Arm® Virtual Base System Architecture 1.0
Platform Design Document

Non-confidential

arm

Copyright © 2025 Arm Limited or its affiliates. All rights reserved.
Document number: DEN0150

Virtual Base System Architecture

Page 2 of 17 Copyright © 2025 Arm Limited or its affiliates. All rights reserved. DENO0150
Non-confidential 1.0

Virtual Base System Architecture

Contents
Release information 4
Arm Non-Confidential Document License (“License”) 5
About this document 7
Terms and abbreviations 7
References 7
Rules-based writing 7
Content item identifiers 8
Content item rendering 8
Content item classes 8
Progressive terminology commitment 9
Feedback 9
1 Background 10
2 V-BSA levels and rules 11
2.1 Level 1 11
2.1.1 PE architecture 11
2.1.2 Memory map 11
2.1.3 Interrupt controller 11
2.1.4 PPl assignments 11
2.1.5 System MMU and device assignment 11
2.1.6 Clock and timer subsystem 12
2.1.7 Wakeup semantics 12
2.1.8 Power state semantics 13
2.1.9 Peripheral subsystems 14
2.2 Future requirements 14
2.2.1 PE architecture 15
2.2.2 Watchdogs 15
3 V-BSA checklist 16
3.1 V-BSA level 1 checklist 16
3.2 Future Level checklist 17
Page 3 of 17 Copyright © 2025 Arm Limited or its affiliates. All rights reserved. DENO0150

Non-confidential 1.0

Virtual Base System Architecture

Copyright © 2025 Arm Limited. All rights reserved.

Release information

Version 1 (22 Jan 2025)

« Initial public release.

Page 4 of 17 Copyright © 2025 Arm Limited or its affiliates. All rights reserved. DENO0150
Non-confidential 1.0

Virtual Base System Architecture

Arm Non-Confidential Document License (“License”)

This License is a legal agreement between you and Arm Limited (“Arm”) for the use of Arm’s intellectual
property (including, without limitation, any copyright) embodied in the document accompanying this License
(“Document”). Arm licenses its intellectual property in the Document to you on condition that you agree to
the terms of this License. By using or copying the Document you indicate that you agree to be bound by the
terms of this License.

“Subsidiary” means any company the majority of whose voting shares is now or hereafter owner or controlled,
directly or indirectly, by you. A company shall be a Subsidiary only for the period during which such control
exists.

This Document is NON-CONFIDENTIAL and any use by you and your Subsidiaries (“Licensee”) is subject to
the terms of this License between you and Arm.

Subject to the terms and conditions of this License, Arm hereby grants to Licensee under the intellectual
property in the Document owned or controlled by Arm, a non-exclusive, non-transferable, non-sub-licensable,
royalty-free, worldwide License to:

(i) use and copy the Document for the purpose of designing and having designed products that comply
with the Document;

(ii) manufacture and have manufactured products which have been created under the License granted in (i)
above; and

(iii) sell, supply and distribute products which have been created under the License granted in (i) above.

Licensee hereby agrees that the Licenses granted above shall not extend to any portion or function of
a product that is not itself compliant with part of the Document.

Except as expressly licensed above, Licensee acquires no right, title or interest in any Arm technology or any
intellectual property embodied therein.

The content of this document is informational only. Any solutions presented herein are subject to changing
conditions, information, scope, and data. This document was produced using reasonable efforts based on
information available as of the date of issue of this document. The scope of information in this document may
exceed that which Arm is required to provide, and such additional information is merely intended to further
assist the recipient and does not represent Arm’s view of the scope of its obligations. You acknowledge
and agree that you possess the necessary expertise in system security and functional safety and that you
shall be solely responsible for compliance with all legal, regulatory, safety and security related requirements
concerning your products, notwithstanding any information or support that may be provided by Arm herein. In
addition, you are responsible for any applications which are used in conjunction with any Arm technology
described in this document, and to minimize risks, adequate design and operating safeguards should be
provided for by you.

Reference by Arm to any third party’s products or services within this document is not an express or implied
approval or endorsement of the use thereof.

THE DOCUMENT IS PROVIDED “AS 1S”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS
FOR A PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. Arm may make changes to the
Document at any time and without notice. For the avoidance of doubt, Arm makes no representation with
respect to, and has undertaken no analysis to identify or understand the scope and content of, third party
patents, copyrights, trade secrets, or other rights.

