Armev8-M Architecture Reference Manual

arm

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
DDI0553B.1 ID30062020

Release information

DDI0553B.1
1D30062020

Date

Version Changes

30/06/2020

31/03/2020

17/12/2019

02/10/2019

02/10/2019

28/06/2019

28/06/2019

29/03/2019

29/03/2019

14/02/2019

14/12/2018

14/12/2018

29/06/2018

29/06/2018

31/03/2018

31/03/2018

B.1 Non-
Confidential- .
EAC

B.k Non-
Confidential- .
EAC

B.j Non-
Confidential- .
EAC

A.m Non-
confidential- .
EAC

B.i Non-
Confidential- .
EAC

A.l Non-
confidential- .
EAC

B.h Non-
Confidential- .
EAC

A .k Non-
confidential- .
EAC

B.g Non-
Confidential- .
EAC

B.f Non-
Confidential- .
EAC

A.j Non-
confidential- .
EAC

B.e

Confidential- .
EAC

A.i Non-
confidential- .
EAC

B.d

Confidential- .
Beta

A.h Non-
confidential- .
EAC

B.c

Confidential- .
Beta

Twelfth release of the v8.0-M manual with integrated v8.1-M material and
Custom Datapath Extension material

Eleventh release of the v8.0-M manual with integrated v8.1-M material

Tenth release of the v8.0-M manual with integrated v8.1-M material

Eleventh EAC release

Ninth release of the v8.0-M manual with integrated v8.1-M material

Tenth EAC release

Eighth release of the v8.0-M manual with integrated v8.1-M material

Ninth EAC release

Seventh release of the v8.0-M manual with integrated v8.1-M material

Sixth release of the v8.0-M manual with integrated v8.1-M material

Eighth EAC release

Fifth release of the v8.0-M manual with integrated v8.1-M material

Seventh EAC release

Fourth release of the v8.0-M manual with integrated v8.1-M material

Sixth EAC release

Third release of the v8.0-M manual with integrated v8.1-M material

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.

Non-confidential

DDI0553B.1
1D30062020

Date

Version Changes

15/12/2017

15/12/2017

29/09/2017

29/09/2017

02/06/2017

30/11/2016

30/09/2016

28/07/2016

29/03/2016

A.g Non-
confidential- .
EAC

B.b

Confidential- .
Beta

A.f Non-
confidential- .
EAC

B.a

Confidential- .
Beta

A.e Non-
confidential- .
EAC

A.d Non-
confidential- .
EAC

A.c Non-
confidential- .
EAC

A.b Non-
confidential- .
Beta

A.a

Confidential- .
Beta

Fifth EAC release

Second release of the v8.0-M manual with integrated v8.1-M material

Fourth EAC release

First release of the v8.0-M manual with integrated v8.1-M material

Third EAC release

Second EAC release

EAC release

Beta release

Beta release, limited circulation

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.

Non-confidential

O-iii

Armv8-M Architecture Reference Manual

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. The copyright statement reflects the fact that some
draft issues of this document have been released, to a limited circulation.

Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained
in this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS,
IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABIL-
ITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT
TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has undertaken no analysis
to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, INCLUD-
ING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL
DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE
OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure
of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof
is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers
is not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document
at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written
agreement covering this document with Arm, then the click through or signed written agreement prevails over and supersedes the
conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree that
if there is any conflict between the English version of this document and any translation, the terms of the English version of the
Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited
(or its subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this
document may be the trademarks of their respective owners. Please follow Arm’s trademark usage guidelines at
http://www.arm.com/company/policies/trademarks.

Copyright © 2015 - 2020 Arm Limited (or its affiliates). All rights reserved.
Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349

Confidentiality Status

This document is Non-confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 0-iv
ID30062020 Non-confidential

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
ID30062020 Non-confidential

Contents

Arm®v8-M Architecture Reference Manual

Preface

Release information ii
Armv8-M Architecture Reference Manual iv
Proprietary Notice iv
Confidentiality Status iv
Product Status v
Web Address e v
Aboutthisbook e XXXViii
Usingthisbook XXXiX
Conventions e e e e xli
Typographical conventions xli
Signals xli
Numbers e xlii
Pseudocode descriptions xlii
Assembler syntax descriptions L e xlii
Additional reading e xliii
Arm publications xliii
Other publications xliii
Feedback xliv
Feedback onthisbook xliv

Part A Armv8-M Architecture Introduction and Overview

Chapter A1

DDI0553B.1
ID30062020

Introduction
A1 Document layout and terminology 47
A1.1.1 Structure of thedocument L. 47
A1.1.2 Scopeofthedocument 48
A1.1.3 Intendedaudience 48
A1.1.4 Terminology,phrases 48
A1.1.5 Terminology, Armv8-M specificterms 49
A1.2 About the Armv8 architecture, and architecture profiles 50
A1.3 The Armv8-M architecture profile 51
A1.3.1 Security Extension 51
A1.32 MPUmodel 51
A1.3.3 Nested Vector Interrupt Controller 51
A1.3.4 Stackpointers 51
A1.35 The Armv8-Minstructionset 52
A1.36 Debug e 52
A1.3.7 Reliability, Availability, and Serviceability 52
Al4 Armv8-Mvariants 53
A1.4.1 Featuresof Armv8.1-M 57
A1.4.2 Interaction between MVE and the Floating-point Extension in Armv8.1-M 60
A1.43 Debugin Armv8.1-M 61
Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. Vi

Non-confidential

Contents

Part B Armv8-M Architecture Rules

Chapter B1

Chapter B2

Chapter B3

DDI0553B.1
ID30062020

Resets
B1.1 Resets, Cold reset, and Warmreset. 64

Power Management

B2.1 Power management 66
B2.1.1 The Wait for Event (WFE) instruction 66
B2.1.2 TheEventregister. 66
B2.1.3 The Wait for Interrupt (WFI) instruction 67

B2.2 Sleeponexit 68

Programmers’ Model

B3.1 PE modes, Thread mode and Handlermode 71

B3.2 Privileged and unprivileged execution 72

B3.3 Registers 73

B3.4 Special-purpose CONTROL register 75

B3.5 XPSR, APSR, IPSR,andEPSR 76
B3.5.1 Interrupt Program Status Register (IPSR) 76
B3.5.2 Execution Program Status Register (EPSR) 77

B3.6 Security states: Secure state, and Non-securestate 78

B3.7 Security states and register banking between Security states 79

B3.8 Stack pointer 80

B3.9 Exception numbers and exception priority numbers 82

B3.10 Exception enable, pending, and active bits 85

B3.11 Security states, exceptionbanking oL 87

B3.12 Faults e 89

B3.13 Priority model 94

B3.14 Secure address protection 98

B3.15 Security state transitions L L L 99

B3.16 Function calls from Secure state to Non-secure state 101

B3.17 Function returns from Non-secure state 102

B3.18 Exceptionhandling 104

B3.19 Exception entry, context stacking L. 106

B3.20 Exception entry, register clearing after context stacking 115

B3.21 Stack limitchecks 116

B3.22 Exceptionreturn 119

B3.23 Integrity signature 123

B3.24 Exceptions during exceptionentry Lo 124

B3.25 Exceptions during exceptionreturn L oL 126

B3.26 Tail-chaining e 127

B3.27 Exceptions, instruction resume, or instructionrestart 130

B3.28 Lowoverheadloops 133

B3.29 Branchfuture 138

B3.30 Vectortables 140

B3.31 Hardware-controlled priority escalation to HardFault 142

B3.32 Special-purpose mask registers, PRIMASK, BASEPRI, FAULTMASK, for con-

figurable priority boosting L 143

B3.33 Lockup . . . o o o 145
B3.33.1 Instruction-related lockup behavior. 145
B3.33.2 Exception-related lockup behavior 147
Errors when unstacking state on exceptionreturn 149

B3.34 Data independenttiming 151

B3.35 Context Synchronization Event 154

B3.36 Coprocessor SUppoOrt e 155

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. vii

Non-confidential

Contents

Chapter B4

Chapter B5

Chapter B6

DDI0553B.1
ID30062020

B3.37 The Custom Datapath Extension 157
B3.37.1 Overview of the Custom Datapath Extension 157
B3.37.2 Enabling CDE instructions 157
B3.37.3 Execution of CDE instructions 159

Floating-point Support

B4.1 The optional Floating-point Extension, FPv6 162

B4.2 About the Floating-point Status and Control Registers 164

B4.3 Registers for Floating-point data processing, S0-S31, or DO-D15 165

B4.4 Floating-point standards and terminology 166

B4.5 Floating-point data representable 167

B4.6 Floating-point encoding formats, half-precision, single-precision, and double-

Precision e 168

B4.7 The IEEE 754 Floating-point exceptions 170

B4.8 The Flush-to-zeromode 171
B4.8.1 The Flush to zero mode half-precision calculations 172

B4.9 The Default NaN mode, and NaN handling 173

B4.10 TheDefaultNaN 174

B4.11 Combinations of Floating-point exceptions 175

B4.12 Priority of Floating-point exceptions relative to other Floating-point exceptions 176

Vector Extension

B5.1 Vector Extensionoperation. o o 178
B5.2 Vectorregisterfile 179
B5.3 Lanes 180
B5.4 Beats 181
B5.5 Exceptionstate 183
B5.6 Predication/conditional execution 187
B5.6.1 Looptail predication. L 187
B5.6.2 VPTopredication 188
B5.6.3 Effects of predication 191
B5.6.4 ITblock 193
B5.7 MVE interleaving/de-interleaving loads and stores 194

Memory Model

B6.1 MemOry aCCeSSES o o i e e e e e e 197
B6.2 Address space e 198
B6.3 Endianness 199
B6.4 Alignmentbehavior L 201
B6.5 Atomicity e e 202
B6.5.1 Single-copy atomicity 202
B6.5.2 Multi-copy atomicity L 202

B6.6 Concurrent modification and execution of instructions 204
B6.7 Accessrights 206
B6.8 Observability of memory accesses 208
B6.9 Completion of memory accesses 210
B6.10 Ordering requirements for memory accesses 211
B6.11 Ordering of implicit memory accesses 212
B6.12 Ordering of explicit memory accesses, . 213
B6.13 Memory barriers L 214
B6.13.1 Instruction Synchronization Barrier 214
B6.13.2 DataMemoryBarrier 214
B6.13.3 Data SynchronizationBarrier 215
B6.13.4 Consumption of Speculative Data Barrier 216
B6.13.5 Physical Speculative Store Bypass Barrier 217
Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. viii

Non-confidential

Contents

Chapter B7

Chapter B8

Chapter B9

Chapter B10

Chapter B11

DDI0553B.1
ID30062020

B6.13.6 Speculative Store Bypass Barrier 217
B6.13.7 Synchronization requirements for System Control Space 218
B6.14 Normalmemory e e 219
B6.15 Cacheability attributes L 221
B6.16 Devicememory 222
B6.17 Device memory attributeso o 224
B6.17.1 Gathering and non-Gathering Device memory attributes 225
B6.17.2 Reordering and non-Reordering Device memory attributes 225
B6.17.3 Early Write Acknowledgement and no Early Write Acknowledgement
Device memory attributes oL 226
B6.18 Shareability domains 227
B6.19 Shareability attributes L 229
B6.20 Memory access restrictions L 230
B6.21 Mismatched memory attributes L. 231
B6.22 Load-Exclusive and Store-Exclusive accesses to Normal memory 233
B6.23 Load-Acquire and Store-Release accessestomemory 234
B6.24 Caches e 236
B6.25 Cache identification 238
B6.26 Cachevisibility 239
B6.27 Cachecoherency e 240
B6.28 Cacheenablinganddisabling 241
B6.29 Cache behavioratreset 242
B6.30 Behavior of Preload Data (PLD) and Preload Instruction (PLI) instructions with
CaChes o e 243
B6.31 Branch predictors 244
B6.32 Cache maintenance operations, 245
B6.33 Ordering of cache maintenance operations 249
B6.34 Branch predictor maintenance operations L. 250

The System Address Map

B7.1 Systemaddressmap 252
B7.2 The System region of the systemaddressmap 253
B7.3 The System Control Space (SCS) 255
Synchronization and Semaphores
B8.1 Exclusive access instructions L 257
B8.2 Thelocal monitors 258
B8.3 The global monitor 260
B8.3.1 Load-Exclusive and Store-Exclusive 261
B8.3.2 Load-Exclusive and Store-Exclusive in Shareable memory 262
B8.4 Exclusive access instructions and the monitors 264
B8.5 Load-Exclusive and Store-Exclusive instruction constraints 265

The Armv8-M Protected Memory System Architecture

B9.1 Memory Protection Unit 268

B9.2 Security attribution 271

B9.3 Security attribution unit (SAU) L 274

B9.4 IMPLEMENTATION DEFINED Attribution Unit (IDAU) 275

The System Timer, SysTick

B10.1 The systemtimer, SysTick 277

Nested Vectored Interrupt Controller

B11.1 NVIC definition 280

B11.2 NVIC operation 281
Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. ix

Non-confidential

Contents

Chapter B12

Chapter B13

Chapter B14

DDI0553B.1
ID30062020

Debug
B12.1 Debug feature overview
B12.1.1 Debugmechanisms
B12.1.2 Debugresources
B12.1.3 Trace
B12.2 Accessingdebugfeatures
B12.2.1 ROMtable
B12.2.2 Debug Systemregisters
B12.2.3 CoreSight and identification registers
B12.3 Debug authenticationinterface L
B12.3.1 Halting debug authentication
B12.3.2 Non-invasive debug authentication.
B12.3.3 DebugMonitor exception authentication
B12.3.4 DAP access permissionso e
B12.4 Debug eventbehavior
B12.4.1 Aboutdebugevents
B12.4.2 Debugstepping
B12.4.3 Vectorcatch
B12.4.4 Breakpointinstructions oL
B12.4.5 Externaldebugrequest
B12.5 Debugstate
B12.6 ExitingDebugstate
B12.7 Multiprocessor support
B12.7.1 Cross-haltevent
B12.7.2 Externalrestartrequest.,

Debug and Trace Components

B13.1 Instrumentation Trace Macrocell
B13.1.1 AbouttheITM
B13.1.2 ITMoperation
B13.1.3 Timestampsupport
B13.1.4 Synchronization support L
B13.1.5 Continuationbits

B13.2 Data Watchpointand Traceunit
B13.2.1 Aboutthe DWT
B13.2.2 DWTunitoperation
B13.2.3 Constraints on programming DWT comparators
B13.24 CMPMATCH triggerevents
B13.2.5 Matchingindetail o .
B13.2.6 DWT match restrictions and relaxations
B13.2.7 DWT trace restrictions and relaxations
B13.2.8 CYCCNT cycle counter and related timers
B13.2.9 Profiling counter support oo
B13.2.10 Program Counter sampling support

B13.3 Embedded Trace Macrocell

B13.4 Trace PortInterface Unit

B13.5 Flash Patch and Breakpointunit
B13.5.1 Aboutthe FPBunit
B13.5.2 FPBunitoperation
B13.5.3 Cachemaintenance

The Performance Monitoring Extension

B14.1 Counters
B14.2 Accuracy of the performance counters
B14.3 Security,access,andmodes o

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

Contents

B14.4 Attributability 368
B14.5 Coexistence with the DWT Performance Monitors 369
B14.6 Interrupts and Debugevents oo 371
B14.7 Performance Monitors and Debug state 372
B14.8 List of supported architectural and microarchitectural events 373
B14.9 Generic architectural and microarchitecturalevents 381
B14.9.1 L<n>|_CACHE_REFILL (Level<n> instruction cache refill) 381
B14.9.2 L<n>D_CACHE_REFILL (Level<n>data cacherefill) 381
B14.9.3 L<n>D_CACHE_MISS_RD (Level<n> data cache missonread) 381
B14.9.4 L<n>D_CACHE_WB (Level<n> data cache write-back) 382
B14.9.5 L<n>l_CACHE (Level<n> instruction cache access) 382
B14.9.6 L<n>D_CACHE (Level<n>datacacheaccess) 383
B14.9.7 L<n>D_CACHE_RD (Level<n> data cache access,read) 383
B14.10 Common eventdescriptions 384
B14.11 Required PMUevents 405
B14.12 IMPLEMENTATION DEFINED eventnumbers 406
Chapter B15 Reliability, Availability, and Serviceability (RAS) Extension
B15.1 OVerview e 408
B15.2 Taxonomyoferrors 409
B15.2.1 Architectural error propagation 409
B15.2.2 Architecturally infected, contained, and uncontained 410
B15.2.3 Architecturally consumederrors 410
B15.24 Othererrors 410
B15.3 Generating errorexceptions L L 411
B15.3.1 Error correctionanddeferment. 413
B15.4 Error Synchronization Barrier (ESB) 414
B15.4.1 ESB and Unrecoverableerrors 414
B15.4.2 ESB and other containableerrors 414
B15.4.3 ESBandothererrors 415
B15.5 Implicit Error Synchronization (IESB) 416
B15.6 Faulthandling 418
B15.7 RAS errorrecords o 420
B15.8 Multiple BusFault exceptions L 423
B15.9 Error Recoveryreset 424
B15.10 Minimal RAS implementation 425

Part C Armv8-M Instruction Set

Chapter C1 Instruction Set Overview
C11 Instructionset 428
C1.2 Format of instruction descriptions 429
C1.21 Thetitle 429
C1.22 Ashortdescription 429
C1.2.3 The instruction encoding orencodings 429
C1.2.4 Any alias conditions, if applicable 431
C1.25 Standard assembler syntaxfields 431
C1.2.6 Pseudocode describing how the instruction operates 433
C1.2.7 Use of labels in UAL instructionsyntax 433
C1.2.8 Using syntax information 434
C1.3 Conditional execution 436
C1.3.1 Conditional instructions 437
C1.3.2 Pseudocode details of conditional execution 437
C1.3.3 Conditional execution of undefined instructions 437
DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. Xi

ID30062020 Non-confidential

Contents

C1.8.4 Interaction of undefined instruction behavior with UNPREDICTABLE or
CONSTRAINED UNPREDICTABLE instruction behavior 438
C1.35 ITSTATE o 438
C1.3.6 Pseudocode details of ITSTATE operation. 439
C1.3.7 SVCandITSTATE. e 439
C1.3.8 CONSTRAINED UNPREDICTABLE behavior and IT blocks 439
C1.4 Instruction set encoding information o L 442
C1.4.1 UNDEFINED and UNPREDICTABLE instruction setspace. 442

C1.4.2 Pseudocode descriptions of operations on general-purpose registers
andthe PC. 442
C1.4.3 Useof Ob1111 as aregister specifier 442
C1.44 Use of 0b1101 as a register specifier 444
C1.45 16-bit T32 instruction supportforSP. 445
C146 Branching e 445
C1.4.7 Instruction set, interworking and interstating support 446
C1.5 Modified immediate constants L. 448
C1.5.1 Operation of modified immediate constants 448
C1.6 NOP-compatible hint instructions 449
C1.7 SBZ or SBOfields ininstructions L 450

Chapter C2 Instruction Specification

Cc2A1 Top level T32 instruction setencoding 452
c2.2 16-bit T32 instructionencoding, 453
C2.2.1 Shift (immediate), add, subtract, move, and compare 453
C2.2.2 Data-processing (two low registers) 455
C2.2.3 Special data instructions and branch and exchange 456
C2.24 Load/store (registeroffset) 457
C2.2.5 Load/store word/byte (immediate offset) 457
C2.2.6 Load/store halfword (immediate offset) 458
C2.2.7 Load/store (SP-relative) 458
C2.28 AddPC/SP (immediate) 459
C2.2.9 Miscellaneous 16-bitinstructions 459
C2.2.10 Load/store multiple 462
C2.2.11 Conditional branch, and SupervisorCall 462
c2.3 32-bit T32 instructionencoding 464
C2.3.1 Coprocessor, floating-point, and vector instructions 464
C2.3.2 Load/store (multiple, dual, exclusive, acquire-release) 480
C2.3.3 Data-processing (shifted register) 485
C2.3.4 Branches and miscellaneous control 488
C2.3.5 Data-processing (modified immediate) 491
C2.3.6 Data-processing (plain binary immediate) 492
C2.3.7 Load/storesingle 494
C2.3.8 Data-processing (register) 502
C2.3.9 Multiply, multiply accumulate, and absolute difference 506
C2.3.10 Long multiply anddivide 507
C2.4 Alphabetical list of instructions 509
C24.1 ADC (immediate) 510
C2.42 ADC (register) e 511
C2.4.3 ADD (SPplusimmediate) 513
C24.4 ADD (SPplusregister) 515
C2.45 ADD (immediate) 517
C2.4.6 ADD (immediate,toPC), 520
C2.4.7 ADD (register) e 522
C2.4.8 ADR . . . 525
C2.4.9 AND (immediate) 527
DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. Xii

ID30062020

Non-confidential

Contents

DDI0553B.1
ID30062020

C2.4.10 AND (register) 528
C2.4.11 ASR (immediate) 530
C2.4.12 ASR(register) e 532
C2.4.13 ASRL (immediate) 534
C2.4.14 ASRL (register) 535
C2.4.15 ASRS (immediate) 536
C2.416 ASRS (register) 538
C2.417 B . . 540
C24.18 BF BFX,BFL,BFLX,BFCSEL 542
C24.19 BFC e 546
C2.420 BFIl 547
C2.4.21 BIC (immediate) 548
C2.4.22 BIC (register) e 549
C2.4.23 BKPT o e 551
C2.424 BL e 552
C2.425 BLX,BLXNS 553
C2.426 BX,BXNS 555
C2.4.27 CBNZ,CBZ 556
C2.4.28 CDP,CDP2 e 557
C2.429 CINC 559
C2.430 CINV . . . e 560
C2.431 CLREX 561
C2.4.32 CLRM 562
C2.4.33 CLZ 563
C2.4.34 CMN (immediate) 564
C2.4.35 CMN (register) e 565
C24.36 CMP (immediate) 567
C2.4.37 CMP (register) 568
C2.4.38 CNEG 570
C2.439 CPS 571
C2.440 CSDB 573
C2.441 GCSEL. e 574
C2.4.42 CSET 576
C2.443 CSETM e 577
C2.4.44 CSINC 578
C2.4.45 CSINV . . . o 580
C2.446 CSNEG e 582
C2.447 CX1 . 584
C2.448 CXID e 586
C2.4.49 CX2 . . . 588
C2.450 CX2D e 590
C2.451 CX3 . . 592
C2.452 CX3D e 594
C2.453 DBG 596
C2.454 DMB e 597
C2.455 DSB 598
C2.456 EOR (mmediate) 599
C2.4.57 EOR((register) 600
C2.458 ESB 602
C2.459 FLDMDBX, FLDMIAX o 603
C2.4.60 FSTMDBX,FSTMIAX e 606
C2.4.61 ISB o e 608
C2.4.62 1T . . . e 609
C2.4.63 LCTP 611
C2.4.64 LDA . . . e 612
Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. xiii
Non-confidential

Contents

DDI0553B.1
ID30062020

C2.4.65 LDAB e 613
C2.4.66 LDAEX e 614
C2.4.67 LDAEXB e 615
C2.4.68 LDAEXH 616
C2.4.69 LDAH. e 617
C2.4.70 LDC, LDC2 (immediate) 618
C2.4.71 LDC,LDC2 (literal) 621
C2.4.72 LDM,LDMIA,LDMFD 623
C2.4.73 LDMDB,LDMEA 627
C2.4.74 LDR (immediate) 630
C2.4.75 LDR(literal) 634
C2.4.76 LDR (register) e 636
C2.4.77 LDRB (immediate) 638
C2.4.78 LDRB (literal) 641
C2.4.79 LDRB (register) 642
C2.480 LDRBT 644
C2.4.81 LDRD (immediate) 645
C2.4.82 LDRD (literal) 647
C2.4.83 LDREX 649
C2.4.84 LDREXB 650
C2.4.85 LDREXH e 651
C2.4.86 LDRH (immediate) 652
C2.4.87 LDRH (literal) 655
C2.4.88 LDRH (register) e 656
C2.4.89 LDRHT 658
C2.490 LDRSB (mmediate) 659
C2.491 LDRSB(literal) 661
C2.4.92 LDRSB (register) 662
C2.4.93 LDRSBT e 664
C2.4.94 LDRSH (immediate). 665
C2.4.95 LDRSH (literal) 667
C2.4.96 LDRSH (register) 668
C2.4.97 LDRSHT 670
C2.4.98 LDRT e 671
C2.4.99 LE,LETP e 672
C2.4.100 LSL (immediate) 674
C2.4.101 LSL (register) e 676
C2.4.102 LSLL (immediate) 678
C2.4.103 LSLL (register) 679
C2.4.104 LSLS (immediate) 680
C2.4.105 LSLS (register) e 682
C2.4.106 LSR (immediate) 684
C2.4.107 LSR (register) 686
C2.4.108 LSRL (immediate) 688
C2.4.109 LSRS (immediate) 689
C2.4.110 LSRS (register) e 691
C2.4111 MCR,MCR2 693
C2.4112 MCRR,MCRR2 e 695
C2.4113 MLA . . . 697
C2.4114 MLS e 698
C2.4.115 MOV (immediate) 699
C2.4.116 MOV (register) e 701
C2.4.117 MOV, MOVS (register-shifted register) 705
C2.41418 MOVT 708
C2.4119 MRC,MRC2 e 709
Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. xiv

Non-confidential

Contents

C2.4.120 MRRC,MRRC2 711
C2.4121 MRS e 713
C2.4.122 MSR (register) e 717
C2.4123 MUL e 722
C2.4.124 MVN (immediate) 724
C2.4.125 MVN (register) 725
C2.4126 NOP e 727
C2.4.127 ORN (immediate) 728
C2.4.128 ORN (register) e 729
C2.4129 ORR (immediate) 731
C2.4.130 ORR (register) 732
C2.4131 PKHBT,PKHTB e 734
C2.4132 PLD (literal) 736
C2.4.133 PLD, PLDW (immediate) 737
C2.4.134 PLD, PLDW (register) o o 739
C2.4.135 PLI (immediate, literal) 740
C2.4.136 PLI (register) 742
C2.4.137 POP (multiple registers) 743
C2.4.138 POP (singleregister) e 745
C2.4139 PSSBB 746
C2.4.140 PUSH (multipleregisters) o 747
C2.4.141 PUSH (singleregister) 749
C2.4.142 QADD 750
C2.4143 QADD16 e 751
C2.4.144 QADD8 752
C2.4.145 QASX . . . L 753
C2.4146 QDADD 754
C2.4147 QDSUB 755
C2.4.148 QSAX . . . 756
C2.4149 QSUB 757
C2.4150 QSUBT6 e 758
C24.151 QSUB8 e 759
C2.4152 RBIT 760
C2.4153 REV e 761
C2.4154 REV16 763
C2.4155 REVSH 765
C2.4.156 ROR (immediate) e 767
C2.4.157 ROR (register) 768
C2.4.158 RORS (immediate) 770
C2.4.159 RORS (register) o e 771
C2.4.160 RRX o e 773
C2.4.161 RRXS . . . o o 774
C2.4.162 RSB (immediate) 775
C2.4163 RSB (register) 777
C2.4.164 SADD16 e 779
C2.4.165 SADDS8 780
C2.4.166 SASX . . . 781
C2.4.167 SBC (immediate) 782
C2.4.168 SBC (register) 783
C2.4.169 SBFX e 785
C2.4170 SDIV o e 786
C2.4171 SEL o 787
C2.4.172 SEV . . . e 788
C24.173 SG 789
C2.4174 SHADD16 e 791
DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. XV

ID30062020

Non-confidential

Contents

DDI0553B.1
ID30062020

C2.4175 SHADDS e 792
C2.4.176 SHASX e 793
C2.4.177 SHSAX o 794
C2.4178 SHSUB16 e 795
C24.179 SHSUBS8 e 796
C2.4.180 SMLABB, SMLABT, SMLATB, SMLATT 797
C2.4.181 SMLAD, SMLADX e 799
C2.4.182 SMLAL e 800
C2.4.183 SMLALBB, SMLALBT, SMLALTB, SMLALTT 801
C2.4.184 SMLALD, SMLALDX 803
C2.4.185 SMLAWB, SMLAWT 805
C2.4.186 SMLSD, SMLSDX e 806
C2.4.187 SMLSLD, SMLSLDX 807
C2.4.188 SMMLA, SMMLAR e 809
C2.4.189 SMMLS, SMMLSR 810
C2.4.190 SMMUL, SMMULR 811
C2.4.191 SMUAD, SMUADX e 812
C2.4.192 SMULBB, SMULBT, SMULTB, SMULTT 813
C2.4193 SMULL 815
C2.4.194 SMULWB, SMULWT e 816
C2.4.195 SMUSD, SMUSDX e 817
C2.4.196 SQRSHR (register) 818
C2.4.197 SQRSHRL (register) 819
C2.4.198 SQSHL (immediate) 820
C2.4.199 SQSHLL (immediate) 821
C2.4.200 SRSHR (immediate) 822
C2.4.201 SRSHRL (immediate) 823
C2.4.202 SSAT 824
C2.4.203 SSATI6 e 825
C2.4.204 SSAX . . . 826
C2.4.205 SSBB 827
C2.4.206 SSUB16 e 828
C2.4.207 SSUB8 e 829
C2.4.208 STC,STC2 830
C2.4.209 STL. . . . o o i 833
C2.4210 STLB 834
C2.4.211 STLEX e 835
C2.4212 STLEXB 837
C2.4213 STLEXH 839
C2.4214 STLH e 841
C2.4.215 STM, STMIA, STMEA e 842
C2.4.216 STMDB,STMFD e 845
C2.4.217 STR (immediate) 847
C2.4.218 STR(register) 850
C2.4.219 STRB (immediate) 852
C2.4.220 STRB (register) e 855
C2.4.221 STRBT« o 857
C2.4.222 STRD (immediate) 858
C2.4.223 STREX e 860
C2.4.224 STREXB e 862
C2.4.225 STREXH 864
C2.4.226 STRH (immediate) 866
C2.4.227 STRH (register) 869
C2.4228 STRHT 871
C2.4.229 STRT 872
Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. Xvi
Non-confidential

Contents

DDI0553B.1
ID30062020

C2.4.230 SUB (SP minus immediate) 873
C2.4.231 SUB (SP minusregister) 875
C2.4.232 SUB (immediate) 877
C2.4.233 SUB (immediate, fromPC) 880
C2.4.234 SUB (register) e 881
C2.4.235 SVC o 883
C2.4.236 SXTAB e 884
C2.4.237 SXTAB16 e 885
C2.4.238 SXTAH o e 886
C2.4.239 SXTB e 887
C2.4.240 SXTB16 e 889
C2.4.241 SXTH e 890
C2.4.242 TBB, TBH 892
C2.4.243 TEQ (immediate) 893
C2.4.244 TEQ (register) e 894
C2.4.245 TST (immediate) 895
C2.4.246 TST (register) 896
C2.4247 TT,TTT, TTA, TTAT e et 898
C2.4.248 UADD16 e 900
C2.4249 UADDS e 901
C2.4.250 UASX . . . e 902
C2.4.251 UBFX 903
C2.4.252 UDF e 904
C2.4253 UDIV o e 905
C2.4.254 UHADD16 e 906
C2.4.255 UHADDS8 907
C2.4.256 UHASX e 908
C2.4.257 UHSAX e 909
C2.4258 UHSUB16 910
C2.4259 UHSUBS 911
C2.4.260 UMAAL 912
C2.4261 UMLAL e 913
C2.4262 UMULL 914
C2.4.263 UQADDIT6 e 915
C2.4.264 UQADDS e 916
C2.4.265 UQASX o e 917
C2.4.266 UQRSHL (register) 918
C2.4.267 UQRSHLL (register) o 919
C2.4.268 UQSAX e 920
C2.4.269 UQSHL (immediate) 921
C2.4.270 UQSHLL (immediate) 922
C2.4271 UQSUB16 e 923
C2.4272 UQSUBS8 e 924
C2.4.273 URSHR (immediate) 925
C2.4.274 URSHRL (immediate) 926
C2.4275 USADS e 927
C2.4.276 USADASB e 928
C2.4.277 USAT e 929
C2.4278 USAT16 930
C2.4.279 USAX . . . o e 931
C2.4280 USUB16 e 932
C2.4281 USUB8 933
C2.4282 UXTAB e 934
C2.4283 UXTAB16 e 935
C2.4.284 UXTAH e 936
Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. XVii
Non-confidential

Contents

DDI0553B.1
ID30062020

C2.4285 UXTB e 937
C2.4.286 UXTB16 e 939
C2.4.287 UXTH o e 940
C2.4.288 VABAV 942
C2.4.289 VABD (floating-point) 944
C2.4.290 VABD 946
C2.4.291 VABS (floating-point) 948
C2.4.292 VABS (vector) e 949
C2.4.293 VABS e 950
C2.4.294 VADC e 952
C2.4.295 VADD (floating-point) 954
C2.4.296 VADD (veCtor) e 956
C2.4.297 VADD e 958
C2.4.298 VADDLV e 960
C2.4.299 VADDV o 962
C2.4.300 VAND (immediate) 964
C2.4.301 VAND e 965
C2.4.302 VBIC (immediate) 966
C2.4.303 VBIC (register) e 968
C2.4.304 VBRSR 969
C2.4.305 VCADD (floating-point) 971
C2.4.306 VCADD 973
C2.4.307 VCLS 975
C2.4.308 VCLZ o e 976
C2.4.309 VCMLA (floating-point) 977
C2.4.310 VCMP (floating-point) 980
C2.4.311 VCMP (vector) e 982
C2.4312 VCMP . . . e 987
C24313 VCMPE 989
C2.4.314 VCMUL (floating-point) 991
C2.4315 VCTP . . . o o 994
C2.4.316 VCVT (between double-precision and single-precision) 995
C2.4.317 VCVT (between floating-point and fixed-point) (vector) 996
C2.4.318 VCVT (between floating-point and fixed-point) 998
C2.4.319 VCVT (between floating-point and integer) 1001
C2.4.320 VCVT (between single and half-precision floating-point) 1003
C2.4.321 VCVT (floating-pointtointeger) 1005
C2.4.322 VCVT (from floating-pointto integer) 1007
C2.4.323 VCVT (integer to floating-point) 1009
C2.4.324 VCVTA . . . 1011
C2.4325 VCVTB« o 1013
C2.4.326 VCVTM o 1015
C2.4.327 VCVTN e 1017
C2.4.328 VCVTP 1019
C2.4.329 VCVTR 1021
C2.4.330 VCVTT o o 1023
C2.4.331 VCX1 (vector) o e 1025
C2.4.332 VOCXT . . . o e 1027
C2.4.333 VCX2 (vector) e 1029
C2.4.334 VCX2. o 1031
C2.4.335 VCX3 (VECIOr) o e 1033
C2.4.336 VCX3 o o 1035
C2.4.337 VDDUP,VDWDUP 1037
C2.4.338 VDIV 1040
C2.4.339 VDUP e 1042
Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. xviii
Non-confidential

Contents

DDI0553B.1
ID30062020

C2.4.340 VEOR e 1044
C2.4.341 VFMA (vector by scalar plus vector, floating-point) 1045
C2.4.342 VFMA . . . e 1047
C2.4.343 VFMA, VFMS (floating-point) 1049
C2.4.344 VFMAS (vector by vector plus scalar, floating-point) 1051
C2.4.345 VEMS e 1053
C2.4.346 VENMA e 1055
C2.4.347 VENMS e 1057
C2.4.348 VHADD e 1059
C2.4.349 VHCADD e 1061
C2.4.350 VHSUB e 1063
C2.4.351 VIDUR, VIWDUP 1065
C2.4.352 VINS e 1068
C2.4.353 VLD2 e 1069
C2.4354 VLD4 1071
C2.4.355 VLDM e 1073
C2.4.356 VLDR (System Register) 1076
C2.4.357 VLDR e 1079
C2.4.358 VLDRB, VLDRH, VLDRW 1082
C2.4.359 VLDRB, VLDRH, VLDRW, VLDRD (vector) 1087
C2.4.360 VLLDM e 1093
C2.4.361 VLSTM e 1095
C2.4.362 VMAX, VMAXA 1097
C2.4.363 VMAXNM e 1099
C2.4.364 VMAXNM, VMAXNMA (floating-point) 1101
C2.4.365 VMAXNMYV, VMAXNMAV (floating-point) 1103
C2.4.366 VMAXV, VMAXAV e 1105
C2.4.367 VMIN, VMINA 1107
C2.4.368 VMINNM e 1109
C2.4.369 VMINNM, VMINNMA (floating-point) 1111
C2.4.370 VMINNMV, VMINNMAV (floating-point) 1113
C2.4.371 VMINV, VMINAV 1115
C2.4.372 VMLA (vector by scalarplusvector) 1117
C2.4.373 VMLA . . . e 1119
C2.4.374 VMLADAV e 1121
C2.4.375 VMLALDAV 1124
C2.4.376 VMLALV e 1126
C2.4.377 VMLAS (vector by vectorplusscalar) 1127
C2.4.378 VMLAV e 1129
C2.4379 VMLS e 1130
C2.4.380 VMLSDAV e 1132
C2.4.381 VMLSLDAV 1135

C2.4.382 VMOV (between general-purpose register and half-precision register) .1137
C2.4.383 VMOV (between general-purpose register and single-precision register) 1138
C2.4.384 VMOV (between two general-purpose registers and a doubleword register)139
C2.4.385 VMQV (between two general-purpose registers and two single-precision

registers) 1141

C2.4.386 VMOV (general-purpose registerto vectorlane) 1143
C2.4.387 VMOV (half of doubleword register to single general-purpose register) .1144
C2.4.388 VMOV (immediate) (vector) 1145
C2.4.389 VMOV (immediate) 1147
C2.4.390 VMOV (register) (vector) 1149
C2.4.391 VMOV (register) 1150
C2.4.392 VMOV (single general-purpose register to half of doubleword register) . 1151
C2.4.393 VMOV (two 32-bit vector lanes to two general-purpose registers)1152
Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. Xix

Non-confidential

Contents

DDI0553B.1
ID30062020

C2.4.394 VMOV (two general-purpose registers to two 32-bit vector lanes)1154

C2.4.395 VMOV (vector lane to general-purpose register) 1156
C2.4.396 VMOVL e 1158
C2.4.397 VMOVN o e 1160
C2.4.398 VMOVX e 1162
C2.4.399 VMRS 1163
C2.4.400 VMSR e 1166
C2.4.401 VMUL (floating-point) 1168
C2.4.402 VMUL (vector) e 1170
C2.4.403 VMUL 1172
C2.4.404 VMULH, VRMULH 1174
C2.4.405 VMULL (integer) 1176
C2.4.406 VMULL (polynomial) 1178
C2.4.407 VMVN (immediate) 1180
C2.4.408 VMVN (register) e 1182
C2.4.409 VNEG (floating-point) 1183
C2.4.410 VNEG (vector) 1184
C2.4411 VNEG e 1185
C2.4.412 VNMLA e 1187
C2.4413 VNMLS 1189
C2.4414 VNMUL e 1191
C2.4.415 VORN (immediate) 1193
C2.4.416 VORN e 1194
C2.4.417 VORR (immediate) 1195
C2.4.418 VORR 1197
C2.4.419 VPNOT o e e 1198
C2.4.420 VPOP 1199
C2.4421 VPSEL 1201
C2.4.422 VPST o 1202
C2.4.423 VPT (floating-point) 1203
C2.4.424 NPT e 1206
C2.4.425 VPUSH 1212
C2.4.426 VQABS 1214
C2.4.427 VQADD 1215
C2.4.428 VQDMLADH, VQRDMLADH 1217
C2.4.429 VQDMLAH, VQRDMLAH (vector by scalar plus vector) 1220
C2.4.430 VQDMLASH, VQRDMLASH (vector by vector plus scalar) 1222
C2.4.431 VQDMLSDH, VQRDMLSDH 1224
C2.4.432 VQDMULH, VQRDMULH oo 1227
C2.4.433 VODMULL 1230
C2.4.434 VOMOVN 1232
C2.4.435 VOMOVUN 1234
C2.4436 VONEG e 1236
C2.4437 VQRSHL 1237
C2.4438 VQRSHRN 1239
C2.4439 VQRSHRUN 1241
C2.4.440 VQSHL, VQSHLU 1243
C2.4441 VQSHRN 1247
C2.4442 VQSHRUN 1249
C2.4.443 VQSUB e 1251
C2.4444 VREV16 1253
C2.4.445 VREV32 e 1255
C2.4.446 VREVB4 e 1257
C2.4.447 VRHADD 1259
C2.4.448 VRINT (floating-point) 1261
Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. XX
Non-confidential

Contents

C2.4.449 VRINTA e 1263
C2.4.450 VRINTM e 1265
C2.4.451 VRINTN e 1267
C2.4.452 VRINTP o o 1269
C2.4453 VRINTR e 1271
C2.4.454 VRINTX 1273
C2.4.455 VRINTZ e 1275
C2.4.456 VRMLALDAVH 1277
C2.4.457 VRMLALVH 1279
C2.4.458 VRMLSLDAVH e 1280
C2.4459 VRSHL 1282
C2.4.460 VRSHR e 1284
C2.4.461 VRSHRN 1286
C2.4.462 VSBC 1288
C2.4.463 VSCCLRM 1290
C2.4464 VSEL 1292
C2.4465 VSHL 1295
C2.4.466 VSHLC e 1298
C2.4.467 VSHLL 1299
C2.4.468 VSHR 1302
C2.4469 VSHRN e 1304
C2.4470 VSLI 1306
C2.4471 VSQRT e 1308
C2.4472 VSRI o 1310
C2.4.473 VST2 o o 1312
C2.4.474 VST4 e 1314
C2.4475 VSTM e 1316
C2.4.476 VSTR (System Register) 1319
C2.4477 VSTR . . . e 1322
C2.4.478 VSTRB, VSTRH, VSTRW 1324
C2.4.479 VSTRB, VSTRH, VSTRW, VSTRD (vector) 1329
C2.4.480 VSUB (floating-point) 1335
C2.4.481 VSUB (vector) 1337
C2.4482 VSUB e 1339
C2.4483 WFE e 1341
C2.4.484 WFI. o o e 1342
C2.4.485 WLS, DLS, WLSTP,DLSTP i . 1343
C2.4486 YIELD e 1346
Part D Armv8-M Registers and Payload Specification
Chapter D1 Register and Payload Specification
D1.1 Registerindex 1349
D1.1.1 Special and general-purpose registers L. 1349
D1.1.2 Payloads 1350
D1.1.3 Instrumentation Macrocell 1350
D1.1.4 DataWatchpointandTrace 1350
D1.1.5 Flash Patch and Breakpoint 1351
D1.1.6 Performance MonitoringUnit 1351
D1.1.7 Reliability, Availability and Serviceability Extension Fault Status Register1352
D1.1.8 Implementation Control Block 1352
D1.1.9 SysTick Timer 1353
D1.1.10 Nested Vectored Interrupt Controller 1353
D1.1.11 SystemControlBlock L 1353
DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. XXi

ID30062020 Non-confidential

Contents

D1.1.12 Memory ProtectionUnit L. 1354
D1.1.13 Security Attribution Unit 1354
D1.1.14 Debug ControlBlock 1354
D1.1.15 Software Interrupt Generation, 1355
D1.1.16 Reliability, Availability and Serviceability Extension Fault Status Register1355
D1.1.17 Floating-Point Extension, 1355
D1.1.18 Cache Maintenance Operations 1355
D1.1.19 Debug IdentificationBlock 1356
D1.1.20 Implementation Control Block (NS alias) 1356
D1.1.21 SysTick Timer(NSalias) 1356
D1.1.22 Nested Vectored Interrupt Controller (NS alias) 1356
D1.1.23 System Control Block (NS alias) 1357
D1.1.24 Memory Protection Unit (NS alias) 1357
D1.1.25 Debug Control Block (NS alias) 1358
D1.1.26 Software Interrupt Generation (NS alias) 1358
D1.1.27 Reliability, Availability and Serviceability Extension Fault Status Register
(NS Alias) 1358
D1.1.28 Floating-Point Extension (NS alias) 1358
D1.1.29 Cache Maintenance Operations (NS alias) 1358
D1.1.30 Debug Identification Block (NS alias) 1359
D1.1.31 Trace PortInterface Unit 1359
D1.2 Alphabetical listof registerso 1361
D1.2.1 ACTLR, Auxiliary Control Register 1362
D1.2.2 AFSR, Auxiliary Fault Status Register 1363
D1.2.3 AIRCR, Application Interrupt and Reset Control Register 1364
D1.2.4 APSR, Application Program Status Register 1369
D1.2.5 BASEPRI, Base Priority Mask Register 1371
D1.2.6 BFAR, BusFault Address Register 1372
D1.2.7 BFSR, BusFault Status Register 1373
D1.2.8 BPIALL, Branch Predictor Invalidate All 1376
D1.29 CCR, Configuration and Control Register 1377
D1.2.10 CCSIDR, Current Cache Size IDregister 1381
D1.2.11 CFSR, Configurable Fault Status Register 1383
D1.2.12 CLIDR, Cache Level IDRegister 1384
D1.2.13 CONTROL, Control Register 1386
D1.2.14 CPACR, Coprocessor Access Control Register 1388
D1.2.15 CPPWR, Coprocessor Power Control Register 1390
D1.2.16 CPUID, CPUID Base Register 1393
D1.2.17 CSSELR, Cache Size Selection Register 1395
D1.2.18 CTR, Cache Type Register 1397
D1.2.19 DAUTHCTRL, Debug Authentication Control Register 1399
D1.2.20 DAUTHSTATUS, Debug Authentication Status Register 1402
D1.2.21 DCCIMVAC, Data Cache line Clean and Invalidate by Address to PoC .1405
D1.2.22 DCCISW, Data Cache line Clean and Invalidate by Set/Way 1406
D1.2.23 DCCMVAC, Data Cache line Clean by AddresstoPoC 1407
D1.2.24 DCCMVAU, Data Cache line Clean by addresstoPoU 1408
D1.2.25 DCCSW, Data Cache Cleanlineby Set/Way 1409
D1.2.26 DCIDRO, SCS Component Identification Register0 1410
D1.2.27 DCIDR1, SCS Component Identification Register1 1411
D1.2.28 DCIDR2, SCS Component Identification Register2 1412
D1.2.29 DCIDR3, SCS Component Identification Register3 1413
D1.2.30 DCIMVAC, Data Cache line Invalidate by Addressto PoC 1414
D1.2.31 DCISW, Data Cache line Invalidate by SetWay 1415
D1.2.32 DCRDR, Debug Core Register Data Register 1416
D1.2.33 DCRSR, Debug Core Register Select Register 1417
DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. XXii

ID30062020

Non-confidential

Contents

D1.2.34 DDEVARCH, SCS Device Architecture Register 1421
D1.2.35 DDEVTYPE, SCS Device Type Register 1423
D1.2.36 DEMCR, Debug Exception and Monitor Control Register 1425
D1.2.37 DFSR, Debug Fault Status Register 1432
D1.2.38 DHCSR, Debug Halting Control and Status Register 1434
D1.2.39 DLAR, SCS Software Lock Access Register 1441
D1.2.40 DLSR, SCS Software Lock Status Register 1442
D1.2.41 DPIDRO, SCS Peripheral Identification Register0 1444
D1.2.42 DPIDR1, SCS Peripheral Identification Register 1 1445
D1.2.43 DPIDR2, SCS Peripheral Identification Register2 1446
D1.2.44 DPIDR3, SCS Peripheral Identification Register3 1447
D1.2.45 DPIDR4, SCS Peripheral Identification Register4 1448
D1.2.46 DPIDRS5, SCS Peripheral Identification Register5 1449
D1.2.47 DPIDR6, SCS Peripheral Identification Register6 1450
D1.2.48 DPIDR7, SCS Peripheral Identification Register 7 1451
D1.2.49 DSCEMCR, Debug Set Clear Exception and Monitor Control Register .1452
D1.2.50 DSCSR, Debug Security Control and Status Register 1454
D1.2.51 DWT_CIDRO, DWT Component Identification Register0 1456
D1.2.52 DWT_CIDR1, DWT Component Identification Register 1 1457
D1.2.53 DWT_CIDR2, DWT Component Identification Register2 1458
D1.2.54 DWT_CIDRS, DWT Component Identification Register3 1459
D1.2.55 DWT_COMPn, DWT Comparator Register, n=0-14 1460
D1.2.56 DWT_CPICNT, DWT CPI Count Register 1462
D1.2.57 DWT_CTRL, DWT Control Register 1464
D1.2.58 DWT_CYCCNT, DWT Cycle Count Register 1469
D1.2.59 DWT_DEVARCH, DWT Device Architecture Register 1470
D1.2.60 DWT_DEVTYPE, DWT Device Type Register 1472
D1.2.61 DWT_EXCCNT, DWT Exception Overhead Count Register 1473
D1.2.62 DWT_FOLDCNT, DWT Folded Instruction Count Register 1474
D1.2.63 DWT_FUNCTIONn, DWT Comparator Function Register,n=0-14 . .1475
D1.2.64 DWT_LAR, DWT Software Lock Access Register 1480
D1.2.65 DWT_LSR, DWT Software Lock Status Register 1481
D1.2.66 DWT_LSUCNT, DWT LSU Count Register 1483
D1.2.67 DWT_PCSR, DWT Program Counter Sample Register 1484
D1.2.68 DWT_PIDRO, DWT Peripheral Identification Register0 1485
D1.2.69 DWT_PIDR1, DWT Peripheral Identification Register1 1486
D1.2.70 DWT_PIDR2, DWT Peripheral Identification Register2 1487
D1.2.71 DWT_PIDR3, DWT Peripheral Identification Register3 1488
D1.2.72 DWT_PIDR4, DWT Peripheral Identification Register4 1489
D1.2.73 DWT_PIDR5, DWT Peripheral Identification Register5 1490
D1.2.74 DWT_PIDR6, DWT Peripheral Identification Register6 1491
D1.2.75 DWT_PIDR7, DWT Peripheral Identification Register7 1492
D1.2.76 DWT_SLEEPCNT, DWT Sleep Count Register 1493
D1.2.77 DWT_VMASKn, DWT Comparator Value Mask Register, n=0-14 . . .1495
D1.2.78 EPSR, Execution Program Status Register 1497
D1.2.79 ERRADDRN, Error Record Address Register,n=0-55 1499
D1.2.80 ERRADDR2n, Error Record Address 2 Register,n=0-55 1500
D1.2.81 ERRCTRLn, Error Record Control Register,n=0-55. 1502
D1.2.82 ERRDEVID, Error Record Device ID Register 1506
D1.2.83 ERRFRn, Error Record Feature Register,n=0-55 1507
D1.2.84 ERRGSRn, RAS Fault Group Status Register 1511
D1.2.85 ERRIIDR, Error Implementer ID Register 1512
D1.2.86 ERRMISCOn, Error Record Miscellaneous 0 Register, n=0-551513
D1.2.87 ERRMISC1n, Error Record Miscellaneous 1 Register,n=0-551517
D1.2.88 ERRMISC2n, Error Record Miscellaneous 2 Register, n=0-551518
DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. xXiii
ID30062020 Non-confidential

Contents

D1.2.89

D1.2.90

D1.2.91

D1.2.92

D1.2.93

D1.2.94

D1.2.95

D1.2.96

D1.2.97

D1.2.98

D1.2.99

D1.2.100
D1.2.101
D1.2.102
D1.2.103
D1.2.104
D1.2.105
D1.2.106
D1.2.107
D1.2.108
D1.2.109
D1.2.110
D1.2.111
D1.2.112
D1.2.113
D1.2.114
D1.2.115
D1.2.116
D1.2.117
D1.2.118
D1.2.119
D1.2.120
D1.2.121
D1.2.122
D1.2.123
D1.2.124
D1.2.125
D1.2.126
D1.2.127
D1.2.128
D1.2.129
D1.2.130
D1.2.131
D1.2.132
D1.2.133
D1.2.134
D1.2.135
D1.2.136
D1.2.137
D1.2.138
D1.2.139
D1.2.140
D1.2.141
D1.2.142
D1.2.143

DDI0553B.1
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.

