR7 bit assignments are:

031

RES0

Bits [31:0]
Reserved, RES0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1451

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.49 DSCEMCR, Debug Set Clear Exception and Monitor Control Register

The DSCEMCR characteristics are:

Purpose
Atomically sets or clears selected fields in the DEMCR register.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

Configurations
Present if Halting debug or the Main Extension is implemented.

This register is RES0 if both Halting debug and Main Extension are not implemented.

Present only if version Armv8.1-M of the architecture is implemented.

This register is RES0 if Armv8.1-M is not implemented.

Attributes
32-bit write-only register located at 0xE000EE00.

Secure software can access the Non-secure version of this register via DSCEMCR_NS located at
0xE002EE00. The location 0xE002EE00 is RES0 to software executing in Non-secure state and the
debugger.

This register is not banked between Security states.

Field descriptions

The DSCEMCR bit assignments are:

0

(0)

12

(0)

3416

RES0

1718

(0)

192031

RES0

CLR_MON_REQ
CLR_MON_PEND

SET_MON_PEND
SET_MON_REQ

Bits [31:20]
Reserved, RES0.

CLR_MON_REQ, bit [19]
Clear monitor request. Atomically clears the DEMCR.MON_REQ field.

The possible values of this bit are:

0
No effect.

1
Clear DEMCR.MON_REQ.

A write to this register with both SET_MON_REQ and CLR_MON_REQ set to 1 causes DEMCR.MON_REQ
to become UNKNOWN.

Bit [18]
Reserved, RES0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1452

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

CLR_MON_PEND, bit [17]
Clear monitor pend. Atomically clears the DEMCR.MON_PEND field.

The possible values of this bit are:

0
No effect.

1
Clear DEMCR.MON_PEND.

A write to this register with both SET_MON_PEND and CLR_MON_PEND set to 1 causes
DEMCR.MON_PEND to become UNKNOWN.

Bits [16:4]
Reserved, RES0.

SET_MON_REQ, bit [3]
Set monitor request. Atomically sets the DEMCR.MON_REQ field.

The possible values of this bit are:

0
No effect.

1
Sets DEMCR.MON_REQ.

A write to this register with both SET_MON_REQ and CLR_MON_REQ set to 1 causes DEMCR.MON_REQ
to become UNKNOWN.

Bit [2]
Reserved, RES0.

SET_MON_PEND, bit [1]
Set monitor pend. Atomically sets the DEMCR.MON_PEND field.

The possible values of this bit are:

0
No effect.

1
Sets DEMCR.MON_PEND.

A write to this register with both SET_MON_PEND and CLR_MON_PEND set to 1 causes
DEMCR.MON_PEND to become UNKNOWN.

Bit [0]
Reserved, RES0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1453

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.50 DSCSR, Debug Security Control and Status Register

The DSCSR characteristics are:

Purpose
Provides control and status information for Secure debug.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

This register is accessible only to the debugger and RES0 to software.

Configurations
Present only if the Security Extension is implemented.

This register is RES0 if the Security Extension is not implemented.

Present only if Halting debug is implemented.

This register is RES0 if Halting debug is not implemented.

Attributes
32-bit read/write register located at 0xE000EE08.

This register is not banked between Security states.

Field descriptions

The DSCSR bit assignments are:

01215

RES0

16171831

RES0

CDSKEY
CDS

SBRSELEN
SBRSEL

Bits [31:18]
Reserved, RES0.

CDSKEY, bit [17]
CDS write-enable key. Writes to the CDS bit are ignored unless CDSKEY is concurrently written to zero.

The possible values of this bit are:

0
Concurrent write to CDS not ignored.

1
Concurrent write to CDS ignored.

This bit reads-as-one.

CDS, bit [16]
Current domain Secure. This field indicates the current Security state of the processor.

The possible values of this bit are:

0
PE is in Non-secure state.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1454

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

1
PE is in Secure state.

This bit is only writable if all of the following are true:

• DHCSR.S_SDE is 1.

• Either DHCSR.S_SUIDE == 0 or CONTROL.nPRIV == 1 for the state specified by the CDS value being
written.

• The access to the register originates from the debugger.

• The PE is halted in Debug state. .

• CDSKEY is concurrently written to zero.

Bits [15:2]
Reserved, RES0.

SBRSEL, bit [1]
Secure banked register select. If SBRSELEN is 1 this bit selects whether the Non-secure or the Secure
versions of the memory-mapped banked registers are accessible to the debugger.

The possible values of this bit are:

0
Selects the Non-secure versions.

1
Selects the Secure versions.

This bit behaves as RAZ/WI if DHCSR.S_SDE is 0.

This bit resets to zero on a Cold reset.

SBRSELEN, bit [0]
Secure banked register select enable. Controls whether the SBRSEL field or the current Security state of the
processor selects which version of the memory-mapped banked registers are accessible to the debugger.

The possible values of this bit are:

0
The current Security state of the PE determines which memory-mapped Banked registers are accessed
by the debugger.

1
DSCSR.SBRSEL selects which memory-mapped Banked registers are accessed by the debugger.

This bit behaves as RAO/WI if DHCSR.S_SDE is 0.

This bit resets to zero on a Cold reset.

Note

This method of banked register selection means that the register aliasing is not used for accesses
from the debugger. Accesses to the aliased addresses from the debugger have the same behavior as
reserved addresses.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1455

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.51 DWT_CIDR0, DWT Component Identification Register 0

The DWT_CIDR0 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the DWT.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Attributes
32-bit read-only register located at 0xE0001FF0.

This register is not banked between Security states.

Field descriptions

The DWT_CIDR0 bit assignments are:

07

PRMBL_0

831

RES0

Bits [31:8]
Reserved, RES0.

PRMBL_0, bits [7:0]
CoreSight component identification preamble. See the Arm® CoreSight™ Architecture Specification.

This field reads as 0x0D.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1456

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.52 DWT_CIDR1, DWT Component Identification Register 1

The DWT_CIDR1 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the DWT.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Attributes
32-bit read-only register located at 0xE0001FF4.

This register is not banked between Security states.

Field descriptions

The DWT_CIDR1 bit assignments are:

03

PRMBL_1

47

CLASS

831

RES0

Bits [31:8]
Reserved, RES0.

CLASS, bits [7:4]
CoreSight component class. See the Arm® CoreSight™ Architecture Specification.

This field reads as 0x9.

PRMBL_1, bits [3:0]
CoreSight component identification preamble. See the Arm® CoreSight™ Architecture Specification.

This field reads as 0x0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1457

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.53 DWT_CIDR2, DWT Component Identification Register 2

The DWT_CIDR2 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the DWT.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Attributes
32-bit read-only register located at 0xE0001FF8.

This register is not banked between Security states.

Field descriptions

The DWT_CIDR2 bit assignments are:

07

PRMBL_2

831

RES0

Bits [31:8]
Reserved, RES0.

PRMBL_2, bits [7:0]
CoreSight component identification preamble. See the Arm® CoreSight™ Architecture Specification.

This field reads as 0x05.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1458

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.54 DWT_CIDR3, DWT Component Identification Register 3

The DWT_CIDR3 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the DWT.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Attributes
32-bit read-only register located at 0xE0001FFC.

This register is not banked between Security states.

Field descriptions

The DWT_CIDR3 bit assignments are:

07

PRMBL_3

831

RES0

Bits [31:8]
Reserved, RES0.

PRMBL_3, bits [7:0]
CoreSight component identification preamble. See the Arm® CoreSight™ Architecture Specification.

This field reads as 0xB1.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1459

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.55 DWT_COMPn, DWT Comparator Register, n = 0 - 14

The DWT_COMP{0..14} characteristics are:

Purpose
Provides a reference value for use by watchpoint comparator n.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Attributes
32-bit read/write register located at 0xE0001020 + 16n.

This register is not banked between Security states.

Field descriptions

The DWT_COMP{0..14} bit assignments are:

When DWT_FUNCTIONn.MATCH == 0b0001:

031

CYCVALUE

When DWT_FUNCTIONn.MATCH == 0b001x:

0

(0)

131

PCVALUE

When DWT_FUNCTIONn.MATCH == 0b10xx:

031

DVALUE

When DWT_FUNCTIONn.MATCH == 0bx1xx:

031

DADDR

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1460

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

CYCVALUE, bits [31:0], when DWT_FUNCTIONn.MATCH == 0b0001
Cycle value. Reference value for comparison with cycle count.

This field resets to an UNKNOWN value on a Cold reset.

PCVALUE, bits [31:1], when DWT_FUNCTIONn.MATCH == 0b001x
PC value. Reference value for comparison with Program Counter.

This field resets to an UNKNOWN value on a Cold reset.

Bit [0], when DWT_FUNCTIONn.MATCH == 0b001x
Reserved, RES0.

DADDR, bits [31:0], when DWT_FUNCTIONn.MATCH == 0bx1xx
Data address. Reference value for comparison with load or store address.

For halfword address comparisons, DADDR[0] is RES0. For byte address comparisons, DADDR[1:0] are
RES0.

This field resets to an UNKNOWN value on a Cold reset.

DVALUE, bits [31:0], when DWT_FUNCTIONn.MATCH == 0b10xx
Data value. Reference value for comparison with load or store data.

For halfword or word comparisons, the data value is in little-endian order. That is, the least significant byte
of this register is compared with the byte targeting the lowest address in memory.

For byte or halfword comparisons, if the value of the byte or halfword is not replicated across all byte or
halfword lanes, the value used for the comparison is UNKNOWN.

This field resets to an UNKNOWN value on a Cold reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1461

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.56 DWT_CPICNT, DWT CPI Count Register

The DWT_CPICNT characteristics are:

Purpose
Counts additional cycles required to execute multicycle instructions and instruction fetch stalls.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Present only if DWT_CTRL.NOPRFCNT == 0.

This register is RES0 if DWT_CTRL.NOPRFCNT == 1.

Attributes
32-bit read/write register located at 0xE0001008.

This register is not banked between Security states.

Field descriptions

The DWT_CPICNT bit assignments are:

07

CPICNT

831

RES0

Bits [31:8]
Reserved, RES0.

CPICNT, bits [7:0]
Base instruction overhead counter.

Counts one on each cycle when all of the following are true:

• DWT_CTRL.CPIEVTENA == 1 and DEMCR.TRCENA == 1.

• No instruction is executed.

• No load-store operation is in progress, see DWT_LSUCNT.

• No exception-entry or exception-exit operation is in progress, see DWT_EXCCNT.

• The PE is not in a power-saving mode, see DWT_SLEEPCNT.

• Either SecureNoninvasiveDebugAllowed() == TRUE, or the PE is in Non-secure state and Noninva-
siveDebugAllowed() == TRUE.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1462

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

The definition of "no instruction is executed" is IMPLEMENTATION DEFINED. Arm recommends that this
counts each cycle on which no instruction is retired.

Initialized to zero when the counter is disabled and DWT_CTRL.CPIEVTENA is written with 1. An Event
Counter packet is emitted on counter overflow.

This field resets to an UNKNOWN value on a Cold reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1463

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.57 DWT_CTRL, DWT Control Register

The DWT_CTRL characteristics are:

Purpose
Provides configuration and status information for the DWT unit, and used to control features of the unit.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Attributes
32-bit read/write register located at 0xE0001000.

This register is not banked between Security states.

Field descriptions

The DWT_CTRL bit assignments are:

01458

POSTINIT

91011121315

RES0

1617181920212223242526272831

NUMCOMP

NOTRCPKT
NOEXTTRIG
NOCYCCNT
NOPRFCNT

CYCDISS
CYCEVTENA

FOLDEVTENA
LSUEVTENA

CYCCNTENA
POSTPRESET

CYCTAP
SYNCTAP

PCSAMPLENA
EXCTRCENA
CPIEVTENA
EXCEVTENA
SLEEPEVTENA

NUMCOMP, bits [31:28]
Number of comparators. Number of DWT comparators implemented.

A value of zero indicates no comparator support.

This field reads as an IMPLEMENTATION DEFINED value.

NOTRCPKT, bit [27]
No trace packets. Indicates whether the implementation does not support trace.

The possible values of this bit are:

0
Trace supported.

1
Trace not supported.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1464

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

If this bit is RAZ, the NOCYCCNT bit must also RAZ.

If the Main Extension is not implemented, this bit is RES1.

This bit reads as an IMPLEMENTATION DEFINED value.

NOEXTTRIG, bit [26]
No External Triggers. Shows whether the implementation does not support external triggers.

Reserved, RES0.

NOCYCCNT, bit [25]
No cycle count. Indicates whether the implementation does not include a cycle counter.

The possible values of this bit are:

0
Cycle counter implemented.

1
Cycle counter not implemented.

If the Main Extension is not implemented, this bit is RES1.

This bit reads as an IMPLEMENTATION DEFINED value.

NOPRFCNT, bit [24]
No profile counters. Indicates whether the implementation does not include the profiling counters.

The possible values of this bit are:

0
Profiling counters implemented.

1
Profiling counters not implemented.

If the Main Extension is not implemented, this bit is RES1.

This bit reads as an IMPLEMENTATION DEFINED value.

CYCDISS, bit [23]
Cycle counter disabled secure. Controls whether the cycle counter is disabled in Secure state.

The possible values of this bit are:

0
No effect.

1
Disable incrementing of the cycle counter when the PE is in Secure state.

If the NOCYCCNT bit is RAO this bit is RES0.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.

CYCEVTENA, bit [22]
Cycle event enable. Enables Event Counter packet generation on POSTCNT underflow.

The possible values of this bit are:

0
No Event Counter packets generated when POSTCNT underflows.

1
If PCSAMPLENA set to 0, an Event Counter packet is generated when POSTCNT underflows.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1465

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

If the NOTRCPKT bit is RAO or the NOCYCCNT bit is RAO this bit is RES0.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.

FOLDEVTENA, bit [21]
Fold event enable. Enables DWT_FOLDCNT counter.

The possible values of this bit are:

0
DWT_FOLDCNT disabled.

1
DWT_FOLDCNT enabled.

If the NOPRFCNT bit is RAO this bit is RES0. The reset value is 0.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.

LSUEVTENA, bit [20]
LSU event enable. Enables DWT_LSUCNT counter.

The possible values of this bit are:

0
DWT_LSUCNT disabled.

1
DWT_LSUCNT enabled.

If the NOPRFCNT bit is RAO this bit is RES0.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.

SLEEPEVTENA, bit [19]
Sleep event enable. Enable DWT_SLEEPCNT counter.

The possible values of this bit are:

0
DWT_SLEEPCNT disabled.

1
DWT_SLEEPCNT enabled.

If the NOPRFCNT bit is RAO this bit is RES0.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.

EXCEVTENA, bit [18]
Exception event enable. Enables DWT_EXCCNT counter.

The possible values of this bit are:

0
DWT_EXCCNT disabled.

1
DWT_EXCCNT enabled.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1466

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

If the NOPRFCNT bit is RAO this bit is RES0.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.

CPIEVTENA, bit [17]
CPI event enable. Enables DWT_CPICNT counter.

The possible values of this bit are:

0
DWT_CPICNT disabled.

1
DWT_CPICNT enabled.

If the NOPRFCNT bit is RAO this bit is RES0.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.

EXCTRCENA, bit [16]
Exception trace enable. Enables generation of Exception Trace packets.

The possible values of this bit are:

0
Exception Trace packet generation disabled.

1
Exception Trace packet generation enabled.

If the NOTRCPKT bit is RAO this bit is RES0.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.

Bits [15:13]
Reserved, RES0.

PCSAMPLENA, bit [12]
PC sample enable. Enables use of POSTCNT counter as a timer for Periodic PC Sample packet generation.

The possible values of this bit are:

0
Periodic PC Sample packet generation disabled.

1
Periodic PC Sample packet generated on POSTCNT underflow.

If the NOTRCPKT bit is RAO or the NOCYCCNT bit is RAO this bit is RES0.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.

SYNCTAP, bits [11:10]
Synchronization tap. Selects the position of the synchronization packet request counter tap on the CYCCNT
counter. This determines the rate of Synchronization packet requests made by the DWT.

The possible values of this field are:

0b00
Synchronization packet request disabled.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1467

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0b01
Synchronization counter tap at CYCCNT[24].

0b10
Synchronization counter tap at CYCCNT[26].

0b11
Synchronization counter tap at CYCCNT[28].

If the NOCYCCNT bit is RAO this bit is RES0.

If the Main Extension is not implemented, this field is RES0.

This field resets to an UNKNOWN value on a Cold reset.

CYCTAP, bit [9]
Cycle count tap. Selects the position of the POSTCNT tap on the CYCCNT counter.

The possible values of this bit are:

0
POSTCNT tap at CYCCNT[6].

1
POSTCNT tap at CYCCNT[10].

If the NOCYCCNT bit is RAO this bit is RES0.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to an UNKNOWN value on a Cold reset.

POSTINIT, bits [8:5]
POSTCNT initial. Initial value for the POSTCNT counter.

If the NOCYCCNT bit is RAO this bit is RES0.

If the Main Extension is not implemented, this field is RES0.

This field resets to an UNKNOWN value on a Cold reset.

POSTPRESET, bits [4:1]
POSTCNT preset. Reload value for the POSTCNT counter.

If the NOCYCCNT bit is RAO this bit is RES0.

If the Main Extension is not implemented, this field is RES0.

This field resets to an UNKNOWN value on a Cold reset.

CYCCNTENA, bit [0]
CYCCNT enable. Enables CYCCNT.

The possible values of this bit are:

0
CYCCNT disabled.

1
CYCCNT enabled.

If the NOCYCCNT bit is RAO this bit is RES0.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Cold reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1468

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.58 DWT_CYCCNT, DWT Cycle Count Register

The DWT_CYCCNT characteristics are:

Purpose
Shows or sets the value of the processor cycle counter, CYCCNT.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Present only if DWT_CTRL.NOCYCCNT == 0.

This register is RES0 if DWT_CTRL.NOCYCCNT == 1.

Attributes
32-bit read/write register located at 0xE0001004.

This register is not banked between Security states.

Preface

The PMU_CCNTR register, if implemented, is an alias of this register.

Field descriptions

The DWT_CYCCNT bit assignments are:

031

CYCCNT

CYCCNT, bits [31:0]
Incrementing cycle counter value. Increments one on each processor clock cycle when DWT_CTRL.CYCCNTENA
== 1 and DEMCR.TRCENA == 1. On overflow, CYCCNT wraps to zero.

This field resets to an UNKNOWN value on a Cold reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1469

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.59 DWT_DEVARCH, DWT Device Architecture Register

The DWT_DEVARCH characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the DWT.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Attributes
32-bit read-only register located at 0xE0001FBC.

This register is not banked between Security states.

Field descriptions

The DWT_DEVARCH bit assignments are:

011

ARCHPART

1215

ARCHVER

1619

REVISION

202131

ARCHITECT

PRESENT

ARCHITECT, bits [31:21]
Architect. Defines the architect of the component. Bits [31:28] are the JEP106 continuation code (JEP106
bank ID, minus 1) and bits [27:21] are the JEP106 ID code.

The possible values of this field are:

0x23B
JEP106 continuation code 0x4, ID code 0x3B. Arm Limited.

Other values are defined by the JEDEC JEP106 standard.

This field reads as 0x23B.

PRESENT, bit [20]
DEVARCH Present. Defines that the DEVARCH register is present.

The possible values of this bit are:

1
DEVARCH information present.

This bit reads as one.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1470

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

REVISION, bits [19:16]
Revision. Defines the architecture revision of the component.

The possible values of this field are:

0b0000
DWT architecture v2.0.

0b0001
DWT architecture v2.1. The DWT_VMASKn registers are implemented.

DWT architecture v2.1 is mandatory for a DWT implementation that includes data value comparators in a PE
that implements v8.1-M and MVE. If the DWT implementation does not include data value comparators, it is
IMPDEF whether it is v2.0 or v2.1.

This field reads as an IMPLEMENTATION DEFINED value.

ARCHVER, bits [15:12]
Architecture Version. Defines the architecture version of the component.

The possible values of this field are:

0b0001
DWT architecture v2.

ARCHVER and ARCHPART are also defined as a single field, ARCHID, so that ARCHVER is
ARCHID[15:12].

This field reads as 0b0001.

ARCHPART, bits [11:0]
Architecture Part. Defines the architecture of the component.

The possible values of this field are:

0xA02
DWT architecture.

ARCHVER and ARCHPART are also defined as a single field, ARCHID, so that ARCHPART is
ARCHID[11:0].

This field reads as 0xA02.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1471

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.60 DWT_DEVTYPE, DWT Device Type Register

The DWT_DEVTYPE characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the DWT.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Attributes
32-bit read-only register located at 0xE0001FCC.

This register is not banked between Security states.

Field descriptions

The DWT_DEVTYPE bit assignments are:

03

MAJOR

47

SUB

831

RES0

Bits [31:8]
Reserved, RES0.

SUB, bits [7:4]
Sub-type. Component sub-type.

The possible values of this field are:

0x0
Other.

This field reads as 0b0000.

MAJOR, bits [3:0]
Major type. Component major type.

The possible values of this field are:

0x0
Miscellaneous.

This field reads as 0b0000.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1472

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.61 DWT_EXCCNT, DWT Exception Overhead Count Register

The DWT_EXCCNT characteristics are:

Purpose
Counts the total cycles spent in exception processing.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Present only if DWT_CTRL.NOPRFCNT == 0.

This register is RES0 if DWT_CTRL.NOPRFCNT == 1.

Attributes
32-bit read/write register located at 0xE000100C.

This register is not banked between Security states.

Field descriptions

The DWT_EXCCNT bit assignments are:

07

EXCCNT

831

RES0

Bits [31:8]
Reserved, RES0.

EXCCNT, bits [7:0]
The exception overhead counter.

Counts one on each cycle when all of the following are true:

• DWT_CTRL.EXCEVTENA == 1 and DEMCR.TRCENA == 1.

• No instruction is executed, see DWT_CPICNT.

• An exception-entry or exception-exit related operation is in progress.

• Either SecureNoninvasiveDebugAllowed() == TRUE, or NS-Req for the operation is set to Non-secure
and NoninvasiveDebugAllowed() == TRUE.

Exception-entry or exception-exit related operations include the stacking of registers on exception entry, lazy
state preservation, unstacking of registers on exception exit, and preemption.

Initialized to zero when the counter is disabled and DWT_CTRL.EXCEVTENA is written with 1. An Event
Counter packet is emitted on counter overflow.

This field resets to an UNKNOWN value on a Cold reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1473

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.62 DWT_FOLDCNT, DWT Folded Instruction Count Register

The DWT_FOLDCNT characteristics are:

Purpose
Increments for each additional instruction executed in the current cycle.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Present only if DWT_CTRL.NOPRFCNT == 0.

This register is RES0 if DWT_CTRL.NOPRFCNT == 1.

Attributes
32-bit read/write register located at 0xE0001018.

This register is not banked between Security states.

Field descriptions

The DWT_FOLDCNT bit assignments are:

07

FOLDCNT

831

RES0

Bits [31:8]
Reserved, RES0.

FOLDCNT, bits [7:0]
Folded instruction counter.

Counts on each cycle when all of the following are true:

• DWT_CTRL.FOLDEVTENA == 1 and DEMCR.TRCENA == 1.

• At least two instructions are executed, see DWT_CPICNT.

• Either SecureNoninvasiveDebugAllowed() == TRUE, or the PE is in Non-secure state and Noninva-
siveDebugAllowed() == TRUE.

The counter is incremented by the number of instructions executed, minus one.

Initialized to zero when the counter is disabled and DWT_CTRL.FOLDEVTENA is written with 1. An event
is emitted on counter overflow.

This field resets to an UNKNOWN value on a Cold reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1474

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.63 DWT_FUNCTIONn, DWT Comparator Function Register, n = 0 - 14

The DWT_FUNCTION{0..14} characteristics are:

Purpose
Controls the operation of watchpoint comparator n.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Attributes
32-bit read/write register located at 0xE0001028 + 16n.

This register is not banked between Security states.

Field descriptions

The DWT_FUNCTION{0..14} bit assignments are:

03

MATCH

4569

RES0

10111223

RES0

242526

RES0

2731

ID

MATCHED
DATAVSIZE

ACTION

ID, bits [31:27]
Identify capability. Identifies the capabilities for MATCH for comparator n.

The possible values of this field are:

0b00000
Reserved.

0b01000
Data Address, and Data Address With Value.

0b01001
Cycle Counter, Data Address, and Data Address With Value.

0b01010
Instruction Address, Data Address, and Data Address With Value.

0b01011
Cycle Counter, Instruction Address, Data Address and Data Address With Value.

0b11000
Data Address, Data Address Limit, and Data Address With Value.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1475

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0b11010
Instruction Address, Instruction Address Limit, Data Address, Data Address Limit, and Data Address
With Value.

0b11100
Data Address, Data Address Limit, Data Value, Linked Data Value, and Data Address With Value.

0b11110
Instruction Address, Instruction Address Limit, Data Address, Data Address Limit, Data value, Linked
Data Value, and Data Address With Value.

All other values are reserved.

Comparator 0 never supports linking. If more than one comparator is implemented, then at least one
comparator must support linking. Arm recommends that odd-numbered comparators support linking.

Cycle Counter matching is only supported if the Main Extension is implemented and DWT_CTRL.NOCYCCNT
== 0, meaning the cycle counter is implemented. Comparator 0 must support Cycle Counter matching if the
cycle counter is implemented.

Data Address With Value is supported for the first four comparators only, and only if the Main Extension
and ITM are implemented, and DWT_CTRL.NOTRCPKT == 0. Data Value and Linked Data Value not
supported if the Main Extension is not implemented.

This field is read-only.

This field reads as an IMPLEMENTATION DEFINED value.

Bits [26:25]
Reserved, RES0.

MATCHED, bit [24]
Comparator matched. Set to 1 when the comparator matches.

The possible values of this bit are:

0
No match.

1
Match. The comparator has matched since the last read of this register.

For an Instruction Address Limit or Data Address Limit comparator, this bit is UNKNOWN on reads.

This bit is read-only.

This bit clears to zero when read.

This bit resets to an UNKNOWN value on a Cold reset.

Bits [23:12]
Reserved, RES0.

DATAVSIZE, bits [11:10]
Data value size. Defines the size of the object being watched for by Data Value and Data Address comparators.

The possible values of this field are:

0b00
1 byte.

0b01
2 bytes.

0b10
4 bytes.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1476

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

All other values are reserved.

For an Instruction Address or Instruction Address Limit comparator, DATAVSIZE must be 0b01 (2 bytes).
If this comparator is part of an data address range pair, DATAVSIZE must be 0b00 (1 byte).

For a Data Address comparator, DWT_COMPn must be aligned to the size specified by DATAVSIZE. For a
Data Value or Linked Data Value comparator:

• For halfword comparisons, DWT_COMPn [31:16] must be equal to DWT_COMPn[15:0]. .

• For byte comparisons, DWT_COMPn [31:24], DWT_COMPn [23:16], and DWT_COMPn [15:8] must
be equal to DWT_COMPn [7:0], and, if implemented, DWT_VMASKn[31:24], DWT_VMASKn[23:16],
DWT_VMASKn[15:8] must be equal to DWT_COMPn [7:0].

This field resets to an UNKNOWN value on a Cold reset.

Bits [9:6]
Reserved, RES0.

ACTION, bits [5:4]
Action on match. Defines the action on a match. This field is ignored and the comparator generates no actions
if it is disabled by MATCH.

The possible values of this field are:

0b00
Trigger only.

0b01
Generate debug event.

0b10
For a Cycle Counter, Instruction Address, Data Address, Data Value or Linked Data Value comparator,
generate a Data Trace Match packet.

For a Data Address With Value comparator, generate a Data Trace Data Value packet.

0b11
For a Data Address Limit comparator, generate a Data Trace Data Address packet.

For a Cycle Counter, Instruction Address Limit, or Data Address comparator, generate a Data Trace PC
Value packet.

For a Data Address With Value comparator, generate both a Data Trace PC Value packet and a Data
Trace Data Value packet.

If the Main Extension is not implemented, the values 0b10 and 0b11 are reserved.

This field resets to an UNKNOWN value on a Cold reset.

MATCH, bits [3:0]
Match type. Controls the type of match generated by this comparator.

The possible values of this field are:

0b0000
Disabled. Never generates a match.

0b0001
Cycle Counter. Matches if DWT_CYCCNT equals the comparator value. The comparator is checked
each time DWT_CYCCNT is written to, directly or indirectly.

Only supported if the Main Extension is implemented, DWT_FUNCTION<n>.ID<0> == 1 and
DWT_CTRL.NOCYCCNT == 0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1477

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0b0010
Instruction Address. If not linked to, an instruction matches if the address of the first byte of the
instruction matches the comparator address.

Only supported if DWT_FUNCTION<n>.ID<1> == 1.

0b0011
Instruction Address Limit. An instruction matches if the address of the first byte of the instruction lies
between the lower comparator address (specified by comparator <n-1>) and the limit comparator address
(specified by this comparator, <n>). Both addresses are inclusive to the range. Comparator <n-1> must
be programmed for Instruction Address (0b0010) or Disabled (0b0000), and the lower address must
be strictly less-than the limit comparator address, otherwise it is UNPREDICTABLE whether or not any
comparator generates matches.

Only supported if DWT_FUNCTION<n>.ID<4> == 1 and DWT_FUNCTION<n>.ID<1> == 1.

0b0100
Data Address. If not linked to by a Data Address Limit comparator, an access matches if any accessed
byte lies between the comparator address and a limit defined by the DATAVSIZE field. Supported for all
comparators.

0b0101
Data Address, writes. As 0b0100, except that only write accesses generate a match.

0b0110
Data Address, reads. As 0b0100, except that only read accesses generate a match.

0b0111
Data Address Limit. If comparator N-1 is Disabled (0b0000), no access matches. If comparator N-1 is
programmed for Data Address (0b01xx, not 0b0111) or Data Address With Data Value (0b11xx, not
0b1111), an access matches if any byte made by the access lies between the lower address (specified by
comparator N-1) and the limit address (specified by this comparator, N). DWT_FUNCTION.MATCH<n-
1>[1:0] determines the matching access types. Both addresses are inclusive to the range. If comparator
N-1 is programmed for any other type of match, or the lower address is unsigned greater-than-or-equal-to
the limit comparator address, it is UNPREDICTABLE whether or not any comparator generates matches.

Only supported if DWT_FUNCTION<n>.ID<4> == 1.

0b1000
Data Value. An access matches if the value accessed matches the comparator value.

Only supported if the Main Extension is implemented and DWT_FUNCTION<n>.ID<2> == 1.

0b1001
Data Value, writes. As 0b1000, except that only write accesses generate a match.

0b1010
Data Value, reads. As 0b1000, except that only read accesses generate a match.

0b1011
Linked Data Value. An access matches if the value accessed matches the comparator value (specified
by comparator <n>) and the linked data address (specified by comparator <n-1>) for the same access
matches. Comparator <n-1> must be programmed for Data Address (0b01xx, not 0b0111), or Data
Address With Value (0b11xx, not 0b1111), or Disabled (0b0000), and DATAVSIZE for the two
comparators must be the same, otherwise it is UNPREDICTABLE whether or not any comparator generates
matches. DWT_FUNCTION<n-1>.MATCH[1:0] determines the matching access types.

Only supported if the Main Extension is implemented and DWT_FUNCTION<n>.ID<4> == 1 and
DWT_FUNCTION<n>.ID<2> == 1.

0b1100
Data Address With Value. As 0b01xx, except that the data value is traced.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1478

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

Supported for the first four comparators only, and only if DWT_CTRL.NOTRCPKT == 0 and ITM is
also implemented.

0b1101
Data Address With Value, writes. As 0b1100, except that only write accesses generate a match.

0b1110
Data Address With Value, reads. As 0b1100, except that only read accesses generate a match.

Any value not supported by the comparator is reserved. For a pair of linked comparators, <n> and <n-1>,
DWT_FUNCTION<n-1>.MATCH[1:0] determines the matching access types. See MATCH table for further
details.

This field resets to zero on a Cold reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1479

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.64 DWT_LAR, DWT Software Lock Access Register

The DWT_LAR characteristics are:

Purpose
Provides CoreSight Software Lock control for the DWT, see the Arm® CoreSight™ Architecture Specification
for details.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

This register is RAZ/WI if accessed via the debugger.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Present only if the optional Software Lock is implemented.

This register is RAZ/WI if the Software Lock is not implemented.

Attributes
32-bit write-only register located at 0xE0001FB0.

This register is not banked between Security states.

Field descriptions

The DWT_LAR bit assignments are:

031

KEY

KEY, bits [31:0]
Lock Access control.

Writing the key value 0xC5ACCE55 to this field unlocks the lock, enabling write accesses to the registers of
this component through a memory-mapped interface.

Writing any other value to this register locks the lock, disabling write accesses to the registers of this
component through a memory mapped interface.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1480

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.65 DWT_LSR, DWT Software Lock Status Register

The DWT_LSR characteristics are:

Purpose
Provides CoreSight Software Lock status information for the DWT, see the Arm® CoreSight™ Architecture
Specification for details.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

This register is RAZ/WI if accessed via the debugger.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Present only if the optional Software Lock is implemented.

This register is RAZ/WI if the Software Lock is not implemented.

Attributes
32-bit read-only register located at 0xE0001FB4.

This register is not banked between Security states.

Field descriptions

The DWT_LSR bit assignments are:

012331

RES0

nTT
SLK

SLI

Bits [31:3]
Reserved, RES0.

nTT, bit [2]
Not thirty-two bit. See the Arm® CoreSight™ Architecture Specification.

This bit reads as zero.

SLK, bit [1]
Software Lock status. See the Arm® CoreSight™ Architecture Specification.

The possible values of this bit are:

0
Lock clear. Software writes are permitted to the registers of this component.

1
Lock set. Software writes to the registers of this component are ignored, and reads have no side effects.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1481

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

For a debugger read of this register, or when the Software Lock is not implemented, this bit is RES0.

This bit resets to one on a Cold reset.

SLI, bit [0]
Software Lock implemented. See the Arm® CoreSight™ Architecture Specification.

The possible values of this bit are:

0
Software Lock not implemented or debugger access.

1
Software Lock is implemented and software access.

For a debugger read of this register, or when the Software Lock is not implemented, this bit is RAZ.

This bit reads as an IMPLEMENTATION DEFINED value.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1482

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.66 DWT_LSUCNT, DWT LSU Count Register

The DWT_LSUCNT characteristics are:

Purpose
Increments on the additional cycles required to execute all load or store instructions.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Present only if DWT_CTRL.NOPRFCNT == 0.

This register is RES0 if DWT_CTRL.NOPRFCNT == 1.

Attributes
32-bit read/write register located at 0xE0001014.

This register is not banked between Security states.

Field descriptions

The DWT_LSUCNT bit assignments are:

07

LSUCNT

831

RES0

Bits [31:8]
Reserved, RES0.

LSUCNT, bits [7:0]
Load-store overhead counter.

Counts one on each cycle when all of the following are true:

• DWT_CTRL.LSUEVTENA == 1 and DEMCR.TRCENA == 1.

• No instruction is executed, see DWT_CPICNT.

• No exception-entry or exception-exit operation is in progress, see DWT_EXCCNT.

• A load-store operation is in progress.

• Either SecureNoninvasiveDebugAllowed() == TRUE, or NS-Req for the operation is set to Non-secure
and NoninvasiveDebugAllowed() == TRUE.

Initialized to zero when the counter is disabled and DWT_CTRL.LSUEVTENA is written with 1. An Event
Counter packet is emitted on counter overflow.

This field resets to an UNKNOWN value on a Cold reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1483

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.67 DWT_PCSR, DWT Program Counter Sample Register

The DWT_PCSR characteristics are:

Purpose
Samples the current value of the Program Counter.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Attributes
32-bit read-only register located at 0xE000101C.

This register is not banked between Security states.

Field descriptions

The DWT_PCSR bit assignments are:

031

EIASAMPLE

EIASAMPLE, bits [31:0]
Executed instruction address sample. Recently executed instruction address sample value.

The possible values of this field are:

0xFFFFFFFF
One of the following is true:

• The PE is halted in Debug state.

• The Security Extension is implemented, the sampled instruction was executed in Secure state, and
SecureNoninvasiveDebugAllowed() == FALSE.

• NoninvasiveDebugAllowed() == FALSE.

• DEMCR.TRCENA == 0.

• The address of a recently-executed instruction is not available.

Not 0xFFFFFFFF
Instruction address of a recently executed instruction. Bit [0] of the sample instruction address is 0.

The conditions when the address of a recently-executed instruction is not available are IMPLEMENTATION
DEFINED.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1484

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.68 DWT_PIDR0, DWT Peripheral Identification Register 0

The DWT_PIDR0 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the DWT.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Attributes
32-bit read-only register located at 0xE0001FE0.

This register is not banked between Security states.

Field descriptions

The DWT_PIDR0 bit assignments are:

07

PART_0

831

RES0

Bits [31:8]
Reserved, RES0.

PART_0, bits [7:0]
Part number bits [7:0]. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1485

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.69 DWT_PIDR1, DWT Peripheral Identification Register 1

The DWT_PIDR1 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the DWT.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Attributes
32-bit read-only register located at 0xE0001FE4.

This register is not banked between Security states.

Field descriptions

The DWT_PIDR1 bit assignments are:

03

PART_1

47

DES_0

831

RES0

Bits [31:8]
Reserved, RES0.

DES_0, bits [7:4]
JEP106 identification code bits [3:0]. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

PART_1, bits [3:0]
Part number bits [11:8]. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1486

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.70 DWT_PIDR2, DWT Peripheral Identification Register 2

The DWT_PIDR2 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the DWT.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Attributes
32-bit read-only register located at 0xE0001FE8.

This register is not banked between Security states.

Field descriptions

The DWT_PIDR2 bit assignments are:

02

DES_1

347

REVISION

831

RES0

JEDEC

Bits [31:8]
Reserved, RES0.

REVISION, bits [7:4]
Component revision. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

JEDEC, bit [3]
JEDEC assignee value is used. See the Arm® CoreSight™ Architecture Specification.

This bit reads as one.

DES_1, bits [2:0]
JEP106 identification code bits [6:4]. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1487

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.71 DWT_PIDR3, DWT Peripheral Identification Register 3

The DWT_PIDR3 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the DWT.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Attributes
32-bit read-only register located at 0xE0001FEC.

This register is not banked between Security states.

Field descriptions

The DWT_PIDR3 bit assignments are:

03

CMOD

47

REVAND

831

RES0

Bits [31:8]
Reserved, RES0.

REVAND, bits [7:4]
RevAnd. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

CMOD, bits [3:0]
Customer Modified. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1488

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.72 DWT_PIDR4, DWT Peripheral Identification Register 4

The DWT_PIDR4 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the DWT.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Attributes
32-bit read-only register located at 0xE0001FD0.

This register is not banked between Security states.

Field descriptions

The DWT_PIDR4 bit assignments are:

03

DES_2

47

SIZE

831

RES0

Bits [31:8]
Reserved, RES0.

SIZE, bits [7:4]
4KB count. See the Arm® CoreSight™ Architecture Specification.

This field reads as zero.

DES_2, bits [3:0]
JEP106 continuation code. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1489

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.73 DWT_PIDR5, DWT Peripheral Identification Register 5

The DWT_PIDR5 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the DWT.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Attributes
32-bit read-only register located at 0xE0001FD4.

This register is not banked between Security states.

Field descriptions

The DWT_PIDR5 bit assignments are:

031

RES0

Bits [31:0]
Reserved, RES0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1490

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.74 DWT_PIDR6, DWT Peripheral Identification Register 6

The DWT_PIDR6 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the DWT.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Attributes
32-bit read-only register located at 0xE0001FD8.

This register is not banked between Security states.

Field descriptions

The DWT_PIDR6 bit assignments are:

031

RES0

Bits [31:0]
Reserved, RES0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1491

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.75 DWT_PIDR7, DWT Peripheral Identification Register 7

The DWT_PIDR7 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the DWT.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Attributes
32-bit read-only register located at 0xE0001FDC.

This register is not banked between Security states.

Field descriptions

The DWT_PIDR7 bit assignments are:

031

RES0

Bits [31:0]
Reserved, RES0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1492

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.76 DWT_SLEEPCNT, DWT Sleep Count Register

The DWT_SLEEPCNT characteristics are:

Purpose
Counts the total number of cycles that the processor is sleeping.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Present only if DWT_CTRL.NOPRFCNT == 0.

This register is RES0 if DWT_CTRL.NOPRFCNT == 1.

Attributes
32-bit read/write register located at 0xE0001010.

This register is not banked between Security states.

Field descriptions

The DWT_SLEEPCNT bit assignments are:

07

SLEEPCNT

831

RES0

Bits [31:8]
Reserved, RES0.

SLEEPCNT, bits [7:0]
Sleep counter.

Counts one on each cycle when all of the following are true:

• DWT_CTRL.SLEEPEVTENA == 1 and DEMCR.TRCENA == 1.

• No instruction is executed, see DWT_CPICNT.

• No load-store operation is in progress, see DWT_LSUCNT.

• No exception-entry or exception-exit operation is in progress, see DWT_EXCCNT.

• The PE is in a power-saving mode.

• Either SecureNoninvasiveDebugAllowed() == TRUE, or the PE is in Non-secure state and Noninva-
siveDebugAllowed() == TRUE.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1493

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

Power-saving modes include WFI, WFE, and Sleep-on-exit.

All power-saving features are IMPLEMENTATION DEFINED and therefore when this counter counts is
IMPLEMENTATION DEFINED. In particular, it is IMPLEMENTATION DEFINED whether the counter increments
if the PE is in a power-saving mode and SCR.SLEEPDEEP is set.

Initialized to zero when the counter is disabled and DWT_CTRL.SLEEPEVTENA is written with 1. An
Event Counter packet is emitted on counter overflow.

This field resets to an UNKNOWN value on a Cold reset.

Note

Arm recommends that this counter counts all cycles when the PE is sleeping and SCR.SLEEPDEEP
is clear, regardless of whether a WFI or WFE instruction, or Sleep-on-exit, caused the entry to the
power-saving mode.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1494

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.77 DWT_VMASKn, DWT Comparator Value Mask Register, n = 0 - 14

The DWT_VMASK{0..14} characteristics are:

Purpose
Provides a mask value for use by watchpoint comparator n when comparing data values.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if the DWT is implemented.

This register is RES0 if the DWT is not implemented.

Present only if the DWT implements DWT architecture version 2.1 or later.

This register is RES0 if the DWT implements DWT architecture version 2.0 or earlier.

Attributes
32-bit read/write register located at 0xE000102C + 16n.

This register is not banked between Security states.

Field descriptions

The DWT_VMASK{0..14} bit assignments are:

When DWT_FUNCTIONn.MATCH != 0b10xx:

031

RES0

When DWT_FUNCTIONn.MATCH == 0b10xx:

031

VMASK

Bits [31:0], when DWT_FUNCTIONn.MATCH != 0b10xx
Reserved, RES0.

VMASK, bits [31:0], when DWT_FUNCTIONn.MATCH == 0b10xx
Data value mask. Mask value for use in the comparison with load or store data.

The possible values of each bit are:

0
The comparison matches only if DWT_COMPn[m] matches bit [m] of the candidate data value.

1
The comparison ignores bit [m] of the candidate data value. If DWT_COMPn[m] is not set to zero, the
result of the comparison is UNPREDICTABLE.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1495

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

For halfword or word comparisons, the mask is in little-endian order. That is, the least significant byte of this
register masks the byte targeting the lowest address in memory.

For byte or halfword comparisons, if the value of the byte or halfword is not replicated across all byte or
halfword lanes, the value used for the comparison is UNKNOWN.

This field resets to an UNKNOWN value on a Cold reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1496

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.78 EPSR, Execution Program Status Register

The EPSR characteristics are:

Purpose
Holds Execution state bits.

Usage constraints
Privileged access only. Unprivileged access is RAZ/WI, unless otherwise stated.

Configurations
This register is always implemented.

Attributes
32-bit read/write special-purpose register.

This register is not banked between Security states.

Field descriptions

The EPSR bit assignments are:

When {EPSR[26:25], EPSR[11:10]} != 0:

09

RES0

1015

IT

1623

RES0

24

T

2526

IT

2731

RES0

When {EPSR[26:25], EPSR[11:10]} == 0, and a multicycle load or store instruction is in progress:

09

RES0

1015

ICI

1623

RES0

24

T

2526

ICI

2731

RES0

When {EPSR[26:25], EPSR[11:10]} == 0, and beat-wise vector instructions are in progress:

09

RES0

1011

ECI

1215

ECI

1623

RES0

24

T

2526

ECI

2731

RES0

Bits [31:27]
Reserved, RES0.

T, bit [24]
T32 state bit. Determines the current instruction set state.

The possible values of this bit are:

0
Execution of any instruction generates an INVSTATE UsageFault.

1
Instructions decoded as T32 instructions.

This bit resets to an UNKNOWN value on a Warm reset.

Bits [23:16]
Reserved, RES0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1497

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

IT, bits [15:10, 26:25] , when [{EPSR[26:25], EPSR[11:10]} != 0]
If-then flags. This field encodes the current condition and position in an IT block sequence.

The field IT[7:0] is equivalent to EPSR[15:10,26:25].

If the Main Extension is not implemented, this field is RES0.

This field resets to zero on a Warm reset.

ICI, bits [26:25, 15:10] , when [{EPSR[26:25], EPSR[11:10]} == 0, and a multicycle load or store instruction is
in progress]
Interrupt continuation flags. This field encodes information on the outstanding register list for an interrupted
exception-continuable multicycle load or store instruction.

The field ICI[7:0] is equivalent to EPSR[26:25,15:10].

If the Main Extension is not implemented, this field is RES0.

This field resets to zero on a Warm reset.

ECI, bits [26:25, 11:10, 15:12] , when [{EPSR[26:25], EPSR[11:10]} == 0, and beat-wise vector instructions
are in progress]
Exception continuation flags for beat-wise vector instructions. This field encodes which beats of the in-flight
instructions have completed.

The possible values of this field are:

0b00000000
No completed beats.

0b00000001
Completed beats: A0.

0b00000010
Completed beats: A0 A1.

0b00000011
Reserved.

0b00000100
Completed beats: A0 A1 A2.

0b00000101
Completed beats: A0 A1 A2 B0.

0b0000011X
Reserved.

0b00001XXX
Reserved.

In the enumeration above the letters correspond to the instructions at the return address and beyond, whilst
the numbers correspond to the beats of those instructions that have been completed. For example, the
sequence A0 A1 A2 B0 means the first three beats of the instruction at the return address, plus the first
beat of the instruction at the return address +4 have been completed. The field ECI[7:0] is equivalent to
EPSR[26:25,11:10,15:12].

This field resets to zero on a Warm reset.

Bits [9:0]
Reserved, RES0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1498

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.79 ERRADDRn, Error Record Address Register, n = 0 - 55

The ERRADDR{0..55} characteristics are:

Purpose
If an error has an associated address, this must be written to the address register when the error is recorded. It
is IMPLEMENTATION DEFINED how the recorded addresses map to the software-visible physical addresses.
Software might have to reconstruct the actual physical addresses using the identity of the node and knowledge
of the system. Ignores writes if ERR<n>STATUS.AV is set to 1.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If AIRCR.BFHFNMINS is zero this register is RAZ/WI from Non-secure state.

Configurations
Present only if version Armv8.1 of the architecture and RAS are implemented.

This register is RES0 if RAS is not implemented.

Attributes
32-bit read/write register located at 0xE0005018 + 64n.

This register is not banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The ERRADDR{0..55} bit assignments are:

031

PADDR

PADDR, bits [31:0]
Address, bits [31:0]. Unimplemented bits are RES0.

This field is preserved on an Error Recovery reset.

This field resets to ERR_RESET on an Error Recovery reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1499

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.80 ERRADDR2n, Error Record Address 2 Register, n = 0 - 55

The ERRADDR2{0..55} characteristics are:

Purpose
If an error has an associated address, this must be written to the address register when the error is recorded. It
is IMPLEMENTATION DEFINED how the recorded addresses map to the software-visible physical addresses.
Software might have to reconstruct the actual physical addresses using the identity of the node and knowledge
of the system. Ignores writes if ERR<n>STATUS.AV is set to 1.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If AIRCR.BFHFNMINS is zero this register is RAZ/WI from Non-secure state.

Configurations
Present only if version Armv8.1 of the architecture and RAS are implemented.

This register is RES0 if RAS is not implemented.

Attributes
32-bit read/write register located at 0xE000501C + 64n.

This register is not banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The ERRADDR2{0..55} bit assignments are:

023

PADDR

2427

RES0

28

(0)

29

AI

30

SI

31

NS

NS, bit [31]
Non-secure attribute.

The possible values of this bit are:

0
The address is Secure.

1
The address is Non-secure.

It is IMPLEMENTATION DEFINED whether this bit is read-only or read/write.

This bit is preserved on an Error Recovery reset.

This bit resets to ERR_RESET on an Error Recovery reset.

SI, bit [30]
Secure Incorrect. Indicates whether the NS bit is valid.

The possible values of this bit are:

0
The NS bit is correct. That is, it matches the programmers’ view of the Non-secure attribute for this
recorded location.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1500

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

1
The NS bit might not be correct, and might not match the programmers’ view of the Non-secure attribute
for the recorded location.

It is IMPLEMENTATION DEFINED whether this bit is read-only or read/write.

This bit is preserved on an Error Recovery reset.

This bit resets to ERR_RESET on an Error Recovery reset.

AI, bit [29]
Address Incomplete or incorrect. Indicates whether the PADDR field in ERR<n>ADDR and ERR<n>ADDR2
is a valid physical address.

The possible values of this bit are:

0
The PADDR field is a valid physical address. That is, it matches the programmers’ view of the physical
address for this recorded location.

1
The PADDR field might not be a valid physical address, and might not match the programmers’ view of
the physical address for the recorded location.

It is IMPLEMENTATION DEFINED whether this bit is read-only or read/write.

This bit is preserved on an Error Recovery reset.

This bit resets to ERR_RESET on an Error Recovery reset.

Bit [28]
Reserved, RES0.

Bits [27:24]
Reserved, RES0.

PADDR, bits [23:0]
Address, bits [55:32]. Unimplemented bits are RES0.

This field is preserved on an Error Recovery reset.

This field resets to ERR_RESET on an Error Recovery reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1501

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.81 ERRCTRLn, Error Record Control Register, n = 0 - 55

The ERRCTRL{0..55} characteristics are:

Purpose
The error control register contains enable bits for the node that writes to this record.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If AIRCR.BFHFNMINS is zero this register is RAZ/WI from Non-secure state.

Configurations
Present only if version Armv8.1 of the architecture and RAS are implemented.

This register is RES0 if RAS is not implemented.

Attributes
32-bit read/write register located at 0xE0005008 + 64n.

This register is not banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The ERRCTRL{0..55} bit assignments are:

0

ED

1

(0)

2

UI

3

FI

4

UE

57

RES0

89

(0)

101112

RES0

13

CI

1431

RES0

DUI CFI

Bits [31:14]
Reserved, RES0.

CI, bit [13]
Critical error interrupt enable. When enabled the critical error interrupt is generated for a critical error
condition.

The possible values of this bit are:

0
Critical error interrupt not generated for critical errors. Critical errors are treated as Uncontained errors.

1
Critical error interrupt generated for critical errors.

This bit is RES0 if the node does not support this control.

This bit is preserved on an Error Recovery reset.

This bit resets to ERR_RESET on an Error Recovery reset.

Bits [12:11]
Reserved, RES0.

DUI, bit [10]
Enable error recovery interrupt enable for deferred errors. When enabled the error recovery interrupt is
generated for all detected Deferred errors.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1502

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

The possible values of this bit are:

0
Error recovery interrupt not generated for deferred errors.

1
Error recovery interrupt generated for deferred errors.

The interrupt is generated even if the error syndrome is discarded because the error record already records a
higher priority error. This bit is RES0 if the node does not support this control.

Bit [9]
Reserved, RES0.

This bit is preserved on an Error Recovery reset.

This bit resets to ERR_RESET on an Error Recovery reset.

CFI, bit [8]
Enable fault handling interrupt for corrected errors. When enabled, if the node implements a Corrected error
counter, then the fault handling interrupt is generated when the counter overflows and the overflow bit is set.
Otherwise the fault handling interrupt is also generated for all detected Corrected errors.

The possible values of this bit are:

0
Fault handling interrupt not generated for corrected errors.

1
Fault handling interrupt generated for corrected errors.

The interrupt is generated even if the error syndrome is discarded because the error record already records a
higher priority error. This bit is RES0 if the node does not support this control.

This bit is preserved on an Error Recovery reset.

This bit resets to ERR_RESET on an Error Recovery reset.

Bits [7:5]
Reserved, RES0.

UE, bit [4]
Enable in-band uncorrected error reporting. When enabled, responses to transactions that detect an uncor-
rected error that cannot be deferred are signaled as a detected error (external abort).

The possible values of this bit are:

0
External abort response for uncorrected errors disabled.

1
External abort response for uncorrected errors enabled.

This bit is RES0 if the node does not support this control.

This bit is preserved on an Error Recovery reset.

This bit resets to ERR_RESET on an Error Recovery reset.

FI, bit [3]
Enable fault handling interrupt.

When enabled, the fault handling interrupt is generated for all detected Deferred errors and Uncorrected
errors.

If the fault handling interrupt for corrected errors control is not implemented then:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1503

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

• If the node implements a Corrected error counter then the fault handling interrupt is also generated when
the counter overflows and the overflow bit is set.

• Otherwise the fault handling interrupt is also generated for all detected Corrected errors.

The possible values of this bit are:

0
Fault handling interrupt disabled.

1
Fault handling interrupt enabled.

This bit is RES0 if the node does not support this control.

This bit is preserved on an Error Recovery reset.

This bit resets to ERR_RESET on an Error Recovery reset.

UI, bit [2]
Enable error recovery interrupt. Uncorrected error recovery interrupt enable. When enabled, the error
recovery interrupt is generated for all detected Uncorrected errors that are not deferred.

The possible values of this bit are:

0
Error recovery interrupt disabled.

1
Error recovery interrupt enabled.

The interrupt is generated even if the error syndrome is discarded because the error record already records a
higher priority error. This bit is RES0 if the node does not support this control.

This bit is preserved on an Error Recovery reset.

This bit resets to ERR_RESET on an Error Recovery reset.

Bit [1]
Reserved for IMPLEMENTATION DEFINED controls. Must permit SBZP write policy for software. This
bit reads as an IMPLEMENTATION DEFINED value and writes to this bit have IMPLEMENTATION DEFINED
behavior.

Reserved, RES0.

ED, bit [0]
Error reporting and logging enable. When disabled, the node behaves as if error detection and correction
are disabled, and no errors are recorded or signaled by the node. ARM recommends that, when disabled,
correct error detection and correction codes are written for writes, unless disabled by an IMPLEMENTATION
DEFINED control for error injection.

The possible values of this bit are:

0
Error reporting disabled.

1
Error reporting enabled.

It is IMPLEMENTATION DEFINED whether the node fully disables error detection and correction when
reporting is disabled. That is, even with error reporting disabled, the node might continue to silently correct
errors. Uncorrectable errors might result in corrupt data being silently propagated by the node. This bit is
RES1 if the node does not support this control.

This bit is preserved on an Error Recovery reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1504

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

This bit resets to zero on a Cold reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1505

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.82 ERRDEVID, Error Record Device ID Register

The ERRDEVID characteristics are:

Purpose
Defines the number of error records that can be accessed through the Memory-mapped registers.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

Configurations
Present only if version Armv8.1 of the architecture and RAS are implemented.

This register is RES0 if RAS is not implemented.

Attributes
32-bit read-only register located at 0xE0005FC8.

This register is not banked between Security states.

Field descriptions

The ERRDEVID bit assignments are:

015

NUM

1631

RES0

Bits [31:16]
Reserved, RES0.

NUM, bits [15:0]
Number of implemented error record indexes.

Highest numbered index of the error records in this group, plus one. Each implemented record is owned by a
node. A node might own multiple records.

This manual describes the memory-mapped view of a group with up to 56 records, the most that can be
contained in a 4KB component, meaning the highest value for this field is 56.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1506

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.83 ERRFRn, Error Record Feature Register, n = 0 - 55

The ERRFR{0..55} characteristics are:

Purpose
Identifies the features implemented by the associated record n, and of those features that are software
programmable.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If AIRCR.BFHFNMINS is zero this register is RAZ/WI from Non-secure state.

Configurations
Present only if version Armv8.1 of the architecture and RAS are implemented.

This register is RES0 if RAS is not implemented.

Attributes
32-bit read-only register located at 0xE0005000 + 64n.

This register is not banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The ERRFR{0..55} bit assignments are:

01

ED

23

RES0

45

UI

67

FI

89

UE

1011

CFI

1214

CEC

15

RP

1617

DUI

1819

CEO

2021

RES0

2223

CI

2431

RES0

Bits [31:24]
Reserved, RES0.

CI, bits [23:22]
Critical Error Interrupt. Indicates whether the critical error interrupt and associated controls are implemented.

The possible values of this field are:

0b00
Does not support feature.

0b01
Feature always enabled.

0b10
Feature is controllable.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

Bits [21:20]
Reserved, RES0.

CEO, bits [19:18]
Corrected Error overwrite. Indicates the behavior when a second Corrected error is detected after a first
Corrected error has been recorded by the node.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1507

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

The possible values of this field are:

0b00
Count Corrected error if a counter is implemented. Keep the previous error syndrome. If the counter
overflows, or no counter is implemented then ERR<n>STATUS.OF is set to 1.

0b01
Count Corrected error. If ERR<n>STATUS.OF == 1 before the Corrected error is counted then keep
the previous syndrome. Otherwise the previous syndrome is overwritten. If the counter overflows then
ERR<n>STATUS.OF is set to 1.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

DUI, bits [17:16]
Error recovery interrupt for deferred errors. Indicates whether the node implements a control for enabling
error recovery interrupts on deferred errors.

The possible values of this field are:

0b00
Does not support feature. ERRCTLRn.DUI is RES0.

0b10
Feature is controllable using ERRCTLRn.DUI.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

RP, bit [15]
Repeat counter. Indicates whether the node implements a repeat Corrected error counter in ERR<n>MISC0.

The possible values of this bit are:

0b0
A single CE counter is implemented.

0b1
A first (repeat) counter and a second (other) counter are implemented. The repeat counter is the same
size as the primary error counter.

This bit is RES0 if ERR<n>FR.CEC == 0b000.

This bit reads as an IMPLEMENTATION DEFINED value.

CEC, bits [14:12]
Corrected Error Counter. Indicates whether the node implements a standard Corrected error (CE) counter
mechanism in ERR<n>MISC0.

The possible values of this field are:

0b000
Does not implement the standard Corrected error counter model.

0b010
Implements an 8-bit Corrected error counter in ERR<n>MISC0[7:0].

0b100
Implements a 16-bit Corrected error counter in ERR<n>MISC0[15:0].

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1508

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

CFI, bits [11:10]
Fault handling for Corrected errors. Indicates whether the node implements a control for enabling fault
handling interrupts on Corrected errors.

The possible values of this field are:

0b00
Does not support feature, ERRCTLRn.CFI is RES0.

0b10
Feature is controllable using ERRCTLRn.CFI.

All other values are reserved.

This bit is ‘RES0 if ERR<n>FR.FI == 0b00.

This field reads as an IMPLEMENTATION DEFINED value.

UE, bits [9:8]
In-band uncorrected error reporting. Indicates whether the node implements in-band uncorrected error
reporting (external aborts), and, if so, whether it implements controls for enabling and disabling in-band
uncorrected error reporting.

The possible values of this field are:

0b00
Does not support feature, ERRCTLRn.UE is RES0.

0b01
Feature always enabled, ERRCTLRn.UE is RES0.

0b10
Feature is controllable using ERRCTLRn.UE.

This field reads as an IMPLEMENTATION DEFINED value.

FI, bits [7:6]
Fault handling interrupt. Indicates whether the node implements a fault handling interrupt, and, if so, whether
it implements controls for enabling and disabling the fault handling interrupt.

The possible values of this field are:

0b00
Does not support feature, ERRCTLRn.FI is RES0.

0b01
Feature always enabled, ERRCTLRn.FI is RES0.

0b10
Feature is controllable using ERRCTLRn.FI.

This field reads as an IMPLEMENTATION DEFINED value.

UI, bits [5:4]
Error recovery interrupt for uncorrected errors. Indicates whether the node implements an error recovery
interrupt, and, if so, whether it implements controls for enabling and disabling the error recovery interrupt.

The possible values of this field are:

0b00
Does not support feature, ERRCTLRn.UI is RES0.

0b01
Feature always enabled, ERRCTLRn.UI is RES0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1509

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0b10
Feature is controllable using ERRCTLRn.UI.

This field reads as an IMPLEMENTATION DEFINED value.

Bits [3:2]
Reserved, RES0.

ED, bits [1:0]
Error reporting and logging. Indicates whether the node implements controls for enabling and disabling error
reporting and logging.

The possible values of this field are:

0b01
Feature always enabled, ERRCTLRn.ED is RES0.

0b10
Feature is controllable using ERRCTLRn.ED.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1510

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.84 ERRGSRn, RAS Fault Group Status Register

The ERRGSR{0..1} characteristics are:

Purpose
Each ERR<n>GSR register shows the status for up to 32 records in the group. <n> selects the set of 32
records from the records in the group.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If AIRCR.BFHFNMINS is zero this register is RAZ/WI from Non-secure state.

Configurations
Present only if version Armv8.1 of the architecture and RAS are implemented.

This register is RES0 if RAS is not implemented.

Attributes
32-bit read-only register located at 0xE0005E00 + 4n.

This register is not banked between Security states.

Field descriptions

The ERRGSR{0..1} bit assignments are:

031

S

S, bits [31:0]
Status for Error Record <m>. Each bit is a read-only copy of the corresponding ERR<m>STATUS.V field.

The possible values of this field are:

0
No error.

1
One or more errors.

This bit is RES0 if <m> is greater than or equal to the number of implemented records, or if the record does
not support this type of reporting.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1511

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.85 ERRIIDR, Error Implementer ID Register

The ERRIIDR characteristics are:

Purpose
Defines the implementer of the component.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present only if version Armv8.1 of the architecture and RAS are implemented.

This register is RES0 if RAS is not implemented.

Attributes
32-bit read-only register located at 0xE0005E10.

This register is not banked between Security states.

Field descriptions

The ERRIIDR bit assignments are:

011

Architect

1215

Revision

1619

Variant

2031

ProductID

ProductID, bits [31:20]
This field reads as an IMPLEMENTATION DEFINED value.

Variant, bits [19:16]
Component Major Revision. This field distinguishes between variants or major revisions of the product.

This field reads as an IMPLEMENTATION DEFINED value.

Revision, bits [15:12]
Component minor revision. This field distinguishes between minor revisions of the product.

This field reads as an IMPLEMENTATION DEFINED value.

Architect, bits [11:0]
The possible values of this field are:

0x43B
JEP106 continuation code 0x4, ID code 0x3B. Arm Limited.

Other values are defined by the JEDEC JEP106 standard.

This field reads as 0x43B.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1512

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.86 ERRMISC0n, Error Record Miscellaneous 0 Register, n = 0 - 55

The ERRMISC0{0..55} characteristics are:

Purpose
IMPLEMENTATION DEFINED error syndrome register.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If AIRCR.BFHFNMINS is zero this register is RAZ/WI from Non-secure state.

Configurations
Present only if version Armv8.1 of the architecture and RAS are implemented.

This register is RES0 if RAS is not implemented.

Attributes
32-bit read/write register located at 0xE0005020 + 64n.

This register is not banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Preface

The miscellaneous syndrome registers contain:

• Corrected error counter or counters, if the node supports the counting of Corrected errors.

• Information to identify the Field Replaceable Unit (FRU) in which the error was detected, and might contain
enough information to locate error within that FRU.

• Other state information not present in the corresponding status and address registers.

If the node supports the architecturally-defined error counter then it is implemented in ERR<n>MISC0.

If ERR<n>STATUS.MV is set to 1 then it is IMPLEMENTATION DEFINED whether fields of ERR<n>MISC0
ignores writes. Arm recommends that miscellaneous syndrome for multiple errors, such as a Corrected error
counter, is read/write. This allows a counter to be reset in the presence of a persistent error. Miscellaneous
syndrome for the most recently recorded error, such as information locating a FRU for that error, must ignore
writes. This prevents the loss of information if an error is detected whilst the previous error is being logged.

Field descriptions

The ERRMISC0{0..55} bit assignments are:

When Contents are IMPLEMENTATION DEFINED:

031

IMPLEMENTATION DEFINED

When Standard 16-bit CE counter:

014

CEC16

151631

IMPLEMENTATION DEFINED

OF16

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1513

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

When Standard 16-bit CE counter pair:

014

CECR

151630

CECO

31

OFO OFR

When Standard 8-bit CE counter:

06

CEC8

7831

IMPLEMENTATION DEFINED

OF8

Bits [31:0], when Contents are IMPLEMENTATION DEFINED
IMPLEMENTATION DEFINED.

Bits [31:8], when Standard 8-bit CE counter
IMPLEMENTATION DEFINED.

OF8, bit [7], when Standard 8-bit CE counter
Overflow. Sticky overflow bit.

The possible values of this bit are:

0
Counter has not overflowed.

1
Counter has overflowed.

Set to 1 when the Corrected error count field is incremented and wraps through zero.

A direct write that modifies this bit might indirectly set ERR<n>STATUS.OF to an UNKNOWN value and a
direct write to ERR<n>STATUS.OF that clears it to zero might indirectly set this bit to an UNKNOWN value.

This bit is preserved on an Error Recovery reset.

This bit resets to ERR_RESET on an Error Recovery reset.

CEC8, bits [6:0], when Standard 8-bit CE counter
Corrected error count.

This field is preserved on an Error Recovery reset.

This field resets to ERR_RESET on an Error Recovery reset.

Bits [31:16], when Standard 16-bit CE counter
IMPLEMENTATION DEFINED.

OF16, bit [15], when Standard 16-bit CE counter
Overflow. Sticky overflow bit.

The possible values of this bit are:

0
Counter has not overflowed.

1
Counter has overflowed.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1514

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

Set to 1 when the Corrected error count field is incremented and wraps through zero.

A direct write that modifies this bit might indirectly set ERR<n>STATUS.OF to an UNKNOWN value and a
direct write to ERR<n>STATUS.OF that clears it to zero might indirectly set this bit to an UNKNOWN value.

This bit is preserved on an Error Recovery reset.

This bit resets to ERR_RESET on an Error Recovery reset.

CEC16, bits [14:0], when Standard 16-bit CE counter
Corrected error count.

This field is preserved on an Error Recovery reset.

This field resets to ERR_RESET on an Error Recovery reset.

OFO, bit [31], when Standard 16-bit CE counter pair
Overflow Other. Sticky overflow bit, other.

The possible values of this bit are:

0
Other Counter has not overflowed.

1
Other Counter has overflowed.

Set to 1 when the Corrected error count, other, field is incremented and wraps through zero.

A direct write that modifies this bit might indirectly set ERR<n>STATUS.OF to an UNKNOWN value and a
direct write to ERR<n>STATUS.OF that clears it to zero might indirectly set this bit to an UNKNOWN value.

This bit is preserved on an Error Recovery reset.

This bit resets to ERR_RESET on an Error Recovery reset.

CECO, bits [30:16], when Standard 16-bit CE counter pair
Corrected error count, other. Incremented for each countable error that is not accounted for by incrementing
CECR.

This field is preserved on an Error Recovery reset.

This field resets to ERR_RESET on an Error Recovery reset.

OFR, bit [15], when Standard 16-bit CE counter pair
Overflow Repeat. Sticky overflow bit, repeat.

The possible values of this bit are:

0
Repeat Counter has not overflowed.

1
Repeat Counter has overflowed.

Set to 1 when the Corrected error count, repeat, field is incremented and wraps through zero.

A direct write that modifies this bit might indirectly set ERR<n>STATUS.OF to an UNKNOWN value and a
direct write to ERR<n>STATUS.OF that clears it to zero might indirectly set this bit to an UNKNOWN value.

This bit is preserved on an Error Recovery reset.

This bit resets to ERR_RESET on an Error Recovery reset.

CECR, bits [14:0], when Standard 16-bit CE counter pair
Corrected error count. Incremented for the first detected countable error, which also records other syndrome
for the error, and subsequently for each countable error that matches the recorded other syndrome. Corrected

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1515

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

errors are countable errors. Is is IMPLEMENTATION DEFINED and might be UNPREDICTABLE whether
Deferred and Uncorrected errors are countable errors.

This field is preserved on an Error Recovery reset.

This field resets to ERR_RESET on an Error Recovery reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1516

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.87 ERRMISC1n, Error Record Miscellaneous 1 Register, n = 0 - 55

The ERRMISC1{0..55} characteristics are:

Purpose
IMPLEMENTATION DEFINED error syndrome register.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If AIRCR.BFHFNMINS is zero this register is RAZ/WI from Non-secure state.

Configurations
Present only if version Armv8.1 of the architecture and RAS are implemented.

This register is RES0 if RAS is not implemented.

Attributes
32-bit read/write register located at 0xE0005024 + 64n.

This register is not banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Preface

The miscellaneous syndrome registers contain:

• Corrected error counter or counters, if the node supports the counting of Corrected errors.

• Information to identify the Field Replaceable Unit (FRU) in which the error was detected, and might contain
enough information to locate error within that FRU.

• Other state information not present in the corresponding status and address registers.

If ERR<n>STATUS.MV is set to 1 then it is IMPLEMENTATION DEFINED whether fields of ERR<n>MISC1
ignores writes. Arm recommends that miscellaneous syndrome for multiple errors, such as a corrected error
counter, is read/write. This allows a counter to be reset in the presence of a persistent error. Miscellaneous
syndrome for the most recently recorded error, such as information locating a FRU for that error, should ignore
writes. This prevents information being lost if an error is detected whilst the previous error is being logged.

Field descriptions

The ERRMISC1{0..55} bit assignments are:

031

IMPLEMENTATION DEFINED

Bits [31:0]
IMPLEMENTATION DEFINED.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1517

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.88 ERRMISC2n, Error Record Miscellaneous 2 Register, n = 0 - 55

The ERRMISC2{0..55} characteristics are:

Purpose
IMPLEMENTATION DEFINED error syndrome register.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If AIRCR.BFHFNMINS is zero this register is RAZ/WI from Non-secure state.

Configurations
Present only if version Armv8.1 of the architecture and RAS are implemented.

This register is RES0 if RAS is not implemented.

Attributes
32-bit read/write register located at 0xE0005028 + 64n.

This register is not banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Preface

The miscellaneous syndrome registers contain:

• Corrected error counter or counters, if the node supports the counting of Corrected errors.

• Information to identify the Field Replaceable Unit (FRU) in which the error was detected, and might contain
enough information to locate error within that FRU.

• Other state information not present in the corresponding status and address registers.

If ERR<n>STATUS.MV is set to 1 then it is IMPLEMENTATION DEFINED whether fields of ERR<n>MISC2
ignores writes. Arm recommends that miscellaneous syndrome for multiple errors, such as a corrected error
counter, is read/write. This allows a counter to be reset in the presence of a persistent error. Miscellaneous
syndrome for the most recently recorded error, such as information locating a FRU for that error, should ignore
writes. This prevents information being lost if an error is detected whilst the previous error is being logged.

Field descriptions

The ERRMISC2{0..55} bit assignments are:

031

IMPLEMENTATION DEFINED

Bits [31:0]
IMPLEMENTATION DEFINED.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1518

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.89 ERRMISC3n, Error Record Miscellaneous 3 Register, n = 0 - 55

The ERRMISC3{0..55} characteristics are:

Purpose
IMPLEMENTATION DEFINED error syndrome register.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If AIRCR.BFHFNMINS is zero this register is RAZ/WI from Non-secure state.

Configurations
Present only if version Armv8.1 of the architecture and RAS are implemented.

This register is RES0 if RAS is not implemented.

Attributes
32-bit read/write register located at 0xE000502C + 64n.

This register is not banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Preface

The miscellaneous syndrome registers contain:

• Corrected error counter or counters, if the node supports the counting of Corrected errors.

• Information to identify the Field Replaceable Unit (FRU) in which the error was detected, and might contain
enough information to locate error within that FRU.

• Other state information not present in the corresponding status and address registers.

If ERR<n>STATUS.MV is set to 1 then it is IMPLEMENTATION DEFINED whether fields of ERR<n>MISC3
ignores writes. Arm recommends that miscellaneous syndrome for multiple errors, such as a corrected error
counter, is read/write. This allows a counter to be reset in the presence of a persistent error. Miscellaneous
syndrome for the most recently recorded error, such as information locating a FRU for that error, should ignore
writes. This prevents information being lost if an error is detected whilst the previous error is being logged.

Field descriptions

The ERRMISC3{0..55} bit assignments are:

031

IMPLEMENTATION DEFINED

Bits [31:0]
IMPLEMENTATION DEFINED.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1519

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.90 ERRMISC4n, Error Record Miscellaneous 4 Register, n = 0 - 55

The ERRMISC4{0..55} characteristics are:

Purpose
IMPLEMENTATION DEFINED error syndrome register.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If AIRCR.BFHFNMINS is zero this register is RAZ/WI from Non-secure state.

Configurations
Present only if version Armv8.1 of the architecture and RAS are implemented.

This register is RES0 if RAS is not implemented.

Attributes
32-bit read/write register located at 0xE0005030 + 64n.

This register is not banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Preface

The miscellaneous syndrome registers contain:

• Corrected error counter or counters, if the node supports the counting of Corrected errors.

• Information to identify the Field Replaceable Unit (FRU) in which the error was detected, and might contain
enough information to locate error within that FRU.

• Other state information not present in the corresponding status and address registers.

If ERR<n>STATUS.MV is set to 1 then it is IMPLEMENTATION DEFINED whether fields of ERR<n>MISC4
ignores writes. Arm recommends that miscellaneous syndrome for multiple errors, such as a corrected error
counter, is read/write. This allows a counter to be reset in the presence of a persistent error. Miscellaneous
syndrome for the most recently recorded error, such as information locating a FRU for that error, should ignore
writes. This prevents information being lost if an error is detected whilst the previous error is being logged.

Field descriptions

The ERRMISC4{0..55} bit assignments are:

031

IMPLEMENTATION DEFINED

Bits [31:0]
IMPLEMENTATION DEFINED.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1520

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.91 ERRMISC5n, Error Record Miscellaneous 5 Register, n = 0 - 55

The ERRMISC5{0..55} characteristics are:

Purpose
IMPLEMENTATION DEFINED error syndrome register.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If AIRCR.BFHFNMINS is zero this register is RAZ/WI from Non-secure state.

Configurations
Present only if version Armv8.1 of the architecture and RAS are implemented.

This register is RES0 if RAS is not implemented.

Attributes
32-bit read/write register located at 0xE0005034 + 64n.

This register is not banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Preface

The miscellaneous syndrome registers contain:

• Corrected error counter or counters, if the node supports the counting of Corrected errors.

• Information to identify the Field Replaceable Unit (FRU) in which the error was detected, and might contain
enough information to locate error within that FRU.

• Other state information not present in the corresponding status and address registers.

If ERR<n>STATUS.MV is set to 1 then it is IMPLEMENTATION DEFINED whether fields of ERR<n>MISC5
ignores writes. Arm recommends that miscellaneous syndrome for multiple errors, such as a corrected error
counter, is read/write. This allows a counter to be reset in the presence of a persistent error. Miscellaneous
syndrome for the most recently recorded error, such as information locating a FRU for that error, should ignore
writes. This prevents information being lost if an error is detected whilst the previous error is being logged.

Field descriptions

The ERRMISC5{0..55} bit assignments are:

031

IMPLEMENTATION DEFINED

Bits [31:0]
IMPLEMENTATION DEFINED.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1521

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.92 ERRMISC6n, Error Record Miscellaneous 6 Register, n = 0 - 55

The ERRMISC6{0..55} characteristics are:

Purpose
IMPLEMENTATION DEFINED error syndrome register.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If AIRCR.BFHFNMINS is zero this register is RAZ/WI from Non-secure state.

Configurations
Present only if version Armv8.1 of the architecture and RAS are implemented.

This register is RES0 if RAS is not implemented.

Attributes
32-bit read/write register located at 0xE0005038 + 64n.

This register is not banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Preface

The miscellaneous syndrome registers contain:

• Corrected error counter or counters, if the node supports the counting of Corrected errors.

• Information to identify the Field Replaceable Unit (FRU) in which the error was detected, and might contain
enough information to locate error within that FRU.

• Other state information not present in the corresponding status and address registers.

If ERR<n>STATUS.MV is set to 1 then it is IMPLEMENTATION DEFINED whether fields of ERR<n>MISC6
ignores writes. Arm recommends that miscellaneous syndrome for multiple errors, such as a corrected error
counter, is read/write. This allows a counter to be reset in the presence of a persistent error. Miscellaneous
syndrome for the most recently recorded error, such as information locating a FRU for that error, should ignore
writes. This prevents information being lost if an error is detected whilst the previous error is being logged.

Field descriptions

The ERRMISC6{0..55} bit assignments are:

031

IMPLEMENTATION DEFINED

Bits [31:0]
IMPLEMENTATION DEFINED.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1522

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.93 ERRMISC7n, Error Record Miscellaneous 7 Register, n = 0 - 55

The ERRMISC7{0..55} characteristics are:

Purpose
IMPLEMENTATION DEFINED error syndrome register.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If AIRCR.BFHFNMINS is zero this register is RAZ/WI from Non-secure state.

Configurations
Present only if version Armv8.1 of the architecture and RAS are implemented.

This register is RES0 if RAS is not implemented.

Attributes
32-bit read/write register located at 0xE000503C + 64n.

This register is not banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Preface

The miscellaneous syndrome registers contain:

• Corrected error counter or counters, if the node supports the counting of Corrected errors.

• Information to identify the Field Replaceable Unit (FRU) in which the error was detected, and might contain
enough information to locate error within that FRU.

• Other state information not present in the corresponding status and address registers.

If ERR<n>STATUS.MV is set to 1 then it is IMPLEMENTATION DEFINED whether fields of ERR<n>MISC7
ignores writes. Arm recommends that miscellaneous syndrome for multiple errors, such as a corrected error
counter, is read/write. This allows a counter to be reset in the presence of a persistent error. Miscellaneous
syndrome for the most recently recorded error, such as information locating a FRU for that error, should ignore
writes. This prevents information being lost if an error is detected whilst the previous error is being logged.

Field descriptions

The ERRMISC7{0..55} bit assignments are:

031

IMPLEMENTATION DEFINED

Bits [31:0]
IMPLEMENTATION DEFINED.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1523

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.94 ERRSTATUSn, Error Record Primary Status Register, n = 0 - 55

The ERRSTATUS{0..55} characteristics are:

Purpose
Contains status information for the error record.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If AIRCR.BFHFNMINS is zero this register is RAZ/WI from Non-secure state.

Configurations
Present only if version Armv8.1 of the architecture and RAS are implemented.

This register is RES0 if RAS is not implemented.

Attributes
32-bit read/write register located at 0xE0005010 + 64n.

This register is not banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Preface

This register contains the following information:

• Whether any error has been detected (valid).

• Whether any detected error was not corrected, and returned to a Requester.

• Whether any detected error was not corrected and deferred.

• Whether an error record has been discarded because additional errors have been detected before the first error
was handled by software (overflow).

• Whether any error has been reported.

• Whether the other error record registers contain valid information.

• Whether the error was reported because poison data was detected or because a corrupt value was detected by
an error detection code.

• A primary error code.

• An IMPLEMENTATION DEFINED extended error code.

Within this register:

• The {AV, V, MV} bits are valid bits that define whether the error record registers are valid.

• The {UE, OF, CE, DE, UET} bits encode the type of error or errors recorded.

• The {CI, ER, PN, IERR, SERR} fields are syndrome fields.

After reading the status register, software must clear the valid bits to allow new errors to be recorded. Between
reading the register and clearing the valid bits, a new error might have overwritten the register. To prevent this
error being lost, a write to ERR<n>STATUS is ignored if all of:

• Any of the ERR<n>STATUS.{V, UE, OF, CE, DE} fields are nonzero before the write.

• The write does not clear the nonzero ERR<n>STATUS.{V, UE, OF, CE, DE} field(s) to zero by writing
one(s) to the applicable field(s).

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1524

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

Field descriptions

The ERRSTATUS{0..55} bit assignments are:

07

SERR

815

IERR

1618

RES0

19

CI

2021

UET

22

PN

23

DE

2425

CE

2627

OF

28

ER

29

UE

30

V

31

AV

MV

AV, bit [31]
Address Valid.

The possible values of this bit are:

0
ERR<n>ADDR and ERR<n>ADDR2 not valid.

1
ERR<n>ADDR and ERR<n>ADDR2 contain an address associated with the highest priority error
recorded by this record.

This bit is read/write-one-to-clear.

This bit is preserved on an Error Recovery reset.

This bit resets to zero on a Cold reset.

V, bit [30]
Status Register valid.

The possible values of this bit are:

0
ERR<n>STATUS not valid.

1
ERR<n>STATUS valid. At least one error has been recorded.

This bit is read/write-one-to-clear.

This bit is preserved on an Error Recovery reset.

This bit resets to zero on a Cold reset.

UE, bit [29]
Uncorrected error or errors.

The possible values of this bit are:

0
No errors that could neither be corrected nor deferred.

1
At least one error that has neither been corrected nor deferred.

This bit reads as UNKNOWN if ERR<n>STATUS.V is set to 0. This bit is read/write-one-to-clear.

This bit is preserved on an Error Recovery reset.

This bit resets to ERR_RESET on an Error Recovery reset.

ER, bit [28]
Error Reported.

The possible values of this bit are:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1525

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0
No in-band error (external abort) reported.

1
An external abort was signaled by the node to the Requester making the access or other transaction. This
can be because any of:

• ERR<n>CTLR.UE is implemented and was set to 1 when an Uncorrected error was detected.

• ERR<n>CTLR.UE is not implemented and the node always reports errors.

It is IMPLEMENTATION DEFINED whether this bit can be set to 1 by a Deferred error. This bit is not valid and
reads UNKNOWN if any of:

• ERR<n>STATUS.UE is set to 0 and this bit is only set to 1 by Uncorrected errors.

• ERR<n>STATUS.{UE, DE} are both set to 0 and this bit can be set to 1 by Deferred errors.

• ERR<n>STATUS.V is set to 0.

This bit is read/write-one-to-clear.

This bit is preserved on an Error Recovery reset.

This bit resets to ERR_RESET on an Error Recovery reset.

OF, bit [27]
Overflow.

Indicates that multiple errors have been detected. This bit is set to 1 when one of the following occurs:

• A corrected error counter is implemented, an error is counted, and the counter overflows.

• A corrected error counter is not implemented, a corrected error is recorded, and ERR<n>STATUS.V
was previously set to 1.

A type of error other than a corrected error is recorded and ERR<n>STATUS.V was previously set to 1. .

Otherwise, this bit is unchanged when an error is recorded.

If a corrected error counter is implemented:

• A direct write that modifies the counter overflow flag indirectly might set this bit to an UNKNOWN value.

• A direct write to this bit that clears this bit to zero might indirectly set the counter overflow flag to an
UNKNOWN value.

The possible values of this bit are:

0
No error syndrome has been discarded and, if a Corrected error counter is implemented, it has not
overflowed since this bit was last cleared to zero.

1
At least one error syndrome has been discarded or, if a Corrected error counter is implemented, it might
have overflowed, since this bit was last cleared to zero.

This bit is not valid and reads UNKNOWN if ERR<n>STATUS.V is set to 0.

This bit is read/write-one-to-clear.

This bit is preserved on an Error Recovery reset.

This bit resets to ERR_RESET on an Error Recovery reset.

MV, bit [26]
Miscellaneous Registers Valid.

The possible values of this bit are:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1526

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0
ERR<n>MISC* not valid.

1
The IMPLEMENTATION DEFINED contents of the ERR<n>MISC* registers contains additional informa-
tion for an error recorded by this record.

This bit is not valid and reads UNKNOWN if ERR<n>STATUS.V is set to 0.

This bit is read/write-one-to-clear.

This bit is preserved on an Error Recovery reset.

This bit resets to ERR_RESET on an Error Recovery reset.

CE, bits [25:24]
Corrected error or errors.

The possible values of this field are:

0b00
No errors were corrected.

0b01
At least one transient error was corrected.

0b10
At least one error was corrected.

0b11
At least one persistent error was corrected.

The mechanism by which a node detects whether a correctable error is transient or persistent is IMPLEMEN-
TATION DEFINED. If no such mechanism is implemented then the node sets this field to 0b10 when an error
is corrected.

This field is not valid and reads UNKNOWN if ERR<n>STATUS.V is set to 0.

This field is read/write-ones-to-clear. Writing a value other than all-zeros or all-ones sets this field to an
UNKNOWN value.

This field is preserved on an Error Recovery reset.

This field resets to ERR_RESET on an Error Recovery reset.

DE, bit [23]
Deferred error or errors.

The possible values of this bit are:

0
No errors were deferred.

1
At least one error was not corrected and deferred.

Support for deferring errors is IMPLEMENTATION DEFINED.

This bit is not valid and reads UNKNOWN if ERR<n>STATUS.V is set to 0.

This bit is read/write-one-to-clear.

This bit is preserved on an Error Recovery reset.

This bit resets to ERR_RESET on an Error Recovery reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1527

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

PN, bit [22]
Poison.

The possible values of this bit are:

0
Uncorrected or deferred error from a corrupted value.

1
Uncorrected error or Deferred error from a poisoned value. Indicates that an error occurred because of
the detection of a poison value rather because of the detection of a corrupted value.

It is IMPLEMENTATION DEFINED whether a node can distinguish a poisoned value from a corrupted value.

This bit is not valid and reads UNKNOWN if any of:

• ERR<n>STATUS.V is set to 0.

• ERR<n>STATUS.{CE, UE} are both set to 0.

This bit is read/write-one-to-clear.

This bit is preserved on an Error Recovery reset.

This bit resets to ERR_RESET on an Error Recovery reset.

Note

If a node detects a corrupted value and defers the error by producing poison then this bit is set to
0b0 at the producer node. The value 0b1 might only be an indication of a poisoned value. As in
some EDC schemes, it is possible to mistake a corrupted value for a poisoned value.

UET, bits [21:20]
Uncorrected Error Type. Describes the state of the component after detecting or consuming an Uncorrected
error.

The possible values of this field are:

0b00
Uncorrected error, Uncontainable error (UC).

0b01
Uncorrected error, Unrecoverable error (UEU).

0b10
Uncorrected error, Latent or Restartable error (UEO).

0b11
Uncorrected error, Signaled or Recoverable error (UER).

This field is not valid and reads UNKNOWN if any of:

• ERR<n>STATUS.V is set to 0.

• ERR<n>STATUS.UE is set to 0.

This field is read/write-ones-to-clear. Writing a value other than all-zeros or all-ones sets this field to an
UNKNOWN value.

Note: Software might use the information in the error record registers to determine what recovery is necessary.

This field is preserved on an Error Recovery reset.

This field resets to ERR_RESET on an Error Recovery reset.

CI, bit [19]
Critical error. Indicates whether a critical error condition has been recorded.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1528

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

The possible values of this bit are:

0
No critical error condition.

1
Critical error condition.

This bit is not valid and reads UNKNOWN if ERR<n>STATUS.V is set to 0.

This bit is read/write-one-to-clear.

This bit is preserved on an Error Recovery reset.

This bit resets to ERR_RESET on an Error Recovery reset.

Bits [18:16]
Reserved, RES0.

IERR, bits [15:8]
IMPLEMENTATION DEFINED error code.

Used with any primary error code SERR value. Further IMPLEMENTATION DEFINED information can be
placed in the MISC registers.

The subset of architecturally-defined values that this field can take is IMPLEMENTATION DEFINED. If any
value not in this set is written to this register then the value read back from this field is UNKNOWN.

This field is not valid and reads UNKNOWN if ERR<n>STATUS.V is set to 0.

This field is preserved on an Error Recovery reset.

This field resets to ERR_RESET on an Error Recovery reset.

Note

One or more bits of this field might be implemented as fixed read-as-zero or read-as-one values.

SERR, bits [7:0]
Architecturally-defined primary error code. The primary error code might be used by a fault handling agent
to triage an error without requiring device-specific code. For example, to count and threshold corrected errors
in software, or generate a short log entry.

The possible values of this field are:

0
No error.

1
IMPLEMENTATION DEFINED error.

2
Data value from (non-associative) internal memory. For example, ECC from on-chip SRAM or buffer.

3
IMPLEMENTATION DEFINED pin.

4
Assertion failure. For example, consistency failure.

5
Internal data path. For example, parity on ALU result.

6
Data value from associative memory. For example, ECC error on cache data.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1529

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

7
Address/control value or values from associative memory. For example, ECC error on cache tag.

10
Data value from producer. For example, parity error on write data bus.

11
Address/control value or values from producer. For example, parity error on address bus.

12
Data value from (non-associative) external memory. For example, ECC error in SDRAM.

13
Illegal address (software fault). For example, access to unpopulated memory.

14
Illegal access (software fault). For example, byte write to word register.

15
Illegal state (software fault). For example, device not ready.

16
Internal data register. For example, parity on a FP&MVE register. For a PE, all general-purpose, stack
pointer, and FP&MVE registers are data registers.

17
Internal control register. For example, Parity on a system register. For a PE, all registers other than
general-purpose, stack pointer, and FP&MVE registers are control registers.

18
Error response from Completer of access. For example, error response from cache write-back.

19
External timeout. For example, timeout on interaction with another node.

20
Internal timeout. For example, timeout on interface within the node.

21
Deferred error from Completer not supported at Requester. For example, poisoned data received from a
Completer of an access by a Requester that cannot defer the error further.

All other values are reserved.

The subset of architecturally-defined values that this field can take is IMPLEMENTATION DEFINED. If any
value not in this set is written to this register then the value read back from this field is UNKNOWN.

This field is not valid and reads UNKNOWN if ERR<n>STATUS.V is set to 0.

Note: one or more bits of this field might be implemented as fixed read-as-zero or read-as-one values.

This field is preserved on an Error Recovery reset.

This field resets to ERR_RESET on an Error Recovery reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1530

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.95 EXC_RETURN, Exception Return Payload

The EXC_RETURN characteristics are:

Purpose
Value provided in LR on entry to an exception, and used with a BX or load to PC to perform an exception
return.

Usage constraints
None.

Configurations
All.

Attributes
32-bit payload.

Field descriptions

The EXC_RETURN bit assignments are:

0

ES

1

(0)

23456

S

723

RES1

2431

PREFIX

DCRS
FType

SPSEL
Mode

PREFIX, bits [31:24]
Prefix. Indicates that this is an EXC_RETURN value.

This field reads as 0b11111111.

Bits [23:7]
Reserved, RES1.

S, bit [6]
Secure or Non-secure stack. Indicates whether a Secure or Non-secure stack is used to restore stack frame on
exception return.

The possible values of this bit are:

0
Non-secure stack used.

1
Secure stack used.

If the Security Extension is not implemented, this bit is RES0.

DCRS, bit [5]
Default callee register stacking. Indicates whether the default stacking rules apply, or whether the callee
registers are already on the stack.

The possible values of this bit are:

0
Stacking of the callee saved registers skipped.

1
Default rules for stacking the callee registers followed.

If the Security Extension is not implemented, this bit is RES1.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1531

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

FType, bit [4]
Stack frame type. Indicates whether the stack frame is a standard integer only stack frame or an extended
Floating-point stack frame.

The possible values of this bit are:

0
Extended stack frame.

1
Standard stack frame.

Mode, bit [3]
Mode. Indicates the Mode that was stacked from.

The possible values of this bit are:

0
Handler mode.

1
Thread mode.

SPSEL, bit [2]
Stack pointer selection. The value of this bit indicates the transitory value of the CONTROL.SPSEL bit
associated with the Security state of the exception as indicated by EXC_RETURN.ES.

The possible values of this bit are:

0
Main stack pointer.

1
Process stack pointer.

Bit [1]
Reserved, RES0.

ES, bit [0]
Exception Secure. The security domain the exception was taken to.

The possible values of this bit are:

0
Non-secure.

1
Secure.

If the Security Extension is not implemented, this bit is RES0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1532

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.96 FAULTMASK, Fault Mask Register

The FAULTMASK characteristics are:

Purpose
Provides access to the PE FAULTMASK register.

Usage constraints
Privileged access only. Unprivileged access is RAZ/WI, unless otherwise stated.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes
32-bit read/write special-purpose register.

This register is banked between Security states.

Field descriptions

The FAULTMASK bit assignments are:

0

FM

131

RES0

Bits [31:1]
Reserved, RES0.

FM, bit [0]
Fault mask enable.

The Secure and Non-secure FAULTMASK registers individually boost the current execution priority based
on the settings of AIRCR.PRIS and AIRCR.BFHFNMINS.

If AIRCR.BFHFNMINS is zero, AIRCR.PRIS is zero, and FAULTMASK_NS.FM is one, the execution
priority is boosted to 0.

If AIRCR.BFHFNMINS is zero, AIRCR.PRIS is one, and FAULTMASK_NS.FM is one, the execution
priority is boosted to 0x80.

If AIRCR.BFHFNMINS is zero and FAULTMASK_S is one, the execution priority is boosted to -1.

If AIRCR.BFHFNMINS is one and FAULTMASK_NS is one, the execution priority is boosted to -1.

If AIRCR.BFHFNMINS is one and FAULTMASK_S is one, the execution priority is boosted to -3.

The possible values of this bit are:

0
No effect.

1
Boost priority.

On an exception return from a raw execution priority greater or equal to zero, the FM bit corresponding to
EXC_RETURN.ES is cleared.

This bit resets to zero on a Warm reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1533

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.97 FNC_RETURN, Function Return Payload

The FNC_RETURN characteristics are:

Purpose
Value provided in LR on entry to Non-secure state from a Secure BLXNS.

Usage constraints
None.

Configurations
All.

Attributes
32-bit payload.

Field descriptions

The FNC_RETURN bit assignments are:

0

S

123

ONES

2431

PREFIX

PREFIX, bits [31:24]
This field reads as 0b11111110.

ONES, bits [23:1]
This field reads as 0b11111111111111111111111.

S, bit [0]
Secure. Indicates whether the function call was from the Non-secure or Secure state. Because FNC_RETURN
is only used when calling from the Secure state, this bit is always set to 1. However, some function chaining
cases can result in an SG instruction clearing this bit, so the architecture ignores the state of this bit when
processing a branch to FNC_RETURN.

The possible values of this bit are:

0
From Non-secure state.

1
From Secure state.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1534

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.98 FPCAR, Floating-Point Context Address Register

The FPCAR characteristics are:

Purpose
Holds the location of the unpopulated Floating-point register space allocated on an exception stack frame.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present if the Floating-point Extension, or MVE, or both are implemented.

This register is RES0 if neither the Floating-point Extension nor MVE are implemented.

Attributes
32-bit read/write register located at 0xE000EF38.

Secure software can access the Non-secure version of this register via FPCAR_NS located at 0xE002EF38.
The location 0xE002EF38 is RES0 to software executing in Non-secure state and the debugger.

This register is banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The FPCAR bit assignments are:

02

RES0

331

ADDRESS

ADDRESS, bits [31:3]
Address. The location of the unpopulated Floating-point register space allocated on an exception stack frame.

This field resets to an UNKNOWN value on a Warm reset.

Bits [2:0]
Reserved, RES0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1535

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.99 FPCCR, Floating-Point Context Control Register

The FPCCR characteristics are:

Purpose
Holds control data for the Floating Point Unit.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present if the Floating-point Extension, or MVE, or both are implemented.

This register is RES0 if neither the Floating-point Extension nor MVE are implemented.

Attributes
32-bit read/write register located at 0xE000EF34.

Secure software can access the Non-secure version of this register via FPCCR_NS located at 0xE002EF34.
The location 0xE002EF34 is RES0 to software executing in Non-secure state and the debugger.

This register is banked between Security states on a bit by bit basis.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The FPCCR bit assignments are:

012

S

3456789101125

RES0

26

TS

2728293031

ASPEN
LSPEN

LSPENS
CLRONRET

CLRONRETS
UFRDY

SPLIMVIOL
MONRDY

LSPACT
USER
THREAD

HFRDY
MMRDY
BFRDY
SFRDY

ASPEN, bit [31]
Automatic state preservation enable. When this bit is set to 1, execution of a Floating-point instruction sets
the CONTROL.FPCA bit to 1.

This bit is banked between Security states.

The possible values of this bit are:

0
Executing an FP instruction has no effect on CONTROL.FPCA.

1
Executing an FP instruction sets CONTROL.FPCA to 1.

Setting this bit to 1 means the hardware automatically preserves Floating-point context on exception entry
and restores it on exception return. As of version ARMv8.1-M of the architecture ARM deprecates setting
this field to 0.

This bit resets to one on a Warm reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1536

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

LSPEN, bit [30]
Lazy state preservation enable. Enables lazy context save of Floating-point state.

This bit is not banked between Security states.

The possible values of this bit are:

0
Disable automatic lazy context save.

1
Enable automatic lazy context save.

Writes to this bit from Non-secure state are ignored if LSPENS is set to 1.

This bit resets to one on a Warm reset.

LSPENS, bit [29]
Lazy state preservation enable Secure. This bit controls whether the LSPEN bit is writable from the
Non-secure state. This behaves as RAZ/WI when accessed from the Non-secure state.

This bit is not banked between Security states.

The possible values of this bit are:

0
LSPEN is readable and writable from both Security states.

1
LSPEN is readable from both Security states, but writes to LSPEN are ignored from the Non-secure
state.

This bit is RAZ/WI from Non-secure state.

This bit resets to zero on a Warm reset.

CLRONRET, bit [28]
Clear on return. Clear Floating-point caller saved registers on exception return.

This bit is not banked between Security states.

The possible values of this bit are:

0
Disabled.

1
Enabled.

When set to 1 the caller saved Floating-point registers (S0 to S15, FPSCR, and VPR) are cleared on exception
return (including tail chaining) if CONTROL.FPCA is set to 1 and FPCCR_S.LSPACT is set to 0. Writes to
this bit from Non-secure state are ignored if CLRONRETS is set to one.

This bit resets to zero on a Warm reset.

CLRONRETS, bit [27]
Clear on return, Secure only. This bit controls whether the CLRONRET bit is writable from the Non-secure
state.

This bit is not banked between Security states.

The possible values of this bit are:

0
The CLRONRET field is accessibly from both Security states.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1537

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

1
The Non-secure view of the CLRONRET field is read-only.

This bit is RAZ/WI from Non-secure state.

This bit resets to zero on a Warm reset.

TS, bit [26]
Treat as Secure. Treat Floating-point registers as Secure enable.

This bit is not banked between Security states.

The possible values of this bit are:

0
Disabled.

1
Enabled.

When set to 0 the Floating-point registers are treated as Non-secure even when the PE is in Secure state
and, therefore, the callee saved registers are never pushed to the stack. If the Floating-point registers never
contain data that needs to be protected, clearing this flag can reduce interrupt latency. As this field changes
how secure stack frames are interpreted, UNPREDICTABLE behavior can result if the state of this bit is not
consistent with the current Secure stacks. Therefore, firmware must take care when modifying this value.
This field behaves as RAZ/WI from the Non-secure state.

This bit is RAZ/WI from Non-secure state.

This bit resets to zero on a Warm reset.

Bits [25:11]
Reserved, RES0.

UFRDY, bit [10]
UsageFault enable. Indicates whether the software executing, when the PE allocated the Floating-point stack
frame, was able to set the UsageFault exception to pending.

This bit is banked between Security states.

The possible values of this bit are:

0
Not able to set the UsageFault exception to pending.

1
Able to set the UsageFault exception to pending.

This bit resets to an UNKNOWN value on a Warm reset.

SPLIMVIOL, bit [9]
Stack pointer limit violation. This bit indicates whether the Floating-point context violates the stack pointer
limit that was active when lazy state preservation was activated. SPLIMVIOL modifies the lazy Floating-point
state preservation behavior.

This bit is banked between Security states.

The possible values of this bit are:

0
The existing behavior is retained.

1
The memory accesses associated with the Floating-point state preservation are not performed. However
if the Floating-point state is Secure and FPCCR.TS is set to 1 the registers are still zeroed and the
Floating-point state is lost.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1538

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

This bit resets to an UNKNOWN value on a Warm reset.

MONRDY, bit [8]
DebugMonitor ready. Indicates whether the software executing, when the PE allocated the Floating-point
stack frame, was able to set the DebugMonitor exception to pending.

This bit is not banked between Security states.

The possible values of this bit are:

0
Not able to set the DebugMonitor exception to pending.

1
Able to set the DebugMonitor exception to pending.

If DEMCR.SDME is one this bit is RAZ/WI from Non-secure state

This bit resets to an UNKNOWN value on a Warm reset.

SFRDY, bit [7]
SecureFault ready. Indicates whether the software executing, when the PE allocated the Floating-point stack
frame, was able to set the SecureFault exception to pending.

This bit is not banked between Security states.

This bit is RAZ/WI from Non-secure state.

This bit resets to an UNKNOWN value on a Warm reset.

BFRDY, bit [6]
BusFault ready. Indicates whether the software executing, when the PE allocated the Floating-point stack
frame, was able to set the BusFault exception to pending.

This bit is not banked between Security states.

The possible values of this bit are:

0
Not able to set the BusFault exception to pending.

1
Able to set the BusFault exception to pending.

If AIRCR.BFHFNMINS is zero this bit is RAZ/WI from Non-secure state.

This bit resets to an UNKNOWN value on a Warm reset.

MMRDY, bit [5]
MemManage ready. Indicates whether the software executing, when the PE allocated the Floating-point stack
frame, was able to set the MemManage exception to pending.

This bit is banked between Security states.

The possible values of this bit are:

0
Not able to set the MemManage exception to pending.

1
Able to set the MemManage exception to pending.

This bit resets to an UNKNOWN value on a Warm reset.

HFRDY, bit [4]
HardFault ready. Indicates whether the software executing, when the PE allocated the Floating-point stack
frame, was able to set the HardFault exception to pending.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1539

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

This bit is not banked between Security states.

The possible values of this bit are:

0
Not able to set the HardFault exception to pending.

1
Able to set the HardFault exception to pending.

If AIRCR.BFHFNMINS is zero this bit is RAZ/WI from Non-secure state.

This bit resets to an UNKNOWN value on a Warm reset.

THREAD, bit [3]
Thread mode. Indicates the PE mode when it allocated the Floating-point stack frame.

This bit is banked between Security states.

The possible values of this bit are:

0
Handler mode.

1
Thread mode.

This bit is for fault handler information only and does not interact with the exception model.

This bit resets to an UNKNOWN value on a Warm reset.

S, bit [2]
Security. Security status of the Floating-point context. This bit is only present in the Secure version of the
register. This bit is updated whenever lazy state preservation is activated, or when a Floating-point instruction
is executed.

This bit is not banked between Security states.

The possible values of this bit are:

0
Indicates the Floating-point context belongs to the Non-secure state.

1
Indicates the Floating-point context belongs to the Secure state.

This bit is RAZ/WI from Non-secure state.

This bit resets to one on a Warm reset.

USER, bit [1]
User privilege. Indicates the privilege level of the software executing when the PE allocated the Floating-point
stack frame.

This bit is banked between Security states.

The possible values of this bit are:

0
Privileged.

1
Unprivileged.

This bit resets to an UNKNOWN value on a Warm reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1540

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

LSPACT, bit [0]
Lazy state preservation active. Indicates whether lazy preservation of the Floating-point state is active.

This bit is banked between Security states.

The possible values of this bit are:

0
Lazy state preservation is not active.

1
Lazy state preservation is active.

This bit resets to zero on a Warm reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1541

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.100 FPCXT, Floating-point context payload

The FPCXT characteristics are:

Purpose
Values produced or consumed by instructions that provide access to the Floating-point context.

Usage constraints
None.

Configurations
All.

Attributes
32-bit payload.

Field descriptions

The FPCXT bit assignments are:

0123456

RES0

7815

RES0

1618

LTPSIZE

192021

RES0

222324

FZ

25

DN

26272830

RES0

31

SFPA
QC
AHP

RMode
FZ16

IDC

IOC
DZC
OFC
UFC

IXC

SFPA, bit [31]
Secure Floating-point active. The value corresponds to CONTROL.SFPA.

Bits [30:28]
Reserved, RES0.

QC, bit [27]
Cumulative saturation bit. The value corresponds to FPSCR.QC.

AHP, bit [26]
Alternative half-precision control bit. The value corresponds to FPSCR.AHP.

DN, bit [25]
Default NaN mode control bit. The value corresponds to FPSCR.DN.

FZ, bit [24]
Flush-to-zero mode control for single and double precision Floating-point. The value corresponds to
FPSCR.FZ.

RMode, bits [23:22]
Rounding mode control field. The value corresponds to FPSCR.RMode.

Bits [21:20]
Reserved, RES0.

FZ16, bit [19]
Flush-to-zero mode control bit on half-precision data-processing instructions. The value corresponds to
FPSCR.FZ16.

LTPSIZE, bits [18:16]
The vector element size that is used when applying low-overhead-loop tail predication to vector instructions.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1542

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

Bits [15:8]
Reserved, RES0.

IDC, bit [7]
Input Denormal cumulative exception bit. The value corresponds to FPSCR.IDC.

Bits [6:5]
Reserved, RES0.

IXC, bit [4]
Inexact cumulative exception bit. The value corresponds to FPSCR.IXC.

UFC, bit [3]
Underflow cumulative exception bit. The value corresponds to FPSCR.UFC.

OFC, bit [2]
Overflow cumulative exception bit. The value corresponds to FPSCR.OFC.

DZC, bit [1]
Divide by Zero cumulative exception bit. The value corresponds to FPSCR.DZC.

IOC, bit [0]
Invalid Operation cumulative exception bit. The value corresponds to FPSCR.IOC.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1543

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.101 FPDSCR, Floating-Point Default Status Control Register

The FPDSCR characteristics are:

Purpose
Holds the default values for the Floating-point status control data that the PE assigns to FPSCR when it
creates a new Floating-point context.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present if the Floating-point Extension, or MVE, or both are implemented.

This register is RES0 if neither the Floating-point Extension nor MVE are implemented.

Attributes
32-bit read/write register located at 0xE000EF3C.

Secure software can access the Non-secure version of this register via FPDSCR_NS located at 0xE002EF3C.
The location 0xE002EF3C is RES0 to software executing in Non-secure state and the debugger.

This register is banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The FPDSCR bit assignments are:

015

RES0

1618

LTPSIZE

192021

RES0

222324

FZ

25

DN

262731

RES0

AHP FZ16
RMode

Bits [31:27]
Reserved, RES0.

AHP, bit [26]
Alternative half-precision. Default value for FPSCR.AHP.

If the Floating-point Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

DN, bit [25]
Default NaN. Default value for FPSCR.DN.

If the Floating-point Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

FZ, bit [24]
Flush-to-zero. Default value for FPSCR.FZ.

If the Floating-point Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1544

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

RMode, bits [23:22]
Rounding mode. Default value for FPSCR.RMode.

If the Floating-point Extension is not implemented, this field is RES0.

This field resets to zero on a Warm reset.

Bits [21:20]
Reserved, RES0.

FZ16, bit [19]
Flush-to-zero mode control bit on half-precision data-processing instructions. Default value for FPSCR.FZ16.

If the Floating-point Extension is not implemented, this bit is RAZ/WI.

This bit resets to zero on a Warm reset.

LTPSIZE, bits [18:16]
The vector element size used when applying low-overhead-loop tail predication to vector instructions. Default
value for FPSCR.LTPSIZE.

If the Low Overhead Branch Extension is not implemented, this field is RES0.

This field reads as 0x4.

Bits [15:0]
Reserved, RES0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1545

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.102 FPSCR, Floating-point Status and Control Register

The FPSCR characteristics are:

Purpose
Provides control of the Floating-point unit.

Usage constraints
Privileged and unprivileged access permitted.

Configurations
Present if the Floating-point Extension, or MVE, or both are implemented.

This register is RES0 if neither the Floating-point Extension nor MVE are implemented.

Attributes
32-bit read/write special-purpose register.

This register is not banked between Security states.

Preface

Writes to FPSCR can have side-effects on various aspects of processor operation. All of these side-effects are
synchronous to FPSCR write. This means that they are guaranteed not to be visible to earlier instructions in the
execution stream, and they are guaranteed to be visible to later instructions in the execution stream.

Field descriptions

The FPSCR bit assignments are:

0123456

RES0

7815

RES0

1618

LTPSIZE

192021

RES0

222324

FZ

25

DN

262728

V

29

C

30

Z

31

N

QC
AHP

RMode
FZ16

IDC

IOC
DZC
OFC
UFC

IXC

N, bit [31]
Negative condition flag. When updated by a VCMP instruction, this bit indicates whether the result was less
than.

The possible values of this bit are:

0
Compare result was not less than.

1
Compare result was less than.

See VCMP for details.

If the Floating-point Extension is not implemented, this bit is RAZ/WI.

This bit resets to an UNKNOWN value on a Warm reset.

Z, bit [30]
Zero condition flag. When updated by a VCMP instruction, this bit indicates whether the result was equal.

The possible values of this bit are:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1546

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0
Compare result was not equal.

1
Compare result was equal.

See VCMP for details.

If the Floating-point Extension is not implemented, this bit is RAZ/WI.

This bit resets to an UNKNOWN value on a Warm reset.

C, bit [29]
Carry condition flag. Accessed by the VCMP, VADC, and VSBC instructions. For VCMP this bit indicates
whether the result was not less than. In VADC and VSBC this bit is used to hold the carry in/out flag.

The possible values of this bit are:

0
Compare result was less than.

1
Compare result was not less than.

See VCMP, VADC, and VSBC for details.

This bit resets to an UNKNOWN value on a Warm reset.

V, bit [28]
Overflow condition flag. When updated by a VCMP instruction, this bit indicates whether the result was
unordered.

The possible values of this bit are:

0
Compare result was not unordered.

1
Compare result was unordered.

See VCMP for details.

If the Floating-point Extension is not implemented, this bit is RAZ/WI.

This bit resets to an UNKNOWN value on a Warm reset.

QC, bit [27]
Cumulative saturation bit. This bit is set to 1 to indicate that an MVE integer operation has saturated since 0
was last written to this bit.

If MVE is not implemented, this bit is RES0.

This bit resets to an UNKNOWN value on a Warm reset.

AHP, bit [26]
Alternative half-precision control bit. This bit controls how the PE interprets 16-bit Floating-point values.

The possible values of this bit are:

0
IEEE half-precision format selected.

1
Alternative half-precision format selected.

If the Floating-point Extension is not implemented, this bit is RAZ/WI.

This bit resets to an UNKNOWN value on a Warm reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1547

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

DN, bit [25]
Default NaN mode control bit. This bit determines whether Floating-point operations propagate NaNs or use
the Default NaN.

The possible values of this bit are:

0
NaN operands propagate through to the output of a Floating-point operation.

1
Any operation involving one of more NaNs returns the Default NaN.

If the Floating-point Extension is not implemented, this bit is RAZ/WI.

This bit resets to an UNKNOWN value on a Warm reset.

FZ, bit [24]
Flush-to-zero mode control for single and double precision Floating-point. This bit determines whether
denormal Floating-point values are treated as though they are zero.

The possible values of this bit are:

0
Flush-to-zero mode disabled. Behavior of the Floating-point unit is fully compliant with the IEEE754
standard.

1
Flush-to-zero mode enabled.

If the Floating-point Extension is not implemented, this bit is RAZ/WI.

This bit resets to an UNKNOWN value on a Warm reset.

RMode, bits [23:22]
Rounding mode control field. This field determines what rounding mode is applied to Floating-point
operations.

The possible values of this field are:

0b00
Round to Nearest (RN) mode.

0b01
Round towards Plus Infinity (RP) mode.

0b10
Round towards Minus Infinity (RM) mode.

0b11
Round towards Zero (RZ) mode.

If the Floating-point Extension is not implemented, this field is RAZ/WI.

This field resets to an UNKNOWN value on a Warm reset.

Bits [21:20]
Reserved, RES0.

FZ16, bit [19]
Flush-to-zero mode control bit on half-precision data-processing instructions.

The possible values of this bit are:

0
Flush-to-zero mode disabled. Behavior of the Floating-point unit is fully compliant with the IEEE 754
standard.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1548

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

1
Flush-to-zero mode enabled.

The value of this bit applies to both scalar and MVE Floating-point half-precision calculations.

If the Floating-point Extension is not implemented, this bit is RAZ/WI.

This bit resets to an UNKNOWN value on a Warm reset.

LTPSIZE, bits [18:16]
The vector element size used when applying low-overhead-loop tail predication to vector instructions.

The possible values of this field are:

0b000
8 bits.

0b001
16 bits.

0b010
32 bits.

0b011
64 bits.

0b100
Tail predication not applied.

All other values are reserved.

The loop hardware behaves as if this field had the value 4 (indicating no low-overhead-loop predication) if no
FP context is active. This field reads as 4 and ignores writes if MVE is not implemented.

If the Low Overhead Branch Extension is not implemented, this field is RES0.

This field resets to an UNKNOWN value on a Warm reset.

Bits [15:8]
Reserved, RES0.

IDC, bit [7]
Input Denormal cumulative exception bit. This sticky flag records whether a Floating-point input denormal
exception has been detected since last cleared.

The possible values of this bit are:

0
Input Denormal exception has not occurred since 0 was last written to this bit.

1
Input Denormal exception has occurred since 0 was last written to this bit.

If the Floating-point Extension is not implemented, this bit is RES0.

This bit resets to an UNKNOWN value on a Warm reset.

Bits [6:5]
Reserved, RES0.

IXC, bit [4]
Inexact cumulative exception bit. This sticky flag records whether a Floating-point inexact exception has
been detected since last cleared.

The possible values of this bit are:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1549

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0
Inexact exception has not occurred since 0 was last written to this bit.

1
Inexact exception has occurred since 0 was last written to this bit.

If the Floating-point Extension is not implemented, this bit is RES0.

This bit resets to an UNKNOWN value on a Warm reset.

UFC, bit [3]
Underflow cumulative exception bit. This sticky flag records whether a Floating-point Underflow exception
has been detected since last cleared.

The possible values of this bit are:

0
Underflow exception has not occurred since 0 was last written to this bit.

1
Underflow exception has occurred since 0 was last written to this bit.

If the Floating-point Extension is not implemented, this bit is RES0.

OFC, bit [2]
Overflow cumulative exception bit. This sticky flag records whether a Floating-point overflow exception has
been detected since last cleared.

The possible values of this bit are:

0
Overflow exception has not occurred since 0 was last written to this bit.

1
Overflow exception has occurred since 0 was last written to this bit.

If the Floating-point Extension is not implemented, this bit is RES0.

This bit resets to an UNKNOWN value on a Warm reset.

DZC, bit [1]
Divide by Zero cumulative exception bit. This sticky flag records whether a Floating-point divide by zero
exception has been detected since last cleared.

The possible values of this bit are:

0
Division by Zero exception has not occurred since 0 was last written to this bit.

1
Division by Zero exception has occurred since 0 was last written to this bit.

If the Floating-point Extension is not implemented, this bit is RES0.

This bit resets to an UNKNOWN value on a Warm reset.

IOC, bit [0]
Invalid Operation cumulative exception bit. This sticky flag records whether a Floating-point invalid operation
exception has been detected since last cleared.