NOTWITHSTANDING ANYTHING TO THE CONTRARY CONTAINED IN THIS LICENSE, TO THE FULLEST
EXTENT PERMITTED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, IN CONTRACT,
TORT OR OTHERWISE, IN CONNECTION WITH THE SUBJECT MATTER OF THIS LICENSE (INCLUDING
WITHOUT LIMITATION) (I) LICENSEE’S USE OF THE DOCUMENT; AND (Il) THE IMPLEMENTATION OF

Page 5 of 17

Copyright © 2025 Arm Limited or its affiliates. All rights reserved. DENO0150
Non-confidential 1.0

Virtual Base System Architecture

THE DOCUMENT IN ANY PRODUCT CREATED BY LICENSEE UNDER THIS LICENSE). THE EXISTENCE
OF MORE THAN ONE CLAIM OR SUIT WILL NOT ENLARGE OR EXTEND THE LIMIT. LICENSEE
RELEASES ARM FROM ALL OBLIGATIONS, LIABILITY, CLAIMS OR DEMANDS IN EXCESS OF THIS
LIMITATION.

This License shall remain in force until terminated by Licensee or by Arm. Without prejudice to any of its other
rights, if Licensee is in breach of any of the terms and conditions of this License then Arm may terminate this
License immediately upon giving written notice to Licensee. Licensee may terminate this License at any time.
Upon termination of this License by Licensee or by Arm, Licensee shall stop using the Document and destroy
all copies of the Document in its possession. Upon termination of this License, all terms shall survive except
for the License grants.

Any breach of this License by a Subsidiary shall entitle Arm to terminate this License as if you were the party
in breach. Any termination of this License shall be effective in respect of all Subsidiaries. Any rights granted
to any Subsidiary hereunder shall automatically terminate upon such Subsidiary ceasing to be a Subsidiary.

The Document consists solely of commercial items. Licensee shall be responsible for ensuring that any use,
duplication or disclosure of the Document complies fully with any relevant export laws and regulations to
assure that the Document or any portion thereof is not exported, directly or indirectly, in violation of such
export laws.

This License may be translated into other languages for convenience, and Licensee agrees that if there is any
conflict between the English version of this License and any translation, the terms of the English version of
this License shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited
(or its subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in
this document may be the trademarks of their respective owners. No license, express, implied or otherwise, is
granted to Licensee under this License, to use the Arm trade marks in connection with the Document or any
products based thereon. Visit Arm’s website at http://www.arm.com/company/policies/trademarks for more
information about Arm’s trademarks.

The validity, construction and performance of this License shall be governed by English Law.
Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

Arm document reference: PRE-21585

version 5.0, March 2024

Page 6 of 17

Copyright © 2025 Arm Limited or its affiliates. All rights reserved. DENO0150
Non-confidential 1.0

http://www.arm.com/company/policies/trademarks

About this document

Terms and abbreviations

Virtual Base System Architecture

Term Meaning

Arm ARM Arm Architecture Reference Manual. See [1].

BBR Base Boot Requirements. See [2].

BSA Base System Architecture. See [3].

DMA Direct Memory Access.

GIC Generic Interrupt Controller.

PE Processing Element, as defined in the Arm ARM, and as viewed from within the
virtual environment.

PMU Performance Monitor Unit.

PPI Private Peripheral Interrupt.

SBSA Server Base System Architecture. See [4].

SGl Software-Generated Interrupt.

System firmware data
VMID

System description data structures, for example ACPI or Flattened Device Tree.

Virtual Machine Identifier.

References

This section lists publications by Arm and by third parties.

See Arm Developer (http://developer.arm.com) for access to Arm documentation.
DDI 0487 Arm® Architecture Reference Manual for A-profile architecture. Arm Ltd.

[1]
2]
3]

[4]

DEN 0044 Arm® Base Boot Requirements. Arm Ltd.

DEN 0094 Arm® Base System Architecture. Arm Ltd.

DEN 0029 Arm® Server Base System Architecture. Arm Ltd.

Rules-based writing

This specification consists of a set of individual content items. A content item is classified as one of the
following:

Declaration

Rule

Goal

Information
Rationale
Implementation note
Software usage

Page 7 of 17

Copyright © 2025 Arm Limited or its affiliates. All rights reserved. DENO0150

Non-confidential 1.0

Virtual Base System Architecture

Declarations and Rules are normative statements. An implementation that is compliant with this specification
must conform to all Declarations and Rules in this specification that apply to that implementation.