ERRMISC3n, Error Record Miscellaneous 3 Register,n=0-551519
ERRMISC4n, Error Record Miscellaneous 4 Register,n=0-551520
ERRMISC5n, Error Record Miscellaneous 5 Register,n=0-551521
ERRMISC6n, Error Record Miscellaneous 6 Register,n=0-551522
ERRMISC7n, Error Record Miscellaneous 7 Register, n=0-551523
ERRSTATUSN, Error Record Primary Status Register,n=0-551524
EXC_RETURN, Exception Return Payload 1531
FAULTMASK, Fault Mask Register 1533
FNC_RETURN, Function Return Payload 1534
FPCAR, Floating-Point Context Address Register 1535
FPCCR, Floating-Point Context Control Register 1536
FPCXT, Floating-point context payload 1542
FPDSCR, Floating-Point Default Status Control Register 1544
FPSCR, Floating-point Status and Control Register 1546
FP_CIDRO, FP Component Identification Register0 1552
FP_CIDR1, FP Component Identification Register1 1553
FP_CIDR2, FP Component Identification Register2 1554
FP_CIDRS3, FP Component Identification Register3 1555
FP_COMPn, Flash Patch Comparator Register,n=0-125 1556
FP_CTRL, Flash Patch Control Register 1557
FP_DEVARCH, FPB Device Architecture Register 1559
FP_DEVTYPE, FPB Device Type Register 1561
FP_LAR, FPB Software Lock Access Register 1562
FP_LSR, FPB Software Lock Status Register 1563
FP_PIDRO, FP Peripheral Identification Register0 1565
FP_PIDR1, FP Peripheral Identification Register 1 1566
FP_PIDR2, FP Peripheral Identification Register2 1567
FP_PIDRS3, FP Peripheral Identification Register3 1568
FP_PIDR4, FP Peripheral Identification Register4 1569
FP_PIDRS5, FP Peripheral Identification Register5 1570
FP_PIDR6, FP Peripheral Identification Register6 1571
FP_PIDR7, FP Peripheral Identification Register7 1572
FP_REMAP, Flash Patch Remap Register 1573
HFSR, HardFault Status Register 1574
ICIALLU, Instruction Cache Invalidate AlltoPoU 1576
ICIMVAU, Instruction Cache line Invalidate by Addressto PoU 1577
ICSR, Interrupt Control and State Register 1578
ICTR, Interrupt Controller Type Register. 1584
ID_AFRO, Auxiliary Feature Register0 1585
ID_DFRO, Debug Feature Register0 1586
ID_ISARQO, Instruction Set Attribute Register0 1588
ID_ISART1, Instruction Set Attribute Register1 1590
ID_ISAR2, Instruction Set Attribute Register2 1592
ID_ISARS, Instruction Set Attribute Register3 1595
ID_ISARA4, Instruction Set Attribute Register4 1598
ID_ISARS, Instruction Set Attribute Register5 1600
ID_MMFRO, Memory Model Feature Register0 1601
ID_MMFR1, Memory Model Feature Register1 1603
ID_MMFR2, Memory Model Feature Register2 1604
ID_MMFR3, Memory Model Feature Register3 1605
ID_PFRO, Processor Feature Register0 1607
ID_PFR1, Processor Feature Register 1 1609
IPSR, Interrupt Program Status Register 1611
ITM_CIDRO, ITM Component Identification Register0 1612
ITM_CIDR1, ITM Component Identification Register 1 1613

XXiv

Non-confidential

Contents

D1.2.144
D1.2.145
D1.2.146
D1.2.147
D1.2.148
D1.2.149
D1.2.150
D1.2.151
D1.2.152
D1.2.153
D1.2.154
D1.2.155
D1.2.156
D1.2.157
D1.2.158
D1.2.159
D1.2.160
D1.2.161
D1.2.162
D1.2.163
D1.2.164
D1.2.165
D1.2.166
D1.2.167
D1.2.168
D1.2.169
D1.2.170
D1.2.171
D1.2.172
D1.2.173
D1.2.174
D1.2.175
D1.2.176
D1.2.177
D1.2.178
D1.2.179
D1.2.180
D1.2.181
D1.2.182
D1.2.183
D1.2.184
D1.2.185
D1.2.186
D1.2.187
D1.2.188
D1.2.189

D1.2.190
D1.2.191
D1.2.192
D1.2.193

D1.2.194

DDI0553B.1
ID30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.

ITM_CIDR2, ITM Component Identification Register2 1614
ITM_CIDRS, ITM Component Identification Register3 1615
ITM_DEVARCH, ITM Device Architecture Register 1616
ITM_DEVTYPE, ITM Device Type Register 1618
ITM_LAR, ITM Software Lock Access Register 1620
ITM_LSR, ITM Software Lock Status Register 1621
ITM_PIDRO, ITM Peripheral Identification Register0 1623
ITM_PIDR1, ITM Peripheral Identification Register 1 1624
ITM_PIDR2, ITM Peripheral Identification Register2 1625
ITM_PIDR3, ITM Peripheral Identification Register3 1626
ITM_PIDR4, ITM Peripheral Identification Register4 1627
ITM_PIDRS5, ITM Peripheral Identification Register5 1628
ITM_PIDR®6, ITM Peripheral Identification Register6 1629
ITM_PIDR7, ITM Peripheral Identification Register7 1630
ITM_STIMn, ITM Stimulus Port Register,n=0-255. 1631
ITM_TCR, ITM Trace Control Register. 1633
ITM_TERN, ITM Trace Enable Register,n=0-7 1637
ITM_TPR, ITM Trace Privilege Register 1638
LO_BRANCH_INFO, Loop and branch tracking information 1639
LR, Link Register 1640
MAIR_ATTR, Memory Attribute Indirection Register Attributes 1641
MMFAR, MemManage Fault Address Register 1643
MMFSR, MemManage Fault Status Register 1644
MPU_CTRL, MPU Control Register 1647
MPU_MAIRO, MPU Memory Attribute Indirection Register0. 1649
MPU_MAIR1, MPU Memory Attribute Indirection Register1 1650
MPU_RBAR, MPU Region Base Address Register 1651

MPU_RBAR_An, MPU Region Base Address Register Alias, n=1-3 .1653

MPU_RLAR, MPU Region Limit Address Register 1655
MPU_RLAR_An, MPU Region Limit Address Register Alias,n=1-3 .1657
MPU_RNR, MPU Region Number Register 1659
MPU_TYPE, MPU Type Register 1660
MSPLIM, Main Stack Pointer Limit Register 1661
MVFRO, Media and VFP Feature Register0 1662
MVFR1, Media and VFP Feature Register1 1664
MVFR2, Media and VFP Feature Register2 1667
NSACR, Non-secure Access Control Register 1668
NVIC_IABRn, Interrupt Active Bit Register,n=0-15 1670
NVIC_ICERnN, Interrupt Clear Enable Register,n=0-15 1671
NVIC_ICPRn, Interrupt Clear Pending Register,n=0-15. 1672
NVIC_IPRn, Interrupt Priority Register,n=0-123 1673
NVIC_ISERn, Interrupt Set Enable Register,n=0-15 1674
NVIC_ISPRn, Interrupt Set Pending Register, n=0-15. 1675
NVIC_ITNSn, Interrupt Target Non-secure Register,n=0-15 1677
PC, Program Counter 1678
PMU_AUTHSTATUS, Performance Monitoring Unit Authentication Status

Register 1679

PMU_CCFILTR, Performance Monitoring Unit Cycle Counter Filter Registet682
PMU_CCNTR, Performance Monitoring Unit Cycle Counter Register . .1683
PMU_CIDRO, Performance Monitoring Unit Component Identification

Register 0
PMU_CIDR1, Performance Monitoring Unit Component Identification
Register 1
PMU_CIDR2, Performance Monitoring Unit Component Identification
Register 2

XXV
Non-confidential

Contents

DDI0553B.1
ID30062020

D1.2.195 PMU_CIDRS3, Performance Monitoring Unit Component Identification

Register3 1687
D1.2.196 PMU_CNTENCLR, Performance Monitoring Unit Count Enable Clear

Register 1688
D1.2.197 PMU_CNTENSET, Performance Monitoring Unit Count Enable Set Reg-

ister . . e 1690
D1.2.198 PMU_CTRL, Performance Monitoring Unit Control Register 1692
D1.2.199 PMU_DEVARCH, Performance Monitoring Unit Device Architecture Reg-

ISter .. 1694

D1.2.200 PMU_DEVTYPE, Performance Monitoring Unit Device Type Register .1696
D1.2.201 PMU_EVCNTRn, Performance Monitoring Unit Event Counter Register 1697
D1.2.202 PMU_EVTYPERnN, Performance Monitoring Unit Event Type and Filter

Register e 1698

D1.2.203 PMU_INTENCLR, Performance Monitoring Unit Interrupt Enable Clear
Register 1699

D1.2.204 PMU_INTENSET, Performance Monitoring Unit Interrupt Enable Set
Register 1701

D1.2.205 PMU_OVSCLR, Performance Monitoring Unit Overflow Flag Status Clear
Register 1703

D1.2.206 PMU_QVSSET, Performance Monitoring Unit Overflow Flag Status Set
Register 1705

D1.2.207 PMU_PIDRO, Performance Monitoring Unit Peripheral Identification Reg-
ister O . . . e 1707

D1.2.208 PMU_PIDR1, Performance Monitoring Unit Peripheral Identification Reg-
ister 1 . . L 1708

D1.2.209 PMU_PIDR2, Performance Monitoring Unit Peripheral Identification Reg-
ister2 ..o 1709

D1.2.210 PMU_PIDR3, Performance Monitoring Unit Peripheral Identification Reg-
ister3 ..o 1710

D1.2.211 PMU_PIDR4, Performance Monitoring Unit Peripheral Identification Reg-
isterd . . 1711
D1.2.212 PMU_SWINC, Performance Monitoring Unit Software Increment Registet712
D1.2.213 PMU_TYPE, Performance Monitoring Unit Type Register 1713
D1.2.214 PRIMASK, Exception Mask Register 1715
D1.2.215 PSPLIM, Process Stack Pointer Limit Register 1716
D1.2.216 Rn, General-Purpose Register,n=0-12 1717
D1.2.217 RETPSR, Combined Exception Return Program Status Registers . . .1718
D1.2.218 REVIDR, Revision ID Register 1720
D1.2.219 RFSR, RAS Fault Status Register 1721
D1.2.220 SAU_CTRL, SAU Control Register 1723
D1.2.221 SAU_RBAR, SAU Region Base Address Register 1725
D1.2.222 SAU_RLAR, SAU Region Limit Address Register. 1726
D1.2.223 SAU_RNR, SAU Region Number Register 1728
D1.2.224 SAU_TYPE, SAU Type Register 1729
D1.2.225 SCR, System Control Register 1730
D1.2.226 SFAR, Secure Fault Address Register 1732
D1.2.227 SFSR, Secure Fault Status Register 1733
D1.2.228 SHCSR, System Handler Control and State Register 1736
D1.2.229 SHPR1, System Handler Priority Register1 1743
D1.2.230 SHPR2, System Handler Priority Register2 1745
D1.2.231 SHPR3, System Handler Priority Register3 1746
D1.2.232 SP, Current Stack Pointer Register 1748
D1.2.233 SP_NS, Stack Pointer (Non-secure) 1749
D1.2.234 STIR, Software Triggered Interrupt Register 1750
D1.2.235 SYST_CALIB, SysTick Calibration Value Register 1751
Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. XXVi

Non-confidential

Contents

D1.2.236 SYST_CSR, SysTick Control and Status Register 1753
D1.2.237 SYST_CVR, SysTick Current Value Register 1756
D1.2.238 SYST_RVR, SysTick Reload Value Register 1758

D1.2.239 TPIU_ACPR, TPIU Asynchronous Clock Prescaler Register. 1759

D1.2.240 TPIU_CIDRO, TPIU Component Identification Register0 1760
D1.2.241 TPIU_CIDR1, TPIU Component Identification Register1 1761
D1.2.242 TPIU_CIDR2, TPIU Component Identification Register2 1762
D1.2.243 TPIU_CIDR3, TPIU Component Identification Register3 1763
D1.2.244 TPIU_CSPSR, TPIU Current Parallel Port Sizes Register 1764
D1.2.245 TPIU_DEVTYPE, TPIU Device Type Register 1765
D1.2.246 TPIU_FFCR, TPIU Formatter and Flush Control Register 1767

D1.2.247 TPIU_FFSR, TPIU Formatter and Flush Status Register 1769

D1.2.248 TPIU_LAR, TPIU Software Lock Access Register 1771
D1.2.249 TPIU_LSR, TPIU Software Lock Status Register 1772
D1.2.250 TPIU_PIDRO, TPIU Peripheral Identification Register0 1774
D1.2.251 TPIU_PIDR1, TPIU Peripheral Identification Register1 1775
D1.2.252 TPIU_PIDR2, TPIU Peripheral Identification Register2 1776
D1.2.253 TPIU_PIDRS, TPIU Peripheral Identification Register3 1777
D1.2.254 TPIU_PIDR4, TPIU Peripheral Identification Register4 1778
D1.2.255 TPIU_PIDR5, TPIU Peripheral Identification Register5 1779
D1.2.256 TPIU_PIDR®6, TPIU Peripheral Identification Register6 1780
D1.2.257 TPIU_PIDR7, TPIU Peripheral Identification Register7 1781
D1.2.258 TPIU_PSCR, TPIU Periodic Synchronization Control Register 1782

D1.2.259 TPIU_SPPR, TPIU Selected Pin Protocol Register 1784
D1.2.260 TPIU_SSPSR, TPIU Supported Parallel Port Sizes Register
D1.2.261 TPIU_TYPE, TPIU Device Identifier Register
D1.2.262 TT_RESP, Test Target Response Payload 1789

D1.2.263 UFSR, UsageFault Status Register 1792
D1.2.264 VPR, Vector Predication Status and Control Register 1795
D1.2.265 VTOR, Vector Table Offset Register 1797
D1.2.266 XPSR, Combined Program Status Registers 1798
Part E Armv8-M Pseudocode
Chapter E1 Arm Pseudocode Definition
E1.1 About the Arm pseudocode 1802
E1.1.1 General limitations of Arm pseudocode 1802
E1.2 Datatypes e 1803
E1.21 Generaldatatyperules L 1803
E1.22 Bitstrings 1803
E1.23 Integers e 1804
E1.24 Reals. 1804
E1.25 Booleans. 1805
E1.26 Enumerations 1805
E1.2.7 Structures 1806
E1.28 Tuples 1807
E1.2.9 Arrays e 1807
E1.3 Operators e e 1809
E1.3.1 Relationaloperators L 1809
E1.3.2 Booleanoperators. 1809
E1.3.3 Bitstringoperators 1810
E1.3.4 Arithmeticoperators. 1811
E1.3.5 Theassignmentoperator 1812
E1.3.6 Precedencerules 1813
DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. XXVii
ID30062020 Non-confidential

Contents

E1.3.7
E1.3.8

E1.4

Statements and control structures

E1.4.1
E1.4.2
E1.4.3
E1.4.4
E1.45
E1.4.6

E1.5

Built-in functions

E1.5.1
E1.5.2

E1.6
E1.7

Arm pseudocode definition index
Additional functions

E1.7.1
E1.7.2

Chapter E2
E2.1
E2.1

E2.1.2
E2.1.3
E2.1.4
E2.1.5
E2.1.6
E2.1.7
E2.1.8
E2.1.9

E2.1
E2.1
E2.1
E2.1
E2.1
E2.1
E2.1
E2.1
E2.1
E2.1

10
A1
A2
13
14
15
16
A7
18
19

E2.1.20
E2.1.21
E2.1.22
E2.1.23
E2.1.24
E2.1.25
E2.1.26
E2.1.27
E2.1.28
E2.1.29
E2.1.30
E2.1.31
E2.1.32
E2.1.33
E2.1.34
E2.1.35
E2.1.36

DDI0553B.1
ID30062020

Conditional expressions
Operator polymorphism

Statements and Indentation

Function and procedure calls
Conditional control structures
Loop control structures
Special statements
Comments

Bitstring manipulation functions
Arithmetic functions

IsSee()
IsUndefined()

Pseudocode Specification
Alphabetical Pseudocode List
A

_AdvanceVPTState
_ITStateChanged
_Mem
_NextlnstrAddr e
_NextlnstrITState
_PCChanged
_PendingReturnOperation

AccessAttributes
AccType
ActivateException
ActiveFPState
AddressDescriptor
AddrType
AddWithCarry
AdvSIMDExpandimm
Align . . e e
ArchVersion
ASR
ASR C
BeatComplete
BeatSchedule
BigEndian
BigEndianReverse
BitCount
BitReverseShiftRight
BranchCall
BranchReturn
BranchTo.
BusFaultBarrier
CallSupervisor

CanDebugAccessFP
CanHaltOnEvent

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.

Non-confidential

XXViii

Contents

E2.1.37
E2.1.38
E2.1.39
E2.1.40
E2.1.41
E2.1.42
E2.1.43
E2.1.44
E2.1.45
E2.1.46
E2.1.47
E2.1.48
E2.1.49
E2.1.50
E2.1.51
E2.1.52
E2.1.53
E2.1.54
E2.1.55
E2.1.56
E2.1.57
E2.1.58
E2.1.59
E2.1.60
E2.1.61
E2.1.62
E2.1.63
E2.1.64
E2.1.65
E2.1.66
E2.1.67
E2.1.68
E2.1.69
E2.1.70
E2.1.71
E2.1.72
E2.1.73
E2.1.74
E2.1.75
E2.1.76
E2.1.77
E2.1.78
E2.1.79
E2.1.80
E2.1.81
E2.1.82
E2.1.83
E2.1.84
E2.1.85
E2.1.86
E2.1.87
E2.1.88
E2.1.89
E2.1.90
E2.1.91

DDI0553B.1
ID30062020

CanPendMonitorOnEvent
CdelmpDefValue
CheckCPEnabled
CheckDecodeFaults
CheckFPDecodeFaults
CheckPermission
ClearEventRegister
ClearExclusiveByAddress
ClearExclusivelLocal
ClearInFlightInstructions
ComparePriorities
Cond
ConditionHolds
ConditionPassed
ConstrainUnpredictable
ConstrainUnpredictableBits
ConstrainUnpredictableBool
ConstrainUnpredictablelnteger
ConsumeExcStackFrame
ConsumptionOfSpeculativeDataBarrier
Coproc_Accepted
Coproc_DonelLoading
Coproc_DoneStoring
Coproc_GetOneWord
Coproc_GetTwoWords
Coproc_GetWordToStore
Coproc_InternalOperation
Coproc_SendLoadedWord
Coproc_SendOneWord
Coproc_SendTwoWords
CoprocType
CountlLeadingSignBits
CountLeadingZeroBits
CPDef
CreateException
CurrentCond
CurrentMode

DataMemoryBarrier
DataSynchronizationBarrier
DeActivate
Debug_authentication
DebugCanMasklints
DebugRegisterTransfer
DecodeExecute

DecodelmmShift
DecodeRegShift
DefaultCond
DefaultExclnfo

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.

Non-confidential

Contents

E2.1.92
E2.1.93
E2.1.94
E2.1.95
E2.1.96
E2.1.97
E2.1.98
E2.1.99

E2.1
E2.1
E2.1
E2.1
E2.1
E2.1
E2.1
E2.1
E2.1
E2.1
E2.1
E2.1
E2.1
E2.1
E2.1
E2.1
E2.1
E2.1
E2.1
E2.1
E2.1
E2.1
E2.1
E2.1
E2.1
E2.1
E2.1
E2.1
E2.1
E2.1
E2.1
E2.1
E2.1
E2.1
E2.1
E2.1
E2.1
E2.1
E2.1
E2.1
E2.1
E2.1
E2.1
E2.1
E2.1
E2.1
E2.1

.100
.101
.102
.103
.104
.105
.106
107
.108
.109
110
11
112
113
114
115
116
A17
118
119
120
121
122
123
124
125
126
127
.128
129
.130
131
132
133
134
135
.136
137
.138
139
.140
141
142
.143
144
.145
.146

DefaultMemoryAttributes o L
DefaultPermissions
DerivedLateArrival
DeviceType
DWT_AddressCompare
DWT_CycCountMatch
DWT_DataAddressMatch
DWT DataMatch
DWT DataValueMatch
DWT InstructionAddressMatch
DWT InstructionMatch
DWT ValidMatch
Elem e
EndOfinstruction
EventRegistered
ExceptionActiveBitCount
ExceptionDetails
ExceptionEnabled oo
ExceptionEntry L
ExceptionPriority
ExceptionReturn
ExceptionTaken L
ExceptionTargetsSecure
Excinfo e
ExclusiveMonitorsPass
ExecBeats
ExecuteCPCheck
ExecuteFPCheck
ExecutionPriority
Extend e
ExternallnvasiveDebugEnabled
ExternalNoninvasiveDebugEnabled
ExternalSecurelnvasiveDebugEnabled
ExternalSecureNoninvasiveDebugEnabled
ExternalSecureSelfHostedDebugEnabled
ExtType e
FaultNumbers
Fetchinstr
FindPriv e
FixedToFP o o
FPAbs
FPADD
FPB_CheckBreakPoint
FPB_CheckMatchAddress
FPCompare
FPConvertNaN
FPConvertNaNBase
FPDefaultNaN
FPDiv . . .
FPDoubleToHalf
FPDoubleToSingle,
FPEXC e
FPHalfToDouble L
FPHalfToSingle
FPInfinity

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.

ID30062020

Non-confidential

XXX

Contents

E2.1.147 FPMax 1880
E2.1.148 FPMaxNormal 1881
E2.1.149 FPMaxNum 1881
E2.1.150 FPMin 1881
E2.1.151 FPMinNum 1882
E2.1.152 FPMul 1882
E2.1.153 FPMUIAdd 1883
E2.1.154 FPNeg o 1884
E2.1.155 FPProcessException 1884
E2.1.156 FPProcessNaN, 1884
E2.1.157 FPProcessNaNs 1884
E2.1.158 FPProcessNaNs3 o 1885
E2.1.159 FPRound 1885
E2.1.160 FPRoundBase 1886
E2.1.161 FPRoundCV 1887
E2.1.162 FPRoundInt e 1887
E2.1.163 FPSingleToDouble, 1888
E2.1.164 FPSingleToHalf 1889
E2.1.165 FPSqrt 1889
E2.1.166 FPSub 1889
E2.1.167 FPToFixed 1890
E2.1.168 FPToFixedDirected 1891
E2.1.169 FPType 1891
E2.1.170 FPUnpack 1892
E2.1.171 FPUnpackBase 1892
E2.1.172 FPUnpackCV 1893
E2.1.173 FPZero 1893
E2.1.174 FunctionReturn L 1894
E2.1.175 GenerateCoprocessorException 1894
E2.1.176 GenerateDebugEventResponse 1895
E2.1.177 GeneratelntegerZeroDivide 1895
E2.1.178 GetActiveChains 1895
E2.1.179 GetCurlnstrBeat 1896
E2.1.180 GetlnstrExecState 1896
E2.1.181 Halt. 1896
E2.1.182 Halted 1897
E2.1.183 HaltingDebugAllowed 1897
E2.1.184 HandleException 1897
E2.1.185 HandleExceptionTransitions 1897
E2.1.186 HandleLO 1899
E2.1.187 HasArchVersion 1900
E2.1.188 HaveDebugMonitor 1900
E2.1.189 HaveDSPExt. 1900
E2.1.190 HaveDWT 1900
E2.1.191 HaveFPB 1900
E2.1.192 HaveFPExt 1900
E2.1.193 HaveHaltingDebug, 1900
E2.1.194 HavelTM 1901
E2.1.195 HaveLOBExt. e 1901
E2.1.196 HaveMainExt 1901
E2.1.197 HaveMve e 1901
E2.1.198 HaveMveOrFPExt 1901
E2.1.199 HaveSecurityExt. 1901
E2.1.200 HaveSysTick 1901
E2.1.201 HaveUDE 1901
DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. XXXi

ID30062020

Non-confidential

Contents

DDI0553B.1
ID30062020

E2.1.202 HighestPri 1902
E2.1.203 HighestSetBit 1902
E2.1.204 Hint_Debug 1902
E2.1.205 Hint_PreloadData 1902
E2.1.206 Hint_PreloadDataForWrite 1902
E2.1.207 Hint_PreloadInstr 1902
E2.1.208 Hint_Yield 1902
E2.1.209 IDAUCheck e 1903
E2.1.210 IgnoreFaultsType 1903
E2.1.211 InITBlock e 1903
E2.1.212 InstrCanChain 1903
E2.1.213 InstrExecState 1904
E2.1.214 InstructionAdvance 1905
E2.1.215 InstructionExecute 1905
E2.1.216 InstructionsInFlight 1907
E2.1.217 InstructionSynchronizationBarrier 1907
E2.1.218 InstStateCheck 1907
E2.1.219 Int 1908
E2.1.220 IntegerZeroDivideTrappingEnabled 1908
E2.1.221 InvalidateFPRegs 1908
E2.1.222 InVPTBlock 1908
E2.1.223 IsAccessible 1908
E2.1.224 IsActiveForState 1909
E2.1.225 IsAligned 1909
E2.1.226 IsBKPTInstruction 1909
E2.1.227 IsCPEnabled 1909
E2.1.228 IsCPInstruction 1910
E2.1.229 IsDebugState 1910
E2.1.230 IsDWTConfigUnpredictable 1910
E2.1.231 IsDWTEnabled 1912
E2.1.232 IsExceptionTargetConfigurable 1912
E2.1.233 IsExclusiveGlobal 1912
E2.1.234 IsExclusiveLocal 1913
E2.1.235 IsFirstBeat 1913
E2.1.236 IslrgValid 1913
E2.1.237 IsLastBeat 1913
E2.1.238 IsLastLowOverheadlLoop 1913
E2.1.239 IsLEInstruction 1913
E2.1.240 IsLoadStoreClearMultinstruction 1914
E2.1.241 1SOnes e e 1914
E2.1.242 ISPPB e 1914
E2.1.243 IsRegExcPriNeg 1914
E2.1.244 IsReturn 1915
E2.1.245 IsSecure 1915
E2.1.246 ISZero e 1915
E2.1.247 IsZeroBit e 1915
E2.1.248 ITADvance e e e e 1915
E2.1.249 ITSTATE e 1915
E2.1.250 ITSTATETYpPE e e e e e e e 1916
E2.1.251 LastinlTBlock 1916
E2.1.252 LoadWritePC e 1916
E2.1.253 LockedUp 1916
E2.1.254 Lockup 1916
E2.1.255 LookUpRName 1917
E2.1.256 LookUpSP 1917
Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. XXXii

Non-confidential

Contents

E2.1.257
E2.1.258
E2.1.259
E2.1.260
E2.1.261
E2.1.262
E2.1.263
E2.1.264
E2.1.265
E2.1.266
E2.1.267
E2.1.268
E2.1.269
E2.1.270
E2.1.271
E2.1.272
E2.1.273
E2.1.274
E2.1.275
E2.1.276
E2.1.277
E2.1.278
E2.1.279
E2.1.280
E2.1.281
E2.1.282
E2.1.283
E2.1.284
E2.1.285
E2.1.286
E2.1.287
E2.1.288
E2.1.289
E2.1.290
E2.1.291
E2.1.292
E2.1.293
E2.1.294
E2.1.295
E2.1.296
E2.1.297
E2.1.298
E2.1.299
E2.1.300
E2.1.301
E2.1.302
E2.1.303
E2.1.304
E2.1.305
E2.1.306
E2.1.307
E2.1.308
E2.1.309
E2.1.310
E2.1.311

DDI0553B.1
ID30062020

LookUpSP_with_security_mode
LookUpSPLim
LowestSetBit

LR

MAIRDecode
MarkExclusiveGlobal
MarkExclusiveLocal
Max
MaxExceptionNum
MemA
MemA_MVE
MemA_with_priv
MemA_with_priv_security
MemD_with_priv_security
Meml
MemO
MemoryAttributes
MemType
MemU
MemU_unpriv
MemU_with_priv
MergeExcInfo
Min
MPUCheck
NextInstrAddr
NextInstrITState
NoninvasiveDebugAllowed
Ones

PendingDebugHalt
PendingDebugMonitor
PendingExceptionDetails
PendReturnOperation
Permissions
PMU_Counterincrement
PMU_HandleOverflow

PmuEvent
PmuEventType
PolynomialMult
PopStack
PreserveFPState
ProcessorID
PushCalleeStack
PushStack

RaiseAsyncBusFault
RawExecutionPriority
Replicate

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.

Non-confidential

XXXiii

Contents

E2.1.312 ResetRegs L 1947
E2.1.313 RestrictedNSPri 1947
E2.1.314 RF e 1947
E2.1.315 RFD 1948
E2.1.316 RName 1948
E2.1.317 RNames e 1949
E2.1.318 ROR 1949
E2.1.319 ROR_C 1949
E2.1.320 RoundDown 1949
E2.1.321 RoundTowardsZero 1949
E2.1.322 RoundUp 1950
E2.1.323 RRX 1950
E2.1.324 RRX_C 1950
E2.1.325 RSPCheck 1950
E2.1.326 RZ 1950
E2.1.327 S . . . 1950
E2.1.328 Sat 1951
E2.1.329 SatQ 1951
E2.1.330 SAfttributes 1951
E2.1.331 SCS_UpdateStatusRegs, 1951
E2.1.332 SecureDebugMonitorAllowed 1951
E2.1.333 SecureHaltingDebugAllowed 1951
E2.1.334 SecureNoninvasiveDebugAllowed 1952
E2.1.335 SecurityCheck 1952
E2.1.336 SecurityState 1953
E2.1.337 SendEvent 1953
E2.1.338 SerializeVFP 1954
E2.1.339 SetActive 1954
E2.1.340 SetDWTDebugEvent 1954
E2.1.341 SetEventRegister 1954
E2.1.342 SetExclusiveMonitors 1954
E2.1.343 SetITSTATEAndCommit 1955
E2.1.344 SetPending 1955
E2.1.345 SetThisInstrDetails L 1955
E2.1.346 SetVPTMask 1956
E2.1.347 Shift 1956
E2.1.348 Shift C 1956
E2.1.349 SignedSat 1956
E2.1.350 SignedSatQ 1956
E2.1.351 SignExtend 1957
E2.1.352 Sleepingo 1957
E2.1.353 SleepOnExit 1957
E2.1.354 SP 1957
E2.1.355 SP_Main 1957
E2.1.356 SP_Main_NonSecure 1958
E2.1.357 SP_Main_Secure 1958
E2.1.358 SP_Process 1958
E2.1.359 SP_Process_NonSecure 1958
E2.1.360 SP_Process_Secure 1959
E2.1.361 SpeculativeSynchronizationBarrier 1959
E2.1.362 SRType e 1959
E2.1.363 Stack 1959
E2.1.364 StandardFPSCRValue 1960
E2.1.365 SteppingDebug 1960
E2.1.366 SynchronizeBusFault 1960
DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. XXXV

ID30062020

Non-confidential

Contents

E2.1.367
E2.1.368
E2.1.369
E2.1.370
E2.1.371
E2.1.372
E2.1.373
E2.1.374
E2.1.375
E2.1.376
E2.1.377
E2.1.378
E2.1.379
E2.1.380
E2.1.381
E2.1.382
E2.1.383
E2.1.384
E2.1.385
E2.1.386
E2.1.387
E2.1.388
E2.1.389
E2.1.390
E2.1.391
E2.1.392
E2.1.393
E2.1.394
E2.1.395
E2.1.396
E2.1.397
E2.1.398
E2.1.399
E2.1.400
E2.1.401
E2.1.402

T32Expandlmm 1961
T32Expandimm_C 1961
TailChain 1961
TakePreserveFPException 1962
TakeReset e 1963
Thislnstr e 1964
ThislnstrAddr 1964
ThisinstriTState 1964
ThislnstrLength 1964
TopLevel e 1964
TTResp . . . 1966
UnprivHaltingDebugAllowed 1966
UnprivHaltingDebugEnabled 1966
UnsignedSat. 1966
UnsignedSatQ 1967
UpdateDebugEnable, 1967
UpdateFPCCR 1967
ValidateAddress 1968
ValidateExceptionReturn o oo 1970
VCX_0p0 . . o o e 1971
VCX_0pT1 . . 1971
VCX_0P2 . . . 1971
VCX_0P3 . . . e 1971
Vector 1972
VectorCatchDebug 1972
VFPExcBarrier 1973
VFPExpandlmm 1973
VFPNegMul 1973
VFPSmallRegisterBank 1973
ViolatesSPLIim e 1974
VPTActive e 1974
VPTAdvance e e 1974
WaitForEvent 1974
WaitForinterrupt 1974
ZeroExtend e 1975
ZEIOS . . . v i 1975

Part F Debug Packet Protocols

Chapter F1 ITM and DWT Packet Protocol Specification
F1.1 Aboutthe ITMand DWT packets 1978
F1.1.1 Usesof ITMand DWTpackets 1978
F1.1.2 ITM and DWT protocol packetheaders 1978
F1.1.3 Packet transmission by the tracesink 1979
F1.2 Alphabetical list of DWNT and ITMpackets 1980
F1.2.1 Data Trace Data Addresspacket 1980
F1.2.2 Data Trace Data Valuepacket 1981
F1.2.3 DataTrace Matchpacket 1983
F1.2.4 DataTrace PC Valuepacket 1984
F1.25 EventCounterpacket 1986
F1.26 ExceptionTracepacket 1987
F1.2.7 Extensionpacket 1988
F1.2.8 Global Timestamp1packet 1990
F1.2.9 Global Timestamp2packet 1992
DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. XXXV
ID30062020 Non-confidential

Contents
Contents

Glossary

DDI0553B.1
ID30062020

F1.2.10 Instrumentationpacket oL 1994
F1.2.11 Local Timestamp1packet 1995
F1.2.12 Local Timestamp2packet 1997
F1.213 Overflowpacket 1998
F1.2.14 Periodic PCSamplepacket. 1999
F1.215 PMUoverflowpacket 2000
F1.2.16 Synchronizationpacket 2001
Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. XXXVi

Non-confidential

Preface

This preface introduces the Armv8-M Architecture Reference Manual. It contains the following sections:
About this book

Using this book.

Conventions.

Additional reading.

Feedback.

XXXVil

About this book

This manual documents the microcontroller profile of version 8 of the Arm Architecture, the Armv8-M architecture
profile. For short definitions of all the Armv8 profiles, see A1.2 About the Armv8 architecture, and architecture

profiles.

This manual has the following parts:

Part A Provides an introduction to the Armv8-M architecture.
Part B Describes the architectural rules.

Part C Describes the T32 instruction set.

Part D Describes the registers.

Part E Describes the Armv8-M pseudocode.

Part F Describes the packet protocols.

XXX Viii

Using this book

The information in this manual is organized into parts, as described in this section.

Part A, Armv8-M Architecture Introduction and Overview

Part A gives an overview of the Armv8-M architecture profile, including its relationship to the other Arm PE
architectures. It introduces the terminology that describes the architecture, and gives an overview of the optional
architectural extensions. It contains the following chapter:

Chapter Al Introduction

Read this for an introduction to the Armv8-M architecture.

Part B, Armv8-M Architecture Rules

Part B describes the architecture rules. It contains the following chapters:
Chapter B1 Resets
Read this for a description of the reset rules.
Chapter B2 Power Management
Read this for a description of the power management rules.
Chapter B3 Programmers’ Model
Read this for a description of the programmers model rules.
Chapter B4 Floating-point Support
Read this for a description of the floating-point support rules.
Chapter B5 Vector Extension
Read this for a description of the Vector Extension support rules.
Chapter B6 Memory Model
Read this for a description of the memory model rules.
Chapter B7 The System Address Map
Read this for a description of the system address map rules.
Chapter B8 Synchronization and Semaphores
Read this for a description of the rules on non-blocking synchronization of shared memory.
Chapter B9 The Armv8-M Protected Memory System Architecture
Read this for a description of the protected memory system architecture rules.
Chapter B10 The System Timer, SysTick
Read this for a description of the system timer rules.
Chapter B11 Nested Vectored Interrupt Controller
Read this for a description of the Nested Vectored Interrupt Controller (NVIC) rules.

Chapter B12 Debug]
XXX1X

Preface

Using this book

DDI0553B.1
1D30062020

Read this for a description of the debug rules.
Chapter B13 Debug and Trace Components
Read this for a description of the debug and trace component rules.
Chapter B14 The Performance Monitoring Extension
Read this for a description of the Performance Monitors Extension.
Chapter B15 Reliability, Availability, and Serviceability (RAS) Extension
Read this for a description of the Reliability, Availability, and Serviceability (RAS) Extension.

Part C, Armv8-M Instructions

Part C describes the instructions. It contains the following chapters:
Chapter C1 Instruction Set Overview

Read this for an overview of the instruction set and the instruction set encoding.
Chapter C2 Instruction Specification

Read this for a description of each instruction, arranged by instruction mnemonic.

Part D, Armv8-M Registers

Part D describes the registers. It contains the following chapter:
Chapter D1 Register and Payload Specification

Read this for a description of the registers.

Part E, Armv8-M Pseudocode

Part E describes the pseudocode. It contains the following chapters:
Chapter E1 Arm Pseudocode Definition

Read this for a definition of the pseudocode that Arm documentation uses.
Chapter E2 Pseudocode Specification

Read this for a description of the pseudocode.

Part F, Packet Protocols

Part F describes the packet protocols. It contains the following chapter:
Chapter F1 ITM and DWT Packet Protocol Specification

Read this for a description of the protocol for packets that are used to send the data generated by the
ITM and DWT to an external debugger.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

x|

Conventions

The following sections describe conventions that this book can use:
Typographical conventions.

Signals.

Numbers.

Pseudocode descriptions.

Assembler syntax descriptions.

Typographical conventions

The typographical conventions are:

italic

Introduces special terminology, and denotes citations.

bold

Denotes signal names, and is used for terms in descriptive lists, where appropriate.
monospace

Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other items appearing in assembler
syntax descriptions, pseudocode, and source code examples.

SMALLCAPS
Used for a few terms that have specific technical meanings, and that are included in the Glossary.
Colored text Indicates a link. This can be:

* A URL, for example https://developer.arm.com/.

* A cross-reference, that includes the page number of the referenced information if it is not on the current
page, for example, Chapter B2 Power Management.

* A link, to a chapter or appendix, or to a glossary entry, or to the section of the document that defines the
colored term, for example tail-chaining.

Signals
In general this specification does not define processor signals, but it does include some signal examples and
recommendations.
The signal conventions are:

Signal level The level of an asserted signal depends on whether the signal is active-HIGH or active-LOW. Asserted
means:

» HIGH for active-HIGH signals.
* LOW for active-LOW signals.

xli

https://developer.arm.com/

Preface
Conventions

Lowercase n At the start or end of a signal name denotes an active-LOW signal.

Numbers
Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbers by 0x.
In both cases, the prefix and the associated value are written in a monospace font, for example 0xFFFF0000.

For both binary and hexadecimal numbers, where a bit is represented by the letter x, the value is irrelevant. For
example a value expressed as 0b1x can be either 0b11 or 0b10.

To improve readability, long numbers can be written with an underscore separator between every four characters,
for example OxFFFF_0000_0000_0000. Ignore any underscores when interpreting the value of a number.

Pseudocode descriptions

This book uses a form of pseudocode to provide precise descriptions of the specified functionality. This pseudocode
is written in a monospace font, and is described in Chapter E1 Arm Pseudocode Definition.

Assembler syntax descriptions

This book contains numerous syntax descriptions for assembler instructions and for components of assembler
instructions. These are shown in a monospace font, and use the conventions described in C1.2.5 Standard
assembler syntax fields .

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. xlii
1D30062020 Non-confidential

Additional reading

This section lists relevant publications from Arm and third parties.

See https://developer.arm.com, for access to Arm documentation.

Arm publications

o Arm® Debug Interface Architecture Specification ADIv5.0 to ADIv5.2 (ARM IHI 0031).

» Arm® Debug Interface Architecture Specification ADIv6.0 (ARM IHI 0074).

o Arm® CoreSight™ Architecture Specification (ARM IHI 0029).

o Arm® Embedded Trace Macrocell Architecture Specification ETMv4.0 to ETMv4.4 (ARM THI 0064).
» Embedded Trace Macrocell® ETMv1.0 to ETMv3.5 Architecture Specification (ARM THI 0014).

o Arm®v6-M Architecture Reference Manual (ARM DDI 0419).

o Arm®v7-M Architecture Reference Manual (ARM DDI 0403).

o Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile (ARM DDI 0487).

o Arm® Reliability, Availability, and Serviceability (RAS) Specification, Armv8, for the Armv8-A architecture
profile (ARM DDI587).

Other publications

The following publications are referred to in this manual, or provide more information:

* ANSI/IEEE Std 754-1985 and ANSI/IEEE Std 754-2008, IEEE Standard for Binary Floating-Point Arith-
metic. Unless otherwise indicated, references to IEEE 754 refer to either issue of the standard.

Note
This document does not adopt the terminology defined in the 2008 issue of the standard.
e JEP106, Standard Manufacturers Identification Code, JEDEC Solid State Technology Association.

xliii

https://developer.arm.com

Feedback

Arm welcomes feedback on its documentation.

Feedback on this book

If you have comments on the content of this book, send an e-mail to errata@arm.com. Give:
* The title.
¢ The number, DDI0553B.1
* The page numbers to which your comments apply.
* The rule identifiers to which your comments apply, if applicable.
* A concise explanation of your comments.
Arm also welcomes general suggestions for additions and improvements.
Note

Arm tests PDFs only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the appearance or
behavior of any document when viewed with any other PDF reader.

xliv

Part A
Armv8-M Architecture Introduction and Overview

Chapter A1
Introduction

This chapter introduces the Armv8 architecture, the architecture profiles it defines, and the Armv8-M architecture
profile defined by this manual. It contains the following sections:

Al.1 Document layout and terminology on page 47.

A1.2 About the Armv8 architecture, and architecture profiles on page 50.
A1.3 The Armv8-M architecture profile on page 51.

Al.4 Armv8-M variants on page 53.

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 46
1D30062020 Non-confidential

Chapter A1. Introduction
A1.1. Document layout and terminology

A1.1 Document layout and terminology

This section describes the structure and scope of this manual. This section also describes the terminology that this
manual uses. It does not constitute part of the manual, and must not be interpreted as implementation guidance.

A1.1.1 Structure of the document

DDI0553B.1
1D30062020

This architecture manual describes the behavior of the processing element as a set of individual rules.

Each rule is clearly identified by the letter R, followed by a random group of subscript letters that do not reflect any
intended order or priority, for example Rggy;. In the following example, Rpspy is simply a random rule identifier
that has no significance apart from uniquely identifying a rule in this manual.

Identifier Rule

| |
;

RBsHJ The following data accesses are single-copy atomic:

o All byte accesses.
e All halfword accesses to halfword-aligned locations.
e All word accesses to word-aligned locations.

Applies to an implementation of the architecture from Armv8.0-M onwards

1

Additional Information

Rules must not be read in isolation, and where more than one rule relating to a particular feature exists, individual
rules are grouped into sections and subsections to provide the proper context. Where appropriate, these sections
contain a short introduction to aid the reader.

An implementation that conforms to all the rules described in this specification constitutes an Armv8-M compliant
implementation. An implementation whose behavior deviates from these rules is not compliant with the Armv8-M
architecture.

Some sections contain additional information and guidance that do not constitute rules. This information and
guidance is provided purely as an aid to understanding the architecture. Information statements are clearly
identified by the letter I, followed by a random group of subscript letters, for example Iprrp.

A line below each rule or information statement gives additional information indicating the architecture version, the
extensions that are required for the rule or information statement to apply, and any other notes. Some extensions
depend on the implementation of other extensions, for example FP.

Note

Arm strongly recommends that implementers read all chapters and sections of this document to ensure
that an implementation is compliant.

An implementation that conforms to all the rules described in this specification but chooses to ignore any additional
information and guidance is compliant with the Armv8-M architecture.

In the following parts of this manual, architectural rules are not identified by a specific prefix and a random group
of subscript letters:

* Parts of Chapter B14 The Performance Monitoring Extension on page 364.

Applies to an implementation of the architecture from Armv8.1-M onwards.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 47
Non-confidential

Chapter A1. Introduction
A1.1. Document layout and terminology

* Parts of Part C Armv8-M Instruction Set.

e Part D Armv8-M Register and Payload Specification.
* Part E Armv8-M Pseudocode.

e Part F Armv8-M Debug Packet Protocols.

A1.1.2 Scope of the document

This manual contains only rules and information that relate specifically to the Armv8-M architecture. It does not
include any information about other Arm architectures, nor does it describe similarities between Armv8-M and
other architectures.

Readers must not assume that the rules provided in this specification are applicable to an Armv7-M or Armv6-M im-
plementation, nor must they assume that the rules that are applicable to an Armv7-M or Armv6-M implementation
are equally applicable to an Armv8-M implementation.

A1.1.3 Intended audience

This manual is written for users who want to design, implement, or program an Armv8-M PE in a range of
Arm-compliant implementations from simple uniprocessor implementations to complex multiprocessor systems. It
does not assume familiarity with previous versions of the M-Profile architecture.

The manual provides a precise, accurate, and correct set of rules that must be followed in order for an Armv8-M
implementation to be architecturally compliant. It is an explicit reference manual, and not a general introduction
to, or user guide for, the Armv8-M architecture.

A1.1.4 Terminology, phrases

DDI0553B.1
1D30062020

This subsection identifies some standard words and phrases that are used in the Arm architecture documentation.
These words and phrases have an Arm-specific definition, which is described in this section.

Architecturally visible
Something that is visible to the controlling agent. The controlling agent might be software.
Arm recommends

A particular usage that ensures consistency and usability. Following all the rules listed in this manual leads to a
predictable outcome that is compliant with the architecture, but might produce an unexpected output. Adhering to
a recommendation ensures that the output is as expected.

Arm strongly recommends

Something that is essentially mandatory, but that is outside the scope of the architecture described in this manual.
Failing to adhere to a strong recommendation can break the system, although the PE itself remains compliant with
the architecture that is described in this manual.

Finite time

An action will occur at some point in the future. Finite time does not make any statement about the time involved.
However, delaying an action longer than is absolutely necessary might have an adverse impact on performance.

Permitted

Allowed behavior.
Required
Mandatory behavior.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 48
Non-confidential

Chapter A1. Introduction
A1.1. Document layout and terminology

Support

The implementation has implemented a particular feature.

A1.1.5 Terminology, Armv8-M specific terms

For definitions of Armv8-M specific terms, see the Glossary.

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
ID30062020 Non-confidential

49

Chapter A1. Introduction
A1.2. About the Armv8 architecture, and architecture profiles

A1.2 About the Armv8 architecture, and architecture profiles

DDI0553B.1
ID30062020

Armv8-M is documented as one of a set of architecture profiles.
Arm defines three architecture profiles:
A Application profile:

 Supports a Virtual Memory System Architecture (VMSA) based on a Memory Management Unit (MMU).
 Supports the A64, A32, and T32 instruction sets.

R Real-time profile:

* Supports a Protected Memory System Architecture (PMSA) based on a Memory Protection Unit (MPU).
* Supports the A32 and T32 instruction sets.

M Microcontroller profile, described in this manual:

* Implements a programmers’ model designed for low-latency interrupt processing, with hardware stacking of
registers and support for writing interrupt handlers in high-level languages.

* Optionally implements a variant of the R-profile PMSA.