The possible values of this bit are:

0
Invalid Operation exception has not occurred since 0 was last written to this bit.

1
Invalid Operation exception has occurred since 0 was last written to this bit.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1550

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

If the Floating-point Extension is not implemented, this bit is RES0.

This bit resets to an UNKNOWN value on a Warm reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1551

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.103 FP_CIDR0, FP Component Identification Register 0

The FP_CIDR0 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the Flash Patch and Breakpoint Unit.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the FPB is implemented.

This register is RES0 if the FPB is not implemented.

Attributes
32-bit read-only register located at 0xE0002FF0.

This register is not banked between Security states.

Field descriptions

The FP_CIDR0 bit assignments are:

07

PRMBL_0

831

RES0

Bits [31:8]
Reserved, RES0.

PRMBL_0, bits [7:0]
CoreSight component identification preamble. See the Arm® CoreSight™ Architecture Specification.

This field reads as 0x0D.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1552

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.104 FP_CIDR1, FP Component Identification Register 1

The FP_CIDR1 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the Flash Patch and Breakpoint Unit.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the FPB is implemented.

This register is RES0 if the FPB is not implemented.

Attributes
32-bit read-only register located at 0xE0002FF4.

This register is not banked between Security states.

Field descriptions

The FP_CIDR1 bit assignments are:

03

PRMBL_1

47

CLASS

831

RES0

Bits [31:8]
Reserved, RES0.

CLASS, bits [7:4]
CoreSight component class. See the Arm® CoreSight™ Architecture Specification.

This field reads as 0x9.

PRMBL_1, bits [3:0]
CoreSight component identification preamble. See the Arm® CoreSight™ Architecture Specification.

This field reads as 0x0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1553

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.105 FP_CIDR2, FP Component Identification Register 2

The FP_CIDR2 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the Flash Patch and Breakpoint Unit.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the FPB is implemented.

This register is RES0 if the FPB is not implemented.

Attributes
32-bit read-only register located at 0xE0002FF8.

This register is not banked between Security states.

Field descriptions

The FP_CIDR2 bit assignments are:

07

PRMBL_2

831

RES0

Bits [31:8]
Reserved, RES0.

PRMBL_2, bits [7:0]
CoreSight component identification preamble. See the Arm® CoreSight™ Architecture Specification.

This field reads as 0x05.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1554

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.106 FP_CIDR3, FP Component Identification Register 3

The FP_CIDR3 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the Flash Patch and Breakpoint Unit.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the FPB is implemented.

This register is RES0 if the FPB is not implemented.

Attributes
32-bit read-only register located at 0xE0002FFC.

This register is not banked between Security states.

Field descriptions

The FP_CIDR3 bit assignments are:

07

PRMBL_3

831

RES0

Bits [31:8]
Reserved, RES0.

PRMBL_3, bits [7:0]
CoreSight component identification preamble. See the Arm® CoreSight™ Architecture Specification.

This field reads as 0xB1.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1555

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.107 FP_COMPn, Flash Patch Comparator Register, n = 0 - 125

The FP_COMP{0..125} characteristics are:

Purpose
Holds an address for comparison.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if the FPB is implemented.

This register is RES0 if the FPB is not implemented.

Attributes
32-bit read/write register located at 0xE0002008 + 4n.

This register is not banked between Security states.

Field descriptions

The FP_COMP{0..125} bit assignments are:

0

BE

131

BPADDR

BPADDR, bits [31:1]
Breakpoint address. Specifies bits[31:1] of the breakpoint instruction address.

BE, bit [0]
Breakpoint enable. Selects between remapping and breakpoint functionality.

The possible values of this bit are:

0
Breakpoint disabled.

1
Breakpoint enabled.

For backwards compatibility, when disabling a breakpoint software must write zero to the whole register.

This bit resets to zero on a Cold reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1556

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.108 FP_CTRL, Flash Patch Control Register

The FP_CTRL characteristics are:

Purpose
Provides FPB implementation information, and the global enable for the FPB unit.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if the FPB is implemented.

This register is RES0 if the FPB is not implemented.

Attributes
32-bit read/write register located at 0xE0002000.

This register is not banked between Security states.

Field descriptions

The FP_CTRL bit assignments are:

0123

RES0

47

NUM_CODE

811

NUM_LIT

12141527

RES0

2831

REV

NUM_CODE
KEY

ENABLE

REV, bits [31:28]
Revision. Flash Patch and Breakpoint Unit architecture revision.

The possible values of this field are:

0b0001
Flash Patch Breakpoint version 2 implemented.

All other values are reserved.

This field is read-only.

This field reads as 0b0001.

Bits [27:15]
Reserved, RES0.

NUM_CODE, bits [14:12,7:4]
Number of implemented code comparators. Indicates the number of implemented instruction address
comparators. Zero indicates no Instruction Address comparators are implemented. The Instruction Address
comparators are numbered from 0 to NUM_CODE - 1.

This field is read-only.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1557

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

NUM_LIT, bits [11:8]
Number of literal comparators. This field is RAZ/WI. Remapping is not supported in Armv8-M.

Bits [3:2]
Reserved, RES0.

KEY, bit [1]
FP_CTRL write-enable key. Writes to the FP_CTRL are ignored unless KEY is concurrently written to one.

The possible values of this bit are:

0
Concurrent write to FP_CTRL ignored.

1
Concurrent write to FP_CTRL permitted.

This bit reads-as-zero.

ENABLE, bit [0]
Flash Patch global enable. Enables the FPB.

The possible values of this bit are:

0
All FPB functionality disabled.

1
FPB enabled.

This bit resets to zero on a Cold reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1558

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.109 FP_DEVARCH, FPB Device Architecture Register

The FP_DEVARCH characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the Flash Patch and Breakpoint Unit.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the FPB is implemented.

This register is RES0 if the FPB is not implemented.

Attributes
32-bit read-only register located at 0xE0002FBC.

This register is not banked between Security states.

Field descriptions

The FP_DEVARCH bit assignments are:

011

ARCHPART

1215

ARCHVER

1619

REVISION

202131

ARCHITECT

PRESENT

ARCHITECT, bits [31:21]
Architect. Defines the architect of the component. Bits [31:28] are the JEP106 continuation code (JEP106
bank ID, minus 1) and bits [27:21] are the JEP106 ID code.

The possible values of this field are:

0x23B
JEP106 continuation code 0x4, ID code 0x3B. Arm Limited.

Other values are defined by the JEDEC JEP106 standard.

This field reads as 0x23B.

PRESENT, bit [20]
DEVARCH Present. Defines that the DEVARCH register is present.

The possible values of this bit are:

1
DEVARCH information present.

This bit reads as one.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1559

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

REVISION, bits [19:16]
Revision. Defines the architecture revision of the component.

The possible values of this field are:

0b0000
FPB architecture v2.0.

This field reads as 0b0000.

ARCHVER, bits [15:12]
Architecture Version. Defines the architecture version of the component.

The possible values of this field are:

0b0001
FPB architecture v2.

ARCHVER and ARCHPART are also defined as a single field, ARCHID, so that ARCHVER is
ARCHID[15:12].

This field reads as 0b0001.

ARCHPART, bits [11:0]
Architecture Part. Defines the architecture of the component.

The possible values of this field are:

0xA03
FPB architecture.

ARCHVER and ARCHPART are also defined as a single field, ARCHID, so that ARCHPART is
ARCHID[11:0].

This field reads as 0xA03.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1560

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.110 FP_DEVTYPE, FPB Device Type Register

The FP_DEVTYPE characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the Flash Patch and Breakpoint Unit.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the FPB is implemented.

This register is RES0 if the FPB is not implemented.

Attributes
32-bit read-only register located at 0xE0002FCC.

This register is not banked between Security states.

Field descriptions

The FP_DEVTYPE bit assignments are:

03

MAJOR

47

SUB

831

RES0

Bits [31:8]
Reserved, RES0.

SUB, bits [7:4]
Sub-type. Component sub-type.

The possible values of this field are:

0x0
Other.

This field reads as 0b0000.

MAJOR, bits [3:0]
Major type. Component major type.

The possible values of this field are:

0x0
Miscellaneous.

This field reads as 0b0000.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1561

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.111 FP_LAR, FPB Software Lock Access Register

The FP_LAR characteristics are:

Purpose
Provides CoreSight Software Lock control for the FPB, see the Arm® CoreSight™ Architecture Specification
for details.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

This register is RAZ/WI if accessed via the debugger.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the FPB is implemented.

This register is RES0 if the FPB is not implemented.

Present only if the optional Software Lock is implemented.

This register is RAZ/WI if the Software Lock is not implemented.

Attributes
32-bit write-only register located at 0xE0002FB0.

This register is not banked between Security states.

Field descriptions

The FP_LAR bit assignments are:

031

KEY

KEY, bits [31:0]
Lock Access control.

Writing the key value 0xC5ACCE55 to this field unlocks the lock, enabling write accesses to the registers of
this component through a memory-mapped interface.

Writing any other value to this register locks the lock, disabling write accesses to the registers of this
component through a memory mapped interface.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1562

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.112 FP_LSR, FPB Software Lock Status Register

The FP_LSR characteristics are:

Purpose
Provides CoreSight Software Lock status information for the FPB, see the Arm® CoreSight™ Architecture
Specification for details.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

This register is RAZ/WI if accessed via the debugger.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the FPB is implemented.

This register is RES0 if the FPB is not implemented.

Present only if the optional Software Lock is implemented.

This register is RAZ/WI if the Software Lock is not implemented.

Attributes
32-bit read-only register located at 0xE0002FB4.

This register is not banked between Security states.

Field descriptions

The FP_LSR bit assignments are:

012331

RES0

nTT
SLK

SLI

Bits [31:3]
Reserved, RES0.

nTT, bit [2]
Not thirty-two bit. See the Arm® CoreSight™ Architecture Specification.

This bit reads as zero.

SLK, bit [1]
Software Lock status. See the Arm® CoreSight™ Architecture Specification.

The possible values of this bit are:

0
Lock clear. Software writes are permitted to the registers of this component.

1
Lock set. Software writes to the registers of this component are ignored, and reads have no side-effects.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1563

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

For a debugger read of this register, or when the Software Lock is not implemented, this bit is RES0.

This bit resets to one on a Cold reset.

SLI, bit [0]
Software Lock implemented. See the Arm® CoreSight™ Architecture Specification.

The possible values of this bit are:

0
Software Lock not implemented or debugger access.

1
Software Lock is implemented and software access.

For a debugger read of this register, or when the Software Lock is not implemented, this bit is RAZ.

This bit reads as an IMPLEMENTATION DEFINED value.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1564

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.113 FP_PIDR0, FP Peripheral Identification Register 0

The FP_PIDR0 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the Flash Patch and Breakpoint Unit.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the FPB is implemented.

This register is RES0 if the FPB is not implemented.

Attributes
32-bit read-only register located at 0xE0002FE0.

This register is not banked between Security states.

Field descriptions

The FP_PIDR0 bit assignments are:

07

PART_0

831

RES0

Bits [31:8]
Reserved, RES0.

PART_0, bits [7:0]
Part number bits [7:0]. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1565

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.114 FP_PIDR1, FP Peripheral Identification Register 1

The FP_PIDR1 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the Flash Patch and Breakpoint Unit.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the FPB is implemented.

This register is RES0 if the FPB is not implemented.

Attributes
32-bit read-only register located at 0xE0002FE4.

This register is not banked between Security states.

Field descriptions

The FP_PIDR1 bit assignments are:

03

PART_1

47

DES_0

831

RES0

Bits [31:8]
Reserved, RES0.

DES_0, bits [7:4]
JEP106 identification code bits [3:0]. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

PART_1, bits [3:0]
Part number bits [11:8]. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1566

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.115 FP_PIDR2, FP Peripheral Identification Register 2

The FP_PIDR2 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the Flash Patch and Breakpoint Unit.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the FPB is implemented.

This register is RES0 if the FPB is not implemented.

Attributes
32-bit read-only register located at 0xE0002FE8.

This register is not banked between Security states.

Field descriptions

The FP_PIDR2 bit assignments are:

02

DES_1

347

REVISION

831

RES0

JEDEC

Bits [31:8]
Reserved, RES0.

REVISION, bits [7:4]
Component revision. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

JEDEC, bit [3]
JEDEC assignee value is used. See the Arm® CoreSight™ Architecture Specification.

This bit reads as one.

DES_1, bits [2:0]
JEP106 identification code bits [6:4]. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1567

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.116 FP_PIDR3, FP Peripheral Identification Register 3

The FP_PIDR3 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the Flash Patch and Breakpoint Unit.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the FPB is implemented.

This register is RES0 if the FPB is not implemented.

Attributes
32-bit read-only register located at 0xE0002FEC.

This register is not banked between Security states.

Field descriptions

The FP_PIDR3 bit assignments are:

03

CMOD

47

REVAND

831

RES0

Bits [31:8]
Reserved, RES0.

REVAND, bits [7:4]
RevAnd. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

CMOD, bits [3:0]
Customer Modified. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1568

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.117 FP_PIDR4, FP Peripheral Identification Register 4

The FP_PIDR4 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the Flash Patch and Breakpoint Unit.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the FPB is implemented.

This register is RES0 if the FPB is not implemented.

Attributes
32-bit read-only register located at 0xE0002FD0.

This register is not banked between Security states.

Field descriptions

The FP_PIDR4 bit assignments are:

03

DES_2

47

SIZE

831

RES0

Bits [31:8]
Reserved, RES0.

SIZE, bits [7:4]
4KB count. See the Arm® CoreSight™ Architecture Specification.

This field reads as zero.

DES_2, bits [3:0]
JEP106 continuation code. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1569

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.118 FP_PIDR5, FP Peripheral Identification Register 5

The FP_PIDR5 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the Flash Patch and Breakpoint Unit.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the FPB is implemented.

This register is RES0 if the FPB is not implemented.

Attributes
32-bit read-only register located at 0xE0002FD4.

This register is not banked between Security states.

Field descriptions

The FP_PIDR5 bit assignments are:

031

RES0

Bits [31:0]
Reserved, RES0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1570

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.119 FP_PIDR6, FP Peripheral Identification Register 6

The FP_PIDR6 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the Flash Patch and Breakpoint Unit.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the FPB is implemented.

This register is RES0 if the FPB is not implemented.

Attributes
32-bit read-only register located at 0xE0002FD8.

This register is not banked between Security states.

Field descriptions

The FP_PIDR6 bit assignments are:

031

RES0

Bits [31:0]
Reserved, RES0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1571

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.120 FP_PIDR7, FP Peripheral Identification Register 7

The FP_PIDR7 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the Flash Patch and Breakpoint Unit.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the FPB is implemented.

This register is RES0 if the FPB is not implemented.

Attributes
32-bit read-only register located at 0xE0002FDC.

This register is not banked between Security states.

Field descriptions

The FP_PIDR7 bit assignments are:

031

RES0

Bits [31:0]
Reserved, RES0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1572

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.121 FP_REMAP, Flash Patch Remap Register

The FP_REMAP characteristics are:

Purpose
Indicates whether the implementation supports Flash Patch remap and, if it does, holds the target address for
remap.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if the FPB is implemented.

This register is RES0 if the FPB is not implemented.

Attributes
32-bit read-only register located at 0xE0002004.

This register is not banked between Security states.

Field descriptions

The FP_REMAP bit assignments are:

04

RES0

528

REMAP

293031

RES0

RMPSPT

Bits [31:30]
Reserved, RES0.

RMPSPT, bit [29]
Remap supported. This field is RAZ. Remapping is not supported in Armv8-M.

REMAP, bits [28:5]
Remap address.

Reserved, RES0.

Bits [4:0]
Reserved, RES0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1573

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.122 HFSR, HardFault Status Register

The HFSR characteristics are:

Purpose
Shows the cause of any HardFaults.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes
32-bit read/write-one-to-clear register located at 0xE000ED2C.

Secure software can access the Non-secure version of this register via HFSR_NS located at 0xE002ED2C.
The location 0xE002ED2C is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The HFSR bit assignments are:

0

(0)

1229

RES0

3031

DEBUGEVT VECTTBL
FORCED

DEBUGEVT, bit [31]
Debug event. Indicates when a debug event has occurred.

The possible values of this bit are:

0
No debug event has occurred.

1
Debug event has occurred. The Debug Fault Status Register has been updated.

The PE sets this bit to 1 when a breakpoint is encountered and Halting debug is disabled and a DebugMonitor
exception cannot be taken.

If AIRCR.BFHFNMINS is zero this bit is RAZ/WI from Non-secure state.

This bit resets to zero on a Warm reset.

FORCED, bit [30]
Forced. Indicates that a fault with configurable priority has been escalated to a HardFault exception, because
it could not be made active, because of priority, or because it was disabled.

The possible values of this bit are:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1574

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0
No priority escalation has occurred.

1
Processor has escalated a configurable-priority exception to HardFault.

If AIRCR.BFHFNMINS is zero this bit is RAZ/WI from Non-secure state.

This bit resets to zero on a Warm reset.

Bits [29:2]
Reserved, RES0.

VECTTBL, bit [1]
Vector table. Indicates when a fault has occurred because of a vector table read error on exception processing.

The possible values of this bit are:

0
No vector table read fault has occurred.

1
Vector table read fault has occurred.

If AIRCR.BFHFNMINS is zero this bit is RAZ/WI from Non-secure state.

This bit resets to zero on a Warm reset.

Bit [0]
Reserved, RES0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1575

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.123 ICIALLU, Instruction Cache Invalidate All to PoU

The ICIALLU characteristics are:

Purpose
Invalidate all instruction caches to PoU.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

Configurations
This register is always implemented.

Attributes
32-bit write-only register located at 0xE000EF50.

Secure software can access the Non-secure version of this register via ICIALLU_NS located at 0xE002EF50.
The location 0xE002EF50 is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The ICIALLU bit assignments are:

031

Ignored

Ignored, bits [31:0]
The value written to this field is ignored. Ignored.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1576

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.124 ICIMVAU, Instruction Cache line Invalidate by Address to PoU

The ICIMVAU characteristics are:

Purpose
Invalidate instruction cache line by address to PoU.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

Configurations
This register is always implemented.

Attributes
32-bit write-only register located at 0xE000EF58.

Secure software can access the Non-secure version of this register via ICIMVAU_NS located at
0xE002EF58. The location 0xE002EF58 is RES0 to software executing in Non-secure state and the
debugger.

This register is not banked between Security states.

Field descriptions

The ICIMVAU bit assignments are:

031

ADDRESS

ADDRESS, bits [31:0]
Address. Writing to this field initiates the maintenance operation for the address written.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1577

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.125 ICSR, Interrupt Control and State Register

The ICSR characteristics are:

Purpose
Controls and provides status information for NMI, PendSV, SysTick and interrupts.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
This register is always implemented.

Attributes
32-bit read/write register located at 0xE000ED04.

Secure software can access the Non-secure version of this register via ICSR_NS located at 0xE002ED04.
The location 0xE002ED04 is RES0 to software executing in Non-secure state and the debugger.

This register is banked between Security states on a bit by bit basis.

Field descriptions

The ICSR bit assignments are:

On a read:

08

VECTACTIVE

910

RES0

111220

VECTPENDING

21

(0)

2223242526272829

(0)

3031

PENDNMISET
PENDNMICLR
PENDSVSET

PENDSVCLR
PENDSTSET

RETTOBASE
ISRPENDING
ISRPREEMPT

STTNS
PENDSTCLR

On a write:

08

VECTACTIVE

910

RES0

111220

VECTPENDING

21

(0)

2223242526272829

(0)

3031

PENDNMISET
PENDNMICLR
PENDSVSET

PENDSVCLR
PENDSTSET

RETTOBASE
ISRPENDING
ISRPREEMPT

STTNS
PENDSTCLR

PENDNMISET, bit [31], on a write
Pend NMI set. Allows the NMI exception to be set as pending.

This bit is not banked between Security states.

The possible values of this bit are:

0
No effect.

1
Sets the NMI exception pending.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1578

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

If both PENDNMISET and PENDNMICLR are written to one simultaneously, the pending state of the NMI
exception becomes UNKNOWN.

This bit is write-one-to-set. Writes of zero are ignored.

If AIRCR.BFHFNMINS is zero this bit is RAZ/WI from Non-secure state.

PENDNMISET, bit [31], on a read
Pend NMI set. Indicates whether the NMI exception is pending.

This bit is not banked between Security states.

The possible values of this bit are:

0
NMI exception not pending.

1
NMI exception pending.

If AIRCR.BFHFNMINS is zero this bit is RAZ/WI from Non-secure state.

This bit resets to zero on a Warm reset.

PENDNMICLR, bit [30]
Pend NMI clear. Allows the NMI exception pending state to be cleared.

This bit is not banked between Security states.

The possible values of this bit are:

0
No effect.

1
Clear pending status.

This bit is write-only, and reads-as-zero.

This bit is write-one-to-clear. Writes of zero are ignored.

If AIRCR.BFHFNMINS is zero this bit is RAZ/WI from Non-secure state.

Bit [29]
Reserved, RES0.

PENDSVSET, bit [28], on a write
Pend PendSV set. Allows the PendSV exception for the selected Security state to be set as pending.

This bit is not banked between Security states.

The possible values of this bit are:

0
No effect.

1
Sets the PendSV exception pending.

If both PENDSVSET and PENDSVCLR are written to one simultaneously, the pending state of the associated
PendSV exception becomes UNKNOWN.

This bit is write-one-to-set. Writes of zero are ignored.

PENDSVSET, bit [28], on a read
Pend PendSV set. Indicates whether the PendSV for the selected Security state exception is pending.

This bit is banked between Security states.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1579

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

The possible values of this bit are:

0
PendSV exception not pending.

1
PendSV exception pending.

This bit resets to zero on a Warm reset.

PENDSVCLR, bit [27]
Pend PendSV clear. Allows the PendSV exception pending state to be cleared for the selected Security state.

This bit is banked between Security states.

The possible values of this bit are:

0
No effect.

1
Clear pending status.

This bit is write-only, and reads-as-zero.

This bit is write-one-to-clear. Writes of zero are ignored.

PENDSTSET, bit [26], on a write
Pend SysTick set. Allows the SysTick for the selected Security state exception to be set as pending.

If two SysTick timers are implemented this bit is banked between Security states.

If less than two SysTick timers are implemented this bit is not banked between Security states.

The possible values of this bit are:

0
No effect.

1
Sets the SysTick exception for the selected Security state pending.

If only one SysTick timer is implemented and ICSR.STTNS is clear, this bit is RAZ/WI from Non-secure
state.

If no SysTick timer is implemented this bit is RES0.

PENDSTSET, bit [26], on a read
Pend SysTick set. Indicates whether the SysTick for the selected Security state exception is pending.

If two SysTick timers are implemented this bit is banked between Security states.

If less than two SysTick timers are implemented this bit is not banked between Security states.

The possible values of this bit are:

0
SysTick exception not pending.

1
SysTick exception pending.

If both PENDSTSET and PENDSTCLR are written to one simultaneously, the pending state of the associated
SysTick exception becomes UNKNOWN.

If only one SysTick timer is implemented and ICSR.STTNS is clear, this bit is RAZ/WI from Non-secure
state.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1580

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

If no SysTick timer is implemented this bit is RES0.

This bit resets to zero on a Warm reset.

PENDSTCLR, bit [25]
Pend SysTick clear. Allows the SysTick exception pending state to be cleared for the selected Security state.

If two SysTick timers are implemented this bit is banked between Security states.

If less than two SysTick timers are implemented this bit is not banked between Security states.

The possible values of this bit are:

0
No effect.

1
Clear pending status.

This bit is write-only, and reads-as-zero.

This bit is write-one-to-clear. Writes of zero are ignored.

If only one SysTick timer is implemented and ICSR.STTNS is clear, this bit is RAZ/WI from Non-secure
state.

If no SysTick timer is implemented this bit is RES0.

STTNS, bit [24]
SysTick Targets Non-secure. Controls whether in a single SysTick implementation, the SysTick is Secure or
Non-secure.

This bit is not banked between Security states.

The possible values of this bit are:

0
SysTick is Secure.

1
SysTick is Non-secure.

Behaves as RAZ/WI when either no SysTick or both SysTick timers are implemented. In a PE with the Main
Extension and Security Extension this bit is RES0. This bit is RAZ/WI when accessed from the Non-secure
state.

This bit is RAZ/WI from Non-secure state.

This bit resets to zero on a Warm reset.

ISRPREEMPT, bit [23]
Interrupt preempt. Indicates whether a pending exception will be handled on exit from Debug state.

This bit is not banked between Security states.

The possible values of this bit are:

0
Will not handle.

1
Will handle a pending exception.

The value of this bit is UNKNOWN when not in Debug state.

This bit is read-only.

If neither Halting debug or the Main Extension are implemented, this bit is RES0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1581

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

ISRPENDING, bit [22]
Interrupt pending. Indicates whether an external interrupt, generated by the NVIC, is pending.

This bit is not banked between Security states.

The possible values of this bit are:

0
No external interrupt pending.

1
External interrupt pending.

This bit is read-only.

If neither Halting debug or the Main Extension are implemented, this bit is RES0.

Note

The value of DHCSR.C_MASKINTS is ignored.

Bit [21]
Reserved, RES0.

VECTPENDING, bits [20:12]
Vector pending. The exception number of the highest priority pending and enabled interrupt.

This field is not banked between Security states.

The possible values of this field are:

Zero
No pending and enabled exception.

Non zero
Exception number.

From Armv8.1-M this value is 1 when read from a Non-secure state and a Secure exception is the highest
priority pending exception.

This field is read-only.

Note

If DHCSR.C_MASKINTS is set, the PendSV, SysTick, and configurable external interrupts are
masked and will not be shown as pending in VECTPENDING.

RETTOBASE, bit [11]
Return to base. In Handler mode, indicates whether there is more than one active exception.

This bit is not banked between Security states.

The possible values of this bit are:

0
There is more than one active exception.

1
There is only one active exception.

In Thread mode the value of this bit is UNKNOWN.

This bit is read-only.

If the Main Extension is not implemented, this bit is RES0.

Bits [10:9]
Reserved, RES0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1582

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

VECTACTIVE, bits [8:0]
Vector active. The exception number of the current executing exception.

This field is not banked between Security states.

The possible values of this field are:

Zero
Thread mode.

Non zero
Exception number.

This value is the same as the IPSR Exception number. When the IPSR value has been set to 1 because of a
function call to Non-secure state, this field is also set to 1.

This field is read-only.

If neither Halting debug or the Main Extension are implemented, this field is RES0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1583

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.126 ICTR, Interrupt Controller Type Register

The ICTR characteristics are:

Purpose
Provides information about the interrupt controller.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, it is IMPLEMENTATION DEFINED if this register is accessible to accesses through un-
privileged DAP requests when either DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is
set.

Configurations
This register is always implemented.

Attributes
32-bit read-only register located at 0xE000E004.

Secure software can access the Non-secure version of this register via ICTR_NS located at 0xE002E004.
The location 0xE002E004 is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The ICTR bit assignments are:

03431

RES0

INTLINESNUM

Bits [31:4]
Reserved, RES0.

INTLINESNUM, bits [3:0]
Interrupt line set number. Indicates the number of the highest implemented register in each of the NVIC
control register sets, or in the case of NVIC_IPRn, 4xINTLINESNUM.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1584

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.127 ID_AFR0, Auxiliary Feature Register 0

The ID_AFR0 characteristics are:

Purpose
Provides information about the IMPLEMENTATION DEFINED features of the PE.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes
32-bit read-only register located at 0xE000ED4C.

Secure software can access the Non-secure version of this register via ID_AFR0_NS located at 0xE002ED4C.
The location 0xE002ED4C is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The ID_AFR0 bit assignments are:

03

IMPDEF0

47

IMPDEF1

811

IMPDEF2

1215

IMPDEF3

1631

RES0

Bits [31:16]
Reserved, RES0.

IMPDEFm, bits [4m+3:4m], for m = 0 to 3
IMPLEMENTATION DEFINED. IMPLEMENTATION DEFINED meaning.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1585

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.128 ID_DFR0, Debug Feature Register 0

The ID_DFR0 characteristics are:

Purpose
Provides top level information about the debug system.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes
32-bit read-only register located at 0xE000ED48.

Secure software can access the Non-secure version of this register via ID_DFR0_NS located at 0xE002ED48.
The location 0xE002ED48 is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The ID_DFR0 bit assignments are:

019

RES0

2023

MProfDbg

2427

RES0

2831

UDE

UDE, bits [31:28]
Unprivileged Debug Extension. Indicates support for the Unprivileged Debug Extension.

The possible values of this field are:

0b0000
Unprivileged Debug Extension is not implemented.

0b0001
Unprivileged Debug Extension is implemented.

If version Armv8.1-M of the architecture is not implemented, this field is RES0.

This field reads as an IMPLEMENTATION DEFINED value.

Bits [27:24]
Reserved, RES0.

MProfDbg, bits [23:20]
M-Profile debug. Indicates the supported M-Profile debug architecture.

The possible values of this field are:

0b0000
Halting debug is not implemented.

0b0010
Armv8-M Debug architecture.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1586

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

Bits [19:0]
Reserved, RES0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1587

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.129 ID_ISAR0, Instruction Set Attribute Register 0

The ID_ISAR0 characteristics are:

Purpose
Provides information about the instruction set implemented by the PE.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes
32-bit read-only register located at 0xE000ED60.

Secure software can access the Non-secure version of this register via ID_ISAR0_NS located at
0xE002ED60. The location 0xE002ED60 is RES0 to software executing in Non-secure state and the
debugger.

This register is not banked between Security states.

Preface

If coprocessors excluding the Floating-point Extension are not supported this register reads as 0x01101110.

If coprocessors excluding the Floating-point Extension are supported this register reads as 0x01141110.

Field descriptions

The ID_ISAR0 bit assignments are:

03

RES0

47

BitCount

811

BitField

1215

CmpBranch

1619

Coproc

2023

Debug

2427

Divide

2831

RES0

Bits [31:28]
Reserved, RES0.

Divide, bits [27:24]
Divide. Indicates the supported Divide instructions.

The possible values of this field are:

0b0001
Supports SDIV and UDIV instructions.

All other values are reserved.

This field reads as 0b0001.

Debug, bits [23:20]
Debug. Indicates the implemented Debug instructions.

The possible values of this field are:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1588

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0b0001
Supports BKPT instruction.

All other values are reserved.

This field reads as 0b0001.

Coproc, bits [19:16]
Coprocessor. Indicates the supported coprocessor instructions.

The possible values of this field are:

0b0000
No coprocessor instructions support other than FPU or MVE.

0b0100
Coprocessor instructions supported.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

CmpBranch, bits [15:12]
Compare and branch. Indicates the supported combined Compare and Branch instructions.

The possible values of this field are:

0b0001
Supports CBNZ and CBZ instructions.

0b0011
Supports CBNZ and CBZ instructions along with non-predicated low overhead looping (WLS, DLS, LE
and LCTP) and branch future (BF, BFX, BFL, BFLX, and BFCSEL) instructions.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

BitField, bits [11:8]
Bit field. Indicates the supported bit field instructions.

The possible values of this field are:

0b0001
BFC, BFI, SBFX, and UBFX supported.

All other values are reserved.

This field reads as 0b0001.

BitCount, bits [7:4]
Bit count. Indicates the supported bit count instructions.

The possible values of this field are:

0b0001
CLZ supported.

All other values are reserved.

This field reads as 0b0001.

Bits [3:0]
Reserved, RES0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1589

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.130 ID_ISAR1, Instruction Set Attribute Register 1

The ID_ISAR1 characteristics are:

Purpose
Provides information about the instruction set implemented by the PE.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes
32-bit read-only register located at 0xE000ED64.

Secure software can access the Non-secure version of this register via ID_ISAR1_NS located at
0xE002ED64. The location 0xE002ED64 is RES0 to software executing in Non-secure state and the
debugger.

This register is not banked between Security states.

Preface

If the DSP Extension is not implemented, this register reads as 0x02211000.

If the DSP Extension is implemented, this register reads as 0x02212000.

Field descriptions

The ID_ISAR1 bit assignments are:

011

RES0

1215

Extend

1619

IfThen

2023

Immediate

2427

Interwork

2831

RES0

Bits [31:28]
Reserved, RES0.

Interwork, bits [27:24]
Interworking. Indicates the implemented interworking instructions.

The possible values of this field are:

0b0010
BLX, BX, and loads to PC interwork.

All other values are reserved.

This field reads as 0b0010.

Immediate, bits [23:20]
Immediate. Indicates the implemented for data-processing instructions with long immediates.

The possible values of this field are:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1590

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0b0010
ADDW, MOVW, MOVT, and SUBW supported.

All other values are reserved.

This field reads as 0b0010.

IfThen, bits [19:16]
If-Then. Indicates the implemented If-Then instructions.

The possible values of this field are:

0b0001
IT instruction supported.

All other values are reserved.

This field reads as 0b0001.

Extend, bits [15:12]
Extend. Indicates the implemented Extend instructions.

The possible values of this field are:

0b0001
SXTB, SXTH, UXTB, and UXTH.

0b0010
Adds SXTB16, SXTAB, SXTAB16, SXTAH, UXTB16, UXTAB, UXTAB16, and UXTAH, DSP
Extension only.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

Bits [11:0]
Reserved, RES0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1591

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.131 ID_ISAR2, Instruction Set Attribute Register 2

The ID_ISAR2 characteristics are:

Purpose
Provides information about the instruction set implemented by the PE.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes
32-bit read-only register located at 0xE000ED68.

Secure software can access the Non-secure version of this register via ID_ISAR2_NS located at
0xE002ED68. The location 0xE002ED68 is RES0 to software executing in Non-secure state and the
debugger.

This register is not banked between Security states.

Preface

With bits [11:8] masked, if the DSP Extension is not implemented, this register reads as 0x20112032.

With bits[11:8] masked, if the DSP Extension is implemented, this register reads as 0x20232032.

The value of bits [11:8] is determined by whether the PE implements restartable or continuable multi-access
instructions.

Field descriptions

The ID_ISAR2 bit assignments are:

03

LoadStore

47

MemHint

8111215

Mult

1619

MultS

2023

MultU

2427

RES0

2831

Reversal

MultiAccessInt

Reversal, bits [31:28]
Reversal. Indicates the implemented Reversal instructions.

The possible values of this field are:

0b0010
REV, REV16, REVSH and RBIT instructions supported.

All other values are reserved.

This field reads as 0b0010.

Bits [27:24]
Reserved, RES0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1592

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

MultU, bits [23:20]
Multiply unsigned. Indicates the implemented advanced unsigned Multiply instructions.

The possible values of this field are:

0b0001
UMULL and UMLAL.

0b0010
Adds UMAAL, DSP Extension only.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

MultS, bits [19:16]
Multiply signed. Indicates the implemented advanced signed Multiply instructions.

The possible values of this field are:

0b0001
SMULL and SMLAL.

0b0011
Adds all saturating and DSP signed multiplies, DSP Extension only.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

Mult, bits [15:12]
Multiplies. Indicates the implemented additional Multiply instructions.

The possible values of this field are:

0b0010
MUL, MLA, and MLS.

All other values are reserved.

This field reads as 0b0010.

MultiAccessInt, bits [11:8]
Multi-access instructions. Indicates the support for interruptible multi-access instructions.

The possible values of this field are:

0b0000
No support. LDM and STM instructions are not interruptible.

0b0001
LDM and STM instructions are restartable.

0b0010
LDM and STM instructions, and if Armv8.1-M is implemented the CLRM instruction, are continuable.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

MemHint, bits [7:4]
Memory hints. Indicates the implemented Memory hint instructions.

The possible values of this field are:

0b0011
PLI and PLD instructions implemented.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1593

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

All other values are reserved.

This field reads as 0b0011.

LoadStore, bits [3:0]
Load/store. Indicates the implemented additional load/store instructions.

The possible values of this field are:

0b0010
Supports load-acquire, store-release, and exclusive load and store instructions.

All other values are reserved.

This field reads as 0b0010.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1594

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.132 ID_ISAR3, Instruction Set Attribute Register 3

The ID_ISAR3 characteristics are:

Purpose
Provides information about the instruction set implemented by the PE.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes
32-bit read-only register located at 0xE000ED6C.

Secure software can access the Non-secure version of this register via ID_ISAR3_NS located at
0xE002ED6C. The location 0xE002ED6C is RES0 to software executing in Non-secure state and the
debugger.

This register is not banked between Security states.

Preface

If the DSP Extension is not implemented, this register reads as 0x01111110.

If the DSP Extension is implemented, this register reads as 0x01111131.

Field descriptions

The ID_ISAR3 bit assignments are:

03

Saturate

47

SIMD

811

SVC

1215

SynchPrim

1619

TabBranch

2023

T32Copy

2427

TrueNOP

2831

RES0

Bits [31:28]
Reserved, RES0.

TrueNOP, bits [27:24]
True no-operation. Indicates the implemented true NOP instructions.

The possible values of this field are:

0b0001
NOP instruction and compatible hints implemented.

All other values are reserved.

This field reads as 0b0001.

T32Copy, bits [23:20]
T32 copy. Indicates the support for T32 non flag-setting MOV instructions.

The possible values of this field are:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1595

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0b0001
Encoding T1 of MOV (register) supports copying low register to low register.

All other values are reserved.

This field reads as 0b0001.

TabBranch, bits [19:16]
Table branch. Indicates the implemented Table Branch instructions.

The possible values of this field are:

0b0001
TBB and TBH implemented.

All other values are reserved.

This field reads as 0b0001.

SynchPrim, bits [15:12]
Synchronization primitives. Used in conjunction with ID_ISAR4.SynchPrim_frac to indicate the implemented
synchronization primitive instructions.

The possible values of this field are:

0b0001
LDREX, STREX, LDREXB, STREXB, LDREXH, STREXH, and CLREX implemented.

All other values are reserved.

This field reads as 0b0001.

SVC, bits [11:8]
Supervisor Call. Indicates the implemented SVC instructions.

The possible values of this field are:

0b0001
SVC instruction implemented.

All other values are reserved.

This field reads as 0b0001.

SIMD, bits [7:4]
Single-instruction, multiple-data. Indicates the implemented SIMD instructions.

The possible values of this field are:

0b0001
SSAT, USAT, and Q-bit implemented.

0b0011
Adds all packed arithmetic and GE-bits, DSP Extension only.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

Saturate, bits [3:0]
Saturate. Indicates the implemented saturating instructions.

The possible values of this field are:

0b0000
None implemented.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1596

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0b0001
QADD, QDADD, QDSUB, QSUB, and Q-bit implemented, DSP Extension only.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1597

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.133 ID_ISAR4, Instruction Set Attribute Register 4

The ID_ISAR4 characteristics are:

Purpose
Provides information about the instruction set implemented by the PE.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes
32-bit read-only register located at 0xE000ED70.

Secure software can access the Non-secure version of this register via ID_ISAR4_NS located at
0xE002ED70. The location 0xE002ED70 is RES0 to software executing in Non-secure state and the
debugger.

This register is not banked between Security states.

Preface

This register reads as 0x01310132.

Field descriptions

The ID_ISAR4 bit assignments are:

03

Unpriv

47

WithShifts

811

Writeback

1215

RES0

1619

Barrier

20232427

PSR_M

2831

RES0

SyncPrim_frac

Bits [31:28]
Reserved, RES0.

PSR_M, bits [27:24]
Program Status Registers M. Indicates the implemented M profile instructions to modify the PSRs.

The possible values of this field are:

0b0001
M profile forms of CPS, MRS, and MSR implemented.

All other values are reserved.

This field reads as 0b0001.

SyncPrim_frac, bits [23:20]
Synchronization primitives fractional. Used in conjunction with ID_ISAR3.SynchPrim to indicate the
implemented synchronization primitive instructions.

The possible values of this field are:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1598

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0b0011
LDREX, STREX, CLREX, LDREXB, LDREXH, STREXB, and STREXH implemented.

All other values are reserved.

This field reads as 0b0011.

Barrier, bits [19:16]
Barrier. Indicates the implemented Barrier instructions.

The possible values of this field are:

0b0001
CSDB, DMB, DSB, ISB, PSSBB and SSBB barrier instructions implemented.

All other values are reserved.

This field reads as 0b0001.

Bits [15:12]
Reserved, RES0.

Writeback, bits [11:8]
Writeback. Indicates the support for writeback addressing modes.

The possible values of this field are:

0b0001
All writeback addressing modes supported.

All other values are reserved.

This field reads as 0b0001.

WithShifts, bits [7:4]
With shifts. Indicates the support for write-back addressing modes.

The possible values of this field are:

0b0011
Support for constant shifts on load/store and other instructions.

All other values are reserved.

This field reads as 0b0011.

Unpriv, bits [3:0]
Unprivileged. Indicates the implemented unprivileged instructions.

The possible values of this field are:

0b0010
LDRBT, LDRHT, LDRSBT, LDRSHT, LDRT, STRBT, STRHT, and STRT implemented.

All other values are reserved.

This field reads as 0b0010.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1599

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.134 ID_ISAR5, Instruction Set Attribute Register 5

The ID_ISAR5 characteristics are:

Purpose
Provides information about the instruction set implemented by the PE.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes
32-bit read-only register located at 0xE000ED74.

Secure software can access the Non-secure version of this register via ID_ISAR5_NS located at
0xE002ED74. The location 0xE002ED74 is RES0 to software executing in Non-secure state and the
debugger.

This register is not banked between Security states.

Field descriptions

The ID_ISAR5 bit assignments are:

031

RES0

Bits [31:0]
Reserved, RES0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1600

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.135 ID_MMFR0, Memory Model Feature Register 0

The ID_MMFR0 characteristics are:

Purpose
Provides information about the implemented memory model and memory management support.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes
32-bit read-only register located at 0xE000ED50.

Secure software can access the Non-secure version of this register via ID_MMFR0_NS located at
0xE002ED50. The location 0xE002ED50 is RES0 to software executing in Non-secure state and the
debugger.

This register is not banked between Security states.

Field descriptions

The ID_MMFR0 bit assignments are:

03

RES0

47

PMSA

811

OuterShr

1215

ShareLvl

1619

TCM

2023

AuxReg

2431

RES0

Bits [31:24]
Reserved, RES0.

AuxReg, bits [23:20]
Auxiliary Registers. Indicates support for Auxiliary Control Registers.

The possible values of this field are:

0b0000
No Auxiliary Control Registers.

0b0001
Auxiliary Control Registers supported.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

TCM, bits [19:16]
Tightly Coupled Memories. Indicates support for Tightly Coupled Memories (TCMs).

The possible values of this field are:

0b0000
None supported.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1601

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0b0001
TCMs supported with IMPLEMENTATION DEFINED control.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

ShareLvl, bits [15:12]
Shareability Levels. Indicates the number of Shareability levels implemented.

The possible values of this field are:

0b0000
One level of Shareability implemented.

0b0001
Two levels of Shareability implemented.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

OuterShr, bits [11:8]
Outermost Shareability. Indicates the outermost Shareability domain implemented.

The possible values of this field are:

0b0000
Implemented as Non-cacheable.

0b0001
Implemented with hardware coherency support.

0b1111
Shareability ignored.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

PMSA, bits [7:4]
Protected memory system architecture. Indicates support for the protected memory system architecture
(PMSA).

The possible values of this field are:

0b0100
Supports PMSAv8.

All other values are reserved.

This field reads as 0b0100.

Bits [3:0]
Reserved, RES0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1602

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.136 ID_MMFR1, Memory Model Feature Register 1

The ID_MMFR1 characteristics are:

Purpose
Provides information about the implemented memory model and memory management support.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes
32-bit read-only register located at 0xE000ED54.

Secure software can access the Non-secure version of this register via ID_MMFR1_NS located at
0xE002ED54. The location 0xE002ED54 is RES0 to software executing in Non-secure state and the
debugger.

This register is not banked between Security states.

Field descriptions

The ID_MMFR1 bit assignments are:

031

RES0

Bits [31:0]
Reserved, RES0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1603

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.137 ID_MMFR2, Memory Model Feature Register 2

The ID_MMFR2 characteristics are:

Purpose
Provides information about the implemented memory model and memory management support.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes
32-bit read-only register located at 0xE000ED58.

Secure software can access the Non-secure version of this register via ID_MMFR2_NS located at
0xE002ED58. The location 0xE002ED58 is RES0 to software executing in Non-secure state and the
debugger.

This register is not banked between Security states.

Field descriptions

The ID_MMFR2 bit assignments are:

023

RES0

2427

WFIStall

2831

RES0

Bits [31:28]
Reserved, RES0.

WFIStall, bits [27:24]
WFI stall. Indicates the support for Wait For Interrupt (WFI) stalling.

The possible values of this field are:

0b0000
WFI never stalls.

0b0001
WFI has the ability to stall.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

Bits [23:0]
Reserved, RES0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1604

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.138 ID_MMFR3, Memory Model Feature Register 3

The ID_MMFR3 characteristics are:

Purpose
Provides information about the implemented memory model and memory management support.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes
32-bit read-only register located at 0xE000ED5C.

Secure software can access the Non-secure version of this register via ID_MMFR3_NS located at
0xE002ED5C. The location 0xE002ED5C is RES0 to software executing in Non-secure state and the
debugger.

This register is not banked between Security states.

Field descriptions

The ID_MMFR3 bit assignments are:

03

CMaintVA

47

CMaintSW

811

BPMaint

1231

RES0

Bits [31:12]
Reserved, RES0.

BPMaint, bits [11:8]
Branch predictor maintenance. Indicates the supported branch predictor maintenance.

The possible values of this field are:

0b0000
None supported.

0b0001
Support for invalidate all of branch predictors.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

CMaintSW, bits [7:4]
Cache maintenance set/way. Indicates the supported cache maintenance operations by set/way.

The possible values of this field are:

0b0000
None supported.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1605

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0b0001
Maintenance by set/way operations supported.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

CMaintVA, bits [3:0]
Cache maintenance by address. Indicates the supported cache maintenance operations by address.

The possible values of this field are:

0b0000
None supported.

0b0001
Maintenance by address and instruction cache invalidate all supported.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1606

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.139 ID_PFR0, Processor Feature Register 0

The ID_PFR0 characteristics are:

Purpose
Gives top-level information about the instruction set supported by the PE.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes
32-bit read-only register located at 0xE000ED40.

Secure software can access the Non-secure version of this register via ID_PFR0_NS located at 0xE002ED40.
The location 0xE002ED40 is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The ID_PFR0 bit assignments are:

03

State0

47

State1

827

RES0

2831

RAS

RAS, bits [31:28]
RAS Extension. Identifies which version of the RAS extension is implemented.

The possible values of this field are:

0b0000
No RAS extension.

0b0010
Version 1 of the RAS extension implemented.

All other values are reserved.

If version Armv8.1-M of the architecture is not implemented, this field is RES0.

This field reads as an IMPLEMENTATION DEFINED value.

Bits [27:8]
Reserved, RES0.

State1, bits [7:4]
T32 instruction set support.

The possible values of this field are:

0b0011
T32 instruction set including Thumb-2 Technology implemented.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1607

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

All other values are reserved.

This field reads as 0b0011.

State0, bits [3:0]
A32 instruction set support.

The possible values of this field are:

0b0000
A32 instruction set not implemented.

All other values are reserved.

This field reads as 0b0000.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1608

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.140 ID_PFR1, Processor Feature Register 1

The ID_PFR1 characteristics are:

Purpose
Gives information about the programmers’ model and Extensions support.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes
32-bit read-only register located at 0xE000ED44.

Secure software can access the Non-secure version of this register via ID_PFR1_NS located at 0xE002ED44.
The location 0xE002ED44 is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The ID_PFR1 bit assignments are:

03

RES0

47

Security

811

MProgMod

1231

RES0

Bits [31:12]
Reserved, RES0.

MProgMod, bits [11:8]
M programmers’ model. Identifies support for the M-Profile programmers’ model support.

The possible values of this field are:

0b0010
Two-stack programmers’ model.

All other values are reserved.

This field reads as 0b0010.

Security, bits [7:4]
Security. Identifies whether the Security Extension is implemented.

The possible values of this field are:

0b0000
Security Extension not implemented.

0b0001
Security Extension implemented.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1609

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0b0011
Security Extension implemented with state handling instructions (VSCCLRM, CLRM, FPCXT access
instructions and disabling SG Thread mode re-entrancy).

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

Bits [3:0]
Reserved, RES0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1610

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.141 IPSR, Interrupt Program Status Register

The IPSR characteristics are:

Purpose
Provides privileged access to the current exception number field.

Usage constraints
Privileged access only. Unprivileged access is RAZ/WI, unless otherwise stated.

Configurations
This register is always implemented.

Attributes
32-bit read/write special-purpose register.

This register is not banked between Security states.

Field descriptions

The IPSR bit assignments are:

08

Exception

931

RES0

Bits [31:9]
Reserved, RES0.

Exception, bits [8:0]
Exception number. Holds the exception number of the currently-executing exception, or zero for Thread
mode.

The possible values of this field are:

Zero
PE in Thread mode.

Non zero
PE in Handler mode in given exception number. On a function call from Secure state the value is set to 1
to ensure that the Non-secure state cannot determine which exception handler is executing.

This field resets to zero on a Warm reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1611

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.142 ITM_CIDR0, ITM Component Identification Register 0

The ITM_CIDR0 characteristics are:

Purpose
Provides CoreSight discovery information for the ITM.

Usage constraints
If the Main Extension is implemented, both privileged and unprivileged accesses are permitted.

If the Main Extension is not implemented, unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the ITM is implemented.

This register is RES0 if the ITM is not implemented.

If the Main Extension is not implemented then the ITM is not implemented.

Attributes
32-bit read-only register located at 0xE0000FF0.

This register is not banked between Security states.

Field descriptions

The ITM_CIDR0 bit assignments are:

07

PRMBL_0

831

RES0

Bits [31:8]
Reserved, RES0.

PRMBL_0, bits [7:0]
CoreSight component identification preamble. See the Arm® CoreSight™ Architecture Specification.

This field reads as 0x0D.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1612

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.143 ITM_CIDR1, ITM Component Identification Register 1

The ITM_CIDR1 characteristics are:

Purpose
Provides CoreSight discovery information for the ITM.

Usage constraints
If the Main Extension is implemented, both privileged and unprivileged accesses are permitted.

If the Main Extension is not implemented, unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the ITM is implemented.

This register is RES0 if the ITM is not implemented.

If the Main Extension is not implemented then the ITM is not implemented.

Attributes
32-bit read-only register located at 0xE0000FF4.

This register is not banked between Security states.

Field descriptions

The ITM_CIDR1 bit assignments are:

03

PRMBL_1

47

CLASS

831

RES0

Bits [31:8]
Reserved, RES0.

CLASS, bits [7:4]
CoreSight component class. See the Arm® CoreSight™ Architecture Specification.

This field reads as 0x9.

PRMBL_1, bits [3:0]
CoreSight component identification preamble. See the Arm® CoreSight™ Architecture Specification.

This field reads as 0x0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1613

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.144 ITM_CIDR2, ITM Component Identification Register 2

The ITM_CIDR2 characteristics are:

Purpose
Provides CoreSight discovery information for the ITM.

Usage constraints
If the Main Extension is implemented, both privileged and unprivileged accesses are permitted.

If the Main Extension is not implemented, unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the ITM is implemented.

This register is RES0 if the ITM is not implemented.

If the Main Extension is not implemented then the ITM is not implemented.

Attributes
32-bit read-only register located at 0xE0000FF8.

This register is not banked between Security states.

Field descriptions

The ITM_CIDR2 bit assignments are:

07

PRMBL_2

831

RES0

Bits [31:8]
Reserved, RES0.

PRMBL_2, bits [7:0]
CoreSight component identification preamble. See the Arm® CoreSight™ Architecture Specification.

This field reads as 0x05.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1614

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.145 ITM_CIDR3, ITM Component Identification Register 3

The ITM_CIDR3 characteristics are:

Purpose
Provides CoreSight discovery information for the ITM.

Usage constraints
If the Main Extension is implemented, both privileged and unprivileged accesses are permitted.

If the Main Extension is not implemented, unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the ITM is implemented.

This register is RES0 if the ITM is not implemented.

If the Main Extension is not implemented then the ITM is not implemented.

Attributes
32-bit read-only register located at 0xE0000FFC.

This register is not banked between Security states.

Field descriptions

The ITM_CIDR3 bit assignments are:

07

PRMBL_3

831

RES0

Bits [31:8]
Reserved, RES0.

PRMBL_3, bits [7:0]
CoreSight component identification preamble. See the Arm® CoreSight™ Architecture Specification.

This field reads as 0xB1.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1615

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.146 ITM_DEVARCH, ITM Device Architecture Register

The ITM_DEVARCH characteristics are:

Purpose
Provides CoreSight discovery information for the ITM.

Usage constraints
If the Main Extension is implemented, both privileged and unprivileged accesses are permitted.

If the Main Extension is not implemented, unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the ITM is implemented.

This register is RES0 if the ITM is not implemented.

If the Main Extension is not implemented then the ITM is not implemented.

Attributes
32-bit read-only register located at 0xE0000FBC.

This register is not banked between Security states.

Field descriptions

The ITM_DEVARCH bit assignments are:

011

ARCHPART

1215

ARCHVER

1619

REVISION

202131

ARCHITECT

PRESENT

ARCHITECT, bits [31:21]
Architect. Defines the architect of the component. Bits [31:28] are the JEP106 continuation code (JEP106
bank ID, minus 1) and bits [27:21] are the JEP106 ID code.

The possible values of this field are:

0x23B
JEP106 continuation code 0x4, ID code 0x3B. Arm Limited.

Other values are defined by the JEDEC JEP106 standard.

This field reads as 0x23B.

PRESENT, bit [20]
DEVARCH Present. Defines that the DEVARCH register is present.

The possible values of this bit are:

1
DEVARCH information present.

This bit reads as one.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1616

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

REVISION, bits [19:16]
Revision. Defines the architecture revision of the component.

The possible values of this field are:

0b0000
ITM architecture v2.0.

This field reads as 0b0000.

ARCHVER, bits [15:12]
Architecture Version. Defines the architecture version of the component.

The possible values of this field are:

0b0001
ITM architecture v2.

ARCHVER and ARCHPART are also defined as a single field, ARCHID, so that ARCHVER is
ARCHID[15:12].

This field reads as 0b0001.

ARCHPART, bits [11:0]
Architecture Part. Defines the architecture of the component.

The possible values of this field are:

0xA01
ITM architecture.

ARCHVER and ARCHPART are also defined as a single field, ARCHID, so that ARCHPART is
ARCHID[11:0].

This field reads as 0xA01.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1617

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.147 ITM_DEVTYPE, ITM Device Type Register

The ITM_DEVTYPE characteristics are:

Purpose
Provides CoreSight discovery information for the ITM.

Usage constraints
If the Main Extension is implemented, both privileged and unprivileged accesses are permitted.

If the Main Extension is not implemented, unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the ITM is implemented.

This register is RES0 if the ITM is not implemented.

If the Main Extension is not implemented then the ITM is not implemented.

Attributes
32-bit read-only register located at 0xE0000FCC.

This register is not banked between Security states.

Field descriptions

The ITM_DEVTYPE bit assignments are:

03

MAJOR

47

SUB

831

RES0

Bits [31:8]
Reserved, RES0.

SUB, bits [7:4]
Sub-type. Component sub-type.

The possible values of this field are:

0x0
Other. Only permitted if the MAJOR field reads as 0x0.

0x4
Associated with a Bus, stimulus derived from bus activity. Only permitted if the MAJOR field reads as
0x3.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1618

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

MAJOR, bits [3:0]
Major type. Component major type.

The possible values of this field are:

0x0
Miscellaneous.

0x3
Trace Source.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1619

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.148 ITM_LAR, ITM Software Lock Access Register

The ITM_LAR characteristics are:

Purpose
Provides CoreSight Software Lock control for the ITM, see the Arm® CoreSight™ Architecture Specification
for details.

Usage constraints
If the Main Extension is implemented, both privileged and unprivileged accesses are permitted, but unprivi-
leged writes are ignored.

If the Main Extension is not implemented, unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

This register is RAZ/WI if accessed via the debugger.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the ITM is implemented.

This register is RES0 if the ITM is not implemented.

If the Main Extension is not implemented then the ITM is not implemented.

Present only if the optional Software Lock is implemented.

This register is RAZ/WI if the Software Lock is not implemented.

Attributes
32-bit write-only register located at 0xE0000FB0.

This register is not banked between Security states.

Field descriptions

The ITM_LAR bit assignments are:

031

KEY

KEY, bits [31:0]
Lock Access control.

Writing the key value 0xC5ACCE55 to this field unlocks the lock, enabling write accesses to the registers of
this component through a memory-mapped interface.

Writing any other value to this register locks the lock, disabling write accesses to the registers of this
component through a memory mapped interface.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1620

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.149 ITM_LSR, ITM Software Lock Status Register

The ITM_LSR characteristics are:

Purpose
Provides CoreSight Software Lock status information for the ITM, see the Arm® CoreSight™ Architecture
Specification for details.

Usage constraints
If the Main Extension is implemented, both privileged and unprivileged accesses are permitted.

If the Main Extension is not implemented, unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

This register is RAZ/WI if accessed via the debugger.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the ITM is implemented.

This register is RES0 if the ITM is not implemented.

If the Main Extension is not implemented then the ITM is not implemented.

Present only if the optional Software Lock is implemented.

This register is RAZ/WI if the Software Lock is not implemented.

Attributes
32-bit read-only register located at 0xE0000FB4.

This register is not banked between Security states.

Field descriptions

The ITM_LSR bit assignments are:

012331

RES0

nTT
SLK

SLI

Bits [31:3]
Reserved, RES0.

nTT, bit [2]
Not thirty-two bit. See the Arm® CoreSight™ Architecture Specification.

This bit reads as zero.

SLK, bit [1]
Software Lock status. See the Arm® CoreSight™ Architecture Specification.

The possible values of this bit are:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1621

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0
Lock clear. Software writes are permitted to the registers of this component.

1
Lock set. Software writes to the registers of this component are ignored, and reads have no side-effects.

For a debugger read of this register, or when the Software Lock is not implemented, this bit is RES0.

This bit resets to one on a Warm reset.

SLI, bit [0]
Software Lock implemented. See the Arm® CoreSight™ Architecture Specification.

The possible values of this bit are:

0
Software Lock not implemented or debugger access.

1
Software Lock is implemented and software access.

For a debugger read of this register, or when the Software Lock is not implemented, this bit is RAZ.

This bit reads as an IMPLEMENTATION DEFINED value.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1622

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.150 ITM_PIDR0, ITM Peripheral Identification Register 0

The ITM_PIDR0 characteristics are:

Purpose
Provides CoreSight discovery information for the ITM.

Usage constraints
If the Main Extension is implemented, both privileged and unprivileged accesses are permitted.

If the Main Extension is not implemented, unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the ITM is implemented.

This register is RES0 if the ITM is not implemented.

If the Main Extension is not implemented then the ITM is not implemented.

Attributes
32-bit read-only register located at 0xE0000FE0.

This register is not banked between Security states.

Field descriptions

The ITM_PIDR0 bit assignments are:

07

PART_0

831

RES0

Bits [31:8]
Reserved, RES0.

PART_0, bits [7:0]
Part number bits [7:0]. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1623

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.151 ITM_PIDR1, ITM Peripheral Identification Register 1

The ITM_PIDR1 characteristics are:

Purpose
Provides CoreSight discovery information for the ITM.

Usage constraints
If the Main Extension is implemented, both privileged and unprivileged accesses are permitted.

If the Main Extension is not implemented, unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the ITM is implemented.

This register is RES0 if the ITM is not implemented.

If the Main Extension is not implemented then the ITM is not implemented.

Attributes
32-bit read-only register located at 0xE0000FE4.

This register is not banked between Security states.

Field descriptions

The ITM_PIDR1 bit assignments are:

03

PART_1

47

DES_0

831

RES0

Bits [31:8]
Reserved, RES0.

DES_0, bits [7:4]
JEP106 identification code bits [3:0]. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

PART_1, bits [3:0]
Part number bits [11:8]. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1624

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.152 ITM_PIDR2, ITM Peripheral Identification Register 2

The ITM_PIDR2 characteristics are:

Purpose
Provides CoreSight discovery information for the ITM.

Usage constraints
If the Main Extension is implemented, both privileged and unprivileged accesses are permitted.

If the Main Extension is not implemented, unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the ITM is implemented.

This register is RES0 if the ITM is not implemented.

If the Main Extension is not implemented then the ITM is not implemented.

Attributes
32-bit read-only register located at 0xE0000FE8.

This register is not banked between Security states.

Field descriptions

The ITM_PIDR2 bit assignments are:

02

DES_1

347

REVISION

831

RES0

JEDEC

Bits [31:8]
Reserved, RES0.

REVISION, bits [7:4]
Component revision. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

JEDEC, bit [3]
JEDEC assignee value is used. See the Arm® CoreSight™ Architecture Specification.

This bit reads as one.

DES_1, bits [2:0]
JEP106 identification code bits [6:4]. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1625

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.153 ITM_PIDR3, ITM Peripheral Identification Register 3

The ITM_PIDR3 characteristics are:

Purpose
Provides CoreSight discovery information for the ITM.

Usage constraints
If the Main Extension is implemented, both privileged and unprivileged accesses are permitted.

If the Main Extension is not implemented, unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the ITM is implemented.

This register is RES0 if the ITM is not implemented.

If the Main Extension is not implemented then the ITM is not implemented.

Attributes
32-bit read-only register located at 0xE0000FEC.

This register is not banked between Security states.

Field descriptions

The ITM_PIDR3 bit assignments are:

03

CMOD

47

REVAND

831

RES0

Bits [31:8]
Reserved, RES0.

REVAND, bits [7:4]
RevAnd. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

CMOD, bits [3:0]
Customer Modified. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1626

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.154 ITM_PIDR4, ITM Peripheral Identification Register 4

The ITM_PIDR4 characteristics are:

Purpose
Provides CoreSight discovery information for the ITM.

Usage constraints
If the Main Extension is implemented, both privileged and unprivileged accesses are permitted.

If the Main Extension is not implemented, unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the ITM is implemented.

This register is RES0 if the ITM is not implemented.

If the Main Extension is not implemented then the ITM is not implemented.

Attributes
32-bit read-only register located at 0xE0000FD0.

This register is not banked between Security states.

Field descriptions

The ITM_PIDR4 bit assignments are:

03

DES_2

47

SIZE

831

RES0

Bits [31:8]
Reserved, RES0.

SIZE, bits [7:4]
4KB count. See the Arm® CoreSight™ Architecture Specification.

This field reads as zero.

DES_2, bits [3:0]
JEP106 continuation code. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1627

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.155 ITM_PIDR5, ITM Peripheral Identification Register 5

The ITM_PIDR5 characteristics are:

Purpose
Provides CoreSight discovery information for the ITM.

Usage constraints
If the Main Extension is implemented, both privileged and unprivileged accesses are permitted.

If the Main Extension is not implemented, unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the ITM is implemented.

This register is RES0 if the ITM is not implemented.

If the Main Extension is not implemented then the ITM is not implemented.

Attributes
32-bit read-only register located at 0xE0000FD4.

This register is not banked between Security states.

Field descriptions

The ITM_PIDR5 bit assignments are:

031

RES0

Bits [31:0]
Reserved, RES0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1628

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.156 ITM_PIDR6, ITM Peripheral Identification Register 6

The ITM_PIDR6 characteristics are:

Purpose
Provides CoreSight discovery information for the ITM.

Usage constraints
If the Main Extension is implemented, both privileged and unprivileged accesses are permitted.

If the Main Extension is not implemented, unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the ITM is implemented.

This register is RES0 if the ITM is not implemented.

If the Main Extension is not implemented then the ITM is not implemented.

Attributes
32-bit read-only register located at 0xE0000FD8.

This register is not banked between Security states.

Field descriptions

The ITM_PIDR6 bit assignments are:

031

RES0

Bits [31:0]
Reserved, RES0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1629

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.157 ITM_PIDR7, ITM Peripheral Identification Register 7

The ITM_PIDR7 characteristics are:

Purpose
Provides CoreSight discovery information for the ITM.

Usage constraints
If the Main Extension is implemented, both privileged and unprivileged accesses are permitted.

If the Main Extension is not implemented, unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the ITM is implemented.

This register is RES0 if the ITM is not implemented.

If the Main Extension is not implemented then the ITM is not implemented.

Attributes
32-bit read-only register located at 0xE0000FDC.

This register is not banked between Security states.

Field descriptions

The ITM_PIDR7 bit assignments are:

031

RES0

Bits [31:0]
Reserved, RES0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1630

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.158 ITM_STIMn, ITM Stimulus Port Register, n = 0 - 255

The ITM_STIM{0..255} characteristics are:

Purpose
Provides the interface for generating Instrumentation packets.

Usage constraints
If the Main Extension is implemented, both privileged and unprivileged accesses are permitted, but unprivi-
leged writes are ignored if ITM_TPR.PRIVMASK[n DIV 8] is set to one.

If the Main Extension is not implemented, unprivileged accesses generate a fault.

All writes are ignored if ITM_TCR.ITMENA == 0 or ITM_TER{n DIV 32}.STIMENA[n MOD 32] == 0.

This register is word, halfword, and byte accessible.

Accesses that are not word aligned are UNPREDICTABLE.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if the ITM is implemented.

This register is RES0 if the ITM is not implemented.

If the Main Extension is not implemented then the ITM is not implemented.

Attributes
32-bit read/write register located at 0xE0000000 + 4n.

This register is not banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The ITM_STIM{0..255} bit assignments are:

On a read:

01231

RES0

DISABLED FIFOREADY

On a write:

031

STIMULUS

STIMULUS, bits [31:0], on a write
Stimulus data. Data to write to the stimulus port output buffer, for forwarding as an Instrumentation packet.
The size of write access determines the type of Instrumentation packet generated.

Bits [31:2], on a read
Reserved, RES0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1631

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

DISABLED, bit [1], on a read
Disabled. Indicates whether the stimulus port is enabled or disabled.

The possible values of this bit are:

0
Stimulus port and ITM are enabled.

1
Stimulus port or ITM is disabled.

FIFOREADY, bit [0], on a read
FIFO ready. Indicates whether the stimulus port can accept data.

The possible values of this bit are:

0
Stimulus port cannot accept data.

1
Stimulus port can accept at least one word.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1632

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.159 ITM_TCR, ITM Trace Control Register

The ITM_TCR characteristics are:

Purpose
Configures and controls transfers through the ITM interface.

Usage constraints
If the Main Extension is implemented, both privileged and unprivileged accesses are permitted, but unprivi-
leged writes are ignored.

If the Main Extension is not implemented, unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if the ITM is implemented.

This register is RES0 if the ITM is not implemented.

If the Main Extension is not implemented then the ITM is not implemented.

Attributes
32-bit read/write register located at 0xE0000E80.

This register is not banked between Security states.

Field descriptions

The ITM_TCR bit assignments are:

01234567

RES0

8910111215

RES0

1622

TraceBusID

232431

RES0

BUSY
GTSFREQ
TSPrescale

STALLENA
SWOENA

ITMENA
TSENA
SYNCENA
TXENA

Bits [31:24]
Reserved, RES0.

BUSY, bit [23]
ITM busy. Indicates whether the ITM is currently processing events.

The possible values of this bit are:

0
ITM is not processing any events.

1
Events present and being drained.

Events means the ITM is generating or processing any of:

• Packets generated by the ITM from writes to Stimulus Ports.

• Other packets generated by the ITM itself.

• Packets generated by the DWT.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1633

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

This bit is read-only.

TraceBusID, bits [22:16]
Trace bus identity. Identifier for multi-source trace stream formatting. If multi-source trace is in use, the
debugger must write a unique nonzero trace ID value to this field.

The possible values of this field are:

0x00
Multi-source trace not in use.

0x01-0x6F
Unique trace ID value to be used for ITM trace packets.

All other values are reserved. If the ITM is the only trace source in the system, this field might be RAZ.

This field resets to an UNKNOWN value on a Cold reset.

Bits [15:12]
Reserved, RES0.

GTSFREQ, bits [11:10]
Global timestamp frequency. Defines how often the ITM generates a global timestamp, based on the global
timestamp clock frequency, or disables generation of global timestamps.

The possible values of this field are:

0b00
Disable generation of Global Timestamp packets.

0b01
Generate timestamp request whenever the ITM detects a change in global timestamp counter bits [N-1:7].
This is approximately every 128 cycles.

0b10
Generate timestamp request whenever the ITM detects a change in global timestamp counter bits
[N-1:13]. This is approximately every 8192 cycles.

0b11
Generate a timestamp after every packet, if the output FIFO is empty.

N is the size of the global timestamp counter.

If the implementation does not support global timestamping then these bits are reserved, RAZ/WI.

This field resets to zero on a Cold reset.

TSPrescale, bits [9:8]
Timestamp prescale. Local timestamp prescaler, used with the trace packet reference clock.

The possible values of this field are:

0b00
No prescaling.

0b01
Divide by 4.

0b10
Divide by 16.

0b11
Divide by 64.

If the processor does not implement the timestamp prescaler then these bits are reserved, RAZ/WI.

This field resets to zero on a Cold reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1634

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

Bits [7:6]
Reserved, RES0.

STALLENA, bit [5]
Stall enable. Stall the PE to guarantee delivery of Data Trace packets.

The possible values of this bit are:

0
Drop Hardware Source packets and generate an Overflow packet if the ITM output is stalled.

1
Stall the PE to guarantee delivery of Data Trace packets.

If stalling is not implemented, this bit is RAZ/WI.

SWOENA, bit [4]
SWO enable. Enables asynchronous clocking of the timestamp counter.

The possible values of this bit are:

0
Timestamp counter uses the processor system clock.

1
Timestamp counter uses asynchronous clock from the TPIU interface. The timestamp counter is held in
reset while the output line is idle.

Which clocking modes are implemented is IMPLEMENTATION DEFINED. If the implementation does not
support both modes this bit is either RAZ or RAO, to indicate the implemented mode.

This bit resets to an UNKNOWN value on a Cold reset.

TXENA, bit [3]
Transmit enable. Enables forwarding of hardware event packets from the DWT unit or PMU to the ITM for
output to the TPIU.

The possible values of this bit are:

0
Disabled.

1
Enabled.

It is IMPLEMENTATION DEFINED whether the DWT or PMU discards packets that cannot be forwarded to
the ITM.

This bit resets to zero on a Cold reset.

Note

If a debugger changes this bit from 0 to 1, the DWT or PMU might forward a hardware event packet
that it has previously generated.

SYNCENA, bit [2]
Synchronization enable. Enables Synchronization packet transmission for a synchronous TPIU.

The possible values of this bit are:

0
Disabled.

1
Enabled.

This bit resets to zero on a Cold reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1635

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

Note

If a debugger sets this bit to 1 it must also configure DWT_CTRL.SYNCTAP for the correct
synchronization speed.

TSENA, bit [1]
Timestamp enable. Enables Local timestamp generation.

The possible values of this bit are:

0
Disabled.

1
Enabled.

This bit resets to zero on a Cold reset.

ITMENA, bit [0]
ITM enable. Enables the ITM.

The possible values of this bit are:

0
Disabled.

1
Enabled.

This is the global enable for the ITM unit. A debugger must set this bit to 1 to permit writes to all Stimulus
Port registers.

This bit resets to zero on a Cold reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1636

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.160 ITM_TERn, ITM Trace Enable Register, n = 0 - 7

The ITM_TER{0..7} characteristics are:

Purpose
Provide an individual enable bit for each ITM_STIM register.

Usage constraints
If the Main Extension is implemented, both privileged and unprivileged accesses are permitted.

If the Main Extension is not implemented, unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if the ITM is implemented.

This register is RES0 if the ITM is not implemented.

If the Main Extension is not implemented then the ITM is not implemented.

Attributes
32-bit read/write register located at 0xE0000E00 + 4n.

This register is not banked between Security states.

Field descriptions

The ITM_TER{0..7} bit assignments are:

031

STIMENA

STIMENA, bits [31:0]
Stimulus enable. For STIMENA[m] in ITM_TERn, controls whether stimulus port ITM_STIM<32n+m> is
enabled.

The possible values of each bit are:

0
Stimulus port (32n + m) disabled.

1
Stimulus port (32n + m) enabled.

Bits corresponding to unimplemented stimulus ports are RAZ/WI. Unprivileged writes to ITM_TERn do not
update STIMENA[m] if ITM_TPR.PRIVMASK[(32n+m) DIV 8] is set to 1.

This field resets to zero on a Cold reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1637

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.161 ITM_TPR, ITM Trace Privilege Register

The ITM_TPR characteristics are:

Purpose
Controls which stimulus ports can be accessed by unprivileged code.

Usage constraints
If the Main Extension is implemented, both privileged and unprivileged accesses are permitted, but unprivi-
leged writes are ignored.

If the Main Extension is not implemented, unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if the ITM is implemented.

This register is RES0 if the ITM is not implemented.

If the Main Extension is not implemented then the ITM is not implemented.

Attributes
32-bit read/write register located at 0xE0000E40.

This register is not banked between Security states.

Field descriptions

The ITM_TPR bit assignments are:

031

PRIVMASK

PRIVMASK, bits [31:0]
Privilege mask. For PRIVMASK[m], defines the access permissions of stimulus ports ITM_STIM<8m> to
ITM_STIM<8m+7> inclusive.

The possible values of each bit are:

0
Unprivileged access permitted.

1
Privileged access only.

Bits corresponding to unimplemented stimulus ports are RAZ/WI.

This field resets to zero on a Cold reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1638

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.162 LO_BRANCH_INFO, Loop and branch tracking information

The LO_BRANCH_INFO characteristics are:

Purpose
Holds the cached loop end point and branching information.

Usage constraints
This register is not accessible from software.

Configurations
Present only if version Armv8.1-M of the architecture and LOB are implemented.

This cache is not implemented otherwise.

Attributes
66-bit read/write register.

This register is not banked between Security states.

Field descriptions

The LO_BRANCH_INFO bit assignments are:

0131

JUMP_ADDR

32

BF

3363

END_ADDR

64

LF

65

T16IND VALID

T16IND, bit [65]
When set this field indicates that BF is a 16-bit T32 indirect branch. For BF and link instructions, this flag
calculates the offset of the return address set in LR from the branch point.

LF, bit [64]
Link / forever. If BF is set, this field indicates that the link register is populated with a return address at the
point the branch is taken. If BF is clear, this flag indicates a forever loop that does not decrement LR at the
end of each loop iteration.

END_ADDR, bits [63:33]
The partial address of either the last instruction in a low-overhead-loop, or an upcomming branch set by a
Branch Future instruction. If the VALID bit is set and this field matches the address of the next instruction, a
branch back to the start of the loop is triggered (as specified by the JUMP_ADDR field).

BF, bit [32]
Indicates that the value in this register originates from a BF instruction.

JUMP_ADDR, bits [31:1]
The address to jump to when an end address match is detected.

VALID, bit [0]
The cached loop information in the rest of this register is only valid if this bit is set. The PE is permitted to
clear this bit and invalidate the cache at any point.

This bit resets to zero on a Warm reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1639

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.163 LR, Link Register

The LR characteristics are:

Purpose
Exception and procedure call link register.

Usage constraints
Privileged and unprivileged access permitted.

Configurations
This register is always implemented.

Attributes
32-bit read/write special-purpose register.

This register is not banked between Security states.

Field descriptions

The LR bit assignments are:

031

VALUE

VALUE, bits [31:0]
Link register. 32-bit link register updated to hold a return address, FNC_RETURN or EXC_RETURN on a
function call or exception entry. LR can be used as a general-purpose register.

This field resets to an UNKNOWN value on Warm reset when the Main Extension is not implemented.

This field resets to 0xFFFFFFFF on a Warm reset if the Main Extension is implemented.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1640

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.164 MAIR_ATTR, Memory Attribute Indirection Register Attributes

The MAIR_ATTR characteristics are:

Purpose
Defines the memory attribute encoding for use in the MPU_MAIR0 and MPU_MAIR1.

Usage constraints
None.

Configurations
All.

Attributes
8-bit payload.

Field descriptions

The MAIR_ATTR bit assignments are:

When Outer != 0b0000:

03

Inner

47

Outer

When Outer == 0b0000:

01

RES0

2347

Outer

Device

Outer, bits [7:4]
Outer attributes. Specifies the Outer memory attributes.

The possible values of this field are:

0b0000
Device memory.

0b00RW
Normal memory, Outer Write-Through transient (RW!=0b00).

0b0100
Normal memory, Outer Non-cacheable.

0b01RW
Normal memory, Outer Write-Back Transient (RW!=0b00).

0b10RW
Normal memory, Outer Write-Through Non-transient.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1641

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0b11RW
Normal memory, Outer Write-Back Non-transient.

R and W specify the outer read and write allocation policy: 0 = do not allocate, 1 = allocate.

Device, bits [3:2], when Outer == 0b0000
Device attributes. Specifies the memory attributes for Device.

The possible values of this field are:

0b00
Device-nGnRnE.

0b01
Device-nGnRE.

0b10
Device-nGRE.

0b11
Device-GRE.

Bits [1:0 , when Outer == 0b0000]
Reserved, RES0.

Inner, bits [3:0], when Outer != 0b0000
Inner attributes. Specifies the Inner memory attributes.

The possible values of this field are:

0b0000
UNPREDICTABLE.

0b00RW
Normal memory, Inner Write-Through Transient (RW!=0b00).

0b0100
Normal memory, Inner Non-cacheable.

0b01RW
Normal memory, Inner Write-Back Transient (RW!=0b00).

0b10RW
Normal memory, Inner Write-Through Non-transient.

0b11RW
Normal memory, Inner Write-Back Non-transient.

R and W specify the inner read and write allocation policy: 0 = do not allocate, 1 = allocate.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1642

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.165 MMFAR, MemManage Fault Address Register

The MMFAR characteristics are:

Purpose
Shows the address of the memory location that caused an MPU fault.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes
32-bit read/write register located at 0xE000ED34.

Secure software can access the Non-secure version of this register via MMFAR_NS located at 0xE002ED34.
The location 0xE002ED34 is RES0 to software executing in Non-secure state and the debugger.

This register is banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The MMFAR bit assignments are:

031

ADDRESS

ADDRESS, bits [31:0]
Data address for an MemManage fault. This register is updated with the address of a location that produced a
MemManage fault. The MMFSR shows the cause of the fault, and whether this field is valid. This field is
valid only when MMFSR.MMARVALID is set, otherwise it is UNKNOWN.

In implementations without unique BFAR and MMFAR registers, the value of this register is UNKNOWN if
BFSR.BFARVALID is set.

This field resets to an UNKNOWN value on a Warm reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1643

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.166 MMFSR, MemManage Fault Status Register

The MMFSR characteristics are:

Purpose
Shows the status of MPU faults.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

If the Main Extension is implemented, this register is word, halfword, and byte accessible.

If the Main Extension is not implemented, this register is word accessible only, halfword and byte accesses
are UNPREDICTABLE.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes
8-bit read/write-one-to-clear register located at 0xE000ED28.

Secure software can access the Non-secure version of this register via MMFSR_NS located at 0xE002ED28.
The location 0xE002ED28 is RES0 to software executing in Non-secure state and the debugger.

This register is banked between Security states.

This register is part of CFSR.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The MMFSR bit assignments are:

012

(0)

3456

(0)

7

MMARVALID
MLSPERR
MSTKERR

IACCVIOL
DACCVIOL
MUNSTKERR

MMARVALID, bit [7]
MMFAR valid flag. Indicates validity of the MMFAR register.

The possible values of this bit are:

0
MMFAR content not valid.

1
MMFAR content valid.

This bit resets to zero on a Warm reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1644

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

Bit [6]
Reserved, RES0.

MLSPERR, bit [5]
MemManage lazy state preservation error flag. Records whether a MemManage fault occurred during FP
lazy state preservation.

The possible values of this bit are:

0
No MemManage occurred.

1
MemManage occurred.

This bit resets to zero on a Warm reset.

MSTKERR, bit [4]
MemManage stacking error flag. Records whether a derived MemManage fault occurred during exception
entry stacking.

The possible values of this bit are:

0
No derived MemManage occurred.

1
Derived MemManage occurred during exception entry.

This bit resets to zero on a Warm reset.

MUNSTKERR, bit [3]
MemManage unstacking error flag. Records whether a derived MemManage fault occurred during exception
return unstacking.

The possible values of this bit are:

0
No derived MemManage fault occurred.

1
Derived MemManage fault occurred during exception return.

This bit resets to zero on a Warm reset.

Bit [2]
Reserved, RES0.

DACCVIOL, bit [1]
Data access violation flag. Records whether a data access violation has occurred.

The possible values of this bit are:

0
No MemManage fault on data access has occurred.

1
MemManage fault on data access has occurred.

A DACCVIOL will be accompanied by an MMFAR update.

This bit resets to zero on a Warm reset.

IACCVIOL, bit [0]
Instruction access violation. Records whether an instruction related memory access violation has occurred.

The possible values of this bit are:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1645

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0
No MemManage fault on instruction access has occurred.

1
MemManage fault on instruction access has occurred.

An IACCVIOL is only recorded if a faulted instruction is executed.

This bit resets to zero on a Warm reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1646

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.167 MPU_CTRL, MPU Control Register

The MPU_CTRL characteristics are:

Purpose
Enables the MPU and, when the MPU is enabled, controls whether the default memory map is enabled as
a background region for privileged accesses, and whether the MPU is enabled for HardFaults, NMIs, and
exception handlers when FAULTMASK is set to 1.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
This register is always implemented.

Attributes
32-bit read/write register located at 0xE000ED94.

To allow lock down of this register it is IMPLEMENTATION DEFINED whether this register is writable.

Secure software can access the Non-secure version of this register via MPU_CTRL_NS located at
0xE002ED94. The location 0xE002ED94 is RES0 to software executing in Non-secure state and the
debugger.

This register is banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The MPU_CTRL bit assignments are:

012331

RES0

PRIVDEFENA
HFNMIENA

ENABLE

Bits [31:3]
Reserved, RES0.

PRIVDEFENA, bit [2]
Privileged default enable. Controls whether the default memory map is enabled for privileged software.

The possible values of this bit are:

0
Use of default memory map disabled. Any instruction or data access that does not access a defined
memory region faults.

1
Enables the default memory map as a memory region for privileged accesses only.

When the ENABLE bit is set to 0, the PE ignores the PRIVDEFENA bit. If no regions are enabled and the
PRIVDEFENA and ENABLE bits are set to 1, only privileged code can execute from the system address
map. If no MPU regions are implemented this bit is RES0.

This bit resets to zero on a Warm reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1647

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

HFNMIENA, bit [1]
HardFault, NMI enable. Controls whether handlers executing with a requested execution priority of less
than 0 access memory with the MPU enabled or disabled. This applies to HardFaults and NMIs when
FAULTMASK is set to 1.

The possible values of this bit are:

0
MPU disabled for these handlers.

1
MPU enabled for these handlers.

If HFNMIENA is set to 1 when ENABLE is set to 0, behavior is UNPREDICTABLE. If no MPU regions are
implemented this bit is RES0.

This bit resets to zero on a Warm reset.

ENABLE, bit [0]
Enable. Enables the MPU.

The possible values of this bit are:

0
The MPU is disabled.

1
The MPU is enabled.

Disabling the MPU, by setting the ENABLE bit to 0, means that privileged and unprivileged accesses use the
default memory map. If no MPU regions are implemented this bit is RES0.

This bit resets to zero on a Warm reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1648

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.168 MPU_MAIR0, MPU Memory Attribute Indirection Register 0

The MPU_MAIR0 characteristics are:

Purpose
Along with MPU_MAIR1, provides the memory attribute encodings corresponding to the AttrIndx values.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
This register is always implemented.

Attributes
32-bit read/write register located at 0xE000EDC0.

To allow lock down of this register it is IMPLEMENTATION DEFINED whether this register is writable.

Secure software can access the Non-secure version of this register via MPU_MAIR0_NS located at
0xE002EDC0. The location 0xE002EDC0 is RES0 to software executing in Non-secure state and the
debugger.

This register is banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Preface

This register is RES0 if no MPU regions are implemented in the corresponding Security state.

Field descriptions

The MPU_MAIR0 bit assignments are:

07

Attr0

815

Attr1

1623

Attr2

2431

Attr3

Attrm, bits [8m+7:8m], for m = 0 to 3
Attribute m. Memory attribute encoding for MPU regions with an AttrIndx of m.

The possible values of this field are:

All
See MAIR_ATTR for encoding.

This field resets to an Architecturally UNKNOWN value on a Warm reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1649

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.169 MPU_MAIR1, MPU Memory Attribute Indirection Register 1

The MPU_MAIR1 characteristics are:

Purpose
Along with MPU_MAIR0, provides the memory attribute encodings corresponding to the AttrIndx values.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
This register is always implemented.

Attributes
32-bit read/write register located at 0xE000EDC4.

To allow lock down of this register it is IMPLEMENTATION DEFINED whether this register is writable.

Secure software can access the Non-secure version of this register via MPU_MAIR1_NS located at
0xE002EDC4. The location 0xE002EDC4 is RES0 to software executing in Non-secure state and the
debugger.

This register is banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Preface

This register is RES0 if no MPU regions are implemented in the corresponding Security state.

Field descriptions

The MPU_MAIR1 bit assignments are:

07

Attr4

815

Attr5

1623

Attr6

2431

Attr7

Attrm, bits [8(m-4)+7:8(m-4)], for m = 4 to 7
Attribute m. Memory attribute encoding for MPU regions with an AttrIndx of m.

The possible values of this field are:

All
See MAIR_ATTR for encoding.

This field resets to an Architecturally UNKNOWN value on a Warm reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1650

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.170 MPU_RBAR, MPU Region Base Address Register

The MPU_RBAR characteristics are:

Purpose
Provides indirect read and write access to the base address of the currently selected MPU region for the
selected Security state.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
This register is always implemented.

Attributes
32-bit read/write register located at 0xE000ED9C.

To allow lock down of this register it is IMPLEMENTATION DEFINED whether this register is writable.

Secure software can access the Non-secure version of this register via MPU_RBAR_NS located at
0xE002ED9C. The location 0xE002ED9C is RES0 to software executing in Non-secure state and the
debugger.

This register is banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Preface

This register provides access to the configuration of the MPU region selected by MPU_RNR.REGION for the
appropriate Security state. The field descriptions apply to the currently selected region.

Field descriptions

The MPU_RBAR bit assignments are:

0

XN

1234

SH

531

BASE

AP[2:1]

BASE, bits [31:5]
Base address. Contains bits [31:5] of the lower inclusive limit of the selected MPU memory region. This
value is zero extended to provide the base address to be checked against.

It is IMPLEMENTATION DEFINED whether any of the BASE bits are WI

This field resets to an Architecturally UNKNOWN value on a Warm reset.

SH, bits [4:3]
Shareability. Defines the Shareability domain of this region for Normal memory.

The possible values of this field are:

0b00
Non-shareable.

0b10
Outer Shareable.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1651

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0b11
Inner Shareable.

All other values are reserved.

For any type of Device memory, the value of this field is ignored.

This field resets to an UNKNOWN value on a Warm reset.

AP[2:1], bits [2:1]
Access permissions. Defines the access permissions for this region.

The possible values of this field are:

0b00
Read/write by privileged code only.

0b01
Read/write by any privilege level.

0b10
Read-only by privileged code only.

0b11
Read-only by any privilege level.

This field resets to an UNKNOWN value on a Warm reset.

XN, bit [0]
Execute Never. Defines whether code can be executed from this region.

The possible values of this bit are:

0
Execution only permitted if read permitted.

1
Execution not permitted.

This bit resets to an UNKNOWN value on a Warm reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1652

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.171 MPU_RBAR_An, MPU Region Base Address Register Alias, n = 1 - 3

The MPU_RBAR_A{1..3} characteristics are:

Purpose
Provides indirect read and write access to the base address of the MPU region selected by
MPU_RNR[7:2]:(n[1:0]) for the selected Security state.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes
32-bit read/write register located at 0xE000EDA4 + 8(n-1).

To allow lock down of this register it is IMPLEMENTATION DEFINED whether this register is writable.

Secure software can access the Non-secure version of this register via MPU_RBAR_An_NS located at
0xE002EDA4 + 8(n-1). The location 0xE002EDA4 + 8(n-1) is RES0 to software executing in Non-secure
state and the debugger.

This register is banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Preface

This register is an alias of the MPU_RBAR register and provides access to the configuration of the MPU region
selected by MPU_RNR.REGION had REGION[1:0] been set to n[1:0].

Field descriptions

The MPU_RBAR_A{1..3} bit assignments are:

0

XN

1234

SH

531

BASE

AP[2:1]

BASE, bits [31:5]
Base address. Contains bits [31:5] of the lower inclusive limit of the selected MPU memory region. This
value is zero extended to provide the base address to be checked against.

It is IMPLEMENTATION DEFINED whether any of the BASE bits are WI

This field resets to an Architecturally UNKNOWN value on a Warm reset.

SH, bits [4:3]
Shareability. Defines the Shareability domain of this region for Normal memory.

The possible values of this field are:

0b00
Non-shareable.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1653

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0b10
Outer Shareable.

0b11
Inner Shareable.

All other values are reserved.

For any type of Device memory, the value of this field is ignored.

This field resets to an UNKNOWN value on a Warm reset.

AP[2:1], bits [2:1]
Access permissions. Defines the access permissions for this region.

The possible values of this field are:

0b00
Read/write by privileged code only.

0b01
Read/write by any privilege level.

0b10
Read-only by privileged code only.

0b11
Read-only by any privilege level.

This field resets to an UNKNOWN value on a Warm reset.

XN, bit [0]
Execute Never. Defines whether code can be executed from this region.

The possible values of this bit are:

0
Execution only permitted if read permitted.

1
Execution not permitted.

This bit resets to an UNKNOWN value on a Warm reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1654

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.172 MPU_RLAR, MPU Region Limit Address Register

The MPU_RLAR characteristics are:

Purpose
Provides indirect read and write access to the limit address of the currently selected MPU region for the
selected Security state.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
This register is always implemented.

Attributes
32-bit read/write register located at 0xE000EDA0.

To allow lock down of this register it is IMPLEMENTATION DEFINED whether this register is writable.

Secure software can access the Non-secure version of this register via MPU_RLAR_NS located at
0xE002EDA0. The location 0xE002EDA0 is RES0 to software executing in Non-secure state and the
debugger.

This register is banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Preface

This register provides access to the configuration of the MPU region selected by MPU_RNR.REGION for the
appropriate Security state. The field descriptions apply to the currently selected region.

Field descriptions

The MPU_RLAR bit assignments are:

0

EN

13

AttrIndx

4531

LIMIT

PXN

LIMIT, bits [31:5]
Limit address. Contains bits [31:5] of the upper inclusive limit of the selected MPU memory region. This
value is postfixed with 0x1F to provide the limit address to be checked against.

It is IMPLEMENTATION DEFINED whether any of the LIMIT bits are WI

This field resets to an Architecturally UNKNOWN value on a Warm reset.

PXN, bit [4]
Privileged execute never. Defines whether code can be executed from this privileged region.

The possible values of this bit are:

0
Execution only permitted if read permitted.

1
Execution from a privileged mode is not permitted.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1655

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

If version Armv8.1-M of the architecture is not implemented, this bit is RES0.

This bit resets to an UNKNOWN value on a Warm reset.

AttrIndx, bits [3:1]
Attribute index. Associates a set of attributes in the MPU_MAIR0 and MPU_MAIR1 fields.

This field resets to an UNKNOWN value on a Warm reset.

EN, bit [0]
Enable. Region enable.

The possible values of this bit are:

0
Region disabled.

1
Region enabled.

This bit resets to zero on a Warm reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1656

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.173 MPU_RLAR_An, MPU Region Limit Address Register Alias, n = 1 - 3

The MPU_RLAR_A{1..3} characteristics are:

Purpose
Provides indirect read and write access to the limit address of the currently selected MPU region selected by
MPU_RNR[7:2]:(n[1:0]) for the selected Security state.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes
32-bit read/write register located at 0xE000EDA8 + 8(n-1).

To allow lock down of this register it is IMPLEMENTATION DEFINED whether this register is writable.

Secure software can access the Non-secure version of this register via MPU_RLAR_An_NS located at
0xE002EDA8 + 8(n-1). The location 0xE002EDA8 + 8(n-1) is RES0 to software executing in Non-secure
state and the debugger.

This register is banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Preface

This register is an alias of the MPU_RLAR register and provides access to the configuration of the MPU region
selected by MPU_RNR.REGION had REGION[1:0] been set to n[1:0].

Field descriptions

The MPU_RLAR_A{1..3} bit assignments are:

0

EN

13

AttrIndx

4531

LIMIT

PXN

LIMIT, bits [31:5]
Limit address. Contains bits [31:5] of the upper inclusive limit of the selected MPU memory region. This
value is postfixed with 0x1F to provide the limit address to be checked against.

It is IMPLEMENTATION DEFINED whether any of the LIMIT bits are WI

This field resets to an Architecturally UNKNOWN value on a Warm reset.

PXN, bit [4]
Privileged execute never. Defines whether code can be executed from this privileged region.

The possible values of this bit are:

0
Execution only permitted if read permitted.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1657

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

1
Execution from a privileged mode is not permitted.

If version Armv8.1-M of the architecture is not implemented, this bit is RES0.

This bit resets to an UNKNOWN value on a Warm reset.

AttrIndx, bits [3:1]
Attribute index. Associates a set of attributes in the MPU_MAIR0 and MPU_MAIR1 fields.

This field resets to an UNKNOWN value on a Warm reset.

EN, bit [0]
Enable. Region enable.

The possible values of this bit are:

0
Region disabled.

1
Region enabled.

This bit resets to zero on a Warm reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1658

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.174 MPU_RNR, MPU Region Number Register

The MPU_RNR characteristics are:

Purpose
Selects the region currently accessed by MPU_RBAR and MPU_RLAR.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
This register is always implemented.

Attributes
32-bit read/write register located at 0xE000ED98.

To allow lock down of this register it is IMPLEMENTATION DEFINED whether this register is writable.

Secure software can access the Non-secure version of this register via MPU_RNR_NS located at
0xE002ED98. The location 0xE002ED98 is RES0 to software executing in Non-secure state and the
debugger.

This register is banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The MPU_RNR bit assignments are:

07

REGION

831

RES0

Bits [31:8]
Reserved, RES0.

REGION, bits [7:0]
Region number. Indicates the memory region accessed by MPU_RBAR and MPU_RLAR.

If no MPU regions are implemented, this field is RES0. Writing a value corresponding to an unimplemented
region is CONSTRAINED UNPREDICTABLE.

This field resets to an UNKNOWN value on a Warm reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1659

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.175 MPU_TYPE, MPU Type Register

The MPU_TYPE characteristics are:

Purpose
The MPU Type Register indicates how many regions the MPU for the selected Security state supports.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
This register is always implemented.

Attributes
32-bit read-only register located at 0xE000ED90.

Secure software can access the Non-secure version of this register via MPU_TYPE_NS located at
0xE002ED90. The location 0xE002ED90 is RES0 to software executing in Non-secure state and the
debugger.

This register is banked between Security states.

Field descriptions

The MPU_TYPE bit assignments are:

017

RES0

815

DREGION

1631

RES0

SEPARATE

Bits [31:16]
Reserved, RES0.

DREGION, bits [15:8]
Data regions. Number of regions supported by the MPU.

If this field reads-as-zero, the PE does not implement an MPU for the selected Security state.

This field reads as an IMPLEMENTATION DEFINED value.

Bits [7:1]
Reserved, RES0.

SEPARATE, bit [0]
Separate. Indicates support for separate instructions and data address regions.

Armv8-M only supports unified MPU regions.

This bit reads as zero.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1660

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.176 MSPLIM, Main Stack Pointer Limit Register

The MSPLIM characteristics are:

Purpose
Holds the lower limit of the Main stack pointer.

Usage constraints
Privileged access only. Unprivileged access is RAZ/WI, unless otherwise stated.

Configurations
This register is always implemented.

Attributes
32-bit read/write special-purpose register.

This register is banked between Security states.

Field descriptions

The MSPLIM bit assignments are:

02

RES0

331

LIMIT

LIMIT, bits [31:3]
Stack limit. Bits [31:3] of the Main stack pointer limit address for the selected Security state.

Many instructions and exception entry will generate an exception if the appropriate stack pointer would be
updated to a value lower than this limit. If the Main Extension is not implemented, the Non-secure MSPLIM
is RES0.

This field resets to zero on a Warm reset.

Bits [2:0]
Reserved, RES0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1661

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.177 MVFR0, Media and VFP Feature Register 0

The MVFR0 characteristics are:

Purpose
Describes the features provided by the Floating-point Extension.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

Configurations
Present if the Floating-point Extension, or MVE, or both are implemented.

This register is RES0 if neither the Floating-point Extension nor MVE are implemented.

Attributes
32-bit read-only register located at 0xE000EF40.

Secure software can access the Non-secure version of this register via MVFR0_NS located at 0xE002EF40.
The location 0xE002EF40 is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The MVFR0 bit assignments are:

03

SIMDReg

47

FPSP

811

FPDP

1215

RES0

1619

FPDivide

2023

FPSqrt

2427

RES0

2831

FPRound

FPRound, bits [31:28]
Floating-point rounding modes. Indicates the rounding modes supported by the Floating-point Extension.

The possible values of this field are:

0b0000
Not supported.

0b0001
All rounding modes supported.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

Bits [27:24]
Reserved, RES0.

FPSqrt, bits [23:20]
Floating-point square root. Indicates the support for Floating-point square root operations.

The possible values of this field are:

0b0000
Not supported.

0b0001
Supported.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1662

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

FPDivide, bits [19:16]
Floating-point divide. Indicates the support for Floating-point divide operations.

The possible values of this field are:

0b0000
Not supported.

0b0001
Supported.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

Bits [15:12]
Reserved, RES0.

FPDP, bits [11:8]
Floating-point double-precision. Indicates support for Floating-point double-precision operations.

The possible values of this field are:

0b0000
Not supported.

0b0010
Supported.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

FPSP, bits [7:4]
Floating-point single-precision. Indicates support for Floating-point single-precision operations.

The possible values of this field are:

0b0000
Not supported.

0b0010
Supported.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

SIMDReg, bits [3:0]
SIMD registers. Indicates size of Floating-Point Extension register file.

The possible values of this field are:

0b0001
16 x 64-bit registers.

All other values are reserved.

This field reads as 0b0001.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1663

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.178 MVFR1, Media and VFP Feature Register 1

The MVFR1 characteristics are:

Purpose
Describes the features provided by the Floating-point Extension.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

Configurations
Present if the Floating-point Extension, or MVE, or both are implemented.

This register is RES0 if neither the Floating-point Extension nor MVE are implemented.

Attributes
32-bit read-only register located at 0xE000EF44.

Secure software can access the Non-secure version of this register via MVFR1_NS located at 0xE002EF44.
The location 0xE002EF44 is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The MVFR1 bit assignments are:

03

FPFtZ

47

FPDNaN

811

MVE

1219

RES0

2023

FP16

2427

FPHP

2831

FMAC

FMAC, bits [31:28]
Fused multiply accumulate. Indicates whether the Floaing-point Extension implements the fused multiply
accumulate instructions.

The possible values of this field are:

0b0000
Not supported.

0b0001
Implemented.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

FPHP, bits [27:24]
Floating-point half-precision conversion. Indicates whether the Floating-point Extension implements half-
precision Floating-point conversion instructions.

The possible values of this field are:

0b0000
Not supported.

0b0001
Half-precision to single-precision implemented.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1664

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0b0010
Half-precision to single and double-precision implemented.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

FP16, bits [23:20]
Floating-point half-precision data processing. Indicates whether the FP Extension implements half-precision
FP data processing instructions.

The possible values of this field are:

0b0000
No Half-precision data processing support.

0b0001
Half-precision data processing instructions supported.

All other values are reserved.

If version Armv8.1-M of the architecture is not implemented, this field is RES0.

This field reads as an IMPLEMENTATION DEFINED value.

Bits [19:12]
Reserved, RES0.

MVE, bits [11:8]
Indicates support for M-profile vector extension.

The possible values of this field are:

0b0000
Not supported.

0b0001
Supported, no Floating-point.

0b0010
Supported, with single-precision and half-precision Floating-point.

All other values are reserved.

If version Armv8.1-M of the architecture is not implemented, this field is RES0.

This field reads as an IMPLEMENTATION DEFINED value.

FPDNaN, bits [7:4]
Floating-point default NaN. Indicates whether the Floating-point Extension implementation supports NaN
propagation.

The possible values of this field are:

0b0000
Not supported.

0b0001
Propagation of NaN values supported.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

FPFtZ, bits [3:0]
Floating-point flush-to-zero. Indicates whether subnormals are always flushed-to-zero.

The possible values of this field are:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1665

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0b0000
Not supported.

0b0001
Full denormalized numbers arithmetic supported.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1666

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.179 MVFR2, Media and VFP Feature Register 2

The MVFR2 characteristics are:

Purpose
Describes the features provided by the Floating-point Extension.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

Configurations
Present if the Floating-point Extension, or MVE, or both are implemented.

This register is RES0 if neither the Floating-point Extension nor MVE are implemented.

Attributes
32-bit read-only register located at 0xE000EF48.

Secure software can access the Non-secure version of this register via MVFR2_NS located at 0xE002EF48.
The location 0xE002EF48 is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The MVFR2 bit assignments are:

03

RES0

47

FPMisc

831

RES0

Bits [31:8]
Reserved, RES0.

FPMisc, bits [7:4]
Floating-point miscellaneous. Indicates support for miscellaneous FP features.

The possible values of this field are:

0b0000
Floating-point extensions not implemented.

0b0100
Selection, directed conversion to integer, VMINNM and VMAXNM supported.

All other values are reserved.

This field reads as an IMPLEMENTATION DEFINED value.

Bits [3:0]
Reserved, RES0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1667

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.180 NSACR, Non-secure Access Control Register

The NSACR characteristics are:

Purpose
Defines the Non-secure access permissions for the Floating-point Extension and coprocessors CP0 to CP7. If
MVE is implemented this register Specifies the Non-secure access permissions for MVE.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes
32-bit read/write register located at 0xE000ED8C.

If the Security Extension is not implemented this register returns a value of 0x00000CFF.

This register is RAZ/WI when accessed as Non-secure.

This register is not banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The NSACR bit assignments are:

0123456789

RES0

10111231

RES0

CP11
CP10

CP7
CP6
CP5

CP0
CP1
CP2
CP3

CP4

Bits [31:12]
Reserved, RES0.

CP11, bit [11]
CP11 access. Enables Non-secure access to the Floating-point Extension and MVE.

Programming with a different value than that used for CP10 is UNPREDICTABLE.

If neither the Floating-point Extension or MVE are implemented, this bit is RES0.

This bit resets to an Architecturally UNKNOWN value on a Warm reset.

CP10, bit [10]
CP10 access. Enables Non-secure access to the Floating-point Extension and MVE.

The possible values of this bit are:

0
Non-secure accesses to the Floating-point Extension or MVE, unless otherwise specified, generate a
NOCP UsageFault.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1668

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

1
Non-secure access to the Floating-point Extension or MVE permitted.

If neither the Floating-point Extension or MVE are implemented, this bit is RES0.

This bit resets to an Architecturally UNKNOWN value on a Warm reset.

Bits [9:8]
Reserved, RES0.

CPm, bit [m], for m = 0 to 7
CPm access. Enables Non-secure access to coprocessor CPm.

The possible values of this field are:

0
Non-secure accesses to this coprocessor generate a NOCP UsageFault.

1
Non-secure access to this coprocessor permitted.

A CPm bit is RAZ/WI if CPm is:

• Not implemented.

• Not enabled for the Security state in which the PE is executing.

This field resets to an Architecturally UNKNOWN value on a Warm reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1669

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.181 NVIC_IABRn, Interrupt Active Bit Register, n = 0 - 15

The NVIC_IABR{0..15} characteristics are:

Purpose
For each group of 32 interrupts, shows the active state of each interrupt.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
This register is always implemented.

Attributes
32-bit read-only register located at 0xE000E300 + 4n.

Secure software can access the Non-secure version of this register via NVIC_IABRn_NS located at
0xE002E300 + 4n. The location 0xE002E300 + 4n is RES0 to software executing in Non-secure state
and the debugger.

This register is not banked between Security states.

Field descriptions

The NVIC_IABR{0..15} bit assignments are:

031

ACTIVE

ACTIVE, bits [31:0]
Active state. For ACTIVE[m] in NVIC_IABRn, indicates the active state for interrupt 32n+m.

The possible values of each bit are:

0
Interrupt not active.

1
Interrupt is active.

Bits corresponding to unimplemented interrupts are RES0. Bits corresponding to interrupts targeting Secure
state are RAZ/WI from Non-secure.

This field resets to zero on a Warm reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1670

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.182 NVIC_ICERn, Interrupt Clear Enable Register, n = 0 - 15

The NVIC_ICER{0..15} characteristics are:

Purpose
Clears or reads the enabled state of each group of 32 interrupts.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
This register is always implemented.

Attributes
32-bit read/write-one-to-clear register located at 0xE000E180 + 4n.

Secure software can access the Non-secure version of this register via NVIC_ICERn_NS located at
0xE002E180 + 4n. The location 0xE002E180 + 4n is RES0 to software executing in Non-secure state
and the debugger.

This register is not banked between Security states.

Field descriptions

The NVIC_ICER{0..15} bit assignments are:

031

CLRENA

CLRENA, bits [31:0], on a write
Clear enable. For CLRENA[m] in NVIC_ICERn, allows interrupt 32n + m to be disabled.

The possible values of each bit are:

0
No effect.

1
Disable interrupt 32n + m.

Bits corresponding to unimplemented interrupts are RES0. Bits corresponding to interrupts targeting Secure
state are RAZ/WI from Non-secure.

CLRENA, bits [31:0], on a read
Clear enable. For CLRENA[m] in NVIC_ICERn, indicates whether interrupt 32n + m is enabled.

The possible values of each bit are:

0
Interrupt 32n + m disabled.

1
Interrupt 32n + m enabled.

Bits corresponding to unimplemented interrupts are RES0. Bits corresponding to interrupts targeting Secure
state are RAZ/WI from Non-secure.

This field resets to zero on a Warm reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1671

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.183 NVIC_ICPRn, Interrupt Clear Pending Register, n = 0 - 15

The NVIC_ICPR{0..15} characteristics are:

Purpose
Clears or reads the pending state of each group of 32 interrupts.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
This register is always implemented.

Attributes
32-bit read/write-one-to-clear register located at 0xE000E280 + 4n.

Secure software can access the Non-secure version of this register via NVIC_ICPRn_NS located at
0xE002E280 + 4n. The location 0xE002E280 + 4n is RES0 to software executing in Non-secure state
and the debugger.

This register is not banked between Security states.

Field descriptions

The NVIC_ICPR{0..15} bit assignments are:

031

CLRPEND

CLRPEND, bits [31:0], on a write
Clear pending. For CLRPEND[m] in NVIC_ICPRn, allows interrupt 32n + m to be unpended.

The possible values of each bit are:

0
No effect.

1
Clear pending state of interrupt 32n + m.

Bits corresponding to unimplemented interrupts are RES0. Bits corresponding to interrupts targeting Secure
state are RAZ/WI from Non-secure.

CLRPEND, bits [31:0], on a read
Clear pending. For CLRPEND[m] in NVIC_ICPRn, indicates whether interrupt 32n + m is pending.

The possible values of each bit are:

0
Interrupt 32n + m is not pending.

1
Interrupt 32n + m is pending.

Bits corresponding to unimplemented interrupts are RES0. Bits corresponding to interrupts targeting Secure
state are RAZ/WI from Non-secure.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1672

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.184 NVIC_IPRn, Interrupt Priority Register, n = 0 - 123

The NVIC_IPR{0..123} characteristics are:

Purpose
Sets or reads interrupt priorities.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

If the Main Extension is implemented, this register is word, halfword, and byte accessible.

If the Main Extension is not implemented, this register is word accessible only, halfword and byte accesses
are UNPREDICTABLE.

Configurations
This register is always implemented.

Attributes
32-bit read/write register located at 0xE000E400 + 4n.

Secure software can access the Non-secure version of this register via NVIC_IPRn_NS located at
0xE002E400 + 4n. The location 0xE002E400 + 4n is RES0 to software executing in Non-secure state
and the debugger.

This register is not banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The NVIC_IPR{0..123} bit assignments are:

07

PRI_N0

815

PRI_N1

1623

PRI_N2

2431

PRI_N3

PRI_Nm, bits [8m+7:8m], for m = 0 to 3
Priority ’N’+m. For register NVIC_IPRn, this field indicates and allows modification of the priority of
interrupt number 4n+m, or is RES0 if the PE does not implement this interrupt.

If the PE implements fewer than 8 bits of priority, then the least significant bits of this field are RES0.

If interrupt number 4n+m targets Secure state, this field is RAZ/WI from Non-secure.

This field resets to zero on a Warm reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1673

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.185 NVIC_ISERn, Interrupt Set Enable Register, n = 0 - 15

The NVIC_ISER{0..15} characteristics are:

Purpose
Enables or reads the enabled state of each group of 32 interrupts.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
This register is always implemented.

Attributes
32-bit read/write-one-to-set register located at 0xE000E100 + 4n.

Secure software can access the Non-secure version of this register via NVIC_ISERn_NS located at
0xE002E100 + 4n. The location 0xE002E100 + 4n is RES0 to software executing in Non-secure state
and the debugger.

This register is not banked between Security states.

Field descriptions

The NVIC_ISER{0..15} bit assignments are:

031

SETENA

SETENA, bits [31:0], on a write
Set enable. For SETENA[m] in NVIC_ISERn, allows interrupt 32n + m to be set enabled.

The possible values of each bit are:

0
No effect.

1
Enable interrupt 32n + m.

Bits corresponding to unimplemented interrupts are RES0. Bits corresponding to interrupts targeting Secure
state are RAZ/WI from Non-secure.

This field resets to zero on a Warm reset.

SETENA, bits [31:0], on a read
Set enable. For SETENA[m] in NVIC_ISERn, indicates whether interrupt 32n + m is enabled.

The possible values of each bit are:

0
Interrupt 32n + m disabled.

1
Interrupt 32n + m enabled.

Bits corresponding to unimplemented interrupts are RES0. Bits corresponding to interrupts targeting Secure
state are RAZ/WI from Non-secure.

This field resets to zero on a Warm reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1674

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.186 NVIC_ISPRn, Interrupt Set Pending Register, n = 0 - 15

The NVIC_ISPR{0..15} characteristics are:

Purpose
Enables or reads the pending state of each group of 32 interrupts.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
This register is always implemented.

Attributes
32-bit read/write-one-to-set register located at 0xE000E200 + 4n.

Secure software can access the Non-secure version of this register via NVIC_ISPRn_NS located at
0xE002E200 + 4n. The location 0xE002E200 + 4n is RES0 to software executing in Non-secure state
and the debugger.

This register is not banked between Security states.

Field descriptions

The NVIC_ISPR{0..15} bit assignments are:

031

SETPEND

SETPEND, bits [31:0], on a write
Set pending. For SETPEND[m] in NVIC_ISPRn, allows interrupt 32n + m to be set pending.

The possible values of each bit are:

0
No effect.

1
Pend interrupt 32n + m.

Bits corresponding to unimplemented interrupts are RES0. Bits corresponding to interrupts targeting Secure
state are RAZ/WI from Non-secure.

This field is write-one-to-set. Writes of zero are ignored.

This field resets to zero on a Warm reset.

SETPEND, bits [31:0], on a read
Set pending. For SETPEND[m] in NVIC_ISPRn, indicates whether interrupt 32n + m is pending.

The possible values of each bit are:

0
Interrupt 32n + m is not pending.

1
Interrupt 32n + m pending.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1675

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

Bits corresponding to unimplemented interrupts are RES0. Bits corresponding to interrupts targeting Secure
state are RAZ/WI from Non-secure.

This field resets to zero on a Warm reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1676

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.187 NVIC_ITNSn, Interrupt Target Non-secure Register, n = 0 - 15

The NVIC_ITNS{0..15} characteristics are:

Purpose
For each group of 32 interrupts, determines whether each interrupt targets Non-secure or Secure state.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
This register is always implemented.

Attributes
32-bit read/write register located at 0xE000E380 + 4n.

This register is RAZ/WI when accessed as Non-secure.

This register is not banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The NVIC_ITNS{0..15} bit assignments are:

031

ITNS

ITNS, bits [31:0]
Interrupt Targets Non-secure. For ITNS[m] in NVIC_ITNSn, this field indicates and allows modification of
the target Security state for interrupt 32n+m.

The possible values of each bit are:

0
Interrupt targets Secure state.

1
Interrupt targets Non-secure state.

Bits corresponding to unimplemented interrupts are RES0. It is IMPLEMENTATION DEFINED whether
individual bits are WI and have an IMPLEMENTATION DEFINED constant value. Where an interrupt is
configured to target Secure state, accesses to the associated fields in Non-secure versions of the NVIC_IABR,
NVIC_ICER, NVIC_ISER, NVIC_ICPR, NVIC_IPR and NVIC_ISPR are RAZ/WI.

This field resets to zero on a Warm reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1677

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.188 PC, Program Counter

The PC characteristics are:

Purpose
Holds the current Program Counter value.

Usage constraints
Privileged and unprivileged access permitted.

Configurations
This register is always implemented.

Attributes
32-bit read/write special-purpose register.

This register is not banked between Security states.

Field descriptions

The PC bit assignments are:

031

VALUE

VALUE, bits [31:0]
Program Counter. Holds the address of the current instruction.

Software can refer to PC as R15.

This field resets to an UNKNOWN value on a Warm reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1678

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.189 PMU_AUTHSTATUS, Performance Monitoring Unit Authentication Status Register

The PMU_AUTHSTATUS characteristics are:

Purpose
Provides information about the state of the IMPLEMENTATION DEFINED authentication interface for Perfor-
mance Monitoring Units.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if version Armv8.1 of the architecture and the PMU are implemented.

This register is RES0 if the PMU is not implemented.

Attributes
32-bit read-only register located at 0xE0003FB8.

This register is not banked between Security states.

Field descriptions

The PMU_AUTHSTATUS bit assignments are:

01

NSID

2345

SID

67

SNID

815

RES0

161718192021

SUID

22232431

RES0

SUNID
NSUNID

NSNID
NSUID

Bits [31:24]
Reserved, RES0.

SUNID, bits [23:22]
Secure Unprivileged Non-invasive Debug Allowed. Indicates that Unprivileged Non-invasive debug is
allowed for the Secure state.

The possible values of this field are:

0b00
Security Extension or Unprivileged Non-invasive Debug not implemented.

0b01
Reserved.

0b10
Secure Non-invasive debug prohibited.

0b11
Secure Non-invasive debug allowed in unprivileged mode.

If version Armv8.1 of the architecture and UDE are not implemented, this field is RES0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1679

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

SUID, bits [21:20]
Secure Unprivileged Invasive Debug Allowed. Indicates that Unprivileged Halting Debug is allowed for the
Secure state.

The possible values of this field are:

0b00
Security Extension or Unprivileged Debug not implemented.

0b01
Reserved.

0b10
Secure halting debug prohibited.

0b11
Secure halting debug allowed in unprivileged mode.

This reflects the value of UnprivHaltingDebugAllowed(TRUE) && !SecureHaltingDebugAllowed().

If version Armv8.1 of the architecture and UDE are not implemented, this field is RES0.