Declarations and Rules must not be read in isolation. Where a particular feature is specified by multiple
Declarations and Rules, these are generally grouped into sections and subsections that provide context.
Where appropriate, these sections begin with a short introduction.

Arm strongly recommends that implementers read all chapters and sections of this document to ensure that
an implementation is compliant.

Content items other than Declarations and Rules are informative statements. These are provided as an aid to
understanding this specification.

Content item identifiers
A content item may have an associated identifier which is unique among content items in this specification.

After this specification reaches beta status, a given content item has the same identifier across subsequent
versions of the specification.

Content item rendering
In this document, a content item is rendered with a token of the following format in the left margin: Lj;;

» Lis a label that indicates the content class of the content item.

Content item classes
Declaration
A Declaration is a statement that does one or more of the following:

* Introduces a concept

* Introduces a term

+ Describes the structure of data
+ Describes the encoding of data

A Declaration does not describe behavior.
A Declaration is rendered with the label D.

Rule
A Rule is a statement that describes the behavior of a compliant implementation.

A Rule explains what happens in a particular situation.
A Rule does not define concepts or terminology.
A Rule is rendered with the label R.

Goal
A Goal is a statement about the purpose of a set of rules.

A Goal explains why a particular feature has been included in the specification.
A Goal is comparable to a “business requirement” or an “emergent property.”
A Goal is intended to be upheld by the logical conjunction of a set of rules.

A Goal is rendered with the label G.

Page 8 of 17

Copyright © 2025 Arm Limited or its affiliates. All rights reserved. DENO0150
Non-confidential 1.0

Virtual Base System Architecture

Information
An Information statement provides information and guidance as an aid to understanding the specification.

An Information statement is rendered with the label /.

Rationale
A Rationale statement explains why the specification was specified in the way it was.

A Rationale statement is rendered with the label X.

Implementation note
An Implementation note provides guidance on implementation of the specification.

An Implementation note is rendered with the label U.

Software usage

A Software usage statement provides guidance on how software can make use of the features defined by the
specification.

A Software usage statement is rendered with the label S.

Progressive terminology commitment
Arm values inclusive communities. Arm recognizes that we and our industry have used terms that can be
offensive. Arm strives to lead the industry and create change.

We believe that this document contains no offensive terms. If you find offensive terms in this document, please
contact terms@arm.com.

Feedback

Arm welcomes feedback on its documentation.

If you have any comments or suggestions for additions and improvements create a ticket at
https://support.developer.arm.com.

As part of the ticket include:

+ The title (Virtual Base System Architecture).

» The document ID and version (DEN0150 1.0).

» The page numbers to which your comments apply.
» A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Page 9 of 17 Copyright © 2025 Arm Limited or its affiliates. All rights reserved. DENO0150
Non-confidential 1.0

https://support.developer.arm.com

Virtual Base System Architecture

1 Background

Virtual Base System Architecture (V-BSA) specifies the requirements and run-time features that a base Virtual
Environment (VE) needs to install, boot, and run an operating system.

This document is a supplement to the Arm Base System Architecture document [3].

A virtual environment is a framework that exposes to software a logical view of a system that is implemented
using a combination of hardware and software.

The requirements specified in the Arm BSA [3] are extended, modified, or removed in V-BSA to meet the
specific needs of virtual environments.

Requirements for virtual environment can vary depending on usage and target market. The Virtual Base
System Architecture uses levels of functionality. Each level adds functionality better than the previous level.
Unless explicitly stated, all specification items that belong to level N apply to levels greater than N.

An implementation is consistent with a level of the Virtual Base System Architecture if it implements all of
the functionality of that level at performance levels that are appropriate for the target uses of that level. This
means that all functionality of a level is expected to perform well when exploited by software.

This specification refers to system firmware data which the Arm BBR [2] describes.

Page 10 of 17

Copyright © 2025 Arm Limited or its affiliates. All rights reserved. DENO0150
Non-confidential 1.0

Virtual Base System Architecture

2 V-BSA levels and rules

Level 1 of V-BSA is the minimum set of requirements for a virtual environment. Section 2.2 describes
requirements for future levels.

This Specification describes rules for virtual environments. Some rules are new and others are revised rules
or a collection of rules from the Arm BSA [3] and Arm SBSA [4]. Section 3 lists the requirements and related
rules from other specifications which help map the BSA and V-BSA rules.