* Supports a variant of the T32 instruction set.

This Architecture Reference Manual describes only the Armv8-M profile.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 50
Non-confidential

Chapter A1. Introduction
A1.3. The Armv8-M architecture profile

A1.3 The Armv8-M architecture profile

The M-Profile architecture includes:

* The opportunity to include simple pipeline designs offering leading edge system performance levels in a
broad range of markets and applications.
* Highly deterministic operation:
— Single or low cycle count execution.
— Minimal interrupt latency, with short pipelines.
— Capable of cacheless operation.
* Excellent targeting of C/C++ code. This aligns with the Arm programming standards in this area:
— Exception handlers are standard C/C++ functions, entered using standard calling conventions.
* Design support for deeply embedded systems:
— Low pincount devices.
 Support for debug and software profiling for event-driven systems.

The simplest Armv8.0-M implementation, without any of the optional extensions, is a Baseline implementation,
see Al.4 Armv8-M variants on page 53. The Armv8.0-M Baseline offers improvements over previous M-Profile
architectures in the following areas:

* The optional Security Extension.

* An improved, optional, Memory Protection Unit (MPU) model.
* Alignment with Armv8-A and Armv8-R memory types.

* Stack pointer limit checking.

* Improved support for multi-processing.

* Better alignment with C11 and C11++ standards.

* Enhanced debug capabilities.

A1.3.1 Security Extension

The Armv8-M architecture introduces a number of new instructions to the M-Profile architecture to support asset
protection. These instructions are only available to implementations that support the Security Extension, see Al.4
Armv8-M variants on page 53.

A1.3.2 MPU model

The Armv8-M architecture provides a default memory map and permits implementations to include an optional
MPU. The optional MPU uses the Protected Memory System Architecture (PMSAv8) and contains improved
flexibility in the MPU region definition, see Chapter B9 The Armv8-M Protected Memory System Architecture on
page 267.

A1.3.3 Nested Vector Interrupt Controller

The Nested Vector Interrupt Controller (NVIC) is used for integrated interrupt and exception handling and
prioritization. Armv8-M increases the number of interrupts that can potentially be supported by the NVIC 480 for
external sources, and includes automatic vectoring and priority management, and automatic state preservation. See
Chapter B11 Nested Vectored Interrupt Controller on page 279.

A1.3.4 Stack pointers

The Armv8-M architecture introduces stack limit registers that trigger an exception on a stack overflow. The
number of stack limit registers available to an implementation is determined by the Armv8-M variant that is

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 51
ID30062020 Non-confidential

Chapter A1. Introduction
A1.3. The Armv8-M architecture profile

implemented, see B3.8 Stack pointer on page 80.

A1.3.5 The Armv8-M instruction set

Armv8-M only supports execution of T32 instructions. The Armv8-M architecture adds instructions to support:

* Improved facilitation of execute-only code generation.

* Improved code optimization.

* Exclusive memory access instructions to enhance support for multiprocessor systems.
* Semaphores and atomics (Load-Acquire/Store-Release instructions).

The optional Floating-point Extension adds floating-point instructions to the T32 instruction set, see Chapter B4
Floating-point Support on page 161.

In an Armv8.1-M implementation a number of non-vector instructions are added to the T32 instruction set, and an
implementation might also contain the optional Vector Extensions, see Chapter B5 Vector Extension on page 177.

Applies to an implementation of the architecture from Armv8.1-M onwards.

For more information about the instructions, see Chapter C1 Instruction Set Overview on page 427 and Chapter
C2, Instruction Specification.

A1.3.6 Debug

The Armv8-M architecture introduces:

* Enhanced breakpoint and watchpoint functionality.
* Improvements to the Instrumentation Trace Macrocell (ITM).
» Comprehensive trace and self-hosted debug extensions to make embedded software easier to debug and trace.

In an Armv8.1-M implementation, the optional Unprivileged Debug Extension adds support for unprivileged
debug.

Applies to an implementation of the architecture from Armv8.1-M onwards.

For more information about debug, see Chapter B12 Debug on page 283 and Chapter B13 Debug and Trace
Components on page 325.

In an Armv8.1-M implementation, the optional Performance Monitors Extension adds support for a Performance
Monitor Unit (PMU), see Chapter B14 The Performance Monitoring Extension on page 364.

Applies to an implementation of the architecture from Armv8.1-M onwards.

A1.3.7 Reliability, Availability, and Serviceability

DDI0553B.1
1D30062020

In an Armv8.1-M implementation, the Reliability, Availability, and Serviceability (RAS) Extension adds additional
debug support, see Chapter B15 Reliability, Availability, and Serviceability (RAS) Extension on page 407. The
minimum RAS Extension is mandatory in an Armv8.1-M implementation.

Applies to an implementation of the architecture from Armv8.1-M onwards.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 52
Non-confidential

Chapter A1. Introduction
A1.4. Armv8-M variants

A1.4 Armv8-M variants

Each of the following extensions lists all of the features that are required to be present in an implementation for it
to be compliant with the architecture.

For example, an implementation that includes DIT, Data Independent Timing, must include:

* The Main Extension.

* FPCXT.

* LOB.

o (PXN).

* A minimal implementation of RAS.

All of the optional features described list all of the requirements of that feature.

Applies to an implementation of the architecture from Armv8.1-M onwards.

The Armv8-M architecture has the following optional extensions, which are abbreviated as follows:
Applies to an implementation of the architecture from Armv8.0-M onwards.

CDE - The Custom Datapath Extension

The Custom Datapath Extension is an OPTIONAL feature available from the Armv8-M architecture. An implemen-
tation that includes the Custom Datapath Extension must implement all of the features that are required by the
Main Extension (M), and might implement the following OPTIONAL features:

* The features that are provided by the Floating-point Extension (FP).
* The features that are provided by the Armv8.1 M-Profile Vector Extension (MVE).

Instructions that operate on the S or D register file require either FP or MVE. Instructions that operate on the Q
register file require MVE.

For more information see B3.37 The Custom Datapath Extension on page 157.

Note

The Custom Datapath Extension can also be referred to as Arm Custom Instructions for Armv8-M.
Applies to an implementation of the architecture from Armv8.0-M onwards.
DB - The Debug Extension

Note

For details about the individual features that constitute the Debug Extension, see B12.1 Debug feature
overview on page 284.

Applies to an implementation of the architecture from Armv8.0-M onwards.

DIT - Data Independent Timing
A PE that implements the DIT Extension includes:

* The features that are provided by the Main Extension (M)

¢ FPCXT access instructions.

* Low Overhead loops and Branch future (LOB).

* Privileged Execute-Never (PXN).

 Reliability, Availability, and Serviceability Extension (RAS).

Applies to an implementation of the architecture from Armv8.1-M onwards.

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 53
1D30062020 Non-confidential

Chapter A1. Introduction
A1.4. Armv8-M variants

DDI0553B.1
1D30062020

DSP - The Digital Signal Processing Extension.

A PE that implements the DSP Extension must implement the Main Extension (M).

Applies to an implementation of the architecture from Armv8.0-M onwards.
DSPDE - The DSP Debug Extension
A PE that implements the DSP Debug Extension includes:

* The features that are provided by the Main Extension (M)

e FPCXT access instructions.

* Low Overhead loops and Branch future (LOB).

* Privileged execute-never (PXN).

* Reliability, Availability, and Serviceability Extension (RAS).
* Data Independent Timing (DIT).

* The Debug Extension (DB).

Applies to an implementation of the architecture from Armv8.1-M onwards.

FP - The Floating-point Extension

A PE that implements the Floating-point Extension must implement the Main Extension (M).

The Floating-point Extension supports either single-precision floating-point instructions or both single-precision

and double-precision floating-point instructions.
Applies to an implementation of the architecture from Armv8.0-M onwards.

FPCXT - FPCXT access instructions
A PE that implements the FPCXT access includes:

 The features that are provided by the Main Extension (M).
 Data Independent Timing (DIT).

* Low Overhead loops and Branch future (LOB).

* Privileged execute-never (PXN).

* Reliability, Availability, and Serviceability Extension (RAS).

Applies to an implementation of the architecture from Armv8.1-M onwards.
HP - Half-precision floating-point instructions
A PE that implements the HP Extension includes:

 The features that are provided by the Main Extension (M).

* Low Overhead loops and Branch future (LOB).

* The Floating-point Extension (FP).

 Reliability, Availability, and Serviceability Extension (RAS).

Applies to an implementation of the architecture from Armv8.1-M onwards.
LOB - Low Overhead loops and Branch future
A PE that implements the LOB Extension includes:

* The features that are provided by the Main Extension (M).

* Data Independent Timing (DIT).

¢ FPCXT access instructions.

* Privileged execute-never (PXN).

 Reliability, Availability, and Serviceability Extension (RAS).

Applies to an implementation of the architecture from Armv8.1-M onwards.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

54

Chapter A1. Introduction
A1.4. Armv8-M variants

M - The Main Extension
A PE that implements the Main Extension implements the System Timer Extension.
Note

* A PE with the Main Extension is also referred to as a Mainline implementation.

* A PE without the Main Extension is also referred to as a Baseline implementation. A Baseline im-
plementation has a subset of the instructions, registers, and features, of a Mainline implementation.

* Armv7-M compatibility requires the Main Extension.

* Armv6-M compatibility is provided by all Armv8-M implementations.

Applies to an implementation of the architecture from Armv8.0-M onwards.
A PE that is compliant with the Armv8.1-M architecture implements the Main Extension.
Applies to an implementation of the architecture from Armv8.1-M onwards.
MPU - The Memory Protection Unit Extension
Applies to an implementation of the architecture from Armv8.0-M onwards.
MVE - M-Profile Vector Extension
Note
The Armv8-M MVE can also be referred to as Arm Helium'™ for Armv8-M.

This extension provides operations on various SIMD data types.
It consists of MVE-I (integer) and MVE-F (floating-point).
A PE that implements MVE-F includes:

* Half-precision floating-point instructions (HP).
* The Floating-point Extension (FP).
* MVE-L

A PE that implements MVE-I includes:

* The features that are provided by the Main Extension (M).

* Data Independent Timing (DIT).

¢ (FPCXT) access instructions.

* Low Overhead loops and Branch future (LOB).

¢ Privileged execute-never (PXN).

* Reliability, Availability, and Serviceability Extension (RAS).
e The DSP Extension (DSP).

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
1D30062020 Non-confidential

55

Chapter A1. Introduction
A1.4. Armv8-M variants

Double-precision FP

A 4

Half-precison +
single-precision FP

MVE-F

Main
Extension

PXN
FPCXT

Applies to an implementation of the architecture from Armv8.1-M onwards.

PMU - Performance Monitoring Unit

A PE that implements the PMU Extension includes:

The features that are provided by the Main Extension (M).
Data Independent Timing (DIT).

FPCXT access instructions.

Low Overhead loops and Branch future (LOB).

Privileged execute-never (PXN).

Reliability, Availability, and Serviceability Extension (RAS).

Some events that are counted by the PMU require additional extensions.

Applies to an implementation of the architecture from Armv8.1-M onwards.

PXN - Privileged eXecute-Never

A PE that implements the PXN Extension includes:

The features that are provided by the Main Extension (M).
Data Independent Timing (DIT).

FPCXT access instructions.

Low Overhead loops and Branch future (LOB).

Reliability, Availability, and Serviceability Extension (RAS).

Applies to an implementation of the architecture from Armv8.1-M onwards.

RAS - Reliability, Serviceability, and Availability

A PE that implements the RAS Extension includes:

DDI0553B.1
1D30062020

The features that are provided by the Main Extension (M).
Data Independent Timing (DIT).
FPCXT access instructions.

Low Overhead loops and Branch future (LOB).

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

56

Chapter A1. Introduction
A1.4. Armv8-M variants

* Privileged execute-never (PXN).
* Reliability, Availability, and Serviceability Extension (RAS).
The minimum RAS Extension is mandatory in an Armv8.1-M implementation.
Applies to an implementation of the architecture from Armv8.1-M onwards.
S - The Security Extension
Note
The Armv8-M Security Extension can also be referred to as Arm TrustZone for Armv8-M.
Applies to an implementation of the architecture from Armv8.0-M onwards.
ST - The System Timer Extension
Applies to an implementation of the architecture from Armv8.0-M onwards.
UDE - Unprivileged Debug Extension
A PE that includes the Unprivileged Debug Extension includes:

¢ The features that are provided by the Main Extension (M).

* Data Independent Timing (DIT).

e FPCXT access instructions.

¢ Low Overhead loops and Branch future (LOB).

* Privileged execute-never (PXN).

* Reliability, Availability, and Serviceability Extension (RAS).
e The Debug Extension (DB).

e The Memory Protection Unit (MPU).

The Unprivileged Debug Extension is optional in an Armv8.1-M implementation.

Applies to an implementation of the architecture from Armv8.1-M onwards.

A line below each rule or information statement indicates the architecture version, the extensions that are required
for the rule or information statement to apply, and any other notes. Some extensions depend on the implementation
of other extensions, for example FP.

Applies to an implementation of the architecture from Armv8.1-M onwards.

A1.4.1 Features of Armv8.1-M

The following new features are introduced by Armv8.1-M:

* Registers:
- DSCEMCR.
— ERRADDRn.
— ERRADDR2n.
— ERRCTRLn.
— ERRDEVID.
- ERRFRn.
— ERRGSRn.
— ERRIIDR.
— ERRMISCOn.
— ERRMISClIn.
— ERRMISC2n.
- ERRMISC3n.
— ERRMISC4n.
— ERRMISC5n.

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 57
1D30062020 Non-confidential

Chapter A1. Introduction
A1.4. Armv8-M variants

— ERRMISC6n.

— ERRMISC7n.

— ERRSTATUSn.

— FPCXT (payload).

— LO_BRANCH_INFO (cache).

- PMU_AUTHSTATUS.

- PMU_CCFILTR.

- PMU_CCNTR.

— PMU_CIDRO.

- PMU_CIDRI.

- PMU_CIDR2.

- PMU_CIDR3.

— PMU_CNTENCLR.

— PMU_CNTENSET.

- PMU_CTRL.

- PMU_DEVARCH.

- PMU_DEVTYPE.

- PMU_EVCNTRn.

- PMU_EVTYPERn.

— PMU_INTENCLR.

— PMU_INTENSET.

- PMU_OVSCLR.

- PMU_OVSSET.

- PMU_PIDRO.

- PMU_PIDRI.

— PMU_PIDR2.

— PMU_PIDR3.

- PMU_PIDRA.

- PMU_SWINC.

- PMU_TYPE.

- RFSR.

- VPR.
e MVE instructions:

— The individual instructions are listed in Chapter C2, Instruction Specification.
* Exception model:

— New entry to the Stack frame, VPR.

— Handling of partially executed MVE instructions.

The following Armv8.0-M features are changed by the introduction of the Armv8.1-M architecture:
* The modified registers are:

— AIRCR.

- BFSR.

- CCR.

— CONTROL.

— CPACR.

- CPPWR.

— DAUTHCTRL.
— DAUTHSTATUS.
— DHCSR.

— DCRSR.

— DFSR.

- DWT_CYCCNT.
- EPSR.

— FPCAR.

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
1D30062020 Non-confidential

Chapter A1. Introduction
A1.4. Armv8-M variants

- FPCCR.

— FPDSCR.

- FPSCR.

- ICSR.

— ID_DFRO.

— ID_ISARO.

— ID_PFRO.

— ID_PFRI.

— MPU_RLAR.

— MPU_RLAR_An.
— MVFRO.

- MVFRI.

- MVFR2.

— NSACR.

— RETPSR (payload).
— XPSR.

In addition, the restrictions on access to a number of registers is relaxed to allow a debugger to write to the
register when the PE is not in Debug state.

* The Armv8.0-M Floating-point Extension is extended to include half-precision floating-point instructions.
These half-precision floating-point instructions are a mandatory part of the Floating-point Extension. These
instructions are:

- VABS.

— VADD.

— VCMPE.

- VCMP.

— VCVT (between floating-point and fixed-point).
— VCVT (floating-point to integer).
— VCVT (integer to floating-point).
— VCVTA.

— VCVTM.

— VCVTN.

- VCVTP.

- VCVTR.

- VDIV.

- VFMA.

- VEMS.

— VENMA.

— VENMS.

— VLDR.

— VMAXNM.

— VMINNM.

- VMLA.

- VMLS.

— VMOV (immediate).
- VMUL.

— VNEG.

— VNMLA.

— VNMLS.

— VNMUL.

— VRINTA.

— VRINTM.

— VRINTN.

— VRINTP.

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 59
1D30062020 Non-confidential

Chapter A1. Introduction

A1.4. Armv8-M variants

VRINTR.
VRINTX.
VRINTZ.
VSEL.
VSQRT.
VSTR.
VSUB.

¢ Other modified instructions are:

MOV (register).

ORR (register).

SG.

VMOV (half of doubleword register to single general-purpose register)
is an alias of VMOV (vector lane to general-purpose register).

VMOV (single general-purpose register to half doubleword register) is
an alias of VMOV (general-purpose register to vector lane).

VMRS.

VMSR.

Applies to an implementation of the architecture from Armv8.1-M onwards.

A1.4.2 Interaction between MVE and the Floating-point Extension in Armv8.1-M

DDI0553B.1
1D30062020

The following architecture features are present in an Armv8.1-M implementation if either or both of MVE and the
Floating-point Extension are implemented:

* Registers:

S0-S31.
CONTROL.{FPCA, SFPA}.
FPCCR.

FPCAR.

FPSCR.

MVERI.

* New and updated instructions:

VMOV (register).

VINS.

VMOVX.

VMOV (between general-purpose register and half-precision register).
VMOV (between general-purpose registers and single-precision register).
VMOV (between two general-purpose register and a doubleword register).
VMOV (between two general-purpose registers and two single-precision
registers).

VMSR, VMRS.

VLDM, VSTM, VPUSH, VPOP.

VSTR, VLDR.

VLSTM, VLLDM.

» Exception model:

Lazy and non-lazy stacking of the Floating-point context.

Faults that are related to the handling of state in the Floating-point Extension register file, including their
corresponding fault status register fields, which are:

* NOCP UsageFault.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 60
Non-confidential

Chapter A1. Introduction
A1.4. Armv8-M variants

MLSPERR MemManage Fault.

LSPERR BusFault.

LSERR SecureFault, if the Security Extension is implemented.
LSPERR Secure Fault, if the Security Extension is implemented.

* ¥ ¥ %

A1.4.3 Debug in Armv8.1-M

The restrictions on access to a number of registers is relaxed to allow a debugger to write to the register when the
PE is not in Debug state.

Applies to an implementation of the architecture from Armv8.1-M onwards.

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 61
1D30062020 Non-confidential

Part B
Armv8-M Architecture Rules

Chapter B1
Resets

This chapter specifies the Armv8-M reset rules. It contains the following section:

B1.1 Resets, Cold reset, and Warm reset on page 64.

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
ID30062020 Non-confidential

63

Chapter B1. Resets
B1.1. Resets, Cold reset, and Warm reset

B1.1 Resets, Cold reset, and Warm reset

Rpppr

Reree

RFNNX

RGTXW

RYMHN

RWS ZN

RHFRS

DDI0553B.1
1D30062020

There are two resets:

¢ Cold reset.
e Warm reset.

Applies to an implementation of the architecture from Armv8.0-M onwards.

It is not possible to have a Cold reset without also having a Warm reset.

Applies to an implementation of the architecture from Armv8.0-M onwards.

On a Cold reset, registers that have a defined reset value contain that value.

Applies to an implementation of the architecture from Armv8.0-M onwards.

On a Warm reset, some debug register control fields that have a defined reset value remain unchanged, but otherwise
all registers that have a defined reset value contain that value.

Applies to an implementation of the architecture from Armv8.0-M onwards.

On a Warm reset, the PE performs the actions that are described by the TakeReset () pseudocode.

Applies to an implementation of the architecture from Armv8.0-M onwards.
AIRCR.SYSRESETREQ is used to request a Warm reset.

Applies to an implementation of the architecture from Armv8.0-M onwards.

For AIRCR.SYSRESETREQ), the architecture does not guarantee that the reset takes place immediately.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

Chapter B12 Debug on page 283.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 64
Non-confidential

Chapter B2
Power Management

This chapter specifies the Armv8-M power management rules. It contains the following section:
B2.1 Power management on page 66.

B2.2 Sleep on exit on page 68.

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
ID30062020 Non-confidential

65

Chapter B2. Power Management
B2.1. Power management

B2.1 Power management

Incyr The following instructions and pseudocode functions hint to the PE hardware that it can suspend execution and
enter a low-power state:

* WaitForEvent ().
* WaitForInterrupt ().
* SleepOnExit ().

Applies to an implementation of the architecture from Armv8.0-M onwards.

B2.1.1 The Wait for Event (WFE) instruction

Rpemu When a WFE instruction is executed, if the state of the Event register is clear, the PE can suspend execution and
enter a low-power state.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Rupxv When a WFE instruction is executed, if the state of the Event register is set, the instruction clears the register and
completes immediately.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Rkonp If the PE enters a low-power state on a WFE instruction, it remains in that low-power state until it receives a WFE
wakeup event. When the PE recognizes a WFE wakeup event, the WFE instruction completes. The following are
WFE wakeup events:

¢ The execution of a SEV () instruction by any PE.

* When SCR.SEVONPEND is 1, any exception entering the pending state.

* Any exception at a priority that would preempt the current execution priority, taking into account any active
exceptions and including the effects of any software-controlled priority boosting by AIRCR.PRIS == 1 and
PRIMASK, FAULTMASK, or BASEPRI.

* If debug is enabled, a debug event.

. Any IMPLEMENTATION DEFINED event.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Ryroc The Armv8-M architecture does not define the exact nature of the low-power state that is entered on a instruction,
except that it does not cause a loss of memory coherency.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Irzgz Arm recommends that software always uses the instruction in a loop.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:
B3.13 Priority model on page 94.
WaitForEvent ().

SendEvent ().

B2.1.2 The Event register

Irpzm The Event register is a single-bit register for each PE in the system.

Applies to an implementation of the architecture from Armv8.0-M onwards.

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 66
1D30062020 Non-confidential

Chapter B2. Power Management
B2.1. Power management

RBPBR

Ivvzw

Rexur

IJFKL

I LNFV

The Event register for a PE is set by any of the following:

* Any WFE wakeup event.
» Exception entry.
» Exception return.

Applies to an implementation of the architecture from Armv8.0-M onwards.

When the Event register is set, it is an indication that an event has occurred since the register was last cleared, and
that the event might require some action by the PE.

Applies to an implementation of the architecture from Armv8.0-M onwards.

A reset clears the Event register.

Applies to an implementation of the architecture from Armv8.0-M onwards.

The execution of a WFE instruction will clear the Event Register.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Software cannot read, and cannot write to, the Event register directly.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:
SetEventRegister ()
ClearEventRegister ()

EventRegistered()

B2.1.3 The Wait for Interrupt (WFI) instruction

Ryrma

Icenn

DDI0553B.1
1D30062020

When a WFI instruction is executed, the PE can suspend execution and enter a low-power state. If it does, it
remains in that state until it receives a WFI wakeup event. When the PE recognizes a Wr'I wakeup event, the WF I
instruction completes. The following are Wr I wakeup events:

* A reset.

* Any asynchronous exception at a priority that, ignoring the effect of PRIMASK (so that behavior is as if
PRIMASK is 0), would preempt any currently active exceptions.

* An IMPLEMENTATION DEFINED WFI wakeup event.

* If debug is enabled, a debug event.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Arm recommends that software always uses the WF I instruction in a loop.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:
B3.13 Priority model on page 94.

WaitForInterrupt ()

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 67
Non-confidential

Chapter B2. Power Management
B2.2. Sleep on exit

B2.2 Sleep on exit

Raxew

Remve

RWWDW

Ryror

DDI0553B.1
1D30062020

It is IMPLEMENTATION DEFINED whether the S1eepOnExit () function causes the PE to enter a low-power
state during the return from the only active exception and the PE returns to Thread mode.

Applies to an implementation of the architecture from Armv8.0-M onwards.

The PE enters a low-power state on return from an exception when all the following are true:

* EXC_RETURN.Mode == 1.
e SCR.SLEEPONEXIT== 1.

Applies to an implementation of the architecture from Armv8.0-M onwards.

If the sleep-on-exit function is enabled, it is IMPLEMENTATION DEFINED at which point in the exception return
process the PE enters a low-power state.

Applies to an implementation of the architecture from Armv8.0-M onwards.

The wakeup events for the sleep-on-exit function are identical to the WrI instruction wakeup events.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:
B3.13 Priority model on page 94.
SleepOnExit ()

B3.22 Exception return on page 119.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 68
Non-confidential

Chapter B3
Programmers’ Model

DDI0553B.1
1D30062020

This chapter specifies the Armv8-M programmers’ model architecture rules. It contains the following sections:

B3.1 PE modes, Thread mode and Handler mode on page 71.

B3.2 Privileged and unprivileged execution on page 72.

B3.3 Registers on page 73.

B3.4 Special-purpose CONTROL register on page 75.

B3.5 XPSR, APSR, IPSR, and EPSR on page 76.

B3.6 Security states: Secure state, and Non-secure state on page 78.
B3.7 Security states and register banking between Security states on page 79.
B3.8 Stack pointer on page 80.

B3.9 Exception numbers and exception priority numbers on page 82.
B3.10 Exception enable, pending, and active bits on page 85.

B3.11 Security states, exception banking on page 87.

B3.12 Faults on page 89.

B3.13 Priority model on page 94.

B3.14 Secure address protection on page 98.

B3.15 Security state transitions on page 99.

B3.16 Function calls from Secure state to Non-secure state on page 101.

B3.17 Function returns from Non-secure state on page 102.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

69

Chapter B3. Programmers’ Model

DDI0553B.1
1D30062020

B3.18 Exception handling on page 104.

B3.19 Exception entry, context stacking on page 106.

B3.20 Exception entry, register clearing after context stacking on page 115.

B3.21 Stack limit checks on page 116.
B3.22 Exception return on page 119.
B3.23 Integrity signature on page 123.
B3.24 Exceptions during exception entry on page 124.
B3.25 Exceptions during exception return on page 126.
B3.26 Tail-chaining on page 127.
B3.27 Exceptions, instruction resume, or instruction restart on page 130.
B3.28 Low overhead loops on page 133.
B3.29 Branch future on page 138.
Applies to an implementation of the architecture from Armv8.1-M onwards.
B3.30 Vector tables on page 140.

B3.31 Hardware-controlled priority escalation to HardFault on page 142.

B3.32 Special-purpose mask registers, PRIMASK, BASEPRI, FAULTMASK, for configurable priority boosting on

page 143.

B3.33 Lockup on page 145.

B3.34 Data independent timing on page 151.
Applies to an implementation of the architecture from Armv8.1-M onwards.
B3.35 Context Synchronization Event on page 154.

B3.36 Coprocessor support on page 155.

B3.37 The Custom Datapath Extension on page 157.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.

Non-confidential

70

Chapter B3. Programmers’ Model
B3.1. PE modes, Thread mode and Handler mode

B3.1 PE modes, Thread mode and Handler mode

Renms There are two PE modes:

¢ Thread mode.
¢ Handler mode.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Irpyr A common usage model for the PE modes is:

* Thread mode: Applications.
* Handler mode: OS kernel and associated functions, that manage system resources.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Rrexe The PE handles all exceptions in Handler mode.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Remop Thread mode is selected on reset.
Applies to an implementation of the architecture from Armv8.0-M onwards.
See also:
B3.2 Privileged and unprivileged execution on page 72.
B3.5.1 Interrupt Program Status Register (IPSR) on page 76.

B3.6 Security states: Secure state, and Non-secure state on page 78.

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
1D30062020 Non-confidential

Chapter B3. Programmers’ Model
B3.2. Privileged and unprivileged execution

B3.2 Privileged and unprivileged execution

Ryuvrk Thread mode
Execution can be privileged or unprivileged.
Handler mode
Execution is always privileged.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Ivcru CONTROL.nPRIV determines whether execution in Thread mode is unprivileged.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Rspor In a PE without the Main Extension, it is IMPLEMENTATION DEFINED whether CONTROL.nPRIV can be set to 1.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Rissw Execution privilege can determine whether a resource is accessible.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Iensc Privileged execution typically has access to more resources than unprivileged execution.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B3.1 PE modes, Thread mode and Handler mode on page 71.

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 72
1D30062020 Non-confidential

Chapter B3. Programmers’ Model
B3.3. Registers

B3.3 Registers

Rgest

Icowv

Ipnve

IpLxr

Rprrr

Ronmu

Rprns

DDI0553B.1
1D30062020

There are the following types of registers:
General-purpose registers, all 32-bit:

¢ RO-R12 (Rn).
* R13. This is the stack pointer (SP).
* R14. This is the Link Register (LR).

Program Counter, 32-bit:

* R15 is the Program Counter (PC).
Special-purpose registers:

* Mask Registers:

— 1-bit exception mask register, PRIMASK.
— 8-bit base priority mask register, BASEPRI.
— 1-bit fault mask register, FAULTMASK.

* A 2-bit, 3-bit, or 4-bit CONTROL register.

* Two 32-bit stack pointer limit registers, MSPLIM and PSPLIM, if the Main Extension is not implemented
the Non-secure versions of these registers are RAZ/WI.

* A combined 32-bit Program Status Register (XPSR), comprising:

— Application Program Status Register (APSR).
— Interrupt Program Status Register (IPSR).
— Execution Program Status Register (EPSR).

Memory-mapped registers:
All other registers.

Applies to an implementation of the architecture from Armv8.0-M onwards.

A 32-bit combined exception return Program Status Register, RETPSR, contains a payload of the saved state
derived from the XPSR.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Extensions might add more registers to the base register set.

Applies to an implementation of the architecture from Armv8.0-M onwards.

SP refers to the active stack pointer, the Main stack pointer or the Process stack pointer.

Applies to an implementation of the architecture from Armv8.0-M onwards.

If the Main Extension is implemented, the LR is set to 0xFFFFFFFF on Warm reset.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.
If the Main Extension is not implemented, the LR becomes UNKNOWN on a Warm reset.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

The PC is loaded with the reset handler start address on Warm reset.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 73
Non-confidential

Chapter B3. Programmers’ Model
B3.3. Registers

RJPCB

Rxnnc

Rxpro

Rppac

RXKXP

DDI0553B.1
1D30062020

The PC contains the instruction address of the instruction currently being executed. If an instruction reads the
value of the PC, the value returned will increase by 4.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Except for writes to the CONTROL register, any change to a special-purpose register by a CPS or MSR instruction
is guaranteed:

* Not to affect that CPS or MSR instruction, or any instruction preceding it in program order.
* To be visible to all instructions that appear in program order after the CP S or MSR.

Applies to an implementation of the architecture from Armv8.0-M onwards.
All unallocated or reserved values of fields with allocated values within the memory-mapped registers that are

described in this reference manual behave, unless otherwise stated in the register description, in one of the following
ways:

* The encoding maps onto any of the allocated values, but otherwise does not cause CONSTRAINED UNPRE-
DICTABLE behavior.

* The encoding causes effects that could be achieved by a combination of more than one of the allocated
encodings.

* The encoding causes the field to have no functional effect.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Reads of registers described as write-only (WO) behave as RESO.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Writes to a register described as read-only (RO) do not cause modification of the read-only register.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:
Chapter B7 The System Address Map on page 251.

B3.32 Special-purpose mask registers, PRIMASK, BASEPRI, FAULTMASK, for configurable priority boosting on
page 143.

B3.4 Special-purpose CONTROL register on page 75.
B3.21 Stack limit checks on page 116.

B3.5 XPSR, APSR, IPSR, and EPSR on page 76.

B1.1 Resets, Cold reset, and Warm reset on page 64.

Part D Register and Payload Specification.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 74
Non-confidential

Chapter B3. Programmers’ Model
B3.4. Special-purpose CONTROL register

B3.4 Special-purpose CONTROL register

Recspp

Rgkvo

Rraovp

RHVGB

INMBL

DDI0553B.1
1D30062020

MRS and MSR instructions can be used to access the CONTROL register.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Privileged execution can write to the CONTROL register. The PE ignores unprivileged writes to the CONTROL
register. All reads of the CONTROL register, regardless of privilege, are allowed.

Applies to an implementation of the architecture from Armv8.0-M onwards.

The architecture requires a Context synchronization event to guarantee visibility of a change to the CONTROL
register.

Applies to an implementation of the architecture from Armv8.0-M onwards.

The PE automatically updates CONTROL.SPSEL on exception entry and exception return.

Applies to an implementation of the architecture from Armv8.0-M onwards.

CONTROL.SPSEL selects the stack pointer when the PE is in Thread mode.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:
B3.35 Context Synchronization Event on page 154.
CONTROL, Control Register.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 75
Non-confidential

Chapter B3. Programmers’ Model
B3.5. XPSR, APSR, IPSR, and EPSR

B3.5 XPSR, APSR, IPSR, and EPSR

Rzrun The APSR, IPSR, and EPSR combine to form one register, the XPSR:
_ 31 30 29 28 27 26 25 24 23 20 19 16 15 109 8 0
APSR|N|z|c|V|a GE[3:0]"
XPSR IPSR 0 or Exception Number
EPSR IE(I:/:TTT T ICIIT/ECIT
N

T Reserved if the DSP Extension is not implemented
™ Reserved if the Main Extension is not implemented. ECI requires implementing the MVE Extension.

All unused bits in any of the APSR, IPSR, or EPSR, or any unused bits in the combined XPSR, are reserved.

Applies to an implementation of the architecture from Armv8.0-M. Note, ECI functionality only available in an Armv8.1-M

implementation.

Rxerp The MRS and MSR instructions recognize the following mnemonics for accessing the APSR, IPSR or EPSR, or a
combination of them:

Mnemonic Registers accessed

APSR APSR
IPSR IPSR
EPSR EPSR
IAPSR IPSR and APSR
EAPSR EPSR and APSR
IEPSR IPSR and EPSR
XPSR APSR, TIPSR, and EPSR
Applies to an implementation of the architecture from Armv8.0-M onwards.
RuLFR Arm deprecates using MSR AP SR without a _<bit s> qualifier as an alias for MSR APSR-_nzcvq.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:
B3.3 Registers on page 73.
APSR, Application Program Status Register.
B3.5.1 Interrupt Program Status Register (IPSR) .
B3.5.2 Execution Program Status Register (EPSR) on page 77.

B3.5.1 Interrupt Program Status Register (IPSR)
Rpreg When the PE is in Thread mode, the IPSR value is zero.
When the PE is in Handler mode:

* In the case of a taken exception, the IPSR holds the exception number of the exception being handled.
¢ When there has been a function call from Secure state to Non-secure state, the IPSR has the value of 1.

The PE updates the IPSR on exception entry and return.

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 76
1D30062020 Non-confidential

Chapter B3. Programmers’ Model
B3.5. XPSR, APSR, IPSR, and EPSR

Rxree

RRDRX

Applies to an implementation of the architecture from Armv8.0-M. Note, Secure state requires S.

The PE ignores writes to the IPSR by MSR instructions.

Applies to an implementation of the architecture from Armv8.0-M onwards.

If DCRDR is used to change the value of IPSR, then the value of IPSR becomes UNKNOWN. If DCRDR attempts
to set IPSR to an illegal value, then the UNKNOWN value is set to one of the known legal values.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B3.5 XPSR, APSR, IPSR, and EPSR on page 76.

B3.16 Function calls from Secure state to Non-secure state on page 101.
IPSR, Interrupt Program Status Register

BX, BXNS

B3.5.2 Execution Program Status Register (EPSR)

Rgscu

Rsorx

IxBux

Ripgo

DDI0553B.1
1D30062020

A reset sets EPSR.T to the value of bit[0] of the reset vector.

Applies to an implementation of the architecture from Armv8.0-M onwards.

When EPSR.T is:
0: Any attempt to execute any instruction generates:

* An INVSTATE UsageFault, in a PE with the Main Extension.
¢ A HardFault, in a PE without the Main Extension.

1: The Instruction set state is T32 state and all instructions are decoded as T32 instructions.
Applies to an implementation of the architecture from Armv8.0-M. Note, UsageFault requires M.
The intent is that the Instruction set state is always T32 state.

Applies to an implementation of the architecture from Armv8.0-M onwards.

All EPSR fields read as zero using an MRS instruction. The PE ignores writes to the EPSR by an MSR instruction.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:
B3.5 XPSR, APSR, IPSR, and EPSR on page 76.
B3.5.2 Execution Program Status Register (EPSR) .

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 77
Non-confidential

Chapter B3. Programmers’ Model
B3.6. Security states: Secure state, and Non-secure state

B3.6 Security states: Secure state, and Non-secure state

Ryugrkr A PE with the Security Extension has two Security states:

¢ Secure state.
— Secure Thread mode.
— Secure Handler mode.
¢ Non-secure state.
— Non-secure Thread mode.
— Non-secure Handler mode.

Non-secure state Secure state
Thread mode Thread mode
Handler mode Handler mode

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

Rpger If the Security Extension is implemented, memory areas and other critical resources that are marked as secure can
only be accessed when the PE is executing in Secure state.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

Ruwrv A PE with the Security Extension resets into Secure state on both of the Armv8-M resets, Cold reset and Warm
reset.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

Rprcu A PE without the Security Extension resets into Non-secure state on both of the Armv8-M resets, Cold reset and
Warm reset.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - !S.

See also:

B3.1 PE modes, Thread mode and Handler mode on page 71.

B3.2 Privileged and unprivileged execution on page 72.

B3.7 Security states and register banking between Security states on page 79.
B3.11 Security states, exception banking on page 87.

B3.15 Security state transitions on page 99.

Chapter B5 Vector Extension on page 177.

Applies to an implementation of the architecture from Armv8.1-M onwards.

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 78
1D30062020 Non-confidential

Chapter B3. Programmers’ Model
B3.7. Security states and register banking between Security states

B3.7 Security states and register banking between Security states

Imcro

RBHDK

Icpur

RzxkL

DDI0553B.1
1D30062020

In a PE with the Security Extension, some registers are banked between the Security states. When a register is

banked in this way, there is a distinct instance of the register in Secure state and another distinct instance of the
register in Non-secure state.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.
In a PE with the Security Extension:
* The general-purpose registers that are banked are:
— R13. This is the stack pointer (SP).
* The special-purpose registers that are banked are:

— The Mask registers, PRIMASK, BASEPRI, and FAULTMASK.
— Some bits in the CONTROL register.
— The Main and Process stack pointer Limit registers, MSPLIM and PSPLIM.

* The System Control Space (SCS) is banked.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

For MRS and MSR (register) instructions, SYSm[7] in the instruction encoding specifies whether the Secure
or the Non-secure instance of a Banked register is accessed:

Access from SYSm[7]
0 1
Secure state Secure instance Non-secure instance

Non-secure state Non-secure instance RAZ/WI

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

This specification uses the following naming convention to identify a Banked register:

* <register name>_S: The Secure instance of the register.
* <register name>_NS: The Non-secure instance of the register.
» <register name>: The instance that is associated with the current Security state.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

See also:
B3.3 Registers on page 73.

B3.6 Security states: Secure state, and Non-secure state on page 78.

B3.8 Stack pointer on page 80.
B7.3 The System Control Space (SCS) on page 255.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 79
Non-confidential

Chapter B3. Programmers’ Model
B3.8. Stack pointer

B3.8 Stack pointer

Rrprr

RTGHV

Ripes

Rxkzv

Rrxrw

Ipmis

RB TVD

RMDXK

ILVWN

Rxpwm

Rumova

DDI0553B.1
1D30062020

In a PE with the Security Extension, four stacks and four stack pointer registers are implemented:

Stack Stack pointer register

Secure Main MSP_S
Process PSP_S

Non-secure Main MSP_NS
Process PSP_NS

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

In a PE without the Security Extension, two stacks and two stack pointer registers are implemented:

Stack Stack pointer register
Main MSP
Process | PSP

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - !S.

On exception return the Armv8-M architecture only supports doubleword aligned stack pointers.

Applies to an implementation of the architecture from Armv8.0-M onwards.

If, on exception return, the stack pointers are not doubleword aligned, the CONSTRAINED UNPREDICTABLE
behavior is either:

* Treating the stack pointer as the actual value.
* Treating the stack pointer as if it were aligned.

Applies to an implementation of the architecture from Armv8.0-M onwards.

In Handler mode, the PE uses the main stack.

Applies to an implementation of the architecture from Armv8.0-M onwards.

In Thread mode, CONTROL.SPSEL determines whether the PE uses the main or process stack.

Applies to an implementation of the architecture from Armv8.0-M onwards.

In a PE without the Security Extension, MSP is selected and initialized on reset.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - !S.

In a PE with the Security Extension, the Secure main stack, MSP_S, is selected and initialized on reset.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

On Warm reset, the selected Stack Pointer either the MSP or MSP_S, is set to the value contained in the Vector
table, as described in TakeReset ().

Applies to an implementation of the architecture from Armv8.0-M. Note, S is required for MSP_S.

Bits [1:0] of the MSP or PSP, in either Security state, are RESOH, so that all stack pointers are always guaranteed to
be word-aligned.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

Where an instruction states that the SP is UNPREDICTABLE and SP is used:

e The value that is read or written from or to the SP is UNKNOWN.
¢ The instruction is permitted to be treated as UNDEFINED.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 80
Non-confidential

Chapter B3. Programmers’ Model
B3.8. Stack pointer

« If the SP is being written, it is UNKNOWN whether a stack-limit check is applied.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Ryxaom After the successful completion of an exception entry stacking operation, the stack pointer of the stack pushed
because of the exception entry is doubleword-aligned.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Ipuro Arm recommends that the Secure stacks be located in Secure memory.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

See also:

B3.6 Security states: Secure state, and Non-secure state on page 78.
B3.1 PE modes, Thread mode and Handler mode on page 71.
B3.19 Exception entry, context stacking on page 106.

B3.30 Vector tables on page 140.

B3.3 Registers on page 73.

B3.21 Stack limit checks on page 116.

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 81
1D30062020 Non-confidential

Chapter B3. Programmers’ Model
B3.9. Exception numbers and exception priority numbers

B3.9 Exception numbers and exception priority numbers

Ipcas

Remre

RMGNV

DDI0553B.1
1D30062020

Each exception has an associated exception number and an associated priority number.

Applies to an implementation of the architecture from Armv8.0-M onwards.

In a PE with the Main Extension, the exceptions, their associated numbers, and their associated priority numbers
are as follows:

Exception Exception Number Priority Number
Reset 1 -4 (Highest Priority)
Secure HardFault when AIRCR.BFHFNMINS is 1 3 -3

NMI 2 -2

Secure HardFault when AIRCR.BFHFNMINS is 0 3 -1
Non-Secure HardFault 3 -1
MemManage fault 4 Configurable
BusFault 5 Configurable
UsageFault 6 Configurable
SecureFault 7 Configurable
Reserved 8-10 -

SVCall 11 Configurable
DebugMonitor 12 Configurable
Reserved 13 -

PendSV 14 Configurable
SysTick 15 Configurable
External Interrupt O 16 Configurable
External interrupt N 16+N Configurable

When AIRCR.BFHFNMINS is 1, faults that target Secure state that are escalated to HardFault are still Secure
HardFaults. That is, the value of AIRCR.BFHFNMINS does not affect faults that target Secure state that are
escalated to HardFaults. This table row applies to such faults.

If the Security Extension is not implemented exception 7 is reserved.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M. Note, S is

required for Secure faults.

In a PE without the Main Extension, the exceptions, their associated numbers, and their associated priority numbers
are as follows:

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 82
Non-confidential

Chapter B3. Programmers’ Model
B3.9. Exception numbers and exception priority numbers

IFPJD

Roorr

Iowtm

Iseee

DDI0553B.1
1D30062020

Exception Exception Number Priority Number
Reset 1 -4 (Highest Priority)
Secure HardFault when AIRCR.BFHFNMINS is 1 3 -3

NMI 2 -2

Secure HardFault when AIRCR.BFHFNMINS is 0 3 -1
Non-Secure HardFault 3 -1
Reserved 4-10 -

SVCall 11 Configurable
Reserved 12-13 -

PendSV 14 Configurable
SysTick 15 Configurable
External Interrupt O 16 Configurable
External interrupt N 16+N Configurable

When AIRCR.BFHFNMINS is 1, faults that target Secure state that are escalated to HardFault are still Secure
HardFaults. That is, the value of AIRCR.BFHFNMINS does not affect faults that target Secure state that are
escalated to HardFaults. This table row applies to such faults.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - IM. Note, S is
required for Secure faults. ST is required for SysTick fault.

The maximum supported number of external interrupts is 496, regardless of whether the Main Extension is
implemented.

Applies to an implementation of the architecture from Armv8.0-M onwards.

The architecture permits an implementation to omit external configurable interrupts where no external device is
connected to the corresponding interrupt pin. Where an implementation omits such an interrupt, the corresponding
pending, active, enable, and priority registers are RESO.

Applies to an implementation of the architecture from Armv8.0-M onwards.

In a PE with the Main Extension, the following exceptions with configurable priority numbers can be configured
with SHPR1- SHPR3 in the System Control Block (SCB):

* MemManage Fault.

* BusFault.

» UsageFault.

 SecureFault (if the Security Extension is implemented).
* SVCall

* DebugMonitor exception.

* PendSV.

» SysTick.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

In a PE without the Main Extension the following exceptions with configurable priority numbers can be configured
with SHPR2 and SHPR3 in the System Control Block (SCB):

* SVCall.
e PendSV.
* SysTick.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - IM.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 83
Non-confidential

Chapter B3. Programmers’ Model
B3.9. Exception numbers and exception priority numbers

Isopn All other configurable exceptions can be configured using the NVIC_IPRn.PRI_<n> register fields.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Ryrsm Configurable priority numbers start at 0, the highest configurable exception priority number.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Regecp In a PE with the Main Extension, the number of configurable priority numbers is an IMPLEMENTATION DEFINED
power of two in the range 8-256:

Number of priority Number of Minimum Priority Maximum Priority
bits of SHPRIN.PRI_n configurable Number Number
implemented Priority numbers (highest prioirty) (lowest priority)

3 8 0 011100000 =224
4 16 0 0b11110000 =240
5 32 0 0b11111000 =248
6 64 0 0b11111100 =252
7 128 0 0b11111110 =254
8 256 0 0b11111111 =255

All low-order bits of of SHPRIn.PRI_n that are not implemented as priority bits are RESO, as shown in the
maximum priority number column.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

Rewmen In a PE without the Main Extension, the number of configurable priority numbers is 4:
Number of priority Number of Minimum Priority Maximum Priority
bits of SHPRIN.PRI_n configurable Number Number
implemented Priority numbers (highest prioirty) (lowest priority)

2 4 0 0b11000000 =192

SHPRn.PRI_n[5:0] are RESO, as shown in the maximum priority number column.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - IM.

See also:

B3.11 Security states, exception banking on page 87.
B3.12 Faults on page 89.

B3.13 Priority model on page 94.

SHPR1, SHPR2, SHPR3.

NVIC_IPRn.

ExecutionPriority ()

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 84
1D30062020 Non-confidential

Chapter B3. Programmers’ Model
B3.10. Exception enable, pending, and active bits

B3.10 Exception enable, pending, and active bits

Toone

Icuew

Irnsx

Iopkrx

DDI0553B.1
1D30062020

The SHCSR, ICSR, DEMCR, NVIC_IABRn, NVIC_ISPRn contain exception enable, pending, and active fields.
STIR can be used to pend exceptions.

Applies to an implementation of the architecture from Armv8.0-M onwards.

The following exceptions are always enabled and therefore do not have an exception enable bit:

e HardFault.
« NML

* SVCall.

e PendSV.

Applies to an implementation of the architecture from Armv8.0-M onwards.

In a PE without the Security Extension:

* Privileged execution can pend interrupts by writing to the NVIC_ISPRn.
* When CCR.USERSETMPEND is 1, unprivileged execution can pend interrupts by writing to the STIR.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - !S.