NSUNID, bits [19:18]
Non-secure Unprivileged Non-invasive Debug Allowed. Indicates that Unprivileged Non-invasive Debug is
allowed for the Non-secure state.

The possible values of this field are:

0b00
Unprivileged Non-invasive debug not implemented.

0b01
Reserved.

0b10
Non-secure Non-invasive debug prohibited.

0b11
Non-secure Non-invasive debug allowed in unprivileged mode.

If the Main Extension is not implemented, this field is RES0.

NSUID, bits [17:16]
Non-secure Unprivileged Invasive Debug Allowed. Indicates that Unprivileged Halting Debug is allowed for
the Non-secure state.

The possible values of this field are:

0b00
Unprivileged halting debug not implemented.

0b01
Reserved.

0b10
Non-secure halting debug prohibited.

0b11
Non-secure halting debug allowed in unprivileged mode.

This reflects the value of UnprivHaltingDebugAllowed(FALSE) && !HaltingDebugAllowed().

If version Armv8.1 of the architecture and UDE are not implemented, this field is RES0.

Bits [15:8]
Reserved, RES0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1680

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

SNID, bits [7:6]
Secure Non-invasive Debug. Indicates whether Secure non-invasive debug is implemented and allowed.

The possible values of this field are:

0b00
Security Extension not implemented.

0b01
Reserved.

0b10
Security Extension implemented and Secure non-invasive debug prohibited.

0b11
Security Extension implemented and Secure non-invasive debug allowed.

SID, bits [5:4]
Secure Invasive Debug. Indicates whether Secure invasive debug is implemented and allowed.

The possible values of this field are:

0b00
Security Extension not implemented.

0b01
Reserved.

0b10
Security Extension implemented and Secure invasive debug prohibited.

0b11
Security Extension implemented and Secure invasive debug allowed.

NSNID, bits [3:2]
Non-secure Non-invasive Debug. Indicates whether Non-secure non-invasive debug is allowed.

The possible values of this field are:

0b0x
Reserved.

0b10
Non-secure non-invasive debug prohibited.

0b11
Non-secure non-invasive debug allowed.

NSID, bits [1:0]
Non-secure Invasive Debug. Indicates whether Non-secure invasive debug is allowed.

The possible values of this field are:

0b0x
Reserved.

0b10
Non-secure invasive debug prohibited.

0b11
Non-secure invasive debug allowed.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1681

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.190 PMU_CCFILTR, Performance Monitoring Unit Cycle Counter Filter Register

The PMU_CCFILTR characteristics are:

Purpose
This register is reserved for future use.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if version Armv8.1 of the architecture and the PMU are implemented.

This register is RES0 if the PMU is not implemented.

Attributes
32-bit read/write register located at 0xE000347C.

This register is not banked between Security states.

Field descriptions

The PMU_CCFILTR bit assignments are:

031

RES0

Bits [31:0]
Reserved, RES0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1682

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.191 PMU_CCNTR, Performance Monitoring Unit Cycle Counter Register

The PMU_CCNTR characteristics are:

Purpose
Holds the value of the cycle counter, which counts processor clock cycles.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if version Armv8.1 of the architecture and the PMU are implemented.

This register is RES0 if the PMU is not implemented.

Attributes
32-bit read/write register located at 0xE000307C.

This register is not banked between Security states.

Preface

This register is an alias of the DWT_CYCCNT register.

Field descriptions

The PMU_CCNTR bit assignments are:

031

CCNT

CCNT, bits [31:0]
Cycle count. The cycle count increments on every processor clock cycle.

This field resets to an UNKNOWN value on a Warm reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1683

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.192 PMU_CIDR0, Performance Monitoring Unit Component Identification Register 0

The PMU_CIDR0 characteristics are:

Purpose
Provides information to identify a Performance Monitoring Unit component.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if version Armv8.1 of the architecture and the PMU are implemented.

This register is RES0 if the PMU is not implemented.

Attributes
32-bit read-only register located at 0xE0003FF0.

This register is not banked between Security states.

Field descriptions

The PMU_CIDR0 bit assignments are:

07

PRMBL_0

831

RES0

Bits [31:8]
Reserved, RES0.

PRMBL_0, bits [7:0]
Preamble.

This field reads as 0x0D.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1684

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.193 PMU_CIDR1, Performance Monitoring Unit Component Identification Register 1

The PMU_CIDR1 characteristics are:

Purpose
Provides information to identify a Performance Monitoring Unit component.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if version Armv8.1 of the architecture and the PMU are implemented.

This register is RES0 if the PMU is not implemented.

Attributes
32-bit read-only register located at 0xE0003FF4.

This register is not banked between Security states.

Field descriptions

The PMU_CIDR1 bit assignments are:

03

PRMBL_1

47

CLASS

831

RES0

Bits [31:8]
Reserved, RES0.

CLASS, bits [7:4]
Component class.

This field reads as 0x9.

PRMBL_1, bits [3:0]
Preamble.

This field reads as 0x0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1685

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.194 PMU_CIDR2, Performance Monitoring Unit Component Identification Register 2

The PMU_CIDR2 characteristics are:

Purpose
Provides information to identify a Performance Monitoring Unit component.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if version Armv8.1 of the architecture and the PMU are implemented.

This register is RES0 if the PMU is not implemented.

Attributes
32-bit read-only register located at 0xE0003FF8.

This register is not banked between Security states.

Field descriptions

The PMU_CIDR2 bit assignments are:

07

PRMBL_2

831

RES0

Bits [31:8]
Reserved, RES0.

PRMBL_2, bits [7:0]
Preamble.

This field reads as 0x05.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1686

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.195 PMU_CIDR3, Performance Monitoring Unit Component Identification Register 3

The PMU_CIDR3 characteristics are:

Purpose
Provides information to identify a Performance Monitoring Unit component.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if version Armv8.1 of the architecture and the PMU are implemented.

This register is RES0 if the PMU is not implemented.

Attributes
32-bit read-only register located at 0xE0003FFC.

This register is not banked between Security states.

Field descriptions

The PMU_CIDR3 bit assignments are:

07

PRMBL_3

831

RES0

Bits [31:8]
Reserved, RES0.

PRMBL_3, bits [7:0]
Preamble.

This field reads as 0xB1.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1687

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.196 PMU_CNTENCLR, Performance Monitoring Unit Count Enable Clear Register

The PMU_CNTENCLR characteristics are:

Purpose
Disables the Cycle Count Register, PMU_CCNTR, and any implemented event counters PMU_EVCNTR<n>.
Reading this register shows which counters are enabled.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if version Armv8.1 of the architecture and the PMU are implemented.

This register is RES0 if the PMU is not implemented.

Attributes
32-bit read/write register located at 0xE0003C20.

This register is not banked between Security states.

Field descriptions

The PMU_CNTENCLR bit assignments are:

030

Pn

31

C

C, bit [31]
PMU_CCNTR disable bit. Disables the cycle counter register.

The possible values of this bit are:

0
When read, means the cycle counter is disabled. When written, has no effect.

1
When read, means the cycle counter is enabled. When written, disables the cycle counter.

This bit resets to zero on a Cold reset.

Pn, bits [30:0]
Event counter PMU_EVCNTR<n> disable bit. Disables PMU_EVCNTR<n>.

The possible values of this field are:

0
When read, means that PMU_EVCNTR<n> is disabled. When written, has no effect.

1
When read, means that PMU_EVCNTR<n> event counter is enabled. When written, disables
PMU_EVCNTR<n>.

This field resets to zero on a Cold reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1688

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

Note

Bits [30:N] are RAZ/WI, where N is the number of counters and the value of PMU_TYPE.N.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1689

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.197 PMU_CNTENSET, Performance Monitoring Unit Count Enable Set Register

The PMU_CNTENSET characteristics are:

Purpose
Enables the Cycle Count Register, PMU_CCNTR, and any implemented event counters PMU_EVCNTR<n>.
Reading this register shows which counters are enabled.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if version Armv8.1 of the architecture and the PMU are implemented.

This register is RES0 if the PMU is not implemented.

Attributes
32-bit read/write register located at 0xE0003C00.

This register is not banked between Security states.

Field descriptions

The PMU_CNTENSET bit assignments are:

030

Pn

31

C

C, bit [31]
PMU_CCNTR enable bit. Enables the cycle counter register.

The possible values of this bit are:

0
When read, means the cycle counter is disabled. When written, has no effect.

1
When read, means the cycle counter is enabled. When written, enables the cycle counter.

This bit resets to zero on a Cold reset.

Pn, bits [30:0]
Event counter PMU_EVCNTR<n> enable bit. Enables PMU_EVCNTR<n>.

The possible values of this field are:

0
When read, means that PMU_EVCNTR<n> is disabled. When written, has no effect.

1
When read, means that PMU_EVCNTR<n> event counter is enabled. When written, enables
PMU_EVCNTR<n>.

This field resets to zero on a Cold reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1690

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

Note

Bits [30:N] are RAZ/WI, where N is the number of counters and the value of PMU_TYPE.N.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1691

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.198 PMU_CTRL, Performance Monitoring Unit Control Register

The PMU_CTRL characteristics are:

Purpose
Configures and controls the Performance Monitoring Unit.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if version Armv8.1 of the architecture and the PMU are implemented.

This register is RES0 if the PMU is not implemented.

Attributes
32-bit read/write register located at 0xE0003E04.

This register is not banked between Security states.

Field descriptions

The PMU_CTRL bit assignments are:

0

E

1

P

2

C

34

SBZ

5

DP

68

SBZ

910

(0)

111231

RES0

TRO FZO

Bits [31:12]
Reserved, RES0.

TRO, bit [11]
Trace-on-overflow. Enable trace-on-overflow.

The possible values of this bit are:

0
Trace-on-overflow disabled.

1
Trace whenever any of the first eight counters overflows an 8-bit value.

This bit resets to an UNKNOWN value on a Warm reset.

Bit [10]
SBZ.

FZO, bit [9]
Freeze-on-overflow. Stops events being counted once PMU_OVSCLR or PMU_OVSSET is non-zero.

The possible values of this bit are:

0
This bit has no effect on event counting.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1692

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

1
While PMU_OVSCLR or PMU_OVSSET is nonzero, event counters do not count events.

This bit resets to an UNKNOWN value on a Warm reset.

Bits [8:6]
SBZ.

DP, bit [5]
Controls whether the cycle counter is disabled in Secure state. This bit is an alias of the DWT_CTRL.CYCDISS
bit.

Bits [4:3]
SBZ.

C, bit [2]
Cycle counter reset. Reset the PMU_CCNTR counter.

The possible values of this bit are:

0
No action.

1
Reset PMU_CCNTR to zero.

Resetting PMU_CCNTR does not clear the PMU_CCNTR overflow bit to 0.

This bit is write-only.

This bit reads as zero.

P, bit [1]
Event counter reset. Reset event counters.

The possible values of this bit are:

0
No action.

1
Reset all event counters, not including PMU_CCNTR, to zero.

Resetting the event counters does not clear any overflow bits to 0.

This bit is write-only.

This bit reads as zero.

E, bit [0]
Enable. Enable the event counters.

The possible values of this bit are:

0
All counters, including PMU_CCNTR, are disabled.

1
All counters are enabled by PMU_CNTENSET.

This bit resets to zero on a Warm reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1693

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.199 PMU_DEVARCH, Performance Monitoring Unit Device Architecture Register

The PMU_DEVARCH characteristics are:

Purpose
Identifies the programmers’ model architecture of the Performance Monitoring Unit component.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if version Armv8.1 of the architecture and the PMU are implemented.

This register is RES0 if the PMU is not implemented.

Attributes
32-bit read-only register located at 0xE0003FBC.

This register is not banked between Security states.

Field descriptions

The PMU_DEVARCH bit assignments are:

015

ARCHID

1619

REVISION

202131

ARCHITECT

PRESENT

ARCHITECT, bits [31:21]
Defines the architecture of the component.

For Performance Monitoring Units, this is Arm Limited.

Bits [31:28] are the JEP 106 continuation code, 0x4.

Bits [27:21] are the JEP 106 ID code, 0x3B.

PRESENT, bit [20]
Determines the presence of DEVARCH. When set to 1, indicates that the DEVARCH is present.

This bit reads as 0x1.

REVISION, bits [19:16]
Defines the architecture revision.

For architectures defined by Arm this is the minor revision.

For Performance Monitoring Units, the revision defined by Armv8.1-M is 0x0.

All other values are reserved.

ARCHID, bits [15:0]
Defines this part to be an ARMv8-M debug component.

For architectures defined by Arm this is further subdivided. For Performance Monitoring Units:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1694

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

Bits [15:12] are the architecture version, 0x0.

Bits [11:0] are the architecture part number, 0xA06.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1695

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.200 PMU_DEVTYPE, Performance Monitoring Unit Device Type Register

The PMU_DEVTYPE characteristics are:

Purpose
Indicates to a debugger that this component is part of the Performance Monitoring Unit interface of the PE.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if version Armv8.1 of the architecture and the PMU are implemented.

This register is RES0 if the PMU is not implemented.

Attributes
32-bit read-only register located at 0xE0003FCC.

This register is not banked between Security states.

Field descriptions

The PMU_DEVTYPE bit assignments are:

03

MAJOR

47

SUB

831

RES0

Bits [31:8]
Reserved, RES0.

SUB, bits [7:4]
Subtype.

This field reads as 0x1.

MAJOR, bits [3:0]
Major type.

This field reads as 0x6.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1696

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.201 PMU_EVCNTRn, Performance Monitoring Unit Event Counter Register

The PMU_EVCNTR{0..30} characteristics are:

Purpose
Holds performance counter n, which counts events.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if version Armv8.1 of the architecture and the PMU are implemented.

This register is RES0 if the PMU is not implemented.

Attributes
32-bit read/write register located at 0xE0003000 + 4n.

This register is not banked between Security states.

Preface

If n is greater than or equal to the number of accessible counters, reads and writes of this register are RES0.

Field descriptions

The PMU_EVCNTR{0..30} bit assignments are:

015

Counter

1631

RES0

Bits [31:16]
Reserved, RES0.

Counter, bits [15:0]
Event counter n.

Value of event counter n, where n is the number of this register. n is a number in the range 0-30. The size of
this counter is 16 bits.

The counter counts whenever the selected event occurs, and either of: .

• SecureNoninvasiveDebugAllowed() == TRUE .

• the NS-Req for the operation is set to Non-secure and NoninvasiveDebugAllowed() == TRUE.

This field resets to an UNKNOWN value on a Warm reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1697

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.202 PMU_EVTYPERn, Performance Monitoring Unit Event Type and Filter Register

The PMU_EVTYPER{0..30} characteristics are:

Purpose
Configures event counter n, where n is 0 to 30.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if version Armv8.1 of the architecture and the PMU are implemented.

This register is RES0 if the PMU is not implemented.

Attributes
32-bit read/write register located at 0xE0003400 + 4n.

This register is not banked between Security states.

Preface

If n is greater than or equal to the number of accessible counters, reads and writes of this register are RES0.

Field descriptions

The PMU_EVTYPER{0..30} bit assignments are:

015

evtCount

1631

RES0

Bits [31:16]
Reserved, RES0.

evtCount, bits [15:0]
Event to Count. The event number of the event that is counted by event counter PMU_EVCNTR<n>. If the
associated counter does not support the event number that is written to this register, the value read back is
UNKNOWN.

This field resets to an UNKNOWN value on a Warm reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1698

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.203 PMU_INTENCLR, Performance Monitoring Unit Interrupt Enable Clear Register

The PMU_INTENCLR characteristics are:

Purpose
Disables the generation of interrupt requests on overflows from the Cycle Count Register, PMU_CCNTR,
and the event counters, PMU_EVCNTR. Reading the register shows which overflow interrupt requests are
enabled.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if version Armv8.1 of the architecture and the PMU are implemented.

This register is RES0 if the PMU is not implemented.

Attributes
32-bit read/write register located at 0xE0003C60.

This register is not banked between Security states.

Field descriptions

The PMU_INTENCLR bit assignments are:

030

Pn

31

C

C, bit [31]
PMU_CCNTR overflow interrupt request disable bit. Disable the overflow interrupt for the cycle counter.

The possible values of this bit are:

0
When read, means the cycle counter overflow interrupt request is disabled. When written, has no effect.

1
When read, means the cycle counter overflow interrupt request is enabled. When written, disables the
cycle count overflow interrupt request.

This bit resets to zero on a Cold reset.

Pn, bits [30:0]
Event counter overflow interrupt request disable bit for PMU_EVCNTR<n>. Disable the overflow interrupt
for PMU_EVCNTR<n>.

The possible values of this field are:

0
When read, means that the PMU_EVCNTR<n> event counter interrupt request is disabled. When
written, has no effect.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1699

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

1
When read, means that the PMU_EVCNTR<n> event counter interrupt request is enabled. When written,
disables the PMU_EVCNTR<n> interrupt request.

This field resets to zero on a Cold reset.

Note

Bits [30:N] are RAZ/WI, where N is the number of counters and the value of PMU_TYPE.N.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1700

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.204 PMU_INTENSET, Performance Monitoring Unit Interrupt Enable Set Register

The PMU_INTENSET characteristics are:

Purpose
Enables the generation of interrupt requests on overflows from the Cycle Count Register, PMU_CCNTR,
and the event counter, PMU_EVCNTR. Reading the register shows which overflow interrupt requests are
enabled.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if version Armv8.1 of the architecture and the PMU are implemented.

This register is RES0 if the PMU is not implemented.

Attributes
32-bit read/write register located at 0xE0003C40.

This register is not banked between Security states.

Field descriptions

The PMU_INTENSET bit assignments are:

030

Pn

31

C

C, bit [31]
PMU_CCNTR overflow interrupt request enable bit. Enable the overflow interrupt for the cycle counter.

The possible values of this bit are:

0
When read, means the cycle counter overflow interrupt request is disabled. When written, has no effect.

1
When read, means the cycle counter overflow interrupt request is enabled. When written, enables the
cycle count overflow interrupt request.

This bit resets to zero on a Cold reset.

Pn, bits [30:0]
Event counter overflow interrupt request enable bit for PMU_EVCNTR<n>. Enable the overflow interrupt
for PMU_EVCNTR<n>.

The possible values of this field are:

0
When read, means that the PMU_EVCNTR<n> event counter interrupt request is disabled. When
written, has no effect.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1701

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

1
When read, means that the PMU_EVCNTR<n> event counter interrupt request is enabled. When written,
enables the PMU_EVCNTR<n> interrupt request.

This field resets to zero on a Cold reset.

Note

Bits [30:N] are RAZ/WI, where N is the number of counters and the value of PMU_TYPE.N.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1702

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.205 PMU_OVSCLR, Performance Monitoring Unit Overflow Flag Status Clear Register

The PMU_OVSCLR characteristics are:

Purpose
Contains the state of the overflow bit for the Cycle Count Register, PMU_CCNTR, and each of the imple-
mented event counters, PMU_EVCNTR<n>. Writing to this register clears these bits.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if version Armv8.1 of the architecture and the PMU are implemented.

This register is RES0 if the PMU is not implemented.

Attributes
32-bit read/write register located at 0xE0003C80.

This register is not banked between Security states.

Field descriptions

The PMU_OVSCLR bit assignments are:

030

Pn

31

C

C, bit [31]
PMU_CCNTR overflow bit. Clears the PMU_CCNTR overflow bit.

The possible values of this bit are:

0
When read, means the cycle counter has not overflowed. When written, has no effect.

1
When read, means the cycle counter has overflowed. When written, clears the overflow bit to 0.

This bit resets to zero on a Cold reset.

Pn, bits [30:0]
Event counter overflow clear bit for PMU_EVCNTR<n>. Clears the PMU_EVCNTR<n> overflow bit.

The possible values of this field are:

0
When read, means that the PMU_EVCNTR<n> event counter has not overflowed. When written, has no
effect.

1
When read, means that the PMU_EVCNTR<n> event counter has overflowed. When written, clears the
PMU_EVCNTR<n> overflow bit to 0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1703

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

This field resets to zero on a Cold reset.

Note

Bits [30:N] are RAZ/WI, where N is the number of counters and the value of PMU_TYPE.N.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1704

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.206 PMU_OVSSET, Performance Monitoring Unit Overflow Flag Status Set Register

The PMU_OVSSET characteristics are:

Purpose
Sets the state of the overflow bit for the Cycle Count Register, PMU_CCNTR, and each of the implemented
event counters, PMU_EVCNTR<n>.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if version Armv8.1 of the architecture and the PMU are implemented.

This register is RES0 if the PMU is not implemented.

Attributes
32-bit read/write register located at 0xE0003CC0.

This register is not banked between Security states.

Field descriptions

The PMU_OVSSET bit assignments are:

030

Pn

31

C

C, bit [31]
PMU_CCNTR overflow bit. Set the overflow status for PMU_CCNTR.

The possible values of this bit are:

0
When read, means the cycle counter has not overflowed. When written, has no effect.

1
When read, means the cycle counter has overflowed. When written, sets the overflow bit to 1.

This bit resets to zero on a Cold reset.

Pn, bits [30:0]
Event counter overflow set bit for PMU_EVCNTR<n>. Set the overflow status for PMU_EVCNTR<n>.

The possible values of this field are:

0
When read, means that the PMU_EVCNTR<n> event counter has not overflowed. When written, has no
effect.

1
When read, means that the PMU_EVCNTR<n> event counter has overflowed. When written, sets the
PMU_EVCNTR<n> overflow bit to 1.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1705

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

This field resets to zero on a Cold reset.

Note

Bits [30:N] are RAZ/WI, where N is the number of counters and the value of PMU_TYPE.N.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1706

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.207 PMU_PIDR0, Performance Monitoring Unit Peripheral Identification Register 0

The PMU_PIDR0 characteristics are:

Purpose
Provides information to identify a Performance Monitoring Unit component.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if version Armv8.1 of the architecture and the PMU are implemented.

This register is RES0 if the PMU is not implemented.

Attributes
32-bit read-only register located at 0xE0003FE0.

This register is not banked between Security states.

Field descriptions

The PMU_PIDR0 bit assignments are:

07

PART_0

831

RES0

Bits [31:8]
Reserved, RES0.

PART_0, bits [7:0]
Part number, least significant byte.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1707

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.208 PMU_PIDR1, Performance Monitoring Unit Peripheral Identification Register 1

The PMU_PIDR1 characteristics are:

Purpose
Provides information to identify a Performance Monitoring Unit component.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if version Armv8.1 of the architecture and the PMU are implemented.

This register is RES0 if the PMU is not implemented.

Attributes
32-bit read-only register located at 0xE0003FE4.

This register is not banked between Security states.

Field descriptions

The PMU_PIDR1 bit assignments are:

03

PART_1

47

DES_0

831

RES0

Bits [31:8]
Reserved, RES0.

DES_0, bits [7:4]
Designer, least significant nibble of JEP106 ID code. For Arm Limited, this field is 0b1011.

This field reads as an IMPLEMENTATION DEFINED value.

PART_1, bits [3:0]
Part number, most significant nibble.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1708

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.209 PMU_PIDR2, Performance Monitoring Unit Peripheral Identification Register 2

The PMU_PIDR2 characteristics are:

Purpose
Provides information to identify a Performance Monitoring Unit component.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if version Armv8.1 of the architecture and the PMU are implemented.

This register is RES0 if the PMU is not implemented.

Attributes
32-bit read-only register located at 0xE0003FE8.

This register is not banked between Security states.

Field descriptions

The PMU_PIDR2 bit assignments are:

02

DES_1

347

REVISION

831

RES0

JEDEC

Bits [31:8]
Reserved, RES0.

REVISION, bits [7:4]
Part major revision. Parts can also use this field to extend Part number to 16-bits.

This field reads as an IMPLEMENTATION DEFINED value.

JEDEC, bit [3]
JEDEC. RAO. Indicates a JEP106 identity code is used.

DES_1, bits [2:0]
Designer, most significant bits of JEP106 ID code. For Arm Limited, this field is 0b011.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1709

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.210 PMU_PIDR3, Performance Monitoring Unit Peripheral Identification Register 3

The PMU_PIDR3 characteristics are:

Purpose
Provides information to identify a Performance Monitoring Unit component.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if version Armv8.1 of the architecture and the PMU are implemented.

This register is RES0 if the PMU is not implemented.

Attributes
32-bit read-only register located at 0xE0003FEC.

This register is not banked between Security states.

Field descriptions

The PMU_PIDR3 bit assignments are:

03

CMOD

47

REVAND

831

RES0

Bits [31:8]
Reserved, RES0.

REVAND, bits [7:4]
Part minor revision. Parts using PMU_PIDR2.REVISION as an extension to the Part number must use this
field as a major revision number.

This field reads as an IMPLEMENTATION DEFINED value.

CMOD, bits [3:0]
Customer modified. Indicates someone other than the Designer has modified the component.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1710

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.211 PMU_PIDR4, Performance Monitoring Unit Peripheral Identification Register 4

The PMU_PIDR4 characteristics are:

Purpose
Provides information to identify a Performance Monitoring Unit component.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if version Armv8.1 of the architecture and the PMU are implemented.

This register is RES0 if the PMU is not implemented.

Attributes
32-bit read-only register located at 0xE0003FD0.

This register is not banked between Security states.

Field descriptions

The PMU_PIDR4 bit assignments are:

03

DES_2

47

SIZE

831

RES0

Bits [31:8]
Reserved, RES0.

SIZE, bits [7:4]
Size of the component. RAZ. Log2 of the number of 4KB pages from the start of the component to the end
of the component ID registers.

DES_2, bits [3:0]
Designer, JEP106 continuation code, least significant nibble. For Arm Limited, this field is 0b0100.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1711

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.212 PMU_SWINC, Performance Monitoring Unit Software Increment Register

The PMU_SWINC characteristics are:

Purpose
Increments a counter that is configured to count the Software increment event, event 0x00.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if version Armv8.1 of the architecture and the PMU are implemented.

This register is RES0 if the PMU is not implemented.

Attributes
32-bit write-only register located at 0xE0003CA0.

This register is not banked between Security states.

Field descriptions

The PMU_SWINC bit assignments are:

030

Pn

31

(0)

Bit [31]
Reserved, RES0.

Pn, bits [30:0]
Event counter software increment bit for PMU_EVCNTR<n>. An event counter n, configured for SW_INCR
events, increments on every write to bit n of this field.

The possible values of this field are:

0
No action. The write to this bit is ignored.

1
A SW_INCR event is generated for event counter n.

Note

Bits [30:N] are WI, where N is the number of counters and the value of PMU_TYPE.N.

This field reads as zero.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1712

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.213 PMU_TYPE, Performance Monitoring Unit Type Register

The PMU_TYPE characteristics are:

Purpose
Contains information regarding what the Performance Monitoring Unit supports.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Present only if version Armv8.1 of the architecture and the PMU are implemented.

This register is RES0 if the PMU is not implemented.

Attributes
32-bit read-only register located at 0xE0003E00.

This register is not banked between Security states.

Field descriptions

The PMU_TYPE bit assignments are:

07

N

813

SIZE

141520

SBZ

2122

(0)

232427

SBZ

2831

RES0

TRO CC
FZO

Bits [31:28]
Reserved, RES0.

Bits [27:24]
SBZ.

TRO, bit [23]
Trace-on-overflow support. Identifies whether the trace-on-overflow function is supported.

The possible values of this bit are:

0
Trace-on-overflow not supported.

1
Trace-on-overflow supported.

This bit reads as one.

Bit [22]
SBZ.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1713

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

FZO, bit [21]
Freeze-on-overflow support. Identifies whether the freeze-on-overflow mechanism is supported.

The possible values of this bit are:

0
Freeze-on-overflow mechanism not supported.

1
Freeze-on-overflow mechanism supported.

This bit reads as one.

Bits [20:15]
SBZ.

CC, bit [14]
Cycle counter present. This bit is set if a dedicated cycle counter is present.

This bit reads as one.

SIZE, bits [13:8]
Size of counters. This field determines the spacing of counters in the memory-map.

Note

In ARMv8-M this indicates all counters are word-aligned, as the largest counter is PMU_CCNTR
with 32-bits.

This field reads as 0b011111.

N, bits [7:0]
Number of counters.

Number of counters implemented in addition to the cycle counter, PMU_CCNTR.

00000010 PMU_CCNTR and 2 event counters implemented.

00000011 PMU_CCNTR and 3 event counters implemented.

and so on up to 00011111, which indicates PMU_CCNTR and 31 event counters implemented.

Note

This field will be non-zero when the PMU is implemented, and serves to indicate the PMU is
supported. The maximum number of event counters is 31, so bits[7:5] are always zero.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1714

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.214 PRIMASK, Exception Mask Register

The PRIMASK characteristics are:

Purpose
Provides access to the PE PRIMASK register.

Usage constraints
Privileged access only. Unprivileged access is RAZ/WI, unless otherwise stated.

Configurations
This register is always implemented.

Attributes
32-bit read/write special-purpose register.

This register is banked between Security states.

Field descriptions

The PRIMASK bit assignments are:

0

PM

131

RES0

Bits [31:1]
Reserved, RES0.

PM, bit [0]
Exception mask register. Setting the Secure PRIMASK to one raises the execution priority to 0. Setting
the Non-secure PRIMASK to one raises the execution priority to 0 if AIRCR.PRIS is clear, or 0x80 if
AIRCR.PRIS is set.

The possible values of this bit are:

0
No effect on execution priority.

1
Boosts execution priority to either 0 or 0x80.

This bit resets to zero on a Warm reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1715

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.215 PSPLIM, Process Stack Pointer Limit Register

The PSPLIM characteristics are:

Purpose
Holds the lower limit for the Process stack pointer.

Usage constraints
Privileged access only. Unprivileged access is RAZ/WI, unless otherwise stated.

Configurations
This register is always implemented.

Attributes
32-bit read/write special-purpose register.

This register is banked between Security states.

Field descriptions

The PSPLIM bit assignments are:

02

RES0

331

LIMIT

LIMIT, bits [31:3]
Stack limit. Bits [31:3] of the Process stack limit address for the selected Security state.

Many instructions and exception entry will generate an exception if the appropriate stack pointer would be
updated to a value lower than this limit. If the Main Extension is not implemented, the Non-secure PSPLIM
is RES0.

This field resets to zero on a Warm reset.

Bits [2:0]
Reserved, RES0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1716

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.216 Rn, General-Purpose Register, n = 0 - 12

The R{0..12} characteristics are:

Purpose
General-purpose register.

Usage constraints
Both privileged and unprivileged accesses are permitted.

This register is word, halfword, and byte accessible.

Configurations
This register is always implemented.

Attributes
32-bit read/write register.

This register is not banked between Security states.

Field descriptions

The R{0..12} bit assignments are:

031

VALUE

VALUE, bits [31:0]
General purpose register value. Armv8-M implemented thirteen general-purpose 32-bit registers, R0 to R12.

This field resets to an UNKNOWN value on a Warm reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1717

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.217 RETPSR, Combined Exception Return Program Status Registers

The RETPSR characteristics are:

Purpose
Value pushed to the stack on exception entry. On exception return this is used to restore the flags and other
architectural state. This payload is also used for FNC_RETURN stacking, however in this case only some of
the fields are used. See FunctionReturn() for details.

Usage constraints
None.

Configurations
All.

Attributes
32-bit payload.

Field descriptions

The RETPSR bit assignments are:

When {RETPSR[26:25], RETPSR[11:10]} != 0:

08

Exception

91015

IT

1619

GE

202123

RES0

24

T

2526

IT

27

Q

28

V

29

C

30

Z

31

N

SFPA SPREALIGN

When {RETPSR[26:25], RETPSR[11:10]} == 0, and a multi-cycle load or store instruction was in progress
when the exception was taken:

08

Exception

91015

ICI

1619

GE

202123

RES0

24

T

2526

ICI

27

Q

28

V

29

C

30

Z

31

N

SFPA SPREALIGN

When {RETPSR[26:25], RETPSR[11:10]} == 0, and beat-wise vector instructions were in progress when
the exception was taken:

08

Exception

91011

ECI

1215

ECI

1619

GE

202123

RES0

24

T

2526

ECI

27

Q

28

V

29

C

30

Z

31

N

SFPA SPREALIGN

N, bit [31]
Negative flag. Value corresponding to APSR.N.

Z, bit [30]
Zero flag. Value corresponding to APSR.Z.

C, bit [29]
Carry flag. Value corresponding to APSR.C.

V, bit [28]
Overflow flag. Value corresponding to APSR.V.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1718

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

Q, bit [27]
Saturate flag. Value corresponding to APSR.Q.

T, bit [24]
T32 state. Value corresponding to EPSR.T.

Bits [23:21]
Reserved, RES0.

SFPA, bit [20]
Secure Floating-point active. Value corresponding to CONTROL.SFPA.

GE, bits [19:16]
Greater-than or equal flag. Value corresponding to APSR.GE.

IT, bits [15:10,26:25] , when [{RETPSR[26:25], RETPSR[11:10]} != 0]
If-then flags. Value corresponding to EPSR.IT.

ICI, bits [26:25,15:10] , when [{RETPSR[26:25], RETPSR[11:10]} == 0, and a multi-cycle load or store instruc-
tion was in progress when the exception was taken]
Interrupt continuation flags. Value corresponding to EPSR.ICI.

ECI, bits [26:25, 11:10, 15:12] , when [{RETPSR[26:25], RETPSR[11:10]} == 0, and beat-wise vector instruc-
tions were in progress when the exception was taken]
Exception continuation flags for beat-wise vector instructions. Value corresponding to EPSR.ECI.

SPREALIGN, bit [9]
Stack-pointer re-align. Indicates whether the SP was re-aligned to an 8-byte alignment on exception entry.

The possible values of this bit are:

0
The stack pointer was 8-byte aligned before exception entry began, no special handling is required on
exception return.

1
The stack pointer was only 4-byte aligned before exception entry. The exception entry realigned SP to
8-byte alignment by increasing the stack frame size by 4-bytes.

Exception, bits [8:0]
Exception number. Value corresponding to IPSR.Exception.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1719

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.218 REVIDR, Revision ID Register

The REVIDR characteristics are:

Purpose
Provides implementation-specific minor revision information.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

Configurations
Present only if version Armv8.1-M of the architecture is implemented.

This register is RES0 if Armv8.1-M is not implemented.

Attributes
32-bit read-only register located at 0xE000ECFC.

Secure software can access the Non-secure version of this register via REVIDR_NS located at 0xE002ECFC.
The location 0xE002ECFC is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The REVIDR bit assignments are:

031

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]
IMPLEMENTATION DEFINED. The contents of this field are IMPLEMENTATION DEFINED.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1720

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.219 RFSR, RAS Fault Status Register

The RFSR characteristics are:

Purpose
Records syndrome information for a RAS exception.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If AIRCR.BFHFNMINS is zero this register is RAZ/WI from Non-secure state.

Configurations
Present only if version Armv8.1 of the architecture and RAS are implemented.

This register is RES0 if RAS is not implemented.

Attributes
32-bit read/write register located at 0xE000EF04.

Secure software can access the Non-secure version of this register via RFSR_NS located at 0xE002EF04.
The location 0xE002EF04 is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The RFSR bit assignments are:

01

UET

215

RES0

1630

IS

31

V

V, bit [31]
Valid. Indicates the register values are valid.

This bit is write-one-to-clear. Writes of zero are ignored.

This bit resets to zero on a Warm reset.

IS, bits [30:16]
IMPLEMENTATION DEFINED Syndrome. Contains additional IMPLEMENTATION DEFINED syndrome infor-
mation.

Bits [15:2]
Reserved, RES0.

UET, bits [1:0]
Error Type. Describes the state of the processor after taking the RAS exception.

The possible values of this field are:

0b00
Uncontainable error (UC).

0b01
Unrecoverable error (UEU).

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1721

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0b10
Restartable error (UEO).

0b11
Recoverable error (UER).

This field resets to zero on a Warm reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1722

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.220 SAU_CTRL, SAU Control Register

The SAU_CTRL characteristics are:

Purpose
Allows enabling of the Security Attribution Unit.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
This register is always implemented.

Attributes
32-bit read/write register located at 0xE000EDD0.

To allow lock down of this register it is IMPLEMENTATION DEFINED whether this register is writable.

This register is RAZ/WI when accessed as Non-secure.

This register is not banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Preface

It is IMPLEMENTATION DEFINED whether this register:

• Resets to 0x0 - in this case SAU_REGIONn registers are UNKNOWN at reset.

• Resets to an IMPLEMENTATION DEFINED value.

Field descriptions

The SAU_CTRL bit assignments are:

01231

RES0

ALLNS ENABLE

Bits [31:2]
Reserved, RES0.

ALLNS, bit [1]
All Non-secure. When SAU_CTRL.ENABLE is 0 this bit controls if the memory is marked as Non-secure or
Secure.

The possible values of this bit are:

0
Memory is marked as Secure and is not Non-secure callable.

1
Memory is marked as Non-secure.

This bit resets to an IMPLEMENTATION DEFINED value on a Warm reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1723

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

ENABLE, bit [0]
Enable. Enables the SAU.

The possible values of this bit are:

0
The SAU is disabled.

1
The SAU is enabled.

If this register resets to 1, the SAU region registers also reset to an IMPLEMENTATION DEFINED value.

This bit resets to an IMPLEMENTATION DEFINED value on a Warm reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1724

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.221 SAU_RBAR, SAU Region Base Address Register

The SAU_RBAR characteristics are:

Purpose
Provides indirect read and write access to the base address of the currently selected SAU region.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
This register is always implemented.

Attributes
32-bit read/write register located at 0xE000EDDC.

To allow lock down of this register it is IMPLEMENTATION DEFINED whether this register is writable.

This register is RAZ/WI when accessed as Non-secure.

This register is not banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The SAU_RBAR bit assignments are:

04

RES0

531

BADDR

BADDR, bits [31:5]
Base address. Holds bits [31:5] of the base address for the selected SAU region.

Bits [4:0] of the base address are defined as 0x00.

It is IMPLEMENTATION DEFINED whether any of the BADDR bits are WI

This field resets to an IMPLEMENTATION DEFINED value on a Warm reset.

Bits [4:0]
Reserved, RES0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1725

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.222 SAU_RLAR, SAU Region Limit Address Register

The SAU_RLAR characteristics are:

Purpose
Provides indirect read and write access to the limit address of the currently selected SAU region.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
This register is always implemented.

Attributes
32-bit read/write register located at 0xE000EDE0.

To allow lock down of this register it is IMPLEMENTATION DEFINED whether this register is writable.

This register is RAZ/WI when accessed as Non-secure.

This register is not banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The SAU_RLAR bit assignments are:

0124

RES0

531

LADDR

NSC ENABLE

LADDR, bits [31:5]
Limit address. Holds bits [31:5] of the limit address for the selected SAU region.

Bits [4:0] of the limit address are defined as 0x1F.

It is IMPLEMENTATION DEFINED whether any of the LADDR bits are WI

This field resets to an IMPLEMENTATION DEFINED value on a Warm reset.

Bits [4:2]
Reserved, RES0.

NSC, bit [1]
Non-secure callable. Controls whether Non-secure state is permitted to execute an SG instruction from this
region.

The possible values of this bit are:

0
Region is not Non-secure callable.

1
Region is Non-secure callable.

This bit resets to an IMPLEMENTATION DEFINED value on a Warm reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1726

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

ENABLE, bit [0]
Enable. SAU region enable.

The possible values of this bit are:

0
SAU region is disabled.

1
SAU region is enabled.

This bit resets to an IMPLEMENTATION DEFINED value on a Warm reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1727

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.223 SAU_RNR, SAU Region Number Register

The SAU_RNR characteristics are:

Purpose
Selects the region currently accessed by SAU_RBAR and SAU_RLAR.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
This register is always implemented.

Attributes
32-bit read/write register located at 0xE000EDD8.

To allow lock down of this register it is IMPLEMENTATION DEFINED whether this register is writable.

This register is RAZ/WI when accessed as Non-secure.

This register is not banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The SAU_RNR bit assignments are:

07

REGION

831

RES0

Bits [31:8]
Reserved, RES0.

REGION, bits [7:0]
Region number. Indicates the SAU region accessed by SAU_RBAR and SAU_RLAR.

If no SAU regions are implemented, this field is RES0. Writing a value corresponding to an unimplemented
region is CONSTRAINED UNPREDICTABLE.

This field resets to an UNKNOWN value on a Warm reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1728

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.224 SAU_TYPE, SAU Type Register

The SAU_TYPE characteristics are:

Purpose
Indicates the number of regions implemented by the Security Attribution Unit.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
This register is always implemented.

Attributes
32-bit read-only register located at 0xE000EDD4.

This register is RAZ/WI when accessed as Non-secure.

This register is not banked between Security states.

Field descriptions

The SAU_TYPE bit assignments are:

07

SREGION

831

RES0

Bits [31:8]
Reserved, RES0.

SREGION, bits [7:0]
SAU regions. The number of implemented SAU regions.

If this field is RAZ, the SAU behaves as follows:

• SAU_CTRL.ENABLE behaves as RAZ/WI.

• It is IMPLEMENTATION DEFINED whether SAU_CTRL.ALLNS behaves as RAO/WI and all attribution
is performed by the IDAU.

• SAU_RNR, SAU_RBAR, and SAU_RLAR behave as RAZ/WI.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1729

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.225 SCR, System Control Register

The SCR characteristics are:

Purpose
Sets or returns system control data.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
This register is always implemented.

Attributes
32-bit read/write register located at 0xE000ED10.

Secure software can access the Non-secure version of this register via SCR_NS located at 0xE002ED10.
The location 0xE002ED10 is RES0 to software executing in Non-secure state and the debugger.

This register is banked between Security states on a bit by bit basis.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The SCR bit assignments are:

0

(0)

1234531

RES0

SEVONPEND
SLEEPDEEPS

SLEEPONEXIT
SLEEPDEEP

Bits [31:5]
Reserved, RES0.

SEVONPEND, bit [4]
Send event on pend. Determines whether an interrupt assigned to the same Security state as the SEVONPEND
bit transitioning from inactive state to pending state generates a wakeup event.

This bit is banked between Security states.

The possible values of this bit are:

0
Transitions from inactive to pending are not wakeup events.

1
Transitions from inactive to pending are wakeup events.

This bit resets to zero on a Warm reset.

SLEEPDEEPS, bit [3]
Sleep deep secure. This field controls whether the SLEEPDEEP bit is only accessible from the Secure state.

This bit is not banked between Security states.

The possible values of this bit are:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1730

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0
The SLEEPDEEP bit accessible from both Security states.

1
The SLEEPDEEP bit behaves as RAZ/WI when accessed from the Non-secure state.

This bit is only accessible from the Secure state, and behaves as RAZ/WI when accessed from the Non-secure
state. If a PE does not implement the deep sleep state this bit behaves as RAZ/WI from both Security states.

This bit is RAZ/WI from Non-secure state.

This bit resets to zero on a Warm reset.

SLEEPDEEP, bit [2]
Sleep deep. Provides a qualifying hint indicating that waking from sleep might take longer. An implementa-
tion can use this bit to select between two alternative sleep states.

This bit is not banked between Security states.

The possible values of this bit are:

0
Selected sleep state is not deep sleep.

1
Selected sleep state is deep sleep.

Details of the implemented sleep states, if any, and details of the use of this bit, are IMPLEMENTATION
DEFINED. If the PE does not implement a deep sleep state then this bit can be RAZ/WI.

This bit resets to zero on a Warm reset.

SLEEPONEXIT, bit [1]
Sleep on exit. Determines whether, on an exit from an ISR that returns to the base level of execution priority,
the PE enters a sleep state.

This bit is banked between Security states.

The possible values of this bit are:

0
Enter sleep state disabled.

1
Enter sleep state permitted.

The Secure version of this field is used if the Background state being returned to is the Secure state, otherwise
the Non-secure version is used.

This bit resets to zero on a Warm reset.

Bit [0]
Reserved, RES0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1731

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.226 SFAR, Secure Fault Address Register

The SFAR characteristics are:

Purpose
Shows the address of the memory location that caused a Security violation.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes
32-bit read/write register located at 0xE000EDE8.

This register is RAZ/WI when accessed as Non-secure.

This register is not banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The SFAR bit assignments are:

031

ADDRESS

ADDRESS, bits [31:0]
Address. The address of an access that caused an attribution unit violation. This field is only valid when
SFSR.SFARVALID is set. This allows the actual flip flops associated with this register to be shared with
other fault address registers. If an implementation chooses to share the storage in this way, care must be
taken to not leak Secure address information to the Non-secure state. One way of achieving this is to share
the SFAR register with the MMFAR_S register, which is not accessible to the Non-secure state.

This field resets to an UNKNOWN value on a Warm reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1732

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.227 SFSR, Secure Fault Status Register

The SFSR characteristics are:

Purpose
Provides information about any security related faults.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes
32-bit read/write-one-to-clear register located at 0xE000EDE4.

This register is RAZ/WI when accessed as Non-secure.

This register is not banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The SFSR bit assignments are:

01234567831

RES0

LSERR
SFARVALID

LSPERR
INVTRAN

INVEP
INVIS
INVER
AUVIOL

Bits [31:8]
Reserved, RES0.

LSERR, bit [7]
Lazy state error flag. Sticky flag indicating that an error occurred during lazy state activation or deactivation.

The possible values of this bit are:

0
Error has not occurred.

1
Error has occurred.

This bit resets to zero on a Warm reset.

SFARVALID, bit [6]
Secure fault address valid. This bit is set when the SFAR register contains a valid value. As with similar
fields, such as BFSR.BFARVALID and MMFSR.MMARVALID, this bit can be cleared by other exceptions,
such as BusFault.

The possible values of this bit are:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1733

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0
SFAR content not valid.

1
SFAR content valid.

This bit resets to zero on a Warm reset.

LSPERR, bit [5]
Lazy state preservation error flag. Stick flag indicating that an SAU or IDAU violation occurred during the
lazy preservation of Floating-point state.

The possible values of this bit are:

0
Error has not occurred.

1
Error has occurred.

This bit resets to zero on a Warm reset.

INVTRAN, bit [4]
Invalid transition flag. Sticky flag indicating that an exception was raised due to a branch that was not flagged
as being domain crossing causing a transition from Secure to Non-secure memory.

The possible values of this bit are:

0
Error has not occurred.

1
Error has occurred.

This bit resets to zero on a Warm reset.

AUVIOL, bit [3]
Attribution unit violation flag.

Sticky flag indicating that an attempt was made to access parts of the address space that are marked as Secure
with NS-Req for the transaction set to Non-secure.

This bit is not set if the violation occurred during:

• Lazy state preservation, see LSPERR.

• Vector fetches.

The possible values of this bit are:

0
Error has not occurred.

1
Error has occurred.

This bit resets to zero on a Warm reset.

INVER, bit [2]
Invalid exception return flag. This can be caused by EXC_RETURN.DCRS being set to 0 when returning
from an exception in the Non-secure state, or by EXC_RETURN.ES being set to 1 when returning from an
exception in the Non-secure state.

The possible values of this bit are:

0
Error has not occurred.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1734

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

1
Error has occurred.

This bit resets to zero on a Warm reset.

INVIS, bit [1]
Invalid integrity signature flag. This bit is set if the integrity signature in an exception stack frame is found to
be invalid during the unstacking operation.

The possible values of this bit are:

0
Error has not occurred.

1
Error has occurred.

This bit resets to zero on a Warm reset.

INVEP, bit [0]
Invalid entry point. This bit is set if there is an invalid attempt to enter Secure state.

The possible values of this bit are:

0
Error has not occurred.

1
Error has occurred.

This bit resets to zero on a Warm reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1735

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.228 SHCSR, System Handler Control and State Register

The SHCSR characteristics are:

Purpose
Provides access to the active and pending status of system exceptions.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
This register is always implemented.

Attributes
32-bit read/write register located at 0xE000ED24.

Secure software can access the Non-secure version of this register via SHCSR_NS located at 0xE002ED24.
The location 0xE002ED24 is RES0 to software executing in Non-secure state and the debugger.

This register is banked between Security states on a bit by bit basis.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Preface

Exception processing automatically updates the SHCSR fields. However, software can write to the register to add
or remove the pending or active state of an exception. When updating the SHCSR, Arm recommends using a
read-modify-write sequence, to avoid unintended effects on the state of the exception handlers.

Removing the active state of an exception can change the current execution priority, and affect the exception return
consistency checks. If software removes the active state, causing a change in current execution priority, this can
defeat the architectural behavior that prevents an exception from preempting its own handler.

Pending state bits are set to one when an exception occurs and are cleared to zero when the exception becomes
active.

Active state bits are set to one when the associated exception becomes active.

Field descriptions

The SHCSR bit assignments are:

0123456

(0)

789

(0)

1011121314151617181920212231

RES0

HARDFAULTPENDED
SECUREFAULTPENDED

SECUREFAULTENA
USGFAULTENA
BUSFAULTENA
MEMFAULTENA

SVCALLPENDED
BUSFAULTPENDED
MEMFAULTPENDED
USGFAULTPENDED

MEMFAULTACT
BUSFAULTACT
HARDFAULTACT
USGFAULTACT

SECUREFAULTACT
NMIACT
SVCALLACT

MONITORACT
PENDSVACT
SYSTICKACT

Bits [31:22]
Reserved, RES0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1736

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

HARDFAULTPENDED, bit [21]
HardFault exception pended state. This bit indicates and allows modification of the pending state of the
HardFault exception corresponding to the selected Security state.

This bit is banked between Security states.

The possible values of this bit are:

0
HardFault exception not pending for the selected Security state.

1
HardFault exception pending for the selected Security state.

If AIRCR.BFHFNMINS is zero this bit is RAZ/WI from Non-secure state.

This bit resets to zero on a Warm reset.

Note

The Non-secure HardFault exception will not preempt if AIRCR.BFHFNMINS is set to zero.

SECUREFAULTPENDED, bit [20]
SecureFault exception pended state. This bit indicates and allows modification of the pending state of the
SecureFault exception.

This bit is not banked between Security states.

The possible values of this bit are:

0
SecureFault exception not pending.

1
SecureFault exception pending.

This bit is RAZ/WI from Non-secure state.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

SECUREFAULTENA, bit [19]
SecureFault exception enable. The value of this bit defines whether the SecureFault exception is enabled.

This bit is not banked between Security states.

The possible values of this bit are:

0
SecureFault exception disabled.

1
SecureFault exception enabled.

When disabled, exceptions that target SecureFault escalate to Secure state HardFault.

This bit is RAZ/WI from Non-secure state.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

USGFAULTENA, bit [18]
UsageFault exception enable. The value of this bit defines whether the UsageFault exception is enabled for
the selected Security state.

This bit is banked between Security states.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1737

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

The possible values of this bit are:

0
UsageFault exception disabled for the selected Security state.

1
UsageFault exception enabled for the selected Security state.

When the UsageFault exception is disabled, exceptions targeting UsageFault escalate to HardFault.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

BUSFAULTENA, bit [17]
BusFault exception enable. The value of this bit defines whether the BusFault exception is enabled.

This bit is not banked between Security states.

The possible values of this bit are:

0
BusFault exception disabled.

1
BusFault exception enabled.

The BusFault exception is not banked between Security states. When the BusFault exception is disabled,
exceptions targeting BusFault escalate to HardFault.

If AIRCR.BFHFNMINS is zero this bit is RAZ/WI from Non-secure state.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

MEMFAULTENA, bit [16]
MemManage exception enable. The value of this bit defines whether the MemManage exception is enabled
for the selected Security state.

This bit is banked between Security states.

The possible values of this bit are:

0
MemManage exception disabled for the selected Security state.

1
MemManage exception enabled for the selected Security state.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

Note

When the MemManage exception is disabled, exceptions targeting MemManage escalate to Hard-
Fault.

SVCALLPENDED, bit [15]
SVCall exception pended state. This bit indicates and allows modification of the pending state of the SVCall
exception for the selected Security state.

This bit is banked between Security states.

The possible values of this bit are:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1738

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0
SVCall exception not pending for the selected Security state.

1
SVCall exception pending for the selected Security state.

This bit resets to zero on a Warm reset.

BUSFAULTPENDED, bit [14]
BusFault exception pended state. This bit indicates and allows modification of the pending state of the
BusFault exception.

This bit is not banked between Security states.

The possible values of this bit are:

0
BusFault exception not pending.

1
BusFault exception pending.

The BusFault exception is not banked between Security states.

If AIRCR.BFHFNMINS is zero this bit is RAZ/WI from Non-secure state.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

MEMFAULTPENDED, bit [13]
MemManage exception pended state. This bit indicates and allows modification of the pending state of the
MemManage exception for the selected Security state.

This bit is banked between Security states.

The possible values of this bit are:

0
MemManage exception not pending for the selected Security state.

1
MemManage exception pending for the selected Security state.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

USGFAULTPENDED, bit [12]
UsageFault exception pended state. The UsageFault exception is banked between Security states, this bit
indicates and allows modification of the pending state of the UsageFault exception for the selected Security
state.

This bit is banked between Security states.

The possible values of this bit are:

0
UsageFault exception not pending for the selected Security state.

1
UsageFault exception pending for the selected Security state.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1739

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

SYSTICKACT, bit [11]
SysTick exception active state. This bit indicates and allows modification of the active state of the SysTick
exception for the selected Security state.

If two SysTick timers are implemented this bit is banked between Security states.

If less than two SysTick timers are implemented this bit is not banked between Security states.

The possible values of this bit are:

0
SysTick exception not active for the selected Security state.

1
SysTick exception active for the selected Security state.

If two timers are implemented, then SYSTICKACT is banked between Security states. If one timer is
implemented this bit corresponds to the Secure state if ICSR.STTNS is zero, or the Non-secure state if
ICSR.STTNS is one.

This bit resets to zero on a Warm reset.

PENDSVACT, bit [10]
PendSV exception active state. This bit indicates and allows modification of the active state of the PendSV
exception for the selected Security state.

This bit is banked between Security states.

The possible values of this bit are:

0
PendSV exception not active for the selected Security state.

1
PendSV exception active for the selected Security state.

This bit resets to zero on a Warm reset.

Bit [9]
Reserved, RES0.

MONITORACT, bit [8]
DebugMonitor exception active state. This bit indicates and allows modification of the active state of the
DebugMonitor exception.

This bit is not banked between Security states.

The possible values of this bit are:

0
DebugMonitor exception not active.

1
DebugMonitor exception active.

If DEMCR.SDME is one this bit is RAZ/WI from Non-secure state

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

SVCALLACT, bit [7]
SVCall exception active state. This bit indicates and allows modification of the active state of the SVCall
exception for the selected Security state.

This bit is banked between Security states.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1740

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

The possible values of this bit are:

0
SVCall exception not active for the selected Security state.

1
SVCall exception active for the selected Security state.

This bit resets to zero on a Warm reset.

Bit [6]
Reserved, RES0.

NMIACT, bit [5]
NMI exception active state. This bit indicates and allows modification of the active state of the NMI
exception.

This bit is not banked between Security states.

The possible values of this bit are:

0
NMI exception not active.

1
NMI exception active.

The NMI exception is not banked between Security states. This field ignores writes if either the value being
written is one, AIRCR.BFHFNMINS is zero, the access is from Non-secure state, the access is not via the
NS alias, or the access is from a debugger when DHCSR.S_SDE is zero. This bit can only be cleared by
access from the Secure state to the NS alias.

If AIRCR.BFHFNMINS is zero this bit is RAZ/WI from Non-secure state.

This bit resets to zero on a Warm reset.

SECUREFAULTACT, bit [4]
SecureFault exception active state. This bit indicates and allows modification of the active state of the
SecureFault exception.

This bit is not banked between Security states.

The possible values of this bit are:

0
SecureFault exception not active.

1
SecureFault exception active.

This bit is RAZ/WI from Non-secure state.

This bit resets to zero on a Warm reset.

USGFAULTACT, bit [3]
UsageFault exception active state for the selected Security state. This bit indicates and allows modification of
the active state of the UsageFault exception for the selected Security state.

This bit is banked between Security states.

The possible values of this bit are:

0
UsageFault exception not active for the selected Security state.

1
UsageFault exception active for the selected Security state.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1741

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

HARDFAULTACT, bit [2]
HardFault exception active state. Indicates and allows limited modification of the active state of the HardFault
exception for the selected Security state.

This bit is banked between Security states.

The possible values of this bit are:

0
HardFault exception not active for the selected Security state.

1
HardFault exception active for the selected Security state.

This field ignores writes when any of the following are true:

• The field is being written to one.

• The write targets the Secure instance of this field.

• The access is from Non-secure state or from a debugger when DHCSR.S_SDE is zero.

This bit resets to zero on a Warm reset.

BUSFAULTACT, bit [1]
BusFault exception active state. This bit indicates and allows modification of the active state of the BusFault
exception.

This bit is not banked between Security states.

The possible values of this bit are:

0
BusFault exception not active.

1
BusFault exception active.

The BusFault exception is not banked between Security states.

If AIRCR.BFHFNMINS is zero this bit is RAZ/WI from Non-secure state.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

MEMFAULTACT, bit [0]
MemManage exception active state for the selected Security state. This bit indicates and allows modification
of the active state of the MemManage exception for the selected Security state.

This bit is banked between Security states.

The possible values of this bit are:

0
MemManage exception not active for the selected Security state.

1
MemManage exception active for the selected Security state.

If the Main Extension is not implemented, this bit is RES0.

This bit resets to zero on a Warm reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1742

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.229 SHPR1, System Handler Priority Register 1

The SHPR1 characteristics are:

Purpose
Sets or returns priority for system handlers 4 - 7.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

If the Main Extension is implemented, this register is word, halfword, and byte accessible.

If the Main Extension is not implemented, this register is word accessible only, halfword and byte accesses
are UNPREDICTABLE.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes
32-bit read/write register located at 0xE000ED18.

Secure software can access the Non-secure version of this register via SHPR1_NS located at 0xE002ED18.
The location 0xE002ED18 is RES0 to software executing in Non-secure state and the debugger.

This register is banked between Security states on a bit by bit basis.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The SHPR1 bit assignments are:

07

PRI_4

815

PRI_5

1623

PRI_6

2431

PRI_7

PRI_7, bits [31:24]
Priority 7. Priority of system handler 7, SecureFault.

This field is not banked between Security states.

If the PE implements fewer than 8 bits of priority, then the least significant bits of this field are RES0.

This field is RAZ/WI from Non-secure state.

This field resets to zero on a Warm reset.

PRI_6, bits [23:16]
Priority 6. Priority of system handler 6, UsageFault.

This field is banked between Security states.

If the PE implements fewer than 8 bits of priority, then the least significant bits of this field are RES0.

This field resets to zero on a Warm reset.

PRI_5, bits [15:8]
Priority 5. Priority of system handler 5, BusFault.

This field is not banked between Security states.

If the PE implements fewer than 8 bits of priority, then the least significant bits of this field are RES0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1743

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

If AIRCR.BFHFNMINS is zero this field is RAZ/WI from Non-secure state.

This field resets to zero on a Warm reset.

PRI_4, bits [7:0]
Priority 4. Priority of system handler 4, MemManage.

This field is banked between Security states.

If the PE implements fewer than 8 bits of priority, then the least significant bits of this field are RES0.

This field resets to zero on a Warm reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1744

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.230 SHPR2, System Handler Priority Register 2

The SHPR2 characteristics are:

Purpose
Sets or returns priority for system handlers 8 - 11.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

If the Main Extension is implemented, this register is word, halfword, and byte accessible.

If the Main Extension is not implemented, this register is word accessible only, halfword and byte accesses
are UNPREDICTABLE.

Configurations
This register is always implemented.

Attributes
32-bit read/write register located at 0xE000ED1C.

Secure software can access the Non-secure version of this register via SHPR2_NS located at 0xE002ED1C.
The location 0xE002ED1C is RES0 to software executing in Non-secure state and the debugger.

This register is banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The SHPR2 bit assignments are:

07

PRI_8

815

PRI_9

1623

PRI_10

2431

PRI_11

PRI_11, bits [31:24]
Priority 11. Priority of system handler 11, SVCall.

This field is banked between Security states.

If the PE implements fewer than 8 bits of priority, then the least significant bits of this field are RES0.

This field resets to zero on a Warm reset.

PRI_10, bits [23:16]
Reserved, RES0.

PRI_9, bits [15:8]
Reserved, RES0.

PRI_8, bits [7:0]
Reserved, RES0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1745

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.231 SHPR3, System Handler Priority Register 3

The SHPR3 characteristics are:

Purpose
Sets or returns priority for system handlers 12 - 15.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

If the Main Extension is implemented, this register is word, halfword, and byte accessible.

If the Main Extension is not implemented, this register is word accessible only, halfword and byte accesses
are UNPREDICTABLE.

Configurations
This register is always implemented.

Attributes
32-bit read/write register located at 0xE000ED20.

Secure software can access the Non-secure version of this register via SHPR3_NS located at 0xE002ED20.
The location 0xE002ED20 is RES0 to software executing in Non-secure state and the debugger.

This register is banked between Security states on a bit by bit basis.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The SHPR3 bit assignments are:

07

PRI_12

815

PRI_13

1623

PRI_14

2431

PRI_15

PRI_15, bits [31:24]
Priority 15. Priority of system handler 15, SysTick.

If two SysTick timers are implemented this field is banked between Security states.

If less than two SysTick timers are implemented this field is not banked between Security states.

If the PE implements fewer than 8 bits of priority, then the least significant bits of this field are RES0. If one
timer is implemented, this field corresponds to the Secure state if ICSR.STTNS is zero, or the Non-secure
state if ICSR.STTNS is one.

If only one SysTick timer is implemented and ICSR.STTNS is clear, this field is RAZ/WI from Non-secure
state.

If no SysTick timer is implemented this field is RES0.

This field resets to zero on a Warm reset.

PRI_14, bits [23:16]
Priority 14. Priority of system handler 14, PendSV.

This field is banked between Security states.

If the PE implements fewer than 8 bits of priority, then the least significant bits of this field are RES0.

This field resets to zero on a Warm reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1746

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

PRI_13, bits [15:8]
Reserved, RES0.

PRI_12, bits [7:0]
Priority 12. Priority of system handler 12, DebugMonitor.

This field is not banked between Security states.

If the PE implements fewer than 8 bits of priority, then the least significant bits of this field are RES0.

If DEMCR.SDME is one this field is RAZ/WI from Non-secure state

If the Main Extension is not implemented, this field is RES0.

This field resets to zero on a Warm reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1747

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.232 SP, Current Stack Pointer Register

The SP characteristics are:

Purpose
Exception and procedure stack pointer register.

Usage constraints
Privileged and unprivileged access permitted.

Configurations
This register is always implemented.

Attributes
32-bit read/write special-purpose register.

This register is not banked between Security states.

Field descriptions

The SP bit assignments are:

01231

VALUE

RES0H

VALUE, bits [31:2]
Stack pointer. Holds bits[31:2] of the stack pointer address. The current stack pointer is selected from one of
MSP_NS, PSP_NS, MSP_S or PSP_S.

Software can refer to SP as R13.

Bits [1:0]
Reserved, RES0H.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1748

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.233 SP_NS, Stack Pointer (Non-secure)

The SP_NS characteristics are:

Purpose
Provides access to the current Non-secure stack pointer.

Usage constraints
Privileged access only. Unprivileged access is RAZ/WI, unless otherwise stated.

Configurations
This register is always implemented.

Attributes
32-bit read/write special-purpose register.

This register is not banked between Security states.

Field descriptions

The SP_NS bit assignments are:

01231

VALUE

RES0H

VALUE, bits [31:2]
Stack pointer. Holds bits[31:2] of the current Non-secure stack pointer address. SP_NS is selected from
one of MSP_NS or PSP_NS. Access to SP_NS is provided via MRS and MSR and is subject to stack limit
checking.

Bits [1:0]
Reserved, RES0H.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1749

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.234 STIR, Software Triggered Interrupt Register

The STIR characteristics are:

Purpose
Provides a mechanism for software to generate an interrupt.

Usage constraints
Unprivileged accesses generate a fault if CCR.USERSETMPEND is zero.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes
32-bit write-only register located at 0xE000EF00.

Secure software can access the Non-secure version of this register via STIR_NS located at 0xE002EF00.
The location 0xE002EF00 is RES0 to software executing in Non-secure state and the debugger.

This register is not banked between Security states.

Field descriptions

The STIR bit assignments are:

On a read:

08

INTID

931

RES0

On a write:

08

INTID

931

RES0

Bits [31:9]
Reserved, RES0.

INTID, bits [8:0], on a write
Interrupt ID. Indicates the interrupt to be pended. The value written is (ExceptionNumber - 16).

Writing to this register has the same effect as setting the NVIC_ISPRn bit corresponding to the interrupt to 1.
Like NVIC_ISPRn, an attempt to pend an interrupt targeting Secure state from Non-secure is ignored.

INTID, bits [8:0], on a read
This field reads as zero.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1750

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.235 SYST_CALIB, SysTick Calibration Value Register

The SYST_CALIB characteristics are:

Purpose
Reads the SysTick timer calibration value and parameters for the selected Security state.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present only if at least one SysTick timer is implemented.

This register is RES0 if no SysTick timer is implemented.

Attributes
32-bit read-only register located at 0xE000E01C.

Secure software can access the Non-secure version of this register via SYST_CALIB_NS located at
0xE002E01C. The location 0xE002E01C is RES0 to software executing in Non-secure state and the
debugger.

This register is banked between Security states.

Preface

If the Main Extension is implemented then, two SysTick timers are implemented. If the Main Extension is not
implemented, then it is IMPLEMENTATION DEFINED whether none, one or two SysTick timers are implemented.
Where two SysTick timers are implemented, this register is banked. Where one SysTick timer is implemented, this
register is not banked, and Non-secure accesses behave as RAZ/WI if ICSR.STTNS is clear. If no SysTick timer is
implemented, both aliases of this register behave as RES0.

Field descriptions

The SYST_CALIB bit assignments are:

023

TENMS

2429

RES0

3031

NOREF SKEW

NOREF, bit [31]
No reference. Indicates whether the IMPLEMENTATION DEFINED reference clock is implemented.

The possible values of this bit are:

0
Reference clock is implemented.

1
Reference clock is not implemented.

When this bit is 1, the CLKSOURCE bit of the SYST_CSR register is forced to 1 and cannot be cleared to 0.

If only one SysTick timer is implemented and ICSR.STTNS is clear, this bit is RAZ/WI from Non-secure
state.

If no SysTick timer is implemented this bit is RES0.

This bit resets to an IMPLEMENTATION DEFINED value on a Warm reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1751

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

This bit reads as an IMPLEMENTATION DEFINED value.

SKEW, bit [30]
Skew. Indicates whether the 10ms calibration value is exact.

The possible values of this bit are:

0
TENMS calibration value is exact.

1
TENMS calibration value is inexact.

If only one SysTick timer is implemented and ICSR.STTNS is clear, this bit is RAZ/WI from Non-secure
state.

If no SysTick timer is implemented this bit is RES0.

This bit resets to an IMPLEMENTATION DEFINED value on a Warm reset.

This bit reads as an IMPLEMENTATION DEFINED value.

Bits [29:24]
Reserved, RES0.

TENMS, bits [23:0]
Ten milliseconds. Optionally holds a reload value to be used for 10ms (100Hz) timing, subject to system
clock skew errors. If this field is zero, the calibration value is not known.

If only one SysTick timer is implemented and ICSR.STTNS is clear, this field is RAZ/WI from Non-secure
state.

If no SysTick timer is implemented this field is RES0.

This field resets to an IMPLEMENTATION DEFINED value on a Warm reset.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1752

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.236 SYST_CSR, SysTick Control and Status Register

The SYST_CSR characteristics are:

Purpose
Controls the SysTick timer and provides status data for the selected Security state.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present only if at least one SysTick timer is implemented.

This register is RES0 if no SysTick timer is implemented.

Attributes
32-bit read/write register located at 0xE000E010.

Secure software can access the Non-secure version of this register via SYST_CSR_NS located at
0xE002E010. The location 0xE002E010 is RES0 to software executing in Non-secure state and the
debugger.

This register is banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Preface

If the Main Extension is implemented, then two SysTick timers are implemented. If the Main Extension is not
implemented, then it is IMPLEMENTATION DEFINED whether none, one or two SysTick timers are implemented.
Where two SysTick timers are implemented, this register is banked. Where one SysTick timer is implemented, this
register is not banked, and Non-secure accesses behave as RAZ/WI if ICSR.STTNS is clear. If no SysTick timer is
implemented, both aliases of this register behave as RES0.

Field descriptions

The SYST_CSR bit assignments are:

012315

RES0

161731

RES0

COUNTFLAG
CLKSOURCE

ENABLE
TICKINT

Bits [31:17]
Reserved, RES0.

COUNTFLAG, bit [16]
Count flag. Indicates whether the counter has counted to zero since the last read of this register.

The possible values of this bit are:

0
Timer has not counted to 0.

1
Timer has counted to 0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1753

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

COUNTFLAG is set to 1 by a count transition from 1 to 0. COUNTFLAG is cleared to 0 if software reads
this bit as one, and by any write to the SYST_CVR for the selected Security state. Debugger reads do not
clear the COUNTFLAG.

If set this bit clears to zero when read by software. Reads from the debugger do not clear this bit.

If only one SysTick timer is implemented and ICSR.STTNS is clear, this bit is RAZ/WI from Non-secure
state.

If no SysTick timer is implemented this bit is RES0.

This bit resets to zero on a Warm reset.

Bits [15:3]
Reserved, RES0.

CLKSOURCE, bit [2]
Clock source. Indicates the SysTick clock source.

The possible values of this bit are:

0
Uses the IMPLEMENTATION DEFINED external reference clock.

1
Uses the PE clock.

If no external clock is implemented, this bit reads as 1 and ignores writes.

If only one SysTick timer is implemented and ICSR.STTNS is clear, this bit is RAZ/WI from Non-secure
state.

If no SysTick timer is implemented this bit is RES0.

This bit resets to an IMPLEMENTATION DEFINED value on a Warm reset.

TICKINT, bit [1]
Tick interrupt. Indicates whether counting to 0 causes the status of the SysTick exception to change to
pending.

The possible values of this bit are:

0
Count to 0 does not affect the SysTick exception status.

1
Count to 0 changes the SysTick exception status to pending.

Changing the value of the counter to 0 by writing the SysTick does not change the status of the SysTick
exception.

If only one SysTick timer is implemented and ICSR.STTNS is clear, this bit is RAZ/WI from Non-secure
state.

If no SysTick timer is implemented this bit is RES0.

This bit resets to zero on a Warm reset.

ENABLE, bit [0]
SysTick enable. Indicates the enabled status of the SysTick counter.

The possible values of this bit are:

0
Counter is disabled.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1754

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

1
Counter is enabled.

If only one SysTick timer is implemented and ICSR.STTNS is clear, this bit is RAZ/WI from Non-secure
state.

If no SysTick timer is implemented this bit is RES0.

This bit resets to zero on a Warm reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1755

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.237 SYST_CVR, SysTick Current Value Register

The SYST_CVR characteristics are:

Purpose
Reads or clears the SysTick timer current counter value for the selected Security state.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present only if at least one SysTick timer is implemented.

This register is RES0 if no SysTick timer is implemented.

Attributes
32-bit read/write-to-clear register located at 0xE000E018.

Secure software can access the Non-secure version of this register via SYST_CVR_NS located at
0xE002E018. The location 0xE002E018 is RES0 to software executing in Non-secure state and the
debugger.

This register is banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Preface

If the Main Extension is implemented, then two SysTick timers are implemented. If the Main Extension is not
implemented, then it is IMPLEMENTATION DEFINED whether none, one or two SysTick timers are implemented.
Where two SysTick timers are implemented, this register is banked. Where one SysTick timer is implemented, this
register is not banked, and Non-secure accesses behave as RAZ/WI if ICSR.STTNS is clear. If no SysTick timer is
implemented, both aliases of this register behave as RES0.

Field descriptions

The SYST_CVR bit assignments are:

On a read:

023

CURRENT

2431

RES0

On a write:

023

CURRENT

2431

RES0

Bits [31:24]
Reserved, RES0.

CURRENT, bits [23:0], on a read
Current counter value. Provides the value of the SysTick timer counter for the selected Security state.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1756

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

It is IMPLEMENTATION DEFINED whether the current counter value decrements if the PE is sleeping and
SCR.SLEEPDEEP is set.

If only one SysTick timer is implemented and ICSR.STTNS is clear, this field is RAZ/WI from Non-secure
state.

If no SysTick timer is implemented this field is RES0.

This field resets to an UNKNOWN value on a Warm reset.

CURRENT, bits [23:0], on a write
Reset counter value. Writing any value clears the SysTick timer counter for the selected Security state to
zero.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1757

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.238 SYST_RVR, SysTick Reload Value Register

The SYST_RVR characteristics are:

Purpose
Provides access SysTick timer counter reload value for the selected Security state.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
Present only if at least one SysTick timer is implemented.

This register is RES0 if no SysTick timer is implemented.

Attributes
32-bit read/write register located at 0xE000E014.

Secure software can access the Non-secure version of this register via SYST_RVR_NS located at
0xE002E014. The location 0xE002E014 is RES0 to software executing in Non-secure state and the
debugger.

This register is banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Preface

If the Main Extension is implemented, then two SysTick timers are implemented. If the Main Extension is not
implemented, then it is IMPLEMENTATION DEFINED whether none, one or two SysTick timers are implemented.
Where two SysTick timers are implemented, this register is banked. Where one SysTick timer is implemented, this
register is not banked, and Non-secure accesses behave as RAZ/WI if ICSR.STTNS is clear. If no SysTick timer is
implemented, both instances of this register behave as RES0.

Field descriptions

The SYST_RVR bit assignments are:

023

RELOAD

2431

RES0

Bits [31:24]
Reserved, RES0.

RELOAD, bits [23:0]
Counter reload value. The value to load into the SYST_CVR for the selected Security state when the counter
reaches 0.

If only one SysTick timer is implemented and ICSR.STTNS is clear, this field is RAZ/WI from Non-secure
state.

If no SysTick timer is implemented this field is RES0.

This field resets to an UNKNOWN value on a Warm reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1758

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.239 TPIU_ACPR, TPIU Asynchronous Clock Prescaler Register

The TPIU_ACPR characteristics are:

Purpose
Defines a prescaler value for the baud rate of the Serial Wire Output (SWO). Writing to the register
automatically updates the prescale counter, immediately affecting the baud rate of the serial data output.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

If a debugger changes the register value while the TPIU is transmitting data, the effect on the output stream is
UNPREDICTABLE and the required recovery process is IMPLEMENTATION DEFINED.

Configurations
Present only if the TPIU is implemented and supports SWO.

This register is RES0 if the TPIU is not implemented or does not support SWO.

Attributes
32-bit read/write register located at 0xE0040010.

This register is not banked between Security states.

Field descriptions

The TPIU_ACPR bit assignments are:

015

SWOSCALER

1631

RES0

Bits [31:16]
Reserved, RES0.

SWOSCALER, bits [15:0]
SWO baud rate prescalar. Sets the ratio between an IMPLEMENTATION DEFINED reference clock and the
SWO output clock rates. The supported scaler value range is IMPLEMENTATION DEFINED, to a maximum
scalar value of 0xFFFF. Unused bits of this field are RAZ/WI.

The possible values of this field are:

n
SWO output clock = Asynchronous_Reference_Clock/(n + 1).

This field resets to zero on a Cold reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1759

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.240 TPIU_CIDR0, TPIU Component Identification Register 0

The TPIU_CIDR0 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the TPIU.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the TPIU is implemented.

This register is RES0 if the TPIU is not implemented.

Attributes
32-bit read-only register located at 0xE0040FF0.

This register is not banked between Security states.

Field descriptions

The TPIU_CIDR0 bit assignments are:

07

PRMBL_0

831

RES0

Bits [31:8]
Reserved, RES0.

PRMBL_0, bits [7:0]
CoreSight component identification preamble. See the Arm® CoreSight™ Architecture Specification.

This field reads as 0x0D.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1760

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.241 TPIU_CIDR1, TPIU Component Identification Register 1

The TPIU_CIDR1 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the TPIU.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the TPIU is implemented.

This register is RES0 if the TPIU is not implemented.

Attributes
32-bit read-only register located at 0xE0040FF4.

This register is not banked between Security states.

Field descriptions

The TPIU_CIDR1 bit assignments are:

03

PRMBL_1

47

CLASS

831

RES0

Bits [31:8]
Reserved, RES0.

CLASS, bits [7:4]
CoreSight component class. See the Arm® CoreSight™ Architecture Specification.

This field reads as 0x9.

PRMBL_1, bits [3:0]
CoreSight component identification preamble. See the Arm® CoreSight™ Architecture Specification.

This field reads as 0x0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1761

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.242 TPIU_CIDR2, TPIU Component Identification Register 2

The TPIU_CIDR2 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the TPIU.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the TPIU is implemented.

This register is RES0 if the TPIU is not implemented.

Attributes
32-bit read-only register located at 0xE0040FF8.

This register is not banked between Security states.

Field descriptions

The TPIU_CIDR2 bit assignments are:

07

PRMBL_2

831

RES0

Bits [31:8]
Reserved, RES0.

PRMBL_2, bits [7:0]
CoreSight component identification preamble. See the Arm® CoreSight™ Architecture Specification.

This field reads as 0x05.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1762

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.243 TPIU_CIDR3, TPIU Component Identification Register 3

The TPIU_CIDR3 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the TPIU.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the TPIU is implemented.

This register is RES0 if the TPIU is not implemented.

Attributes
32-bit read-only register located at 0xE0040FFC.

This register is not banked between Security states.

Field descriptions

The TPIU_CIDR3 bit assignments are:

07

PRMBL_3

831

RES0

Bits [31:8]
Reserved, RES0.

PRMBL_3, bits [7:0]
CoreSight component identification preamble. See the Arm® CoreSight™ Architecture Specification.

This field reads as 0xB1.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1763

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.244 TPIU_CSPSR, TPIU Current Parallel Port Sizes Register

The TPIU_CSPSR characteristics are:

Purpose
Controls the width of the parallel trace port.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if the TPIU is implemented.

This register is RES0 if the TPIU is not implemented.

Attributes
32-bit read/write register located at 0xE0040004.

This register is not banked between Security states.

Field descriptions

The TPIU_CSPSR bit assignments are:

031

CWIDTH

CWIDTH, bits [31:0]
Current width. CWIDTH[m] represents a parallel trace port width of (m+1).

The possible values of each bit are:

0
Width (N+1) is not the current parallel trace port width.

1
Width (N+1) is the current parallel trace port width.

A debugger must set only one bit is set to 1, and all others must be zero. The effect of writing a value with
more than one bit set to 1 is UNPREDICTABLE. The effect of a write to an unsupported bit is UNPREDICTABLE.

This register resets to the value for the smallest supported parallel trace port size.

This field resets to an IMPLEMENTATION DEFINED value on a Cold reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1764

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.245 TPIU_DEVTYPE, TPIU Device Type Register

The TPIU_DEVTYPE characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the TPIU.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the TPIU is implemented.

This register is RES0 if the TPIU is not implemented.

Attributes
32-bit read-only register located at 0xE0040FCC.

This register is not banked between Security states.

Field descriptions

The TPIU_DEVTYPE bit assignments are:

03

MAJOR

47

SUB

831

RES0

Bits [31:8]
Reserved, RES0.

SUB, bits [7:4]
Sub-type. Component sub-type.

The possible values of this field are:

0x0
Other. Only permitted if the MAJOR field reads as 0x0.

0x1
Trace port. Only permitted if the MAJOR field reads as 0x1.

This field reads as an IMPLEMENTATION DEFINED value.

MAJOR, bits [3:0]
Major type. Component major type.

The possible values of this field are:

0x0
Miscellaneous.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1765

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0x1
Trace sink.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1766

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.246 TPIU_FFCR, TPIU Formatter and Flush Control Register

The TPIU_FFCR characteristics are:

Purpose
Controls the TPIU formatter. This register might contain other formatter and flush control fields that are
outside the scope of the architecture. Contact Arm for more information.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if the TPIU is implemented.

This register is RES0 if the TPIU is not implemented.

Attributes
32-bit read/write register located at 0xE0040304.

This register is not banked between Security states.

Field descriptions

The TPIU_FFCR bit assignments are:

0123

RES0

45

RES0

678910

RES0

111214

RES0

1531

RES0

RES0
TrigIn

RES0

EnFmt
FOnMan

Bits [31:15,11,7,3:2]
Reserved, RES0.

Bits [14:12]
Reserved for formatter stop controls.

Reserved, RES0.

Bits [10:9]
Reserved for additional trigger mark controls.

Reserved, RES0.

TrigIn, bit [8]
Trigger input asserted. Indicate a trigger on the trace port when an IMPLEMENTATION DEFINED TRIGIN
signal is asserted.

It is IMPLEMENTATION DEFINED whether this bit is R/W or RAO.

This bit resets to zero on a Cold reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1767

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

FOnMan, bit [6]
Flush On Manual. Setting this bit to 1 generates a flush. The TPIU clears the bit to 0 when the flush
completes.

This bit resets to zero on a Cold reset.

Bits [5:4]
Reserved for additional flush controls.

Reserved, RES0.

EnFmt, bits [1:0]
Formatter control. Selects the output formatting mode.

The possible values of this field are:

0b00
Bypass. Disable formatting. Only supported when SWO mode is selected. Only a single trace source is
supported in bypass mode:

• If only a single trace source is connected to this TPIU, it is selected.

• If multiple sources (including the ITM) are implemented and connected to this TPIU, then all other
trace sources, except for the ITM, must be disabled. Otherwise, the trace output is UNPREDICTABLE.

All other trace sources are discarded.

0b10
Continuous. Enable formatting and embed triggers and null cycles in the formatted output.

All other values are reserved.

If no formatter is implemented, this field is RES0. This field must be set to 0b10when the parallel trace port is
selected, or when using multiple trace sources. Changing the value of this field when TPIU_FFSR.FtStopped
is 0 is UNPREDICTABLE.

This field resets to zero on a Cold reset.

Note

An optional TRACECTL pin might be implemented as part of the parallel trace port that allows
Bypass mode when using a parallel trace port and a further mode, EnFmt == 0b01. The CoreSight
architecture describes EnFmt[1] as the EnFCont bit and EnFmt[0] as the EnFTC bit.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1768

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.247 TPIU_FFSR, TPIU Formatter and Flush Status Register

The TPIU_FFSR characteristics are:

Purpose
Shows the status and capabilities of the TPIU formatter.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if the TPIU is implemented.

This register is RES0 if the TPIU is not implemented.

Attributes
32-bit read-only register located at 0xE0040300.

This register is not banked between Security states.

Field descriptions

The TPIU_FFSR bit assignments are:

0123431

RES0

FtNonStop
TCPresent

FInProg
FtStopped

Bits [31:4]
Reserved, RES0.

FtNonStop, bit [3]
Non-stop formatter. Indicates the formatter cannot be stopped.

The possible values of this bit are:

0
Formatter can be stopped.

1
Formatter cannot be stopped.

If no formatter is implemented, this bit is RAO.

TCPresent, bit [2]
TRACECTL present. Indicates presence of the TRACECTL pin.

The possible values of this bit are:

0
No TRACECTL pin is available. The data formatter must be used and only in continuous mode.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1769

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

1
The optional TRACECTL pin is present.

If a parallel trace port is not implemented, this bit is RAZ.

Note

If a parallel trace port is implemented, Arm recommends the TRACECTL pin is not implemented.

FtStopped, bit [1]
Formatter stopped. Indicates the formatter is stopped.

The possible values of this bit are:

0
Formatter is enabled.

1
The formatter has received a stop request signal and all trace data and post-amble has been output. Any
further trace data is ignored.

If no formatter is implemented, or the formatter cannot be stopped, this bit is RAZ.

FInProg, bit [0]
Flush in progress. Set to 1 when a flush is initiated and clears to zero when all data received before the flush
is acknowledged has been output on the trace port. That is, the trace has been received at the sink, formatted,
and output on the trace port.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1770

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.248 TPIU_LAR, TPIU Software Lock Access Register

The TPIU_LAR characteristics are:

Purpose
Provides CoreSight Software Lock control for the TPIU, see the Arm® CoreSight™ Architecture Specification
for details.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

This register is RAZ/WI if accessed via the debugger.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the TPIU is implemented.

This register is RES0 if the TPIU is not implemented.

Present only if the optional Software Lock is implemented.

This register is RAZ/WI if the Software Lock is not implemented.

Attributes
32-bit write-only register located at 0xE0040FB0.

This register is not banked between Security states.

Field descriptions

The TPIU_LAR bit assignments are:

031

KEY

KEY, bits [31:0]
Lock Access control.

Writing the key value 0xC5ACCE55 to this field unlocks the lock, enabling write accesses to the registers of
this component through a memory-mapped interface.

Writing any other value to this register locks the lock, disabling write accesses to the registers of this
component through a memory mapped interface.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1771

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.249 TPIU_LSR, TPIU Software Lock Status Register

The TPIU_LSR characteristics are:

Purpose
Provides CoreSight Software Lock status information for the TPIU, see the Arm® CoreSight™ Architecture
Specification for details.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

This register is RAZ/WI if accessed via the debugger.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the TPIU is implemented.

This register is RES0 if the TPIU is not implemented.

Present only if the optional Software Lock is implemented.

This register is RAZ/WI if the Software Lock is not implemented.

Attributes
32-bit read-only register located at 0xE0040FB4.

This register is not banked between Security states.

Field descriptions

The TPIU_LSR bit assignments are:

012331

RES0

nTT
SLK

SLI

Bits [31:3]
Reserved, RES0.

nTT, bit [2]
Not thirty-two bit. See the Arm® CoreSight™ Architecture Specification.

This bit reads as zero.

SLK, bit [1]
Software Lock status. See the Arm® CoreSight™ Architecture Specification.

The possible values of this bit are:

0
Lock clear. Software writes are permitted to the registers of this component.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1772

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

1
Lock set. Software writes to the registers of this component are ignored, and reads have no side-effects.

For a debugger read of this register, or when the Software Lock is not implemented, this bit is RES0.

This bit resets to one on a Cold reset.

SLI, bit [0]
Software Lock implemented. See the Arm® CoreSight™ Architecture Specification.

The possible values of this bit are:

0
Software Lock not implemented or debugger access.

1
Software Lock is implemented and software access.

For a debugger read of this register, or when the Software Lock is not implemented, this bit is RAZ.

This bit reads as an IMPLEMENTATION DEFINED value.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1773

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.250 TPIU_PIDR0, TPIU Peripheral Identification Register 0

The TPIU_PIDR0 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the TPIU.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the TPIU is implemented.

This register is RES0 if the TPIU is not implemented.

Attributes
32-bit read-only register located at 0xE0040FE0.

This register is not banked between Security states.

Field descriptions

The TPIU_PIDR0 bit assignments are:

07

PART_0

831

RES0

Bits [31:8]
Reserved, RES0.

PART_0, bits [7:0]
Part number bits [7:0]. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1774

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.251 TPIU_PIDR1, TPIU Peripheral Identification Register 1

The TPIU_PIDR1 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the TPIU.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the TPIU is implemented.

This register is RES0 if the TPIU is not implemented.

Attributes
32-bit read-only register located at 0xE0040FE4.

This register is not banked between Security states.

Field descriptions

The TPIU_PIDR1 bit assignments are:

03

PART_1

47

DES_0

831

RES0

Bits [31:8]
Reserved, RES0.

DES_0, bits [7:4]
JEP106 identification code bits [3:0]. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

PART_1, bits [3:0]
Part number bits [11:8]. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1775

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.252 TPIU_PIDR2, TPIU Peripheral Identification Register 2

The TPIU_PIDR2 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the TPIU.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the TPIU is implemented.

This register is RES0 if the TPIU is not implemented.

Attributes
32-bit read-only register located at 0xE0040FE8.

This register is not banked between Security states.

Field descriptions

The TPIU_PIDR2 bit assignments are:

02

DES_1

347

REVISION

831

RES0

JEDEC

Bits [31:8]
Reserved, RES0.

REVISION, bits [7:4]
Component revision. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

JEDEC, bit [3]
JEDEC assignee value is used. See the Arm® CoreSight™ Architecture Specification.

This bit reads as one.

DES_1, bits [2:0]
JEP106 identification code bits [6:4]. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1776

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.253 TPIU_PIDR3, TPIU Peripheral Identification Register 3

The TPIU_PIDR3 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the TPIU.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the TPIU is implemented.

This register is RES0 if the TPIU is not implemented.

Attributes
32-bit read-only register located at 0xE0040FEC.

This register is not banked between Security states.

Field descriptions

The TPIU_PIDR3 bit assignments are:

03

CMOD

47

REVAND

831

RES0

Bits [31:8]
Reserved, RES0.

REVAND, bits [7:4]
RevAnd. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

CMOD, bits [3:0]
Customer Modified. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1777

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.254 TPIU_PIDR4, TPIU Peripheral Identification Register 4

The TPIU_PIDR4 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the TPIU.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the TPIU is implemented.

This register is RES0 if the TPIU is not implemented.

Attributes
32-bit read-only register located at 0xE0040FD0.

This register is not banked between Security states.

Field descriptions

The TPIU_PIDR4 bit assignments are:

03

DES_2

47

SIZE

831

RES0

Bits [31:8]
Reserved, RES0.

SIZE, bits [7:4]
4KB count. See the Arm® CoreSight™ Architecture Specification.

This field reads as zero.

DES_2, bits [3:0]
JEP106 continuation code. See the Arm® CoreSight™ Architecture Specification.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1778

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.255 TPIU_PIDR5, TPIU Peripheral Identification Register 5

The TPIU_PIDR5 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the TPIU.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the TPIU is implemented.

This register is RES0 if the TPIU is not implemented.

Attributes
32-bit read-only register located at 0xE0040FD4.

This register is not banked between Security states.

Field descriptions

The TPIU_PIDR5 bit assignments are:

031

RES0

Bits [31:0]
Reserved, RES0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1779

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.256 TPIU_PIDR6, TPIU Peripheral Identification Register 6

The TPIU_PIDR6 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the TPIU.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the TPIU is implemented.

This register is RES0 if the TPIU is not implemented.

Attributes
32-bit read-only register located at 0xE0040FD8.

This register is not banked between Security states.

Field descriptions

The TPIU_PIDR6 bit assignments are:

031

RES0

Bits [31:0]
Reserved, RES0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1780

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.257 TPIU_PIDR7, TPIU Peripheral Identification Register 7

The TPIU_PIDR7 characteristics are:

Purpose
Provides CoreSight Unique Component Identifier information for the TPIU.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if CoreSight identification is implemented.

This register is RES0 if CoreSight identification is not implemented.

Present only if the TPIU is implemented.

This register is RES0 if the TPIU is not implemented.

Attributes
32-bit read-only register located at 0xE0040FDC.

This register is not banked between Security states.

Field descriptions

The TPIU_PIDR7 bit assignments are:

031

RES0

Bits [31:0]
Reserved, RES0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1781

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.258 TPIU_PSCR, TPIU Periodic Synchronization Control Register

The TPIU_PSCR characteristics are:

Purpose
Defines the reload value for the Periodic Synchronization Counter register. The Periodic Synchronization
Counter decrements for each byte that is output by the TPIU. If the formatter is implemented and enabled,
the TPIU forces completion of the current frame when the counter reaches zero. It is IMPLEMENTATION
DEFINED whether the TPIU forces all trace sources to generate synchronization packets when the counter
reaches zero. Bytes generated by the TPIU as part of a Halfword synchronization packet or a Full frame
synchronization packet are not counted.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present if the TPIU is implemented and DWT_CYCCNT is not implemented.

extscoptional if both the TPIU and DWT_CYCCNT are implemented.

This register is RES0 if the TPIU is not implemented.

Attributes
32-bit read/write register located at 0xE0040308.

This register is not banked between Security states.

Field descriptions

The TPIU_PSCR bit assignments are:

04

PSCount

531

RES0

Bits [31:5]
Reserved, RES0.

PSCount, bits [4:0]
Periodic Synchronization Count. Determines the reload value of the Periodic Synchronization Counter. The
reload value takes effect the next time the counter reaches zero. Reads from this register return the reload
value programmed into this register.

The possible values of this field are:

0b00000
Synchronization disabled.

0b00111
128 bytes.

0b01000
256 bytes.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1782

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

...
...

0b11111
231 bytes.

All other values are reserved.

The Periodic Synchronization Counter might have a maximum value smaller than 231. In this case, if the
programmed reload value is greater than the maximum value, then the Periodic Synchronization Counter is
reloaded with its maximum value and the TPIU will generate synchronization requests at this interval.

This field resets to 0xA on a Cold reset.

Note

In the CoreSight TPIU, TPIU_PSCR specifies the number of frames between synchronizations,
each frame being 16 bytes. This definition of TPIU_PSCR specifies a number of bytes and is
encoded as a power-of-two rather than a plain binary number.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1783

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.259 TPIU_SPPR, TPIU Selected Pin Protocol Register

The TPIU_SPPR characteristics are:

Purpose
Selects the protocol used for trace output.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

If a debugger changes the register value while the TPIU is transmitting data, the effect on the output stream is
UNPREDICTABLE and the required recovery process is IMPLEMENTATION DEFINED.

Configurations
Present only if the TPIU is implemented and supports SWO.

This register is RES0 if the TPIU is not implemented or does not support SWO.

Attributes
32-bit read/write register located at 0xE00400F0.

This register is not banked between Security states.

Field descriptions

The TPIU_SPPR bit assignments are:

01231

RES0

TXMODE

Bits [31:2]
Reserved, RES0.

TXMODE, bits [1:0]
Transmit mode. Specifies the protocol for trace output from the TPIU.

The possible values of this field are:

0b00
Parallel trace port mode. This value is reserved if TPIU_TYPE.PTINVALID == 1.

0b01
Asynchronous SWO, using Manchester encoding. This value is reserved if TPIU_TYPE.MANCVALID
== 0.

0b10
Asynchronous SWO, using NRZ encoding. This value is reserved if TPIU_TYPE.NRZVALID == 0.

All other values are reserved.

The effect of selecting a reserved value, or a mode that the implementation does not support, is UNPRE-
DICTABLE.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1784

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

This field resets to an IMPLEMENTATION DEFINED value on a Cold reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1785

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.260 TPIU_SSPSR, TPIU Supported Parallel Port Sizes Register

The TPIU_SSPSR characteristics are:

Purpose
Indicates the supported parallel trace port sizes.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if the TPIU is implemented.

This register is RES0 if the TPIU is not implemented.

Attributes
32-bit read-only register located at 0xE0040000.

This register is not banked between Security states.

Field descriptions

The TPIU_SSPSR bit assignments are:

031

SWIDTH

SWIDTH, bits [31:0]
Supported width. SWIDTH[m] indicates whether a parallel trace port width of (m+1) is supported.

The possible values of each bit are:

0
Parallel trace port width (m+1) not supported.

1
Parallel trace port width (m+1) supported.

The value of this register is IMPLEMENTATION DEFINED.

This field reads as an IMPLEMENTATION DEFINED value.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1786

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.261 TPIU_TYPE, TPIU Device Identifier Register

The TPIU_TYPE characteristics are:

Purpose
Describes the TPIU to a debugger.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

From Armv8.1-M, this register is accessible to accesses through unprivileged DAP requests when either
DAUTHCTRL_S.UIDAPEN or DAUTHCTRL_NS.UIDAPEN is set.

If the Main Extension is not implemented then it is IMPLEMENTATION DEFINED whether this register is
accessible only to the debugger and RES0 for software. Otherwise the register is accessible to the debugger
and software.

Configurations
Present only if the TPIU is implemented.

This register is RES0 if the TPIU is not implemented.

Attributes
32-bit read-only register located at 0xE0040FC8.

This register is not banked between Security states.

Field descriptions

The TPIU_TYPE bit assignments are:

05

IMP DEF

68

FIFOSZ

910111215

IMP DEF

1631

RES0

NRZVALID
MANCVALID

PTINVALID

Bits [31:16]
Reserved, RES0.

Bits [15:12]
IMPLEMENTATION DEFINED.

NRZVALID, bit [11]
NRZ valid. Indicates support for SWO using UART/NRZ encoding.

The possible values of this bit are:

0
Not supported.

1
Supported.

This bit reads as an IMPLEMENTATION DEFINED value.

MANCVALID, bit [10]
Manchester valid. Indicates support for SWO using Manchester encoding.

The possible values of this bit are:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1787

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0
Not supported.

1
Supported.

This bit reads as an IMPLEMENTATION DEFINED value.

PTINVALID, bit [9]
Parallel Trace Interface invalid. Indicates support for parallel trace port operation.

The possible values of this bit are:

0
Supported.

1
Not supported.

This bit reads as an IMPLEMENTATION DEFINED value.

FIFOSZ, bits [8:6]
FIFO depth. Indicates the minimum implemented size of the TPIU output FIFO for trace data.

The possible values of this field are:

0
IMPLEMENTATION DEFINED FIFO depth.

Other
Minimum FIFO size is 2FIFOSZ.

For example, a value of 0b011 indicates a FIFO size of at least 23 = 8 bytes.

This field reads as an IMPLEMENTATION DEFINED value.

Bits [5:0]
IMPLEMENTATION DEFINED.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1788

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.262 TT_RESP, Test Target Response Payload

The TT_RESP characteristics are:

Purpose
Provides the response information from a TT, TTA, TTT, or TTAT instruction that is not UNDEFINED.

Usage constraints
None.

Configurations
All.

Attributes
32-bit payload.

Field descriptions

The TT_RESP bit assignments are:

07

MREGION

815

SREGION

161718

R

19202122

S

232431

IREGION

IRVALID
NSRW

NSR

MRVALID
SRVALID
RW

IREGION, bits [31:24]
IDAU region number. Indicates the IDAU region number containing the target address.

This field is zero if IRVALID is zero.

IRVALID, bit [23]
IREGION valid flag. For a Secure request, indicates the validity of the IREGION field.

The possible values of this bit are:

0
IREGION content not valid.

1
IREGION content valid.

This bit is always zero if the IDAU cannot provide a region number, the address is exempt from security
attribution, or if the requesting TT or TTT variant was executed from the Non-secure state.

S, bit [22]
Security. For a Secure request, indicates the Security attribute of the target address.

The possible values of this bit are:

0
Target address is Non-secure.

1
Target address is Secure.

This bit is always zero if the requesting TT or TTT instruction was executed from the Non-secure state.

NSRW, bit [21]
Non-secure read and writable. Equal to RW AND NOT S. This field is only valid if the variant of the TT
group of instructions was executed from Secure state and the RW field is valid.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1789

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

NSR, bit [20]
Non-secure readable. Equal to R AND NOT S. This field is only valid if the variant of the TT group of
instructions was executed from Secure state and the R field is valid.

RW, bit [19]
Read and writable.

Set to 1 if the address specified by the TT instruction variant can be read and written according to the
permissions of the selected MPU when operating in the privilege level for the selected mode and selected
Security state. For TTT and TTAT, this field returns the permissions for unprivileged access, regardless of
whether the selected mode and state is privileged or unprivileged.

This field is invalid and RAZ if the TT instruction was executed from an unprivileged mode and the A flag
was not specified. This field is also RAZ if the address matches multiple MPU regions.

R, bit [18]
Readable.

Read accessibility. Set to 1 if the address specified by the TT instruction variant can be read according to the
permissions of the selected MPU when operating in the privilege level for the selected mode and selected
Security state. For TTT and TTAT, this field returns the permissions for unprivileged access, regardless of
whether the selected mode and state is privileged or unprivileged.

This field is invalid and RAZ if the TT instruction was executed from an unprivileged mode and the A flag
was not specified. This field is also RAZ if the address matches multiple MPU regions.

SRVALID, bit [17]
SREGION valid flag. For a Secure request indicates validity of the SREGION field.

The possible values of this bit are:

0
SREGION content not valid.

1
SREGION content valid.

The SREGION field is invalid if any of the following are true:

• SAU_CTRL.ENABLE is set to zero.

• The address specified by the TT instruction variant field does not match any enabled SAU regions.

• The address specified matches multiple enabled SAU regions.

• The address specified by the TT instruction variant is exempt from the Secure memory attribution.

• The TT or TTT instruction variant was executed from the Non-secure state or the Security Extension is
not implemented.

The TTA and TTAT instruction variants are UNDEFINED when exceuted from Non-secure state.

MRVALID, bit [16]
MREGION valid flag. Indicates validity of the MREGION field.

The possible values of this bit are:

0
MREGION content not valid.

1
MREGION content valid.

The MREGION field is invalid if any of the following is true:

• The MPU is not implemented or MPU_CTRL.ENABLE is set to zero.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1790

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

• The address specified by the TT instruction variant does not match any enabled MPU regions.

• The address matched multiple MPU regions.

• The TT or TTT instruction variants, without the A flag specified, were executed from an unprivileged
mode.

The TTA and TTAT instructions are UNDEFINED when executed from Non-secure state.

SREGION, bits [15:8]
SAU region number. Holds the SAU region that the address maps to.

This field is only valid if the instruction was executed from Secure state. This field is zero if SRVALID is 0.

MREGION, bits [7:0]
MPU region number. Holds the MPU region that the address maps to.

This field is zero if MRVALID is 0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1791

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.263 UFSR, UsageFault Status Register

The UFSR characteristics are:

Purpose
Contains the status for some instruction execution faults, and for data access faults.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

If the Main Extension is implemented, this register is word, halfword, and byte accessible.

If the Main Extension is not implemented, this register is word accessible only, halfword and byte accesses
are UNPREDICTABLE.

Configurations
Present only if the Main Extension is implemented.

This register is RES0 if the Main Extension is not implemented.

Attributes
16-bit read/write-one-to-clear register located at 0xE000ED2A.

Secure software can access the Non-secure version of this register via UFSR_NS located at 0xE002ED2A.
The location 0xE002ED2A is RES0 to software executing in Non-secure state and the debugger.

This register is banked between Security states.

This register is part of CFSR.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The UFSR bit assignments are:

0123457

RES0

891015

RES0

DIVBYZERO
UNALIGNED

STKOF
NOCP

UNDEFINSTR
INVSTATE
INVPC

Bits [15:10]
Reserved, RES0.

DIVBYZERO, bit [9]
Divide by zero flag. Sticky flag indicating whether an integer division by zero error has occurred.

The possible values of this bit are:

0
Error has not occurred.

1
Error has occurred.

This bit resets to zero on a Warm reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1792

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

UNALIGNED, bit [8]
Unaligned access flag. Sticky flag indicating whether an unaligned access error has occurred.

The possible values of this bit are:

0
Error has not occurred.

1
Error has occurred.

This bit resets to zero on a Warm reset.

Bits [7:5]
Reserved, RES0.

STKOF, bit [4]
Stack overflow flag. Sticky flag indicating whether a stack overflow error has occurred.

The possible values of this bit are:

0
Error has not occurred.

1
Error has occurred.

This bit resets to zero on a Warm reset.

NOCP, bit [3]
No coprocessor flag. Sticky flag indicating whether a coprocessor disabled or not present error has occurred.

The possible values of this bit are:

0
Error has not occurred.

1
Error has occurred.

This bit resets to zero on a Warm reset.

INVPC, bit [2]
Invalid PC flag. Sticky flag indicating whether an integrity check error has occurred.

The possible values of this bit are:

0
Error has not occurred.

1
Error has occurred.

This bit resets to zero on a Warm reset.

INVSTATE, bit [1]
Invalid state flag. Sticky flag indicating whether an EPSR.T, EPSR.IT, or FPSCR.LTPSIZE validity error has
occurred.

The possible values of this bit are:

0
Error has not occurred.

1
Error has occurred.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1793

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

This bit resets to zero on a Warm reset.

UNDEFINSTR, bit [0]
UNDEFINED instruction flag. Sticky flag indicating whether an UNDEFINED instruction error has occurred.

The possible values of this bit are:

0
Error has not occurred.

1
Error has occurred.

This includes attempting to execute an UNDEFINED instruction associated with an enable coprocessor.

This bit resets to zero on a Warm reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1794

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.264 VPR, Vector Predication Status and Control Register

The VPR characteristics are:

Purpose
Holds the per element predication flags.

Usage constraints
Privileged access only. Unprivileged access is RAZ/WI, unless otherwise stated.

Configurations
Present only if version Armv8.1 of the architecture and MVE are implemented.

This register is RES0 if MVE are not implemented.

Attributes
32-bit read/write special-purpose register.

This register is not banked between Security states.

Field descriptions

The VPR bit assignments are:

015

P0

1619

MASK01

2023

MASK23

2431

RES0

Bits [31:24]
Reserved, RES0.

MASK23, bits [23:20]
The VPT mask bits for beat 2 and 3.

The possible values of this field are:

0b0000
Not in a VPT block.

0b1000
In a VPT block which is valid for one more instruction. The predicate flags are not inverted.

0bx100
In a VPT block which is valid for two more instructions. If set, the x bit causes the predicate flags for
beat 2 and 3 to be inverted between the corresponding instructions in the VPT block.

0bxx10
In a VPT block which is valid for three more instructions. If set, the x bits cause the predicate flags for
beat 2 and 3 to be inverted between the corresponding instructions in the VPT block.

0bxxx1
In a VPT block which is valid for four more instructions. If set, the x bits cause the predicate flags for
beat 2 and 3 to be inverted between the corresponding instructions in the VPT block.

If the PE executes a single beat per architecture tick, this field and the associated predicate flags are updated
after beat 3 completes.

This field resets to an UNKNOWN value on a Warm reset.

MASK01, bits [19:16]
The VPT mask bits for beat 0 and 1.

The possible values of this field are:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1795

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

0b0000
Not in a VPT block.

0b1000
VPT predication valid for one more instruction. The predicate flags are not inverted.

0bx100
In a VPT block which is valid for two more instructions. If set, the x bit causes the predicate flags for
beat 0 and 1 to be inverted between the corresponding instructions in the VPT block.

0bxx10
In a VPT block which is valid for three more instructions. If set, the x bits cause the predicate flags for
beat 0 and 1 to be inverted between the corresponding instructions in the VPT block.

0bxxx1
In a VPT block which is valid for four more instructions. If set, the x bits cause the predicate flags for
beat 0 and 1 to be inverted between the corresponding instructions in the VPT block.

If the PE executes a single beat per architecture tick, this field and the associated predicate flags are updated
after beat 1 completes.

This field resets to an UNKNOWN value on a Warm reset.

P0, bits [15:0]
Predication bits. Each group of 4 bits determines the predication of each of the 4 bytes within the correspond-
ing beat, regardless of instruction data type. See the relevant instruction descriptions and pseudocode for
information on how the predication affects execution.

The possible values of this field are:

0
The corresponding vector lane will be masked.

1
The corresponding vector lane will be active.

Unprivileged access to this field is permitted, see VMRS and VMSR instructions.

This field resets to an UNKNOWN value on a Warm reset.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1796

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.265 VTOR, Vector Table Offset Register

The VTOR characteristics are:

Purpose
Holds the vector table address for the selected Security state.

Usage constraints
Privileged access permitted only. Unprivileged accesses generate a fault.

This register is word accessible only. Halfword and byte accesses are UNPREDICTABLE.

Configurations
This register is always implemented.

Attributes
32-bit read/write register located at 0xE000ED08.

To allow lock down of this register it is IMPLEMENTATION DEFINED whether this register is writable.

Secure software can access the Non-secure version of this register via VTOR_NS located at 0xE002ED08.
The location 0xE002ED08 is RES0 to software executing in Non-secure state and the debugger.

This register is banked between Security states.

From Armv8.1-M onwards it is IMPLEMENTATION DEFINED whether a debugger write to this register is
ignored when the PE is not in Debug state.

Field descriptions

The VTOR bit assignments are:

06

RES0

731

TBLOFF

TBLOFF, bits [31:7]
Table offset. Bits [31:7] of the vector table address for the selected Security state.

It is IMPLEMENTATION DEFINED whether any of the TBLOFF bits are WI

This field resets to an IMPLEMENTATION DEFINED value on a Warm reset.

Bits [6:0]
Reserved, RES0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1797

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

D1.2.266 XPSR, Combined Program Status Registers

The XPSR characteristics are:

Purpose
Provides access to a combination of the APSR, EPSR and IPSR.

Usage constraints
Privileged access only. Unprivileged access is RAZ/WI, unless otherwise stated.

Configurations
This register is always implemented.

Attributes
32-bit read/write special-purpose register.

This register is not banked between Security states.

Field descriptions

The XPSR bit assignments are:

When {XPSR[26:25], XPSR[11:10]} != 0:

08

Exception

9

(0)

1015

IT

1619

GE

2023

RES0

24

T

2526

IT

27

Q

28

V

29

C

30

Z

31

N

When {XPSR[26:25], XPSR[11:10]} == 0, and a multi-cycle load or store instruction is in progress:

08

Exception

9

(0)

1015

ICI

1619

GE

2023

RES0

24

T

2526

ICI

27

Q

28

V

29

C

30

Z

31

N

When {XPSR[26:25], XPSR[11:10]} == 0, and more than one beat-wise vector instruction is in progress:

08

Exception

9

(0)

1011

ECI

1215

ECI

1619

GE

2023

RES0

24

T

2526

ECI

27

Q

28

V

29

C

30

Z

31

N

N, bit [31]
Negative flag. Reads or writes the current value of APSR.N.

Z, bit [30]
Zero flag. Reads or writes the current value of APSR.Z.

C, bit [29]
Carry flag. Reads or writes the current value of APSR.C.

V, bit [28]
Overflow flag. Reads or writes the current value of APSR.V.

Q, bit [27]
Saturate flag. Reads or writes the current value of APSR.Q.

T, bit [24]
T32 state. Reads or writes the current value of EPSR.T.

Bits [23:20]
Reserved, RES0.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1798

Chapter D1. Register and Payload Specification
D1.2. Alphabetical list of registers

GE, bits [19:16]
Greater-than or equal flag. Reads or writes the current value of APSR.GE.

IT, bits [15:10,26:25] , when [{XPSR[26:25], XPSR[11:10]} != 0]
If-then flags. Reads or writes the current value of EPSR.IT.

ICI, bits [26:25,15:10] , when [{XPSR[26:25], XPSR[11:10]} == 0, and a multi-cycle load or store instruction is
in progress]
Interrupt continuation flags. Reads or writes the current value of EPSR.ICI.

ECI, bits [26:25, 11:10, 15:12] , when [{XPSR[26:25], XPSR[11:10]} == 0, and more than one beat-wise vector
instruction is in progress]
Exception continuation flags for beat-wise vector instructions. Reads or writes the current value of EPSR.ECI.

Bit [9]
Reserved, RES0.

Exception, bits [8:0]
Exception number. Reads or writes the current value of IPSR.Exception.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1799

Part E
Armv8-M Pseudocode

Chapter E1
Arm Pseudocode Definition

This chapter provides a definition of the pseudocode that this manual uses, and defines some built-in functions that
the pseudocode uses. It contains the following sections:

E1.1 About the Arm pseudocode on page 1802.

E1.2 Data types on page 1803.

E1.3 Operators on page 1809.

E1.4 Statements and control structures on page 1815.

E1.5 Built-in functions on page 1820.

E1.6 Arm pseudocode definition index on page 1823.

E1.7 Additional functions on page 1826.

Note

This chapter is not a formal language definition for the pseudocode. It is a guide to help understand the
use of Arm pseudocode.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1801

Chapter E1. Arm Pseudocode Definition
E1.1. About the Arm pseudocode

E1.1 About the Arm pseudocode

The Arm pseudocode provides precise descriptions of some areas of the Arm architecture. This includes description
of the decoding and operation of all valid instructions.

The following sections describe the Arm pseudocode in detail:

E1.2 Data types on page 1803.

E1.3 Operators on page 1809.

E1.4 Statements and control structures on page 1815.

E1.5 Built-in functions on page 1820 describes some built-in functions that the pseudocode functions use that this
manual describes elsewhere.

E1.6 Arm pseudocode definition index on page 1823 contains the indexes to the pseudocode.

E1.1.1 General limitations of Arm pseudocode

Because of the limitations inherent in all pseudocode, the Arm pseudocode and pseudocode comments describe
only one particular implementation of the architecture. There are several instances where a rule relaxes the behavior
that a particular piece of pseudocode describes.

The pseudocode statements EndOfInstruction(), SEE, UNDEFINED, CONSTRAINED_UNPREDICTABLE, and
UNPREDICTABLE indicate behavior that differs from that indicated by the pseudocode being executed. If one of the
statements is encountered:

• CONSTRAINED_UNPREDICTABLE, and UNPREDICTABLE mean earlier behavior indicated by the pseudocode is
only specified as occurring to the extent required to determine that the statement is executed. No subsequent
behavior that the pseudocode indicates occurs.

• EndOfInstruction(),SEE, and UNDEFINED mean that the pseudocode will terminate execution of the
current instruction and pseudocode execution continues from the exception catch.

For more information, see E1.4.5 Special statements on page 1818.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1802

Chapter E1. Arm Pseudocode Definition
E1.2. Data types

E1.2 Data types

This section describes:

E1.2.1 General data type rules .

E1.2.2 Bitstrings .

E1.2.3 Integers on page 1804.

E1.2.4 Reals on page 1804.

E1.2.5 Booleans on page 1805.

E1.2.6 Enumerations on page 1805.

E1.2.7 Structures on page 1806.

E1.2.8 Tuples on page 1807.

E1.2.9 Arrays on page 1807.

E1.2.1 General data type rules

Arm architecture pseudocode is a strongly typed language. Every literal and variable is of one of the following
types:

• Bitstring.
• Integer.
• Boolean.
• Real.
• Enumeration.
• Tuple.
• Struct.
• Array.

The syntax of a literal determines its type. A variable can be assigned to without an explicit declaration. The
variable implicitly has the type of the assigned value. For example, the following assignments implicitly declare
the variables x, y and z to have types integer, bitstring of length 1, and Boolean, respectively.

1 x = 1;
2 y = '1';
3 z = TRUE;

Variables can also have their types declared explicitly by preceding the variable name with the name of the type.
The following example declares explicitly that a variable named count is an integer.

integer count;

This is most often done in function definitions for the arguments and the result of the function.

The remaining subsections describe each data type in more detail.

E1.2.2 Bitstrings

This section describes the bitstring data type.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1803

Chapter E1. Arm Pseudocode Definition
E1.2. Data types

Syntax

bits(N)

The type name of a bitstring of length ‘N‘.

bit

A synonym of bits(1).

Description

A bitstring is a finite-length string of 0s and 1s. Each length of bitstring is a different type. The minimum permitted
length of a bitstring is 0.

Bitstring constants literals are written as a single quotation mark, followed by the string of 0s and 1s, followed by
another single quotation mark. For example, the two constants literals of type bit are '0' and '1'. Spaces can be
included in bitstrings for clarity.

The bits in a bitstring are numbered from left to right N-1 to 0. This numbering is used when accessing the bitstring
using bitslices. In conversions to and from integers, bit N-1 is the MSByte and bit 0 is the LSByte. This order
matches the order in which bitstrings derived from encoding diagrams are printed.

Every bitstring value has a left-to-right order, with the bits being numbered in standard little-endian order. That
is, the leftmost bit of a bitstring of length N is bit (N-1) and its right-most bit is bit 0. This order is used as the
most-significant-to-least-significant bit order in conversions to and from integers. For bitstring constants and
bitstrings that are derived from encoding diagrams, this order matches the way that they are printed.

Bitstrings are the only concrete data type in pseudocode, corresponding directly to the contents values that are
manipulated in registers, memory locations, and instructions. All other data types are abstract.

E1.2.3 Integers

This section describes the data type for integer numbers.

Syntax

integer

The type name for the integer data type.