2.1 Level 1

Rv_rL1PE_01

RV_LIPE_OQ

RV_LlMM_O 1

Ry_Limm_o2

RV_LlGI_Ol

Ry_rL1pp_oo

I

Ry_risM_o1

RV_LISM_OQ

Section 3.1 lists the rules to be implemented for Level 1.

2.1.1 PE architecture

The virtual environment must implement Arm BSA [3] rules B_PE_01, B_PE_02, B_PE_03, B_PE_04,
B PE 05,B PE 06,B PE 07,B PE 08,B PE 10,B PE 13,and B_PE_14.

PEs must implement PMU extension version 3 (FEAT_PMUv3) and implement the PMU cycle counter
(PMCCNTR_ELO).

Each PE is recommended to implement a minimum of six breakpoints, two of which must be able to match
virtual address, contextlD, or VMID.

Each PE is recommended to implement a minimum of four synchronous watchpoints.

Breakpoints and watchpoints are important for software debugging from within the virtual environment.

2.1.2 Memory map

The virtual environment must implement Arm BSA [3] rules B_MEM_01,B_MEM_02, B_MEM_04, B_MEM_05,
and B_MEM_07.

All DMA requesters in a base system that are expected to be under the control of the operating system must
be able to address all of the Non-secure address space.

2.1.3 Interrupt controller

The virtual environment must implement the Arm BSA [3] rules B_GIC_01, B_GIC_02, B_GIC_03, and
B_GIC_05.

The requirement for eight SGls in B_GIC_05 is a limitation in physical systems that is adopted as a minimum
requirement for virtual environments. Implementations can expose a higher number of virtual SGils.

2.1.4 PPl assignments

The virtual environment must map the interrupts to PPI INTIDs as listed in B_PPI_01 from the Arm BSA [3].

2.1.5 System MMU and device assignment

Implementation of an SMMU is optional for virtual environments.

If an SMMU is implemented in the virtual environment, it must adhere to Arm BSA [3] rules B_SMMU_01,
B_SMMU_02, B_SMMU_06, B_SMMU_07, and B_SMMU_12.

Stage 1 System MMU functionality that is made visible to an operating system must present the interface of a
System MMU compatible with one of the following:

Page 11 of 17

Copyright © 2025 Arm Limited or its affiliates. All rights reserved. DENO0150
Non-confidential 1.0

Ry_r1smM_ 03

RV,LlTM,O1

Ry_r1mM_02

RV_LlTM_OB

I

RVfL 1TM_04

RV_LlWK_Ol

Virtual Base System Architecture

» The SMMUv2 specification, where each context bank must present a unique physical interrupt to the
GIC.

+ The Arm SMMUVvS specification or higher, where the integration of the System MMUs is compliant with
rules SMMU_01 and SMMU_02 as specified in “SMMUV3 integration”, Section D of the BSA [3].

The virtual environment must guarantee that any boot device that is required for installing and booting the
operating system is not blocked by any form of System MMU functionality.

2.1.6 Clock and timer subsystem

The virtual system must include the virtual counter and the physical counter, as specified in the Arm ARM [1].

The virtual counter and physical counter must run at a minimum effective frequency of 10MHz and both
counters must run at the same effective frequency.

The virtual environment must implement Arm BSA [3] rules B_TIME_03, and B_TIME_04.

The passage of virtual time is measured using CNTVCT_ELO. The passage of physical time is measured
using CNTPCT_ELO.

The passage of time as measured by reading a counter, provides a uniform view of virtual or physical time.
This means that both of the following are true:

+ It must not be possible for a sequence of reads of CNTVCT_ELO by any PE to show virtual time going
backwards.

« It must not be possible for a sequence of reads of CNTPCT_ELO by any PE to show physical time going
backwards.

An example of a sequence of reads that shows time going backwards is as follows:

1. PE 0 reads a counter and obtains a value of 0x100.
2. PE 0 writes a flag to memory which is read by PE 1.
3. PE 1 reads the same counter and obtains a value that is less than 0x100.

The difference between virtual and physical time is IMPLEMENTATION DEFINED.

Note

PE timers and system counters are always on, except in semantic G in Table 3 when they must be off.

2.1.7 Wakeup semantics

Systems may implement different PE and system low power states, which are described in system firmware
tables. The virtual environment must understand the relationship between these power states and the facilities
a system has for waking PEs from these low power states. This enables the virtual environment to choose an
optimal PE power state to enter when there is no more work to be scheduled on the PE. It also enables the
correct wakeup source to be used according to the power state selected.