In a PE with the Security Extension:

* The STIR can pend any Secure or Non-secure interrupt, as follows:

Secure state Non-secure state
Privileged Can use STIR to pend Can use STIR to pend
execution any Secure or Non- a Non-Secure interrupt.

secure interrupt.
Unprivileged When CCR_S.USERSETMPEND is I, When CCR_NS.USERSETMPEND is 1

execution can use STIR to pend any Secure or can use STIR to pend any
Non-secure interrupt, otherwise Non-secure interrupt, otherwise
when CCR_S.USERSETMPEND is 0 when CCR_NS.USERSETMPEND is 0
a BusFault is generated. a BusFault is generated.

e The STIR_NS can pend a Non-secure interrupt, as follows:

Secure state Non-secure state
Privileged Can use STIR_NS. to pend a RESO
Non-secure interrupt.
Unprivileged When CCR_NS.USERSETMPEND is 1, can use BusFault
STIR_NS to pend a Non-secure interrupt,
otherwise when CCR_NS.USERSETMPEND is 0
a BusFault is generated.

e The NVIC_ISPRn can pend any Secure or Non-secure interrupt, as follows:

Secure state Non-secure state
Privileged Can use NVIC_ISPRn to pend Can use NVIC_ISPRn to pend
execution any Secure or Non-secure a Non-secure interrupt
interrupt
Unprivileged BusFault BusFault

execution

e The NVIC_ISPRn_NS can pend a Non-secure interrupt, as follows:

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 85
Non-confidential

Chapter B3. Programmers’ Model
B3.10. Exception enable, pending, and active bits

Secure state Non-secure state

Privileged Can useNVIC_ISPRn_NS topenda RESO
execution Non-secure interrupt
Unprivileged BusFault BusFault
execution
Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.
The following table identifies the fault enable, status and active bits:
Fault, Enable Status bit Pending bit Active bit
(SHCSR) and Trap Bits SHCSR, ICSR SHCSR
Secure HardFault HFSR.VECTTBL HARDFAULTPENDED HARDFAULTACT
HFSR.FORCED
HFSR.DEBUGEVT
NMI - PENDNMISET NMIACT
HardFault HFSR.VECTTBL HARDFAULTPENDED HARDFAULTACT
HFSR.FORCED
HFSR.DEBUGEVT
MemanageFault MMFSR.IACCVIOL MEMFAULTPENDED MEMFAULTACT
MEMFAULTENA MMFSR.DACCVIOL
MMFSR.MUNSTKERR
MMFSR.MSTKERR
MMFSR.MLSPERR
BusFault BFSR.IBUSERR BUSFAULTPENDED BUSFAULTACT
BUSFAULTENA BFSR.PRECISERR
BFSR.IMPRECISERR
BFSR.UNSTKERR
BFSR.STKERR
BFSR.LSPERR
UsageFault UFSR.UNDEFINSTR USGFAULTPENDED USGFAULTACT
UFSR.INVSTATE
UFSR.INVPC
UFSR.NOCP
UFSR.STKOF
CCR.UNALIGN_TRP UFSR.UNALIGNED - -
CCR.DIV_O_TRP UFSR.DIVBYZERO - -
SecureFault SFSR.INVEP SECUREFAULTPENDED SECUREFAULTACT
SECUREFAULTENA SFSR.NVIS
SFSR.INVER
SFSR.AUVIOL
SFSR.INVTRAN
SFSR.LSPERR
SFSR.LSERR
SVCall - SVCALLPENDED SVCALLACT
DebugMonitor - DEMCR.MON_PEND MONITORACT
DEMCR.MON_EN
PendSV - PENDSVSET PENDSVACT
SysTick - PENDSTSET SYSTICKACT
SYST_CSR.ENABLE and
SYST_CSR.TICKINT
External Interrupt - NVIC_ISPRn NVIC_ICPRn NVIC_IABRn

NVIC_ICERn

Applies to an implementation of the architecture from Armv8.0-M onwards.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.

Non-confidential

86

Chapter B3. Programmers’ Model
B3.11. Security states, exception banking

B3.11 Security states, exception banking

Rpgnv

Some exceptions are banked. A banked exception has all the following:

Banked enabled, pending, and active bits.
A banked SHPRn.PRI field.

A banked exception vector.

A state relevant handler.

Exception Banked
Reset No
HardFault Yes (conditionally)
NMI No
MemManage fault Yes
BusFault No
UsageFault Yes
SecureFault No
SVCall Yes
DebugMonitor No
PendSV Yes
SysTick Yes

External interrupt 0 No

External interrupt N No

MemManage Fault, UsageFault, BusFault and the DebugMonitor exception require the Main Extension to be
implemented. SecureFault requires the Security Extension to be implemented.

The SysTick exception is banked if the Main Extension is implemented. If the Main Extension is not implemented,
it is IMPLEMENTATION DEFINED if the exception is banked or if there is a single instance that has a configurable
target Security state.

Applies to an implementation of the architecture from Armv8.0-M. Note, some exceptions require M, S, DebugMonitor exception

or ST.

RLNWV

DDI0553B.1
1D30062020

A banked synchronous exception targets the Security state that it is taken from, except for the following cases:

When accessing a coprocessor that is disabled only by the NSACR, any NOCP UsageFault that is generated
as a result of that access will target Secure state, even though the PE was executing in Non-secure state.

When accessing a coprocessor that is disabled only by the CPPWR, any NOCP UsageFault that is generated
as a result of that access will target the Secure state if the corresponding CPPWR.SUSm bit is set to 1,
otherwise the NOCP UsageFault will target the current Security state.

If an instruction triggers lazy floating-point state preservation, then the banked exception will be raised as if
the current Security state was the same as that of the floating-point state, as indicated by FPCCR.S.

Banked faults and exceptions which arise from instruction fetch will target the Security state associated with
the instruction address instead of the current Security state.

Where Non-secure HardFault is enabled, because AIRCR.BFHFNMINS is set to 1, the following applies:

— HardFault exceptions generated through escalation will target the Security state of the original exception
before its escalation to HardFault.

— A HardFault generated as a result of a failed vector fetch will target the Security state of the exception
raised during the failed vector fetch and not the current Security state.

Faults triggered by the stacking of callee registers always target the Secure state.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 87
Non-confidential

Chapter B3. Programmers’ Model
B3.11. Security states, exception banking

Regvee

Ryreu

Ippke

TnecrM

Ryvown

IyssL

Iporx

Ruxrw

IoroM

DDI0553B.1
1D30062020

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S. Note, a
UsageFault requires M, Floating-point state requires FP.

If AIRCR.BFHFNMINS == 0, then all Non-secure HardFaults are escalated to Secure HardFaults, and Non-secure
pending bits behave as zero for everything except explicit reads and writes.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Where an implementation has two SysTick timers, one in each Security state, each timer targets its owning Security
state and not the current Execution state of the PE.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S && ST.

NMI can be configured to target either Security state, by using AIRCR.BFHFNMINS.

Applies to an implementation of the architecture from Armv8.0-M onwards.

BusFault can be configured to target either Security state, by using AIRCR.BFHFNMINS.

Applies to an implementation of the architecture from Armv8.0-M onwards.

SecureFault always targets Secure state.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

The DebugMonitor exception targets Secure state if the status bit DEMCR.SDME is 1. Otherwise, it targets
Non-secure state.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Each external interrupt, 0-N, targets the Security state that its NVIC_ITNSn[bit number] dictates.

Applies to an implementation of the architecture from Armv8.0-M onwards.

When <exception> targets Secure state, the Non-secure view of its priority field, any enabled, pending, and active
bits, are RAZ/WI.

<exception> is one of:

* NML

¢ BusFault.

* DebugMonitor.

* External interrupt N.

* In a PE without the Main Extension, and a single instance of the SysTick Timer, SysTick.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S. Note, a

BusFault exception requires M, a DebugMonitor exception requires DebugMonitor exception.

Secure software must ensure that when changing the target Security state of an exception, the exception is not
pending or active. A change to the Security state of an exception when the exception is pending or active might
lead to UNPREDICTABLE behavior.

Applies to an implementation of the architecture from Armv8.0-M. Note, S.

See also:

B3.9 Exception numbers and exception priority numbers on page 82.
B3.30 Vector tables on page 140.
SHCSR, System Handler Control and State Register.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 88
Non-confidential

Chapter B3. Programmers’ Model

B3.12. Faults

B3.12 Faults

InnTB

RXMRH

Rppas

Rprrr

RFLD‘I‘

RTSCP

Rrsce

DDI0553B.1
1D30062020

There are the following Fault Status Registers:

¢ HardFault Status Register HFSR. Present only if the Main Extension is implemented.

* MemManage Fault Status Register MMFSR. Present only if the Main Extension is implemented.

* BusFault Status Register BESR. Present only if the Main Extension is implemented.

» UsageFault Status Register UFSR. Present only if the Main Extension is implemented.

 SecureFault Status Register SFSR. Present only if the Main Extension is implemented.

* Debug Fault Status Register DFSR. Present only if Halting debug or the Main Extension is implemented.
* Auxiliary Fault Status Register AFSR. The contents of this register are IMPLEMENTATION DEFINED.

* RAS Fault Status Register RFSR.

In a PE with the Main Extension, the BFSR, MMFSR, and UFSR combine to form one register, called the
Configurable Fault Status Register (CFSR).

There are the following Fault Address Registers:

* MemManage Fault Address Register (MMFAR). Present only if the Main Extension is implemented.
* BusFault Address Register (BFAR). Present only if the Main Extension is implemented.
* SecureFault Address Register (SFAR). Present only if the Main Extension is implemented.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M && RAS.
Note, RAS is present only in the Armv8.1-M architecture.

Unless otherwise stated, MMFAR is updated only for a MemManage fault on a direct data access.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

Unless otherwise stated, BFAR is updated only for a BusFault on a data access, a precise fault.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

Unless otherwise stated, SFAR is updated only for a SecureFault on a memory access that caused a Security
Attribution Unit violation.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M && S.

Each fault address register has an associated valid bit. When the PE updates the fault address register, the PE sets
the valid bit to 1.

Fault address register Valid bit

MMFAR MMFSR.MMARVALID
BFAR BFSR.BFARVALID
SFAR SFSR.SFARVALID

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

If a fault occurs that would otherwise set a FAR valid bit to 1, which has already been set by an earlier fault it is
IMPLEMENTATION DEFINED whether:

* The FAR register is updated with the new syndrome.
* The FAR register retains the syndrome of the original fault.

Applies to an implementation of the architecture from Armv8.0-M onwards.

If the Security Extension is not implemented, it is IMPLEMENTATION DEFINED whether separate BFAR and
MMFAR are implemented. If one shared fault address register is implemented, then on a fault that would otherwise
update the shared fault address register, if one of the other valid bits is set to 1, it is IMPLEMENTATION DEFINED
whether:

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 89
Non-confidential

Chapter B3. Programmers’ Model

B3.12. Faults

Rxpun

Iiorz

Ipepe

InssB

Ismvo

ILRNV

DDI0553B.1
1D30062020

 The shared fault address register is updated, the valid bit for the fault is set, and the other valid bit is cleared.
* The shared fault address register is not updated, and the valid bits are not changed.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M && !S.

If the Security Extension is implemented, it is IMPLEMENTATION DEFINED whether separate fault address registers
for each fault are implemented. If one shared fault address register per Security state is implemented, then on a
fault that would otherwise update the shared fault address register, if one of the other FAR valid bits for the same
Security state is set to 1, it is IMPLEMENTATION DEFINED whether:

 The shared fault address register is updated, the valid bit for the fault is set, and the other valid bit is cleared.
* The shared fault address register is not updated, and the valid bits are not changed.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M && S.

AIRCR.BFHFNMINS dictates which shared fault registers are used depending on the Security state:

e In Secure state, the fault registers that might be shared are SFAR and MMFAR_S, and when
AIRCR.BFHFNMINS is 0, BFAR.

* In Non-secure state, the fault registers that might be shared are MMFAR_NS and when AIRCR.BFHFNMINS
is 1, BFAR.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M && S.

For example in an implementation that contains a shared Fault Address Register, the shared fault register
might be written to with the address of the memory location being accessed that caused a BusFault fault, and
BFSR.BFARVALID is set to 1. If the BESR.BFARVALID is still set when a MemManage fault subsequently
occurs that might update the shared fault address register it is an IMPLEMENTATION DEFINED choice between:

* The shared fault address register being updated with the syndrome that caused the MemManage fault, the
BFSR.BFARVALID being cleared and MMFSR.MMARVALID for the MemMange fault being set.

* The address of the memory location that caused the BusFault is retained and the fault address informa-
tion generated by the MemManage fault is discarded without clearing BFSR.BFARVALID or updating
MMFSR.MMARVALID for the MemManage fault.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M && !S.

If a Secure MemMange fault occurs that targets Secure state, as described by ExceptionTargetsSecure (),
the Secure shared fault register is written to with the address of the memory location that caused the MemManage
fault, and MMFSR_S.MMARVALID is set to 1. If the MMFSR_S.MMARVALID:is still set when a SecureFault
subsequently occurs it is an IMPLEMENTATION DEFINED choice between:

* The shared fault address register being updated with the address of the memory location that that caused the
SecureFault, MMFSR_S.MMARVALID being cleared and SFSR.SFARVALID being set.

* The address of the memory location that caused the MemManageFault is retained and the fault address
information generated by the SecureFault is discarded without out clearing MMFSR_S.MMARVALID or
updating SFSR.SFARVALID.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M && S.

Arm strongly recommends that if a separate BFAR is implemented, the associated BFAR and BFSR.BFARVALID
bit is cleared when changing AIRCR.BFHFNMINS so as not to expose the last accessed address to Non-secure
state.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M && S.

When the Security extension is implemented:

e If AIRCR.BFHFNMINS is 0 a read of BFAR_NS will return 0.
e If AIRCR.BFHFNMINS is 1 a read of BFAR_NS and BFAR_S might return the same value. This behavior

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 90
Non-confidential

Chapter B3. Programmers’ Model
B3.12. Faults

cannot be relied on if there is a change to AIRCR.BFHFNMINS between the reads of BFAR in different

Security states.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M && S.

Rxaopm In a PE with the Main Extension, the faults are:
Exception Exception Fault Status Bit
Number
3 HardFault HardFault on Vector table entry read error HFSR.VECTTBL
HardFault on fault escalation HFSR.FORCED
HardFault on BKPT escalation HFSR.DEBUGEVT
4 MemManage MemManage fault on an instruction fetch ~MMFSR.IACCVIOL
Fault MemManage Fault on direct data access MMFSR.DACCVIOL
MemManage Fault on context unstacking ~MMFSR.MUNSTKERR
by hardware.
MemManage Fault on context stacking MMFSR.MSTKERR
by hardware, becauase of a
MPU access violation.
When lazy Floating-point context MMFSR.MLSPERR
preservation is active, a MemManage
fault on saving Floating-point
context to the stack
5 BusFault BusFault on an instruction fetch, BFSR.IBUSERR
precise
BusFault on a data access, precise BFSR.PRECISERR
BusFault on a data access, imprecise BFSR.IMPRECISERR
BusFault on a context unstacking by BFSR.UNSTKERR
hardware
BusFault on context stacking by BFSR.STKERR
hardware
When lazy Floating-point context BFSR.LSPERR
preservation is active, a BusFault
on saving Floating-point context to
the stack
6 UsageFault UsageFault, undefined instruction UFSR.UNDEFINSTR
UsageFault, invalid Instruction UFSR.INVSTATE
set state because EPSR.T
is 0 or because of an exception
return with a valid ICI value
where the return address does not
target either a load/store/clear
multiple instruction or a breakpoint
instruction
UsageFault, failed integrity check UFSR.INVPC
on exception return or a function
return with a transition from
Non-secure state to Secure state
UsageFault, no coprocessor UFSR.NOCP
UsageFault, stack overflow UFSR.STKOF
UsageFault, unaligned access UFSR.UNALIGNED
UsageFault, divide by zero when UFSR.DIVBYZERO
CCR.DIV_0_TRPis 1
7 SecureFault SecureFault, invalid Secure state SEFSR.INVEP
DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 91

1D30062020

Non-confidential

Chapter B3. Programmers’ Model

B3.12. Faults

Ryvnn

RLLRP

Ixgoc

InkHG

Rynpk

Rroav

Icexe

DDI0553B.1
1D30062020

entry point

SecureFault, invalid integrity SFSR.INVIS
signature when unstacking

SecureFault, invalid exception return SFSR.INVER
SecureFault, attribution unit SFSR.AUVIOL
violation

SecureFault, invalid transition from SFSR.INVTRAN
Secure state

SecureFault, lazy Floating-point SFSR.LSPERR
context preservation error

SecureFault, lazy Floating-point SFSR.LSERR

context error

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M. Note, Secure
Faults require S, EPSR.ECI requires MVE & & Armv8.1-M.

Exception vector reads use the default system address map.

Applies to an implementation of the architecture from Armv8.0-M onwards.

In an Armv8.1-M implementation when a HardFault is generated as a result of a read of the Vector table
HFSR.FORCED is not set. In an Armv8.0-M implementation it is IMPLEMENTATION DEFINED whether a
HardFault generated as a result of Vector table read sets HFSR.FORCED.

Applies to an implementation of the architecture from Armv8.1-M onwards.
RAS faults can generate BusFaults, and these are recorded in RFSR.
Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - RAS.

In a PE without the Main Extension, the enable, pending, and active bits in SHCSR are RESO for those faults that
are only included in a PE with the Main Extension.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

In a PE without the Main Extension, the faults are:

Exception number Exception
3 HardFault

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - IM.

Fault conditions that would generate a SecureFault in a PE with the Main Extension instead generate a Secure
HardFault in a PE without the Main Extension.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

For the exact circumstances under which each of the Armv8-M faults is generated, see the appropriate Fault Status
Register description.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

See also:

B3.9 Exception numbers and exception priority numbers on page 82.
B3.31 Hardware-controlled priority escalation to HardFault on page 142.
Chapter B12 Debug on page 283.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 92
Non-confidential

Chapter B3. Programmers’ Model

B3.12. Faults

DDI0553B.1
1D30062020

Part D Register and Payload Specification.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

93

Chapter B3. Programmers’ Model
B3.13. Priority model

B3.13 Priority model

Icrra

Rcapm

Ryurac

Rgrkco

Rrrcx

Ippsp

DDI0553B.1
1D30062020

An exception, other than reset, has the following possible states:

Active:
An exception that either:

* Is being handled.
* Was being handled. The handler was preempted by a handler for a higher priority exception.

Pending:
An exception that has been generated, but that is not active.

Inactive:
The exception has not been generated.

Active and pending:
One instance of the exception is active, and a second instance of the exception is pending. Only asynchronous
exceptions can be active and pending. Synchronous exceptions are either inactive, pending, or active.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Lower priority numbers take precedence over higher priority numbers.

Applies to an implementation of the architecture from Armv8.0-M onwards.

When no exception is active and no priority boosting is active, the instruction stream that is executing has a priority
number of (maximum supported priority number+1). The instruction stream that is executing can be interrupted by
an exception with sufficient priority.

If any exceptions are active the current execution priority is determined by:

1. In a PE with the Main Extension, the calculation of the effect of AIRCR.PRIGROUP on the comparison of
BASEPRI to the SHPRn.PRI and NVIC_IPRn values.

2. In a PE with or without the Main Extension applying the effects of PRIMASK.PM and AIRCR.PRIS.
3. In a PE with the Main Extension applying the effects of FAULTMASK.FM.
4. The execution priority is the either:

* The exception with the lowest priority number.
* The exception with the lowest priority group value.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Execution at a particular priority can only be preempted by an exception with a lower group priority value.

Applies to an implementation of the architecture from Armv8.0-M onwards.

In thread mode, when there are no active exceptions and no priority boosting is enabled, the execution priority is
256.

Applies to an implementation of the architecture from Armv8.0-M onwards.

In a PE with the Main Extension, BASEPRI and each SHPRn.PRI_n and NVIC_IPRn.PRI_Nn are 8-bit fields that
AIRCR.PRIGROUP splits into two fields, a group priority field and a subpriority field:

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 94
Non-confidential

Chapter B3. Programmers’ Model
B3.13. Priority model

BASEPRI, SHPRn.PRI_n [7:0], and NVIC_IPRn.PRI_Nn [7:0]
AIRCR.PRIGROUP value Group priority field Subpriority field

0 [7:1] [0]

1 [7:2] [1:0]
2 [7:3] [2:0]
3 [7:4] [3:0]
4 [7:5] [4:0]
5 [7:6] [5:0]
6 [7] [6:0]
7 - [7:0]

In a PE without the Main Extension, AIRCR.PRIGROUP is RESO, therefore each SHPR.PRI_n and
NVIC_IPRn.PRI_Nn is split into two as follows:

AIRCR.PRIGROUP SHPRn.PRI_n [7:0], and NVIC_IPRn.PRI_Nn [7:0]
Group priority field Subpriority field
RESO [7:1] (0]

SHPRn.PRIn[5:0] are RESO in a PE without the Main Extension.

All low order bits of BASEPRI, SHPRn.PRI, and NVIC_IPRn are not implemented as priority bits are RESO.
Applies to an implementation of the architecture from Armv8.0-M onwards.

Ruowk When AIRCR.PRIS is 1, each Non-secure SHPRn_NS.PRI_n priority field value [7:0] has the following sequence
applied to it, it:

1. Is divided by two.
2. The constant 0x80 is then added to it.

This is equivalent to the priority field value output_pri = ‘1’:input_pri[7:1] and the priority comparisons are done
on the effective field value after the division by 2 + 0x80 has been performed.

This maps the Non-secure SHPRn_NS.PRI_n group priority field values to the bottom half of the priority range.
When this sequence is applied, any effects of AIRCR.PRIGROUP have already been taken into account, so the
subpriority field is dropped and the sequence is only applied to the group priority field.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S. Note,
Subpriority requires M.
Reorv After applying AIRCR.PRIS:

* If there are multiple pending exceptions, the pending exception with the lowest group priority field value
takes precedence.

e If multiple pending exceptions have the same group priority field value, the pending exception with the
lowest subpriority field value takes precedence.

 If multiple pending exceptions have the same group priority field value and the same subpriority field value,
the pending exception with the lowest exception number takes precedence.

* If a pending Secure exception and a pending Non-secure exception both have the same group priority
field value, the same subpriority field value, and the same exception number, the Secure exception takes
precedence.

Applies to an implementation of the architecture from Armv8.0-M. Note, a Secure exception requires S.
Rinuc If there are multiple pending exceptions it is IMPLEMENTATION DEFINED whether the AIRCR.PRIGROUP mask
is applied to:

* The active tree only.

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 95
1D30062020 Non-confidential

Chapter B3. Programmers’ Model
B3.13. Priority model

Incps

I XFVH

DDI0553B.1
1D30062020

* The active tree and the pending tree.

Applies to an implementation of the architecture from Armv8.0-M onwards.

The following is an example of exceptions with different priorities:

This example considers the following exceptions, that all have configurable priority numbers:

* A has the highest priority.
* B has medium priority.
* C has lowest priority.

Example sequence of events:

1.
2.

No exception is active and no priority boosting is active.
B is generated. The PE takes exception B and starts executing the handler for it. Exception B is now active
and the current execution priority is that of B.

. Ais generated. A is higher priority, therefore A preempts B, and the PE starts executing the handler for A.

Exception A is now active and the current execution priority is that of A. Exception B remains active.

C is generated. C has the lowest priority, therefore it is pending.

The PE reduces the priority of A to a priority that is lower than C. B is now the highest priority active
exception, therefore the execution priority moves to that of B. The PE continues executing the handler for A
at the priority of B. After completing A, the PE restarts the handler for B. After completing B, the PE takes
exception C and starts executing the handler for it. C is now active and the current execution priority is that
of C.

Applies to an implementation of the architecture from Armv8.0-M onwards.

The following diagram shows an example. In this example, all 8 bits of SHPRn_NS.PRI_n are implemented as
priority bits and AIRCR.PRIGROUP_NS is set to 0.

Non-secure group

priority field Priority range
values
0x00 0x00
A

Increasing OX7E

priority 0x80

OXFF R OXFF

In this example, the mapping is:
Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 96

Non-confidential

Chapter B3. Programmers’ Model
B3.13. Priority model

SHPRn_NS.PRI_n value Mapped to

0x00 0x80
0x02 0x81
0x04 0x82
0x06 0x83
O0xXFE OxXFF

In this example, Secure exceptions in the range 0x00-0x7F have priority over all Non-secure exceptions.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M && S.

Iwpce In a PE without the Main Extension but with the Security Extension, when AIRCR.PRIS is set to 1 the Non-secure
exception is mapped to the lower half of the priority range, as shown in the table:

Non-secure group priority value Mapped to

0x00 0x80
0x40 0xA0
0x80 0xCO
0xCO 0xEO

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S && M.

See also:
B3.9 Exception numbers and exception priority numbers on page 82.

B3.32 Special-purpose mask registers, PRIMASK, BASEPRI, FAULTMASK, for configurable priority boosting on
page 143.

B3.31 Hardware-controlled priority escalation to HardFault on page 142.
ExceptionPriority ().
ExecutionPriority ().
ComparePriorities().

RawExecutionPriority ().

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 97
1D30062020 Non-confidential

Chapter B3. Programmers’ Model
B3.14. Secure address protection

B3.14 Secure address protection

Renox

Rysng

Ryrry

Rxspo

Rrpyr

INGXH

DDI0553B.1
1D30062020

NS-Req defines the Security state that the PE or DAP requests that a memory access is performed in.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.
NS-Attr marks a memory access as Secure or Non-secure.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.
For PE data accesses, NS-Req is equal to the current Security state.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

For PE and DAP data accesses, NS-Attr is determined as follows:

NS-Req Security attribute of the location being accessed NS-Attr

Non-secure Non-secure Non-secure
Secure N/a

Secure Non-secure Non-secure
Secure Secure

If the NS-Req is Non-secure and the Security attribute of the location being accessed is Secure NS-Attr is not
generated and an AUVIOL or INVEP exception is generated.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

For instruction fetches, NS-Req and NS-Attr are equal to the Security attribute of the location being accessed.
NS-Attr also determines the Security state of the PE.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.
It is not possible to execute Secure code in Non-secure state, or Non-secure code in Secure state.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

See also:
B3.15 Security state transitions on page 99.

B12.3.4 DAP access permissions on page 301.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 98
Non-confidential

Chapter B3. Programmers’ Model
B3.15. Security state transitions

B3.15 Security state transitions

Rpour

Ruppg

IKWMP

IR

Rykxr

Rgkap

RXNVW

DDI0553B.1
1D30062020

For a transition to an address in the other Security state, the following table shows when the PE changes Security
state:

Current Security state Security attribute Conditions for a change in Security state
of the branch target address
Secure X Change to Non-secure state if the branch was an

interstating branch instruction,
BXNS or BLXNS, with the least
significant bit of its target address set to 0.

Non-secure Secure and Non-secure callable Change to the Secure state if both:
- The branch target address contains an SG
instruction which is fetched and executed.
- The whole of the instruction at the branch target
address is flagged as Secure
and Non-secure callable.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

The PE will transition from Non-secure to Secure state when all of the following apply:

* The security attribute of the branch target address is Secure and Non-secure callable.

* The branch target address contains an SG which is fetched and executed.

* The whole of the instruction at the branch target address is flagged as Secure and Non-secure callable.
* The execution of the SG instruction does not raise a fault.

Applies to an implementation of the architecture from Armv8.1-M onwards.

SG instructions in Secure memory are valid entry points to Secure code. They prevent Non-secure code from being
able to jump to arbitrary addresses in Secure code.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

When an interstating branch is executed in Secure state, the least significant bit of the target address indicates the
target Security state:

1: The target Security state is Secure.
0: The target Security state is Non-secure.
Interstating branches are UNDEFINED in Non-secure state.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

On transition from Secure to Non-secure state, if the least significant bit of an interstating branch is set to one, the
execution of the next instruction will generate either an INVTRAN SecureFault or Secure HardFault.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S. Note, an

INVTRAN SecureFault requires M.

On transition from Non-secure to Secure state, if there is no SG instruction or the whole instruction at the branch
target address is not flagged as Secure and Non-secure callable the execution of the next instruction will generate
either an INVEP SecureFault or Secure HardFault.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S. Note, an
INVTRAN SecureFault requires M.

If sequential instruction execution crosses from Non-secure memory to Secure memory, then if the Secure memory

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 99
Non-confidential

Chapter B3. Programmers’ Model
B3.15. Security state transitions

Rpwxn

Rovec

Rxcxe

DDI0553B.1
1D30062020

entry point contains an SG instruction and the whole of the instruction at the Secure memory entry point is flagged
as Secure and Non-secure callable, it is CONSTRAINED UNPREDICTABLE whether:

* The PE changes to Secure state.
* Either an INVTRAN SecureFault or Secure HardFault is generated:

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S. Note, an
INVTRAN SecureFault requires M.

When an exception is taken to the other Security state, the PE automatically transitions to that other Security state.
Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

When the following conditions are met, the value indicated by the current Secure stack pointer is loaded from
memory:

e The SG instruction is executed in Non-secure state.
* Either the SAU or IDAU, or both, indicate that the SG instruction was fetched from Secure memory.
* The PE is executing in Thread mode.

The load of the value indicated by the current Secure stack pointer is performed with the privilege level indicated
by CONTROL_S.nPriv and NS-req set to Secure.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - S.

An INVEP SecureFault is raised if the all of the following are true:
e CCR_S.TRDissetto 1.
* Either, or both, of the following conditions are met:

— CONTROL_S.SPSEL is 0.
— The top 31 bits of the value indicated by the current Secure stack pointer loaded from memory matches
the top 31 bits of OxFEFA125A.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - S.

See also:
C1.4.7 Instruction set, interworking and interstating support on page 446.

Chapter B9 The Armv8-M Protected Memory System Architecture on page 267.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 100
Non-confidential

Chapter B3. Programmers’ Model
B3.16. Function calls from Secure state to Non-secure state

B3.16 Function calls from Secure state to Non-secure state

Rever

Rvnov

IKWZD

DDI0553B.1
1D30062020

If a BLXNS interstating branch generates a change from Secure state to Non-secure state, then before the Security
state change:

¢ The return address, which is the address of the instruction after the instruction that caused the function call,
the IPSR value and CONTROL.SFPA are stored onto the current stack, as shown in the following figure.
ReturnAddress[0] is set to 1 to indicate a return to the T32 instruction set state. The IPSR is stacked in the
partial RETPSR, and CONTROL.SFPA is stacked in bit [20] of the partial RETPSR.

SP
offset
0x08 <« Original SP*
0x04 Partial RETPSR
0x00 ReturnAddress | «— New SP

¢ If the PE is in Handler mode, IPSR has the value of 1.
e The FNC_RETURN value is saved in the LR.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S. Note,
CONTROL.SFPA requires FP.
Behavior is CONSTRAINED UNPREDICTABLE when a function call stack frame is not doubleword-aligned, and

one of the following behaviors must occur:

 The instruction uses the current value of the stack pointer.
* The instruction behaves as though bits [2:0] of the stack pointer are 0b000.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

Arm recommends that when Secure code calls a Non-secure function, any registers not passing function arguments
are set to 0.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

See also:

C1.4.7 Instruction set, interworking and interstating support on page 446.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 101
Non-confidential

Chapter B3. Programmers’ Model
B3.17. Function returns from Non-secure state

B3.17 Function returns from Non-secure state

Ruprc An interstating function return begins when one of the following instructions loads a FNC_RETURN value into
the PC:

* APOP (mulitple registers) or LDM that includes loading the PC.
* An LDR with the PC as a destination.

e A BX with any register.

* A BXNS with any register.

On detecting a FNC_RETURN value in the PC:

e The FNC_RETURN stack frame is unstacked.
e EPSR.IT is set to 0x00.
 The following integrity checks on function return are performed:
— A check that IPSR is zero or 1 before the value of it is restored.
— A check that if the stacked IPSR value is zero the return is in Thread mode.
— A check that if the stacked IPSR value is nonzero the return is to Handler mode.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

Ioson Behavior is CONSTRAINED UNPREDICTABLE when a function call stack frame is not doubleword-aligned.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

Rpure The FNC_RETURN value is:

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

111111101121111111111111111111111]|S

Bits[31:1]

This is what identifies the value as an FNC_RETURN value.
Bit[0], S: The function return was from:

0: Secure state.

1: Non-secure state.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

RoLaT Any failed integrity check on function return generates a Secure INVPC UsageFault that is synchronous to the
instruction that loaded the FNC_RETURN value into the PC.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M && S.

Ryriw Any failed integrity check on function return generates a Secure HardFault that is synchronous to the instruction
that loaded the FNC_RETURN value into the PC.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S && M.
Rrens If FNC_RETURN does not fail the integrity checks then the PE behaves as follows:

¢ ReturnAddress bits [31:1] is written to the PC.
e ReturnAddress bit [0] is written to EPSR.T.
* The partial RETPSR is written to IPSR Exception and CONTROL.SFPA.

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 102
1D30062020 Non-confidential

Chapter B3. Programmers’ Model
B3.17. Function returns from Non-secure state

RinrB

Ikexo

DDI0553B.1
1D30062020

Applies to an implementation of the architecture from Armv8.0-M onwards.

The extension requirements are - S. Note,
CONTROL.SFPA requires FP.

If the IPSR retrieved from RETPSR is not supported by the PE the value is UNKNOWN.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

Any Secure INVPC UsageFault, Secure HardFault, or INVSTATE UsageFault generated on FNC_RETURN are
subject to the rules in respect of escalation of faults and potentially Lockup.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

See also:

B3.16 Function calls from Secure state to Non-secure state on page 101.

B3.31 Hardware-controlled priority escalation to HardFault on page 142.
B3.33 Lockup on page 145.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 103
Non-confidential

Chapter B3. Programmers’ Model
B3.18. Exception handling

B3.18 Exception handling

Ryekrr In the absence of a specific requirement to take an exception, the architecture requires that pending exceptions are
taken within finite time.

Applies to an implementation of the architecture from Armv8.0-M onwards.
RkrrF If an exception was pending but is changed to not pending before it is taken, then the architecture permits the

exception to be taken but does not require that the exception is taken. If the exception is taken it must be taken
before the first Context synchronization event after the exception was changed to not pending.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Ryrur An exception that does not cause lockup sets both:

* The pending bit of its handler, or the pending bit of the HardFault handler, to 1.
* The associated fault status information.

Applies to an implementation of the architecture from Armv8.0-M onwards.
Ryrpe When a pending exception has a lower group priority value than current execution, including accounting for any
priority adjustment by AIRCR.PRIS, the pending exception preempts current execution.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Ryenp Preemption of current execution causes the following basic sequence:
1. RO-R3, R12, LR, RETPSR, including CONTROL.SFPA, are stacked.
2. The return address is determined and stacked.
3. Optional stacking of Floating-point context, which might be any one of the following:

* No stacking or preservation of the Floating-point context.

* Stacking the basic Floating-point context.

* Stacking the basic Floating-point context and the additional Floating-point context.
 Activation of Lazy Floating-point state preservation.

4. LR is set to EXC_RETURN.
5. Optional clearing of Floating-point registers, depending on the Security state transition.
6. The following flags are also cleared:

o IT State is cleared, if the Main Extension is implemented.
* CONTROL.FPCA is cleared, if the Floating-point Extension is implemented.
* CONTROL.SFPA is cleared, if the Floating-point Extension and the Security Extension are implemented.

7. The exception to be taken is chosen, and IPSR Exception is set accordingly. The setting of IPSR Exception
to a nonzero value causes the PE to change to Handler mode.

8. CONTROL.SPSEL is set to 0, to indicate the selection of the main stack, dependent on the Security state
being targeted.

9. The pending bit of the exception to be taken is set to 0. The active bit of the exception to be taken is set to 1.
10. The Security state is changed to the Security state of the exception that is being activated.

11. The registers are cleared, depending on the transition of the Security state. The registers are divided between
the caller and callee registers. If the Security state transition is from Secure to Non-secure state, all the
registers are cleared to 0. In all other cases, the caller registers are set to an UNKNOWN value and the callee
registers remain unchanged and are not stacked.

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 104
1D30062020 Non-confidential

Chapter B3. Programmers’ Model

B3.18. Exception handling
12. EPSR.T is set to bit[0] of the exception vector for the exception to be taken.
13. The PC is set to the exception vector for the exception to be taken.

Applies to an implementation of the architecture from Armv8.0-M. Note, some steps might require additional extensions.

Ryovr When, during exception entry, the target Security state of an exception differs from the Security state of the
memory the exception vector targets:

* An INVEP SecureFault is generated if the exception is Non-secure and the exception vector targets Secure
memory.

— The INVEP SecureFault can be avoided if the exception is associated with Non-secure state and is
targeting an SG instruction that is located in memory that is Secure and Non-secure callable.

* An INVTRAN SecureFault is generated if the exception is Secure and the exception vector targets Non-secure
memory.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S. Note, an
INVEP or INVTRAN SecureFault requires M.

RoLus The return address is one of the following:

» For a synchronous exception, other than an SVCall exception and a SVC instruction that escalates to
HardFault, the address of the instruction that caused the exception.
* For an asynchronous exception, the address of the next instruction in the program order.

* For an SVCall exception and a SVC instruction that escalates to HardFault, the address of the next instruction
in the program order.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Rxxop The least significant bit of the return address from an exception is RESO.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B3.10 Exception enable, pending, and active bits on page 85.

B3.13 Priority model on page 94.

B3.19 Exception entry, context stacking on page 106.

B3.20 Exception entry, register clearing after context stacking on page 115.
B3.30 Vector tables on page 140.

B3.21 Stack limit checks on page 116.

B3.24 Exceptions during exception entry on page 124.

Chapter B5 Vector Extension on page 177

Applies to an implementation of the architecture from Armv8.1-M onwards.

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 105
1D30062020 Non-confidential

Chapter B3. Programmers’ Model
B3.19. Exception entry, context stacking

B3.19 Exception entry, context stacking

Rpuwe

RP TRL

DDI0553B.1
1D30062020

On taking an exception, the PE hardware saves state context onto the stack that the SP register points to. The state
context that is saved is eight 32-bit words:

e RETPSR.

¢ ReturnAddress.
e LR.

e R12.

¢ R3-RO.

Applies to an implementation of the architecture from Armv8.0-M onwards.

In a PE without the Security Extension but with the Floating-point Extension, on taking an exception, the PE
hardware saves state context onto the stack that the SP register points to. If CONTROL.FPCA is 1 when the
exception is taken, then in addition to the state context being saved, there are the following possible modes for the
Floating-point context:

* Stack the Floating-point context.
* Reserve space on the stack for the Floating-point context. This is called lazy Floating-point context
preservation.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 106
Non-confidential

Chapter B3. Programmers’ Model
B3.19. Exception entry, context stacking

SP
offset
0x68
0x64
0x60
0x5C
0x58
0x54
0x50
0x4C
0x48
0x44
0x40
0x3C
0x38
0x34
0x30
0x2C
0x28
0x24
0x20
0x1C
0x18
0x14
0x10
0x0C
0x08
0x04
0x00

Stack the state

and FP contexts

Reserved

FPSCR

S15

S14

S13

S12

S11

S10

S9

S8

S7

S6

S5

S4

S3

S2

S1

SO

xPSR

ReturnAddress

LR (R14)

R12

R3

R2

R1

RO

Extended stack

frame

Lazy FP context save

«— Original SP

N

FP context

State context

<+— New SP

Reserved

XPSR

ReturnAddress

LR (R14)

R12

R3

R2

R1

RO

Extended stack

frame

Do not stack the FP

context or reserve any

space for it. Stack only the

«— Original SP

N

Reserved for
FP context

<+— New SP
—

state context.

XPSR

ReturnAddress

LR (R14)

R12

R3

R2

R1

RO

State context

«— Original SP

<+— New SP

Basic stack frame

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - !S. Note, FP ||

MVE is required for the extended stack frame. MVE is only available in an Armv8.1-M implementation.

RPLHM

In a PE with the Security Extension, on taking an exception, the PE hardware:

1. Saves state context onto the stack that the SP register points to.
2. If exception entry requires a transition from Secure state to Non-secure state, the PE hardware extends the
stack frame and also saves additional state context.

DDI0553B.1
1D30062020

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

107

Chapter B3. Programmers’ Model
B3.19. Exception entry, context stacking

Exception taken from Secure
state with Stacking of
additional state context

SP

offset

0x48 <— Original SP

0x44 xPSR M

0x40 ReturnAddress

0x3C LR (R14)

gzgi R:; State context

0x30 R2

0x2C R1

0x28 RO

0x24 R11 D

0x20 R10

0x1C R9

0x18 R8

Ox14 R7 Additional

0x10 R6 state context

0x0C R5

0x08 R4

0x04 Reserved

0x00 Integrity)« New SP
signature

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

Rpros If a Secure exception is taken from a Secure context of execution, it is IMPLEMENTATION DEFINED whether:

¢ The additional state context is not stacked, and EXC_RETURN.DCRS is set to 1.
* The additional state context is stacked and EXC_RETURN.DCRS is set to 0.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.
IxorL If a higher priority Secure exception occurs during exception entry after the PE has begun stacking the additional

state context, but before any exception handler has started execution, in preparation to take a Non-secure exception
the PE might:

* Discard the stacking of the additional state context.
* Complete the stacking of the additional state context and the EXC_RETURN.DCRS is set to 0.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

Rpupp In a PE with the Security Extension and the Floating-point Extension, on taking an exception from:
Non-secure state
Behavior is the same as a PE without the Security Extension but with the Floating-point Extension.
Secure state when CONTROL.FPCA is 0
Behavior is the same as for a PE with the Security Extension but without the Floating-point Extension.
Secure state when CONTROL.FPCA is 1
The PE hardware:

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 108
1D30062020 Non-confidential

Chapter B3. Programmers’ Model
B3.19. Exception entry, context stacking

1. Saves state context onto the stack that the SP register points to.

2. If FPCCR_S.TS is 0 or the background state is Non-secure when the exception is taken, the PE hardware
either stacks the Floating-point context or when lazy state preservation is active reserves space on the stack
for the Floating-point context.

If FPCCR_S.TS is 1 and the background state is Secure state when the exception is taken, the PE hardware
either stacks both the Floating-point context and additional Floating-point context, or when lazy state
preservation is active reserves space on the stack for both the Floating-point context and additional Floating-
point context.

3. If exception entry is to Non-secure state, including when a higher priority derived or late-arriving exception
targeting Secure state occurs, the PE hardware extends the stack frame, and also saves the additional state
context. The PE also performs the exception handling steps common to exception entry.

The following figure shows PE stacking behavior when CONTROL.FPCA is 1, FPCCR_S.TS is 1 (and both the
Floating-point context and additional Floating-point context is stacked), and exception entry is to Non-secure state
and the background state is Secure state:

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 109
1D30062020 Non-confidential

Chapter B3. Programmers’ Model
B3.19. Exception entry, context stacking

SP offset
0xDO < Original SP’
0xCC S31 B
0xC8 S30
0xC4 S29
0xCO0 S28
0xBC S27
0xB8 S26
0xB4 S25
((J):E(C): :;g Additional FP context
0xA8 S22
OxA4 S21
0xA0 S20
0x9C S19
0x98 S18
0x94 S17
0x90 S16
0x8C Reserved n
0x88 FPSCR
0x84 S15
0x80 S14
0x7C S13
0x78 S12
0x74 S11
0x70 S10
0x6C S9
0x68 S8 FP context
0x64 S7
0x60 S6
0x5C S5
0x58 S4
0x54 S3
0x50 S2
0x4C S1
0x48 SO
0x44 RETPSR =
0x40 ReturnAddress
0x3C LR (R14)
0x38 R12 State context
0x34 R3
0x30 R2
0x2C R1
0x28 RO
0x24 R11 n
0x20 R10
0x1C R9
0x18 R8
gﬁg EZ Additional state context
0x0C R5
0x08 R4
0x04 Reserved
0x00 Integrity signature| } «— New SP

" Or at offset 0xD4 if at a word-aligned but not doubleword-aligned address.

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 110
1D30062020 Non-confidential

Chapter B3. Programmers’ Model
B3.19. Exception entry, context stacking

Rgpxkvp

Ropko

RPWBW

Rerpa

RFTZK

DDI0553B.1
1D30062020

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S && FP.

On an exception, the RETPSR value that is stacked is all the following:

e The APSR, IPSR, and EPSR.
* CONTROL.SFPA, in RETPSR[20] if the background state is Secure state.

In addition, on an exception, the PE uses RETPSR.SPREALIGN to indicate whether the PE realigned the stack to
make it doubleword-aligned:

0: The PE did not realign the stack.

1: The PE realigned the stack.

Applies to an implementation of the architecture from Armv8.0-M. Note, CONTROL.SFPA requires S && FP || MVE. MVE is
only available in an Armv8.1-M implementation.

When stacking the context on exception entry, full descending stacks are used.

Applies to an implementation of the architecture from Armv8.0-M onwards.

In a PE with the Floating-point Extension:

* Because setting FPCCR.ASPEN to one causes the PE to automatically set CONTROL.FPCA to 1 on
the execution of a floating-point instruction, setting FPCCR.ASPEN to 1 means that the PE hardware
automatically either:

— Stacks Floating-point context on taking an exception.
— Uses lazy Floating-point context preservation on taking an exception.

If CONTROL.FPCA == 1, it is FPCCR.LSPEN that determines whether the PE hardware performs stacking or
lazy Floating-point preservation:

0 : The PE hardware automatically stacks Floating-point context on taking an exception. In a PE that also includes
the Security Extension, if FPCCR_S.TS == 1 and the background state is Secure state, the hardware stacks the
additional Floating-point context and the Floating-point context.

1: The PE hardware uses lazy Floating-point context preservation on taking an exception, and sets all of:
¢ The FPCAR, to point to the reserved SO stack address.
* FPCCR.LSPACT to 1.

* FPCCR.{USER, THREAD, HFREADY, MMRDY, BFRDY, SFRDY, MONRDY, UFRDY}, to record the
permissions and fault possibilities to be applied to any subsequent Floating-point context save.

In a PE that also includes the Security Extension, if FPCCR_S.TS is 1 and the background state is Secure state,
the hardware reserves space on the stack for both the Floating-point context and the additional Floating-point
context. Otherwise, the hardware only reserves space on the stack for the Floating-point context.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP. Note, space is
reserved for both the Floating-point context and the additional Floating-point context if the Security Extension is implemented.
MVE is only available in an Armv8.1-M implementation.

Execution of a floating-point instruction while FPCCR.LSPACT == 1 indicates that lazy Floating-point context
preservation is active.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP || MVE. Note,
MVE is only available in an Armv8.1-M implementation.

If an attempt is made to execute a floating-point instruction while lazy Floating-point context preservation is

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 111
Non-confidential

Chapter B3. Programmers’ Model
B3.19. Exception entry, context stacking

Rrens

Rorem

Tcemc

RPRTT

RRXD G

RTLGR

DDI0553B.1
1D30062020

active, the access permissions that CPACR and NSACR define are checked against the context that activated lazy
Floating-point context preservation, in addition to the checks defined in FPCCR.

* If no permission violation is detected, the PE:

Saves Floating-point context to the reserved area on the stack, as identified by the FPCAR.

Saves the additional Floating-point context if FPCCR.TS and FPCCR.S == 1.

Sets FPCCR.LSPACT to O to indicate that lazy Floating-point context preservation is no longer active.
If the instruction targets Non-secure state the registers are set to an UNKNOWN value. If the instruction
targets Secure state the registers are cleared.

5. Processes the floating-point instruction.

el S

* If a permission violation is detected, the PE generates a NOCP UsageFault and does not save Floating-point
context to the reserved area on the stack.

« If there is a Security violation or other exception on context stacking the PE will take that exception if the
priority of the exception is lower than the execution priority.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP || MVE. Note,

MVE is only available in an Armv8.1-M implementation.

When the following conditions are met on exception entry, the PE generates a Secure NOCP UsageFault, skips all
Floating-point register saving, clearing or lazy-state preservation activation and does not allocate space on the
stack for Floating-point context:

* CONTROL.FPCA == 1.
* NSACR.CP10is 0.
* The Background state is Non-secure state.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP || MVE &&
S. Note, MVE is only available in an Armv8.1-M implementation.

A NOCP UsageFault takes precedence over UNDEFINSTR faults for all instructions that fall into the range
described by the IsCPInstruction () function, except for the following instructions:

e VLLDM.
e VLSTM.

Applies to an implementation of the architecture from Armv8.1-M. Note, For further information see the instruction descriptions.

Arm recommends that a NOCP UsageFault takes precedence over UNDEFINSTR faults for all instructions that
fall into the range described by the IsCPInstruction () function, except for the following instructions:

¢ VLLDM.
¢ VLSTM.

This behavior is not mandatory in an Armv8.0-M implementation.

Applies to an implementation of the architecture from Armv8.0-M onwards.

An UNDEFINSTR fault will take precedence over an NOCP UsageFault when executing a VSCCLRM instruction.

Applies to an implementation of the architecture from Armv8.1-M onwards.
On taking a NOCP UsageFault any state context and additional state context must be saved.
Applies to an implementation of the architecture from Armv8.0-M onwards.

A PE is permitted not to save state context and additional state context to the stack if a derived exception is taken
on pushing the state context or additional context to the stack.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 112
Non-confidential

Chapter B3. Programmers’ Model
B3.19. Exception entry, context stacking

Theex

RNP LD

RgmeN

RFVTL

RLDPT

IcoeL

I CNTN

DDI0553B.1
1D30062020

If CP10 is not implemented or disabled, executing an MVE vector instruction generates a NOCP UsageFault.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - FP || MVE.

The instruction encoding space 111x 1111 xxXX XXXX XXXX XXXX Xxxx xxxx is part of CP10 and
therefore NOCP UsageFaults are prioritized over UNDEFINSTR UsageFaults in the same way as for other
co-processor instructions.

Applies to an implementation of the architecture from Armv8.1-M onwards.

If lazy Floating-point context preservation or floating-point context stacking is activated, as indicated by
FPCCR_S.S when FPCCR.LSPACT is already set to 1, the PE generates an LSERR SecureFault. The
floating-point context, and the additional context, are not stacked and the floating-point registers are not cleared.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - (FP || MVE) &&
S. Note, MVE is only available in an Armv8.1-M implementation.

The value in CONTROL.SFPA is set automatically by hardware on any of the following events:

* An SG instruction fetched from secure memory and executed in Non-secure state clears CONTROL.SFPA to
0.

* A BXNS instruction that causes a transition from Secure state to Non-secure state clears CONTROL.SFPA to
0.

¢ A BLXNS instruction that causes a transition from Secure state to Non-secure state preserves the value in
CONTROL.SFPA in the FNC_RETURN stack frame and then clears CONTROL.SFPA to 0.

¢ A valid instruction that loads FNC_RETURN into the PC sets CONTROL.SFPA to the value retrieved from
the FNC_RETURN payload.

* CONTROL.SFPA is saved and restored on exception entry or return in the RETPSR value in the stack frame.

» Exception entry, including tail chaining, clears CONTROL.SFPA to 0.

* If the value of FPCCR.ASPEN is one, then any floating-point instruction (excluding VLLDM and VLSTM)
executed in Secure state sets the value of CONTROL.SFPA to one. If the value of FPCCR.ASPEN is one and
the value of CONTROL.SFPA is zero when a floating-point instruction is executed in the Secure state, the
FPSCR value is taken from the values set in FPDSCR.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - (FP || MVE) &&
S. Note, MVE is only available in an Armv8.1-M implementation.