Description

Pseudocode integers are unbounded in size and can be either positive or negative. That is, they are mathematical
integers rather than what computer languages and architectures commonly call integers. Computer integers are
represented in pseudocode as bitstrings of the appropriate length, and the pseudocode provides functions to
interpret those bitstrings as integers.

Integer literals are normally written in decimal form, such as 0, 15, -1234. They can also be written in C-style
hexadecimal form, such as 0x55 or 0x80000000. Hexadecimal integer literals are treated as positive unless they
have a preceding minus sign. For example, 0x80000000 is the integer +231. If −231 needs to be written in
hexadecimal, it must be written as -0x80000000.

E1.2.4 Reals

This section describes the data type for real numbers.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1804

Chapter E1. Arm Pseudocode Definition
E1.2. Data types

Syntax

real

The type name for the real data type.

Description

Pseudocode reals are unbounded in size and precision. That is, they are mathematical real numbers, not computer
floating-point numbers. Computer floating-point numbers are represented in pseudocode as bitstrings of the
appropriate length, and the pseudocode provides functions to interpret those bitstrings as reals.

Real constant literals are written in decimal form with a decimal point. This means 0 is an integer constant literal,
but 0.0 is a real constant literal.

E1.2.5 Booleans

This section describes the boolean data type.

Syntax

boolean

The type name for the boolean data type.

TRUE,FALSE

The two values a boolean variable can take.

Description

A boolean is a logical TRUE or FALSE value.

Note

This is not the same type as bit, which is a bitstring of length 1. A boolean can only take on one of two
values: TRUE or FALSE.

E1.2.6 Enumerations

This section describes the enumeration data type.

Syntax and examples

enumeration

Keyword to define a new enumeration type.

enumeration Example {Example_One, Example_Two, Example_Three};

A definition of a new enumeration that is called Example, which can take on the values Example_One,
Example_Two, Example_Three.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1805

Chapter E1. Arm Pseudocode Definition
E1.2. Data types

Description

An enumeration is a defined set of named values.

An enumeration must contain at least one named value. A named value must not be shared between enumerations.

Enumerations must be defined explicitly, although a variable of an enumeration type can be declared implicitly by
assigning one of the named values to it. By convention, each named value starts with the name of the enumeration
followed by an underscore. The name of the enumeration is its type name, or type, and the named values are its
possible values.

E1.2.7 Structures

This section describes the structure data type.

Syntax and examples

type

The keyword that is used to declare the structure data type.

type ShiftSpec is (bits(2)shift, integer amount):

An example definition for a new structure that is called ‘ShiftSpec‘ that contains a bitstring member that
is called ‘shift‘ and an integer member called ‘amount‘. Structure definitions must not be terminated
with a semicolon.

ShiftSpec abc;

A declaration of a variable that is named ‘abc‘ of type ‘ShiftSpec‘.

abc.shift

Syntax to refer to the individual members within the structure variable.

Description

A structure is a compound data type composed of one or more data items. The data items can be of different data
types. This can include compound data types. The data items of a structure are called its members and are named.

In the syntax section, the example defines a structure that is called ShiftSpec with two members. The first is a
bitstring of length 2 named shift and the second is an integer that is named amount. After declaring a variable of
that type that is named abc, the members of this structure are referred to as abc.shift and abc.amount.

Every definition of a structure creates a different type, even if the number and type of their members are identical.
For example:

type ShiftSpec1 is (bits(2)shift, integer amount)

type ShiftSpec2 is (bits(2)shift, integer amount)

ShiftSpec1 and ShiftSpec2 are two different types despite having identical definitions. This means that the value
in a variable of type ShiftSpec1 cannot be assigned to variable of type ShiftSpec2.

E1.2.7.1 _Type and _Type

This subsection describes the data structure types for a particular register or payload.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1806

Chapter E1. Arm Pseudocode Definition
E1.2. Data types

Example

RETPSR_Type

The data structure of type RETPSR.

Description

By convention _Type declares a structure data type for a specific register or payload.

See the individual register descriptions for the fields that apply to a particular data structure.

E1.2.8 Tuples

This section describes the tuple data type.

Examples

(bits(32)shifter_result, bit shifter_carry_out)

An example of the tuple syntax.

(shift_t, shift_n)= ('00',0);

An example of assigning values to a tuple.

Description

A tuple is an ordered set of data items, which are separated by commas and enclosed in parentheses. The items can
be of different types and a tuple must contain at least one data item.

Tuples are often used as the return type for functions that return multiple results. For example, in the syntax
section, the example tuple is the return type of the function Shift_C(), which performs a standard A32/T32 shift
or rotation. Its return type is a tuple containing two data items, with the first of type, and bits(32) the second of
type bit.

Each tuple is a separate compound data type. The compound data type is represented as a comma-separated list of
ordered data types between parentheses. This means that the example tuple at the start of this section is of type
(bits(32), bit). The general principle that types can be implied by an assignment extends to implying the type
of the elements in the tuple. For example, in the syntax section, the example assignment implicitly declares:

• shift_t to be of type bits(2).
• shift_n to be of type integer.
• (shift_t, shift_n) to be a tuple of type (bits(2), integer).

E1.2.9 Arrays

This section describes the array data type.

Syntax

array

The type name for the array data type.

array data_type array_name[A..B];

array [A..B] of data_type array_name

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1807

Chapter E1. Arm Pseudocode Definition
E1.2. Data types

Declaration of an array of type ‘data_type‘, which might be compound data type. It is named ‘ar-
ray_name‘ and is indexed with an integer range from ‘A‘ to ‘B‘.

Description

An array is an ordered set of fixed size containing items of a single data type. This can include compound data
types. Pseudocode arrays are indexed by either enumerations or integer ranges. An integer range is represented by
the lower inclusive end of the range, then.., then the upper inclusive end of the range.

For example:

The following example declares an array of 31 bitstrings of length 64, indexed from 0-30.

1 array bits(64) _R[0..30];

Arrays are always explicitly declared, and there is no notation for a constant literal array. Arrays always contain at
least one element data item, because:

• Enumerations always contain at least one symbolic constant named value.
• Integer ranges always contain at least one integer.

An array declared with an enumeration type as the index must be accessed using enumeration values of that
enumeration type. An array declared with an integer range type as the index must be accessed using integer values
from that inclusive range. Accessing such an array with an integer value outside of the range is a coding error.

Pseudocode can also contain array-like functions such as R[i], MemU[address, size], or Elem[vector, i, size

]. These functions package up and abstract additional operations that are normally performed on accesses to the
underlying arrays, such as register banking, memory protection, endian-dependent byte ordering, exclusive-access
housekeeping and Advanced SIMD element processing. See E1.4.2 Function and procedure calls on page 1815.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1808

Chapter E1. Arm Pseudocode Definition
E1.3. Operators

E1.3 Operators

This section describes:

E1.3.1 Relational operators .

E1.3.2 Boolean operators .

E1.3.3 Bitstring operators on page 1810.

E1.3.4 Arithmetic operators on page 1811.

E1.3.5 The assignment operator on page 1812.

E1.3.6 Precedence rules on page 1813.

E1.3.7 Conditional expressions on page 1813.

E1.3.8 Operator polymorphism on page 1813.

E1.3.1 Relational operators

The following operations yield results of type boolean.

Equality and non-equality

If two variables x and y are of the same type, their values can be tested for equality by using the expression x == y

and for non-equality by using the expression x != y. In both cases, the result is of type boolean.

Both x and y must be of type bits(N), real, enumeration, boolean, or integer. Named values from an
enumeration can only be compared if they are both from the same enumeration. An exception is that a bitstring
can be tested for equality with an integer to allow a d == 15 test.

A special form of comparison is defined with a bitstring literal that can contain bit values '0', '1', and 'x'. Any
bit with value 'x' is ignored in determining the result of the comparison. For example, if opcode is a 4-bit bitstring,
the expression opcode == '1x0x' matches the values 1000, 1100, 1001, and 1101. This is known as a bitmask.

Note

This special form is permitted in the implied equality comparisons in the when parts of case ... of ...

structures.

Comparisons

If x and y are integers or reals, then x < y, x <= y, x > y, and x = y are less than, less than or equal, greater
than, and greater than or equal comparisons between them, producing boolean results.

E1.3.1.1 Set membership with IN

<expression> IN {<set>} produces TRUE if <expression> is a member of <set>. Otherwise, it is FALSE. <set>
must be a list of expressions that are separated by commas.

E1.3.2 Boolean operators

If x is a boolean expression, then!x is its logical inverse.

If x and y are boolean expressions, then x && y is the result of ANDing them together. As in the C language, if x is
FALSE, the result is determined to be FALSE without evaluating y.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1809

Chapter E1. Arm Pseudocode Definition
E1.3. Operators

Note

This is known as short circuit evaluation.

If x and y are booleans, then x || y is the result of ORing them together. As in the C language, if x is TRUE, the
result is determined to be TRUE without evaluating y.

Note

If x and y are booleans or boolean expressions, then the result of x != y is the same as the result of
exclusive-ORing x and y together. The operator EOR only accepts bitstring arguments.

E1.3.3 Bitstring operators

The following operations can be applied only to bitstrings.

Logical operations on bitstrings

If x is a bitstring, NOT(x) is the bitstring of the same length that is obtained by logically inverting every bit of x.

If x and y are bitstrings of the same length, x AND y, x OR y, and x EOR y are the bitstrings of that same length
that is obtained by logically ANDing, logically ORing, and exclusive-ORing corresponding bits of x and y together.

Bitstring concatenation and slicing

If x and y are bitstrings of lengths N and M respectively, then x:y is the bitstring of length N + M constructed by
concatenating x and y in left-to-right order.

The bitstring slicing operator addresses specific bits in a bitstring. This can be used to create a new bitstring from
extracted bits or to set the value of specific bits. Its syntax isx [integer_list], where x is the integer or bitstring
being sliced, and [integer_list] is a comma-separated list of integers that are enclosed in square brackets. The
length of the resulting bitstring is equal to the number of integers in [integer_list]. In x[integer_list], each
of the integers in [integer_list] must be:

• ≥0.
• < Len(x) if x is a bitstring.

The definition of x[integer_list] depends on whether integer_list contains more than one integer:

• If integer_list contains more than one integer, x[i,j,k,...,n] is defined to be the concatenation:

1 x[i]: x[j]: x[k]:...: x[n]

• If integer_list consists of just one integer i, x[i] is defined to be:

– If x is a bitstring, '0' if bit i of x is a zero and '1' if bit i of x is a one.

– If x is an integer, and y is the unique integer in the range 0 to 2^(i+1)-1 that is congruent to x modulo
2^(i+1). Then x[i] is '0' if y < 2^i and '1' if y >= 2^i.

Loosely, this definition treats an integer as equivalent to a sufficiently long two’s complement representa-
tion of it as a bitstring.

The notation for a range expression is i:j with i >= j is shorthand for the integers in order from i down to j,
with both end values included. For example, instr[31:28] represents instr[31, 30, 29, 28].

x[integer_list] is assignable provided x is an assignable bitstring and no integer appears more than once in
[integer_list]. In particular, x[i] is assignable if x is an assignable bitstring and 0 <= i < Len(x).

Encoding diagrams for registers frequently show named bits or multi-bit fields. For example, the encoding diagram
for the APSR shows its bit[31] as N. In such cases, the syntax APSR.N is used as a more readable synonym
for APSR[31] as named bits can be referred to with the same syntax as referring to members of a struct. A

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1810

Chapter E1. Arm Pseudocode Definition
E1.3. Operators

comma-separated list of named bits enclosed in square brackets following the register name allows multiple bits to
be addressed simultaneously.

For example, APSR.[N, C, Q] is synonymous with APSR [31, 29, 27].

E1.3.4 Arithmetic operators

Most pseudocode arithmetic is performed on integer or real values, with operands obtained by conversions from
bitstrings and results that are converted back to bitstrings. As these data types are the unbounded mathematical
types, no issues arise about overflow or similar errors.

Unary plus and minus

If x is an integer or real, then +x is x unchanged, -x is x with its sign reversed. Both are of the same type as x.

Addition and subtraction

If x and y are integers or reals, x + y and x - y are their sum and difference. Both are of type integer if x and y

are both of type integer, and real otherwise.

There are two cases where the types of x and y can be different. A bitstring and an integer can be added together to
allow the operation PC + 4. An integer can be subtracted from a bitstring to allow the operation PC - 2.

If x and y are bitstrings of the same length N, so that N = Len(x)= Len(y), then x + y and x - y are the least
significant N bits of the results of converting x and y to integers and adding or subtracting them. Signed and
unsigned conversions produce the same result:

1 x + y = (SInt(x) + SInt(y))[N-1:0]
2 = (UInt(x) + UInt(y))[N-1:0]
3 x - y = (SInt(x) - SInt(y))[N-1:0]
4 = (UInt(x) - UInt(y))[N-1:0]

If x is a bitstring of length N and y is an integer, x + y and x - y are the bitstrings of length N defined by x + y

= x + y[N-1:0] and x - y = x - y[N-1:0]. Similarly, if x is an integer and y is a bitstring of length M, x + y

and x - y are the bitstrings of length M defined by x + y = x[M-1:0] + y and x - y = x[M-1:0] - y.

Multiplication

If x and y are integers or reals, then x * y is the product of x and y. It is of type integer if x and y are both of
type integer, and real otherwise.

Division and modulo

If x and y are reals, then x/y is the result of dividing x by y, and is always of type real.

If x and y are integers, then x DIV y and x MOD y are defined by:

1 x DIV y = RoundDown(x/y)
2 x MOD y = x - y * (x DIV y)

It is a pseudocode error to use any of x/y, x MOD y, or x DIV y in any context where y can be zero.

Scaling

If x and n are of type integer, then:

• x << n = RoundDown(x * 2^n).
• x >> n = RoundDown(x * 2^(-n)).

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1811

Chapter E1. Arm Pseudocode Definition
E1.3. Operators

Raising to a power

If x is an integer or a real and n is an integer, then x^n is the result of raising x to the power of n, and:

• If x is of type integer then x^n is of type integer.
• If x is of type real then x^n is of type real.

E1.3.5 The assignment operator

The assignment operator is the = character, which assigns the value of the right-hand side to the left-hand side. An
assignment statement takes the form:

<assignable_expression> = <expression>;

This following subsection defines valid expression syntax.

General expression syntax

An expression is one of the following:

• A literal.
• A variable, optionally preceded by a data type name to declare its type.
• The word UNKNOWN preceded by a data type name to declare its type.
• The result of applying a language-defined operator to other expressions.
• The result of applying a function to other expressions.

Variable names normally consist of alphanumeric and underscore characters, starting with an alphabetic or
underscore character.

Each register that is defined in an Arm architecture specification defines a correspondingly named pseudocode
bitstring variable, and that variable has the stated behavior of the register. For example, if a bit of a register is
defined as RAZ/WI, then the corresponding bit of its variable reads as ‘0’ and ignore writes.

An expression like bits(32)UNKNOWN indicates that the result of the expression is a value of the given type, but the
architecture does not specify what value it is and software must not rely on such values. The value produced must
not:

• Return information that cannot be accessed at the current or a lower level of privilege using instructions that
are not UNPREDICTABLE or CONSTRAINED UNPREDICTABLE and do not return UNKNOWN values,

• Be promoted as providing any useful information to software.

Note

UNKNOWN values are similar to the definition of UNPREDICTABLE, but do not indicate that the entire
architectural state becomes unspecified.

Only the following expressions are assignable. This means that these are the only expressions that can be placed
on the left-hand side of an assignment:

• Variables.

• The results of applying some operators to other expressions.

The description of each language-defined operator that can generate an assignable expression specifies the
circumstances under which it does so. For example, those circumstances might require that one or more of
the expressions the operator operates on is an assignable expression.

• The results of applying array-like functions to other expressions. The description of an array-like function
specifies the circumstances under which it can generate an assignable expression.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1812

Chapter E1. Arm Pseudocode Definition
E1.3. Operators

Note

If the right-hand side in an assignment is a function returning a tuple, an item in the assignment
destination can be written as - to indicate that the corresponding item of the assigned tuple value is
discarded. For example:

(shifted, -)= LSL_C(operand, amount);

The expression on the right-hand side itself can be a tuple. For example:

(x, y)= (function_1(), function_2());

Every expression has a data type.

• For a literal, this data type is determined by the syntax of the literal.

• For a variable, there are the following possible sources for the data type

– An optional preceding data type name.
– A data type the variable was given earlier in the pseudocode by recursive application of this rule.
– A data type the variable is being given by assignment, either by direct assignment to the variable, or by

assignment to a list of which the variable is a member.

It is a pseudocode error if none of these data type sources exists for a variable, or if more than one of them
exists and they do not agree about the type.

• For a language-defined operator, the definition of the operator determines the data type.

• For a function, the definition of the function determines the data type.

E1.3.6 Precedence rules

The precedence rules for expressions are:

1. Literals, variables, and function invocations are evaluated with higher priority than any operators using their
results, but see E1.3.2 Boolean operators on page 1809.

2. Operators on integers follow the normal operator precedence rules of exponentiation before multiply/divide
before add/subtract, with sequences of multiply/divides or add/subtracts evaluated left-to-right.

3. Other expressions must be parenthesized to indicate operator precedence if ambiguity is possible, but do not
need to be if all permitted precedence orders under the type rules necessarily lead to the same result. For
example, if i, j and k are integer variables, i > 0 &&j > 0 &&k > 0 is acceptable, but i > 0 &&j > 0 ||k

> 0 is not.

E1.3.7 Conditional expressions

If x and y are two values of the same type and t is a value of type boolean, then if t then x else y is an
expression of the same type as x and y that produces x if t is TRUE and y if t is FALSE.

E1.3.8 Operator polymorphism

Operators in pseudocode can be polymorphic, with different functionality when applied to different data types.
Each resulting form of an operator has a different prototype definition. For example, the operator + has forms that
act on various combinations of integers, reals and bitstrings.

Table E1-1 summarizes the operand types valid for each unary operator and the result type. Table E1-2 summarizes
the operand types valid for each binary operator and the result type.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1813

Chapter E1. Arm Pseudocode Definition
E1.3. Operators

Table E1-1, Result and operand types that are permitted for unary operators.

Operator Operand Type Result Type
- integer interger

real real
NOT bits(N) bits(N)
! boolean boolean

Table E1-2, Result and operand types that are permitted for binary operators.

Operator First operand type Second operand type Result type
bits(N) integer
bits(N) bits(N)

== integer integer boolean
real real
enumeration enumeration
boolean boolean
bits(N) bits(N)

!= integer integer boolean
real real

<, > integer integer boolean
<=, >= real real

integer integer integer
+, - real real real

bits(N) bits(N) bits(N)
bits(N) integer

«,» integer interger integer
integer integer integer

* real real real
bits(N) bits(N) bits(N)

/ real real real
DIV integer integer integer
MOD integer integer integer

bits(N) integer
&&, || boolean boolean boolean
AND, OR, EOR bits(N) bits(N) bits(N)
ˆ integer integer integer

real integer real

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1814

Chapter E1. Arm Pseudocode Definition
E1.4. Statements and control structures

E1.4 Statements and control structures

This section describes the statements and program structures available in the pseudocode.

E1.4.1 Statements and Indentation

A simple statement is either an assignment, a function call, or a procedure call. Each statement must be terminated
with a semicolon.

Indentation normally indicates the structure in compound statements. The statements that are contained in
structures such as if... then... else... or procedure and function definitions are indented more deeply than
the statement structure itself. The end of a compound statement structure and their end is indicated by returning to
the original indentation level or less.

Indentation is normally done by four spaces for each level. Standard indentation uses four spaces for each level of
indent.

E1.4.2 Function and procedure calls

This section describes how functions and procedures are defined and called in the pseudocode.

Procedure and function definitions

A procedure definition has the form:

1 <procedure name>(<argument prototypes>)
2 <statement 1>;
3 <statement 2>;
4 ...
5 <statement n>;

where <argument prototypes> consists of zero or more argument definitions, which are separated by commas.
Each argument definition consists of a type name followed by the name of the argument.

Note

This first definition line is not terminated by a semicolon. This distinguishes it from a procedure call.

A function definition is similar, but also declares the return type of the function:

1 <return type> <function name>(<argument prototypes>)
2 <statement 1>;
3 <statement 2>;
4 ...
5 <statement n>;

Array-like functions are similar, but are written with square brackets and have two forms. These two forms exist
because reading from and writing to an array element require different functions. They are frequently used in
memory operations. An array-like function definition with a return type is equivalent to reading from an array. For
example:

1 <return type> <function name>[<argument prototypes>]
2 <statement 1>;
3 <statement 2>;
4 ...
5 <statement n>;

Its related function definition with no return type is equivalent to writing to an array. For example:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1815

Chapter E1. Arm Pseudocode Definition
E1.4. Statements and control structures

1 <function name>[<argument prototypes>] =<value prototype>
2 <statement 1>;
3 <statement 2>;
4 ...
5 <statement n>;

The value prototype determines what data type can be written to the array. The two related functions must share
the same name, but the value prototype and return type can be different.

Procedure calls

A procedure call has the form:

1 <procedure_name>(<arguments>);

Return statements

A procedure return has the form:
return;

A function return has the form:

1 return <expression>;

where <expression> is of the type declared in the function prototype line.

E1.4.3 Conditional control structures

This section describes how conditional control structures are used in the pseudocode.

if...then...else...

In addition to being a ternary operator, a multi-line if...then...else... structure can act as a control
structure and has the form:

1 if <boolean_expression> then
2 <statement 1>;
3 <statement 2>;
4 ...
5 <statement n>;
6
7 elsif <boolean_expression> then
8 <statement a>;
9 <statement b>;

10 ...
11 <statement z>;
12 else
13 <statement A>;
14 <statement B>;
15 ...
16 <statement Z>;

The block of lines consisting of elsif and its indented statements is optional, and multiple elsif blocks can be
used.

The block of lines consisting of else and its indented statements is optional.

Abbreviated one-line forms can be used when the then part, and in the else part if it is present, contain only
simple statements such as:

1 if <boolean_expression> then <statement 1>;
2 if <boolean_expression> then <statement 1>; else <statement A>;
3 if <boolean_expression> then <statement 1>; <statement 2>; else <statement A>;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1816

Chapter E1. Arm Pseudocode Definition
E1.4. Statements and control structures

Note

In these forms, <statement 1>, <statement> 2>, and <statement A> must be terminated by semi-
colons. This and > the fact that the else part is optional distinguish its use as a > control structure from
its use as a ternary operator.

case...of...

A case...of... structure has the form:

1 case <expression> of
2 when <literal values1>
3 <statement 1>;
4 <statement 2>;
5 ...
6 <statement n>;
7
8 when <literal values2>
9 <statement 1>;

10 <statement 2>;
11 ...
12 <statement n>;
13
14 ...more "when" groups if required...
15
16 otherwise
17 <statement A>;
18 <statement B>;
19 ...
20 <statement Z>;

In this structure, <literal values1> and <literal values2> consist of literal values of the same type as <

expression>, separated by commas. There can be additional when groups in the structure. Abbreviated one line
forms of when and otherwise parts can be used when they contain only simple statements.

If <expression> has a bitstring type, the literal values can also include bitstring literals containing 'x' bits, known
as bitmasks. For details, see Equality and non-equality.

E1.4.4 Loop control structures

This section describes the three loop control structures that are used in the pseudocode.

repeat...until...

A repeat...until... structure has the form:

1 repeat
2 <statement 1>;
3 <statement 2>;
4 ...
5 <statement n>;
6 until <boolean_expression>;

It executes the statement block at least once, and the loop repeats until <boolean expression> evaluates to TRUE.
Variables explicitly declared inside the loop body have scope local to that loop and might not be accessed outside
the loop body.

while...do

A while...do structure has the form:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1817

Chapter E1. Arm Pseudocode Definition
E1.4. Statements and control structures

1 while <boolean_expression> do
2 <statement 1>;
3 <statement 2>;
4 ...
5 statement n>;

It begins executing the statement block only if the boolean expression is true. The loop then runs until the
expression is false.

for...

A for... structure has the form:

1 for <assignable_expression> = <integer_expr1> to <integer_expr2>
2 <statement 1>;
3 <statement 2>;
4 ...
5 <statement n>;

The <assignable_expression> is initialized to <integer_expr1> and compared to <integer_expr2>. If <

integer_expr1> is less than <integer_expr2>, the loop body is executed and the <assignable_expression

>incremented by one. This repeats until <assignable expression> is more than or equal to <integer_expr2>.

There is an alternate form:

for <assignable_expression> = <integer_expr1> downto <integer_expr2>

where <integer_expr1> is decremented after the loop body executes and continues until <assignable

expression> is less than or equal than <integer_expr2>.

Try...Catch

A try...catch structure has the following form:

1 try
2 <statement 1>;
3 <statement 2>;
4 ...
5 <statement n>;
6
7 catch <exception>
8 <statement a>;
9 <statement b>;

10 ...
11 <statement z>;

The purpose of this structure is to catch exceptions that are generated by the try statements.

E1.4.5 Special statements

This section describes statements with particular architecturally defined behaviors.

UNDEFINED

This subsection describes the statement:

UNDEFINED;

This statement indicates a pseudocode exception that will be caught by the try...catch block. When caught, this
might result in an UNDEFINSTR UsageFault, NOP or NOCP UsageFault.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1818

Chapter E1. Arm Pseudocode Definition
E1.4. Statements and control structures

UNPREDICTABLE

This subsection describes the statement:

UNPREDICTABLE;

This statement indicates a special case that replaces the behavior that is defined by the current pseudocode,
apart from behavior that is required to determine that the special case applies. The replacement behavior is
UNPREDICTABLE.

CONSTRAINED UNPREDICTABLE

This subsection describes the statement:

CONSTRAINED_UNPREDICTABLE;

This statement indicates a special case that replaces the behavior that is defined by the current pseudocode,
apart from behavior that is required to determine that the special case applies. The replacement behavior is
CONSTRAINED UNPREDICTABLE within the limits defined for each particular case, and might vary.

SEE...

This subsection describes the statement:

SEE <reference>;

This statement indicates a special case that replaces the behavior that is defined by the current instruction
pseudocode, apart from behavior that is required to determine that the special case applies.

It usually refers to another instruction, but can also refer to another encoding or note of the same instruction.

IMPLEMENTATION DEFINED

This subsection describes the statement:

IMPDEF {"<text>"};

This statement indicates a special case that provides an IMPLEMENTATION DEFINED value or behavior. An optional
<text> field can give more information.

E1.4.6 Comments

The pseudocode supports two styles of comments:

• // starts a comment that is terminated by the end of the line.
• /* starts a comment that is terminated by */ .

/**/ statements might not be nested, and the first */ ends the comment.

Note

Comment lines do not require a terminating semicolon.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1819

Chapter E1. Arm Pseudocode Definition
E1.5. Built-in functions

E1.5 Built-in functions

This section describes:

E1.5.1 Bitstring manipulation functions .

E1.5.2 Arithmetic functions on page 1821.

E1.5.1 Bitstring manipulation functions

The following bitstring manipulation functions are defined:

Bitstring length

If x is a bitstring:

• The bitstring length function Len(x) returns the length of x as an integer.

Bitstring concatenation and replication

If x is a bitstring and n is an integer with n >= 0:

• Replicate(x, n) is the bitstring of length n*Len(x) consisting of n copies of x concatenated together.
• Zeros(n) = Replicate('0', n).
• Ones(n) = Replicate('1', n).

Bitstring count

If x is a bitstring, BitCount(x) is an integer result equal to the number of bits of x that are ones.

Testing a bitstring for being all zero or all ones

If x is a bitstring:

• IsZero(x) produces TRUE if all of the bits of x are zeros and FALSE if any of them are ones
• IsZeroBit(x) produces '1' if all of the bits of x are zeros and '0' if any of them are ones.

IsOnes(x) and IsOnit(x) work in the corresponding ways. This means:

1 IsZero(x) = (BitCount(x) == 0)
2 IsOnes(x) = (BitCount(x) == Len(x))
3 IsZeroBit(x) = if IsZero(x) then '1' else '0'
4 IsOnit(x) = if IsOnes(x) then '1' else '0'

Lowest and highest set bits of a bitstring

If x is a bitstring, and N = Len(x):

• LowestSetBit(x) is the minimum bit number of any of the bits of x that are ones. If all of its bits are zeros,
LowestSetBit(x)= N.

• HighestSetBit(x) is the maximum bit number of any of the bits of x that are ones. If all of its bits are zeros,
HighestSetBit(x)= -1.

• CountLeadingZeroBits(x) is the number of zero bits at the left end of x, in the range 0 to N. This means:

CountLeadingZeroBits(x)= N - 1 - HighestSetBit(x).

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1820

Chapter E1. Arm Pseudocode Definition
E1.5. Built-in functions

• CountLeadingSignBits(x) is the number of copies of the sign bit of x at the left end of x, excluding the sign
bit itself, and is in the range 0 to N-1. This means:

CountLeadingSignBits(x)= CountLeadingZeroBits(x[N-1:1] EOR x[N-2:0]).

Zero-extension and sign-extension of bitstrings

If x is a bitstring and i is an integer, then ZeroExtend(x, i) is x extended to a length of i bits, by adding sufficient
zero bits to its left. That is, if i == Len(x), then ZeroExtend(x, i)= x, and if i > Len(x), then:

ZeroExtend(x, i)= Replicate('0', i-Len(x)): x

If x is a bitstring and i is an integer, then SignExtend(x, i) is x extended to a length of i bits, by adding sufficient
copies of its leftmost bit to its left. That is, if i == Len(x), then SignExtend(x, i)= x, and if i > Len(x), then:

SignExtend(x, i)= Replicate(TopBit(x), i-Len(x)): x

It is a pseudocode error to use either ZeroExtend(x,i) or SignExtend(x, i) in a context where it is possible
thati < Len(x).

Converting bitstrings to integers

If x is a bitstring, SInt() is the integer whose twos complement representation is x.

UInt() is the integer whose unsigned representation is x.

Int(x, unsigned) returns either SInt(x) or UInt(x) depending on the value of its second argument.

E1.5.2 Arithmetic functions

This section defines built-in arithmetic functions.

Absolute value

If x is either of type real or integer, Abs(x) returns the absolute value of x. The result is the same type as x.

Rounding and aligning

If x is a real:

• RoundDown(x) produces the largest integer n so that n <= x.

• RoundUp(x) produces the smallest integer n so that n >= x

• RoundTowardsZero(x) produces:

– RoundDown(x) if x > 0.0.
– 0 if x == 0.0.
– RoundUp(x) if x < 0.0.

If x and y are both of type integer, Align(x, y)= y * (x DIV y), and is of type integer.

If x is of type bitstring and y is of type integer, Align(x, y)= (Align(UInt(x),y))[Len(x)-1:0], and is a
bitstring of the same length as x.

It is a pseudocode error to use either form of Align(x, y) in any context where y can be 0. In practice, Align(
x, y) is only used with y a constant power of two, and the bitstring form used with $y =2^n$ has the effect of
producing its argument with its n low-order bits forced to zero.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1821

Chapter E1. Arm Pseudocode Definition
E1.5. Built-in functions

Maximum and minimum

If x and y are integers or reals, then Max(x, y) and Min(x, y) are their maximum and minimum respectively. x
and y must both be of type integer or of type real. The function returns a value of the same type as its operands.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1822

Chapter E1. Arm Pseudocode Definition
E1.6. Arm pseudocode definition index

E1.6 Arm pseudocode definition index

This section contains the following tables:

Table E1-3 which contains the pseudocode data types.

Table E1-4 which contains the pseudocode operators.

Table E1-5 which contains the pseudocode keywords and control structures.

Table E1-6 which contains the statements with special behaviors.

Table E1-3 Index of pseudocode data types

Keyword Meaning
array Type name for the array type
bit Keyword equivalent to bits(1)
bits(N) Type name for the bitstring of length N data type
boolean Type name for the boolean data type
enumeration Keyword to define a new enumeration type
integer Type name for the integer data type
real Type name for the real data type
type Keyword to define a new structure

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1823

Chapter E1. Arm Pseudocode Definition
E1.6. Arm pseudocode definition index

Table E1-4 Index of pseudocode operators

Operator Meaning
- Unary minus on integers or reals

Subtraction of integers, reals, and bitstrings
used in the left-hand side of an assignment or a tuple to discard the result

+ Unary plus on integers or reals
Addition of integers, reals, and bitstrings

. Extract named member from a list
Integer in bitstring extraction operator

: Bitstring concatenation
Integer range in bitstring extraction operator

! Boolean NOT
!= Comparison for inequality
(...) Around arguments of procedure or function
[...] Around array index

Around arguments of array-like function
∗ Multiplication of integers, reals and bitstrings
/ Divsion of integers and reals (real result)
&& Boolean AND
< Less than comparison of integers and reals
[...] Slicing of specified bits or bitstring or integer
<< Mulitply integer by power of 2 (with rounding towards infinity)
<= Less than or equal comparison of integers and reals
= Assignment operator
== Comparison for equality
> Greater than comparison of integers and reals
>= Greater than or equal comparison of integers and reals
>> Divide integer by power of 2
|| Boolean OR
∧ Exponential operator
AND Bitwise AND of bitstrings
DIV Quotient from integer division
EOR Bitwise EOR of bitstrings
IN Test membership of a certain expression in a set of values
MOD Remainder from integer division
NOT Bitwise inversion of bitstrings
OR Bitwise OR of bitstrings

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1824

Chapter E1. Arm Pseudocode Definition
E1.6. Arm pseudocode definition index

Table E1-5 Index of pseudocode keywords and control structures

Operator Meaning
/∗...∗/ Comment delimiters
// Introduces comment terminated by end of line
case...of... Control structure
FALSE One of two values a boolean can take (other than TRUE)
for...=...to... Loop control structure, counting up from the

initial value to the upper limit
for...=...downto... Loop control structure, counting down from

the initial value to the lower limit
if...then...else... Condition expression selecting between two values
if...then...else... Conditional control structure
otherwise Introduces default in case...of... control structure
repeat...until... Loop control structure that runs at

least once until the termination condition is satisfied
return Procedure or function return
TRUE One of two values a boolean can take (other than FALSE)
try...catch Control structure
when Introduces a specific case in case...of... control structure
while...do... Loop control structure that runs until the

termination condition is satisfied

Table E1-6 Index of special statements

Keyword Meaning
IMPLEMENTATION_DEFINED Describes IMPLEMENTATION DEFINED behavior.
SEE Points to other pseudocode to use instead
UNDEFINED Cause Undefined Instruction exception
UNKNOWN Unspecified value
CONSTRAINED_UNPREDICTABLE Unspecified behavior within limits
UNPREDICTABLE Unspecified behavior

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1825

Chapter E1. Arm Pseudocode Definition
E1.7. Additional functions

E1.7 Additional functions

The following functions are not listed in E2 Pseudocode specification, and are only described in this section.

E1.7.1 IsSee()

IsSee()returns TRUE if the exception variable that is passed to it was created because all the encodings that
matched the instruction that was being decoded called SEE.

See SEE....

E1.7.2 IsUndefined()

IsUndefined() returns TRUE if the exception variable that is passed to it was created because either the instruction
that was being decoded did not match any known encoding, or because one of the encodings that was matched
called the special statement UNDEFINED.

See UNDEFINED.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1826

Chapter E2
Pseudocode Specification

This chapter specifies the Armv8-M pseudocode. It contains the following section:

Alphabetical Pseudocode List

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1827

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

E2.1 Alphabetical Pseudocode List

E2.1.1 _AdvanceVPTState

1 // Advances VPT state
2
3 boolean _AdvanceVPTState;

E2.1.2 _ITStateChanged

1 // Indicates a write to ITSTATE
2
3 boolean _ITStateChanged;

E2.1.3 _Mem

1 // _Mem[] - non-assignment (read) form
2 // ===================================
3 // Perform single-copy atomic, aligned, little-endian read from physical memory
4
5 (boolean, bits(8*size)) _Mem(AddressDescriptor memaddrdesc, integer size);
6
7 // _Mem[] - assignment (write) form
8 // ================================
9 // Perform single-copy atomic, aligned, little-endian write to physical memory

10
11 boolean _Mem(AddressDescriptor memaddrdesc, integer size, bits(8*size) value);

E2.1.4 _NextInstrAddr

1 // Address of next instruction to be fetched in case of branch type operation
2
3 bits(32) _NextInstrAddr;

E2.1.5 _NextInstrITState

1 // Updated ITSTATE for next instruction
2
3 ITSTATEType _NextInstrITState;

E2.1.6 _PCChanged

1 // Indicates a change in instruction fetch address due to branch type operations
2
3 boolean _PCChanged;

E2.1.7 _PendingReturnOperation

1 // Indicate any pending exception returns
2
3 boolean _PendingReturnOperation;

E2.1.8 _RName

1 // The physical array of core registers.
2 // _R[RName_PC] is defined to be the address of the current instruction.
3 // The offset of 4 bytes is applied to it by the register access functions.
4
5 array bits(32) _RName[RNames];

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1828

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

E2.1.9 _S

1 // The 32-bit extension register bank for the FP extension.
2
3 array bits(32) _S[0..31];

E2.1.10 _SP

1 // _SP()
2 // =====
3
4 // Non-assignment form
5
6 bits(32) _SP(RNames spreg)
7 assert ((spreg == RNamesSP_Main_NonSecure) ||
8 ((spreg == RNamesSP_Main_Secure) && HaveSecurityExt()) ||
9 (spreg == RNamesSP_Process_NonSecure) ||

10 ((spreg == RNamesSP_Process_Secure) && HaveSecurityExt()));
11
12 return _RName[spreg][31:2]:'00';
13
14 // Assignment form
15
16 ExcInfo _SP(RNames spreg, boolean excEntry, boolean skipLimitCheck, bits(32) value)
17 assert ((spreg == RNamesSP_Main_NonSecure) ||
18 ((spreg == RNamesSP_Main_Secure) && HaveSecurityExt()) ||
19 (spreg == RNamesSP_Process_NonSecure) ||
20 ((spreg == RNamesSP_Process_Secure) && HaveSecurityExt()));
21
22 excInfo = DefaultExcInfo();
23 if !skipLimitCheck && ViolatesSPLim(spreg, value) then
24 isSecure = ((spreg == RNamesSP_Main_Secure) ||
25 (spreg == RNamesSP_Process_Secure));
26 // If the stack limit is violated during exception entry then the stack
27 // pointer is set to the limit value. This both prevents violations and
28 // ensures that the stack pointer is 8 byte aligned.
29 if excEntry then
30 _RName[spreg] = LookUpSPLim(spreg);
31
32 // Raise the appropriate exception and syndrome information
33 if isSecure then
34 UFSR_S.STKOF = '1';
35 else
36 UFSR_NS.STKOF = '1';
37 // Create the exception. NOTE: If Main Extension is not implemented the fault always
38 // escalates to HardFault.
39 excInfo = CreateException(UsageFault, TRUE, isSecure);
40 if !excEntry then
41 HandleException(excInfo);
42 else
43 // Stack pointer only updated normally if limit not violated
44 _RName[spreg] = value[31:2]:'00';
45 return excInfo;

E2.1.11 Abs

1 // Abs()
2 // =====
3
4 integer Abs(integer x)
5 return if x >= 0 then x else -x;
6
7 real Abs(real x)
8 return if x >= 0.0 then x else -x;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1829

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

E2.1.12 AccessAttributes

1 // Memory access attributes
2
3 type AccessAttributes is (
4 boolean iswrite, // TRUE for memory stores, FALSE for load accesses
5 boolean ispriv, // TRUE if the access is privileged, FALSE if unprivileged
6 AccType acctype
7)

E2.1.13 AccType

1 // Memory reference access type
2
3 enumeration AccType { AccType_NORMAL, // Normal loads and stores
4 AccType_MVE, // Loads and stores generated by MVE instructions
5 AccType_ORDERED, // Load-Acquire and Store-Release
6 AccType_STACK, // HW generated stacking / unstacking operation
7 AccType_LAZYFP, // HW generated stacking due to lazy
8 // floating point state preservation
9 AccType_IFETCH, // Instruction fetch

10 AccType_DBG, // Loads and Stores generated by the Debugger
11 AccType_VECTABLE // Vector table fetch
12 };

E2.1.14 ActivateException

1 // ActivateException()
2 // ===================
3
4 ActivateException(integer exceptionNumber, boolean excIsSecure)
5 // If the exception is Secure, directly entry the Secure state.
6 CurrentState = if excIsSecure
7 then SecurityState_Secure else SecurityState_NonSecure;
8 IPSR.Exception = exceptionNumber[8:0]; // Update IPSR to this exception.
9 // This also causes a transition to

10 // privileged handler
11 // mode as IPSR.Exception != 0
12 if HaveMainExt() then
13 EPSR.IT = Zeros(8); // IT/ICI/ECI bits cleared
14 // PRIMASK, FAULTMASK, BASEPRI unchanged on exception entry
15 if HaveMveOrFPExt() then
16 CONTROL.FPCA = '0'; // Floating-point Extension only
17 CONTROL_S.SFPA = '0';
18 CONTROL.SPSEL = '0'; // CONTORL.SPSEL is updated to indicate
19 // the selection of the Main stack pointer
20 // (SP_main), CONTROL.nPRIV unchanged
21 // Transition exception from pending to active
22 SetPending(exceptionNumber, excIsSecure, FALSE);
23 SetActive(exceptionNumber, excIsSecure, TRUE);

E2.1.15 ActiveFPState

1 // ActiveFPState()
2 // ===============
3
4 boolean ActiveFPState()
5 // Is the FP state accessible
6 (active, -) = IsCPEnabled(10);
7
8 // Is FP lazy state preservation active
9 if active then

10 if FPCCR_S.S == '1' then
11 lspact = FPCCR_S.LSPACT;
12 else

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1830

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

13 lspact = FPCCR_NS.LSPACT;
14 active = lspact == '0';
15
16 // Check ASPEN to determine if the PE or software is managing the FP state
17 if active && FPCCR.ASPEN == '1' then
18 // If the PE is managing the FP state then FPCA can be used to indicate
19 // if the current context has an active FP state. Similarly SFPA is also
20 // checked to determine if the FP state is active for the Secure state.
21 active = CONTROL.FPCA == '1' && (!IsSecure() || CONTROL_S.SFPA == '1');
22 return active;

E2.1.16 AddressDescriptor

1 // Descriptor used to access the underlying memory array
2
3 type AddressDescriptor is (
4 MemoryAttributes memattrs,
5 bits(32) paddress, // Physical Address
6 AccessAttributes accattrs
7)

E2.1.17 AddrType

1 // Indicates address type
2
3 enumeration AddrType { AddrType_NORMAL,
4 AddrType_EXC_RETURN,
5 AddrType_FNC_RETURN
6 };

E2.1.18 AddWithCarry

1 // AddWithCarry()
2 // ==============
3
4 (bits(N), bit, bit) AddWithCarry(bits(N) x, bits(N) y, bit carry_in)
5 unsigned_sum = UInt(x) + UInt(y) + UInt(carry_in);
6 signed_sum = SInt(x) + SInt(y) + UInt(carry_in);
7 result = unsigned_sum[N-1:0]; // same value as signed_sum[N-1:0]
8 carry_out = if UInt(result) == unsigned_sum then '0' else '1';
9 overflow = if SInt(result) == signed_sum then '0' else '1';

10 return (result, carry_out, overflow);

E2.1.19 AdvSIMDExpandImm

1 // AdvSIMDExpandImm()
2 // ==================
3
4 bits(64) AdvSIMDExpandImm(bit op, bits(4) cmode, bits(8) imm8)
5
6 case cmode[3:1] of
7 when '000'
8 imm64 = Replicate(Zeros(24):imm8, 2);
9 when '001'

10 imm64 = Replicate(Zeros(16):imm8:Zeros(8), 2);
11 when '010'
12 imm64 = Replicate(Zeros(8):imm8:Zeros(16), 2);
13 when '011'
14 imm64 = Replicate(imm8:Zeros(24), 2);
15 when '100'
16 imm64 = Replicate(Zeros(8):imm8, 4);
17 when '101'
18 imm64 = Replicate(imm8:Zeros(8), 4);
19 when '110'

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1831

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

20 if cmode[0] == '0' then
21 imm64 = Replicate(Zeros(16):imm8:Ones(8), 2);
22 else
23 imm64 = Replicate(Zeros(8):imm8:Ones(16), 2);
24 when '111'
25 if cmode[0] == '0' && op == '0' then
26 imm64 = Replicate(imm8, 8);
27 if cmode[0] == '0' && op == '1' then
28 imm8a = Replicate(imm8[7], 8); imm8b = Replicate(imm8[6], 8);
29 imm8c = Replicate(imm8[5], 8); imm8d = Replicate(imm8[4], 8);
30 imm8e = Replicate(imm8[3], 8); imm8f = Replicate(imm8[2], 8);
31 imm8g = Replicate(imm8[1], 8); imm8h = Replicate(imm8[0], 8);
32 imm64 = imm8a:imm8b:imm8c:imm8d:imm8e:imm8f:imm8g:imm8h;
33 if cmode[0] == '1' && op == '0' then
34 imm32 = imm8[7]:NOT(imm8[6]):Replicate(imm8[6],5):imm8[5:0]:Zeros(19);
35 imm64 = Replicate(imm32, 2);
36 if cmode[0] == '1' && op == '1' then
37 UNDEFINED;
38
39 return imm64;

E2.1.20 Align

1 // Align()
2 // =======
3
4 integer Align(integer x, integer y)
5 return y * (x DIV y);
6
7 bits(N) Align(bits(N) x, integer y)
8 return Align(UInt(x), y)[N-1:0];

E2.1.21 ArchVersion

1 // Indicates architecture version
2
3 enumeration ArchVersion {
4 Armv8p0,
5 Armv8p1
6 };

E2.1.22 ASR

1 // ASR()
2 // =====
3
4 bits(N) ASR(bits(N) x, integer shift)
5 assert shift >= 0;
6 if shift == 0 then
7 result = x;
8 else
9 (result, -) = ASR_C(x, shift);

10 return result;

E2.1.23 ASR_C

1 // ASR_C()
2 // =======
3
4 (bits(N), bit) ASR_C(bits(N) x, integer shift)
5 assert shift > 0;
6 extended_x = SignExtend(x, shift+N);
7 result = extended_x[shift+N-1:shift];
8 carry_out = extended_x[shift-1];
9 return (result, carry_out);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1832

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

E2.1.24 BeatComplete

1 // BeatComplete
2 // ============
3
4 // The BeatComplete value indicates whether the 4 beats from 2 instructions have
5 // been performed. The flags are packed into an 8 bit value as follows:
6 // bit 0: beat 0 of instruction 0
7 // bit 1: beat 1 of instruction 0
8 // ...
9 // bit 4: beat 0 of instruction 1

10 // bit 5: beat 1 of instruction 1
11 // ...
12 //
13 // NOTE: The beat execution rules mean that only a few flag combinations are
14 // valid.
15
16 // Non-assignment form
17 bits(8) BeatComplete
18 bits(8) beatComplete;
19 case EPSR.ECI of
20 when '00000000' beatComplete = '0000 0000';
21 when '00000001' beatComplete = '0000 0001';
22 when '00000010' beatComplete = '0000 0011';
23 when '00000100' beatComplete = '0000 0111';
24 when '00000101' beatComplete = '0001 0111';
25 otherwise assert(FALSE);
26 return beatComplete;
27
28 // Assignment form
29 BeatComplete = bits(8) value
30 case value of
31 when '0000 0000' EPSR.ECI = 0[7:0];
32 when '0000 0001' EPSR.ECI = 1[7:0];
33 when '0000 0011' EPSR.ECI = 2[7:0];
34 when '0000 0111' EPSR.ECI = 4[7:0];
35 when '0001 0111' EPSR.ECI = 5[7:0];
36 otherwise
37 assert(FALSE);

E2.1.25 BeatSchedule

1 // BeatSchedule()
2 // ==============
3
4 type InstInfoType is (
5 bits(32) Opcode,
6 integer Length,
7 boolean Valid
8)
9

10 array [0..MAX_OVERLAPPING_INSTRS-1] of InstInfoType _InstInfo;
11 integer _InstID;
12 integer _BeatID;

E2.1.26 BigEndian

1 // BigEndian()
2 // ===========
3
4 boolean BigEndian(bits(32) startAddress, integer size)
5 // If AIRCR.ENDINANESS is 0 then the PE is in little endian mode
6 if AIRCR.ENDIANNESS == '0' then
7 return FALSE;
8 // ...otherwise the PE is in big endian mode, however; the PPB
9 // space (0xE0000000 to 0xE00FFFFF) is always little endian.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1833

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

10 endAddress = startAddress + size;
11 startPpbAccess = IsPPB(startAddress);
12 endPpbAccess = IsPPB(endAddress);
13 // If an access crosses the PPB boundary then it is
14 // CONSTRAINED_UNPREDICTABLE if the PE is in big endian mode
15 if startPpbAccess != endPpbAccess then
16 CONSTRAINED_UNPREDICTABLE;
17 return !startPpbAccess;

E2.1.27 BigEndianReverse

1 // BigEndianReverse()
2 // ==================
3
4 bits(8*N) BigEndianReverse (bits(8*N) value, integer N)
5 assert N == 1 || N == 2 || N == 4;
6 bits(8*N) result;
7 case N of
8 when 1
9 result[7:0] = value[7:0];

10 when 2
11 result[15:8] = value[7:0];
12 result[7:0] = value[15:8];
13 when 4
14 result[31:24] = value[7:0];
15 result[23:16] = value[15:8];
16 result[15:8] = value[23:16];
17 result[7:0] = value[31:24];
18 return result;

E2.1.28 BitCount

1 // BitCount()
2 // ==========
3
4 integer BitCount(bits(N) x)
5 integer result = 0;
6 for i = 0 to N-1
7 if x[i] == '1' then
8 result = result + 1;
9 return result;

E2.1.29 BitReverseShiftRight

1 // BitReverseShiftRight()
2 // ======================
3
4 bits(N) BitReverseShiftRight(bits(N) x, integer R)
5 reversed = Zeros(N);
6 if R > N then
7 R = N;
8 for i = 0 to R-1
9 reversed[R-i-1] = x[i];

10 return reversed;

E2.1.30 BranchCall

1 // BranchCall()
2 // ============
3
4 BranchCall(bits(32) address, boolean allowNonSecure)
5 // If in the Secure state and transitions to the Non-secure state are allowed
6 // then the target state is specified by the LSB of the target address
7 if HaveSecurityExt() && allowNonSecure && IsSecure() then

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1834

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

8 EPSR.T = '1';
9 if address[0] == '0' then

10 CurrentState = SecurityState_NonSecure;
11 if HaveMveOrFPExt() then CONTROL_S.SFPA = '0';
12 if HaveLOBExt() then
13 LO_BRANCH_INFO.VALID = '0';
14 else
15 EPSR.T = address[0];
16 // If EPSR.T == 0 then an exception is taken on the next
17 // instruction: UsageFault('Invalid State') if the Main Extension is
18 // implemented; HardFault otherwise
19
20 BranchTo(address[31:1]:'0');

E2.1.31 BranchReturn

1 // BranchReturn()
2 // ==============
3
4 ExcInfo BranchReturn(bits(32) address, boolean allowNonSecure)
5 exc = DefaultExcInfo();
6
7 case IsReturn(address) of
8 when AddrType_NORMAL
9 BranchCall(address, allowNonSecure);

10 when AddrType_FNC_RETURN
11 // Unlike exception return, any faults raised during a FNC_RETURN
12 // unstacking are raised synchronously with the instruction that triggered
13 // the unstacking.
14 exc = FunctionReturn();
15 when AddrType_EXC_RETURN
16 // If enabled, the IESB contains asynchronous RAS / BusFault errors to the
17 // exception context.
18 if AIRCR.IESB == '1' then
19 exc = SynchronizeBusFault();
20 // The actual exception return is performed when the
21 // current instruction completes. This is because faults that occur
22 // during the exception return are handled differently from faults
23 // raised during the instruction execution.
24 if exc.fault == NoFault then
25 PendReturnOperation(address);
26
27 return exc;

E2.1.32 BranchTo

1 // BranchTo()
2 // ==========
3
4 BranchTo(bits(32) address, boolean commit)
5 if HaveLOBExt() then
6 // Any branch between a branch future instruction and the associated
7 // branch point invalidates the branch info cache
8 if LO_BRANCH_INFO.VALID == '1' && LO_BRANCH_INFO.BF == '1' then
9 LO_BRANCH_INFO.VALID = '0';

10
11 // Sets the address to fetch the next instruction from. NOTE: The current PC
12 // is not changed directly as this would modify the result of
13 // ThisInstrAddr(), which would cause the wrong return addresses to be used
14 // for some types of exception. The actual update of the PC is done in the
15 // InstructionAdvance() function after the instruction finishes executing.
16 _NextInstrAddr = address[31:1]:'0';
17 _PCChanged = TRUE;
18 // Clear any pending exception returns
19 _PendingReturnOperation = FALSE;
20
21 if commit then

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1835

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

22 // This directly commits the change to the PC, so ThisInstrAddr()
23 // and NextInstrAddr() both point to the target address. Used for exception
24 // returns and resets so the state is consistent before the next instruction
25 // (or exception) is taken.
26 _RName[RNamesPC] = _NextInstrAddr;
27
28
29 BranchTo(bits(32) address)
30 BranchTo(address, FALSE);

E2.1.33 BusFaultBarrier

1 // BusFaultBarrier()
2 // =================
3
4 // Forces any latent BusFault (both RAS and non-RAS) to be recognised.
5 // This function returns TRUE if a BusFault was detected.
6 boolean BusFaultBarrier();

E2.1.34 CallSupervisor

1 // CallSupervisor()
2 // ================
3
4 CallSupervisor()
5 excInfo = CreateException(SVCall);
6 HandleException(excInfo);

E2.1.35 CanDebugAccessFP

1 // CanDebugAccessFP()
2 // ==================
3
4 boolean CanDebugAccessFP()
5 canAccessFP = (!HaveSecurityExt() || DHCSR.S_SDE == '1' ||
6 (FPCCR_S.S == '0' && NSACR.CP10 == '1'));
7
8 // Unprivileged-only debug for the state associated with the floating-point
9 // context restricts access via CPACR checking and if a lazy context is active.

10 if HaveUDE() then
11 if FPCCR_S.S == '1' && DHCSR.S_SUIDE == '1' then
12 canAccessFP = canAccessFP && CPACR_S.CP10 == '11' && FPCCR_S.LSPACT != '1';
13 elsif FPCCR_S.S == '0' && DHCSR.S_NSUIDE == '1' then
14 canAccessFP = canAccessFP && CPACR_NS.CP10 == '11' && FPCCR_NS.LSPACT != '1';
15 return canAccessFP;

E2.1.36 CanHaltOnEvent

1 // CanHaltOnEvent()
2 // ================
3
4 boolean CanHaltOnEvent(boolean is_secure, boolean isPriv)
5 if !HaveSecurityExt() then assert !is_secure;
6
7 if !HaveHaltingDebug() || Halted || DHCSR.C_DEBUGEN == '0' then return FALSE;
8
9 if is_secure then

10 if DHCSR.S_SDE == '1' && (!HaveUDE() || DHCSR.S_SUIDE == '0') then return TRUE;
11 else
12 if HaltingDebugAllowed() then return TRUE;
13
14 return (!isPriv && UnprivHaltingDebugEnabled(is_secure));

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1836

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

E2.1.37 CanPendMonitorOnEvent

1 // CanPendMonitorOnEvent()
2 // =======================
3
4 boolean CanPendMonitorOnEvent(boolean isSecure, boolean checkPri, boolean checkEn,
5 boolean isPriv, boolean checkSecure)
6 if !HaveSecurityExt() then assert !isSecure;
7
8 result = HaveDebugMonitor() && !CanHaltOnEvent(isSecure, isPriv) && !Halted;
9

10 if checkEn then
11 if HaveUDE() && !isPriv then
12 result = result && (DEMCR.MON_EN == '1' || DEMCR.UMON_EN == '1');
13 else
14 result = result && DEMCR.MON_EN == '1';
15
16 if checkSecure then
17 result = result && (!isSecure || DEMCR.SDME == '1');
18
19 if checkPri then
20 mon_secure = (HaveSecurityExt() && DEMCR.SDME == '1');
21 result = (result && (ExceptionPriority(DebugMonitor, mon_secure, TRUE) <
22 ExecutionPriority()));
23
24 return result;

E2.1.38 CdeImpDefValue

1 // CdeImpDefValue()
2 // ================
3 // IMPLEMENTATION DEFINED value functions for the Custom Datapath Extension
4
5 bits(size) CdeImpDefValue(bits(N) instr);
6 bits(size) CdeImpDefValue(bits(N) instr, bits(M) opa);
7 bits(size) CdeImpDefValue(bits(N) instr, bits(M) opa, bits(L) opb);
8 bits(size) CdeImpDefValue(bits(N) instr, bits(M) opa, bits(L) opb, bits(K) opc);
9

10 bits(size) CdeImpDefValue(bits(N) instr, integer curBeat, bits(4) elmtMask);
11 bits(size) CdeImpDefValue(bits(N) instr, bits(M) opa, integer curBeat, bits(4) elmtMask);
12 bits(size) CdeImpDefValue(bits(N) instr, bits(M) opa, bits(L) opb, integer curBeat,
13 bits(4) elmtMask);
14 bits(size) CdeImpDefValue(bits(N) instr, bits(M) opa, bits(L) opb, bits(K) opc,
15 integer curBeat, bits(4) elmtMask);

E2.1.39 CheckCPEnabled

1 // CheckCPEnabled()
2 // ================
3
4 ExcInfo CheckCPEnabled(integer cp, boolean privileged, boolean secure)
5 (enabled, toSecure) = IsCPEnabled(cp, privileged, secure);
6 if !enabled then
7 if toSecure then
8 UFSR_S.NOCP = '1';
9 else

10 UFSR_NS.NOCP = '1';
11 excInfo = CreateException(UsageFault, TRUE, toSecure);
12 else
13 excInfo = DefaultExcInfo();
14 return excInfo;
15
16 ExcInfo CheckCPEnabled(integer cp)
17 return CheckCPEnabled(cp, CurrentModeIsPrivileged(), IsSecure());

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1837

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

E2.1.40 CheckDecodeFaults

1 // CheckDecodeFaults()
2 // ===================
3 // Check and raise faults in the correct order for MVE and floating-point
4 // instructions.
5
6 CheckDecodeFaults(ExtType extType)
7 // Is the instruction in the co-processer space
8 (isCP, cpNumber) = IsCPInstruction(ThisInstr());
9 assert(isCP);

10
11 // Is the co-processer enabled, this may raise a NOCP UsageFault
12 excInfo = CheckCPEnabled(cpNumber);
13 HandleException(excInfo);
14
15 // Check if the type of instruction is supported.
16 case extType of
17 when ExtType_HpFp if MVFR1.FP16 == '0000' then UNDEFINED;
18 when ExtType_SpFp if MVFR0.FPSP == '0000' then UNDEFINED;
19 when ExtType_DpFp if MVFR0.FPDP == '0000' then UNDEFINED;
20 when ExtType_Mve if MVFR1.MVE == '0000' then UNDEFINED;
21 when ExtType_MveFp if MVFR1.MVE != '0010' then UNDEFINED;
22 when ExtType_MveOrFp
23 // Always raises a NOCP fault if MVE and the Floating-point
24 // Extension are not present
25 assert(MVFR1.MVE != '0000' || MVFR0.FPSP != '0000');
26 when ExtType_MveOrDpFp
27 if MVFR1.MVE == '0000' && MVFR0.FPDP == '0000' then UNDEFINED;
28 when ExtType_Unknown UNDEFINED;
29 otherwise assert(FALSE);

E2.1.41 CheckFPDecodeFaults

1 // CheckFPDecodeFaults()
2 // ===================
3
4 CheckFPDecodeFaults(bits(2) size)
5 // Checks the size field and identifies the correct ExtType
6 case size of
7 when '00' CheckDecodeFaults(ExtType_Unknown);
8 when '01' CheckDecodeFaults(ExtType_HpFp);
9 when '10' CheckDecodeFaults(ExtType_SpFp);

10 when '11' CheckDecodeFaults(ExtType_DpFp);

E2.1.42 CheckPermission

1 // CheckPermission()
2 // =================
3
4 ExcInfo CheckPermission(Permissions perms, bits(32) address, AccType acctype,
5 boolean iswrite, boolean ispriv, boolean isSecure)
6 if !perms.apValid then
7 fault = TRUE;
8 elsif (perms.xn == '1') && (acctype == AccType_IFETCH) then
9 fault = TRUE;

10 else
11 case perms.ap of
12 when '00' fault = !ispriv;
13 when '01' fault = FALSE;
14 when '10' fault = !ispriv || iswrite;
15 when '11' fault = iswrite;
16 otherwise UNPREDICTABLE;
17
18 // If a fault occurred generate the syndrome info and create the exception.
19 if fault then

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1838

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

20 // Create and write out the syndrome information on implementations with
21 // the Main Extension.
22 if HaveMainExt() then
23 MMFSR_Type fsr = Zeros(8);
24 case acctype of
25 when AccType_IFETCH
26 fsr.IACCVIOL = '1';
27 when AccType_STACK
28 if iswrite then
29 fsr.MSTKERR = '1';
30 else
31 fsr.MUNSTKERR = '1';
32 when AccType_LAZYFP
33 fsr.MLSPERR = '1';
34 when AccType_NORMAL, AccType_MVE, AccType_ORDERED
35 fsr.MMARVALID = '1';
36 fsr.DACCVIOL = '1';
37 when AccType_DBG
38 // DAP errors do not set syndrome
39 otherwise
40 assert(FALSE);
41
42 // Write the syndrome information to the correct instance of banked
43 // registers
44 if isSecure then
45 MMFSR_S = MMFSR_S OR fsr;
46 if fsr.MMARVALID == '1' then
47 MMFAR_S = address;
48 else
49 MMFSR_NS = MMFSR_NS OR fsr;
50 if fsr.MMARVALID == '1' then
51 MMFAR_NS = address;
52
53 // Create the exception. NOTE: If Main Extension is not implemented the fault
54 // escalates to a HardFault
55 excInfo = CreateException(MemManage, TRUE, isSecure);
56 else
57 excInfo = DefaultExcInfo();
58 return excInfo;

E2.1.43 ClearEventRegister

1 // ClearEventRegister
2 // ==================
3 // Clears the Event register
4
5 ClearEventRegister();

E2.1.44 ClearExclusiveByAddress

1 // ClearExclusiveByAddress
2 // =======================
3 // Clear the global exclusive monitor for all PEs, except for the PE specified
4 // by processorid for which an address region including any of size bytes
5 // starting from address has had a request for an exclusive access
6
7 ClearExclusiveByAddress(bits(32) address, integer exclprocessorid, integer size);

E2.1.45 ClearExclusiveLocal

1 // ClearExclusiveLocal()
2 // =====================
3 // Clear local exclusive monitor records for the PE.
4
5 ClearExclusiveLocal(integer processorid);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1839

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

E2.1.46 ClearInFlightInstructions

1 // ClearInFlightInstructions()
2 // ===========================
3
4 ClearInFlightInstructions()
5 for i = 0 to MAX_OVERLAPPING_INSTRS-1
6 _InstInfo[i].Valid = FALSE;

E2.1.47 ComparePriorities

1 // ComparePriorities()
2 // ===================
3
4 boolean ComparePriorities(integer exc0Pri, integer exc0Number, boolean exc0IsSecure,
5 integer exc1Pri, integer exc1Number, boolean exc1IsSecure)
6 if exc0Pri != exc1Pri then
7 takeE0 = exc0Pri < exc1Pri;
8 elsif exc0Number != exc1Number then
9 takeE0 = exc0Number < exc1Number;

10 elsif exc0IsSecure != exc1IsSecure then
11 takeE0 = exc0IsSecure;
12 else
13 // The two exceptions have exactly the same priority, so exception 0
14 // cannot be taken in preference to exception 1.
15 takeE0 = FALSE;
16 return takeE0;
17
18
19 boolean ComparePriorities(ExcInfo exc0Info, boolean groupPri,
20 integer exc1Pri, integer exc1Number, boolean exc1IsSecure)
21 exc0Pri = ExceptionPriority(exc0Info.fault, exc0Info.isSecure, groupPri);
22 return ComparePriorities(exc0Pri, exc0Info.fault, exc0Info.isSecure,
23 exc1Pri, exc1Number, exc1IsSecure);

E2.1.48 Cond

1 // Condition code definitions
2 // ===========================
3
4 constant bits(4) CondEQ = 0x0[3:0];
5 constant bits(4) CondNE = 0x1[3:0];
6 constant bits(4) CondCS = 0x2[3:0];
7 constant bits(4) CondCC = 0x3[3:0];
8 constant bits(4) CondMI = 0x4[3:0];
9 constant bits(4) CondPL = 0x5[3:0];

10 constant bits(4) CondVS = 0x6[3:0];
11 constant bits(4) CondVC = 0x7[3:0];
12 constant bits(4) CondHI = 0x8[3:0];
13 constant bits(4) CondLS = 0x9[3:0];
14 constant bits(4) CondGE = 0xA[3:0];
15 constant bits(4) CondLT = 0xB[3:0];
16 constant bits(4) CondGT = 0xC[3:0];
17 constant bits(4) CondLE = 0xD[3:0];
18 constant bits(4) CondAL = 0xE[3:0];
19 constant bits(4) CondNV = 0xF[3:0];

E2.1.49 ConditionHolds

1 // ConditionHolds()
2 // ================
3
4 boolean ConditionHolds(bits(3) shortCond, bit n, bit z, bit c, bit v)
5 // Expand the short condition to the standard 4 bit representation
6 case shortCond of

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1840

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

7 when '000' cond = CondEQ;
8 when '001' cond = CondNE;
9 when '010' cond = CondCS;

10 when '011' cond = CondHI;
11 when '100' cond = CondGE;
12 when '101' cond = CondLT;
13 when '110' cond = CondGT;
14 when '111' cond = CondLE;
15 return ConditionHolds(cond, n, z, c, v, TRUE);
16
17 boolean ConditionHolds(bits(4) cond)
18 return ConditionHolds(cond, APSR.N, APSR.Z, APSR.C, APSR.V, FALSE);
19
20 boolean ConditionHolds(bits(4) cond, bit n, bit z, bit c, bit v, boolean allowNV)
21 // Evaluate base condition.
22 case cond[3:1] of
23 when '000' result = (z == '1'); // EQ or NE
24 when '001' result = (c == '1'); // CS or CC
25 when '010' result = (n == '1'); // MI or PL
26 when '011' result = (v == '1'); // VS or VC
27 when '100' result = (c == '1') && (z == '0'); // HI or LS
28 when '101' result = (n == v); // GE or LT
29 when '110' result = (n == v) && (z == '0'); // GT or LE
30 when '111' result = TRUE; // AL or possibly NV
31
32 // The LSB of the condition code is an invert flag. Some situations prohibit
33 // execute never, and treat it the same as execute always. This applies the
34 // invert taking into account whether the inverse of always is allowed.
35 if cond[0] == '1' && (cond != CondNV || allowNV)then
36 result = !result;
37 return result;

E2.1.50 ConditionPassed

1 // ConditionPassed()
2 // =================
3
4 boolean ConditionPassed()
5 return ConditionPassed(CurrentCond());
6
7 boolean ConditionPassed(bits(4) cond)
8 passed = ConditionHolds(cond);
9 return passed;

E2.1.51 ConstrainUnpredictable

1 // ConstrainUnpredictable()
2 // ========================
3 // Return the appropriate Constraint result to control the caller's behavior.
4 // The return value is IMPLEMENTATION DEFINED within a permitted list for
5 // each UNPREDICTABLE case.
6 // (The permitted list is determined by an assert or case statement at the call site.)
7
8 Constraint ConstrainUnpredictable(Unpredictable which);

E2.1.52 ConstrainUnpredictableBits

1 // ConstrainUnpredictableBits()
2 // ============================
3 // This is a variant of ConstrainUnpredictable for when the result can be Constraint_UNKNOWN.
4 // If the result is Constraint_UNKNOWN then the function also returns UNKNOWN value, but that
5 // value is always an allocated value; that is, one for which the behavior is not itself
6 // CONSTRAINED.
7
8 (Constraint,bits(width)) ConstrainUnpredictableBits(Unpredictable which);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1841

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

E2.1.53 ConstrainUnpredictableBool

1 // ConstrainUnpredictableBool()
2 // ============================
3 // This is a wrapper for UNPREDICTABLE cases where the constrained result is
4 // either TRUE or FALSE.
5
6 boolean ConstrainUnpredictableBool(Unpredictable which);

E2.1.54 ConstrainUnpredictableInteger

1 // ConstrainUnpredictableInteger()
2 // ===============================
3 // This is a variant of ConstrainUnpredictable for when the result can be Constraint_UNKNOWN.
4 // If the result is Constraint_UNKNOWN then the function also returns an UNKNOWN value in
5 // the range low to high, inclusive.
6
7 (Constraint,integer) ConstrainUnpredictableInteger(integer low, integer high,
8 Unpredictable which);

E2.1.55 ConsumeExcStackFrame

1 // ConsumeExcStackFrame()
2 // ======================
3
4 ConsumeExcStackFrame(EXC_RETURN_Type excReturn, bit fourByteAlign)
5 // Calculate the size of the integer part of the stack frame
6 toSecure = HaveSecurityExt() && excReturn.S == '1';
7 if toSecure && (excReturn.ES == '0' ||
8 excReturn.DCRS == '0') then
9 framesize = 0x48;

10 else
11 framesize = 0x20;
12 // Add on the size of the FP part of the stack frame if present
13 if HaveMveOrFPExt() && excReturn.FType == '0' then
14 if toSecure && FPCCR_S.TS == '1' then
15 framesize = framesize + 0x88;
16 else
17 framesize = framesize + 0x48;
18
19 // Update stack pointer. NOTE: Stack pointer limit not checked on exception
20 // return as stack pointer guaranteed to be ascending not descending.
21 mode = if excReturn.Mode == '1' then PEMode_Thread else PEMode_Handler;
22 spName = LookUpSP_with_security_mode(toSecure, mode);
23 exc = _SP(spName, FALSE, TRUE, (_SP(spName) + framesize) OR
24 ZeroExtend(fourByteAlign:'00',32));
25 assert exc.fault == NoFault;

E2.1.56 ConsumptionOfSpeculativeDataBarrier

1 // Consumption of Speculative Data Barrier
2 // =======================================
3 // Perform a Consumption of Speculative Data Barrier operation.
4
5 ConsumptionOfSpeculativeDataBarrier();

E2.1.57 Coproc_Accepted

1 // Coproc_Accepted
2 // ================
3 // Check whether a coprocessor accepts an instruction.
4
5 boolean Coproc_Accepted(integer cp_num, bits(32) instr);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1842

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

E2.1.58 Coproc_DoneLoading

1 // Coproc_DoneLoading
2 // ==================
3 // Check whether enough 32-bit words have been loaded for an LDC instruction
4
5 boolean Coproc_DoneLoading(integer cp_num, bits(32) instr);

E2.1.59 Coproc_DoneStoring

1 // Coproc_DoneStoring
2 // ==================
3 // Check whether enough 32-bit words have been stored for a STC instruction
4
5 boolean Coproc_DoneStoring(integer cp_num, bits(32) instr);

E2.1.60 Coproc_GetOneWord

1 // Coproc_GetOneWord
2 // =================
3 // Gets the 32-bit word for an MRC instruction from the coprocessor
4
5 bits(32) Coproc_GetOneWord(integer cp_num, bits(32) instr);

E2.1.61 Coproc_GetTwoWords

1 // Coproc_GetTwoWords
2 // ==================
3 // Get two 32-bit words for an MRRC instruction from the coprocessor
4
5 (bits(32), bits(32)) Coproc_GetTwoWords(integer cp_num, bits(32) instr);

E2.1.62 Coproc_GetWordToStore

1 // Coproc_GetWordToStore
2 // =====================
3 // Gets the next 32-bit word to store for an STC instruction from the coprocessor
4
5 bits(32) Coproc_GetWordToStore(integer cp_num, bits(32) instr);

E2.1.63 Coproc_InternalOperation

1 // Coproc_InternalOperation
2 // ========================
3 // Instructs a coprocessor to perform the internal operation requested
4 // by a CDP instruction
5
6 Coproc_InternalOperation(integer cp_num, bits(32) instr);

E2.1.64 Coproc_SendLoadedWord

1 // Coproc_SendLoadedWord
2 // =====================
3 // Sends a loaded 32-bit word for an LDC instruction to the coprocessor
4
5 Coproc_SendLoadedWord(bits(32) word, integer cp_num, bits(32) instr);

E2.1.65 Coproc_SendOneWord

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1843

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

1 // Coproc_SendOneWord
2 // ==================
3 // Sends the 32-bit word for an MCR instruction to the coprocessor
4
5 Coproc_SendOneWord(bits(32) word, integer cp_num, bits(32) instr);

E2.1.66 Coproc_SendTwoWords

1 // Coproc_SendTwoWords
2 // ===================
3 // Send two 32-bit words for an MCRR instruction to the coprocessor.
4
5 Coproc_SendTwoWords(bits(32) word2, bits(32) word1, integer cp_num, bits(32) instr);

E2.1.67 CoprocType

1 // CoprocType
2 // ==========
3 // Returns the architecture defined enumeration of the instruction set
4 // supported by the given coprocessor space.
5
6 CPDef CoprocType(integer coproc)
7 // The CDE extension defines two encoding patterns:
8 // - CP_GCP : The architected coprocessor encodings for MRC, MCR, CDP etc.
9 // - CP_CDEv1 : Version 1 of the Custom Datapath Extension.

10 coprocType = CP_GCP;
11 if coproc >= 0 && coproc <= 7 then
12 if boolean IMPLEMENTATION_DEFINED "CDE enabled coprocessor" then
13 coprocType = CP_CDEv1;
14 return coprocType;

E2.1.68 CountLeadingSignBits

1 // CountLeadingSignBits()
2 // ======================
3
4 integer CountLeadingSignBits(bits(N) x)
5 return CountLeadingZeroBits(x[N-1:1] EOR x[N-2:0]);

E2.1.69 CountLeadingZeroBits

1 // CountLeadingZeroBits()
2 // ======================
3
4 integer CountLeadingZeroBits(bits(N) x)
5 return N - 1 - HighestSetBit(x);

E2.1.70 CPDef

1 // CPDef
2 // =====
3 // The CDE extension defines two encoding patterns
4
5 enumeration CPDef { CP_GCP, // The architected coprocessor encodings for MRC, MCR, CDP etc.
6 CP_CDEv1 // Version 1 of the Custom Datapath Extension.
7 };

E2.1.71 CreateException

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1844

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

1 // CreateException()
2 // =================
3
4 ExcInfo CreateException(integer exception, boolean forceSecurity,
5 boolean isSecure, boolean isSynchronous)
6
7 // Work out the effective target state of the exception
8 if HaveSecurityExt() then
9 if !forceSecurity then

10 isSecure = ExceptionTargetsSecure(exception, isSecure);
11 else
12 isSecure = FALSE;
13
14 // An implementation without Security Extensions cannot cause a fault targetting
15 // Secure state
16 assert HaveSecurityExt() || !isSecure;
17
18 // Get the remaining exception details
19 (escalateToHf, termInst) = ExceptionDetails(exception, isSecure, isSynchronous);
20
21 // Fill in the default exception info
22 info = DefaultExcInfo();
23 info.fault = exception;
24 info.termInst = termInst;
25 info.origFault = exception;
26 info.origFaultIsSecure = isSecure;
27
28 // Check for HardFault escalation
29 // In some cases (for example faults during lazy floating-point state preservation)
30 // the decision to escalate below is ignored and instead based on the info.origFault*
31 // fields and other factors.
32 if escalateToHf && info.fault != HardFault then
33 // Update the exception info with the escalation details, including
34 // whether there's a change in destination Security state.
35 info.fault = HardFault;
36 isSecure = ExceptionTargetsSecure(HardFault, isSecure);
37 (escalateToHf, -) = ExceptionDetails(HardFault, isSecure, isSynchronous);
38
39 // If the requested exception was already a HardFault then the PE cannot escalate
40 // to a HardFault, so lockup. NOTE: Asynchronous BusFaults never cause
41 // lockups, if the BusFault is disabled it escalates to a HardFault that is
42 // pended.
43 if escalateToHf && isSynchronous && info.fault == HardFault then
44 info.lockup = TRUE;
45
46 // Fill in the remaining exception info
47 info.isSecure = isSecure;
48 return info;
49
50 ExcInfo CreateException(integer exception, boolean forceSecurity, boolean isSecure)
51 return CreateException(exception, forceSecurity, isSecure, TRUE);
52
53 ExcInfo CreateException(integer exception)
54 return CreateException(exception, FALSE, IsSecure(), TRUE);

E2.1.72 CurrentCond

1 // CurrentCond()
2 // =============
3 // Returns condition specifier of current instruction.
4
5 bits(4) CurrentCond();

E2.1.73 CurrentMode

1 // CurrentMode()
2 // =============

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1845

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

3
4 PEMode CurrentMode()
5 return if IPSR.Exception == NoFault[8:0] then PEMode_Thread else PEMode_Handler;

E2.1.74 CurrentModeIsPrivileged

1 // CurrentModeIsPrivileged()
2 // =========================
3
4 boolean CurrentModeIsPrivileged()
5 return CurrentModeIsPrivileged(IsSecure());
6
7 boolean CurrentModeIsPrivileged(boolean isSecure)
8 nPriv = if isSecure then CONTROL_S.nPRIV else CONTROL_NS.nPRIV;
9 return (CurrentMode() == PEMode_Handler || nPriv == '0');

E2.1.75 CX_op0

1 // CX_op0
2 // ======
3
4 bits(size) CX_op0(bits(32) instr, integer size)
5 assert size IN {32, 64};
6
7 // Custom data path returning IMPLEMENTATION DEFINED value based on
8 // instruction opcode only.
9 return CdeImpDefValue(instr);

E2.1.76 CX_op1

1 // CX_op1
2 // ======
3
4 bits(size) CX_op1(bits(32) instr, bits(N) opa, integer size)
5 assert N IN {32, 64};
6 assert size IN {32, 64};
7
8 // Custom data path returning IMPLEMENTATION DEFINED value based on
9 // instruction opcode and single 32-bit or 64-bit operand, opa, only.

10 return CdeImpDefValue(instr, opa);

E2.1.77 CX_op2

1 // CX_op2
2 // ======
3
4 bits(size) CX_op2(bits(32) instr, bits(N) opa, bits(32) opb, integer size)
5 assert N IN {32, 64};
6 assert size IN {32, 64};
7
8 // Custom data path returning IMPLEMENTATION DEFINED value based on instruction
9 // opcode and two 32-bit or 64-bit operands, opa and opb, only.

10 return CdeImpDefValue(instr, opa, opb);

E2.1.78 CX_op3

1 // CX_op3
2 // ======
3
4 bits(size) CX_op3(bits(32) instr, bits(N) opa, bits(32) opb, bits(32) opc, integer size)
5 assert N IN {32, 64};
6 assert size IN {32, 64};
7

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1846

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

8 // Custom data path returning IMPLEMENTATION DEFINED value based on instruction
9 // opcode and three 32-bit or 64-bit operands, opa, opb and opc, only.

10 return CdeImpDefValue(instr, opa, opb, opc);

E2.1.79 D

1 // D[]
2 // ===
3
4 // Non-assignment form
5
6 bits(64) D[integer n]
7 assert n >= 0 && n <= 31;
8 return _S[(n*2)+1]:_S[n*2];
9

10 // Assignment form
11
12 D[integer n] = bits(64) value
13 assert n >= 0 && n <= 31;
14 _S[(n*2)+1] = value[63:32];
15 _S[n*2] = value[31:0];
16 return;

E2.1.80 DAPCheck

1 // DAPCheck()
2 // ==========
3
4 (boolean, boolean, boolean) DAPCheck(bits(32) address, boolean isPriv,
5 boolean isSecure, boolean isWrite)
6
7 assert(HaveSecurityExt() || !isSecure);
8 err = FALSE;
9

10 // DAP access falls back to Nonsecure when secure debug disabled
11 isSecure = isSecure && DHCSR.S_SDE == '1';
12
13 // DAP access are demoted to unprivileged when unprivileged only debug is enabled
14 if (isSecure && DHCSR.S_SUIDE == '1') || (!isSecure && DHCSR.S_NSUIDE == '1') then
15 isPriv = FALSE;
16
17 if !(HaltingDebugAllowed() ||
18 (isSecure && DHCSR.S_SUIDE == '1') ||
19 (!isSecure && DHCSR.S_NSUIDE == '1')) then
20
21 // Allow authorized unprivileged DAP requests to the System PPB.
22 if DAUTHCTRL_S.UIDAPEN == '1'|| DAUTHCTRL_NS.UIDAPEN == '1' then
23 err = !IsPPB(address);
24 isPriv = FALSE;
25
26 // Otherwise handle accesses based on NonInvasiveDebugAllowed or
27 // region-specific rules
28 else
29 // Accesses are denied, except where explicitly allowed below
30 err = TRUE;
31 priv_check = !NoninvasiveDebugAllowed(TRUE);
32 case address of
33 when '1110 0000 0000 xxxx xxxx 1111 1011 0xxx'
34 err = priv_check; // CoreSight software lock
35 when '1110 0000 0000 xxxx xxxx 1111 1101 xxxx'
36 err = FALSE; // All ID registers RO
37 when '1110 0000 0000 xxxx xxxx 1111 111x xxxx'
38 err = FALSE; // All ID registers RO
39 when '1110 0000 0000 0000 0000 xxxx xxxx xxxx'
40 err = priv_check; // ITM
41 when '1110 0000 0000 0000 0001 xxxx xxxx xxxx'
42 err = priv_check; // DWT

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1847

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

43 when '1110 0000 0000 0000 0011 xxxx xxxx xxxx'
44 err = priv_check; // PMU
45 when '1110 0000 0000 0100 0000 xxxx xxxx xxxx'
46 err = FALSE; // TPIU
47 when '1110 0000 0000 0100 0001 xxxx xxxx xxxx'
48 err = FALSE; // ETM
49 when '1110 0000 0000 1111 1111 xxxx xxxx xxxx'
50 err = FALSE; // ROM Table
51 otherwise
52 address_uint = UInt(address);
53 if address_uint >= 0xE0042000 && address_uint <= 0xE00FEFFF then
54 err = boolean IMPLEMENTATION_DEFINED "IMPDEF DAP region";
55 elsif address_uint >= 0xE0100000 then
56 err = priv_check; // Vendor Sys
57
58 return (isSecure, isPriv, err);

E2.1.81 DataMemoryBarrier

1 // DataMemoryBarrier()
2 // ===================
3 // Perform a Data Memory Barrier operation
4
5 DataMemoryBarrier(bits(4) option);

E2.1.82 DataSynchronizationBarrier

1 // DataSynchronizationBarrier
2 // ==========================
3 // Perform a data synchronization barrier operation
4
5 DataSynchronizationBarrier(bits(4) option);

E2.1.83 DeActivate

1 // DeActivate()
2 // ============
3
4 DeActivate(integer returningExceptionNumber, boolean targetDomainSecure)
5 // To prevent the execution priority remaining negative (and therefore
6 // masking HardFault) when returning from NMI / HardFault with a corrupted
7 // IPSR value, the active bits corresponding to the execution priority are
8 // cleared if the raw execution priority (in other words the priority before
9 // FAULTMASK and other priority boosting is considered) is negative.

10 rawPri = RawExecutionPriority();
11 if rawPri == -1 then
12 SetActive(HardFault, AIRCR.BFHFNMINS == '0', FALSE);
13 elsif rawPri == -2 then
14 SetActive(NMI, AIRCR.BFHFNMINS == '0', FALSE);
15 elsif rawPri == -3 then
16 SetActive(HardFault, TRUE, FALSE);
17 else
18 secure = HaveSecurityExt() && targetDomainSecure;
19 SetActive(returningExceptionNumber, secure, FALSE);
20
21 /* PRIMASK and BASEPRI unchanged on exception exit */
22 if HaveMainExt() && rawPri >= 0 then
23 // clear FAULTMASK for exception security domain on any return except
24 // NMI and HardFault
25 if HaveSecurityExt() && targetDomainSecure then
26 FAULTMASK_S[0] = '0';
27 else
28 FAULTMASK_NS[0] = '0';
29 return;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1848

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

E2.1.84 Debug_authentication

1 // In the recommended CoreSight interface, there are four signals for external debug
2 // authentication, DBGEN, SPIDEN, NIDEN and SPNIDEN. Each signal is active-HIGH.
3
4 signal DBGEN;
5 signal SPIDEN;
6 signal NIDEN;
7 signal SPNIDEN;

E2.1.85 DebugCanMaskInts

1 // DebugCanMaskInts()
2 // ==================
3
4 boolean DebugCanMaskInts(boolean secure)
5 if !HaltingDebugAllowed() || DHCSR.C_DEBUGEN == '0' then
6 return FALSE;
7 elsif secure && DHCSR.S_SDE == '0' then
8 return FALSE;
9 elsif HaveUDE() && secure && DHCSR.S_SUIDE == '1' then

10 return FALSE;
11 elsif HaveUDE() && DHCSR.S_NSUIDE == '1' then
12 return FALSE;
13 else
14 return DHCSR.C_MASKINTS == '1';

E2.1.86 DebugRegisterTransfer

1 // DebugRegisterTransfer()
2 // =======================
3
4 DebugRegisterTransfer(bits(7) reg, boolean isWrite)
5 unprivDbgS = HaveUDE() && DHCSR.S_SUIDE == '1';
6 unprivDbgNS = HaveUDE() && DHCSR.S_NSUIDE == '1';
7 unprivDbg = if IsSecure() then unprivDbgS else unprivDbgNS;
8
9 if ((UInt(reg) >= UInt(DCRSR_REGSEL_R_LOW) && UInt(reg) <= UInt(DCRSR_REGSEL_R_HIGH)) ||

10 reg == DCRSR_REGSEL_LR) then
11 if isWrite then
12 R[UInt(reg)] = DCRDR;
13 else
14 DCRDR = R[UInt(reg)];
15
16 elsif reg == DCRSR_REGSEL_SP then
17 if isWrite then
18 // This requires skipping stack limit checking,
19 // hence a direct _RName access is used
20 _RName[LookUpRName(UInt(reg))] = DCRDR[31:2]:'00';
21 else
22 DCRDR = _RName[LookUpRName(UInt(reg))];
23
24 elsif reg == DCRSR_REGSEL_DBGRETADDR then
25 if isWrite then
26 BranchTo(DCRDR, TRUE);
27 else
28 DCRDR = _RName[RNamesPC];
29
30 elsif reg == DCRSR_REGSEL_XPSR then
31 if isWrite then
32 if !unprivDbg then
33 XPSR = DCRDR[31:0];
34 else
35 EAPSR = DCRDR[31:0];
36 else
37 if !unprivDbg then

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1849

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

38 DCRDR[31:0] = XPSR;
39 else
40 DCRDR[31:0] = EAPSR;
41
42 elsif reg == DCRSR_REGSEL_SP_MAIN then
43 if isWrite then
44 if !unprivDbg then
45 SP_Main = DCRDR;
46 else
47 if !unprivDbg then
48 DCRDR = SP_Main;
49 else
50 DCRDR = Zeros();
51
52 elsif reg == DCRSR_REGSEL_SP_PROCESS then
53 if isWrite then
54 SP_Process = DCRDR;
55 else
56 DCRDR = SP_Process;
57
58 elsif reg == DCRSR_REGSEL_STATE then
59 if isWrite then
60 if !unprivDbg then
61 CONTROL[7:0] = DCRDR[31:24];
62 if HaveMainExt() then
63 FAULTMASK[7:0] = DCRDR[23:16];
64 BASEPRI[7:0] = DCRDR[15:8];
65 PRIMASK[7:0] = DCRDR[7:0];
66 else
67 if DHCSR.S_SDE == '1' then
68 CONTROL.SFPA = DCRDR[27];
69 CONTROL.FPCA = DCRDR[26];
70 else
71 if !unprivDbg then
72 DCRDR[31:24] = CONTROL[7:0];
73 if HaveMainExt() then
74 DCRDR[23:16] = FAULTMASK[7:0];
75 DCRDR[15:8] = BASEPRI[7:0];
76 else
77 DCRDR[23:8] = Zeros(16);
78 DCRDR[7:0] = PRIMASK[7:0];
79 else
80 DCRDR[31:0] = (Zeros(4) :
81 (CONTROL.SFPA AND DHCSR.S_SDE) :
82 CONTROL.FPCA :
83 Zeros(26));
84
85 elsif reg == DCRSR_REGSEL_MSP_NS && HaveSecurityExt() then
86 if isWrite then
87 // Unprivileged-only debug is restricted even if MSP is being used by
88 // unprivileged execution, a safe restriction that removes the
89 // requirement to check other conditions here.
90 if !unprivDbgNS then
91 SP_Main_NonSecure = DCRDR;
92 else
93 if !unprivDbgNS then
94 DCRDR = SP_Main_NonSecure;
95 else
96 DCRDR[31:0] = Zeros();
97
98 elsif reg == DCRSR_REGSEL_PSP_NS && HaveSecurityExt() then
99 if isWrite then

100 SP_Process_NonSecure = DCRDR;
101 else
102 DCRDR = SP_Process_NonSecure;
103
104 elsif reg == DCRSR_REGSEL_MSP_S && HaveSecurityExt() then
105 if isWrite then
106 // Unprivileged-only debug is restricted even if MSP is being used by

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1850

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

107 // unprivileged execution, a safe restriction that removes the
108 // requirement to check other conditions here.
109 if DHCSR.S_SDE == '1' && !unprivDbgS then
110 SP_Main_Secure = DCRDR;
111 else
112 if DHCSR.S_SDE == '1' && !unprivDbgS then
113 DCRDR = SP_Main_Secure;
114 else
115 DCRDR = Zeros(32);
116
117 elsif reg == DCRSR_REGSEL_PSP_S && HaveSecurityExt() then
118 if isWrite then
119 if DHCSR.S_SDE == '1' then
120 SP_Process_Secure = DCRDR;
121 else
122 if DHCSR.S_SDE == '1' then
123 DCRDR = SP_Process_Secure;
124 else
125 DCRDR = Zeros(32);
126
127 elsif reg == DCRSR_REGSEL_MSPLIM_S && HaveSecurityExt() then
128 if isWrite then
129 if DHCSR.S_SDE == '1' && !unprivDbgS then
130 MSPLIM_S = DCRDR[31:0];
131 else
132 if DHCSR.S_SDE == '1' && !unprivDbgS then
133 DCRDR[31:0] = MSPLIM_S;
134 else
135 DCRDR = Zeros(32);
136
137 elsif reg == DCRSR_REGSEL_PSPLIM_S && HaveSecurityExt() then
138 if isWrite then
139 if DHCSR.S_SDE == '1' then
140 PSPLIM_S = DCRDR[31:0];
141 else
142 if DHCSR.S_SDE == '1' then
143 DCRDR[31:0] = PSPLIM_S;
144 else
145 DCRDR = Zeros(32);
146
147 elsif reg == DCRSR_REGSEL_MSPLIM_NS && HaveMainExt() then
148 if isWrite then
149 if !unprivDbgNS then
150 MSPLIM_NS = DCRDR[31:0];
151 else
152 if !unprivDbgNS then
153 DCRDR[31:0] = MSPLIM_NS;
154 else
155 DCRDR[31:0] = Zeros();
156
157 elsif reg == DCRSR_REGSEL_PSPLIM_NS && HaveMainExt() then
158 if isWrite then
159 PSPLIM_NS = DCRDR[31:0];
160 else
161 DCRDR[31:0] = PSPLIM_NS;
162
163 elsif reg == DCRSR_REGSEL_FPSCR && (HaveFPExt() || HaveMve()) then
164 if isWrite then
165 if CanDebugAccessFP() then
166 FPSCR = DCRDR[31:0];
167 else
168 if CanDebugAccessFP() then
169 DCRDR[31:0] = FPSCR;
170 else
171 DCRDR = Zeros(32);
172
173 elsif reg == DCRSR_REGSEL_STATE_S && HaveSecurityExt() then
174 if isWrite then
175 if DHCSR.S_SDE == '1' then

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1851

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

176 if !unprivDbgS then
177 CONTROL_S[7:0] = DCRDR[31:24];
178 if HaveMainExt() then
179 FAULTMASK_S[7:0] = DCRDR[23:16];
180 BASEPRI_S[7:0] = DCRDR[15:8];
181 PRIMASK_S[7:0] = DCRDR[7:0];
182 else
183 CONTROL_S.SFPA = DCRDR[27];
184 CONTROL_S.FPCA = DCRDR[26];
185 else
186 if DHCSR.S_SDE == '1' then
187 if !unprivDbgS then
188 DCRDR[31:24] = CONTROL_S[7:0];
189 if HaveMainExt() then
190 DCRDR[23:16] = FAULTMASK_S[7:0];
191 DCRDR[15:8] = BASEPRI_S[7:0];
192 else
193 DCRDR[23:8] = Zeros(16);
194 DCRDR[7:0] = PRIMASK_S[7:0];
195 else
196 DCRDR = Zeros(4) : CONTROL_S.SFPA : CONTROL_S.FPCA : Zeros(26);
197 else
198 DCRDR = Zeros(32);
199
200 elsif reg == DCRSR_REGSEL_STATE_NS && HaveSecurityExt() then
201 if isWrite then
202 if !unprivDbgNS then
203 CONTROL_NS[7:0] = DCRDR[31:24];
204 if HaveMainExt() then
205 FAULTMASK_NS[7:0] = DCRDR[23:16];
206 BASEPRI_NS[7:0] = DCRDR[15:8];
207 PRIMASK_NS[7:0] = DCRDR[7:0];
208 else
209 CONTROL_NS.FPCA = DCRDR[26];
210 else
211 if !unprivDbgNS then
212 DCRDR[31:24] = CONTROL_NS[7:0];
213 if HaveMainExt() then
214 DCRDR[23:16] = FAULTMASK_NS[7:0];
215 DCRDR[15:8] = BASEPRI_NS[7:0];
216 else
217 DCRDR[23:8] = Zeros(16);
218 DCRDR[7:0] = PRIMASK_NS[7:0];
219 else
220 DCRDR = Zeros(5) : CONTROL_NS.FPCA : Zeros(26);
221
222 elsif reg == DCRSR_REGSEL_VPR && HaveMve() then
223 if isWrite then
224 if CanDebugAccessFP() then
225 VPR = DCRDR[31:0];
226 else
227 if CanDebugAccessFP() then
228 DCRDR = VPR[31:0];
229 else
230 DCRDR = Zeros(32);
231
232 elsif (UInt(reg) >= UInt(DCRSR_REGSEL_S_LOW) &&
233 UInt(reg) <= UInt(DCRSR_REGSEL_S_HIGH) && (HaveFPExt() || HaveMve())) then
234 if isWrite then
235 if CanDebugAccessFP() then
236 _S[UInt(reg[5:0])] = DCRDR;
237 else
238 if CanDebugAccessFP() then
239 DCRDR = _S[UInt(reg[5:0])];
240 else
241 DCRDR = Zeros(32);
242
243 else
244 DCRDR = bits(32) UNKNOWN;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1852

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

E2.1.87 DecodeExecute

1 // DecodeExecute
2 // =============
3 // Decode instruction and execute
4
5 DecodeExecute(bits(32) instr, bits(32) pc, boolean isT16, bits(4) defaultCond);

E2.1.88 DecodeImmShift

1 // DecodeImmShift()
2 // ================
3
4 (SRType, integer) DecodeImmShift(bits(2) sr_type, bits(5) imm5)
5
6 case sr_type of
7 when '00'
8 shift_t = SRType_LSL; shift_n = UInt(imm5);
9 when '01'

10 shift_t = SRType_LSR; shift_n = if imm5 == '00000' then 32 else UInt(imm5);
11 when '10'
12 shift_t = SRType_ASR; shift_n = if imm5 == '00000' then 32 else UInt(imm5);
13 when '11'
14 if imm5 == '00000' then
15 shift_t = SRType_RRX; shift_n = 1;
16 else
17 shift_t = SRType_ROR; shift_n = UInt(imm5);
18
19 return (shift_t, shift_n);

E2.1.89 DecodeRegShift

1 // DecodeRegShift()
2 // ================
3
4 SRType DecodeRegShift(bits(2) sr_type)
5 case sr_type of
6 when '00' shift_t = SRType_LSL;
7 when '01' shift_t = SRType_LSR;
8 when '10' shift_t = SRType_ASR;
9 when '11' shift_t = SRType_ROR;

10 return shift_t;

E2.1.90 DefaultCond

1 // DefaultCond()
2 // =============
3
4 bits(4) DefaultCond()
5 // If in an IT block us the IT condition, otherwise set the condition to
6 // always (I.E. 0xE).
7 // NOTE: This is only the default condition, as it may be overridden by an
8 // explicit condition code in the instruction itself.
9 if ITSTATE[3:0] == Zeros(4) then

10 cond = 0xE[3:0];
11 else
12 cond = ITSTATE[7:4];
13 return cond;

E2.1.91 DefaultExcInfo

1 // DefaultExcInfo()
2 // ================

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1853

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

3
4 ExcInfo DefaultExcInfo()
5 ExcInfo exc;
6
7 exc.fault = NoFault;
8 exc.origFault = NoFault;
9 exc.isSecure = boolean UNKNOWN;

10 exc.isTerminal = FALSE;
11 exc.inExcTaken = FALSE;
12 exc.lockup = FALSE;
13 exc.termInst = TRUE;
14 return exc;

E2.1.92 DefaultMemoryAttributes

1 // DefaultMemoryAttributes()
2 // =========================
3
4 MemoryAttributes DefaultMemoryAttributes(bits(32) address)
5
6 MemoryAttributes memattrs;
7
8 case address[31:29] of
9 when '000'

10 memattrs.memtype = MemType_Normal;
11 memattrs.device = DeviceType UNKNOWN;
12 memattrs.innerattrs = '10';
13 memattrs.shareable = FALSE;
14 when '001'
15 memattrs.memtype = MemType_Normal;
16 memattrs.device = DeviceType UNKNOWN;
17 memattrs.innerattrs = '01';
18 memattrs.shareable = FALSE;
19 when '010'
20 memattrs.memtype = MemType_Device;
21 memattrs.device = DeviceType_nGnRE;
22 memattrs.innerattrs = '00';
23 memattrs.shareable = TRUE;
24 when '011'
25 memattrs.memtype = MemType_Normal;
26 memattrs.device = DeviceType UNKNOWN;
27 memattrs.innerattrs = '01';
28 memattrs.shareable = FALSE;
29 when '100'
30 memattrs.memtype = MemType_Normal;
31 memattrs.device = DeviceType UNKNOWN;
32 memattrs.innerattrs = '10';
33 memattrs.shareable = FALSE;
34 when '101'
35 memattrs.memtype = MemType_Device;
36 memattrs.device = DeviceType_nGnRE;
37 memattrs.innerattrs = '00';
38 memattrs.shareable = TRUE;
39 when '110'
40 memattrs.memtype = MemType_Device;
41 memattrs.device = DeviceType_nGnRE;
42 memattrs.innerattrs = '00';
43 memattrs.shareable = TRUE;
44 when '111'
45 if address[28:20] == '000000000' then
46 memattrs.memtype = MemType_Device;
47 memattrs.device = DeviceType_nGnRnE;
48 memattrs.innerattrs = '00';
49 memattrs.shareable = TRUE;
50 else
51 memattrs.memtype = MemType_Device;
52 memattrs.device = DeviceType_nGnRE;
53 memattrs.innerattrs = '00';

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1854

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

54 memattrs.shareable = TRUE;
55
56 // Outer attributes are the same as the inner attributes in all cases.
57 memattrs.outerattrs = memattrs.innerattrs;
58 memattrs.outershareable = memattrs.shareable;
59
60 // Setting as UNKNOWN by default. This flag will be overwritten based on
61 // SAU/IDAU checking in SecurityCheck()
62 memattrs.NS = boolean UNKNOWN;
63 return memattrs;

E2.1.93 DefaultPermissions

1 // DefaultPermissions()
2 // ====================
3
4 Permissions DefaultPermissions(bits(32) address)
5
6 Permissions perms;
7
8 perms.ap = '01';
9 perms.apValid = TRUE;

10 perms.region = Zeros(8);
11 perms.regionValid = FALSE;
12
13 case address[31:29] of
14 when '000'
15 perms.xn = '0';
16 when '001'
17 perms.xn = '0';
18 when '010'
19 perms.xn = '1';
20 when '011'
21 perms.xn = '0';
22 when '100'
23 perms.xn = '0';
24 when '101'
25 perms.xn = '1';
26 when '110'
27 perms.xn = '1';
28 when '111'
29 perms.xn = '1';
30
31 return perms;

E2.1.94 DerivedLateArrival

1 // DerivedLateArrival()
2 // ====================
3
4 DerivedLateArrival(integer pePriority, integer peNumber, boolean peIsSecure, ExcInfo deInfo,
5 integer oeNumber, boolean oeIsSecure, EXC_RETURN_Type excReturn)
6 // PE: the pre-empted exception - before exception entry
7 // OE: the original exception - exception entry
8 // DE: the derived exception - fault on exception entry
9

10 // Get the priorities of the exceptions
11 // xePriority: the lower the value, the higher the priority
12 oePriority = ExceptionPriority(oeNumber, oeIsSecure, FALSE);
13 // NOTE: Comparison of dePriority against PE priority and possible
14 // escalation to HardFault has already occurred. See CreateException().
15
16 // Is the derived exception a DebugMonitor
17 if HaveMainExt() then
18 deIsDbgMonFault = (deInfo.origFault == DebugMonitor);
19 else
20 deIsDbgMonFault = FALSE;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1855

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

21
22 // Work out which fault to take, and what the target domain is
23 if deInfo.isTerminal then
24 // Derived exception is terminal and prevents the original exception
25 // being taken (for example fault on vector fetch). As a result the
26 // derived exception is treated as a HardFault.
27 targetIsSecure = deInfo.isSecure;
28 targetFault = deInfo.fault;
29 // If the derived fault does not have sufficient priority to pre-empt
30 // lockup instead of taking it.
31 if !ComparePriorities(deInfo, FALSE, oePriority, oeNumber, oeIsSecure) then
32 _ = ExceptionTaken(oeNumber, deInfo.inExcTaken, oeIsSecure,
33 IgnoreFaults_ALL, excReturn);
34 // Since execution of original exception cannot be started, lockup
35 // at the current priority level. That is the priority of the original
36 // exception.
37 Lockup(TRUE);
38 elsif (deIsDbgMonFault &&
39 !ComparePriorities(deInfo, TRUE, pePriority, peNumber, peIsSecure)) then
40 // Ignore the DebugMonitorFault and take original exception
41 SetPending(DebugMonitor, deInfo.isSecure, FALSE);
42 targetFault = oeNumber;
43 targetIsSecure = oeIsSecure;
44 elsif ComparePriorities(deInfo, FALSE, oePriority, oeNumber, oeIsSecure) then
45 // Derive exception has a higher priority (that is a lower value) than the
46 // original exception, so the derived exception first. Tail-chaining
47 // IMPLEMENTATION DEFINED
48 targetFault = deInfo.fault;
49 targetIsSecure = deInfo.isSecure;
50 else
51 // If the derived exception caused a lockup then this must be handled
52 // now as the lockup cannot be pended until the original exception
53 // returns
54 if deInfo.lockup then
55 // Lockup at the priority of the original exception being entered.
56 _ = ExceptionTaken(oeNumber, deInfo.inExcTaken, oeIsSecure,
57 IgnoreFaults_ALL, excReturn);
58 Lockup(TRUE);
59 else
60 // DE will be pended below, start execution of the OE
61 targetFault = oeNumber;
62 targetIsSecure = oeIsSecure;
63
64 // If none of the tests above have triggered a lockup (which would have
65 // terminated execution of the pseudocode) then the derived exception
66 // must be pended and any escalation syndrome info generated
67 if HaveMainExt() &&
68 (deInfo.fault == HardFault) &&
69 (deInfo.origFault != HardFault) then
70 HFSR.FORCED = '1';
71 SetPending(deInfo.fault, deInfo.isSecure, TRUE);
72
73 // Take the target exception. NOTE: None terminal faults are ignored when
74 // handling the derived exception, allowing forward progress to be made.
75 (excInfo, excReturn) = ExceptionTaken(targetFault, deInfo.inExcTaken,
76 targetIsSecure, IgnoreFaults_STACK, excReturn);
77 // If trying to take the resulting exception results in another fault, then handle
78 // the derived derived fault.
79 if excInfo.fault != NoFault then
80 DerivedLateArrival(pePriority, peNumber, peIsSecure, excInfo, targetFault,
81 targetIsSecure, excReturn);

E2.1.95 DeviceType

1 // Types of memory
2
3 enumeration DeviceType {DeviceType_GRE, DeviceType_nGRE,
4 DeviceType_nGnRE, DeviceType_nGnRnE};

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1856

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

E2.1.96 DWT_AddressCompare

1 // DWT_AddressCompare()
2 // ====================
3 // Returns a pair of values. The first result is whether the (masked) addresses are equal,
4 // where the access address (addr) is masked according to DWT_FUNCTION[n].DATAVSIZE and the
5 // comparator address (compaddr) is masked according to the access size. The second result
6 // is whether the (unmasked) addr is greater than the (unmasked) compaddr.
7
8 (boolean,boolean) DWT_AddressCompare(bits(32) addr, bits(32) compaddr, integer size,
9 integer compsize)

10 // addr must be a multiple of size. Unaligned accesses are split into smaller accesses.
11 assert Align(addr, size) == addr;
12
13 // compaddr must be a multiple of compsize
14 if Align(compaddr, compsize) != compaddr then UNPREDICTABLE;
15
16 addrmatch = (Align(addr, compsize) == Align(compaddr, size));
17 addrgreater = (UInt(addr) > UInt(compaddr));
18 return (addrmatch,addrgreater);

E2.1.97 DWT_CycCountMatch

1 // DWT_CycCountMatch
2 // =================
3 // Check for DWT cycle count match. This is called for each increment of
4 // DWT_CYCCNT.
5
6 DWT_CycCountMatch()
7 boolean trigger_debug_event = FALSE;
8 boolean debug_event = FALSE;
9 N = UInt(DWT_CTRL.NUMCOMP);

10 if N == 0 then return; // No comparator support
11 secure_match = IsSecure() && DWT_CTRL.CYCDISS == '1';
12 for i = 0 to N-1
13 if IsDWTConfigUnpredictable(i) then UNPREDICTABLE;
14 if DWT_FUNCTION[i].MATCH == '0001' && DWT_ValidMatch(i, secure_match, FindPriv())
15 && DWT_CYCCNT == DWT_COMP[i] then
16 DWT_FUNCTION[i].MATCHED = '1';
17 debug_event = DWT_FUNCTION[i].ACTION == '01';
18 trigger_debug_event = trigger_debug_event || debug_event;
19
20 // Setting the debug event if at least one comparator matches
21 if trigger_debug_event then
22 debug_event = SetDWTDebugEvent(secure_match, FindPriv());
23 return;

E2.1.98 DWT_DataAddressMatch

1 // DWT_DataAddressMatch()
2 // ======================
3 // Check for match of access at "daddr". "dsize", "read", "NSreq", and "privilege" are the
4 // attributes for the access. Note that for a load or store instruction, "NSreq" is the
5 // current Security state of the PE, but this is not necessarily true for a hardware stack
6 // push/pop or vector table access. "NSreq" might not be the same as the "NSattr"
7 // attribute the PE finally uses to make the access.
8 // If comparators 'm' and 'm+1' form an Data Address Range comparator, then this function
9 // returns the range match result when N=m+1.