A PE must wake in response to a wakeup interrupt, independent of the state of its PSTATE interrupt mask
bits, which are the A, |, and F bits, and of the wakeup interrupt priority.

Note

There are some power states where a PE does not wake on an interrupt. It is the responsibility of system
software to ensure there are no wakeup interrupts targeting a PE entering these states. See Table 2.

Page 12 of 17

Copyright © 2025 Arm Limited or its affiliates. All rights reserved. DENO0150
Non-confidential 1.0

Virtual Base System Architecture

Rv riwk 02 Whenever a PE is woken from a sleep or off state by a wakeup interrupt, the OS or hypervisor must be
presented with an interrupt so that the PE software can determine which device requested the wakeup.

Ry riyk 03 The interrupt must be pending in the GIC at the point that control is handed back to the OS or hypervisor after
a PE wake.

Ry 1wk o The virtual environment must implement Arm BSA [3] rules B_WAK_05, B_WAK_06.

2.1.8 Power state semantics

Ry Ly os For either the OS or hypervisor, or both, to be able to reason about wakeup events and to know which timers
will be available to wake the PE, all PEs must be in a state that is consistent with one of the semantics
described in Table 2 and Table 3.

Note

All PEs do not need to be in the same state. Arm expects that the semantics of the power states that a
system supports will be described by system firmware data. Table 4 describes the power state semantics
in a set of component-specific rules.

Rv_rwwk_os The virtual environment must implement Arm BSA [3] rule B_WAK_08.

I
Table 2: PE Power states

PE State Description
Run The PE is powered up and running code.
Idle_standby The PE is in STANDBYWFI state, but remains powered up. There is full state

retention, and no state saving or restoration are required. Execution
automatically resumes after any interrupt or external debug request
(EDBGRQ). Debug registers are accessible.

Idle_retention The PE is in STANDBYWFI state, but remains powered up. There is full state
retention, and no state saving, or restoration are required. Execution
automatically resumes after any interrupt or external debug request
(EDBGRQ). Debug registers are not accessible.

Sleep The PE is powered down but hardware wakes the PE autonomously, for
example, on receiving a wakeup interrupt. No PE state is retained. State must
be explicitly saved and restored.

Off The PE is powered down and is not required to be woken by interrupts. The
only way to wake the PE is from system software running on another PE, or an
external source such as a poweron_reset. This state can be used to support
hot remove of PE. No PE state is retained.

Ry riwk o7 When the system is in a state where the GIC is powered down, devices must not send messaged interrupts.
See Table 3.

RV?L 1WK_08

Page 13 of 17 Copyright © 2025 Arm Limited or its affiliates. All rights reserved. DENO0150
Non-confidential 1.0

Virtual Base System Architecture

Table 3: Power state semantics

Distributor Note

PE and

GIC PE GIC
Semantic Interface
A Run On
B Idle On
C Sleep On
E Sleep Off
F Off On
G Off Off

PE resumes execution on receipt of any interrupt.
PE wakes on receipt of a wakeup interrupt.

PE wakes from system timer wakeup event or other
system specific events.

Some, but not all, PEs are in Off state.

All PEs in Off state.

Note

» PE Timers, wake timers, and system counters are always on, except in semantic G in Table 3 when

they must

be off.

» Semantic D has been intentionally skipped to prevent overlap with semantic D in the ‘Power State
Semantics’ table in Arm BSA[3].

Ry_r1wk_oo

Table 4: Component Power state semantics

PE and GIC PE Interface

GIC Distributor

System wakeup timers and

system counter

Individual PEs and their associated GIC PE interface
can be in Run, Idle, Sleep, or Off state.

Must be On if any PE is in the Run or Idle state.
Might be On or Off if all PEs are in either the Sleep or
Off state, with at least one PE in the Sleep state.
Must be Off If all PEs are in the Off state.

Must be On if any PE is not in the Off state.
Must be Off if all PEs are in the Off state.

2.1.9 Peripheral subsystems

Ry ripr 01 The virtual environment must implement Arm BSA [3] rules B_PER_01, B_PER_02, B_PER_03, B_PER_04,
B PER 05,B PER 06,B PER 09,B PER _10,B PER_11,and B_PER_12.