In an Armv8.1-M implementation, saving Secure Floating-point context to a general-purpose register using VMRS
or VSTR (System Register) clears CONTROL.SFPA to 0.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - FP && S.

To ensure future compatibility Arm recommends that the value used to seal the top of the stack is OxFEF5EDAS.

This value has the following properties:

¢ Jtis not a valid FNC_RETURN or EXC_RETURN value.

* Itis not the integrity signature used to secure the bottom of the stack frame and cannot be used to inadvertently
mark the stack as containing a valid exception stack frame.

* The value starts with 0xF and is therefore not a valid instruction address and will result in a fault if interpreted
as a FNC_RETURN stack frame.

Applies to an implementation of the architecture from Armv8.0-M onwards.

The order in which registers are saved to the stack during exception entry or during lazy state preservation is not
architected.

Applies to an implementation of the architecture from Armv8.0-M. Note, FP required of lazy state preservation.

See also:

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 113
Non-confidential

Chapter B3. Programmers’ Model
B3.19. Exception entry, context stacking

DDI0553B.1
1D30062020

B3.8 Stack pointer on page 80.
B3.20 Exception entry, register clearing after context stacking on page 115.
B3.23 Integrity signature on page 123.

PushStack ().

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

114

Chapter B3. Programmers’ Model
B3.20. Exception entry, register clearing after context stacking

B3.20 Exception entry, register clearing after context stacking

Rpgrx On exception entry:

¢ The PE hardware sets R0-R3, R12, APSR, and EPSR to an UNKNOWN value after it has pushed state context
to the stack.

* The PE hardware sets SO-S15 and the FPSCR to an UNKNOWN value after it has pushed Floating-point
context to the stack.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - !S. Note, FP is
required for SO-S15 and FPSCR.
Rsnpr On exception entry, including tail-chainging, the PE sets:
* RO-R3, R12, APSR, and EPSR to:

— Unless otherwise stated, an UNKNOWN value if the exception is taken to Secure state.
— Zeros.

* If the background state was Secure and the exception targets the Secure state and EXC_RETURN.DCRS ==
0 then R4 to R11 become UNKNOWN.

* If the background state was Secure and the exception targets Non-secure state then R4 to R11 are set to zeros.
Otherwise the register values are not changed.
Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.
Rxpzv On exception entry the PE sets RO-R3, R12, APSR, and EPSR to zero regardless of the Security state the exception
targets.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - S.

Rowek Register clearing behavior after context stacking is as follows:

e If FPCCR_S.TS is 0 when the Floating-point context is pushed to the stack, SO-S15 and the FPSCR are set to
an UNKNOWN value after stacking.

e If FPCCR_S.TS is 1 when the Floating-point context and additional Floating-point context are both pushed
to the stack, SO-S31 and the FPSCR are set to zero after stacking.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP && S.

See also:
B3.19 Exception entry, context stacking on page 106.

B3.26 Tail-chaining on page 127.

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 115
1D30062020 Non-confidential

Chapter B3. Programmers’ Model
B3.21. Stack limit checks

B3.21 Stack limit checks

Rpcrr

Rynmpx

Raprx

Rxops

Ikprc

Rrexn

RDKSR

Rzrze

DDI0553B.1
1D30062020

A PE that does not implement the Main Extension, and does not implement the Security Extension does not
implement stack-limit checking.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - IM && !8S.

In a PE without the Main Extension but with the Security Extension, there are two stack limit registers in Secure
state for the purposes of stack-limit checking.

Security state Stack Stack limit registers
Secure Main MSPLIM_S
Process PSPLIM_S

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S && M.

In a PE with the Main Extension but without the Security Extension, there are two stack limit registers:

Stack Stack limit registers
Main MSPLIM
Process PSPLIM

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M && !S.

In a PE with the Main Extension and the Security Extension, there are four stack limit registers:

Security state Stack Stack limit registers
Secure Main MSPLIM_S
Process PSPLIM_S
Non-secure Main MSPLIM_NS
Process PSPLIM_NS

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M && S.

A stack can descend to its stack limit value. Any attempt to descend the stack further than its stack limit value is a
violation of the stack limit.

Applies to an implementation of the architecture from Armv8.0-M onwards.

xSPLIM_x[2:0] are treated as RESO, so that all stack pointer limits are always guaranteed to be doubleword-aligned.
Bits [31:3] of the xSPLIM_x registers are writable.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Stack limit checks are performed during the creation of a stack frame for all of the following:

» Exception entry.
* Tail-chaining from a Secure to a Non-secure exception.
* A function call from Secure code to Non-secure code.

Applies to an implementation of the architecture from Armv8.0-M. Note, Secure exceptions and secure code require S.

On a violation of a stack limit during either exception entry or tail-chaining:

¢ In a PE with the Main Extension, a synchronous STKOF UsageFault is generated. Otherwise, a HardFault is
generated.

* The stack pointer is set to the stack limit value.

* Push operations to addresses below the stack limit value are not performed.

* It is IMPLEMENTATION DEFINED whether push operations to addresses equal to or above the stack limit
value are performed.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 116
Non-confidential

Chapter B3. Programmers’ Model
B3.21. Stack limit checks

Reese

Reeru

Ryvwr

DDI0553B.1
1D30062020

Applies to an implementation of the architecture from Armv8.0-M. Note, A UsageFault requires M.

On a violation of a Secure stack limit during a function call:

 In a PE with the Main Extension, a synchronous STKOF UsageFault is generated. Otherwise, a Secure
HardFault is generated.

* Push operations to addresses below the stack limit value are not performed.

It is IMPLEMENTATION DEFINED whether push operations to addresses equal to or above the stack limit
value are performed.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S. Note, A
UsageFault requires M.

Unstacking operations are not subject to stack limit checking.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Updates to the stack pointer by the following instructions are subject to stack limit checking:

* ADD (SP plus immediate).
* ADD (SP plus register).

* SUB (SP minus immediate).
* SUB (SP minus register).
e BLX, BLXNS.

e ILDC, LDC2 (immediate).

e DM, LDMIA, LDMFD.

e LDMDB, LDMEA.

* IDR (immediate).

e LDR (literal).

* IDR (register).

e LDRB (immediate).

* LDRD (immediate).

e LDRH (immediate).

* IDRSB (immediate).

* LDRSH (immediate).

* MOV (register)

* POP (multiple registers).
* PUSH (multiple registers).
e VPOP.

e VPUSH.

e STC, STC2

e STM, STMIA, STMEA.

e STMDB, STMFD.

* STR (immediate).

* STRB (immediate).

e STRD (immediate).

e STRH (immediate).

e VLDM.

* VSTM.

Updates to the stack pointer by the MSR instruction targeting SP_NS are subject to stack limit checking. Updates
to the stack pointer and stack pointer limit by any other MSR instruction are not subject to stack limit checking.

LDR instructions write to two registers, the address register and the destination register. The stack limit check is
only carried out against the address register. Updates to the stack pointer by the LDR instructions are only subject
to stack limit checking if the stack pointer is the address register.

For all other instructions that can update the stack pointer and stack pointer limit, it is IMPLEMENTATION DEFINED

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 117
Non-confidential

Chapter B3. Programmers’ Model
B3.21. Stack limit checks

Raccer

Ruroe

IJSPJ

IBJHX

Irrpx

RxcoL

Rorpr

Ipsan

Romre

Remew

DDI0553B.1
1D30062020

whether stack limit checking is performed.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Updates to the stack pointer by the following instructions are subject to stack limit checking:

* VLDR (System Register).
* VSTR (System Register).

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - FP || MVE.

If a STKOF UsageFault is generated when the Non-secure stack pointer is accessed through a MSR{SP_NS}
instruction in Secure state, the STKOF UsageFault can target either the Secure or Non-secure state.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.
Arm recommends that a STKOF UsageFault generated by a MSR instruction in Secure state accessing the Non-
secure stack pointer should target the Non-secure state.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

When an instruction updates the stack pointer, if it results in a violation of the stack limit, it is the modification of
the stack pointer that generates the exception, rather than an access that uses the out-of-range stack pointer.

Applies to an implementation of the architecture from Armv8.0-M onwards.

CCR.STKOFHFNMIGN controls whether stack limit violations are IGNORED while executing at a requested
execution priority that is negative.

Applies to an implementation of the architecture from Armv8.0-M onwards.

It is UNKNOWN whether a stack limit check is performed on any use of the SP marked as UNPREDICTABLE.

Applies to an implementation of the architecture from Armv8.0-M onwards.

A write to the current stack pointer by an instruction subject to stack limit checking with a value less than the stack
limit will generate a STKOF UsageFault.

Applies to an implementation of the architecture from Armv8.0-M onwards.
There is no architectural requirement for stack limit checking to be carried out on exception return as the current
stack pointer will only increment and will not decrement.

Applies to an implementation of the architecture from Armv8.0-M onwards.

If an instruction attempts to make an access below the stack limit, it is UNKNOWN whether a store performing a
writeback to the current Stack Pointer will generate a STKOF UsageFault where the value written to the current
stack pointer is greater than the stack limit.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M |l S.

When a STKOF UsageFault is generated:

* No accesses below the stack limit will be performed.
* Itis UNKNOWN whether an access above the stack limit will be performed.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:
B3.8 Stack pointer on page 80.
B3.26 Tail-chaining on page 127.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 118
Non-confidential

Chapter B3. Programmers’ Model
B3.22. Exception return

B3.22 Exception return

Rgpss

RTXDW

RTNSK

RLLBT

DDI0553B.1
1D30062020

The PE begins an exception return when both of the following are true:
* The PE is in Handler mode.
* One of the following instructions loads an EXC_RETURN value, 0xFFXxXxxxX, into the PC:

— APOP (multiple registers) or LDM that includes loading the PC.
— An LDR with the PC as a destination.

— A BX with any register.

— A BXNS with any register.

When both of these are true, then on detecting an EXC_RETURN value in the PC, the PE unstacks the exception
stack frame and resumes execution of the unstacked context.

If an EXC_RETURN value is loaded into the PC by an instruction other than those listed, or from the vector table,
the value is treated as an address.

If an EXC_RETURN value is loaded into the PC when the PE is in Thread mode, the value is treated as an address.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Behavior is UNPREDICTABLE if EXC_RETURN.FType is 0 and the Floating-point Extension register file is not
implemented.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Behavior is UNPREDICTABLE if EXC_RETURN][23:7] are not all 1 or if bit[1] is not O.

Applies to an implementation of the architecture from Armv8.0-M onwards.

The following integrity checks on exception return are performed on every exception return:

1. In a PE with the Security Extension, the integrity check that is called the EXC_RETURN.ES validation check,
as follows:

e If the PE was in Non-secure state when EXC_RETURN was loaded into the PC and either
EXC_RETURN.DCRS is 0 or EXC_RETURN.ES is 1, an INVER SecureFault is generated and the PE
sets EXC_RETURN.ES to 0. In a PE without the Main Extension a Secure HardFault is generated.

2. A check that the exception number being returned from, as held in the IPSR, is shown as active in the SHCSR
or NVIC_IABRn. If this check fails:

* In a PE with the Main Extension, an INVPC UsageFault is generated. If the PE includes the Security
Extension, the INVPC UsageFault targets the Security state that the exception return instruction was
executed in.

* In a PE without the Main Extension, a HardFault is generated.

3. A check that if the return is to Thread mode, the value that is restored to the IPSR from the RETPSR is zero,
or that if the return is to Handler mode, the value that is restored to the IPSR from the RETPSR is nonzero. If
this check fails:

* In a PE with the Main Extension, an INVPC UsageFault is generated. If the PE includes the Security
Extension, the INVPC UsageFault targets the Background state.
¢ In a PE without the Main Extension, a HardFault is generated.

4. If the PE includes the Security Extension, the HardFault targets the Security state that EXC_RETURN.S
specifies. [f AIRCR.BFHFNMINS is 0 the HardFault targets Secure state, if AIRCR.BFHFNMINS is 1 the
exception targets the Security state the exception was returned from.

Applies to an implementation of the architecture from Armv8.0-M. Note, some steps require additional extensions, as listed in
the rule.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 119
Non-confidential

Chapter B3. Programmers’ Model
B3.22. Exception return

RHXSR

RporL

Irixs

Ramac

RRP GL

IC’I‘WL

Irove

Reemr

DDI0553B.1
1D30062020

When returning from Non-secure state, EXC_RETURN.ES is treated as zero for all purposes other than raising the
INVER integrity check.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.
On returning from Non-secure state, if EXC_RETURN.ES causes an INVER integrity check failure, the subsequent
EXC_RETURN.DCRS bit that is presented in the LR on entry to the next exception is permitted to be UNKNOWN.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

Arm recommends that the subsequent EXC_RETURN.DCRS bit that is presented in the LR on entry to the next
exception is not UNKNOWN.

Applies to an implementation of the architecture from Armv8.0-M onwards.

After the EXC_RETURN.ES validation check has been performed on an exception return:

o If EXC_RETURN.ES is 1, EXC_RETURN.SPSEL is written to CONTROL_S.SPSEL.
* If EXC_RETURN.ES is 0, EXC_RETURN.SPSEL is written to CONTROL_NS.SPSEL.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

On an exception return that successfully returns to the Background state, with no tail-chaining or failed integrity
checks, the Security state is set to EXC_RETURN.S.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

In a PE with the Security Extension, after a successful exception return to the Background state, the PE is in the
correct Security state before the next instruction from the background code is executed. This means that in the case
where the Background state is Secure state, there is no need for an SG instruction at the exception return address.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

In a PE with the Floating-point Extension register file, on exception entry:

1. EXC_RETURN.FType is saved as the inverse of CONTROL.FPCA.
2. CONTROL.FPCA is then cleared to O if it was 1.

On exception return, the inverse of EXC_RETURN.FType is written to CONTROL.FPCA.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

When the following conditions are met on exception return, the PE hardware sets SO-S15 and the FPSCR to 0:

* CONTROL.FPCA is 1.
* FPCCR.CLRONRET is 1.
* If the PE implements the Security Extension FPCCR_S.LSPACT is 0.

If the PE implements the Security Extension and all these fields are 1 on exception return, the PE generates an
LSERR SecureFault instead.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP. Note, a
SecureFault requires S.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 120
Non-confidential

Chapter B3. Programmers’ Model
B3.22. Exception return

RZXTR

IBVMJ

Rxvrp

IRHNB

RXNNG

Rycer

Repvr

Rynnw

DDI0553B.1
1D30062020

In an Armv8.1-M implementation, the PE hardware also sets VPR to 0 when:

* CONTROL.FPCA is 1.
* FPCCR.CLRONRET is 1.
« If the PE implements the Security Extension FPCCR_S.LSPACT is 0.

If the PE implements the Security Extension and all these fields are 1 on exception return, the PE generates an
LSERR SecureFault instead.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.
The register clearing described in Rcgmr and Rzxtr only applies if a NOCP UsageFault is not generated due to

Rxrrp.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - FP || MVE.

When the following conditions are met on exception return, a NOCP UsageFault is generated:

* CONTROL.FPCA == 1.

* FPCCR.LSPACT ==0.

¢ FPCCR.CLRONRET == 1.

* Access to CP10 from the Security state of the returning exception, as indicated by EXC_RETURN.ES, is
disabled by NSACR, CPACR, or CPPWR.

The target Security state of the NOCP UsageFault is as follows:

 Secure state, if blocked by NSACR.

* The same Security state as the returning exception as indicated by EXC_RETURN.ES, if blocked by CPACR.

* If the access is blocked by CPPWR, the NOCP Usage fault targets Secure state, if CPPWR.SUS10 ==1.
Otherwise, the NOCP UsageFault targets the same Security state as the returning exception as indicated by
EXC_RETURN.ES.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - FP || MVE. Note,
Secure state requires S.
IsCPEnabled () indicates the prioritization if the access is blocked by multiple registers.

Applies to an implementation of the architecture from Armv8.0-M onwards.

When the following conditions are met on exception return, the PE generates an LSERR SecureFault:

« EXC_RETURN.FType is 0.

* The stack might contain Secure Floating-point context or Secure lazy floating-point context, that would be
unstacked on return. That is, FPCCR_S.LSPACT is 1.

* The return is to Non-secure state.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP & & S.

A check of FPCCR_S.LSPACT, CPACR.CP10, and the relevant fields in NSACR and CPPWR is undertaken prior
to unstacking of the floating-point registers.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.
The floating-point registers are not modified if the checks prior to unstacking fail.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

If the PE abandons unstacking of the floating-point registers to tail-chain into another exception, then if the Security
Extension is implemented, the PE clears to zero any floating-point registers that would have been unstacked.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP && S.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 121
Non-confidential

Chapter B3. Programmers’ Model
B3.22. Exception return

Rimne

Rurgn

Igror

DDI0553B.1
1D30062020

If the PE abandons unstacking of the floating-point registers to tail-chain into another exception, then if the Security
Extension is not implemented, the floating-point registers that would have been unstacked become UNKNOWN.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP && !S.
Following completion of the requirements of the EXC_RETURN the PE returns to execution and the following
occurs:

* The registers pushed to the stack as part of the exception entry are restored from the stack frame (in accordance
with the EXC_RETURN flags).

¢ APSR, EPSR, and IPSR are restored from RETPSR.

e The PC is set to ReturnAddress [31:1]: ‘0.

¢ Bit[0] of the ReturnAddress is discarded.

Applies to an implementation of the architecture from Armv8.0-M onwards.

The order in which registers, including floating-point registers, are restored from the stack is not architected.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:
B3.18 Exception handling on page 104.
Chapter B5 Vector Extension on page 177.
Applies to an implementation of the architecture from Armv8.1-M onwards.

ExceptionReturn ()

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 122
Non-confidential

Chapter B3. Programmers’ Model
B3.23. Integrity signature

B3.23 Integrity signature

Rpupp

Ryvks

IFFTS

DDI0553B.1
1D30062020

In a PE with the Floating-point Extension register file, the integrity signature value is:

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 O

1111111011111 01000010010010110 1|SFTC

Stack Frame Type Check—

In a PE with the Floating-point Extension, when returning from a Non-secure exception to Secure state, if the
unstacked integrity signature does not match this value, including if SFTC does not match EXC_RETURN.FType,
a SecureFault is generated.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S && FP.

In a PE without the Floating-point Extension register file, the integrity signature value is:

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

11111110111110100001001001011011

* In a PE with the Main Extension, when returning from a Non-secure exception to Secure state, if the
unstacked integrity signature does not match this value, a SecureFault is generated.

* In a PE without the Main Extension, when returning from a Non-secure exception to Secure state, if the
unstacked integrity signature does not match this value, a Secure HardFault is generated.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S && !FP. Note,

a SecureFault requires M.

The integrity signature is an XN address. When performing a function return from Non-secure code, if the integrity
signature value is restored to the PC as the function return address, a MemManage fault, if the Main Extension

is implemented, or a HardFault, in an implementation without the Main Extension, is generated when the PE
attempts execution.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

See also:

B3.19 Exception entry, context stacking on page 106.

B3.22 Exception return on page 119.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 123
Non-confidential

Chapter B3. Programmers’ Model
B3.24. Exceptions during exception entry

B3.24 Exceptions during exception entry

I1Bco

Rymrr

RyrTR

RpxTn

RGVHV

Repnr

INJCW

DDI0553B.1
1D30062020

During exception entry exceptions can occur, for example asynchronous exceptions, or the exception entry sequence
itself might cause an exception, for example a MemManage fault on the push to the stack.

Any exception that occurs during exception entry is a late-arriving exception, and:

* The exception that caused the original entry sequence is the original exception.
* The priority of the code stream running at the time of the original exception is the preempted priority.

When the exception entry sequence itself causes an exception, the latter exception is a derived exception.

The following mechanism is called late-arrival preemption. The PE takes a late-arriving exception during an
exception entry if the late-arriving exception is higher priority, including accounting for any priority adjustment by
AIRCR.PRIS.

Applies to an implementation of the architecture from Armv8.0-M onwards.

In late-arrival preemption:

* The late-arriving exception uses the exception entry sequence started by the original exception. The original
exception remains pending.

* The PE takes the original exception after returning from the late-arriving exception.

* The PE ignores non-terminal faults on taking a derived exception on late-arrival preemption.

The pseudocode DerivedlateArrival () describes this.

Applies to an implementation of the architecture from Armv8.0-M onwards.

For Derived exceptions, late-arrival preemption is mandatory.

Applies to an implementation of the architecture from Armv8.0-M onwards.

For late-arriving asynchronous exceptions, it is IMPLEMENTATION DEFINED whether late-arrival preemption is
used. If the PE does not implement late-arrival preemption for late-arriving asynchronous exceptions, late-arriving
asynchronous exceptions become pending.

Applies to an implementation of the architecture from Armv8.0-M onwards.

If a higher priority late-arriving Secure exception occurs during entry to a Non-secure exception when the
Background state is Secure, it is IMPLEMENTATION DEFINED whether:

» The stacking of the additional state context is rolled back.
* The stacking of the additional state context is completed and EXC_RETURN is set to 0.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

If the group priority value of a derived exception is higher than or equal to the preempted priority:

* If the derived exception is a DebugMonitor exception, it iS IGNORED.
¢ Otherwise, the PE escalates the derived exception to HardFault or Lockup if the HardFault cannot be taken
due to the current priority.

Applies to an implementation of the architecture from Armv8.0-M. Note, a DebugMonitor Exception requires the DebugMonitor
exception.
The architecture does not specify the point during exception entry at which the PE recognizes the arrival of an

asynchronous exception.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 124
Non-confidential

Chapter B3. Programmers’ Model
B3.24. Exceptions during exception entry
B3.9 Exception numbers and exception priority numbers on page 82.
B3.13 Priority model on page 94.
B3.18 Exception handling on page 104.
B3.26 Tail-chaining on page 127.

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 125
1D30062020 Non-confidential

Chapter B3. Programmers’ Model
B3.25. Exceptions during exception return

B3.25 Exceptions during exception return

Ixxev

RTRFM

ImeNG

RMJDN

Rprrk

Ipxro

DDI0553B.1
1D30062020

During exception return exceptions can occur, for example asynchronous exceptions, or the exception return might
itself cause an exception.

Any exception that occurs during exception return is a late-arriving exception.

When the exception return sequence itself causes an exception, the latter exception is a derived exception.
Applies to an implementation of the architecture from Armv8.0-M onwards.

When a late-arriving exception during exception return has a lower priority value than the priority being returned
to, the PE takes the late-arriving exception by using tail-chaining.

Applies to an implementation of the architecture from Armv8.0-M onwards.

The architecture does not specify the point during exception return at which the PE recognizes the arrival of an

asynchronous exception. If a PE recognizes an asynchronous exception after an exception return has completed,
there is no opportunity to tail-chain the asynchronous exception.

Applies to an implementation of the architecture from Armv8.0-M onwards.

If the priority value of a derived exception during exception return is equal to or higher than the priority being
returned to:

* If the derived exception is a DebugMonitor exception, the PE ignores the derived exception.
* Otherwise, the PE escalates the derived exception to HardFault and the escalated exception is tail-chained.

Applies to an implementation of the architecture from Armv8.0-M. Note, a DebugMonitor Exception requires the DebugMonitor

exception.

If the priority value of a derived exception during exception return, after priority escalation if appropriate, is a
lower priority value than the execution priority being returned to, the PE uses tail-chaining to take the derived
exception.

Applies to an implementation of the architecture from Armv8.0-M onwards.

If the PE cannot escalate a derived exception to HardFault because the current execution priority cannot be
preempted the PE will enter Lockup. Arm recommends that entry into Lockup is treated as fatal and requiring the
PE to be reset. On reset any saved context or additional context is discarded.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B3.9 Exception numbers and exception priority numbers on page 82.
B3.13 Priority model on page 94.

B3.22 Exception return on page 119.

B3.26 Tail-chaining on page 127.

B3.33 Lockup on page 145

DebugMonitor exception.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 126
Non-confidential

Chapter B3. Programmers’ Model
B3.26. Tail-chaining

B3.26 Tail-chaining

Rrrxx Tail-chaining behavior is as follows:

On detecting an EXC_RETURN value in the PC, if there is a pending exception or a derived exception is raised
that has a lower prioirty value than the execution priority being returned to, the PE hardware:

1. Does not unstack the stack.
2. Takes the pending exception or derived exception.

* The PE will tail-chain any pending exception or derived exception on exception return if the pending or
derived exception has a lower priority value than the execution priority being returned to.

If the pending or derived exception is escalated to HardFault and the execution priority is higher than
that of the HardFault the PE will enter Lockup.

* The PE will tail-chain any synchronous fault on exception return if the synchronous exception has higher
priority than the execution priority being returned to.

3. When tail-chaining the PE will not execute any instructions from the background state that has been preempted
by the exception.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Irowk Tail-chaining is an optimization. It removes unstacking and stacking operations. In the following example the
second exception is a fail-chained exception:

All in Non-secure state:

1* exception 2" exception
| | |

No exception is active No exception is active

T T

Stacking operation Unstacking operation

Nothing is unstacked

Applies to an implementation of the architecture from Armv8.0-M onwards.

IrwpT If tail-chaining prevents a derived exception on exception return, the derived exception might instead be generated
on the return from the last tail-chained exception.

Applies to an implementation of the architecture from Armv8.0-M onwards.
Rpxve When the Background state is Secure state, if tail-chaining causes a change of Security state from Secure to

Non-secure, additional context is saved on taking the Non-secure exception if it has not already been saved as
indicated by EXC_RETURN.DCRS:

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 127
1D30062020 Non-confidential

Chapter B3. Programmers’ Model
B3.26. Tail-chaining

In a PE without the FP Extension:

1% exception 2" exception
| | |
Secure state Secure state Non-secure state Secure state
State context pushed to stack. Unstacking operation

Nothing is unstacked.
Additional state context pushed to stack.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

Irkim When multiple exceptions are tail-chained, EXC_RETURN.DCRS keeps track of whether the additional context is
stacked. The following figure is an example:

1% exception 2" exception 3" exception
| | | |
Secure state Non-secure state Secure state Non-secure state Secure state
f f f
State context and additional state Unstacking operation

context pushed to stack®.

Unstacking all additional context is
skipped.
PE sets EXC_RETURN.DCRS to 0.

Stacking all additional context is skipped.
PE sets EXC_RETURN.DCRS to 1.

a In a PE with the FP Extension, FP context and additional FP context is also stacked if CONTROL.FPCA is 1.

Applies to an implementation of the architecture from Armv8.0-M onwards.
Iowve ‘When multiple exceptions are tail-chaining, a Secure tail-chained exception after a Non-secure exception cannot
rely on any registers containing the values they had when no exception was active.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

I1xneo Arm recommends that FPCCR.CLRONRET is set to 1, to ensure hardware automatically clears the Floating-point
context registers to zero on exception return.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.
Romus If the PE recognizes a new asynchronous exception while it is tail-chaining, and the new asynchronous exception

has a higher priority than the next tailed-chained exception, the PE can, instead, take the new asynchronous
exception, using late-arrival preemption.

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 128
1D30062020 Non-confidential

Chapter B3. Programmers’ Model
B3.26. Tail-chaining

This rule is true even if the next tail-chained exception is a derived exception on exception return. The PE can,
instead, take the new asynchronous exception. If it does, the derived exception becomes pending.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:
B3.19 Exception entry, context stacking on page 106.

B3.25 Exceptions during exception return on page 126.

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 129
1D30062020 Non-confidential

Chapter B3. Programmers’ Model
B3.27. Exceptions, instruction resume, or instruction restart

B3.27 Exceptions, instruction resume, or instruction restart

Rpcre

RKRLL

Rgemp

Inpor

Rrepo

Rrprk

Ryrex

Rowww

Rovrc

DDI0553B.1
1D30062020

The PE can take an exception during execution of a Load Multiple or Store Multiple instruction, effectively halting
the instruction, and resume execution of the instruction after returning from the exception. This is called instruction
resume.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.
The PE can abandon execution of a Load Multiple or Store Multiple instruction to take an exception, and after

returning from the exception, restart the Load Multiple or Store Multiple instruction again from the start of the
instruction. This is called instruction restart.

Applies to an implementation of the architecture from Armv8.0-M onwards.
To support instruction restart, singleword load instructions do not update the destination register when the PE
takes an exception during execution.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Instructions that the PE can halt to use instruction resume are called interrupt-continuable instructions.

Applies to an implementation of the architecture from Armv8.0-M onwards.

The interrupt-continuable instructions are LDM, LDMDB, STM, STMDB, POP (multiple registers),and
Push (multiple registers).

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

In a PE with the Floating-point Extension, the floating-point interrupt-continuable instructions are VLDM, VLLDM,
VLSTM, VSTM, VPOP, and VPUSH.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

Where a fault is taken during the execution of a VLLDM instruction the PE abandons the stacking of the Secure
floating-point register contents and save the state so that on return from the fault the instruction can be restarted.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - § && FP.

It is IMPLEMENTATION DEFINED whether a VLLDM and VLSTM or instruction aborts or completes when an
interrupt occurs.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

When the PE is using instruction resume, EPSR.ICI is set to a nonzero value that is the continuation state of the
interrupt-continuable instruction:

e For 1DM, LDMDB, STM, STMDB, POP (multiple registers), and PUSH (multiple
registers) instructions, EPSR.ICI contains the number of the first register in the register list
that is to be loaded or stored after instruction resume.

¢ For the floating-point instructions VLDM, VSTM, VPOP, and VPUSH, EPSR.ICI contains the number of the
lowest numbered doubleword Floating-point Extension register that was not loaded or stored before the PE
took the exception.

The EPSR.ICI values shown in the following table are valid EPSR.ICI values:

EPSR[26:25] EPSR[15:12] EPSR[11:10]
ICI[7:6] = 0b00 ICI[5:2] =reg_num ICI[1:0] = 0b0O
ICI[7:6] = 0b00 ICI[5:2] = 0b0000 ICI[1:0] = 00O

Applies to an implementation of the architecture from Armv8.0-M. Note, some instructions listed require FP.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 130
Non-confidential

Chapter B3. Programmers’ Model
B3.27. Exceptions, instruction resume, or instruction restart

RPCZR

Rrrek

Izmun

Rsnra

Rgxko

I 550%

Rykno

Risco

RRFGF

DDI0553B.1
1D30062020

If EPSR.ICI contains a valid ICI nonzero value and the register number that it contains is either:

* Not in the register list of the interrupt-continuable instructions.
* The first register in the register list of the interrupt-continuable instructions.

Then behavior is a CONSTRAINED UNPREDICTABLE choice between one of the following:

* The instruction generates an INVSTATE UsageFault.
* The instruction completes execution.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.
The PE generates an INVSTATE UsageFault if EPSR.ICI contains a valid nonzero value and the instruction being

executed is not an instruction which supports interrupt-continuation. A fault is not generated if the instruction is a
BKPT instruction.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

The instructions CLRM and VSCCLRM support interrupt-continuation.

Applies to an implementation of the architecture from Armv8.1-M onwards.

In an implementation that includes MVE, the PE does not generate an INVSTATE UsageFault if EPSR.ECI
contains a valid ECI value and the instruction is a beat-wise MVE instruction.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.
If the PE uses instruction resume during a interrupt-continuable instruction, other than a store multiple instruction,
then after the exception return, the values of all registers in the register list are UNKNOWN, except for the following:

* Registers that are marked by EPSR.ICI as already loaded.
* The base register.
* The PC.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

If the PE is using instruction restart, Arm recommends that Load Multiple or Store Multiple instructions are not
used with data in volatile memory.

Applies to an implementation of the architecture from Armv8.0-M onwards.

When a Load Multiple instruction has the PC in its register list, if the PE uses instruction resume or instruction
restart during the instruction:

* If the PC is loaded before generation of the exception, the PE restores the PC before taking the exception, so
that after the exception the PE returns to either:

— Continue execution of the Load Multiple instruction, if the PE used instruction resume.
— Restart the Load Multiple instruction, if the PE used instruction restart.

Applies to an implementation of the architecture from Armv8.0-M. Note, Instruction resume requires M.
In a PE without the Main Extension, if the PE takes any exception during any Load Multiple or Store Multiple

instruction, including PUSH (multiple registers) and POP (multiple registers), the PE uses
instruction restart and the Base register is restored to the original value.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - IM.
In a PE with the Main Extension, if the PE takes an exception during any Load Multiple or Store Multiple
instruction, including PUSH (multiple registers) and POP (multiple registers):

* If the instruction is not in an IT block and the exception is an asynchronous exception, the PE uses instruction

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 131
Non-confidential

Chapter B3. Programmers’ Model
B3.27. Exceptions, instruction resume, or instruction restart

Rscur

DDI0553B.1
1D30062020

resume and EPSR.ICI holds the continuation state. The base register is restored to the original value except
in the following cases:

Interrupt of an instruction that is using SP as the base register

The SP that is presented to the exception entry sequence is lower than any element pushed by an STM, or not
yet popped by an LDM.

For Decrement Before (DB) variants of the instruction, the SP is set to the final value. This is the lowest
value in the list.

For Increment After (IA) variants of the instruction, the SP is restored to the initial value. This is the lowest
value in the list.

Interrupt of an instruction that is not using SP as the base register

The base register is set to the final value, whether the instruction is a Decrement Before (DB) variant or an
Increment After (IA) variant.

¢ For all other cases:

— The PE uses instruction restart and the base register is restored to the original value. If the instruction is
not in an IT block, EPSR.ICI is cleared to zero.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

When a Load Multiple instruction includes its Base register in its register list, if the PE takes an exception during
the instruction:

* The Base register is restored to the original value, and:

— If the instruction is in an IT block, the PE uses instruction restart.

— If the instruction is not in an IT block, and the PE takes the exception after it loads the Base register,
EPSR.IT/ICI can be set to an IMPLEMENTATION DEFINED value that will load at least the Base register
and subsequent locations again after returning from the interrupt.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 132
Non-confidential

Chapter B3. Programmers’ Model
B3.28. Low overhead loops

B3.28 Low overhead loops

I JrNR The LOB Extension is a mandatory feature of the Armv8.1-M architecture.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB.

Rpyzum If MVE nor the Floating-point extension are implemented LTPSIZE is a fixed integer value of four. The pseudocode
function LTPSIZE () describes this.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB && 'MVE
&& !FP.

Rpcpn If Floating-point extension is implemented LTPSIZE is a fixed value of four and the value of LTPSIZE is held in
FPSCR.LTPSIZE.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB && FP.

Rrxng If MVE is implemented LTPSIZE is not fixed and the value of LTPSIZE is held in FPSCR.LTPSIZE, which might
not reads a four when LOB tail predication is in progress.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB && MVE.

Rprzn The Armv8.1-M architecture supports low overhead loops using:

* WLS - While Loop Start.
* DLS - Do Loop Start.
* LE - Loop End.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB.
Rycce An implementation that includes MVE has the following additional instructions that can be used in or in the
creation of low overhead loops:

* WLSTP - While Loop Start with Tail Predication.
* DLSTP - Do Loop Start with Tail Predication.

e LCTP - Loop Clear with Tail Predication.

* LETP - Loop End with Tail Predication.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB && MVE.

Rrpva Instructions within the loop can read and write the loop iteration count, which is in the LR.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB.

Iexon The following is a trivial memcpy example which uses the T1 variant of the LE instruction. The T1 variant uses
LR:

memcpy :
PUSH {RO, LR}
WLS LR, R2, loopEnd //R2=size

loopStart:
LDRSB R3, [R11, #1 // Rl = srcPtr, R3 = temp reg
STRB R3, [RO], #1 // RO = destPtr
LE LR, loopStart

loopEnd:
POP {RO, PC}

The WLS and LE instructions cause the loop body to be executed n times, where n is specified by the value of R2.
In this example, the low overhead loop instructions operate as follows:

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 133
1D30062020 Non-confidential

Chapter B3. Programmers’ Model
B3.28. Low overhead loops

« If the iteration count that is passed to the WLS instruction is nonzero, the loop iteration count is copied to LR.
If the iteration count is zero, the WLS instruction jumps to the end of the loop.

« If additional iterations of the loop are required when the LE instruction is executed (as indicated by the value
in LR), the iteration count decrements LR and branches back to the start of the loop. The LE instruction also
caches the loop branch information in LO_BRANCH_INFO. Subsequent iterations might not be required to
re-execute the LE instruction.

» If LR indicates that no further iterations are required, the PE branches over the LE instruction when execution
reaches the last instruction in the body of the loop.

The LE T2 variant of the LE instruction does not include LR as an argument and can be used where the number of
iterations is not known in advance.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB.

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 134
1D30062020 Non-confidential

Chapter B3. Programmers’ Model
B3.28. Low overhead loops

Icrrm

RFZXN

Rymer

RHSNB

RXNXM

Ryrov

Runrr

Rzwra

DDI0553B.1
1D30062020

The T3 variant of the LE instruction is LETP, which is a tail predicated loop. Tail predicated loops can be used if
the iteration count is not known in advance. A trivial memcpy example of the LETP instruction is shown here:

memcpy :

PUSH {RO, LR}

WLSTP.8 LR, R2, vectLoopEnd //R2 = element / byte count
vectLoopStart:

VLDRB. 8 00, [R1], #16 // Rl = srcPtr

VSTRB. 8 Q0, [RO], #16 // RO = destPtr

LETP LR, vectLoopStart
vectLoopEnd:

POP {RO, PC}

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB && MVE.

The LE, LETP instruction caches the loop branch information in LO_BRANCH_INFO.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB.

When executing a LE instruction, LR decrements by one on each iteration of the loop.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB.

An INVSTATE UsageFault is raised if a LE instruction is executed and FPSCR.LTPSIZE does not read as four.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB && (MVE
[FP).

An INVSTATE UsageFault is raised if a LE instruction is executed and LTPSIZE does not read is not four.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB !MVE &&
!FP.

For low overhead loop instructions, LR stores the loop iteration count. For a tail predicated low overhead loop
instruction, LR stores the number of vector elements to be processed.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB. Note, MVE

required for tail predication.

When executing a LETP instruction, LR decrements by the element width indicated in FPSCR.LTPSIZE. When
FPSCR.LTPSIZE is not set to four tail predication is applied according to the value in LR. The number of elements
is calculated by dividing the vector width, 128, by the element width in FPSCR.LTPSIZE.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB && MVE.

The following events update the low overhead loop flags, as indicated by LO_BRANCH_INFO.VALID bit.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 135
Non-confidential

Chapter B3. Programmers’ Model
B3.28. Low overhead loops

Event LO_BRANCH_INFO
Reset Cleared

LE, LETP instruction Conditionally set
Execution reaches LO_BRANCH_INFO.END_ADDR Conditionally cleared
BF, BFX, BFL, BFLX, BFCSEL instruction Set

Context synchronization event Cleared

BXNS or BLXNS instruction that cause a Security State transition Cleared

SG instuction that causes a transition from Non-secure to Secure state Cleared

Unstacking a FNC_RETURN stack frame Cleared

Any instruction that modifies the PC when LO_BRANCH_INFO.BF is set Cleared
IMPLEMENTATION DEFINED events Cleared

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB. Note, some

rows require S.

Iswuc If the debugger expects predictable control flow, then Arm recommends that the implicit branches are disabled and
that the associated cache is cleared.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB.

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 136
1D30062020 Non-confidential

Chapter B3. Programmers’ Model
B3.28. Low overhead loops

Rerog

RXZJF

IsLoL

IrrpL

ITPKG

Rpxkzn

DDI0553B.1
1D30062020

For implementations that include MVE, the architecture permits the architecturally overlapping execution of a
vector instruction at the end of the loop with an instruction at the start of the next iteration of the loop, except
when:

* The vector instructions at the end of the loop write to LR.
* The instruction at the start of the loop reads or writes to LR.
» Data dependencies between vector instructions are violated.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB && MVE.

When a new floating-point context is created and FPCCR.ASPEN is set to one the PE automatically initializes
FPSCR.LTPSIZE to four.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB && (MVE

[FP).

When a new floating-point context is created and FPCCR.ASPEN is set to zero it is the responsibility of software
to correctly initialize FPSCR.LTPSIZE.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB && (MVE
[FP).

When a WLSTP or a DLSTP instruction is used to initialize a loop, the loop end instruction must be an LETP
instruction. If an LE instruction is used in this scenario, the predication applied might be incorrect.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB && MVE.

When a WLS or a DLS instruction is used to initialize a loop, the loop end instruction must be an LE instruction.
Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB.

The execution of an implicit or explicit LE, LETP instruction is CONSTRAINED UNPREDICTABLE anywhere
within an IT block. When the instruction is committed for execution, one of the following occurs:

* An UNDEFINED exception is taken.

* ITSTATE is cleared to 0.

» The instructions are executed as if they had passed the condition code check and the ITSTATE is advanced.

* The instructions execute as NOPs, as if they had failed the condition code check and the ITSTATE is not
advanced.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB.

See also:

B5.6.1 Loop tail predication on page 187.
WLS, DLS, WLSTP, DLSTP.

LE, LETP.

LTPSIZE.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 137
Non-confidential

Chapter B3. Programmers’ Model
B3.29. Branch future

B3.29 Branch future

Ireon

Iycee

Rsvxw

RF zZvc

RJTGY

RJVJF

Ryear

Ryrvz

DDI0553B.1
1D30062020

The Armv8.1-M architecture supports branch future instructions (BF instructions). The BF instruction and its
variants are requests to the PE to perform a branch in the future. The variants of the branch future instruction are
BF, BFX, BFL, BFLX, and BFCSEL

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB.

An example of a BF branch point is as follows:

start:
BFX Db_label, LR // Set up BF at b_label
ADD r0, r0, ril
ADD r0, r0, r2
ADD r0O, r0, r3
// This is the BF branch point
b_label:
BX LR // Executed if LO_BRANCH_INFO invalid

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB.

If the last instruction immediately before the BF branch point writes to LR, and a BFL or BFLX set up the BF
branch point, then LR is set to the return address, and not to the value that is generated by the instruction at the BF
branch point.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB.

BF initializes the LO_BRANCH_INFO register to cause a low overhead branch just before execution reaches the
specified label, that is the branch point.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB.

When BF causes a branch, this branch occurs at the branch point. The instruction after the branch point is not
executed if the branch is taken.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB.

Inserting the BF branch point in the middle of a T32 instruction results in one of the following CONSTRAINED
UNPREDICTABLE behaviors:

* It executes as a NOP.

* It raises an UNDEFINED instruction fault.

* It executes normally and the branch that is associated with the BF instruction is taken.

* It executes normally and the branch that is associated with the BF instruction is not taken.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB.

If the BF branch point is in an IT block, and it does not immediately precede the last instruction in the IT block,
then the following CONSTRAINED UNPREDICTABLE behaviors can result:

* The instruction executes normally and the branch that is associated with the BF instruction is not taken. The
BF instruction can be treated as a NOP.

* The instruction before the BF branch point raises an UNDEFINED instruction fault.

» ITSTATE is cleared to 0.

* Taking the branch that is associated with the BF instruction causes ITSTATE to become UNKNOWN.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB.

If a BF branch point is within an IT block, the branch that was created by the BF instruction is not affected by the

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 138
Non-confidential

Chapter B3. Programmers’ Model
B3.29. Branch future

Rarup

Rpesr

Rycka

DDI0553B.1
1D30062020

IT condition.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB.

When executing in Handler mode, BF instructions that attempt to cause a branch to EXC_RETURN behave as
NOPs.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB.

In an implementation that includes the Security Extension, BF instructions that attempt to cause a branch to
FNC_RETURN behave as NOPs.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB && S.

Taking a branch that is created by the BF instruction clears ITSTATE to 0.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - LOB.

See also:

Chapter C1 Instruction Set Overview on page 427.
B3.28 Low overhead loops on page 133.

C1.3.5 ITSTATE on page 438.

BF, BFX, BFL, BFLX, and BFCSEL.

Applies to an implementation of the architecture from Armv8.1-M onwards.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 139
Non-confidential

Chapter B3. Programmers’ Model
B3.30. Vector tables

B3.30 Vector tables

Rywrr

Rerao

IWFGX

RWPRT

RLFDL

Rypep

DDI0553B.1
1D30062020

In a PE with the Security Extension, two vector tables are implemented, the Secure Vector table and the Non-secure
Vector table, and it is IMPLEMENTATION DEFINED which of the following is true:

* The PE supports configurability of each vector table base, and two Vector Table Offset Registers, VTOR_S
and VTOR_NS, are provided for this purpose.
* The PE does not support configurability of either vector table base, and VTOR_S and VTOR_NS are WL

If the PE supports configurability of each vector table base:

* Exceptions that target Secure state use VTOR_S to determine the base address of the Secure vector table.
» Exceptions that target Non-secure state use VTOR_NS to determine the base address of the Non-secure
vector table.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.
In a PE without the Security Extension, a single vector table is implemented, and it is IMPLEMENTATION DEFINED
which of the following is true:

» The PE supports configurability of the vector table base, and a single Vector Table Offset Register, VTOR, is
provided for this purpose.
* The PE does not support configurability of the vector table base, and VTOR is WI.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - !S.

Arm recommends that VTOR_S points to memory that is Secure and not Non-secure callable.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

A vector table contains both:

 The initialization value for the main stack pointer on reset.
 The start address of each exception handler.

The exception number defines the order of entries.

Word offset in vector table Value that is held at offset

0 Initial value for the main stack pointer on reset.

1 Start address for the reset handler.

Exception number Start address for the handler for the exception with that number
Exception number Start address for the handler for the exception with that number

Applies to an implementation of the architecture from Armv8.0-M onwards.

In a PE with a configurable vector table base, the vector table is naturally aligned to a power of two, with an
alignment value that is:

* A minimum of 128 bytes.
* Greater than or equal to (Number of Exceptions supported x4).

Applies to an implementation of the architecture from Armv8.0-M onwards.

Vector fetches for entries beyond the natural alignment of the associated VTOR occur from an UNKNOWN entry
within the vector table.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 140
Non-confidential

Chapter B3. Programmers’ Model
B3.30. Vector tables

IPLSB

Razvws

Rxppr

Ipvsc

Ryraw

DDI0553B.1
1D30062020

Arm recommends that it is ensured that the vector table and VTOR are aligned so that the entry for the highest
taken exception falls within the natural alignment of the table, and at a minimum that the vector table is 128 byte
aligned. A PE might impose further restrictions on the VTOR.

Applies to an implementation of the architecture from Armv8.0-M onwards.

If a vector fetch causes a Security attribution unit violation or an implementation defined attribution unit violation
or a BusFault, a secure VECTTBL HardFault is raised. If the exception priority prevents any secure VECTTBL
HardFault preempting, one of the following occurs:

e The PE enters Lockup at the priority of the original exception.
* The original exception transitions from the pending to the active state.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S. Note, SAU and
IDAU require M.
For all vector table entries other than the entry at offset O, if bit[0] is not set to 1, the first instruction in the

exception results in an INVSTATE UsageFault or a HardFault.

Applies to an implementation of the architecture from Armv8.0-M onwards.

For all vector table entries other than the entry at offset 0, bit[0] defines EPSR.T on exception entry. Setting bit[0]
to 1 indicates that the exception handler is in the T32 instruction set state.

Applies to an implementation of the architecture from Armv8.0-M onwards.

A vector fetch may be performed using the instruction interface, and avoid DWT matches and watchpoints being
generated.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B9.4 IMPLEMENTATION DEFINED Attribution Unit (IDAU) on page 275.
B9.3 Security attribution unit (SAU) on page 274.

B3.9 Exception numbers and exception priority numbers on page 82.

B3.5.2 Execution Program Status Register (EPSR) on page 77.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 141
Non-confidential

Chapter B3. Programmers’ Model
B3.31. Hardware-controlled priority escalation to HardFault

B3.31 Hardware-controlled priority escalation to HardFault

Renvs

RHP LM

Rpaag

Rporr

DDI0553B.1
1D30062020

If a synchronous exception with an equal or lower priority to execution is pending, the PE hardware escalates it
to become a HardFault. This rule applies to all synchronous exceptions and DebugMonitor exceptions that are
caused by the BKPT instruction. This rule does not apply to asynchronous exceptions and all other DebugMonitor
exceptions. If the HardFault cannot be taken the PE enters Lockup

Applies to an implementation of the architecture from Armv8.0-M. Note, DebugMonitor exception requires M.
FPCCR.*RDY (not the current execution priority) determines the escalation of synchronous exceptions generated
because of lazy floating-point state preservation. This means that an asynchronous exception might be pended.

Applies to an implementation of the architecture from Armv8.0-M onwards.

When current execution has a priority value less than or equal to the configurable priority exceptions, if a disabled
configurable priority exception occurs:

« Ifitis a synchronous exception, the PE hardware escalates the exception to become a HardFault.
 If it is an asynchronous exception, the PE does not escalate the interrupt. The interrupt remains pending.

Applies to an implementation of the architecture from Armv8.0-M onwards.

A fault that has been escalated to a HardFault, and not pended, retains the return address behavior of the original
fault and sets HFSR.FORCED to 1.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B3.9 Exception numbers and exception priority numbers on page 82.
DebugMonitor exception.

B3.33 Lockup on page 145.

B3.11 Security states, exception banking on page 87.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 142
Non-confidential

Chapter B3. Programmers’ Model
B3.32. Special-purpose mask registers, PRIMASK, BASEPRI, FAULTMASK, for configurable priority boosting

B3.32 Special-purpose mask registers, PRIMASK, BASEPRI, FAULTMASK, for
configurable priority boosting

Isnge

DDI0553B.1
ID30062020

In a PE with the Main Extension, the PRIMASK, FAULTMASK, and BASEPRI registers can be used as follows.
A PE without the Main Extension implements PRIMASK, but does not implement FAULTMASK and BASEPRI.

PRIMASK
In a PE without the Security Extension:

 Setting this bit to one boosts the current execution priority to 0, masking all exceptions with an equal or
lower priority.

In a PE with the Security Extension:
* Setting PRIMASK_S to one boosts the current execution priority to O.
 If AIRCR.PRIS is:
0:
Setting PRIMASK_NS to one boosts the current execution priority to O.