10
11 boolean DWT_DataAddressMatch(integer N, bits(32) daddr, integer dsize, boolean read,
12 boolean NSreq, boolean priv_match)
13 assert N < UInt(DWT_CTRL.NUMCOMP) && dsize IN {1,2,4} && Align(daddr, dsize) == daddr;
14
15 valid_match = DWT_ValidMatch(N, !NSreq, priv_match);
16 valid_addr = DWT_FUNCTION[N].MATCH == 'x1xx';
17

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1857

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

18 if valid_match && valid_addr then
19 if N != UInt(DWT_CTRL.NUMCOMP)-1 then
20 linked_to_addr = DWT_FUNCTION[N+1].MATCH == '0111'; // Data Address Limit
21 linked_to_data = DWT_FUNCTION[N+1].MATCH == '1011'; // Linked Data Value
22 else
23 linked_to_addr = FALSE; linked_to_data = FALSE;
24
25 case DWT_FUNCTION[N].MATCH[1:0] of
26 when '00' match_lsc = TRUE; linked = FALSE;
27 when '01' match_lsc = !read; linked = FALSE;
28 when '10' match_lsc = read; linked = FALSE;
29 when '11'
30
31 case DWT_FUNCTION[N-1].MATCH[1:0] of
32 when '00' match_lsc = TRUE; linked = TRUE;
33 when '01' match_lsc = !read; linked = TRUE;
34 when '10' match_lsc = read; linked = TRUE;
35
36 if !linked_to_addr then
37 vsize = 2^UInt(DWT_FUNCTION[N].DATAVSIZE);
38 (match_eq,match_gt) = DWT_AddressCompare(daddr, DWT_COMP[N], dsize, vsize);
39
40 if linked then
41 valid_match = DWT_ValidMatch(N-1, !NSreq, priv_match);
42 (lower_eq,lower_gt) = DWT_AddressCompare(daddr, DWT_COMP[N-1], dsize, 1);
43 match_addr = valid_match && (lower_eq || lower_gt) && !match_gt;
44 else
45 match_addr = match_eq;
46 else
47 match_addr = FALSE;
48
49 match = match_addr && match_lsc;
50 else
51 match = FALSE;
52
53 return match;

E2.1.99 DWT_DataMatch

1 // DWT_DataMatch()
2 // ===============
3 // Perform varioius Data match checks for DWT
4
5 DWT_DataMatch(bits(32) daddr, integer dsize, bits(32) dvalue, boolean read, boolean NSreq,
6 boolean priv_match)
7
8 boolean trigger_debug_event = FALSE;
9 boolean debug_event = FALSE;

10
11 if !HaveDWT() || IsZero(DWT_CTRL.NUMCOMP) then return; // No comparator support
12
13 for i = 0 to UInt(DWT_CTRL.NUMCOMP) - 1
14 if IsDWTConfigUnpredictable(i) then UNPREDICTABLE;
15 daddr_match = DWT_DataAddressMatch(i, daddr, dsize, read, NSreq, priv_match);
16 dvalue_match = DWT_DataValueMatch(i, daddr, dvalue, dsize, read, NSreq, priv_match);
17
18 // Data Address and Data Address Limit
19 if daddr_match && DWT_FUNCTION[i].MATCH == '01xx' then
20 // Data Address
21 if DWT_FUNCTION[i].MATCH != '0111' then
22 DWT_FUNCTION[i].MATCHED = '1';
23 debug_event = DWT_FUNCTION[i].ACTION == '01';
24
25 // Data Address with Data Address Limit
26 else
27 //ith comparator
28 DWT_FUNCTION[i].MATCHED = bit UNKNOWN;
29 // (i-1)th comparator

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1858

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

30 DWT_FUNCTION[i-1].MATCHED = '1';
31 debug_event = DWT_FUNCTION[i-1].ACTION == '01';
32
33 // Data Value and Linked Data Value
34 if dvalue_match && DWT_FUNCTION[i].MATCH == '10xx' then
35 // Data Value
36 if DWT_FUNCTION[i].MATCH != '1011' then
37 DWT_FUNCTION[i].MATCHED = '1';
38 debug_event = DWT_FUNCTION[i].ACTION == '01';
39
40 // For Linked Data Value, daddr_match will be TRUE for [i-1]
41 else
42 DWT_FUNCTION[i].MATCHED = '1';
43 debug_event = DWT_FUNCTION[i].ACTION == '01';
44
45 // Data Address with Value
46 if daddr_match && DWT_FUNCTION[i].MATCH == '11xx' then
47 DWT_FUNCTION[i].MATCHED = '1';
48 // No debug_event generated in the case of Data Address with Value
49
50 trigger_debug_event = trigger_debug_event || debug_event;
51
52 // Setting the debug event if at least one comparator matches
53 if trigger_debug_event then
54 debug_event = SetDWTDebugEvent(!NSreq, priv_match);
55
56 return;

E2.1.100 DWT_DataValueMatch

1 // DWT_DataValueMatch()
2 // ====================
3 // Check for match of access of "dvalue" at "daddr". "dsize", "read" and "NSreq"
4 // and "priv_match" are the attributes for the access. Note that for a load or store
5 // instruction, "NSreq" is the current Security state of the PE, but this is not
6 // necessarily true for a hardware stack push/pop or vector table access. "NSreq"
7 // might not be the same as the "NSattr" attribute the PE finally uses to make the access.
8
9 boolean DWT_DataValueMatch(integer N, bits(32) daddr, bits(32) dvalue, integer dsize,

10 boolean read, boolean NSreq, boolean priv_match)
11 assert N < UInt(DWT_CTRL.NUMCOMP) && dsize IN {1,2,4} && Align(daddr,dsize) == daddr;
12
13 valid_match = DWT_ValidMatch(N, !NSreq, priv_match);
14 valid_data = DWT_FUNCTION[N].MATCH[3:2] == '10';
15
16 if valid_match && valid_data then
17 case DWT_FUNCTION[N].MATCH[1:0] of
18 when '00' match_lsc = TRUE; linked = FALSE;
19 when '01' match_lsc = !read; linked = FALSE;
20 when '10' match_lsc = read; linked = FALSE;
21 when '11'
22 case DWT_FUNCTION[N-1].MATCH[1:0] of
23 when '00' match_lsc = TRUE; linked = TRUE;
24 when '01' match_lsc = !read; linked = TRUE;
25 when '10' match_lsc = read; linked = TRUE;
26
27 vsize = 2^UInt(DWT_FUNCTION[N].DATAVSIZE);
28
29 // Determine which bytes of dvalue to look at in the comparison.
30 if linked then
31 byte_mask = '0000'; // Filled in below if there is an address match
32 if DWT_DataAddressMatch(N-1, daddr, dsize, read, NSreq, priv_match) then
33 case (vsize,dsize) of
34 when (1,1) byte_mask[0] = '1';
35 when (1,2) byte_mask[UInt(DWT_COMP[N-1][0])] = '1';
36 when (1,4) byte_mask[UInt(DWT_COMP[N-1][1:0])] = '1';
37 when (2,2) byte_mask[1:0] = '11';
38 when (2,4)

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1859

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

39 byte_mask[UInt(DWT_COMP[N-1][1:0])+1:UInt(DWT_COMP[N-1][1:0])]='11';
40 when (4,4) byte_mask = '1111';
41 otherwise byte_mask = '0000'; // vsize > dsize: no match
42 else
43 case dsize of
44 when 1 byte_mask = '0001';
45 when 2 byte_mask = '0011';
46 when 4 byte_mask = '1111';
47
48 // Perform bitwise mask on the candidate data value
49 bit_mask = (if HasArchVersion(Armv8p1) then DWT_VMASK[N] else Zeros(32));
50 dvalue = (dvalue AND NOT bit_mask);
51
52 // Split both values into byte lanes: DCBA and dcba.
53 // This function relies on the values being correctly replicated across DWT_COMP[N].
54 D = dvalue[31:24]; C = dvalue[23:16]; B = dvalue[15:8]; A = dvalue[7:0];
55 d = DWT_COMP[N][31:24]; c = DWT_COMP[N][23:16];
56 b = DWT_COMP[N][15:8]; a = DWT_COMP[N][7:0];
57
58 // Partial results
59 D_d = byte_mask[3] == '1' && D == d;
60 C_c = byte_mask[2] == '1' && C == c;
61 B_b = byte_mask[1] == '1' && B == b;
62 A_a = byte_mask[0] == '1' && A == a;
63
64 // Combined partial results
65 BA_ba = B_b && A_a;
66 DC_dc = D_d && C_c;
67 DCBA_dcba = D_d && C_c && B_b && A_a;
68
69 // Generate full results
70 case (vsize,dsize) of
71 when (1,-) match_data = D_d || C_c || B_b || A_a;
72 when (2,2), (2,4) match_data = DC_dc || BA_ba;
73 when (4,4) match_data = DCBA_dcba;
74 otherwise match_data = FALSE; // vsize > dsize: no match
75
76 match = match_data && match_lsc;
77 else
78 match = FALSE;
79
80 return match;

E2.1.101 DWT_InstructionAddressMatch

1 // DWT_InstructionAddressMatch()
2 // =============================
3 // Check for match of instruction access at "Iaddr".
4 // If comparators 'm' and 'm+1' form an Instruction Address Range comparator, then this
5 // function returns the range match when N=m+1.
6
7 boolean DWT_InstructionAddressMatch(integer N, bits(32) Iaddr, boolean isSecure,
8 boolean isPriv)
9 assert N < UInt(DWT_CTRL.NUMCOMP) && Align(Iaddr, 2) == Iaddr;

10
11 valid_match = DWT_ValidMatch(N, isSecure, isPriv);
12 valid_instr = DWT_FUNCTION[N].MATCH == '001x';
13
14 if valid_match && valid_instr then
15 if N != UInt(DWT_CTRL.NUMCOMP)-1 then
16 linked_to_instr = DWT_FUNCTION[N+1].MATCH == '0011';
17 else
18 linked_to_instr = FALSE;
19
20 if DWT_FUNCTION[N].MATCH == '0011' then
21 linked = TRUE;
22 else
23 linked = FALSE;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1860

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

24
25 if !linked_to_instr then
26 (match_eq,match_gt) = DWT_AddressCompare(Iaddr, DWT_COMP[N], 2, 2);
27 if linked then
28 valid_match = DWT_ValidMatch(N-1, isSecure, isPriv);
29 (lower_eq,lower_gt) = DWT_AddressCompare(Iaddr, DWT_COMP[N-1], 2, 2);
30 match_addr = valid_match && (lower_eq || lower_gt) && !match_gt;
31 else
32 match_addr = match_eq;
33 else
34 match_addr = FALSE;
35 match = match_addr;
36 else
37 match = FALSE;
38
39 return match;

E2.1.102 DWT_InstructionMatch

1 // DWT_InstructionMatch()
2 // =====================
3 // Perform various Instruction Address checks for DWT
4
5 DWT_InstructionMatch(bits(32) Iaddr, boolean isSecure, boolean isPriv)
6
7 boolean trigger_debug_event = FALSE;
8 boolean debug_event = FALSE;
9

10 if !HaveDWT() || IsZero(DWT_CTRL.NUMCOMP) then return; // No comparator support
11
12 for i = 0 to UInt(DWT_CTRL.NUMCOMP) - 1
13 if IsDWTConfigUnpredictable(i) then UNPREDICTABLE;
14 instr_addr_match = DWT_InstructionAddressMatch(i, Iaddr, isSecure, isPriv);
15 if instr_addr_match then
16 // Instruction Address
17 if DWT_FUNCTION[i].MATCH == '0010' then
18 DWT_FUNCTION[i].MATCHED = '1';
19 debug_event = DWT_FUNCTION[i].ACTION == '01';
20
21 // Instruction Address Limit
22 elsif DWT_FUNCTION[i].MATCH == '0011' then
23 DWT_FUNCTION[i].MATCHED = bit UNKNOWN;
24 DWT_FUNCTION[i-1].MATCHED = '1';
25 debug_event = DWT_FUNCTION[i-1].ACTION == '01';
26
27 trigger_debug_event = trigger_debug_event || debug_event;
28
29 if trigger_debug_event then
30 debug_event = SetDWTDebugEvent(isSecure, isPriv);
31 return;

E2.1.103 DWT_ValidMatch

1 // DWT_ValidMatch()
2 // ================
3 // Returns TRUE if this match is permitted by the current authentication controls,
4 // FALSE otherwise.
5
6 boolean DWT_ValidMatch(integer N, boolean secure_match, boolean priv_match)
7 if !HaveSecurityExt() then assert !secure_match;
8
9 // Check for disabled

10 if (((secure_match && !SecureNoninvasiveDebugAllowed(priv_match)) ||
11 !NoninvasiveDebugAllowed(priv_match)) ||
12 DEMCR.TRCENA == '0' ||
13 DWT_FUNCTION[N].MATCH == '0000') then
14 return FALSE;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1861

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

15
16 // Check for Debug event
17 if DWT_FUNCTION[N].ACTION == '01' then
18 hlt_en = CanHaltOnEvent(secure_match, priv_match);
19 // Ignore priority when checking whether DebugMonitor activates DWT matches
20 mon_en = (HaveDebugMonitor() && CanPendMonitorOnEvent(secure_match, FALSE, TRUE,
21 priv_match, TRUE));
22 return (hlt_en || mon_en);
23 else
24 // Otherwise trace or trigger event
25 return !secure_match || SecureNoninvasiveDebugAllowed(priv_match);

E2.1.104 Elem

1 // Elem[]
2 // ======
3
4 // Non-assignment form
5
6 bits(size) Elem[bits(N) vector, integer e, integer size]
7 assert e >= 0 && (e+1)*size <= N;
8 return vector[(e+1)*size-1:e*size];
9

10 bits(size) Elem[bits(N) vector, integer e]
11 return Elem[vector, e, size];
12
13 // Assignment form
14
15 Elem[bits(N) &vector, integer e, integer size] = bits(size) value
16 assert e >= 0 && (e+1)*size <= N;
17 vector[(e+1)*size-1:e*size] = value;
18 return;
19
20 Elem[bits(N) &vector, integer e] = bits(size) value
21 Elem[vector, e, size] = value;
22 return;

E2.1.105 EndOfInstruction

1 // EndOfInstruction
2 // ================
3 // Terminates the processing of current instruction.
4
5 EndOfInstruction();

E2.1.106 EventRegistered

1 // EventRegistered
2 // ===============
3 // Returns TRUE if PE Event Register is set to 1 and FALSE otherwise.
4
5 boolean EventRegistered();

E2.1.107 ExceptionActiveBitCount

1 // ExceptionActiveBitCount()
2 // =========================
3
4 integer ExceptionActiveBitCount()
5 integer count = 0;
6 for i = 0 to MaxExceptionNum()
7 for j = 0 to 1
8 if IsActiveForState(i, j == 0) then
9 count = count + 1;

10 return count;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1862

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

E2.1.108 ExceptionDetails

1 // ExceptionDetails()
2 // ==================
3
4 (boolean, boolean) ExceptionDetails(integer exception, boolean isSecure,
5 boolean isSynchronous)
6 // Is the exception subject to escalation
7 case exception of
8 when HardFault
9 termInst = TRUE;

10 canPend = TRUE;
11 canEscalate = TRUE;
12 when MemManage
13 termInst = TRUE;
14 if HaveMainExt() then
15 val = if isSecure then SHCSR_S else SHCSR_NS;
16 canPend = val.MEMFAULTENA == '1';
17 else
18 canPend = FALSE;
19 canEscalate = TRUE;
20 when BusFault
21 termInst = isSynchronous;
22 canPend = if HaveMainExt()
23 then SHCSR_S.BUSFAULTENA == '1' else FALSE;
24 // Async BusFaults only escalate if they are disabled
25 canEscalate = termInst || !canPend;
26 when UsageFault
27 termInst = TRUE;
28 if HaveMainExt() then
29 val = if isSecure then SHCSR_S else SHCSR_NS;
30 canPend = val.USGFAULTENA == '1';
31 else
32 canPend = FALSE;
33 canEscalate = TRUE;
34 when SecureFault
35 termInst = TRUE;
36 canPend = if HaveMainExt()
37 then SHCSR_S.SECUREFAULTENA == '1' else FALSE;
38 canEscalate = TRUE;
39 when SVCall
40 termInst = FALSE;
41 canPend = TRUE;
42 canEscalate = TRUE;
43 when DebugMonitor
44 termInst = TRUE;
45 // Only used by a BKPT or FPB event
46 canPend = (HaveMainExt() && CanPendMonitorOnEvent(IsSecure(), TRUE, TRUE,
47 FindPriv(), TRUE));
48 canEscalate = TRUE;
49 otherwise
50 termInst = FALSE;
51 canEscalate = FALSE;
52
53 // If the fault can escalate then check if exception can be taken immediately, or whether
54 // it should escalate.
55 // NOTE: In same cases (for example faults during lazy floating-point state preservation)
56 // the priority comparison below is ignored and the decision to escalate or not is
57 // based on other factors.
58 escalateToHf = FALSE;
59 if canEscalate then
60 execPri = ExecutionPriority();
61 excePri = ExceptionPriority(exception, isSecure, TRUE);
62 if (excePri >= execPri) || !canPend then
63 escalateToHf = TRUE;
64
65 return (escalateToHf, termInst);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1863

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

E2.1.109 ExceptionEnabled

1 // ExceptionEnabled()
2 // ==================
3
4 boolean ExceptionEnabled(integer exception, boolean secure)
5 assert 1 <= exception && exception < NUMEXN;
6 if secure && !HaveSecurityExt() then
7 enabled = FALSE;
8 elsif exception < 16 then
9 val = if secure then _SHCSR_S else _SHCSR_NS;

10 case exception of
11 when Reset
12 enabled = TRUE;
13 when NMI
14 enabled = secure == (AIRCR_S.BFHFNMINS == '0');
15 when HardFault
16 enabled = secure || AIRCR_S.BFHFNMINS == '1';
17 when MemManage
18 enabled = val.MEMFAULTENA == '1';
19 when BusFault
20 enabled = ((_SHCSR_S.BUSFAULTENA == '1') &&
21 (secure == (AIRCR_S.BFHFNMINS == '0')));
22 when UsageFault
23 enabled = val.USGFAULTENA == '1';
24 when SecureFault
25 enabled = secure && _SHCSR_S.SECUREFAULTENA == '1';
26 when SVCall
27 enabled = TRUE;
28 when DebugMonitor
29 enabled = ((secure == (DEMCR.SDME == '1')) &&
30 !InstructionsInFlight());
31 when PendSV
32 enabled = !DebugCanMaskInts(secure);
33 when SysTick
34 enabled = ((!IsExceptionTargetConfigurable(SysTick) ||
35 (secure == (_ICSR_S.STTNS == '0'))) &&
36 !DebugCanMaskInts(secure));
37 otherwise
38 enabled = FALSE;
39 else
40 enabled = (IrqEnabled[exception-16] && !DebugCanMaskInts(secure) &&
41 ((NVIC_ITNS[exception-16] == '0') == secure));
42
43 return enabled;

E2.1.110 ExceptionEntry

1 // ExceptionEntry()
2 // ================
3 // Exception entry is modified according to the behavior of a derived
4 // exception, see DerivedLateArrival() also.
5
6 (ExcInfo, EXC_RETURN_Type) ExceptionEntry(integer exceptionType, boolean toSecure)
7
8 // PushStack() can abandon memory accesses if a fault occurs during the stacking
9 // sequence.

10 (exc, partialExcReturn) = PushStack();
11 if exc.fault == NoFault then
12 (exc, partialExcReturn) = ExceptionTaken(exceptionType, FALSE, toSecure,
13 IgnoreFaults_NONE, partialExcReturn);
14 return (exc, partialExcReturn);

E2.1.111 ExceptionPriority

1 // ExceptionPriority()

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1864

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

2 // ===================
3
4 integer ExceptionPriority(integer n, boolean isSecure, boolean groupPri)
5 if HaveMainExt() then
6 assert 1 <= n && n < 512;
7 else
8 assert 1 <= n && n < 48;
9

10 if n == Reset then // Reset
11 result = -4;
12 elsif n == NMI then // NMI
13 result = -2;
14 elsif n == HardFault then // HardFault
15 if isSecure && AIRCR.BFHFNMINS == '1' then
16 result = -3;
17 else
18 result = -1;
19 elsif HaveMainExt() && n == MemManage then // MemManage
20 result = UInt(if isSecure then SHPR1_S.PRI_4 else SHPR1_NS.PRI_4);
21 elsif HaveMainExt() && n == BusFault then // BusFault
22 result = UInt(SHPR1_S.PRI_5);
23 elsif HaveMainExt() && n == UsageFault then // UsageFault
24 result = UInt(if isSecure then SHPR1_S.PRI_6 else SHPR1_NS.PRI_6);
25 elsif HaveMainExt() && n == SecureFault then // SecureFault
26 result = UInt(SHPR1_S.PRI_7);
27 elsif n == SVCall then // SVCall
28 result = UInt(if isSecure then SHPR2_S.PRI_11 else SHPR2_NS.PRI_11);
29 elsif HaveMainExt() && n == DebugMonitor then // DebugMonitor
30 result = UInt(SHPR3_S.PRI_12);
31 elsif n == PendSV then // PendSV
32 result = UInt(if isSecure then SHPR3_S.PRI_14 else SHPR3_NS.PRI_14);
33 elsif n == SysTick // SysTick
34 && ((HaveSysTick() == 2) ||
35 (HaveSysTick() == 1 && ((_ICSR_S.STTNS == '0') == isSecure))) then
36 result = UInt(if isSecure then SHPR3_S.PRI_15 else SHPR3_NS.PRI_15);
37 elsif n >= 16 then // External interrupt (n-16)
38 r = (n - 16) DIV 4;
39 v = n MOD 4;
40 result = UInt(NVIC_IPR[r][v*8+7:v*8]);
41 else // Reserved exceptions
42 result = 256;
43
44 assert result IN {-4 .. 256};
45
46 // Negative priorities (in other words Reset, NMI, and HardFault)
47 // are not effected by PRIGROUP or PRIS
48 if result >= 0 then
49 // Include the PRIGROUP effect
50 if HaveMainExt() && groupPri then
51 integer subgroupshift;
52 if isSecure then
53 subgroupshift = UInt(AIRCR_S.PRIGROUP);
54 else
55 subgroupshift = UInt(AIRCR_NS.PRIGROUP);
56 integer groupvalue = 2 << subgroupshift;
57 integer subgroupvalue = result MOD groupvalue;
58 result = result - subgroupvalue;
59
60 PriSNsPri = RestrictedNSPri();
61 if (AIRCR_S.PRIS == '1') && !isSecure then
62 result = (result >> 1) + PriSNsPri;
63
64 assert result IN {-4 .. 256};
65 return result;

E2.1.112 ExceptionReturn

1 // ExceptionReturn()

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1865

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

2 // =================
3
4 (ExcInfo, EXC_RETURN_Type, boolean) ExceptionReturn(EXC_RETURN_Type excReturn)
5 integer returningExceptionNumber = UInt(IPSR.Exception);
6
7 (exc, excReturn) = ValidateExceptionReturn(excReturn, returningExceptionNumber);
8 if exc.fault != NoFault then
9 return (exc, excReturn, FALSE);

10
11 if HaveSecurityExt() then
12 excSecure = excReturn.ES == '1';
13 retToSecure = excReturn.S == '1';
14 else
15 excSecure = FALSE;
16 retToSecure = FALSE;
17
18 // Restore SPSEL for the Security state we are returning from.
19 if excSecure then
20 CONTROL_S.SPSEL = excReturn.SPSEL;
21 else
22 CONTROL_NS.SPSEL = excReturn.SPSEL;
23
24 returningExcIsSecure = excReturn.ES == '1';
25 DeActivate(returningExceptionNumber, returningExcIsSecure);
26
27 // If requested, clear the scratch FP values left in the caller saved
28 // registers before returning/tail chaining.
29 if HaveMveOrFPExt() && FPCCR.CLRONRET == '1' && CONTROL.FPCA == '1' then
30 if FPCCR_S.LSPACT == '1' then
31 SFSR.LSERR = '1';
32 exc = CreateException(SecureFault);
33 return (exc, excReturn, FALSE);
34 else
35 // Check if we have permission to clear the registers.
36 if HasArchVersion(Armv8p1) then
37 exc = CheckCPEnabled(10, TRUE, returningExcIsSecure);
38 if exc.fault != NoFault then
39 return (exc, excReturn, FALSE);
40
41 // Clear the FP / MVE registers
42 InvalidateFPRegs(TRUE, FALSE);
43
44 // If TailChaining is supported, check if there is a pending exception with
45 // sufficient priority to be taken now. This check is done after the
46 // previous exception is deactivated so the priority of the previous
47 // exception does not mask any pending exceptions.
48 // The position of TailChain() within this function is the earliest point
49 // at which an tailchain is architecturally visible. Tail-chaining from a
50 // later point is permissible.
51 if boolean IMPLEMENTATION_DEFINED "Tail chaining supported" then
52 (takeException, exception, excIsSecure) = PendingExceptionDetails();
53 if takeException then
54 (exc, excReturn) = TailChain(exception, excIsSecure, excReturn);
55 return (exc, excReturn, TRUE);
56
57 // Return to the background Security state
58 if HaveSecurityExt() then
59 CurrentState = if retToSecure
60 then SecurityState_Secure else SecurityState_NonSecure;
61
62 // Sleep-on-exit performs equivalent behavior to the WFI instruction.
63 // The position of SleepOnExit() within this function is the earliest point
64 // at which it can be performed. Performing SleepOnExit from a later point
65 // is permissible.
66 if (excReturn.Mode == '1' && SCR.SLEEPONEXIT == '1' &&
67 ExceptionActiveBitCount() == 0) then
68 SleepOnExit(); // IMPLEMENTATION DEFINED
69
70 // Pop the stack and raise any exceptions that are generated

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1866

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

71 exc = PopStack(excReturn);
72 if exc.fault == NoFault then
73 ClearExclusiveLocal(ProcessorID());
74 ClearInFlightInstructions();
75 SetEventRegister(); // See WFE instruction for more details
76 InstructionSynchronizationBarrier('1111');
77
78 return (exc, excReturn, FALSE);

E2.1.113 ExceptionTaken

1 // ExceptionTaken()
2 // ================
3
4 (ExcInfo, EXC_RETURN_Type) ExceptionTaken(integer exceptionNumber, boolean doTailChain,
5 boolean excIsSecure, IgnoreFaultsType ignoreFaults,
6 EXC_RETURN_Type excReturn)
7 assert(HaveSecurityExt() || !excIsSecure);
8
9 // If the background code was running in the Secure state that are some

10 // additional steps that might need to be taken to protect the callee saved
11 // registers
12 exc = DefaultExcInfo();
13 if HaveSecurityExt() && excReturn.S == '1' then
14 if excIsSecure then // Transitioning to Secure
15 // If tail chaining is from Non-secure to Secure, then the callee registers
16 // are already on stack. Set excReturn.DCRS accordingly
17 if doTailChain && excReturn.ES == '0' then
18 excReturn.DCRS = '0';
19 else // Transitioning to Non-secure
20 // If the callee registers aren't already on the stack push them now
21 if excReturn.DCRS == '1' && !(doTailChain && excReturn.ES == '0') then
22 exc = PushCalleeStack(doTailChain, excReturn);
23 // Going to Non-secure exception. Set excReturn.DCRS to default
24 // value
25 excReturn.DCRS = '1';
26
27 // Finalise excReturn value
28 if excIsSecure then
29 excReturn.SPSEL = CONTROL_S.SPSEL;
30 excReturn.ES = '1';
31 else
32 excReturn.SPSEL = CONTROL_NS.SPSEL;
33 excReturn.ES = '0';
34 LR = excReturn;
35
36 // Register clearing
37 // Caller saved registers: These registers are cleared if exception targets
38 // the Non-secure state, otherwise they are UNKNOWN. As of Armv8.1 the
39 // registers are always cleared if the Security extension is implemented.
40 // NOTE: The original values were pushed to the stack.
41 if HaveSecurityExt() && (!excIsSecure || HasArchVersion(Armv8p1)) then
42 callerRegValue = Zeros(32);
43 else
44 callerRegValue = bits(32) UNKNOWN;
45 for n = 0 to 3
46 R[n] = callerRegValue;
47 R[12] = callerRegValue;
48 EAPSR = callerRegValue;
49 // Callee saved registers: If the background code was in the Secure state
50 // these registers are cleared if the exception targets the Non-secure state,
51 // and UNKNOWN if it targets the Secure state and the registers have been
52 // pushed to the stack (as indicated by EXC_RETURN.DCRS).
53 //
54 // NOTE: Callee saved registers are preserved if the background code is
55 // Non-secure, or when the exception is Secure and the values have not
56 // been pushed to the stack.
57 if HaveSecurityExt() && excReturn.S == '1' then

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1867

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

58 if excIsSecure then
59 if excReturn.DCRS == '0' then
60 for n = 4 to 11
61 R[n] = bits(32) UNKNOWN;
62 else
63 for n = 4 to 11
64 R[n] = Zeros();
65
66 // If enabled, the IESB contains asynchronous RAS / BusFault errors to the background
67 // context. This is conditional on there being no stacking faults -- if there are, the
68 // errors will be synchronized when the subsequent exception is raised.
69 if AIRCR.IESB == '1' then
70 exc = MergeExcInfo(exc, SynchronizeBusFault());
71
72 // If no errors so far (or errors that can be ignored) load the vector address
73 if exc.fault == NoFault || ignoreFaults != IgnoreFaults_NONE then
74 (exc, start) = Vector[exceptionNumber, excIsSecure];
75
76 // The state or mode of processor is not updated if an exception is raised
77 // during the entry sequence.
78 if exc.fault == NoFault || ignoreFaults == IgnoreFaults_ALL then
79 ActivateException(exceptionNumber, excIsSecure);
80 SCS_UpdateStatusRegs();
81 ClearExclusiveLocal(ProcessorID());
82 ClearInFlightInstructions();
83 SetEventRegister(); // See WFE instruction for details
84 InstructionSynchronizationBarrier('1111');
85 // Start execution of handler
86 EPSR.T = start[0];
87 // If EPSR.T == 0 then an exception is taken on the next
88 // instruction: UsageFault('Invalid State') if the Main Extension is
89 // implemented; HardFault otherwise
90 BranchTo(start[31:1]:'0', TRUE);
91
92 if exc.fault != NoFault then
93 exc.inExcTaken = TRUE;
94
95 return (exc, excReturn);

E2.1.114 ExceptionTargetsSecure

1 // ExceptionTargetsSecure()
2 // ========================
3
4 // Determine the default Security state an exception is expected to target if the
5 // exception is not forced to a specific domain.
6
7 boolean ExceptionTargetsSecure(integer exceptionNumber, boolean isSecure)
8 if !HaveSecurityExt() then
9 return FALSE;

10
11 boolean targetSecure = FALSE;
12 case exceptionNumber of
13 when NMI
14 targetSecure = AIRCR.BFHFNMINS == '0';
15
16 when HardFault
17 targetSecure = AIRCR.BFHFNMINS == '0' || isSecure;
18
19 when MemManage
20 targetSecure = isSecure;
21
22 when BusFault
23 targetSecure = AIRCR.BFHFNMINS == '0';
24
25 when UsageFault
26 targetSecure = isSecure;
27

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1868

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

28 when SecureFault
29 // SecureFault always targets Secure state.
30 targetSecure = TRUE;
31
32 when SVCall
33 targetSecure = isSecure;
34
35 when DebugMonitor
36 targetSecure = DEMCR.SDME == '1';
37
38 when PendSV
39 // This state should be unreachable as PendSV is a banked interrupt
40 // and it is directly pended for the correct security state, so this
41 // function is not called for this exception.
42 assert FALSE;
43
44 when SysTick
45 if HaveSysTick() != 1 then
46 // If there is a SysTick for each domain, then the exception
47 // targets the domain associated with the SysTick instance that
48 // raised the exception.
49 // This state should be unreachable as SysTick exception is banked
50 // and it is directly pended for the correct security state. This
51 // function can only be called when 1 SysTick is implemented.
52 assert FALSE;
53 else
54 // SysTick target state is configurable
55 targetSecure = ICSR_S.STTNS == '0';
56
57 otherwise
58 if exceptionNumber >= 16 then
59 // Interrupts target the state defined by the NVIC_ITNS register
60 targetSecure = NVIC_ITNS[exceptionNumber - 16] == '0';
61
62 return targetSecure;

E2.1.115 ExcInfo

1 // Exception information
2
3 type ExcInfo is (
4 integer fault, // The ID of the resulting fault, or NoFault (or 0)
5 // if no fault occurred
6 integer origFault, // The ID if the original fault raised before
7 // escalation is considered.
8 boolean isSecure, // TRUE if the fault targets the Secure state.
9 boolean origFaultIsSecure, // TRUE if the original fault raised targeted

10 // Secure state
11 boolean isTerminal, // Set to TRUE for derived faults (for example an
12 // exception on exception entry) that prevent the
13 // original exception being entered (for example a
14 // BusFault whilst fetching the exception vector address).
15 boolean inExcTaken, // TRUE if the exception occurred during ExceptionTaken()
16 // This is used to determine if the LR update and the
17 // callee stacking operations have been performed, and
18 // therefore whether the derived exception should be
19 // treated as a tail chain.
20 boolean lockup, // Set to TRUE if the exception should cause a lockup.
21 boolean termInst // Set to TRUE if the exception should cause the
22 // instruction to be terminated.
23)

E2.1.116 ExclusiveMonitorsPass

1 // ExclusiveMonitorsPass()
2 // =======================
3

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1869

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

4 boolean ExclusiveMonitorsPass(bits(32) address, integer size)
5
6 // It is IMPLEMENTATION DEFINED whether the detection of memory aborts happens
7 // before or after the check on the local Exclusive Monitor. As a result a failure
8 // of the local monitor can occur on some implementations even if the memory
9 // access would give a memory abort.

10
11 if address != Align(address, size) then
12 UFSR.UNALIGNED = '1';
13 excInfo = CreateException(UsageFault);
14 else
15 (excInfo, memaddrdesc) = ValidateAddress(address, AccType_NORMAL,
16 FindPriv(), IsSecure(), TRUE, TRUE);
17 HandleException(excInfo);
18
19 passed = IsExclusiveLocal(memaddrdesc.paddress, ProcessorID(), size);
20 if memaddrdesc.memattrs.shareable then
21 passed = passed && IsExclusiveGlobal(memaddrdesc.paddress, ProcessorID(), size);
22 if passed then
23 ClearExclusiveLocal(ProcessorID());
24 return passed;

E2.1.117 ExecBeats

1 // ExecBeats()
2 // ===========
3
4 boolean ExecBeats()
5 // PEs are not constrained to following the beat execution pattern shown in
6 // this function. Any pattern is permitted providing it meets the following
7 // requirements:
8 // 1) The new pattern of completed beats in representable as a valid ECI
9 // value.

10 // 2) The beat execution rules are not violated (see specification).
11 // 3) All ECI encodings are accepted an inputs, even if the PE cannot
12 // generate that ECI value.
13 newBeatComplete = BeatComplete;
14 for instId = 0 to MAX_OVERLAPPING_INSTRS-1
15 if _InstInfo[instId].Valid then
16 _InstID = instId;
17 _CurrentInstrExecState = GetInstrExecState(instId);
18 InstStateCheck(ThisInstr());
19 // Find the first ticks worth of beats that is not complete
20 beatBits = Elem[newBeatComplete, instId, MAX_BEATS];
21 baseBeatId = 0;
22 while Elem[beatBits, baseBeatId, BEATS_PER_TICK] == Ones(BEATS_PER_TICK) do
23 baseBeatId = baseBeatId + BEATS_PER_TICK;
24
25 // Perform all the beats in this tick for the current instruction
26 for beatInTick = 0 to BEATS_PER_TICK-1
27 beatId = baseBeatId + beatInTick;
28 // Only perform the beat if it has not already been completed
29 beatFlagIdx = (instId * MAX_BEATS) + beatId;
30 if newBeatComplete[beatFlagIdx] == '0' then
31 _BeatID = beatId;
32 _AdvanceVPTState = TRUE;
33 cond = DefaultCond();
34 DecodeExecute(ThisInstr(), ThisInstrAddr(),
35 ThisInstrLength() == 2, cond);
36 newBeatComplete[beatFlagIdx] = '1';
37 // Advance the VPT state for the current beat if the instruction
38 // did not update the mask directly.
39 if _AdvanceVPTState then
40 VPTAdvance(beatId);
41
42 // If the older instruction is now complete advance the state and beat
43 // complete flags
44 commitState = newBeatComplete[MAX_BEATS-1:0] == Ones(MAX_BEATS);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1870

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

45 if commitState then
46 newBeatComplete = LSR(newBeatComplete, MAX_BEATS);
47
48 // Update the beat complete flags. This is done after all the beats in the
49 // tick have been executed, as such it is not advanced if an exception
50 // terminates execution of the current tick
51 BeatComplete = newBeatComplete;
52
53 return commitState;

E2.1.118 ExecuteCPCheck

1 // ExecuteCPCheck()
2 // ================
3
4 ExecuteCPCheck(integer cp)
5 // Check access to coprocessor is enabled
6 excInfo = CheckCPEnabled(cp);
7 HandleException(excInfo);

E2.1.119 ExecuteFPCheck

1 // ExecuteFPCheck()
2 // ================
3
4 ExecuteFPCheck()
5 // Preserve any lazy FP state
6 PreserveFPState();
7
8 // Update the ownership of the FP context
9 FPCCR_S.S = if IsSecure() then '1' else '0';

10
11 // Update CONTROL.FPCA, and create new FP context
12 // if this has been enabled by setting FPCCR.ASPEN to 1
13 if FPCCR.ASPEN == '1' &&
14 (CONTROL.FPCA == '0' || (IsSecure() && CONTROL_S.SFPA == '0')) then
15 CONTROL.FPCA = '1';
16 if IsSecure() then
17 CONTROL_S.SFPA = '1';
18 FPSCR = FPDSCR[31:0];
19 VPR = Zeros();
20 return;

E2.1.120 ExecutionPriority

1 // ExecutionPriority()
2 // ===================
3 // Determine the current execution priority
4
5 integer ExecutionPriority()
6
7 boostedpri = HighestPri(); // Priority influence of BASEPRI, PRIMASK and FAULTMASK
8
9 // Calculate boosted priority effect due to BASEPRI for both Security states

10 PriSNsPri = RestrictedNSPri();
11 if HaveMainExt() then
12 if UInt(BASEPRI_NS[7:0]) != 0 then
13 basepri = UInt(BASEPRI_NS[7:0]);
14 // Include the PRIGROUP effect
15 subgroupshift = UInt(AIRCR_NS.PRIGROUP);
16 groupvalue = 2 << subgroupshift;
17 subgroupvalue = basepri MOD groupvalue;
18 boostedpri = basepri - subgroupvalue;
19 if AIRCR_S.PRIS == '1' then
20 boostedpri = (boostedpri >> 1) + PriSNsPri;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1871

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

21
22 if UInt(BASEPRI_S[7:0]) != 0 then
23 basepri = UInt(BASEPRI_S[7:0]);
24 // Include the PRIGROUP effect
25 subgroupshift = UInt(AIRCR_S.PRIGROUP);
26 groupvalue = 2 << subgroupshift;
27 subgroupvalue = basepri MOD groupvalue;
28 basepri = basepri - subgroupvalue;
29 if boostedpri > basepri then
30 boostedpri = basepri;
31
32 // Calculate boosted priority effect due to PRIMASK for both Security states
33 if PRIMASK_NS.PM == '1' then
34 if AIRCR_S.PRIS == '0' then
35 boostedpri = 0;
36 else
37 if boostedpri > PriSNsPri then
38 boostedpri = PriSNsPri;
39
40 if PRIMASK_S.PM == '1' then
41 boostedpri = 0;
42
43 // Calculate boosted priority effect due to FAULTMASK for both Security states
44 if HaveMainExt() then
45 if FAULTMASK_NS.FM == '1' then
46 if AIRCR.BFHFNMINS == '0' then
47 if AIRCR_S.PRIS == '0' then
48 boostedpri = 0;
49 else
50 if boostedpri > PriSNsPri then
51 boostedpri = PriSNsPri;
52 else
53 boostedpri = -1;
54
55 if FAULTMASK_S.FM == '1' then
56 boostedpri = if AIRCR.BFHFNMINS == '0' then -1 else -3;
57
58 // Finally calculate the resultant priority after boosting
59 rawExecPri = RawExecutionPriority();
60 if boostedpri < rawExecPri then
61 priority = boostedpri;
62 else
63 priority = rawExecPri;
64
65 assert priority IN {-4 .. 256};
66 return priority;

E2.1.121 Extend

1 // Extend()
2 // ========
3
4 bits(N) Extend(bits(M) x, integer N, boolean unsigned)
5 return if unsigned then ZeroExtend(x, N) else SignExtend(x, N);
6
7 bits(N) Extend(bits(M) x, boolean unsigned)
8 return Extend(x, N, unsigned);

E2.1.122 ExternalInvasiveDebugEnabled

1 // ExternalInvasiveDebugEnabled()
2 // ==============================
3 // Return TRUE if Halting debug is enabled by the
4 // IMPLEMENTATION DEFINED authentication interface.
5
6 boolean ExternalInvasiveDebugEnabled()
7 // In the recommended interface, ExternalInvasiveDebugEnabled returns the state of

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1872

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

8 // the DBGEN signal.
9 return DBGEN == HIGH;

E2.1.123 ExternalNoninvasiveDebugEnabled

1 // ExternalNoninvasiveDebugEnabled()
2 // =================================
3 // Return TRUE if non-invasive debug is enabled by the IMPLEMENTATION DEFINED authentication
4 // interface.
5
6 boolean ExternalNoninvasiveDebugEnabled()
7 // In the recommended interface, ExternalNoninvasiveDebugEnabled returns the state of
8 // the (DBGEN OR NIDEN) signal.
9 return ExternalInvasiveDebugEnabled() || NIDEN == HIGH;

E2.1.124 ExternalSecureInvasiveDebugEnabled

1 // ExternalSecureInvasiveDebugEnabled()
2 // ====================================
3 // Return TRUE if Secure Halting debug is enabled by the IMPLEMENTATION DEFINED
4 // authentication interface.
5
6 boolean ExternalSecureInvasiveDebugEnabled()
7 // In the recommended interface, ExternalSecureInvasiveDebugEnabled returns the state
8 // of the (DBGEN AND SPIDEN) signal.
9 return ExternalInvasiveDebugEnabled() && SPIDEN == HIGH;

E2.1.125 ExternalSecureNoninvasiveDebugEnabled

1 // ExternalSecureNoninvasiveDebugEnabled()
2 // =======================================
3 // Return TRUE if Secure non-invasive debug is enabled by the IMPLEMENTATION DEFINED
4 // authentication interface.
5
6 boolean ExternalSecureNoninvasiveDebugEnabled()
7 // In the recommended interface, ExternalSecureNoninvasiveDebugEnabled returns the
8 // state of the (DBGEN OR NIDEN) AND (SPIDEN OR SPNIDEN) signal.
9 return ExternalNoninvasiveDebugEnabled() && (SPIDEN == HIGH || SPNIDEN == HIGH);

E2.1.126 ExternalSecureSelfHostedDebugEnabled

1 // ExternalSecureSelfHostedDebugEnabled()
2 // ======================================
3 // Return TRUE if Secure self-hosted debug is enabled by the IMPLEMENTATION DEFINED
4 // authentication interface.
5
6 boolean ExternalSecureSelfHostedDebugEnabled()
7 // In the recommended interface, ExternalSecureSelfHostedDebugEnabled returns the state
8 // of the (DBGEN AND SPIDEN) signal.
9 return DBGEN == HIGH && SPIDEN == HIGH;

E2.1.127 ExtType

1 // Types of ISA extension
2
3 enumeration ExtType {ExtType_Mve,
4 ExtType_MveFp,
5 ExtType_MveOrFp,
6 ExtType_MveOrDpFp,
7 ExtType_Unknown,
8 ExtType_HpFp,
9 ExtType_SpFp,

10 ExtType_DpFp};

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1873

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

E2.1.128 FaultNumbers

1 // Fault Numbers
2 // =============
3
4 // The fault numbers are a subset of ExceptionNumber and can be one of the
5 // following values:
6 constant integer NoFault = 0;
7 constant integer Reset = 1;
8 constant integer NMI = 2;
9 constant integer HardFault = 3;

10 constant integer MemManage = 4;
11 constant integer BusFault = 5;
12 constant integer UsageFault = 6;
13 constant integer SecureFault = 7;
14 constant integer SVCall = 11;
15 constant integer DebugMonitor = 12;
16 constant integer PendSV = 14;
17 constant integer SysTick = 15;

E2.1.129 FetchInstr

1 // FetchInstr()
2 // ============
3
4 (bits(32), boolean) FetchInstr(bits(32) addr)
5 // NOTE: It is CONSTRAINED UNPREDICTABLE whether otherwise valid sequential
6 // instruction fetches that cross from Non-secure to Secure memory
7 // generate a INVEP SecureFault, or transition normally.
8 sgOpcode = 0xE97FE97F[31:0];
9

10 hw1Attr = SecurityCheck(addr, TRUE, IsSecure());
11 // Fetch the 16-bit T32 instruction, or the first half of a T32.
12 hw1Instr = MemI[addr];
13
14 // If the T bit is clear then the instruction can not be decoded
15 if EPSR.T == '0' then
16 // Attempted NS->S domain crossings with the T bit clear raise an INVEP
17 // SecureFault
18 if !IsSecure() && !hw1Attr.ns then
19 SFSR.INVEP = '1';
20 excInfo = CreateException(SecureFault);
21 else
22 UFSR.INVSTATE = '1';
23 excInfo = CreateException(UsageFault);
24 HandleException(excInfo);
25
26 // Implementations are permitted to terminate the fetch process early if a
27 // domain crossing is being attempted and the first 16bits of the opcode
28 // is not the first part of the SG instruction.
29 if boolean IMPLEMENTATION_DEFINED "Early SG check" then
30 if !IsSecure() && !hw1Attr.ns && (hw1Instr != sgOpcode[31:16]) then
31 SFSR.INVEP = '1';
32 excInfo = CreateException(SecureFault);
33 HandleException(excInfo);
34
35 // NOTE: Implementations are also permitted to terminate the fetch process
36 // at this point with an UNDEFINSTR UsageFault if the first 16bit is
37 // an undefined T32 prefix.
38
39 // If the data fetched is the top half of a T32 instruction fetch the bottom
40 // 16 bits
41 isT16 = UInt(hw1Instr[15:11]) < UInt('11101');
42 if isT16 then
43 instr = Zeros(16) : hw1Instr;
44 else
45 hw2Attr = SecurityCheck(addr+2, TRUE, IsSecure());

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1874

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

46 // The following test covers 2 possible fault conditions:-
47 // 1) NS code branching to a T32 instruction where the first half is in
48 // NS memory, and the second half is in S memory.
49 // 2) NS code branching to a T32 instruction in S & NSC memory, but
50 // where the second half of the instruction is in NS memory.
51 if !IsSecure() && (hw1Attr.ns != hw2Attr.ns) then
52 SFSR.INVEP = '1';
53 excInfo = CreateException(SecureFault);
54 HandleException(excInfo);
55
56 // Fetch the second half of T32 instruction
57 instr = hw1Instr : MemI[addr+2];
58
59 // Raise a fault if an otherwise valid NS->S transition that does not land on
60 // an SG instruction.
61 if !IsSecure() && !hw1Attr.ns && (instr != sgOpcode) then
62 SFSR.INVEP = '1';
63 excInfo = CreateException(SecureFault);
64 HandleException(excInfo);
65 return (instr, isT16);

E2.1.130 FindPriv

1 // FindPriv()
2 // ==========
3
4 boolean FindPriv()
5 return CurrentModeIsPrivileged();

E2.1.131 FixedToFP

1 // FixedToFP()
2 // ===========
3
4 bits(N) FixedToFP(bits(M) operand, integer N, integer fraction_bits, boolean unsigned,
5 boolean round_to_nearest, boolean fpscr_controlled)
6 return FixedToFP(operand, N, fraction_bits, unsigned, round_to_nearest,
7 fpscr_controlled, FALSE);
8
9 bits(N) FixedToFP(bits(M) operand, integer N, integer fraction_bits, boolean unsigned,

10 boolean round_to_nearest, boolean fpscr_controlled, boolean predicated)
11 assert N IN {16,32,64};
12 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
13 if round_to_nearest then fpscr_val.RMode = FPSCR_RMode_RN;
14 int_operand = if unsigned then UInt(operand) else SInt(operand);
15 real_operand = Real(int_operand) / 2.0^fraction_bits;
16 if real_operand == 0.0 then
17 result = FPZero('0', N);
18 else
19 result = FPRound(real_operand, N, fpscr_val, predicated);
20 return result;

E2.1.132 FPAbs

1 // FPAbs()
2 // =======
3
4 bits(N) FPAbs(bits(N) operand)
5 assert N IN {16,32,64};
6 return '0' : operand[N-2:0];

E2.1.133 FPAdd

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1875

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

1 // FPAdd()
2 // =======
3
4 bits(N) FPAdd(bits(N) op1, bits(N) op2, boolean fpscr_controlled)
5 return FPAdd(op1, op2, fpscr_controlled, FALSE);
6
7 bits(N) FPAdd(bits(N) op1, bits(N) op2, boolean fpscr_controlled, boolean predicated)
8 assert N IN {16,32,64};
9 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();

10 (type1,sign1,value1) = FPUnpack(op1, fpscr_val, predicated);
11 (type2,sign2,value2) = FPUnpack(op2, fpscr_val, predicated);
12 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpscr_val, predicated);
13 if !done then
14 inf1 = (type1 == FPType_Infinity); inf2 = (type2 == FPType_Infinity);
15 zero1 = (type1 == FPType_Zero); zero2 = (type2 == FPType_Zero);
16 if inf1 && inf2 && sign1 == NOT(sign2) then
17 result = FPDefaultNaN(N);
18 FPProcessException(FPExc_InvalidOp, fpscr_val, predicated);
19 elsif (inf1 && sign1 == '0') || (inf2 && sign2 == '0') then
20 result = FPInfinity('0', N);
21 elsif (inf1 && sign1 == '1') || (inf2 && sign2 == '1') then
22 result = FPInfinity('1', N);
23 elsif zero1 && zero2 && sign1 == sign2 then
24 result = FPZero(sign1, N);
25 else
26 result_value = value1 + value2;
27 if result_value == 0.0 then // Sign of exact zero result depends
28 // on rounding mode
29 result_sign = if fpscr_val.RMode == FPSCR_RMode_RM then '1' else '0';
30 result = FPZero(result_sign, N);
31 else
32 result = FPRound(result_value, N, fpscr_val, predicated);
33 return result;

E2.1.134 FPB_CheckBreakPoint

1 // FPB_CheckBreakPoint
2 // ===================
3 // Check for Flash Patch Break point
4
5 boolean FPB_CheckBreakPoint(bits(32) iaddr, integer size,
6 boolean is_ifetch, boolean is_secure)
7
8 match = FPB_CheckMatchAddress(iaddr);
9 if !match && size == 4 && FPB_CheckMatchAddress(iaddr + 2) then

10 match = ConstrainUnpredictableBool(Unpredictable_FPBreakpoint);
11 return match;

E2.1.135 FPB_CheckMatchAddress

1 // FPB_CheckMatchAddress
2 // =====================
3 // Flash Patch breakpoint instruction address comparison
4
5 boolean FPB_CheckMatchAddress(bits(32) iaddr)
6
7 if FP_CTRL.ENABLE == '0' then return FALSE; // FPB not enabled
8
9 // Instruction Comparator.

10 num_addr_cmp = UInt(FP_CTRL.NUM_CODE);
11 if num_addr_cmp == 0 then return FALSE; // No comparator support
12
13 for N = 0 to (num_addr_cmp - 1)
14 if FP_COMP[N].BE == '1' then // Breakpoint enabled
15 if iaddr[31:1] == FP_COMP[N].BPADDR then
16 return TRUE;
17

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1876

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

18 return FALSE;

E2.1.136 FPCompare

1 // FPCompare()
2 // ===========
3
4 (bit, bit, bit, bit) FPCompare(bits(N) op1, bits(N) op2, boolean quiet_nan_exc,
5 boolean fpscr_controlled)
6 return FPCompare(op1, op2, quiet_nan_exc, fpscr_controlled, FALSE);
7
8 (bit, bit, bit, bit) FPCompare(bits(N) op1, bits(N) op2, boolean quiet_nan_exc,
9 boolean fpscr_controlled, boolean predicated)

10 assert N IN {16,32,64};
11 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
12 (type1,-,value1) = FPUnpack(op1, fpscr_val, predicated);
13 (type2,-,value2) = FPUnpack(op2, fpscr_val, predicated);
14 if type1 == FPType_SNaN || type1 == FPType_QNaN ||
15 type2 == FPType_SNaN || type2 == FPType_QNaN then
16 result = ('0','0','1','1');
17 if type1==FPType_SNaN || type2==FPType_SNaN || quiet_nan_exc then
18 FPProcessException(FPExc_InvalidOp, fpscr_val, predicated);
19 else
20 // All non-NaN cases can be evaluated on the values produced by FPUnpack()
21 if value1 == value2 then
22 result = ('0','1','1','0');
23 elsif value1 < value2 then
24 result = ('1','0','0','0');
25 else // value1 > value2
26 result = ('0','0','1','0');
27 return result;

E2.1.137 FPConvertNaN

1 // FPConvertNaN()
2 // ==============
3 //
4 // For half-precision data it ignores AHP, and observes FZ16.
5 // Calls FPConvertNaNBase() which demotes any input SNaN to a QNaN.
6
7 bits(N) FPConvertNaN(bits(N) fpval, boolean fpscr_controlled)
8 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
9 fpscr_val.AHP = '0';

10 return FPConvertNaNBase(fpval, fpscr_val);

E2.1.138 FPConvertNaNBase

1 // FPConvertNaNBase()
2 // ==============
3 //
4 // Demotes any input SNaN to a QNaN and ensures that any comparison between a number and
5 // a NaN, always returns the number and not the NaN.
6
7 bits(N) FPConvertNaNBase(bits(N) fpval, FPSCR_Type fpscr_val)
8 assert N IN {16,32,64};
9

10 if N == 16 then
11 exp16 = fpval[14:10];
12 frac16 = fpval[9:0];
13 if IsOnes(exp16) && fpscr_val.AHP == '0' then // Infinity or NaN in IEEE format
14 if !IsZero(frac16) then // NaN in IEEE format
15 if frac16[9] == '0' then // if the value is an SNaN
16 fpval[9] = '1'; // Convert the value to a QNaN
17 FPProcessException(FPExc_InvalidOp, fpscr_val);
18

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1877

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

19 elsif N == 32 then
20 exp32 = fpval[30:23];
21 frac32 = fpval[22:0];
22 if IsOnes(exp32) && !IsZero(frac32) then // NaN in IEEE format
23 if frac32[22] == '0' then // if the value is an SNaN
24 fpval[22] = '1'; // Convert the value to a QNaN
25 FPProcessException(FPExc_InvalidOp, fpscr_val);
26
27 else // N == 64
28 exp64 = fpval[62:52];
29 frac64 = fpval[51:0];
30 if IsOnes(exp64) && !IsZero(frac64) then // NaN in IEEE format
31 if frac64[51] == '0' then // if the value is an SNaN
32 fpval[51] = '1'; // Convert the value to a QNaN
33 FPProcessException(FPExc_InvalidOp, fpscr_val);
34
35 return fpval;

E2.1.139 FPDefaultNaN

1 // FPDefaultNaN()
2 // ==============
3
4 bits(N) FPDefaultNaN(integer N)
5 assert N IN {16,32,64};
6 integer E = if N == 16 then 5 elsif N == 32 then 8 else 11;
7 constant integer F = N - E - 1;
8 bits(E) exp;
9 bits(F) frac;

10 sign = '0';
11 exp = Ones(E);
12 frac = '1':Zeros(F-1);
13 return sign : exp : frac;

E2.1.140 FPDiv

1 // FPDiv()
2 // =======
3
4 bits(N) FPDiv(bits(N) op1, bits(N) op2, boolean fpscr_controlled)
5 assert N IN {16,32,64};
6 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
7 (fp_type1,sign1,value1) = FPUnpack(op1, fpscr_val);
8 (fp_type2,sign2,value2) = FPUnpack(op2, fpscr_val);
9 (done,result) = FPProcessNaNs(fp_type1, fp_type2, op1, op2, fpscr_val);

10 if !done then
11 inf1 = (fp_type1 == FPType_Infinity); inf2 = (fp_type2 == FPType_Infinity);
12 zero1 = (fp_type1 == FPType_Zero); zero2 = (fp_type2 == FPType_Zero);
13 if (inf1 && inf2) || (zero1 && zero2) then
14 result = FPDefaultNaN(N);
15 FPProcessException(FPExc_InvalidOp, fpscr_val);
16 elsif inf1 || zero2 then
17 result_sign = if sign1 == sign2 then '0' else '1';
18 result = FPInfinity(result_sign, N);
19 if !inf1 then FPProcessException(FPExc_DivideByZero, fpscr_val);
20 elsif zero1 || inf2 then
21 result_sign = if sign1 == sign2 then '0' else '1';
22 result = FPZero(result_sign, N);
23 else
24 result = FPRound(value1/value2, N, fpscr_val);
25 return result;

E2.1.141 FPDoubleToHalf

1 // FPDoubleToHalf()

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1878

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

2 // ================
3 bits(16) FPDoubleToHalf(bits(64) operand, boolean fpscr_controlled)
4 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
5 (fp_type,sign,value) = FPUnpackCV(operand, fpscr_val);
6 if fp_type == FPType_SNaN || fp_type == FPType_QNaN then
7 if fpscr_val.AHP == '1' then
8 result = FPZero(sign, 16);
9 elsif fpscr_val.DN == '1' then

10 result = FPDefaultNaN(16);
11 else
12 result = sign : '11111 1' : operand[50:42];
13 if fp_type == FPType_SNaN || fpscr_val.AHP == '1' then
14 FPProcessException(FPExc_InvalidOp, fpscr_val);
15 elsif fp_type == FPType_Infinity then
16 if fpscr_val.AHP == '1' then
17 result = sign : Ones(15);
18 FPProcessException(FPExc_InvalidOp, fpscr_val);
19 else
20 result = FPInfinity(sign, 16);
21 elsif fp_type == FPType_Zero then
22 result = FPZero(sign, 16);
23 else
24 result = FPRoundCV(value, 16, fpscr_val);
25 return result;

E2.1.142 FPDoubleToSingle

1 // FPDoubleToSingle()
2 // ==================
3
4 bits(32) FPDoubleToSingle(bits(64) operand, boolean fpscr_controlled)
5 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
6 (fp_type,sign,value) = FPUnpackCV(operand, fpscr_val);
7 if fp_type == FPType_SNaN || fp_type == FPType_QNaN then
8 if fpscr_val.DN == '1' then
9 result = FPDefaultNaN(32);

10 else
11 result = sign : '11111111 1' : operand[50:29];
12 if fp_type == FPType_SNaN then
13 FPProcessException(FPExc_InvalidOp, fpscr_val);
14 elsif fp_type == FPType_Infinity then
15 result = FPInfinity(sign, 32);
16 elsif fp_type == FPType_Zero then
17 result = FPZero(sign, 32);
18 else
19 result = FPRoundCV(value, 32, fpscr_val);
20 return result;

E2.1.143 FPExc

1 // Floating point exceptions
2
3 enumeration FPExc {FPExc_InvalidOp, FPExc_DivideByZero, FPExc_Overflow,
4 FPExc_Underflow, FPExc_Inexact, FPExc_InputDenorm};

E2.1.144 FPHalfToDouble

1 // FPHalfToDouble()
2 // ================
3
4 bits(64) FPHalfToDouble(bits(16) operand, boolean fpscr_controlled)
5 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
6 (fp_type,sign,value) = FPUnpackCV(operand, fpscr_val);
7 if fp_type == FPType_SNaN || fp_type == FPType_QNaN then
8 if fpscr_val.DN == '1' then

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1879

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

9 result = FPDefaultNaN(64);
10 else
11 result = sign : '11111111111 1' : operand[8:0] : Zeros(42);
12 if fp_type == FPType_SNaN then
13 FPProcessException(FPExc_InvalidOp, fpscr_val);
14 elsif fp_type == FPType_Infinity then
15 result = FPInfinity(sign, 64);
16 elsif fp_type == FPType_Zero then
17 result = FPZero(sign, 64);
18 else
19 result = FPRoundCV(value, 64, fpscr_val); // Rounding will be exact
20 return result;

E2.1.145 FPHalfToSingle

1 // FPHalfToSingle()
2 // ================
3
4 bits(32) FPHalfToSingle(bits(16) operand, boolean fpscr_controlled)
5 return FPHalfToSingle(operand, fpscr_controlled, FALSE);
6
7 bits(32) FPHalfToSingle(bits(16) operand, boolean fpscr_controlled, boolean predicated)
8 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
9 (fp_type,sign,value) = FPUnpackCV(operand, fpscr_val, predicated);

10 if fp_type == FPType_SNaN || fp_type == FPType_QNaN then
11 if fpscr_val.DN == '1' then
12 result = FPDefaultNaN(32);
13 else
14 result = sign : '11111111 1' : operand[8:0] : Zeros(13);
15 if fp_type == FPType_SNaN then
16 FPProcessException(FPExc_InvalidOp, fpscr_val, predicated);
17 elsif fp_type == FPType_Infinity then
18 result = FPInfinity(sign, 32);
19 elsif fp_type == FPType_Zero then
20 result = FPZero(sign, 32);
21 else
22 result = FPRoundCV(value, 32, fpscr_val, predicated); // Rounding will be exact
23 return result;

E2.1.146 FPInfinity

1 // FPInfinity()
2 // ============
3
4 bits(N) FPInfinity(bit sign, integer N)
5 assert N IN {16,32,64};
6 integer E = if N == 16 then 5 elsif N == 32 then 8 else 11;
7 constant integer F = N - E - 1;
8 bits(E) exp;
9 bits(F) frac;

10 exp = Ones(E);
11 frac = Zeros(F);
12 return sign : exp : frac;

E2.1.147 FPMax

1 // FPMax()
2 // =======
3
4 bits(N) FPMax(bits(N) op1, bits(N) op2, boolean fpscr_controlled)
5 return FPMax(op1, op2, fpscr_controlled, FALSE);
6
7 bits(N) FPMax(bits(N) op1, bits(N) op2, boolean fpscr_controlled, boolean predicated)
8 assert N IN {16,32,64};
9 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1880

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

10 (fp_type1,sign1,value1) = FPUnpack(op1, fpscr_val, predicated);
11 (fp_type2,sign2,value2) = FPUnpack(op2, fpscr_val, predicated);
12 (done,result) = FPProcessNaNs(fp_type1, fp_type2, op1, op2, fpscr_val, predicated);
13 if !done then
14 if value1 > value2 then
15 (fp_type,sign,value) = (fp_type1,sign1,value1);
16 else
17 (fp_type,sign,value) = (fp_type2,sign2,value2);
18 if fp_type == FPType_Infinity then
19 result = FPInfinity(sign, N);
20 elsif fp_type == FPType_Zero then
21 sign = sign1 AND sign2; // Use most positive sign
22 result = FPZero(sign, N);
23 else
24 result = FPRound(value, N, fpscr_val, predicated);
25 return result;

E2.1.148 FPMaxNormal

1 // FPMaxNormal()
2 // =============
3
4 bits(N) FPMaxNormal(bit sign, integer N)
5 assert N IN {16,32,64};
6 integer E = if N == 16 then 5 elsif N == 32 then 8 else 11;
7 constant integer F = N - E - 1;
8 bits(E) exp;
9 bits(F) frac;

10 exp = Ones(E-1):'0';
11 frac = Ones(F);
12 return sign : exp : frac;

E2.1.149 FPMaxNum

1 // FPMaxNum()
2 // ==========
3
4 bits(N) FPMaxNum(bits(N) op1, bits(N) op2, boolean fpscr_controlled)
5 return FPMaxNum(op1, op2, fpscr_controlled, FALSE);
6
7 bits(N) FPMaxNum(bits(N) op1, bits(N) op2, boolean fpscr_controlled, boolean predicated)
8 assert N IN {16,32,64};
9

10 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
11 (type1,-,-) = FPUnpack(op1, fpscr_val, predicated);
12 (type2,-,-) = FPUnpack(op2, fpscr_val, predicated);
13
14 // Treat a single quiet-NaN as -Infinity
15 if type1 == FPType_QNaN && type2 != FPType_QNaN then
16 op1 = FPInfinity('1', N);
17 elsif type1 != FPType_QNaN && type2 == FPType_QNaN then
18 op2 = FPInfinity('1', N);
19
20 return FPMax(op1, op2, fpscr_controlled, predicated);

E2.1.150 FPMin

1 // FPMin()
2 // =======
3
4 bits(N) FPMin(bits(N) op1, bits(N) op2, boolean fpscr_controlled)
5 return FPMin(op1, op2, fpscr_controlled, FALSE);
6
7 bits(N) FPMin(bits(N) op1, bits(N) op2, boolean fpscr_controlled, boolean predicated)
8 assert N IN {16,32,64};

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1881

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

9 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
10 (fp_type1,sign1,value1) = FPUnpack(op1, fpscr_val, predicated);
11 (fp_type2,sign2,value2) = FPUnpack(op2, fpscr_val, predicated);
12 (done,result) = FPProcessNaNs(fp_type1, fp_type2, op1, op2, fpscr_val, predicated);
13 if !done then
14 if value1 < value2 then
15 (fp_type,sign,value) = (fp_type1,sign1,value1);
16 else
17 (fp_type,sign,value) = (fp_type2,sign2,value2);
18 if fp_type == FPType_Infinity then
19 result = FPInfinity(sign, N);
20 elsif fp_type == FPType_Zero then
21 sign = sign1 OR sign2; // Use most negative sign
22 result = FPZero(sign, N);
23 else
24 result = FPRound(value, N, fpscr_val, predicated);
25 return result;

E2.1.151 FPMinNum

1 // FPMinNum()
2 // ==========
3
4 bits(N) FPMinNum(bits(N) op1, bits(N) op2, boolean fpscr_controlled)
5 return FPMinNum(op1, op2, fpscr_controlled, FALSE);
6
7 bits(N) FPMinNum(bits(N) op1, bits(N) op2, boolean fpscr_controlled, boolean predicated)
8 assert N IN {16,32,64};
9

10 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
11 (fp_type1,-,-) = FPUnpack(op1, fpscr_val, predicated);
12 (fp_type2,-,-) = FPUnpack(op2, fpscr_val, predicated);
13
14 // Treat a single quiet-NaN as +Infinity
15 if fp_type1 == FPType_QNaN && fp_type2 != FPType_QNaN then
16 op1 = FPInfinity('0', N);
17 elsif fp_type1 != FPType_QNaN && fp_type2 == FPType_QNaN then
18 op2 = FPInfinity('0', N);
19
20 return FPMin(op1, op2, fpscr_controlled, predicated);

E2.1.152 FPMul

1 // FPMul()
2 // =======
3
4 bits(N) FPMul(bits(N) op1, bits(N) op2, boolean fpscr_controlled)
5 return FPMul(op1, op2, fpscr_controlled, FALSE);
6
7 bits(N) FPMul(bits(N) op1, bits(N) op2, boolean fpscr_controlled, boolean predicated)
8 assert N IN {16,32,64};
9 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();

10 (type1,sign1,value1) = FPUnpack(op1, fpscr_val, predicated);
11 (type2,sign2,value2) = FPUnpack(op2, fpscr_val, predicated);
12 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpscr_val, predicated);
13 if !done then
14 inf1 = (type1 == FPType_Infinity); inf2 = (type2 == FPType_Infinity);
15 zero1 = (type1 == FPType_Zero); zero2 = (type2 == FPType_Zero);
16 if (inf1 && zero2) || (zero1 && inf2) then
17 result = FPDefaultNaN(N);
18 FPProcessException(FPExc_InvalidOp, fpscr_val, predicated);
19 elsif inf1 || inf2 then
20 result_sign = if sign1 == sign2 then '0' else '1';
21 result = FPInfinity(result_sign, N);
22 elsif zero1 || zero2 then
23 result_sign = if sign1 == sign2 then '0' else '1';
24 result = FPZero(result_sign, N);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1882

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

25 else
26 result = FPRound(value1*value2, N, fpscr_val, predicated);
27 return result;

E2.1.153 FPMulAdd

1 // FPMulAdd()
2 // ==========
3 // Calculates addend + op1*op2 with a single rounding.
4
5 bits(N) FPMulAdd(bits(N) addend, bits(N) op1, bits(N) op2, boolean fpscr_controlled)
6 return FPMulAdd(addend, op1, op2, fpscr_controlled, FALSE);
7
8 bits(N) FPMulAdd(bits(N) addend, bits(N) op1, bits(N) op2, boolean fpscr_controlled,
9 boolean predicated)

10 assert N IN {16,32,64};
11 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
12 (typeA,signA,valueA) = FPUnpack(addend, fpscr_val, predicated);
13 (type1,sign1,value1) = FPUnpack(op1, fpscr_val, predicated);
14 (type2,sign2,value2) = FPUnpack(op2, fpscr_val, predicated);
15 inf1 = (type1 == FPType_Infinity); zero1 = (type1 == FPType_Zero);
16 inf2 = (type2 == FPType_Infinity); zero2 = (type2 == FPType_Zero);
17 (done,result) = FPProcessNaNs3(typeA, type1, type2, addend, op1, op2, fpscr_val,
18 predicated);
19
20 if typeA == FPType_QNaN && ((inf1 && zero2) || (zero1 && inf2)) then
21 result = FPDefaultNaN(N);
22 FPProcessException(FPExc_InvalidOp, fpscr_val, predicated);
23
24 if !done then
25 infA = (typeA == FPType_Infinity); zeroA = (typeA == FPType_Zero);
26
27 // Determine sign and type product will have if it does not cause an Invalid
28 // Operation.
29 signP = if sign1 == sign2 then '0' else '1';
30 infP = inf1 || inf2;
31 zeroP = zero1 || zero2;
32
33 // Non SNaN-generated Invalid Operation cases are multiplies of zero by infinity and
34 // additions of opposite-signed infinities.
35 if (inf1 && zero2) || (zero1 && inf2) || (infA && infP && signA == NOT(signP)) then
36 result = FPDefaultNaN(N);
37 FPProcessException(FPExc_InvalidOp, fpscr_val, predicated);
38
39 // Other cases involving infinities produce an infinity of the same sign.
40 elsif (infA && signA == '0') || (infP && signP == '0') then
41 result = FPInfinity('0', N);
42 elsif (infA && signA == '1') || (infP && signP == '1') then
43 result = FPInfinity('1', N);
44
45 // Cases where the result is exactly zero and its sign is not determined by the
46 // rounding mode are additions of same-signed zeros.
47 elsif zeroA && zeroP && signA == signP then
48 result = FPZero(signA, N);
49
50 // Otherwise calculate numerical result and round it.
51 else
52 result_value = valueA + (value1 * value2);
53 if result_value == 0.0 then // Sign of exact zero result depends
54 // on rounding mode
55 result_sign = if fpscr_val.RMode == FPSCR_RMode_RM then '1' else '0';
56 result = FPZero(result_sign, N);
57 else
58 result = FPRound(result_value, N, fpscr_val, predicated);
59
60 return result;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1883

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

E2.1.154 FPNeg

1 // FPNeg()
2 // =======
3
4 bits(N) FPNeg(bits(N) operand)
5 assert N IN {16,32,64};
6 return NOT(operand[N-1]) : operand[N-2:0];

E2.1.155 FPProcessException

1 // FPProcessException()
2 // ====================
3 // The 'fpscr_val' argument supplies FPSCR control bits. Status information is
4 // updated directly in FPSCR where appropriate.
5
6 FPProcessException(FPExc exception, FPSCR_Type fpscr_val)
7 FPProcessException(exception, fpscr_val, FALSE);
8 return;
9

10 FPProcessException(FPExc exception, FPSCR_Type fpscr_val, boolean predicated)
11 // Get appropriate FPSCR bit numbers
12 if !predicated then
13 case exception of
14 when FPExc_InvalidOp enable = 8; cumul = 0;
15 when FPExc_DivideByZero enable = 9; cumul = 1;
16 when FPExc_Overflow enable = 10; cumul = 2;
17 when FPExc_Underflow enable = 11; cumul = 3;
18 when FPExc_Inexact enable = 12; cumul = 4;
19 when FPExc_InputDenorm enable = 15; cumul = 7;
20 if fpscr_val[enable] == '1' then
21 IMPLEMENTATION_DEFINED "floating-point trap handling";
22 else
23 FPSCR[cumul] = '1';
24 return;

E2.1.156 FPProcessNaN

1 // FPProcessNaN()
2 // ==============
3 // The 'fpscr_val' argument supplies FPSCR control bits. Status information is
4 // updated directly in FPSCR where appropriate.
5
6 bits(N) FPProcessNaN(FPType fp_type, bits(N) operand, FPSCR_Type fpscr_val)
7 return FPProcessNaN(fp_type, operand, fpscr_val, FALSE);
8
9 bits(N) FPProcessNaN(FPType fp_type, bits(N) operand, FPSCR_Type fpscr_val,

10 boolean predicated)
11 assert N IN {16,32,64};
12 if N == 16 then topfrac = 9;
13 elsif N == 32 then topfrac = 22;
14 else topfrac = 51;
15 result = operand;
16 if fp_type == FPType_SNaN then
17 result[topfrac] = '1';
18 FPProcessException(FPExc_InvalidOp, fpscr_val, predicated);
19 if fpscr_val.DN == '1' then // DefaultNaN requested
20 result = FPDefaultNaN(N);
21 return result;

E2.1.157 FPProcessNaNs

1 // FPProcessNaNs()
2 // ===============
3 // The boolean part of the return value says whether a NaN has been found and

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1884

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

4 // processed. The bits(N) part is only relevant if it has and supplies the
5 // result of the operation.
6 //
7 // The 'fpscr_val' argument supplies FPSCR control bits. Status information is
8 // updated directly in FPSCR where appropriate.
9

10 (boolean, bits(N)) FPProcessNaNs(FPType type1, FPType type2, bits(N) op1, bits(N) op2,
11 bits(32) fpscr_val)
12 return FPProcessNaNs(type1, type2, op1, op2, fpscr_val, FALSE);
13
14 (boolean, bits(N)) FPProcessNaNs(FPType type1, FPType type2, bits(N) op1, bits(N) op2,
15 bits(32) fpscr_val, boolean predicated)
16 assert N IN {16,32,64};
17 if type1 == FPType_SNaN then
18 done = TRUE; result = FPProcessNaN(type1, op1, fpscr_val, predicated);
19 elsif type2 == FPType_SNaN then
20 done = TRUE; result = FPProcessNaN(type2, op2, fpscr_val, predicated);
21 elsif type1 == FPType_QNaN then
22 done = TRUE; result = FPProcessNaN(type1, op1, fpscr_val, predicated);
23 elsif type2 == FPType_QNaN then
24 done = TRUE; result = FPProcessNaN(type2, op2, fpscr_val, predicated);
25 else
26 done = FALSE; result = Zeros(N); // 'Don't care' result
27 return (done, result);

E2.1.158 FPProcessNaNs3

1 // FPProcessNaNs3()
2 // ================
3 // The boolean part of the return value says whether a NaN has been found and
4 // processed. The bits(N) part is only relevant if it has and supplies the
5 // result of the operation.
6 //
7 // The 'fpscr_val' argument supplies FPSCR control bits. Status information is
8 // updated directly in FPSCR where appropriate.
9

10 (boolean, bits(N)) FPProcessNaNs3(FPType type1, FPType type2, FPType type3,
11 bits(N) op1, bits(N) op2, bits(N) op3,
12 bits(32) fpscr_val)
13 return FPProcessNaNs3(type1, type2, type3, op1, op2, op3, fpscr_val, FALSE);
14
15 (boolean, bits(N)) FPProcessNaNs3(FPType type1, FPType type2, FPType type3,
16 bits(N) op1, bits(N) op2, bits(N) op3,
17 bits(32) fpscr_val, boolean predicated)
18 assert N IN {16,32,64};
19 if type1 == FPType_SNaN then
20 done = TRUE; result = FPProcessNaN(type1, op1, fpscr_val, predicated);
21 elsif type2 == FPType_SNaN then
22 done = TRUE; result = FPProcessNaN(type2, op2, fpscr_val, predicated);
23 elsif type3 == FPType_SNaN then
24 done = TRUE; result = FPProcessNaN(type3, op3, fpscr_val, predicated);
25 elsif type1 == FPType_QNaN then
26 done = TRUE; result = FPProcessNaN(type1, op1, fpscr_val, predicated);
27 elsif type2 == FPType_QNaN then
28 done = TRUE; result = FPProcessNaN(type2, op2, fpscr_val, predicated);
29 elsif type3 == FPType_QNaN then
30 done = TRUE; result = FPProcessNaN(type3, op3, fpscr_val, predicated);
31 else
32 done = FALSE; result = Zeros(N); // 'Don't care' result
33 return (done, result);

E2.1.159 FPRound

1 // FPRound()
2 // =========
3 // Used by data processing and int/fixed <-> FP conversion instructions.
4 // For half-precision data it ignores AHP, and observes FZ16.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1885

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

5
6 bits(N) FPRound(real value, integer N, FPSCR_Type fpscr_val)
7 return FPRound(value, N, fpscr_val, FALSE);
8
9 bits(N) FPRound(real value, integer N, FPSCR_Type fpscr_val, boolean predicated)

10 fpscr_val.AHP = '0';
11 return FPRoundBase(value, N, fpscr_val, predicated);

E2.1.160 FPRoundBase

1 // FPRoundBase()
2 // =============
3 // The 'fpscr_val' argument supplies FPSCR control bits. Status information is
4 // updated directly in FPSCR where appropriate.
5
6 bits(N) FPRoundBase(real value, integer N, FPSCR_Type fpscr_val, boolean predicated)
7 assert N IN {16,32,64};
8 assert value != 0.0;
9

10 // Obtain format parameters - minimum exponent, numbers of exponent and fraction bits.
11 integer E = if N == 16 then 5 elsif N == 32 then 8 else 11;
12 minimum_exp = 2 - 2^(E-1);
13 constant integer F = N - E - 1;
14
15 // Split value into sign, unrounded mantissa and exponent.
16 if value < 0.0 then
17 sign = '1'; mantissa = -value;
18 else
19 sign = '0'; mantissa = value;
20 exponent = 0;
21 while mantissa < 1.0 do
22 mantissa = mantissa * 2.0; exponent = exponent - 1;
23 while mantissa >= 2.0 do
24 mantissa = mantissa / 2.0; exponent = exponent + 1;
25
26 // Deal with flush-to-zero.
27 if ((N != 16 && fpscr_val.FZ == '1') || (N == 16 && fpscr_val.FZ16 == '1')) &&
28 exponent < minimum_exp then
29 result = FPZero(sign, N);
30 if !predicated then FPSCR.UFC = '1'; // Flush-to-zero never generates a trapped
31 // exception
32 else
33
34 // Start creating the exponent value for the result. Start by biasing the actual
35 // exponent so that the minimum exponent becomes 1, lower values 0 (indicating
36 // possible underflow).
37 biased_exp = Max(exponent - minimum_exp + 1, 0);
38 if biased_exp == 0 then mantissa = mantissa / 2.0^(minimum_exp - exponent);
39
40 // Get the unrounded mantissa as an integer, and the "units in last place"
41 // rounding error.
42 int_mant = RoundDown(mantissa * 2.0^F); // if biased_exp == 0, < 2.0^F
43 // otherwise >= 2.0^F
44 error = mantissa * 2.0^F - Real(int_mant);
45
46 // Underflow occurs if exponent is too small before rounding, and result is inexact
47 // or the Underflow exception is trapped.
48 if biased_exp == 0 && error != 0.0 then
49 FPProcessException(FPExc_Underflow, fpscr_val, predicated);
50
51 // Round result according to rounding mode.
52 case fpscr_val.RMode of
53 when FPSCR_RMode_RN // Round to Nearest (rounding to even if exactly halfway)
54 round_up = (error > 0.5 || (error == 0.5 && int_mant[0] == '1'));
55 overflow_to_inf = TRUE;
56 when FPSCR_RMode_RP // Round towards Plus Infinity
57 round_up = (error != 0.0 && sign == '0');
58 overflow_to_inf = (sign == '0');

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1886

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

59 when FPSCR_RMode_RM // Round towards Minus Infinity
60 round_up = (error != 0.0 && sign == '1');
61 overflow_to_inf = (sign == '1');
62 when FPSCR_RMode_RZ // Round towards Zero
63 round_up = FALSE;
64 overflow_to_inf = FALSE;
65 if round_up then
66 int_mant = int_mant + 1;
67 if int_mant == 2^F then // Rounded up from denormalized to normalized
68 biased_exp = 1;
69 if int_mant == 2^(F+1) then // Rounded up to next exponent
70 biased_exp = biased_exp + 1; int_mant = int_mant DIV 2;
71
72 // Deal with overflow and generate result.
73 if N != 16 || fpscr_val.AHP == '0' then // Single, double or IEEE half precision
74 if biased_exp >= 2^E - 1 then
75 result = if overflow_to_inf then FPInfinity(sign,N) else FPMaxNormal(sign,N);
76 FPProcessException(FPExc_Overflow, fpscr_val, predicated);
77 error = 1.0; // Ensure that an Inexact exception occurs
78 else
79 result = sign : biased_exp[E-1:0] : int_mant[F-1:0];
80 else // Alternative half precision
81 if biased_exp >= 2^E then
82 result = sign : Ones(N-1);
83 FPProcessException(FPExc_InvalidOp, fpscr_val, predicated);
84 error = 0.0; // Ensure that an Inexact exception does not occur
85 else
86 result = sign : biased_exp[E-1:0] : int_mant[F-1:0];
87
88 // Deal with Inexact exception.
89 if error != 0.0 then
90 FPProcessException(FPExc_Inexact, fpscr_val, predicated);
91
92 return result;

E2.1.161 FPRoundCV

1 // FPRoundCV()
2 // ===========
3 // Used for FP <-> FP conversion instructions.
4 // For half-precision data processing operations the FZ16 bit
5 // is ignored and the AHP bit is observed.
6
7 bits(N) FPRoundCV(real value, integer N, FPSCR_Type fpscr_val)
8 return FPRoundCV(value, N, fpscr_val, FALSE);
9

10 bits(N) FPRoundCV(real value, integer N, FPSCR_Type fpscr_val, boolean predicated)
11 fpscr_val.FZ16 = '0';
12 return FPRoundBase(value, N, fpscr_val, predicated);

E2.1.162 FPRoundInt

1 // FPRoundInt()
2 // ============
3 // Round floating-point value to nearest integral floating point value
4 // using given rounding mode. If exact is TRUE, set inexact flag if result
5 // is not numerically equal to given value.
6
7 bits(N) FPRoundInt(bits(N) op, bits(2) rmode, boolean away, boolean exact,
8 boolean fpscr_controlled)
9 return FPRoundInt(op, rmode, away, exact, fpscr_controlled, FALSE);

10
11 bits(N) FPRoundInt(bits(N) op, bits(2) rmode, boolean away, boolean exact,
12 boolean fpscr_controlled, boolean predicated)
13 assert N IN {16,32,64};
14 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
15

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1887

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

16 // Unpack using FPSCR to determine if subnormals are flushed-to-zero
17 (fp_type,sign,value) = FPUnpack(op, fpscr_val, predicated);
18
19 if fp_type == FPType_SNaN || fp_type == FPType_QNaN then
20 result = FPProcessNaN(fp_type, op, fpscr_val, predicated);
21 elsif fp_type == FPType_Infinity then
22 result = FPInfinity(sign, N);
23 elsif fp_type == FPType_Zero then
24 result = FPZero(sign, N);
25 else
26 // extract integer component
27 int_result = RoundDown(value);
28 error = value - Real(int_result);
29
30 // Determine whether supplied rounding mode requires an increment
31 case rmode of
32 when '00' // Round to nearest, ties to even
33 round_up = (error > 0.5 || (error == 0.5 && int_result[0] == '1'));
34 when '01' // Round towards Plus Infinity
35 round_up = (error != 0.0);
36 when '10' // Round towards Minus Infinity
37 round_up = FALSE;
38 when '11' // Round towards Zero
39 round_up = (error != 0.0 && int_result < 0);
40
41 if away then // Round towards Zero, ties away
42 round_up = (error > 0.5 || (error == 0.5 && int_result >= 0));
43
44 if round_up then int_result = int_result + 1;
45
46 // Convert integer value into an equivalent real value
47 real_result = Real(int_result);
48
49 // Re-encode as a floating-point value, result is always exact
50 if real_result == 0.0 then
51 result = FPZero(sign, N);
52 else
53 result = FPRound(real_result, N, fpscr_val, predicated);
54
55 // Generate inexact exceptions
56 if error != 0.0 && exact then
57 FPProcessException(FPExc_Inexact, fpscr_val, predicated);
58
59 return result;

E2.1.163 FPSingleToDouble

1 // FPSingleToDouble()
2 // ==================
3
4 bits(64) FPSingleToDouble(bits(32) operand, boolean fpscr_controlled)
5 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
6 (fp_type,sign,value) = FPUnpackCV(operand, fpscr_val);
7 if fp_type == FPType_SNaN || fp_type == FPType_QNaN then
8 if fpscr_val.DN == '1' then
9 result = FPDefaultNaN(64);

10 else
11 result = sign : '11111111111 1' : operand[21:0] : Zeros(29);
12 if fp_type == FPType_SNaN then
13 FPProcessException(FPExc_InvalidOp, fpscr_val);
14 elsif fp_type == FPType_Infinity then
15 result = FPInfinity(sign, 64);
16 elsif fp_type == FPType_Zero then
17 result = FPZero(sign, 64);
18 else
19 result = FPRoundCV(value, 64, fpscr_val); // Rounding will be exact
20 return result;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1888

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

E2.1.164 FPSingleToHalf

1 // FPSingleToHalf()
2 // ================
3
4 bits(16) FPSingleToHalf(bits(32) operand, boolean fpscr_controlled)
5 return FPSingleToHalf(operand, fpscr_controlled, FALSE);
6
7 bits(16) FPSingleToHalf(bits(32) operand, boolean fpscr_controlled, boolean predicated)
8 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
9 (fp_type,sign,value) = FPUnpackCV(operand, fpscr_val, predicated);

10 if fp_type == FPType_SNaN || fp_type == FPType_QNaN then
11 if fpscr_val.AHP == '1' then
12 result = FPZero(sign, 16);
13 elsif fpscr_val.DN == '1' then
14 result = FPDefaultNaN(16);
15 else
16 result = sign : '11111 1' : operand[21:13];
17 if fp_type == FPType_SNaN || fpscr_val.AHP == '1' then
18 FPProcessException(FPExc_InvalidOp, fpscr_val, predicated);
19 elsif fp_type == FPType_Infinity then
20 if fpscr_val.AHP == '1' then
21 result = sign : Ones(15);
22 FPProcessException(FPExc_InvalidOp, fpscr_val, predicated);
23 else
24 result = FPInfinity(sign, 16);
25 elsif fp_type == FPType_Zero then
26 result = FPZero(sign, 16);
27 else
28 result = FPRoundCV(value, 16, fpscr_val, predicated);
29 return result;

E2.1.165 FPSqrt

1 // FPSqrt()
2 // ========
3
4 bits(N) FPSqrt(bits(N) operand)
5 assert N IN {16,32,64};
6 (fp_type,sign,value) = FPUnpack(operand, FPSCR);
7 if fp_type == FPType_SNaN || fp_type == FPType_QNaN then
8 result = FPProcessNaN(fp_type, operand, FPSCR);
9 elsif fp_type == FPType_Zero then

10 result = FPZero(sign, N);
11 elsif fp_type == FPType_Infinity && sign == '0' then
12 result = FPInfinity(sign, N);
13 elsif sign == '1' then
14 result = FPDefaultNaN(N);
15 FPProcessException(FPExc_InvalidOp, FPSCR);
16 else
17 result = FPRound(Sqrt(value), N, FPSCR);
18 return result;

E2.1.166 FPSub

1 // FPSub()
2 // =======
3
4 bits(N) FPSub(bits(N) op1, bits(N) op2, boolean fpscr_controlled)
5 return FPSub(op1, op2, fpscr_controlled, FALSE);
6
7 bits(N) FPSub(bits(N) op1, bits(N) op2, boolean fpscr_controlled, boolean predicated)
8 assert N IN {16,32,64};
9 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();

10 (fp_type1,sign1,value1) = FPUnpack(op1, fpscr_val, predicated);
11 (fp_type2,sign2,value2) = FPUnpack(op2, fpscr_val, predicated);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1889

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

12 (done,result) = FPProcessNaNs(fp_type1, fp_type2, op1, op2, fpscr_val, predicated);
13 if !done then
14 inf1 = (fp_type1 == FPType_Infinity); inf2 = (fp_type2 == FPType_Infinity);
15 zero1 = (fp_type1 == FPType_Zero); zero2 = (fp_type2 == FPType_Zero);
16 if inf1 && inf2 && sign1 == sign2 then
17 result = FPDefaultNaN(N);
18 FPProcessException(FPExc_InvalidOp, fpscr_val, predicated);
19 elsif (inf1 && sign1 == '0') || (inf2 && sign2 == '1') then
20 result = FPInfinity('0', N);
21 elsif (inf1 && sign1 == '1') || (inf2 && sign2 == '0') then
22 result = FPInfinity('1', N);
23 elsif zero1 && zero2 && sign1 == NOT(sign2) then
24 result = FPZero(sign1, N);
25 else
26 result_value = value1 - value2;
27 if result_value == 0.0 then // Sign of exact zero result depends
28 // on rounding mode
29 result_sign = if fpscr_val.RMode == FPSCR_RMode_RM then '1' else '0';
30 result = FPZero(result_sign, N);
31 else
32 result = FPRound(result_value, N, fpscr_val, predicated);
33 return result;

E2.1.167 FPToFixed

1 // FPToFixed()
2 // ===========
3
4 bits(M) FPToFixed(bits(N) operand, integer M, integer fraction_bits, boolean unsigned,
5 boolean round_towards_zero, boolean fpscr_controlled)
6 return FPToFixed(operand, M, fraction_bits, unsigned, round_towards_zero,
7 fpscr_controlled, FALSE);
8
9 bits(M) FPToFixed(bits(N) operand, integer M, integer fraction_bits, boolean unsigned,

10 boolean round_towards_zero, boolean fpscr_controlled,
11 boolean predicated)
12 assert N IN {16,32,64};
13 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
14 if round_towards_zero then fpscr_val.RMode = FPSCR_RMode_RZ;
15 (fp_type,-,value) = FPUnpack(operand, fpscr_val, predicated);
16
17 // For NaNs and infinities, FPUnpack() has produced a value that will round to the
18 // required result of the conversion. Also, the value produced for infinities will
19 // cause the conversion to overflow and signal an Invalid Operation floating-point
20 // exception as required. NaNs must also generate such a floating-point exception.
21 if fp_type == FPType_SNaN || fp_type == FPType_QNaN then
22 FPProcessException(FPExc_InvalidOp, fpscr_val, predicated);
23
24 // Scale value by specified number of fraction bits, then start rounding to an integer
25 // and determine the rounding error.
26 value = value * 2.0^fraction_bits;
27 int_result = RoundDown(value);
28 error = value - Real(int_result);
29
30 // Apply the specified rounding mode.
31 case fpscr_val.RMode of
32 when FPSCR_RMode_RN // Round to Nearest (rounding to even if exactly halfway)
33 round_up = (error > 0.5 || (error == 0.5 && int_result[0] == '1'));
34 when FPSCR_RMode_RP // Round towards Plus Infinity
35 round_up = (error != 0.0);
36 when FPSCR_RMode_RM // Round towards Minus Infinity
37 round_up = FALSE;
38 when FPSCR_RMode_RZ // Round towards Zero
39 round_up = (error != 0.0 && int_result < 0);
40 if round_up then int_result = int_result + 1;
41
42 // Bitstring result is the integer result saturated to the destination size, with
43 // saturation indicating overflow of the conversion (signaled as an Invalid

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1890

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

44 // Operation floating-point exception).
45 (result, overflow) = SatQ(int_result, M, unsigned);
46 if overflow then
47 FPProcessException(FPExc_InvalidOp, fpscr_val, predicated);
48 elsif error != 0.0 then
49 FPProcessException(FPExc_Inexact, fpscr_val, predicated);
50
51 return result;

E2.1.168 FPToFixedDirected

1 // FPToFixedDirected()
2 // ===================
3
4 bits(M) FPToFixedDirected(bits(N) op, integer fbits, boolean unsigned, bits(2) round_mode,
5 boolean fpscr_controlled)
6 return FPToFixedDirected(op, fbits, unsigned, round_mode, fpscr_controlled, FALSE);
7
8 bits(M) FPToFixedDirected(bits(N) op, integer fbits, boolean unsigned, bits(2) round_mode,
9 boolean fpscr_controlled, boolean predicated)

10 assert N IN {16,32,64};
11
12 fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
13
14 // Unpack using FPSCR to determine if subnormals are flushed-to-zero
15 (fp_type,-,value) = FPUnpack(op, fpscr_val, predicated);
16
17 // If NaN, set cumulative flag or take exception
18 if fp_type == FPType_SNaN || fp_type == FPType_QNaN then
19 FPProcessException(FPExc_InvalidOp, FPSCR, predicated);
20
21 // Scale by fractional bits and produce integer rounded towards
22 // minus-infinity
23 value = value * 2.0^fbits;
24 int_result = RoundDown(value);
25 error = value - Real(int_result);
26
27 // Determine whether supplied rounding mode requires an increment
28 case round_mode of
29 when '00' // ties away
30 round_up = (error > 0.5 || (error == 0.5 && int_result >= 0));
31 when '01' // nearest even
32 round_up = (error > 0.5 || (error == 0.5 && int_result[0] == '1'));
33 when '10' // plus infinity
34 round_up = (error != 0.0);
35 when '11' // neg infinity
36 round_up = FALSE;
37
38 if round_up then int_result = int_result + 1;
39
40 // Generate saturated result and exceptions
41 (result, overflow) = SatQ(int_result, M, unsigned);
42
43 if overflow then
44 FPProcessException(FPExc_InvalidOp, fpscr_val, predicated);
45 elsif error != 0.0 then
46 FPProcessException(FPExc_Inexact, fpscr_val, predicated);
47 return result;

E2.1.169 FPType

1 // Type of floating-point value. Floating-point values are categorized into one
2 // of the following type during unpacking.
3
4 enumeration FPType {FPType_Nonzero, FPType_Zero, FPType_Infinity, FPType_QNaN, FPType_SNaN};

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1891

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

E2.1.170 FPUnpack

1 // FPUnpack()
2 // ==========
3 //
4 // Used by data processing and int/fixed <-> FP conversion instructions.
5 // For half-precision data it ignores AHP, and observes FZ16.
6
7 (FPType, bit, real) FPUnpack(bits(N) fpval, FPSCR_Type fpscr_val)
8 return FPUnpack(fpval, fpscr_val, FALSE);
9

10 (FPType, bit, real) FPUnpack(bits(N) fpval, FPSCR_Type fpscr_val, boolean predicated)
11 fpscr_val.AHP = '0';
12 return FPUnpackBase(fpval, fpscr_val, predicated);

E2.1.171 FPUnpackBase

1 // FPUnpackBase()
2 // ==============
3 //
4 // Unpack a floating-point number into its type, sign bit and the real number
5 // that it represents. The real number result has the correct sign for numbers
6 // and infinities, is very large in magnitude for infinities, and is 0.0 for
7 // NaNs. (These values are chosen to simplify the description of comparisons
8 // and conversions.)
9 //

10 // The 'fpscr_val' argument supplies FPSCR control bits. Status information is
11 // updated directly in FPSCR where appropriate.
12
13 (FPType, bit, real) FPUnpackBase(bits(N) fpval, FPSCR_Type fpscr_val, boolean predicated)
14 assert N IN {16,32,64};
15
16 if N == 16 then
17 sign = fpval[15];
18 exp16 = fpval[14:10];
19 frac16 = fpval[9:0];
20 if IsZero(exp16) then
21 // Produce zero if value is zero or flush-to-zero is selected
22 if IsZero(frac16) || fpscr_val.FZ16 == '1' then
23 fp_type = FPType_Zero; value = 0.0;
24 else
25 fp_type = FPType_Nonzero; value = 2.0^-14 * (Real(UInt(frac16)) * 2.0^-10);
26 elsif IsOnes(exp16) && fpscr_val.AHP == '0' then // Infinity or NaN in IEEE format
27 if IsZero(frac16) then
28 fp_type = FPType_Infinity; value = 2.0^1000000;
29 else
30 fp_type = if frac16[9] == '1' then FPType_QNaN else FPType_SNaN;
31 value = 0.0;
32 else
33 fp_type = FPType_Nonzero;
34 value = 2.0^(UInt(exp16)-15) * (1.0 + Real(UInt(frac16)) * 2.0^-10);
35
36 elsif N == 32 then
37
38 sign = fpval[31];
39 exp32 = fpval[30:23];
40 frac32 = fpval[22:0];
41 if IsZero(exp32) then
42 // Produce zero if value is zero or flush-to-zero is selected.
43 if IsZero(frac32) || fpscr_val.FZ == '1' then
44 fp_type = FPType_Zero; value = 0.0;
45 if !IsZero(frac32) then // Denormalized input flushed to zero
46 FPProcessException(FPExc_InputDenorm, fpscr_val, predicated);
47 else
48 fp_type = FPType_Nonzero; value = 2.0^-126 * (Real(UInt(frac32)) * 2.0^-23);
49 elsif IsOnes(exp32) then
50 if IsZero(frac32) then

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1892

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

51 fp_type = FPType_Infinity; value = 2.0^1000000;
52 else
53 fp_type = if frac32[22] == '1' then FPType_QNaN else FPType_SNaN;
54 value = 0.0;
55 else
56 fp_type = FPType_Nonzero;
57 value = 2.0^(UInt(exp32)-127) * (1.0 + Real(UInt(frac32)) * 2.0^-23);
58
59 else // N == 64
60
61 sign = fpval[63];
62 exp64 = fpval[62:52];
63 frac64 = fpval[51:0];
64 if IsZero(exp64) then
65 // Produce zero if value is zero or flush-to-zero is selected.
66 if IsZero(frac64) || fpscr_val.FZ == '1' then
67 fp_type = FPType_Zero; value = 0.0;
68 if !IsZero(frac64) then // Denormalized input flushed to zero
69 FPProcessException(FPExc_InputDenorm, fpscr_val, predicated);
70 else
71 fp_type = FPType_Nonzero;
72 value = 2.0^-1022 * (Real(UInt(frac64)) * 2.0^-52);
73 elsif IsOnes(exp64) then
74 if IsZero(frac64) then
75 fp_type = FPType_Infinity;
76 value = 2.0^1000000;
77 else
78 fp_type = if frac64[51] == '1' then FPType_QNaN else FPType_SNaN;
79 value = 0.0;
80 else
81 fp_type = FPType_Nonzero;
82 value = 2.0^(UInt(exp64)-1023) * (1.0 + Real(UInt(frac64)) * 2.0^-52);
83
84 if sign == '1' then value = -value;
85 return (fp_type, sign, value);

E2.1.172 FPUnpackCV

1 // FPUnpackCV()
2 // ============
3 //
4 // Used for FP <-> FP conversion instructions.
5 // For half-precision data ignores FZ16 and observes AHP.
6
7 (FPType, bit, real) FPUnpackCV(bits(N) fpval, FPSCR_Type fpscr_val)
8 return FPUnpackCV(fpval, fpscr_val, FALSE);
9

10 (FPType, bit, real) FPUnpackCV(bits(N) fpval, FPSCR_Type fpscr_val, boolean predicated)
11 fpscr_val.FZ16 = '0';
12 return FPUnpackBase(fpval, fpscr_val, predicated);

E2.1.173 FPZero

1 // FPZero()
2 // ========
3
4 bits(N) FPZero(bit sign, integer N)
5 assert N IN {16,32,64};
6 integer E = if N == 16 then 5 elsif N == 32 then 8 else 11;
7 constant integer F = N - E - 1;
8 bits(E) exp;
9 bits(F) frac;

10 exp = Zeros(E);
11 frac = Zeros(F);
12 return sign : exp : frac;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1893

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

E2.1.174 FunctionReturn

1 // FunctionReturn()
2 // ================
3
4 ExcInfo FunctionReturn()
5 exc = DefaultExcInfo();
6
7 // Pull the return address and IPSR off the Secure stack
8 mode = CurrentMode();
9 spName = LookUpSP_with_security_mode(TRUE, mode);

10 framePtr = _SP(spName);
11 if !IsAligned(framePtr, 8) then UNPREDICTABLE;
12 // Only stack locations, not the load order are architected
13 RETPSR_Type newPSR;
14 if exc.fault == NoFault then (exc, newPSR) = Stack(framePtr, 4, spName, mode);
15 if exc.fault == NoFault then (exc, newPC) = Stack(framePtr, 0, spName, mode);
16
17 // Check the IPSR value that has been unstacked is consistent with the current
18 // mode, and being originally called from the Secure state.
19 // NOTE: It is IMPLEMENTATION DEFINED whether this check is performed before
20 // or after the load of the return address above.
21 if (exc.fault == NoFault) &&
22 !(((IPSR.Exception == 0[8:0]) && (newPSR.Exception == 0[8:0])) ||
23 ((IPSR.Exception == 1[8:0]) && (newPSR.Exception != 0[8:0]))) then
24 if HaveMainExt() then
25 UFSR_S.INVPC = '1';
26 // Create the exception. NOTE: If Main Extension not implemented then the fault
27 // always escalates to a HardFault
28 exc = CreateException(UsageFault, TRUE, TRUE);
29 // The IPSR value is set as UNKNOWN if the IPSR value is not supported by the PE
30 excNum = UInt(newPSR.Exception);
31 validIPSR = excNum IN {0, 1, NMI, HardFault, SVCall, PendSV, SysTick};
32 if !validIPSR && HaveMainExt() then
33 validIPSR = excNum IN {MemManage, BusFault, UsageFault, SecureFault, DebugMonitor};
34 if !validIPSR && !IsIrqValid(excNum) then
35 newPSR.Exception = bits(9) UNKNOWN;
36
37 // Only consume the function return stack frame and update the XPSR/PC if no
38 // faults occured.
39 if exc.fault == NoFault then
40 // Transition to the Secure state
41 CurrentState = SecurityState_Secure;
42 // Update stack pointer. NOTE: Stack pointer limit not checked on function
43 // return as stack pointer guaranteed to be ascending not descending.
44 exc = _SP(spName, FALSE, TRUE, framePtr + 8);
45 assert exc.fault == NoFault;
46
47 IPSR.Exception = newPSR.Exception;
48 CONTROL_S.SFPA = newPSR.SFPA;
49 // IT/ICI/ECI/LOB data cleared to prevent Non-secure code interfering with
50 // Secure execution
51 if HaveMainExt() then
52 ITSTATE = Zeros(8);
53 if HaveLOBExt() then
54 LO_BRANCH_INFO.VALID = '0';
55 // if EPSR.T == 0, a UsageFault('Invalid State') or a HardFault is taken
56 // on the next instruction depending on whether the Main Extension is
57 // is implemented or not.
58 EPSR.T = newPC[0];
59 BranchTo(newPC[31:1]:'0');
60 return exc;

E2.1.175 GenerateCoprocessorException

1 // GenerateCoprocessorException()
2 // ==============================

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1894

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

3
4 GenerateCoprocessorException()
5 UFSR.UNDEFINSTR = '1';
6 excInfo = CreateException(UsageFault);
7 HandleException(excInfo);

E2.1.176 GenerateDebugEventResponse

1 // GenerateDebugEventResponse()
2 // ============================
3 // Generate a debug event response based on the PE configuration.
4
5 GenerateDebugEventResponse(boolean isBKPT)
6 if CanHaltOnEvent(IsSecure(), FindPriv()) then
7 DHCSR.C_HALT = '1';
8 if isBKPT then
9 DFSR.BKPT = '1';

10 // Internally generated debug events halt synchronously and terminate
11 // the current instruction
12 Halt();
13 EndOfInstruction();
14 else
15 DFSR.EXTERNAL = '1';
16
17 elsif isBKPT then
18 if DEMCR.MON_EN == '1' || (HaveUDE() && DEMCR.UMON_EN == '1') then
19 excInfo = CreateException(DebugMonitor, (IsSecure() && DEMCR.SDME == '0'),

IsSecure());
20 if excInfo.fault == DebugMonitor then
21 DFSR.BKPT = '1';
22 HandleException(excInfo);
23 else
24 // If Halting is not permitted and a DebugMonitor exception cannot be pended
25 // a BKPT event is escalated to HardFault
26 excInfo = CreateException(HardFault);
27 if HaveMainExt() then
28 HFSR.DEBUGEVT = '1';
29 HandleException(excInfo);
30
31 elsif CanPendMonitorOnEvent(IsSecure(), TRUE, TRUE, FindPriv(), FALSE) then
32 DFSR.EXTERNAL = '1';
33 DEMCR.MON_PEND = '1';

E2.1.177 GenerateIntegerZeroDivide

1 // GenerateIntegerZeroDivide()
2 // ===========================
3
4 GenerateIntegerZeroDivide()
5 UFSR.DIVBYZERO = '1';
6 excInfo = CreateException(UsageFault);
7 HandleException(excInfo);

E2.1.178 GetActiveChains

1 // GetActiveChains()
2 // ==================
3
4 integer GetActiveChains()
5 count = 0;
6 if HaveMve() then
7 for i = 0 to MAX_OVERLAPPING_INSTRS-1
8 if _InstInfo[i].Valid then
9 count = count + 1;

10 return count;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1895

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

E2.1.179 GetCurInstrBeat

1 // GetCurInstrBeat()
2 // =================
3
4 (integer, bits(4)) GetCurInstrBeat()
5 assert HaveMve();
6 // By default assume all lanes are active
7 elmtMask = Ones(4);
8
9 // If VPT active apply the predicate flags in VPR.P0

10 if VPTActive() then
11 elmtMask = elmtMask AND Elem[VPR.P0, _BeatID, 4];
12
13 // LOB truncation may override the flags on the last iteration of a loop
14 // LTPSIZE < 4 is a proxy for knowing if we're in a loop and tail predication is active.
15 ltpsize = if _CurrentInstrExecState.ResetLTPSize then 4 else LTPSIZE;
16 if ltpsize < 4 && IsLastLowOverheadLoop() then
17 loopCount = _CurrentInstrExecState.LoopCount;
18 predSize = ltpsize;
19 fullMask = ZeroExtend(Ones(UInt(loopCount[4-predSize:0] : Zeros(predSize))), 16);
20 elmtMask = elmtMask AND Elem[fullMask, _BeatID, 4];
21 return (_BeatID, elmtMask);

E2.1.180 GetInstrExecState

1 // GetInstrExecState()
2 // ===================
3
4 INSTR_EXEC_STATE_Type GetInstrExecState(integer next)
5 // next = 0: returns current (committed) state
6 // next > 0: returns n-th state from now
7 assert (next >= 0 && next < MAX_BEATS);
8 INSTR_EXEC_STATE_Type state;
9

10 // 1) Next == 0: current committed state
11 state.FetchAddr = _RName[RNamesPC];
12 state.ITState = EPSR.IT;
13 state.L = '0';
14 state.T16IND = '0';
15 state.LoopCount = LR;
16 state.LOBranchInfoValid = LO_BRANCH_INFO.VALID;
17 state.ResetLTPSize = FALSE;
18
19 // 2) Determine speculative future
20 for i = 1 to next
21 // Handle normal PC changes BEFORE LOB handling
22 if _PCChanged && i == 1 then
23 state.FetchAddr = _NextInstrAddr;
24 else
25 state.FetchAddr = state.FetchAddr + ThisInstrLength(i-1);
26
27 // If the IT state has been directly modified return that value as the
28 // next state, otherwise advance the IT state normally.
29 if _ITStateChanged && i == 1 then
30 state.ITState = _NextInstrITState;
31 else
32 state.ITState = ITAdvance(state.ITState);
33
34 // Check if loop or branch triggers PC change (unless normal PC change)
35 if (!_PCChanged) && HaveLOBExt() then
36 state = HandleLO(state);
37
38 return state;

E2.1.181 Halt

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1896

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

1 // Halt()
2 // ======
3
4 Halt()
5 // Halt
6 Halted = TRUE;
7
8 // Clear lockup state
9 LockedUp = FALSE;

10
11 // Upon entering debug state, S_REGRDY becomes valid hence must be set to '1'.
12 DHCSR.S_REGRDY = '1';
13
14 // Any pending return operation is cleared and can be re-pended on
15 // exit from Debug State.
16 _PendingReturnOperation = FALSE;
17
18 // Clear all remaining in flight instructions
19 ClearInFlightInstructions();

E2.1.182 Halted

1 // Indicates the PE is in Debug State
2
3 boolean Halted;

E2.1.183 HaltingDebugAllowed

1 // HaltingDebugAllowed()
2 // =====================
3
4 boolean HaltingDebugAllowed()
5 return ExternalInvasiveDebugEnabled() || Halted;

E2.1.184 HandleException

1 // HandleException()
2 // =================
3
4 HandleException(ExcInfo excInfo)
5 if excInfo.fault != NoFault then
6 if excInfo.lockup then
7 Lockup(excInfo.termInst);
8 else
9 // If the fault escalated to a HardFault update the syndrome info

10 if HaveMainExt() && excInfo.fault == HardFault then
11 if excInfo.origFault == DebugMonitor then
12 HFSR.DEBUGEVT = '1';
13 elsif excInfo.origFault != HardFault then
14 HFSR.FORCED = '1';
15
16 // If the exception does not cause a lockup set the exception pending
17 // and potentially terminate execution of the current instruction
18 SetPending(excInfo.fault, excInfo.isSecure, TRUE);
19 if excInfo.termInst then
20 EndOfInstruction();

E2.1.185 HandleExceptionTransitions

1 // HandleExceptionTransitions()
2 // ============================
3
4 boolean HandleExceptionTransitions()
5 // Check for, and process any exception returns that were requested. This

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1897

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

6 // must be done after the instruction has completed so any exceptions
7 // raised during the exception return do not interfere with the execution of
8 // the instruction that cause the exception return (eg a POP causing an
9 // excReturn value to be written to the PC must adjust SP even if the

10 // exception return caused by the POP raises a fault).
11 excRetFault = FALSE;
12 tailChainedException = FALSE;
13 EXC_RETURN_Type excReturn = NextInstrAddr();
14 if _PendingReturnOperation then
15 _PendingReturnOperation = FALSE;
16 (excInfo, excReturn, tailChainedException) = ExceptionReturn(excReturn);
17 // Handle any faults raised during exception return
18 if excInfo.fault != NoFault then
19 excRetFault = TRUE;
20 // Either lockup, or pend the fault if it can be taken
21 if excInfo.lockup then
22 // Check if the fault occurred on exception return, or whether it
23 // occurred during a tail chained exception entry. This is
24 // because Lockups on exception return have to be handled
25 // differently.
26 if !excInfo.inExcTaken then
27 // If the fault occurred during exception return then the
28 // register state is UNKNOWN. This is due to the fact that
29 // an unknown amount of the exception stack frame might have
30 // been restored.
31 for n = 0 to 12
32 R[n] = bits(32) UNKNOWN;
33 LR = bits(32) UNKNOWN;
34 XPSR = bits(32) UNKNOWN;
35 if HaveMveOrFPExt() then
36 InvalidateFPRegs(FALSE, TRUE);
37 // If lockup is entered as a result of an exception return
38 // fault the original exception is deactivated. Therefore
39 // the stack pointer must be updated to consume the
40 // exception stack frame to keep the stack depth consistent
41 // with the number of active exceptions. NOTE: The XPSR SP
42 // alignment flag is UNKNOWN, assume is was zero.
43 ConsumeExcStackFrame(excReturn, '0');
44 // IPSR from stack is UNKNOWN, set IPSR based on mode
45 // specified in EXC_RETURN.
46 IPSR.Exception = (if excReturn.Mode == '1' then NoFault
47 else HardFault)[8:0];
48 if HaveMveOrFPExt() then
49 CONTROL.FPCA = NOT(excReturn.FType);
50 CONTROL_S.SFPA = bit UNKNOWN;
51 Lockup(FALSE);
52 else
53 // Set syndrome if fault escalated to a HardFault
54 if HaveMainExt() &&
55 (excInfo.fault == HardFault) &&
56 (excInfo.origFault != HardFault) then
57 HFSR.FORCED = '1';
58 SetPending(excInfo.fault, excInfo.isSecure, TRUE);
59
60 // If there is a pending exception with sufficient priority take it now.
61 // This is done before committing PC and ITSTATE changes caused by the
62 // previous instruction so that the committed architecture state reflects
63 // the context the instruction was executed in.
64 (takeException, exception, excIsSecure) = PendingExceptionDetails();
65 if takeException then
66 // If a fault occurred during an exception return then the exception
67 // stack frame will already be on the stack, as a result entry to the
68 // next exception is treated as if it were a tail chain.
69 pePriority = ExecutionPriority();
70 peException = UInt(IPSR.Exception);
71 peIsSecure = IsSecure();
72 if excRetFault then
73 // If the fault occurred during ExceptionTaken() then LR will have
74 // been updated with the new exception return value. To excReturn

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1898

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

75 // consistent with the state of the exception stack frame we need to
76 // use the updated version in this case. If no updates have occurred
77 // then the excReturn value from the previous exception return is
78 // used.
79 if excInfo.inExcTaken then
80 excReturn = LR;
81 (excInfo, excReturn) = TailChain(exception, excIsSecure, excReturn);
82 else
83 (excInfo, excReturn) = ExceptionEntry(exception, excIsSecure);
84 // Handle any derived faults that have occurred
85 if excInfo.fault != NoFault then
86 DerivedLateArrival(pePriority, peException, peIsSecure, excInfo,
87 exception, excIsSecure, excReturn);
88
89 return takeException || tailChainedException;

E2.1.186 HandleLO

1 // HandleLO()
2 // ===========
3
4 INSTR_EXEC_STATE_Type HandleLO(INSTR_EXEC_STATE_Type state)
5 // The default state for the link bit is FALSE
6 state.L = '0';
7
8 // If valid branch info matches the fetch address update the LOB state and
9 // fetch address accordingly.