Ry rier o2 If the virtual environment implements PCle, it must comply with all rules in BSA [3] Section E, except for rule

PCI_MM_o02.

I Support for mapping PCl Express memory space as normal non-cacheable memory is optional for virtual

environments.

2.2 Future requirements

Section 3.2 lists the rules to be implemented in future levels.

Page 14 of 17

Copyright © 2025 Arm Limited or its affiliates. All rights reserved. DENO0150

Non-confidential 1.0

RV_LQPE_OI

Ry_r2pE_02

RV_LQWD_O 1

X

Virtual Base System Architecture

2.2.1 PE architecture

PEs must implement a minimum of two PMU event counters in addition to the PMU cycle counter.

The PMU overflow signal from each PE must be wired to a unique Interrupt ID with no intervening logic.

2.2.2 Watchdogs

The virtual environment must provide an IMPLEMENTATION DEFINED watchdog.

A watchdog timer with heartbeat is an important functionality for virtual environments. This interface might be
standardized in the future.

Page 15 of 17

Copyright © 2025 Arm Limited or its affiliates. All rights reserved. DENO0150
Non-confidential 1.0

Virtual Base System Architecture

3 V-BSA checklist

This section lists the minimum virtual environment requirements required to boot and run a guest operating
system on a virtualized environment.

Note

The list of “Related rules from other specifications” below is indicative, and provided only for reference.

3.1 V-BSA level 1 checklist

Related rules from other

Module Required Rule ID specifications (for reference only)

PE V_L1PE_01

PE V_L1PE_02 B_PE_09 (BSA)

Memory Map V_L1MM_01

Memory Map V_L1MM_02 B_MEM_03 (BSA), B_MEM_06
(BSA)

Interrupts V_L1Gl_01

Interrupts V_L1PP_00

SMMU V_L1SM_01

SMMU V_L1SM_02 B_SMMU_08 (BSA)

SMMU V_L1SM_03

Timer V_L1TM_01 B_TIME_01 (BSA)

Timer V_L1TM_02 B_TIME_02 (BSA)

Timer V_L1TM_03

Timer V_L1TM_04

Wakeup V_L1WK_01 B_WAK_01 (BSA)

Wakeup V_L1WK_02 B_WAK_03 (BSA)

Wakeup V_L1WK_03 B_WAK_04 (BSA)

Wakeup V_L1WK_04

Power State V_L1WK_05 B_WAK_07 (BSA)

Power State V_L1WK_ 06

Power State V_L1WK_07 B_WAK_09 (BSA)

Power State V_L1WK_08 B_WAK_ 10 (BSA)

Power State V_L1WK 09 B_WAK_11 (BSA)

Peripheral V_L1PR_01

Peripheral V_L1PR_02 B_PER_08 (BSA)

Page 16 of 17

Copyright © 2025 Arm Limited or its affiliates. All rights reserved.

DENO0150
Non-confidential 1.0

Virtual Base System Architecture

3.2 Future Level checklist

In addition to the V-BSA Level 1 rules in Section 3.1, the following additional rules are required.

Related rules from other

Module Required Rule ID specifications (for reference only)
PE V_L2PE_01 B_PE_09 (BSA)
PE V_L2PE 02 B_PE_10 (BSA)
Watchdog V_L2WD_01 S_L3WD_01 (SBSA)
Page 17 of 17 Copyright © 2025 Arm Limited or its affiliates. All rights reserved. DENO0150

Non-confidential 1.0

	Release information
	Arm Non-Confidential Document License (“License”)
	About this document
	Terms and abbreviations
	References
	Rules-based writing
	Content item identifiers
	Content item rendering
	Content item classes
	Declaration
	Rule
	Goal
	Information
	Rationale
	Implementation note
	Software usage

	Progressive terminology commitment
	Feedback

	1 Background
	2 V-BSA levels and rules
	2.1 Level 1
	2.1.1 PE architecture
	2.1.2 Memory map
	2.1.3 Interrupt controller
	2.1.4 PPI assignments
	2.1.5 System MMU and device assignment
	2.1.6 Clock and timer subsystem
	2.1.7 Wakeup semantics
	2.1.8 Power state semantics
	2.1.9 Peripheral subsystems

	2.2 Future requirements
	2.2.1 PE architecture
	2.2.2 Watchdogs

	3 V-BSA checklist
	3.1 V-BSA level 1 checklist
	3.2 Future Level checklist