Setting PRIMASK_NS to one boosts the current execution priority to 0x80.

In a PE with the Security Extension, when the current execution priority is boosted to a particular value, all
exceptions with an equal or lower priority are masked.

FAULTMASK
In a PE without the Security Extension:

* Setting this bit to one boosts the current execution priority to -1, masking all exceptions with an equal or
lower priority.

In a PE with the Security Extension, if AIRCR.BFHFNMINS is:

0:
Setting FAULTMASK_S to one boosts the current execution priority to -1.
If AIRCR.PRIS is:
0: Setting FAULTMASK_NS to one boosts the current execution priority to 0.
1: Setting FAULTMASK_NS to one boosts the current execution priority to 0x80.
1:

Setting FAULTMASK_S to one boosts the current execution priority to -3.
Setting FAULTMASK_NS to one boosts the current execution priority to -1.

In a PE with the Security Extension, when the current execution priority is boosted to a particular value, all
exceptions with an equal or lower priority are masked.

BASEPRI
In a PE without the Security Extension:

* This field can be set to a priority number between 1 and the maximum supported priority number. This boosts
the current execution priority to that number, masking all exceptions with an equal or lower priority.

In a PE with the Security Extension:

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 143
Non-confidential

Chapter B3. Programmers’ Model
B3.32. Special-purpose mask registers, PRIMASK, BASEPRI, FAULTMASK, for configurable priority boosting

Rpnme

Rskra

Ryrrm

Irsxag

IgevL

DDI0553B.1
1D30062020

* BASEPRI_S can be set to a priority number between 1 and the maximum supported priority number.
 If AIRCR.PRIS is:
0: BASEPRI_NS can be set to a priority number between 1 and the maximum supported priority number.

1: BASEPRI_NS can be set to a priority number between 1 and the maximum supported priority number.
The value in BASEPRI_NS is then mapped to the bottom half of the priority range, so that the current
execution priority is boosted to the mapped-to value in the bottom half of the priority range, that is from
0x80 to the supported maximum.

In a PE with the Security Extension, when the current execution priority is boosted to a particular value, all
exceptions with an equal or lower priority are masked.

Applies to an implementation of the architecture from Armv8.0-M. Note, FAULTMASK and BASEPRI require M.

The PRIMASK, FAULTMASK, and BASEPRI priority boosting mechanisms only boost the group priority, not the
subpriority.

Applies to an implementation of the architecture from Armv8.0-M. Note, FAULTMASK and BASEPRI require M.

Without the Security Extension:
* An exception return sets FAULTMASK to 0.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - !S && M.

With the Security Extension:

* An exception return sets FAULTMASK to O if the raw execution priority is greater than or equal to 0.
EXC_RETURN.ES indicates which banked instance of FAULTMASK is set to 0.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S && M.

The raw execution priority is:

* The execution priority minus the effects of any configurable PRIMASK, FAULTMASK, or BASEPRI priority
boosting.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

The requested execution priority for a Security state is negative when any of the following are true:

* The banked FAULTMASK bit is 1, including when AIRCR.PRIS is also 1.
* A HardFault is active.
* An NMI is active and targets the Security state for which the requested execution priority is being calculated .

Applies to an implementation of the architecture from Armv8.0-M. Note, FAULTMASK requires M.

See also:
B3.13 Priority model on page 94.

B3.9 Exception numbers and exception priority numbers on page 82.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 144
Non-confidential

Chapter B3. Programmers’ Model
B3.33. Lockup

B3.33 Lockup

IrkoB

IFSFR

RMB ™

RJRJC

RHJNP

RSPPN

ICRHJ

B3.33.1

DDI0553B.1
1D30062020

Lockup is a PE state where the PE stops executing instructions in response to an error for which escalation to
an appropriate HardFault handler is not possible because of the current execution priority. An example is a
synchronous exception that escalates to a Secure HardFault, but cannot escalate to a Secure HardFault because a
Secure HardFault is already active.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Arm recommends that an implementation provides a LOCKUP signal that, when the PE is in lockup, signals to
the external system that the PE is in lockup.

Applies to an implementation of the architecture from Armv8.0-M onwards.

When the PE is in lockup:

e DHCSR.S_LOCKUP reads as 1.

* The PC reads as 0xEFFFFFFE. This is an XN address.

* The PE stops fetching and executing instructions.

* If the implementation provides an external LOCKUP signal, LOCKUP is asserted HIGH.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Exit from lockup is only by one of the following:

* A Cold reset.

* A Warm reset.

* Entry to Debug state.

* Preemption by another exception.

Applies to an implementation of the architecture from Armv8.0-M. Note, entry to Debug state requites Halting debug.
Exit from lockup causes both DHCSR.S_LOCKUP and, if implemented, the external LOCKUP signal, to be
deasserted.

Applies to an implementation of the architecture from Armv8.0-M onwards.

On an exit from lockup by entry to Debug state, or by preemption by another exception, the return address is
OXEFFFFFFE.

Applies to an implementation of the architecture from Armv8.0-M. Note, entry to Debug state requires Halting debug.

After exit from lockup by entry to Debug state, or by preemption by another exception, a subsequent return
from Debug state or that exception without modifying the return address attempts to execute from OxEFFFFFFE.
Execution from this address is guaranteed to generate an [ACCVIOL MemManage fault, causing the PE to reenter

lockup if the execution priority has not been modified. Modification of the return address would enable execution
to be resumed, however Arm recommends treating entry to lockup as fatal and requiring the PE to be reset.

Applies to an implementation of the architecture from Armv8.0-M. Note, entry to Debug state requires Halting debug.

See also:
B3.13 Priority model on page 94.
Chapter B12 Debug on page 283.

Instruction-related lockup behavior

Instruction execution

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 145
Non-confidential

Chapter B3. Programmers’ Model
B3.33. Lockup

RVGMR

Rovme

Ryenw

Rpukp

Rgrom

Rurvp

RRNKB

DDI0553B.1
1D30062020

A synchronous exception results in lockup when:

* The synchronous exception would otherwise escalate to a Secure HardFault and any of the following is true:

Secure HardFault is already active.

NMI is active and AIRCR.BFHFNMINS is 0.
FAULTMASK_S.FM is 1.

— Non-secure HardFault is active and AIRCR.BFHFNMINS is 0.

* The synchronous exception would otherwise escalate to a Non-secure HardFault and any of the following is
true:

Non-secure HardFault or Secure HardFault is already active.
NMI is active.
FAULTMASK_NS.FM or FAULTMASK_S.FM is 1.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S. Note,
FAULTMASK requires M.
If the Security Extension is not implemented, a synchronous exception results in lockup when:

* The synchronous exception would otherwise escalate to HardFault and any of the following is true:

— HardFault is already active.
— NMIl is active.
— FAULTMASK is always 1.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - !S.

Entry to lockup from an exception causes:

* Any Fault Status Registers associated with the exception to be updated.
* No update to the pending exception state or to the active exception state.
* The PC to be set to OXEFFFFFFE.

e EPSR.IT to be become UNKNOWN.

In addition, HFSR.FORCED is not changed.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Asynchronous BusFaults do not cause lockup.

Applies to an implementation of the architecture from Armv8.0-M onwards.

When a BusFault does not cause lockup, the value that is read or written to the location that generated the BusFault
iS UNKNOWN.

Applies to an implementation of the architecture from Armv8.0-M onwards.

ITSTATE does not advance when the PE is in lockup.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Floating-point lazy Floating-point context preservation

When FPCCR.LSPACT is 1, a NOCP UsageFault, AU violation, MPU violation, or synchronous BusFault during
lazy Floating-point context preservation causes lockup if any of the following is true:

* FPCCR.HFRDY is 0, the *RDY bit associated with the original exception is 0, and the current execution
priority is high enough to prevent preemption.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP. Note, an
MPU violation requires MPU, an SAU violation requires S.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 146
Non-confidential

Chapter B3. Programmers’ Model
B3.33. Lockup

RMMB J

When FPCCR.LSPEN is 0, any faults that are caused by floating-point register reads or writes during exception
entry or exception return are handled as faults on stacking or unstacking respectively.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

B3.33.2 Exception-related lockup behavior

Rpnve

Ryxrrx

Rosse

DDI0553B.1
1D30062020

Vector or stack pointer error on reset

On reset, if reading the vector table to obtain either the vector for the reset handler or the initialization value for the
main stack pointer causes a BusFault, the PE enters lockup in HardFault with the following behavior:

e HFSR.VECTTBL is set to 1.

* In a PE with the Security Extension, Secure HardFault is made active. That is, SHCSR_S.HARDFAULTACT
is set to 1.

* In a PE without the Security Extension, HardFault is made active. That is, SHCSR.HARDFAULTACT is set
to 1.

* An UNKNOWN value is loaded into the main stack pointer.

e The IPSR is set to 0.

¢ EPSR.T is UNKNOWN.

¢ EPSR.IT is set to zero.

e The PC is set to OXEFFFFFFE.

Applies to an implementation of the architecture from Armv8.0-M. Note, a Secure HardFault requires S.

Errors on preemption and stacking for exception entry

An AU violation, MPU violation, NOCP UsageFault, STKOF UsageFault, LSERR SecureFault, or synchronous
BusFault during context stacking causes lockup when:

* The exception would escalate to a Secure HardFault if any of the following is true:

Secure HardFault is already active.

NMI is active and AIRCR.BFHFNMINS is 0.
FAULTMASK_S.FM is 1.

Non-secure HardFault is active and AIRCR.BFHFNMINS is 0.

* The exception would escalate to a Non-secure HardFault if any of the following is true:

— Non-secure HardFault or Secure HardFault is already active.
— NMI is active.
— FAULTMASK_NS.FM or FAULTMASK_S.FM is 1.

In these cases, the point of PE lockup is when, after the exception to be taken has been chosen, the handler for that
exception is entered. These cases do not in themselves cause any additional exception to become pending.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S. Note, an AU
violation requires S, an MPU violation requires MPU, a UsageFault requires M, a SecureFault requires S.

When an AU violation, MPU violation, NOCP UsageFault, STKOF UsageFault, LSERR SecureFault, or syn-
chronous BusFault occurs during context stacking, it is IMPLEMENTATION DEFINED whether the PE continues to
stack any of the remaining context.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S. Note, an AU
violation requires S, an MPU violation requires MPU, a UsageFault requires M, a SecureFault requires S, LSERR requires FP.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 147
Non-confidential

Chapter B3. Programmers’ Model
B3.33. Lockup

Reage

Rerre

INMRW

Rrrrg

DDI0553B.1
1D30062020

At the point of encountering an AU violation, MPU violation, NOCP UsageFault, STKOF UsageFault, LSERR
SecureFault, or synchronous bus error during context stacking, the PE:

* Updates any Fault Status Registers associated with the error.
* Does not change HFSR.FORCED.

At the point of lockup:

 All state, including the LR, IPSR, and active and pending bits, is modified as though the fault on context
stacking had never occurred, other than the following:

— EPSR.T becomes UNKNOWN.
— EPSRL.IT is set to zero.
— The PC is set to 0OXEFFFFFFE.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S. Note, an AU
violation requires S, an MPU violation requires MPU, a UsageFault requires M, a SecureFault requires S, LSERR requires FP.

Vector read error on NMI or HardFault entry

On entry to an NMI or HardFault, if reading the vector table to obtain the vector for the NMI or HardFault handler
causes a bus error, the PE enters lockup with the following behavior:

* HFSR.VECTTBL is set to 1.

» The IPSR is updated to hold the exception number of the exception taken.

* The active bit of the exception that is taken is set to 1.

* The pending bit of the exception that is taken is cleared to O.

* EPSR.T is UNKNOWN.

* EPSR.IT is set to zero.

* The LR is set to the EXC_RETURN value that would have been used had the fault not occurred.
* The PC is set to OXEFFFFFFE.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Because AU violations on vector reads are required to be treated as late-arriving, they cannot cause lockup, and
instead result in a higher priority exception being taken. Vector reads always use the default memory map and
cannot generate MPU violations.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Integrity checks on exception return

A fault that is generated by a failed integrity check on exception return is generated after either the active bit for
the returning exception, or the active bit for NMI or HardFault, has been cleared to 0, and if applicable, after
FAULTMASK has also been cleared to 0. A fault that is generated by a failed integrity check on exception return
causes lockup when:

* The exception would escalate to a Secure HardFault and any of the following is true:

Secure HardFault is already active.

NMI is active and AIRCR.BFHFNMINS is 0.

— FAULTMASK_S.FM s 1.

— Non-secure HardFault is active and AIRCR.BFHFNMINS is 0.

* The exception would escalate to a Non-secure HardFault and any of the following is true:

— Non-secure HardFault or Secure HardFault is already active.
— NMI is active.
— FAULTMASK_NS.FM or FAULTMASK_S.FM is 1.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 148
Non-confidential

Chapter B3. Programmers’ Model
B3.33. Lockup

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

Rprkp When the PE enters lockup because of a fault that is generated by a failed integrity check, the PE:
* Updates any Fault Status Registers associated with the error.
 Sets IPSR to 0, if EXC_RETURN for the returning exception indicated a return to Thread mode.
* Sets IPSR to 3, if EXC_RETURN for the returning exception indicated a return to Handler mode.
* Sets the stack pointer that is used for unstacking to the value it would have had if the fault had not occurred.
— If the XPSR load faults, the SP is 64-bit aligned.
* Updates CONTROL.FPCA, based on EXC_RETURN.FType.
* CONTROL.SFPA becomes UNKNOWN.
* Sets the PC to OxEFFFFFFE.
In addition, the APSR, EPSR, FPSCR, R0-R12, LR, and SO0-S31 are UNKNOWN.

Applies to an implementation of the architecture from Armv8.0-M. Note, CONTROL.FPCA and SFPA, FPSCR and S0-S31
require FP || MVE. MVE is only available in an Armv8.1-M implementation.

Rxnza When the PE enters lockup because of a fault that is generated by a failed integrity check, and MVE is implemented,
VPR is UNKNOWN.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

Errors when unstacking state on exception return

RuksJg Context unstacking is performed after any clearing of exception active bits or FAULTMASK, that is required by
the exception return, has been made visible. A synchronous exception during context unstacking causes lockup
when:

* The exception would escalate to a Secure HardFault and any of the following is true:

— Secure HardFault is already active.
- FAULTMASK_S.FM is 1.
— Non-secure HardFault is active and AIRCR.BFHFNMINS is 0.

* The exception would escalate to a Non-secure HardFault and any of the following is true:

— Non-secure HardFault or Secure HardFault is already active.
— NMIl is active.
— FAULTMASK_NS.FM or FAULTMASK_S.FM is 1.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

Rxrco When a synchronous exception during context unstacking causes lockup, the PE:

» Updates any Fault Status Registers associated with the error.

* Sets IPSR to 0, if EXC_RETURN for the returning exception indicated a return to Thread mode.

 Sets IPSR to 3, if EXC_RETURN for the returning exception indicated a return to Handler mode.

* Sets the stack pointer that is used for unstacking to the value it would have had if the fault had not occurred.
— If the XPSR load faults, the SP is 64-bit aligned.

e Updates CONTROL.FPCA, based on EXC_RETURN.

* Sets the PC to 0xEFFFFFFE.

In addition, the APSR, EPSR, FPSCR, R0-R12, LR, and S0-S31 are UNKNOWN.

Applies to an implementation of the architecture from Armv8.0-M onwards.

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 149
1D30062020 Non-confidential

Chapter B3. Programmers’ Model
B3.33. Lockup

Ryzre When the PE enters lockup because of an AU violation, MPU violation, or synchronous BusFault during context
unstacking, and MVE is implemented, VPR is UNKNOWN.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

See also:

B3.22 Exception return on page 119.

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 150
1D30062020 Non-confidential

Chapter B3. Programmers’ Model
B3.34. Data independent timing

B3.34 Data independent timing

Isrvr

Rpnem

RNXXV

Rewva

DDI0553B.1
1D30062020

The Armv8.1-M architecture supports Data independent timing operations.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - DIT.

DIT behavior only applies if the instruction passes its Condition code check. The instruction remains subject to the
rules of the architecture but is permitted to have a different execution time when compared to the same instruction
that had passed the Condition code check.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - DIT.

When AIRCR.DIT is set to 1, unless otherwise specified, the time required for Data independent timing operations
is independent of all values that are accessed by operations from the following registers:

* FPCSR.{N,Z,C,V}.

* APSR.

* General-purpose registers.

* Floating-point Extension registers (S0-S31, D0-D15, and Q0-Q7).
¢ In a limited number of cases, VPR.PO.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - DIT. Note,
Floating-point registers require FP or MVE, and VPR requires MVE.

When AIRCR.DIT is set to 1, this affects the following features:

» Exception handling. In addition to the standard set of registers, the following operations also exhibit Data
independent timing for accesses to VPR.PO:

Exception entry.

Tail-chaining.

Lazy floating-point state preservation.
Exception return.

¢ EPSR.ICI. Whether a PE uses ICI for load/store multiple instructions is not dependent on the data values that
are loaded or saved. This excludes the address that is being targeted.

* Beat wise execution. Whether a Data independent timing vector instruction overlaps with another vector

instruction is not dependent on the data values being processed by the data independent timing vector
instruction.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - DIT. Note, VPR
and vector instructions requires MVE.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 151
Non-confidential

Chapter B3. Programmers’ Model
B3.34. Data independent timing

Rycvu The DIT non-MVE instructions, including flag setting variants of the instruction are:
* Comparison and selection:

— CMP (immediate), CMP (register), TEQ (immediate), TEQ (register), TST
(immediate), TST (register).
— CSEL, CSINC, CSINV, CSNEG.

¢ Arithmetic:

— ADC (immediate),ADC (register),SBC (immediate), SBC (register).

— ADD (SP plus immediate), ADD (SP plus register), ADD (immediate), ADD
(immediate, to PC), ADD (register), SUB (SP minus immediate), SUB
(SP minus register), SUB (immediate), SUB (immediate, from PC), SUB
(register),RSB (immediate),RSB (register)

- UMLAL, UMLAL.

¢ Bitwise:

— AND (immediate), AND (register), BIC (immediate), BIC (register), EOR
(immediate),EOR (register),MVN (immediate),MVN (register),ORN (immediate),
ORN (register),ORR (immediate),ORR (register)

- UBFX.

« Shifts, Bit Reversal:

— ASR (immediate), ASR (register), LSL (immediate), LSL (register), LSL
(immediate), LSR (register),ROR (immediate),ROR (register),RRX
— RBIT, REV, REV16.

¢ Moves:

- MOV (immediate),MOV (register).
— MRS, MSR (register). Data independent timing is only required to be guaranteed for accesses to
APSR.

 Load/store instructions. Data independent timing does not apply to the addresses that are being accessed, or
to sign extending variants.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - DIT.

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 152
1D30062020 Non-confidential

Chapter B3. Programmers’ Model
B3.34. Data independent timing

Rprvy The DIT MVE instructions are:

* Comparison and selection:

— VCMP (floating-point),VCMP (vector), and VPSEL. VPSEL also exhibits Data indepen-
dent timing with respect to the value of VPR.PO.

¢ Arithmetic:

- VADC, VSBC, VADD (vector),VSUB (vector).
— VMULL (integer) and VMULL (polynomial).

¢ Bitwise:

— VAND.
VBIC (immediate) and VBIC (register).
VEOR.
— VMVN (immediate) and VMVN (register).
— VORN.
— VORR.

¢ Shifts, Bit Reversal:
— VBRSR, VSHR, VSHL, VSHLC.
* Moves:

— All vector VMOV instructions.

— VMSR, VMRS. Data independent timing is only required to be guaranteed for accesses to FP-
SCR.{N,Z,C,V,QC} and VPR.PO.
— VREV16, VREV32, VREV64.

* Load/store instructions. Data independent timing does not apply to the address that is being accessed, or to
sign-extending variants.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - DIT && MVE.

Rrwagw For non-architected accesses, all instructions, including instructions that are not listed as Data independent timing
instructions, exhibit Data independent timing with respect to data that is held in specified DIT registers that are not
architecturally accessed by the instruction.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - DIT.

See also:

B5.4 Beats on page 181.

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 153
1D30062020 Non-confidential

Chapter B3. Programmers’ Model
B3.35. Context Synchronization Event

B3.35 Context Synchronization Event

Roxwp

RTVHX

RRMMM

Rysro

Rpksx

DDI0553B.1
1D30062020

The architecture requires a Context synchronization event to guarantee visibility of any change to any memory-
mapped register described in the architecture. Following a Content synchronization event a completed write to
a memory-mapped register is visible to an indirect read by an instruction appearing in program order after the
context synchronization event.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Between any change to a memory-mapped register and a subsequent Content synchronization event, it is UNPRE-
DICTABLE whether an indirect read of the register by the PE uses the old or new values.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Where multiple changes are made to memory-mapped registers before a Content synchronization event, each value
might independently be the old or new value.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Where unsynchronized values apply to different areas of architectural functionality, or IMPLEMENTATION DEFINED
functionality, those areas might independently treat the values as being either the old or new value.

Applies to an implementation of the architecture from Armv8.0-M onwards.

The choice between the behaviors is IMPLEMENTATION DEFINED and might vary for each use of the unsynchro-
nized value.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 154
Non-confidential

Chapter B3. Programmers’ Model
B3.36. Coprocessor support

B3.36 Coprocessor support

Rpsix

IsBMe

Iwurre

Ryson

RHJDH

Rxpro

Rosre

Rikzm

Rcsop

Rrpmk

Ryrng

Rxxpe

Rpmrv

DDI0553B.1
1D30062020

Coprocessor support is OPTIONAL.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

When coprocessors are not supported, the fields in CPACR, NSACR, and CPPWR that are associated with the
unsupported coprocessor are RAZ/WI.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

In an implementation with the Security Extension, out of reset access to the Floating-point Extension is disabled in
both Secure and Non-secure state. Use by Non-secure software requires correct configuration of permissions by
Secure software.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M && S.
The architecture supports 0-16 coprocessors, CP0O to CP15.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

CPO to CP7 are IMPLEMENTATION DEFINED.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

It is IMPLEMENTATION DEFINED whether CPO to CP7 can be used from both Secure and Non-secure states or
whether the coprocessor is enabled for only Secure or Non-secure state.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M. Note, Secure
state requires S.

Arm reserves CP8 to CP15.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

CP10 to CP11 are reserved to support the Floating-point Extension, and CP10 controls the CP11 Floating-point
instructions.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

From version 8.1-M of the architecture, access control for CP10 also controls CP8, CP9, CP14, and CP15.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - FP || MVE.

The state that is associated with Floating-point unit described in CPPWR.SU10 applies to S registers, D registers,
and FPSCR.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

From version 8.1-M of the architecture, the state that is associated with the Floating-point unit described in
CPPWR.SU10 also applies to the Q registers and VPR.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

Instructions that are issued to unimplemented or disabled coprocessors result in a NOCP UsageFault.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

If a coprocessor cannot complete an instruction, an UNDEFINSTR UsageFault is generated.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 155
Non-confidential

Chapter B3. Programmers’ Model

B3.36. Coprocessor support
See also:
Chapter B4 Floating-point Support on page 161.
CPACR, Coprocessor Access Control Register
CPPWR, Coprocessor Power Control Register

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 156
1D30062020 Non-confidential

Chapter B3. Programmers’ Model
B3.37. The Custom Datapath Extension

B3.37 The Custom Datapath Extension

B3.37.1 Overview of the Custom Datapath Extension

Ionee

IJWBF

IrBLs

Irzrz

Irxnc

InrMB

I TVRP

CDE introduces three classes of two instructions in the co-processor instruction space:

» Three classes operate on the general-purpose register file, including the condition code flags APSR_nzcv.
» Three classes operate on the Floating-point or SIMD register file only.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE. Note, (FP
Il MVE) required for Floating-point register file. MVE is only available in an Armv8.1-M implementation.
A Custom Datapath instruction operating on the Floating-point or SIMD register files uses one of:

* 32-bit S registers.
* 64-bit D registers.
* 128-bit Q registers.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE && (FP ||
MVE). Note, Q registers require MVE, MVE is only available in an Armv8.1-M implementation.
The three classes of CDE instructions are defined by the following patterns:

® <operation code> <destination register>.
® <operation code> <destination register>, <source register>.
* <operation code> <destination register>, <source register 1>, <source register 2>.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE.

The destination register of a Custom Datapath instruction might be optionally read, as well as written.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE.

The operation code can be split between a true operation code in the custom datapath and an immediate value used
in the custom datapath. The architecture does not prescribe any split.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE.

Immediate consequences of the above are:

* No operations on the Floating-point or SIMD registers can set condition codes.
* There are no instructions that support the use of all of, or any combination of the following:
— S registers.
— D registers.
— Q registers.
— The general-purpose register file.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE. Note, Q

registers require MVE, MVE is only available in an Armv8.1-M implementation.

Operations on the general-purpose register file operate on 32-bit registers, or a dual-register consisting of a 64-bit
value constructed from an even numbered general-purpose register and its immediately following odd numbered
pair.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE.

B3.37.2 Enabling CDE instructions

Icxee

DDI0553B.1
1D30062020

Custom Datapath instructions can be found within, and are associated with, the existing coprocessor encoding and

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 157
Non-confidential

Chapter B3. Programmers’ Model
B3.37. The Custom Datapath Extension

Rxrrs

Tiwno

Rysvw

Rskrx

Rrorn

Izcek

IMVXW

DDI0553B.1
1D30062020

numbering spaces.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE.

Custom Datapath instructions fall into encoding spaces associated with a coprocessor number in the range O to 7
inclusive.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE.

Enabling the coprocessor space in which the Custom Datapath Extension is implemented is the same as other
IMPLEMENTATION DEFINED coprocessors. The function IsCPEnabled () describes this.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE. Note, S
required for Secure state.

If a coprocessor is associated with the Custom Datapath Extension, that coprocessor cannot execute the following
instructions:

e CDP, CDP2.

e ILDC, LDC2 (immediate).
e IL.DC, LDC2 (literal).

e MCR, MCR2.

e MCRR, MCRR2.

e MRC, MRC2.

* MRRC, MRRC2.

e STC, STC2.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE.

Execution of a Custom Datapath instruction that accesses the Floating-point or SIMD register file causes Lazy
Floating-point stacking as specified by the architecture.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE && (FP ||
MVE). Note, MVE is only available in an Armv8.1-M implementation.

When executing a CDE instruction the PE checks that the coprocessor associated with CDE is enabled. If access
to another coprocessor is required, for example the Floating-point Extension or MVE, a second coprocessor check
is carried out.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE && (FP ||
MVE). Note, MVE is only available in an Armv8.1-M implementation.

If the execution of a CDE instruction requires access to the Floating-point or MVE register file the Floating-point
Extension or MVE must be enabled using CPACR or NSACR dependent on Security state. Before the execution of
a CDE instruction that requires access to the Floating-point Extension or MVE register file, the following registers
are checked to ensure that CP10 is enabled:

* CPACR.
* NSACR.
* CPPWR.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE && (FP ||
MVE). Note, MVE is only available in an Armv8.1-M implementation.

Armv8-M double-precision Floating-point Extension implements 16 “D” registers, DO to D15. The instructions
defined by the Custom Datapath Extension are capable of indexing registers DO to D31.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE && (FP ||
MVE). Note, MVE is only available in an Armv8.1-M implementation.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 158
Non-confidential

Chapter B3. Programmers’ Model
B3.37. The Custom Datapath Extension

ILPPY

Rrpnn

Armv8.1-M MVE implements eight “Q” registers, QO to Q7. The instructions defined by the Custom Datapath
Extension are capable of indexing registers QO to Q15.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - CDE && MVE.
Note, MVE is only available in an Armv8.1-M implementation.

Execution of a Custom Datapath instruction that attempts to access an unimplemented Floating-point or SIMD
register, is CONSTRAINED UNPREDICTABLE and either of the following behaviors can occur:

¢ The instruction is UNDEFINED.
¢ The instruction is treated as a NOP.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE && (FP ||
MVE). Note, MVE is only available in an Armv8.1-M implementation.

See also:

B3.36 Coprocessor support on page 155
CPACR, Coprocessor Access Control Register
CPPWR, Coprocessor Power Control Register
NSACR, Non-secure Access Control Register

B3.37.3 Execution of CDE instructions

Roenk

Reprc

Rxrev

Rsven

Rakxn

Rseem

I LCVM

DDI0553B.1
1D30062020

The source and destination registers for any Custom Datapath instruction are restricted to those that are specified
by the instruction pseudocode.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE.
The operation of a Custom Datapath instruction cannot be stateful, and cannot operate directly on memory.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE.

It is IMPLEMENTATION DEFINED which Custom Datapath instructions are implemented.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE.

An unimplemented Custom Datapath instruction whose associated coprocessor is not disabled is UNDEFINED.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE.

The execution of an unimplemented immediate value in the encoding of a Custom Datapath instruction is
CONSTRAINED UNPREDICTABLE and either of the following behaviors can occur:

¢ The instruction is UNDEFINED.
¢ The instruction is treated as a NOP.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE.

Which coprocessors adhere to the Custom Datapath Extension or the Arm architecture coprocessor instruction set
is IMPLEMENTATION DEFINED.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE.

Arm strongly recommends that CDE instructions must conform with data independent timing.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - CDE && DIT.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 159
Non-confidential

Chapter B3. Programmers’ Model
B3.37. The Custom Datapath Extension

Rpvpe

Ryprr

IrrTs

DDI0553B.1
1D30062020

If the Performance Monitors Extension is implemented only the instruction counter, Cycle counter and, IMPLE-
MENTATION DEFINED counters increment on execution of Custom Datapath Extension instructions. There are no
architected PMU events for Custom Datapath Extension instructions.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - CDE && PMU.
When executing a CDE scalar dual instruction the CDE enabled coprocessor must process general-purpose register
pairs according to the PE’s current endianness.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - CDE.

All of the rules required for the M-Profile Vector Extension and the Low Overhead Loop and Branch Future
Extension apply to all CDE beat-wise compatible instructions.

This includes the following, but is not limited to:

* Exception continuable behavior.

* Overlapping of beat-wise instructions.
* VPT predication.

* Tail predicated low overhead loops.

The CDE instructions are as follows:

e VCXI1 (vector).
* VCX2 (vector).
¢ VCX3 (vector).

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - CDE && MVE
&& LOB.

See also:

Chapter C1 Instruction Specification

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 160
Non-confidential

Chapter B4
Floating-point Support

This chapter specifies the Armv8-M Floating-point support rules. It contains the following sections:
B4.1 The optional Floating-point Extension, FPv5 on page 162.

B4.2 About the Floating-point Status and Control Registers on page 164.

B4.3 Registers for Floating-point data processing, S0-S31, or DO-D15 on page 165.

B4.4 Floating-point standards and terminology on page 166.

B4.5 Floating-point data representable on page 167.

B4.6 Floating-point encoding formats, half-precision, single-precision, and double-precision on page 168.
B4.7 The IEEE 754 Floating-point exceptions on page 170.

B4.8 The Flush-to-zero mode on page 171.

B4.9 The Default NaN mode, and NaN handling on page 173.

B4.10 The Default NaN on page 174.

B4.11 Combinations of Floating-point exceptions on page 175.

B4.12 Priority of Floating-point exceptions relative to other Floating-point exceptions on page 176.

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 161
1D30062020 Non-confidential

Chapter B4. Floating-point Support
B4.1. The optional Floating-point Extension, FPv5

B4.1 The optional Floating-point Extension, FPv5

Iyvenn

Iywprk

Irxox

Rgorm

Ircsc

ITVZF

Ipveo

IrrDs

Isp30

Rppmv

DDI0553B.1
1D30062020

The optional Floating-point Extension defines a Floating Point Unit (FPU). Coprocessors 10 and 11 support the
Extension.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

The scalar Floating-point Extension can be implemented with or without MVE-F.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - FP.

Floating-point is sometimes abbreviated to FP.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

The version of Floating-point Extension that is supported is FPv5.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

FPv5 provides all of the following:

* Single-precision arithmetic operations.

* Optional double-precision arithmetic operations.

» Conversions between integer, double-precision, single-precision, and half-precision formats.

 Registers for Floating-point processing S0-S31, or DO-D15.

¢ Data transfers, between Arm general-purpose registers and FPv5 Extension registers SO-S31, or DO-D15, of
single-precision and double-precision values.

* A Flush-to-zero mode that software can enable or disable.

* An optional alternative half-precision interpretation of the IEEE 754 half-precision encoding format.

FPv5 adds the following System registers:

* The FPSCR, to the CP10 and CP11 System register space.
e The FPCAR, FPCCR, FPDSCR, MVFRO, MVFR1, and MVFR2, to the System Control Block (SCB).

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP || MVE. Note,

MVE only available in an Armv8.1-M implementation.

From Armv8.1-M onwards, FPv5 provides Half-precision arithmetic operations.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - FP.

When the Floating-point Extension is implemented, some software tools might require the following information:

Extension Single-precision arithmetic Single and double-precision
operations only arithmetic operations
FPv5 FPv5-SP-D16-M FPv5-D16-M

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

When the Floating-point Extension is implemented, software can interrogate MVFR0O, MVFR1, and MVFR2 to
discover the Floating-point features that are implemented.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.
To use the Floating-point Extension, software must enable access to CP10, by writing to CPACR.CP10.
Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

The value of CPACR.CP11 is UNKNOWN if it is not programmed to the same value as CPACR.CP10.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 162
Non-confidential

Chapter B4. Floating-point Support
B4.1. The optional Floating-point Extension, FPv5
See also:
B7.1 System address map on page 252.
B4.2 About the Floating-point Status and Control Registers on page 164.

B4.3 Registers for Floating-point data processing, S0-S31, or DO-D15 on page 165.
B4.8 The Flush-to-zero mode on page 171.

B4.9 The Default NaN mode, and NaN handling on page 173.

B4.6 Floating-point encoding formats, half-precision, single-precision, and double-precision on page 168.

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
1D30062020

163
Non-confidential

Chapter B4. Floating-point Support
B4.2. About the Floating-point Status and Control Registers

B4.2 About the Floating-point Status and Control Registers

Iror™

Rycgs

RKHD Z

IGJWP

Ipsss

RRRT Z

RWXZV

RFXBJ

DDI0553B.1
1D30062020

For implementations of the Armv8.1-M architecture, FPCXT and VPR provide additional controls.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - FP.

The register map of the coprocessor System register space is as follows.

Location Register Information
0b0001 FPSCR.{N,Z,C,V} Access to flags

All locations that are not explicitly listed in this table are reserved, and accesses to these locations result in
UNPREDICTABLE behavior.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

The register map of the coprocessor System register space is as follows.

Location Register Information

0b0001 FPSCR.{N,Z,C,V} Access to flags

0b0010 FPSCR.{N,Z,C,V,QC} Access to flags, including MVE saturation flag
0b1100 VPR Privileged access to this register only

0b1101 VPR.PRO Access to PO field

0b1110 FPCXT_NS Saves and restores the Non-secure FP context
0b1111 FPCXT_S Saves and restores the Secure FP context

All locations that are not explicitly listed in this table are reserved, and accesses to these locations result in
UNPREDICTABLE behavior.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - FP || MVE.
Software can use VMRS and VMSR instructions to access the Floating-point Status and Control registers.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

Software can use VMRS, VMSR VLDR (System Register),and VSTR (System Register) instructions
to access FPCXT, VPR, and the Floating-point Status and Control registers.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - FP || MVE.

Accesses to the FPCXT will behave as NOPs unless both MVE and Floating-point extension are implemented.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - FP || MVE.

Accesses to the FPCXT are UNDEFINED from the Non-secure state.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - FP && MVE
&& S.

Execution of Floating-point instructions that generate Floating-point exceptions update the appropriate status fields
of FPSCR.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

See also:

B3.36 Coprocessor support on page 155.

B4.1 The optional Floating-point Extension, FPv5 on page 162.
FPSCR, Floating Point Status and Control Register.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 164
Non-confidential

Chapter B4. Floating-point Support
B4.3. Registers for Floating-point data processing, S0-S31, or D0-D15

B4.3 Registers for Floating-point data processing, S0-S31, or D0-D15

Rrwcs The registers that FPv5 adds for Floating-point processing are visible as either:

¢ 32 single-precision registers, SO-S31.
* 16 double-precision registers, DO-D15.

These map as follows:

S0-S31 D0-D15

so |

— po —
st | 0
S2 o
ss |
S4
ss |
S6
s - D3 —|
S28 L D14 —|
sz |
S30

- D15 —|
st |

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP || MVE. Note,
MVE only available in an Armv8.1-M implementation.

Rywo After a Warm reset, the values of SO0-S31 or DO-D15 are UNKNOWN.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP || MVE. Note,
MVE only available in an Armv8.1-M implementation.

See also:
B4.1 The optional Floating-point Extension, FPv5 on page 162.
B3.18 Exception handling on page 104.

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 165
1D30062020 Non-confidential

Chapter B4. Floating-point Support
B4.4. Floating-point standards and terminology

B4.4 Floating-point standards and terminology

I ynv There are two editions of the IEEE 754 standard:

* IEEE 754-1985.
» IEEE 754-2008.

In this manual, references to IEEE 754 that do not include the year apply to either edition.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

Tmors The Floating-point terminology that this manual uses differs from that used in IEEE 754-2008 as follows:
This manual IEEE 754-2008
Normalized Normal
Denormal, or denormalized Subnormal
Round towards Minus Infinity (RM) roundTowardsNegative
Round towards Plus Infinity (RP) roundTowardsPositive
Round towards Zero (RZ) roundTowardZero
Round to Nearest (RN) roundTiesToEven
Round to Nearest with Ties to Away roundTiesToAway
Rounding mode Rounding-direction attribute

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

Ipeen The following is called Arm standard Floating-point operation:
* IEEE 754-2008 plus the following configuration:

Flush-to-zero mode enabled.

Default NaN mode enabled.

Round to Nearest mode selected.

Alternative half-precision interpretation not selected.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.
Pl) .

See also:

IEEE 754-2008, IEEE Standard for Floating-point Arithmetic, August 2008.
B4.8 The Flush-to-zero mode on page 171.

B4.9 The Default NaN mode, and NaN handling on page 173.

B4.6 Floating-point encoding formats, half-precision, single-precision, and double-precision on page 168.

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 166
1D30062020 Non-confidential

Chapter B4. Floating-point Support
B4.5. Floating-point data representable

B4.5 Floating-point data representable

Rruxc FPv5 supports the following, as defined by IEEE 754:

¢ Normalized numbers.

¢ Denormalized numbers.

e Zeros, +0 and -0.

¢ Infinities, +00 and —oo.

* NaNs, signaling NaNs and quiet NaN.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

See also:
B4.4 Floating-point standards and terminology on page 166.
IEEE 754-2008, IEEE Standard for Floating-point Arithmetic, August 2008.

B4.6 Floating-point encoding formats, half-precision, single-precision, and double-precision on page 168.

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 167
1D30062020 Non-confidential

Chapter B4. Floating-point Support
B4.6. Floating-point encoding formats, half-precision, single-precision, and double-precision

B4.6 Floating-point encoding formats, half-precision, single-precision, and

double-precision
Rruxs The half-precision, single-precision, and double-precision encoding formats are those defined by IEEE 754-2008,
in addition to an alternative half-precision format.
Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.
Ircra The half-precision encoding format is:
1514 10 9
S exponent fraction
L sign bit
Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.
Icusp The single-precision encoding format is:
3130 2322
S exponent fraction
L sign bit
Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.
Irviv The double-precision encoding format is:
6362 . 5251 . 32 31 .
S exponent fraction
L Sign bit
Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.
Rrwrw The interpretations of the half-precision, single-precision, and double-precision encoding formats are as follows.
Half-precision
There are two interpretations of the half-precision encoding formats:
* The interpretation that is defined by IEEE 754-2008.
* An alternative half-precision interpretation, indicated by FPSCR.AHP.
Single-precision
The interpretation that is defined by IEEE 754-2008.
Double-precision
DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 168

1D30062020 Non-confidential

Chapter B4. Floating-point Support
B4.6. Floating-point encoding formats, half-precision, single-precision, and double-precision

RDPHH

RPKXD

DDI0553B.1
1D30062020

The interpretation that is defined by IEEE 754-2008. See the following table:

E T S T Value

(biased (trailing (sign bit) [51]

exponent) significand)

Zero for all formats. Nonzero - - A denormalized
number.

- Zero 0 - Zero, +0

- - 1 - Zero, -0

Zero < E < 0x1F, if one of - - - A normalized

the half precision formats. number.

Zero < E < OxFF, if single-precision format. - - - -
Zero < E < 0x7FF, if double-precision format. - - - -

O0x1F, if half-precision format, Nonzero - 0 A signaling
IEEE interpretation. NaN

OxFF, if single-precision format. - - 1 A quiet NaN
0x7FF, if double-precision format. Zero 0 - Infinity,+o00

- Zero 1 - Infinity,—oo
0x1F, if half-precision, - - - A normalized
alternative half-precision number.

interpretation.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

The value of a normalized number is equal to:
Half-precision: (—1)% x 2(F=15) x (1.T")
Single-precision: (—1)% x 2(F=127) » (1.T")
Double-precision: (—1)% x 2(£=1023) » (1.7)
The value of a denormalized number is equal to:
Half-precision: (—1) x 2714 x (0.T)
Single-precision: (—1)% x 27126 x (0.7)
Double-precision: (—1)° x 271922 x (0.7)

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

Denormalized numbers can be flushed to zero. FPv5 provides a Flush-to-zero mode.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

See also:
IEEE 754-2008, IEEE Standard for Floating-point Arithmetic, August 2008.
B4.5 Floating-point data representable on page 167.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

169

Chapter B4. Floating-point Support
B4.7. The IEEE 754 Floating-point exceptions

B4.7 The IEEE 754 Floating-point exceptions

Rpcer The IEEE 754 Floating-point exceptions are:
Invalid Operation: This exception is as IEEE 754-2008 (7.2) describes.
Division by zero: This exception is as IEEE 754-2008 (7.3) describes, with the following assumption:
* For the reciprocal and reciprocal square root estimate functions the dividend is assumed to be +1.0.
Overflow: This exception is as IEEE 754-2008 (7.4) describes.
Underflow: This exception is as IEEE 754-2008 (7.5) describes, with the additional clarification that:
* Assessing whether a result is tiny and nonzero is done before rounding.
Inexact: This exception is as IEEE 754-2008 (7.6) describes.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

Iicus The criteria for the Underflow exception to be generated are different in Flush-to-zero mode.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

InFuK The corresponding status flags for the IEEE 754 Floating-point exceptions are FPSCR.{IOC, DZC, OFC, UFC,
IXC}.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

See also:
IEEE 754-2008, IEEE Standard for Floating-point Arithmetic, August 2008.
B4.8 The Flush-to-zero mode on page 171.

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 170
1D30062020 Non-confidential

Chapter B4. Floating-point Support
B4.8. The Flush-to-zero mode

B4.8 The Flush-to-zero mode

Ixcrp

Limxs

Ryonx

Rrvee

Ryssr

Reeow

Rgpag

Rspek

Rypm

Rpgpr

Ropor

Rrpvp

DDI0553B.1
1D30062020

Software can enable Flush-to-zero mode by setting FPSCR.FZ to 1.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

Using Flush-to-zero mode is a deviation from IEEE 754.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

Half-precision Floating-point numbers are exempt from Flush-to-zero mode.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

In an Armv8.1-M implementation Half-precision Floating-point numbers are subject to Flush-to-zero mode.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - FP.

When Flush-to-zero mode is enabled, all single-precision denormalized inputs and double-precision denormalized
inputs to Floating-point operations are treated as though they are zero, that is they are flushed to zero.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.
In an Armv8.1-M implementation when Flush-to-zero mode is enabled, all half-precision denormalized inputs to
Floating-point operations are treated as though they are zero, that is they are flushed to zero.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - FP.

When an input to a Floating-point operation is flushed to zero, the PE generates an Input Denormal exception.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

Input Denormal exceptions are only generated in Flush-to-zero mode.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

When Flush-to-zero mode is enabled, the sequence of events for an input to a Floating-point operation is:

1. Flush to Zero processing takes place. If appropriate, the input is flushed to zero and the PE generates an Input
Denormal exception.
2. Tests for the generation of any other Floating-point exceptions are done after Flush to Zero processing.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

When Flush-to-zero mode is enabled, the result of a Floating-point operation is treated as if it is zero if, before
rounding, it satisfies the condition:

0 < Abs (result) < MinNorm, where:

» MinNorm is 27'2% for single-precision.
» MinNorm is 271922 for double-precision.

The result is said to be flushed to zero.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

When the result of a Floating-point operation is flushed to zero, the PE generates an Underflow exception.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

In Flush-to-zero mode, the PE generates Underflow exceptions only when a result is flushed to zero. This uses
different criteria than when Flush-to-zero mode is disabled.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 171
Non-confidential

Chapter B4. Floating-point Support
B4.8. The Flush-to-zero mode

RRTPH

RpurT

Isoca

When a Floating-point number is flushed to zero, the sign is preserved. That is, the sign bit of the zero matches the
sign bit of the number being flushed to zero.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M && FP.

The PE does not generate an Inexact exception when a Floating-point number is flushed to zero.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

The corresponding status flag for the Input Denormal exception is FPSCR.IDC.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

B4.8.1 The Flush to zero mode half-precision calculations

Ivvxs

Inece

RKZFH

Rugzz

Rrcopv

DDI0553B.1
1D30062020

Applies to an implementation of the architecture from Armv8.1-M onwards.

In an Armv8.1-M implementation Flush-to-zero mode mode is extended to include half-precision calculations.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - FP. Note, !8.0.

Software can enable Flush-to-zero mode for half-precision calculations by setting FPSCR.FZ16 to 1.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - FP. Note, !8.0.
‘When Flush-to-zero mode is enabled, the result of a Floating-point operation is treated as if it is zero if, before
rounding, it satisfies the condition:

0 < Abs (result) < MinNorm, where:

+ MinNorm is 2~ '* for half-precision.
» MinNorm is 2712 for single-precision.
» MinNorm is 27'%22 for double-precision.

The result is said to be flushed to zero.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - FP. Note, !8.0.

The Effective value of FPSCR.FZ16 is zero when converting real values and integers from one Floating-point
format to another.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - FP. Note, !8.0.

When Flush-to-zero mode is enabled for half-precision Floating-point and a half-precision Floating-point number
is flushed to zero an Input Denormal Floating-point exception will not be generated.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - FP. Note, !8.0.

See also:

B4.7 The IEEE 754 Floating-point exceptions on page 170.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 172
Non-confidential

Chapter B4. Floating-point Support
B4.9. The Default NaN mode, and NaN handling

B4.9 The Default NaN mode, and NaN handling

Ircen

Ipsvu

Romoc

RNPRL

Rycse

ILXLF

DDI0553B.1
1D30062020

Software can enable Default NaN mode by setting FPSCR.DN to 1.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

Using Default NaN mode is a deviation from IEEE 754.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

When Default NaN mode is enabled, the Default NaN is the result of both:

 All Floating-point operations that produce an untrapped Invalid Operation exception.
 All Floating-point operations whose inputs include at least one quiet NaN but no signaling NaNs.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

IEEE 754 specifies that:
* An operation that produces an untrapped Invalid Operation exception returns a quiet NaN as its result.
When Default NaN mode is disabled, behavior complies with this and adds:

« If the Invalid Operation exception was generated because one of the inputs to the operation was a signaling
NaN, the quiet NaN result is equal to the first signaling NaN input with its most significant bit set to 1.
* The quiet NaN result is the Default NaN otherwise.

The first signaling NaN input means the first argument, in the left-to-right ordering of arguments, that is passed to
the pseudocode function describing the operation.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

IEEE 754 specifies that:

* An operation using a Quiet NaN as an input, but no signaling NaNs as inputs, returns one of its quiet NaN
inputs as its result.

When Default NaN mode is disabled, behavior complies with this and adds:
* The Quiet NaN result is the first Quiet NaN input.

The first quiet NaN input means the first argument, in the left-to-right ordering of arguments, that is passed to the
pseudocode function describing the operation.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

Depending on the Floating-point operation, the exact value of a Quiet NaN result might differ in both sign and the
number of T bits from its source.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

See also:
B4.10 The Default NaN on page 174.

B4.6 Floating-point encoding formats, half-precision, single-precision, and double-precision on page 168.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 173
Non-confidential

Chapter B4. Floating-point Support
B4.10. The Default NaN

B4.10 The Default NaN

Rrore

DDI0553B.1
1D30062020

The Default NaN is:
Field Half-precision, Single-precision Double-precision
IEEE 754-2008 interpretation
S 0 0 0
E Ox1F OxXFF 0x7FF
T bit[9] == 1, bits[8:0] == 0 bit[22] == 1, bits[21:0] == 0 bit[51] == 1, bits[50:0] == 0

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

See also:

B4.6 Floating-point encoding formats, half-precision, single-precision, and double-precision on page 168.

B4.9 The Default NaN mode, and NaN handling on page 173.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

174

Chapter B4. Floating-point Support
B4.11. Combinations of Floating-point exceptions

B4.11 Combinations of Floating-point exceptions

Igrrn In compliance with IEEE 754:

* An Inexact Floating-point exception can occur with an Overflow Floating-point exception.
* An Inexact Floating-point exception can occur with an Underflow Floating-point exception.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.
Rrrvu An Input Denormal exception can occur with other Floating-point exceptions.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.

See also:
B4.7 The IEEE 754 Floating-point exceptions on page 170.
B4.8 The Flush-to-zero mode on page 171.