10 if state.LOBranchInfoValid == '1' then
11 if LO_BRANCH_INFO.END_ADDR == state.FetchAddr[31:1] then
12 state.L = LO_BRANCH_INFO.BF AND LO_BRANCH_INFO.LF;
13 state.T16IND = LO_BRANCH_INFO.T16IND;
14 // Conditions for LOB handling in an IT block
15 if InITBlock(state.ITState) then
16 // The BF b_label is allowed to be the last instruction in an IT block.
17 // As the BF branch occurs before this instruction is executed, the ITSTATE
18 // needs to be updated as if the end of the IT block had been reached.
19 if LO_BRANCH_INFO.BF == '1' then
20 state.ITState = Zeros(8);
21 else
22 // If LO_BRANCH_INFO is valid and a low overhead branch is handled,
23 // then the behavior is CONSTRAINED UNPREDICTABLE.
24 CONSTRAINED_UNPREDICTABLE;
25 // Branch cache address matched, branch to offset specified
26 if LO_BRANCH_INFO.BF == '1' ||
27 (LO_BRANCH_INFO.BF == '0' && LO_BRANCH_INFO.LF == '1') ||
28 !IsLastLowOverheadLoop(state) then
29 state.FetchAddr = LO_BRANCH_INFO.JUMP_ADDR:'0';
30 // If the branch is due to a BF instruction invalidate the branch
31 // info so spurious branches do not occur.
32 if LO_BRANCH_INFO.BF == '1' then
33 state.LOBranchInfoValid = '0';
34 elsif LO_BRANCH_INFO.LF == '0' then
35 // Looping mode: Decrement the loop counter unless this is the
36 // last iteration, in which case looping mode is exited.
37 if !IsLastLowOverheadLoop(state) then
38 state.LoopCount = state.LoopCount - (1 << (4 - LTPSIZE))[31:0];
39 else
40 // LO_BRANCH_INFO.VALID does not need to be cleared at the end
41 // of the loop.
42 //
43 // Skip over LE at the end of the loop.
44 state.FetchAddr = state.FetchAddr + 4;
45 // Reset LTPSIZE if it is accessible, which will be the case
46 // for all predicated loops as the LETP instruction will
47 // have forced the state to be accessible and all operations
48 // that can cause the state to be inaccessible require a CSE
49 // which will invalidate LO_BRANCH_INFO.
50 if ActiveFPState() then

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1899

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

51 state.ResetLTPSize = TRUE;
52 return state;

E2.1.187 HasArchVersion

1 // HasArchVersion()
2 // ================
3
4 // Return TRUE if the implemented architecture includes the extensions defined in the
5 // specified architecture version.
6
7 boolean HasArchVersion(ArchVersion version)
8 return version == Armv8p0 || boolean IMPLEMENTATION_DEFINED "Architecture version";

E2.1.188 HaveDebugMonitor

1 // HaveDebugMonitor()
2 //===================
3
4 boolean HaveDebugMonitor()
5 return HaveMainExt();

E2.1.189 HaveDSPExt

1 // HaveDSPExt()
2 // ===========
3 // Check whether DSP Extension is implemented.
4
5 boolean HaveDSPExt();

E2.1.190 HaveDWT

1 // HaveDWT()
2 // =========
3 // Check whether Data Watchpoint and Trace unit is implemented.
4
5 boolean HaveDWT();

E2.1.191 HaveFPB

1 // HaveFPB()
2 // =========
3 // Check whether Flash Patch and Breakpoint unit is implemented.
4
5 boolean HaveFPB();

E2.1.192 HaveFPExt

1 // HaveFPExt()
2 // ===========
3 // Check whether Floating Point Extension is implemented.
4
5 boolean HaveFPExt();

E2.1.193 HaveHaltingDebug

1 // HaveHaltingDebug()
2 // ==================
3 // Check whether Halting debug implemented.
4
5 boolean HaveHaltingDebug();

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1900

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

E2.1.194 HaveITM

1 // HaveITM()
2 // =========
3 // Check whether Instrumentation Trace Macrocell is implemented.
4
5 boolean HaveITM();

E2.1.195 HaveLOBExt

1 // HaveLOBExt()
2 // ============
3 // Check whether the Low Overhead Loops and Branch Future Extension is implemented
4
5 boolean HaveLOBExt();

E2.1.196 HaveMainExt

1 // HaveMainExt()
2 // =============
3 // Check whether Main Extension is implemented.
4
5 boolean HaveMainExt();

E2.1.197 HaveMve

1 // HaveMve()
2 // =========
3 // Check whether M-profile Vector Extension is implemented
4
5 boolean HaveMve();

E2.1.198 HaveMveOrFPExt

1 // HaveMveOrFPExt()
2 // ================
3
4 boolean HaveMveOrFPExt()
5 return HaveFPExt() || HaveMve();

E2.1.199 HaveSecurityExt

1 // HaveSecurityExt()
2 // =================
3 // Check whether the implementation have Security Extensions.
4
5 boolean HaveSecurityExt();

E2.1.200 HaveSysTick

1 // HaveSysTick()
2 // =============
3 // Returns the number of SysTick instances (0, 1 or 2).
4
5 integer HaveSysTick();

E2.1.201 HaveUDE

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1901

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

1 // HaveUDE()
2 // =========
3 // Check whether Unprivileged Debug Extension is implemented.
4
5 boolean HaveUDE()

E2.1.202 HighestPri

1 // HighestPri()
2 // ============
3 // Priority of Thread mode with no active exceptions.
4
5 integer HighestPri()
6 // The value is PriorityMax + 1 = 256 (configurable priority maximum bit field is 8 bits)
7 return 256;

E2.1.203 HighestSetBit

1 // HighestSetBit()
2 // ===============
3
4 integer HighestSetBit(bits(N) x)
5 for i = N-1 downto 0
6 if x[i] == '1' then return i;
7 return -1;

E2.1.204 Hint_Debug

1 // Hint_Debug
2 // ==========
3 // Generate a hint to the debug system.
4
5 Hint_Debug(bits(4) option);

E2.1.205 Hint_PreloadData

1 // Hint_PreloadData
2 // ================
3 // Performs a preload data hint
4
5 Hint_PreloadData(bits(32) address);

E2.1.206 Hint_PreloadDataForWrite

1 // Hint_PreloadDataForWrite
2 // ========================
3 // Performs a preload data hint for write.
4
5 Hint_PreloadDataForWrite(bits(32) address);

E2.1.207 Hint_PreloadInstr

1 // Hint_PreloadInstr
2 // =================
3 // Performs a preload instructions hint
4
5 Hint_PreloadInstr(bits(32) address);

E2.1.208 Hint_Yield

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1902

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

1 // Hint_Yield
2 // ==========
3 // Performs a Yield hint
4
5 Hint_Yield();

E2.1.209 IDAUCheck

1 // IDAUCheck
2 // =========
3 // Query IDAU(Implementation Defined Attribution Unit) for attribution information
4
5 (boolean, boolean, boolean, bits(8), boolean) IDAUCheck(bits(32) address);

E2.1.210 IgnoreFaultsType

1 // Indicates Ignore Faults Types
2 // =============================
3
4 enumeration IgnoreFaultsType { IgnoreFaults_NONE,
5 IgnoreFaults_STACK,
6 IgnoreFaults_ALL };

E2.1.211 InITBlock

1 // InITBlock()
2 // ===========
3
4 boolean InITBlock(ITSTATEType itState)
5 return (itState[3:0] != '0000');
6
7 boolean InITBlock()
8 return InITBlock(ITSTATE);

E2.1.212 InstrCanChain

1 // InstrCanChain()
2 // ===============
3
4 boolean InstrCanChain(bits(32) instr)
5 // Check if the instruction is a chainable instruction, and if its a
6 // chained memory operation.
7 isChainMem = IsMveLoadStoreInstruction(instr);
8 canChain = IsMveBeatWiseInstruction(instr) && !InITBlock();
9

10 // memory operations can't chain with other memory operations
11 if canChain && isChainMem then
12 for i = 0 to MAX_OVERLAPPING_INSTRS-1
13 if _InstInfo[i].Valid && IsMveLoadStoreInstruction(ThisInstr(i)) then
14 canChain = FALSE;
15
16 // Scalar dependencies must be tracked.
17 if canChain then
18 // Get a list of registers read and written by this instruction
19 // (these are bitstring where the index of each set bit indicates a used register)
20 myScalarReads = GetMveScalarReadRegs(instr);
21 myScalarWrites = GetMveScalarWriteRegs(instr);
22 // Get a list of all registers read or written by other in-flight instructions
23 otherScalarReads = 0[15:0];
24 otherScalarWrites = 0[15:0];
25 for i = 0 to MAX_OVERLAPPING_INSTRS-1
26 if _InstInfo[i].Valid then
27 otherScalarReads = (otherScalarReads OR
28 GetMveScalarReadRegs(_InstInfo[i].Opcode));

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1903

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

29 otherScalarWrites = (otherScalarWrites OR
30 GetMveScalarWriteRegs(_InstInfo[i].Opcode));
31 // Determine if there is any overlap between the registers read and written,
32 // if so chaining is impossible.
33 if ((myScalarReads AND otherScalarWrites) != 0[15:0]) ||
34 ((myScalarWrites AND otherScalarReads) != 0[15:0]) then
35 canChain = FALSE;
36
37 // LR chaining restrictions
38 if (canChain &&
39 _InstInfo[0].Valid &&
40 LO_BRANCH_INFO.VALID == '1' &&
41 LO_BRANCH_INFO.BF == '0') then
42 // Check if any instruction in the chain writes to LR, and get the index
43 // of the last instruction in the chain.
44 lastValidId = 0;
45 lrWrite = FALSE;
46 for i = 0 to MAX_OVERLAPPING_INSTRS-1
47 if _InstInfo[i].Valid then
48 lastValidId = i;
49 lrWrite = lrWrite || GetMveScalarWriteRegs(_InstInfo[i].Opcode)[14] == '1';
50 // Do not chain the next instruction if the end of the loop body has been
51 // reached and either one of the existing chained instructions writes to
52 // LR, or the new instruction reads or writes to LR.
53 instState = GetInstrExecState(lastValidId);
54 nextSeqAddr = instState.FetchAddr + _InstInfo[lastValidId].Length[31:0];
55 if LO_BRANCH_INFO.END_ADDR == nextSeqAddr[31:1] then
56 canChain = !(lrWrite ||
57 GetMveScalarReadRegs(instr)[14] == '1' ||
58 GetMveScalarWriteRegs(instr)[14] == '1');
59
60 // Two instructions reading/writing FPSCR carry bit should not chain with each other
61 if canChain && IsMveAccessFPSCR_C(instr) then
62 for i = 0 to MAX_OVERLAPPING_INSTRS-1
63 if _InstInfo[i].Valid && IsMveAccessFPSCR_C(_InstInfo[i].Opcode) then
64 canChain = FALSE;
65
66 // Branch future chaining restrictions
67 if (canChain &&
68 _InstInfo[0].Valid &&
69 LO_BRANCH_INFO.VALID == '1' &&
70 LO_BRANCH_INFO.BF == '1') then
71 // Get the index of the last instruction in the chain.
72 lastValidId = 0;
73 for i = 0 to MAX_OVERLAPPING_INSTRS-1
74 if _InstInfo[i].Valid then
75 lastValidId = i;
76 // Do not chain the next instruction if execution has reached a BF branch
77 // point
78 instState = GetInstrExecState(lastValidId);
79 nextSeqAddr = instState.FetchAddr + _InstInfo[lastValidId].Length[31:0];
80 canChain = LO_BRANCH_INFO.END_ADDR != nextSeqAddr[31:1];
81
82 // Implementations can choose not to chain an instruction
83 if canChain then
84 canChain = boolean IMPLEMENTATION_DEFINED "Chain instruction";
85
86 return canChain;

E2.1.213 InstrExecState

1 // Indicates instruction execution state
2 // =====================================
3
4 type INSTR_EXEC_STATE_Type is (
5 bits(32) FetchAddr,
6 ITSTATEType ITState,
7 bit L,

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1904

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

8 bit T16IND,
9 bits(32) LoopCount,

10 bit LOBranchInfoValid,
11 boolean ResetLTPSize
12)
13 INSTR_EXEC_STATE_Type _CurrentInstrExecState;

E2.1.214 InstructionAdvance

1 // InstructionAdvance()
2 // ====================
3
4 InstructionAdvance()
5 // Instruction getting old (or scalar instruction).
6 // Commit next state back to the registers.
7 INSTR_EXEC_STATE_Type next = GetInstrExecState(1);
8 if HaveLOBExt() then
9 if next.LOBranchInfoValid == '1' then

10 LR = next.LoopCount;
11 else
12 LO_BRANCH_INFO.VALID = '0';
13 if next.L == '1' then
14 // Set LR to return to the return address. The offset of the
15 // return address depends on whether the originating BF
16 // instruction assumed there would be a T32 or a 16-bit T32
17 // instruction after the branch point. See BF documentation for
18 // details.
19 retAddr = ThisInstrAddr() + ThisInstrLength();
20 retAddr = retAddr + (if next.T16IND == '1' then 2 else 4);
21 LR = retAddr[31:1] : '1';
22 if HaveMve() && next.ResetLTPSize then
23 FPSCR.LTPSIZE = 4[2:0];
24 _RName[RNamesPC] = next.FetchAddr;
25 if HaveMainExt() then
26 EPSR.IT = next.ITState;
27
28 // Mark an instruction as having retired
29 DHCSR.S_RETIRE_ST = '1';
30
31 // Advance the instruction FIFO
32 for i = 0 to MAX_OVERLAPPING_INSTRS-1
33 if i == MAX_OVERLAPPING_INSTRS-1 then
34 _InstInfo[i].Valid = FALSE;
35 else
36 _InstInfo[i] = _InstInfo[i+1];

E2.1.215 InstructionExecute

1 // InstructionExecute()
2 // ====================
3
4 // If fetchNew is set then fetch and execute new instructions, otherwise only
5 // continue execution of inflight beats.
6 boolean InstructionExecute(boolean fetchNew)
7 try
8 // Attempt to execute the next instruction. Start by setting up the state.
9 _InstID = 0;

10 _BeatID = 0;
11 activeChains = GetActiveChains();
12 _CurrentInstrExecState = GetInstrExecState(activeChains);
13 commitState = FALSE;
14 // Fetch the instruction
15 pc = ThisInstrAddr();
16 (instr, is16bit) = FetchInstr(pc);
17 len = if is16bit then 2 else 4;
18 // Capture security and privilege
19 isSecure = IsSecure();

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1905

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

20 isPriv = FindPriv();
21
22 // Checking for FPB Breakpoint on instructions
23 if HaveFPB() && FPB_CheckBreakPoint(pc, len, TRUE, IsSecure()) then
24 GenerateDebugEventResponse(TRUE);
25
26 // If a chain is being executed then the current instruction can be
27 // added to the chain if it is chainable. If the instruction is not
28 // chainable (eg because its a scaler instruction) then it is not
29 // executed, and the next beat(s) of the flight chained instructions
30 // are executed. This process is repeated on the next architecture
31 // tick, and when the chain has completed the non-chainable
32 // instruction can be executed.
33 // NOTE: Chainable instructions are not allowed to chain if in an IT
34 // block.
35 chainableInst = IsMveBeatWiseInstruction(instr) && !InITBlock();
36 if HaveMve() && (chainableInst || activeChains > 0) then
37 // A new instruction can only be chained if a power of 2 number
38 // of beats have completed. Also allow an instruction to be
39 // started if the ECI information indicates that an instruction
40 // is in progress, but the corresponding slot in the instruction
41 // queue is empty, which can occur on exception return.
42 chainableExecPoint = (EPSR.ECI == 0[7:0]) || (EPSR.ECI == 2[7:0]);
43 if !chainableExecPoint then
44 beatStatus = BeatComplete;
45 for instId = 0 to MAX_OVERLAPPING_INSTRS-1
46 if ((Elem[beatStatus, instId, MAX_BEATS] != Zeros(MAX_BEATS)) &&
47 !_InstInfo[instId].Valid) then
48 chainableExecPoint = TRUE;
49 if chainableExecPoint && InstrCanChain(instr) && fetchNew then
50 SetThisInstrDetails(instr, len);
51 commitState = ExecBeats();
52 elsif fetchNew then
53 // Scalar instruction, execute instructions normally.
54 SetThisInstrDetails(instr, len);
55 InstStateCheck(instr);
56 DecodeExecute(instr, pc, is16bit, DefaultCond());
57 // Scalar instructions, and MVE instructions in IT blocks do not
58 // have beat behavior so commit straight away
59 commitState = TRUE;
60
61 // Check for DWT match
62 if IsDWTEnabled(isSecure, isPriv) then
63 DWT_InstructionMatch(pc, isSecure, isPriv);
64
65 catch exn
66 // Do not catch UNPREDICTABLE or internal errors
67 when IsSEE(exn) || IsUNDEFINED(exn)
68 // Unallocated instructions in the NOP hint space and instructions
69 // that fail their condition tests are treated like NOP's.
70 nopHint16 = instr == '000000000000000010111111xxxx0000';
71 nopHint32 = (instr == '111100111010111110000000xxxxxxxx') && HaveMainExt();
72 if ConditionHolds(CurrentCond()) && !(nopHint16 || nopHint32) then
73 commitState = FALSE;
74 toSecure = IsSecure();
75 // Unallocated instructions in the coprocessor space behave as NOCP
76 // if the coprocessor is disabled.
77 (isCp, cpNum) = IsCPInstruction(instr);
78 if isCp then
79 (cpEnabled, cpFaultState) = IsCPEnabled(cpNum);
80 if isCp && !cpEnabled then
81 // A PE is permitted to decode the coprocessor space and raise
82 // UNDEFINSTR UsageFaults for unallocated encodings even if the
83 // coprocessor is disabled.
84 if boolean IMPLEMENTATION_DEFINED "Decode CP space" then
85 UFSR.UNDEFINSTR = '1';
86 else
87 UFSR.NOCP = '1';
88 toSecure = cpFaultState;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1906

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

89 else
90 UFSR.UNDEFINSTR = '1';
91
92 // If Main Extension is not implemented the fault will escalate
93 // to a HardFault.
94 excInfo = CreateException(UsageFault, TRUE, toSecure);
95 // Prevent EndOfInstruction() being called in
96 // HandleException() as the instruction has already been
97 // terminated so there is no need to throw the exception
98 // again.
99 excInfo.termInst = FALSE;

100 HandleException(excInfo);
101 else
102 // If the instruction condition does not pass then this
103 // behaves as a NOP, as such PC must be advanced. Since
104 // vector instructions are not chained (thus only one
105 // instruction is in flight) when inside an IT
106 // block, they are also committed here.
107 commitState = TRUE;
108 when IsExceptionTaken(exn)
109 // If an exception is thrown then it was before commitState was
110 // set to true, so no additional actions are required in this
111 // catch block.
112
113 return commitState;

E2.1.216 InstructionsInFlight

1 // InstructionsInFlight()
2 // ======================
3
4 boolean InstructionsInFlight()
5 // If there is more than one active chain and it is not just a single active
6 // scalar instruction then there are instructions in flight
7 return GetActiveChains() != 0 && (GetActiveChains() != 1 ||
8 IsMveBeatWiseInstruction(_InstInfo[0].Opcode));

E2.1.217 InstructionSynchronizationBarrier

1 // InstructionSynchronizationBarrier()
2 // ===================================
3 // Perform an instruction synchronization barrier operation
4
5 InstructionSynchronizationBarrier(bits(4) option);

E2.1.218 InstStateCheck

1 // InstStateCheck()
2 // ================
3
4 InstStateCheck(bits(32) instr)
5 // Check for IT,ICI,ECI bits that are not permitted for the current
6 // instruction. NOTE EPSR.ICI and EPSR.ECI overlap with EPSR.IT.
7 validICI = (EPSR.ICI[7:6] == Zeros(2) && EPSR.ICI[1:0] == Zeros(2));
8 validECI = UInt(EPSR.ECI) < 6 && EPSR.ECI[3:0] != '0011';
9 valid = (InITBlock() ||

10 EPSR.IT == Zeros(8) ||
11 (validICI && (IsLoadStoreClearMultInstruction(instr) ||
12 IsBKPTInstruction(instr))) ||
13 (validECI && (IsMveBeatWiseInstruction(instr) ||
14 IsLEInstruction(instr) ||
15 IsBKPTInstruction(instr))));
16 if !valid then
17 UFSR.INVSTATE = '1';
18 excInfo = CreateException(UsageFault);
19 HandleException(excInfo);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1907

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

E2.1.219 Int

1 // Int()
2 // =====
3
4 integer Int(bits(N) x, boolean unsigned)
5 result = if unsigned then UInt(x) else SInt(x);
6 return result;

E2.1.220 IntegerZeroDivideTrappingEnabled

1 // IntegerZeroDivideTrappingEnabled()
2 // ==================================
3
4 boolean IntegerZeroDivideTrappingEnabled()
5 // DIV_0_TRP bit in CCR is RAZ/WI if Main Extension is not implemented
6 return CCR.DIV_0_TRP == '1';

E2.1.221 InvalidateFPRegs

1 // InvalidateFPRegs()
2 // ==================
3
4 InvalidateFPRegs(boolean shouldClear, boolean doCallee)
5 clearValue = if shouldClear then Zeros(32) else bits(32) UNKNOWN;
6
7 for i = 0 to 15
8 S[i] = clearValue;
9 if doCallee then S[i+16] = clearValue;

10 FPSCR = clearValue;
11 VPR = clearValue;

E2.1.222 InVPTBlock

1 // InVPTBlock()
2 // ===========
3
4 boolean InVPTBlock()
5 if _BeatID IN {0, 1} then
6 return VPR.MASK01 != '0000';
7 else
8 return VPR.MASK23 != '0000';

E2.1.223 IsAccessible

1 // IsAccessible()
2 // ==============
3
4 (bit, bit, bits(8), boolean) IsAccessible(bits(32) address, boolean forceunpriv,
5 boolean isSecure)
6 bit write;
7 bit read;
8
9 // Work out which privilege level the current mode in the Non-secure state

10 // is subject to
11 if forceunpriv then
12 isPrivileged = FALSE;
13 else
14 isPrivileged = CurrentModeIsPrivileged(isSecure);
15 (-, perms) = MPUCheck(address, AccType_NORMAL, isPrivileged, isSecure);
16 if !perms.apValid then
17 write = '0';
18 read = '0';

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1908

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

19 else
20 case perms.ap of
21 when '00' (write, read) = if isPrivileged then ('1','1') else ('0','0');
22 when '01' (write, read) = ('1','1') ;
23 when '10' (write, read) = if isPrivileged then ('0','1') else ('0','0');
24 when '11' (write, read) = ('0','1');
25 return (write, read, perms.region, perms.regionValid);

E2.1.224 IsActiveForState

1 // IsActiveForState()
2 // ==================
3
4 boolean IsActiveForState(integer exception, boolean isSecure)
5 if !HaveSecurityExt() then
6 isSecure = FALSE;
7 // If the exception is configurable then check which domain it
8 // currently targets. If it is not configurable then the active flags can be
9 // used directly.

10 if IsExceptionTargetConfigurable(exception) then
11 // The active bit for exceptions that are not banked between the security
12 // states are modelled as two bits to be compatible with the other exceptions
13 // that have a bit for each security state.
14 assert ExceptionActive[exception][0] == ExceptionActive[exception][1];
15 active = ((ExceptionActive[exception][0] == '1') &&
16 (ExceptionTargetsSecure(exception, isSecure) == isSecure));
17 else
18 idx = if isSecure then 0 else 1;
19 active = ExceptionActive[exception][idx] == '1';
20 return active;

E2.1.225 IsAligned

1 // IsAligned()
2 // ===========
3
4 boolean IsAligned(bits(32) address, integer size)
5 assert size IN {1,2,4,8};
6 mask = (size-1)[31:0]; // integer to bit string conversion
7 return IsZero(address AND mask);

E2.1.226 IsBKPTInstruction

1 // IsBKPTInstruction()
2 // ===================
3 // Checks whether the instruction is a breakpoint
4
5 boolean IsBKPTInstruction(bits(32) instr)
6 return instr == '0000 0000 0000 0000 1011 1110 xxxxxxxx';

E2.1.227 IsCPEnabled

1 // IsCPEnabled()
2 // ================
3
4 (boolean, boolean) IsCPEnabled(integer cp, boolean privileged, boolean secure)
5 // Check Coprocessor Access Control Register for permission to use coprocessor
6 boolean enabled;
7 boolean forceToSecure = FALSE;
8
9 cpacr = if secure then CPACR_S else CPACR_NS;

10 case cpacr[(cp*2)+1:cp*2] of
11 when '00'
12 enabled = FALSE;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1909

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

13 when '01'
14 enabled = privileged;
15 when '10'
16 UNPREDICTABLE;
17 when '11' // access permitted by CPACR
18 enabled = TRUE;
19
20 if enabled && HaveSecurityExt() then
21 // Check if access is forbidden by NSACR
22 if !secure && NSACR[cp] == '0' then
23 enabled = FALSE;
24 forceToSecure = TRUE;
25
26 // Check if the coprocessor state unknown flag.
27 if enabled && CPPWR_S[cp*2] == '1' then
28 enabled = FALSE;
29 // Check SUS bit to determine the target state of any fault
30 forceToSecure = CPPWR_S[(cp*2)+1] == '1';
31
32 return (enabled, secure || forceToSecure);
33
34 (boolean, boolean) IsCPEnabled(integer cp)
35 return IsCPEnabled(cp, CurrentModeIsPrivileged(), IsSecure());

E2.1.228 IsCPInstruction

1 // IsCPInstruction()
2 // =================
3
4 (boolean, integer) IsCPInstruction(bits(32) instr)
5 isCp = instr IN { '111x1110xxxxxxxxxxxxxxxxxxxxxxxx',
6 '111x110xxxxxxxxxxxxxxxxxxxxxxxxx' };
7 cpNum = if isCp then UInt(instr[11:8]) else integer UNKNOWN;
8 // CP 11 controlled by CP10 enables.
9 // As of v8.1 CP8, 9, 14 and 15 are also controlled by CP10 enables.

10 if (cpNum IN {11} ||
11 (cpNum IN {8, 9, 14, 15} && HasArchVersion(Armv8p1))) then
12 cpNum = 10;
13 // From v8.1 the encoding space outside the CDP space used by MVE instructions
14 // is also classed as coprocessor space and is associated with CP10.
15 if instr IN { '111x1111xxxxxxxxxxxxxxxxxxxxxxxx'} && HasArchVersion(Armv8p1) then
16 isCp = TRUE;
17 cpNum = 10;
18 return (isCp, cpNum);

E2.1.229 IsDebugState

1 // IsDebugState
2 // =============
3
4 boolean IsDebugState()
5 return Halted;

E2.1.230 IsDWTConfigUnpredictable

1 // IsDWTConfigUnpredictable()
2 // =========================
3 // Checks for some of the UNPREDICTABLE cases for various combination of MATCH and
4 // ACTION for each comparator.
5
6 boolean IsDWTConfigUnpredictable(integer N)
7
8 no_trace = (!HaveMainExt() || DWT_CTRL.NOTRCPKT == '1' || !HaveITM());
9

10 // First pass check of MATCH field - coarse checks

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1910

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

11 case DWT_FUNCTION[N].MATCH of
12 when '0000' // Disabled
13 return FALSE;
14 when '0001' // Cycle counter match
15 if (!HaveMainExt() ||
16 DWT_CTRL.NOCYCCNT == '1' ||
17 DWT_FUNCTION[N].ID[0] == '0') then
18 return TRUE;
19 when '001x' // Instruction address
20 if (DWT_FUNCTION[N].ID[1] == '0' ||
21 DWT_FUNCTION[N].DATAVSIZE != '01' ||
22 DWT_COMP[N][0] == '1') then
23 return TRUE;
24 when '01xx' // Data address
25 lsb = UInt(DWT_FUNCTION[N].DATAVSIZE);
26 if (DWT_FUNCTION[N].ID[3] == '0' ||
27 (lsb > 0 && !IsZero(DWT_COMP[N][lsb-1:0]))) then
28 return TRUE;
29 when '1100', '1101', '1110' // Data address with value
30 if no_trace then return TRUE;
31 lsb = UInt(DWT_FUNCTION[N].DATAVSIZE);
32 if (DWT_FUNCTION[N].ID[3] == '0' ||
33 (lsb > 0 && !IsZero(DWT_COMP[N][lsb-1:0]))) then
34 return TRUE;
35 when '10xx' // Data value
36 Vsize = 2^UInt(DWT_FUNCTION[N].DATAVSIZE);
37 if (!HaveMainExt() || DWT_FUNCTION[N].ID[2] == '0' ||
38 (Vsize != 4 && DWT_COMP[N][31:16] != DWT_COMP[N][15:0]) ||
39 (Vsize == 1 && DWT_COMP[N][15:8] != DWT_COMP[N][7:0])) then
40 return TRUE;
41 if (HasArchVersion(Armv8p1) &&
42 (!IsZero(DWT_VMASK[N] AND DWT_COMP[N]) ||
43 (Vsize != 4 && DWT_VMASK[N][31:16] != DWT_VMASK[N][15:0]) ||
44 (Vsize == 1 && DWT_VMASK[N][15:8] != DWT_VMASK[N][7:0]))) then
45 return TRUE;
46 otherwise
47 return TRUE;
48
49 // Second pass MATCH check - linked and limit comparators
50 case DWT_FUNCTION[N].MATCH of
51 when '0011' // Instruction address limit
52 if N == 0 then return TRUE;
53 elsif (DWT_FUNCTION[N].ID[4] == '0' ||
54 DWT_FUNCTION[N-1].MATCH IN {'0001','0011','01xx','1xxx'} ||
55 UInt(DWT_COMP[N]) <= UInt(DWT_COMP[N-1])) then
56 return TRUE;
57 if DWT_FUNCTION[N-1].MATCH == '0000' then return FALSE;
58 when '0111' // Data address limit
59 if N == 0 then return TRUE;
60 elsif (DWT_FUNCTION[N].ID[4] == '0' ||
61 DWT_FUNCTION[N-1].MATCH IN {'0001','001x','0111','10xx'} ||
62 DWT_FUNCTION[N].DATAVSIZE != '00' ||
63 DWT_FUNCTION[N-1].DATAVSIZE != '00' ||
64 UInt(DWT_COMP[N]) <= UInt(DWT_COMP[N-1])) then
65 return TRUE;
66 if DWT_FUNCTION[N-1].MATCH == '0000' then return FALSE;
67 when '1011' // Linked data value
68 if N == 0 then return TRUE;
69 elsif (DWT_FUNCTION[N].ID[4] == '0' ||
70 DWT_FUNCTION[N-1].MATCH IN {'0001','001x','0111','10xx'} ||
71 DWT_FUNCTION[N].DATAVSIZE != DWT_FUNCTION[N-1].DATAVSIZE) then
72 return TRUE;
73 if DWT_FUNCTION[N-1].MATCH == '0000' then return FALSE;
74 otherwise
75 // No limitations in second pass
76
77 // Check DATAVSIZE is permitted
78 if DWT_FUNCTION[N].DATAVSIZE == '11' then return TRUE;
79

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1911

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

80 // Check the ACTION is allowed for the MATCH type
81 case DWT_FUNCTION[N].ACTION of
82 when '00' // CMPMATCH trigger only
83 if DWT_FUNCTION[N].MATCH IN {'1100', '1101', '1110'} then
84 return TRUE;
85 when '01' // Debug event
86 if DWT_FUNCTION[N].MATCH IN {'0011', '0111', '1100', '1101', '1110'} then
87 return TRUE;
88 when '10' // Data Trace Match or Data Value packet
89 if no_trace || DWT_FUNCTION[N].MATCH IN {'0011', '0111'} then
90 return TRUE;
91 when '11' // Other Data Trace packet
92 if N == 0 then return TRUE;
93 if (no_trace || DWT_FUNCTION[N].MATCH IN {'0010', '1000', '1001', '1010'} ||
94 (DWT_FUNCTION[N].MATCH == '0011' && DWT_FUNCTION[N-1].ACTION != '00') ||
95 (DWT_FUNCTION[N].MATCH == '0111' && DWT_FUNCTION[N-1].MATCH == '01xx' &&
96 DWT_FUNCTION[N-1].ACTION IN {'01', '10'}) ||
97 (DWT_FUNCTION[N].MATCH == '0111' && DWT_FUNCTION[N-1].MATCH == '11xx' &&
98 DWT_FUNCTION[N-1].ACTION IN {'00', '01'})) then
99 return TRUE;

100
101 return FALSE; // Passes checks

E2.1.231 IsDWTEnabled

1 // IsDWTEnabled()
2 // ==============
3 // Check whether DWT is enabled.
4
5 boolean IsDWTEnabled(boolean isSecure, boolean isPriv)
6 return (HaveDWT() && DEMCR.TRCENA == '1' &&
7 ((!isSecure && NoninvasiveDebugAllowed(isPriv)) ||
8 SecureNoninvasiveDebugAllowed(isPriv)));

E2.1.232 IsExceptionTargetConfigurable

1 // IsExceptionTargetConfigurable()
2 // ===============================
3
4 boolean IsExceptionTargetConfigurable(integer e)
5 if HaveSecurityExt() then
6 case e of
7 when NMI
8 configurable = TRUE;
9 when BusFault

10 configurable = TRUE;
11 when DebugMonitor
12 configurable = TRUE;
13 when SysTick
14 // If there is only 1 SysTick instance then the target domain is
15 // configurable.
16 configurable = HaveSysTick() == 1;
17 otherwise
18 // Exceptions numbers lower than 16 that are not listed in this
19 // function are not configurable in this context.
20 configurable = e >= 16;
21 else
22 configurable = FALSE;
23 return configurable;

E2.1.233 IsExclusiveGlobal

1 // IsExclusiveGlobal
2 // =================
3 // Checks if PE has marked in a global record an address range as "exclusive access

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1912

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

4 // requested" that covers at least the size bytes from address
5
6 boolean IsExclusiveGlobal(bits(32) address, integer processorid, integer size);

E2.1.234 IsExclusiveLocal

1 // IsExclusiveLocal
2 // ================
3 // Checks if PE has marked in a local record an address range as "exclusive access
4 // requested" that covers at least the size bytes from address
5
6 boolean IsExclusiveLocal(bits(32) address, integer processorid, integer size);

E2.1.235 IsFirstBeat

1 // IsFirstBeat()
2 // ============
3
4 boolean IsFirstBeat()
5 return _BeatID == 0;

E2.1.236 IsIrqValid

1 // IsIrqValid()
2 // ============
3 // Check whether given exception number denotes a valid external interrupt
4 // implemented by PE.
5
6 boolean IsIrqValid(integer e);

E2.1.237 IsLastBeat

1 // IsLastBeat()
2 // ============
3
4 boolean IsLastBeat()
5 return _BeatID >= (MAX_BEATS - 1);

E2.1.238 IsLastLowOverheadLoop

1 // IsLastLowOverheadLoop()
2 // =======================
3
4 boolean IsLastLowOverheadLoop()
5 return IsLastLowOverheadLoop(_CurrentInstrExecState);
6
7 boolean IsLastLowOverheadLoop(INSTR_EXEC_STATE_Type state)
8 // This does not check whether a loop is currently active.
9 // If the PE were in a loop, would this be the last one?

10 return UInt(state.LoopCount) <= (1 << (4 - LTPSIZE));

E2.1.239 IsLEInstruction

1 // IsLEInstruction()
2 // =================
3 // Checks whether the instruction is a loop end instruction
4
5 boolean IsLEInstruction(bits(32) instr)
6 isLE = instr IN {'1111000000xx11111100xxxxxxxxxxx1'};
7 return isLE;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1913

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

E2.1.240 IsLoadStoreClearMultInstruction

1 // IsLoadStoreClearMultInstruction()
2 // =================================
3 // Checks whether the instruction is a clear multiple or a load / store multiple
4
5 boolean IsLoadStoreClearMultInstruction(bits(32) instr)
6 isLSCM = instr IN {'00000000000000001100xxxxxxxxxxxx', // LDM_T1,STM_T1
7 '00000000000000001011x10xxxxxxxxx', // LDM_T3,STM_T2, and aliases
8 '1110100xx0xxxxxxxxxxxxxxxxxxxxxx', // Load/store/clear mul Scalar
9 '1110110xxxxxxxxxxxxx101xxxxxxxxx'}; // Load/store/clear mul FP

10 // False positives due to the masks used in isLSCM
11 notLSCM = instr IN {'1110100000xxxxxxxxxxxxxxxxxxxxxx', // UNALLOCATED
12 '1110100110xxxxxxxxxxxxxxxxxxxxxx', // UNALLOCATED
13 '11101100010xxxxxxxxx101x00x1xxxx', // UNALLOCATED
14 '11101100010xxxxxxxxx101xxxx0xxxx', // UNALLOCATED
15 '11101100000xxxxxxxxx101xxxxxxxxx', // UNALLOCATED
16 '111011011x1xxxxxxxxx101xxxxxxxxx'}; // VMOV
17 return (isLSCM && !notLSCM);

E2.1.241 IsOnes

1 // IsOnes()
2 // ========
3
4 boolean IsOnes(bits(N) x)
5 return x == Ones(N);

E2.1.242 IsPPB

1 // IsPPB()
2 // =======
3
4 boolean IsPPB(bits(32) address)
5 return address[31:20] == 0xE00[11:0];

E2.1.243 IsReqExcPriNeg

1 // IsReqExcPriNeg()
2 // ================
3
4 boolean IsReqExcPriNeg(boolean secure)
5 // This function checks if the requested execution priority is negative for
6 // the specified security domain. That is, NMI or HardFault is active, or
7 // FAULTMASK is set. It does not take account of AIRCR.PRIS so returns TRUE
8 // if FAULTMASK_NS is set even if PRIS is set to restrict Non-secure priorities
9 // to the range 0x80-0x7E

10 neg = IsActiveForState(NMI, secure) || IsActiveForState(HardFault, secure);
11 if HaveMainExt() then
12 faultmask = if secure then FAULTMASK_S else FAULTMASK_NS;
13 if faultmask.FM == '1' then
14 neg = TRUE;
15 return neg;
16
17
18 boolean IsReqExcPriNeg(boolean secure, AccType acctype)
19 // If the access is due to lazy FP state preservation the FPCCR flag
20 // indicating whether a HardFault could be taken is used to determine if the
21 // priority should be considered to be negative rather than the current
22 // execution priority.
23 if acctype == AccType_LAZYFP then
24 neg = FPCCR_S.HFRDY == '0';
25 else
26 neg = IsReqExcPriNeg(secure);
27 return neg;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1914

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

E2.1.244 IsReturn

1 // IsReturn()
2 // ==========
3
4 AddrType IsReturn(bits(32) address)
5 addrtype = AddrType_NORMAL;
6
7 if (HaveSecurityExt() && address=='1111 1110 1111 1111 1111 1111 1111 111x') then
8 addrtype = AddrType_FNC_RETURN;
9

10 elsif CurrentMode() == PEMode_Handler && address[31:24] == '11111111' then
11 addrtype = AddrType_EXC_RETURN;
12 return addrtype;

E2.1.245 IsSecure

1 // IsSecure()
2 // ==========
3
4 boolean IsSecure()
5 return HaveSecurityExt() && CurrentState == SecurityState_Secure;

E2.1.246 IsZero

1 // IsZero()
2 // ========
3
4 boolean IsZero(bits(N) x)
5 return x == Zeros(N);

E2.1.247 IsZeroBit

1 // IsZeroBit()
2 // ===========
3
4 bit IsZeroBit(bits(N) x)
5 return if IsZero(x) then '1' else '0';

E2.1.248 ITAdvance

1 // ITAdvance()
2 // ===========
3
4 ITSTATEType ITAdvance(ITSTATEType itState)
5 // If the mask field (in other words the bottom 4 bits) are zero then the ITSTATE bits
6 // hold ECI information and therefore the normal state advancement should
7 // not take place.
8 if itState[3:0] == '1000' then
9 itState = '00000000';

10 elsif itState[3:0] != '0000' then
11 itState[4:0] = LSL(itState[4:0], 1);
12 return itState;

E2.1.249 ITSTATE

1 // ITSTATE
2 // =======
3
4 ITSTATEType ITSTATE
5 return ThisInstrITState();
6

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1915

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

7 ITSTATE = ITSTATEType value
8 // Writes to ITSTATE do not take effect immediately, instead they change the
9 // value returned by NextInstrITState().

10 _NextInstrITState = value;
11 _ITStateChanged = TRUE;

E2.1.250 ITSTATEType

1 // If-Then execution state bits for the T32 IT instruction.
2
3 type ITSTATEType = bits(8);

E2.1.251 LastInITBlock

1 // LastInITBlock()
2 // ===============
3
4 boolean LastInITBlock()
5 return (ITSTATE[3:0] == '1000');

E2.1.252 LoadWritePC

1 // LoadWritePC()
2 // =============
3
4 LoadWritePC(bits(32) address, integer baseReg, bits(32) baseRegVal, boolean baseRegUpdate,
5 boolean spLimCheck)
6
7 if baseRegUpdate then
8 oldBaseVal = R[baseReg];
9 if spLimCheck then

10 RSPCheck[baseReg] = baseRegVal;
11 else
12 R[baseReg] = baseRegVal;
13
14 // Attempt to update the PC, which may result in a fault
15 excInfo = BranchReturn(address, FALSE);
16
17 if baseRegUpdate && excInfo.fault != NoFault then
18 // Restore the previous base reg value, SP limit checking is not performed
19 if baseReg == 13 then
20 exc = _SP(LookUpRName(baseReg), FALSE, TRUE, oldBaseVal);
21 assert exc.fault == NoFault;
22 else
23 R[baseReg] = oldBaseVal;
24
25 HandleException(excInfo);

E2.1.253 LockedUp

1 // Indicates the PE is locked up
2
3 boolean LockedUp;

E2.1.254 Lockup

1 // Lockup()
2 // ========
3
4 Lockup(boolean termInst)
5 LockedUp = TRUE;
6 // Branch to the lockup address.
7 BranchTo(0xEFFFFFFE[31:0], TRUE);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1916

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

8 // Invalidate the instruction buffer and set the length of the current
9 // instruction to zero so NextInstrAddr() reports the correct lockup

10 // address.
11 ClearInFlightInstructions();
12 // If requested, terminate execution of the pseudo code for this
13 // instruction.
14 if termInst then
15 EndOfInstruction();

E2.1.255 LookUpRName

1 // LookUpRName()
2 // =============
3
4 RNames LookUpRName(integer n)
5 case n of
6 when 0 result = RNames0;
7 when 1 result = RNames1;
8 when 2 result = RNames2;
9 when 3 result = RNames3;

10 when 4 result = RNames4;
11 when 5 result = RNames5;
12 when 6 result = RNames6;
13 when 7 result = RNames7;
14 when 8 result = RNames8;
15 when 9 result = RNames9;
16 when 10 result = RNames10;
17 when 11 result = RNames11;
18 when 12 result = RNames12;
19 when 13 result = LookUpSP();
20 when 14 result = RNamesLR;
21 when 15 result = RNamesPC;
22 otherwise assert(FALSE);
23 return result;

E2.1.256 LookUpSP

1 // LookUpSP()
2 // ==========
3
4 RNames LookUpSP()
5 return LookUpSP_with_security_mode(IsSecure(), CurrentMode());

E2.1.257 LookUpSP_with_security_mode

1 // LookUpSP_with_security_mode()
2 // =============================
3
4 RNames LookUpSP_with_security_mode(boolean isSecure, PEMode mode)
5 RNames sp;
6 bit spSel;
7
8 // Get the SPSEL bit corresponding to the Security state requested
9 if isSecure then

10 spSel = CONTROL_S.SPSEL;
11 else
12 spSel = CONTROL_NS.SPSEL;
13
14 // Determine which stack pointer should be used
15 if spSel == '1' && mode == PEMode_Thread then
16 if isSecure then
17 sp = RNamesSP_Process_Secure;
18 else
19 sp = RNamesSP_Process_NonSecure;
20 else

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1917

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

21 if isSecure then
22 sp = RNamesSP_Main_Secure;
23 else
24 sp = RNamesSP_Main_NonSecure;
25 return sp;

E2.1.258 LookUpSPLim

1 // LookUpSPLim()
2 // =============
3
4 bits(32) LookUpSPLim(RNames spreg)
5 case spreg of
6 when RNamesSP_Main_Secure limit = MSPLIM_S.LIMIT:'000';
7 when RNamesSP_Process_Secure limit = PSPLIM_S.LIMIT:'000';
8 when RNamesSP_Main_NonSecure
9 limit = if HaveMainExt() then MSPLIM_NS.LIMIT:'000' else Zeros(32);

10 when RNamesSP_Process_NonSecure
11 limit = if HaveMainExt() then PSPLIM_NS.LIMIT:'000' else Zeros(32);
12 otherwise
13 assert (FALSE);
14
15 return limit;

E2.1.259 LowestSetBit

1 // LowestSetBit()
2 // ==============
3
4 integer LowestSetBit(bits(N) x)
5 for i = 0 to N-1
6 if x[i] == '1' then return i;
7 return N;

E2.1.260 LR

1 // LR
2 // ==
3
4 // Non-assignment form
5 bits(32) LR
6 return RName[RNamesLR];
7
8 // Assignment form
9

10 LR = bits(32) value
11 RName[RNamesLR] = value;

E2.1.261 LSL

1 // LSL()
2 // =====
3
4 bits(N) LSL(bits(N) x, integer shift)
5 assert shift >= 0;
6 if shift == 0 then
7 result = x;
8 else
9 (result, -) = LSL_C(x, shift);

10 return result;

E2.1.262 LSL_C

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1918

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

1 // LSL_C()
2 // =======
3
4 (bits(N), bit) LSL_C(bits(N) x, integer shift)
5 assert shift > 0;
6 extended_x = x : Zeros(shift);
7 result = extended_x[N-1:0];
8 carry_out = extended_x[N];
9 return (result, carry_out);

10
11 (bits(N), bits(M)) LSL_C(bits(N) x, bits(M) carry_in, integer shift)
12 assert shift > 0 && shift <= M;
13 cin = LSL(carry_in, M - shift);
14 extended_x = LSL(Zeros(M) : x : cin, shift);
15 result = extended_x[N+ M-1:M];
16 carry_out = extended_x[N+2*M-1:N+M];
17 return (result, carry_out);

E2.1.263 LSR

1 // LSR()
2 // =====
3
4 bits(N) LSR(bits(N) x, integer shift)
5 assert shift >= 0;
6 if shift == 0 then
7 result = x;
8 else
9 (result, -) = LSR_C(x, shift);

10 return result;

E2.1.264 LSR_C

1 // LSR_C()
2 // =======
3
4 (bits(N), bit) LSR_C(bits(N) x, integer shift)
5 assert shift > 0;
6 extended_x = ZeroExtend(x, shift+N);
7 result = extended_x[shift+N-1:shift];
8 carry_out = extended_x[shift-1];
9 return (result, carry_out);

E2.1.265 LTPSIZE

1 // LTPSIZE - non-assignment form
2 // ===============================
3
4 integer LTPSIZE
5 if HaveMve() && ActiveFPState() then
6 size = UInt(FPSCR.LTPSIZE);
7 else
8 // Full vector length, so no loop tail predication
9 size = 4;

10 return size;

E2.1.266 MAIRDecode

1 // MAIRDecode()
2 // ============
3
4 MemoryAttributes MAIRDecode(bits(8) attrfield, bits(2) sh)
5 // Converts the MAIR attributes to orthogonal attribute and
6 // hint fields.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1919

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

7 MemoryAttributes memattrs;
8 // Decoding MAIR0/MAIR1 Registers
9 if attrfield[7:4] == '0000' then

10 unpackinner = FALSE;
11 memattrs.memtype = MemType_Device;
12 memattrs.shareable = TRUE;
13 memattrs.outershareable = TRUE;
14 memattrs.innerattrs = bits(2) UNKNOWN;
15 memattrs.outerattrs = bits(2) UNKNOWN;
16 memattrs.innerhints = bits(2) UNKNOWN;
17 memattrs.outerhints = bits(2) UNKNOWN;
18 memattrs.innertransient = boolean UNKNOWN;
19 memattrs.outertransient = boolean UNKNOWN;
20 case attrfield[3:0] of
21 when '0000' memattrs.device = DeviceType_nGnRnE;
22 when '0100' memattrs.device = DeviceType_nGnRE;
23 when '1000' memattrs.device = DeviceType_nGRE;
24 when '1100' memattrs.device = DeviceType_GRE;
25 otherwise UNPREDICTABLE;
26 else
27 unpackinner = TRUE;
28 memattrs.memtype = MemType_Normal;
29 memattrs.device = DeviceType UNKNOWN;
30 memattrs.outerhints = attrfield[5:4];
31 memattrs.shareable = sh[1] == '1';
32 memattrs.outershareable = sh == '10';
33 if sh == '01' then UNPREDICTABLE;
34
35 if attrfield[7:6] =='00' then
36 memattrs.outerattrs = '10';
37 memattrs.outertransient = TRUE;
38 elsif attrfield[7:6] =='01' then
39 if attrfield[5:4] == '00' then
40 memattrs.outerattrs = '00';
41 memattrs.outertransient = FALSE;
42 else
43 memattrs.outerattrs = '11';
44 memattrs.outertransient = TRUE;
45 else
46 memattrs.outerattrs = attrfield[7:6];
47 memattrs.outertransient = FALSE;
48 if unpackinner then
49 if attrfield[3:0] == '0000' then UNPREDICTABLE;
50 else
51 if attrfield[3:2] =='00' then
52 memattrs.innerattrs = '10';
53 memattrs.innerhints = attrfield[1:0];
54 memattrs.innertransient = TRUE;
55 elsif attrfield[3:2] =='01' then
56 memattrs.innerhints = attrfield[1:0];
57 if attrfield[1:0] == '00' then
58 memattrs.innerattrs = '00';
59 memattrs.innertransient = FALSE;
60 else
61 memattrs.innerattrs = '11';
62 memattrs.innertransient = TRUE;
63 elsif attrfield[3:2] =='10' then
64 memattrs.innerhints = attrfield[1:0];
65 memattrs.innerattrs = '10';
66 memattrs.innertransient = FALSE;
67 elsif attrfield[3:2] =='11' then
68 memattrs.innerhints = attrfield[1:0];
69 memattrs.innerattrs = '11';
70 memattrs.innertransient = FALSE;
71 else UNPREDICTABLE;
72 return memattrs;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1920

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

E2.1.267 MarkExclusiveGlobal

1 // MarkExclusiveGlobal
2 // ===================
3 // Records in a global record that PE has requested "exclusive access" covering
4 // at least size bytes from the address
5
6 MarkExclusiveGlobal(bits(32) address, integer processorid, integer size);

E2.1.268 MarkExclusiveLocal

1 // MarkExclusiveLocal
2 // ==================
3 // Records in a local record that PE has requested "exclusive access" covering
4 // at least size bytes from the address.
5
6 MarkExclusiveLocal(bits(32) address, integer processorid, integer size);

E2.1.269 Max

1 // Max()
2 // =====
3
4 integer Max(integer a, integer b)
5 return if a >= b then a else b;
6
7 real Max(real a, real b)
8 return if a >= b then a else b;

E2.1.270 MaxExceptionNum

1 // MaxExceptionNum()
2 // =================
3 // Returns the maximum exception number supported
4
5 integer MaxExceptionNum()
6 if HaveMainExt() then
7 return 511;
8 else
9 return 47;

E2.1.271 MemA

1 // MemA[]
2 // ======
3
4 bits(8*size) MemA[bits(32) address, integer size]
5 return MemA_with_priv[address, size, FindPriv(), TRUE];
6
7 MemA[bits(32) address, integer size] = bits(8*size) value
8 MemA_with_priv[address, size, FindPriv(), TRUE] = value;
9 return;

E2.1.272 MemA_MVE

1 // MemA_MVE[]
2 // ==========
3
4 // Non-assignment form
5
6 bits(8*size) MemA_MVE[bits(32) address, integer size]
7 (excInfo, value) = MemA_with_priv_security(address, size, AccType_MVE,

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1921

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

8 FindPriv(), IsSecure(), TRUE);
9 HandleException(excInfo);

10 return value;
11
12
13 // Assignment form
14
15 MemA_MVE[bits(32) address, integer size] = bits(8*size) value
16 excInfo = MemA_with_priv_security(address, size, AccType_MVE, FindPriv(),
17 IsSecure(), TRUE, value);
18 HandleException(excInfo);

E2.1.273 MemA_with_priv

1 // MemA_with_priv[]
2 // ================
3
4 // Non-assignment form
5
6 bits(8*size) MemA_with_priv[bits(32) address, integer size, boolean privileged,
7 boolean aligned]
8 (excInfo, value) = MemA_with_priv_security(address, size, AccType_NORMAL,
9 privileged, IsSecure(), aligned);

10 HandleException(excInfo);
11 return value;
12
13
14 // Assignment form
15
16 MemA_with_priv[bits(32) address, integer size, boolean privileged,
17 boolean aligned] = bits(8*size) value
18 excInfo = MemA_with_priv_security(address, size, AccType_NORMAL, privileged,
19 IsSecure(), aligned, value);
20 HandleException(excInfo);

E2.1.274 MemA_with_priv_security

1 // MemA_with_priv_security()
2 // =========================
3
4 // Non-assignment form
5
6 (ExcInfo, bits(8*size)) MemA_with_priv_security(bits(32) address, integer size,
7 AccType acctype, boolean privileged,
8 boolean secure, boolean aligned)
9 // Check alignment

10 excInfo = DefaultExcInfo();
11 if !IsAligned(address, size) then
12 if HaveMainExt() then
13 if secure then
14 UFSR_S.UNALIGNED = '1';
15 else
16 UFSR_NS.UNALIGNED = '1';
17 // Create the exception. NOTE: If Main Extension is not implemented the fault
18 // always escalates to a HardFault
19 excInfo = CreateException(UsageFault, TRUE, secure);
20
21 // Check permissions and get attributes
22 if excInfo.fault == NoFault then
23 (excInfo, memaddrdesc) = ValidateAddress(address, acctype, privileged, secure,
24 FALSE, aligned);
25
26 if excInfo.fault == NoFault then
27 // Memory array access, and sort out endianness
28 (error, value) = _Mem(memaddrdesc, size);
29
30 // Check if a synchronous BusFault occurred. NOTE: asynchronous BusFaults are handled

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1922

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

31 // in RaiseAsyncBusFault()
32 if error then
33 value = bits(8*size) UNKNOWN;
34 if HaveMainExt() then
35 case acctype of
36 when AccType_VECTABLE
37 HFSR.VECTTBL = '1';
38 excInfo = CreateException(HardFault, TRUE, AIRCR.BFHFNMINS == '0');
39 when AccType_STACK
40 BFSR.UNSTKERR = '1';
41 excInfo = CreateException(BusFault, FALSE, secure);
42 when AccType_NORMAL, AccType_MVE, AccType_ORDERED
43 BFAR.ADDRESS = address;
44 BFSR.BFARVALID = '1';
45 BFSR.PRECISERR = '1';
46 // Generate BusFault exception if it cannot be ignored.
47 if !IsReqExcPriNeg(secure) || (CCR.BFHFNMIGN == '0') then
48 excInfo = CreateException(BusFault, FALSE, secure);
49 otherwise
50 // Some access types do not call this function
51 assert(FALSE);
52
53 // Check for Watch Point Match
54 elsif (IsDWTEnabled(secure, privileged) &&
55 (acctype != AccType_VECTABLE ||
56 !boolean IMPLEMENTATION_DEFINED "Ignore Vector table fetch")) then
57 bits(32) dvalue = ZeroExtend(value);
58 DWT_DataMatch(address, size, dvalue, TRUE, !secure, privileged);
59
60 if BigEndian(address, size) then
61 value = BigEndianReverse(value, size);
62
63 return (excInfo, value);
64
65 // Assignment form
66
67 ExcInfo MemA_with_priv_security(bits(32) address, integer size, AccType acctype,
68 boolean privileged, boolean secure, boolean aligned,
69 bits(8*size) value)
70 // Check alignment
71 excInfo = DefaultExcInfo();
72 if !IsAligned(address, size) then
73 if HaveMainExt() then
74 if secure then
75 UFSR_S.UNALIGNED = '1';
76 else
77 UFSR_NS.UNALIGNED = '1';
78 // Create the exception. NOTE: If Main Extension is not implemented the fault
79 // always escalates to a HardFault
80 excInfo = CreateException(UsageFault, TRUE, secure);
81
82 // Check permissions and get attributes
83 if excInfo.fault == NoFault then
84 (excInfo, memaddrdesc) = ValidateAddress(address, acctype, privileged, secure,
85 TRUE, aligned);
86
87 if excInfo.fault == NoFault then
88 // Effect on exclusives
89 if memaddrdesc.memattrs.shareable then
90 ClearExclusiveByAddress(memaddrdesc.paddress,
91 ProcessorID(), size); // see Note
92
93 // Sort out endianness, then memory array access
94 if BigEndian(address, size) then
95 value = BigEndianReverse(value, size);
96
97 // Check for Watch Point Match
98 if IsDWTEnabled(secure, privileged) then
99 bits(32) dvalue = ZeroExtend(value);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1923

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

100 DWT_DataMatch(address, size, dvalue, FALSE, !secure, privileged);
101
102 if _Mem(memaddrdesc, size, value) then
103 // Synchronous BusFault occurred. NOTE: Asynchronous BusFaults are handled
104 // in RaiseAsyncBusFault()
105 if HaveMainExt() then
106 case acctype of
107 when AccType_STACK
108 BFSR.STKERR = '1';
109 excInfo = CreateException(BusFault, FALSE, secure);
110 when AccType_LAZYFP
111 BFSR.LSPERR = '1';
112 excInfo = CreateException(BusFault, FALSE, secure);
113 when AccType_NORMAL, AccType_MVE, AccType_ORDERED
114 BFAR.ADDRESS = address;
115 BFSR.BFARVALID = '1';
116 BFSR.PRECISERR = '1';
117 // Generate BusFault exception if it cannot be ignored.
118 if !IsReqExcPriNeg(secure) || (CCR.BFHFNMIGN == '0') then
119 excInfo = CreateException(BusFault, FALSE, secure);
120 otherwise
121 // Some access types do not call this function
122 assert(FALSE);
123 return excInfo;

E2.1.275 MemD_with_priv_security

1 // MemD_with_priv_security()
2 // =========================
3
4 // Non-assignment form
5 (boolean, bits(8*size)) MemD_with_priv_security(AddressDescriptor attr, integer size)
6 // Debugger accesses always specify their required privilege/security levels,
7 // but can be demoted.
8 (secure, privileged, error) = DAPCheck(attr.paddress, attr.accattrs.ispriv,
9 !attr.memattrs.NS, attr.accattrs.iswrite);

10
11 if !error then
12 (excInfo, memaddrdesc) = ValidateAddress(attr.paddress, AccType_DBG,
13 privileged, secure,
14 attr.accattrs.iswrite,
15 IsAligned(attr.paddress, size));
16
17 if (secure && DHCSR.S_SUIDE == '0') || (!secure && DHCSR.S_NSUIDE == '0') then
18 // Inherit memory attributes from IMPDEF debugger interface if not
19 // accessed via UDE. The debugger-specified security attributes (NS-Req) is
20 // replaced by the NS-Attr obtained from the SAU/IDAU.
21 memNS = memaddrdesc.memattrs.NS;
22 memaddrdesc.memattrs = attr.memattrs;
23 memaddrdesc.accattrs.acctype = attr.accattrs.acctype;
24 memaddrdesc.memattrs.NS = memNS;
25
26 error = (excInfo.fault != NoFault);
27 if !error then
28 (error, value) = _Mem(memaddrdesc, size);
29 if error then
30 value = bits(8*size) UNKNOWN;
31
32 // No exception is generated here since the debugger should not be able to cause
33 // exceptions in the PE. Instead, the caller should check against NoFault and return
34 // that information to the debugger.
35 return (error, value);
36
37
38 // Assignment form
39 boolean MemD_with_priv_security(AddressDescriptor attr, integer size, bits(8*size) value)
40 // Debugger accesses always specify their required privilege/security levels,
41 // but can be demoted.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1924

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

42 (secure, privileged, error) = DAPCheck(attr.paddress,
43 attr.accattrs.ispriv,
44 !attr.memattrs.NS,
45 attr.accattrs.iswrite);
46
47 if !error then
48 (excInfo, memaddrdesc) = ValidateAddress(attr.paddress,
49 AccType_DBG,
50 privileged,
51 secure,
52 attr.accattrs.iswrite,
53 IsAligned(attr.paddress, size));
54
55 if (secure && DHCSR.S_SUIDE == '0') || (!secure && DHCSR.S_NSUIDE == '0') then
56 // Inherit memory attributes from IMPDEF debugger interface if not
57 // accessed via UDE. The debugger-specified security attributes (NS-Req) is
58 // replaced by the NS-Attr obtained from the SAU/IDAU.
59 memNS = memaddrdesc.memattrs.NS;
60 memaddrdesc.memattrs = attr.memattrs;
61 memaddrdesc.accattrs.acctype = attr.accattrs.acctype;
62 memaddrdesc.memattrs.NS = memNS;
63
64 error = (excInfo.fault != NoFault);
65 if !error then
66 error = _Mem(memaddrdesc, size, value);
67
68 // No exception is generated here since the debugger should not be able to cause
69 // exceptions in the PE. Instead, the caller should check against NoFault and return
70 // that information to the debugger.
71 return error;

E2.1.276 MemI

1 // MemI()
2 // ======
3
4 bits(16) MemI[bits(32) address]
5 // Check permissions and get attributes
6 // NOTE: The privilege flag passed to ValidateAddress may be overriden if
7 // the security of the memory is different from the current security
8 // state, for example when performing a Non-secure to Secure function call.
9 (excInfo, memaddrdesc) = ValidateAddress(address, AccType_IFETCH, FindPriv(),

10 IsSecure(), FALSE, TRUE);
11 if excInfo.fault == NoFault then
12 (error, value) = _Mem(memaddrdesc, 2);
13 if error then
14 value = bits(16) UNKNOWN;
15 BFSR.IBUSERR = '1';
16 // Create the exception. NOTE: If Main Extension is not implemented the fault
17 // always escalates to a HardFault
18 excInfo = CreateException(BusFault);
19 HandleException(excInfo);
20 if IsDWTEnabled(IsSecure(), FindPriv()) then
21 DWT_InstructionMatch(address, IsSecure(), FindPriv());
22 return value;

E2.1.277 MemO

1 // MemO[] - non-assignment form
2 // ============================
3
4 bits(8*size) MemO[bits(32) address, integer size]
5 (excInfo, value) = MemA_with_priv_security(address, size, AccType_ORDERED,
6 FindPriv(), IsSecure(), TRUE);
7 HandleException(excInfo);
8 return value;
9

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1925

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

10
11 // MemO[] - assignment form
12 // ========================
13
14 MemO[bits(32) address, integer size] = bits(8*size) value
15 excInfo = MemA_with_priv_security(address, size, AccType_ORDERED, FindPriv(),
16 IsSecure(), TRUE, value);
17 HandleException(excInfo);

E2.1.278 MemoryAttributes

1 // v8-M Memory Attributes
2 type MemoryAttributes is (
3 MemType memtype,
4 DeviceType device, // For Device memory
5 bits(2) innerattrs, // The possible encodings for each attributes field are:
6 bits(2) outerattrs, // '00' = Non-cacheable; '01' = RESERVED
7 // '10' = Write-Through; '11' = Write-Back
8 bits(2) innerhints, // The possible encodings for the hints are as follows
9 bits(2) outerhints, // '00' = No-Allocate; '01' = Write-Allocate

10 // '10' = Read-Allocate; ;'11' = Read-Allocate and Write-Allocate
11 boolean NS, // TRUE if Non-secure, else FALSE
12 boolean innertransient,
13 boolean outertransient,
14 boolean shareable,
15 boolean outershareable
16)

E2.1.279 MemType

1 // Types of memory
2
3 enumeration MemType {MemType_Normal, MemType_Device};

E2.1.280 MemU

1 // MemU[]
2 // ======
3
4 // Non-assignment form, used for memory reads
5 // ==
6
7 bits(8*size) MemU[bits(32) address, integer size]
8 if HaveMainExt() then
9 return MemU_with_priv[address, size, FindPriv()];

10 else
11 return MemA[address, size];
12
13
14 // Assignment form, used for memory writes
15 // =======================================
16
17 MemU[bits(32) address, integer size] = bits(8*size) value
18 if HaveMainExt() then
19 MemU_with_priv[address, size, FindPriv()] = value;
20 else
21 MemA[address, size] = value;
22 return;

E2.1.281 MemU_unpriv

1 // MemU_unpriv[]
2 // =============
3

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1926

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

4 bits(8*size) MemU_unpriv[bits(32) address, integer size]
5 return MemU_with_priv[address, size, FALSE];
6
7 MemU_unpriv[bits(32) address, integer size] = bits(8*size) value
8 MemU_with_priv[address, size, FALSE] = value;
9 return;

E2.1.282 MemU_with_priv

1 // MemU_with_priv[]
2 // ================
3 // Due to single-copy atomicity constraints, the aligned accesses are distinguished from
4 // the unaligned accesses:
5 // * aligned accesses are performed at their size
6 // * unaligned accesses are expressed as a set of bytes.
7
8 // Non-assignment form
9

10 bits(8*size) MemU_with_priv[bits(32) address, integer size, boolean privileged]
11
12 bits(8*size) value;
13 // Do aligned access, take alignment fault, or do sequence of bytes
14 if address == Align(address, size) then
15 value = MemA_with_priv[address, size, privileged, TRUE];
16 elsif CCR.UNALIGN_TRP == '1' then
17 UFSR.UNALIGNED = '1';
18 excInfo = CreateException(UsageFault);
19 HandleException(excInfo);
20 else // if unaligned access
21 for i = 0 to size-1
22 value[8*i+7:8*i] = MemA_with_priv[address+i, 1, privileged, FALSE];
23 if BigEndian(address, size) then
24 value = BigEndianReverse(value, size);
25
26 return value;
27
28 // Assignment form
29
30 MemU_with_priv[bits(32) address, integer size, boolean privileged] = bits(8*size) value
31
32 // Do aligned access, take alignment fault, or do sequence of bytes
33 if address == Align(address, size) then
34 MemA_with_priv[address, size, privileged, TRUE] = value;
35 elsif CCR.UNALIGN_TRP == '1' then
36 UFSR.UNALIGNED = '1';
37 excInfo = CreateException(UsageFault);
38 HandleException(excInfo);
39 else // if unaligned access
40 if BigEndian(address, size) then
41 value = BigEndianReverse(value, size);
42 for i = 0 to size-1
43 MemA_with_priv[address+i, 1, privileged, FALSE] = value[8*i+7:8*i];
44
45 return;

E2.1.283 MergeExcInfo

1 // MergeExcInfo()
2 // ==============
3
4 ExcInfo MergeExcInfo(ExcInfo a, ExcInfo b)
5 // The ExcInfo structure is used to determine which exception should be
6 // taken, and how it should be handled (mainly in the case of derived
7 // exceptions).
8 if (b.fault == NoFault) || (a.isTerminal && !b.isTerminal) then
9 exc = a;

10 elsif (a.fault == NoFault) || (b.isTerminal && !a.isTerminal) then

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1927

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

11 exc = b;
12 elsif (a.fault == b.fault) && (a.isSecure == b.isSecure) then
13 exc = a;
14 else
15 // Propagate the fault with the highest priority (lowest numerical
16 // value).
17 aPri = ExceptionPriority(a.fault, a.isSecure, FALSE);
18 bPri = ExceptionPriority(b.fault, b.isSecure, FALSE);
19
20 // Compare the exception priority values. Exception with the highest priority, which
21 // is the lowest numerical value, is taken and the other exception may be pended.
22 if aPri < bPri then
23 exc = a;
24 pend = b;
25 elsif bPri < aPri then
26 exc = b;
27 pend = a;
28 // If both priority values are equal, the exception numbers are compared.
29 // The exception with the lowest exception number is taken and the other
30 // exception may be pended.
31 elsif a.fault < b.fault then
32 exc = a;
33 pend = b;
34 elsif b.fault < a.fault then
35 exc = b;
36 pend = a;
37 // If the two exception number are equal, the Secure exception is taken and the
38 // Non-secure exception may be pended.
39 elsif a.isSecure && !b.isSecure then
40 exc = a;
41 pend = b;
42 // In any other case exception (b) is taken and exception (a) is pended.
43 else
44 exc = b;
45 pend = a;
46
47 // It is IMPLEMENTATION_DEFINED whether all exceptions generated are visible or not.
48 // If visible, the highest priority exception will become active and lower priority
49 // exceptions will get pended.
50 if boolean IMPLEMENTATION_DEFINED "Overridden exceptions pended" then
51 SetPending(pend.fault, pend.isSecure, TRUE);
52 return exc;

E2.1.284 Min

1 // Min()
2 // =====
3
4 integer Min(integer a, integer b)
5 return if a <= b then a else b;
6
7 real Min(real a, real b)
8 return if a <= b then a else b;

E2.1.285 MPUCheck

1 // MPUCheck()
2 // ==========
3
4 (MemoryAttributes, Permissions) MPUCheck(bits(32) address, AccType acctype,
5 boolean ispriv, boolean secure)
6
7 assert(HaveSecurityExt() || !secure);
8 MemoryAttributes attributes;
9 Permissions perms;

10 attributes = DefaultMemoryAttributes(address);
11 perms = DefaultPermissions(address);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1928

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

12 // assume no valid MPU region and not using default memory map
13 hit = FALSE;
14 mpuCtrl = if secure then MPU_CTRL_S else MPU_CTRL_NS;
15
16 // Determine what MPU permissions should apply based on access type and MPU
17 // configuration
18 if acctype == AccType_VECTABLE || IsPPB(address) then
19 hit = TRUE; // use default map for PPB and vector table lookups
20 elsif acctype == AccType_DBG && secure && DHCSR.S_SUIDE == '0' then
21 hit = TRUE; // use the debugger-provided memory attributes
22 elsif acctype == AccType_DBG && !secure && DHCSR.S_NSUIDE == '0' then
23 hit = TRUE; // use the debugger-provided memory attributes
24 elsif mpuCtrl.ENABLE == '0' then
25 if mpuCtrl.HFNMIENA == '1' then UNPREDICTABLE;
26 else hit = TRUE; // always use default map if MPU disabled
27 elsif mpuCtrl.HFNMIENA == '0' && IsReqExcPriNeg(secure, acctype) then
28 hit = TRUE; // optionally use default for HardFault, NMI and FAULTMASK.
29 else // MPU is enabled so check each individual region
30 if (mpuCtrl.PRIVDEFENA == '1') && ispriv then
31 hit = TRUE; // optional default as background for Privileged accesses
32
33 regionMatched = FALSE;
34 mpuType = if secure then MPU_TYPE_S else MPU_TYPE_NS;
35 for r = 0 to (UInt(mpuType.DREGION) - 1)
36 if secure then
37 rbar = __MPU_RBAR_S[r];
38 rlar = __MPU_RLAR_S[r];
39 else
40 rbar = __MPU_RBAR_NS[r];
41 rlar = __MPU_RLAR_NS[r];
42
43 // MPU region enabled so perform checks
44 if rlar.EN == '1' then
45 if ((UInt(address) >= UInt(rbar.BASE : '00000')) &&
46 (UInt(address) <= UInt(rlar.LIMIT : '11111'))) then
47 // flag error if multiple regions match
48 if regionMatched then
49 perms.regionValid = FALSE;
50 perms.region = Zeros(8);
51 hit = FALSE;
52 else
53 regionMatched = TRUE;
54 perms.ap = rbar.AP;
55 if (rbar.XN == '1') || (ispriv && (rlar.PXN == '1')) then
56 perms.xn = '1';
57 else
58 perms.xn = '0';
59 perms.region = r[7:0];
60 perms.regionValid = TRUE;
61 hit = TRUE;
62 sh = rbar.SH;
63
64 // parsing MAIR0/1 Register fields
65 index = UInt(rlar.AttrIndx);
66 mair = (if secure then MPU_MAIR1_S : MPU_MAIR0_S else
67 MPU_MAIR1_NS : MPU_MAIR0_NS);
68 attrfield = mair[8*index+7:8*index];
69 // decoding MAIR0/1 field and populating memory attributes
70 attributes = MAIRDecode(attrfield, sh);
71
72 // MVE accesses to device memory are relaxed to GRE
73 if acctype == AccType_MVE && attributes.memtype == MemType_Device then
74 attributes.device = DeviceType_GRE;
75 if address[31:29] == '111' then // enforce System space execute never
76 perms.xn = '1';
77 if !hit then // Access not allowed if no MPU match and use of default not enabled
78 perms.apValid = FALSE;
79 return (attributes, perms);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1929

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

E2.1.286 NextInstrAddr

1 // NextInstrAddr()
2 // ===============
3
4 bits(32) NextInstrAddr()
5 return GetInstrExecState(1).FetchAddr;

E2.1.287 NextInstrITState

1 // NextInstrITState()
2 // ==================
3
4 ITSTATEType NextInstrITState()
5 if HaveMainExt() then
6 nextState = GetInstrExecState(1).ITState;
7 else
8 nextState = Zeros(8);
9 return nextState;

E2.1.288 NoninvasiveDebugAllowed

1 // NoninvasiveDebugAllowed()
2 // =========================
3
4 boolean NoninvasiveDebugAllowed(boolean isPriv)
5 if ExternalNoninvasiveDebugEnabled() then
6 return TRUE;
7 elsif (!isPriv && UnprivHaltingDebugEnabled(FALSE)) then
8 return TRUE;
9 elsif HaltingDebugAllowed() then

10 return TRUE;
11 else
12 return FALSE;
13
14
15 boolean NoninvasiveDebugAllowed()
16 return NoninvasiveDebugAllowed(CurrentModeIsPrivileged());

E2.1.289 Ones

1 // Ones()
2 // ======
3
4 bits(N) Ones(integer N)
5 return Replicate('1',N);
6
7 bits(N) Ones()
8 return Ones(N);

E2.1.290 PC

1 // PC - non-assignment form
2 // ========================
3 bits(32) PC
4 return RName[RNamesPC];

E2.1.291 PEMode

1 // The PE execution modes.
2
3 enumeration PEMode {PEMode_Thread, PEMode_Handler};

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1930

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

E2.1.292 PendingDebugHalt

1 // PendingDebugHalt()
2 // ==================
3
4 boolean PendingDebugHalt()
5 return CanHaltOnEvent(IsSecure(), FindPriv()) && DHCSR.C_HALT == '1';

E2.1.293 PendingDebugMonitor

1 // PendingDebugMonitor()
2 // =====================
3
4 boolean PendingDebugMonitor()
5 // If the current execution priority is below DebugMonitor and generating a DebugMonitor
6 // exception is allowed, and MON_PEND is set, then return TRUE. Otherwise return FALSE.
7 if DEMCR.MON_PEND == '0' then
8 return FALSE;
9 elsif !CanPendMonitorOnEvent(IsSecure(), TRUE, FALSE, FindPriv(), FALSE) then

10 return FALSE;
11 else
12 return TRUE;

E2.1.294 PendingExceptionDetails

1 // PendingExceptionDetails
2 // =======================
3 // Determines whether to take a pending exception or not. This is done based
4 // on current execution priority and the priority of pending exceptions that
5 // are not masked by DHCSR.C_MASKINTS.
6 // Returns whether any pending exception is to be taken, and, if so, the
7 // exception number for the highest priority unmasked exception, and
8 // whether this exception is Secure.
9

10 (boolean, integer, boolean) PendingExceptionDetails();

E2.1.295 PendReturnOperation

1 // PendReturnOperation()
2 // =====================
3
4 PendReturnOperation(bits(32) returnValue)
5 _NextInstrAddr = returnValue;
6 _PCChanged = TRUE;
7 _PendingReturnOperation = TRUE;
8 return;

E2.1.296 Permissions

1 // Access permissions descriptor
2
3 type Permissions is (
4 boolean apValid, // TRUE when ap is valid, else FALSE
5 bits(2) ap, // Access Permission bits, if valid
6 bit xn, // Execute Never bit
7 boolean regionValid, // TRUE if the region number is valid, else FALSE
8 bits(8) region // The MPU region number, if valid
9)

E2.1.297 PMU_CounterIncrement

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1931

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

1 // PMU_CounterIncrement()
2 // ======================
3 // Increments PMU counters associated with the specified event as needed.
4
5 constant integer CYCLE_COUNTER_ID = 31;
6
7 PMU_CounterIncrement(PmuEventType eventId, integer counterId)
8 // If the counter is disabled it does not need incrementing. Early-exit.
9 if PMU_CTRL.E == '0' || DEMCR.TRCENA == '0' then

10 return;
11
12 // Frozen, counters do not increment
13 if IsDebugState() || (!IsZero(PMU_OVSSET) && PMU_CTRL.FZO == '1') then
14 return;
15
16 pmuAllowedState = (((!IsSecure() && NoninvasiveDebugAllowed(FindPriv())) ||
17 SecureNoninvasiveDebugAllowed(FindPriv())) ||
18 eventId == PmuEventType_SW_INCR);
19
20 // If the PMU_CTRL.DP bit is not set, the dedicated cycle counter is
21 // enabled in Secure state.
22 if (counterId == CYCLE_COUNTER_ID &&
23 (!IsSecure() || PMU_CTRL.DP == '0') &&
24 eventId == PmuEventType_CPU_CYCLES) then
25 pmuAllowedState = TRUE;
26
27 // Prohibited, counters do not increment
28 if !pmuAllowedState then
29 return;
30
31 // The cycle counter will increment whenever it is enabled and there is a
32 // CPU_CYCLE event.
33 if counterId == CYCLE_COUNTER_ID then
34 if PMU_CNTENSET.C == '1' && eventId == PmuEventType_CPU_CYCLES then
35 newValue = UInt(PMU_CCNTR) + 1;
36 PMU_CCNTR = newValue[31:0];
37 - = PMU_HandleOverflow(counterId, newValue, 32);
38
39 // Other counters will increment if they are enabled,
40 // are configured to respond to that event
41 elsif (PMU_CNTENSET.Pn[counterId] == '1' &&
42 PMU_EVTYPER[counterId] == PmuEvent(eventId)) then
43 newValue = UInt(PMU_EVCNTR[counterId]) + 1;
44 PMU_EVCNTR[counterId].Counter = newValue[15:0];
45 if PMU_HandleOverflow(counterId, newValue, 16) then
46 // If this is an EVEN counter, look at possible chaining
47 if counterId[0] == '0' &&
48 PMU_CNTENSET.Pn[counterId + 1] == '1' &&
49 PMU_EVTYPER[counterId + 1] == PmuEvent(PmuEventType_CHAIN) then
50 // Configured as chaining counter, increment
51 newValueChain = UInt(PMU_EVCNTR[counterId + 1]) + 1;
52 PMU_EVCNTR[counterId + 1].Counter = newValueChain[15:0];
53 - = PMU_HandleOverflow(counterId + 1, newValueChain, 16);
54
55 PMU_CounterIncrement(PmuEventType eventId)
56 // If all counters are globally disable, they don't need incrementing. Early-exit.
57 if PMU_CTRL.E == '0' || DEMCR.TRCENA == '0' then
58 return;
59 for i = 0 to UInt(PMU_TYPE.N) - 1
60 PMU_CounterIncrement(eventId, i);
61 PMU_CounterIncrement(eventId, CYCLE_COUNTER_ID);

E2.1.298 PMU_HandleOverflow

1 // PMU_HandleOverflow()
2 // ======================
3 // Handles the overflow of a specified counter.
4

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1932

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

5 boolean PMU_HandleOverflow(integer counterId, integer newValue, integer overflowBit)
6 // Handle trace-on-overflow if the lower 8-bits of any of the first 8 counters
7 // overflows. This only occurs if trace-on-overflow is enabled.
8 // If multiple trace packets are waiting to be issued, their contents can be
9 // merged into a single packet.

10 if counterId < 8 && PMU_CTRL.TRO == '1' && newValue[8] != (newValue - 1)[8] then
11 PMU_EmitTrace(counterId);
12
13 // Has the counter actually overflowed?
14 if newValue[overflowBit] == '1' then
15 PMU_OVSSET[counterId] = '1';
16 // If enabled, generate a debug event with 'PMU' syndrome
17 if PMU_INTENSET[counterId] == '1' then
18 isSecure = FALSE;
19 isPriv = CurrentModeIsPrivileged(isSecure);
20 if DHCSR.C_PMOV == '1' && CanHaltOnEvent(isSecure, isPriv) then
21 DHCSR.C_HALT = '1';
22 DFSR.PMU = '1';
23 elsif CanPendMonitorOnEvent(isSecure, FALSE, TRUE, isPriv, TRUE) then
24 DEMCR.MON_PEND = '1';
25 DFSR.PMU = '1';
26 return TRUE;
27 return FALSE;

E2.1.299 PmuEvent

1 // PmuEvent
2 // =========
3
4 // This PmuEvent function defines a mapping between a human-readable
5 // PMU Event and the corresponding integer event ID.
6
7 bits(32) PmuEvent(PmuEventType value)
8 integer eventId;
9 case value of

10 when PmuEventType_SW_INCR eventId = 0x0;
11 when PmuEventType_L1I_CACHE_REFILL eventId = 0x1;
12 when PmuEventType_L1D_CACHE_REFILL eventId = 0x3;
13 when PmuEventType_L1D_CACHE eventId = 0x4;
14 when PmuEventType_LD_RETIRED eventId = 0x6;
15 when PmuEventType_ST_RETIRED eventId = 0x7;
16 when PmuEventType_INST_RETIRED eventId = 0x8;
17 when PmuEventType_EXC_TAKEN eventId = 0x9;
18 when PmuEventType_EXC_RETURN eventId = 0xa;
19 when PmuEventType_PC_WRITE_RETIRED eventId = 0xc;
20 when PmuEventType_BR_IMMED_RETIRED eventId = 0xd;
21 when PmuEventType_BR_RETURN_RETIRED eventId = 0xe;
22 when PmuEventType_UNALIGNED_LDST_RETIRED eventId = 0xf;
23 when PmuEventType_BR_MIS_PRED eventId = 0x10;
24 when PmuEventType_CPU_CYCLES eventId = 0x11;
25 when PmuEventType_BR_PRED eventId = 0x12;
26 when PmuEventType_MEM_ACCESS eventId = 0x13;
27 when PmuEventType_L1I_CACHE eventId = 0x14;
28 when PmuEventType_L1D_CACHE_WB eventId = 0x15;
29 when PmuEventType_L2D_CACHE eventId = 0x16;
30 when PmuEventType_L2D_CACHE_REFILL eventId = 0x17;
31 when PmuEventType_L2D_CACHE_WB eventId = 0x18;
32 when PmuEventType_BUS_ACCESS eventId = 0x19;
33 when PmuEventType_MEMORY_ERROR eventId = 0x1a;
34 when PmuEventType_INST_SPEC eventId = 0x1b;
35 when PmuEventType_BUS_CYCLES eventId = 0x1d;
36 when PmuEventType_CHAIN eventId = 0x1e;
37 when PmuEventType_L1D_CACHE_ALLOCATE eventId = 0x1f;
38 when PmuEventType_L2D_CACHE_ALLOCATE eventId = 0x20;
39 when PmuEventType_BR_RETIRED eventId = 0x21;
40 when PmuEventType_BR_MIS_PRED_RETIRED eventId = 0x22;
41 when PmuEventType_STALL_FRONTEND eventId = 0x23;
42 when PmuEventType_STALL_BACKEND eventId = 0x24;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1933

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

43 when PmuEventType_L2I_CACHE eventId = 0x27;
44 when PmuEventType_L2I_CACHE_REFILL eventId = 0x28;
45 when PmuEventType_L3D_CACHE_ALLOCATE eventId = 0x29;
46 when PmuEventType_L3D_CACHE_REFILL eventId = 0x2a;
47 when PmuEventType_L3D_CACHE eventId = 0x2b;
48 when PmuEventType_L3D_CACHE_WB eventId = 0x2c;
49 when PmuEventType_LL_CACHE_RD eventId = 0x36;
50 when PmuEventType_LL_CACHE_MISS_RD eventId = 0x37;
51 when PmuEventType_L1D_CACHE_MISS_RD eventId = 0x39;
52 when PmuEventType_OP_RETIRED eventId = 0x3a;
53 when PmuEventType_OP_SPEC eventId = 0x3b;
54 when PmuEventType_STALL eventId = 0x3c;
55 when PmuEventType_STALL_SLOT_BACKEND eventId = 0x3d;
56 when PmuEventType_STALL_SLOT_FRONTEND eventId = 0x3e;
57 when PmuEventType_STALL_SLOT eventId = 0x3f;
58 when PmuEventType_L1D_CACHE_RD eventId = 0x40;
59 when PmuEventType_LE_RETIRED eventId = 0x100;
60 when PmuEventType_LE_SPEC eventId = 0x101;
61 when PmuEventType_BF_RETIRED eventId = 0x104;
62 when PmuEventType_BF_SPEC eventId = 0x105;
63 when PmuEventType_LE_CANCEL eventId = 0x108;
64 when PmuEventType_BF_CANCEL eventId = 0x109;
65 when PmuEventType_SE_CALL_S eventId = 0x114;
66 when PmuEventType_SE_CALL_NS eventId = 0x115;
67 when PmuEventType_DWT_CMPMATCH0 eventId = 0x118;
68 when PmuEventType_DWT_CMPMATCH1 eventId = 0x119;
69 when PmuEventType_DWT_CMPMATCH2 eventId = 0x11a;
70 when PmuEventType_DWT_CMPMATCH3 eventId = 0x11b;
71 when PmuEventType_DWT_CMPMATCH4 eventId = 0x11c;
72 when PmuEventType_DWT_CMPMATCH5 eventId = 0x11d;
73 when PmuEventType_DWT_CMPMATCH6 eventId = 0x11e;
74 when PmuEventType_DWT_CMPMATCH7 eventId = 0x11f;
75 when PmuEventType_MVE_INST_RETIRED eventId = 0x200;
76 when PmuEventType_MVE_INST_SPEC eventId = 0x201;
77 when PmuEventType_MVE_FP_RETIRED eventId = 0x204;
78 when PmuEventType_MVE_FP_SPEC eventId = 0x205;
79 when PmuEventType_MVE_FP_HP_RETIRED eventId = 0x208;
80 when PmuEventType_MVE_FP_HP_SPEC eventId = 0x209;
81 when PmuEventType_MVE_FP_SP_RETIRED eventId = 0x20c;
82 when PmuEventType_MVE_FP_SP_SPEC eventId = 0x20d;
83 when PmuEventType_MVE_FP_MAC_RETIRED eventId = 0x214;
84 when PmuEventType_MVE_FP_MAC_SPEC eventId = 0x215;
85 when PmuEventType_MVE_INT_RETIRED eventId = 0x224;
86 when PmuEventType_MVE_INT_SPEC eventId = 0x225;
87 when PmuEventType_MVE_INT_MAC_RETIRED eventId = 0x228;
88 when PmuEventType_MVE_INT_MAC_SPEC eventId = 0x229;
89 when PmuEventType_MVE_LDST_RETIRED eventId = 0x238;
90 when PmuEventType_MVE_LDST_SPEC eventId = 0x239;
91 when PmuEventType_MVE_LD_RETIRED eventId = 0x23c;
92 when PmuEventType_MVE_LD_SPEC eventId = 0x23d;
93 when PmuEventType_MVE_ST_RETIRED eventId = 0x240;
94 when PmuEventType_MVE_ST_SPEC eventId = 0x241;
95 when PmuEventType_MVE_LDST_CONTIG_RETIRED eventId = 0x244;
96 when PmuEventType_MVE_LDST_CONTIG_SPEC eventId = 0x245;
97 when PmuEventType_MVE_LD_CONTIG_RETIRED eventId = 0x248;
98 when PmuEventType_MVE_LD_CONTIG_SPEC eventId = 0x249;
99 when PmuEventType_MVE_ST_CONTIG_RETIRED eventId = 0x24c;

100 when PmuEventType_MVE_ST_CONTIG_SPEC eventId = 0x24d;
101 when PmuEventType_MVE_LDST_NONCONTIG_RETIRED eventId = 0x250;
102 when PmuEventType_MVE_LDST_NONCONTIG_SPEC eventId = 0x251;
103 when PmuEventType_MVE_LD_NONCONTIG_RETIRED eventId = 0x254;
104 when PmuEventType_MVE_LD_NONCONTIG_SPEC eventId = 0x255;
105 when PmuEventType_MVE_ST_NONCONTIG_RETIRED eventId = 0x258;
106 when PmuEventType_MVE_ST_NONCONTIG_SPEC eventId = 0x259;
107 when PmuEventType_MVE_LDST_MULTI_RETIRED eventId = 0x25c;
108 when PmuEventType_MVE_LDST_MULTI_SPEC eventId = 0x25d;
109 when PmuEventType_MVE_LD_MULTI_RETIRED eventId = 0x260;
110 when PmuEventType_MVE_LD_MULTI_SPEC eventId = 0x261;
111 when PmuEventType_MVE_ST_MULTI_RETIRED eventId = 0x264;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1934

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

112 when PmuEventType_MVE_ST_MULTI_SPEC eventId = 0x265;
113 when PmuEventType_MVE_LDST_UNALIGNED_RETIRED eventId = 0x28c;
114 when PmuEventType_MVE_LDST_UNALIGNED_SPEC eventId = 0x28d;
115 when PmuEventType_MVE_LD_UNALIGNED_RETIRED eventId = 0x290;
116 when PmuEventType_MVE_LD_UNALIGNED_SPEC eventId = 0x291;
117 when PmuEventType_MVE_ST_UNALIGNED_RETIRED eventId = 0x294;
118 when PmuEventType_MVE_ST_UNALIGNED_SPEC eventId = 0x295;
119 when PmuEventType_MVE_LDST_UNALIGNED_NONCONTIG_RETIRED eventId = 0x298;
120 when PmuEventType_MVE_LDST_UNALIGNED_NONCONTIG_SPEC eventId = 0x299;
121 when PmuEventType_MVE_VREDUCE_RETIRED eventId = 0x2a0;
122 when PmuEventType_MVE_VREDUCE_SPEC eventId = 0x2a1;
123 when PmuEventType_MVE_VREDUCE_FP_RETIRED eventId = 0x2a4;
124 when PmuEventType_MVE_VREDUCE_FP_SPEC eventId = 0x2a5;
125 when PmuEventType_MVE_VREDUCE_INT_RETIRED eventId = 0x2a8;
126 when PmuEventType_MVE_VREDUCE_INT_SPEC eventId = 0x2a9;
127 when PmuEventType_MVE_PRED eventId = 0x2b8;
128 when PmuEventType_MVE_STALL eventId = 0x2cc;
129 when PmuEventType_MVE_STALL_RESOURCE eventId = 0x2cd;
130 when PmuEventType_MVE_STALL_RESOURCE_MEM eventId = 0x2ce;
131 when PmuEventType_MVE_STALL_RESOURCE_FP eventId = 0x2cf;
132 when PmuEventType_MVE_STALL_RESOURCE_INT eventId = 0x2d0;
133 when PmuEventType_MVE_STALL_BREAK eventId = 0x2d3;
134 when PmuEventType_MVE_STALL_DEPENDENCY eventId = 0x2d4;
135 when PmuEventType_ITCM_ACCESS eventId = 0x4007;
136 when PmuEventType_DTCM_ACCESS eventId = 0x4008;
137 when PmuEventType_TRCEXTOUT0 eventId = 0x4010;
138 when PmuEventType_TRCEXTOUT1 eventId = 0x4011;
139 when PmuEventType_TRCEXTOUT2 eventId = 0x4012;
140 when PmuEventType_TRCEXTOUT3 eventId = 0x4013;
141 when PmuEventType_CTI_TRIGOUT4 eventId = 0x4018;
142 when PmuEventType_CTI_TRIGOUT5 eventId = 0x4019;
143 when PmuEventType_CTI_TRIGOUT6 eventId = 0x401a;
144 when PmuEventType_CTI_TRIGOUT7 eventId = 0x401b;
145
146 // Events above 0xFFFF are reserved for
147 // IMPLEMENTATION DEFINED events
148 otherwise
149 eventId = -1;
150 return eventId[31:0];
151
152 PmuEventType PmuEvent(bits(32) value)
153 PmuEventType eventId;
154 case UInt(value) of
155 when 0x0 eventId = PmuEventType_SW_INCR;
156 when 0x1 eventId = PmuEventType_L1I_CACHE_REFILL;
157 when 0x3 eventId = PmuEventType_L1D_CACHE_REFILL;
158 when 0x4 eventId = PmuEventType_L1D_CACHE;
159 when 0x6 eventId = PmuEventType_LD_RETIRED;
160 when 0x7 eventId = PmuEventType_ST_RETIRED;
161 when 0x8 eventId = PmuEventType_INST_RETIRED;
162 when 0x9 eventId = PmuEventType_EXC_TAKEN;
163 when 0xa eventId = PmuEventType_EXC_RETURN;
164 when 0xc eventId = PmuEventType_PC_WRITE_RETIRED;
165 when 0xd eventId = PmuEventType_BR_IMMED_RETIRED;
166 when 0xe eventId = PmuEventType_BR_RETURN_RETIRED;
167 when 0xf eventId = PmuEventType_UNALIGNED_LDST_RETIRED;
168 when 0x10 eventId = PmuEventType_BR_MIS_PRED;
169 when 0x11 eventId = PmuEventType_CPU_CYCLES;
170 when 0x12 eventId = PmuEventType_BR_PRED;
171 when 0x13 eventId = PmuEventType_MEM_ACCESS;
172 when 0x14 eventId = PmuEventType_L1I_CACHE;
173 when 0x15 eventId = PmuEventType_L1D_CACHE_WB;
174 when 0x16 eventId = PmuEventType_L2D_CACHE;
175 when 0x17 eventId = PmuEventType_L2D_CACHE_REFILL;
176 when 0x18 eventId = PmuEventType_L2D_CACHE_WB;
177 when 0x19 eventId = PmuEventType_BUS_ACCESS;
178 when 0x1a eventId = PmuEventType_MEMORY_ERROR;
179 when 0x1b eventId = PmuEventType_INST_SPEC;
180 when 0x1d eventId = PmuEventType_BUS_CYCLES;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1935

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

181 when 0x1e eventId = PmuEventType_CHAIN;
182 when 0x1f eventId = PmuEventType_L1D_CACHE_ALLOCATE;
183 when 0x20 eventId = PmuEventType_L2D_CACHE_ALLOCATE;
184 when 0x21 eventId = PmuEventType_BR_RETIRED;
185 when 0x22 eventId = PmuEventType_BR_MIS_PRED_RETIRED;
186 when 0x23 eventId = PmuEventType_STALL_FRONTEND;
187 when 0x24 eventId = PmuEventType_STALL_BACKEND;
188 when 0x27 eventId = PmuEventType_L2I_CACHE;
189 when 0x28 eventId = PmuEventType_L2I_CACHE_REFILL;
190 when 0x29 eventId = PmuEventType_L3D_CACHE_ALLOCATE;
191 when 0x2a eventId = PmuEventType_L3D_CACHE_REFILL;
192 when 0x2b eventId = PmuEventType_L3D_CACHE;
193 when 0x2c eventId = PmuEventType_L3D_CACHE_WB;
194 when 0x36 eventId = PmuEventType_LL_CACHE_RD;
195 when 0x37 eventId = PmuEventType_LL_CACHE_MISS_RD;
196 when 0x39 eventId = PmuEventType_L1D_CACHE_MISS_RD;
197 when 0x3a eventId = PmuEventType_OP_RETIRED;
198 when 0x3b eventId = PmuEventType_OP_SPEC;
199 when 0x3c eventId = PmuEventType_STALL;
200 when 0x3d eventId = PmuEventType_STALL_SLOT_BACKEND;
201 when 0x3e eventId = PmuEventType_STALL_SLOT_FRONTEND;
202 when 0x3f eventId = PmuEventType_STALL_SLOT;
203 when 0x40 eventId = PmuEventType_L1D_CACHE_RD;
204 when 0x100 eventId = PmuEventType_LE_RETIRED;
205 when 0x101 eventId = PmuEventType_LE_SPEC;
206 when 0x104 eventId = PmuEventType_BF_RETIRED;
207 when 0x105 eventId = PmuEventType_BF_SPEC;
208 when 0x108 eventId = PmuEventType_LE_CANCEL;
209 when 0x109 eventId = PmuEventType_BF_CANCEL;
210 when 0x114 eventId = PmuEventType_SE_CALL_S;
211 when 0x115 eventId = PmuEventType_SE_CALL_NS;
212 when 0x118 eventId = PmuEventType_DWT_CMPMATCH0;
213 when 0x119 eventId = PmuEventType_DWT_CMPMATCH1;
214 when 0x11a eventId = PmuEventType_DWT_CMPMATCH2;
215 when 0x11b eventId = PmuEventType_DWT_CMPMATCH3;
216 when 0x11c eventId = PmuEventType_DWT_CMPMATCH4;
217 when 0x11d eventId = PmuEventType_DWT_CMPMATCH5;
218 when 0x11e eventId = PmuEventType_DWT_CMPMATCH6;
219 when 0x11f eventId = PmuEventType_DWT_CMPMATCH7;
220 when 0x200 eventId = PmuEventType_MVE_INST_RETIRED;
221 when 0x201 eventId = PmuEventType_MVE_INST_SPEC;
222 when 0x204 eventId = PmuEventType_MVE_FP_RETIRED;
223 when 0x205 eventId = PmuEventType_MVE_FP_SPEC;
224 when 0x208 eventId = PmuEventType_MVE_FP_HP_RETIRED;
225 when 0x209 eventId = PmuEventType_MVE_FP_HP_SPEC;
226 when 0x20c eventId = PmuEventType_MVE_FP_SP_RETIRED;
227 when 0x20d eventId = PmuEventType_MVE_FP_SP_SPEC;
228 when 0x214 eventId = PmuEventType_MVE_FP_MAC_RETIRED;
229 when 0x215 eventId = PmuEventType_MVE_FP_MAC_SPEC;
230 when 0x224 eventId = PmuEventType_MVE_INT_RETIRED;
231 when 0x225 eventId = PmuEventType_MVE_INT_SPEC;
232 when 0x228 eventId = PmuEventType_MVE_INT_MAC_RETIRED;
233 when 0x229 eventId = PmuEventType_MVE_INT_MAC_SPEC;
234 when 0x238 eventId = PmuEventType_MVE_LDST_RETIRED;
235 when 0x239 eventId = PmuEventType_MVE_LDST_SPEC;
236 when 0x23c eventId = PmuEventType_MVE_LD_RETIRED;
237 when 0x23d eventId = PmuEventType_MVE_LD_SPEC;
238 when 0x240 eventId = PmuEventType_MVE_ST_RETIRED;
239 when 0x241 eventId = PmuEventType_MVE_ST_SPEC;
240 when 0x244 eventId = PmuEventType_MVE_LDST_CONTIG_RETIRED;
241 when 0x245 eventId = PmuEventType_MVE_LDST_CONTIG_SPEC;
242 when 0x248 eventId = PmuEventType_MVE_LD_CONTIG_RETIRED;
243 when 0x249 eventId = PmuEventType_MVE_LD_CONTIG_SPEC;
244 when 0x24c eventId = PmuEventType_MVE_ST_CONTIG_RETIRED;
245 when 0x24d eventId = PmuEventType_MVE_ST_CONTIG_SPEC;
246 when 0x250 eventId = PmuEventType_MVE_LDST_NONCONTIG_RETIRED;
247 when 0x251 eventId = PmuEventType_MVE_LDST_NONCONTIG_SPEC;
248 when 0x254 eventId = PmuEventType_MVE_LD_NONCONTIG_RETIRED;
249 when 0x255 eventId = PmuEventType_MVE_LD_NONCONTIG_SPEC;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1936

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

250 when 0x258 eventId = PmuEventType_MVE_ST_NONCONTIG_RETIRED;
251 when 0x259 eventId = PmuEventType_MVE_ST_NONCONTIG_SPEC;
252 when 0x25c eventId = PmuEventType_MVE_LDST_MULTI_RETIRED;
253 when 0x25d eventId = PmuEventType_MVE_LDST_MULTI_SPEC;
254 when 0x260 eventId = PmuEventType_MVE_LD_MULTI_RETIRED;
255 when 0x261 eventId = PmuEventType_MVE_LD_MULTI_SPEC;
256 when 0x264 eventId = PmuEventType_MVE_ST_MULTI_RETIRED;
257 when 0x265 eventId = PmuEventType_MVE_ST_MULTI_SPEC;
258 when 0x28c eventId = PmuEventType_MVE_LDST_UNALIGNED_RETIRED;
259 when 0x28d eventId = PmuEventType_MVE_LDST_UNALIGNED_SPEC;
260 when 0x290 eventId = PmuEventType_MVE_LD_UNALIGNED_RETIRED;
261 when 0x291 eventId = PmuEventType_MVE_LD_UNALIGNED_SPEC;
262 when 0x294 eventId = PmuEventType_MVE_ST_UNALIGNED_RETIRED;
263 when 0x295 eventId = PmuEventType_MVE_ST_UNALIGNED_SPEC;
264 when 0x298 eventId = PmuEventType_MVE_LDST_UNALIGNED_NONCONTIG_RETIRED;
265 when 0x299 eventId = PmuEventType_MVE_LDST_UNALIGNED_NONCONTIG_SPEC;
266 when 0x2a0 eventId = PmuEventType_MVE_VREDUCE_RETIRED;
267 when 0x2a1 eventId = PmuEventType_MVE_VREDUCE_SPEC;
268 when 0x2a4 eventId = PmuEventType_MVE_VREDUCE_FP_RETIRED;
269 when 0x2a5 eventId = PmuEventType_MVE_VREDUCE_FP_SPEC;
270 when 0x2a8 eventId = PmuEventType_MVE_VREDUCE_INT_RETIRED;
271 when 0x2a9 eventId = PmuEventType_MVE_VREDUCE_INT_SPEC;
272 when 0x2b8 eventId = PmuEventType_MVE_PRED;
273 when 0x2cc eventId = PmuEventType_MVE_STALL;
274 when 0x2cd eventId = PmuEventType_MVE_STALL_RESOURCE;
275 when 0x2ce eventId = PmuEventType_MVE_STALL_RESOURCE_MEM;
276 when 0x2cf eventId = PmuEventType_MVE_STALL_RESOURCE_FP;
277 when 0x2d0 eventId = PmuEventType_MVE_STALL_RESOURCE_INT;
278 when 0x2d3 eventId = PmuEventType_MVE_STALL_BREAK;
279 when 0x2d4 eventId = PmuEventType_MVE_STALL_DEPENDENCY;
280 when 0x4007 eventId = PmuEventType_ITCM_ACCESS;
281 when 0x4008 eventId = PmuEventType_DTCM_ACCESS;
282 when 0x4010 eventId = PmuEventType_TRCEXTOUT0;
283 when 0x4011 eventId = PmuEventType_TRCEXTOUT1;
284 when 0x4012 eventId = PmuEventType_TRCEXTOUT2;
285 when 0x4013 eventId = PmuEventType_TRCEXTOUT3;
286 when 0x4018 eventId = PmuEventType_CTI_TRIGOUT4;
287 when 0x4019 eventId = PmuEventType_CTI_TRIGOUT5;
288 when 0x401a eventId = PmuEventType_CTI_TRIGOUT6;
289 when 0x401b eventId = PmuEventType_CTI_TRIGOUT7;
290
291 // Events above 0xFFFF are reserved for
292 // IMPLEMENTATION DEFINED events
293 otherwise
294 eventId = PmuEventType_NONE;
295 return eventId;

E2.1.300 PmuEventType

1 // Enumeration of the supported PMU Events
2 enumeration PmuEventType {
3 PmuEventType_NONE,
4 PmuEventType_SW_INCR,
5 PmuEventType_L1I_CACHE_REFILL,
6 PmuEventType_L1D_CACHE_REFILL,
7 PmuEventType_L1D_CACHE,
8 PmuEventType_LD_RETIRED,
9 PmuEventType_ST_RETIRED,

10 PmuEventType_INST_RETIRED,
11 PmuEventType_EXC_TAKEN,
12 PmuEventType_EXC_RETURN,
13 PmuEventType_PC_WRITE_RETIRED,
14 PmuEventType_BR_IMMED_RETIRED,
15 PmuEventType_BR_RETURN_RETIRED,
16 PmuEventType_UNALIGNED_LDST_RETIRED,
17 PmuEventType_BR_MIS_PRED,
18 PmuEventType_CPU_CYCLES,
19 PmuEventType_BR_PRED,

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1937

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

20 PmuEventType_MEM_ACCESS,
21 PmuEventType_L1I_CACHE,
22 PmuEventType_L1D_CACHE_WB,
23 PmuEventType_L2D_CACHE,
24 PmuEventType_L2D_CACHE_REFILL,
25 PmuEventType_L2D_CACHE_WB,
26 PmuEventType_BUS_ACCESS,
27 PmuEventType_MEMORY_ERROR,
28 PmuEventType_INST_SPEC,
29 PmuEventType_BUS_CYCLES,
30 PmuEventType_CHAIN,
31 PmuEventType_L1D_CACHE_ALLOCATE,
32 PmuEventType_L2D_CACHE_ALLOCATE,
33 PmuEventType_BR_RETIRED,
34 PmuEventType_BR_MIS_PRED_RETIRED,
35 PmuEventType_STALL_FRONTEND,
36 PmuEventType_STALL_BACKEND,
37 PmuEventType_L2I_CACHE,
38 PmuEventType_L2I_CACHE_REFILL,
39 PmuEventType_L3D_CACHE_ALLOCATE,
40 PmuEventType_L3D_CACHE_REFILL,
41 PmuEventType_L3D_CACHE,
42 PmuEventType_L3D_CACHE_WB,
43 PmuEventType_LL_CACHE_RD,
44 PmuEventType_LL_CACHE_MISS_RD,
45 PmuEventType_L1D_CACHE_MISS_RD,
46 PmuEventType_OP_RETIRED,
47 PmuEventType_OP_SPEC,
48 PmuEventType_STALL,
49 PmuEventType_STALL_SLOT_BACKEND,
50 PmuEventType_STALL_SLOT_FRONTEND,
51 PmuEventType_STALL_SLOT,
52 PmuEventType_L1D_CACHE_RD,
53 PmuEventType_LE_RETIRED,
54 PmuEventType_LE_SPEC,
55 PmuEventType_BF_RETIRED,
56 PmuEventType_BF_SPEC,
57 PmuEventType_LE_CANCEL,
58 PmuEventType_BF_CANCEL,
59 PmuEventType_SE_CALL_S,
60 PmuEventType_SE_CALL_NS,
61 PmuEventType_DWT_CMPMATCH0,
62 PmuEventType_DWT_CMPMATCH1,
63 PmuEventType_DWT_CMPMATCH2,
64 PmuEventType_DWT_CMPMATCH3,
65 PmuEventType_DWT_CMPMATCH4,
66 PmuEventType_DWT_CMPMATCH5,
67 PmuEventType_DWT_CMPMATCH6,
68 PmuEventType_DWT_CMPMATCH7,
69 PmuEventType_MVE_INST_RETIRED,
70 PmuEventType_MVE_INST_SPEC,
71 PmuEventType_MVE_FP_RETIRED,
72 PmuEventType_MVE_FP_SPEC,
73 PmuEventType_MVE_FP_HP_RETIRED,
74 PmuEventType_MVE_FP_HP_SPEC,
75 PmuEventType_MVE_FP_SP_RETIRED,
76 PmuEventType_MVE_FP_SP_SPEC,
77 PmuEventType_MVE_FP_MAC_RETIRED,
78 PmuEventType_MVE_FP_MAC_SPEC,
79 PmuEventType_MVE_INT_RETIRED,
80 PmuEventType_MVE_INT_SPEC,
81 PmuEventType_MVE_INT_MAC_RETIRED,
82 PmuEventType_MVE_INT_MAC_SPEC,
83 PmuEventType_MVE_LDST_RETIRED,
84 PmuEventType_MVE_LDST_SPEC,
85 PmuEventType_MVE_LD_RETIRED,
86 PmuEventType_MVE_LD_SPEC,
87 PmuEventType_MVE_ST_RETIRED,
88 PmuEventType_MVE_ST_SPEC,

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1938

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

89 PmuEventType_MVE_LDST_CONTIG_RETIRED,
90 PmuEventType_MVE_LDST_CONTIG_SPEC,
91 PmuEventType_MVE_LD_CONTIG_RETIRED,
92 PmuEventType_MVE_LD_CONTIG_SPEC,
93 PmuEventType_MVE_ST_CONTIG_RETIRED,
94 PmuEventType_MVE_ST_CONTIG_SPEC,
95 PmuEventType_MVE_LDST_NONCONTIG_RETIRED,
96 PmuEventType_MVE_LDST_NONCONTIG_SPEC,
97 PmuEventType_MVE_LD_NONCONTIG_RETIRED,
98 PmuEventType_MVE_LD_NONCONTIG_SPEC,
99 PmuEventType_MVE_ST_NONCONTIG_RETIRED,

100 PmuEventType_MVE_ST_NONCONTIG_SPEC,
101 PmuEventType_MVE_LDST_MULTI_RETIRED,
102 PmuEventType_MVE_LDST_MULTI_SPEC,
103 PmuEventType_MVE_LD_MULTI_RETIRED,
104 PmuEventType_MVE_LD_MULTI_SPEC,
105 PmuEventType_MVE_ST_MULTI_RETIRED,
106 PmuEventType_MVE_ST_MULTI_SPEC,
107 PmuEventType_MVE_LDST_UNALIGNED_RETIRED,
108 PmuEventType_MVE_LDST_UNALIGNED_SPEC,
109 PmuEventType_MVE_LD_UNALIGNED_RETIRED,
110 PmuEventType_MVE_LD_UNALIGNED_SPEC,
111 PmuEventType_MVE_ST_UNALIGNED_RETIRED,
112 PmuEventType_MVE_ST_UNALIGNED_SPEC,
113 PmuEventType_MVE_LDST_UNALIGNED_NONCONTIG_RETIRED,
114 PmuEventType_MVE_LDST_UNALIGNED_NONCONTIG_SPEC,
115 PmuEventType_MVE_VREDUCE_RETIRED,
116 PmuEventType_MVE_VREDUCE_SPEC,
117 PmuEventType_MVE_VREDUCE_FP_RETIRED,
118 PmuEventType_MVE_VREDUCE_FP_SPEC,
119 PmuEventType_MVE_VREDUCE_INT_RETIRED,
120 PmuEventType_MVE_VREDUCE_INT_SPEC,
121 PmuEventType_MVE_PRED,
122 PmuEventType_MVE_STALL,
123 PmuEventType_MVE_STALL_RESOURCE,
124 PmuEventType_MVE_STALL_RESOURCE_MEM,
125 PmuEventType_MVE_STALL_RESOURCE_FP,
126 PmuEventType_MVE_STALL_RESOURCE_INT,
127 PmuEventType_MVE_STALL_BREAK,
128 PmuEventType_MVE_STALL_DEPENDENCY,
129 PmuEventType_ITCM_ACCESS,
130 PmuEventType_DTCM_ACCESS,
131 PmuEventType_TRCEXTOUT0,
132 PmuEventType_TRCEXTOUT1,
133 PmuEventType_TRCEXTOUT2,
134 PmuEventType_TRCEXTOUT3,
135 PmuEventType_CTI_TRIGOUT4,
136 PmuEventType_CTI_TRIGOUT5,
137 PmuEventType_CTI_TRIGOUT6,
138 PmuEventType_CTI_TRIGOUT7
139 // Other implementation-specific events may be defined here
140 };

E2.1.301 PolynomialMult

1 // PolynomialMult()
2 // ================
3
4 bits(M+N) PolynomialMult(bits(M) op1, bits(N) op2)
5 result = Zeros(M+N);
6 extended_op2 = Zeros(M) : op2;
7 for i=0 to M-1
8 if op1[i] == '1' then
9 result = result EOR LSL(extended_op2, i);

10 return result;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1939

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

E2.1.302 PopStack

1 // PopStack()
2 // ==========
3
4 ExcInfo PopStack(EXC_RETURN_Type excReturn)
5 constant integer intCallerFrameSize = 0x20;
6 constant integer intCalleeFrameSize = 0x28;
7 constant integer fpCallerFrameSize = 0x48;
8
9 // NOTE: All stack accesses are performed as Unprivileged accesses if

10 // returning to Thread mode and CONTROL.nPRIV is 1 for the destination
11 // Security state.
12 mode = if excReturn.Mode == '1' then PEMode_Thread else PEMode_Handler;
13 toSecure = HaveSecurityExt() && excReturn.S == '1';
14 spName = LookUpSP_with_security_mode(toSecure, mode);
15 frameptr = _SP(spName);
16 if !IsAligned(frameptr, 8) then UNPREDICTABLE;
17
18 // only stack locations, not the load order, are architected
19
20 // Pop the callee saved registers, when returning from a Non-secure exception
21 // or a Secure one that followed a Non-secure one and therefore still has
22 // the callee register state on the stack.
23 exc = DefaultExcInfo();
24 if toSecure && (excReturn.ES == '0' ||
25 excReturn.DCRS == '0') then
26 // Check the integrity signature, and if so is it correct
27 expectedSig = 0xFEFA125B[31:0];
28 if HaveMveOrFPExt() then
29 expectedSig[0] = excReturn.FType;
30 (exc, integritySig) = Stack(frameptr, 0x0, spName, mode);
31 if exc.fault == NoFault && integritySig != expectedSig then
32 if HaveMainExt() then
33 SFSR.INVIS = '1';
34 // Create the exception. NOTE: If Main Extension is not implemented the fault
35 // always escalates to a HardFault
36 return CreateException(SecureFault);
37
38 if exc.fault == NoFault then (exc, R[4]) = Stack(frameptr, 0x8, spName, mode);
39 if exc.fault == NoFault then (exc, R[5]) = Stack(frameptr, 0xC, spName, mode);
40 if exc.fault == NoFault then (exc, R[6]) = Stack(frameptr, 0x10, spName, mode);
41 if exc.fault == NoFault then (exc, R[7]) = Stack(frameptr, 0x14, spName, mode);
42 if exc.fault == NoFault then (exc, R[8]) = Stack(frameptr, 0x18, spName, mode);
43 if exc.fault == NoFault then (exc, R[9]) = Stack(frameptr, 0x1C, spName, mode);
44 if exc.fault == NoFault then (exc, R[10]) = Stack(frameptr, 0x20, spName, mode);
45 if exc.fault == NoFault then (exc, R[11]) = Stack(frameptr, 0x24, spName, mode);
46 frameptr = frameptr + intCalleeFrameSize;
47
48 // Unstack the caller saved regs, possibly including the FP regs
49 RETPSR_Type psr;
50 if exc.fault == NoFault then (exc, R[0]) = Stack(frameptr, 0x0, spName, mode);
51 if exc.fault == NoFault then (exc, R[1]) = Stack(frameptr, 0x4, spName, mode);
52 if exc.fault == NoFault then (exc, R[2]) = Stack(frameptr, 0x8, spName, mode);
53 if exc.fault == NoFault then (exc, R[3]) = Stack(frameptr, 0xC, spName, mode);
54 if exc.fault == NoFault then (exc, R[12]) = Stack(frameptr, 0x10, spName, mode);
55 if exc.fault == NoFault then (exc, LR) = Stack(frameptr, 0x14, spName, mode);
56 if exc.fault == NoFault then (exc, pc) = Stack(frameptr, 0x18, spName, mode);
57 if exc.fault == NoFault then (exc, psr) = Stack(frameptr, 0x1C, spName, mode);
58 frameOffset = intCallerFrameSize;
59 BranchTo(pc, TRUE);
60
61 // Check the XPSR value that has been unstacked is consistent with the mode
62 // being returned to
63 excNum = UInt(psr.Exception);
64 if (exc.fault == NoFault) &&
65 ((mode == PEMode_Handler) == (excNum == 0)) then
66 if HaveMainExt() then
67 UFSR.INVPC = '1';

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1940

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

68 // Create the exception. NOTE: If Main Extension is not implemented the fault
69 // always escalates to a HardFault
70 return CreateException(UsageFault);
71
72 // The IPSR value is set as UNKNOWN if the unstacked IPSR value is not
73 // supported by the PE
74 validIPSR = excNum IN {0, 1, NMI, HardFault, SVCall, PendSV, SysTick};
75 if !validIPSR && HaveMainExt() then
76 validIPSR = excNum IN {MemManage, BusFault, UsageFault, SecureFault, DebugMonitor};
77
78 // Check also whether excNum is an external interupt supported by PE
79 if !validIPSR && !IsIrqValid(excNum) then
80 psr.Exception = bits(9) UNKNOWN;
81
82 if HaveMveOrFPExt() then
83 if excReturn.FType == '0' then
84 // Raise a fault and skip Floating-point operations if requested to expose
85 // Secure Floating-point state to the Non-secure code.
86 if !toSecure && FPCCR_S.LSPACT == '1' then
87 SFSR.LSERR = '1';
88 newExc = CreateException(SecureFault);
89 // It is IMPLEMENTATION DEFINED whether a MemFault is dropped if
90 // a SecureFault is generated subsequently. If the MemFault is
91 // not dropped the exceptions will be taken based on exception
92 // priority as described in MergeExcInfo()
93 if boolean IMPLEMENTATION_DEFINED "Drop previously generated exceptions" then
94 exc = newExc;
95 else
96 exc = MergeExcInfo(exc, newExc);
97 else
98 lspact = if toSecure then FPCCR_S.LSPACT else FPCCR_NS.LSPACT;
99 if lspact == '1' then // state in FP is still valid

100 if exc.fault == NoFault then
101 if toSecure then
102 FPCCR_S.LSPACT = '0';
103 else
104 FPCCR_NS.LSPACT = '0';
105 else
106 if exc.fault == NoFault then
107 nPriv = if toSecure then CONTROL_S.nPRIV else CONTROL_NS.nPRIV;
108 isPriv = mode == PEMode_Handler || nPriv == '0';
109 exc = CheckCPEnabled(10, isPriv, toSecure);
110
111 // If an implementation abandons the unstacking of the Floating-point
112 // Extension registers and to tail chain into a fault or late arriving
113 // interrupt it must clear any Floating-point registers that
114 // would have been unstacked.
115 // NOTE: The requirment to clear the registers only applies
116 // to implementations that include the Security Extensions.
117 // The Floating-point Extension registers that would have been
118 // unstacked become UNKNOWN in implementations that do not include the
119 // Security Extensions.
120 if exc.fault == NoFault then
121 for i = 0 to 15
122 if exc.fault == NoFault then
123 (exc, S[i]) = Stack(frameptr, frameOffset + (4*i),
124 spName, mode);
125 if exc.fault == NoFault then
126 (exc, FPSCR) = Stack(frameptr, frameOffset + 0x40, spName, mode);
127 if HaveMve() && exc.fault == NoFault then
128 (exc, VPR) = Stack(frameptr, frameOffset + 0x44, spName, mode);
129 frameOffset = frameOffset + fpCallerFrameSize;
130
131 pushFPCalleeRegs = toSecure && FPCCR_S.TS == '1';
132 if pushFPCalleeRegs then
133 for i = 0 to 15
134 if exc.fault == NoFault then
135 (exc, S[i+16]) = Stack(frameptr, frameOffset + (4*i),
136 spName, mode);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1941

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

137
138 if exc.fault != NoFault then
139 InvalidateFPRegs(HaveSecurityExt(), pushFPCalleeRegs);
140
141 CONTROL.FPCA = NOT(excReturn.FType);
142
143 // If there was not a fault then move the stack pointer to consume the
144 // exception stack frame. NOTE: If a exception return fault occurs and
145 // results in a lockup the stack pointer is updated. This special case is
146 // handled at the point lockup is entered and not here.
147 if exc.fault == NoFault then
148 ConsumeExcStackFrame(excReturn, psr.SPREALIGN);
149
150 if HaveDSPExt() then
151 APSR.GE = psr.GE;
152 if IsSecure() then
153 CONTROL_S.SFPA = psr.SFPA;
154 IPSR.Exception = psr.Exception; // Load valid IPSR bits from memory
155 EPSR.T = psr.T; // Load valid EPSR bits from memory
156 if HaveMainExt() then
157 APSR[31:27] = psr[31:27]; // Load valid APSR bits from memory
158 SetITSTATEAndCommit(psr.IT); // Load valid ITSTATE from memory
159 // (also handles ICI and ECI)
160 else
161 APSR[31:28] = psr[31:28]; // Load valid APSR bits from memory
162 return exc;

E2.1.303 PreserveFPState

1 // PreserveFPState()
2 // =================
3
4 PreserveFPState()
5 // Check if there is any lazy FP state to be preserved.
6 isSecure = FPCCR_S.S == '1';
7 lspact = if isSecure then FPCCR_S.LSPACT else FPCCR_NS.LSPACT;
8 if lspact == '0' then
9 return;

10
11 // Preserve FP state using address, privilege and relative
12 // priorities recorded during original stacking. Derived
13 // exceptions are handled by TakePreserveFPException().
14
15 // The checks usually performed for stacking using ValidateAddress()
16 // are performed, with the value of ExecutionPriority()
17 // overridden by -1 if FPCCR.HFRDY == '0'.
18
19 if isSecure then
20 ispriv = FPCCR_S.USER == '0';
21 splimviol = FPCCR_S.SPLIMVIOL == '1';
22 fpcar = FPCAR_S;
23 else
24 ispriv = FPCCR_NS.USER == '0';
25 splimviol = FPCCR_NS.SPLIMVIOL == '1';
26 fpcar = FPCAR_NS;
27
28 // Check if the background context had access to the FPU
29 excInfo = CheckCPEnabled(10, ispriv, isSecure);
30
31 // Only perform the memory accesses if the stack limit hasn't been violated
32 bfExcInfo = DefaultExcInfo();
33 if !splimviol && excInfo.fault == NoFault then
34 // If IESB is enabled, barrier RAS / BusFault errors raised before Lazy FP stacking.
35 // Because errors that are Synchronized at this point belong to the current context
36 // (the context that executed the instruction that triggered the lazy stacking), and
37 // are therefore handled normally and not by TakePreserveFPException.
38 if AIRCR.IESB == '1' then
39 HandleException(SynchronizeBusFault());

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1942

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

40
41 // Whether these stores are interruptible is IMPLEMENTATION DEFINED.
42 // Only the stack locations, not the store order, are architected.
43 for i = 0 to 15
44 if excInfo.fault == NoFault then
45 addr = fpcar + (4*i);
46 excInfo = MemA_with_priv_security(addr, 4, AccType_LAZYFP, ispriv,
47 isSecure, TRUE, S[i]);
48
49 if excInfo.fault == NoFault then
50 addr = fpcar + 0x40;
51 excInfo = MemA_with_priv_security(addr, 4, AccType_LAZYFP, ispriv,
52 isSecure, TRUE, FPSCR);
53 if HaveMve() && excInfo.fault == NoFault then
54 addr = fpcar + 0x44;
55 excInfo = MemA_with_priv_security(addr, 4, AccType_LAZYFP, ispriv,
56 isSecure, TRUE, VPR);
57
58 if isSecure && FPCCR_S.TS == '1' then
59 for i = 0 to 15
60 if excInfo.fault == NoFault then
61 addr = fpcar + (4*i) + 0x48;
62 excInfo = MemA_with_priv_security(addr,4,AccType_LAZYFP,ispriv,TRUE,
63 TRUE,S[i+16]);
64
65 // If IESB is enabled, barrier RAS / BusFault errors raised during Lazy FP stacking
66 // to the original context. If errors do occur, BFSR.LSPERR is set.
67 if AIRCR.IESB == '1' then
68 bfExcInfo = SynchronizeBusFault(AccType_LAZYFP);
69
70 // Handle any faults that have occured
71 termInst = FALSE;
72 if excInfo.fault != NoFault then
73 termInst = termInst || TakePreserveFPException(excInfo);
74 if bfExcInfo.fault != NoFault then
75 termInst = termInst || TakePreserveFPException(bfExcInfo);
76
77 // If exception with sufficient priority to pre-empt current instruction execution is
78 // raised during FP state preserve, then termInst will be true and execution of the
79 // current instruction should be terminated by calling EndOfInstruction(). If the
80 // exception results in a lockup state, termInst will also be true.
81 if termInst then
82 EndOfInstruction();
83 else
84 // In case of NoFault or, on successful return from TakePreserveFPException(),
85 // the current instruction execution continues and FPCCR.LSPACT will be cleared.
86 // If the stores are interrupted, the register content and LSPACT remain unchanged.
87 if isSecure then
88 FPCCR_S.LSPACT = '0';
89 else
90 FPCCR_NS.LSPACT = '0';
91
92 // If the FP state is being treated as Secure then the registers are zeroed
93 InvalidateFPRegs(isSecure && FPCCR_S.TS == '1', isSecure && FPCCR_S.TS == '1');

E2.1.304 ProcessorID

1 // ProcessorID
2 // ===========
3 // Returns an integer that uniquely identifies the executing PE in the system.
4
5 integer ProcessorID();

E2.1.305 PushCalleeStack

1 // PushCalleeStack()
2 // =================

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1943

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

3
4 ExcInfo PushCalleeStack(boolean doTailChain, EXC_RETURN_Type excReturn)
5 // Allocate space of the correct stack. NOTE: If the PE is tail chaining the PE should
6 // check excReturn instead of CONTROL.SPSEL to determine which stack to use,
7 // as SPSEL can report the wrong stack in tail chaining cases
8 if doTailChain then
9 if excReturn.Mode == '0' then

10 mode = PEMode_Handler;
11 spName = RNamesSP_Main_Secure;
12 else
13 mode = PEMode_Thread;
14 if excReturn.SPSEL == '1' then
15 spName = RNamesSP_Process_Secure;
16 else
17 spName = RNamesSP_Main_Secure;
18 else
19 spName = LookUpSP();
20 mode = CurrentMode();
21
22 // Calculate the address of the base of the callee frame
23 bits(32) frameptr = _SP(spName) - 0x28;
24
25 /* only the stack locations, not the store order, are architected */
26 // Write out integrity signature
27 if HaveMveOrFPExt() then
28 integritySig = 0xFEFA125A[31:1] : excReturn.FType;
29 else
30 integritySig = 0xFEFA125B[31:0];
31 exc = Stack(frameptr, 0x0, spName, mode, integritySig);
32 // Stack callee registers
33 if exc.fault == NoFault then exc = Stack(frameptr, 0x8, spName, mode, R[4]);
34 if exc.fault == NoFault then exc = Stack(frameptr, 0xC, spName, mode, R[5]);
35 if exc.fault == NoFault then exc = Stack(frameptr, 0x10, spName, mode, R[6]);
36 if exc.fault == NoFault then exc = Stack(frameptr, 0x14, spName, mode, R[7]);
37 if exc.fault == NoFault then exc = Stack(frameptr, 0x18, spName, mode, R[8]);
38 if exc.fault == NoFault then exc = Stack(frameptr, 0x1C, spName, mode, R[9]);
39 if exc.fault == NoFault then exc = Stack(frameptr, 0x20, spName, mode, R[10]);
40 if exc.fault == NoFault then exc = Stack(frameptr, 0x24, spName, mode, R[11]);
41
42 // Update the stack pointer
43 spExc = _SP(spName, TRUE, FALSE, frameptr);
44 return MergeExcInfo(exc, spExc);

E2.1.306 PushStack

1 // PushStack()
2 // ===========
3
4 (ExcInfo, EXC_RETURN_Type) PushStack()
5 constant integer intFrameSize = 0x20;
6 constant integer fpCallerFrameSize = 0x48;
7 constant integer fpCalleeFrameSize = 0x40;
8
9 boolean pushFPCallerFrame = HaveMveOrFPExt() && CONTROL.FPCA == '1';

10 boolean pushFPCalleeFrame = pushFPCallerFrame && IsSecure() && FPCCR_S.TS == '1';
11
12 integer framesize = intFrameSize;
13 // In the case where a NOCP usage fault is generated, FP stack space is not allocated
14 if IsSecure() || NSACR.CP10 == '1' then
15 if pushFPCallerFrame then framesize = framesize + fpCallerFrameSize;
16 if pushFPCalleeFrame then framesize = framesize + fpCalleeFrameSize;
17
18 /* allocate space on the correct stack */
19 bits(1) frameptralign;
20 frameptralign = SP[2];
21 frameptr = (SP - framesize) AND NOT(ZeroExtend('100',32));
22 spName = LookUpSP();
23

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1944

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

24 // Prepare architecture state for stacking
25 RETPSR_Type retpsr = XPSR[31:0];
26 retpsr.SPREALIGN = frameptralign;
27 retpsr.SFPA = if IsSecure() then CONTROL_S.SFPA else '0';
28 mode = CurrentMode();
29
30 /* only the stack locations, not the store order, are architected */
31 exc = Stack(frameptr, 0x0, spName, mode, R[0]);
32 if exc.fault == NoFault then exc = Stack(frameptr, 0x4, spName, mode, R[1]);
33 if exc.fault == NoFault then exc = Stack(frameptr, 0x8, spName, mode, R[2]);
34 if exc.fault == NoFault then exc = Stack(frameptr, 0xC, spName, mode, R[3]);
35 if exc.fault == NoFault then exc = Stack(frameptr, 0x10, spName, mode, R[12]);
36 if exc.fault == NoFault then exc = Stack(frameptr, 0x14, spName, mode, LR);
37 // Push the address of the next instruction, this is the raw PC value, without
38 // the +4 that is observed when reading PC from within instructions
39 if exc.fault == NoFault then exc = Stack(frameptr, 0x18, spName, mode, _RName[RNamesPC]);
40 if exc.fault == NoFault then exc = Stack(frameptr, 0x1C, spName, mode, retpsr);
41 frameOffset = intFrameSize;
42
43 if pushFPCallerFrame then
44 newExc = DefaultExcInfo();
45 // LSPACT should not be active at the same time as CONTROL.FPCA. This
46 // is a possible attack scenario so raise a SecureFault.
47 lspact = if FPCCR_S.S == '1' then FPCCR_S.LSPACT else FPCCR_NS.LSPACT;
48 if HaveSecurityExt() && lspact == '1' then
49 SFSR.LSERR = '1';
50 newExc = CreateException(SecureFault);
51 elsif !IsSecure() && NSACR.CP10 == '0' then
52 UFSR_S.NOCP = '1';
53 newExc = CreateException(UsageFault, TRUE, TRUE);
54 elsif FPCCR.LSPEN == '0' then
55 if exc.fault == NoFault then
56 exc = CheckCPEnabled(10);
57
58 if exc.fault == NoFault then
59 for i = 0 to 15
60 if exc.fault == NoFault then
61 exc = Stack(frameptr, frameOffset + (4*i), spName, mode, S[i]);
62 if exc.fault == NoFault then
63 exc = Stack(frameptr, frameOffset + 0x40, spName, mode, FPSCR);
64 if HaveMve() && exc.fault == NoFault then
65 exc = Stack(frameptr, frameOffset + 0x44, spName, mode, VPR);
66 frameOffset = frameOffset + fpCallerFrameSize;
67
68 if pushFPCalleeFrame then
69 for i = 0 to 15
70 if exc.fault == NoFault then
71 exc = Stack(frameptr, frameOffset+(4*i), spName, mode, S[i+16]);
72
73 (cpEnabled, -) = IsCPEnabled(10);
74 if cpEnabled then
75 InvalidateFPRegs(pushFPCalleeFrame, pushFPCalleeFrame);
76 else
77 UpdateFPCCR(frameptr + frameOffset, TRUE);
78
79 if newExc.fault != NoFault then
80 // It is IMPLEMENTATION_DEFINED whether to drop the earlier MemFault
81 // if the Secure fault or NOCP fault is also generated subsequently.
82 // If MemFault is not dropped, it will be merged with Secure/NOCP fault
83 // based on exception priority as per MergeExcInfo().
84 if boolean IMPLEMENTATION_DEFINED "Drop previously generated exceptions" then
85 exc = newExc;
86 else
87 exc = MergeExcInfo(exc, newExc);
88
89 // Set the stack pointer to be at the bottom of the new stack frame
90 spExc = _SP(spName, TRUE, FALSE, frameptr);
91 exc = MergeExcInfo(exc, spExc);
92

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1945

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

93 // Some excReturn bits (eg ES, SPSEL) are set by ExceptionTaken
94 EXC_RETURN_Type partialExcReturn = 0xFFFFFFF8[31:0];
95 partialExcReturn.S = if IsSecure() then '1' else '0';
96 partialExcReturn.FType = if HaveMveOrFPExt() then NOT(CONTROL.FPCA) else '1';
97 partialExcReturn.Mode = if mode == PEMode_Thread then '1' else '0';
98 return (exc, partialExcReturn);

E2.1.307 Q

1 // Q[] - non-assignment forms
2 // ==========================
3
4 bits(32) Q[integer idx, integer beat]
5 assert idx >= 0 && idx <= 7;
6 assert beat >= 0 && beat <= 3;
7 return S[(idx * 4) + beat];
8
9

10 // Q[] - assignment forms
11 // ======================
12
13 Q[integer idx, integer beat] = bits(32) value
14 assert idx >= 0 && idx <= 7;
15 assert beat >= 0 && beat <= 3;
16 S[(idx * 4) + beat] = value;

E2.1.308 R

1 // R[]
2 // ===
3
4 // Non-assignment form
5
6 bits(32) R[integer n]
7 return RName[LookUpRName(n)];
8
9 // Assignment form

10
11 R[integer n] = bits(32) value
12 assert n != 15;
13 RName[LookUpRName(n)] = value;
14 return;

E2.1.309 RaiseAsyncBusFault

1 // RaiseAsyncBusFault()
2 // ====================
3
4 RaiseAsyncBusFault()
5 if HaveMainExt() then
6 BFSR.IMPRECISERR = '1';
7
8 // To make ensure errors are containable asnychronous BusFaults escalate as if they were
9 // synchronous if implicit error synchronization barriers are enabled.