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 175
1D30062020 Non-confidential

Chapter B4. Floating-point Support
B4.12. Priority of Floating-point exceptions relative to other Floating-point exceptions

B4.12 Priority of Floating-point exceptions relative to other Floating-point ex-
ceptions

Some Floating-point instructions specify more than one Floating-point operation. In these cases, an exception on

RPLHJ
one operation is higher priority than an exception on another operation when generation of the second exception
depends on the result of the first operation. Otherwise, it is UNPREDICTABLE which exception is higher priority.
Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - FP.
See also:
B4.7 The IEEE 754 Floating-point exceptions on page 170.
DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 176

1D30062020 Non-confidential

Chapter B5
Vector Extension

This chapter specifies the optional Armv8.1-M Vector Extension rules. It contains the following sections:
B5.1 Vector Extension operation on page 178.

B5.2 Vector register file on page 179.

B5.3 Lanes on page 180.

B5.4 Beats on page 181.

B5.5 Exception state on page 183.

B5.6 Predication/conditional execution on page 187.

B5.7 MVE interleaving/de-interleaving loads and stores on page 194.

Applies to an implementation of the architecture from Armv8.1-M onwards.

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 177
1D30062020 Non-confidential

Chapter B5. Vector Extension
B5.1. Vector Extension operation

B5.1 Vector Extension operation

IrrrM

Rayrs

Rysur

Irxme

Rorwy

IFNYX

RVXBF

RBDHN

Rrrpy

Rprrc

DDI0553B.1
1D30062020

MVE-I operates on 32-bit, 16-bit, and 8-bit data types, including Q7, Q15, Q31 integer values.
MVE-F operates on half-precision and single-precision floating-point values.

Applies to an implementation of the architecture from Armv8.1-M onwards.

Vector instructions operate on a fixed vector width of 128 bits.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

Integer MVE instructions can be implemented with or without the scalar Floating-point Extension.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE-1.

An implementation that includes MVE also includes the DSP Extension.

Applies to an implementation of the architecture from Armv8.1-M onwards.

Vector operations are divided in two orthogonal ways:

¢ Lanes.
¢ Beats.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

The word Element is used in this specification to refer to the data that is put into a lane.

Applies to an implementation of the architecture from Armv8.1-M onwards.

Multiple lanes can be executed per beat. There are four beats per vector instruction.
Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.
The pseudocode for each vector instruction is executed four times, one time for each beat. The

GetCurInstrBeat () function returns the current beat number and predication details. These deter-
mine which of the lanes are operated on during the current execution of the code.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.
Multiple Element writes that are generated by the same vector store instruction by the same observer can be

observed in any order, with the exception that writes to the same location by different Elements are observed in
order of increasing vector element number.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

Some instructions permit the use of a zero register (ZR) as a scalar source operand, as indicated in the individual
instruction descriptions. ZR is encoded as the value 0b1111 when a 4-bit register specifier is used. ZR is RAZ/WL.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

See also:

B3.28 Low overhead loops on page 133.
B3.18 Exception handling on page 104.
B5.2 Vector register file on page 179.
B5.3 Lanes on page 180.

B5.4 Beats on page 181.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 178
Non-confidential

Chapter B5. Vector Extension
B5.2. Vector register file

B5.2 Vector register file

Rgpyn MVE defines eight vector registers that alias onto the Floating-point Extension register file.

Q[0][127:96] S3, Q[0][95:64] S2, Q[0][63:32] S1, Q[0][31:0] SO
Q[11[127:96] = S7, Q[1]1[95:64] = S6, Q[1]1[63:32] = S5, Q[1]1[31:0] = sS4

Q[7][127:96]

S31, Q[7][95:64] = S30, Q[7][63:32] = 529, Q[7][31:0] = S28

These registers map as follows:

S0-831 D0-D15 Q0-Q7

soc | 1 1
S1

,,,,,, I QO JE—
S2 o -]
ss | - 1
S4
S5

,,,,,, I Q1 JE—
S6 b3 R]
s | = 1
S28 - D14 — - —
S29

,,,,,, - Q7 —
S30 o5 -]
st | [- 1

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

Rpppv If CP10 is enabled, access to vector register 0-7 is permitted, unless otherwise stated in the individual instruction
descriptions.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

Inrrp To reduce pressure on the vector register file, many vector instructions can use scalar arguments from the general-
purpose register file.

Applies to an implementation of the architecture from Armv8.1-M onwards.

Iywpz After a Warm reset, the values of Q0-Q7 are UNKNOWN.

Applies to an implementation of the architecture from Armv8.1-M onwards.

See also:

C1.4 Instruction set encoding information on page 442.

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 179
1D30062020 Non-confidential

Chapter B5. Vector Extension
B5.3. Lanes

B5.3 Lanes

Rpwvp The lane width of the operation to be performed is specified by the instruction that is being executed.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

Rosec The permitted lane widths, and lane operations per beat, are:

 For a 64-bit lane size, a beat performs half of the lane operation.
 For a 32-bit lane size, a beat performs a one lane operation.

* For a 16-bit lane size, a beat performs a two lane operations.

* For an 8-bit lane size, a beat performs a four lane operations.

_ Bit]157 96 | 95 64 | 63 32 | 31 0
positions

A) 15|14 | 13| 12 |11 |10 | 9 8 7 6 5 4 3 2 1 0

B) 7 6 5 4 3 2 1 0

C) 3 2 1 0

D) 1 0

A) 8-bit lane numbers
B) 16-bit lane numbers

C) 32-bit lane numbers
D) 64-bit lane numbers

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

See also:

Chapter C2, Instruction specification

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 180
1D30062020 Non-confidential

Chapter B5. Vector Extension
B5.4. Beats

B5.4 Beats

Iyyzp A vector instruction executes beats sequentially, from beat 0-3.
Bit position [127 96| 95 64|63 32|31 0
Beat number 3 2 1 0

Applies to an implementation of the architecture from Armv8.1-M onwards.
Ipces The number of beats for each tick describes how much of the architectural state is updated for each Architecture
tick in the common case. In a trivial implementation, an Architecture tick might be one clock cycle:

* In a single-beat system, one beat might occur for each tick.
¢ In a dual-beat system, two beats might occur for each tick.
* In a quad-beat system, four beats might complete for each tick.

Applies to an implementation of the architecture from Armv8.1-M onwards.

Ryrzn It is IMPLEMENTATION DEFINED how many beats are executed for each Architecture tick.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

Iwwsas The number of beats per tick might change at runtime and is not required to be constant.

Applies to an implementation of the architecture from Armv8.1-M onwards.

Rysup Multiple faults might occur within a single Architecture tick. In this case, only one fault is raised. The fault that is
generated is determined using the following priorities:

¢ The fault from the oldest instruction takes priority.
* If multiple faults are associated with the oldest faulting instruction, the fault that was generated by the lowest
numbered Element takes priority.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.
Tinxs An exception can be taken on any beat of a vector instruction. RETPSR.ECI in the exception stack frame stores

information about how many beats of the instruction at the return address and how many beats of the subsequent
instruction have been executed.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

Izpkx A dual-beat overlap system implies that the last two beats of a vector instruction can overlap with the first two
beats of the next vector instruction.

Applies to an implementation of the architecture from Armv8.1-M onwards.
Ienes The following is an example of a dual-beat system where two beats are executed per Architecture tick. The figure
labels are:
Tick Architecture tick.
A0-A3 Beats of the VLDRW instruction.
B0-B3 Beats of the vMUL instruction.

C0-C3 Beats of the VSHR instruction.

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 181
1D30062020 Non-confidential

Chapter B5. Vector Extension

B5.4. Beats

Rywep

RgrNF

Rrxkce

Inokr

Rprse

DDI0553B.1
1D30062020

T . Tick + o + 1 + 2 + 3 | 4 | 5
Vector instructions not overlapping 3 | | | | |

VLDRW.U32 Q1, [RO],#16 AO|AL|A2|A3

VMUL.I32 QO0, 01, Q2 | | B0[B1[B2[B3
VSHR.U32 Q0, Q0, #1 ‘ ‘

co|ci|cz|c3

Vector instructions overlapping

VLDRW.U32 Q1, [RO],#16 A0 [A1|A2|A3

VMUL.I32 0Q0, Q1, Q2 3 BO|(B1|B2|B3
VSHR.U32 Q0, QO0, #1 | colcilczlcs

EPSR.ECI explains how beats are captured in the ECI field.

Applies to an implementation of the architecture from Armv8.1-M onwards.

The PE can resume execution of an exception continuable instruction from any valid ECI value, even if the PE
cannot generate all the ECI values.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

Instructions that are subject to beat-wise execution can only overlap if they are consecutive in the execution order.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

The architecturally visible overlap of instructions is only permitted for instructions subject to beat-wise execution
if:

* The overlap does not violate data dependencies between instruction beats.

* The overlap is not between two instructions subject to beat-wise execution that both access memory.

* In a low overhead loop, the overlap does not violate LR hazard.

* The overlap is not between an instruction before a BF branch point and the instruction at the target of the BF.

e An implicit LE, LETP instruction is executed at the end of a loop body when LO_BRANCH_INFO is
valid and the instruction after the implicit LE, LETP instruction in execution order is subject to beat-wise
execution.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

Vector instructions are permitted to overlap if the data dependency is at beat granularity and not at instruction
granularity.

Applies to an implementation of the architecture from Armv8.1-M onwards.

After each Architecture tick, the architectural instruction overlap is representable by a valid EPSR.ECI value.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

See also:

B5.6.1 Loop tail predication on page 187.
B3.29 Branch future on page 138.

B5.5 Exception state on page 183.

Chapter C2, Instruction specification.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 182
Non-confidential

Chapter B5. Vector Extension
B5.5. Exception state

B5.5 Exception state

Rerxk

Rrrze

RNTYR

Rrunn

RxxrL

DDI0553B.1
1D30062020

The architecture supports taking exceptions in the middle of multiple partially executed exception continuable
instructions.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

LR is updated when LOB handling causes the PC to return to the start of the loop. The PC is only updated when
all beats of an instruction have completed.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

For exceptions that occur in the middle of a beat-wise vector exception continuable instruction that is executing:

* The exception return address points to the oldest incomplete instruction.
* RETPSR.ECI in the exception stack frame stores information about how many beats of the instruction at the
return address, and how many beats of the subsequent instruction, have already been executed.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.
When returning from an exception, valid RETPSR.ECI values indicate the completed instruction beats.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

The existing exception stack frame format is modified to store the VPR register in the previously reserved location
above FPSCR.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 183
Non-confidential

Chapter B5. Vector Extension
B5.5. Exception state

SP offset
Without ~ With
callee callee

registers registers

<— Original SP, 8 byte aligned
0xA4 0xCC S31)
0xAO 0xC8 S30
0x9C 0xC4 S29
0x98 0xCO S28
0x94 0xBC S27
0x90 0xB8 S26
0x8C 0xB4 S25
0x88 0xBO S24 Floating-point
0x84 0xAC S23 callee saved
0x80 0xA8 S22
0x7C 0xA4 S21
0x78 0xAO S20
0x74 0x9C S19
0x70 0x98 S18
0x6C 0x94 S17
0x68 0x90 S16 D
0x64 0x8C VPR
0x60 0x88 FPSCR
0x5C 0x84 S15
0x58 0x80 S14
0x54 0x7C S13
0x50 0x78 S12
0x4C 0x74 S11
0x48 0x70 S10
0x44 0x6C S9 Floating-point
0x40 0x68 S8 caller saved
0x3C 0x64 S7
0x38 0x60 S6
0x34 0x5C S5
0x3D 0x58 S4
0x2C 0x54 S3
0x28 0x50 S2
0x24 0x4C S1
0x20 0x48 S0)
Applies to an implementation of the architecture from Armv8.1-M onwards.
DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.

1D30062020 Non-confidential

184

Chapter B5. Vector Extension
B5.5. Exception state

IZPTT

RKFZJ

Icrew

DDI0553B.1
1D30062020

SP offset
Without With
callee callee
registers registers
0x1C 0x44 RETSPR N
0x18 0x40 ReturnAddress
0x14 0x3C LR (R14)
0x10 0x38 R12 Integer caller
0x0C 0x34 R3 saved
0x08 0x30 New SP R2
0x04 0x2C nho caller registers R1
0x00 0x28 8 byte aligned RO 2
0x24 R11
0x20 R10
0x1C R9
0x18 R8
R7
Ox14 R6 Integer callee
0x10 saved
0x0C R5
0x08 New SP R4
0x04 Wwith callee registers Reserved
0ox00 8bytealigned Integrity sig | _J

Applies to an implementation of the architecture from Armv8.1-M onwards.

In EPSR, XPSR, and RETPSR, the ECI and ICI fields, and ITSTATE overlap.

Applies to an implementation of the architecture from Armv8.1-M onwards.

The PE does not generate an INVSTATE Usage fault if a nonzero value in EPSR.ICI corresponds to a valid value
in EPSR.ECI, and the instruction that is being executed is:

* A vector instruction that is subject to beat-wise execution.
e An LE, LETP instruction.
* An FPB generated breakpoint or a BKP T instruction.

The execution of the breakpoint or LE instruction does not advance any of the register fields that are used for
instruction beat execution tracking.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE. Note, FPB
requires FPB.
The architecture tracks the completion of beats within vector instructions. Because the Element size can be smaller

than the beat size, it is possible that an exception might be generated for a beat that has only partially completed.

Applies to an implementation of the architecture from Armv8.1-M onwards.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 185
Non-confidential

Chapter B5. Vector Extension
B5.5. Exception state

RSXTM

RDDNC

Rzrry

Rgpnu

Igrov

DDI0553B.1
1D30062020

If execution of a beat is abandoned, then:

¢ RETPSR.ECI only indicates that a beat is completed if all the Elements that are associated with the beat have
been completed.

« If the destination register is not the same as the source register for an abandoned instruction, the parts of
a vector destination register that are associated with an abandoned beat, and all subsequent beats of the
abandoned instruction, are set to an UNKNOWN value.

* Any scalar destination registers, the VPR state, and the FPSCR.QC flag record all the architecture state
updates that are associated with the fully completed beats. Updates that are associated with the abandoned
beat and all subsequent beats of the instruction are not recorded.

Partial stores to locations that might be accessed by the abandoned beat and all subsequent beats might be observed.
Loads to locations of the abandoned beats and all subsequent beats might be observed.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

The return address for the instruction fetch fault, an UNDEFINSTR Fault, or a NOCP Usage fault is always
the address of the instruction that triggered the fault. The fault is taken after all the preceding instructions have
completed.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

If an exception is taken during the execution of overlapping beat-wise executable instructions, this might become
architecturally visible.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

Architecture state updates that are associated with an Architecture tick are observed as one of the following:

* All updates to the architecture state are observable.
* Partial updates to the architecture states (both to the registers and to memory) are permitted for instructions
that can be restarted without data corruption.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

Vector load or store instructions, that might be abandoned and subsequently restart the execution of a beat, might
cause multiple accesses to the same memory location to be performed.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 186
Non-confidential

Chapter B5. Vector Extension
B5.6. Predication/conditional execution

B5.6 Predication/conditional execution

Rpsrp

Rocry

B5.6.1

RDCZN

IRBPP

RGQSH

DDI0553B.1
1D30062020

MVE includes predication that enables the independent masking of each lane within a vector operation. It supports
the following predication mechanisms:

* Loop tail predication. This eliminates the requirement for special vector tail handling code after loops where
the number of Elements to be processed is not a multiple of the number of Elements in the vector.

* VPT predication. This enables data-dependent conditions that are based on data value comparisons to mask
each vector lane separately.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

Loop tail predication and VPT predication operate separately. The resulting predication flags from each mechanism
are ANDed together so that a lane of a vector operation is only active if both the loop tail predication and the VPT
predication conditions are true.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

See also:

B5.6.1 Loop tail predication .

B5.6.2 VPT predication on page 188.
B5.6.3 Effects of predication on page 191.

Loop tail predication

Low overhead loops can be used with vector instructions, for example with a word-based memory copy instruction.
The number of words to copy might not be a multiple of the vector length, therefore loop tail predication can
eliminate any additional tail handling steps.

MVE includes special loop tail predication instructions, WLSTP, DLSTP, LETP, and LCTP, that operate as follows:

* The source register of the loop start instruction contains the number of vector Elements that are to be
processed, instead of the iteration count.

* The loop start instruction sets FPSCR.LTPSIZE to the requested Element size. This alters the amount by
which the Element count in LR is decremented at the end of each loop iteration.

* On the last iteration of the loop, the values in LR and FPSCR.LTPSIZE determines the number of vector
lanes that are to be masked.

 After the last instruction of the last loop iteration has been executed, tail predication is disabled by setting
FPSCR.LTPSIZE to 0b100.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.
The active floating-point state is defined by ActiveFPState ().

Applies to an implementation of the architecture from Armv8.1-M onwards.

To prevent the inadvertent creation of floating-point contexts and the predication of vector operation outside of a
loop, FPSCR.LTPSIZE behaves as follows:

* FPSCR.LTPSIZE reads as 0b100 if there is no active floating-point state.
* FPSCR.LTPSIZE is set to 0b100 if any of the following events occur:
— On the last iteration of a loop by either the execution of an LETP instruction, or by execution reaching
the end of the loop body when LO_BRANCH_INFO is valid and the floating-point context is active.
— An LCTP instruction is executed.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 187
Non-confidential

Chapter B5. Vector Extension
B5.6. Predication/conditional execution

INRTL

RBDJB

RJ HLP

Arm recommends that tail predicated loop start instructions are only used with a tail predicated loop end instruction.

Applies to an implementation of the architecture from Armv8.1-M onwards.

FPDSCR.LTPSIZE always reads as 0b100, and therefore the floating-point contexts that are automatically
initialized are created with predication disabled.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

The behavior of a beat-wise capable instruction that modifies LR and is within a tail predicated low overhead loop

iS CONSTRAINED UNPREDICTABLE, the permitted behaviors are either of:

* An UNDEFINSTR UsageFault is generated.
e The instruction, and any adjacent instructions that are permitted to overlap, are subject to UNKNOWN
predication.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

B5.6.2 VPT predication

Rzrrv

Revre

Rgvee

Irvas

Ipnap

DDI0553B.1
1D30062020

Comparison-based predication is supported by vector predication blocks.
Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.
A vector predication block is called a VPT block. A VPT block is defined as the » instructions following a VP T or

VP ST instruction, where n is the number of instructions that the VPT or VP ST instruction defines as being subject
to predication conditions. The predication conditions are stored in the VPR register. 7 is less than or equal to 4.

Applies to an implementation of the architecture from Armv8.1-M onwards.

The instructions in a VPT block can be subject to either the condition or to the inverse of the condition.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

A VCMP (vector) oraVCMP (floating—point) instruction can be placed inside a VPT block. vcmp
instructions update the predication flag on completion, therefore affecting the subsequent instructions in the VPT
block. The subsequent instructions in the VPT block are subject to the predicates of the VPT block and the updates
caused by the vCcMP instructions. The execution of successive VCMP instructions permits the creation of complex
predication conditions.

Applies to an implementation of the architecture from Armv8.1-M onwards.

Allowing instructions to be subject to either the condition or the inverse of the condition enables the instructions in
both the THEN (T decorator) and the ELSE (E decorator) parts of an IF statement to be predicated with a single
VPT instruction.

Applies to an implementation of the architecture from Armv8.1-M onwards.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 188
Non-confidential

Chapter B5. Vector Extension
B5.6. Predication/conditional execution

Rywer The following table shows the VP T instruction variants, mask field encodings, and the associated decorators that
are placed on the subsequent instructions.

Instruction name Mask Number of subsequent instructions <v> instruction decorator
value to be predicated First | Second | Third | Fourth

VPT 0b1000 1 T - - -
VPTT 0b0100 2 T T - -
VPTE 0b1100 2 T E - -
VPTTT 0b0010 3 T T T -
VPTTE 0b0110 3 T T E -
VPTEE 0b1010 3 T E E -
VPTET 0b1110 3 T E T -
VPTTTT 0b0001 4 T T T T
VPTTTE 0b0011 4 T T T E
VPTTEE 00101 4 T T E E
VPTTET 0b0111 4 T T E T
VPTEEE 0b1001 4 T E E E
VPTEET 0b1011 4 T E E T
VPTETT 0b1101 4 T E T T
VPTETE 0b1111 4 T E T E

The same encoding format is used for VP ST.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

Rrxxo VPR contains a MASK field for each pair of beats of a vector instruction. This permits beat-wise overlapping of
the VPT or VP ST instructions with the surrounding vector instructions.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

Rguev The state of VPR is UNKNOWN when use of a VPT block results in CONSTRAINED UNPREDICTABLE behavior.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

Rxnor The following conditions result in CONSTRAINED UNPREDICTABLE behavior when they apply to a VPT block:
* The presence of a non-VPT compatible instruction in a VPT block. This includes:

— All instructions that are not part of MVE, with the exception of BKPT.
— MVE instructions that are marked as not being VPT compatible.

* A BF branch point within a VPT block.
* Branching into a VPT block.

» Exception return or returns from Debug state if VPR.{ MASK23, MASKO1} is not consistent with the position
returned to in the VPT block.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE. Note,
Debug state requires Halting Debug.
Rpzwz The CONSTRAINED UNPREDICTABLE behavior for a VPT block is one of the following:
e The VPT or VP ST instruction generates an UNDEFINED Instruction fault.
* The instruction that causes the CONSTRAINED UNPREDICTABLE behavior does one of the following:

— It raises an UNDEFINED Instruction fault.
— It executes normally.
— It has UNKNOWN predication applied.

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 189
1D30062020 Non-confidential

Chapter B5. Vector Extension
B5.6. Predication/conditional execution

RXXKG

Rropr

Rxmuz

Rumeox

Rszor

Ixknu

RHJGT

DDI0553B.1
1D30062020

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

The CONSTRAINED UNPREDICTABLE behavior for a VPT compatible instruction executed outside a VPT block
when the VPR mask is nonzero is one of the following:

e It raises an UNDEFINED Instruction fault.
* It executes normally.
* It has UNKNOWN predication applied.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

If VPR.{MASK32, MASKO1} is nonzero, the execution of a non-VPT compatible instruction outside of a VPT
block is not UNPREDICTABLE and does not advance VPT state. The VPR state is only advanced after the
completion of a pair of beats within a vector instruction that is subject to beat-wise execution.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

In the case of an exception return or a return from Debug state, the instruction that exhibits the CONSTRAINED
UNPREDICTABLE behavior is defined as the instruction that is being returned to.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE. Note,
Debug state requires Halting debug.

For a BF branch point within a VPT block, the instruction that exhibits the CONSTRAINED UNPREDICTABLE
behavior can be one of the following:

* The instruction before the BF branch point.
* The instruction after the BF branch point.
* The instruction at the BF branch target address.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

For the purposes of the CONSTRAINED UNPREDICTABLE behavior described in this section, a memory location is
considered to be in VPT block until:

e The VPT or VP ST instruction has been removed.

e All the addresses that are covered by the VPT block have been invalidated in the instruction cache (if
implemented).

* A subsequent Context synchronization event has occurred.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

There are similarities between VPT/VPR and IT/ITSTATE, but there are also some important differences as
follows:

e Unlike IT, the VPT instruction performs the actual comparison in addition to applying the result to the
subsequent instructions. As such, VPT can be considered as the vectorized combination of cMp and IT.

* There are multiple MASK fields in VPR that handle partial instruction execution caused by exceptions during
the overlapping of instructions.

* The MASK fields are similar to ITSTATE[3:0] and encode both the number of instructions outstanding in the
current VPT block, and whether these instructions are subject to the THEN or the ELSE condition.

Applies to an implementation of the architecture from Armv8.1-M onwards.
VPR.PO contains one predication bit per 8-bit lane. The VPR mask bits cause the VPR predication bits to be
inverted if the corresponding mask bit is set to 1. The mask bits that are shifted out toggle the current predication

condition and are not part of the predication condition. The value of VPR.MASKOI affects bits[7:0] of VPR.PO
and the value of VPR.MASK?23 affects bits [15:8] of VPR.PO.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 190
Non-confidential

Chapter B5. Vector Extension
B5.6. Predication/conditional execution

RP XMY

I LRVJ

Ryprv

The VPR predication bits are not inverted after executing the last instruction in a VPT block.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

The state in the VPR register can be accessed directly using VMRS, VMSR, VLDR (System Register),and
VSTR (System Register) instructions. Setting VPR using a VMSR or VLDR (System Register)

instruction does not make the instructions that follow VMSR or VLDR (System Register) part of a VPT
block.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

Execution of a VPT compatible instruction outside of a VPT block with a nonzero value in VPR.{MASK23,
MASKO1} results in CONSTRAINED UNPREDICTABLE behavior and does one of the following:

* It raises an UNDEFINED Instruction fault.
* It executes normally.
e It has UNKNOWN predication applied.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

See also:

Chapter C1 Instruction Set Overview on page 427.

B5.6.3 Effects of predication

Irzep

Rsypc

Rziss

Rynusn

RLYPK

RLND R

DDI0553B.1
1D30062020

The exact effects of a false predication value are defined in the instruction pseudocode.

Applies to an implementation of the architecture from Armv8.1-M onwards.

Vector predication has no effect on scalar instructions.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

For non-load instructions for vector register file writes, predication is always performed at byte level granularity,
regardless of the Element size that is specified by the vector instruction.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

For non-load instructions, the predicate flags determine if the destination register byte is updated with the new value
or if the previous value is preserved. For load instructions, where lanes are predicated false, the corresponding
parts of the destination register are set to 0.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

For base pointer write-back, vector predication does not affect address write-back in load and store instructions.
This applies both when the address is in a scalar register, and when it is in a vector register.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

The predication flag determines whether a lane operation is performed. For Element sizes of more than 8 bits for
the types of instruction listed here, the LSB of the corresponding group of predicate flags determines:

* For vector operations that perform reduction across the vector and produce a scalar result, whether the value
is accumulated or not.

¢ For vector store instructions, whether the store occurs or not.

¢ For vector load instructions, whether the value that is loaded or whether zeros are written to that element of
the destination register.

* The setting of the FPSCR.QC saturation flags.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 191
Non-confidential

Chapter B5. Vector Extension
B5.6. Predication/conditional execution

For predication, 64-bit vector memory load/store operations are treated as if they were a pair of 32-bit operations.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.
[) .

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 192
1D30062020 Non-confidential

Chapter B5. Vector Extension
B5.6. Predication/conditional execution

Icork The relation between lane width and bits in VPR.PO is as follows:

Lane width Bits in VPR.PO
32 bits (12,8, 4,0]
16 bits [14, 12, 10,8, 6,4, 2, 0]
8 bits [15:0]
Applies to an implementation of the architecture from Armv8.1-M onwards.
See also:
B5.6.1 Loop tail predication on page 187.
B5.6.2 VPT predication on page 188.
B5.6.4 IT block
Rpzpx Instructions that are subject to beat-wise execution are not permitted in IT blocks. For the exceptions to this

rule, see the decode pseudocode in the individual instruction descriptions. In these exceptional cases, beat-wise

execution is not performed and the instruction does not overlap with other instructions.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
1D30062020 Non-confidential

193

Chapter B5. Vector Extension
B5.7. MVE interleaving/de-interleaving loads and stores

B5.7 MVE interleaving/de-interleaving loads and stores

Tyvmn

Remze

IxeTN

RNSFK

DDI0553B.1
1D30062020

For implementations that include MVE, data streams can be interleaved and de-interleaved with strides of 2 and 4,

using VLD2/VLD4 and VST2/VST4.

Applies to an implementation of the architecture from Armv8.1-M onwards.

The interleaving and de-interleaving instructions always operate on 128 bits of data at a time.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

When using VLD4, each of the four instructions loads 128 bits of data, and partially updates the four destination
vector registers. The memory offsets and destination register sections that are accessed are arranged so that when

all four instructions have been executed, the de-interleaving operation has been performed.

Q3 | s15=Mem[60] S13=Mem[28] | S12=Mem[12]
VLDA41.32 {Q0-Q3}, [Rn] Q2 [s11=Mem[56] S9=Mem[24] | S8=Memj8]
VLD42.32 {Q0-Q3}, [Rn] Q1 S7=Mem[52] | S6=Mem[36] | S5=Mem[20]
VLD43.32 {Q0-Q3}, [Rn]! Qo0 S3=Mem|[48] | S2=Mem[32] | S1=Mem|[16]

Applies to an implementation of the architecture from Armv8.1-M onwards.

The assembly syntax for viL.D2/vLD4 and vST2/vST4 lists the range of vector registers to be accessed. Only the
lowest numbered register is encoded in the opcode. If this register number plus the number of registers to be

accessed is greater than 7 (the highest numbered vector register) behavior is a CONSTRAINED UNPREDICTABLE
choice of the following:

¢ The instruction is UNDEFINED.
¢ The instruction is treated as a NOP.

* One or more of the vector registers become UNKNOWN. If the instruction specifies write-back, the base
register becomes UNKNOWN. No other general-purpose registers are affected.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

194

Chapter B6
Memory Model

DDI0553B.1
1D30062020

This chapter specifies the Armv8-M memory model architecture rules. It contains the following sections:

B6.1 Memory accesses on page 197.

B6.2 Address space on page 198.

B6.3 Endianness on page 199.

B6.4 Alignment behavior on page 201.

B6.5 Atomicity on page 202.

B6.6 Concurrent modification and execution of instructions on page 204.
B6.7 Access rights on page 206.

B6.8 Observability of memory accesses on page 208.

B6.9 Completion of memory accesses on page 210.

B6.10 Ordering requirements for memory accesses on page 211.
B6.11 Ordering of implicit memory accesses on page 212.
B6.12 Ordering of explicit memory accesses on page 213.

B6.13 Memory barriers on page 214.

B6.14 Normal memory on page 219.

B6.15 Cacheability attributes on page 221.

B6.16 Device memory on page 222.

B6.17 Device memory attributes on page 224.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

195

Chapter B6. Memory Model

DDI0553B.1
1D30062020

B6.18 Shareability domains on page 227.
B6.19 Shareability attributes on page 229.
B6.20 Memory access restrictions on page 230.

B6.21 Mismatched memory attributes on page 231.

B6.22 Load-Exclusive and Store-Exclusive accesses to Normal memory on page 233.

B6.23 Load-Acquire and Store-Release accesses to memory on page 234.
B6.24 Caches on page 236.

B6.25 Cache identification on page 238.

B6.26 Cache visibility on page 239.

B6.27 Cache coherency on page 240.

B6.28 Cache enabling and disabling on page 241.

B6.29 Cache behavior at reset on page 242.

B6.30 Behavior of Preload Data (PLD) and Preload Instruction (PLI) instructions with caches on page 243.

B6.31 Branch predictors on page 244.
B6.32 Cache maintenance operations on page 245.
B6.33 Ordering of cache maintenance operations on page 249.

B6.34 Branch predictor maintenance operations on page 250.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

196

Chapter B6. Memory Model
B6.1. Memory accesses

B6.1

Ixrps

Rrkon

RBFNF

Rrrrg

Iski

RimeL

DDI0553B.1
1D30062020

Memory accesses

The memory accesses that are referred to in describing the memory model are instruction fetches from memory
and load or store data accesses.

Applies to an implementation of the architecture from Armv8.0-M onwards.
The instruction operation uses the MemA () or MemU () helper functions. If the Main Extension is not implemented
unaligned accesses using the MemU () helper functions generate an alignment fault.

Applies to an implementation of the architecture from Armv8.0-M onwards.

A memory access is governed by:
* Whether the access is a read or a write.
* The address alignment.
¢ Data endianness.
* Memory attributes.
Applies to an implementation of the architecture from Armv8.0-M onwards.
Memory reads that are generated by MVE instructions using MemA_MVE () are allowed to access bytes that are

not explicitly accessed by the instruction if the bytes that are accessed are in a 32-byte window that is aligned to 32
bytes, and if that window contains at least one byte that is explicitly accessed by the instruction.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.
Arm recommends that software does not use vector load/store instructions with data in volatile memory.
Applies to an implementation of the architecture from Armv8.1-M onwards.

If an MVE load or store operation results in an access to the Private Peripheral Bus (PPB) address space, within

the System region of the system address map, the behavior of the accesses is CONSTRAINED UNPREDICTABLE
and is one of the following:

* It generates a Bus Fault.
* The specified access to the PPB address space is performed.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

See also:

B6.11 Ordering of implicit memory accesses on page 212.
B6.12 Ordering of explicit memory accesses on page 213.
B6.14 Normal memory on page 219.

B6.16 Device memory on page 222.

B6.20 Memory access restrictions on page 230.

B7.2 The System region of the system address map on page 253.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 197
Non-confidential

Chapter B6. Memory Model
B6.2. Address space

B6.2 Address space

Rppmk

Rsnpv

Rperr

I yrrM

RBPMP

Rzxpn

DDI0553B.1
1D30062020

The address space is a single, flat address space of 232 bytes.

Applies to an implementation of the architecture from Armv8.0-M onwards.

In the address space, byte addresses are unsigned numbers in the range 0-232-1.

Applies to an implementation of the architecture from Armv8.0-M onwards.

If an address calculation overflows or underflows the address space, it wraps around. Address calculations are
modulo 2%2.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Normal sequential execution cannot overflow the top of the address space, because the top of memory always has
the Execute Never (XN) memory attribute.

Applies to an implementation of the architecture from Armv8.0-M onwards.

One or more accesses that target or wrap around the top or bottom bytes of memory, access a sequence of words at
increasing memory addresses, effectively incrementing the address by four for each load or store. If this calculation
overflows the top of the address space, the result is UNPREDICTABLE.

Applies to an implementation of the architecture from Armv8.0-M. Note, The encodings of some instructions require M, the
encodings of some instructions require FP.
Where an exception entry or tail-chaining accesses bytes on the stack that span the top or bottom of the 32-bit

memory address space, it is IMPLEMENTATION DEFINED whether stack limit checking is applied.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

Chapter B7 The System Address Map on page 251.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 198
Non-confidential

Chapter B6. Memory Model
B6.3. Endianness

B6.3 Endianness

Icovy In memory:
The following figures show the relationship between:
* The word at address A.
* The halfwords at addresses A and A+2.
* The bytes at addresses A, A+1, A+2, and A+3.
Data arranged in a little-endian format
31 24 23 16 15 8 7 0
Word at address A
Halfword at address A+2 Halfword at address A
Byte at address A+3 Byte at address A+2 Byte at address A+1 Byte at address A
Most significant byte T Least significant byte
Most significant bit
Least significant bit
Data arranged in a big-endian format
31 24 23 16 15 8 7 0
Word at address A
—ttt+t+++—+—+—+—+—+—+—+—+—+——+—+—+—+—+—
Halfword at address A Halfword at address A+2
Byte at address A Byte at address A+1 Byte at address A+2 Byte at address A+3
Most significant byte T Least significant byte
Most significant bit
Least significant bit
Instruction alignment and byte ordering
15 8 7 0 15 8 7 0
T32 instruction, hw1® T32 instruction, hw2"
—t—t—t——t—t——t
Byte at address A+1 Byte at address A Byte at address A+3 Byte at address A+2
a) Bits[15:0]: this is hw 1 for a T32 instruction with a 16-bit encoding
b) Bits[31:0]: this is hwl and hw?2 for a T32 instruction with a 32-bit encoding
Applies to an implementation of the architecture from Armv8.0-M onwards.
RyoL Instruction fetches are always little-endian, which means that the PE assumes a little-endian arrangement of
instructions in memory.
Applies to an implementation of the architecture from Armv8.0-M onwards.
DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 199

1D30062020 Non-confidential

Chapter B6. Memory Model
B6.3. Endianness

Runse All accesses to the Private Peripheral Bus (PPB) are always little-endian, which means that the PE assumes a
little-endian arrangement of the PPB registers.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Rorke The endianness of data accesses is IMPLEMENTATION DEFINED, as indicated by AIRCR.ENDIANNESS.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Rgpcr AIRCR.ENDIANNESS is either:

* Implemented with a static value.

* Configured by a hardware input on reset.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Rxpav Instructions that cause a memory access that crosses the PPB boundary are CONSTRAINED UNPREDICTABLE if
AIRCR.ENDIANNESS is set to 1. The permitted behavior is one of the following:

* The instruction behaves as a NOP.
* The instruction raises an UNALIGNED UsageFault.
* If the instruction that crossed the PPB boundary was a load, the value of the destination register becomes

UNKNOWN.

« If the instruction that crossed the PPB boundary was a store, the value of the memory locations accessed

becomes UNKNOWN.

Applies to an implementation of the architecture from Armv8.0-M. Note, a UsageFault requires M.

Rouwc For data accesses, the following table shows the data element size that endianness applies to, for endianness

conversion purposes.

Instruction class Instructions Element size

Load or store byte LDR{S}B{T}, LDAB, LDAEXB, STLB, STLEXB, Byte
STRB{T}, TBB, LDREXB, STREXB

Load or store halfword LDR{S}H{T}, LDAH, LDAEXH, STLH, STLEXH, Halfword
and STRH{T}, TBH, LDREXH, STREXH

Load or store word LDR{T}, LDA, LDAEX, STL, STLEX, Word
and STR{T}, LDREX, STREX, VLDR.F32, VSTR.F32

Load or store two words LDRD, STRD, VLDR.F64, VSTR.F64 Word

Load or store multiple words LDM{IA,DB}, STM{IA, DB} Word

PUSH (multiple registers)

POP (multiple registers), LDC, STC, VLDM
VSTM, VPUSH, VPOP, BLX, BLXNS, BX, BXNS
VLLDM, VLSTM

Applies to an implementation of the architecture from Armv8.0-M onwards.

Rxnvs The following instructions change the endianness of data that is loaded or stored:

¢ REV

Reverse word (four bytes) register, for transforming 32-bit representations.

¢ REVSH

Reverse halfword and sign extend, for transforming signed 16-bit representations.

* REV16

Reverse packed halfwords in a register for transforming unsigned 16-bit representations.

Applies to an implementation of the architecture from Armv8.0-M onwards.

DDI0553B.1 Copyright © 2015 -

1D30062020

2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

200

Chapter B6. Memory Model
B6.4. Alignment behavior

B6.4 Alignment behavior

Rrixev All instruction fetches are halfword-aligned.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Rroca The following are unaligned data accesses that always generate an alignment fault:

* Non halfword-aligned LDAH, LDREXH, LDAEXH, STLH, STLEXH, and STREXH.

e Non word-aligned LDREX, LDAEX, STLEX, STREX, LDRD, LDMIA, LDMDB, POP (multiple
registers), LDC, VLDR, VLDM, VPOP, LDA, STL, STMIA, STMDB, PUSH (mulitple
registers), STC, VSTR, VSTM, VPUSG, VLLDM, and VLSTM.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Runcm If CCR.UNALIGN_TRP is set to 1, the following are unaligned data accesses that generate an alignment fault:

* Non halfword-aligned LDR{S}H{T}, and STRH{T}.
* Non halfword-aligned TBH.
* Non word-aligned LDR{T}, and STR{T}.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Rires Unaligned accesses are only supported if the Main Extension is implemented.
Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.
Rucvx Accesses to Device memory are always aligned.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Rpzrr If the Main Extension is not implemented, unaligned accesses generate an alignment HardFault.
Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - 'M.
Rgrnps Alignment faults are synchronous and generate an UNALIGNED UsageFault.
Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

Ranex The CONSTRAINED UNPREDICTABLE behavior of unaligned loads and stores is one of the following:

* Generate an UNALIGNED UsageFault.
» Perform the specified load or store to the unaligned memory location.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.
Ripvp Unaligned loads and stores perform the specified load and store to the unaligned memory location.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:
B6.14 Normal memory on page 219.
B6.16 Device memory on page 222.

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 201
1D30062020 Non-confidential

Chapter B6. Memory Model
B6.5. Atomicity

B6.5 Atomicity

B6.5.1 Single-copy atomicity

Inwvk

RBSHJ

Ronpx

RMXWC

Rrkem

Store operations are single-copy atomic if, when they overlap bytes in memory:
1. All of the writes from one of the stores are inserted into the coherence order of each overlapping byte.
2. All of the writes from another of the stores are inserted into the coherence order of each overlapping byte.
3. Step 2 repeats, for each single-copy store atomic operation that overlaps.

Applies to an implementation of the architecture from Armv8.0-M onwards.

The following data accesses are single-copy atomic:

* All byte accesses.
* All halfword accesses to halfword-aligned locations.
* All word accesses to word-aligned locations.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Instruction fetches are single-copy atomic at halfword granularity.

Applies to an implementation of the architecture from Armv8.0-M onwards.
For instructions that access a sequence of word-aligned words, each word access is single-copy atomic.
Applies to an implementation of the architecture from Armv8.0-M onwards.

For instructions that access a sequence of word-aligned words, the architecture does not require two or more
subsequent word accesses to be single-copy atomic.

Applies to an implementation of the architecture from Armv8.0-M onwards.

B6.5.2 Multi-copy atomicity

IgcHk

Reaep

RLBGB

RWHJ R

DDI0553B.1
1D30062020

In a multiprocessing environment, writes to memory are multi-copy atomic if all of the following are true:

* All writes to the same location are observed in the same order by all observers, although some of the observers
might not observe all of the writes.

¢ A read of a location does not return the value of a write to that location until all observers have observed that
write.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Writes to Normal memory are not required to be multi-copy atomic.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Writes to Device memory with the Gathering attribute are not required to be multi-copy atomic.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Writes to Device memory with the non-Gathering attribute that is single-copy atomic are also multi-copy atomic.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B6.16 Device memory on page 222.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 202
Non-confidential

Chapter B6. Memory Model
B6.5. Atomicity

B6.14 Normal memory on page 219.

B6.23 Load-Acquire and Store-Release accesses to memory on page 234.

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 203
1D30062020 Non-confidential

Chapter B6. Memory Model
B6.6. Concurrent modification and execution of instructions

B6.6 Concurrent modification and execution of instructions

Irpcc

Rxwvk

RBFPB

Rynok

RKMZG

RHKGP

RFGBT

RyTvp

Remzx

DDI0553B.1
1D30062020

The Armv8 architecture limits the set of instructions that can be executed by one thread of execution as they are
being modified by another thread of execution without requiring explicit synchronization.

Applies to an implementation of the architecture from Armv8.0-M onwards.
Unless otherwise stated, concurrent modification and execution of instructions results in a CONSTRAINED UNPRE-

DICTABLE choice of any behavior that can be achieved by executing any sequence of instructions from the same
Security state or the same Privilege level.

Applies to an implementation of the architecture from Armv8.0-M onwards.

For instructions that can be concurrently modified, the PE executes either:

* The original instruction.
* The modified instruction.

Applies to an implementation of the architecture from Armv8.0-M onwards.

A 16-bit instruction can be concurrently modified, where the 16-bit instruction before modification and the 16-bit
modification is any of the following:

e B.

e BX.

e BLX.
¢ BKPT.
* NOP.
e SVC.

Applies to an implementation of the architecture from Armv8.0-M onwards.

The hw1 of a 32-bit BL immediate instruction can be concurrently modified to the most significant halfword of
another BL immediate instruction.

Applies to an implementation of the architecture from Armv8.0-M onwards.

The hw1 of a 32-bit BL. immediate instruction can be concurrently modified to a 16-bit B, BLX, BKPT, or SVC
instruction. This modification also works in reverse.

Applies to an implementation of the architecture from Armv8.0-M onwards.

The hw?2 of a 32-bit BL immediate instruction can be concurrently modified to the hw2 of another BL instruction
with a different immediate.

Applies to an implementation of the architecture from Armv8.0-M onwards.

The hw2, of a 32-bit B immediate instruction with a condition field can be concurrently modified to the hw2 of
another 32-bit B immediate instruction with a condition field with a different immediate.

Applies to an implementation of the architecture from Armv8.0-M onwards.

The hw?2 of a 32-bit B immediate instruction without a condition field can be concurrently modified to the hw2 of
another 32-bit B immediate instruction without a condition field.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:
B6.3 Endianness on page 199.

B.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 204
Non-confidential

Chapter B6. Memory Model
B6.6. Concurrent modification and execution of instructions

BL.

BLX, BLXNS.

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 205
1D30062020 Non-confidential

Chapter B6. Memory Model
B6.7. Access rights

B6.7 Access rights

Ry1mn An instruction fetch or memory access is subject to the following checks in the following order:

1. Alignment.

2. SAU or IDAU, or both.
3. MPU.

4. BusFault IBUSERR).

Applies to an implementation of the architecture from Armv8.0-M onwards.

Rrogs An exception is generated, instead of normal execution of the fetching and decoding process, if one of the following
occurs.

Priority Fault type Cause

Highest One of the following SecureFaults: AU violation
e INVEP
¢ INVTRAN

i The following MemManage fault: MPU violation
* TACCVIOL

J The following BusFault: System fault
* IBUSERR

1 One of the following: FPB hit

* DebugMonitor exception
* Halted Debug Entry

i3 The following SecureFault: SG check
* INVEP

K The following UsageFault: T32 state check
* INVSTATE

Lowest One of the following UsageFaults: Undefined instruction
¢ UNDEFINSTR
* NOCP

Applies to an implementation of the architecture from Armv8.0-M. Note, a Secure fault requires S, a MemManage fault requires
M & & MPU, a Halted Debug Entry fault can only occur if Halting Debug is implemented, a DebugMonitor exception require
DebugMonitor, UsageFault and BusFault require M, HardFault when !M.

Rxeng If a memory access fails its alignment check, the fetch is not presented to the SAU.
Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S.

Rspmg If an instruction fetch or memory access fails its AU check, the fetch is not presented to the relevant MPU for
comparison.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - S && MPU.

Rrrrn If an instruction fetch or memory access fails its MPU check, it is not issued to the memory system.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - MPU.

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 206
1D30062020 Non-confidential

Chapter B6. Memory Model
B6.7. Access rights
See also:
B3.9 Exception numbers and exception priority numbers on page 82.

Chapter B9 The Armv8-M Protected Memory System Architecture on page 267.

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 207
1D30062020 Non-confidential

Chapter B6. Memory Model
B6.8. Observability of memory accesses

B6.8 Observability of memory accesses

Rpnon

RDVFW

Iysck

Rycces

RyopT

RRSPX

Rperr

RBVJ F

DDI0553B.1
1D30062020

For a PE, the following mechanisms are treated as independent observers:

* The mechanism that performs reads from or writes to memory.
* The mechanism that causes an instruction cache to be filled from memory or that fetches instructions to be
executed directly from memory. These accesses are treated as reads.

Applies to an implementation of the architecture from Armv8.0-M onwards.

The set of observers that can observe a memory access is not defined by the PE architecture, unless otherwise
specified.

Applies to an implementation of the architecture from Armv8.0-M onwards.

In the context of observability, subsequent means whichever of the following descriptions is appropriate:

 After the point in time where the location is observed by the observer.
* After the point in time where the location is globally observed.

Applies to an implementation of the architecture from Armv8.0-M onwards.

A write to a location in memory is observed by an observer when:

* A subsequent read of the location by the same observer would return the value that was written by the
observed write or written by a write to that location by any observer that is sequenced in the coherence order
of the location after the observed write.

* A subsequent write of the location by the same observer would be sequenced in the coherence order of the
location after the observed write.

Applies to an implementation of the architecture from Armv8.0-M onwards.

A write to a location in memory is globally observed for a Shareability domain or set of observers when:

* A subsequent read of the location by any observer in that Shareability domain that is capable of observing
the write would return the value that is written by the globally observed write or by a write to that location by
any observer that is sequenced in the coherence order of the location after the globally observed write.

* A subsequent write to the location by any observer in that Shareability domain would be sequenced in the
coherence order of the location after the globally observed write.

Applies to an implementation of the architecture from Armv8.0-M onwards.

For Device-nGnRnE memory, a read or write of a memory-mapped location in a peripheral is observed, and
globally observed, only when the read or write:

* Meets the general observability conditions.
* Can begin to affect the state of the memory-mapped peripheral.
 Can trigger all associated side-effects, whether they affect other peripheral devices, PEs, or memory.

Applies to an implementation of the architecture from Armv8.0-M onwards.

A read of a location in memory is observed by an observer when a subsequent write to the location by the same
observer would have no effect on the value that is returned by the read.

Applies to an implementation of the architecture from Armv8.0-M onwards.
A read of a location in memory is globally observed for a Shareability domain when a subsequent write to the

location by any observer in that Shareability domain that is capable of observing the write would have no effect on
the value that is returned by the read.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 208
Non-confidential

Chapter B6. Memory Model
B6.8. Observability of memory accesses

Rorx Multiple writes to the same register will be observed in the same order by all observers. The architecture does not
guarantee that all observers will observe all of the writes.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Explicit synchronization is not required on an external read or write by an external agent to be observable to a
following external read or write by that agent to the same register using the same address.

Rumuz

Applies to an implementation of the architecture from Armv8.0-M onwards.

Explicit synchronization is not required for serial external accesses, either reads or writes, by a single external
agent for any registers that are accessible as external system control registers.

Rrxsk

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:
B6.16 Device memory on page 222.
B6.17 Device memory attributes on page 224.

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 209
1D30062020 Non-confidential

Chapter B6. Memory Model
B6.9. Completion of memory accesses

B6.9 Completion of memory accesses

RxcrL

Ryemo

RSFLM

RMWBK

DDI0553B.1
1D30062020

A read or write is complete for a Shareability domain when the following conditions are true:

e The read or write is globally observed for that Shareability domain.
* All instruction fetches by observers within the Shareability domain have observed the read or write.

Applies to an implementation of the architecture from Armv8.0-M onwards.

A cache or branch predictor maintenance instruction is complete for a Shareability domain when the effects of the
instruction are globally observed for that Shareability domain.

Applies to an implementation of the architecture from Armv8.0-M onwards.

The completion of a memory access to Device memory other than Device-nGnRnE does not guarantee the visibility
of the side-effects of the access to all observers.

Applies to an implementation of the architecture from Armv8.0-M onwards.

The mechanism that ensures the visibility of the side-effects of the access to all observers is IMPLEMENTATION
DEFINED.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B6.18 Shareability domains on page 227.
B6.16 Device memory on page 222.