10 handleSynchronously = AIRCR.IESB == '1';
11 excInfo = CreateException(BusFault, FALSE, IsSecure(), handleSynchronously);
12 HandleException(excInfo);

E2.1.310 RawExecutionPriority

1 // RawExecutionPriority()
2 // ======================
3 // Determine the current execution priority without the effect of priority boosting
4

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1946

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

5 integer RawExecutionPriority()
6 execPri = HighestPri();
7 for i = 2 to MaxExceptionNum() // IPSR values of the exception handlers
8 for j = 0 to 1 // Check both Non-secure and Secure exceptions
9 secure = (j == 0);

10 if IsActiveForState(i, secure) then
11 // PRIGROUP effect applied in ExceptionPriority
12 effectivePriority = ExceptionPriority(i, secure, TRUE);
13 if effectivePriority < execPri then
14 execPri = effectivePriority;
15 assert execPri IN {-4 .. 256};
16 return execPri;

E2.1.311 Replicate

1 // Replicate()
2 // ===========
3
4 bits(M*N) Replicate(bits(M) x, integer N);
5
6 bits(N) Replicate(bits(M) x)
7 assert N MOD M == 0;
8 return Replicate(x, N DIV M);

E2.1.312 ResetRegs

1 // ResetRegs
2 // ============
3 // Sets all registers that have architecturally-defined reset
4 // values to those values
5
6 ResetRegs();

E2.1.313 RestrictedNSPri

1 // RestrictedNSPri()
2 // =================
3 // The priority to which Non-secure exceptions are restricted if AIRCR.PRIS is set
4
5 integer RestrictedNSPri()
6 return 0x80;

E2.1.314 RF

1 // RF[] - non-assignment form
2 // ==========================
3
4 bits(32) RF[integer n]
5 assert n >= 0 && n <= 15;
6
7 // Returns the selected general-purpose register for indices less than 15,
8 // or the APSR Condition flags for the index 15.
9

10 if n < 15 then
11 result = R[n];
12 else
13 result = APSR[31:28] : Zeros(28);
14
15 return result;
16
17 // RF[] - assignment form
18 // ======================
19
20 RF[integer n] = bits(32) value

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1947

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

21 assert n >= 0 && n <= 15;
22
23 // Assigns a value to the selected general-purpose register for indices
24 // less than 15, or the APSR Condition flags for the index 15.
25
26 if n < 15 then
27 R[n] = value;
28 else
29 APSR.N = value[31];
30 APSR.Z = value[30];
31 APSR.C = value[29];
32 APSR.V = value[28];

E2.1.315 RFD

1 // RFD[] - non-assignment form
2 // ===========================
3
4 bits(64) RFD[integer n]
5 assert n >= 0 && n <= 14;
6 assert n[0] == '0';
7
8 // Returns the selected general-purpose register pair
9 // Register pairs containing SP or PC are UNPREDICTABLE

10 if n > 10 then UNPREDICTABLE;
11
12 result = R[n+1]:R[n];
13 return result;
14
15 // RFD[] - assignment form
16 // ======================
17
18 RFD[integer n] = bits(64) value
19 assert n >= 0 && n <= 14;
20 assert n[0] == '0';
21
22 // Assigns a value to the selected general-purpose register pair
23 // Register pairs containing SP or PC are UNPREDICTABLE
24 if n > 10 then UNPREDICTABLE;
25
26 R[n+1] = value[63:32];
27 R[n] = value[31:0];

E2.1.316 RName

1 // RName[] - assignment form
2 // =========================
3
4 RName[RNames reg] = bits(32) value
5 case reg of
6 when {RNamesSP_Main_NonSecure, RNamesSP_Process_NonSecure,
7 RNamesSP_Main_Secure, RNamesSP_Process_Secure}
8 // It is IMPLEMENTATION DEFINED whether stack pointer limit checking
9 // is performed for instructions that were previously UNPREDICTABLE

10 // when modifying the stack pointer.
11 applyLimit = boolean IMPLEMENTATION_DEFINED "SPLim check UNPRED instructions";
12 exc = _SP(reg, FALSE, !applyLimit, value);
13 assert applyLimit || exc.fault == NoFault;
14 when RNamesPC
15 // Direct PC writes not supported, PC updates must go through
16 // LoadWritePC(), BranchReturn() or similar function
17 assert FALSE;
18 otherwise
19 _RName[reg] = value;
20 return;
21
22 // RName[] - non-assignment form

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1948

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

23 // =============================
24
25 bits(32) RName[RNames reg]
26 bits(32) result;
27 case reg of
28 when {RNamesSP_Main_NonSecure, RNamesSP_Process_NonSecure,
29 RNamesSP_Main_Secure, RNamesSP_Process_Secure}
30 result = _RName[reg][31:2]:'00';
31 when RNamesPC
32 result = _RName[RNamesPC] + 4;
33 otherwise
34 result = _RName[reg];
35 return result;

E2.1.317 RNames

1 // The names of the core registers. SP is a Banked register.
2
3 enumeration RNames {RNames0, RNames1, RNames2, RNames3, RNames4, RNames5, RNames6,
4 RNames7, RNames8, RNames9, RNames10, RNames11, RNames12,
5 RNamesSP_Main_Secure, RNamesSP_Main_NonSecure,
6 RNamesLR, RNamesPC,
7 RNamesSP_Process_NonSecure, RNamesSP_Process_Secure};

E2.1.318 ROR

1 // ROR()
2 // =====
3
4 bits(N) ROR(bits(N) x, integer shift)
5 if shift == 0 then
6 result = x;
7 else
8 (result, -) = ROR_C(x, shift);
9 return result;

E2.1.319 ROR_C

1 // ROR_C()
2 // =======
3
4 (bits(N), bit) ROR_C(bits(N) x, integer shift)
5 assert shift != 0;
6 m = shift MOD N;
7 result = LSR(x,m) OR LSL(x,N-m);
8 carry_out = result[N-1];
9 return (result, carry_out);

E2.1.320 RoundDown

1 // RoundDown()
2 // ===========
3
4 integer RoundDown(real x);

E2.1.321 RoundTowardsZero

1 // RoundTowardsZero()
2 // ==================
3
4 integer RoundTowardsZero(real x)
5 return if x == 0.0 then 0 else if x > 0.0 then RoundDown(x) else RoundUp(x);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1949

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

E2.1.322 RoundUp

1 // RoundUp()
2 // =========
3
4 integer RoundUp(real x);

E2.1.323 RRX

1 // RRX()
2 // =====
3
4 bits(N) RRX(bits(N) x, bit carry_in)
5 (result, -) = RRX_C(x, carry_in);
6 return result;

E2.1.324 RRX_C

1 // RRX_C()
2 // =======
3
4 (bits(N), bit) RRX_C(bits(N) x, bit carry_in)
5 result = carry_in : x[N-1:1];
6 carry_out = x[0];
7 return (result, carry_out);

E2.1.325 RSPCheck

1 // RSPCheck[] - assignment form
2 // ============================
3
4 RSPCheck[integer n] = bits(32) value
5 if n == 13 then
6 - = _SP(LookUpSP(), FALSE, FALSE, value);
7 else
8 R[n] = value;
9 return;

E2.1.326 RZ

1 // RZ[] -- Read R15 as zero
2 // ========================
3
4 bits(32) RZ[integer n]
5 assert n >= 0 && n <= 15;
6 if n == 15 then
7 return Zeros(32);
8 else
9 return R[n];

E2.1.327 S

1 // S[]
2 // ===
3
4 // Non-assignment form
5
6 bits(32) S[integer n]
7 assert n >= 0 && n <= 31;
8 return _S[n];
9

10 // Assignment form

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1950

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

11
12 S[integer n] = bits(32) value
13 assert n >= 0 && n <= 31;
14 _S[n] = value;
15 return;

E2.1.328 Sat

1 // Sat()
2 // =====
3
4 bits(N) Sat(integer i, integer N, boolean unsigned)
5 result = if unsigned then UnsignedSat(i, N) else SignedSat(i, N);
6 return result;

E2.1.329 SatQ

1 // SatQ()
2 // ======
3
4 (bits(N), boolean) SatQ(integer i, integer N, boolean unsigned)
5 (result, sat) = if unsigned then UnsignedSatQ(i, N) else SignedSatQ(i, N);
6 return (result, sat);

E2.1.330 SAttributes

1 // Security attributes associated with an address
2
3 type SAttributes is (
4 boolean nsc, // Non-secure callability of an address. FALSE = not
5 // callable from the Non-secure state
6 boolean ns, // Security of an address FALSE = Secure, TRUE = Non-secure
7 bits(8) sregion, // The SAU region number
8 boolean srvalid, // Set to 1 if the SAU region number is valid
9 bits(8) iregion, // The IDAU region number

10 boolean irvalid // Set to 1 if the IDAU region number is valid
11)

E2.1.331 SCS_UpdateStatusRegs

1 // SCS_UpdateStatusRegs()
2 // ======================
3 // Update status registers in the System Control Space (SCS)
4
5 SCS_UpdateStatusRegs();

E2.1.332 SecureDebugMonitorAllowed

1 // SecureDebugMonitorAllowed()
2 // ===========================
3
4 boolean SecureDebugMonitorAllowed()
5 if DAUTHCTRL_S.FSDMA == '1' then
6 return TRUE;
7 elsif DAUTHCTRL_S.SPIDENSEL == '1' then
8 return DAUTHCTRL_S.INTSPIDEN == '1';
9 else

10 return ExternalSecureSelfHostedDebugEnabled();

E2.1.333 SecureHaltingDebugAllowed

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1951

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

1 // SecureHaltingDebugAllowed()
2 // ===========================
3
4 boolean SecureHaltingDebugAllowed()
5 if HaltingDebugAllowed() == FALSE then
6 return FALSE;
7 elsif DAUTHCTRL_S.SPIDENSEL == '1' then
8 return DAUTHCTRL_S.INTSPIDEN == '1';
9 else

10 return ExternalSecureInvasiveDebugEnabled();

E2.1.334 SecureNoninvasiveDebugAllowed

1 // SecureNoninvasiveDebugAllowed()
2 // ===============================
3
4 boolean SecureNoninvasiveDebugAllowed(boolean isPriv)
5 assert HaveSecurityExt();
6 if DHCSR.S_SDE == '1' && (!HaveUDE() || DHCSR.S_SUIDE == '0') then
7 return TRUE;
8 elsif !isPriv && UnprivHaltingDebugEnabled(TRUE) then
9 return TRUE;

10 elsif !NoninvasiveDebugAllowed(isPriv) then
11 return FALSE;
12 elsif DAUTHCTRL_S.SPNIDENSEL == '1' then
13 return DAUTHCTRL_S.INTSPNIDEN == '1';
14 else
15 return ExternalSecureNoninvasiveDebugEnabled();
16
17
18 boolean SecureNoninvasiveDebugAllowed()
19 return SecureNoninvasiveDebugAllowed(CurrentModeIsPrivileged());

E2.1.335 SecurityCheck

1 // SecurityCheck()
2 // ===============
3
4 SAttributes SecurityCheck(bits(32) address, boolean isinstrfetch, boolean isSecure)
5 SAttributes result;
6 addr = UInt(address);
7
8 // Setup default attributes
9 result.ns = !HaveSecurityExt();

10 result.nsc = FALSE;
11 result.sregion = Zeros(8);
12 result.srvalid = FALSE;
13 result.iregion = Zeros(8);
14 result.irvalid = FALSE;
15 idauExempt = FALSE;
16 idauNs = TRUE;
17 idauNsc = TRUE;
18
19 // If an IMPLEMENTATION DEFINED memory security attribution unit is present
20 // query it and override defaults set above. The IDAU is subject to the same
21 // 32byte minimum region granularity as the SAU/MPU.
22 // NOTE: The defaults above are set such that the IDAU has no effect on the
23 // SAU.
24 if boolean IMPLEMENTATION_DEFINED "IDAU present" then
25 (idauExempt,
26 idauNs,
27 idauNsc,
28 result.iregion,
29 result.irvalid) = IDAUCheck(address[31:5]:'00000');
30
31 // The 0xF0000000 -> 0xFFFFFFFF is always Secure for instruction fetches
32 if isinstrfetch && (address[31:28] == '1111') then

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1952

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

33 // Use default attributes defined above
34
35 // Check if the address is exempt from SAU/IDAU checking.
36 elsif idauExempt || // IDAU specified exemption
37 (isinstrfetch && (address[31:28] == '1110')) || // Whole 0xExxxxxxx range
38 // exempt for IFetch
39 ((addr >= 0xE0000000) && (addr <= 0xE0003FFF)) || // ITM, DWT, FPB, PMU
40 ((addr >= 0xE0005000) && (addr <= 0xE0005FFF)) || // RAS error record registers
41 ((addr >= 0xE000E000) && (addr <= 0xE000EFFF)) || // SCS
42 ((addr >= 0xE002E000) && (addr <= 0xE002EFFF)) || // SCS NS alias
43 ((addr >= 0xE0040000) && (addr <= 0xE0041FFF)) || // TPIU, ETM
44 ((addr >= 0xE00FF000) && (addr <= 0xE00FFFFF)) then // ROM table
45 // memory security reported as NS-Req, and no region information is supplied.
46 result.ns = !isSecure;
47 result.irvalid = FALSE;
48
49 else
50 // If the SAU is enabled check its regions
51 if SAU_CTRL.ENABLE == '1' then
52 boolean multiRegionHit = FALSE;
53 for r = 0 to (UInt(SAU_TYPE.SREGION) - 1)
54 if SAU_REGION[r].ENABLE == '1' then
55 // SAU region enabled so perform checks
56 bits(32) base_address = SAU_REGION[r].BADDR:'00000';
57 bits(32) limit_address = SAU_REGION[r].LADDR:'11111';
58 if ((UInt(base_address) <= addr) &&
59 (UInt(limit_address) >= addr)) then
60 if result.srvalid then
61 multiRegionHit = TRUE;
62 else
63 result.ns = SAU_REGION[r].NSC == '0';
64 result.nsc = SAU_REGION[r].NSC == '1';
65 result.srvalid = TRUE;
66 result.sregion = r[7:0];
67
68 // If multiple regions are hit then report memory as Secure and not
69 // Non-secure callable. Also don't report any region number
70 // information.
71 if multiRegionHit then
72 result.ns = FALSE;
73 result.nsc = FALSE;
74 result.sregion = Zeros(8);
75 result.srvalid = FALSE;
76
77 // SAU disabled, check if whole address space should be marked as
78 // Non-secure
79 elsif SAU_CTRL.ALLNS == '1' then
80 result.ns = TRUE;
81
82 // Override the internal setting if the external attribution unit
83 // reports more restrictive attributes.
84 if !idauNs then
85 if result.ns || (!idauNsc && result.nsc) then
86 result.ns = FALSE;
87 result.nsc = idauNsc;
88
89 return result;

E2.1.336 SecurityState

1 // Type and definition of the current Security state of PE
2
3 enumeration SecurityState {SecurityState_NonSecure, SecurityState_Secure};
4 SecurityState CurrentState;

E2.1.337 SendEvent

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1953

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

1 // SendEvent
2 // =========
3 // Performs a send event by setting the Event Register of every PE in multiprocessor system
4
5 SendEvent();

E2.1.338 SerializeVFP

1 // SerializeVFP
2 // ============
3 // Ensures that any exceptional conditions in previous floating-point
4 // instructions have been detected
5
6 SerializeVFP();

E2.1.339 SetActive

1 // SetActive()
2 // ===========
3
4 SetActive(integer exception, boolean isSecure, boolean setNotClear)
5 if !HaveSecurityExt() then
6 isSecure = FALSE;
7 // If the exception target state is configurable there is only one active
8 // bit. To represent this the Non-secure and Secure instances of the active
9 // flags in the array are always set to the same value.

10 if IsExceptionTargetConfigurable(exception) then
11 if ExceptionTargetsSecure(exception, boolean UNKNOWN) == isSecure then
12 ExceptionActive[exception] = if setNotClear then '11' else '00';
13 else
14 idx = if isSecure then 0 else 1;
15 ExceptionActive[exception][idx] = if setNotClear then '1' else '0';

E2.1.340 SetDWTDebugEvent

1 // SetDWTDebugEvent()
2 // ==================
3 // Set a pending debug event to the PE
4
5 boolean SetDWTDebugEvent(boolean secure_match, boolean priv_match)
6 if CanHaltOnEvent(secure_match, priv_match) then
7 DHCSR.C_HALT = '1';
8 DFSR.DWTTRAP = '1';
9 return TRUE;

10 elsif (HaveMainExt() &&
11 CanPendMonitorOnEvent(secure_match, TRUE, TRUE, priv_match, TRUE)) then
12 DEMCR.MON_PEND = '1';
13 DFSR.DWTTRAP = '1';
14 return TRUE;
15 else
16 return FALSE;

E2.1.341 SetEventRegister

1 // SetEventRegister()
2 // ==================
3 // Set the Event Register of the current PE
4
5 SetEventRegister();

E2.1.342 SetExclusiveMonitors

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1954

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

1 // SetExclusiveMonitors()
2 // ======================
3
4 SetExclusiveMonitors(bits(32) address, integer size)
5
6 boolean isSecure = CurrentState == SecurityState_Secure;
7 if address != Align(address, size) then
8 UFSR.UNALIGNED = '1';
9 excInfo = CreateException(UsageFault, FALSE, isSecure);

10 else
11 (excInfo, memaddrdesc) = ValidateAddress(address, AccType_NORMAL, FindPriv(),
12 isSecure, FALSE, TRUE);
13 HandleException(excInfo);
14
15 if memaddrdesc.memattrs.shareable then
16 MarkExclusiveGlobal(memaddrdesc.paddress, ProcessorID(), size);
17
18 MarkExclusiveLocal(memaddrdesc.paddress, ProcessorID(), size);

E2.1.343 SetITSTATEAndCommit

1 // SetITSTATEAndCommit()
2 // =====================
3
4 SetITSTATEAndCommit(ITSTATEType it)
5 // This function directly commits the change to the ITSTATE, so ThisInstrITSTATE()
6 // and NextInstrITSTATE() both point to the target address.
7 _NextInstrITState = it;
8 _ITStateChanged = TRUE;
9 EPSR.IT = it;

10 return;

E2.1.344 SetPending

1 // SetPending()
2 // ============
3
4 SetPending(integer exception, boolean isSecure, boolean setNotClear)
5 if !HaveSecurityExt() then
6 isSecure = FALSE;
7 // If the exception target state is configurable there is only one pending
8 // bit. To represent this, the Non-secure and Secure instances of the pending
9 // flags in the array are always set to the same value.

10 if IsExceptionTargetConfigurable(exception) then
11 ExceptionPending[exception] = if setNotClear then '11' else '00';
12 else
13 idx = if isSecure then 0 else 1;
14 ExceptionPending[exception][idx] = if setNotClear then '1' else '0';

E2.1.345 SetThisInstrDetails

1 // SetThisInstrDetails
2 // ===================
3
4 SetThisInstrDetails(bits(32) opcode, integer len)
5 // Insert the instruction into the queue at the first free slot. For
6 // instruction with no beat behavior this should always be the first slot.
7 // NOTE: MVE instructions in IT blocks do not have beat-wise execution.
8 i = 0;
9 isBeatInst = IsMveBeatWiseInstruction(opcode) && !InITBlock();

10 repeat
11 emptySlot = !_InstInfo[i].Valid;
12 if emptySlot && (isBeatInst || i == 0) then
13 _InstInfo[i].Valid = TRUE;
14 _InstInfo[i].Length = len;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1955

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

15 _InstInfo[i].Opcode = opcode;
16 i = i + 1;
17 until emptySlot || (!isBeatInst && i > 0) || (i >= MAX_OVERLAPPING_INSTRS);

E2.1.346 SetVPTMask

1 // SetVPTMask()
2 // ============
3
4 SetVPTMask(integer beat, bits(4) mask)
5 // Only one mask field is available for each pair of beats.
6 assert beat[0] == '1';
7 Elem[VPR[23:16], beat DIV 2, 4] = mask;
8 // Since the mask has been modified do not advance the VPT state after this
9 // instruction beat.

10 _AdvanceVPTState = FALSE;

E2.1.347 Shift

1 // Shift()
2 // =======
3
4 bits(N) Shift(bits(N) value, SRType sr_type, integer amount, bit carry_in)
5 (result, -) = Shift_C(value, sr_type, amount, carry_in);
6 return result;

E2.1.348 Shift_C

1 // Shift_C()
2 // =========
3
4 (bits(N), bit) Shift_C(bits(N) value, SRType sr_type, integer amount, bit carry_in)
5 assert !(sr_type == SRType_RRX && amount != 1);
6
7 if amount == 0 then
8 (result, carry_out) = (value, carry_in);
9 else

10 case sr_type of
11 when SRType_LSL
12 (result, carry_out) = LSL_C(value, amount);
13 when SRType_LSR
14 (result, carry_out) = LSR_C(value, amount);
15 when SRType_ASR
16 (result, carry_out) = ASR_C(value, amount);
17 when SRType_ROR
18 (result, carry_out) = ROR_C(value, amount);
19 when SRType_RRX
20 (result, carry_out) = RRX_C(value, carry_in);
21
22 return (result, carry_out);

E2.1.349 SignedSat

1 // SignedSat()
2 // ===========
3
4 bits(N) SignedSat(integer i, integer N)
5 (result, -) = SignedSatQ(i, N);
6 return result;

E2.1.350 SignedSatQ

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1956

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

1 // SignedSatQ()
2 // ============
3
4 (bits(N), boolean) SignedSatQ(integer i, integer N)
5 if i > 2^(N-1) - 1 then
6 result = 2^(N-1) - 1; saturated = TRUE;
7 elsif i < -(2^(N-1)) then
8 result = -(2^(N-1)); saturated = TRUE;
9 else

10 result = i; saturated = FALSE;
11 return (result[N-1:0], saturated);

E2.1.351 SignExtend

1 // SignExtend()
2 // ============
3
4 bits(N) SignExtend(bits(M) x, integer N)
5 assert N >= M;
6 return Replicate(x[M-1], N-M) : x;
7
8 bits(N) SignExtend(bits(M) x)
9 return SignExtend(x, N);

E2.1.352 Sleeping

1 // Indicates the PE is sleeping
2
3 boolean Sleeping;

E2.1.353 SleepOnExit

1 // SleepOnExit()
2 // =============
3 // Optionally returns PE to a power-saving mode on return from the only
4 // active exception
5
6 SleepOnExit();

E2.1.354 SP

1 // SP
2 // ==
3
4 // Non-assignment form
5
6 bits(32) SP
7 return R[13];
8
9 // Assignment form

10
11 SP = bits(32) value
12 RSPCheck[13] = value;

E2.1.355 SP_Main

1 // SP_Main
2 // =======
3
4 // Non-assignment form
5
6 bits(32) SP_Main
7 value = if IsSecure() then SP_Main_Secure else SP_Main_NonSecure;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1957

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

8 return value;
9

10 // Assignment form
11
12 SP_Main = bits(32) value
13 if IsSecure() then
14 SP_Main_Secure = value;
15 else
16 SP_Main_NonSecure = value;

E2.1.356 SP_Main_NonSecure

1 // SP_Main_NonSecure
2 // =================
3
4 // Non-assignment form
5
6 bits(32) SP_Main_NonSecure
7 return _SP(RNamesSP_Main_NonSecure);
8
9 // Assignment form

10
11 SP_Main_NonSecure = bits(32) value
12 - = _SP(RNamesSP_Main_NonSecure, FALSE, FALSE, value);

E2.1.357 SP_Main_Secure

1 // SP_Main_Secure
2 // ==============
3
4 // Non-assignment form
5
6 bits(32) SP_Main_Secure
7 return _SP(RNamesSP_Main_Secure);
8
9 // Assignment form

10
11 SP_Main_Secure = bits(32) value
12 - = _SP(RNamesSP_Main_Secure, FALSE, FALSE, value);

E2.1.358 SP_Process

1 // SP_Process
2 // ==========
3
4 // Non-assignment form
5
6 bits(32) SP_Process
7 value = if IsSecure()
8 then SP_Process_Secure else SP_Process_NonSecure;
9 return value;

10
11 // Assignment form
12
13 SP_Process = bits(32) value
14 if IsSecure() then
15 SP_Process_Secure = value;
16 else
17 SP_Process_NonSecure = value;

E2.1.359 SP_Process_NonSecure

1 // SP_Process_NonSecure
2 // ====================

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1958

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

3
4 // Non-assignment form
5
6 bits(32) SP_Process_NonSecure
7 return _SP(RNamesSP_Process_NonSecure);
8
9 // Assignment form

10
11 SP_Process_NonSecure = bits(32) value
12 - = _SP(RNamesSP_Process_NonSecure, FALSE, FALSE, value);

E2.1.360 SP_Process_Secure

1 // SP_Process_Secure
2 // =================
3
4 // Non-assignment form
5
6 bits(32) SP_Process_Secure
7 return _SP(RNamesSP_Process_Secure);
8
9 // Assignment form

10
11 SP_Process_Secure = bits(32) value
12 - = _SP(RNamesSP_Process_Secure, FALSE, FALSE, value);

E2.1.361 SpeculativeSynchronizationBarrier

1 // Speculative Synchronisation Barrier
2 // ===================================
3 // Perform a Speculative Synchronization Barrier
4
5 SpeculativeSynchronizationBarrier();

E2.1.362 SRType

1 // Different types of shift and rotate operations
2
3 enumeration SRType {SRType_LSL, SRType_LSR, SRType_ASR, SRType_ROR, SRType_RRX};

E2.1.363 Stack

1 // Stack
2 // =====
3
4 // Assignment form
5
6 ExcInfo Stack(bits(32) frameptr, integer offset, RNames spreg, PEMode mode, bits(32) value)
7 // This function is used to perform register stacking operations that are
8 // done around exception handling. If the stack pointer is below the stack
9 // pointer limit but the access itself is above the limit it is

10 // IMPLEMENTATION DEFINED whether the write is performed. If the
11 // address of access is below the limit the access is not performed
12 // regardless of the stack pointer value.
13 if !ViolatesSPLim(spreg, frameptr) then
14 doAccess = TRUE;
15 else
16 doAccess = boolean IMPLEMENTATION_DEFINED "Push non-violating locations";
17
18 address = frameptr + offset;
19 if doAccess && !ViolatesSPLim(spreg, address) then
20 secure = ((spreg == RNamesSP_Main_Secure) ||
21 (spreg == RNamesSP_Process_Secure));
22 // Work out if the stack operations should be privileged or not

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1959

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

23 if secure then
24 isPriv = CONTROL_S.nPRIV == '0';
25 else
26 isPriv = CONTROL_NS.nPRIV == '0';
27 isPriv = isPriv || (mode == PEMode_Handler);
28 // Finally perform the memory operations
29 excInfo = MemA_with_priv_security(address,4,AccType_STACK,isPriv,secure,TRUE,value);
30 else
31 excInfo = DefaultExcInfo();
32 return excInfo;
33
34 // Non-assignment form
35
36 (ExcInfo, bits(32)) Stack(bits(32) frameptr, integer offset, RNames spreg, PEMode mode)
37 secure = ((spreg == RNamesSP_Main_Secure) ||
38 (spreg == RNamesSP_Process_Secure));
39 // Work out if the stack operations should be privileged or not
40 if secure then
41 isPriv = CONTROL_S.nPRIV == '0';
42 else
43 isPriv = CONTROL_NS.nPRIV == '0';
44 isPriv = isPriv || (mode == PEMode_Handler);
45 // Finally perform the memory operations
46 address = frameptr + offset;
47 (excInfo, value) = MemA_with_priv_security(address,4,AccType_STACK,isPriv,secure,TRUE);
48 return (excInfo, value);

E2.1.364 StandardFPSCRValue

1 // StandardFPSCRValue()
2 // ====================
3
4 FPSCR_Type StandardFPSCRValue()
5 return '00000' : FPSCR.AHP : '110000' : FPSCR.FZ16 : '0000000000000000000';

E2.1.365 SteppingDebug

1 // SteppingDebug()
2 // ===============
3
4 SteppingDebug(boolean isSecure, boolean isPriv)
5 // Process step requests, stepping must be avoided if a pending event is
6 // already in flight.
7 if CanHaltOnEvent(isSecure, isPriv) && DHCSR.C_STEP == '1' && DHCSR.C_HALT == '0' then
8 // If C_STEP is set then pend a debug halt for the next instruction.
9 DHCSR.C_HALT = '1';

10 DFSR.HALTED = '1';
11 elsif (CanPendMonitorOnEvent(isSecure, TRUE, TRUE, isPriv, TRUE) &&
12 DEMCR.MON_STEP == '1' && DEMCR.MON_PEND == '0') then
13 // If MON_STEP is set then pend the an exception for the next instruction.
14 DEMCR.MON_PEND = '1';
15 DFSR.HALTED = '1';

E2.1.366 SynchronizeBusFault

1 // SynchronizeBusFault()
2 // =====================
3
4 ExcInfo SynchronizeBusFault()
5 return SynchronizeBusFault(FALSE);
6
7 ExcInfo SynchronizeBusFault(AccType acctype)
8 return SynchronizeBusFault(acctype == AccType_LAZYFP);
9

10 ExcInfo SynchronizeBusFault(boolean isLazyStatePreservation)

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1960

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

11 // Force any latent BusFaults to be recognised
12 faultDetected = BusFaultBarrier();
13 if faultDetected then
14 if isLazyStatePreservation then
15 BFSR.LSPERR = '1';
16 else
17 BFSR.IMPRECISERR = '1';
18 // To ensure errors are containable, asnychronous BusFaults escalate as if they were
19 // synchronous if implicit error synchronization barriers are enabled.
20 handleSync = AIRCR.IESB == '1';
21 excInfo = CreateException(BusFault, FALSE, IsSecure(), handleSync);
22 else
23 excInfo = DefaultExcInfo();
24 return excInfo;

E2.1.367 T32ExpandImm

1 // T32ExpandImm()
2 // ==============
3
4 bits(32) T32ExpandImm(bits(12) imm12)
5
6 // APSR.C argument to following function call does not affect the imm32 result.
7 (imm32, -) = T32ExpandImm_C(imm12, APSR.C);
8
9 return imm32;

E2.1.368 T32ExpandImm_C

1 // T32ExpandImm_C()
2 // ================
3
4 (bits(32), bit) T32ExpandImm_C(bits(12) imm12, bit carry_in)
5
6 if imm12[11:10] == '00' then
7
8 case imm12[9:8] of
9 when '00'

10 imm32 = ZeroExtend(imm12[7:0], 32);
11 when '01'
12 if imm12[7:0] == '00000000' then UNPREDICTABLE;
13 imm32 = '00000000' : imm12[7:0] : '00000000' : imm12[7:0];
14 when '10'
15 if imm12[7:0] == '00000000' then UNPREDICTABLE;
16 imm32 = imm12[7:0] : '00000000' : imm12[7:0] : '00000000';
17 when '11'
18 if imm12[7:0] == '00000000' then UNPREDICTABLE;
19 imm32 = imm12[7:0] : imm12[7:0] : imm12[7:0] : imm12[7:0];
20 carry_out = carry_in;
21
22 else
23
24 unrotated_value = ZeroExtend('1':imm12[6:0], 32);
25 (imm32, carry_out) = ROR_C(unrotated_value, UInt(imm12[11:7]));
26
27 return (imm32, carry_out);

E2.1.369 TailChain

1 // TailChain()
2 // ===========
3
4 (ExcInfo, EXC_RETURN_Type) TailChain(integer exceptionNumber,
5 boolean excIsSecure,
6 EXC_RETURN_Type excReturn)

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1961

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

7 // Refresh LR with the excReturn value, ready for the next exception
8 if !HaveMveOrFPExt() then
9 excReturn.FType = '1';

10 excReturn.PREFIX = Ones(8);
11
12 return ExceptionTaken(exceptionNumber, TRUE, excIsSecure, IgnoreFaults_NONE, excReturn);

E2.1.370 TakePreserveFPException

1 // TakePreserveFPException()
2 // =========================
3
4 boolean TakePreserveFPException(ExcInfo excInfo)
5 assert HaveMveOrFPExt();
6 assert excInfo.origFault IN {DebugMonitor, SecureFault, MemManage, BusFault, UsageFault};
7
8 // Get the details of the original fault so that any escalation to HardFault / Lockup
9 // based on the current execution priority is ignored. Escalation is performed manually

10 // against the FPCCR.*RDP fields below.
11 exception = excInfo.origFault;
12 isSecure = excInfo.origFaultIsSecure;
13 fpccr = if isSecure then FPCCR_S else FPCCR_NS;
14
15 if FPCCR_S.MONRDY == '1' && FPCCR_S.HFRDY == '0' then UNPREDICTABLE;
16 if FPCCR_S.BFRDY == '1' && FPCCR_S.HFRDY == '0' then UNPREDICTABLE;
17 if FPCCR_S.SFRDY == '1' && FPCCR_S.HFRDY == '0' then UNPREDICTABLE;
18 if fpccr.UFRDY == '1' && FPCCR_S.HFRDY == '0' then UNPREDICTABLE;
19 if fpccr.MMRDY == '1' && FPCCR_S.HFRDY == '0' then UNPREDICTABLE;
20 if exception == DebugMonitor && FPCCR_S.MONRDY == '0' then
21 // ignore DebugMonitor exception
22 return FALSE;
23
24 // Handle exception specific details like escalation and syndrome information
25 case exception of
26 when MemManage
27 escalate = fpccr.MMRDY == '0';
28 when UsageFault
29 escalate = fpccr.UFRDY == '0';
30 when BusFault
31 escalate = FPCCR_S.BFRDY == '0';
32 when SecureFault
33 escalate = FPCCR_S.SFRDY == '0';
34 otherwise
35 escalate = FALSE;
36 if escalate then
37 exception = HardFault;
38 // Faults that originally targeted the Secure state still target the
39 // Secure state even if HardFault normally targets Non-secure.
40 isSecure = isSecure || ExceptionTargetsSecure(HardFault, isSecure);
41
42 // Check if the exception is enabled and has sufficient priority to
43 // preempt and be taken straight away.
44 termInst = FALSE;
45 if (ExceptionPriority(exception, isSecure, TRUE) < ExecutionPriority()) &&
46 ExceptionEnabled(exception, isSecure) then
47 if escalate then
48 HFSR.FORCED = '1';
49 // Set the exception pending and terminate the current instruction. This
50 // leaves FP disabled (that is CONTROL.FPCA set to 0) and prevents the
51 // preempting exception entry reserving space for a redundant FP state.
52 SetPending(exception, isSecure, TRUE);
53 termInst = TRUE;
54 else
55 // If the reason the exception cannot preempt is because of the fact that
56 // HardFault couldn't be entered by the context the FP state belongs to
57 // then enter the lockup state.
58 if FPCCR_S.HFRDY == '0' then
59 Lockup(FALSE); // Lockup at current priority, lock-up address = 0xEFFFFFFE

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1962

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

60 termInst = TRUE;
61 else
62 if escalate then
63 HFSR.FORCED = '1';
64 // Set the exception pending so it will be taken after the current
65 // handler returns.
66 SetPending(exception, isSecure, TRUE);
67 return termInst;

E2.1.371 TakeReset

1 // TakeReset()
2 // ===========
3
4 TakeReset()
5 // If the Security Extension is implemented the PE resets into Secure state.
6 // If the Security Extension is not implemented the PE resets into Non-secure state.
7 if HaveSecurityExt() then
8 CurrentState = SecurityState_Secure;
9 else

10 CurrentState = SecurityState_NonSecure;
11
12 ResetRegs(); // Catch-all function for System Control Space reset
13 if HaveMainExt() then
14 LR = Ones(32); // Preset to an illegal exception return value
15 SetITSTATEAndCommit(Zeros(8)); // IT/ICI bits cleared
16 else
17 LR = bits(32) UNKNOWN; // Value must be initialised by software
18
19 if HaveMve() then
20 VPR = bits(32) UNKNOWN;
21
22 // Reset internal run state
23 Halted = FALSE;
24 LockedUp = FALSE;
25
26 // Initialize the Floating Point Extn
27 if HaveMveOrFPExt() then
28 for i = 0 to 31
29 S[i] = bits(32) UNKNOWN;
30
31 for i = 0 to MaxExceptionNum() // All exceptions Inactive
32 ExceptionActive[i] = '00';
33 ClearExclusiveLocal(ProcessorID()); // Synchronization (LDREX* / STREX*) monitor support
34 ClearEventRegister(); // See WFE instruction for more information
35 ClearInFlightInstructions();
36 for i = 0 to 12
37 R[i] = bits(32) UNKNOWN;
38
39 // Clearing stack limit registers
40 if HaveMainExt() then
41 MSPLIM_NS = Zeros(32);
42 PSPLIM_NS = Zeros(32);
43 if HaveSecurityExt() then
44 MSPLIM_S = Zeros(32);
45 PSPLIM_S = Zeros(32);
46
47 // Load the initial value of the stack pointer and the reset value from the
48 // vector table. The order of the loads is IMPLEMENTATION DEFINED
49 (excSp, sp) = Vector[0, HaveSecurityExt()];
50 (excRst, start) = Vector[Reset, HaveSecurityExt()];
51 if excSp.fault != NoFault || excRst.fault != NoFault then
52 SetActive(HardFault, HaveSecurityExt(), TRUE);
53 Lockup(TRUE);
54
55 // Initialize the stack pointers and start execution at the reset vector
56 if HaveSecurityExt() then
57 SP_Main_Secure = sp;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1963

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

58 SP_Main_NonSecure = ((bits(30) UNKNOWN):'00');
59 SP_Process_Secure = ((bits(30) UNKNOWN):'00');
60 else
61 SP_Main_NonSecure = sp;
62 SP_Process_NonSecure = ((bits(30) UNKNOWN):'00');
63 EPSR.T = start[0];
64 BranchTo(start, TRUE);
65
66 // Trigger a debug event even if resetting into secure state
67 if DHCSR.C_DEBUGEN == '1' && DEMCR.VC_CORERESET == '1' &&
68 (HasArchVersion(Armv8p1) || CanHaltOnEvent(FALSE, TRUE)) then
69 DHCSR.C_HALT = '1';
70 DFSR.VCATCH = '1';

E2.1.372 ThisInstr

1 // ThisInstr()
2 // ===========
3
4 bits(32) ThisInstr()
5 return ThisInstr(if HaveMve() then _InstID else 0);
6
7 bits(32) ThisInstr(integer instID)
8 if !_InstInfo[instID].Valid then
9 return bits(32) UNKNOWN;

10 return _InstInfo[instID].Opcode;

E2.1.373 ThisInstrAddr

1 // ThisInstrAddr()
2 // ===============
3
4 bits(32) ThisInstrAddr()
5 return _CurrentInstrExecState.FetchAddr;

E2.1.374 ThisInstrITState

1 // ThisInstrITState()
2 // ==================
3
4 ITSTATEType ThisInstrITState()
5 if HaveMainExt() then
6 value = _CurrentInstrExecState.ITState;
7 else
8 value = Zeros(8);
9 return value;

E2.1.375 ThisInstrLength

1 // ThisInstrLength()
2 // =================
3
4 integer ThisInstrLength()
5 return ThisInstrLength(if HaveMve() then _InstID else 0);
6
7 integer ThisInstrLength(integer instID)
8 if !_InstInfo[instID].Valid then
9 return 0;

10 return _InstInfo[instID].Length;

E2.1.376 TopLevel

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1964

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

1 // TopLevel()
2 // ==========
3
4 // This function is called one time for each tick the PE is not in a sleep
5 // state. It handles all instruction processing, including fetching the opcode,
6 // decode and execute. It also handles pausing execution when in the lockup
7 // state.
8 TopLevel()
9 // Process any pending reset.

10 if AIRCR_S.SYSRESETREQ == '1' then
11 TakeReset();
12
13 UpdateDebugEnable();
14 isSecure = IsSecure();
15 isPriv = FindPriv();
16
17 // Reset some globals so that PC/ITSTATE changes can be detected
18 _ITStateChanged = FALSE;
19 _PCChanged = FALSE;
20
21 // If the PE is halted then do nothing, otherwise process the next
22 // instruction.
23 if !IsDebugState() then
24 // If not locked up, process the next instruction, or just the in flight
25 // beats if a halt or monitor exception is pending.
26 if !LockedUp then
27 commitState = InstructionExecute(!PendingDebugHalt() &&
28 !PendingDebugMonitor());
29 // Advance the PC and commit instruction state if not locked up, an
30 // exception return is not about to be performed, and the current
31 // instruction has not been terminated by a fault.
32 if commitState && !_PendingReturnOperation then
33 InstructionAdvance();
34
35 // If a debug halt was requested and there are no active vector chains
36 // then halt if allowed to do so.
37 if !InstructionsInFlight() && PendingDebugHalt() then
38 Halt();
39
40 // Process any debug step requests
41 SteppingDebug(isSecure, isPriv);
42
43 elsif DHCSR.C_HALT == '0' then
44 // Resume the PE if a resume from debug halt was requested.
45 Halted = FALSE;
46 DHCSR.S_RESTART_ST = '1';
47
48 if !IsDebugState() then
49 try
50 // Process and take any pending exceptions.
51 if HandleExceptionTransitions() then
52 // If an exception has been taken, process any step request now,
53 // not on the next instruction
54 SteppingDebug(isSecure, isPriv);
55
56 // Pend vector catch debug state when needed
57 VectorCatchDebug(IsSecure(), FindPriv());
58
59 // If the PC has moved away from the lockup address (eg because an
60 // NMI has been taken) leave the lockup state.
61 if LockedUp && NextInstrAddr() != 0xEFFFFFFE[31:0] then
62 LockedUp = FALSE;
63
64 catch exn
65 // Do not catch UNPREDICTABLE or internal errors.
66 when IsExceptionTaken(exn)
67 // The correct architectural behavior for any exceptions is
68 // performed inside HandleExceptionTransitions. So no
69 // additional actions are required in this catch block.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1965

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

E2.1.377 TTResp

1 // TTResp()
2 // ========
3
4 bits(32) TTResp(bits(32) address, boolean alt, boolean forceunpriv)
5 TT_RESP_Type resp = Zeros();
6
7 // Only allow security checks if currently in Secure state
8 if IsSecure() then
9 sAttributes = SecurityCheck(address, FALSE, IsSecure());

10 if sAttributes.srvalid then
11 resp.SREGION = sAttributes.sregion;
12 resp.SRVALID = '1';
13 if sAttributes.irvalid then
14 resp.IREGION = sAttributes.iregion;
15 resp.IRVALID = '1';
16 addrSecure = if sAttributes.ns then '0' else '1';
17 resp.S = addrSecure;
18
19 // MPU region information only available when privileged or when
20 // inspecting the other MPU state.
21 other_domain = (alt != IsSecure());
22 if CurrentModeIsPrivileged() || alt then
23 (write, read, region, hit) = IsAccessible(address, forceunpriv, other_domain);
24 if hit then
25 resp.MREGION = region;
26 resp.MRVALID = '1';
27 resp.R = read;
28 resp.RW = write;
29 if IsSecure() then
30 resp.NSR = read AND NOT addrSecure;
31 resp.NSRW = write AND NOT addrSecure;
32
33 return resp;

E2.1.378 UnprivHaltingDebugAllowed

1 // UnprivHaltingDebugAllowed()
2 // ===========================
3
4 boolean UnprivHaltingDebugAllowed(boolean isSecure)
5 return UnprivHaltingDebugEnabled(isSecure) && !CurrentModeIsPrivileged(isSecure);

E2.1.379 UnprivHaltingDebugEnabled

1 // UnprivHaltingDebugEnabled()
2 // ===========================
3 // Returns TRUE if unprivileged halting debug is enabled for the indicated
4 // Security state, FALSE otherwise.
5
6 boolean UnprivHaltingDebugEnabled(boolean isSecure)
7 if !HaveSecurityExt() then assert !isSecure;
8
9 if !HaveUDE() then

10 return FALSE;
11 elsif HaveSecurityExt() then
12 uiden = DAUTHCTRL_S.UIDEN == '1';
13 // Secure unprivileged debug also grants Non-secure unprivileged debug.
14 if !isSecure then uiden = uiden || DAUTHCTRL_NS.UIDEN == '1';
15 return uiden;
16 else
17 return DAUTHCTRL.UIDEN == '1';

E2.1.380 UnsignedSat

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1966

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

1 // UnsignedSat()
2 // =============
3
4 bits(N) UnsignedSat(integer i, integer N)
5 (result, -) = UnsignedSatQ(i, N);
6 return result;

E2.1.381 UnsignedSatQ

1 // UnsignedSatQ()
2 // ==============
3
4 (bits(N), boolean) UnsignedSatQ(integer i, integer N)
5 if i > 2^N - 1 then
6 result = 2^N - 1; saturated = TRUE;
7 elsif i < 0 then
8 result = 0; saturated = TRUE;
9 else

10 result = i; saturated = FALSE;
11 return (result[N-1:0], saturated);

E2.1.382 UpdateDebugEnable

1 // UpdateDebugEnable()
2 // ===================
3 // Update DHCSR.S_SDE, DEMCR.SDME, and unprivileged debug enables for each instruction
4
5 UpdateDebugEnable()
6 // DHCSR.S_SDE and unprivileged debug enables are frozen if the PE is in Debug state
7 if !Halted then
8 nsUide = UnprivHaltingDebugAllowed(FALSE);
9 sUide = UnprivHaltingDebugAllowed(TRUE);

10 DHCSR.S_SDE = if sUide || SecureHaltingDebugAllowed() then '1' else '0';
11 DHCSR.S_SUIDE = if sUide && !SecureHaltingDebugAllowed() then '1' else '0';
12 DHCSR.S_NSUIDE = if nsUide && !HaltingDebugAllowed() then '1' else '0';
13
14 // DEMCR.SDME is frozen if DebugMonitor is active or pending
15 if HaveDebugMonitor() &&
16 ExceptionActive[DebugMonitor] == '00' &&
17 DEMCR.MON_PEND == '0' then
18 DEMCR.SDME = if SecureDebugMonitorAllowed() then '1' else '0';

E2.1.383 UpdateFPCCR

1 // UpdateFPCCR()
2 // =============
3
4 UpdateFPCCR(bits(32) frameptr, boolean applySpLim)
5 assert(HaveMveOrFPExt());
6
7 FPCAR.ADDRESS = frameptr[31:3];
8 // Flag if the context address violates the stack pointer limit. If the
9 // limit has been violated PreserveFPState() will zero the registers if

10 // required, but will not save the context to the stack.
11 if applySpLim && ViolatesSPLim(LookUpSP(), frameptr) then
12 FPCCR.SPLIMVIOL = '1';
13 else
14 FPCCR.SPLIMVIOL = '0';
15 FPCCR.LSPACT = '1';
16
17 execPri = ExecutionPriority();
18 isSecure = IsSecure();
19 FPCCR_S.S = if isSecure then '1' else '0';
20 if CurrentModeIsPrivileged() then
21 FPCCR.USER = '0';

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1967

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

22 else
23 FPCCR.USER = '1';
24 if CurrentMode() == PEMode_Thread then
25 FPCCR.THREAD = '1';
26 else
27 FPCCR.THREAD = '0';
28 if execPri > -1 then
29 FPCCR_S.HFRDY = '1';
30 else
31 FPCCR_S.HFRDY = '0';
32 targetSecure = AIRCR.BFHFNMINS == '0';
33 busfaultpri = ExceptionPriority(BusFault, targetSecure, FALSE);
34 if SHCSR_S.BUSFAULTENA == '1' && execPri > busfaultpri then
35 FPCCR_S.BFRDY = '1';
36 else
37 FPCCR_S.BFRDY = '0';
38 memfaultpri = ExceptionPriority(MemManage, isSecure, FALSE);
39 if SHCSR.MEMFAULTENA == '1' && execPri > memfaultpri then
40 FPCCR.MMRDY = '1';
41 else
42 FPCCR.MMRDY = '0';
43 usagefaultpri = ExceptionPriority(UsageFault, FALSE, FALSE);
44 if SHCSR_NS.USGFAULTENA == '1' && execPri > usagefaultpri then
45 FPCCR_NS.UFRDY = '1';
46 else
47 FPCCR_NS.UFRDY = '0';
48 usagefaultpri = ExceptionPriority(UsageFault, TRUE, FALSE);
49 if SHCSR_S.USGFAULTENA == '1' && execPri > usagefaultpri then
50 FPCCR_S.UFRDY = '1';
51 else
52 FPCCR_S.UFRDY = '0';
53 if HaveSecurityExt() then
54 securefaultpri = ExceptionPriority(SecureFault, TRUE, FALSE);
55 if SHCSR_S.SECUREFAULTENA == '1' && execPri > securefaultpri then
56 FPCCR_S.SFRDY = '1';
57 else
58 FPCCR_S.SFRDY = '0';
59 if CanPendMonitorOnEvent(isSecure, TRUE, TRUE, FindPriv(), TRUE) then
60 FPCCR_S.MONRDY = '1';
61 else
62 FPCCR_S.MONRDY = '0';
63 return;

E2.1.384 ValidateAddress

1 // ValidateAddress()
2 // =================
3
4 (ExcInfo, AddressDescriptor) ValidateAddress(bits(32) address, AccType acctype,
5 boolean ispriv, boolean secure,
6 boolean iswrite, boolean aligned)
7 AddressDescriptor result;
8 Permissions perms;
9 ns = boolean UNKNOWN;

10 excInfo = DefaultExcInfo();
11
12 // Security checking and MPU bank selection if Security Extensions are present.
13 if HaveSecurityExt() then
14 // Check SAU/IDAU for given address.
15 isInstrfetch = acctype == AccType_IFETCH;
16 sAttrib = SecurityCheck(address, isInstrfetch, secure);
17 if isInstrfetch then
18 ns = sAttrib.ns;
19 secureMpu = !sAttrib.ns;
20 // Override the privilege flag supplied with the a value based on the
21 // privilege associated with the current mode and the Security state
22 // of the MPU being queried. This can be different from value this
23 // function is called with, because CONTROL.nPRIV is banked between

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1968

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

24 // the Security states.
25 ispriv = CurrentModeIsPrivileged(secureMpu);
26 else
27 ns = !secure || sAttrib.ns;
28 secureMpu = secure;
29 else
30 ns = TRUE;
31 secureMpu = FALSE;
32
33 // Getting memory attribute information from MPU. Note that NS information
34 // in the memory attribute is set by SAU/IDAU and is updated after getting
35 // attribute values from MPU.
36 (result.memattrs, perms) = MPUCheck(address, acctype, ispriv, secureMpu);
37 // Updating NS information got from SAU/IDAU in memory attributes
38 result.memattrs.NS = ns;
39
40 // Generate UNALIGNED UsageFault exception if access to Device memory is unaligned.
41 if !aligned && result.memattrs.memtype == MemType_Device && perms.apValid == TRUE then
42 if acctype != AccType_DBG then
43 if secure then
44 UFSR_S.UNALIGNED = '1';
45 else
46 UFSR_NS.UNALIGNED = '1';
47 excInfo = CreateException(UsageFault, FALSE, secure);
48
49 if excInfo.fault == NoFault && HaveSecurityExt() then
50 // Check if there is a SAU/IDAU violation and, if so, update the fault syndrome
51 case acctype of
52 when AccType_IFETCH
53 if secure then
54 if sAttrib.ns then
55 // Invalid exit from the Secure state
56 SFSR.INVTRAN = '1';
57 excInfo = CreateException(SecureFault);
58 else
59 if !sAttrib.ns && !sAttrib.nsc then
60 // Invalid entry to the Secure state
61 SFSR.INVEP = '1';
62 excInfo = CreateException(SecureFault);
63 when AccType_VECTABLE
64 if !secure && !sAttrib.ns then
65 HFSR.VECTTBL = '1';
66 // Vector fetch faults raise a HardFault directly, but because this fault
67 // is caused by an SAU/IDAU violation it always targets the secure state.
68 excInfo = CreateException(HardFault, TRUE, TRUE);
69 when AccType_DBG
70 if !secure && !sAttrib.ns then
71 // DAP accesses result in a error being returned to the DAP without any
72 // syndrome being set.
73 excInfo = CreateException(SecureFault);
74 when AccType_NORMAL, AccType_MVE, AccType_ORDERED, AccType_STACK
75 if !secure && !sAttrib.ns then
76 SFSR.AUVIOL = '1';
77 SFSR.SFARVALID = '1';
78 SFAR = address;
79 excInfo = CreateException(SecureFault);
80 when AccType_LAZYFP
81 if !secure && !sAttrib.ns then
82 SFSR.LSPERR = '1';
83 SFSR.SFARVALID = '1';
84 SFAR = address;
85 excInfo = CreateException(SecureFault);
86 otherwise
87 assert(FALSE);
88
89 result.paddress = address;
90 result.accattrs.iswrite = iswrite;
91 result.accattrs.ispriv = ispriv;
92 result.accattrs.acctype = acctype;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1969

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

93
94 if excInfo.fault == NoFault then
95 excInfo = CheckPermission(perms, address, acctype, iswrite, ispriv, secureMpu);
96
97 return (excInfo, result);

E2.1.385 ValidateExceptionReturn

1 // ValidateExceptionReturn()
2 // =========================
3
4 (ExcInfo, EXC_RETURN_Type) ValidateExceptionReturn(EXC_RETURN_Type excReturn,
5 integer returningExceptionNumber)
6 boolean error = FALSE;
7 assert CurrentMode() == PEMode_Handler;
8 if !IsOnes(excReturn[23:7]) || excReturn[1] != '0' then
9 UNPREDICTABLE;

10 if !HaveMveOrFPExt() && excReturn.FType == '0' then
11 UNPREDICTABLE;
12 if !HaveSecurityExt() && (excReturn.S == '1' ||
13 excReturn.ES == '1' ||
14 excReturn.DCRS == '0') then
15 UNPREDICTABLE;
16
17 // Security specific validation
18 if HaveSecurityExt() then
19 // If exception return is an invalid attempt to return from Non-secure
20 // state with EXC_RETURN.ES set as '1', then a SecureFault is raised
21 exceptionWasSecure = excReturn.ES == '1';
22 if CurrentState == SecurityState_NonSecure && excReturn.ES == '1' then
23 error = TRUE;
24 // excReturn.ES is used below to control which exception to
25 // deactivate, and which CONTROL.SPSEL to update. Force it to the
26 // correct value so the code below functions correctly even if the
27 // Non-secure state returned an invalid excReturn value.
28 // Similarly the exception to deactivate below is actually Non-secure
29 excReturn.ES = '0';
30 exceptionWasSecure = FALSE;
31
32 // Check DCRS bit not used in for Non-secure exceptions
33 if !exceptionWasSecure && excReturn.DCRS == '0' then
34 error = TRUE;
35
36 if error then
37 SFSR.INVER = '1';
38 exceptionNumber = SecureFault;
39 else
40 exceptionWasSecure = FALSE;
41
42 // check returning from an inactive handler
43 if !error then
44 if !IsActiveForState(returningExceptionNumber, exceptionWasSecure) then
45 error = TRUE;
46 if HaveMainExt() then
47 UFSR.INVPC = '1';
48 exceptionNumber = UsageFault;
49 else
50 exceptionNumber = HardFault;
51
52 if error then
53 DeActivate(returningExceptionNumber, exceptionWasSecure);
54 if HaveSecurityExt() && exceptionWasSecure then
55 CONTROL_S.SPSEL = excReturn.SPSEL;
56 else
57 CONTROL_NS.SPSEL = excReturn.SPSEL;
58 // Escalates to HardFault if requested fault is disabled, or has
59 // insufficient priority, or if Main Extension is not implemented
60 excInfo = CreateException(exceptionNumber, FALSE, IsSecure());

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1970

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

61 else
62 excInfo = DefaultExcInfo();
63 return (excInfo, excReturn);

E2.1.386 VCX_op0

1 // VCX_op0
2 // =======
3
4 bits(size) VCX_op0(bits(32) instr, integer size)
5 return VCX_op0(instr, size, FALSE, integer UNKNOWN, bits(4) UNKNOWN);
6
7 bits(size) VCX_op0(bits(32) instr, integer size, boolean isBeatWise, integer curBeat,
8 bits(4) elmtMask)
9 assert size IN {32, 64};

10
11 // Custom data path returning IMPLEMENTATION DEFINED value based on
12 // instruction opcode only.
13 if isBeatWise then
14 return CdeImpDefValue(instr, curBeat, elmtMask);
15 else
16 return CdeImpDefValue(instr);

E2.1.387 VCX_op1

1 // VCX_op1
2 // =======
3
4 bits(size) VCX_op1(bits(32) instr, bits(N) opa, integer size)
5 return VCX_op1(instr, opa, size, FALSE, integer UNKNOWN, bits(4) UNKNOWN);
6
7 bits(size) VCX_op1(bits(32) instr, bits(N) opa, integer size, boolean isBeatWise,
8 integer curBeat, bits(4) elmtMask)
9 assert N IN {32, 64, 128};

10 assert size IN {32, 64, 128};
11
12 // Custom data path returning IMPLEMENTATION DEFINED value based on instruction
13 // opcode and single 32-bit, 64-bit, or 128-bit operand, opa, only.
14 if isBeatWise then
15 return CdeImpDefValue(instr, opa, curBeat, elmtMask);
16 else
17 return CdeImpDefValue(instr, opa);

E2.1.388 VCX_op2

1 // VCX_op2
2 // ======
3
4 bits(size) VCX_op2(bits(32) instr, bits(N) opa, bits(N) opb, integer size)
5 return VCX_op2(instr, opa, opb, size, FALSE, integer UNKNOWN, bits(4) UNKNOWN);
6
7 bits(size) VCX_op2(bits(32) instr, bits(N) opa, bits(N) opb, integer size,
8 boolean isBeatWise, integer curBeat, bits(4) elmtMask)
9 assert N IN {32, 64, 128};

10 assert size IN {32, 64, 128};
11
12 // Custom data path returning IMPLEMENTATION DEFINED value based on instruction
13 // opcode and two 32-bit or 64-bit operands, opa and opb, only.
14 if isBeatWise then
15 return CdeImpDefValue(instr, opa, opb, curBeat, elmtMask);
16 else
17 return CdeImpDefValue(instr, opa, opb);

E2.1.389 VCX_op3

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1971

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

1 // VCX_op3
2 // =======
3
4 bits(size) VCX_op3(bits(32) instr, bits(N) opa, bits(N) opb, bits(N) opc, integer size)
5 return VCX_op3(instr, opa, opb, opc, size, FALSE, integer UNKNOWN, bits(4) UNKNOWN);
6
7 bits(size) VCX_op3(bits(32) instr, bits(N) opa, bits(N) opb, bits(N) opc, integer size,
8 boolean isBeatWise, integer curBeat, bits(4) elmtMask)
9 assert N IN {32, 64, 128};

10 assert size IN {32, 64, 128};
11
12 // Custom data path returning IMPLEMENTATION DEFINED value based on instruction
13 // opcode and three 32-bit, 64-bit, or 128-bit operands, opa, opb and opc, only.
14 if isBeatWise then
15 return CdeImpDefValue(instr, opa, opb, opc, curBeat, elmtMask);
16 else
17 return CdeImpDefValue(instr, opa, opb, opc);

E2.1.390 Vector

1 // Vector[]
2 // ========
3
4 (ExcInfo, bits(32)) Vector[integer exceptionNumber, boolean isSecure]
5 // Calculate the address of the entry in the vector table
6 vtor = if isSecure then VTOR_S else VTOR_NS;
7 addr = (vtor.TBLOFF:'0000000') + 4 * exceptionNumber;
8 // Fetch the vector with the correct privilege and security
9 (exc, vector) = MemA_with_priv_security(addr,4,AccType_VECTABLE,TRUE,isSecure,TRUE);

10 // Faults that prevent the vector being fetched are terminal and prevent
11 // the exception being entered.
12 if exc.fault != NoFault then
13 exc.isTerminal = TRUE;
14 return (exc, vector);

E2.1.391 VectorCatchDebug

1 // VectorCatchDebug()
2 // ==================
3
4 VectorCatchDebug(boolean isSecure, boolean isPriv)
5 vectorEvt = FALSE;
6
7 if CanHaltOnEvent(isSecure, isPriv) then
8 case UInt(IPSR.Exception) of
9 when HardFault

10 vectorEvt = ((DEMCR.VC_HARDERR == '1' && (HFSR.FORCED == '1' ||
11 HFSR.DEBUGEVT == '1')) ||
12 (DEMCR.VC_INTERR == '1' && (HFSR.VECTTBL == '1')));
13
14 when MemManage
15 vectorEvt = ((DEMCR.VC_MMERR == '1' && (MMFSR.IACCVIOL == '1' ||
16 MMFSR.DACCVIOL == '1')) ||
17 (DEMCR.VC_INTERR == '1' && (MMFSR.MSTKERR == '1' ||
18 MMFSR.MUNSTKERR == '1' ||
19 MMFSR.MLSPERR == '1')));
20
21 when BusFault
22 vectorEvt = ((DEMCR.VC_BUSERR == '1' && (BFSR.IBUSERR == '1' ||
23 BFSR.PRECISERR == '1' ||
24 BFSR.IMPRECISERR == '1')) ||
25 (DEMCR.VC_INTERR == '1' && (BFSR.STKERR == '1' ||
26 BFSR.UNSTKERR == '1' ||
27 BFSR.LSPERR == '1')));
28
29 when UsageFault
30 vectorEvt = ((DEMCR.VC_STATERR == '1' && (UFSR.UNDEFINSTR == '1' ||

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1972

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

31 UFSR.INVPC == '1' ||
32 UFSR.INVSTATE == '1')) ||
33 (DEMCR.VC_CHKERR == '1' && (UFSR.UNALIGNED == '1' ||
34 UFSR.DIVBYZERO == '1')) ||
35 (DEMCR.VC_INTERR == '1' && (UFSR.STKOF == '1')) ||
36 (DEMCR.VC_NOCPERR == '1' && (UFSR.NOCP == '1')));
37
38 when SecureFault
39 vectorEvt = ((DEMCR.VC_SFERR == '1' && (SFSR.INVEP == '1' ||
40 SFSR.INVIS == '1' ||
41 SFSR.INVER == '1' ||
42 SFSR.AUVIOL == '1' ||
43 SFSR.INVTRAN == '1' ||
44 SFSR.LSPERR == '1' ||
45 SFSR.LSERR == '1')));
46
47 otherwise
48 // No other exceptions trigger vector catch
49
50 if vectorEvt then
51 DHCSR.C_HALT = '1';
52 DFSR.VCATCH = '1';

E2.1.392 VFPExcBarrier

1 // VFPExcBarrier
2 // =============
3 // Ensures that all floating-point exception processing has completed
4
5 VFPExcBarrier();

E2.1.393 VFPExpandImm

1 // VFPExpandImm()
2 // ==============
3
4 bits(N) VFPExpandImm(bits(8) imm8, integer N)
5 assert N IN {16,32,64};
6 integer E = if N == 16 then 5 elsif N == 32 then 8 else 11;
7 constant integer F = N - E - 1;
8 bits(E-2) exp;
9 bits(F+2) frac;

10 sign = imm8[7];
11 exp = NOT(imm8[6]):Replicate(imm8[6],E-3);
12 frac = imm8[5:0]:Zeros(F-4);
13 return sign : exp : frac;

E2.1.394 VFPNegMul

1 // Different types of floating-point multiply and negate operations
2
3 enumeration VFPNegMul {VFPNegMul_VNMLA, VFPNegMul_VNMLS, VFPNegMul_VNMUL};

E2.1.395 VFPSmallRegisterBank

1 // VFPSmallRegisterBank()
2 // ======================
3 // Returns TRUE because the Floating Point implementation only provides access to
4 // 16 double-precision registers
5
6 boolean VFPSmallRegisterBank()
7 return TRUE;

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1973

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

E2.1.396 ViolatesSPLim

1 // ViolatesSPLim()
2 // ===============
3
4 boolean ViolatesSPLim(RNames spreg, bits(32) value)
5 isSecure = ((spreg == RNamesSP_Main_Secure) || (spreg == RNamesSP_Process_Secure));
6
7 // Check CCR.STKOFHFNMIGN to determine if the limit should actually be
8 // applied. When checking if CCR.STKOFHFNMIGN should apply the requested
9 // execution priority is considered, and AIRCR.PRIS is ignored.

10 assert (!isSecure || HaveSecurityExt());
11 if HaveMainExt() && IsReqExcPriNeg(isSecure) then
12 ignLimit = if isSecure then CCR_S.STKOFHFNMIGN else CCR_NS.STKOFHFNMIGN;
13 applylimit = (ignLimit == '0');
14 else
15 applylimit = TRUE;
16
17 return applylimit && (UInt(value) < UInt(LookUpSPLim(spreg)));

E2.1.397 VPTActive

1 // VPTActive()
2 // ===========
3
4 boolean VPTActive()
5 return VPTActive(_BeatID);
6
7 boolean VPTActive(integer beat)
8 return Elem[VPR[23:16], beat DIV 2, 4] != Zeros(4);

E2.1.398 VPTAdvance

1 // VPTAdvance()
2 // ============
3
4 VPTAdvance(integer beat)
5 maskID = beat DIV 2;
6 vptState = Elem[VPR[23:16], maskID, 4];
7 if vptState == '1000' then
8 vptState = Zeros(4);
9 elsif vptState != '0000' then

10 (vptState, inv) = LSL_C(vptState, 1);
11 // Invert the predicate flags for this beat if the bit shifted out of
12 // the VPT state was 1.
13 if inv == '1' then
14 Elem[VPR.P0, beat, 4] = NOT Elem[VPR.P0, beat, 4];
15 // Since the mask fields are grouped in pairs only update the mask on every
16 // odd numbered beat.
17 if beat[0] == '1' then
18 Elem[VPR[23:16], maskID, 4] = vptState;

E2.1.399 WaitForEvent

1 // WaitForEvent
2 // ============
3 // Optionally suspends execution until a WFE wakeup event or reset occurs,
4 // or until some earlier time if the implementation chooses
5
6 WaitForEvent();

E2.1.400 WaitForInterrupt

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1974

Chapter E2. Pseudocode Specification
E2.1. Alphabetical Pseudocode List

1 // WaitForInterrupt
2 // ================
3 // Optionally suspends execution until a WFI wakeup event or reset occurs, or
4 // until some earlier time if the implementation chooses
5
6 WaitForInterrupt();

E2.1.401 ZeroExtend

1 // ZeroExtend()
2 // ============
3
4 bits(N) ZeroExtend(bits(M) x, integer N)
5 assert N >= M;
6 return Zeros(N-M) : x;
7
8 bits(N) ZeroExtend(bits(M) x)
9 return ZeroExtend(x, N);

E2.1.402 Zeros

1 // Zeros()
2 // =======
3
4 bits(N) Zeros(integer N)
5 return Replicate('0',N);
6
7 bits(N) Zeros()
8 return Zeros(N);

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1975

Part F
Debug Packet Protocols

Chapter F1
ITM and DWT Packet Protocol Specification

This chapter describes the protocol for packets that send the data generated by the ITM and DWT to an external
debugger. It contains the following sections:

• About the ITM and DWT packets.

• Alphabetical list of DWT and ITM packets.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1977

Chapter F1. ITM and DWT Packet Protocol Specification
F1.1. About the ITM and DWT packets

F1.1 About the ITM and DWT packets

The following sections give an overview of the ITM and DWT packets and how the TPIU transmits them:

• Uses of ITM and DWT packets

• ITM and DWT protocol packet headers

• Packet transmission by the trace sink

Note

This chapter describes packet transmission by a trace sink such as a TPIU. The ITM can send packets
to any suitable trace sink. Regardless of the actual trace sink used, the ITM formats the packets as
described in this chapter.

F1.1.1 Uses of ITM and DWT packets

The ITM sends a packet to the trace sink when:

• Software writes to a stimulus register. This generates a Instrumentation packet.

• The hardware generates a Protocol packet. Protocol packets include timestamps and synchronization packets.

• It receives a packet from the DWT, for forwarding to the trace sink.

The DWT sends a packet to the ITM for forwarding to the trace sink when:

• A DWT comparator matches and generates one or more Data Trace packets.

• It samples the PC.

• One of the performance profile counters wraps.

This chapter describes the packet protocol used.

F1.1.2 ITM and DWT protocol packet headers

[7] [6] [5] [4] [3] [2] [1] [0] Description
0 0 0 0 0 0 0 0 Synchronization packet
0 1 1 1 0 0 0 0 Overflow packet
0 6=0b000 0 0 0 0 Local Timestamp 2 packet

&& 6= 0b111
1 0 0 1 0 1 0 0 Global Timestamp 1 packet
1 0 1 1 0 1 0 0 Global Timestamp 2 packet
1 1 x x 0 0 0 0 Local Timestamp 1 packet
x x x x 1 x 0 0 Extension Packet
0 0 0 0 0 1 0 1 Event Counter Packet
0 1 x x 0 1 0 1 Date Trace Match Packet
0 0 0 0 1 1 1 0 Exception Trace Packet
0 1 x x 0 1 6=0b00 Data Trace PC Value packet
0 1 x x 1 1 6=0b00 Data Trace Data Address packet
1 0 x x x 1 6=0b00 Data Trace Data Value packet
x x x x x 0 6=0b00 Instrumentation packet
0 0 0 1 0 1 x 1 Periodic PC Sample packet
0 0 0 1 1 1 0 1 PMU Overflow packet

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1978

Chapter F1. ITM and DWT Packet Protocol Specification
F1.1. About the ITM and DWT packets

F1.1.3 Packet transmission by the trace sink

The trace sink either:

• Forms the packets into frames, as required by the Arm®CoreSightTM Architecture Specification.

• Transmits the packets over a serial port.

For each packet, the trace sink transmits:

• The header byte first, followed by any payload bytes.

• Each byte of the packet least significant bit (LSB) first.

Figures in this chapter show each packet as a sequence of bytes, with the LSB of each byte to the right and the
most significant bit (MSB) to the left. Convention for packet descriptions shows this convention, and how it relates
to data transmission for a packet with a header byte and two payload bytes.

01234567

LSBMSB Byte 0

Transmitted first

LSBMSB Byte 1

LSBMSB Byte 2

Transmitted last

Figure F1.1: Convention for packet descriptions

In some sections, the figures are split into separate figures for the header byte and payload bytes. For instance,
where the number of payload bytes varies according to a field in the header.

The ITM merges the packets from the ITM and DWT with the Local and Global timestamp, Synchronization, and
other Protocol packets, and forwards them to the trace sink as a single data stream. The trace sink then merges this
data stream with the data from the ETM, if implemented.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1979

Chapter F1. ITM and DWT Packet Protocol Specification
F1.2. Alphabetical list of DWT and ITM packets

F1.2 Alphabetical list of DWT and ITM packets

F1.2.1 Data Trace Data Address packet

The Data Trace Data Address packet characteristics are:

Purpose Indicates a DWT comparator generated a match, and the address that matched. Data Address
packets are only generated for Data Address range comparator pairs. The address might be
compressed. However, it is not required that Short and Medium packets are generated when the
address bits match.

Attributes Multi-part Hardware source packet comprising:

• 8-bit header.

• 8, 16, or 32-bit payload.

F1.2.1.1 Data Trace Data Address packet header

The Data Trace Data Address packet header bit assignments are:

01234567

≠ 0b00

SS

1

SH
0 1 1CMPN Byte 0

ID

ID, byte 0 bits [7:3] Hardware Source packet type. Bits [7:3] discriminate between Hardware Source packet
types. The defined values of this field are:

0b01xx1 Data Trace Data Address packet.

This field reads as 0b01xx1.

CMPN, byte 0 bits [5:4] DWT comparator index. Defines which comparator generated a match. Data Trace
Data Address packets can be compressed relative to the value in DWT_COMP<CMPN>. The number of
traced bits is indicated by the SS field. The remainder of the address bits comes from DWT_COMP<CMPN>.
Either comparator in a Data Address range comparator pair can be used.

SH, byte 0 bit [2] Source. The defined values of this bit are:

1 Hardware source packet.

This bit reads as one.

SS, byte 0 bits [1:0] Size. The defined values of this field are:

0b01 Short Data Address packet.

0b10 Medium Data Address packet.

0b11 Long Data Address packet.

The value 0b00 encodes a Protocol packet.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1980

Chapter F1. ITM and DWT Packet Protocol Specification
F1.2. Alphabetical list of DWT and ITM packets

F1.2.1.2 Data Trace Data Address packet payload

When Long Data Address packet, SS == 0b11, the Data Trace Data Address packet payload bit assignments are:

01234567

DADDR[7:0] Byte 1

DADDR[15:8] Byte 2

DADDR[23:16] Byte 3

DADDR[31:24] Byte 4

When Medium Data Address packet, SS == 0b10, the Data Trace Data Address packet payload bit assignments
are:

01234567

DADDR[7:0] Byte 1

DADDR[15:8] Byte 2

When Short Data Address packet, SS == 0b01, the Data Trace Data Address packet payload bit assignments are:

01234567

DADDR[7:0] Byte 1

DADDR[31:0], bytes <4:1>, when Long Data Address packet, SS == 0b11 Data address.

DADDR[15:0], bytes <2:1>, when Medium Data Address packet, SS == 0b10 Data address. DADDR[31:16]
== DWT_COMP<CMPN>[31:16].

DADDR[7:0], byte <1>, when Short Data Address packet, SS == 0b01 Data address. DADDR[31:8] ==
DWT_COMP<CMPN>[31:8].

F1.2.2 Data Trace Data Value packet

The Data Trace Data Value packet characteristics are:

Purpose Indicates a DWT comparator generated a match, and the value that matched.

Attributes Multi-part Hardware source packet comprising:

• 8-bit header.

• 8, 16, or 32-bit payload.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1981

Chapter F1. ITM and DWT Packet Protocol Specification
F1.2. Alphabetical list of DWT and ITM packets

F1.2.2.1 Data Trace Data Value packet header

The Data Trace Data Value packet header bit assignments are:

01234567

≠ 0b00

SS

1

SH
1 0 WnRCMPN Byte 0

ID

ID, byte 0 bits [7:3] Hardware Source packet type. Bits [7:3] discriminate between Hardware Source packet
types. The defined values of this field are:

0b10xxx Data Trace Data Value packet.

This field reads as 0b10xxx.

CMPN, byte 0 bits [5:4] DWT comparator index. Defines which comparator generated a match.

WnR, byte 0 bit [3] Write-not-read. The defined values of this bit are:

0 Read.

1 Write.

SH, byte 0 bit [2] Source. The defined values of this bit are:

1 Hardware source packet.

This bit reads as one.

SS, byte 0 bits [1:0] Size. The defined values of this field are:

0b01 Byte Data Value packet.

0b10 Halfword Data Value packet.

0b11 Word Data Value packet.

The value 0b00 encodes a Protocol packet.

F1.2.2.2 Data Trace Data Value packet payload

When Byte Data Value packet, SS == 0b01, the Data Trace Data Value packet payload bit assignments are:

01234567

DVALUE[7:0] Byte 1

When Halfword Data Value packet, SS == 0b10, the Data Trace Data Value packet payload bit assignments are:

01234567

DVALUE[7:0] Byte 1

DVALUE[15:8] Byte 2

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1982

Chapter F1. ITM and DWT Packet Protocol Specification
F1.2. Alphabetical list of DWT and ITM packets

When Word Data Value packet, SS == 0b11, the Data Trace Data Value packet payload bit assignments are:

01234567

DVALUE[7:0] Byte 1

DVALUE[15:8] Byte 2

DVALUE[23:16] Byte 3

DVALUE[31:24] Byte 4

DVALUE[31:0], bytes <4:1>, when Word Data Value packet, SS == 0b11 Word data value.

DVALUE[15:0], byte 1 bits [15:0], when Halfword Data Value packet, SS == 0b10 Halfword data value.

DVALUE[7:0], byte <1>, when Byte Data Value packet, SS == 0b01 Byte data value.

F1.2.3 Data Trace Match packet

The Data Trace Match packet characteristics are:

Purpose Indicates a DWT comparator generated a match.

Attributes 16-bit Hardware source packet.

Field descriptions

The Data Trace Match packet bit assignments are:

01234567

0 1

SS

1

SH
0 1 0CMPN Byte 0

ID

1

MATCH
0 0 0 0 0 0 0 Byte 1

Byte 1 bits [7:1] This field reads as 0b0000000.

MATCH, byte 1 bit [0] Data Trace Match packet. Discriminates between the Data Trace PC Value packet and
the Data Trace Match packet. The defined values of this bit are:

1 Data Trace Match packet.

This bit reads as one.

ID, byte 0 bits [7:3] Hardware Source packet type. Bits [7:3] discriminate between Hardware Source packet
types. The defined values of this field are:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1983

Chapter F1. ITM and DWT Packet Protocol Specification
F1.2. Alphabetical list of DWT and ITM packets

0b01xx0 Data Trace PC Value packet or Data Trace Match packet.

Bit [0] of byte 1 discriminates between the Data Trace PC Value packet and the Data Trace Match
packet.

This field reads as 0b01xx0.

CMPN, byte 0 bits [5:4] DWT comparator index. Defines which comparator generated a match.

SH, byte 0 bit [2] Source. The defined values of this bit are:

1 Hardware source packet.

This bit reads as one.

SS, byte 0 bits [1:0] Size. The defined values of this field are:

0b01 Source packet, 1-byte payload, 2-byte packet.

The value 0b00 encodes a Protocol packet. All other values are reserved.

This field reads as 0b01.

F1.2.4 Data Trace PC Value packet

The Data Trace PC Value packet characteristics are:

Purpose Indicates a DWT comparator generated a match, and the address of the instruction that matched.
The address might be compressed. However, it is not required that Short and Medium packets are
generated when the address bits match.

Attributes Multi-part Hardware source packet comprising:

• 8-bit header.

• 8, 16, or 32-bit payload.

F1.2.4.1 Data Trace PC Value packet header

The Data Trace PC Value packet header bit assignments are:

01234567

≠ 0b00

SS

1

SH
0 1 0CMPN Byte 0

ID

ID, byte 0 bits [7:3] Hardware Source packet type. Bits [7:3] discriminate between Hardware Source packet
types. The defined values of this field are:

0b01xx0 Data Trace PC Value packet or Data Trace Match packet.

Bit [0] of byte 1 discriminates between the Data Trace PC Value packet and the Data Trace Match
packet.

This field reads as 0b01xx0.

CMPN, byte 0 bits [5:4] DWT comparator index. Defines which comparator generated a match. Data Trace PC
Value packets can be compressed relative to the value in DWT_COMP<CMPN>. The number of traced bits
is indicated by the SS field. The remainder of the address bits comes from DWT_COMP<CMPN>. Either
comparator in an Instruction Address range comparator pair can be used.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1984

Chapter F1. ITM and DWT Packet Protocol Specification
F1.2. Alphabetical list of DWT and ITM packets

SH, byte 0 bit [2] Source. The defined values of this bit are:

1 Hardware source packet.

This bit reads as one.

SS, byte 0 bits [1:0] Size. The defined values of this field are:

0b01 Short PC Value packet.

0b10 Medium PC Value packet.

0b11 Long PC Value packet.

The value 0b00 encodes a Protocol packet.

F1.2.4.2 Data Trace PC Value packet payload

When Long PC Value packet, SS == 0b11, the Data Trace PC Value packet payload bit assignments are:

01234567

0PC[7:1] Byte 1

PC[15:8] Byte 2

PC[23:16] Byte 3

PC[31:24] Byte 4

When Medium PC Value packet, SS == 0b10, the Data Trace PC Value packet payload bit assignments are:

01234567

0PC[7:1] Byte 1

PC[15:8] Byte 2

When Short PC Value packet, SS == 0b01, the Data Trace PC Value packet payload bit assignments are:

01234567

0

MATCH
PC[7:1] Byte 1

PC[31:1], bytes <4:2>, byte 1 bits [7:1], when Long PC Value packet, SS == 0b11 Instruction address.

PC[15:1], byte <2>, byte 1 bits [7:1], when Medium PC Value packet, SS == 0b10 Instruction address.
PC[31:16] == DWT_COMP<CMPN>[31:16].

PC[7:1], byte 1 bits [7:1], when Short PC Value packet, SS == 0b01 Instruction address. PC[31:8] ==
DWT_COMP<CMPN>[31:8].

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1985

Chapter F1. ITM and DWT Packet Protocol Specification
F1.2. Alphabetical list of DWT and ITM packets

MATCH, byte 1 bit [0] Data Trace Match packet. Discriminates between the Data Trace PC Value packet and
the Data Trace Match packet. The defined values of this bit are:

0 Data Trace PC Value packet.

This bit reads as zero.

F1.2.5 Event Counter packet

The Event Counter packet characteristics are:

Purpose Indicates one or more DWT counters wraps through zero.

Attributes 16-bit Hardware source packet.

Field descriptions

The Event Counter packet bit assignments are:

01234567

0 1

SS

1

SH

0 0 0 0 0

ID
Byte 0

CPIExcSleepLSUFoldCyc0 0 Byte 1

Byte 1 bits [7:6] This field reads-as-zero.

Cyc, byte 1 bit [5] POSTCNT timer decremented to zero. See DWT_CTRL for more information on the
POSTCNT timer.

Fold, byte 1 bit [4] DWT_FOLDCNT counter wrapped from 0xFF to zero.

LSU, byte 1 bit [3] DWT_LSUNCT counter wrapped from 0xFF to zero.

Sleep, byte 1 bit [2] DWT_SLEEPCNT counter wrapped from 0xFF to zero.

Exc, byte 1 bit [1] DWT_EXCCNT counter wrapped from 0xFF to zero.

CPI, byte 1 bit [0] DWT_CPICNT counter wrapped from 0xFF to zero.

ID, byte 0 bits [7:3] Hardware Source packet type. Bits [7:3] discriminate between Hardware Source packet
types. The defined values of this field are:

0b00000 Event Counter packet.

This field reads as 0b00000.

SH, byte 0 bit [2] Source. The defined values of this bit are:

1 Hardware source packet.

This bit reads as one.

SS, byte 0 bits [1:0] Size. The defined values of this field are:

0b01 Source packet, 1-byte payload, 2-byte packet.

The value 0b00 encodes a Protocol packet. All other values are reserved.

This field reads as 0b01.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1986

Chapter F1. ITM and DWT Packet Protocol Specification
F1.2. Alphabetical list of DWT and ITM packets

F1.2.6 Exception Trace packet

The Exception Trace packet characteristics are:

Purpose Indicates the PE has entered, exited or returned to an exception.

Attributes 24-bit Hardware source packet.

Field descriptions

The Exception Trace packet bit assignments are:

01234567

1 0

SS

1

SH

0 0 0 0 1

ID
Byte 0

ExceptionNumber[7:0] Byte 1

0 0 0FN0 0 Byte 2

ExceptionNumber[8]

Byte 2 bits [7:6,3:1] This field reads-as-zero.

FN, byte 2 bits [5:4] Function. The defined values of this field are:

0b01 Entered exception indicated by ExceptionNumber.

0b10 Exited exception indicated by ExceptionNumber.

0b11 Returned to exception indicated by ExceptionNumber.

All other values are reserved.

ExceptionNumber, byte 2 bit [0], byte <1> The exception number.

ID, byte 0 bits [7:3] Hardware Source packet type. Bits [7:3] discriminate between Hardware Source packet
types. The defined values of this field are:

0b00001 Exception Trace packet.

This field reads as 0b00001.

SH, byte 0 bit [2] Source. The defined values of this bit are:

1 Hardware source packet.

This bit reads as one.

SS, byte 0 bits [1:0] Size. The defined values of this field are:

0b10 Source packet, 2-byte payload, 3-byte packet.

The value 0b00 encodes a Protocol packet. All other values are reserved.

This field reads as 0b10.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1987

Chapter F1. ITM and DWT Packet Protocol Specification
F1.2. Alphabetical list of DWT and ITM packets

F1.2.7 Extension packet

The Extension packet characteristics are:

Purpose An Extension packet provides additional information about the identified source. The amount
of information required determines the number of payload bytes, 0-4. The architecture only defines
one use of the Extension packet, to provide a Stimulus port page number. For this use, SH == 0,
and a single byte Extension packet is emitted.

Attributes 8, 16, 24, 32, or 40-bit Protocol packet.

Field descriptions

When 1-byte packet, the Extension packet bit assignments are:

01234567

0 0

SS
1 SHEX[2:0]

0

C
Byte 0

ID

When 2-byte packet, the Extension packet bit assignments are:

01234567

0 0

SS
1 SHEX[2:0]1 Byte 0

ID

EX[9:3]
0

C
Byte 1

When 3-byte packet, the Extension packet bit assignments are:

01234567

0 0

SS
1 SHEX[2:0]1 Byte 0

ID

EX[9:3]1 Byte 1

EX[16:10]
0

C
Byte 2

When 4-byte packet, the Extension packet bit assignments are:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1988

Chapter F1. ITM and DWT Packet Protocol Specification
F1.2. Alphabetical list of DWT and ITM packets

01234567

0 0

SS
1 SHEX[2:0]1 Byte 0

ID

EX[9:3]1 Byte 1

EX[16:10]1 Byte 2

EX[23:17]
0

C
Byte 3

When 5-byte packet, the Extension packet bit assignments are:

01234567

0 0

SS
1 SHEX[2:0]1 Byte 0

ID

EX[9:3]1 Byte 1

EX[16:10]1 Byte 2

EX[23:17]1 Byte 3

EX[31:24] Byte 4

EX, byte <4>, byte 3 bits [6:0], byte 2 bits [6:0], byte 1 bits [6:0], byte 0 bits [6:4] Extension information. If
SH == 1, then EX defines PAGE, the Stimulus port page number.

This is a 32-bit field. If the Extension packet is shorter than 5 bytes, the most significant bits are zero.

C, byte 3 bit [7], byte 2 bit [7], byte 1 bit [7], byte 0 bit [7] Continuation bit. The defined values of this field
are:

0 Last byte of the packet.

1 Another byte follows.

ID, byte 0 bits [6:2] Protocol packet type. Bits [6:2] discriminate between Protocol packet types. The defined
values of this field are:

0bxxx1x Extension packet.

This field reads as 0bxxx1x.

SH, byte 0 bit [2] Source. The defined values of this bit are:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1989

Chapter F1. ITM and DWT Packet Protocol Specification
F1.2. Alphabetical list of DWT and ITM packets

0 Extension packet for Instrumentation packet.

1 Extension packet for Hardware source packet.

SS, byte 0 bits [1:0] Packet type. The defined values of this field are:

0b00 Protocol packet.

Other values encode different sizes of Hardware and Software source packets. This field reads as 0b00.

F1.2.8 Global Timestamp 1 packet

The Global Timestamp 1 packet characteristics are:

Purpose Contains the least significant bits of the global timestamp value. The ITM might compress this
value if it is not generating a full timestamp by omitting significant bits if they are unchanged from
the previous timestamp value.

Attributes Multi-part Protocol packet comprising:

• 8-bit header.

• 8, 16, 24, or 32-bit payload.

F1.2.8.1 Global Timestamp 1 packet header

The Global Timestamp 1 packet header bit assignments are:

01234567

0 0

SS

0 0 1 0 1

ID

1

C
Byte 0

C, byte 0 bit [7] Continuation bit. This bit reads as one.

ID, byte 0 bits [6:2] Protocol packet type. Bits [6:2] discriminate between Protocol packet types. The defined
values of this field are:

0b00101 Global Timestamp 1 packet.

This field reads as 0b00101.

SS, byte 0 bits [1:0] Packet type. The defined values of this field are:

0b00 Protocol packet.

Other values encode different sizes of Hardware and Software source packets. This field reads as 0b00.

F1.2.8.2 Global Timestamp 1 packet payload

When 7-bit timestamp, the Global Timestamp 1 packet payload bit assignments are:

01234567

TS[6:0]
0

C
Byte 1

When 14-bit timestamp, the Global Timestamp 1 packet payload bit assignments are:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1990

Chapter F1. ITM and DWT Packet Protocol Specification
F1.2. Alphabetical list of DWT and ITM packets

01234567

TS[6:0]1 Byte 1

TS[13:7]
0

C
Byte 2

When 21-bit timestamp, the Global Timestamp 1 packet payload bit assignments are:

01234567

TS[6:0]1 Byte 1

TS[13:7]1 Byte 2

TS[20:14]
0

C
Byte 3

When 26-bit or full timestamp, the Global Timestamp 1 packet payload bit assignments are:

01234567

TS[6:0]1 Byte 1

TS[13:7]1 Byte 2

TS[20:14]1 Byte 3

TS[25:21]ClkChWrap
0

C
Byte 4

C, byte 4 bit [7], byte 3 bit [7], byte 2 bit [7], byte 1 bit [7] Continuation bit. The defined values of this field
are:

0 Last byte of the packet.

1 Another byte follows.

Wrap, byte 4 bit [6], when 26-bit or full timestamp Wrapped. The defined values of this bit are:

0 The value of global timestamp bits TS[47:26] or TS[63:26] have not changed since the last Global
Timestamp 2 packet output by the ITM.

1 The value of global timestamp bits TS[47:26] or TS[63:26] have changed since the last Global Timestamp
2 packet output by the ITM.

ClkCh, byte 4 bit [5], when 26-bit or full timestamp Clock change. The defined values of this bit are:

0 The system has not asserted the clock change input to the processor since the last time the ITM generated
a Global Timestamp packet.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1991

Chapter F1. ITM and DWT Packet Protocol Specification
F1.2. Alphabetical list of DWT and ITM packets

1 The system has asserted the clock change input to the processor since the last time the ITM generated a
Global Timestamp packet.

Note

When the clock change input to the processor is asserted, the ITM must output a full 48-bit or 64-bit
global timestamp value.

TS[25:0], byte 4 bits [4:0], byte 3 bits [6:0], byte 2 bits [6:0], byte 1 bits [6:0] Global Timestamp. The times-
tamp is 64 or 48 bits. If the Global Timestamp 1 packet is shorter than 5 bytes, the most-significant bits of
the timestamp have not changed since the last Global Timestamp 1 packet output by the ITM. If the Global
Timestamp 1 packet is 5 bytes, the Wrap bit defines whether most-significant bits have unchanged since the
last Global Timestamp 2 packet output by the ITM.

F1.2.9 Global Timestamp 2 packet

The Global Timestamp 2 packet characteristics are:

Purpose Provides the most significant bits of a full 48 or 64-bit timestamp.

Attributes Multi-part Protocol packet comprising:

• 8-bit header.

• 32 or 48-bit payload.

F1.2.9.1 Global Timestamp 2 packet header

The Global Timestamp 2 packet header bit assignments are:

01234567

0 0

SS

0 1 1 0 1

ID

1

C
Byte 0

C, byte 0 bit [7] Continuation bit. This bit reads as one.

ID, byte 0 bits [6:2] Protocol packet type. Bits [6:2] discriminate between Protocol packet types. The defined
values of this field are:

0b01101 Global Timestamp 2 packet.

This field reads as 0b01101.

SS, byte 0 bits [1:0] Packet type. The defined values of this field are:

0b00 Protocol packet.

Other values encode different sizes of Hardware and Software source packets. This field reads as 0b00.

F1.2.9.2 Global Timestamp 2 packet payload

When 48-bit Global Timestamp 2 packet, the Global Timestamp 2 packet payload bit assignments are:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1992

Chapter F1. ITM and DWT Packet Protocol Specification
F1.2. Alphabetical list of DWT and ITM packets

01234567

TS[32:26]1 Byte 1

TS[39:33]1 Byte 2

TS[46:40]1 Byte 3

TS[47]0 0 0 0 0 0
0

C
Byte 4

When 64-bit Global Timestamp 2 packet, the Global Timestamp 2 packet payload bit assignments are:

01234567

TS[32:26]1 Byte 1

TS[39:33]1 Byte 2

TS[46:40]1 Byte 3

TS[53:47]1 Byte 4

TS[60:54]1 Byte 5

TS[63:61]0 0 0 0
0

C
Byte 6

C, byte 6 bit [7], byte 5 bit [7], byte 4 bit [7], byte 3 bit [7], byte 2 bit [7], byte 1 bit [7] Continuation bit.
The defined values of this field are:

0 Last byte of the packet.

1 Another byte follows.

Byte 6 bits [6:3], when 64-bit Global Timestamp 2 packet This field reads-as-zero.

Byte 4 bits [6:1], when 48-bit Global Timestamp 2 packet This field reads-as-zero.

TS[47:26] , byte 4 bit [0], byte 3 bits [6:0], byte 2 bits [6:0], byte 1 bits [6:0], when 48-bit Global Timestamp
2 packet

Most significant bits of the Global Timestamp.

TS[63:26] , byte 6 bits [2:0], byte 5 bits [6:0], byte 4 bits [6:0], byte 3 bits [6:0], byte 2 bits [6:0], byte 1 bits
[6:0], when 64-bit Global Timestamp 2 packet

Most significant bits of the Global Timestamp.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1993

Chapter F1. ITM and DWT Packet Protocol Specification
F1.2. Alphabetical list of DWT and ITM packets

F1.2.10 Instrumentation packet

The Instrumentation packet characteristics are:

Purpose A software write to an ITM stimulus port generates an Instrumentation packet.

Attributes Multi-part Software source packet comprising:

• 8-bit header.

• 8, 16, or 32-bit payload.

F1.2.10.1 Instrumentation packet header

The Instrumentation packet header bit assignments are:

01234567

≠ 0b00

SS

0

SH
A Byte 0

A, byte 0 bits [7:3] Port number, 0-31.

SH, byte 0 bit [2] Source. The defined values of this bit are:

0 Instrumentation packet (Software source).

This bit reads as zero.

SS, byte 0 bits [1:0] Size. The defined values of this field are:

0b01 Byte Instrumentation packet.

0b10 Halfword Instrumentation packet.

0b11 Word Instrumentation packet.

The value 0b00 encodes a Protocol packet.

F1.2.10.2 Instrumentation packet payload

When Byte Instrumentation packet, SS == 0b01, the Instrumentation packet payload bit assignments are:

01234567

Payload[7:0] Byte 1

When Halfword Instrumentation packet, SS == 0b10, the Instrumentation packet payload bit assignments are:

01234567

Payload[7:0] Byte 1

Payload[15:8] Byte 2

When Word Instrumentation packet, SS == 0b11, the Instrumentation packet payload bit assignments are:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1994

Chapter F1. ITM and DWT Packet Protocol Specification
F1.2. Alphabetical list of DWT and ITM packets

01234567

Payload[7:0] Byte 1

Payload[15:8] Byte 2

Payload[23:16] Byte 3

Payload[31:24] Byte 4

Payload[31:0], bytes <4:1>, when Word Instrumentation packet, SS == 0b11 Payload value.

Payload[15:0], byte 1 bits [15:0], when Halfword Instrumentation packet, SS == 0b10 Payload value.

Payload[7:0], byte <1>, when Byte Instrumentation packet, SS == 0b01 Payload value.

F1.2.11 Local Timestamp 1 packet

The Local Timestamp 1 packet characteristics are:

Purpose A Local Timestamp 1 packet encodes timestamp information, for generic control and synchro-
nization, based on a timestamp counter in the ITM. To reduce the trace bandwidth:

• The local timestamping scheme uses delta timestamps. Whenever the ITM outputs a Local timestamp
packet, it clears its timestamp counter to zero, meaning each local timestamp value gives the interval
since the generation of the previous Local timestamp packet.

• The Local Timestamp 1 packet length, 1-5 bytes, depends on the timestamp value.

• If the ITM outputs the local timestamp synchronously to the corresponding ITM or DWT data, and the
timestamp value is in the range 1-6, the ITM uses the Local Timestamp 2 packet.

Attributes Multi-part Protocol packet comprising:

• 8-bit header.

• 8, 16, 24, or 32-bit payload.

F1.2.11.1 Local Timestamp 1 packet header

The Local Timestamp 1 packet header bit assignments are:

01234567

0 0

SS
1 0 0TC

1

C
Byte 0

ID

C, byte 0 bit [7] Continuation bit. This bit reads as one.

ID, byte 0 bits [6:2] Protocol packet type. Bits [6:2] discriminate between Protocol packet types. The defined
values of this field are:

0b1xx00 Local Timestamp 1 packet.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1995

Chapter F1. ITM and DWT Packet Protocol Specification
F1.2. Alphabetical list of DWT and ITM packets

This field reads as 0b1xx00.

TC, byte 0 bits [5:4] Indicates the relationship between the generation of the Local timestamp packet and the
corresponding ITM or DWT data packet. The defined values of this field are:

0b00 The local timestamp value is synchronous to the corresponding ITM or DWT data. The value in the
TS field is the timestamp counter value when the ITM or DWT packet is generated.

0b01 The local timestamp value is delayed relative to the ITM or DWT data. The value in the TS field is
the timestamp counter value when the Local timestamp packet is generated.

Note

The local timestamp value corresponding to the previous ITM or DWT packet is unknown, but
must be between the previous and current local timestamp values.

0b10 Output of the ITM or DWT packet corresponding to this Local timestamp packet is delayed relative
to the associated event. The value in the TS field is the timestamp counter value when the ITM or DWT
packets is generated.

This encoding indicates that the ITM or DWT packet was delayed relative to other trace output packets.

0b11 Output of the ITM or DWT packet corresponding to this Local timestamp packet is delayed relative
to the associated event, and this Local timestamp packet is delayed relative to the ITM or DWT data.
This is a combination of the conditions indicated by values 0b01 and 0b10.

SS, byte 0 bits [1:0] Packet type. The defined values of this field are:

0b00 Protocol packet.

Other values encode different sizes of Hardware and Software source packets. This field reads as 0b00.

F1.2.11.2 Local Timestamp 1 packet payload

When 7-bit timestamp, the Local Timestamp 1 packet payload bit assignments are:

01234567

TS[6:0]
0

C
Byte 1

When 14-bit timestamp, the Local Timestamp 1 packet payload bit assignments are:

01234567

TS[6:0]1 Byte 1

TS[13:7]
0

C
Byte 2

When 21-bit timestamp, the Local Timestamp 1 packet payload bit assignments are:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1996

Chapter F1. ITM and DWT Packet Protocol Specification
F1.2. Alphabetical list of DWT and ITM packets

01234567

TS[6:0]1 Byte 1

TS[13:7]1 Byte 2

TS[20:14]
0

C
Byte 3

When 28-bit timestamp, the Local Timestamp 1 packet payload bit assignments are:

01234567

TS[6:0]1 Byte 1

TS[13:7]1 Byte 2

TS[20:14]1 Byte 3

TS[25:21]0 0
0

C
Byte 4

C, byte 4 bit [7], byte 3 bit [7], byte 2 bit [7], byte 1 bit [7] Continuation bit. The defined values of this field
are:

0 Last byte of the packet.

1 Another byte follows.

Byte 4 bits [6:5], when 28-bit timestamp This field reads-as-zero.

TS, byte 4 bits [4:0], byte 3 bits [6:0], byte 2 bits [6:0], byte 1 bits [6:0] Local Timestamp.

The timestamp is 28 bits. If the Local Timestamp 1 packet is shorter than 5 bytes, the most significant bits of
the timestamp are zero.

F1.2.12 Local Timestamp 2 packet

The Local Timestamp 2 packet characteristics are:

Purpose If the ITM outputs the Local Timestamp synchronously to the corresponding ITM or DWT
data, and the required timestamp value is in the range 1-6, it uses the Local Timestamp 2 packet.
For more information, see Local Timestamp 1 packet.

Attributes 8-bit Protocol packet.

Field descriptions

The Local Timestamp 2 packet bit assignments are:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1997

Chapter F1. ITM and DWT Packet Protocol Specification
F1.2. Alphabetical list of DWT and ITM packets

01234567

0 0

SS
0 0

≠ 0b000 && ≠ 0b111

TS

0

C
Byte 0

ID

C, byte 0 bit [7] Continuation bit. This bit reads as zero.

ID, byte 0 bits [6:2] Protocol packet type. Bits [6:2] discriminate between Protocol packet types. The defined
values of this field are:

0b00000 See Synchronization packet.

0bxxx00 For all other values of 0bxxx. Local Timestamp 2 packet.

0b11100 See Overflow packet.

This field reads as 0bxxx00.

TS, byte 0 bits [6:4] Local timestamp value, in the range 0b001 to 0b110.

SS, byte 0 bits [1:0] Packet type. The defined values of this field are:

0b00 Protocol packet.

Other values encode different sizes of Hardware and Software source packets. This field reads as 0b00.

F1.2.13 Overflow packet

The Overflow packet characteristics are:

Purpose The ITM outputs an Overflow packet if:

• Software writes to a Stimulus Port register when the stimulus port output buffer is full.

• The DWT attempts to generate a Hardware source packet when the DWT output buffer is full.

• The Local timestamp counter overflows.

The Overflow packet comprises a header with no payload.

Attributes 8-bit Protocol packet.

Field descriptions

The Overflow packet bit assignments are:

01234567

0 0

SS

1 1 1 0 0

ID

0

C
Byte 0

C, byte 0 bit [7] Continuation bit. This bit reads as zero.

ID, byte 0 bits [6:2] Protocol packet type. Bits [6:2] discriminate between Protocol packet types. The defined
values of this field are:

0b11100 Overflow packet.

This field reads as 0b11100.

SS, byte 0 bits [1:0] Packet type. The defined values of this field are:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1998

Chapter F1. ITM and DWT Packet Protocol Specification
F1.2. Alphabetical list of DWT and ITM packets

0b00 Protocol packet.

Other values encode different sizes of Hardware and Software source packets. This field reads as 0b00.

F1.2.14 Periodic PC Sample packet

The Periodic PC Sample packet characteristics are:

Purpose The DWT unit generates PC samples at fixed time intervals, with an accuracy of one clock
cycle. The POSTCNT counter period determines the PC sampling interval. Software configures the
DWT_CTRL.CYCTAP and DWT_CTRL.POSTINIT fields to determine how POSTCNT relates to
DWT_CYCCNT. The DWT_CTRL.PCSAMPLENA bit enables PC sampling.

Attributes Multi-part Hardware source packet comprising:

• 8-bit header.

• 8 or 32-bit payload.

F1.2.14.1 Periodic PC Sample packet header

The Periodic PC Sample packet header bit assignments are:

01234567

1

SS

1

SH

0 0 0 1 0

ID
Byte 0

ID, byte 0 bits [7:3] Discriminator ID. The defined values of this field are:

0b00010 Periodic PC Sample packet.

This field reads as 0b00010.

SH, byte 0 bit [2] Source. The defined values of this bit are:

1 Hardware source packet.

This bit reads as one.

SS, byte 0 bits [1:0] Size. The defined values of this field are:

0b01 Source packet, 1-byte payload, 2-byte packet.

0b11 Source packet, 4-byte payload, 5-byte packet.

SS == 0b10 is invalid for a Periodic PC Sample packet.

The value 0b00 encodes a Protocol packet.

This field reads as 0bx1.

F1.2.14.2 Periodic PC Sample packet payload

When Allowed and not sleeping, SS == 0b11, the Periodic PC Sample packet payload bit assignments are:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1999

Chapter F1. ITM and DWT Packet Protocol Specification
F1.2. Alphabetical list of DWT and ITM packets

01234567

PC[7:0] Byte 1

PC[15:8] Byte 2

PC[23:16] Byte 3

PC[31:24] Byte 4

When Allowed and sleeping, SS == 0b01, the Periodic PC Sample packet payload bit assignments are:

01234567

0 0 0 0 0 0 0 0 Byte 1

When Prohibited, SS == 0b01, the Periodic PC Sample packet payload bit assignments are:

01234567

1 1 1 1 1 1 1 1 Byte 1

PC, bytes <4:1>, when Allowed and not sleeping, SS == 0b11 Periodic PC sample value.

Byte <1>, when Allowed and sleeping, SS == 0b01 This field reads as 0b00000000.

Byte <1>, when Prohibited, SS == 0b01 This field reads as 0b11111111.

F1.2.15 PMU overflow packet

The PMU overflow packet characteristics are:

Purpose For each counter n, if the lower eight bits of that counter overflow, the associated OVn of the
PMU overflow packet is set. If multiple counters overflow in the same period, multiple bits might
be set. If there are fewer than 8 general-purpose counters, the associated PMU overflow packet bit
is always zero.

Attributes 8 bit protocol packet.

Field descriptions

The PMU overflow packet bit assignments are:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2000

Chapter F1. ITM and DWT Packet Protocol Specification
F1.2. Alphabetical list of DWT and ITM packets

OV7

01234567

0 1

SS

1

SH

0 0 0 1 1

ID

OV6 OV5 OV4 OV3 OV2 OV1 OV0

Byte 0

Byte 1

Byte 0 bits [7:0] Packet Header

Byte 1 bits [7:0] OVn

F1.2.16 Synchronization packet

The Synchronization packet characteristics are:

Purpose A Synchronization packet provides a unique pattern in the bit stream. Trace capture hardware
can identify this pattern and use it to identify the alignment of packet bytes in the bitstream.

Attributes 48-bit Protocol packet.

A Synchronization packet is at least forty-seven 0 bits followed by single 1 bit. This section describes the
smallest possible Synchronization packet.

Field descriptions

The Synchronization packet bit assignments are:

01234567

0 0 0 0 0 0 0 0 Byte 0

0 0 0 0 0 0 0 0 Byte 1

0 0 0 0 0 0 0 0 Byte 2

0 0 0 0 0 0 0 0 Byte 3

0 0 0 0 0 0 0 0 Byte 4

0 0 0 0 0 0 01 Byte 5

Byte 5 bit [7] Indicates the end of the Synchronization packet. This bit reads as one.

Byte 5 bits [6:0], bytes <4:1> This field reads-as-zero.

Byte <0> This field reads as 0b00000000.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2001

Glossary

AAPCS

Procedure Call Standard for the Arm Architecture.

Address dependency

An address dependency exists when the value that is returned by a read computes the address of a subsequent
access. An address dependency exists even if the value that is returned by the first read does not change the address
of the second read or write.

Addressing mode

Means a method for generating the memory address that is used by a load/store instruction.

Aligned

A data item that is stored at an address that is exactly divisible by the highest power of 2 that divides exactly into
its size in bytes. Aligned halfwords, words, and doublewords therefore have addresses that are divisible by 2, 4
and 8 respectively.

An aligned access is one where the address of the access is aligned to the size of each element of the access.

Application Program Status Register (APSR)

The register containing those bits that deliver status information about the results of instructions, the N, Z, C, and
V bits of the XPSR. In an implementation that includes the DSP extension, the APSR includes the GE bits that
provide status information from DSP operations.

See also B3.5 XPSR, APSR, IPSR, and EPSR on page 76.

APSR

See Application Program Status Register.

Architecturally executed

An instruction is architecturally executed only if it would be executed in a simple sequential execution of the
program. When such an instruction has been executed and retired it has been architecturally executed. Any
instruction that, in a simple sequential execution of a program, is treated as a NOP because it fails its condition
code check, is an architecturally executed instruction.

In a PE that performs Speculative execution, an instruction is not architecturally executed if the PE discards the
results of a Speculative execution.

See also Condition code check, Simple sequential execution.

Architecturally UNKNOWN

An Architecturally UNKNOWN value is a value that is not defined by the architecture but must meet the requirements
of the definition of UNKNOWN. Implementations can define the value of the field, but are not required to do so.

See also IMPLEMENTATION DEFINED.

Architecture tick

An atomic unit of execution. In the Armv8.0-M architecture, most instructions are considered atomic units for
execution (they are either performed or not performed). The most notable exceptions are instructions that support
ICI behavior.

Associativity
2002

Glossary

See Cache associativity

Atomicity

Describes either single-copy atomicity or multi-copy atomicity. B6.5 Atomicity on page 202 defines these forms
of atomicity for the Arm architecture.

See also Multi-copy atomicity, Single-copy atomicity.

Attributability

A PMU event that is caused by the PE counting the PMU event is Attributable. If an agent other than the PE that is
counting the PMU events causes a PMU event then that PMU event is Unattributable.

A PMU event is either Attributable or Unattributable. If the PMU event is Attributable, it is further defined whether
the PMU event is Attributable to:

• The current Security state of the PE.
• The privilege level.
• When the PE is in Debug state, operations issued to the PE by the Debugger through the external debug

interface.

Attribution Unit (AU)

The combination of the Secure Attribution Unit (SAU) and the Implementation Defined Attribution Unit (IDAU).

See also Chapter B9 The Armv8-M Protected Memory System Architecture on page 267.

AU

See Attribution unit.

Availability

Readiness for correct service.

Background state

The state of the PE before the last (previous) preemption occurred.

Banked register

A register that has multiple instances, with the instance that is in use depending on the PE mode, Security state, or
other PE state.

Base register

A register that is specified by a load/store instruction that is used as the base value for the address calculation for
the instruction. Depending on the instruction and its addressing mode, an offset can be added to or subtracted from
the base register value to form the address that is sent to memory.

Base register Write-Back

Describes writing back a modified value to the base register used in an address calculation.

Baseboard Management Controller

A PE dedicated to system control and monitoring.

Beat

The execution of a 1/4 of an MVE vector operation. Because the vector length is 128 bits, one beat of a vector add
instruction equates to computing 32 bits of result data. This is independent of lane width. For example, if a lane
width is 8 bits, then a single beat of a vector add instruction would perform four 8-bit additions.

See also B5.4 Beats on page 181.

Behaves as if

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2003

Glossary

Where this manual indicates that a PE behaves as if a certain condition applies, all descriptions of the operation
of the PE must be re-evaluated taking account of that condition, together with any other conditions that affect
operation.

BF branch point

The gap between the two instructions. Specifically, the gap between the instruction that immediately precedes the
instruction at the <b_label> of a BF instruction and the instruction that is identified by the <b_label> of a BF
instruction..

See also B3.29 Branch future on page 138.

Big-endian memory

Means that, for example:

• A byte or halfword at a word-aligned address is the most significant byte or halfword in the word at that
address.

• A byte at a halfword-aligned address is the most significant byte in the halfword at that address.

See also B6.3 Endianness on page 199, Little-endian memory.

Blocking

Describes an operation that does not permit following instructions to be executed before the operation completes.

A non-blocking operation can permit following instructions to be executed before the operation completes, and in
the event of encountering an exception does not signal an exception to the PE. This enables implementations to
retire following instructions while the non-blocking operation is executing, without the need to retain precise PE
state.

Branch prediction

Is where a PE selects a future execution path to fetch along. For example, after a branch instruction, the PE can
choose to speculatively fetch either the instruction following the branch or the instruction at the branch target.

See also Prefetching.

Breakpoint

A debug event that is triggered by the execution of a particular instruction, which is specified by one or both of the
address of the instruction and the state of the PE when the instruction is executed.

Byte

An 8-bit data item.

Cache associativity

The number of locations in a cache set to which an address can be assigned. Each location is identified by its way
value.

Cache level

The position of a cache in the cache hierarchy. In the Arm architecture, the lower numbered levels are those closest
to the PE. For more information, see B6.24 Caches on page 236.

Cache line

The basic unit of storage in a cache. Its size in words is always a power of two, usually four or eight words. A
cache line must be aligned to a suitable memory boundary. A memory cache line is a block of memory locations
with the same size and alignment as a cache line. Memory cache lines are sometimes loosely called cache lines.

Cache sets

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2004

Glossary

Areas of a cache, which is divided up to simplify and speed up the process of determining whether a cache hit
occurs. The number of cache sets is always a power of two. The term cache sets is a common convention for
describing cache memories, and this description must not be treated as defining a property of the cache.

Cache way

A cache way consists of one cache line from each cache set. The cache ways are indexed from 0 to (Associativity-1).
Each cache line in a cache way is chosen to have the same index as the cache way. For example, cache way n
consists of the cache line with index n from each cache set. The term cache way is a common convention for
describing cache memories, and this description must not be treated as defining a property of the cache.

Cache write-back granule

The maximum size of the memory that can be overwritten. In some implementations, the CTR identifies the Cache
Write-Back Granule.

Callee-saved registers

Are registers that a called procedure must preserve. To preserve a callee-saved register, the called procedure would
normally either not use the register at all, or store the register to the stack during procedure entry and reload it
from the stack during procedure exit.

Caller-saved registers

Are registers that a called procedure is not required to preserve. If the calling procedure requires their values to be
preserved, it must store and reload them itself.

Catastrophic failure

A failure with harmful consequences that are orders of magnitude, or even incommensurably, higher than the
benefit provided by correct service delivery.

Chained vector instruction

An instruction that is subject to beat-wise execution.

Coherence order

See Coherent

Coherent

Data accesses from a set of observers to a byte in memory are coherent if accesses to that byte in memory by the
members of that set of observers are consistent with there being a single total order of all writes to that byte in
memory by all members of the set of observers. This single total order of all to writes to that memory location is
the coherence order for that byte in memory.

Completer

An agent in a computing system that responds to and completes a memory transaction that was initiated by a
Requester.

See also Requester

Condition code check

The process of determining whether a conditional instruction executes normally or is treated as a NOP. For an
instruction that includes a condition code field, that field is compared with the condition flags to determine whether
the instruction is executed normally. For a T32 instruction in an IT block, the value of EPSR.IT determines whether
the instruction is executed normally.

See also Condition code field, Condition flags, Conditional execution.

Condition code field

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2005

Glossary

A 4-bit field in an instruction that specifies the condition under which the instruction executes.

See also Condition code check.

Condition flags

The N, Z, C, and V bits of APSR, or XPSR. See B3.5 XPSR, APSR, IPSR, and EPSR on page 76 for more
information.

See also Condition code check.

Conditional execution

When a conditional instruction starts executing, if the condition code check returns TRUE, the instruction executes
normally. Otherwise, it is treated as a NOP. See C1.3 Conditional execution on page 436.

See also Condition code check.

Configuration

Settings that are made on reset, or immediately after reset, and normally expected to remain static throughout
program execution.

CONSTRAINED UNPREDICTABLE

Where an instruction can result in UNPREDICTABLE behavior, the Armv8 architecture specifies a narrow range of
permitted behaviors. This range is the range of CONSTRAINED UNPREDICTABLE behavior. All implementations
that are compliant with the architecture must follow the CONSTRAINED UNPREDICTABLE behavior within the
limits defined for each particular case, and this behavior might vary.

In body text, the term CONSTRAINED UNPREDICTABLE is shown in SMALLCAPS.

See also UNPREDICTABLE.

Containable

An error that is not uncontained. A Containable error is also referred to as a Contained error.

Context switch

The saving and restoring of computational state when switching between different threads or processes. In this
manual, the term context switch describes any situation where the context is switched by an operating system and
might or might not include changes to the address space.

Context synchronization event

A context synchronization event is one of the following:

• Performing an ISB operation. An ISB operation is performed when an ISB instruction is executed and does
not fail its condition code check.

• Taking an exception.
• Returning from an exception.
• Exit from Debug state.

For more information, see B3.35 Context Synchronization Event on page 154.

Note

Security state transitions are not Context synchronization events.

Control dependency

A control dependency exists when the data value that is returned by a read access determines the condition flags,
and the values of the flags determine the address of a subsequent read access. This address determination might be
through conditional execution, or through the evaluation of a branch.

Corrected

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2006

Glossary

An error that is detected by hardware and that hardware can correct. This is also referred to as a Correctable error.

Countable error

An error that is detected and recorded by hardware by incrementing a counter.

Cross beat

An operation that requires operands from different beats to produce the output for a single beat. For example, a
vector widening operation would be cross beat, whereas a vector addition would not be.

Cross Trigger Interface

A debug component that is not part of the Armv8-M architecture.

CTI

See Cross Trigger Interface.

DAP

Debug Access Port.

Data independent timing

The time that it takes to execute a piece of code where the time is not a function of the data being operated on.

See also B3.34 Data independent timing on page 151.

Data Watchpoint and Trace (DWT)

The Data Watchpoint and Trace unit is a component of Armv8-M debug that optionally provides a number of trace,
sampling, and profiling functions.

See also B13.2 Data Watchpoint and Trace unit on page 335.

DCB

See Debug Control Block.

Debug Control Block (DCB)

A region in the System Control Space that is assigned to registers that support debug features.

See also System Control Space.

Debugger

In most of this manual, debugger refers to any agent that is performing debug. However, some parts of the manual
require a more rigorous definition, and define debugger locally. See Chapter B12 Debug on page 283.

Deferred

An error that has not been silently propagated but does not require immediate action at the producer. The error
might have passed from the producer to the consumer.

Deprecated

Something that is present in the Arm architecture for backwards compatibility. Whenever possible software
must avoid using deprecated features. Features that are deprecated but are not optional are present in current
implementations of the Arm architecture, but might not be present, or might be deprecated and OPTIONAL, in
future versions of the Arm architecture.

See also OPTIONAL.

Detected

An error that has been detected and signaled to a consumer.

Detected Uncorrectable

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2007

Glossary

A detected error that cannot be corrected and causes failure.

Digital signal processing (DSP)

Algorithms for processing signals that have been sampled and converted to digital form. DSP algorithms often use
saturated arithmetic.

Direct access

A read or write of a register.

DIT

See Data independent timing.

Domain

In the Arm architecture, domain is used in the following contexts.

Shareability domain Defines a set of observers for which the Shareability attributes make the data or unified
caches transparent for data accesses.

Power domain Defines a block of logic with a single, common, power supply.

Double-precision value

Consists of two consecutive 32-bit words that are interpreted as a basic double-precision floating-point number
according to the IEEE Standard for Floating-point Arithmetic.

Doubleword

A 64-bit data item. Doublewords are normally at least word-aligned in Arm systems.

Doubleword-aligned

Means that the address is divisible by 8.

DSP

See Digital signal processing.

DWT

See Data Watchpoint and Trace.

ECC

Error Correction Code

EDC

Error Detection Code

Effective Value

A register control field, meaning a field in a register that controls some aspect of the behavior, can be described as
having an Effective value:

• In some cases, the description of a particular control a specifies that when control a is active it causes a register
control field b to be treated as having a fixed value for all purposes other than direct reads, or direct reads and
direct writes, of the register containing control field b. When control a is active that fixed value is described as
the Effective value of register control field b.

In other cases, a register control field b is not implemented or is not accessible, but behavior of the PE is as
if control field b was implemented and accessible, and had a particular value. In this case, that value is the
Effective value of register control field b.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2008

Glossary

Where a register control field is introduced in a particular version of the architecture, and is not implemented
in an earlier version of the architecture, typically it will have an Effective value in that earlier version of the
architecture.

• Otherwise, the Effective value of a register control field is the value of that field.

Element

The data that is put into a lane.

See also Lane.

Embedded Trace Macrocell (ETM)

A component of the Arm CoreSight debug and trace solution. An ETM provides non-invasive trace of PE operation.

Endianness

An aspect of the system memory mapping. For more information, see B6.3 Endianness on page 199.

See also Big-endian memory and Little-endian memory.

EPSR

See Execution Program Status Register.

Error

Deviation from correct service or a correct value.

Error propagation

Passing an error from a producer to a consumer.

Error record

Data recorded about an error, usually by hardware.

ETM

See Embedded Trace Macrocell

Exception

Handles an event. For example, an exception could handle an external interrupt or an undefined instruction.

Exception continuable instruction

Any instruction that can cause the PE to set the EPSR.ECI fields.

Exception vector

A fixed address that contains the address of the first instruction of the corresponding exception handler.

Execution Program Status Register (EPSR)

A register that contains the Execution state bits and is part of the XPSR.

See also B3.5 XPSR, APSR, IPSR, and EPSR on page 76.

Execution stream

The stream of instructions that would have been executed by sequential execution of the program.

Explicit access

A read from memory, or a write to memory, generated by a load or store instruction that is executed by the PE.

Failure

The event of deviation from correct service.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2009

Glossary

Fault

An exception that is generated because of some form of system error. A BusFault might be a RAS fault.

Fault injection

The deliberate injection of faults into a system for testing.

Fault prevention

Designing a system to avoid faults.

Fault removal

Logic or other mechanisms for detecting faults and correcting or bypassing their effect.

Field Replaceable Unit

The smallest unit that can be replaced without return to base.

Flash Patch and Breakpoint Unit

The Flash Patch and Breakpoint unit supports setting breakpoints on instruction fetches.

See also B13.5 Flash Patch and Breakpoint unit on page 361.

Flush-to-zero mode

A processing mode that optimizes the performance of some floating-point algorithms by replacing the denormalized
operands and Intermediate results with zeros, without significantly affecting the accuracy of their final results.

FPB

See Flash Patch and Breakpoint Unit.

FRU

See Field Replaceable Unit.

General-purpose registers

The registers that the base instructions use for processing:

• The general-purpose registers are R0-R12. R13-R14 are the SP and LR, respectively. For more information,
see B3.3 Registers on page 73.

See also High registers, Low registers.

Halfword

A 16-bit data item. Halfwords are normally halfword-aligned in Arm systems.

Halfword-aligned

Means that the address is divisible by 2.

Hardware fault

A fault that originates in or affects hardware.

High registers

The general-purpose registers R8-R14. Most 16-bit T32 instructions cannot access the high registers.

Note

In some contexts, high registers refers to R8-R15, meaning R8-R14 and the PC.

See also General-purpose registers, Low registers.

ICI

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2010

Glossary

See Interrupt continuable instruction.

If-Then block (IT block)

An IT block is a block of up to four instructions following an If-Then (IT) instruction. Each instruction in the block
is conditional. The conditions for the instructions are either all the same, or some are the inverse of others.

Immediate and offset fields

Are unsigned unless otherwise stated.

Immediate value

A value that is encoded directly in the instruction and used as numeric data when the instruction is executed. Many
T32 instructions can be used with an immediate argument.

IMP DEF

An abbreviation that is used in diagrams to indicate that one or more bits have IMPLEMENTATION DEFINED
behavior.

IMPLEMENTATION DEFINED

Means that the behavior is not architecturally defined, but must be defined and documented by individual
implementations.

In body text, the term IMPLEMENTATION DEFINED is shown in SMALLCAPS.

Implicit access

An access that is not explicit.

See also Explicit access.

Imprecise exception

An exception that is generated as the result of a system error. An imprecise exception is reported at the time that is
asynchronous to the instruction that caused it.

Index register

A register that is specified in some load and store instructions. The value of this register is used as an offset to be
added to or subtracted from the base register value to form the address that is sent to memory. Some instruction
forms permit the index register value to be shifted before the addition or subtraction.

Indirect access

A read or write of a register that is not a direct access.

For example, an indirect write to a register might occur as the side-effect of executing an instruction that does not
perform a direct write to the register, or because of some operation that is performed by an external agent.

See also Direct access

Infected

Being in error.

Inline literals

These are constant addresses and other data items that are held in the same area as the software itself. They are
automatically generated by compilers, and can also appear in assembler code.

Instrumentation Trace Macrocell (ITM)

A component of the Arm CoreSight debug and trace solution. An ITM provides a memory-mapped register
interface that applications can use to write logging or event words to a trace sink.

Interrupt continuable instruction

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2011

Glossary

Multicycle load or store instructions that can be interrupted part way through their execution. After the interrupt
service routine has completed, execution of the partially executed instruction can be resumed and the instruction
is not required to be restarted from the beginning. An interruption of a multicycle load or store instructions will
cause the PE to set the EPSR.ICI fields.

See also Exception continuable instruction

Interrupt Program Status Register (IPSR)

The register that provides status information on whether an application thread or exception handler is executing on
the processor. If an exception handler is executing, the register provides information on the exception type. The
register is part of the XPSR.

See also B3.5 XPSR, APSR, IPSR, and EPSR on page 76.

Interrupt Service Routine

The procedure that handles an interrupt.

Interworking

A method of working that permits branches between software using the A32 and T32 instruction sets in the
Armv8-A architecture. For Armv8-M, interworking is described in C1.4.7 Instruction set, interworking and
interstating support on page 446.

IPSR

See Interrupt Program Status Register.

Isolation

Limiting the impact of an error only to components that actually try to use corrupted data.

ISR

See Interrupt Service Routine.

ITM

See Instrumentation Trace Macrocell.

Lane

A section of a vector register or operation.

Latent fault

An error that is present in a system but not yet detected.

Level

See Cache level.

Level of Coherence (LoC)

The last level of cache that must be cleaned or invalidated when cleaning or invalidating to the point of coherency.

See also Cache level, Point of Coherency.

Level of Unification, Inner Shareable (LoUIS)

The last level of cache that must be cleaned or invalidated when cleaning or invalidating to the point of unification
for the Inner Shareable Shareability domain.

See also Cache level, Point of Unification.

Level of Unification, uniprocessor (LoUU)

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2012

Glossary

For a PE, the last level of cache that must be cleaned or invalidated when cleaning or invalidating to the point of
unification for that PE.

See also Cache level, Point of Unification.

Line

See Cache line.

Little-endian memory

Means that, for example:

• A byte or halfword at a word-aligned address is the least significant byte or halfword in the word at that
address.

• A byte at a halfword-aligned address is the least significant byte in the halfword at that address.

See also Big-endian memory, B6.3 Endianness on page 199.

Load/store architecture

An architecture where data-processing operations only operate on register contents, not directly on memory
contents.

LoC

See Level of Coherence.

Lockup

A PE state where the PE stops executing instructions in response to an error for which escalation to an appropriate
HardFault handler is not possible because of the current execution priority. For more information, see B3.33
Lockup on page 145.

LoUIS

See Level of Unification, Inner Shareable.

LoUU

See Level of Unification, uniprocessor.

Low registers

General-purpose registers R0-R7. Unlike the high registers, all T32 instructions can access the Low registers.

LR hazard

An LR hazard occurs when LR is written while another instruction, other than LE or LETP, is accessing LR.

M-Profile Vector Extension

An optional part of the Armv8.1-M architecture that supports both integer and floating-point data types.

Memory barriers

The term memory barrier is the general term that is applied to an instruction, or sequence of instructions, that
forces synchronization events by a PE regarding retiring Load/Store instructions. For more information, see B6.13
Memory barriers on page 214.

Memory coherency

The problem of ensuring that when a memory location is read, either by a data read or an instruction fetch, the
value that is actually obtained is always the value that was most recently written to the location. This can be
difficult when there are multiple possible physical locations, such as main memory and at least one of a write
buffer and one or more levels of cache.

Memory hint

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2013

Glossary

A memory hint instruction provides advance information to memory systems about future memory accesses,
without actually loading or storing any data to or from the register file. PLD and PLI are the only memory hint
instructions that are defined in Armv8-M.

Memory Protection Unit (MPU)

A hardware unit whose registers provide simple control of a limited number of protection regions in memory, for
more information, see Chapter B9 The Armv8-M Protected Memory System Architecture on page 267.

Minor failure

A failure with harmful consequences that are of a similar cost to the benefits that are provided by correct service
delivery.

MPU

See Chapter B9 The Armv8-M Protected Memory System Architecture on page 267.

Multi-copy atomicity

The form of atomicity that is described in B6.5.2 Multi-copy atomicity on page 202.

See also Atomicity, Single-copy atomicity.

MVE

See M-Profile Vector Extension.

NaN

Not a Number. A floating-point value that can be used when neither a numeric value nor an infinity is appropriate.
A NaN can be a quiet NaN, that propagate through most floating-point operations, or a signaling NaN, that
causes an Invalid Operation floating-point exception when used. For more information, see the IEEE Standard for
Floating-point Arithmetic.

Node

A component that detects an error is called a node.

Non-Return-to-Zero (NRZ)

A physical layer signaling scheme that is used on asynchronous communication ports

NRZ

See Non-Return-to-Zero.

Observer

An agent in the system that is capable of observing memory accesses. For more information, see B6.8 Observability
of memory accesses on page 208.

Obsolete

Obsolete indicates something that is no longer supported by Arm. When an architectural feature is described
as obsolete, this indicates that the architecture has no support for that feature, although an earlier version of the
architecture did support it.

Offset addressing

Means that the memory address is formed by adding or subtracting an offset to or from the base register value.

OPTIONAL

When applied to a feature of the architecture, OPTIONAL indicates a feature that is not required in an implementation
of the Arm architecture:

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2014

Glossary

• If a feature is OPTIONAL and deprecated, this indicates that the feature is being phased out of the architecture.
Arm expects such a feature to be included in a new implementation only if there is a known backwards-
compatibility reason for the inclusion of the feature.

A feature that is OPTIONAL and deprecated might not be present in future versions of the architecture.

• A feature that is OPTIONAL but not deprecated is, typically, a feature added to a version of the Arm architecture
after the initial release of that version of the architecture. Arm recommends that such features are included in
all new implementations of the architecture.

In body text, these meanings of the term OPTIONAL are shown in SMALLCAPS.

Note: Do not confuse these Arm-specific uses of OPTIONAL with other uses of OPTIONAL, where it has its usual
meaning. These include:

• Optional arguments in the syntax of many instructions.
• Behavior that is determined by an implementation choice.

See also Deprecated.

PE

See Processing element.

Performance Monitoring Unit

An optional non-invasive debug component that allows events to be identified and counted.

Persistent fault

A fault that is not transient.

Physical address (PA)

An address that identifies a location in the physical memory map.

PMU

See Performing Monitoring Unit.

PoC

See Point of Coherency.

Point of coherency (PoC)

For a particular PA, the point at which all agents that can access memory are guaranteed to see the same copy of a
memory location.

Point of unification (PoU)

For a particular PE, the point by which the instruction and data caches of that PE are guaranteed to see the same
copy of a memory location.

Poisoned

State that has been marked as being in error so that subsequent consumption of the state signals a detected error to
a consumer.

Post-indexed addressing

Means that the memory address is the base register value, but an offset is added to or subtracted from the base
register value and the result is written back to the base register.

PoU

See Point of Unification.

PPB

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2015

Glossary

Private Peripheral Bus

Pre-indexed addressing

Means that the memory address is formed in the same way as for offset addressing, but the memory address is also
written back to the base register.

Prefetching

Prefetching refers to speculatively fetching instructions or data from the memory system. In particular, instruction
prefetching is the process of fetching instructions from memory before the instructions that precede them, in simple
sequential execution of the program, have finished executing. Prefetching an instruction does not mean that the
instruction has to be executed.

In this manual, references to instruction or data fetching apply also to prefetching, unless the context explicitly
indicates otherwise.

See also Simple sequential execution.

Privileged access

Memory systems typically differentiate between privileged and unprivileged accesses, and support more restrictive
permissions for unprivileged accesses. Some instructions can be used only by privileged software.

Processing element (PE)

The abstract machine that is defined in the Arm architecture, as documented in an Arm Architecture Reference
Manual. A PE implementation compliant with the Arm architecture must conform with the behaviors described in
the corresponding Arm Architecture Reference Manual.

Program Status Registers (XPSR)

XPSR is the term that is used to describe the combination of the APSR, EPSR, and IPSR into a single 32-bit
Program Status Register.

See also B3.5 XPSR, APSR, IPSR, and EPSR on page 76.

Protection granule

A quantum of memory for which an EDC or ECC provides detection or correction.

Protection region

A memory region whose position, size, and other properties are defined by Memory Protection Unit registers.

Protection Unit

See Memory Protection Unit

Pseudo-instruction

UAL assembler syntax that assembles to an instruction encoding that is expected to disassemble to a different
assembler syntax, and is described in this manual under that other syntax. For example, MOV<Rd>, <Rm>, LSL #<n>

is a pseudo-instruction that is expected to disassemble as LSL<Rd>, <Rm>, #<n>.

See also Chapter C1 Instruction Set Overview on page 427.

Quadword

A 128-bit data item. Quadwords are normally at least word-aligned in Arm systems.

Quadword-aligned

Means that the address is divisible by 16.

Quiet NaN

A NaN that propagates unchanged through most floating-point operations.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2016

Glossary

RAO

See Read-As-One.

RAO/SBOP

In versions of the Arm architecture before Armv8, Read-As-One, Should-Be-One-or-Preserved on writes.

In Armv8, RES1 replaces this description.

See also UNK/SBOP, Read-As-One, RES1, Should-Be-One-or-Preserved (SBOP).

RAO/WI

Read-As-One, Writes Ignored.

Hardware must implement the field as Read-As-One, and must ignore writes to the field.

Software can rely on the field reading as all 1s, and on writes being ignored.

This description can apply to a single bit that reads as 1, or to a field that reads as all 1s.

See also Read-As-One.

RAS

Reliability, Availability, and Serviceability.

RAZ

See Read-As-Zero.

RAZ/SBZP

In versions of the Arm architecture before Armv8, Read-As-Zero, Should-Be-Zero-or-Preserved on writes.

In Armv8, RES0 replaces this description.

See also UNK/SBZP, Read-As-Zero, RES0, Should-Be-Zero-or-Preserved (SBOP).

RAZ/WI

Read-As-Zero, Writes Ignored.

Hardware must implement the field as Read-As-Zero, and must ignore writes to the field.

Software can rely on the field reading as all 0s, and on writes being ignored.

This description can apply to a single bit that reads as 0, or to a field that reads as all 0s.

See also Read-As-Zero.

Read, modify, write

In a read, modify, write instruction sequence, a value is read to a general-purpose register, the relevant fields that
are updated in that register, and the new value that is written back.

Read-allocate cache

A cache in which a cache miss on reading data causes a cache line to be allocated into the cache.

Read-As-One (RAO)

Hardware must implement the field as reading as all 1s.

Software:

• Can rely on the field reading as all 1s.
• Must use a SBOP policy to write to the field.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2017

Glossary

This description can apply to a single bit that reads as 1, or to a field that reads as all 1s. It applies only to a bit or
field that is read-only.

See also RAO/SBOP, RAO/WI, RES1.

Read-As-Zero (RAZ)

Hardware must implement the field as reading as all 0s.

Software:

• Can rely on the field reading as all 0s
• Must use a SBOP policy to write to the field.

This description can apply to a single bit that reads as 0, or to a field that reads as all 0s. It applies only to a bit or
field that is read-only.

See also RAZ/SBZP, RAZ/WI, RES0.

Recoverable

A contained error that must be corrected to allow the correct operation of the system or smaller parts of the system
to continue.

See also B15.3 Generating error exceptions on page 411.

Register data dependency

A register data dependency exists between a first data value and a second data value when either:

• The register that holds the first data value is used in the calculation of the second data value, and the calculation
between the first data value and the second data value does not consist of either:

– A conditional branch whose condition is determined by the first data value.
– A conditional selection, move, or computation whose condition is determined by the first data value,

where the input data values for the selection, move, or computation do not have a data dependency on the
first data value.

• There is a register data dependency between the first data value and a third data value, and between the third
data value and the second data value.

Reliability

Continuity of correct service.

Requester

An agent in a computing system that is capable of initiating memory transactions.

See also Completer

RES0

A reserved bit or field with Should-Be-Zero-or-Preserved behavior, or equivalent read-only or write-only behavior.
Used for fields in register descriptions, and for fields in architecturally defined data structures that are held in
memory.

Within the architecture, there are some cases where a register bit or field:

• Is RES0 in some defined architectural context.
• Has different defined behavior in a different architectural context.

Note

RES0 is not used in descriptions of instruction encodings.

This means the definition of RES0 for fields in read/write registers is:

If a bit is RES0 in all contexts

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2018

Glossary

For a bit in a read/write register, it is IMPLEMENTATION DEFINED whether:

1. The bit is hardwired to 0. In this case:

• Reads of the bit always return 0.
• Writes to the bit are ignored.

2. The bit can be written. In this case:

• An indirect write to the register sets the bit to 0.
• A read of the bit returns the last value that is successfully written, by either a direct or an indirect write, to

the bit.

If the bit has not been successfully written since reset, then the read of the bit returns the reset value if there is
one, or otherwise returns an UNKNOWN value.

• A direct write to the bit must update a storage location that is associated with the bit.
• The value of the bit must have no effect on the operation of the PE, other than determining the value read

back from the bit, unless this manual explicitly defines additional properties for the bit.

Whether RES0 bits or fields follow behavior 1 or behavior 2 is IMPLEMENTATION DEFINED on a field-by-field
basis.

If a bit is RES0 only in some contexts

For a bit in a read/write register, when the bit is described as RES0:

• An indirect write to the register sets the bit to 0.
• A read of the bit must return the value last successfully written to the bit, by either a direct or an indirect write,

regardless of the use of the register when the bit was written.
If the bit has not been successfully written since reset, then the read of the bit returns the reset value if there is
one, or otherwise returns an UNKNOWN value.

• A direct write to the bit must update a storage location that is associated with the bit.
• While the use of the register is such that the bit is described as RES0, the value of the bit must have no effect

on the operation of the PE, other than determining the value read back from that bit, unless this manual
explicitly defines additional properties for the bit.

Considering only contexts that apply to a particular implementation, if there is a context in which a bit is defined
as RES0, another context in which the same bit is defined as RES1, and no context in which the bit is defined as a
functional bit, then it is IMPLEMENTATION DEFINED whether:

• Writes to the bit are ignored, and reads of the bit return an UNKNOWN value.
• The value of the bit can be written, and a read returns the last value that is written to the bit.

The RES0 description can apply to bits or fields that are read-only, or are write-only:

• For a read-only bit, RES0 indicates that the bit reads as 0, but software must treat the bit as UNKNOWN.
• For a write-only bit, RES0 indicates that software must treat the bit as SBZ.

A bit that is RES0 in a context is reserved for possible future use in that context. To preserve forward compatibility,
software:

• Must not rely on the bit reading as 0.
• Must use an policy to write to the bit.

This RES0 description can apply to a single bit, or to a field for which each bit of the field must be treated as RES0.

In body text, the term RES0 is shown in SMALLCAPS.

See also Read-As-Zero, RES1, Should-Be-Zero-or-Preserved, UNKNOWN.

RES0H

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2019

Glossary

A reserved bit or field with Should-Be-Zero-or-Preserved (SBZP). This behavior uses the Hardwired to 0 subset of
the RES0 definition.

RES1

A reserved bit or field with Should-Be-One-or-Preserved behavior, or equivalent read-only or write-only behavior.
Used for fields in register descriptions, and for fields in architecturally defined data structures that are held in
memory.

Within the architecture, there are some cases where a register bit or field:

• Is RES1 in some defined architectural context.
• Has different defined behavior in a different architectural context.

Note

RES1 is not used in descriptions of instruction encodings.

This means the definition of RES1 for fields in read/write registers is:

If a bit is RES1 in all contexts

For a bit in a read/write register, it is IMPLEMENTATION DEFINED whether:

1. The bit is hardwired to 1. In this case:

• Reads of the bit always return 1.
• Writes to the bit are ignored.

2. The bit can be written. In this case:

• An indirect write to the register sets the bit to 1.
• A read of the bit returns the last value that is successfully written, by either a direct or an indirect write, to

the bit.
If the bit has not been successfully written since reset, then the read of the bit returns the reset value if
there is one, or otherwise returns an UNKNOWN value.

• A direct write to the bit must update a storage location that is associated with the bit.
• The value of the bit must have no effect on the operation of the PE, other than determining the value read

back from the bit, unless this manual explicitly defines additional properties for the bit.

Whether RES1 bits or fields follow behavior 1 or behavior 2 is IMPLEMENTATION DEFINED on a field-by-field
basis.

If a bit is RES1 only in some contexts

For a bit in a read/write register, when the bit is described as RES1:

• An indirect write to the register sets the bit to 1.

• A read of the bit must return the value last successfully written to the bit, regardless of the use of the register
when the bit was written.

Note

As indicated in this list, this value might be written by an indirect write to the register.

If the bit has not been successfully written since reset, then the read of the bit returns the reset value if there is
one, or otherwise returns an UNKNOWN value.

• A direct write to the bit must update a storage location that is associated with the bit.

• While the use of the register is such that the bit is described as RES1, the value of the bit must have no effect
on the operation of the PE, other than determining the value read back from that bit, unless this manual
explicitly defines additional properties for the bit.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2020

Glossary

Considering only contexts that apply to a particular implementation, if there is a context in which a bit is defined
as RES0, another context in which the same bit is defined as RES1, and no context in which the bit is defined as a
functional bit, then it is IMPLEMENTATION DEFINED whether:

• Writes to the bit are ignored, and reads of the bit return an UNKNOWN value.
• The value of the bit can be written, and a read returns the last value that is written to the bit.

The RES1 description can apply to bits or fields that are read-only, or are write-only:

• For a read-only bit, RES1 indicates that the bit reads as 1, but software must treat the bit as UNKNOWN.
• For a write-only bit, RES1 indicates that software must treat the bit as SBO.

A bit that is RES1 in a context is reserved for possible future use in that context. To preserve forward compatibility,
software:

• Must not rely on the bit reading as 1.
• Must use an SBOP policy to write to the bit.

This RES1 description can apply to a single bit, or to a field for which each bit of the field must be treated as RES1.

In body text, the term RES1 is shown in SMALLCAPS.

See also Read-As-One, RES0, Should-Be-One-or-Preserved, UNKNOWN.

RES1H

A reserved bit or field with Should-Be-One-or-Preserved (SBOP) behavior. This behavior uses the Hardwired to 1
subset of the RES1 definition.

Reserved

Unless otherwise stated:

• Instructions that are reserved or that access reserved registers have UNPREDICTABLE or CONSTRAINED
UNPREDICTABLE behavior.

• Bit positions that are described as reserved are:

– In an RW or WO register, RES0.
– In an RO register, UNK.

See also CONSTRAINED UNPREDICTABLE, RES0, RES1, UNDEFINED, UNK, UNPREDICTABLE.

Restartable

A contained error that does not immediately impact correct operation. Usually this means correct operation of the
system, but it can also be used in other contexts to describe correct operation of a smaller part.

See also B15.3 Generating error exceptions on page 411.

Return Link

A value relating to the return address.

RISC

Reduced Instruction Set Computer.

Rounding error

The value of the rounded result of an arithmetic operation minus the exact result of the operation.

Rounding mode

Specifies how the exact result of a floating-point operation is rounded to a value that is representable in the
destination format. The rounding modes are defined by the IEEE Standard for Floating-point Arithmetic.

Saturated arithmetic

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2021

Glossary

Integer arithmetic in which a result that would be greater than the largest representable number is set to the largest
representable number, and a result that would be less than the smallest representable number is set to the smallest
representable number. Signed saturated arithmetic is often used in DSP algorithms. It contrasts with the normal
signed integer arithmetic used in Arm processors, in which overflowing results wrap around from +231 − 1 to
−231 or the opposite way.

SBO

See Should-Be-One.

SBOP

See Should-Be-One-or-Preserved.

SBZ

See Should-Be-Zero.

SBZP

See Should-Be-Zero-or-Preserved

Security hole

A mechanism by which execution at the current level of privilege can achieve an outcome that cannot be
achieved at the current or a lower level of privilege using instructions that are not UNPREDICTALBE and are not
CONSTRAINED UNPREDICTABLE. The Arm architecture forbids security holes.

See also CONSTRAINED UNPREDICTABLE, UNPREDICTABLE.

Self-modifying code

Code that writes one or more instructions to memory and then executes them. When using self-modifying code,
cache maintenance and barrier instructions must be used to ensure synchronization.

Serial Wire Output (SWO)

An asynchronous TPIU port supporting one or both of the NRZ and Manchester encodings.

Serial Wire Viewer (SWV)

The combination of an SWO and at least one of a DWT unit or an ITM, providing data tracing capability.

Service failure mode

A mode entered to reduce the severity of an error.

Serviceability

The ability to undergo modification and repairs.

Set

See Cache sets.

Should-Be-One (SBO)

Hardware must ignore writes to the field.

Arm strongly recommends that software writes the field as all 1s. If software writes a value that is not all 1s, it
must expect an UNPREDICTABLE or CONSTRAINED UNPREDICTABLE result.

This description can apply to a single bit that should be written as 1, or to a field that should be written as all 1s.

See also CONSTRAINED UNPREDICTABLE, UNPREDICTABLE.

Should-Be-One-or-Preserved (SBOP)

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2022

Glossary

From the introduction of the Armv8 architecture, the description Should-Be-One-0r -Preserved is superseded by
RES1.

Hardware must ignore writes to the field.

If software has read the field since the PE implementing the field was last reset and initialized, it must preserve the
value of the field by writing the value that it previously read from the field. Otherwise, it must write the field as all
1s.

If software writes a value to the field that is not a value that is previously read for the field and is not all 1s, it must
expect an UNPREDICTABLE or CONSTRAINED UNPREDICTABLE result.

This description can apply to a single bit that should be written as its preserved value or as 1, or to a field that
should be written as its preserved value or as all 1s.

See also CONSTRAINED UNPREDICTABLE, UNPREDICTABLE.

Should-Be-Zero (SBZ)

Hardware must ignore writes to the field.

Arm strongly recommends that software writes the field as all 0s. If software writes a value that is not all 0s, it
must expect an UNPREDICTABLE or CONSTRAINED UNPREDICTABLE result.

This description can apply to a single bit that should be written as 0, or to a field that should be written as all 0s.

See also CONSTRAINED UNPREDICTABLE, UNPREDICTABLE.

Should-Be-Zero-or-Preserved (SBZP)

From the introduction of the Armv8 architecture, the description Should-Be-Zero -or-Preserved is superseded by
RES0.

Hardware must ignore writes to the field.

If software has read the field since the PE implementing the field was last reset and initialized, it must preserve the
value of the field by writing the value that it previously read from the field. Otherwise, it must write the field as all
0s.

If software writes a value to the field that is not a value that is previously read for the field and is not all 0s, it must
expect an UNPREDICTABLE or CONSTRAINED UNPREDICTABLE result.

This description can apply to a single bit that should be written as its preserved value or as 0, or to a field that
should be written as its preserved value or as all 0s.

See also CONSTRAINED UNPREDICTABLE, UNPREDICTABLE.

Signaling NaNs

Cause an Invalid Operation exception whenever any floating-point operation receives a signaling NaN as an
operand. Signaling NaNs can be used in debugging, to track down some uses of uninitialized variables.

Signed data types

Represent an integer in the range −2N−1 to +2N−1 − 1, using two’s complement format.

Signed immediate and offset fields

Are encoded in two’s complement notation unless otherwise stated.

Silent data corruption

An error that is not detected by hardware or software.

Silently propagated

An error that is passed from place to place without being signaled as a detected error.

SIMD

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2023

Glossary

Single-Instruction, Multiple-Data.

Simple sequential execution

The behavior of an implementation that fetches, decodes and completely executes each instruction before pro-
ceeding to the next instruction. Such an implementation performs no Speculative accesses to memory, including
to instruction memory. The implementation does not pipeline any phase of execution. In practice, this is the
theoretical execution model that the architecture is based on, and Arm does not expect this model to correspond to
a realistic implementation of the architecture.

Single peripheral

A single peripheral is a region of memory of an IMPLEMENTATION DEFINED size that is defined by the peripheral.

Single-copy atomicity

The form of atomicity that is described in B6.5.1 Single-copy atomicity on page 202.

See also Atomicity, Multi-copy atomicity.

Single-precision value

A 32-bit word that is interpreted as a basic single-precision floating-point number according to the IEEE Standard
for Floating-point Arithmetic.

Software fault

A fault that originates in and affects software.

Spatial locality

The observed effect that after a program has accessed a memory location, it is likely to also access nearby memory
locations in the near future. Caches with multi-word cache lines exploit this effect to improve performance.

Special-purpose register

One of a specified set of registers for which all direct and indirect reads and writes to the register appear to
occur in program order relative to other instructions, without the need for any explicit synchronization. For more
information, see B3.3 Registers on page 73.

Speculative writes

All of the following are Speculative writes:

• Writes generated by store instructions that appear in the Execution stream after a branch that is not architec-
turally resolved.

• Writes generated by store instructions that appear in the Execution stream after an instruction where a
synchronous exception condition has not been architecturally resolved.

• Writes generated by conditional store instructions for which the conditions for the instruction have not been
architecturally resolved.

• Writes generated by store instructions for which the data being written comes from a register that has not
been architecturally committed.

System Control Block (SCB)

An address region in the System Control Space, which is used for key feature control and configuration that is
associated with the exception model.

See also System Control Space.

System Control Space (SCS)

A region of the memory map that is reserved for system control and configuration registers.

See also Debug Control Block, B7.3 The System Control Space (SCS) on page 255.

T32 instruction

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2024

Glossary

One or two halfwords that specify an operation to be performed by a PE. T32 instructions must be halfword-aligned.
For more information, see Chapter C1 Instruction Set Overview on page 427.

T32 instructions were previously called Thumb instructions.

Tail-chaining

An optimization that removes unstacking and stacking operations. For more information, see B3.26 Tail-chaining
on page 127.

Temporal locality

The observed effect that after a program has accesses a memory location, it is likely to access the same memory
location again in the near future. Caches exploit this effect to improve performance.

TPIU

SeeTrace Port Interface Unit.

Trace Port Interface Unit (TPIU)

A component of the Arm CoreSight debug and trace solution. A TPIU provides an external interface for one or
more trace sources in the processor implementation.

Transient fault

A fault that is not persistent.

UAL

See Unified Assembler Language.

Unaligned

An unaligned access is an access where the address of the access is not aligned to the size of an element of the
access.

Unaligned memory accesses

Are memory accesses that are not, or might not be, appropriately halfword-aligned, word-aligned, or doubleword-
aligned.

Unallocated

Except where otherwise stated in this manual, an instruction encoding is unallocated if the architecture does not
assign a specific function to the entire bit pattern of the instruction, but instead describes it as CONSTRAINED
UNPREDICTABLE, UNDEFINED, UNPREDICTABLE, or as an unallocated hint instruction.

A bit in a register is unallocated if the architecture does not assign a function to that bit.

See also CONSTRAINED UNPREDICTABLE, UNPREDICTABLE, UNDEFINED.

Uncontainable

An error that has been, or might have been, silently propagated. This is also referred to as an Uncontained error.

See also B15.3 Generating error exceptions on page 411.

UNDEFINED

Indicates an instruction that generates an Undefined Instruction exception.

In body text, the term UNDEFINED is shown in SMALLCAPS.

See also Chapter C1 Instruction Set Overview on page 427.

Undetected fault

See Latent fault.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2025

Glossary

Unified Assembler Language

The assembler language that is introduced with Thumb-2 technology that is used in this manual. See Chapter C1
Instruction Set Overview on page 427 for details.

Unified cache

Is a cache that is used for both processing instruction fetches and processing data loads and stores.

Unindexed addressing

Means addressing in which the base register value is used directly as the address to send to memory, without
adding or subtracting an offset. In most types of load/store instruction, unindexed addressing is performed by
using offset addressing with an immediate offset of 0.

In the M-Profile, the LDC, LDC2, STC, and STC2 instructions have an explicit unindexed addressing mode that
permits the offset field in the instruction to specify additional coprocessor options.

UNK

An abbreviation indicating that software must treat a field as containing an UNKNOWN value.

Hardware must implement the bit as read as 0, or all 0s for a multi-bit field. Software must not rely on the field
reading as zero.

See also UNKNOWN.

UNK/SBOP

Hardware must implement the field as Read-As-One, and must ignore writes to the field.

Software must not rely on the field reading as all 1s, and except for writing back to the register it must treat the
value as if it is UNKNOWN. Software must use an SBOP policy to write to the field.

This description can apply to a single bit that should be written as its preserved value or as 1, or to a field that
should be written as its preserved value or as all 1s.

See also Read-as-One, Should-Be-One-or-Preserved, UNKNOWN.

UNK/SBZP

Hardware must implement the bit as Read-As-Zero, and must ignore writes to the field.

Software must not rely on the field reading as all 0s, and except for writing back to the register must treat the value
as if it is UNKNOWN. Software must use an SBZP policy to write to the field.

This description can apply to a single bit that should be written as its preserved value or as 0, or to a field that
should be written as its preserved value or as all 0s.

See also Read-as-Zero, Should-Be-Zero-or-Preserved, UNKNOWN.

UNKNOWN

An UNKNOWN value does not contain valid data, and can vary from moment to moment, instruction to instruction,
and implementation to implementation. An UNKNOWN value must not return information than cannot be accessed
at the current or lower level of privilege using instructions that are not UNPREDICTABLE, is not CONSTRAINED
UNPREDICTABLE, and do not return UNKNOWN values.

An UNKNOWN value can vary from moment to moment, and instruction to instruction, unless it has previously
been assigned, other than at reset, to one of the following registers:

• Any of the general-purpose registers.
• Any of the Advanced SIMD and floating-point registers.
• Any of the APSR{N,Z,C of V} flags.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2026

Glossary

An UNKNOWN value must not be documented or promoted as having a defined value or effect.

In body text, the term UNKNOWN is shown in SMALLCAPS.

See also CONSTRAINED UNPREDICTABLE, UNDEFINED, UNK, UNPREDICTABLE.

UNPREDICTABLE

Means the behavior cannot be relied on. UNPREDICTABLE behavior must not perform any function that cannot be
performed at the current or a lower level of privilege or security using instructions that are not UNPREDICTABLE.

UNPREDICTABLE behavior must not be documented or promoted as having a defined effect.

An instruction that is UNPREDICTABLE can be implemented as UNDEFINED.

In body text, the term UNPREDICTABLE is shown in SMALLCAPS.

See also CONSTRAINED UNPREDICTABLE, UNDEFINED.

Unrecoverable

A contained error that is not recoverable. Continued correct operation is generally not possible. Usually this means
correct operation of the system, but it can also be used in other contexts to describe correct operation of a smaller
part. Systems might use high-level recovery techniques to work around an unrecoverable yet contained error in a
component so that the system recovers from the error.

See also B15.3 Generating error exceptions on page 411.

Unsigned data types

Represent a non-negative integer in the range 0 to +2N−1 − 1, using normal binary format.

Watchpoint

A debug event that is triggered by an access to memory, which is specified in terms of the address of the location
in memory being accessed.

Way

See Cache way.

WI

Writes Ignored. In a register that software can write to, a WI attribute that is applied to a bit or field indicates that
the bit or field ignores the value that is written by software and retains the value it had before that write.

See also RAO/WI, RAZ/WI, RES0, RES1.

Word

A 32-bit data item. Words are normally word-aligned in Arm systems.

Word-aligned

Means that the address is divisible by 4.

Write buffer

A block of high-speed memory that optimizes stores to main memory.

Write-Allocate cache

A cache in which a cache miss on storing data causes a cache line to be allocated into the cache.

Write-back cache

A cache in which when a cache hit occurs on a store access, the data is only written to the cache. Data in the cache
can therefore be more up-to-date than data in main memory. Any such data is written back to main memory when
the cache line is cleaned or reallocated. Another common term for a write-back cache is a copy-back cache.

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2027

Glossary

Write-one-to-clear

Writing 1 to the relevant bit clears it to 0. Writing 0 to the bit has no effect.

Write-one-to-set

Writing 1 to the relevant bit sets it to 0. Writing 0 to the bit has no effect.

Write-Through cache

A cache in which when a cache hit occurs on a store access, the data is written both to the cache and to main
memory. This is normally done using a write buffer, to avoid slowing down the PE.

XPSR

See Program Status Registers (XPSR)

DDI0553B.l
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

2028

	Contents
	Preface
	About this book
	Using this book
	Conventions
	Additional reading
	Feedback

	A Armv8-M Architecture Introduction and Overview
	A1 Introduction
	A1.1 Document layout and terminology
	A1.2 About the Armv8 architecture, and architecture profiles
	A1.3 The Armv8-M architecture profile
	A1.4 Armv8-M variants

	B Armv8-M Architecture Rules
	B1 Resets
	B1.1 Resets, Cold reset, and Warm reset

	B2 Power Management
	B2.1 Power management
	B2.2 Sleep on exit

	B3 Programmers' Model
	B3.1 PE modes, Thread mode and Handler mode
	B3.2 Privileged and unprivileged execution
	B3.3 Registers
	B3.4 Special-purpose CONTROL register
	B3.5 XPSR, APSR, IPSR, and EPSR
	B3.6 Security states: Secure state, and Non-secure state
	B3.7 Security states and register banking between Security states
	B3.8 Stack pointer
	B3.9 Exception numbers and exception priority numbers
	B3.10 Exception enable, pending, and active bits
	B3.11 Security states, exception banking
	B3.12 Faults
	B3.13 Priority model
	B3.14 Secure address protection
	B3.15 Security state transitions
	B3.16 Function calls from Secure state to Non-secure state
	B3.17 Function returns from Non-secure state
	B3.18 Exception handling
	B3.19 Exception entry, context stacking
	B3.20 Exception entry, register clearing after context stacking
	B3.21 Stack limit checks
	B3.22 Exception return
	B3.23 Integrity signature
	B3.24 Exceptions during exception entry
	B3.25 Exceptions during exception return
	B3.26 Tail-chaining
	B3.27 Exceptions, instruction resume, or instruction restart
	B3.28 Low overhead loops
	B3.29 Branch future
	B3.30 Vector tables
	B3.31 Hardware-controlled priority escalation to HardFault
	B3.32 Special-purpose mask registers, PRIMASK, BASEPRI, FAULTMASK, for configurable priority boosting
	B3.33 Lockup
	B3.34 Data independent timing
	B3.35 Context Synchronization Event
	B3.36 Coprocessor support
	B3.37 The Custom Datapath Extension

	B4 Floating-point Support
	B4.1 The optional Floating-point Extension, FPv5
	B4.2 About the Floating-point Status and Control Registers
	B4.3 Registers for Floating-point data processing, S0-S31, or D0-D15
	B4.4 Floating-point standards and terminology
	B4.5 Floating-point data representable
	B4.6 Floating-point encoding formats, half-precision, single-precision, and double-precision
	B4.7 The IEEE 754 Floating-point exceptions
	B4.8 The Flush-to-zero mode
	B4.9 The Default NaN mode, and NaN handling
	B4.10 The Default NaN
	B4.11 Combinations of Floating-point exceptions
	B4.12 Priority of Floating-point exceptions relative to other Floating-point exceptions

	B5 Vector Extension
	B5.1 Vector Extension operation
	B5.2 Vector register file
	B5.3 Lanes
	B5.4 Beats
	B5.5 Exception state
	B5.6 Predication/conditional execution
	B5.7 MVE interleaving/de-interleaving loads and stores

	B6 Memory Model
	B6.1 Memory accesses
	B6.2 Address space
	B6.3 Endianness
	B6.4 Alignment behavior
	B6.5 Atomicity
	B6.6 Concurrent modification and execution of instructions
	B6.7 Access rights
	B6.8 Observability of memory accesses
	B6.9 Completion of memory accesses
	B6.10 Ordering requirements for memory accesses
	B6.11 Ordering of implicit memory accesses
	B6.12 Ordering of explicit memory accesses
	B6.13 Memory barriers
	B6.14 Normal memory
	B6.15 Cacheability attributes
	B6.16 Device memory
	B6.17 Device memory attributes
	B6.18 Shareability domains
	B6.19 Shareability attributes
	B6.20 Memory access restrictions
	B6.21 Mismatched memory attributes
	B6.22 Load-Exclusive and Store-Exclusive accesses to Normal memory
	B6.23 Load-Acquire and Store-Release accesses to memory
	B6.24 Caches
	B6.25 Cache identification
	B6.26 Cache visibility
	B6.27 Cache coherency
	B6.28 Cache enabling and disabling
	B6.29 Cache behavior at reset
	B6.30 Behavior of Preload Data (PLD) and Preload Instruction (PLI) instructions with caches
	B6.31 Branch predictors
	B6.32 Cache maintenance operations
	B6.33 Ordering of cache maintenance operations
	B6.34 Branch predictor maintenance operations

	B7 The System Address Map
	B7.1 System address map
	B7.2 The System region of the system address map
	B7.3 The System Control Space (SCS)

	B8 Synchronization and Semaphores
	B8.1 Exclusive access instructions
	B8.2 The local monitors
	B8.3 The global monitor
	B8.4 Exclusive access instructions and the monitors
	B8.5 Load-Exclusive and Store-Exclusive instruction constraints

	B9 The Armv8-M Protected Memory System Architecture
	B9.1 Memory Protection Unit
	B9.2 Security attribution
	B9.3 Security attribution unit (SAU)
	B9.4 IMPLEMENTATION DEFINED Attribution Unit (IDAU)

	B10 The System Timer, SysTick
	B10.1 The system timer, SysTick

	B11 Nested Vectored Interrupt Controller
	B11.1 NVIC definition
	B11.2 NVIC operation

	B12 Debug
	B12.1 Debug feature overview
	B12.2 Accessing debug features
	B12.3 Debug authentication interface
	B12.4 Debug event behavior
	B12.5 Debug state
	B12.6 Exiting Debug state
	B12.7 Multiprocessor support

	B13 Debug and Trace Components
	B13.1 Instrumentation Trace Macrocell
	B13.2 Data Watchpoint and Trace unit
	B13.3 Embedded Trace Macrocell
	B13.4 Trace Port Interface Unit
	B13.5 Flash Patch and Breakpoint unit

	B14 The Performance Monitoring Extension
	B14.1 Counters
	B14.2 Accuracy of the performance counters
	B14.3 Security, access, and modes
	B14.4 Attributability
	B14.5 Coexistence with the DWT Performance Monitors
	B14.6 Interrupts and Debug events
	B14.7 Performance Monitors and Debug state
	B14.8 List of supported architectural and microarchitectural events
	B14.9 Generic architectural and microarchitectural events
	B14.10 Common event descriptions
	B14.11 Required PMU events
	B14.12 event numbers

	B15 Reliability, Availability, and Serviceability (RAS) Extension
	B15.1 Overview
	B15.2 Taxonomy of errors
	B15.3 Generating error exceptions
	B15.4 Error Synchronization Barrier (ESB)
	B15.5 Implicit Error Synchronization (IESB)
	B15.6 Fault handling
	B15.7 RAS error records
	B15.8 Multiple BusFault exceptions
	B15.9 Error Recovery reset
	B15.10 Minimal RAS implementation

	C Armv8-M Instruction Set
	C1 Instruction Set Overview
	C1.1 Instruction set
	C1.2 Format of instruction descriptions
	C1.3 Conditional execution
	C1.4 Instruction set encoding information
	C1.5 Modified immediate constants
	C1.6 NOP-compatible hint instructions
	C1.7 SBZ or SBO fields in instructions

	C2 Instruction Specification
	C2.1 Top level T32 instruction set encoding
	C2.2 16-bit T32 instruction encoding
	C2.2.1 Shift (immediate), add, subtract, move, and compare
	C2.2.2 Data-processing (two low registers)
	C2.2.3 Special data instructions and branch and exchange
	C2.2.4 Load/store (register offset)
	C2.2.5 Load/store word/byte (immediate offset)
	C2.2.6 Load/store halfword (immediate offset)
	C2.2.7 Load/store (SP-relative)
	C2.2.8 Add PC/SP (immediate)
	C2.2.9 Miscellaneous 16-bit instructions
	C2.2.10 Load/store multiple
	C2.2.11 Conditional branch, and Supervisor Call

	C2.3 32-bit T32 instruction encoding
	C2.3.1 Coprocessor, floating-point, and vector instructions
	C2.3.2 Load/store (multiple, dual, exclusive, acquire-release)
	C2.3.3 Data-processing (shifted register)
	C2.3.4 Branches and miscellaneous control
	C2.3.5 Data-processing (modified immediate)
	C2.3.6 Data-processing (plain binary immediate)
	C2.3.7 Load/store single
	C2.3.8 Data-processing (register)
	C2.3.9 Multiply, multiply accumulate, and absolute difference
	C2.3.10 Long multiply and divide

	C2.4 Alphabetical list of instructions
	C2.4.1 ADC (immediate)
	C2.4.2 ADC (register)
	C2.4.3 ADD (SP plus immediate)
	C2.4.4 ADD (SP plus register)
	C2.4.5 ADD (immediate)
	C2.4.6 ADD (immediate, to PC)
	C2.4.7 ADD (register)
	C2.4.8 ADR
	C2.4.9 AND (immediate)
	C2.4.10 AND (register)
	C2.4.11 ASR (immediate)
	C2.4.12 ASR (register)
	C2.4.13 ASRL (immediate)
	C2.4.14 ASRL (register)
	C2.4.15 ASRS (immediate)
	C2.4.16 ASRS (register)
	C2.4.17 B
	C2.4.18 BF, BFX, BFL, BFLX, BFCSEL
	C2.4.19 BFC
	C2.4.20 BFI
	C2.4.21 BIC (immediate)
	C2.4.22 BIC (register)
	C2.4.23 BKPT
	C2.4.24 BL
	C2.4.25 BLX, BLXNS
	C2.4.26 BX, BXNS
	C2.4.27 CBNZ, CBZ
	C2.4.28 CDP, CDP2
	C2.4.29 CINC
	C2.4.30 CINV
	C2.4.31 CLREX
	C2.4.32 CLRM
	C2.4.33 CLZ
	C2.4.34 CMN (immediate)
	C2.4.35 CMN (register)
	C2.4.36 CMP (immediate)
	C2.4.37 CMP (register)
	C2.4.38 CNEG
	C2.4.39 CPS
	C2.4.40 CSDB
	C2.4.41 CSEL
	C2.4.42 CSET
	C2.4.43 CSETM
	C2.4.44 CSINC
	C2.4.45 CSINV
	C2.4.46 CSNEG
	C2.4.47 CX1
	C2.4.48 CX1D
	C2.4.49 CX2
	C2.4.50 CX2D
	C2.4.51 CX3
	C2.4.52 CX3D
	C2.4.53 DBG
	C2.4.54 DMB
	C2.4.55 DSB
	C2.4.56 EOR (immediate)
	C2.4.57 EOR (register)
	C2.4.58 ESB
	C2.4.59 FLDMDBX, FLDMIAX
	C2.4.60 FSTMDBX, FSTMIAX
	C2.4.61 ISB
	C2.4.62 IT
	C2.4.63 LCTP
	C2.4.64 LDA
	C2.4.65 LDAB
	C2.4.66 LDAEX
	C2.4.67 LDAEXB
	C2.4.68 LDAEXH
	C2.4.69 LDAH
	C2.4.70 LDC, LDC2 (immediate)
	C2.4.71 LDC, LDC2 (literal)
	C2.4.72 LDM, LDMIA, LDMFD
	C2.4.73 LDMDB, LDMEA
	C2.4.74 LDR (immediate)
	C2.4.75 LDR (literal)
	C2.4.76 LDR (register)
	C2.4.77 LDRB (immediate)
	C2.4.78 LDRB (literal)
	C2.4.79 LDRB (register)
	C2.4.80 LDRBT
	C2.4.81 LDRD (immediate)
	C2.4.82 LDRD (literal)
	C2.4.83 LDREX
	C2.4.84 LDREXB
	C2.4.85 LDREXH
	C2.4.86 LDRH (immediate)
	C2.4.87 LDRH (literal)
	C2.4.88 LDRH (register)
	C2.4.89 LDRHT
	C2.4.90 LDRSB (immediate)
	C2.4.91 LDRSB (literal)
	C2.4.92 LDRSB (register)
	C2.4.93 LDRSBT
	C2.4.94 LDRSH (immediate)
	C2.4.95 LDRSH (literal)
	C2.4.96 LDRSH (register)
	C2.4.97 LDRSHT
	C2.4.98 LDRT
	C2.4.99 LE, LETP
	C2.4.100 LSL (immediate)
	C2.4.101 LSL (register)
	C2.4.102 LSLL (immediate)
	C2.4.103 LSLL (register)
	C2.4.104 LSLS (immediate)
	C2.4.105 LSLS (register)
	C2.4.106 LSR (immediate)
	C2.4.107 LSR (register)
	C2.4.108 LSRL (immediate)
	C2.4.109 LSRS (immediate)
	C2.4.110 LSRS (register)
	C2.4.111 MCR, MCR2
	C2.4.112 MCRR, MCRR2
	C2.4.113 MLA
	C2.4.114 MLS
	C2.4.115 MOV (immediate)
	C2.4.116 MOV (register)
	C2.4.117 MOV, MOVS (register-shifted register)
	C2.4.118 MOVT
	C2.4.119 MRC, MRC2
	C2.4.120 MRRC, MRRC2
	C2.4.121 MRS
	C2.4.122 MSR (register)
	C2.4.123 MUL
	C2.4.124 MVN (immediate)
	C2.4.125 MVN (register)
	C2.4.126 NOP
	C2.4.127 ORN (immediate)
	C2.4.128 ORN (register)
	C2.4.129 ORR (immediate)
	C2.4.130 ORR (register)
	C2.4.131 PKHBT, PKHTB
	C2.4.132 PLD (literal)
	C2.4.133 PLD, PLDW (immediate)
	C2.4.134 PLD, PLDW (register)
	C2.4.135 PLI (immediate, literal)
	C2.4.136 PLI (register)
	C2.4.137 POP (multiple registers)
	C2.4.138 POP (single register)
	C2.4.139 PSSBB
	C2.4.140 PUSH (multiple registers)
	C2.4.141 PUSH (single register)
	C2.4.142 QADD
	C2.4.143 QADD16
	C2.4.144 QADD8
	C2.4.145 QASX
	C2.4.146 QDADD
	C2.4.147 QDSUB
	C2.4.148 QSAX
	C2.4.149 QSUB
	C2.4.150 QSUB16
	C2.4.151 QSUB8
	C2.4.152 RBIT
	C2.4.153 REV
	C2.4.154 REV16
	C2.4.155 REVSH
	C2.4.156 ROR (immediate)
	C2.4.157 ROR (register)
	C2.4.158 RORS (immediate)
	C2.4.159 RORS (register)
	C2.4.160 RRX
	C2.4.161 RRXS
	C2.4.162 RSB (immediate)
	C2.4.163 RSB (register)
	C2.4.164 SADD16
	C2.4.165 SADD8
	C2.4.166 SASX
	C2.4.167 SBC (immediate)
	C2.4.168 SBC (register)
	C2.4.169 SBFX
	C2.4.170 SDIV
	C2.4.171 SEL
	C2.4.172 SEV
	C2.4.173 SG
	C2.4.174 SHADD16
	C2.4.175 SHADD8
	C2.4.176 SHASX
	C2.4.177 SHSAX
	C2.4.178 SHSUB16
	C2.4.179 SHSUB8
	C2.4.180 SMLABB, SMLABT, SMLATB, SMLATT
	C2.4.181 SMLAD, SMLADX
	C2.4.182 SMLAL
	C2.4.183 SMLALBB, SMLALBT, SMLALTB, SMLALTT
	C2.4.184 SMLALD, SMLALDX
	C2.4.185 SMLAWB, SMLAWT
	C2.4.186 SMLSD, SMLSDX
	C2.4.187 SMLSLD, SMLSLDX
	C2.4.188 SMMLA, SMMLAR
	C2.4.189 SMMLS, SMMLSR
	C2.4.190 SMMUL, SMMULR
	C2.4.191 SMUAD, SMUADX
	C2.4.192 SMULBB, SMULBT, SMULTB, SMULTT
	C2.4.193 SMULL
	C2.4.194 SMULWB, SMULWT
	C2.4.195 SMUSD, SMUSDX
	C2.4.196 SQRSHR (register)
	C2.4.197 SQRSHRL (register)
	C2.4.198 SQSHL (immediate)
	C2.4.199 SQSHLL (immediate)
	C2.4.200 SRSHR (immediate)
	C2.4.201 SRSHRL (immediate)
	C2.4.202 SSAT
	C2.4.203 SSAT16
	C2.4.204 SSAX
	C2.4.205 SSBB
	C2.4.206 SSUB16
	C2.4.207 SSUB8
	C2.4.208 STC, STC2
	C2.4.209 STL
	C2.4.210 STLB
	C2.4.211 STLEX
	C2.4.212 STLEXB
	C2.4.213 STLEXH
	C2.4.214 STLH
	C2.4.215 STM, STMIA, STMEA
	C2.4.216 STMDB, STMFD
	C2.4.217 STR (immediate)
	C2.4.218 STR (register)
	C2.4.219 STRB (immediate)
	C2.4.220 STRB (register)
	C2.4.221 STRBT
	C2.4.222 STRD (immediate)
	C2.4.223 STREX
	C2.4.224 STREXB
	C2.4.225 STREXH
	C2.4.226 STRH (immediate)
	C2.4.227 STRH (register)
	C2.4.228 STRHT
	C2.4.229 STRT
	C2.4.230 SUB (SP minus immediate)
	C2.4.231 SUB (SP minus register)
	C2.4.232 SUB (immediate)
	C2.4.233 SUB (immediate, from PC)
	C2.4.234 SUB (register)
	C2.4.235 SVC
	C2.4.236 SXTAB
	C2.4.237 SXTAB16
	C2.4.238 SXTAH
	C2.4.239 SXTB
	C2.4.240 SXTB16
	C2.4.241 SXTH
	C2.4.242 TBB, TBH
	C2.4.243 TEQ (immediate)
	C2.4.244 TEQ (register)
	C2.4.245 TST (immediate)
	C2.4.246 TST (register)
	C2.4.247 TT, TTT, TTA, TTAT
	C2.4.248 UADD16
	C2.4.249 UADD8
	C2.4.250 UASX
	C2.4.251 UBFX
	C2.4.252 UDF
	C2.4.253 UDIV
	C2.4.254 UHADD16
	C2.4.255 UHADD8
	C2.4.256 UHASX
	C2.4.257 UHSAX
	C2.4.258 UHSUB16
	C2.4.259 UHSUB8
	C2.4.260 UMAAL
	C2.4.261 UMLAL
	C2.4.262 UMULL
	C2.4.263 UQADD16
	C2.4.264 UQADD8
	C2.4.265 UQASX
	C2.4.266 UQRSHL (register)
	C2.4.267 UQRSHLL (register)
	C2.4.268 UQSAX
	C2.4.269 UQSHL (immediate)
	C2.4.270 UQSHLL (immediate)
	C2.4.271 UQSUB16
	C2.4.272 UQSUB8
	C2.4.273 URSHR (immediate)
	C2.4.274 URSHRL (immediate)
	C2.4.275 USAD8
	C2.4.276 USADA8
	C2.4.277 USAT
	C2.4.278 USAT16
	C2.4.279 USAX
	C2.4.280 USUB16
	C2.4.281 USUB8
	C2.4.282 UXTAB
	C2.4.283 UXTAB16
	C2.4.284 UXTAH
	C2.4.285 UXTB
	C2.4.286 UXTB16
	C2.4.287 UXTH
	C2.4.288 VABAV
	C2.4.289 VABD (floating-point)
	C2.4.290 VABD
	C2.4.291 VABS (floating-point)
	C2.4.292 VABS (vector)
	C2.4.293 VABS
	C2.4.294 VADC
	C2.4.295 VADD (floating-point)
	C2.4.296 VADD (vector)
	C2.4.297 VADD
	C2.4.298 VADDLV
	C2.4.299 VADDV
	C2.4.300 VAND (immediate)
	C2.4.301 VAND
	C2.4.302 VBIC (immediate)
	C2.4.303 VBIC (register)
	C2.4.304 VBRSR
	C2.4.305 VCADD (floating-point)
	C2.4.306 VCADD
	C2.4.307 VCLS
	C2.4.308 VCLZ
	C2.4.309 VCMLA (floating-point)
	C2.4.310 VCMP (floating-point)
	C2.4.311 VCMP (vector)
	C2.4.312 VCMP
	C2.4.313 VCMPE
	C2.4.314 VCMUL (floating-point)
	C2.4.315 VCTP
	C2.4.316 VCVT (between double-precision and single-precision)
	C2.4.317 VCVT (between floating-point and fixed-point) (vector)
	C2.4.318 VCVT (between floating-point and fixed-point)
	C2.4.319 VCVT (between floating-point and integer)
	C2.4.320 VCVT (between single and half-precision floating-point)
	C2.4.321 VCVT (floating-point to integer)
	C2.4.322 VCVT (from floating-point to integer)
	C2.4.323 VCVT (integer to floating-point)
	C2.4.324 VCVTA
	C2.4.325 VCVTB
	C2.4.326 VCVTM
	C2.4.327 VCVTN
	C2.4.328 VCVTP
	C2.4.329 VCVTR
	C2.4.330 VCVTT
	C2.4.331 VCX1 (vector)
	C2.4.332 VCX1
	C2.4.333 VCX2 (vector)
	C2.4.334 VCX2
	C2.4.335 VCX3 (vector)
	C2.4.336 VCX3
	C2.4.337 VDDUP, VDWDUP
	C2.4.338 VDIV
	C2.4.339 VDUP
	C2.4.340 VEOR
	C2.4.341 VFMA (vector by scalar plus vector, floating-point)
	C2.4.342 VFMA
	C2.4.343 VFMA, VFMS (floating-point)
	C2.4.344 VFMAS (vector by vector plus scalar, floating-point)
	C2.4.345 VFMS
	C2.4.346 VFNMA
	C2.4.347 VFNMS
	C2.4.348 VHADD
	C2.4.349 VHCADD
	C2.4.350 VHSUB
	C2.4.351 VIDUP, VIWDUP
	C2.4.352 VINS
	C2.4.353 VLD2
	C2.4.354 VLD4
	C2.4.355 VLDM
	C2.4.356 VLDR (System Register)
	C2.4.357 VLDR
	C2.4.358 VLDRB, VLDRH, VLDRW
	C2.4.359 VLDRB, VLDRH, VLDRW, VLDRD (vector)
	C2.4.360 VLLDM
	C2.4.361 VLSTM
	C2.4.362 VMAX, VMAXA
	C2.4.363 VMAXNM
	C2.4.364 VMAXNM, VMAXNMA (floating-point)
	C2.4.365 VMAXNMV, VMAXNMAV (floating-point)
	C2.4.366 VMAXV, VMAXAV
	C2.4.367 VMIN, VMINA
	C2.4.368 VMINNM
	C2.4.369 VMINNM, VMINNMA (floating-point)
	C2.4.370 VMINNMV, VMINNMAV (floating-point)
	C2.4.371 VMINV, VMINAV
	C2.4.372 VMLA (vector by scalar plus vector)
	C2.4.373 VMLA
	C2.4.374 VMLADAV
	C2.4.375 VMLALDAV
	C2.4.376 VMLALV
	C2.4.377 VMLAS (vector by vector plus scalar)
	C2.4.378 VMLAV
	C2.4.379 VMLS
	C2.4.380 VMLSDAV
	C2.4.381 VMLSLDAV
	C2.4.382 VMOV (between general-purpose register and half-precision register)
	C2.4.383 VMOV (between general-purpose register and single-precision register)
	C2.4.384 VMOV (between two general-purpose registers and a doubleword register)
	C2.4.385 VMOV (between two general-purpose registers and two single-precision registers)
	C2.4.386 VMOV (general-purpose register to vector lane)
	C2.4.387 VMOV (half of doubleword register to single general-purpose register)
	C2.4.388 VMOV (immediate) (vector)
	C2.4.389 VMOV (immediate)
	C2.4.390 VMOV (register) (vector)
	C2.4.391 VMOV (register)
	C2.4.392 VMOV (single general-purpose register to half of doubleword register)
	C2.4.393 VMOV (two 32-bit vector lanes to two general-purpose registers)
	C2.4.394 VMOV (two general-purpose registers to two 32-bit vector lanes)
	C2.4.395 VMOV (vector lane to general-purpose register)
	C2.4.396 VMOVL
	C2.4.397 VMOVN
	C2.4.398 VMOVX
	C2.4.399 VMRS
	C2.4.400 VMSR
	C2.4.401 VMUL (floating-point)
	C2.4.402 VMUL (vector)
	C2.4.403 VMUL
	C2.4.404 VMULH, VRMULH
	C2.4.405 VMULL (integer)
	C2.4.406 VMULL (polynomial)
	C2.4.407 VMVN (immediate)
	C2.4.408 VMVN (register)
	C2.4.409 VNEG (floating-point)
	C2.4.410 VNEG (vector)
	C2.4.411 VNEG
	C2.4.412 VNMLA
	C2.4.413 VNMLS
	C2.4.414 VNMUL
	C2.4.415 VORN (immediate)
	C2.4.416 VORN
	C2.4.417 VORR (immediate)
	C2.4.418 VORR
	C2.4.419 VPNOT
	C2.4.420 VPOP
	C2.4.421 VPSEL
	C2.4.422 VPST
	C2.4.423 VPT (floating-point)
	C2.4.424 VPT
	C2.4.425 VPUSH
	C2.4.426 VQABS
	C2.4.427 VQADD
	C2.4.428 VQDMLADH, VQRDMLADH
	C2.4.429 VQDMLAH, VQRDMLAH (vector by scalar plus vector)
	C2.4.430 VQDMLASH, VQRDMLASH (vector by vector plus scalar)
	C2.4.431 VQDMLSDH, VQRDMLSDH
	C2.4.432 VQDMULH, VQRDMULH
	C2.4.433 VQDMULL
	C2.4.434 VQMOVN
	C2.4.435 VQMOVUN
	C2.4.436 VQNEG
	C2.4.437 VQRSHL
	C2.4.438 VQRSHRN
	C2.4.439 VQRSHRUN
	C2.4.440 VQSHL, VQSHLU
	C2.4.441 VQSHRN
	C2.4.442 VQSHRUN
	C2.4.443 VQSUB
	C2.4.444 VREV16
	C2.4.445 VREV32
	C2.4.446 VREV64
	C2.4.447 VRHADD
	C2.4.448 VRINT (floating-point)
	C2.4.449 VRINTA
	C2.4.450 VRINTM
	C2.4.451 VRINTN
	C2.4.452 VRINTP
	C2.4.453 VRINTR
	C2.4.454 VRINTX
	C2.4.455 VRINTZ
	C2.4.456 VRMLALDAVH
	C2.4.457 VRMLALVH
	C2.4.458 VRMLSLDAVH
	C2.4.459 VRSHL
	C2.4.460 VRSHR
	C2.4.461 VRSHRN
	C2.4.462 VSBC
	C2.4.463 VSCCLRM
	C2.4.464 VSEL
	C2.4.465 VSHL
	C2.4.466 VSHLC
	C2.4.467 VSHLL
	C2.4.468 VSHR
	C2.4.469 VSHRN
	C2.4.470 VSLI
	C2.4.471 VSQRT
	C2.4.472 VSRI
	C2.4.473 VST2
	C2.4.474 VST4
	C2.4.475 VSTM
	C2.4.476 VSTR (System Register)
	C2.4.477 VSTR
	C2.4.478 VSTRB, VSTRH, VSTRW
	C2.4.479 VSTRB, VSTRH, VSTRW, VSTRD (vector)
	C2.4.480 VSUB (floating-point)
	C2.4.481 VSUB (vector)
	C2.4.482 VSUB
	C2.4.483 WFE
	C2.4.484 WFI
	C2.4.485 WLS, DLS, WLSTP, DLSTP
	C2.4.486 YIELD

	D Armv8-M Registers and Payload Specification
	D1 Register and Payload Specification
	D1.1 Register index
	D1.1.1 Special and general-purpose registers
	D1.1.2 Payloads
	D1.1.3 Instrumentation Macrocell
	D1.1.4 Data Watchpoint and Trace
	D1.1.5 Flash Patch and Breakpoint
	D1.1.6 Performance Monitoring Unit
	D1.1.7 Reliability, Availability and Serviceability Extension Fault Status Register
	D1.1.8 Implementation Control Block
	D1.1.9 SysTick Timer
	D1.1.10 Nested Vectored Interrupt Controller
	D1.1.11 System Control Block
	D1.1.12 Memory Protection Unit
	D1.1.13 Security Attribution Unit
	D1.1.14 Debug Control Block
	D1.1.15 Software Interrupt Generation
	D1.1.16 Reliability, Availability and Serviceability Extension Fault Status Register
	D1.1.17 Floating-Point Extension
	D1.1.18 Cache Maintenance Operations
	D1.1.19 Debug Identification Block
	D1.1.20 Implementation Control Block (NS alias)
	D1.1.21 SysTick Timer (NS alias)
	D1.1.22 Nested Vectored Interrupt Controller (NS alias)
	D1.1.23 System Control Block (NS alias)
	D1.1.24 Memory Protection Unit (NS alias)
	D1.1.25 Debug Control Block (NS alias)
	D1.1.26 Software Interrupt Generation (NS alias)
	D1.1.27 Reliability, Availability and Serviceability Extension Fault Status Register (NS Alias)
	D1.1.28 Floating-Point Extension (NS alias)
	D1.1.29 Cache Maintenance Operations (NS alias)
	D1.1.30 Debug Identification Block (NS alias)
	D1.1.31 Trace Port Interface Unit

	D1.2 Alphabetical list of registers
	D1.2.1 ACTLR, Auxiliary Control Register
	D1.2.2 AFSR, Auxiliary Fault Status Register
	D1.2.3 AIRCR, Application Interrupt and Reset Control Register
	D1.2.4 APSR, Application Program Status Register
	D1.2.5 BASEPRI, Base Priority Mask Register
	D1.2.6 BFAR, BusFault Address Register
	D1.2.7 BFSR, BusFault Status Register
	D1.2.8 BPIALL, Branch Predictor Invalidate All
	D1.2.9 CCR, Configuration and Control Register
	D1.2.10 CCSIDR, Current Cache Size ID register
	D1.2.11 CFSR, Configurable Fault Status Register
	D1.2.12 CLIDR, Cache Level ID Register
	D1.2.13 CONTROL, Control Register
	D1.2.14 CPACR, Coprocessor Access Control Register
	D1.2.15 CPPWR, Coprocessor Power Control Register
	D1.2.16 CPUID, CPUID Base Register
	D1.2.17 CSSELR, Cache Size Selection Register
	D1.2.18 CTR, Cache Type Register
	D1.2.19 DAUTHCTRL, Debug Authentication Control Register
	D1.2.20 DAUTHSTATUS, Debug Authentication Status Register
	D1.2.21 DCCIMVAC, Data Cache line Clean and Invalidate by Address to PoC
	D1.2.22 DCCISW, Data Cache line Clean and Invalidate by Set/Way
	D1.2.23 DCCMVAC, Data Cache line Clean by Address to PoC
	D1.2.24 DCCMVAU, Data Cache line Clean by address to PoU
	D1.2.25 DCCSW, Data Cache Clean line by Set/Way
	D1.2.26 DCIDR0, SCS Component Identification Register 0
	D1.2.27 DCIDR1, SCS Component Identification Register 1
	D1.2.28 DCIDR2, SCS Component Identification Register 2
	D1.2.29 DCIDR3, SCS Component Identification Register 3
	D1.2.30 DCIMVAC, Data Cache line Invalidate by Address to PoC
	D1.2.31 DCISW, Data Cache line Invalidate by Set/Way
	D1.2.32 DCRDR, Debug Core Register Data Register
	D1.2.33 DCRSR, Debug Core Register Select Register
	D1.2.34 DDEVARCH, SCS Device Architecture Register
	D1.2.35 DDEVTYPE, SCS Device Type Register
	D1.2.36 DEMCR, Debug Exception and Monitor Control Register
	D1.2.37 DFSR, Debug Fault Status Register
	D1.2.38 DHCSR, Debug Halting Control and Status Register
	D1.2.39 DLAR, SCS Software Lock Access Register
	D1.2.40 DLSR, SCS Software Lock Status Register
	D1.2.41 DPIDR0, SCS Peripheral Identification Register 0
	D1.2.42 DPIDR1, SCS Peripheral Identification Register 1
	D1.2.43 DPIDR2, SCS Peripheral Identification Register 2
	D1.2.44 DPIDR3, SCS Peripheral Identification Register 3
	D1.2.45 DPIDR4, SCS Peripheral Identification Register 4
	D1.2.46 DPIDR5, SCS Peripheral Identification Register 5
	D1.2.47 DPIDR6, SCS Peripheral Identification Register 6
	D1.2.48 DPIDR7, SCS Peripheral Identification Register 7
	D1.2.49 DSCEMCR, Debug Set Clear Exception and Monitor Control Register
	D1.2.50 DSCSR, Debug Security Control and Status Register
	D1.2.51 DWT_CIDR0, DWT Component Identification Register 0
	D1.2.52 DWT_CIDR1, DWT Component Identification Register 1
	D1.2.53 DWT_CIDR2, DWT Component Identification Register 2
	D1.2.54 DWT_CIDR3, DWT Component Identification Register 3
	D1.2.55 DWT_COMPn, DWT Comparator Register, n = 0 - 14
	D1.2.56 DWT_CPICNT, DWT CPI Count Register
	D1.2.57 DWT_CTRL, DWT Control Register
	D1.2.58 DWT_CYCCNT, DWT Cycle Count Register
	D1.2.59 DWT_DEVARCH, DWT Device Architecture Register
	D1.2.60 DWT_DEVTYPE, DWT Device Type Register
	D1.2.61 DWT_EXCCNT, DWT Exception Overhead Count Register
	D1.2.62 DWT_FOLDCNT, DWT Folded Instruction Count Register
	D1.2.63 DWT_FUNCTIONn, DWT Comparator Function Register, n = 0 - 14
	D1.2.64 DWT_LAR, DWT Software Lock Access Register
	D1.2.65 DWT_LSR, DWT Software Lock Status Register
	D1.2.66 DWT_LSUCNT, DWT LSU Count Register
	D1.2.67 DWT_PCSR, DWT Program Counter Sample Register
	D1.2.68 DWT_PIDR0, DWT Peripheral Identification Register 0
	D1.2.69 DWT_PIDR1, DWT Peripheral Identification Register 1
	D1.2.70 DWT_PIDR2, DWT Peripheral Identification Register 2
	D1.2.71 DWT_PIDR3, DWT Peripheral Identification Register 3
	D1.2.72 DWT_PIDR4, DWT Peripheral Identification Register 4
	D1.2.73 DWT_PIDR5, DWT Peripheral Identification Register 5
	D1.2.74 DWT_PIDR6, DWT Peripheral Identification Register 6
	D1.2.75 DWT_PIDR7, DWT Peripheral Identification Register 7
	D1.2.76 DWT_SLEEPCNT, DWT Sleep Count Register
	D1.2.77 DWT_VMASKn, DWT Comparator Value Mask Register, n = 0 - 14
	D1.2.78 EPSR, Execution Program Status Register
	D1.2.79 ERRADDRn, Error Record Address Register, n = 0 - 55
	D1.2.80 ERRADDR2n, Error Record Address 2 Register, n = 0 - 55
	D1.2.81 ERRCTRLn, Error Record Control Register, n = 0 - 55
	D1.2.82 ERRDEVID, Error Record Device ID Register
	D1.2.83 ERRFRn, Error Record Feature Register, n = 0 - 55
	D1.2.84 ERRGSRn, RAS Fault Group Status Register
	D1.2.85 ERRIIDR, Error Implementer ID Register
	D1.2.86 ERRMISC0n, Error Record Miscellaneous 0 Register, n = 0 - 55
	D1.2.87 ERRMISC1n, Error Record Miscellaneous 1 Register, n = 0 - 55
	D1.2.88 ERRMISC2n, Error Record Miscellaneous 2 Register, n = 0 - 55
	D1.2.89 ERRMISC3n, Error Record Miscellaneous 3 Register, n = 0 - 55
	D1.2.90 ERRMISC4n, Error Record Miscellaneous 4 Register, n = 0 - 55
	D1.2.91 ERRMISC5n, Error Record Miscellaneous 5 Register, n = 0 - 55
	D1.2.92 ERRMISC6n, Error Record Miscellaneous 6 Register, n = 0 - 55
	D1.2.93 ERRMISC7n, Error Record Miscellaneous 7 Register, n = 0 - 55
	D1.2.94 ERRSTATUSn, Error Record Primary Status Register, n = 0 - 55
	D1.2.95 EXC_RETURN, Exception Return Payload
	D1.2.96 FAULTMASK, Fault Mask Register
	D1.2.97 FNC_RETURN, Function Return Payload
	D1.2.98 FPCAR, Floating-Point Context Address Register
	D1.2.99 FPCCR, Floating-Point Context Control Register
	D1.2.100 FPCXT, Floating-point context payload
	D1.2.101 FPDSCR, Floating-Point Default Status Control Register
	D1.2.102 FPSCR, Floating-point Status and Control Register
	D1.2.103 FP_CIDR0, FP Component Identification Register 0
	D1.2.104 FP_CIDR1, FP Component Identification Register 1
	D1.2.105 FP_CIDR2, FP Component Identification Register 2
	D1.2.106 FP_CIDR3, FP Component Identification Register 3
	D1.2.107 FP_COMPn, Flash Patch Comparator Register, n = 0 - 125
	D1.2.108 FP_CTRL, Flash Patch Control Register
	D1.2.109 FP_DEVARCH, FPB Device Architecture Register
	D1.2.110 FP_DEVTYPE, FPB Device Type Register
	D1.2.111 FP_LAR, FPB Software Lock Access Register
	D1.2.112 FP_LSR, FPB Software Lock Status Register
	D1.2.113 FP_PIDR0, FP Peripheral Identification Register 0
	D1.2.114 FP_PIDR1, FP Peripheral Identification Register 1
	D1.2.115 FP_PIDR2, FP Peripheral Identification Register 2
	D1.2.116 FP_PIDR3, FP Peripheral Identification Register 3
	D1.2.117 FP_PIDR4, FP Peripheral Identification Register 4
	D1.2.118 FP_PIDR5, FP Peripheral Identification Register 5
	D1.2.119 FP_PIDR6, FP Peripheral Identification Register 6
	D1.2.120 FP_PIDR7, FP Peripheral Identification Register 7
	D1.2.121 FP_REMAP, Flash Patch Remap Register
	D1.2.122 HFSR, HardFault Status Register
	D1.2.123 ICIALLU, Instruction Cache Invalidate All to PoU
	D1.2.124 ICIMVAU, Instruction Cache line Invalidate by Address to PoU
	D1.2.125 ICSR, Interrupt Control and State Register
	D1.2.126 ICTR, Interrupt Controller Type Register
	D1.2.127 ID_AFR0, Auxiliary Feature Register 0
	D1.2.128 ID_DFR0, Debug Feature Register 0
	D1.2.129 ID_ISAR0, Instruction Set Attribute Register 0
	D1.2.130 ID_ISAR1, Instruction Set Attribute Register 1
	D1.2.131 ID_ISAR2, Instruction Set Attribute Register 2
	D1.2.132 ID_ISAR3, Instruction Set Attribute Register 3
	D1.2.133 ID_ISAR4, Instruction Set Attribute Register 4
	D1.2.134 ID_ISAR5, Instruction Set Attribute Register 5
	D1.2.135 ID_MMFR0, Memory Model Feature Register 0
	D1.2.136 ID_MMFR1, Memory Model Feature Register 1
	D1.2.137 ID_MMFR2, Memory Model Feature Register 2
	D1.2.138 ID_MMFR3, Memory Model Feature Register 3
	D1.2.139 ID_PFR0, Processor Feature Register 0
	D1.2.140 ID_PFR1, Processor Feature Register 1
	D1.2.141 IPSR, Interrupt Program Status Register
	D1.2.142 ITM_CIDR0, ITM Component Identification Register 0
	D1.2.143 ITM_CIDR1, ITM Component Identification Register 1
	D1.2.144 ITM_CIDR2, ITM Component Identification Register 2
	D1.2.145 ITM_CIDR3, ITM Component Identification Register 3
	D1.2.146 ITM_DEVARCH, ITM Device Architecture Register
	D1.2.147 ITM_DEVTYPE, ITM Device Type Register
	D1.2.148 ITM_LAR, ITM Software Lock Access Register
	D1.2.149 ITM_LSR, ITM Software Lock Status Register
	D1.2.150 ITM_PIDR0, ITM Peripheral Identification Register 0
	D1.2.151 ITM_PIDR1, ITM Peripheral Identification Register 1
	D1.2.152 ITM_PIDR2, ITM Peripheral Identification Register 2
	D1.2.153 ITM_PIDR3, ITM Peripheral Identification Register 3
	D1.2.154 ITM_PIDR4, ITM Peripheral Identification Register 4
	D1.2.155 ITM_PIDR5, ITM Peripheral Identification Register 5
	D1.2.156 ITM_PIDR6, ITM Peripheral Identification Register 6
	D1.2.157 ITM_PIDR7, ITM Peripheral Identification Register 7
	D1.2.158 ITM_STIMn, ITM Stimulus Port Register, n = 0 - 255
	D1.2.159 ITM_TCR, ITM Trace Control Register
	D1.2.160 ITM_TERn, ITM Trace Enable Register, n = 0 - 7
	D1.2.161 ITM_TPR, ITM Trace Privilege Register
	D1.2.162 LO_BRANCH_INFO, Loop and branch tracking information
	D1.2.163 LR, Link Register
	D1.2.164 MAIR_ATTR, Memory Attribute Indirection Register Attributes
	D1.2.165 MMFAR, MemManage Fault Address Register
	D1.2.166 MMFSR, MemManage Fault Status Register
	D1.2.167 MPU_CTRL, MPU Control Register
	D1.2.168 MPU_MAIR0, MPU Memory Attribute Indirection Register 0
	D1.2.169 MPU_MAIR1, MPU Memory Attribute Indirection Register 1
	D1.2.170 MPU_RBAR, MPU Region Base Address Register
	D1.2.171 MPU_RBAR_An, MPU Region Base Address Register Alias, n = 1 - 3
	D1.2.172 MPU_RLAR, MPU Region Limit Address Register
	D1.2.173 MPU_RLAR_An, MPU Region Limit Address Register Alias, n = 1 - 3
	D1.2.174 MPU_RNR, MPU Region Number Register
	D1.2.175 MPU_TYPE, MPU Type Register
	D1.2.176 MSPLIM, Main Stack Pointer Limit Register
	D1.2.177 MVFR0, Media and VFP Feature Register 0
	D1.2.178 MVFR1, Media and VFP Feature Register 1
	D1.2.179 MVFR2, Media and VFP Feature Register 2
	D1.2.180 NSACR, Non-secure Access Control Register
	D1.2.181 NVIC_IABRn, Interrupt Active Bit Register, n = 0 - 15
	D1.2.182 NVIC_ICERn, Interrupt Clear Enable Register, n = 0 - 15
	D1.2.183 NVIC_ICPRn, Interrupt Clear Pending Register, n = 0 - 15
	D1.2.184 NVIC_IPRn, Interrupt Priority Register, n = 0 - 123
	D1.2.185 NVIC_ISERn, Interrupt Set Enable Register, n = 0 - 15
	D1.2.186 NVIC_ISPRn, Interrupt Set Pending Register, n = 0 - 15
	D1.2.187 NVIC_ITNSn, Interrupt Target Non-secure Register, n = 0 - 15
	D1.2.188 PC, Program Counter
	D1.2.189 PMU_AUTHSTATUS, Performance Monitoring Unit Authentication Status Register
	D1.2.190 PMU_CCFILTR, Performance Monitoring Unit Cycle Counter Filter Register
	D1.2.191 PMU_CCNTR, Performance Monitoring Unit Cycle Counter Register
	D1.2.192 PMU_CIDR0, Performance Monitoring Unit Component Identification Register 0
	D1.2.193 PMU_CIDR1, Performance Monitoring Unit Component Identification Register 1
	D1.2.194 PMU_CIDR2, Performance Monitoring Unit Component Identification Register 2
	D1.2.195 PMU_CIDR3, Performance Monitoring Unit Component Identification Register 3
	D1.2.196 PMU_CNTENCLR, Performance Monitoring Unit Count Enable Clear Register
	D1.2.197 PMU_CNTENSET, Performance Monitoring Unit Count Enable Set Register
	D1.2.198 PMU_CTRL, Performance Monitoring Unit Control Register
	D1.2.199 PMU_DEVARCH, Performance Monitoring Unit Device Architecture Register
	D1.2.200 PMU_DEVTYPE, Performance Monitoring Unit Device Type Register
	D1.2.201 PMU_EVCNTRn, Performance Monitoring Unit Event Counter Register
	D1.2.202 PMU_EVTYPERn, Performance Monitoring Unit Event Type and Filter Register
	D1.2.203 PMU_INTENCLR, Performance Monitoring Unit Interrupt Enable Clear Register
	D1.2.204 PMU_INTENSET, Performance Monitoring Unit Interrupt Enable Set Register
	D1.2.205 PMU_OVSCLR, Performance Monitoring Unit Overflow Flag Status Clear Register
	D1.2.206 PMU_OVSSET, Performance Monitoring Unit Overflow Flag Status Set Register
	D1.2.207 PMU_PIDR0, Performance Monitoring Unit Peripheral Identification Register 0
	D1.2.208 PMU_PIDR1, Performance Monitoring Unit Peripheral Identification Register 1
	D1.2.209 PMU_PIDR2, Performance Monitoring Unit Peripheral Identification Register 2
	D1.2.210 PMU_PIDR3, Performance Monitoring Unit Peripheral Identification Register 3
	D1.2.211 PMU_PIDR4, Performance Monitoring Unit Peripheral Identification Register 4
	D1.2.212 PMU_SWINC, Performance Monitoring Unit Software Increment Register
	D1.2.213 PMU_TYPE, Performance Monitoring Unit Type Register
	D1.2.214 PRIMASK, Exception Mask Register
	D1.2.215 PSPLIM, Process Stack Pointer Limit Register
	D1.2.216 Rn, General-Purpose Register, n = 0 - 12
	D1.2.217 RETPSR, Combined Exception Return Program Status Registers
	D1.2.218 REVIDR, Revision ID Register
	D1.2.219 RFSR, RAS Fault Status Register
	D1.2.220 SAU_CTRL, SAU Control Register
	D1.2.221 SAU_RBAR, SAU Region Base Address Register
	D1.2.222 SAU_RLAR, SAU Region Limit Address Register
	D1.2.223 SAU_RNR, SAU Region Number Register
	D1.2.224 SAU_TYPE, SAU Type Register
	D1.2.225 SCR, System Control Register
	D1.2.226 SFAR, Secure Fault Address Register
	D1.2.227 SFSR, Secure Fault Status Register
	D1.2.228 SHCSR, System Handler Control and State Register
	D1.2.229 SHPR1, System Handler Priority Register 1
	D1.2.230 SHPR2, System Handler Priority Register 2
	D1.2.231 SHPR3, System Handler Priority Register 3
	D1.2.232 SP, Current Stack Pointer Register
	D1.2.233 SP_NS, Stack Pointer (Non-secure)
	D1.2.234 STIR, Software Triggered Interrupt Register
	D1.2.235 SYST_CALIB, SysTick Calibration Value Register
	D1.2.236 SYST_CSR, SysTick Control and Status Register
	D1.2.237 SYST_CVR, SysTick Current Value Register
	D1.2.238 SYST_RVR, SysTick Reload Value Register
	D1.2.239 TPIU_ACPR, TPIU Asynchronous Clock Prescaler Register
	D1.2.240 TPIU_CIDR0, TPIU Component Identification Register 0
	D1.2.241 TPIU_CIDR1, TPIU Component Identification Register 1
	D1.2.242 TPIU_CIDR2, TPIU Component Identification Register 2
	D1.2.243 TPIU_CIDR3, TPIU Component Identification Register 3
	D1.2.244 TPIU_CSPSR, TPIU Current Parallel Port Sizes Register
	D1.2.245 TPIU_DEVTYPE, TPIU Device Type Register
	D1.2.246 TPIU_FFCR, TPIU Formatter and Flush Control Register
	D1.2.247 TPIU_FFSR, TPIU Formatter and Flush Status Register
	D1.2.248 TPIU_LAR, TPIU Software Lock Access Register
	D1.2.249 TPIU_LSR, TPIU Software Lock Status Register
	D1.2.250 TPIU_PIDR0, TPIU Peripheral Identification Register 0
	D1.2.251 TPIU_PIDR1, TPIU Peripheral Identification Register 1
	D1.2.252 TPIU_PIDR2, TPIU Peripheral Identification Register 2
	D1.2.253 TPIU_PIDR3, TPIU Peripheral Identification Register 3
	D1.2.254 TPIU_PIDR4, TPIU Peripheral Identification Register 4
	D1.2.255 TPIU_PIDR5, TPIU Peripheral Identification Register 5
	D1.2.256 TPIU_PIDR6, TPIU Peripheral Identification Register 6
	D1.2.257 TPIU_PIDR7, TPIU Peripheral Identification Register 7
	D1.2.258 TPIU_PSCR, TPIU Periodic Synchronization Control Register
	D1.2.259 TPIU_SPPR, TPIU Selected Pin Protocol Register
	D1.2.260 TPIU_SSPSR, TPIU Supported Parallel Port Sizes Register
	D1.2.261 TPIU_TYPE, TPIU Device Identifier Register
	D1.2.262 TT_RESP, Test Target Response Payload
	D1.2.263 UFSR, UsageFault Status Register
	D1.2.264 VPR, Vector Predication Status and Control Register
	D1.2.265 VTOR, Vector Table Offset Register
	D1.2.266 XPSR, Combined Program Status Registers

	E Armv8-M Pseudocode
	E1 Arm Pseudocode Definition
	E1.1 About the Arm pseudocode
	E1.2 Data types
	E1.3 Operators
	E1.4 Statements and control structures
	E1.5 Built-in functions
	E1.6 Arm pseudocode definition index
	E1.7 Additional functions

	E2 Pseudocode Specification
	E2.1 Alphabetical Pseudocode List
	E2.1.1 _AdvanceVPTState
	E2.1.2 _ITStateChanged
	E2.1.3 _Mem
	E2.1.4 _NextInstrAddr
	E2.1.5 _NextInstrITState
	E2.1.6 _PCChanged
	E2.1.7 _PendingReturnOperation
	E2.1.8 _RName
	E2.1.9 _S
	E2.1.10 _SP
	E2.1.11 Abs
	E2.1.12 AccessAttributes
	E2.1.13 AccType
	E2.1.14 ActivateException
	E2.1.15 ActiveFPState
	E2.1.16 AddressDescriptor
	E2.1.17 AddrType
	E2.1.18 AddWithCarry
	E2.1.19 AdvSIMDExpandImm
	E2.1.20 Align
	E2.1.21 ArchVersion
	E2.1.22 ASR
	E2.1.23 ASR_C
	E2.1.24 BeatComplete
	E2.1.25 BeatSchedule
	E2.1.26 BigEndian
	E2.1.27 BigEndianReverse
	E2.1.28 BitCount
	E2.1.29 BitReverseShiftRight
	E2.1.30 BranchCall
	E2.1.31 BranchReturn
	E2.1.32 BranchTo
	E2.1.33 BusFaultBarrier
	E2.1.34 CallSupervisor
	E2.1.35 CanDebugAccessFP
	E2.1.36 CanHaltOnEvent
	E2.1.37 CanPendMonitorOnEvent
	E2.1.38 CdeImpDefValue
	E2.1.39 CheckCPEnabled
	E2.1.40 CheckDecodeFaults
	E2.1.41 CheckFPDecodeFaults
	E2.1.42 CheckPermission
	E2.1.43 ClearEventRegister
	E2.1.44 ClearExclusiveByAddress
	E2.1.45 ClearExclusiveLocal
	E2.1.46 ClearInFlightInstructions
	E2.1.47 ComparePriorities
	E2.1.48 Cond
	E2.1.49 ConditionHolds
	E2.1.50 ConditionPassed
	E2.1.51 ConstrainUnpredictable
	E2.1.52 ConstrainUnpredictableBits
	E2.1.53 ConstrainUnpredictableBool
	E2.1.54 ConstrainUnpredictableInteger
	E2.1.55 ConsumeExcStackFrame
	E2.1.56 ConsumptionOfSpeculativeDataBarrier
	E2.1.57 Coproc_Accepted
	E2.1.58 Coproc_DoneLoading
	E2.1.59 Coproc_DoneStoring
	E2.1.60 Coproc_GetOneWord
	E2.1.61 Coproc_GetTwoWords
	E2.1.62 Coproc_GetWordToStore
	E2.1.63 Coproc_InternalOperation
	E2.1.64 Coproc_SendLoadedWord
	E2.1.65 Coproc_SendOneWord
	E2.1.66 Coproc_SendTwoWords
	E2.1.67 CoprocType
	E2.1.68 CountLeadingSignBits
	E2.1.69 CountLeadingZeroBits
	E2.1.70 CPDef
	E2.1.71 CreateException
	E2.1.72 CurrentCond
	E2.1.73 CurrentMode
	E2.1.74 CurrentModeIsPrivileged
	E2.1.75 CX_op0
	E2.1.76 CX_op1
	E2.1.77 CX_op2
	E2.1.78 CX_op3
	E2.1.79 D
	E2.1.80 DAPCheck
	E2.1.81 DataMemoryBarrier
	E2.1.82 DataSynchronizationBarrier
	E2.1.83 DeActivate
	E2.1.84 Debug_authentication
	E2.1.85 DebugCanMaskInts
	E2.1.86 DebugRegisterTransfer
	E2.1.87 DecodeExecute
	E2.1.88 DecodeImmShift
	E2.1.89 DecodeRegShift
	E2.1.90 DefaultCond
	E2.1.91 DefaultExcInfo
	E2.1.92 DefaultMemoryAttributes
	E2.1.93 DefaultPermissions
	E2.1.94 DerivedLateArrival
	E2.1.95 DeviceType
	E2.1.96 DWT_AddressCompare
	E2.1.97 DWT_CycCountMatch
	E2.1.98 DWT_DataAddressMatch
	E2.1.99 DWT_DataMatch
	E2.1.100 DWT_DataValueMatch
	E2.1.101 DWT_InstructionAddressMatch
	E2.1.102 DWT_InstructionMatch
	E2.1.103 DWT_ValidMatch
	E2.1.104 Elem
	E2.1.105 EndOfInstruction
	E2.1.106 EventRegistered
	E2.1.107 ExceptionActiveBitCount
	E2.1.108 ExceptionDetails
	E2.1.109 ExceptionEnabled
	E2.1.110 ExceptionEntry
	E2.1.111 ExceptionPriority
	E2.1.112 ExceptionReturn
	E2.1.113 ExceptionTaken
	E2.1.114 ExceptionTargetsSecure
	E2.1.115 ExcInfo
	E2.1.116 ExclusiveMonitorsPass
	E2.1.117 ExecBeats
	E2.1.118 ExecuteCPCheck
	E2.1.119 ExecuteFPCheck
	E2.1.120 ExecutionPriority
	E2.1.121 Extend
	E2.1.122 ExternalInvasiveDebugEnabled
	E2.1.123 ExternalNoninvasiveDebugEnabled
	E2.1.124 ExternalSecureInvasiveDebugEnabled
	E2.1.125 ExternalSecureNoninvasiveDebugEnabled
	E2.1.126 ExternalSecureSelfHostedDebugEnabled
	E2.1.127 ExtType
	E2.1.128 FaultNumbers
	E2.1.129 FetchInstr
	E2.1.130 FindPriv
	E2.1.131 FixedToFP
	E2.1.132 FPAbs
	E2.1.133 FPAdd
	E2.1.134 FPB_CheckBreakPoint
	E2.1.135 FPB_CheckMatchAddress
	E2.1.136 FPCompare
	E2.1.137 FPConvertNaN
	E2.1.138 FPConvertNaNBase
	E2.1.139 FPDefaultNaN
	E2.1.140 FPDiv
	E2.1.141 FPDoubleToHalf
	E2.1.142 FPDoubleToSingle
	E2.1.143 FPExc
	E2.1.144 FPHalfToDouble
	E2.1.145 FPHalfToSingle
	E2.1.146 FPInfinity
	E2.1.147 FPMax
	E2.1.148 FPMaxNormal
	E2.1.149 FPMaxNum
	E2.1.150 FPMin
	E2.1.151 FPMinNum
	E2.1.152 FPMul
	E2.1.153 FPMulAdd
	E2.1.154 FPNeg
	E2.1.155 FPProcessException
	E2.1.156 FPProcessNaN
	E2.1.157 FPProcessNaNs
	E2.1.158 FPProcessNaNs3
	E2.1.159 FPRound
	E2.1.160 FPRoundBase
	E2.1.161 FPRoundCV
	E2.1.162 FPRoundInt
	E2.1.163 FPSingleToDouble
	E2.1.164 FPSingleToHalf
	E2.1.165 FPSqrt
	E2.1.166 FPSub
	E2.1.167 FPToFixed
	E2.1.168 FPToFixedDirected
	E2.1.169 FPType
	E2.1.170 FPUnpack
	E2.1.171 FPUnpackBase
	E2.1.172 FPUnpackCV
	E2.1.173 FPZero
	E2.1.174 FunctionReturn
	E2.1.175 GenerateCoprocessorException
	E2.1.176 GenerateDebugEventResponse
	E2.1.177 GenerateIntegerZeroDivide
	E2.1.178 GetActiveChains
	E2.1.179 GetCurInstrBeat
	E2.1.180 GetInstrExecState
	E2.1.181 Halt
	E2.1.182 Halted
	E2.1.183 HaltingDebugAllowed
	E2.1.184 HandleException
	E2.1.185 HandleExceptionTransitions
	E2.1.186 HandleLO
	E2.1.187 HasArchVersion
	E2.1.188 HaveDebugMonitor
	E2.1.189 HaveDSPExt
	E2.1.190 HaveDWT
	E2.1.191 HaveFPB
	E2.1.192 HaveFPExt
	E2.1.193 HaveHaltingDebug
	E2.1.194 HaveITM
	E2.1.195 HaveLOBExt
	E2.1.196 HaveMainExt
	E2.1.197 HaveMve
	E2.1.198 HaveMveOrFPExt
	E2.1.199 HaveSecurityExt
	E2.1.200 HaveSysTick
	E2.1.201 HaveUDE
	E2.1.202 HighestPri
	E2.1.203 HighestSetBit
	E2.1.204 Hint_Debug
	E2.1.205 Hint_PreloadData
	E2.1.206 Hint_PreloadDataForWrite
	E2.1.207 Hint_PreloadInstr
	E2.1.208 Hint_Yield
	E2.1.209 IDAUCheck
	E2.1.210 IgnoreFaultsType
	E2.1.211 InITBlock
	E2.1.212 InstrCanChain
	E2.1.213 InstrExecState
	E2.1.214 InstructionAdvance
	E2.1.215 InstructionExecute
	E2.1.216 InstructionsInFlight
	E2.1.217 InstructionSynchronizationBarrier
	E2.1.218 InstStateCheck
	E2.1.219 Int
	E2.1.220 IntegerZeroDivideTrappingEnabled
	E2.1.221 InvalidateFPRegs
	E2.1.222 InVPTBlock
	E2.1.223 IsAccessible
	E2.1.224 IsActiveForState
	E2.1.225 IsAligned
	E2.1.226 IsBKPTInstruction
	E2.1.227 IsCPEnabled
	E2.1.228 IsCPInstruction
	E2.1.229 IsDebugState
	E2.1.230 IsDWTConfigUnpredictable
	E2.1.231 IsDWTEnabled
	E2.1.232 IsExceptionTargetConfigurable
	E2.1.233 IsExclusiveGlobal
	E2.1.234 IsExclusiveLocal
	E2.1.235 IsFirstBeat
	E2.1.236 IsIrqValid
	E2.1.237 IsLastBeat
	E2.1.238 IsLastLowOverheadLoop
	E2.1.239 IsLEInstruction
	E2.1.240 IsLoadStoreClearMultInstruction
	E2.1.241 IsOnes
	E2.1.242 IsPPB
	E2.1.243 IsReqExcPriNeg
	E2.1.244 IsReturn
	E2.1.245 IsSecure
	E2.1.246 IsZero
	E2.1.247 IsZeroBit
	E2.1.248 ITAdvance
	E2.1.249 ITSTATE
	E2.1.250 ITSTATEType
	E2.1.251 LastInITBlock
	E2.1.252 LoadWritePC
	E2.1.253 LockedUp
	E2.1.254 Lockup
	E2.1.255 LookUpRName
	E2.1.256 LookUpSP
	E2.1.257 LookUpSP_with_security_mode
	E2.1.258 LookUpSPLim
	E2.1.259 LowestSetBit
	E2.1.260 LR
	E2.1.261 LSL
	E2.1.262 LSL_C
	E2.1.263 LSR
	E2.1.264 LSR_C
	E2.1.265 LTPSIZE
	E2.1.266 MAIRDecode
	E2.1.267 MarkExclusiveGlobal
	E2.1.268 MarkExclusiveLocal
	E2.1.269 Max
	E2.1.270 MaxExceptionNum
	E2.1.271 MemA
	E2.1.272 MemA_MVE
	E2.1.273 MemA_with_priv
	E2.1.274 MemA_with_priv_security
	E2.1.275 MemD_with_priv_security
	E2.1.276 MemI
	E2.1.277 MemO
	E2.1.278 MemoryAttributes
	E2.1.279 MemType
	E2.1.280 MemU
	E2.1.281 MemU_unpriv
	E2.1.282 MemU_with_priv
	E2.1.283 MergeExcInfo
	E2.1.284 Min
	E2.1.285 MPUCheck
	E2.1.286 NextInstrAddr
	E2.1.287 NextInstrITState
	E2.1.288 NoninvasiveDebugAllowed
	E2.1.289 Ones
	E2.1.290 PC
	E2.1.291 PEMode
	E2.1.292 PendingDebugHalt
	E2.1.293 PendingDebugMonitor
	E2.1.294 PendingExceptionDetails
	E2.1.295 PendReturnOperation
	E2.1.296 Permissions
	E2.1.297 PMU_CounterIncrement
	E2.1.298 PMU_HandleOverflow
	E2.1.299 PmuEvent
	E2.1.300 PmuEventType
	E2.1.301 PolynomialMult
	E2.1.302 PopStack
	E2.1.303 PreserveFPState
	E2.1.304 ProcessorID
	E2.1.305 PushCalleeStack
	E2.1.306 PushStack
	E2.1.307 Q
	E2.1.308 R
	E2.1.309 RaiseAsyncBusFault
	E2.1.310 RawExecutionPriority
	E2.1.311 Replicate
	E2.1.312 ResetRegs
	E2.1.313 RestrictedNSPri
	E2.1.314 RF
	E2.1.315 RFD
	E2.1.316 RName
	E2.1.317 RNames
	E2.1.318 ROR
	E2.1.319 ROR_C
	E2.1.320 RoundDown
	E2.1.321 RoundTowardsZero
	E2.1.322 RoundUp
	E2.1.323 RRX
	E2.1.324 RRX_C
	E2.1.325 RSPCheck
	E2.1.326 RZ
	E2.1.327 S
	E2.1.328 Sat
	E2.1.329 SatQ
	E2.1.330 SAttributes
	E2.1.331 SCS_UpdateStatusRegs
	E2.1.332 SecureDebugMonitorAllowed
	E2.1.333 SecureHaltingDebugAllowed
	E2.1.334 SecureNoninvasiveDebugAllowed
	E2.1.335 SecurityCheck
	E2.1.336 SecurityState
	E2.1.337 SendEvent
	E2.1.338 SerializeVFP
	E2.1.339 SetActive
	E2.1.340 SetDWTDebugEvent
	E2.1.341 SetEventRegister
	E2.1.342 SetExclusiveMonitors
	E2.1.343 SetITSTATEAndCommit
	E2.1.344 SetPending
	E2.1.345 SetThisInstrDetails
	E2.1.346 SetVPTMask
	E2.1.347 Shift
	E2.1.348 Shift_C
	E2.1.349 SignedSat
	E2.1.350 SignedSatQ
	E2.1.351 SignExtend
	E2.1.352 Sleeping
	E2.1.353 SleepOnExit
	E2.1.354 SP
	E2.1.355 SP_Main
	E2.1.356 SP_Main_NonSecure
	E2.1.357 SP_Main_Secure
	E2.1.358 SP_Process
	E2.1.359 SP_Process_NonSecure
	E2.1.360 SP_Process_Secure
	E2.1.361 SpeculativeSynchronizationBarrier
	E2.1.362 SRType
	E2.1.363 Stack
	E2.1.364 StandardFPSCRValue
	E2.1.365 SteppingDebug
	E2.1.366 SynchronizeBusFault
	E2.1.367 T32ExpandImm
	E2.1.368 T32ExpandImm_C
	E2.1.369 TailChain
	E2.1.370 TakePreserveFPException
	E2.1.371 TakeReset
	E2.1.372 ThisInstr
	E2.1.373 ThisInstrAddr
	E2.1.374 ThisInstrITState
	E2.1.375 ThisInstrLength
	E2.1.376 TopLevel
	E2.1.377 TTResp
	E2.1.378 UnprivHaltingDebugAllowed
	E2.1.379 UnprivHaltingDebugEnabled
	E2.1.380 UnsignedSat
	E2.1.381 UnsignedSatQ
	E2.1.382 UpdateDebugEnable
	E2.1.383 UpdateFPCCR
	E2.1.384 ValidateAddress
	E2.1.385 ValidateExceptionReturn
	E2.1.386 VCX_op0
	E2.1.387 VCX_op1
	E2.1.388 VCX_op2
	E2.1.389 VCX_op3
	E2.1.390 Vector
	E2.1.391 VectorCatchDebug
	E2.1.392 VFPExcBarrier
	E2.1.393 VFPExpandImm
	E2.1.394 VFPNegMul
	E2.1.395 VFPSmallRegisterBank
	E2.1.396 ViolatesSPLim
	E2.1.397 VPTActive
	E2.1.398 VPTAdvance
	E2.1.399 WaitForEvent
	E2.1.400 WaitForInterrupt
	E2.1.401 ZeroExtend
	E2.1.402 Zeros

	F Debug Packet Protocols
	F1 ITM and DWT Packet Protocol Specification
	F1.1 About the ITM and DWT packets
	F1.2 Alphabetical list of DWT and ITM packets

	Glossary