B6.17 Device memory attributes on page 224.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 210
Non-confidential

Chapter B6. Memory Model
B6.10. Ordering requirements for memory accesses

B6.10 Ordering requirements for memory accesses

RgepL

Reapn

RRXP L

Rgure

RV'MHG

Ryccr

Rramk

DDI0553B.1
1D30062020

Armv8-M defines access restrictions in the permitted ordering of memory accesses. These restrictions depend on
the memory attributes of the accesses involved.

Applies to an implementation of the architecture from Armv8.0-M onwards.

For all accesses to all memory types, the only stores by an observer that can be observed by another observer are
those stores that have been architecturally executed.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Reads and writes can be observed in any order provided that, if an address dependency exists between two reads or
between a read and a write, then those memory accesses are observed in program order by all observers within the
common Shareability domain of the memory addresses being accessed.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Speculative writes by an observer cannot be observed by another observer.

Applies to an implementation of the architecture from Armv8.0-M onwards.

For Device memory with the non-Reordering attribute, memory accesses arrive at a single peripheral in program
order.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Memory accesses caused by instruction fetches are not required to be observed in program order, unless they are
separated by a context synchronization event.

Applies to an implementation of the architecture from Armv8.0-M onwards.

A register data dependency between the value that is returned by a load instruction and the address that is used
by a subsequent memory transaction enforces an order between that load instruction and the subsequent memory
transaction.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B6.11 Ordering of implicit memory accesses on page 212.
B6.12 Ordering of explicit memory accesses on page 213.
B6.14 Normal memory on page 219.

B6.16 Device memory on page 222.

B6.18 Shareability domains on page 227.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 211
Non-confidential

Chapter B6. Memory Model
B6.11. Ordering of implicit memory accesses

B6.11 Ordering of implicit memory accesses

Rgprc There are no ordering requirements for implicit accesses to any type of memory.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B6.1 Memory accesses on page 197.

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 212
1D30062020 Non-confidential

Chapter B6. Memory Model
B6.12. Ordering of explicit memory accesses

B6.12 Ordering of explicit memory accesses

Revm For all memory types, for accesses from a single observer, the requirements of uniprocessor semantics are
maintained.
Applies to an implementation of the architecture from Armv8.0-M onwards.

Ryrre For all types of memory, if there is a control dependency between a direct read and a subsequent direct write,

the two accesses are observed in program order by any observer in the common Shareability domain of the two
accesses.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Rxenp For all types of memory, if the value returned by a direct read computes data that is written by a subsequent direct
write, the two accesses are observed in program order by any observer in the common Shareability domain of the
two accesses.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Ryvexw It is impossible for an observer to observe a write from an aligned store that both:

¢ Has not been executed.
¢ Will not be executed.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Runrm For an unaligned store, an observer might observe part of a store that would have completed had an exception not
been taken. The store is not guaranteed to be single-copy atomic except at the byte access level.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

See also:

B6.1 Memory accesses on page 197.

B6.14 Normal memory on page 219.

B6.16 Device memory on page 222.

B6.17 Device memory attributes on page 224.
B6.18 Shareability domains on page 227.
B6.19 Shareability attributes on page 229.

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 213
1D30062020 Non-confidential

Chapter B6. Memory Model
B6.13. Memory barriers

B6.13 Memory barriers

Ryrer

Ryeoc

Rroxr

B6.13.1

Rstme

The Arm architecture supports out-of-order completion of instructions.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Armv8 supports the following memory barriers:

e Instruction Synchronization Barrier (ISB).

e Data Memory Barrier (DMB).

* Data Synchronization Barrier (DSB).

* Consumption of Speculative Data Barrier (CSDB).

e Physical Speculative Store Bypass Barrier (PSSBB).
» Speculative Store Bypass Barrier (SSBB).

Applies to an implementation of the architecture from Armv8.0-M onwards.
The DMB and DSB memory barriers affect reads and writes to the memory system that are generated by Load/Store

instructions and data or unified cache maintenance instructions that are executed by the PE. Instruction fetches are
not explicit accesses.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Instruction Synchronization Barrier

An ISB ensures that all instructions that come after the I SB instruction in program order are fetched from the
cache or memory after the I SB instruction has completed.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:
InstructionSynchronizationBarrier ().

Context synchronization event

B6.13.2 Data Memory Barrier

Rypsc

RevpL

RHFTX

RWMRT

DDI0553B.1
1D30062020

The required Shareability for a DMB is Full system, and applies to all observers in the Shareability domain.

Applies to an implementation of the architecture from Armv8.0-M onwards.

A DMB only affects memory accesses and the operation of data cache and unified cache maintenance instructions,
and has no effect on the ordering of any other instructions.

Applies to an implementation of the architecture from Armv8.0-M onwards.

A DMB that ensures the completion of cache maintenance instructions has an access type of both loads and stores.

Applies to an implementation of the architecture from Armv8.0-M onwards.

A DMB instruction creates two groups of memory accesses, Group A and Group B, and does not affect memory
accesses that are in not in Group A or Group B:

Group A contains:

* All explicit memory accesses of the required access types from observers in the same Shareability domain as

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 214
Non-confidential

Chapter B6. Memory Model
B6.13. Memory barriers

PEe that are observed by PEe before the DMB instruction.

* All loads of required access types from an observer PEx in the same required Shareability domain as PEe
that have been observed by any given different observer, PEy, in the same required Shareability domain as
PEe before PEy has performed a memory access that is a member of Group A.

Group B contains:

* All explicit memory accesses of the required access types by PEe that occur in program order after the DMB
instruction.

* All explicit memory accesses of the required access types by any given observer PEx in the same required
Shareability domain as PEe that can only occur after a load by PEx has returned the result of a store that is a
member of Group B.

Any observer with the same required Shareability domain as PEe observes all members of Group A before it
observes any member of Group B to the extent that those group members are required to be observed, as determined
by the Shareability and Cacheability of the memory addresses accessed by the group members.

If members of Group A and members of Group B access the same memory-mapped peripheral of arbitrary
system-defined size, then members of Group A that are accessing Device or Normal Non-cacheable memory
arrive at that peripheral before members of Group B that are accessing Device or Normal Non-cacheable memory.
Where the members of Group A and Group B that are to be ordered are from the same PE, a DMB provides for this
guarantee.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:
DataMemoryBarrier ().

B6.18 Shareability domains on page 227.

B6.13.3 Data Synchronization Barrier

Icnre

RNKWJ

RVLBF

DDI0553B.1
1D30062020

The DSB is a memory barrier that synchronizes the execution stream with memory accesses.

Applies to an implementation of the architecture from Armv8.0-M onwards.

The required Shareability for a DSB is Full system and applies to all observers in the Shareability domain.

Applies to an implementation of the architecture from Armv8.0-M onwards.

A DSB instruction creates two groups of memory accesses, Group A and Group B, and does not affect memory
accesses that are in not in Group A or Group B:

Group A contains:

* All explicit memory accesses of the required access types from observers in the same Shareability domain as
PEe that are observed by PEe before the DSB instruction.

* All loads of required access types from an observer PEx in the same required Shareability domain as PEe
that have been observed by any given different observer, PEy, in the same required Shareability domain as
PEe before PEy has performed a memory access that is a member of Group A.

Group B contains:

* All explicit memory accesses of the required access types by PEe that occur in program order after the DSB
instruction.

» All explicit memory accesses of the required access types by any given observer PEx in the same required
Shareability domain as PEe that can only occur after a load by PEx has returned the result of a store that is a
member of Group B.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 215
Non-confidential

Chapter B6. Memory Model
B6.13. Memory barriers

RKMGH

RKMBX

Any observer with the same required Shareability domain as PEe observes all members of Group A before it
observes any member of Group B to the extent that those group members are required to be observed, as determined
by the Shareability and Cacheability of the memory addresses accessed by the group members.

If members of Group A and members of Group B access the same memory-mapped peripheral of arbitrary
system-defined size, then members of Group A that are accessing Device or Normal Non-cacheable memory
arrive at that peripheral before members of Group B that are accessing Device or Normal Non-cacheable memory.
Where the members of Group A and Group B that are to be ordered are from the same PE, a DSB provides for this
guarantee.

Applies to an implementation of the architecture from Armv8.0-M onwards.

A DSB completes when all of the following conditions apply:

» All explicit memory accesses that are observed by PEe before the DSB is executed and are of the required
access types, and are from observers in the same required Shareability domain as PEe, are complete for the
set of observers in the required Shareability domain.

* If the required access types of the DSB is reads and writes, then all cache and branch predictor maintenance
instructions that are issued by PEe before the DSB are complete for the required Shareability domain.

* All explicit accesses to the System Control Space that result in a context altering operation issued by PEe
before the DSB are complete.

Applies to an implementation of the architecture from Armv8.0-M onwards.

No instruction that appears in program order after the DSB instruction can execute until the DSB completes.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:
DataSynchronizationBarrier ().

B6.18 Shareability domains on page 227.

B6.13.4 Consumption of Speculative Data Barrier

RCTSR

ILZDK

DDI0553B.1
1D30062020

The CSDB is a memory barrier that prevents instructions that appear in program order after the barrier completes
from determining any part of the value of data derived from speculatively-executed load instructions that appeared
in program order before completion of the CSDB memory barrier.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

When a CSDB instruction is executed but before the CSDB completes and there are three instructions:

1. A load instruction speculatively executed in program order before the barrier that might or might not be
architecturally executed.

2. A Conditional Move instruction that has passed its condition code check and does not have an address
dependency for an input register on the speculatively-executed load.

3. Aload, store, data or instruction preload appearing in program order after the barrier, which has an address
dependency on the Conditional Move instruction.

The speculative execution of the load, store, data or instruction preload does not influence the allocation of cache
entries to determine any part of the value of the speculatively executed load instruction by an evaluation of the
cache entries which have been allocated or evicted.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 216
Non-confidential

Chapter B6. Memory Model
B6.13. Memory barriers

IDDTH

Rawev

Iozks

RWGCX

Ipcsr

When a CSDB instruction is executed but before the CSDB completes and there are three instructions:

1. A load instruction speculatively executed in program order before the barrier that might or might not be
architecturally executed.

2. A Conditional Move instruction that has no dependency to pass the condition tests or for an input register on
the speculatively executed load.

3. An indirect branch instruction, appearing in program order after the barrier, that is dependent on the
Conditional Move instruction for the target address of the indirect branch.

The speculative execution of the indirect branch does not influence the allocation of cache entries to determine any
part of the value of the speculatively executed load instruction by an evaluation of the cache entries which have
been allocated or evicted.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.
A CSDB instruction cannot be executed speculatively.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.
A CSDB can be inserted speculatively and completed when it is known not to be speculative.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.
The CSDB instruction is not available in an implementation without the Main Extension.

Applies to an implementation of the architecture from Armv8.0-M. Note, !M.

Arm recommends that a combination of DSB SYS and an ISB is inserted to prevent consumption of speculative
data.

Applies to an implementation of the architecture from Armv8.0-M. Note, !M.

B6.13.5 Physical Speculative Store Bypass Barrier

Icenk

Rmprz

The PSSBB prevents speculative loads from:

* Returning data older than the most recent store to the same physical address appearing in program order
before the load.
* Returning data from stores using the same physical address appearing in program order after the load.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

The PSSBB is not available in an implementation without the Main Extension.

Applies to an implementation of the architecture from Armv8.0-M. Note, !M.

B6.13.6 Speculative Store Bypass Barrier

I HWND

Rycru

DDI0553B.1
1D30062020

The SSBB prevents speculative loads from:

* Returning data older than the most recent store to the same address appearing in program order before the
load.
* Returning data from stores using the same address appearing in program order after the load.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M.

The SSBB is not available in an implementation without the Main Extension.

Applies to an implementation of the architecture from Armv8.0-M. Note, !M.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 217
Non-confidential

Chapter B6. Memory Model

B6.13. Memory barriers

B6.13.7 Synchronization requirements for System Control Space

Rsgog A DSB guarantees that all writes to the System Control Space have been completed.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Ryppg The execution of a DSB alone does not guarantee that the side effects of writes to the System Control Space are
visible. A Context synchronization event is required for side effects of a write to the System Control Space to be
visible.

Applies to an implementation of the architecture from Armv8.0-M onwards.

R A Context synchronization event guarantees that the side effects of any completed writes to the System Control
Space are visible after the Context synchronization event.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B7.3 The System Control Space (SCS) on page 255.

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 218
1D30062020 Non-confidential

Chapter B6. Memory Model
B6.14. Normal memory

B6.14 Normal memory

INvRF

Rocer

Receox

Rrcps

RPKXL

RWLVR

RWLCV

RMJWF

RNHF Q

Rcrav

DDI0553B.1
1D30062020

Memory locations that are idempotent have the following properties:

* Read accesses can be repeated with no side-effects.

* Repeated read accesses return the last value that is written to the resource being read.

* Read accesses can fetch additional memory locations with no side-effects.

* Write accesses can be repeated with no side-effects, if the contents of the location that is accessed are
unchanged between the repeated writes or as the result of an exception.

* Unaligned accesses can be supported.

* Accesses can be merged before accessing the target memory system.

Applies to an implementation of the architecture from Armv8.0-M onwards.

The PE is permitted to treat regions of memory assigned the memory type Normal memory as idempotent.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Normal memory can be marked as Cacheable or Non-cacheable. Normal memory is assigned Cacheability
attributes.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Normal Non-cacheable memory is always treated as shareable.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Speculative data accesses to Normal memory are permitted.

Applies to an implementation of the architecture from Armv8.0-M onwards.

A write to Normal memory completes in finite time.

Applies to an implementation of the architecture from Armv8.0-M onwards.

A write to a Non-cacheable Normal memory location reaches the endpoint for that location in the memory system
in finite time.

Applies to an implementation of the architecture from Armv8.0-M onwards.

A completed write to Normal memory is globally observed for the Shareability domain in finite time without the
requirement for cache maintenance instructions or memory barriers.

Applies to an implementation of the architecture from Armv8.0-M onwards.

For multi-register Load/Store instructions that access Normal memory, the architecture does not define the order in
which the registers are accessed.

Applies to an implementation of the architecture from Armv8.0-M onwards.

There is no requirement for the memory system beyond the PE to be able to identify the size of the elements
accessed.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B6.1 Memory accesses on page 197.
B6.18 Shareability domains on page 227.
B6.15 Cacheability attributes on page 221.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 219
Non-confidential

Chapter B6. Memory Model
B6.14. Normal memory

B6.22 Load-Exclusive and Store-Exclusive accesses to Normal memory on page 233.

MAIR_ATTR, Memory Attributes Indirection Register Attributes.

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 220
1D30062020 Non-confidential

Chapter B6. Memory Model
B6.15. Cacheability attributes

B6.15 Cacheability attributes

Rgxav

RXRWS

Rxoxw

I LDXP

RCFKN

RprTr

Rross

IFRVF

RF TKW

DDI0553B.1
1D30062020

The architecture provides Cacheability attributes that are defined independently for each of two conceptual levels
of cache:

¢ The Inner cache.
¢ The Outer cache.

Applies to an implementation of the architecture from Armv8.0-M onwards.

The Cacheability attributes are:

¢ Non-cacheable.
* Write-Through Cacheable.
¢ Write-Back Cacheable.

Applies to an implementation of the architecture from Armv8.0-M onwards.

It is IMPLEMENTATION DEFINED whether Write-Through Cacheable and Write-Back Cacheable can have the
additional attribute Transient or Non-transient.

Applies to an implementation of the architecture from Armv8.0-M onwards.

The Transient attribute is a memory hint that indicates that the benefit of caching is for a short period. The
architecture does not define what is meant by a short period.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Cacheability attributes other than Non-cacheable can be complemented by the following cache allocation hints,
which are independent for read and write accesses:

¢ Read-Allocate, Transient Read-Allocate, or No Read-Allocate.
¢ Write-Allocate, Transient Write-Allocate, or No Write-Allocate.

Applies to an implementation of the architecture from Armv8.0-M onwards.
The architecture does not require an implementation to make any use of cache allocation hints.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Any cacheable Normal memory region is treated as Read-Allocate, No Write-Allocate unless it is explicitly
assigned other cache allocation hints.

Applies to an implementation of the architecture from Armv8.0-M onwards.

A Cacheable location with no Read-Allocate and no Write-Allocate hints is not the same as a Non-cacheable
location. A Non-cacheable location has coherency guarantees for all observers within the system that do not apply
to a location that is Cacheable, no Read-Allocate, no Write-Allocate.

Applies to an implementation of the architecture from Armv8.0-M onwards.

All data accesses to Non-cacheable Normal memory locations are data coherent to all observers.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B6.14 Normal memory on page 219.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 221
Non-confidential

Chapter B6. Memory Model
B6.16. Device memory

B6.16 Device memory

Ipxus

RyrzL

Rrppn

Rpoxs

Ryrrc

Reske

Rywmrk

Rrrre

Rrscp

Rerro

Rxmcn

Rgane

Rprax

DDI0553B.1

1D30062020

Device memory is a memory type that is assigned to regions of memory where accesses can have side-effects.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Device memory is not cacheable.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Device memory is always treated as shareable.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Speculative data accesses cannot be made to Device memory. However, for instructions that access a sequence of
word-aligned words, the accesses might occur multiple times.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Speculative instruction fetches can be made to Device memory, unless the location is marked as execute-never.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Any unaligned access to Device memory generates an UNALIGNED UsageFault exception.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Device memory is assigned a combination of Device memory attributes.

Applies to an implementation of the architecture from Armv8.0-M onwards.

A write to Device memory completes in finite time.

Applies to an implementation of the architecture from Armv8.0-M onwards.

A write to a Device memory location reaches the endpoint for that location in the memory system in finite time.

Applies to an implementation of the architecture from Armv8.0-M onwards.

A completed write to a Device memory location is globally observed for the Shareability domain in finite time
without the requirement for cache maintenance instructions or barriers.

Applies to an implementation of the architecture from Armv8.0-M onwards.
If the content of a Device memory location changes without a direct write to the location, the change is observed
for the Shareability domain in finite time.

Applies to an implementation of the architecture from Armv8.0-M onwards.

For an instruction fetch from Device memory, if a branch causes the Program Counter (PC) to point to an area of
memory that is not marked as Execute-never, the implementation can either:

* Treat the fetch as if it is to a location in Normal Non-cacheable memory.
* Take an IACCVIOL MemManage fault.

Applies to an implementation of the architecture from Armv8.0-M. Note, a MemManage fault requires M.

There is no requirement for the memory system beyond the PE to be able to identify the size of the elements that
are accessed, for instructions that load the following from Device memory:

* More than one general-purpose register.
* One or more registers from the floating-point register file.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 222
Non-confidential

Chapter B6. Memory Model
B6.16. Device memory

Applies to an implementation of the architecture from Armv8.0-M onwards.

Rgvur For an 1DM, STM, LDRD, or STRD instruction with a register list that includes the PC, the architecture does not
define the order in which the registers are accessed.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Rsrpk For an 1DM, STM, VLDM, VSTM, VPOP or VPUSH instruction with a register list that does not include the PC, all

registers are accessed in the order that they appear in the register list, for Device memory with the non-Reordering
attribute.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B6.1 Memory accesses on page 197.

B6.19 Shareability attributes on page 229.
B6.17 Device memory attributes on page 224.

B6.18 Shareability domains on page 227.

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 223
1D30062020 Non-confidential

Chapter B6. Memory Model
B6.17. Device memory attributes

B6.17 Device memory attributes

Rynsg

Rerre

Rroxp

RFJXX

RPVCY

DDI0553B.1
1D30062020

Each Device memory region is assigned a combination of Device memory attributes. The attributes are:
Gathering, G and nG: The Gathering and non-Gathering attributes.
Reordering, R and nR: The Reordering and non-Reordering attributes.

Early Write Acknowledgement, E and nE: The Early Write Acknowledgement and no Early Write Acknowl-
edgement attributes.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Each Device memory region is assigned one of the combinations in the following table:

Memory Ordering Name nG nR nE G R E
Strong DeviceenGnRRE 'Y Y Y - - -

1 Device-nGnRE Y Y - - - Y
1 Device-nGRE Y - - - Y Y
Weak Device-GRE - - - Y Y Y

Applies to an implementation of the architecture from Armv8.0-M onwards.

Weaker memory can be accessed according to the rules specified for stronger memory:

* Memory with the:

— G attribute can be accessed according to the rules specified for the nG attribute.

— nG attribute cannot be accessed according to the rules specified for the G attribute.
¢ Memory with the:

— R attribute can be accessed according to the rules specified for the nR attribute.

— nR attribute cannot be accessed according to the rules specified for the R attribute.

Because the nE attribute is a hint:

¢ An implementation is permitted to perform an access with the E attribute in a manner consistent with the
requirements specified by the nE attribute.

* An implementation is permitted to perform an access with the nE attribute in a manner consistent with the
relaxations allowed by the E attribute.

Applies to an implementation of the architecture from Armv8.0-M onwards.

For Device-GRE and Device-nGRE memory, the use of barriers is required to order accesses.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Memory accesses that are generated by vector instructions that target any type of Device memory operate as if the
access had targeted a Device-GRE region.

Applies to an implementation of the architecture from Armv8.1-M onwards. The extension requirements are - MVE.

See also:
B6.17.1 Gathering and non-Gathering Device memory attributes on page 225.
B6.17.2 Reordering and non-Reordering Device memory attributes on page 225.

B6.17.3 Early Write Acknowledgement and no Early Write Acknowledgement Device memory attributes on
page 226.

B6.16 Device memory on page 222.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 224
Non-confidential

Chapter B6. Memory Model
B6.17. Device memory attributes

B6.17.1 Gathering and non-Gathering Device memory attributes

RDBSX

RKCMX

RJ SRD

RMGKJ

ISRDS

RGVTF

RBTWD

G attribute

If multiple accesses of the same type, read or write, are to:

* The same location, with the G attribute, they can be merged into a single transaction.
« Different locations, all with the G attribute, they can be merged into a single transaction.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Gathering of accesses that are separated by a memory barrier is not permitted.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Gathering of accesses that are generated by a Load-Acquire/Store-Release is not permitted.

Applies to an implementation of the architecture from Armv8.0-M onwards.

A read can come from intermediate buffering of a previous write if:

* The accesses are not separated by a DMB or DSB barrier.

» The accesses are not separated by any other ordering construction that requires that the accesses are in order,
for example a combination of Load-Acquire and Store-Release.

* The accesses are not generated by a Store-Release instruction.

Applies to an implementation of the architecture from Armv8.0-M onwards.

The architecture only defines programmer visible behavior. Therefore, if a programmer cannot tell whether
Gathering has occurred, Gathering can be performed.

Applies to an implementation of the architecture from Armv8.0-M onwards.

nG attribute
Multiple accesses to a memory location with the nG attribute cannot be merged into a single transaction.

Applies to an implementation of the architecture from Armv8.0-M onwards.

A read of a memory location with the nG attribute cannot come from a cache or a buffer, but comes from the
endpoint for that address in the memory system.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B6.23 Load-Acquire and Store-Release accesses to memory on page 234.

B6.17.2 Reordering and non-Reordering Device memory attributes

RRP TB

DDI0553B.1
1D30062020

R attribute

This attribute imposes no restrictions or relaxations.

Applies to an implementation of the architecture from Armv8.0-M onwards.

nR attribute

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 225
Non-confidential

Chapter B6. Memory Model
B6.17. Device memory attributes

RDFXL

IBDWB

RNDHC

If the access is to a:

* Peripheral, it arrives at the peripheral in program order. If there is a mixture of accesses to Device nGnRE
and Device-nGnRnE in the same peripheral, these accesses occur in program order.
* Non-peripheral, this attribute imposes no restrictions or relaxations.

Applies to an implementation of the architecture from Armv8.0-M onwards.

The IMPLEMENTATION DEFINED size of the single peripheral is the same as applies for the ordering guarantee that
is provided by the DMB instruction.

Applies to an implementation of the architecture from Armv8.0-M onwards.

The non-Reordering attribute does not require any additional ordering, other than the ordering that applies to
Normal memory, between:

* Accesses with the non-Reordering attribute and accesses with the Reordering attribute.

* Accesses with the non-Reordering attribute and accesses to Normal memory.

* Accesses with the non-Reordering attribute and accesses to different peripherals of IMPLEMENTATION
DEFINED size.

Applies to an implementation of the architecture from Armv8.0-M onwards.

B6.17.3 Early Write Acknowledgement and no Early Write Acknowledgement Device memory

attributes

RPVSH

Rrwrr

Irowo

DDI0553B.1
1D30062020

E attribute
The E attribute imposes no restrictions or relaxations.

Applies to an implementation of the architecture from Armv8.0-M onwards.

nE attribute

Assigning the nE attribute recommends that only the endpoint of the write access returns a write acknowledgement
of the access, and that no earlier point in the memory system returns a write acknowledgement.

Applies to an implementation of the architecture from Armv8.0-M onwards.

The E attribute is treated as a hint. Arm strongly recommends that this hint is not ignored by a PE, but is made
available for use by the system.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B6.13 Memory barriers on page 214.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 226
Non-confidential

Chapter B6. Memory Model
B6.18. Shareability domains

B6.18 Shareability domains

Romnr There are two conceptual Shareability domains:

¢ The Inner Shareability domain.
e The Outer Shareability domain.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Txowm The following diagram shows the Shareability domains:

r
ilnner Shareable

1
1
P ‘: ‘:
1
I ! |Observer 0] ! ! |Observer 2| !
1 1
i 1 [Observer1] |} [Observer3| |
R S ——— [1
T]
| mmmmmmm e e 1

:Inner Shareable

i i
1y i

| :

1

L |Observer 6] : |Observer 8]
| i

1y i

i i

1

|Observer 9
U —
Y 1
______________________________________ 4
Applies to an implementation of the architecture from Armv8.0-M onwards.
Ruces All observers in an Inner Shareability domain are data coherent for data accesses to memory that has the Inner-
shareable Shareability attribute.
Applies to an implementation of the architecture from Armv8.0-M onwards.
Rsver All observers in an Outer Shareability domain are data coherent for data accesses to memory that has the Outer-
shareable Shareability attribute.
Applies to an implementation of the architecture from Armv8.0-M onwards.
Romrs Each observer is a member of only a single Inner Shareability domain.
Applies to an implementation of the architecture from Armv8.0-M onwards.
Renwr Each observer is a member of only a single Outer Shareability domain.
Applies to an implementation of the architecture from Armv8.0-M onwards.
Rpvee All members of the same Inner Shareability domain are always members of the same Outer Shareability domain.
Applies to an implementation of the architecture from Armv8.0-M onwards.
Ryrmv Accesses to a shareable memory location are coherent within the Shareability domain of that location.
Applies to an implementation of the architecture from Armv8.0-M onwards.
Ipusr An Inner Shareability domain is a subset of an Outer Shareability domain, although it is not required to be a proper
DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 227

1D30062020 Non-confidential

Chapter B6. Memory Model
B6.18. Shareability domains

subset.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Ryuon Hardware is required to ensure coherency and ordering within the Shareability domain if all of the following apply:

 Before writing to a location not using the Write-Back attribute, a location in the caches that might have been
written with the Write-Back attribute by an agent has been invalidated or cleaned.

» After writing the location with the Write-Back attribute, the location has been cleaned from the caches to
make the write visible to external memory.

» Before reading the location with a cacheable attribute, the cache location has been invalidated, or cleaned
and invalidated.

e A DMB barrier instruction has been executed, with a scope that applies to the common Shareability of the
accesses, between any accesses to the same memory location that use different attributes.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:
B6.8 Observability of memory accesses on page 208.
B6.19 Shareability attributes on page 229.

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 228
1D30062020 Non-confidential

Chapter B6. Memory Model
B6.19. Shareability attributes

B6.19 Shareability attributes

Reorr Each Normal cacheable memory region is assigned one of the following Shareability attributes:

e Non-shareable.
e Inner-shareable.
e Quter-shareable.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Rppvy For Non-shareable memory, hardware is not required to make data accesses by different observers, other than the
Debug Access Port, coherent. If a number of observers share the memory, cache maintenance instructions, in

addition to the barrier operations that are required to ensure memory ordering, can ensure that the presence of
caches does not lead to coherency issues.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B6.1 Memory accesses on page 197.
B6.14 Normal memory on page 219.
B6.16 Device memory on page 222.
B6.18 Shareability domains on page 227.

B6.32 Cache maintenance operations on page 245.

DDI0553B.1

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved.
1D30062020

229
Non-confidential

Chapter B6. Memory Model
B6.20. Memory access restrictions

B6.20 Memory access restrictions

Rooce

IyreT

RBFKS

DDI0553B.1
1D30062020

For accesses to any two bytes that are accessed by the same instruction, the two bytes have the same memory type
and Shareability attributes, otherwise behavior is a CONSTRAINED UNPREDICTABLE choice of the following:

* Each memory access that is generated by the instruction uses the memory type and Shareability attribute that
is associated with its own address.

 The instruction executes as a NOP.

* The instruction generates an alignment fault caused by the memory type.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Except for possible differences in cache allocation hints, Arm deprecates having different Cacheability attributes
for accesses to any two bytes that are generated by the same instruction.

Applies to an implementation of the architecture from Armv8.0-M onwards.

If the accesses of an instruction that cause multiple accesses to any type of Device memory cross the boundary of a
memory region then the behavior is a CONSTRAINED UNPREDICTABLE choice of the following:

* All memory accesses that are generated by the instruction are performed as if the presence of the boundary
had no effect on memory accesses.

* All memory accesses that are generated by the instruction are performed as if the presence of the boundary
had no effect on memory accesses, except that there is no guarantee of ordering between memory accesses,

* The instruction executes as a NOP.

* The instruction generates an alignment fault caused by the memory type.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B6.1 Memory accesses on page 197.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 230
Non-confidential

Chapter B6. Memory Model
B6.21. Mismatched memory attributes

B6.21 Mismatched memory attributes

Rxnrk

Rykug

RNJ LB

Rockk

Rpucep

DDI0553B.1
1D30062020

Memory locations are accessed with mismatched attributes if all accesses to the location do not use a common
definition of all the following memory attributes of that location:

* Memory type - Device or Normal.
* Shareability.
 Cacheability, for the same level of the Inner or Outer cache, but excluding any cache allocation hints.

Applies to an implementation of the architecture from Armv8.0-M onwards.

When a memory location is accessed with mismatched attributes, the only permitted effects are one or more of the
following:

* Uniprocessor semantics for reads and writes to that memory location might be lost. This means:

— A read of the memory location by one agent might not return the value that was most recently written to
that memory location by the same agent.

— Multiple writes to the memory location by one agent with different memory attributes might not be
ordered in program order.

* There might be a loss of coherency when multiple agents attempt to access a memory location.
* There might be a loss of the properties that are derived from the memory type.

« If all Load-Exclusive/Store-Exclusive instructions that are executed across all threads to access a given
memory location do not use consistent memory attributes, the exclusive monitor state becomes UNKNOWN.

* Bytes that are written without the Write-Back cacheable attribute and that are within the same Write-Back
granule as bytes that are written with the Write-Back cacheable attribute might have their values reverted to
the old values as a result of cache Write-Back.

Applies to an implementation of the architecture from Armv8.0-M onwards.

The loss of the properties that are associated with mismatched memory type attributes refers only to the following
properties of Device memory that are additional to the properties of Normal memory:

* Prohibition of speculative read accesses.
* Prohibition on Gathering.
* Prohibition on Reordering.

Applies to an implementation of the architecture from Armv8.0-M onwards.

If the only memory type mismatch that is associated with a memory location across all users of the memory
location is between different types of Device memory, then all accesses might take the properties of the weakest
Device memory type.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Any agent that reads a memory location with mismatched attributes using the same common definition of the
Shareability and Cacheability attributes is guaranteed to access it coherently, to the extent required by that common
definition of the memory attributes, only if all the following conditions are met:

* All aliases to the memory location with write permission both use a common definition of the Shareability
and Cacheability attributes for the memory location, and have the Inner Cacheability attribute the same as the
Outer Cacheability attribute.

* All aliases to a memory location use a definition of the Shareability attributes that encompasses all the agents
with permission to access the location.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 231
Non-confidential

Chapter B6. Memory Model
B6.21. Mismatched memory attributes

Rgeku The possible permitted effects that are caused by mismatched attributes for a memory location are defined more
precisely if all the mismatched attributes define the memory location as one of:

* Any Device memory type.
* Normal Inner Non-cacheable, Outer Non-cacheable memory.

In these cases, the only permitted software-visible effects of the mismatched attributes are one or more of the
following:

¢ Possible loss of properties that are derived from the memory type when multiple agents attempt to access the
memory location.

* Possible reordering of memory transactions to the same memory location with different memory attributes,
potentially leading to a loss of coherency or uniprocessor semantics. Any possible loss of coherency or
uniprocessor semantics can be avoided by inserting DMB barrier instructions between accesses to the same
memory location that might use different attributes.

Applies to an implementation of the architecture from Armv8.0-M onwards.
Ryves If the mismatched attributes for a location mean that multiple cacheable accesses to the location might be made
with different Shareability attributes, then ordering and coherency are guaranteed only if:

* Each PE that accesses the location with a cacheable attribute performs a clean and invalidate of the location
before and after accessing that location.

* A DMB barrier with scope that covers the full Shareability of the accesses is placed between any accesses to
the same memory location that use different attributes.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Rvexw If multiple agents attempt to use Load-Exclusive or Store-Exclusive instructions to access a location, and the
accesses from the different agents have different memory attributes associated with the location, the exclusive
monitor state becomes UNKNOWN.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Irowc Arm strongly recommends that software does not use mismatched attributes for aliases of the same location. An
implementation might not optimize the performance of a system that uses mismatched aliases.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

Chapter B9 The Armv8-M Protected Memory System Architecture on page 267.
B6.18 Shareability domains on page 227.

B6.15 Cacheability attributes on page 221.

B6.16 Device memory on page 222.

B6.14 Normal memory on page 219.

B6.22 Load-Exclusive and Store-Exclusive accesses to Normal memory on page 233.

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 232
1D30062020 Non-confidential

Chapter B6. Memory Model
B6.22. Load-Exclusive and Store-Exclusive accesses to Normal memory

B6.22 Load-Exclusive and Store-Exclusive accesses to Normal memory

Rxowe For Normal memory that is:

¢ Non-shareable, it is IMPLEMENTATION DEFINED whether Load-Exclusive and Store-Exclusive instructions
take account of the possibility of accesses by more than one observer.

» Shareable, Load-Exclusive, and Store-Exclusive instructions take account of the possibility of accesses by
more than one observer.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:
B6.14 Normal memory on page 219.
B6.1 Memory accesses on page 197.

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 233
1D30062020 Non-confidential

Chapter B6. Memory Model
B6.23. Load-Acquire and Store-Release accesses to memory

B6.23 Load-Acquire and Store-Release accesses to memory

Iyvrx

RXBRM

RRRF K

Ryrwr

Rycke

RDGXR

Rckre

DDI0553B.1
1D30062020

The following table summarizes the Load-Acquire/Store-Release instructions.

Load-Acquire Store-Release
Data type Load- Acquire Store- Release ~ Exclusive Exclusive
32-bit word LDA STL LDAEX STLEX
16-bit halfword LDAH STLH LDAEXH STLEXH
8-bit byte LDAB STLB LDAEXB STLEXB

Applies to an implementation of the architecture from Armv8.0-M onwards.

A Store-Release followed by a Load-Acquire is observed in program order by each observer within the Shareability
domain of the memory address being accessed by the Store-Release and the memory address being accessed by
the Load-Acquire.

Applies to an implementation of the architecture from Armv8.0-M onwards.

For a Load-Acquire, observers in the Shareability domain of the address that is accessed by the Load-Acquire
observe accesses in the following order:

1. The read caused by the Load-Acquire.

2. Reads and writes caused by loads and stores that appear in program order after the Load-Acquire for which
the Shareability of the address that is accessed by the load or store requires that the observer observes the
access.

There are no other ordering requirements on loads or stores that appear before the Load-Acquire.

Applies to an implementation of the architecture from Armv8.0-M onwards.

For a Store-Release, observers in the Shareability domain of the address that is accessed by the Store-Release
observe accesses in the following order:

1. All of the following for which the Shareability of the address that is accessed requires that the observer
observes the access:

» Reads and writes caused by loads and stores that appear in program order before the Store-Release.
» Writes that were observed by the PE executing the Store-Release before it executed the Store-Release.

2. The write caused by the Store-Release.
There are no other ordering requirements on loads or stores that appear in program order after the Store-Release.

Applies to an implementation of the architecture from Armv8.0-M onwards.

All Store-Release instructions are multi-copy atomic when they are observed with Load-Acquire instructions.

Applies to an implementation of the architecture from Armv8.0-M onwards.

A Load-Acquire to an address in a memory-mapped peripheral of an arbitrary system-defined size that is defined
as any type of Device memory access ensures that all memory accesses using Device memory types to the same
memory-mapped peripheral that are architecturally required to be observed after the Load-Acquire will arrive at
the memory-mapped peripheral after the memory access of the Load-Acquire.

Applies to an implementation of the architecture from Armv8.0-M onwards.

A Store-Release to an address in a memory-mapped peripheral of an arbitrary system-defined size that is defined

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 234
Non-confidential

Chapter B6. Memory Model
B6.23. Load-Acquire and Store-Release accesses to memory

RGJ HK

Ryrrc

Rgcrn

Rpxrp

RNVRJ

DDI0553B.1
1D30062020

as any type of Device memory access ensures that all memory accesses using Device memory types to the same
memory-mapped peripheral that are architecturally required to be observed before the Store-Release will arrive at
the memory-mapped peripheral before the memory access of the Store-Release.

Applies to an implementation of the architecture from Armv8.0-M onwards.

If a Load-Acquire to a memory address in a memory-mapped peripheral of an arbitrary system-defined size
that is defined as any type of Device memory access has observed the value that is stored to that address by a
Store-Release, then any memory access to the memory-mapped peripheral that is architecturally required to be
ordered before the memory access of the Store-Release will arrive at the memory-mapped peripheral before any
memory access to the same peripheral that is architecturally required to be ordered after the memory access of the
Load-Acquire.

Applies to an implementation of the architecture from Armv8.0-M onwards.
Load-Acquire and Store-Release access only a single data element.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Load-Acquire and Store-Release accesses are single-copy atomic.

Applies to an implementation of the architecture from Armv8.0-M onwards.

If a Load-Acquire or Store-Release instruction accesses an address that is not aligned to the size of the data element
being accessed, the access generates an alignment fault.

Applies to an implementation of the architecture from Armv8.0-M onwards.

A Store-Release Exclusive instruction only has the release semantics if the store is successful.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:
B6.18 Shareability domains on page 227.
B6.16 Device memory on page 222.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 235
Non-confidential

Chapter B6. Memory Model
B6.24. Caches

B6.24 Caches

Issen

Rocse

IstrRv

Rppsr

RJ GBL

Rspes

RXXBW

Ravon

Rprwm

Rrgos

Rorrs

DDI0553B.1
1D30062020

When a memory location is marked with a Normal Cacheable memory attribute, determining whether a copy of
the memory location is held in a cache can depend on many aspects of the implementation, such as the following
factors:

* The size, line length, and associativity of the cache.

* The cache allocation algorithm.

 Activity by other elements of the system that can access the memory.
* Speculative instruction fetching algorithms.

* Speculative data fetching algorithms.

* Interrupt behaviors.

Applies to an implementation of the architecture from Armv8.0-M onwards.

An implementation can include multiple levels of cache, up to a maximum of seven levels, in a hierarchical
memory system.

Applies to an implementation of the architecture from Armv8.0-M onwards.

The lower the cache level, the closer the cache is to the PE.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Entries for addresses with a Normal cacheable attribute can be allocated to an enabled cache at any time.

Applies to an implementation of the architecture from Armv8.0-M onwards.

The allocation of a memory address to a cache location is IMPLEMENTATION DEFINED.

Applies to an implementation of the architecture from Armv8.0-M onwards.

A cache entry covers at least 16 bytes and no more than 2KB of contiguous address space, aligned to its size.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Where a breakdown in coherency can occur, data coherency of the caches is controlled in an IMPLEMENTATION
DEFINED manner.

Applies to an implementation of the architecture from Armv8.0-M onwards.

The architecture cannot guarantee whether:

* A memory location that is present in the cache remains in the cache.
* A memory location that is not present in the cache is brought into the cache.

Applies to an implementation of the architecture from Armv8.0-M onwards.

If the cache is disabled, no new allocation of memory locations into the cache occurs.

Applies to an implementation of the architecture from Armv8.0-M onwards.

The allocation of a memory location into a cache cannot cause the most recent value of that memory location to
become invisible to an observer, if it had previously been visible to that observer.

Applies to an implementation of the architecture from Armv8.0-M onwards.

If the cache is enabled, it is guaranteed that no memory location that does not have a cacheable attribute is allocated
into the cache.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 236
Non-confidential

Chapter B6. Memory Model
B6.24. Caches

RXXVH

Rscko

Rpoxn

RWDBP

RNDNN

Iempo

DDI0553B.1
1D30062020

If the cache is enabled, it is guaranteed that no memory location is allocated to the cache if the access permissions
for that location are so that the location cannot be accessed by reads and cannot be accessed by writes.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Any cached memory location is not guaranteed to remain incoherent with the rest of memory.

Applies to an implementation of the architecture from Armv8.0-M onwards.

If an implementation permits cache hits when the Cacheability control fields force all memory locations to be
treated as Non-cacheable, then the cache initialization routine:

e Provides a mechanism to ensure the correct initialization of the caches.
* Is documented clearly as part of the documentation of the device.

In particular, if an implementation permits cache hits when the Cacheability controls force all memory locations to
be treated as Non-cacheable, and the cache contents are not invalidated at reset, the initialization routine avoids
any possibility of running from an uninitialized cache. It is acceptable for an initialization routine to require a
fixed instruction sequence to be placed in a restricted range of memory.

Applies to an implementation of the architecture from Armv8.0-M onwards.

It is UNPREDICTABLE whether the location is returned from cache or from memory when:

¢ The location is not marked as cacheable but is contained in the cache. This situation can occur if a location is
marked as Non-cacheable after it has been allocated into the cache.
* The location is marked as cacheable and might be contained in the cache, but the cache is disabled.

Applies to an implementation of the architecture from Armv8.0-M onwards.

The architecture allows copies of control values or data values to be cached. The existence of such copies can lead
to CONSTRAINED UNPREDICTABLE behavior, if the cache has not been correctly invalidated following a change
of the control or data values.

Unless explicitly stated otherwise, the behavior of the PE is consistent with:

* The old value.
e The new value.
* An amalgamation of the old and new values.

Applies to an implementation of the architecture from Armv8.0-M onwards.

The choice between the behaviors might, in some implementations, vary for each use of a control or data value.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B6.25 Cache identification on page 238.

B6.28 Cache enabling and disabling on page 241.

B6.15 Cacheability attributes on page 221.

B6.29 Cache behavior at reset on page 242.

B6.33 Ordering of cache maintenance operations on page 249.

B6.21 Mismatched memory attributes on page 231.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 237
Non-confidential

Chapter B6. Memory Model
B6.25. Cache identification

B6.25 Cache identification

Rygcu A PE controls the implemented caches using:

* A single Cache Type Register, CTR.

* A single Cache Level ID Register, CLIDR.

* A single Cache Size Selection Register, CSSELR.

* For each implemented cache, across all levels of caching, a Cache Size Identification Register, CCSIDR.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Rygrr The number of levels of cache is IMPLEMENTATION DEFINED and can be determined from the Cache Level ID
Register.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Ippss Cache sets and Cache ways are numbered from 0. Usually the set number is an IMPLEMENTATION DEFINED
function of an address.

Applies to an implementation of the architecture from Armv8.0-M onwards.

DDI0553B.1 Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 238
1D30062020 Non-confidential

Chapter B6. Memory Model
B6.26. Cache visibility

B6.26 Cache visibility

Rowve

Rgrere

DDI0553B.1
1D30062020

A completed write to a memory location that is Non-cacheable or Write-Through Cacheable for a level of cache
made by an observer accessing the memory system inside the level of cache is visible to all observers accessing
the memory system outside the level of cache without the need of explicit cache maintenance.

Applies to an implementation of the architecture from Armv8.0-M onwards.

A completed write to a memory location that is Non-cacheable for a level of cache made by an observer accessing
the memory system outside the level of cache is visible to all observers accessing the memory system inside the
level of cache without the need of explicit cache maintenance.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B6.15 Cacheability attributes on page 221.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 239
Non-confidential

Chapter B6. Memory Model
B6.27. Cache coherency

B6.27 Cache coherency

Rynpg Data coherency of caches is ensured:

¢ When caches are not used.
* As aresult of cache maintenance operations.

* By the use of hardware coherency mechanisms to ensure coherency of data accesses to memory for cacheable
locations by observers in different Shareability domains.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Repew Hardware is not required to ensure coherency between instruction caches and memory, even for regions of memory
with the Shareability attribute.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

B6.32 Cache maintenance operations on page 245.
B6.13 Memory barriers on page 214.
B6.19 Shareability attributes on page 229.

DDI0553B.1

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 240
1D30062020

Non-confidential

Chapter B6. Memory Model
B6.28. Cache enabling and disabling

B6.28 Cache enabling and disabling

IpprL

Rurrp

I TNHX

RsmpL

Rpsro

DDI0553B.1
1D30062020

The Configuration and Control Register, CCR, enables and disables caches across all levels of cache that are
visible to the PE.

Applies to an implementation of the architecture from Armv8.0-M onwards.

It is IMPLEMENTATION DEFINED whether the CCR.DC and CCR.IC bits affect the memory attributes that are
generated by an enabled MPU.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M && MPU.

An implementation can use control bits in the Auxiliary Control Register, ACTLR, for finer-grained control of
cache enabling.

Applies to an implementation of the architecture from Armv8.0-M onwards.

For instruction fetches and data accesses, NS-Attr determines which banked instance, either Secure or Non-secure,
of CCR.IC or CCR.DC is used.

Applies to an implementation of the architecture from Armv8.0-M onwards.

If the MPU is disabled, MPU_CTRL.ENABLE == 0, the CCR.DC and CCR.IC bits determine the cache state for
cacheable regions of the default system address map.

Applies to an implementation of the architecture from Armv8.0-M onwards. The extension requirements are - M && MPU.

See also:

B6.25 Cache identification on page 238.
B6.24 Caches on page 236.

B6.29 Cache behavior at reset on page 242.

B3.14 Secure address protection on page 98.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 241
Non-confidential

Chapter B6. Memory Model
B6.29. Cache behavior at reset

B6.29 Cache behavior at reset

Rgcrk

Ravpr

Rovko

Reagev

Issoo

IscTD

DDI0553B.1
1D30062020

All caches are disabled at reset.

Applies to an implementation of the architecture from Armv8.0-M onwards.

An implementation can require the use of a specific cache initialization routine to invalidate its storage array before
it is enabled:

* The exact form of any required cache initialization routine is IMPLEMENTATION DEFINED.
» If a required initialization routine is not performed, the state of an enabled cache is UNPREDICTABLE.

Applies to an implementation of the architecture from Armv8.0-M onwards.

If an implementation permits cache hits when the cache is disabled, the cache initialization routine provides a
mechanism to ensure the correct initialization of the caches.

Applies to an implementation of the architecture from Armv8.0-M onwards.

If an implementation permits cache hits when the cache is disabled and the cache contents are not invalidated at
reset, the initialization routine avoids any possibility of running from an uninitialized cache.

Applies to an implementation of the architecture from Armv8.0-M onwards.

An initialization routine can require a fixed instruction sequence to be placed in a restricted range of memory.

Applies to an implementation of the architecture from Armv8.0-M onwards.

Arm recommends that whenever an invalidation routine is required, it is based on the Armv8-M cache maintenance
operations.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:
B6.24 Caches on page 236.
B6.28 Cache enabling and disabling on page 241.

B6.32 Cache maintenance operations on page 245.

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 242
Non-confidential

Chapter B6. Memory Model
B6.30. Behavior of Preload Data (PLD) and Preload Instruction (PLI) instructions with caches

B6.30 Behavior of Preload Data (PLD) and Preload Instruction (PLI) instruc-
tions with caches

Icowr

ITPPK

Ronea

RSFNK

RHNLN

RyrrG

DDI0553B.1
1D30062020

PLD and PLI are memory system hints and their effect is IMPLEMENTATION DEFINED.

Applies to an implementation of the architecture from Armv8.0-M onwards.

The instructions PLD and PLI do not generate exceptions but the memory system operations might generate an
imprecise fault (asynchronous exception) because of the memory access.

Applies to an implementation of the architecture from Armv8.0-M onwards.

A PLD instruction does not cause any effect to the caches or memory other than the effects that, for permission or
other reasons, can be caused by the equivalent load from the same location with the same context and at the same
privilege level and Security state.

Applies to an implementation of the architecture from Armv8.0-M onwards.

A PLD instruction does not access Device-nGnRnE or Device-nGnRE memory.

Applies to an implementation of the architecture from Armv8.0-M onwards.

A PLI instruction does not cause any effect to the caches or memory other than the effects that, for permission
or other reasons, can be caused by the fetch resulting from changing the PC to the location specified by the PLI
instruction with the same context and at the same privilege level and Security state.

Applies to an implementation of the architecture from Armv8.0-M onwards.

A PLI instruction cannot access memory that has the Device-nGnRnE or Device-nGnRE attribute.

Applies to an implementation of the architecture from Armv8.0-M onwards.

See also:

PLD, PLDW (immediate).
PLD (literal).

PLD, PLDW (register).
PLI (immediate, literal).

PLI (register).

Copyright © 2015 - 2020 Arm Limited or its affiliates. All rights reserved. 243
Non-confidential

Chapter B6. Memory Model
B6.31. Branch predictors

B6.31 Branch predictors

Branch predictor hardware typically uses a